

Forest management intensity measures as alternative to stand properties for quantifying effects on biodiversity

Martin M. Gossner,^{1,}[†] Peter Schall,² Christian Ammer,² Ulrich Ammer,^{3,4} Kerstin Engel,^{3,5} Holger Schubert,^{3,6} Ulrich Simon,^{3,7} Hans Utschick,^{3,8} and Wolfgang W. Weisser¹

¹Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising-Weihenstephan, Germany
²Department of Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences, Georg-August-University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
³Land-use Planning and Nature Conservation, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising-Weihenstephan, Germany

Citation: Gossner, M. M., P. Schall, C. Ammer, U. Ammer, K. Engel, H. Schubert, U. Simon, H. Utschick, and W. W. Weisser. 2014. Forest management intensity measures as alternative to stand properties for quantifying effects on biodiversity. Ecosphere 5(9):113. http://dx.doi.org/10.1890/ES14-00177.1

Abstract. While land use is known to be a major driver of biodiversity loss, it is generally difficult to quantify land-use intensity. As a consequence, studies often use a qualitative approach and contrast different land-use categories, or use structural ecosystem attributes as a proxy for land-use intensity. In this paper we compared these different approaches with two quantitative approaches using forest management as an example. We carried out detailed biodiversity assessments of ten different groups of organisms, ranging from fungi and plants to arthropods and birds; in 12 different forest stands of four forest types in three regions of Southern Germany. We compared the explanatory power of the categorical approach to the explanatory power of (1) stand structural attributes, (2) stand structural complexity indices, (3) measures of forest 'naturalness', and (4) a recently developed quantitative descriptors of land-use intensity in forests, Silvicultural Management Intensity (SMI).

The diversities of many taxa differed between the different land-use categories but the explanatory power of the categorical approach strongly decreased when using jackknifing. Single structural attributes explained differences in biodiversity for some taxa which were illustrative for proximate mechanisms underlying biodiversity changes. Stand structural complexity indices i.e., combinations of single structural attributes, showed higher explanatory power than single structural attributes but explained less variation in biodiversity among stands than land-use intensity measures. SMI was negatively correlated with forest 'naturalness', and, for many groups of organisms, increasing SMI decreased biodiversity, but trophic guilds responded differently. Some guilds, such as wood- and bark living fungi, saprophytic arthropods, herbivores, canopy predators and breeding birds showed a clear negative response to increasing land-use intensity, while for others such as plants there was no relationship. Some guilds, such as mosses and ground dwelling predators appeared to even benefit from increased land-use intensity. Using a quantitative measure of land-use intensity can thus help to understand even more subtle relationships between human impact and the diversity of organisms. Measures such as SMI seem to be useful tools for quantifying land-use intensity in forests and may be applied to biodiversity data of different forest ecosystems worldwide.

Key words: forest management; land-use intensity; multi taxa approach; naturalness; silvicultural management intensity; trophic guilds.

Received 4 June 2014; accepted 13 June 2014; final version received 22 July 2014; **published** 29 September 2014. Corresponding Editor: J. Thompson.

Copyright: © 2014 Gossner et al. This is an open-access article distributed under the terms of the Creative Commons

1

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/3.0/

⁴ Present address: Eichendorf 1, 82390 Eberfing, Germany.

⁵ Present address: Unterholzstrasse 1a, 82377 Penzberg, Germany.

⁶ Present address Paul-Hösch-Strasse 29a, 81243 München, Germany.

⁷ Present address: Berolzheimerstrasse 31a, 90768 Fürth, Germany.

⁸ Present address: Animal Ecology, Department of Ecology and Ecosystem Management, Center of Food and Life Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.

† E-mail: martin.gossner@tum.de

INTRODUCTION

Changes in land-use systems and increasing land-use intensity have been identified as the main drivers of biodiversity loss in all types of terrestrial habitats, including forests (Sala et al. 2000). In tropical forest ecosystems, large-scale habitat destruction by extensive logging (Maass 1995, Castano-Meneses and Palacios-Vargas 2003), often followed by deforestation (Asner et al. 2005, Asner et al. 2006, Sodhi et al. 2009) or conversion to short-rotation plantations of single species (Maass 1995, Castano-Meneses and Palacios-Vargas 2003) is the main cause of biodiversity loss. In temperate North-America land-use history was found to be the most important driver of species richness and/or composition (Motzkin et al. 1999, Bellemare et al. 2002, Rhemtulla et al. 2009, Baeten et al. 2010, Brudvig and Damschen 2011). Even centuries after agricultural land use has ceased, plant species composition of secondary forest on such sites remained significantly different from uncleared forests (Motzkin et al. 1999, Dupouey et al. 2002, Flinn and Marks 2007, Josefsson et al. 2010). Most European temperate forests have been managed for several hundred years, often using elaborated management regimes such as single tree selection (Pommerening and Murphy 2004, Puettmann et al. 2009). Nevertheless, even low-input management of temperate forests can have detrimental effects on biodiversity. For example, old "habitat" trees or dead wood are often missing in managed forests. Consequently some of the specific fauna typical of pristine forests such as many saproxylic Coleoptera species is rare in managed forests (Speight 1989, Nilsson and Baranowski 1993, Müller et al. 2005a).

While overall effects of land use and land-use history on biodiversity may be evident, the specific impacts of the different components of

land use which drive an observed decline in biodiversity are mostly not well known. One reason for this gap of knowledge is that studies investigating the effect of land use on biodiversity often contrast extremes, e.g., 'intensive' vs. 'extensive' management, or collapse various management regimes into discrete land-use intensity categories (e.g., 'organic' vs. 'conventional' in the case of agriculture) (Bengtsson et al. 2005, Tylianakis et al. 2006, da Silva et al. 2008, Flynn et al. 2009). For forest habitats, a multitude of different forest management regimes are conventionally lumped into a category "managed (or logged) forests" or assigned into a few management categories (e. g. Schowalter et al. 1981, Müller et al. 2007a, Müller et al. 2007b). Such classifications of land-use intensity ignore the variability of approaches within a given landuse category. For example, in a meta-analysis Paillet et al. (2010) reviewed studies on management effects on biodiversity in forests. While the overall finding suggested that unmanaged forests generally harbored a higher diversity of organisms than managed woodlands, no information was given whether or not all management types/silvicultural treatments showed differences to unmanaged forests. A more recent meta-analysis on the impact of timber harvesting on understory plant diversity across temperate North-American forests confirmed that comparisons based on classifications such as "harvested stands" versus "unharvested controls" may hide important information (Duguid and Ashton 2013). In that study no clear influence of management on understory plant species richness was found. However, differences between managed and unmanaged stands were revealed if the harvesting regime was taken into account. Understory plant species richness of stands characterized by intensive harvesting methods (e.g., clearcuts, shelterwoods) were separated

from stands where less intensive measures (e.g., single tree selection) had been applied (Duguid and Ashton 2013). A comparable example was reported by Lindenmayer et al. (2010) who examined the response of small terrestrial mammal abundance to different levels of partial stand retention and clearcutting. While no differences were found in animal abundance between the controls and the various types of retention islands, significantly lower animal numbers were found on clearfelled areas (Lindenmayer et al. 2010). For agricultural landscapes a number of attempts to quantify land-use intensity have been made (Dormann et al. 2007, Geiger et al. 2010, Blüthgen et al. 2012). However, studies using continuous land-use variables in forest ecosystems are relatively rare.

In forests, measures of current forest structure are often used as surrogates of human land-use intensity to analyze the effects of forest management on biodiversity (Müller and Brandl 2009, Gossner et al. 2013). Such attributes include (1) stand structural attributes based on stand density, wood volume, variation in tree dimension and their spatial variation (McElhinny et al. 2005), or (2) stand structural complexity indices, which may be defined as combinations of stand structural attributes (McElhinny et al. 2005). However, while these measures are affected by forest management and thus may mediate management effects on biodiversity, they are not themselves measures of land-use intensity. As a proxy for forest management they are, therefore, unsatisfactory as the effect of management regimes is not restricted to a single structural attribute. In addition, because stand inventory metrics and indices only represent the present structural stage, past management effects on biodiversity might be masked. The great advantage of using such variables is, however, that many of them are available from forest inventory data or can even be derived by remote sensing. In addition, they may give information about the proximate causes of changes in biodiversity, e.g., when the lack of a certain structure is correlated to the absence of a particular group of organism.

An alternative of using structural attributes as proxies for forest management are quantitative measures of land-use intensity. There are two general approaches to the quantification of landuse intensity in forests (for review see Schall and Ammer 2013). The first approach is quantifying descriptors of silvicultural activities such as planting, tending, thinning, or harvest as well as other anthropogenic disturbances (e.g., soil disturbances, forest tracks, ditches). Because various kinds of anthropogenic activities are considered, the single components may be aggregated into an index (Kohv and Liira 2005, Liira et al. 2007). One particular forest management activity that has been used in several studies is tree harvest, which focuses on the logging (or harvesting) component of forest management (Sippola et al. 2004, Storaunet et al. 2005, Zenner et al. 2006, Aguilar-Amuchastegui and Henebry 2007). Several measures of logging intensity have been suggested, taking into account the harvested basal area, stem number, volume, or the respective attributes of residual trees. It has been shown in many studies that harvest intensity has a strong impact on the diversity of organisms (Sippola et al. 2004, Zenner et al. 2006, Aguilar-Amuchastegui and Henebry 2007). However, harvesting is just one, though important component of forest management intensity.

A second approach to quantifying forest management is to compare the current state of the ecosystem to a reference state and quantify the deviation as a measure of 'naturalness'. This approach is often applied to temperate forests, where a number of indicators of 'naturalness' have been suggested, based mostly on tree species composition, quantity and decay status of dead wood, and other structural characteristics (e.g., Mrosek 2001, Bartha 2004, Winter et al. 2010). In addition, some indicators include measures of biodiversity into the index, e.g., the composition of the herb layer, making it difficult to use such indicators as an independent variable in a study of biodiversity. Other severe limitations of 'naturalness' approach are the uncertainty about the spatial scale to be chosen for comparisons and the fact that only very few forests exist around the world free of legacies from former human influence that could serve as reference points for a pristine forest state.

Recently, Schall and Ammer (2013) developed a Silvicultural Management Intensity indicator (SMI) which combines tree species, stand age and aboveground living and dead wood biomass as three main characteristics of a given stand to provide a quantitative measure of forest management intensity. The indicator consists of a risk component, which is a function of stand age and tree species identity, and a density component, which is a function of the silvicultural regime, stand age and tree species.

In this paper we compare the different approaches of quantifying land-use intensity in their ability to explain differences in biodiversity and community composition between forest stands. We use the categorical approach as a benchmark and compare it to (1) several ecological meaningful continuous stand structural attributes obtained from forest inventory, (2) stand structural complexity indices (SSCI) composed of these attributes, (3) a quantitative measure of forest land-use intensity SMI, and (4) an index of 'naturalness'.

Material and Methods

Study area

The study was conducted at three study regions in southern Germany (Bavaria) comprising 12 mature forest stands (average tree age >80 years): Ottobeuren (10°21' E, 48°6' N; four stands), Krumbach (10°23' E, 48°23' N; four stands), and Hienheim (10°47' E, 48°54' N; four stands). Stand size ranged from 4.8 to 23.5 ha (see Appendix A: Tables A1-A4 for a detailed description of all stands). Without human impact all three regions would be dominated by European beech Fagus sylvatica (Walentowski et al. 2006). In all regions Norway spruce (Picea abies) has been cultivated over at least three centuries. Within each region we included stands of different management regimes: deciduous forest nature reserves (forest management abandoned 20 years ago), deciduous forest stands (both European beech and oak [Quercus petraea/ robur]), mixed Norway spruce-European beech stands and Norway spruce plantations. Stand data were measured on subplots (500 m² in size, five per grid) arranged in a grid of $100 \times 100 \text{ m}^2$. A forest inventory (Appendix A) and surveys of mosses, higher plants, fungi and birds were carried out on these grid plots. Arthropods were sampled along a 200 m long transect by passive trapping. Stand inventory and biodiversity assessments took place in different years, 19931996 at Hienheim and 1999–2000 at Krumbach and Ottobeuren (see Appendix A).

Measures of forest land-use intensity

We analyzed the relationships between forest land-use intensity and the diversity of different groups of species based on four approaches. We (1) contrasted forest types representing increasing land-use intensity; unmanaged Forest Nature Reserves, managed deciduous forests, mixed beech-spruce forests, pure spruce forests, and compared the explanatory power of these categories with (2) stand structural attributes, (3) stand structural complexity indices (SSCI) and (4) quantitative other measures of land-use intensity, i.e., silvicultural management intensity (SMI), and 'naturalness'. The approaches outlined below are described in more detail in the Appendices B and C.

Single stand structural attributes.-We used 14 variables to characterize forest stand properties and forest stand structure which are commonly assessed in forest studies and often used as explanatory variables for predicting forest biodiversity (e.g., Müller et al. 2005b, Müller and Brandl 2009, Gossner et al. 2013) (Table 1 and Appendix A: Table A2). We further referred to these variables as stand structural attributes. Data for the oldest trees of a stand (maxAge) and average age (avgAge) were extracted from records of forest administrations. Values for dead wood volume (DWV) were obtained from Ammer et al. (2002) (Krumbach and Ottobeuren) and Detsch (1999) (Hienheim). All other variables were calculated based on tree-level information of forest inventories of species identity and dbh using circular subplots of size 500 m² (r = 12.62m). At Hienheim the original subplot size was 1000 m²; in order to make data comparable between the three regions we resampled data by only considering trees located within a distance of 12.62 m to the subplot center. Calliper limit of dbh measurements was ≥ 7 cm.

Stand structural complexity indices.—We calculated 12 stand structural complexity indices SSCI as additive combinations of stand structural attributes (Appendix A: Table A3). The most general index included the seven forest structural properties which were causally and largely empirically independent (Appendix D: Tables D1 and D2), i.e., DWV, SD, Con, WV, HS,

Table 1. Overview of stand structural attributes included in our study.

Abbreviation	Description and unit
maxAge avgAge DWV WV G N Dg Dm	age of the oldest trees of the stand (years) average age of the stand (years) total standing or downed dead wood volume across all decay stages (m ³ ha ⁻¹) wood volume including bark of living trees of a stand (m ³ ha ⁻¹) basal area of the stand (m ² ha ⁻¹) stand density (no. trees ha ⁻¹) quadratic mean diameter at breast height (dbh, measured at height 1.3 m) (cm) arithmetic mean dbh (cm)
SR SD Con OBL VS HS	tree species richness of trees (no. tree species) Shannon species diversity of trees (abundance measured as basal area of each tree species) fraction of conifers among the trees in the stand (based on basal area) fraction of broadleaved species other than <i>Fagus sylvatica</i> (based on basal area) measure of vertical forest structure based on the coefficient of variation of dbh measure of the horizontal structure measured as the standard deviation of <i>G</i> between subplots as proxy $(m^2 ha^{-1})$

avgAge, and VS. The other indices were composed to cover all two-, three- and fourfold combinations of the four best explanatory forest structure attributes (one fourfold, four threefold, and six twofold combinations). Stand structural complexity index was defined as a weighted additive combination of stand structural attributes, which scored relative to the observed range within studied stands (cf. McElhinny et al. 2005):

$$SSCI_{plot} = \sum \frac{X_{iplot} - X_{imin}}{X_{imax} - X_{imin}} \cdot CV_i$$

where X_i is the observed value of the *i*th attribute for single stands, and X_{imin} and X_{imax} are the lowest and highest values of the *i*th attribute observed within all stands. For attributes negatively related to stand structural complexity (i.e., Con), min and max values were swapped. We used the coefficient of variation of attributes CV_i as weighting factor, to take differing variability of attributes within our study into account (Appendix A: Table A3). The attributes Con and DWV entered calculation after transformation described below (data analysis).

Silvicultural management intensity.—Schall and Ammer (2013) suggested that silvicultural management intensity (SMI) of forests managed under close-to-nature objectives can be characterized by two continuous components, risk of stand loss due to natural hazards (disturbance by, e.g., wind throw or bark beetle attack) SMI_r and relative stand density SMI_d. Both components represent management decisions: the choice of tree species and the intensity and frequency of tree harvests. The risk component describes the effect of tree species selection and stand age on the probability of a forest to reach an old growth stage. The density component quantifies the relative deviance between biomass carrying capacity of the site and actual stand biomass. Thus, it reflects the overlapping effects of removals through thinnings and harvests and biomass accumulation through tree growth.

We calculated SMI as mean of the two components, with SMI_r being tree species specific and SMI_d being tree species and site specific. As proxy for stand biomass we used basal area G, wood volume including bark of living trees WV, and the sum of wood volume of living and dead trees (WV + DWV). Thus, SMI was expressed in three versions, SMIG, SMIV, and SMIVD, respectively. For details see Appendix B.

Bartha's (2004) concept of 'naturalness'.-While all the above measures represent objective descriptions of the forest state, we also include, for comparative purposes, a scoring system as it is commonly used for concepts of 'naturalness' or the related concept of 'hemeroby' (Dierschke 1984, Grabherr et al. 1998, Schirmer 1999, Reif 2000).We use Bartha's (2004) concept of 'naturalness' that combines information on a number of forest attributes where 'naturalness' ranges from 0 (most intensive land use, 0% 'naturalness') to 25 (natural forest, 100% 'naturalness') based on points attributed to a stand depending on how similar stand structure is to the structure of a reference pristine forest, based on five groups of attributes (for details see Appendix C: Table C1): tree composition and structure of the canopy layer, composition of the shrub layer, composition of the herb layer, site characteristics and other structural characteristics (old trees, dead wood amount, regrowth). We assessed each forest stand based on the forest inventory data.

Biodiversity assessment

We aimed at comparing effects of land-use intensity for different taxa. Most taxa (mosses and higher plants, fungi, birds) were sampled on grid plots within each forest stand. For sampling arthropods a transect approach was applied. Table 2 gives an overview of the taxa surveyed and the methods used. A full description of sampling methodology can be found in Appendix E.

For statistical analyses, arthropods were classified into trophic levels. The following target taxa were selected: Herbivores (excl. xylophages) (chewing Coleoptera, sucking Heteroptera), Carnivores (Araneae, Opiliones, predatory Coleoptera, predatory Heteroptera, Neuropterida), and Decomposers (selected species of Coleoptera, Isopoda). Among the decomposers we singled out (dead) wood-feeding Coleoptera as Xylophages, decomposers of plant detritus as Saprophages (Coleopters in partim, Isopoda) and fungusfeeding Coleoptera as Mycetophages. We further classified all plant, spider and beetle species that exclusively occur in forests as forest specialists.

We used community attributes, i.e., abundance (A), species richness (S), bias corrected Shannon's entropy (eHc) (Chao and Shen 2003), and reciprocal Simpson Index (invSimp) (the latter two are transformations to true diversities according to Jost [2006]), and community composition as response variables. As the sequence from S over eHc to invSimp increasingly weights abundant species higher, community attributes measure different characteristics of the communities.

Data analysis

Linear regression or ANOVA was used to test for significance (p < 0.05) and to rank the explanatory power (see below) of quantitative and categorical variables, respectively. Because single observations might strongly affect the outcome of regression analysis in small datasets, we complemented the approach using the jackknife method. Thus, we recalculated the regression models omitting each observation once. Only when all 12 jackknifed regression models signaled significance we considered a relationship as strongly supported by empirical evidence. Similarly, to assess the robustness of ANOVA models we used the jackknife method. We therefore re-calculated the models by omitting (1) each forest type once and (2) each managed forest type once in order to contrast managed and unmanaged forests. Only when all four (three, respectively, if unmanaged forests were kept) models signaled significance we considered an effect as not dependent on a single forest type. The effects of the different predictor variables on community composition were analyzed using partial constrained correspondence analysis (pCCA) (R-package 'vegan 2.0–10'). Thereby effects of predictor variables are cleaned of regional differences in community composition. Significance of pCCA was tested using an ANOVA like permutation test allowing up to 2000 permutations.

Explanatory power of predictor variables across trophic groups was measured as (1) number of significant (p < 0.05) cases (total and jackknifed), (2) number of cases with R^2 values >0.3 (in pCCA percentage of explained variance was calculated by dividing the inertia of the constrained axis by total inertia minus the conditional inertia), and (3) number of cases in which a model was among the best models based on Akaike information criterion (delta AIC, henceforth "dAICc"; Burnham and Anderson 2002, Aho et al. 2014), that is with substantial $(dAICc \le 2)$ and less substantial support (dAICc \leq 4). The maximum number of cases was 140 regarding abundance and diversity measures and 35 regarding community measures. Results remained consistent when changing the R^2 threshold (results not shown).

All analyses were performed in R version 3.0.2 (R Development Core Team 2013). To factor out differences in community attributes among regions and sampling periods, we standardized (z-transformed) the response variables A, S, eHc, and invSimp within regions. Predictor variables, i.e., measures of stand properties and structure, indices of stand structural complexity and measures of land-use intensity, were standardized across regions to ensure a common scale without losing inter-regional generality. Abun-

<u> </u>		Species	richness		
Taxon	Ottobeuren	Krumbach	Hienheim	Total	Method
Mosses* Vascular plants† Funci	11 37	7 62	87 72	88 98	Modified Braun-Blanquet method
All	282 (1910)	284 (1595)	213 (930)	445 (4435)	Fruit body survey three times a year, standardized by time; Hienheim: whole stand, Krumbach/Ottobeuren: 4-ha core area
Decomposers					urcu
Wood and bark living Soil saprophytes Symbionts	146 (1105) 50 (296)	128 (748) 64 (374)	137 (741) 30 (82)	221 (2594) 83 (752)	
Mycorrhiza	63 (431)	69 (374)	21 (41)	98 (846)	
Myxomycete‡ Fungi living†	6 (25) 11 (26)	8 (23) 9 (41)	14 (43) 8 (18)	18 (91) 17 (85)	
Cone and fruit living [‡]	4 (21)	4 (14)	2 (3)	6 (38)	
Obligate moss living‡	1(5) 1(1)	1(20) 1(1)	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	1(27) 1(2)	
Coleoptera	1 (1)	1 (1)	0 (0)	1 (2)	
All	322 (12732)	412 (14918)	600 (22196)	767 (49846)	
Saprophagous	14 (1951)	15 (662)	15 (1015)	22 (3628)	Pitfall traps
Mycetophagous	35 (858)	59 (1407)	100 (4034)	116 (6299)	Arboreal photo eclectors; composite flight interception traps understorey/canopy
Xylophagous	51 (365)	66 (695)	102 (1649)	124 (2709)	Arboreal photo eclectors; composite flight interception traps
Herbivores (chewer)	46 (2169)	74 (4347)	99 (4757)	137 (11273)	Ground photo eclectors, arboreal photo eclectors, composite flight interception traps understorey/ capony
Predators small (chewer)	176 (7389)	198 (7807)	284 (10741)	368 (25937)	Pifall traps; arboreal photo eclectors; composite flight interception traps understorey/canopy
All	33 (223)	42 (567)	51 (469)	80 (1259)	
Herbivores (sucker)	22 (170)	31 (475)	30 (263)	50 (908)	Arboreal photo eclectors, composite flight interception traps
Predators small (sucker)	11 (53)	11 (92)	21 (206)	30 (351)	Arboreal photo eclectors; composite flight interception traps understorey/canopy
Araneae Predators small	82 (2496)	110 (3516)	99 (3503)	163 (9515)	Arboreal photo eclectors
Opiliones	02 (2100)		,, (0000)	100 (5010)	
Predators small Isopoda Decomposers	7 (231)	9 (760)	16 (1245)	17 (2236)	Pittall traps; arboreal photo eclectors
Saprophagous	5 (341)	6 (3444)	7 (1009)	10 (4794)	Pitfall traps
Predators small	23 (1635)	28 (1712)	33 (385)	42 (3732)	Arboreal photo eclectors; composite flight interception traps understorey/canopy
Birds	22 (7144)	20 (2744)	10 (1000)	11 (10000)	Monthly gunner 5 min int -
All Breeding birds Overwintering birds	30 (4384) 18 (2760)	28 (1776) 18 (968)	40 (1008) 38 (683) 19 (325)	44 (10896) 42 (6843) 25 (4053)	per grid unit

Table 2. Overview over the taxa surveyed, the methods used for diversity assessment, species richness and number of individuals or fungi fruit bodies (in parentheses) in the 12 stands of three different regions. See Appendix E for a full description of methodology.

† Abundance was measured as coverage. Thus no data on individuals are available.‡ These functional guilds are not further analyzed due to low sample size.

dance was square root transformed and DWV log-transformed beforehand to reduce skewness. The proportions Con and OBL were arcsine square root transformed.

RESULTS

We observed a total of 88 moss, 98 vascular plant, 445 (4435 fruit bodies) fungal, 767 beetle (49846 individuals), 80 true bug (1259), 163 spider (9515), 17 (2236) harvestman, 10 (4794) woodlouse, 42 (3732) lacewing, and 44 (10896) bird species. Table 2 lists the number of species and the number of individuals separately for all taxa/trophic levels/feeding guilds and regions. As different subgroups within each trophic level showed different responses to land-use intensity (for example see principal component analyses of small predators and wood decomposers; Appendix F: Fig. F1), all subgroups were analyzed separately.

Forest land-use intensity of the stands studied

Land-use intensity (SMI) varied largely among the stands studied, ranging from 0.023 to 0.524 (SMIG 0.060–0.524, SMIV 0.070–0.52, SMIVD 0.023–0.510) (Appendix B: Table B1). SMI indicated the highest land-use intensity for the managed spruce forests of Krumbach and Hienheim and the lowest for the forest nature reserves of Krumbach and Ottobeuren. Values of 'naturalness' ranged from 3 (=12% 'naturalness') in the managed spruce forests of the three regions up to 16 (=64% 'naturalness') in the forest nature reserve at Krumbach (Appendix C: Table C2).

The different specifications of our land-use intensity measure were highly correlated (Pearson correlation coefficient: SMIG vs. SMIV: 0.993, SMIG vs. SMIVD 0.989, SMIVD vs. SMIV 0.997). Correlations between 'naturalness' and land-use intensity was negative and strong (-0.91 to -0.94). While 'naturalness' was positively correlated with stand age, vertical structure and tree species diversity and negatively correlated with fraction of conifers and basal area, SMI land-use intensity showed a negative relationship with stand age, vertical structure and tree species diversity and a positive relationship with fraction of conifers and basal area (Appendix D: Tables D1 and D2).

Stand structural complexity indices were strongly negatively correlated with SMI landuse intensity (Pearson correlation coefficient: less than -0.9 in 47%, less than -0.8 in 78% of 36 possible cases), but strongly positively correlated with 'naturalness' (>0.9 in 50%, >0.8 in 83% of 12 possible cases; Appendix D: Table D3).

Overview of different measures for land use and stand structural attributes for explaining biodiversity

The land-use intensity measure SMI, and 'naturalness', were most successful in explaining the variability in organismic community attributes as well as community composition (Figs. 1-3 and Appendices G and H). The significance rates reached values between 51% and 54% of all studied trophic guilds and between 23% and 26%(jackknife 13–14%) of all community attributes (abundance, species richness, diversity, entropy) times trophic guild analyzed. This was confirmed when using R^2 or dAICc with substantial (dAICc \leq 2) and less substantial support (dAICc \leq 4) as measure describing the strength of relationships. SMI was also a good predictor of community composition although single forest structure attributes (e.g., OBL) and structural complexity indices showed similar proportion of explained variance (Fig. 3). The variants of SMI explained observed variation similarly.

The categorical approach showed similar explanatory power (54% of all trophic guilds/ 21% of all community attribute), but this was mainly due to significantly higher or lower values of single forest types, which varied by trophic guilds (Fig. 4). When using jackknifing, the explanatory power decreased substantially (4%).

Single structural attributes assessed by forest inventory showed generally low power in explaining the variability among plant and animal communities (Figs. 1–3 and Appendices G and H). Only the attributes proportion of conifers, tree age (avgAge), tree species diversity and dead wood volume were successful in explaining the variance in some biodiversity attributes. In contrast, some of the stand structural complexity indices nearly reached the performance of SMI. These were the threefold combinations of Con, avgAge and DW or Con, SD and DWV. Also the twofold combinations of proportion of conifers

Nat=Naturalness

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD Stand structural attributes:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. 1. Effects of 'naturalness' and different measures of land-use intensity, stand structural attributes and Stand Structural Complexity Indices (see Table 1 and Appendix A: Table A3) on the species richness of various groups of organisms (df = 12 forest sites). Arthropods were sampled by different trapping methods. The sign (+ or -) indicates the direction and the grey scale the strength (based on estimate values of the statistical model) of the relationship. White signs on grey background indicate that by using jackknife method all resampled subsets were significant. Statistical details and results regarding abundance, diversity and entropy are shown in Appendices G and H. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figure.

_	е н	Coleoptera (APE)	8	0	\$	0	0	Ó						08		80		00		80	00	0	80	80	0	0	0	80			\sim
	ung sede	Coleoptera (FIT-C)																	•												
L	ЦФ	Coleoptera (FIT-U)	C						0	•				0			4	\Rightarrow													
se	T SI	Coleoptera (PT)			7		1	\Rightarrow	7		∻	≁	∻		•	_	4			•	•	•	•	•	•		_	•		•	
du	lan	Fungi (soil saprophytes)		₩ A	8	87	87	8	×.							<u>8</u>	✦	✦		4	ð,	ð^	\	ð,	8		×	4			*
0	<u>ш </u>	Isopoda (PT)											•		•		<u> </u>						0.	0.				0.		0.	
De	_	Coleoptera (APE)								•																					
	000	Coleoptera (FIT-C)	•0		L.	.			<u> </u>	•0							<u> </u>				_								•0		
	3	Coleoptera (FIT-U)		10	10	10	10	\uparrow	أ						_	0	Ŷ			10	10	*	0	10	\Rightarrow	10	10	20		∻	
_		Fungi (wood/bark)	4	ŏč				\Rightarrow	\Rightarrow		4	Ŷ			∻	\mathcal{A}		1		8	4		%≻ ○			4		*	\Rightarrow	\Rightarrow	
	Big	Birds (breeding)		ð,	1	ð,	ð,	Ŷ	ðð		7	*				Y	Ŷ	\uparrow		ð	Š,	ğ	Ţ	30	ð	ðŗ.	ð	Y	ğð		ğ
		Birds (overwintering)	87	ð,	ð,	ð,	бò	72	ð,	μ_	Ŷ	đ٢	4	•	ð,	ð	7	•		ð,	٥ř	ð,	ð,	ð,	ð	٥Ŷ	Ž	ð,	42	•	Ő
		Araneae (APE)		7°C	1	1	1		76			∻			∻	*		4		\$	10	10	76	6 70	60	Ŷ	70	70	\$	• 0	ÓÒ
		Coleoptera (APE)		0													.				_				h	L	4	_			
		Coleoptera (FIT-C)		Ý	3	Y								•		42	Ŷ	1			<u> </u>	0	<u> </u>	μ_	μ_	μ_	42	<u> </u>			Щ
	=	Coleoptera (FIT-U)			Ľ.	Ľ	Ľ					_																			\square
ator	sma	Coleoptera (PT)		Ő	ð	ð	ð7	60	7		\diamond	∻				7	7	1		\diamond	\uparrow	ð"	Ŷ	\diamond	∻	7	ð	\uparrow	∻		\square
eda	0)	Heteroptera (APE)													~		.														
Ā		Heteroptera (FIT-C)		Ŷ	47	4	7		Y			Ŷ			Ŷ	Y	\uparrow	4		Ŷ	Ŷ	47	Ŷ	47	4	Ŷ	4	Ŷ	\uparrow	9	8
		Heteroptera (FIT-U)	C		.		.			•0					_	_	.			L.	L							L			
		Neuropterida (APE)		1	1	1	4	\checkmark	7		∻	∻			✦	\uparrow	1	\diamond		Ŷ	*	4	Ŷ	*	\$	4	7	∻	∻		\uparrow
		Neuropterida (FIT-C)		\uparrow	4	Ŷ	\uparrow			\uparrow							\diamond				4	\Rightarrow		\uparrow	\diamond		Ŷ			Ŷ	✦
		Neuropterida (FIT-U)																													\square
		Opiliones (APE)												0	0			•0		0					0					0	0
_		Opiliones (PT)													_																
	۲.	Coleoptera (APE)	đ	ÓČ	60	60	60	\uparrow	Ŷ		Ŷ	ð٢		4	ð0	ðð	7	\Rightarrow	\$	ðõ	ð0	14	ð0	00	4	ŐČ	4	ð0	\$	• 0	4
d)	ewe	Coleoptera (FIT-C)															.			.											\square
/ou	ЧĊ	Coleoptera (FIT-U)		ÓČ	60	60	60	66	60			0	•			ÓÒ	10	\uparrow	Ŷ	ÓÒ	ð ð	60	• 0	ð ð	ð Ò	ÓČ	ð Ò	0	<u>• </u>	4	
rbi		Coleoptera (GPE)			L.	ما	J	•0	•0				0		_						0	L Q	10		0,1		0,0		0		
Не	er	Heteroptera (APE)	4	4	4	4	4	•	•		4	∻	0	Ŷ	∻	4	4	1		1	*	ð	*	1	ð	*	1	*	\diamond		Ŷ
	iuch	Heteroptera (FIT-C)		\uparrow		Ŷ		4	*		\$			•		7	7	1		7		4	*	*	7	\Rightarrow	1	7			
늘 둘 –	0	Heteroptera (HII-U)	-	4	7	7	7	-			Ŷ			≁	∻	*	7	7		\Rightarrow	7	7	*	7	∻	7	4	*			∻
bid		Fungi (mycorrhiza)		1	7	4	4		<u> </u>						∻	*	4	1		*	*	Ŷ	4	7		7	Ŷ	*	Ŷ		\vdash
e P		vascular plants													_			Ŷ					\Rightarrow			\rightarrow			Ŷ		
<u>ч</u> Ъ		Mosses	0	Ŷ	10	10	10	\uparrow	70		Ŷ	Ŷ			••	Yõ	Ŷ	\uparrow		4	70	10	70	10	4	YC	4	70	Ŷ	8	Ŷ
			þe	at	Q	≥	9	ge	ge	≥	2	ტ	z	К	Q	ы	Ч	ŝ	ŝ	ġ	ġ	Ac	ю	ပွ	Q	Ac	В	ပွ	Q	Щ	ц
6		ity attributos	Ę	2	SM	SN	MIN	ax⊳	٨g٨	D	>			0)	0)	Ó	ō	1	т	7Att	Attı	∖ttri	∕ttril	∕ttril	∖ttril	∖ttri	∖ttri	∖ttril	∖ttril	∖ttri	∕ttri
			res					8	σ												4	37	37	Ř	3	5	5	5	5	5	5
			Fol	Na	tura	Ine	ss/			St	and	stru	uctu	Iral	attri	ibut	es				5	Stru	ctur	al C	com	plex	kity	Indi	ces		
	munity≺ orsity ∕	Entropy		Ма	nag	jem	ent																			-	-				
				int	ensi	ity																									

Nat=Naturalness

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD Stand structural attributes:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods:

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. 2. Effects of forest type, 'naturalness' and different measures of land-use intensity, stand structural attributes and stand structural complexity indices (see Table 1 and Appendix A: Table A3) on the abundance, species richness, diversity (reciprocal Simpson index 1/D), entropy (bias corrected exponential Shannon's entropy eHbc) and community composition (based on a partial constrained correspondence analysis (pCCA) by removing effect of region) of various groups of organisms (df = 12 forest sites). Significant relationships are indicated by circle/star and respective grey value indicates different community attribute. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figure.

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD

Stand structural attributes:

Manu Sudertial Buildenses max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity) Trapping methods:

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. 3. Comparison of forest type, 'naturalness' and different measures of land-use intensity, stand structural attributes and stand structural complexity indices (see Table 1 and Appendix A: Table A3) in terms of their performance in predicting abundance and diversity measures (reciprocal Simpson index 1/D, bias corrected exponential Shannon's entropy eHbc) and community composition (based on a partial constrained correspondence analysis (pCCA) by removing effect of region). Explanatory power was measured as (a) number of significant (p < 0.05) cases (total and jackknifed) (b) number of significant (p < 0.05) cases with substantial (dAICc \leq 2) and less substantial support (dAICc \leq 4) according to Burnham and Anderson (2002) across trophic groups (maximum: abundance/diversity 140, community composition 35). Significant results based on jackknife analyses were only counted when all 4/3 (if unmanaged forests were kept) resamplings regarding forest type and 12 resamplings regarding the other measures were significant.

ECOSPHERE * www.esajournals.org

Fig. 4. Effects of forest type on community attributes of different trophic levels and subgroups within these trophic levels (df = 12 forest sites). Estimates (symbols) and standard errors based on multiple comparisons (vertical lines at the left side of the plot) for all significant relationships are given. Letters indicate significant differences between forest types based on a Tukey post-hoc test. Different taxa are indicated by the drawings right of each line and different assessment methods are indicated by different symbols (for details see Appendix E). Please note that in two cases of significant ANOVA post hoc comparisons were not significant.

and tree age (avgAge) and combinations of proportion of conifers and dead wood volume showed high explanatory power (trophic guild: 43–49% significant results, community attribute: 20–22% significant results/jackknife 10–11% significant results) (Fig. 3 and Appendix G: Table G17).

Land-use measures (SMI, 'naturalness') and stand structural metrics (stand structural attributes and complexity indices) explained in particular differences among plots in terms of species richness (182 significant results out of 1050 possibilities; significance rate 17.3%), followed by abundances (significance rate 16.1%), entropy (bias-corrected exponential Shannon's entropy; significance rate 11.3%) and diversity when abundant species were more strongly weighted (reciprocal Simpson; significance rate 10.7%) (Appendix H: Figs. H1–H8).

Differences among trophic guilds

The variance explained by different land-use measures compared to stand structural attributes was similar when focusing on the diversity and community composition of single trophic levels (Figs. 1 and 2). Only in a few cases other stand structural attributes performed better than SMI, e.g., tree diversity and proportion of conifers in explaining the diversity of tree stem dwelling fungi-feeders among Coleoptera, and dead wood amount and forest type in explaining xylophagous beetles in the canopy (Fig. 2).

DISCUSSION

In this study we compared the ability of quantitative forest management indicators to explain differences in biodiversity in differently managed forest stands with the explanatory power of a categorical approach and with a number of commonly used quantitative descriptors of forest structure. These descriptors of forest structure are themselves affected by forest management and have in the past often served as proxies for measuring land-use intensity in forests. However, how such structural attributes are affected by land-use practice is not well defined.

Explaining biodiversity by different measures

One main result of our study is that for many

groups of organisms, there was a significant relationship between land-use intensity, as measured by a quantitative index, and organismic diversity. This relationship was not detected when land use was reflected by single structural attributes assessed by forest inventories. Stand structure complexity indices performed better than single structural attributes, but not as good as the measure of forest management intensity (SMI). Only in a few cases structural attributes were related to biodiversity while land-use intensity was not or explanatory power was much lower.

In many studies forest structure properties were used as proxies for forest management intensity and related to data on species richness and/or composition. Frequently used structural attributes are the amount of deadwood which was shown to be related to fungi (Müller et al. 2007a, Brazee et al. 2014), saproxylic beetles (Müller et al. 2008, Gossner et al. 2013) and snail species richness (Müller et al. 2005b) and measures such as coverage of herbaceous layer, growing stock, mean diameter at breast height of the three largest trees, stand age, dead wood log or snag identity and density, density of large trees, etc. (Goebel and Hix 1996) that can be easily compiled from forest inventories or remote sensing data (e.g., Müller and Brandl 2009, Vierling et al. 2011). While the relationship of single structural measures to the presence and/or abundance of single species or specific groups of species which rely on these special structural attributes as habitat or food source is apparent (Ulyshen and Hanula 2009, Bouget et al. 2013, Gossner et al. 2013), the approach of using structural measures as proxies for land-use intensity can be questioned. Single structural measures may differ between extremes such as unmanaged control and clear-felled area, but may not sufficiently distinguish between medium treatments of harvesting intensities and ignores differences in site productivity. Irrespective of forest management stands on fertile sites show other structural attributes than stands of low productivity sites even if they are composed by the same species (Goebel and Hix 1996, Hart et al. 2012). Moreover, forest management might decrease or increase tree species diversity and biodiversity might be affected rather by tree species identity than by tree species diversity (e.g., Werner and Raffa 2000). Another crucial point is land-use history which may have determined today's soil properties affecting for example understory herb diversity. Therefore this is not a consequence of present forest management (Motzkin et al. 1999, Dupouey et al. 2002, Flinn and Marks 2007).

These constrains may explain why many studies did not find differences in species richness if treatments were compared which did not differ sufficiently in one or more single structural attribute. For example Müller et al. (2008) found that species richness of saproxylic beetles was better explained by plot factors, such as dead wood or the presence of fungi, than by management intensity, which was classified based on expert's opinion. A comparable finding was reported by Küffer and Senn-Irlet (2005). While differences in the quality of dead wood, including volume, age, degree of decomposition and host tree species, were the most important factors influencing diversity of wood-inhabiting aphyllophoroid basidiomycetes, no clear relationship to forest management intensity was found. This result was most likely caused by the fact that structures important for the fungi such as fine woody debris were present also in intensively managed forests and served as important refuge for many species (Küffer and Senn-Irlet 2005). Accordingly Purahong et al. (2014) found a significant correlation of the abundances of common, wood-inhabiting fungal OTUs between three forest types (unmanaged, selection cutting and age-class forest). OTU richness was however significantly reduced in age-class forests, indicating a loss of less common species which might depend on bigger logs. As single structural attributes are important only for a limited number of species it was not surprising that they had a much lower explanatory power than SMI in our study. In fact only in few cases single structural attributes performed better than the SMI or Bartha's index of 'naturalness'. Examples were xylophagous beetles in the canopy which were better explained by dead wood amount and fungi-feeding stem dwelling Coleoptera which were closely related to tree species diversity. The overall inferior explanatory power of single structural attributes is partly compensated through complementarity between structural attributes, in that the one or the other

attribute is related to biodiversity.

The explanatory power of stand structural complexity indices was lower than SMI but higher than single structural attributes. This suggests that the diversity of organisms is rather affected by a combination of structural attributes and management intensity than by single structural attributes. Interestingly, the complexity index composed of average stand age (avgAge) and share of conifers (Con), which resemble input data of SMI, did not perform better than its constituents. This finding suggests that the design of SMI in fact considers meaningful stand structural characteristics in terms of management intensity as well as in terms of biodiversity, and that, however, a purely additive combination of relevant single stand structural characteristics is not effective. Hence SMI was more often found among the best explanatory variables than stand structural complexity indices as indicated by dAICc (Fig. 3).

A second main result of our study was that the categorical approach, i.e., defining forest types, revealed overall high explanatory power. The categorical approach has some limitations. First, significant differences between forest types were observed which were not correlated with the management intensity gradient (that is, not conifer and unmanaged beech forests, but mixed forests or managed beech forests showed significantly highest/lowest diversity). Second explaining diversity was less stable when the jackknife approach was applied. This was due to the high importance of a particular forest type, which, however, differed among trophic guilds. Third forest types could only rarely be found among the best explanatory variables (Fig. 3).

Correlations between measures of land-use intensity, 'naturalness' and stand structure

As for SMI, the abundance and diversity of many species correlated well with Bartha's measure of 'naturalness'. This finding reflects the strong negative relationship between SMI and 'naturalness'. Though reasonable, the high negative correlation between SMI and 'naturalness' was somehow unexpected, because the two measures are based on different criteria and calculations. One might argue that the close relationship between Bartha's measure of 'natu-

ECOSPHERE * www.esajournals.org

ralness' and the land-use intensity measure SMI was caused by including unmanaged or intensively managed spruce forest stands. However, even if excluding these extremes, the correlation was still significant. This suggests that management decisions, as for example the replacement of stable deciduous forests by conifer plantations of lower survival rate and/or heavy and repeated reductions in stand volume, appear to be correlated with changes in structural attributes that are crucial for the assessment of 'naturalness'. Both measures inherently combine a wide range of characteristics which were found to be crucial for species diversity. These are, for example, stand volume which in turn corresponds to the presence or absence of large (old) trees including snags and /or canopy layering and closure, and stand composition, reflecting the high importance of tree identity on species richness. The importance of these structural characteristics have been shown for e.g., ground-dwelling Coleoptera in northern hardwood and eastern hemlock-dominated sites (Werner and Raffa 2000), for snails in European beech forests (Müller et al. 2005b), for lichens in European temperate deciduous forests (Nascimbene et al. 2013), and for small mammals in oak forests of southern Indiana (Urban and Swihart 2011). Despite the close correlation between 'naturalness' and SMI, a major difference remains: the definition of 'naturalness' is based on many assumptions concerning the state of a pristine forest. It also includes measures of biodiversity rendering correlations with forest biodiversity measures potentially tautological. In contrast, an index such as the SMI is a more independent quantitative measure. Another reason why a 'naturalness' measure seems to be questionable for scientific studies lies not least in the difficulty to identify a correct reference state. While the assumptions concerning the reference state in our study region may not be completely wrong, this is difficult to prove. In those parts of the world, where land-use history may have everlastingly changed forest composition (Dupouey et al. 2002, Josefsson et al. 2010, Brudvig and Damschen 2011) a 'natural' reference tree species composition makes even less sense and ignores long-term dynamics due to anthropogenic legacies or different successional trajectories (McLachlan et al. 2000, Schweitzer and Dey

2011). However, we included a comparison with Bartha's index for 'naturalness' in our analysis because such indicators are frequently used in conservation debates.

Application of SMI in a global perspective

The third main result of our study was that different taxa responded differently to land-use intensity, but the variation was generally not better explained for single trophic guilds by different land-use measures. Some guilds, such as wood- and bark living fungi, xylophagous beetles, insect herbivores, canopy dwelling insect predators and breeding birds showed a clear negative response to increasing land-use intensity, while for plants the variability observed was not explained by the different measures of landuse intensity (SMI, 'naturalness'). Interestingly, some taxa, such as mosses and ground-dwelling predators, appeared to have benefitted from increased land-use intensity. Thus, a quantitative measure of land-use intensity may help to understand the opposing effects of land use on the diversity of different taxa.

SMI was developed to quantify silvicultural land-use intensity based on the two most influential management decisions on the strategic and the operational level. While the former is related to tree species selection and stand age (rotation period), the latter reflects the site productivity, the control of stand density by thinnings and harvests and thus biomass removal relative to carrying capacity. These characteristics were combined into the risk and density components of SMI. However, while SMI performed better than single structural attributes or combinations of such attributes there was a lot of unexplained variability. One reason may be the strong effect of land-use history on biodiversity which is not represented in the index (Motzkin et al. 1999, Bellemare et al. 2002, Rhemtulla et al. 2009, Baeten et al. 2010, Brudvig and Damschen 2011). Though the recent management history is captured in SMI by all of the three management components considered, i.e., time since stand establishment, species composition which may have changed, and former biomass removals, impacts of former land use cannot be addressed. Another source of unexplained variability may be forest fragmentation which was shown to also strongly determine species richness (Brunet et al.

Schall and Ammer (2013) showed that SMI can be applied to development stages and whole silvicultural regimes of beech, oak, spruce, and pine forests based on yield tables and to actual stands, using the 30 so-called very intensive plots studied within the German Biodiversity Exploratories (Fischer et al. 2010). Thus, the concept should be robust for Central Europe. The concept of SMI may also work for forest biomes outside Central Europe where the natural disturbance regime does not prevent climax (or old growth) forests to develop (Wirth et al. 2009). However, it might be difficult do get reliable data for the risk of tree loss due to natural hazards in diverse hardwood stands. Additionally, SMI cannot capture historical changes of tree species composition. Thus, at a given site various stand types may be classified as not intensively managed if they had built up high biomass, although some of them may be secondary forests which do, for example, not contain late successional species. SMI most likely does not work if fires belong to the natural disturbance regime. In this case the density component would indicate high management intensity due to the loss of live or dead wooden biomass.

Conclusions

Our findings suggest that measures such as the SMI are promising to explore effects of forest management on organismic diversity. Alternatively, a combination of forest age related variables, tree species identity and diversity, and dead wood amount might be successfully used for evaluating the effects of forest management on organismic diversity.

Such intensity measures show higher independency and higher power in explaining organismic communities. Single structural variables and structural complexity indices seem to do fine in explaining the performance of specific species but should not be used for explaining management effects on the diversity of different organisms. This is, because these structural attributes might be used as both, a proxy for land-use intensity as well as mechanistic explanation of why land use has certain effects on a particular group of organisms. The management intensity index SMI showed to be a reliable measure of forest management intensity, because it well

reflects structural changes expected from forest management e.g., by being negatively correlated with stand age and 'naturalness' and positively with the proportion of conifers. Actually, reduced stand age by final cuttings and increased percentage of conifers are the most obvious measures of an intense forest management in many parts of the world (Schall and Ammer 2013). Moreover, SMI revealed to have higher power in explaining management caused changes in biodiversity. We believe that this approach to quantify forest management intensity based on forest management practices can be adjusted for other parts of the world. Our results show, that such indices should include the identity of the dominant tree species, which is, in managed forests, the most crucial and momentous management decision affecting overall biodiversity. Zenner et al. (2013) recently stated that we need to better understand "how far management can deviate from the natural range of variability before comprising ecological integrity and resilience". Measures such as the SMI may help to get more information to answer that question.

ACKNOWLEDGMENTS

We thank the forestry departments of Ottobeuren, Weißenhorn (formerly Krumbach), Riedenburg and Kelheim for their generous support of our research. We are grateful to Dr. A. Gruppe (Freising; Neuropterida), F. Köhler (Bornheim, Coleoptera), T. Blick (Hummeltal, Araneae), R. Leitl (Amberg, plants and mosses), and W. Helfer (Aichach, fungi) for species identification and partly survey and sampling support, R. Leitl (Amberg) and M. Kölbel (Regensburg) for conducting forest inventory and research on past forest management activities in studied stands, U. Kern (Freising) for the graphical illustrations and R. Detsch (Freising) and U. Schulz (Eberswalde) for fruitful discussions. The experimental work was financed by grants of the Federal Ministry of Education, Science, Research and Technology, Germany ('Zukunftsorientierte Waldwirtschaft', project-no. 0339735/8) and the 'Bavarian Forest Service (project no. L49 and L51). M. M. Gossner and W. W. Weisser are supported by the German Research Foundation DFG (Biodiversity Exploratories, WE 3081/ 9-1). M. M. Gossner and P. Schall contributed equally to this work.

LITERATURE CITED

Aguilar-Amuchastegui, N., and G. M. Henebry. 2007. Assessing sustainability indicators for tropical forests: Spatio-temporal heterogeneity, logging intensity, and dung beetle communities. Forest Ecology and Management 253:56–67.

- Aho, K., D. Derryberry, and T. Peterson. 2014. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95:631–636.
- Albrecht, L. 1990. Grundlagen, Ziele und Methodik der waldökologischen Forschung in Naturwaldreservaten. Schriftenreihe Naturwaldreservate in Bayern 1:1–221.
- Ammer, U., K. Engel, B. Förster, M. Goβner, M. Kölbel, R. Leitl, U. Simon, U. E. Simon, and H. Utschick. 2002. Vergleichende waldökologische Untersuchungen in Naturwaldreservaten (ungenutzten Wäldern) und Wirtschaftswäldern unterschiedlicher Naturnähe (unter Einbeziehung der Douglasie) in Mittelschwaben. Research Report. Technische Universität München, Freising, Germany.
- Asner, G. P., E. N. Broadbent, P. J. C. Oliveira, M. Keller, D. E. Knapp, and J. N. M. Silva. 2006. Condition and fate of logged forests in the Brazilian Amazon. Proceedings of the National Academy of Sciences USA 103:12947–12950.
- Asner, G. P., D. E. Knapp, E. N. Broadbent, P. J. C. Oliveira, M. Keller, and J. N. Silva. 2005. Selective logging in the Brazilian Amazon. Science 310:480– 482.
- Assmann, E., and F. Franz. 1965. Vorläufige Fichten-Ertragstafel für Bayern. Forstwissenschaftliches Centralblatt 84:13–43.
- Baeten, L., M. Hermy, S. Van Daele, and K. Verheyen. 2010. Unexpected understorey community development after 30 years in ancient and postagricultural forests. Journal of Ecology 98:1447– 1453.
- Barber, H. S. 1931. Traps for cave-inhabiting insects. Journal of the Elisha Mitchell Scientific Society 46:259–266.
- Bartha, D. 2004. Chances for a stand-level evaluation of the naturalness of forests. Allgemeine Forst und Jagdzeitung 175:8–13.
- Bellemare, J., G. Motzkin, and D. R. Foster. 2002. Legacies of the agricultural past in the forested present: an assessment of historical land-use effects on rich mesic forests. Journal of Biogeography 29:1401–1420.
- Bengtsson, J., J. Ahnstrom, and A. C. Weibull. 2005. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology 42:261–269.
- Blüthgen, N., et al. 2012. A quantitative index of landuse intensity in grasslands: Integrating mowing, grazing and fertilization. Basic and Applied Ecology 13:207–220.
- Bouget, C., L. Larrieu, B. Nusillard, and G. Parmain. 2013. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous

forests. Biodiversity and Conservation 22:2111–2130.

- Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. Third edition. Springer-Verlag, Vienna, Austria.
- Brazee, N., D. Lindner, A. D'Amato, S. Fraver, J. Forrester, and D. Mladenoff. 2014. Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris. Biodiversity and Conservation:1–18.
- Brudvig, L. A., and E. I. Damschen. 2011. Land-use history, historical connectivity, and land management interact to determine longleaf pine woodland understory richness and composition. Ecography 34:257–266.
- Brunet, J., K. Valtinat, M. L. Mayr, A. Felton, M. Lindbladh, and H. H. Bruun. 2011. Understory succession in post-agricultural oak forests: Habitat fragmentation affects forest specialists and generalists differently. Forest Ecology and Management 262:1863–1871.
- Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Second edition. Springer-Verlag, New York, New York, USA.
- Castano-Meneses, G., and J. G. Palacios-Vargas. 2003. Effects of fire and agricultural practices on neotropical ant communities. Biodiversity and Conservation 12:1913–1919.
- Chao, A., and T. J. Shen. 2003. Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environmental and Ecological Statistics 10:429–443.
- da Silva, P. M., C. A. S. Aguiar, J. Niemela, J. P. Sousa, and A. R. M. Serrano. 2008. Diversity patterns of ground-beetles (Coleoptera : Carabidae) along a gradient of land-use disturbance. Agriculture Ecosystems & Environment 124:270–274.
- Detsch, R. 1999. Der Beitrag von Wirtschaftswäldern zur Struktur- und Artenvielfalt. Ein Vergleich ausgewählter waldökologischer Parameter aus Naturwaldreservaten und Wirtschaftswäldern des Hienheimer Forstes (Kehlheim, Niederbayern). Wissenschaft & Technik Verlag, Berlin, Germany.
- Dierschke, H. 1984. Natürlichkeitsgrade von Pflanzengesellschaften unter besonderer Berücksichtigung der Vegetation. Phytocoenologia 12:173–184.
- Dormann, C. F., et al. 2007. Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Global Ecology and Biogeography 16:774–787.
- Duguid, M. C., and M. S. Ashton. 2013. A metaanalysis of the effect of forest management for timber on understory plant species diversity in temperate forests. Forest Ecology and Management 303:81–90.
- Dupouey, J. L., E. Dambrine, J. D. Laffite, and C.

Moares. 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978– 2984.

- Engel, K. 1999. Analyse und Bewertung von Umbaumaßnahmen in Fichtenreinbeständen anhand ökologischer Gilden der Wirbellosen-Fauna. Wissenschaft & Technik Verlag, Berlin, Germany.
- Fischer, M. et al. 2010. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic and Applied Ecology 11:473–485.
- Flinn, K. M., and P. L. Marks. 2007. Agricultural legacies in forest environments: Tree communities, soil properties, and light availability. Ecological Applications 17:452–463.
- Flynn, D. F. B., M. Gogol-Prokurat, T. Nogeire, N. Molinari, B. T. Richers, B. B. Lin, N. Simpson, M. M. Mayfield, and F. DeClerck. 2009. Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters 12:22–33.
- Geiger, F. et al. 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 11:97–105.
- Goebel, P. C., and D. M. Hix. 1996. Development of mixed-oak forests in southeastern Ohio: A comparison of second-growth and old-growth forests. Forest Ecology and Management 84:1–21.
- Gossner, M. 2004. Diversität und Struktur arborikoler Arthropodenzönosen fremdländischer und einheimischer Baumarten. Ein Beitrag zur Bewertung des Anbaus von Douglasie (*Pseudotsuga menziesii* (Mirb.) Franco) und Roteiche (*Quercus rubra* L.). Neobiota 5:1–324.
- Gossner, M. 2006. Phenological activity patterns of imaginal Heteroptera in the canopy of different tree species in Bavaria, Germany. Denisia 19:1055–1094.
- Gossner, M. 2008. Heteroptera (Insecta: Hemiptera) communities in tree crowns of beech, oak and spruce in managed forests: Diversity, seasonality, guild structure, and tree specificity. Pages 119–143 *in* A. Floren and J. Schmidl, editors. Canopy arthropod research in Central Europe: basic and applied studies from the high frontier. Bioform Entomology, Nürnberg, Germany.
- Gossner, M., and U. Ammer. 2006. The effects of Douglas-fir on tree-specific arthropod communities in mixed species stands with European beech and Norway spruce. European Journal of Forest Research 125:221–235.
- Gossner, M. M., T. Lachat, J. Brunet, G. Isacsson, C. Bouget, H. Brustel, R. Brandl, W. W. Weisser, and J. Müller. 2013. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conservation Biology 27:605–614.
- Grabherr, G., G. Koch, H. Kirchmeir, and K. Reiter.

1998. Hemerobie österreichischer Waldökosysteme. Universitätsverlag Wagner, Innsbruck, Austria.

- Hart, J. L., S. L. Clark, S. J. Torreano, and M. L. Buchanan. 2012. Composition, structure, and dendroecology of an old-growth Quercus forest on the tablelands of the Cumberland Plateau, USA. Forest Ecology and Management 266:11–24.
- Hothorn, T., F. Bretz, P. Westfall, R. M. Heiberger, and A. Schuetzenmeister. 2010. multcomp: simultaneous inference in general parametric models. Rpackage. Version 1.1-7. http://cran.r-project.org/ web/packages/multcomp/index.html
- Josefsson, T., J. Olsson, and L. Ostlund. 2010. Linking forest history and conservation efforts: Long-term impact of low-intensity timber harvest on forest structure and wood-inhabiting fungi in northern Sweden. Biological Conservation 143:1803–1811.

Jost, L. 2006. Entropy and diversity. Oikos 113:363–375.

- Kohv, K., and J. Liira. 2005. Anthropogenic effects on vegetation structure of the boreal forest in Estonia. Scandinavian Journal of Forest Research 20:122– 134.
- Küffer, N., and B. Senn-Irlet. 2005. Influence of forest management on the species richness and composition of wood-inhabiting basidiomycetes in Swiss forests. Biodiversity and Conservation 14:2419– 2435.
- Liira, J., T. Sepp, and O. Parrest. 2007. The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. Forest Ecology and Management 250:34–46.
- Lindenmayer, D. B., E. Knight, L. McBurney, D. Michael, and S. C. Banks. 2010. Small mammals and retention islands: An experimental study of animal response to alternative logging practices. Forest Ecology and Management 260:2070–2078.
- Maass, J. M. 1995. Conversion of tropical dry forest to pasture and agriculture. Pages 399–422 *in* S. H. Bullock, H. A. Mooney, and E. Medina, editors. Seasonally dry tropical forests. Cambridge University Press, Cambridge, UK.
- McElhinny, C., P. Gibbons, C. Brack, and J. Bauhus. 2005. Forest and woodland stand structural complexity: Its definition and measurement. Forest Ecology and Management 218:1–24.
- McLachlan, J. S., D. R. Foster, and F. Menalled. 2000. Anthropogenic ties to late-successional structure and composition in four New England hemlock stands. Ecology 81:717–733.
- Motzkin, G., P. Wilson, D. R. Foster, and A. Allen. 1999. Vegetation patterns in heterogeneous landscapes: The importance of history and environment. Journal of Vegetation Science 10:903–920.
- Mrosek, T. 2001. Developing and testing of a method for the analysis and assessment of multiple forest use from a forest conservation perspective. Forest Ecology and Management 140:65–74.

- Müller, J., and R. Brandl. 2009. Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. Journal of Applied Ecology 46:897–905.
- Müller, J., H. Bußler, U. Bense, H. Brustel, G. Flechtner, A. Fowles, M. Kahlen, G. Möller, H. Mühle, J. Schmidl, and P. Zabransky. 2005a. Urwald relict species: Saproxylic beetles indicating structural qualities and habitat tradition. waldoekologie online 2:106–113.
- Müller, J., H. Bussler, and T. Kneib. 2008. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in southern Germany. Journal of Insect Conservation 12:107–124.
- Müller, J., H. Engel, and M. Blaschke. 2007a. Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. European Journal of Forest Research 126:513–527.
- Müller, J., T. Hothorn, and H. Pretzsch. 2007b. Longterm effects of logging intensity on structures, birds, saproxylic beetles and wood-inhabiting fungi in stands of European beech *Fagus sylvatica* L. Forest Ecology and Management 242:297–305.
- Müller, J., C. Strätz, and T. Hothorn. 2005b. Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. European Journal of Forest Research 124:233–242.
- Nascimbene, J., G. Thor, and P. L. Nimis. 2013. Effects of forest management on epiphytic lichens in temperate deciduous forests of Europe: A review. Forest Ecology and Management 298:27–38.
- Nilsson, S. G., and R. Baranowski. 1993. Skoghistorikens betydelse för artsammsättning av vedskalbaggar i urskogsartad blandskog. Entomologisk Tidskrift 114:133–146.
- Paillet, Y., et al. 2010. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conservation Biology 24:101–112.
- Pommerening, A., and S. T. Murphy. 2004. Review of the history, definitions and methids of continous cover forestry with special attention to afforestation and restocking. Forestry 77:27–44.
- Puettmann, K. J., K. D. Coates, and C. Messier. 2009. A critique of silviculture: Managing for complexity. Island Press, Washington, D.C., USA.
- Purahong, W., T. Kahl, M. Schloter, J. Bauhus, F. Buscot, and D. Krüger. 2014. Comparing fungal richness and community composition in coarse woody debris in Central European beech forests under three types of management. Mycological Progress:1–6.
- R Development Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

- Reif, A. 2000. Das naturschutzfachliche Kriterium der Naturnähe und seine Bedeutung für die Waldwirtschaft. Zeitschrift für Ökologie und Naturschutz 8:239–250.
- Rhemtulla, J. M., D. J. Mladenoff, and M. K. Clayton. 2009. Legacies of historical land use on regional forest composition and structure in Wisconsin, USA (mid-1800s-1930s-2000s). Ecological Applications 19:1061–1078.
- Sala, O. E. et al. 2000. Global biodiversity scenarios for year 2100. Science 287:1770–1774.
- Schall, P., and C. Ammer. 2013. How to quantify forest management intensity in Central European forests. European Journal of Forest Research 132:379–396.
- Schirmer, C. 1999. Überlegungen zur Naturnähebeurteilung heutiger Wälder. Allgemeine Forst und Jagdzeitung 170:11–18.
- Schober, R. 1987. Ertragstafeln der wichtigsten Baumarten. Third edition. J. D. Sauerländer, Frankfurt, Germany.
- Schowalter, T. D., J. W. Webb, and D. A. J. Crossley. 1981. Community structure and nutrient content of canopy arthropods in clear cut and uncut forest ecosystems. Ecology 62:1010–1019.
- Schubert, H. 1998. Untersuchungen zur Arthropodenfauna in Baumkronen: Ein Vergleich von Naturund Wirtschaftswäldern (Araneae, Coleoptera, Heteroptera, Neuropteroidea; Hienheimer Forst, Niederbayern). Wissenschaft & Technik Verlag, Berlin, Germany.
- Schweitzer, C. J., and D. C. Dey. 2011. Forest structure, composition, and tree diversity response to a gradient of regeneration harvests in the mid-Cumberland Plateau escarpment region, USA. Forest Ecology and Management 262:1729–1741.
- Sippola, A. L., M. Simila, M. Monkkonen, and J. Jokimaki. 2004. Diversity of polyporous fungi (Polyporaceae) in northern boreal forests: Effects of forest site type and logging intensity. Scandinavian Journal of Forest Research 19:152–163.
- Sodhi, N. S., T. M. Lee, L. P. Koh, and B. W. Brook. 2009. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia's biotas. Biotropica 41:103–109.
- Southwood, T. R. E., G. R. W. Wint, C. E. J. Kennedy, and S. R. Greenwood. 2004. Seasonality, abundance, species richness and specificity of the phytophagous guild of insects on oak (Quercus) canopies. European Journal of Entomology 101:43– 50.
- Speight, M. C. D. 1989. Saproxylic invertebrates and their conservation. Council of Europe, Nature and Environment Series 42:1–79.
- Staupendahl, K., and W. Zuicchini. 2011. Schätzung der Überlebensfunktion der Haumptbaumarten auf der Basis von Zeitreihendaten der Rheinland-Pfälzischen Waldzustandserhebung. Allgemeine

ECOSPHERE * www.esajournals.org

Forst und Jagdzeitung 182:129-145.

- Storaunet, K. O., J. Rolstad, I. Gjerde, and V. S. Gundersen. 2005. Historical logging, productivity, and structural characteristics of boreal coniferous forests in Norway. Silva Fennica 39:429–442.
- Tylianakis, J. M., A. M. Klein, T. Lozada, and T. Tscharntke. 2006. Spatial scale of observation affects alpha, beta and gamma diversity of cavity-nesting bees and wasps across a tropical land-use gradient. Journal of Biogeography 33:1295–1304.
- Ulyshen, M. D., and J. L. Hanula. 2009. Habitat associations of saproxylic beetles in the southeastern United States: A comparison of forest types, tree species and wood postures. Forest Ecology and Management 257:653–664.
- Urban, N. A., and R. K. Swihart. 2011. Small mammal responses to forest management for oak regeneration in southern Indiana. Forest Ecology and Management 261:353–361.
- Utschick, H., and W. Helfer. 2003. Vergleichende ökologische Untersuchungen mittelschwäbischer Pilzzönosen in Wäldern unterschiedlicher Naturnähe. Berichte der Bayerischen Akademie für Naturschutz und Landschaftspflege 27:115–145.
- Vierling, K. T., C. Bässler, R. Brandl, L. A. Vierling, I. Weiss, and J. Müller. 2011. Spinning a laser web: predicting spider distributions using LiDAR. Ecological Applications 21:577–588.
- Walentowski, H., J. Ewald, A. Fischer, C. Kölling, and

W. Türk. 2006. Handbuch der natürlichen Waldgesellschaften Bayerns. Geobotanica Verlag, Freising, Germany.

- Werner, S. M., and K. F. Raffa. 2000. Effects of forest management practices on the diversity of groundoccurring beetles in mixed northern hardwood forests of the Great Lakes Region. Forest Ecology and Management 139:135–155.
- Winter, S., H. S. Fischer, and A. Fischer. 2010. Relative quantitative reference approach for naturalness assessments of forests. Forest Ecology and Management 259:1624–1632.
- Wirth, C., G. Gleixner, M. Heimann, C. Messier, Y. Bergeron, D. Frank, and A. Fankhänel. 2009. Oldgrowth forest definitions. a pragmatic view. Pages 11–33 *in* C.Wirth. G. Gleixner and M. Heimann, editors. Old-growth forests. Springer-Verlag, Berlin, Germany.
- Zenner, E. K., Y. L. Dickinson, and J. E. Peck. 2013. Recovery of forest structure and composition to harvesting in different strata of mixed even-aged central Appalachian hardwoods. Annals of Forest Science 70:151–159.
- Zenner, E. K., J. M. Kabrick, R. G. Jensen, J. E. Peck, and J. K. Grabner. 2006. Responses of ground flora to a gradient of harvest intensity in the Missouri Ozarks. Forest Ecology and Management 222:326– 334.

SUPPLEMENTAL MATERIAL

APPENDIX A

Stand characteristics

Detailed descriptions of the study regions and stands are given in Detsch (1999), Schubert (1998), Ammer et al. (2002) and Gossner (2004). Briefly, the altitude of the stands ranged from 620 to 645 m a.s.l. at Ottobeuren, 520 to 535 m a.s.l. at Krumbach and 400 to 475 m a.s.l. at Hienheim. Mean annual precipitation is higher at Ottobeuren (900–1000 mm) than at Krumbach (750–800 mm) and Hienheim (650–730 mm). The mean annual temperature is 7–8°C in all regions (data from the nearest climate stations, i.e., Memmingen, Neuburg/Kammel-Naichen and forest climate station Riedenburg). Studied stands at Ottobeuren and Krumbach were located in a landscape called 'Schotterriedel' with soils originating from Tertiary and diluvial material overlaid by Loess. The soils are very fertile, resulting in a favourable and rapid growth of trees. Consequently the forests around Ottobeuren and Krumbach have been intensively managed by cultivating Norway spruce (*Picea abies*) over at least three centuries. The Hienheim site is located in the forest area 'Hienheimer Forst', close to Kelheim, and covers around 2000 ha. The Hienheim stands are located on a mountain ridge between the rivers Altmühl and Danube. The forest area is characterized by a long tradition of

Table A1. Overview over the forest stands used in this study.

Stand	Description
Ottobeuren	
OFI	Managed stand of Norway spruce, 100 years old
OMI	Managed mixed Norway spruce-beech stand, 100 years old
OLB	Managed stand of beech, 130 years old
ONW	Forest nature reserve (beech, Norway spruce), 110 years old, no management for the last 20 years
Krumbach	
KFI	Managed stand of Norway spruce, 95 years old
KMI	Managed mixed Norway spruce-beech stand, 85 years old
KLB	Managed stand of beech and oak, 90–145 years old
KNW	Forest nature reserve (oak), 155 years old, no management for the last 20 years
Hienheim	
BSL	Managed stand of Norway spruce, 80 years old
STA	Managed mixed Norway spruce-beech stand, 105 years old
BBG	Managed stand of beech and oak, 105 years old
PLA	Forest nature reserve (beech, oak), 125-145 years old, no management for the last 20 years

Table A2. Results from forest inventory. Stand structural attributes appear in italic. See Appendix A: Table A1 for short descriptions of the forest stands and Table 1 for explanations of attribute abbreviations.

	Ottobeuren					Krur	nbach			Hien	heim	
Attribute	OFI	OMI	OLB	ONW	KFI	KMI	KLB	KNW	BSL	STA	BBG	PLA
Stand area (ha)	9.3	23.5	9.2	11.5	9.7	7.0	4.8	7.1	6.0	13.7	20.3	20.7
No. circular subplots	20	20	20	20	17†	20	20	18	8	15	20	19
maxAge (years)	105	116	134	118	111	94	148	171	114	111	115	157
avgAge (years)	89	94	114	113	96	79	119	145	82	106	103	132
$WV (m^{3} ha^{-1})$	1094	951	708	877	850	758	542	515	716	541	516	601
$DW\dot{V}$ (m ³ ha ⁻¹)	12.4	8	7.7	53.1	23.7	10	10.5	83	12.5	9.4	6.6	31.4
N (trees ha ⁻¹)	547	452	250	368	411	469	451	203	671	473	638	437
$G (m^2 ha^{-1})$	65.4	56.4	39.4	48.5	50.8	45.9	34.4	33.7	51.8	37.2	35.1	37.1
$HS (m^2 ha^{-1})$	8.0	13.5	9.4	10.1	13.7	10.3	10.5	6.8	7.6	8.3	8.1	4.3
CV of basal area between subplots (%)	12.3	24.0	23.9	20.8	26.9	22.4	30.5	20.1	14.5	22.3	23.2	11.6
Dg (cm)	39.0	39.9	44.8	41.0	39.7	35.3	31.2	45.9	31.3	31.6	26.5	32.9
Dm(cm)	38.0	37.7	42.7	39.1	38.8	33.3	27.3	41.0	29.8	29.9	23.7	29.7
Stdev of dbh (cm)	10.3	12.9	13.4	10.8	8.3	11.8	15.1	22.0	9.6	10.5	11.8	14.1
CV of dbh $VS(\%)$	27.0	34.3	31.4	27.6	21.5	35.5	55.3	53.8	32.1	35.1	49.9	47.6
Mean height (m)	36.1	37.2	40.3	38.8	37.9	30.2	29.4	31.2	32.0	32.3	35.5	36.7
SR	4	5	6	4	2	7	6	7	4	5	7	5
SD (based on G)	0.312	0.852	0.857	0.739	0.011	0.605	0.850	0.755	0.240	1.012	1.066	0.780
Con (%, based on G)	95.5	86.1	31.7	34.4	99.8	85.9	0.0	7.8	95.2	64.4	8.8	4.8
OBL (%, based on G)	0.0	0.0	4.1	2.0	0.0	2.7	64.4	88.2	2.3	0.6	35.0	24.7
Tree species composition												
based on G (%)												
Pa	93	74	31	34	100	84	0	8	95	52	5	1
Fs	4	14	64	64	0	11	36	4	3	35	56	70
Ōs	Ō	0	1	0	Õ	0	60	81	1	1	33	24
ÕC	3	12	1	Õ	Õ	2	0	0	0	12	4	4
OB	0	0	3	2	Ő	2	$\tilde{4}$	7	2	0	2	0

Notes: Tree species abbreviations: Fs, *Fagus sylvatica;* Pa, *Picea abies;* Qs, *Quercus robur* and *Quercus petraea;* OB, other broadleaved tree species; OC, other coniferous tree species. Stand management in OFI, OMI, and OLB in Ottobeuren, KFI, KMI, and KLB in Krumbach, and BSL, STA, and BBG in Hienheim consisted of final thinning; ONW in Ottobeuren, KNW in Krumbach, and PLA in Hienheim were protected forest nature reserves and no forestry operations took place in those stands since 1978. The natural forest communities of the Ottobeuren and Krumbach sites consisted of Luzulo-Fagetum, of Hienheim, Asperulo-Fagetum. The potential natural forest communities were beech forests with local admixture of silver fir and oak in the Ottobeuren and Krumbach stands and beech forests in the Hienheim stands. Stdev, standard deviation; CV, coefficient of variation.

† Three subplots unstocked due to hurricane "Lothar" in winter 1999/2000 were excluded.

Table A3. Stand structural complexity index (SSCI) values for forest stands. SSCI was defined as a weighted additive combination of stand structural attributes (Attrib), which scored relative to the observed range within studied stands. Single attributes were weighted using their coefficient of variation (for details see text). Weighting factors were: avgAge, 18.7%; Con, 65.3%; DWV, 29.8%; HS, 28.9%; SD, 48.0%; VS, 29.9%; and WV, 26.3%.

	Structural attributor		Otto	beuren			Kru	mbach		Hienheim				
SSCI	contributing	OFI	OMI	OLB	ONW	KFI	KMI	KLB	KNW	BSL	STA	BBG	PLA	
7Attrib	Con avgAge SD DWV VS HS WV	0.74	1.19	1.24	1.46	0.64	0.89	1.70	1.72	0.55	1.09	1.45	1.52	
4Attrib	Con avgAge SD DWV	0.31	0.60	0.91	1.06	0.20	0.47	1.20	1.36	0.27	0.83	1.08	1.25	
3AttribA	Con avgAge SD	0.24	0.57	0.89	0.82	0.05	0.42	1.15	1.06	0.19	0.79	1.08	1.07	
3AttribB	Con avgAge DWV	0.18	0.21	0.52	0.73	0.20	0.20	0.82	1.02	0.16	0.38	0.60	0.90	
3AttribC	Con SD DWV	0.29	0.55	0.81	0.97	0.15	0.47	1.09	1.18	0.26	0.76	1.01	1.10	
3AttribD	avgAge SD DWV	0.24	0.45	0.50	0.67	0.20	0.32	0.55	0.82	0.19	0.57	0.55	0.68	
2AttribA	Con avgAge	0.10	0.19	0.50	0.49	0.05	0.15	0.77	0.73	0.09	0.34	0.60	0.72	
2AttribB	Con SD	0.21	0.53	0.79	0.72	0.00	0.42	1.04	0.88	0.18	0.71	1.01	0.92	
2AttribC	Con DWV	0.15	0.17	0.42	0.64	0.15	0.20	0.71	0.84	0.15	0.30	0.53	0.75	
2AttribD	avgAge SD	0.17	0.43	0.48	0.43	0.05	0.27	0.50	0.53	0.11	0.53	0.55	0.50	
2AttribE	avgAge DWV	0.10	0.07	0.12	0.34	0.20	0.05	0.17	0.48	0.08	0.12	0.07	0.33	
2AttribF	SďďWV	0.21	0.41	0.40	0.58	0.15	0.32	0.44	0.64	0.18	0.50	0.48	0.53	

oak forestry. Even though coniferous trees were established at an increasing rate in the 19th century, presently 50% of the forest area is still covered with broadleaved trees. Appendix A: Table A1 provides a list of the forest stands.

Forest inventory

A forest inventory was carried out in one circular sample plot of r = 17.84m (1000 m², 1 per ha) in the center of each 100 × 100 m grid at Hienheim, and in five circular sample plots of r = 12.62 m (500 m², 5 per ha) per grid of a core area of 4 ha at Krumbach and Ottobeuren, to obtain stand information for the calculation of naturalness measures and as the target state of the forest simulator model. Depending on stand area this resulted in different numbers of circular sample plots at region Hienheim, ranging from 4 to 27.

At Krumbach and Ottobeuren in all stands 20 circular sample plots were assessed. Of each tree, species name, dbh, tree height and affiliation to the IUFRO-category (overstorey, mid-storey, understorey) was noted. Additionally an inventory of dead wood, special structures such as uprooted stocks and forest regeneration was performed. The methodology followed the recommendations given by Albrecht (1990) for forest ecology research in forest nature reserves. An overview of the stand characteristics including soil parameters is given in Appendix A: Tables A2–A4.

APPENDIX B

Silvicultural management intensity SMI

Silvicultural management intensity SMI of

Table A4. Soil chemical parameters of the organic matter (OM) and mineral soil layer (0–5 cm; MS) of studies stands based on three mixed samples per stand (Ottobeuren, Krumbach) and average of 40 samples per stand (Hienheim). pH was measured with KCl solution. Note that not all data were available for all stands.

			Ottobeuren				Kru	mbach		Hienheim			
Parameter	Layer	OFI	OMI	OLB	ONW	KFI	KMI	KLB	KNW	BSL	STA	BBG	PLA
pH pH	OM MS	3.51	3.56	4.02	3.77	3.96	3.82	4.00	4.50		3.77	4.78 3.97	4.67 4 11
Base saturation (%)	OM	69	67	76	63	78	74	70	76				
Cation exchange capacity Ca C/N	OM OM	147 23.4	142 22.7	209 21.4	173 23.6	161 22.2	228 22.1	200 20.0	167 17.5		 31.3	 24.4	 27.9
C/N	MS										21.9	15.6	16.9

Schall and Ammer (2013) consists of two continuous components, risk of stand loss due to natural hazards SMI_r and relative stand density SMI_d . SMI_r quantifies the probability of stand loss at or before a reference age. SMI_d relates actual stand biomass to biomass carrying capacity of the site.

We used the survival function $S(t) = \exp(-(t/t))$ $(\beta)^{\alpha}$) where t is stand age (years) and α and β are parameters to calculate $SMI_r = 1 - S(180)/S(t_0)$ where 180 years is the reference age and t_0 is stand age (Schall and Ammer 2013). Stand age t_0 was quantified based on forest inventory data as the mean of the oldest trees cohort maxAge and the average stand avgAge (Appendix A: Table A2). For the dominant tree species in our study stands, Fagus sylvatica, Quercus robur and Quercus petraea, and Picea abies, we adopted values for α and β given by Staupendahl and Zuicchini (2011). Other broadleaved species were appended to *Fagus sylvatica*, and other coniferous species to Picea abies. In mixed stands species specific results of SMI_r were averaged using the share of basal area as weighting factor if the admixed species comprised a lower risk than the main tree species (e.g., BSL, KFI, KMI, OFI, OMI, STA). In case admixed species comprised a higher risk than the main tree species we followed the reasoning of Schall and Ammer (2013) who sugested that failing of admixed species does

not negatively affect total stand survival probability. Hence, in these cases the risk of stand loss was defined only by the main tree species.

We used basal area G, wood volume over bark WV and the sum of living and dead wood volume WV + DWV (Appendix A: Table A2) as proxy for biomass to calculate $SMI_d = 1 - B/B_{max}$ where *B* is actual stand biomass and B_{max} is biomass carrying capacity of the site. Species specific carrying capacities for basal area and wood volume (reference for wood volume irrespective of stage living or dead) were estimated based on site index (Picea abies; yield table of Assmann and Franz [1965]) and site class (Fagus sylvatica, Quercus robur and Quercus petraea; yield tables compiled by Schober [1987]). The following carrying capacities were used: *Picea abies* 75 m² ha⁻¹ and 1239 m³ ha⁻¹ for Krumbach and Ottobeuren (site index: 38) and 60 m² ha⁻¹ and 970 m³ ha⁻¹ for Hienheim (site index: 34); Fagus sylvatica 45.3 m^2 ha⁻¹ and 868 m³ ha⁻¹ for Krumbach and Ottobeuren (site class: 0.5) and 42.3 m² ha⁻¹ and 717 m³ ha⁻¹ for Hienheim (site class: 2.0); Quercus robur and *Quercus petraea* 33.8 m² ha⁻¹ and 556 m³ ha⁻¹ for all regions (site class: 2.0). Other broadleaved species were appended to Fagus sylvatica, and other coniferous species to Picea abies. In mixed stands species specific values for SMI_d were summed up.

forest inventory da	ita (App	pendix A	A: Table	A2). See	e text for	r definit	tions of	intensiti	es and i	ntensity	⁷ compo	onents.		
Silvicultural		Ottok	oeuren			Krur	nbach		Hienheim					
management intensity	OFI	OMI	OLB	ONW	KFI	KMI	KLB	KNW	BSL	STA	BBG	PLA		
SMI _d G	0.102	0.187	0.240	0.075	0.323	0.334	0.081	0.075	0.118	0.284	0.121	0.082		
SMIdV	0.100	0.195	0.255	0.090	0.314	0.354	0.165	0.132	0.248	0.363	0.224	0.113		
SMI _d VD	0.091	0.187	0.249	0.049	0.295	0.347	0.153	0.003	0.235	0.356	0.215	0.080		
SMIr	0.710	0.605	0.045	0.050	0.725	0.662	0.061	0.044	0.706	0.476	0.073	0.039		
SMIG	0.406	0.396	0.142	0.063	0.524	0.498	0.071	0.060	0.412	0.380	0.097	0.061		
SMIV	0.405	0.400	0.150	0.070	0.520	0.508	0.113	0.088	0.477	0.420	0.148	0.076		
SMIVD	0.401	0.396	0.147	0.050	0.510	0.504	0.107	0.023	0.470	0.416	0.144	0.060		

Table B1. Silvicultural management intensity (SMI) values of the forest stands. Values were calculated based on forest inventory data (Appendix A: Table A2). See text for definitions of intensities and intensity components.

APPENDIX C

Details on Bartha's (1994) index of naturalness

Stand	Naturalness value	Percentage of naturalness
Ottobeuren		
OFI	3	12
OMI	5	20
OLB	10	40
ONW	13	52
Krumbach		
KFI	3	12
KMI	7	28
KLB	12	48
KNW	16	64
Hienheim		
BSL	3	12
STA	5	20
BBG	10	40
PLA	13	52

Table C2. Naturalness values of studied stands.

Τ	able	C1.	Tł	ne eva	luation	of t	he na	aturalne	ss of	f forests
	on	star	nd	level	based	on	five	groups	of	criteria.
	Det	ails	on	criter	ia and	eval	uatio	n scales	are	given.

Considered criteria

character of crown-closure species distribution age structure stratification

species composition character of cover species composition

character of cover

biological activity

regrowth

humus development

water balance erosion and soil wounding soil compaction and intermixture of soil layers

occurrence of single or groups of old trees amount of dead wood occurrence and quality of

indigenousness site tolerance mixedness

Evaluation

scale

0-5

0-2

0 - 4

0 - 4

0-10

0-25

Group of

criteria

Shrub-layer and

characteristics

Herb-layer

Site

Others

Total

Tree layer

ECOSPHERE * www.esajournals.org

Appendix D

Correlations among explaining variables used in analyses to explain biodiversity

Table D1. Pairwise correlations among land-use intensity measures and stand structural attributes (Pearson correlation coefficient). Values between 0.8 and 0.9 are presented in boldface italic, those between 0.9 and 1.0 in boldface.

Attribute	Nat	SMIG	SMIV	SMIVD	maxAge	avgAge	DWV	WV
Nat	1.000	-0.909	-0.918	-0.935	0.783	0.858	0.544	-0.553
SMIG	-0.909	1.000	0.993	0.989	-0.757	-0.822	-0.369	0.526
SMIV	-0.918	0.993	1.000	0.997	-0.755	-0.834	-0.401	0.455
SMIVD	-0.935	0.989	0.997	1.000	-0.783	-0.861	-0.459	0.461
maxAge	0.783	-0.757	-0.755	-0.783	1.000	0.928	0.539	-0.549
avgAge	0.858	-0.822	-0.834	-0.861	0.928	1.000	0.610	-0.558
DWV	0.544	-0.369	-0.401	-0.459	0.539	0.610	1.000	-0.053
WV	-0.553	0.526	0.455	0.461	-0.549	-0.558	-0.053	1.000
G	-0.707	0.650	0.607	0.610	-0.615	-0.680	-0.124	0.953
Ν	-0.576	0.372	0.439	0.473	-0.568	-0.666	-0.533	0.107
Dg	0.189	-0.029	-0.110	-0.150	0.245	0.284	0.485	0.403
Dm	0.025	0.112	0.028	-0.006	0.079	0.127	0.406	0.531
SR	0.563	-0.452	-0.422	-0.425	0.317	0.309	-0.174	-0.580
SD	0.564	-0.612	-0.592	-0.570	0.311	0.452	-0.208	-0.553
Con	-0.896	0.937	0.918	0.911	-0.760	-0.806	-0.222	0.708
OBL	0.785	-0.714	-0.679	-0.709	0.812	0.750	0.382	-0.715
VS	0.694	-0.670	-0.622	-0.631	0.699	0.626	0.098	-0.770
HS	-0.420	0.485	0.446	0.457	-0.467	-0.453	-0.274	0.459

Note: Abbreviations are: Nat = naturalness (Bartha 2004), SMI = silvicultural management intensity based on basal area G or solid volume of either living V or living and dead biomass VD (Schall and Ammer 2013), maxAge = age of the oldest trees in the stand (years), avgAge = average age of the stand (years), DWV = total standing or downed dead wood volume across all decay stages (m³ ha⁻¹), WV = wood volume including bark of living trees (m³ ha⁻¹), G = basal area (m² ha⁻¹). N = stand density (trees ha⁻¹), Dg = quadratic mean diameter at breast height (dbh, measured at height 1.3 m) (cm), Dm = arithmetic mean dbh (cm), SR = species richness of trees (number of tree species), SD = Shannon species diversity of trees (calculated as pseudo-diversity based on basal area proportion of tree species), Con = share of conifers (ratio based on basal area), OBL = share of other broadleaved species other than *Fagus sylvatica* (ratio based on basal area), VS = vertical structure using standard deviation of diameter at breast height (.3 m) as proxy (cm), and HS = horizontal structure using the standard deviation of G between subplots as proxy (m² ha⁻¹).

A 11 .		NT	D		6D			OPI	1/0	110
Attribute	G	IN	Dg	Dm	SK	SD	Con	OBL	VS	HS
Nat	-0.707	-0.576	0.189	0.025	0.563	0.564	-0.896	0.785	0.694	-0.420
SMIG	0.650	0.372	-0.029	0.112	-0.452	-0.612	0.937	-0.714	-0.670	0.485
SMIV	0.607	0.439	-0.110	0.028	-0.422	-0.592	0.918	-0.679	-0.622	0.446
SMIVD	0.610	0.473	-0.150	-0.006	-0.425	-0.570	0.911	-0.709	-0.631	0.457
maxAge	-0.615	-0.568	0.245	0.079	0.317	0.311	-0.760	0.812	0.699	-0.467
avgAge	-0.680	-0.666	0.284	0.127	0.309	0.452	-0.806	0.750	0.626	-0.453
DŴV	-0.124	-0.533	0.485	0.406	-0.174	-0.208	-0.222	0.382	0.098	-0.274
WV	0.953	0.107	0.403	0.531	-0.580	-0.553	0.708	-0.715	-0.770	0.459
G	1.000	0.327	0.234	0.371	-0.612	-0.642	0.812	-0.724	-0.749	0.383
Ν	0.327	1.000	-0.814	-0.723	-0.171	-0.181	0.324	-0.319	-0.085	-0.069
Dg	0.234	-0.814	1.000	0.981	-0.122	-0.207	0.146	-0.039	-0.329	0.234
Dm	0.371	-0.723	0.981	1.000	-0.253	-0.309	0.306	-0.222	-0.503	0.310
SR	-0.612	-0.171	-0.122	-0.253	1.000	0.716	-0.613	0.619	0.734	-0.335
SD	-0.642	-0.181	-0.207	-0.309	0.716	1.000	-0.713	0.391	0.603	-0.241
Con	0.812	0.324	0.146	0.306	-0.613	-0.713	1.000	-0.812	-0.841	0.469
OBL	-0.724	-0.319	-0.039	-0.222	0.619	0.391	-0.812	1.000	0.908	-0.424
VS	-0.749	-0.085	-0.329	-0.503	0.734	0.603	-0.841	0.908	1.000	-0.471
HS	0.383	-0.069	0.234	0.310	-0.335	-0.241	0.469	-0.424	-0.471	1.000

Table D2. Pairwise correlations among land-use intensity measures and stand structural attributes (Pearson correlation coefficient)—continued. Values between 0.8 and 0.9 are presented in boldface italic, those between 0.9 and 1.0 in boldface.

Note: Abbreviations are: Nat = naturalness (Bartha 2004), SMI = silvicultural management intensity based on basal area G or solid volume of either living V or living and dead biomass VD (Schall and Ammer 2013), maxAge = age of the oldest trees in the stand (years), avgAge = average age of the stand (years), DWV = total standing or downed dead wood volume across all decay stages (m³ ha⁻¹), WV = wood volume including bark of living trees (m³ ha⁻¹), G = basal area (m² ha⁻¹), N = stand density (trees ha⁻¹), Dg = quadratic mean diameter at breast height (dbh, measured at height 1.3 m) (cm), Dm = arithmetic mean dbh (cm), SR = species richness of trees (number of tree species), SD = Shannon species diversity of trees (calculated as pseudo-diversity based on basal area proportion of tree species), Con = share of conifers (ratio based on basal area), OBL = share of other broadleaved species other than *Fagus sylvatica* (ratio based on basal area), VS = vertical structure using standard deviation of diameter at breast height 1.3 m) as proxy (cm), and HS = horizontal structure using the standard deviation of G between subplots as proxy (m² ha⁻¹).

Table D3. Pairwise correlations between land-use intensity measures and indices of stand structural complexity (SSCI; Pearson correlation coefficient). Abbreviations are explained in Appendix D: Table D1. Values between 0.8 and 0.9 are presented in boldface italic, those between 0.9 and 1.0 in boldface.

SSCI	Structural attributes contributing	Nat	SMIG	SMIV	SMIVD
00001	Structural attributes contributing	IVat	014110	01111	01011 V D
7Attrib	Con avgAge SD DWV VS HS WV	0.917	-0.898	-0.900	-0.904
4Attrib	Con avgAge SD DWV	0.934	-0.928	-0.919	-0.925
3AttribA	Con avgAge SD	0.858	-0.895	-0.878	-0.869
3AttribB	Con avgAge DWV	0.957	-0.927	-0.925	-0.943
3AttribC	Con SD DWV	0.926	-0.924	-0.913	-0.915
3AttribD	avgAge SD DWV	0.893	-0.836	-0.840	-0.858
2AttribA	Con avgAge	0.917	-0.944	-0.930	-0.930
2AttribB	Con SD	0.823	-0.871	-0.850	-0.836
2AttribC	Con DWV	0.963	-0.935	-0.930	-0.945
2AttribD	avgAge SD	0.730	-0.758	-0.746	-0.736
2AttribE	avgAge DWV	0.729	-0.593	-0.620	-0.672
2AttribF	SDĬDŴV	0.855	-0.794	-0.795	-0.810

APPENDIX E

Biodiversity assessment

Mosses and higher plants.—A survey of plants and mosses was performed in the year 1995 in Hienheim and in the year 2000 in Krumbach and Ottobeuren using a modified Braun-Blanquet method (Braun-Blanquet 1964, Albrecht 1990). Circular sampling plots of r = 10 m were installed, in Hienheim in the center of each grid plot, resulting in different numbers of sampling plots (4–27) depending on stand area; in Krumbach and Ottobeuren five circular sampling plots per stand were used, four in the center of the grid

Fig. E1. Trap systems used in present study for sampling arthropods (from left to right and top to bottom): composite flight-interception trap installed in the canopy and understorey, arboreal photo eclector type "Hienheim", arboreal photo eclector type "Krumbach and Ottobeuren", ground photo eclector and pitfall trap. Illustrations were made by Ulrich Kern, Freising.

plots of the 4-ha core area plus one in another grid plot that was randomly selected. For each species of the moss and herb layer occurring inside the sampling plot, percentage coverage was determined and averaged across plots.

Fungi.—A fruit body survey of fungi was conducted in 1997 in Hienheim and 1999/2000 in Krumbach and Ottobeuren based on the 100×100 m grid plots. In Hienheim the entire stands and in Krumbach/Ottobeuren the 4-ha core area of each stand was surveyed by counting and

collecting visible fruit bodies three times per year (August, September, October) and stand, standardized by time (2 h per stand). Abundance of fungi was measured as pooled class frequencies (1 = 1-3 fruit bodies; 2 = 4-9 fruit bodies; 3 = 10-99 fruit bodies; 4 = >100 fruit bodies) based on six (Ottobeuren, Krumbach) and three (Hienheim) surveys, respectively (Utschick and Helfer 2003).

Fungi were classified into ecological guilds for further analysis: (1) wood- and bark living species, (2) mycorrhiza species; (3) soil saprophytes, (4) cone and fruit living species, (5) obligate moss living species, (6) fungi living species, (7) insect parasites, and (8) myxomycete species.

Arthropods.—Because arthropod numbers exhibit high seasonal and annual variation (e.g., Southwood et al. 2004, Gossner 2006, 2008), we sampled arthropod communities over the entire vegetation period for at least two consecutive years, using a restricted number of stands and regions. Arthropods were sampled from 1993 to 1996 at the Hienheim region and 1999 to 2000 at the Krumbach and Ottobeuren region using five different trap types/methods (see Appendix E: Fig. E1).

- (1) Pitfall traps (abbreviation: PT) (adapted from Barber 1931) consisted of a cup of 7 cm diameter and 10 cm depth inserted in a 12 cm long plastic tube, protected against rain and litter fall by a 18×18 cm metal sheet roof.
- (2) Ground photo eclectors (abbreviation: GPE) of 1 m² ground area consisted of a plastic ring (perimeter: 3.14 m, height: 30 cm) buried half in the ground to prevent endogaeic movement of soil arthropods in or out of the trap area. At the plastic ring a black cotton tent was fixed and stabilized by bent metal rail. Arthropods were sampled by a cup trap buried in the ground inside the tent and a sampling jar with a transparent lid at top of the tent (for details see Engel 1999).
- (3) Arboreal photo eclectors (abbreviation: APE) were of two different types. In Hienheim this was a box of tight plastic (see Schubert 1998), whereas in Krumbach and Ottobeuren black cotton material (see Gossner and Ammer 2006) was fixed with metal wire and brackets on tree stems at 2 m height (mean diameter: 56.2 ± 9.9 cm). Four (Hienheim) and two (Krumbach, Ottobeuren) sampling jars with a transparent lid were installed at the top of reversed funnels at opposite sides of each trap. Funnels of both trap types were erected with pieces of metal wire and traps were sealed against the stem by polyurethane foam.

(4) Composite flight interception traps (FIT) consisted of crossed transparent plastic shields (40 \times 60 cm) with funnels of smooth plastic cloth attached to the bottom and to the top; at the end of both funnels, sampling jars were mounted (Gossner and Ammer 2006). They were installed at 1.5 m height (henceforth 'understorey'; abbreviation: FIT-U) and in the canopy (abbreviation: FIT-C). Canopy traps were installed by single-rope tree climbing in the estimated center of the tree crowns. The exact height of the canopy traps was measured afterwards and ranged between 16 and 33 m, depending on stand height.

To minimize tree species effect, only canopy flight-interception traps and arboreal photo eclectors that were installed in the center of beech crowns and at beech stems, respectively, were considered in the present study. Traps were installed along diagonal transects in each stand. Details on the sampling design are given in Table 1.

All four trap types were filled with 1.5% copper sulphate solution in Ottobeuren and Krumbach region and Formalin (4%) at the Hienheim region. A few drops of detergent were added to reduce the surface tension. Traps were emptied monthly from March to October. Arthropods were transferred into alcohol (70% ethanol) in the field. In the laboratory, samples were sorted into taxonomic orders. Species identification of target taxa was carried out by taxonomic specialists recruited for the project.

Yearly sums of individuals were used in the analyses.

Birds.—Birds were surveyed monthly from March 1999 to February 2000 in Ottobeuren and Krumbach region and from March 1997 to February 1998 at Hienheim region. Birds surveyed during the breeding season (March–June) were classified as breeding species, and birds surveyed during winter season (November– February) as overwintering species. Because several species that breed in studied forests also overwinter there, these guilds are not mutually exclusive. Birds surveyed between July and October were not assigned to a specific guild. During each survey we performed 5min point counts per grid unit (grid size of 1 ha). Abundances of birds were assessed by slightly different methods in Ottobeuren/Krumbach and Hienheim: in Ottobeuren/Krumbach as total number of individuals observed during four months and in Hienheim as pooled number of occupied grid plots during the four months (grid frequency).

APPENDIX F

Principal component analyses of different guilds within trophic level

Fig. F1. Principal component analyses (PCA) of wood decomposers (a) and small predators (b). The first two PCA-axes are shown. In decomposers 71% and in small predators 55% of total variation was explained by these two axes. The position of the 12 studied forest stands in the three regions Ottobeuren (OFI, OMI, OLB, ONW), Krumbach (KFI, KMI, KLB, KNW) and Hienheim (BSL, STA, BBG, PLA) are shown. Taxa: Col = Coleoptera, Het = Heteroptera, Ara = Araneae, Opi = Opiliones, Neu = Neuropterida; Sampling method: FIT = flight-interception traps understory (U)/canopy (C), APE = arboreal photo eclectors, PT = pit fall traps.

$A_{\text{PPENDIX}} \; G$

Table G1. Effects of naturalness, measures of management intensity, and stand structural attributes regarding dead and living wood volume (see Table 1) on the abundance of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates (Est), p-values, and R^2 of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Decomposer								
Mycetophage								
Coleoptera (APE)	0 (14	0 500	0 504		0.526	0 510	<0.001	0.201
ESt	-0.614	0.580	0.584	0.576	-0.536	-0.510	< 0.001	0.391
$\frac{p}{R^2}$	0.015	0.023	0.025	0.026	0.042	0.036	-0.999	0.101
Coleoptera (FIT-C)	0.407	0.002	0.007	0.040	0.200	0.24)	-0.100	0.100
Est	-0.093	0.162	0.190	0.169	-0.153	-0.256	0.178	0.213
р	0.751	0.578	0.513	0.561	0.600	0.372	0.540	0.462
\tilde{R}^2	-0.088	-0.065	-0.052	-0.062	-0.069	-0.012	-0.057	-0.039
Coleoptera (FIT-U)								
Est	-0.108	0.131	0.079	0.065	0.002	0.119	0.46	0.296
p_{p_2}	0.713	0.653	0.788	0.826	0.995	0.682	0.091	0.298
K Sapraphaga	-0.084	-0.077	-0.092	-0.094	-0.100	-0.081	0.185	0.018
Coleoptera (PT)								
Est	0.362	-0.455	-0.401	-0.404	0.286	0.238	0.064	-0.382
p	0.197	0.095	0.149	0.146	0.316	0.409	0.826	0.172
R^2	0.076	0.179	0.116	0.119	0.010	-0.024	-0.094	0.096
Fungi (soil saprophytes)								
Est	-0.646	0.732	0.752	0.739	-0.569	-0.703	-0.347	0.363
p ₂	0.009	0.001	0.001	0.001	0.028	0.003	0.219	0.196
K ⁻	0.461	0.621	0.66	0.635	0.335	0.564	0.062	0.077
Isopoda (P1)	0 773	0 770	0 778	0 789	0.676	0.712	0 357	0.461
n	< 0.001	< 0.001	< 0.001	< 0.001	0.070	0.002	0.337	0.91
R^2	0.704	0.697	0.714	0.738	0.514	0.582	0.071	0.185
Xylophage								
Coleoptera (APE)	0 156	0 1 8 0	0 150	0 106	0.202	0 106	0.504	0.066
DSt D	0.150	-0.189 0.514	0.585	-0.190	0.203	0.190	0.004	0.000
$\frac{P}{R^2}$	-0.067	-0.052	-0.066	-0.049	-0.045	-0.048	0.241	-0.021
Coleoptera (FIT-C)	0.007	0.002	0.000	0.017	0.010	0.010	0.211	0.071
Est	0.007	0.112	0.090	0.088	0.020	-0.110	-0.078	0.179
p_	0.982	0.702	0.758	0.764	0.945	0.707	0.790	0.538
\mathbb{R}^2	-0.100	-0.083	-0.089	-0.090	-0.099	-0.084	-0.092	-0.057
Coleoptera (FIT-U)	0.4.40	0.107	0.450	0.454	0.000	0.025		0.001
Est	-0.142	0.196	0.158	0.156	-0.092	0.035	0.230	0.091
$p P^2$	0.627	0.499	0.587	0.591	0.752	0.905	0.426	0.755
Fungi (wood/bark species)	-0.075	-0.040	-0.000	-0.007	-0.009	-0.098	-0.029	-0.009
Est	0.707	-0.604	-0.615	-0.608	0.394	0.413	0.272	-0.302
p	0.003	0.018	0.015	0.017	0.158	0.136	0.342	0.288
R^2	0.573	0.390	0.409	0.397	0.108	0.129	-0.001	0.023
Predator								
Big								
Birds (breeding)	0.((0	0 504	0 504	0.(20)	0.050	0 504	0 515	0.000
Est	0.660	-0.584	-0.596	-0.620	0.358	0.584	0.515	-0.300
$p_{\mathbf{p}^2}$	0.007	0.023	0.020	0.014	0.202	0.023	0.054	0.292
Birds (overwintering)	0.400	0.000	0.377	0.417	0.073	0.335	0.200	0.021
Est	0.475	-0.331	-0.336	-0.374	0.412	0.451	0.695	-0.125
p	0.080	0.242	0.235	0.182	0.137	0.099	0.003	0.669
¹ R ²	0.203	0.047	0.051	0.088	0.128	0.174	0.550	-0.079

Table G1. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Small								
Araneae (APE)								
Est	-0.168	0.103	0.132	0.095	-0.018	-0.084	0.162	0.158
$\frac{P}{R^2}$	-0.062	-0.086	-0.030	-0.088	-0.931	-0.091	-0.065	-0.066
Coleoptera (APE)	0.002	0.000	0.070	0.000	0.100	0.071	0.000	0.000
Est	0.016	-0.167	-0.142	-0.124	-0.075	0.068	-0.028	-0.169
p ₂	0.957	0.565	0.625	0.671	0.797	0.815	0.924	0.561
R^2	-0.100	-0.062	-0.073	-0.079	-0.092	-0.094	-0.099	-0.062
Est	0.661	-0.545	-0 569	-0.577	0.285	0.472	0 341	-0.307
p	0.007	0.038	0.028	0.026	0.318	0.082	0.228	0.281
R^2	0.488	0.299	0.336	0.347	0.009	0.200	0.056	0.026
Coleoptera (FIT-U)								
Est	-0.471	0.579	0.537	0.523	-0.211	-0.188	-0.045	0.311
p R^2	0.083	0.025	0.042	0.049	0.465	-0.053	0.878	0.274
Coleoptera (PT)	0.170	0.551	0.207	0.200	-0.040	-0.055	-0.077	0.050
Est	0.029	-0.113	-0.077	-0.051	0.101	-0.026	-0.186	-0.190
\underline{p}_2	0.920	0.698	0.794	0.862	0.729	0.929	0.523	0.513
R ²	-0.099	-0.083	-0.092	-0.097	-0.086	-0.099	-0.054	-0.052
Heteroptera (APE)	0.243	0.251	0.256	0.241	0.480	0.346	0.170	0 227
p	0.399	0.383	0.373	0.403	0.076	0.220	0.558	0.432
R^2	-0.021	-0.016	-0.012	-0.022	0.210	0.061	-0.061	-0.031
Heteroptera (FIT-C)								
Est	0.634	-0.655	-0.665	-0.647	0.660	0.642	0.081	-0.444
$p P^2$	0.011	0.008	0.006	0.009	0.007	0.010	0.783	0.105
Heteroptera (FIT-U)	0.440	0.470	0.494	0.405	0.405	0.455	-0.091	0.105
Est	-0.094	0.046	0.061	0.037	0.120	0.145	-0.149	-0.131
P ₂	0.748	0.876	0.836	0.898	0.681	0.620	0.609	0.652
R^2	-0.088	-0.097	-0.095	-0.098	-0.081	-0.072	-0.070	-0.077
Neuropterida (APE)	0.224	0.240	0.245	0.258	0.500	0.268	0.152	0 104
D ESt	-0.334 0.237	0.249	0.394	0.258	0.057	0.190	0.600	0.194
\mathbf{R}^2	0.050	-0.016	-0.019	-0.011	0.249	0.082	-0.069	-0.050
Neuropterida (FIT-C)								
Est	0.369	-0.356	-0.32	-0.323	0.015	0.158	0.033	-0.359
$p_{\mathbf{P}^2}$	0.187	0.206	0.259	0.255	0.961	0.586	0.911	0.202
Neuropterida (FIT-U)	0.084	0.070	0.038	0.040	-0.100	-0.000	-0.099	0.075
Est	0.097	-0.025	-0.026	-0.043	0.349	0.280	-0.06	-0.172
P ₂	0.741	0.933	0.929	0.884	0.215	0.328	0.839	0.555
R^2	-0.087	-0.099	-0.099	-0.098	0.064	0.005	-0.095	-0.06
Opiliones (APE)	0.121	0.002	0.065	0.005	0.021	0.119	0 105	0 210
p	0.652	-0.093 0.752	0.826	0.745	0.915	0.686	0.193	-0.219
R^2	-0.077	-0.088	-0.094	-0.088	-0.099	-0.081	-0.049	-0.036
Opiliones (PT)								
Est	-0.350	0.359	0.373	0.358	-0.139	-0.239	-0.094	0.058
$p P^2$	0.215	0.202	0.182	0.203	0.634	0.407	0.748	0.843
Herbivore	0.004	0.075	0.007	0.072	-0.074	-0.025	-0.000	-0.095
Chewer								
Coleoptera (APE)								
Est	-0.142	0.071	0.087	0.063	-0.101	0.001	0.135	-0.018
$p P^2$	0.627	0.807	0.767	0.830	0.729	0.996	0.644	0.950
Coleoptera (FIT-C)	-0.075	-0.095	-0.090	-0.095	-0.000	-0.100	-0.070	-0.100
Est	0.498	-0.413	-0.427	-0.41	0.096	0.127	0.099	-0.171
P ₂	0.064	0.135	0.121	0.139	0.744	0.662	0.735	0.556
\mathbb{R}^2	0.234	0.130	0.146	0.126	-0.088	-0.078	-0.087	-0.061
Coleoptera (FIT-U)	_0 102	0 242	0.220	0.215	_0 172	_0.021	0.027	_ 0 115
p	0.727	0.245	0.425	0.457	0.551	0.944	0.927	0.693
\mathbf{R}^{2}	-0.086	-0.021	-0.029	-0.038	-0.06	-0.099	-0.099	-0.082

Table G1. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Coleoptera (GPE)								
Est	-0.152	0.182	0.193	0.223	-0.431	-0.414	-0.490	-0.089
P ₂	0.617	0.549	0.523	0.460	0.133	0.151	0.081	0.770
\mathbb{R}^2	-0.079	-0.065	-0.059	-0.042	0.147	0.127	0.222	-0.100
Sucker								
Heteroptera (APE)	0.50(0.400	0 5 (0	0 5 (0	0.400	0.050	0.0(1	0.405
Est	0.526	-0.603	-0.563	-0.563	0.403	0.359	0.061	-0.425
$p_{\mathbf{P}^2}$	0.047	0.018	0.031	0.031	0.146	0.201	0.835	0.124
N Heteroptera (FIT-C)	0.272	0.300	0.320	0.326	0.119	0.074	-0.095	0.145
Est	0.359	-0.507	-0.490	-0.455	0.098	0.130	-0.172	-0.231
p	0.202	0.058	0.069	0.096	0.737	0.656	0.554	0.424
R^2	0.073	0.246	0.223	0.178	-0.087	-0.077	-0.060	-0.028
Heteroptera (FIT-U)								
Est	0.422	-0.368	-0.386	-0.408	0.509	0.490	0.175	-0.236
P ₂	0.126	0.189	0.167	0.141	0.057	0.069	0.547	0.412
R ²	0.140	0.082	0.100	0.124	0.248	0.222	-0.059	-0.025
Symbiont								
Fungi (Mycorrhiza)	0.410	0.000	0.007	0.0(0)	0.400	0 5 (0	0 5(0	0.015
Est	-0.412	0.309	0.337	0.369	-0.423	-0.568	-0.569	0.215
$p_{\mathbf{P}^2}$	0.137	0.278	0.233	0.188	0.126	0.029	0.029	0.457
R	0.126	0.028	0.052	0.065	0.140	0.334	0.555	-0.058
Vascular plants								
Est	0.291	-0.361	-0.347	-0.357	0.284	0.317	0.074	-0.326
p	0.308	0.198	0.219	0.204	0.321	0.264	0.800	0.250
R^2	0.014	0.075	0.062	0.071	0.008	0.035	-0.093	0.043
Mosses								
Est	-0.663	0.692	0.688	0.693	-0.506	-0.675	-0.197	0.549
P ₂	0.007	0.004	0.004	0.004	0.058	0.005	0.496	0.036
R²	0.491	0.543	0.537	0.546	0.245	0.512	-0.048	0.305

Table G2. Effects of stand structural attributes except wood volume (see Table 1) on the abundance of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates (Est), p-values, and R² of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Decomposer								
Mycetophage								
Coleoptera (APE)								
Est	0.494	0.275	-0.582	-0.683	0.671	-0.503	-0.660	0.133
p ₂	0.066	0.337	0.024	0.005	0.006	0.061	0.007	0.649
R ²	0.228	0.002	0.355	0.527	0.505	0.240	0.486	-0.076
Coleoptera (FII-C)	0.225	0.07(0.046	0.000	0.005	0.010	0.007	0.001
EST	0.335	0.276	0.046	-0.239	0.205	-0.019	-0.027	-0.281
p p ²	0.250	0.333	0.075	0.407	0.479	0.946	0.927	0.526
Colooptora (EIT II)	0.051	0.002	-0.097	-0.023	-0.044	-0.100	-0.099	0.000
Fet (111-0)	0 254	-0.101	-0 591	-0.445	0.216	-0.232	-0 349	-0.151
n	0.376	0.729	0.021	0.105	0.454	0.420	0.215	0.101
$\frac{P}{R^2}$	-0.013	-0.086	0.369	0.166	-0.037	-0.027	0.064	-0.069
Saprophage	01010	0.000	01007	01100	01007	01022	01001	0.000
Coleoptera (PT)								
Est	-0.363	-0.131	0.286	0.223	-0.380	0.397	0.262	-0.116
р	0.195	0.653	0.317	0.440	0.174	0.153	0.361	0.692
R^2	0.078	-0.077	0.01	-0.033	0.094	0.112	-0.008	-0.082
Fungi (soil saprophytes)								
Est	0.521	0.402	-0.055	-0.347	0.698	-0.426	-0.346	0.277
p	0.05	0.148	0.852	0.219	0.003	0.122	0.219	0.334
R^2	0.264	0.117	-0.096	0.061	0.555	0.144	0.061	0.003
Isopoda (PT)								
Est	-0.587	-0.498	0.446	0.424	-0.700	0.605	0.496	-0.369
p	0.022	0.063	0.103	0.125	0.003	0.017	0.065	0.188
R^2	0.363	0.234	0.167	0.141	0.559	0.392	0.231	0.083
Xylophage								
Coleoptera (APE)	0.000	0.1.45	0.174	0.077	-0.001	0.107	0.007	0.040
Est	-0.003	-0.147	-0.174	-0.277	< 0.001	0.187	-0.096	-0.249
$p_{\mathbf{p}^2}$	0.991	0.614	0.549	0.334	0.999	0.519	0.743	0.387
K Calaaratara (EIT C)	-0.100	-0.071	-0.059	0.003	-0.100	-0.055	-0.088	-0.017
Coleoptera (FII-C)	0 106	0 151	0.288	0.021	0.027	0.027	0.216	0 222
Est	0.190	0.151	0.200	0.031	0.027	0.027	0.210	-0.222
$\frac{P}{R^2}$	-0.048	-0.069	0.014	-0.099	-0.099	-0.099	-0.038	_0.443
Coleoptera (FIT-U)	0.040	0.007	0.011	0.077	0.077	0.077	0.000	0.004
Est	0.017	-0.304	-0.473	-0.328	0.253	-0.38	-0.513	-0.024
p	0.954	0.286	0.081	0.247	0.378	0.174	0.054	0.936
R^2	-0.100	0.024	0.200	0.044	-0.014	0.094	0.254	-0.099
Fungi (wood/bark species)								
Est	-0.435	-0.286	0.472	0.435	-0.598	0.362	0.412	-0.349
р	0.114	0.317	0.082	0.113	0.019	0.197	0.137	0.215
R ²	0.154	0.010	0.200	0.155	0.381	0.076	0.128	0.064
Predator								
Big								
Birds (breeding)								
Est	-0.404	-0.348	0.334	0.510	-0.535	0.450	0.389	-0.259
p ₂	0.146	0.216	0.238	0.056	0.043	0.100	0.163	0.367
	0.119	0.063	0.050	0.250	0.285	0.172	0.103	-0.010
Birds (overwintering)	0.154	0.000	0.020	0.000	0.004	0.000	0.101	0.001
ESt	-0.156	-0.382	0.039	0.092	-0.234	0.233	0.134	-0.381
$p_{\mathbf{P}^2}$	0.592	0.1/1	0.894	0.752	0.418	0.418	0.645	0.173
Л	-0.067	0.097	-0.098	-0.089	-0.027	-0.027	-0.076	0.095

Table G2. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Small								
Araneae (APE)	0.205	0.245	0.072	0.260	0.202	0.170	0.042	0.026
p	0.303	0.245	-0.072	0.365	0.202	0.170	0.042	0.903
\mathbf{R}^2	0.025	-0.020	-0.093	-0.009	-0.045	-0.061	-0.098	-0.098
Coleoptera (APE)	0 101	0.010	0.010	0.077	0.125	0.001	0 1 1 1	0.150
ESt D	-0.191 0.511	-0.010 0.973	-0.219 0.448	0.066	-0.135 0.642	0.001	-0.111 0.704	0.158
$\mathbf{R}^{\mathbf{r}}$	-0.051	-0.100	-0.035	-0.094	-0.075	-0.100	-0.083	-0.067
Coleoptera (FIT-C)	0.451	0.205	0 50/	0.440	0 521	0.252	0.01/	0.401
Est	-0.451	-0.385 0.168	0.506	0.449	-0.531 0.045	0.352	0.316	-0.491
\mathbf{R}^2	0.173	0.099	0.245	0.171	0.28	0.067	0.035	0.224
Coleoptera (FIT-U)	0.000	0.051		0.050	0 =1 4	0.440	0.0/1	0.405
Est	0.330	-0.051	-0.357	-0.252	0.514	-0.440	-0.361	0.195
R^2	0.244 0.046	-0.003	0.204 0.072	-0.015	0.054	0.169	0.199	-0.049
Coleoptera (PT)								
Est	-0.184	-0.038	-0.048	0.024	-0.122	-0.013	-0.013	0.105
$p R^2$	-0.526	0.897	-0.869	0.936	0.676	-0.966	0.964	-0.085
Heteroptera (APE)	0.000	0.070	0.077	0.077	0.000	0.100	0.100	0.000
Est	0.269	0.209	-0.298	-0.387	0.391	-0.269	-0.453	0.151
p P ²	0.349	0.469	0.296	0.165	0.161	0.348	0.097	0.604
Heteroptera (FIT-C)	-0.003	-0.041	0.019	0.101	0.105	-0.003	0.170	-0.009
Est	-0.582	-0.427	0.341	0.565	-0.717	0.452	0.536	-0.166
p ₂	0.024	0.122	0.228	0.030	0.002	0.098	0.043	0.569
K ⁻ Heteroptera (EIT-U)	0.355	0.145	0.056	0.328	0.592	0.175	0.286	-0.063
Est	-0.068	-0.080	0.208	0.223	-0.003	0.218	0.207	0.067
P ₂	0.816	0.783	0.473	0.439	0.991	0.451	0.474	0.819
R ²	-0.094	-0.091	-0.042	-0.033	-0.1	-0.036	-0.042	-0.094
Est	0.200	0.264	-0.28	-0.326	0.308	-0.296	-0.415	0.176
p_	0.490	0.357	0.327	0.250	0.278	0.299	0.134	0.544
\hat{R}^2	-0.046	-0.006	0.006	0.043	0.028	0.018	0.132	-0.058
Neuropterida (FII-C)	_0 384	_0.134	0.487	0.447	_0.351	0.284	0 224	_0 199
p	0.169	0.645	0.071	0.103	0.212	0.320	0.438	0.491
R^2	0.098	-0.076	0.218	0.168	0.066	0.009	-0.033	-0.047
Neuropterida (FIT-U)	0.154	0.280	0.266	0.207	0.142	0.207	0.202	0 220
ESt D	-0.154 0.598	-0.289 0.312	0.366	0.287	-0.142 0.625	0.207	0.302	-0.338
$\mathbf{R}^{\mathbf{r}}$	-0.068	0.012	0.081	0.011	-0.073	-0.042	0.023	0.053
Opiliones (APE)	0 101	0.050	0.007	0.040	0.005	0.100	0.070	0.001
Est	-0.191	-0.259	0.207	0.043	-0.005	0.133	-0.072	-0.231
\mathbf{R}^2	-0.051	-0.010	-0.043	-0.098	-0.100	-0.076	-0.093	-0.028
Opiliones (PT)								
Est	0.123	-0.072	-0.254	-0.336	0.432	-0.264	-0.383	0.335
$\frac{P}{R^2}$	-0.080	-0.093	-0.013	0.233	0.151	-0.007	0.170	0.236
Herbivore	0.000	0.050	01010	0.002	01101	0.007	0.077	0.001
Chewer								
Coleoptera (APE)	0.030	0.073	0 167	0.248	0.185	0.006	0.254	0.062
p	0.030	0.802	0.565	0.389	0.525	0.984	0.377	0.834
R^2	-0.099	-0.093	-0.062	-0.017	-0.054	-0.100	-0.014	-0.095
Coleoptera (FIT-C)	0.000	0.105	0.415	0.000	0.20/	0.17(0.000	0.200
ESt p	-0.292	-0.105 0.721	0.415	0.236	-0.396 0.154	0.176	0.202	-0.300
R^2	0.014	-0.085	0.132	-0.025	0.111	-0.059	-0.045	0.021
Coleoptera (FIT-U)	a · · · -		0	a a=				
Est	-0.165	-0.387	-0.03	0.075	0.245	-0.292	-0.361	0.185
R^2	-0.063	0.100	-0.910	-0.092	-0.02	0.014	0.199	-0.054
	2.000	0.201	0.0//	0.0/2	0.00			5.001

Table G2. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Coleoptera (GPE)								
Est	-0.136	0.081	0.283	0.13	0.131	-0.245	-0.198	0.248
P ₂	0.656	0.790	0.343	0.670	0.666	0.416	0.512	0.409
R^2	-0.086	-0.102	< 0.001	-0.088	-0.087	-0.028	-0.057	-0.026
Sucker								
Heteroptera (APE)	0.451	0.145	0.410	0.424	0 550	0 520	0.470	0.000
Est	-0.451	-0.145	0.419	0.424	-0.550	0.529	0.470	-0.008
$\frac{P}{R^2}$	0.099	-0.019	0.129	0.124	0.030	0.040	0.083	_0.980
Heteroptera (FIT-C)	0.174	-0.072	0.150	0.142	0.507	0.270	0.177	-0.100
Est	-0.293	0.138	0.334	0.26	-0.518	0.344	0.343	-0.217
p	0.304	0.637	0.237	0.364	0.052	0.223	0.224	0.452
R^2	0.016	-0.075	0.050	-0.009	0.260	0.059	0.058	-0.037
Heteroptera (FIT-U)								
Est	-0.291	-0.320	0.381	0.387	-0.379	0.437	0.467	-0.108
P ₂	0.308	0.259	0.172	0.165	0.176	0.112	0.085	0.711
R ²	0.014	0.038	0.095	0.101	0.093	0.156	0.194	-0.084
Symbiont								
Fungi (Mycorrhiza)	0.207	0.604	0.024	0.000	0.000	0 107	0.010	0.475
ESt	0.306	0.604	-0.034	-0.082	0.232	-0.18/	-0.012	0.475
$\frac{P}{R^2}$	0.262	0.016	-0.907	_0.091	-0.028	-0.053	-0.967	0.079
Producer	0.020	0.570	-0.070	-0.071	-0.020	-0.055	-0.100	0.204
Vascular plants								
Est	-0.367	-0.274	0.167	0.184	-0.274	0.313	0.153	0.086
р	0.190	0.338	0.566	0.527	0.339	0.271	0.600	0.768
R^2	0.081	0.001	-0.062	-0.055	0.001	0.032	-0.069	-0.090
Mosses								
Est	0.677	0.501	-0.426	-0.635	0.681	-0.525	-0.444	0.149
p ₂	0.005	0.062	0.122	0.011	0.005	0.048	0.105	0.610
K ²	0.516	0.237	0.144	0.441	0.523	0.271	0.165	-0.07

Table G3. Effects of stand structural complexity indices (see Appendix A: Table A3) on the abundance of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates (Est), p-values, and R² of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

	7	4	3	3	3	3	2	2	2	2	2	2
Trophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Decomposer Mycetophage Coleoptera												
(APE) Est P2	$-0.742 \\ 0.001$	$-0.679 \\ 0.005$	$-0.569 \\ 0.028$	$-0.722 \\ 0.002$	$-0.691 \\ 0.004$	$-0.628 \\ 0.012$	-0.660 0.007	-0.573 0.027	$-0.727 \\ 0.002$	$-0.208 \\ 0.473$	-0.719 0.002	-0.635 0.011
R ² Coleoptera (FIT-C)	0.641	0.520	0.336	0.601	0.542	0.430	0.485	0.341	0.611	-0.042	0.594	0.442
Est p R ²	-0.212 0.464 -0.040	-0.190 0.511 -0.051	-0.138 0.637 -0.075	-0.246 0.392 -0.018	-0.176 0.544 -0.058	-0.158 0.588 -0.067	-0.222 0.442 -0.034	-0.110 0.706 -0.084	-0.235 0.415 -0.026	$\begin{array}{c} 0.019 \\ 0.947 \\ -0.099 \end{array}$	-0.276 0.336 0.002	-0.114 0.697 -0.083
Coleoptera (FIT-U) Est	-0.209	-0.153	0.007	-0.277	-0.192	-0.070	-0.154	-0.017	-0.330	0.370	-0.327	-0.134
p R ² Saprophage	$0.471 \\ -0.041$	0.599 -0.069	$0.981 \\ -0.100$	0.334 0.003	$0.508 \\ -0.051$	0.811 -0.093	$0.596 \\ -0.068$	$0.954 \\ -0.100$	0.244 0.046	0.187 0.084	0.249 0.043	$0.647 \\ -0.076$
Coleoptera (PT) Est	0.300	0.334	0.333	0.339	0.342	0.255	0.363	0.348	0.342	0.142	0.257	0.246
p R ² Fungi (soil	0.293 0.021	0.237 0.050	0.239 0.049	0.229 0.055	0.226 0.057	$0.376 \\ -0.013$	0.196 0.077	0.217 0.063	0.225 0.057	$0.627 \\ -0.073$	0.371 -0.011	0.392 -0.018
saprophytes) Est P R ²	-0.644 0.009 0.458	-0.681 0.005 0.524	-0.728 0.002 0.613	-0.638 0.010 0.447	-0.663 0.007 0.491	-0.603 0.018 0.388	-0.722 0.002 0.600	-0.722 0.002 0.601	-0.602 0.018 0.387	-0.528 0.046 0.275	-0.504 0.060 0.241	-0.533 0.044 0.282
Isopoda (PT) Est p	0.675 0.005	0.714 0.002	0.735 0.001	0.670 0.006	0.699 0.003	0.665 0.006	0.725 0.002	0.728 0.002	0.636 0.011	0.539 0.041	0.271 0.570 0.028	0.611 0.016
R ² Xylophage Coleoptera	0.512	0.584	0.626	0.503	0.556	0.495	0.608	0.613	0.444	0.291	0.336	0.402
(APE) Est P R ²	-0.042 0.887 -0.098	$0.045 \\ 0.877 \\ -0.097$	$0.188 \\ 0.517 \\ -0.052$	-0.077 0.793 -0.092	0.021 0.943 -0.099	$0.092 \\ 0.754 \\ -0.089$	$0.040 \\ 0.891 \\ -0.098$	0.183 0.527 -0.055	-0.118 0.686 -0.081	$0.432 \\ 0.117 \\ 0.150$	-0.165 0.570 -0.063	0.049 0.867 -0.097
Coleoptera (FIT-C) Est	0.009	-0.037	-0.063	-0.020	-0.025	-0.044	-0.045	-0.052	-0.004	-0.099	-0.009	-0.018
p R ² Coleoptera	$0.976 \\ -0.100$	$0.900 \\ -0.098$	0.830 -0.095	$0.946 \\ -0.099$	0.933 -0.099	$0.881 \\ -0.097$	$0.878 \\ -0.097$	$0.860 \\ -0.096$	$0.988 \\ -0.100$	$0.734 \\ -0.087$	$0.977 \\ -0.100$	$0.950 \\ -0.100$
(FIT-U) Est P2	-0.311 0.274	$-0.197 \\ 0.497$	-0.104 0.721	-0.266 0.353	$-0.228 \\ 0.429$	$-0.117 \\ 0.688$	$-0.202 \\ 0.485$	-0.132 0.650	$-0.304 \\ 0.285$	0.175 0.548	$-0.257 \\ 0.370$	$-0.165 \\ 0.570$
R ² Fungi (wood/ bark species)	0.030	-0.048	-0.085	-0.005	-0.030	-0.081	-0.045	-0.076	0.025	-0.059	-0.011	-0.063
Est p R ²	0.578 0.025 0.349	0.601 0.018 0.386	0.583 0.024 0.356	0.572 0.027 0.340	0.618 0.014 0.413	0.552 0.035 0.309	0.579 0.025 0.351	$\begin{array}{c} 0.610 \\ 0.016 \\ 0.400 \end{array}$	0.575 0.026 0.344	0.358 0.203 0.072	0.486 0.072 0.217	0.570 0.028 0.337
Predator Big Birds (breeding)												
Est P R ²	0.664 0.007 0.493	0.674 0.005 0.510	0.643 0.010 0.455	0.589 0.022 0.366	0.673 0.006 0.509	0.766 0.001 0.688	0.563 0.031 0.326	$0.645 \\ 0.009 \\ 0.459$	0.566 0.030 0.330	0.597 0.019 0.380	0.601 0.019 0.385	0.787 0.000 0.734
Table G3. Continued.

	7	4	3	3	3	3	2	2	2	2	2	2
Trophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Birds (overwintering)												
Est	0.320	0.384	0.459	0.236	0.365	0.515	0.286	0.453	0.191	0.669	0.217	0.509
$p R^2$	0.259	0.169	0.093	0.413 -0.025	0.193	0.053	0.317	0.097 0.176	0.509 -0.051	0.006	0.453 -0.037	0.057
Small	0.000	0.070	0.100	0.020	0.079	0.200	0.010	0.170	0.001	0.002	0.007	0.210
Araneae (APE)	_0 143	_0 177	_0 110	_0 228	_0 187	_0 133	_0 184	_0 114	_0 242	0.078	_0 239	_0 144
p_	0.624	0.543	0.707	0.430	0.519	0.647	0.526	0.698	0.400	0.789	0.406	0.622
R ²	-0.073	-0.058	-0.084	-0.030	-0.053	-0.076	-0.054	-0.083	-0.021	-0.092	-0.023	-0.072
(APE)												
Est	0.071	0.100	0.100	0.114	0.103	0.053	0.126	0.105	0.116	0.008	0.076	0.045
p R ²	-0.093	-0.086	-0.086	-0.083	-0.086	-0.096	-0.079	-0.085	-0.082	-0.100	-0.092	-0.097
Coleoptera												
(FII-C) Est	0.517	0.594	0.567	0.547	0.600	0.610	0.536	0.578	0.537	0.430	0.516	0.625
p ₂	0.052	0.020	0.029	0.037	0.019	0.016	0.042	0.025	0.042	0.118	0.053	0.013
R ² Coleoptera	0.260	0.374	0.332	0.302	0.384	0.400	0.287	0.349	0.288	0.149	0.257	0.425
(FIT-U)												
Est	-0.396 0.155	-0.406 0.143	-0.413 0.135	-0.421 0.128	-0.431	-0.253 0.379	-0.463	-0.455	-0.442 0 107	-0.108 0.712	-0.265	-0.262 0.362
R^2	0.111	0.122	0.130	0.138	0.150	-0.014	0.188	0.178	0.162	-0.084	-0.006	-0.002
Coleoptera												
Est	0.006	0.028	0.026	0.076	0.036	-0.077	0.095	0.036	0.089	-0.140	0.011	-0.091
p_{p^2}	0.983	0.923	0.930	0.795	0.902	0.792	0.745	0.901	0.760	0.631	0.970	0.756
Heteroptera	-0.100	-0.099	-0.099	-0.092	-0.098	-0.092	-0.088	-0.098	-0.069	-0.074	-0.100	-0.089
(APĖ)	0.207	0.250	0.000	0.424	0.050	0.000	0.204	0.070	0.410	0.000	0.425	0.05(
Est p	-0.397 0.153	-0.359 0.202	-0.288 0.312	-0.424 0.125	-0.353 0.210	-0.292 0.306	-0.394 0.157	-0.272 0.343	-0.419 0.129	-0.022 0.940	-0.425 0.123	-0.256 0.372
R^2	0.112	0.073	0.012	0.141	0.068	0.015	0.109	-0.001	0.136	-0.099	0.143	-0.012
(FIT-C)												
Est	0.714	0.699	0.650	0.723	0.693	0.617	0.725	0.642	0.707	0.318	0.663	0.574
p R ²	0.002	0.003	0.008 0.469	0.002	0.004 0.546	0.014	0.002	0.010 0.454	0.003	0.263	0.007	0.027
Heteroptera	0.000	0.007	01107	0.000	010 10	0.112	01007	01101	0.072	01000	0.171	010 10
(FIT-U) Est	0 104	0.066	-0.017	0 107	0.053	0.130	0.032	-0.052	0.097	-0.045	0 228	0 117
p_	0.723	0.821	0.953	0.713	0.857	0.657	0.912	0.860	0.740	0.878	0.429	0.688
R ² Nouroptorida	-0.086	-0.094	-0.100	-0.084	-0.096	-0.077	-0.099	-0.096	-0.087	-0.097	-0.030	-0.082
(APE)												
Est	-0.402	-0.370	-0.332	-0.356	-0.363	-0.405	-0.331	-0.319	-0.340	-0.256	-0.382	-0.396
$\frac{P}{R^2}$	0.148	0.180	0.241	0.200	0.190	0.144	0.242	0.201	0.229	-0.012	0.171	$0.134 \\ 0.111$
Neuropterida												
(FII-C) Est	0.325	0.380	0.289	0.396	0.407	0.378	0.323	0.312	0.419	0.087	0.415	0.436
p ₂	0.251	0.173	0.312	0.154	0.143	0.176	0.254	0.272	0.130	0.765	0.133	0.113
R ⁻ Neuropterida	0.042	0.094	0.012	0.111	0.122	0.093	0.040	0.031	0.136	-0.090	0.132	0.155
(FIT-U)												
Est	0.177 0.542	0.204	0.133	0.232	$0.188 \\ 0.517$	0.254 0.377	0.175 0.546	0.100	0.215	0.072	0.322	0.231
R^2	-0.0542	-0.044	-0.076	-0.028	-0.052	-0.013	-0.059	-0.087	-0.038	-0.093	0.040	-0.029
Opiliones (APF)												
Est	-0.030	0.080	0.084	0.036	0.072	0.154	0.029	0.076	0.022	0.184	0.072	0.158
p R ²	0.919	0.786	0.774	0.901	0.806	0.596	0.922	0.796	0.941	0.525	0.806	0.586
К	-0.099	-0.091	-0.090	-0.098	-0.093	-0.008	-0.099	-0.092	-0.099	-0.034	-0.093	-0.000

Table G3. Continued.

Trophic guild	7 Attrib	4 Attrib	3 AttribA	3 AttribB	3 AttribC	3 AttribD	2 AttribA	2 AttribB	2 AttribC	2 AttribD	2 AttribE	2 AttribF
Opiliones (PT)												
Est	-0.431	-0.410	-0.380	-0.413	-0.428	-0.350	-0.407	-0.403	-0.424	-0.163	-0.350	-0.369
р	0.117	0.139	0.174	0.136	0.120	0.215	0.143	0.146	0.124	0.575	0.214	0.187
R^2	0.150	0.126	0.094	0.129	0.146	0.064	0.122	0.119	0.142	-0.064	0.064	0.084
Herbivore												
Chewer												
Coleoptera												
(APE)	0.220	0.150	0.000	0.201	0 170	0 114	0.150	0 100	0.22	0.005	0.202	0.140
Est	-0.239	-0.158	-0.090	-0.201	-0.179	-0.114	-0.152	-0.108	-0.226	0.095	-0.203	-0.149
$\frac{P}{R^2}$	_0.407	-0.067	_0.757	-0.046	-0.057	_0.090	_0.001	_0.084	_0.434	_0.740	-0.464	-0.010
Coleoptera	-0.025	-0.007	-0.009	-0.040	-0.037	-0.005	-0.009	-0.004	-0.032	-0.000	-0.045	-0.070
(FIT-C)												
Est	0.299	0.341	0.335	0.338	0.366	0.250	0.354	0.374	0.358	0.121	0.233	0.280
p	0.294	0.227	0.235	0.232	0.191	0.385	0.209	0.181	0.202	0.679	0.419	0.328
R^2	0.020	0.056	0.051	0.053	0.081	-0.016	0.068	0.088	0.073	-0.080	-0.027	0.005
Coleoptera												
(FIT-U)												
Est	-0.181	-0.103	-0.170	-0.116	-0.114	0.061	-0.206	-0.199	-0.127	0.010	0.055	0.086
p ₂	0.534	0.724	0.559	0.690	0.697	0.836	0.476	0.492	0.662	0.972	0.851	0.769
R ²	-0.056	-0.086	-0.061	-0.082	-0.083	-0.095	-0.043	-0.047	-0.078	-0.100	-0.096	-0.090
Coleoptera												
(GPE)	0.244	0.200	0 222	0.001	0 172	0.270	0.104	0.200	0.022	0 500	0.02(0.200
Est	-0.244	-0.209	-0.323	-0.091	-0.172	-0.278	-0.194	-0.299	-0.033	-0.509	-0.026	-0.209
p_{R^2}	_0.417	-0.050	0.275	_0.767	-0.070	-0.004	_0.522	0.515	_0.915	0.000	-0.931	-0.050
Sucker	-0.027	-0.050	0.054	-0.100	-0.070	-0.004	-0.057	0.015	-0.110	0.240	-0.110	-0.050
Heteroptera												
(APE)												
Est	0.547	0.515	0.475	0.532	0.528	0.430	0.529	0.492	0.539	0.189	0.460	0.432
р	0.037	0.053	0.080	0.044	0.046	0.118	0.046	0.068	0.041	0.515	0.091	0.117
R^2	0.302	0.256	0.203	0.281	0.275	0.149	0.276	0.225	0.290	-0.052	0.184	0.151
Heteroptera												
(FIT-C)												
Est	0.350	0.353	0.340	0.418	0.380	0.141	0.455	0.379	0.448	-0.067	0.254	0.137
p ₂	0.214	0.210	0.229	0.131	0.174	0.628	0.096	0.175	0.102	0.819	0.377	0.637
R ²	0.065	0.068	0.055	0.135	0.094	-0.073	0.178	0.094	0.170	-0.094	-0.013	-0.075
Heteroptera												
(FII-U)	0 502	0.452	0.411	0 427	0.427	0.402	0.414	0.207	0.411	0 222	0.470	0.466
ESI	0.302	0.452	0.411	0.457	0.437	0.495	0.414	0.367	0.411	0.322	0.470	0.400
$\frac{P}{R^2}$	0.001	0.098	0.138	0.111	0.112	0.007	0.130	0.103	0.138	0.237	0.005	0.000
Symbiont	0.20)	0.175	0.127	0.157	0.150	0.220	0.150	0.102	0.127	0.057	0.177	0.172
Fungi												
(Mycorrhiza)												
Est	-0.233	-0.366	-0.440	-0.248	-0.327	-0.480	-0.309	-0.405	-0.186	-0.628	-0.245	-0.422
р	0.418	0.192	0.109	0.388	0.248	0.076	0.277	0.144	0.521	0.012	0.394	0.126
R^2	-0.027	0.080	0.160	-0.017	0.044	0.210	0.028	0.121	-0.053	0.431	-0.019	0.140
Producer												
Vascular plants												
Est	0.266	0.275	0.274	0.274	0.263	0.253	0.292	0.261	0.256	0.181	0.250	0.216
$p_{\mathbf{p}_2}$	0.354	0.336	0.338	0.338	0.359	0.379	0.307	0.363	0.372	0.533	0.386	0.455
K ⁻	-0.005	0.002	0.001	0.001	-0.007	-0.014	0.014	-0.009	-0.012	-0.056	-0.016	-0.037
NIOSSES Ect	0 710	0 726	0 444	0 722	0 720	0 721	0 702	0.452	0 712	0.412	0 721	0 710
ESI D	-0.710	-0.730	-0.000	-0.755	0.002	-0.751	-0.702	-0.033	-0.713	-0.413	0.001	-0.710
$\frac{P}{R^2}$	0.002	0.001	0.000	0.001	0.602	0.001	0.003	0.000	0.002	0.150	0.001	0.002
IX IX	0.570	0.020	0.490	0.025	0.015	0.019	0.302	0.1/1	0.004	0.129	0.010	0.570

Table G4. Effects of naturalness, measures of management intensity, and stand structural attributes regarding stand age and dead and living wood volume (see Table 1) on the species richness of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community parameters and are thus not shown in the table.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Decomposer								
Mycetophage								
Coleoptera (APE)								
Est	0.412	-0.277	-0.302	-0.306	0.264	0.335	-0.07	-0.333
p_	0.136	0.332	0.289	0.282	0.358	0.236	0.810	0.239
\mathbb{R}^2	0.129	0.003	0.023	0.026	-0.007	0.051	-0.093	0.049
Coleoptera (FIT-C)								
Est	0.107	-0.023	-0.026	-0.056	0.176	0.068	0.355	0.132
p_	0.715	0.939	0.929	0.848	0.544	0.817	0.207	0.652
\hat{R}^2	-0.085	-0.099	-0.099	-0.096	-0.058	-0.094	0.070	-0.077
Coleoptera (FIT-U)								
Est	0.008	-0.120	-0.152	-0.129	0.229	0.293	-0.066	-0.092
p_	0.979	0.680	0.602	0.659	0.427	0.305	0.821	0.753
$\mathbf{\hat{R}}^2$	-0.100	-0.081	-0.069	-0.078	-0.029	0.015	-0.094	-0.089
Saprophage								
Coleoptera (PT)								
Est	0.554	-0.655	-0.654	-0.624	0.434	0.531	-0.142	-0.513
p_	0.034	0.008	0.008	0.013	0.115	0.045	0.627	0.055
\mathbb{R}^2	0.313	0.477	0.475	0.424	0.153	0.280	-0.073	0.253
Fungi (soil saprophytes)								
Est	-0.402	0.519	0.547	0.524	-0.355	-0.479	-0.256	0.162
p_	0.147	0.051	0.037	0.048	0.207	0.076	0.373	0.578
$\mathbf{\hat{R}}^2$	0.118	0.262	0.302	0.269	0.069	0.209	-0.012	-0.065
Isopoda (PT)								
Ēst	0.755	-0.659	-0.684	-0.704	0.610	0.743	0.457	-0.435
p_	0.001	0.007	0.004	0.003	0.016	0.001	0.093	0.114
\hat{R}^2	0.667	0.484	0.528	0.566	0.400	0.642	0.181	0.154
Xylophage								
Coleoptera (APE)								
Est	-0.011	0.054	0.062	0.015	0.076	0.15	0.607	0.100
p_	0.971	0.854	0.833	0.959	0.795	0.606	0.017	0.733
\hat{R}^2	-0.100	-0.096	-0.095	-0.100	-0.092	-0.070	0.395	-0.087
Coleoptera (FIT-C)								
Est	0.198	-0.090	-0.097	-0.124	0.153	0.045	0.307	0.167
p_	0.495	0.758	0.739	0.672	0.600	0.877	0.280	0.565
$\mathbf{\hat{R}}^2$	-0.048	-0.089	-0.087	-0.079	-0.069	-0.097	0.027	-0.062
Coleoptera (FIT-U)								
Est	0.020	-0.012	-0.049	-0.026	-0.056	0.095	0.156	0.022
p_	0.945	0.968	0.866	0.928	0.847	0.746	0.592	0.940
\mathbb{R}^2	-0.099	-0.100	-0.097	-0.099	-0.096	-0.088	-0.067	-0.099
Fungi (wood/bark species)								
Est	0.647	-0.524	-0.540	-0.532	0.337	0.354	0.242	-0.272
P ₂	0.009	0.048	0.041	0.044	0.234	0.208	0.400	0.342
R ²	0.462	0.269	0.291	0.281	0.052	0.068	-0.021	< 0.001
Predator								
Big								
Birds (breeding)								
Est	0.642	-0.601	-0.613	-0.631	0.424	0.623	0.503	-0.276
P ₂	0.010	0.018	0.015	0.012	0.124	0.013	0.061	0.334
\mathbb{R}^2	0.455	0.386	0.405	0.436	0.142	0.422	0.240	0.003
Birds (overwintering)								
Est	0.487	-0.362	-0.354	-0.367	0.081	0.287	0.158	-0.356
p ₂	0.071	0.197	0.209	0.191	0.782	0.315	0.587	0.205
R ²	0.219	0.077	0.068	0.081	-0.091	0.011	-0.066	0.071
Small								
Araneae (APE)								
Est	0.404	-0.421	-0.408	-0.435	0.166	0.271	0.373	-0.112
p ₂	0.145	0.128	0.141	0.113	0.568	0.344	0.183	0.702
R ²	0.120	0.138	0.124	0.154	-0.063	-0.001	0.087	-0.083

Table G4. Continued.

	Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (APE)								
$ \begin{array}{c} \mathbf{p} \\ \mathbf{p} \\ \mathbf{p} \\ \mathbf{k}^{2} \\ \mathbf{k}$	Est	0.462	-0.538	-0.535	-0.544	0.399	0.491	0.163	-0.392
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	p p2	0.090	0.041	0.043	0.039	0.152	0.068	0.576	0.159
	K ⁻ Colooptoro (EIT C)	0.187	0.290	0.285	0.297	0.114	0.224	-0.064	0.107
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.620	-0.523	-0.526	-0.530	0 393	0 353	0 148	_0 339
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	n	0.020	0.049	0.047	0.045	0.158	0.209	0.140	0.230
$\begin{array}{c} \text{Colleoptera} (FT-U) & 0.366 & 0.337 & 0.552 & -0.228 & -0.075 & 0.075 \\ \text{P} & 0.257 & 0.192 & 0.233 & 0.211 & 0.251 & 0.430 & 0.797 & 0.5 \\ \text{R}^2 & 0.039 & 0.080 & 0.053 & 0.067 & 0.042 & -0.030 & -0.092 & -0.050 \\ \text{Coleoptera} (PT) & 0.006 & 0.008 & 0.008 & 0.007 & 0.047 & 0.387 & 0.3 \\ \text{P} & 0.017 & 0.006 & 0.008 & 0.008 & 0.007 & 0.047 & 0.387 & 0.3 \\ \text{R}^2 & 0.392 & 0.505 & 0.479 & 0.478 & 0.481 & 0.272 & -0.017 & 0.06 \\ \text{P} & 0.631 & 0.708 & 0.725 & 0.733 & 0.193 & 0.756 & 0.803 & 0.58 \\ \text{R}^2 & -0.074 & -0.084 & -0.086 & -0.087 & 0.079 & -0.064 & -0.093 & -0.012 & 0.068 \\ \text{Heteroptera} (FT-C) & -0.084 & -0.086 & -0.087 & 0.079 & 0.064 & -0.012 & 0.012 \\ \text{Est} & 0.631 & 0.708 & 0.725 & 0.645 & 0.573 & 0.255 & -0.027 & 0.012 & 0.013 & 0.076 & -0.070 & -0.094 & -0.083 & -0.012 & 0.012 & 0.012 & 0.05 & -0.085 & -0.076 & -0.070 & -0.094 & -0.088 & 0.76 & 0.073 & 0.068 & -0.012 & 0.05 & -0.095 & -0.090 & 0.172 & 0.051 & 0.097 & 0.58 & 0.076 & -0.070 & -0.094 & -0.084 & -0.372 & -0.08 & 0.005 & -0.095 & -0.090 & 0.172 & 0.573 & 0.073 & 0.068 & -0.076 & -0.070 & -0.094 & -0.086 & 0.074 & 0.0 & 0.074 & -0.085 & -0.095 & -0.090 & 0.172 & 0.573 & 0.731 & 0.666 & 0.73 & 0.731 & 0.666 & 0.73 & 0.073 & 0.073 & 0.068 & 0.073 & 0.013 & -0.015 & -0.030 & -0.064 & -0.086 & -0.074 & -0.077 & -0.094 & -0.086 & 0.074 & 0.074 & 0.074 & 0.074 & 0.075 & 0.030 & -0.064 & -0.086 & 0.074 & 0.074 & 0.075 & 0.030 & -0.064 & 0.038 & 0.022 & 0.047 & 0.047 & 0.047 & 0.040 & 0.075 & 0.030 & -0.064 & 0.038 & 0.022 & 0.047 & 0.047 & 0.047 & 0.040 & 0.013 & 0.015 & -0.030 & -0.064 & -0.086 & 0.074 & 0.077 & 0.079 & 0.066 & 0.077 & 0.084 & 0.077 & 0.038 & 0.066 & 0.077 & 0.038 & 0.033 & 0.026 & 0.33 & 0.73 & 0.333 & 0.73 & 0.333 & 0.73 & 0.333 & 0.73 & 0.333 & 0.73 & 0.333 & 0.73 & 0.333 & 0.73 &$	\mathbf{R}^2	0.417	0.268	0.272	0.277	0.108	0.068	-0.071	0.055
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-U)								
$\begin{array}{ccccc} p_{p} & 0.257 & 0.192 & 0.233 & 0.211 & 0.251 & 0.430 & 0.797 & 0.52 \\ R^{2} & 0.039 & 0.080 & 0.005 & 0.067 & 0.042 & -0.030 & -0.092 & -0.050 \\ P_{2} & 0.017 & 0.006 & 0.008 & 0.008 & 0.007 & 0.047 & 0.387 & 0.23 \\ R^{2} & 0.392 & 0.505 & 0.479 & 0.478 & 0.481 & 0.272 & -0.017 & 0.05 \\ Heteroptera (APE) & & & & & & & & & & & & & & & & & & &$	Est	-0.321	0.366	0.337	0.352	-0.325	-0.228	-0.075	0.163
$\begin{array}{cccc} {\rm R}^{\kappa} & 0.039 & 0.080 & 0.053 & 0.067 & 0.042 & -0.030 & -0.092 & -0. \\ {\rm Colcoptera (PT)} & {\rm Est} & -0.065 & 0.671 & 0.656 & 0.656 & -0.657 & -0.2249 & 0.37 \\ {\rm R}^2 & 0.392 & 0.505 & 0.479 & 0.478 & 0.481 & 0.272 & -0.017 & 0.07 \\ {\rm Heteroptera (APE)} & {\rm Est} & -0.140 & 0.109 & 0.103 & 0.100 & -0.365 & -0.163 & 0.073 & 0.07 \\ {\rm R}^2 & 0.631 & 0.708 & 0.725 & 0.733 & 0.193 & 0.576 & 0.803 & 0.87 \\ {\rm R}^2 & -0.074 & -0.084 & -0.086 & -0.087 & 0.079 & -0.064 & -0.093 & -0.726 \\ {\rm Ectroptera (FT-C)} & {\rm Est} & 0.687 & -0.744 & -0.740 & -0.726 & 0.645 & 0.573 & 0.235 & -0. \\ {\rm R}^2 & 0.004 & 0.001 & 0.001 & 0.002 & 0.009 & 0.027 & 0.374 & 0.1 \\ {\rm R}^2 & 0.034 & 0.043 & 0.635 & 0.609 & 0.459 & 0.342 & -0.012 & 0.018 \\ {\rm Heteroptera (FT-U)} & {\rm Est} & -0.279 & 0.114 & 0.134 & 0.149 & -0.067 & -0.093 & -0.453 & -0. \\ {\rm P}_2 & 0.209 & 0.166 & 0.645 & 0.068 & 0.820 & 0.751 & 0.097 & 0.5 \\ {\rm R}^3 & 0.005 & -0.083 & -0.076 & -0.070 & -0.094 & -0.088 & 0.176 & -0. \\ {\rm P}_2 & 0.809 & 0.890 & 0.839 & 0.0769 & 0.100 & 0.223 & -0.372 & -0. \\ {\rm P}_2 & 0.809 & 0.809 & 0.808 & -0.450 & -0.320 & -0.344 & -0.372 & -0. \\ {\rm P}_2 & 0.809 & 0.809 & 0.381 & 0.427 & 0.573 & 0.731 & 0.636 & 0.7 \\ {\rm R}^3 & -0.093 & -0.098 & -0.095 & -0.090 & 0.172 & 0.096 & -0.090 \\ {\rm R}^3 & -0.093 & -0.098 & -0.095 & -0.090 & 0.172 & 0.086 & -0.074 & -0. \\ {\rm P}_2 & 0.533 & 0.309 & 0.381 & 0.427 & 0.573 & 0.731 & 0.636 & 0.7 \\ {\rm R}^2 & -0.060 & 0.013 & -0.015 & -0.030 & -0.064 & -0.086 & -0.074 & -0. \\ {\rm P}_2 & 0.497 & -0.068 & -0.070 & -0.064 & -0.086 & -0.074 & -0. \\ {\rm P}_2 & 0.493 & 0.594 & 0.533 & 0.333 & -0.506 & -0.463 & -0.181 & 0.0 \\ {\rm P}_2 & 0.372 & 0.285 & 0.236 & 0.333 & -0.506 & -0.463 & -0.181 & 0.0 \\ {\rm P}_1 & 0.047 & -0.068 & -0.043 & -0.650 & 0.291 & 0.389 & 0.533 & 0.7 \\ {\rm R}^2 & 0.107 & 0.152 & 0.135 & 0.144 & 0.674 & 0.543 & 0.473 & 0.57 \\ {\rm P}_1 & 0.066 & -0.643 & -0.650 & 0.291 & 0.389 & 0.235 & -0.050 \\ {\rm P}_1 & 0.066 & -0.643 & -0.664 & -0.643 & -0.056 & -0.043 & -0.058 & -0.042 & -0.050 \\$	P ₂	0.257	0.192	0.233	0.211	0.251	0.430	0.797	0.576
	\mathbb{R}^2	0.039	0.080	0.053	0.067	0.042	-0.030	-0.092	-0.064
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (P1)	0.605	0.671	0.656	0.656	0.657	0.526	0.240	0.255
	ESI	-0.605	0.071	0.008	0.008	-0.657	-0.526	-0.249	0.333
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{P}{R^2}$	0.392	0.505	0.479	0.478	0.481	0.272	-0.017	0.069
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Heteroptera (APE)	0.072	0.000	0.17)	0.170	0.101	0.272	0.017	0.007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.140	0.109	0.103	0.100	-0.365	-0.163	0.073	0.067
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p	0.631	0.708	0.725	0.733	0.193	0.576	0.803	0.818
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{R}^2	-0.074	-0.084	-0.086	-0.087	0.079	-0.064	-0.093	-0.094
Est 0.687 -0.744 -0.740 -0.726 0.645 0.573 0.255 -0.0 R^2 0.004 0.001 0.001 0.002 0.009 0.227 0.374 0.1 R^2 0.534 0.643 0.635 0.609 0.459 0.342 -0.012 0.0 Est -0.279 0.114 0.134 0.149 -0.067 -0.093 -0.453 -0.0 P 0.329 0.696 0.645 0.608 0.820 0.751 0.097 0.68 R^2 0.005 -0.083 -0.076 -0.070 -0.094 -0.088 0.176 -0.0 Neuropterida (APE) Est -0.071 0.040 0.059 0.086 -0.450 -0.344 -0.372 -0.0 P 0.809 0.809 0.839 0.769 0.100 0.223 0.184 0.5 R^2 -0.093 -0.095 -0.090 0.172 0.059 0.086 -0.0 Neuropterida (FIT-C) Est 0.172 -0.290 -0.252 -0.229 -0.164 -0.100 -0.138 -0. P 0.553 0.309 0.381 0.427 0.573 0.731 0.636 0.7 R^2 -0.060 0.013 -0.015 -0.030 -0.064 -0.866 -0.074 -0. Neuropterida (FIT-U) Est 0.199 -0.155 -0.149 -0.164 0.459 0.368 0.122 -0. P^2 0.493 0.594 0.610 0.573 0.092 0.189 0.676 0.5 R^2 -0.047 -0.066 -0.070 -0.064 0.183 0.082 -0.080 -0. Opliones (APE) Est -0.127 0.285 0.2246 0.239 0.059 0.089 -0.056 -0.463 -0.181 0.0 P_2 0.372 0.285 0.246 0.239 0.059 0.089 -0.056 -0.046 R^2 -0.012 0.025 0.045 0.049 0.244 0.188 -0.056 -0. Est -0.177 -0.208 0.0 R^2 0.101 0.152 0.135 0.144 -0.674 0.533 0.727 -0.208 0.7 R^2 0.012 0.025 0.045 0.049 0.244 0.188 -0.056 -0. Est -0.012 0.025 0.045 0.049 0.244 0.188 -0.056 -0. R^2 0.162 0.114 0.130 0.121 -0.080 -0.058 -0.042 -0. Est 0.665 -0.668 -0.643 -0.650 0.291 0.389 0.235 -0. R^2 0.495 0.500 0.454 0.406 0.014 0.103 -0.026 0.1 Coleoptera (APE) Est 0.665 -0.668 -0.643 -0.650 0.291 0.389 0.235 -0. R^2 0.162 0.114 0.130 0.121 -0.080 -0.058 -0.042 -0. Est 0.162 0.114 0.130 0.121 -0.080 -0.058 -0.042 -0. R^2 0.034 0.004 0.029 0.059 0.045 0.048 0.014 0.103 0.416 0.1 R^2 0.047 0.054 0.038 0.032 0.059 0.058 0.042 -0. Est 0.527 -0.514 -0.546 -0.560 0.511 0.672 0.369 -0. R^2 0.047 0.054 0.038 0.032 0.088 0.006 0.188 0.2 R^2 0.0274 0.054 0.038 0.032 0.088 0.006 0.188 0.2 R^2 0.047 0.054 0.038 0.032 0.088 0.006 0.188 0.2 R^2 0.047 0.054 0.038 0.032 0.088 0.006 0.188 0.2 R^2 0.0274 0.054 0.038 0.032 0.045 0.0458	Heteroptera (FIT-C)	0.40	0 = 4 4	0 = 10	0 = 0 (0.445			0.070
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.687	-0.744	-0.740	-0.726	0.645	0.573	0.255	-0.372
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$p_{\mathbf{P}^2}$	0.004	0.001	0.001	0.002	0.009	0.027	0.374	0.184
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N Heteroptera (FIT-II)	0.334	0.045	0.655	0.609	0.439	0.342	-0.012	0.066
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fst	-0.279	0 114	0 134	0 149	-0.067	-0.093	-0.453	-0.053
	p	0.329	0.696	0.645	0.608	0.820	0.751	0.097	0.858
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R^2	0.005	-0.083	-0.076	-0.070	-0.094	-0.088	0.176	-0.096
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Neuropterida (APE)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.071	0.040	0.059	0.086	-0.450	-0.344	-0.372	-0.028
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p	0.809	0.890	0.839	0.769	0.100	0.223	0.184	0.924
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K^2	-0.093	-0.098	-0.095	-0.090	0.172	0.059	0.086	-0.099
Lest $0.172 - 0.290 - 0.392 - 0.299 - 0.104 - 0.100 - 0.138 - 0.074 - 0.100 - 0.138 - 0.074 - 0.074 - 0.074 - 0.070 - 0.060 - 0.013 - 0.015 - 0.030 - 0.064 - 0.086 - 0.074 - 0.074 - 0.070 - 0.060 - 0.015 - 0.030 - 0.064 - 0.086 - 0.074 - 0.070 - 0.064 - 0.086 - 0.074 - 0.070 - 0.064 - 0.086 - 0.074 - 0.070 - 0.064 - 0.086 - 0.077 - 0.070 - 0.064 - 0.086 - 0.076 - 0.57 - 0.049 - 0.0493 - 0.070 - 0.064 - 0.183 - 0.082 - 0.080 - 0.070 - 0.064 - 0.183 - 0.082 - 0.080 - 0.070 - 0.064 - 0.183 - 0.082 - 0.080 - 0.070 - 0.064 - 0.183 - 0.082 - 0.080 - 0.070 - 0.064 - 0.183 - 0.082 - 0.080 - 0.070 - 0.064 - 0.183 - 0.082 - 0.080 - 0.070 - 0.064 - 0.183 - 0.082 - 0.080 - 0.070 - 0.064 - 0.183 - 0.082 - 0.080 - 0.070 - 0.064 - 0.183 - 0.082 - 0.080 - 0.070 - 0.012 - 0.025 - 0.045 - 0.049 - 0.244 - 0.042 - 0.012 - 0.025 - 0.045 - 0.049 - 0.244 - 0.042 - 0.012 - 0.012 - 0.012 - 0.012 - 0.012 - 0.012 - 0.056 - 0.056 - 0.012 - 0.012 - 0.012 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.012 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.012 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.025 - 0.045 - 0.045 - 0.042 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.025 - 0.045 - 0.045 - 0.042 - 0.012 - 0.012 - 0.006 - 0.006 - 0.009 - 0.008 - 0.058 - 0.042 - 0.012 - 0.012 - 0.080 - 0.058 - 0.042 - 0.012 - 0.012 - 0.006 - 0.006 - 0.009 - 0.008 - 0.058 - 0.042 - 0.012 - 0.012 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.058 - 0.042 - 0.012 - 0.012 - 0.058 - 0.041 - 0.013 - 0.026 - 0.012 - 0.012 - 0.012 - 0.058 - 0.041 - 0.013 - 0.026 - 0.012 - 0.012 - 0.058 - 0.041 - 0.013 - 0.026 - 0.012 - 0.012 - 0.058 - 0.041 - 0.013 - 0.026 - 0.012 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 - 0.025 - 0.031 -$	Neuropterida (FII-C)	0 172	0.200	0.252	0.220	0.164	0.100	0 1 2 9	0 111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ESI	0.172	-0.290	-0.232	-0.229 0.427	-0.164 0.573	0.731	-0.136	-0.111
Neuropterida (FIT-U) 0.000 0.010 0.010 0.001 0.011 0.013<	R^2	-0.060	0.013	-0.015	-0.030	-0.064	-0.086	-0.074	-0.083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Neuropterida (FIT-U)	0.000	01010	01010	01000	01001	0.000	0107 1	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.199	-0.155	-0.149	-0.164	0.459	0.368	0.122	-0.163
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂	0.493	0.594	0.610	0.573	0.092	0.189	0.676	0.574
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R^2	-0.047	-0.068	-0.070	-0.064	0.183	0.082	-0.080	-0.064
Est -0.256 0.304 0.328 0.333 -0.506 -0.463 -0.181 0.0 p 0.372 0.285 0.246 0.239 0.059 0.089 0.533 0.7 R ² -0.012 0.025 0.045 0.049 0.244 0.188 -0.056 -0. Opiliones (PT) Est -0.441 0.399 0.414 0.406 -0.123 -0.177 -0.208 0.0 p 0.107 0.152 0.135 0.144 0.674 0.543 0.473 0.5 R ² 0.162 0.114 0.130 0.121 -0.080 -0.058 -0.042 -0. Herbivore Chewer Coleoptera (APE) Est 0.665 -0.668 -0.643 -0.650 0.291 0.389 0.235 -0. p 0.006 0.006 0.009 0.008 0.307 0.163 0.416 0.1 R ² 0.495 0.500 0.456 0.468 0.014 0.103 -0.026 0.1 Coleoptera (FIT-C) Est 0.470 -0.438 -0.401 -0.413 0.355 0.235 0.227 -0. p 0.084 0.110 0.149 0.136 0.207 0.414 0.431 0.2 R ² 0.197 0.158 0.116 0.129 0.069 -0.025 -0.031 0.0 Coleoptera (FIT-U) Est 0.527 -0.514 -0.546 -0.560 0.651 0.672 0.369 -0. p 0.047 0.054 0.038 0.032 0.008 0.006 0.188 0.2 R ² 0.274 0.256 0.301 0.322 0.470 0.508 0.083 0.0 Coleoptera (GPE) Est 0.515 -0.589 -0.610 -0.613 0.548 0.575 0.333 -0.	Opiliones (APE)	0.05(0.204	0.220	0.222	0 50/	0.462	0 1 0 1	0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.256	0.304	0.328	0.333	-0.506	-0.463	-0.181	0.089
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{P}^2	-0.012	0.285	0.240	0.239	0.039	0.089	-0.055	-0.089
Est -0.441 0.399 0.414 0.406 -0.123 -0.177 -0.208 0.005 p 0.107 0.152 0.135 0.144 0.674 0.543 0.473 0.557 R ² 0.162 0.114 0.130 0.121 -0.080 -0.058 -0.042 -0.556 Herbivore Chewer Coleoptera (APE) Est 0.665 -0.668 -0.643 -0.650 0.291 0.389 0.235 -0.556 p 0.006 0.006 0.009 0.008 0.307 0.163 0.416 0.157 R ² 0.495 0.500 0.456 0.468 0.014 0.103 -0.026 0.116 Coleoptera (FIT-C) Est 0.470 -0.438 -0.401 -0.413 0.355 0.235 0.227 -0.575 p 0.084 0.110 0.149 0.136 0.207 0.414 0.431 0.257 Coleoptera (FIT-U) Est 0.527 -0.514 -0.546 -0.560 0.651 0.672 0.369 -0.575 R ² 0.274 0.256 0.301 0.322 0.008 0.006 0.188 0.275 R ² 0.274 0.256 0.301 0.322 0.470 0.508 0.083 0.050 Coleoptera (GPE) Est 0.515 -0.589 -0.610 -0.613 0.548 0.575 0.333 -0.503 P 0.064 0.028 0.021 0.020 0.045 0.033 0.260 0.33	Opiliones (PT)	0.012	0.020	0.040	0.049	0.211	0.100	0.000	0.007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.441	0.399	0.414	0.406	-0.123	-0.177	-0.208	0.022
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p_	0.107	0.152	0.135	0.144	0.674	0.543	0.473	0.941
$\begin{array}{c cccc} Herbivore \\ \hline Chewer \\ \hline Coleoptera (APE) \\ Est & 0.665 & -0.668 & -0.643 & -0.650 & 0.291 & 0.389 & 0.235 & -0. \\ p & 0.006 & 0.006 & 0.009 & 0.008 & 0.307 & 0.163 & 0.416 & 0.1 \\ p^2 & 0.495 & 0.500 & 0.456 & 0.468 & 0.014 & 0.103 & -0.026 & 0.1 \\ \hline Coleoptera (FIT-C) \\ Est & 0.470 & -0.438 & -0.401 & -0.413 & 0.355 & 0.235 & 0.227 & -0. \\ p & 0.084 & 0.110 & 0.149 & 0.136 & 0.207 & 0.414 & 0.431 & 0.2 \\ R^2 & 0.197 & 0.158 & 0.116 & 0.129 & 0.069 & -0.025 & -0.031 & 0.0 \\ \hline Coleoptera (FIT-U) \\ Est & 0.527 & -0.514 & -0.546 & -0.560 & 0.651 & 0.672 & 0.369 & -0. \\ p & 0.047 & 0.054 & 0.038 & 0.032 & 0.008 & 0.006 & 0.188 & 0.2 \\ R^2 & 0.274 & 0.256 & 0.301 & 0.322 & 0.470 & 0.508 & 0.083 & 0.0 \\ \hline Coleoptera (GPE) \\ Est & 0.515 & -0.589 & -0.610 & -0.613 & 0.548 & 0.575 & 0.333 & -0. \\ p & 0.064 & 0.028 & 0.021 & 0.020 & 0.045 & 0.033 & 0.260 & 0.3 \\ \hline \end{array}$	R^2	0.162	0.114	0.130	0.121	-0.080	-0.058	-0.042	-0.099
$\begin{array}{c c} Chewer \\ Coleoptera (APE) \\ Est & 0.665 & -0.668 & -0.643 & -0.650 & 0.291 & 0.389 & 0.235 & -0. \\ p & 0.006 & 0.006 & 0.009 & 0.008 & 0.307 & 0.163 & 0.416 & 0.1 \\ p^2 & 0.495 & 0.500 & 0.456 & 0.468 & 0.014 & 0.103 & -0.026 & 0.1 \\ \hline Coleoptera (FIT-C) \\ Est & 0.470 & -0.438 & -0.401 & -0.413 & 0.355 & 0.235 & 0.227 & -0. \\ p & 0.084 & 0.110 & 0.149 & 0.136 & 0.207 & 0.414 & 0.431 & 0.2 \\ R^2 & 0.197 & 0.158 & 0.116 & 0.129 & 0.069 & -0.025 & -0.031 & 0.0 \\ \hline Coleoptera (FIT-U) \\ Est & 0.527 & -0.514 & -0.546 & -0.560 & 0.651 & 0.672 & 0.369 & -0. \\ p & 0.047 & 0.054 & 0.038 & 0.032 & 0.008 & 0.006 & 0.188 & 0.2 \\ R^2 & 0.274 & 0.256 & 0.301 & 0.322 & 0.470 & 0.508 & 0.083 & 0.0 \\ \hline Coleoptera (GPE) \\ Est & 0.515 & -0.589 & -0.610 & -0.613 & 0.548 & 0.575 & 0.333 & -0. \\ p & 0.064 & 0.028 & 0.021 & 0.020 & 0.045 & 0.033 & 0.260 & 0.3 \\ \end{array}$	Herbivore								
$ \begin{array}{c cccc} Coleoptera (APE) \\ \hline Est & 0.665 & -0.668 & -0.643 & -0.650 & 0.291 & 0.389 & 0.235 & -0. \\ p & 0.006 & 0.006 & 0.009 & 0.008 & 0.307 & 0.163 & 0.416 & 0.1 \\ R^2 & 0.495 & 0.500 & 0.456 & 0.468 & 0.014 & 0.103 & -0.026 & 0.1 \\ \hline Coleoptera (FIT-C) \\ \hline Est & 0.470 & -0.438 & -0.401 & -0.413 & 0.355 & 0.235 & 0.227 & -0. \\ p & 0.084 & 0.110 & 0.149 & 0.136 & 0.207 & 0.414 & 0.431 & 0.2 \\ R^2 & 0.197 & 0.158 & 0.116 & 0.129 & 0.069 & -0.025 & -0.031 & 0.0 \\ \hline Coleoptera (FIT-U) \\ \hline Est & 0.527 & -0.514 & -0.546 & -0.560 & 0.651 & 0.672 & 0.369 & -0. \\ p & 0.047 & 0.054 & 0.038 & 0.032 & 0.008 & 0.006 & 0.188 & 0.2 \\ R^2 & 0.274 & 0.256 & 0.301 & 0.322 & 0.470 & 0.508 & 0.083 & 0.0 \\ \hline Coleoptera (GPE) \\ \hline Est & 0.515 & -0.589 & -0.610 & -0.613 & 0.548 & 0.575 & 0.333 & -0. \\ p & 0.064 & 0.028 & 0.021 & 0.020 & 0.045 & 0.033 & 0.260 & 0.3 \\ \hline \end{array} $	Chewer (ADE)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (APE)	0.665	0.668	0.643	0.650	0.201	0.280	0.225	0.402
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ESt	0.005	-0.008	0.043	-0.050	0.291	0.389	0.235	-0.403
$ \begin{array}{cccc} Coleoptera (FIT-C) & & & & & & & & & & & & & & & & & & &$	R^2	0.495	0.500	0.456	0.468	0.014	0.103	-0.026	0.118
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-C)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.470	-0.438	-0.401	-0.413	0.355	0.235	0.227	-0.297
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂	0.084	0.110	0.149	0.136	0.207	0.414	0.431	0.297
$ \begin{array}{ccc} \text{Coleoptera (FII-U)} \\ \text{Est} & 0.527 & -0.514 & -0.546 & -0.560 & 0.651 & 0.672 & 0.369 & -0. \\ \text{p} & 0.047 & 0.054 & 0.038 & 0.032 & 0.008 & 0.006 & 0.188 & 0.2 \\ \text{R}^2 & 0.274 & 0.256 & 0.301 & 0.322 & 0.470 & 0.508 & 0.083 & 0.06 \\ \text{Coleoptera (GPE)} & & & & & & & \\ \text{Est} & 0.515 & -0.589 & -0.610 & -0.613 & 0.548 & 0.575 & 0.333 & -0. \\ \text{p} & 0.064 & 0.028 & 0.021 & 0.020 & 0.045 & 0.033 & 0.260 & 0.33 \\ \end{array} $	\mathbb{R}^2	0.197	0.158	0.116	0.129	0.069	-0.025	-0.031	0.019
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-U)	0 505	0 51 4	0 544	0 540	0 (= 1	0 (72	0.0/0	0.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.527	-0.514	-0.546	-0.560	0.651	0.672	0.369	-0.313
Coleoptera (GPE) 0.515 -0.589 -0.610 -0.613 0.548 0.575 0.333 -0. p 0.064 0.028 0.021 0.020 0.045 0.033 0.260 0.33	p R^2	0.047	0.054	0.038	0.032	0.008	0.006	0.188	0.270
Est 0.515 -0.589 -0.610 -0.613 0.548 0.575 0.333 -0. p 0.064 0.028 0.021 0.020 0.045 0.033 0.260 0.3	Coleoptera (CPF)	0.274	0.200	0.501	0.322	0.470	0.306	0.005	0.032
p 0.064 0.028 0.021 0.020 0.045 0.033 0.260 0.3	Est	0.515	-0.589	-0.610	-0.613	0.548	0.575	0.333	-0.287
	p	0.064	0.028	0.021	0.020	0.045	0.033	0.260	0.337
\mathbb{R}^2 0.257 0.37 0.406 0.41 0.306 0.348 0.043 0.0	Ř ²	0.257	0.37	0.406	0.41	0.306	0.348	0.043	0.003

Table G4. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Sucker								
Heteroptera (APE)								
Est	0.43	-0.488	-0.445	-0.456	0.448	0.321	0.135	-0.349
p_	0.118	0.070	0.104	0.094	0.102	0.258	0.643	0.215
Ŕ ²	0.149	0.221	0.167	0.180	0.170	0.038	-0.075	0.064
Heteroptera (FIT-C)								
Est	0.100	-0.146	-0.114	-0.124	-0.045	-0.065	-0.099	-0.027
p_	0.733	0.616	0.696	0.672	0.879	0.825	0.736	0.926
\mathbb{R}^2	-0.087	-0.071	-0.082	-0.079	-0.097	-0.094	-0.087	-0.099
Heteroptera (FIT-U)								
Est	0.607	-0.61	-0.635	-0.657	0.524	0.633	0.523	-0.233
p_	0.017	0.016	0.011	0.007	0.049	0.011	0.049	0.418
R ²	0.395	0.400	0.443	0.48	0.269	0.439	0.267	-0.027
Symbiont								
Fungi (Mycorrhiza)								
Est	-0.274	0.208	0.232	0.265	-0.351	-0.503	-0.541	0.17
p_	0.338	0.471	0.421	0.356	0.212	0.06	0.04	0.559
R ²	0.001	-0.042	-0.028	-0.006	0.066	0.241	0.293	-0.061
Producer								
Vascular plants								
Est	-0.271	0.232	0.207	0.228	-0.109	-0.008	-0.350	-0.076
p_	0.345	0.422	0.474	0.429	0.710	0.977	0.213	0.796
R ²	-0.002	-0.028	-0.042	-0.030	-0.084	-0.100	0.065	-0.092
Mosses								
Est	-0.668	0.665	0.671	0.68	-0.489	-0.649	-0.215	0.490
p _o	0.006	0.006	0.006	0.005	0.069	0.009	0.457	0.069
R∠	0.501	0.494	0.506	0.521	0.222	0.467	-0.038	0.223

Table G5. Effects of stand structural attributes except stand age and wood volume (see Table 1) on the species richness of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R² and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community parameters and are thus not shown in the table.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Decomposer								
Mycetophage								
Coleoptera (APE)								
Est	-0.45	-0.417	0.649	0.538	-0.361	0.258	0.336	-0.223
p p2	0.100	0.131	0.009	0.041	0.199	0.369	0.235	0.439
	0.172	0.134	0.465	0.290	0.075	-0.011	0.051	-0.033
Coleoptera (FII-C)	0 107	0.024	0.002	0.000	0.052	0.12(0.027	0 502
Est	0.187	-0.034	0.093	-0.293	0.052	0.126	0.037	-0.592
P_{P^2}	0.052	0.907	0.749	0.004	0.009	0.003	0.099	0.021
Coleoptera (FIT-U)	-0.035	-0.098	-0.000	0.010	-0.090	-0.079	-0.090	0.571
Fst	-0.184	-0.244	-0.250	-0.018	-0.167	-0.021	-0.046	-0.086
n	0.526	0.396	0.385	0.951	0.566	0.942	0.876	0.769
$\frac{P}{R^2}$	-0.054	-0.020	-0.016	-0.100	-0.063	-0.099	-0.097	-0.090
Saprophage	01001	0.020	01010	01100	01000	01077	01077	0.070
Coleoptera (PT)								
Est	-0.655	-0.328	0.441	0.633	-0.732	0.448	0.483	-0.150
р	0.008	0.247	0.107	0.011	0.001	0.102	0.074	0.607
R^2	0.477	0.044	0.162	0.438	0.621	0.169	0.214	-0.070
Fungi (soil saprophytes)								
Est	0.299	0.210	0.174	-0.102	0.487	-0.217	-0.149	0.209
p_	0.294	0.469	0.549	0.726	0.071	0.453	0.608	0.470
Ř ²	0.020	-0.041	-0.059	-0.086	0.218	-0.037	-0.070	-0.041
Isopoda (PT)								
Est	-0.588	-0.616	0.393	0.531	-0.619	0.479	0.415	-0.271
p ₂	0.022	0.015	0.158	0.045	0.014	0.077	0.134	0.344
R^2	0.366	0.411	0.108	0.280	0.415	0.208	0.131	-0.001
Xylophage								
Coleoptera (APE)	0.1//	0.1(0	0.2(0	0.000	0.007	0.017	0.045	0.100
Est	0.166	-0.160	-0.368	-0.323	0.207	-0.017	-0.245	-0.188
p_{B^2}	0.569	0.582	0.189	0.255	0.475	0.955	0.394	0.516
K Colooptoro (EIT C)	-0.063	-0.066	0.082	0.040	-0.043	-0.100	-0.019	-0.052
Ect	0.214	0 137	0.224	0.055	0.056	0.220	0.270	0 351
Est	0.214	0.137	0.224	-0.035	-0.030	0.220	0.270	0.212
$\frac{P}{R^2}$	-0.039	-0.037	-0.033	-0.096	-0.096	-0.035	-0.002	0.212
Coleoptera (FIT-U)	0.007	0.075	0.000	0.070	0.070	0.000	0.002	0.000
Est	-0.104	-0.217	-0.437	-0.113	0.003	-0.306	-0.343	0.081
p	0.722	0.452	0.112	0.699	0.993	0.282	0.224	0.782
R^2	-0.085	-0.037	0.156	-0.083	-0.100	0.026	0.059	-0.091
Fungi (wood/bark species)								
Est	-0.406	-0.299	0.456	0.377	-0.520	0.286	0.331	-0.356
p_	0.143	0.293	0.095	0.178	0.051	0.317	0.242	0.205
$\mathbf{\tilde{R}}^2$	0.122	0.020	0.180	0.091	0.263	0.010	0.047	0.071
Predator								
Big								
Birds (breeding)								
Est	-0.371	-0.307	0.261	0.504	-0.581	0.468	0.443	-0.302
p	0.185	0.281	0.363	0.06	0.024	0.085	0.106	0.288
R ²	0.085	0.026	-0.008	0.241	0.353	0.194	0.164	0.023
Birds (overwintering)	0.405	0.070	0 = 11	0 (==	a a a(0.001	0.045
Est	-0.435	-0.273	0.541	0.655	-0.386	0.279	0.306	-0.045
$p_{\mathbf{p}^2}$	0.115	0.34	0.040	0.008	0.100	0.329	0.282	0.879
K Small	0.155	< 0.001	0.294	0.4//	0.101	0.005	0.026	-0.097
Arapozo (APE)								
Fet	0.106	0.013	0 201	0 151	0.318	0.443	0.311	0 325
n	0.716	0.013	0.291	0.131	0.263	0.443	0.274	0.335
$\frac{P}{R^2}$	_0.085	_0 100	0.014	_0.004	0.036	0.160	0.03	0.051
17	-0.000	-0.100	0.017	-0.009	0.000	0.101	0.05	0.031

Table G5. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Coleoptera (APE)								
Est	-0.474	-0.361	0.269	0.274	-0.458	0.439	0.265	-0.147
p ₂	0.080	0.199	0.348	0.338	0.093	0.109	0.356	0.613
K ⁻	0.202	0.075	-0.003	0.001	0.182	0.160	-0.006	-0.071
Coleoptera (FII-C)	0.425	0.212	0.606	0.275	0.408	0.407	0.401	0 225
Est	-0.433	-0.313	0.000	0.375	-0.498	0.407	0.401	-0.335
$\frac{P}{R^2}$	0.115	0.032	0.394	0.180	0.233	0.142	0.143	0.250
Coleoptera (FIT-U)	0.100	0.002	0.071	0.009	0.200	0.120	0.117	0.001
Est	0.119	-0.085	-0.352	-0.306	0.346	-0.489	-0.522	-0.010
р	0.684	0.772	0.211	0.282	0.219	0.070	0.050	0.974
R^2	-0.081	-0.090	0.067	0.026	0.061	0.221	0.266	-0.100
Coleoptera (PT)								
Est	0.409	0.297	-0.299	-0.159	0.597	-0.538	-0.434	0.444
p	0.140	0.298	0.294	0.586	0.020	0.042	0.114	0.105
R ²	0.125	0.018	0.020	-0.066	0.379	0.288	0.153	0.165
Heteroptera (APE)	0.040	0.000	0.001	0.014	0.01	0.000	0.000	0.100
Est	0.043	0.033	-0.224	-0.214	0.21	-0.202	-0.386	0.129
p P ²	0.883	0.909	0.437	0.459	0.467	0.486	0.167	0.657
K Hotoroptora (EIT C)	-0.097	-0.098	-0.032	-0.039	-0.040	-0.043	0.100	-0.077
Fet	0.480	0 294	0 233	0 3 2 7	0 701	0.498	0.477	0 230
D D	0.430	0 303	0.233	0.327	0.003	0.498	0.477	0.239
$\frac{P}{R^2}$	0.209	0.016	-0.027	0.043	0.560	0.234	0.206	-0.023
Heteroptera (FIT-U)	0.209	0.010	0.027	0.040	0.000	0.204	0.200	0.020
Est	-0.002	0.180	-0.045	0.129	0.037	0.033	0.095	0.432
р	0.994	0.534	0.877	0.659	0.900	0.911	0.745	0.116
R^2	-0.100	-0.056	-0.097	-0.078	-0.098	-0.099	-0.088	0.151
Neuropterida (APE)								
Est	-0.029	0.286	0.325	0.136	-0.015	-0.068	-0.030	-0.068
p ₂	0.920	0.316	0.251	0.642	0.960	0.817	0.919	0.815
R ²	-0.099	0.010	0.042	-0.075	-0.100	-0.094	-0.099	-0.094
Neuropterida (FIT-C)	0.007	0.005	0.044	0.007	0.000	0.015	0.010	0.0(0
Est	-0.097	0.325	0.244	0.207	-0.288	0.215	0.218	-0.062
$p_{\mathbf{P}^2}$	0.740	0.231	0.396	0.475	0.515	0.437	0.451	0.005
Neuropterida (FIT-U)	-0.087	0.042	-0.020	-0.043	0.011	-0.038	-0.056	-0.095
Fst	-0.147	-0.238	0 147	0 321	-0.235	0.252	0 366	-0.092
n	0.615	0.410	0.615	0.257	0.416	0.381	0.192	0.754
R^2	-0.071	-0.024	-0.071	0.039	-0.026	-0.015	0.080	-0.089
Opiliones (APE)								
Est	0.142	0.187	0.070	-0.185	0.318	-0.293	-0.345	-0.063
p	0.627	0.520	0.811	0.524	0.263	0.305	0.221	0.830
R^2	-0.073	-0.053	-0.093	-0.054	0.036	0.015	0.060	-0.095
Opiliones (PT)								
Est	0.087	-0.088	-0.340	-0.216	0.407	-0.283	-0.352	0.443
p p2	0.766	0.764	0.228	0.455	0.142	0.322	0.211	0.106
K	-0.090	-0.090	0.056	-0.037	0.123	0.008	0.066	0.164
Chower								
Coleoptera (APE)								
Est	-0.469	-0.174	0 549	0 484	-0.602	0.537	0.452	-0.252
p	0.084	0.550	0.036	0.073	0.018	0.042	0.098	0.381
R^2	0.196	-0.059	0.305	0.215	0.387	0.288	0.175	-0.015
Coleoptera (FIT-C)								
Est	-0.294	-0.185	0.372	0.166	-0.351	0.372	0.283	-0.264
p	0.302	0.523	0.184	0.567	0.212	0.184	0.323	0.357
R ²	0.016	-0.054	0.086	-0.063	0.066	0.086	0.007	-0.006
Coleoptera (FIT-U)	0	o	0.405	0.407	o . .	0.0.7		
Est	-0.441	-0.577	0.102	0.185	-0.447	0.365	0.247	-0.229
p p2	0.107	0.026	0.727	0.524	0.103	0.193	0.390	0.427
K Colooptore (CDE)	0.162	0.347	-0.086	-0.054	0.168	0.079	-0.018	-0.029
Eet	_0 380	_0 421	_0.036	0.043	_0.468	0 376	0 100	_0 124
ມວເ	0.369	-0.421 0 144	0.030	0.043	0.400	0.370	0.190	0.124
\mathbf{R}^{2}	0.099	0.135	-0.109	-0.109	0.193	0.085	-0.061	-0.090
	0.077	0.100	0.107	0.107	0.170	0.000	0.001	0.070

Table G5. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Sucker								
Heteroptera (APE)								
Est	-0.337	-0.165	0.298	0.235	-0.406	0.469	0.377	-0.037
р	0.233	0.571	0.296	0.415	0.143	0.084	0.177	0.900
R^2	0.052	-0.063	0.019	-0.026	0.122	0.195	0.091	-0.098
Heteroptera (FIT-C)								
Est	0.056	0.299	0.457	0.168	-0.160	0.344	0.361	-0.265
p_	0.848	0.294	0.094	0.564	0.583	0.223	0.199	0.355
R ²	-0.096	0.020	0.181	-0.062	-0.066	0.059	0.075	-0.005
Heteroptera (FIT-U)								
Est	-0.334	-0.387	0.205	0.134	-0.502	0.483	0.304	-0.542
p_	0.237	0.166	0.478	0.646	0.061	0.074	0.285	0.039
Ř ²	0.050	0.101	-0.043	-0.076	0.239	0.213	0.024	0.295
Symbiont								
Fungi (Mycorrhiza)								
Est	0.238	0.563	0.131	0.023	0.119	-0.102	0.105	0.366
p_	0.408	0.031	0.655	0.937	0.683	0.726	0.72	0.191
\mathbb{R}^2	-0.024	0.327	-0.077	-0.099	-0.081	-0.086	-0.085	0.081
Producer								
Vascular plants								
Est	-0.144	-0.208	-0.194	0.087	0.136	-0.279	-0.237	0.360
p_	0.622	0.473	0.503	0.765	0.641	0.329	0.412	0.200
\mathbb{R}^2	-0.072	-0.042	-0.049	-0.090	-0.075	0.005	-0.025	0.074
Mosses								
Est	0.615	0.488	-0.543	-0.552	0.658	-0.540	-0.45	0.424
P ₂	0.015	0.070	0.039	0.035	0.007	0.040	0.100	0.124
\bar{R}^2	0.408	0.221	0.297	0.310	0.482	0.293	0.172	0.142

Table G6. Effects of stand structural complexity indices (see Appendix A: Table A3) on the species richness of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown.

Trophic guild	7 Attrib	4 Attrib	3 AttribA	3 AttribB	3 AttribC	3 AttribD	2 AttribA	2 AttribB	2 AttribC	2 AttribD	2 AttribE	2 AttribF
Decomposer												
Mycotophago												
Colooptora												
(APE)												
(ALE) Ect	0 202	0.419	0 206	0.462	0 422	0.444	0.268	0.282	0.464	0.088	0 546	0.459
ESt	0.392	0.410	0.290	0.402	0.422	0.444	0.308	0.203	0.404	0.000	0.040	0.458
P_{P^2}	0.100	0.130	0.000	0.090	0.120	0.105	0.190	0.025	0.000	0.705	0.000	0.095
Colcontora	0.100	0.155	0.010	0.107	0.140	0.105	0.062	0.007	0.190	-0.090	0.301	0.162
(FIT C)												
(III-C)	0 124	0.041	0.002	0 1 2 2	0.057	0.025	0.020	0.005	0.150	0.275	0.210	0.057
ESI	-0.124	-0.041	0.065	-0.152	-0.057	-0.025	-0.029	0.065	-0.139	0.275	-0.219	-0.037
$\frac{p}{p^2}$	0.070	0.009	0.777	0.052	0.040	0.951	0.921	0.771	0.565	0.000	0.440	0.040
K Calenatara	-0.079	-0.098	-0.091	-0.077	-0.096	-0.099	-0.099	-0.090	-0.066	0.002	-0.035	-0.096
Coleoptera												
(FII-U)	0.0/0	0.100	0.151	0.100	0.070	0.00	0.100	0.110	0 1 0 1	0.070	0.077	0.055
Est	0.063	0.109	0.151	0.133	0.079	0.036	0.198	0.118	0.101	0.073	0.077	-0.057
p ₂	0.830	0.709	0.604	0.650	0.788	0.902	0.494	0.685	0.729	0.803	0.793	0.846
K ⁻	-0.095	-0.084	-0.069	-0.076	-0.092	-0.098	-0.047	-0.081	-0.086	-0.093	-0.092	-0.096
Saprophage												
Coleoptera												
(PT)												
Est	0.655	0.665	0.574	0.742	0.671	0.532	0.715	0.573	0.746	0.118	0.684	0.502
P ₂	0.008	0.006	0.027	0.001	0.006	0.044	0.002	0.027	0.001	0.687	0.004	0.061
R ²	0.477	0.494	0.342	0.640	0.505	0.280	0.587	0.342	0.648	-0.081	0.530	0.239
Fungi (soil												
saprophytes)												
Est	-0.394	-0.427	-0.510	-0.391	-0.410	-0.324	-0.501	-0.509	-0.361	-0.374	-0.234	-0.251
p_	0.156	0.121	0.056	0.161	0.139	0.253	0.062	0.057	0.199	0.181	0.417	0.382
\mathbb{R}^2	0.109	0.145	0.250	0.105	0.126	0.041	0.237	0.248	0.075	0.088	-0.026	-0.015
Isopoda (PT)												
Ēst	0.702	0.735	0.713	0.668	0.718	0.798	0.664	0.695	0.629	0.622	0.668	0.773
p_	0.003	0.001	0.002	0.006	0.002	0.000	0.007	0.004	0.012	0.013	0.006	0.000
$\mathbf{\tilde{R}}^2$	0.563	0.627	0.583	0.500	0.594	0.755	0.494	0.550	0.432	0.420	0.499	0.702
Xylophage												
Coleoptera												
(APĒ)												
Est	-0.144	-0.066	0.064	-0.220	-0.098	0.094	-0.140	0.045	-0.272	0.484	-0.217	0.069
р	0.621	0.822	0.827	0.445	0.738	0.748	0.632	0.879	0.343	0.073	0.452	0.814
R^2	-0.072	-0.094	-0.094	-0.035	-0.087	-0.088	-0.074	-0.097	-0.001	0.216	-0.037	-0.094
Coleoptera												
(FIT-C)												
Èst	0.121	0.089	0.141	0.018	0.093	0.117	0.055	0.160	0.013	0.233	-0.031	0.136
р	0.679	0.762	0.628	0.951	0.749	0.689	0.850	0.584	0.965	0.419	0.917	0.641
R^2	-0.080	-0.089	-0.073	-0.100	-0.088	-0.082	-0.096	-0.066	-0.100	-0.027	-0.099	-0.075
Coleoptera												
(FIT-U)												
Èst	-0.055	0.008	0.062	-0.031	-0.006	0.018	0.017	0.055	-0.050	0.148	-0.063	-0.010
p	0.850	0.980	0.831	0.917	0.983	0.951	0.953	0.852	0.865	0.613	0.830	0.972
R^2	-0.096	-0.100	-0.095	-0.099	-0.100	-0.100	-0.100	-0.096	-0.097	-0.071	-0.095	-0.100
Fungi (wood/	0.07.0	0.200	0.07.0					0.07.0		0.01.2		
hark species)												
Est	0.483	0 523	0 507	0 496	0.538	0 480	0 503	0 532	0 499	0.313	0 4 2 0	0 498
n	0.100	0.049	0.058	0.065	0.041	0.076	0.061	0.002	0.063	0.270	0.120	0.064
R^2	0.071	0.268	0.246	0.230	0.289	0.210	0.240	0.281	0.235	0.032	0.137	0.233
Predator	0.217	0.200	0.210	0.200	0.207	0.210	0.240	0.201	0.200	0.002	0.107	0.200
Big												
Birde												
(breeding)												
Fet	0 600	0 600	0.678	0.618	0 695	0 766	0 608	0 679	0 502	0.605	0 608	0 774
n	0.099	0.099	0.078	0.010	0.095	0.001	0.000	0.079	0.092	0.005	0.000	0.000
P_{P^2}	0.003	0.003	0.003	0.014	0.003	0.001	0.017	0.000	0.021	0.017	0.017	0.000
IX	0.337	0.330	0.310	0.414	0.330	0.009	0.390	0.920	0.372	0.392	0.390	0.700

Table G6. Continued.

	_				-							-
Trophic guild	7 Attrib	4 Attrib	3 AttribA	3 AttribB	3 AttribC	3 AttribD	2 AttribA	2 AttribB	2 AttribC	2 AttribD	2 AttribE	2 AttribF
Birds												
(overwintering)	0 510	0 520	0.275	0 514	0 545	0.621	0.279	0 200	0 520	0.227	0 626	0.705
EST D	0.0519	0.520	0.375	0.014	0.545	0.621	0.378	0.388 0.165	0.530	0.227	0.626	0.705
R^2	0.263	0.264	0.089	0.255	0.300	0.419	0.093	0.102	0.278	-0.031	0.427	0.569
Small												
Araneae (APE) Est	0.342	0.351	0.388	0 281	0.356	0.357	0.319	0 407	0 271	0.371	0 209	0.367
p_	0.226	0.212	0.164	0.326	0.205	0.204	0.262	0.142	0.344	0.186	0.471	0.190
\mathbf{R}^2	0.057	0.066	0.103	0.006	0.071	0.071	0.036	0.123	-0.001	0.085	-0.042	0.081
(APE)												
Est	0.412	0.453	0.463	0.441	0.437	0.407	0.480	0.450	0.415	0.314	0.378	0.354
p ₂	0.137	0.098	0.089	0.108	0.112	0.142	0.076	0.100	0.134	0.269	0.176	0.208
K ⁻ Coleoptera	0.128	0.175	0.189	0.161	0.157	0.122	0.209	0.173	0.131	0.032	0.092	0.068
(FIT-C)												
Èst	0.455	0.488	0.463	0.482	0.499	0.435	0.484	0.479	0.484	0.247	0.418	0.439
p_{R^2}	0.096	0.070	0.089	0.074	0.063	$0.114 \\ 0.154$	0.073	0.077	0.073	0.390	0.130	0.110
Coleoptera	0.170	0.220	0.100	0.215	0.204	0.154	0.215	0.200	0.215	-0.010	0.100	0.157
(FIT-U)												
Est	-0.448	-0.347	-0.310	-0.350	-0.358	-0.317	-0.333	-0.323	-0.356	-0.145	-0.322	-0.331
$\frac{P}{R^2}$	0.102	0.062	0.030	0.214	0.203	0.204	0.239	0.234	0.200	-0.072	0.039	0.243
Coleoptera												
(PT) Fet	0 462	0.512	0 595	0 483	0 /00	0 374	0.602	0.600	0.456	0 388	0 294	0 200
p	0.090	0.055	0.020	-0.483 0.074	0.063	-0.374 0.182	0.018	-0.000 0.019	0.095	-0.388 0.164	0.302	0.299
R^2	0.187	0.253	0.376	0.213	0.235	0.088	0.387	0.385	0.180	0.103	0.017	0.020
Heteroptera												
(AFE) Est	-0.254	-0.196	-0.157	-0.227	-0.197	-0.163	-0.207	-0.153	-0.228	-0.015	-0.226	-0.154
p ₂	0.378	0.498	0.590	0.432	0.496	0.574	0.473	0.599	0.429	0.958	0.433	0.596
R ²	-0.014	-0.048	-0.067	-0.031	-0.048	-0.064	-0.042	-0.069	-0.030	-0.100	-0.031	-0.068
(FIT-C)												
Est	0.637	0.637	0.680	0.614	0.633	0.510	0.697	0.692	0.595	0.412	0.447	0.459
$p_{\mathbf{p}^2}$	0.011	0.011	0.005	0.015	0.011	0.056	0.003	0.004	0.020	0.137	0.103	0.092
Heteroptera	0.440	0.445	0.321	0.406	0.439	0.250	0.334	0.345	0.377	0.120	0.169	0.164
(FIT-U)												
Est	0.005	-0.093	-0.181	0.014	-0.091	-0.146	-0.050	-0.197	0.031	-0.354	0.076	-0.156
$\frac{P}{R^2}$	-0.100	-0.088	-0.056	-0.100	-0.089	-0.017	-0.097	-0.0497	-0.0918	0.208	-0.094	-0.067
Neuropterida												
(APE)	0 106	0.077	0 164	0.010	0.024	0 171	0.050	0 1 2 2	0.067	0.200	0.004	0 100
p	0.718	0.792	-0.104 0.573	0.010	-0.034 0.907	-0.171 0.556	0.841	-0.123 0.673	0.819	0.151	0.004	0.732
R^2	-0.085	-0.092	-0.064	-0.100	-0.098	-0.061	-0.095	-0.080	-0.094	0.115	-0.100	-0.087
Neuropterida												
(FII-C) Est	0.205	0.185	0.145	0.231	0.225	0.056	0.217	0.196	0.275	-0.137	0.138	0.108
p_	0.478	0.524	0.618	0.423	0.435	0.849	0.452	0.500	0.336	0.638	0.637	0.711
R ²	-0.043	-0.054	-0.072	-0.028	-0.032	-0.096	-0.037	-0.049	0.002	-0.075	-0.075	-0.084
(FIT-U)												
Est	0.363	0.321	0.270	0.311	0.307	0.388	0.270	0.245	0.289	0.235	0.378	0.373
p P ²	0.196	0.257	0.346	0.273	0.280	0.164	0.346	0.395	0.311	0.414	0.176	0.183
Opiliones	0.077	0.039	-0.002	0.030	0.027	0.102	-0.002	-0.019	0.013	-0.025	0.092	0.08/
(APE)												
Est	-0.429	-0.344	-0.364	-0.321	-0.319	-0.343	-0.358	-0.337	-0.285	-0.315	-0.296	-0.282
p R ²	0.120 0.147	0.222	0.195	0.257	0.261	0.223	0.203	0.233	0.318	0.267	0.299	0.324
		0.000	0.070	0.007		0.007		0.000	0.007	0.000	0.010	

Table G6. Continued.

Trophic guild	7 Attrib	4 Attrib	3 AttribA	3 AttribB	3 AttribC	3 AttribD	2 AttribA	2 AttribB	2 AttribC	2 AttribD	2 AttribE	2 AttribF
Opiliones (PT) Est	-0.370	-0.372	-0.385	-0.344	-0.394	-0.300	-0.373	-0.424	-0.357	-0.217	-0.232 0.421	-0.327 0.248
R^2	0.084	0.086	0.100	0.059	0.109	0.021	0.105	0.125	0.204	-0.037	-0.028	0.044
Herbivore												
Chewer Coleoptera												
(APE)		0 (00			0.400	0 = (0					0 = 1 0	
Est	0.593	0.609	0.570	0.589	0.630	0.562	0.577	0.599	0.598	0.322	0.518	0.593
$\frac{P}{R^2}$	0.021	0.398	0.028	0.022	0.012	0.031	0.020	0.383	0.380	0.230	0.052	0.021 0.372
Coleoptera	0.070	0.070	0.000	0.000	0.100	0.020	0.010	0.000	0.000	0.010	0.200	0.072
(FIT-C)												
Est	0.294	0.336	0.362	0.301	0.344	0.290	0.339	0.383	0.300	0.254	0.210	0.293
p P ²	0.302	0.234	0.198	0.291	0.222	0.310	0.230	0.171	0.293	0.376	0.468	0.304
Coleoptera	0.017	0.052	0.076	0.022	0.060	0.015	0.034	0.097	0.021	-0.015	-0.041	0.015
(FIT-U)												
Est	0.443	0.487	0.551	0.427	0.449	0.489	0.508	0.516	0.370	0.532	0.362	0.397
p_	0.106	0.071	0.036	0.122	0.101	0.069	0.058	0.053	0.187	0.044	0.198	0.154
R^2	0.164	0.219	0.308	0.145	0.170	0.222	0.247	0.258	0.084	0.280	0.076	0.111
Coleoptera												
(GPE) Fet	0.426	0 442	0 541	0 381	0.410	0 367	0 507	0.524	0 331	0.459	0 224	0 265
p	0.139	0.122	0.049	0.192	0.156	0.210	0.069	0.058	0.263	0.107	0.458	0.376
R^2	0.141	0.160	0.295	0.090	0.122	0.076	0.246	0.271	0.041	0.181	-0.042	-0.013
Sucker												
Heteroptera												
(APE)	0.200	0.201	0.200	0.271	0.202	0.210	0.402	0.200	0.264	0.005	0.202	0.201
Est	0.398	0.381	0.388	0.371	0.382	0.319	0.402	0.396	0.364	0.225	0.293	0.301
R^2	0.113	0.095	0.104	0.085	0.096	0.037	0.117	0.111	0.078	-0.032	0.015	0.022
Heteroptera	01110	0.070	0.102	0.000	0.020	0.007	01117	01111	0.07.0	0.002	01010	0.022
(FIT-C)												
Est	0.146	0.115	0.072	0.147	0.140	0.056	0.119	0.100	0.175	-0.095	0.117	0.096
p_{p_2}	0.616	0.693	0.805	0.614	0.630	0.848	0.684	0.731	0.546	0.745	0.688	0.743
K Hotoroptoro	-0.071	-0.082	-0.093	-0.071	-0.073	-0.096	-0.081	-0.086	-0.059	-0.088	-0.082	-0.088
(FIT-U)												
Est	0.455	0.530	0.630	0.434	0.503	0.514	0.546	0.620	0.384	0.623	0.308	0.442
P ₂	0.096	0.045	0.012	0.114	0.060	0.054	0.038	0.014	0.169	0.013	0.279	0.107
R^2	0.178	0.278	0.434	0.153	0.240	0.255	0.300	0.416	0.098	0.421	0.027	0.163
Symbiont												
(Mycorrhiza)												
Est	-0.120	-0.251	-0.339	-0.133	-0.207	-0.374	-0.202	-0.299	-0.068	-0.583	-0.138	-0.307
p	0.681	0.382	0.230	0.648	0.474	0.181	0.485	0.294	0.817	0.024	0.635	0.280
R^2	-0.081	-0.015	0.055	-0.076	-0.042	0.088	-0.045	0.020	-0.094	0.356	-0.074	0.027
Producer												
Vascular plants	0 120	0.126	0.205	0.047	0.141	0 104	0.114	0.244	0.051	0.249	0.060	0 1 2 2
ESI	-0.129	-0.120	-0.203 0.479	-0.047	-0.141 0.628	-0.104 0.723	-0.114	-0.244	-0.051	-0.240	0.009	-0.132
R^2	-0.078	-0.079	-0.043	-0.097	-0.020	-0.086	-0.083	-0.020	-0.096	-0.017	-0.014	-0.077
Mosses	2.0.0		2.010		2.070	2.000		0.020	2.070		2.071	2.0.7
Est	-0.627	-0.695	-0.650	-0.685	-0.687	-0.674	-0.678	-0.640	-0.663	-0.415	-0.655	-0.645
p ₂	0.012	0.004	0.008	0.004	0.004	0.005	0.005	0.010	0.007	0.134	0.008	0.009
K-	0.428	0.549	0.469	0.531	0.534	0.510	0.517	0.451	0.492	0.131	0.478	0.459

Table G7. Effects of naturalness, measures of management intensity, and stand structural attributes regarding stand age and dead and living wood volume (see Table 1) on the diversity (reciprocal Simpson index 1/D) of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Decomposer								
Mycetophage								
Coleoptera (APE)	0.405	0.420	0.425	0.407	0.05	0.050	0.117	0.000
Est	0.495	-0.420	-0.435	-0.407	0.256	0.258	-0.117	-0.288
p R ²	0.065	0.128	0.114	0.143	-0.012	0.370	0.689	0.313
Coleoptera (FIT-C)	0.250	0.150	0.134	0.122	-0.012	-0.011	-0.082	0.011
Est	0.429	-0.385	-0.405	-0.400	0.303	0.305	0.138	-0.127
p	0.119	0.168	0.144	0.151	0.286	0.283	0.636	0.662
R^2	0.147	0.099	0.121	0.115	0.024	0.025	-0.074	-0.078
Coleoptera (FIT-U)								
Est	-0.276	0.157	0.206	0.237	-0.118	-0.294	-0.591	-0.121
p ₂	0.335	0.589	0.477	0.411	0.687	0.303	0.021	0.679
R ²	0.002	-0.067	-0.043	-0.025	-0.081	0.016	0.370	-0.08
Saprophage								
Coleoptera (P1)	0.042	0.200	0.050	0.0(2	0.000	0.000	0.0((0.200
ESt	-0.243	0.300	0.252	0.263	-0.333	-0.286	-0.066	0.386
P P ²	0.398	0.292	0.015	0.360	0.240	0.010	0.022	0.167
Fungi (soil saprophytes)	-0.020	0.021	-0.015	-0.007	0.049	0.010	-0.094	0.100
Est	-0.535	0.635	0.659	0.650	-0.556	-0.653	-0.392	0.248
p	0.043	0.011	0.007	0.009	0.034	0.008	0.160	0.388
R^2	0.286	0.441	0.484	0.467	0.315	0.473	0.106	-0.017
Isopoda (PT)								
Ēst	-0.156	0.322	0.285	0.289	-0.269	-0.126	-0.001	0.087
p ₂	0.593	0.256	0.319	0.311	0.348	0.665	0.996	0.765
\mathbb{R}^2	-0.067	0.040	0.009	0.012	-0.003	-0.079	-0.100	-0.090
Xylophage								
Coleoptera (APE)	0.445			0.051	0.000			
Est	-0.115	0.279	0.27	0.251	-0.289	-0.209	0.277	0.225
$p_{\mathbf{P}^2}$	0.695	0.330	0.346	0.382	0.312	0.469	0.334	0.436
K Colooptora (FIT C)	-0.082	0.004	-0.002	-0.015	0.012	-0.041	0.003	-0.032
Ect	0 305	0 327	0 357	0 30/	0.447	0.475	0.684	0.047
ESt	0.395	-0.327	-0.337	-0.394	0.447	0.475	0.004	0.047
$\frac{P}{R^2}$	0.133	0.240	0.204	0.100	0.105	0.000	0.529	-0.097
Coleoptera (FIT-U)	0.110	0.011	0.071	0.109	0.100	0.200	0.52)	0.077
Est	0.403	-0.495	-0.488	-0.448	0.073	0.088	-0.116	-0.197
p	0.147	0.066	0.070	0.102	0.804	0.764	0.692	0.496
R^2	0.118	0.229	0.221	0.169	-0.093	-0.09	-0.082	-0.048
Fungi (wood/bark species)								
Est	0.560	-0.425	-0.433	-0.439	0.279	0.258	0.373	-0.161
P ₂	0.032	0.123	0.115	0.110	0.329	0.369	0.182	0.579
R^2	0.322	0.143	0.152	0.159	0.005	-0.011	0.087	-0.065
Predator								
Big								
Eat (breeding)	0 546	0.512	0.520	0 551	0.451	0.610	0.557	0 176
ESt	0.040	-0.512	-0.329	-0.331	0.431	0.010	0.033	-0.170
$\frac{P}{R^2}$	0.300	0.055	0.040	0.308	0.099	0.010	0.318	-0.058
Birds (overwintering)	0.000	0.202	0.270	0.000	0.170	0.100	0.010	0.000
Est	0.738	-0.625	-0.635	-0.640	0.419	0.548	0.238	-0.421
p	0.001	0.013	0.011	0.010	0.129	0.037	0.409	0.127
R^2	0.632	0.425	0.442	0.450	0.137	0.304	-0.024	0.139
Small								
Araneae (APE)								
Est	0.487	-0.388	-0.383	-0.392	0.242	0.415	0.233	-0.391
p ₂	0.071	0.164	0.170	0.159	0.401	0.134	0.418	0.161
R ²	0.219	0.102	0.097	0.106	-0.021	0.132	-0.027	0.105

Table G7. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Coleoptera (APE)								
Est	0.282	-0.221	-0.255	-0.258	0.056	0.211	0.161	-0.154
$p_{\mathbf{P}^2}$	0.324	0.445	0.375	0.368	0.847	0.465	0.579	0.596
K Coleoptera (FIT-C)	0.007	-0.035	-0.013	-0.010	-0.096	-0.040	-0.065	-0.068
Est	0.063	0.091	0.074	0.047	0 259	0.086	0 114	0.057
p	0.831	0.756	0.799	0.872	0.368	0.768	0.695	0.846
\mathbf{R}^{2}	-0.095	-0.089	-0.093	-0.097	-0.010	-0.090	-0.082	-0.096
Coleoptera (FIT-U)								
Est	0.221	-0.274	-0.248	-0.216	0.034	-0.095	-0.174	-0.148
p_{p_2}	0.443	0.339	0.389	0.455	0.907	0.746	0.550	0.612
K ⁻ Colooptoro (PT)	-0.034	0.001	-0.017	-0.037	-0.098	-0.088	-0.060	-0.071
Fet	-0.523	0 558	0 538	0 542	-0.626	-0.495	-0.321	0 329
p	0.049	0.032	0.041	0.040	0.013	0.065	0.258	0.245
R^2	0.268	0.319	0.289	0.295	0.427	0.230	0.038	0.046
Heteroptera (APE)								
Est	-0.011	-0.029	-0.044	-0.039	-0.267	-0.088	0.089	0.036
p ₂	0.971	0.921	0.881	0.893	0.351	0.763	0.762	0.901
K ²	-0.100	-0.099	-0.097	-0.098	-0.004	-0.090	-0.089	-0.098
Fet	0 330	_0.445	_0 394	_0 392	0 322	0.224	0 100	_0 314
n	0.330	0 104	0.157	0.160	0.322	0.438	0.733	0.268
\mathbf{R}^{2}	0.046	0.166	0.109	0.106	0.039	-0.033	-0.087	0.033
Heteroptera (FIT-U)								
Est	-0.414	0.264	0.289	0.312	-0.194	-0.223	-0.572	-0.028
p ₂	0.134	0.357	0.312	0.272	0.504	0.440	0.027	0.924
R^2	0.131	-0.006	0.012	0.031	-0.050	-0.033	0.341	-0.099
Neuropterida (APE)	0 160	0 221	0 102	0.175	0 127	0.018	0 252	0 220
ESt D	0.100	0.221	0.192	-0.175 0.547	-0.127	0.951	0.252	-0.220
\mathbf{R}^2	-0.066	-0.034	-0.050	-0.059	-0.078	-0.100	-0.014	-0.035
Neuropterida (FIT-C)								
Est	0.241	-0.381	-0.376	-0.369	0.059	0.226	0.207	-0.102
p ₂	0.402	0.172	0.179	0.189	0.841	0.434	0.475	0.727
K ⁻	-0.022	0.096	0.090	0.083	-0.095	-0.032	-0.042	-0.086
Fet	0.235	0 106	0 189	0.203	0.482	0.367	0 178	0 1/1
n	0.233	0.190	0.515	0.483	0.482	0.190	0.178	0.629
\mathbf{R}^2	-0.026	-0.048	-0.052	-0.045	0.212	0.081	-0.057	-0.073
Opiliones (APE)								
Est	-0.370	0.307	0.314	0.310	-0.37	-0.255	0.040	0.135
$\frac{p}{p_2}$	0.187	0.280	0.269	0.275	0.187	0.375	0.892	0.644
R ²	0.084	0.027	0.033	0.030	0.084	-0.013	-0.098	-0.076
Est	0.400	0.481	0.471	0.496	0.208	0.283	0.421	0.110
p	0.063	0.075	0.082	0.065	0.473	0.322	0.127	0.707
R^2	0.234	0.211	0.199	0.231	-0.042	0.008	0.139	-0.084
Herbivore								
Chewer								
Coleoptera (APE)	0 5 (2	0 (10	0 (12	0 550	0.011	0.075	0.1/5	0.000
Est	0.562	-0.618	-0.613	-0.573	0.211	0.275	-0.165	-0.396
$\frac{P}{R^2}$	0.051	0.014	0.016	0.027	-0.040	0.337	-0.064	0.154
Coleoptera (FIT-C)	0.020	0.415	0.405	0.542	-0.040	0.001	-0.004	0.111
Est	-0.048	0.092	0.117	0.077	-0.080	-0.064	0.346	0.062
р	0.870	0.752	0.690	0.794	0.785	0.827	0.219	0.833
\bar{R}^2	-0.097	-0.089	-0.082	-0.092	-0.091	-0.095	0.061	-0.095
Coleoptera (FIT-U)	0.400	0.417	0 /= 0	A	0	0 = / -	0.111	0.00
Est	0.629	-0.645	-0.659	-0.668	0.730	0.762	0.446	-0.381
p R ²	0.012	0.009	0.007	0.006	0.002	0.001	0.103	0.173
Coleoptera (GPE)	0.432	0.400	0.404	0.50	0.010	0.000	0.100	0.093
Est	0.347	-0.332	-0.353	-0.377	0.687	0.595	0.232	-0.231
p	0.238	0.262	0.230	0.197	0.006	0.026	0.442	0.444
\mathbb{R}^2	0.056	0.042	0.062	0.086	0.543	0.38	-0.037	-0.037

Table G7. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Sucker								
Heteroptera (APE)								
Est	0.49	-0.456	-0.450	-0.466	0.683	0.602	0.358	-0.347
p_	0.069	0.095	0.100	0.086	0.005	0.018	0.203	0.218
R ²	0.223	0.179	0.172	0.192	0.527	0.387	0.072	0.062
Heteroptera (FIT-C)								
Est	0.012	-0.012	0.025	0.008	0.0100	-0.061	-0.242	-0.110
р	0.967	0.968	0.931	0.978	0.973	0.835	0.400	0.706
R^2	-0.100	-0.100	-0.099	-0.100	-0.100	-0.095	-0.021	-0.084
Heteroptera (FIT-U)								
Est	0.105	-0.201	-0.237	-0.205	-0.031	0.070	0.095	0.124
р	0.720	0.487	0.411	0.479	0.916	0.811	0.745	0.672
R ²	-0.085	-0.045	-0.024	-0.044	-0.099	-0.093	-0.088	-0.079
Symbiont								
Fungi (Mycorrhiza)								
Est	-0.026	-0.031	-0.012	0.021	-0.151	-0.272	-0.467	0.023
р	0.928	0.916	0.967	0.943	0.603	0.342	0.086	0.937
R ²	-0.099	-0.099	-0.100	-0.099	-0.069	< 0.001	0.193	-0.099
Producer								
Vascular plants								
Est	-0.291	0.280	0.254	0.286	-0.286	-0.163	-0.353	-0.004
р	0.307	0.328	0.376	0.317	0.317	0.575	0.210	0.988
R^2	0.014	0.005	-0.013	0.010	0.010	-0.064	0.067	-0.100
Mosses								
Est	-0.300	0.312	0.320	0.333	-0.303	-0.361	-0.058	0.142
р	0.293	0.272	0.260	0.239	0.287	0.199	0.843	0.627
R^2	0.021	0.031	0.037	0.049	0.023	0.075	-0.095	-0.073

Table G8. Effects of stand structural attributes except stand age and wood volume (see Table 1) on the diversity (reciprocal Simpson index 1/D) of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/ understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Decomposer								
Mycetophage								
Coleoptera (APE)	0 422	0 179	0.400	0 592	0 528	0.220	0.420	0.041
Est p	-0.423 0.125	0.539	0.490	0.383	-0.528	0.229	0.429	0.889
R^2	0.123	-0.057	0.223	0.357	0.275	-0.029	0.147	-0.098
Coleoptera (FIT-C)								
Est	-0.201	-0.144	0.408	0.194	-0.419	0.308	0.343	-0.622
p ₂	0.487	0.621	0.141	0.504	0.130	0.28	0.224	0.013
K ² Colooptore (FIT II)	-0.046	-0.072	0.124	-0.049	0.136	0.027	0.058	0.421
Est	-0.050	0 187	0.070	0.074	0.066	-0.086	0.011	0.340
p	0.864	0.519	0.811	0.801	0.821	0.768	0.970	0.229
R^2	-0.097	-0.053	-0.093	-0.093	-0.094	-0.090	-0.10	0.055
Saprophage								
Coleoptera (PT)								
Est	0.362	0.283	-0.160	-0.240	0.259	-0.285	-0.174	-0.004
p p2	0.198	0.323	0.581	0.405	0.367	0.319	0.549	0.989
K Fungi (soil sonronbytos)	0.076	0.007	-0.065	-0.023	-0.010	0.009	-0.059	-0.100
Fst	0.380	0.350	0.086	-0.149	0.582	-0.363	-0.257	0.353
p	0.174	0.214	0.768	0.609	0.024	0.195	0.370	0.209
R^2	0.094	0.065	-0.090	-0.070	0.355	0.078	-0.011	0.068
Isopoda (PT)								
Est	0.005	-0.184	-0.206	0.084	0.260	-0.446	-0.340	0.357
p ₂	0.987	0.526	0.477	0.775	0.364	0.104	0.229	0.204
K Vydanhaas	-0.100	-0.054	-0.043	-0.091	-0.009	0.167	0.055	0.071
Coleoptera (APF)								
Est	0.253	0.037	-0.116	-0.194	0.300	-0.284	-0.291	-0.209
p	0.379	0.900	0.691	0.503	0.293	0.321	0.308	0.471
R^2	-0.014	-0.098	-0.082	-0.049	0.021	0.008	0.014	-0.042
Coleoptera (FIT-C)								
Est	0.012	-0.206	-0.124	-0.024	-0.215	0.294	0.217	-0.223
p P ²	0.966	0.476	0.671	0.934	0.456	0.302	0.453	0.441
Coleoptera (FIT-U)	-0.10	-0.045	-0.079	-0.099	-0.038	0.017	-0.037	-0.055
Est	-0.295	0.101	0.278	0.221	-0.492	0.237	0.260	-0.155
р	0.300	0.730	0.331	0.444	0.068	0.411	0.365	0.595
\mathbb{R}^2	0.017	-0.086	0.004	-0.034	0.225	-0.025	-0.009	-0.068
Fungi (wood/bark species)	0.015			0.4.0	0.0/0		0.010	
Est	-0.247	-0.228	0.327	0.162	-0.362	0.229	0.212	-0.389
$\frac{P}{R^2}$	-0.018	-0.030	0.249	-0.065	0.197	-0.029	-0.464	0.103
Predator	-0.010	-0.050	0.045	-0.005	0.077	-0.029	-0.040	0.105
Big								
Birds (breeding)								
Est	-0.246	-0.29	0.131	0.326	-0.485	0.415	0.373	-0.429
p ₂	0.392	0.309	0.653	0.25	0.072	0.133	0.183	0.119
R ²	-0.018	0.013	-0.077	0.043	0.217	0.132	0.087	0.148
Ect	0 559	0 386	0.607	0 736	0.664	0.466	0.544	0 107
D	0.032	0.166	0.007	0.001	0.004	0.087	0.038	0.497
R^2	0.320	0.101	0.396	0.628	0.492	0.191	0.298	-0.048
Small								
Araneae (APE)								
Est	-0.48	-0.443	0.402	0.506	-0.413	0.243	0.214	-0.326
p	0.076	0.106	0.147	0.058	0.136	0.398	0.459	0.249

Table G8. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
R^2	0.210	0.164	0.118	0.245	0.129	-0.020	-0.038	0.043
Coleoptera (APE)				0.2.00	,			010 -0
Est	-0.284	-0.321	0.135	0.088	-0.150	0.049	-0.071	-0.066
$\frac{P}{R^2}$	0.008	0.238	-0.044	-0.090	-0.070	-0.000	-0.093	-0.021
Coleoptera (FIT-C)								
Est	0.084	-0.162	0.233	-0.028	0.072	0.083	0.152	-0.222
$\frac{P}{R^2}$	-0.090	-0.065	-0.027	-0.924	-0.093	-0.091	-0.069	-0.033
Coleoptera (FIT-U)								
Est	-0.176	0.107	0.230	0.030	-0.255	0.106	0.115	-0.110
$\frac{p}{R^2}$	-0.545	-0.085	-0.029	-0.0917	-0.013	-0.085	-0.082	-0.084
Coleoptera (PT)	0.007	0.000	0.02)	0.077	0.010	0.000	0.002	0.001
Est	0.368	0.341	-0.119	-0.135	0.483	-0.406	-0.315	0.285
p P ²	0.189	0.228	0.682	0.644	0.073	0.143	0.267	0.319
Heteroptera (APE)	0.002	0.050	-0.001	-0.070	0.214	0.122	0.000	0.007
Est	-0.025	0.016	-0.180	-0.180	0.080	-0.128	-0.298	0.107
p P ²	0.932	0.955	0.536	0.535	0.786	0.660	0.296	0.714
K Heteroptera (FIT-C)	-0.099	-0.100	-0.057	-0.056	-0.091	-0.078	0.019	-0.085
Est	-0.297	-0.086	0.110	0.115	-0.355	0.346	0.222	-0.030
p	0.297	0.770	0.705	0.694	0.207	0.220	0.442	0.919
K ² Hotoroptora (EIT II)	0.019	-0.090	-0.084	-0.082	0.070	0.060	-0.034	-0.099
Est	0.031	0.202	-0.105	0.116	0.147	-0.129	-0.023	0.508
P ₂	0.917	0.486	0.718	0.692	0.613	0.658	0.936	0.057
R^2	-0.099	-0.045	-0.085	-0.082	-0.071	-0.078	-0.099	0.247
Fst	-0.226	0.110	0 467	0 355	-0.287	0 214	0 235	-0.232
p_	0.434	0.708	0.086	0.207	0.316	0.459	0.415	0.421
\mathbf{R}^2	-0.031	-0.084	0.193	0.070	0.010	-0.038	-0.026	-0.028
Neuropterida (FIT-C)	_0 151	0.064	_0 164	0.120	_0.300	0 214	0 109	0 1 3 9
p	0.604	0.827	0.572	0.120	0.292	0.460	0.709	0.139
R^2	-0.069	-0.095	-0.064	-0.081	0.021	-0.039	-0.084	-0.074
Neuropterida (FIT-U)	0.125	0.207	0 105	0.271	0.253	0.262	0.260	0.008
p	0.669	0.474	0.719	0.344	0.378	0.262	0.389	-0.098
R^{r}	-0.079	-0.042	-0.085	-0.001	-0.014	-0.007	0.083	-0.087
Opiliones (APE)	0.1/7	0.02(0.407	0.422	0.400	0.26	0 5//	0.17(
Est	0.167	0.036	-0.487	-0.433 0.116	0.408	-0.36	-0.566 0.029	$0.176 \\ 0.545$
R^2	-0.062	-0.098	0.219	0.152	0.124	0.074	0.331	-0.058
Opiliones (PT)	0.440	0.015	0.040	0.405		0.444	0.040	a a = a
Est	0.119	-0.017	-0.343	-0.185	0.377	-0.466	-0.368	0.358
R^2	-0.081	-0.100	0.224	-0.054	0.091	0.192	0.082	0.203
Herbivore								
Coloratora (APE)								
Est	-0.536	-0.100	0.491	0.560	-0.670	0.351	0.429	-0.083
p	0.042	0.733	0.068	0.032	0.006	0.213	0.119	0.778
R^2	0.287	-0.087	0.224	0.321	0.503	0.065	0.148	-0.091
Est	0 153	-0.036	-0.047	-0.322	0 234	0.012	-0.217	-0.297
p	0.599	0.901	0.872	0.256	0.417	0.967	0.452	0.297
\mathbb{R}^2	-0.069	-0.098	-0.097	0.039	-0.026	-0.100	-0.037	0.019
Coleoptera (FIT-U)	_0 493	_0 572	0 120	0.251	_0.601	0.451	0 336	_0 407
p	0.067	0.027	0.655	0.382	0.018	0.099	0.330	0.065
R^2	0.227	0.340	-0.077	-0.015	0.385	0.173	0.052	0.231
Coleoptera (GPE)	0.2/1	0 524	0.107	0.070	0.014	0.202	0.010	0.400
ESt	-0.261 0.383	-0.534 0.052	0.187	0.068	-0.314 0.289	0.392	0.312	-0.408 0.158
$\mathbf{\tilde{R}}^2$	-0.016	0.285	-0.062	-0.105	0.026	0.103	0.024	0.120

Table G8. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Sucker								
Heteroptera (APE)								
Est	-0.399	-0.509	0.119	0.273	-0.43	0.36	0.322	-0.206
р	0.151	0.057	0.685	0.34	0.118	0.200	0.257	0.476
R^2	0.114	0.249	-0.081	< 0.001	0.149	0.075	0.039	-0.043
Heteroptera (FIT-C)								
Est	-0.012	0.169	0.527	0.323	-0.074	0.305	0.387	0.008
p_	0.967	0.562	0.047	0.254	0.802	0.284	0.165	0.979
R ²	-0.100	-0.062	0.274	0.04	-0.093	0.025	0.102	-0.100
Heteroptera (FIT-U)								
Est	0.024	0.128	-0.296	-0.141	-0.179	-0.051	-0.057	-0.076
p_	0.935	0.662	0.300	0.630	0.537	0.861	0.845	0.795
\mathbb{R}^2	-0.099	-0.078	0.017	-0.073	-0.057	-0.096	-0.096	-0.092
Symbiont								
Fungi (Mycorrhiza)								
Est	0.046	0.428	0.303	0.251	-0.137	0.087	0.315	0.266
P ₂	0.875	0.121	0.288	0.382	0.640	0.767	0.268	0.354
R ²	-0.097	0.146	0.023	-0.015	-0.075	-0.090	0.033	-0.005
Producer								
Vascular plants								
Est	-0.081	-0.122	-0.187	-0.026	0.186	-0.404	-0.368	0.166
P ₂	0.782	0.675	0.520	0.928	0.522	0.145	0.190	0.569
R ²	-0.091	-0.080	-0.053	-0.099	-0.054	0.120	0.082	-0.063
Mosses								
Est	0.151	0.065	-0.448	-0.370	0.378	-0.449	-0.502	0.397
P ₂	0.603	0.824	0.102	0.187	0.177	0.100	0.061	0.154
R ²	-0.069	-0.094	0.170	0.084	0.092	0.172	0.239	0.111

Table G9. Effects of stand structural complexity indices (see Appendix A: Table A3) on the diversity (reciprocal Simpson index 1/D) of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown.

	7	4	3	3	3	3	2	2	2	2	2	2
Irophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	Attribe	Attribh
Decomposer Mycetophage Coleoptera												
(APÊ)	0 5 4 9	0 504	0.207	0 5 4 5	0 521	0.422	0.400	0.400	0.502	0.000	0 550	0 471
Est	0.548 0.037	0.504	0.387	0.565	0.531	0.433	0.489 0.069	$0.408 \\ 0.141$	0.592	0.023	0.558	0.471
R^2	0.304	0.241	0.101	0.329	0.279	0.152	0.222	0.124	0.371	-0.099	0.319	0.199
Coleoptera												
(FII-C) Est	0.309	0.371	0.395	0.361	0.374	0.287	0.409	0.408	0.355	0.221	0.254	0.264
p_	0.277	0.185	0.156	0.199	0.182	0.315	0.140	0.141	0.207	0.445	0.376	0.357
R ²	0.028	0.085	0.110	0.075	0.088	0.011	0.125	0.124	0.070	-0.035	-0.013	-0.006
(FIT-U)												
Est	-0.145	-0.188	-0.280	-0.053	-0.167	-0.304	-0.115	-0.272	-0.012	-0.532	-0.032	-0.291
p_{P^2}	0.618	0.517	0.328	0.856	0.565	0.285	0.693	0.342	0.968	0.044	0.914	0.308
Saprophage	-0.072	-0.055	0.003	-0.090	-0.002	0.025	-0.082	0.000	-0.100	0.201	-0.099	0.014
Coleoptera												
(PT) Fet	0.247	0 281	0.256	0 283	0 275	0 281	0 273	0.245	0 271	0 162	0.286	0 263
p	0.390	0.325	0.373	0.323	0.337	0.326	0.340	0.394	0.344	0.577	0.317	0.359
\mathbf{R}^2	-0.018	0.006	-0.012	0.007	0.001	0.006	0.000	-0.019	-0.001	-0.065	0.010	-0.007
Fungi (soil saprophytes)												
Est	-0.499	-0.551	-0.650	-0.489	-0.524	-0.468	-0.616	-0.640	-0.442	-0.539	-0.326	-0.377
p ₂	0.063	0.035	0.008	0.070	0.049	0.085	0.015	0.010	0.107	0.041	0.250	0.178
K ⁻ Isopoda (PT)	0.235	0.308	0.469	0.221	0.269	0.195	0.409	0.450	0.163	0.291	0.043	0.091
Est	-0.125	-0.130	-0.209	-0.138	-0.128	0.025	-0.241	-0.223	-0.134	-0.053	0.029	0.077
$p_{\mathbf{P}^2}$	0.669	0.656	0.471	0.637	0.662	0.933	0.402	0.440	0.646	0.858	0.921	0.793
Xvlophage	-0.079	-0.077	-0.041	-0.075	-0.078	-0.099	-0.022	-0.033	-0.076	-0.096	-0.099	-0.092
Coleoptera												
(APE)	0.266	0 107	0 167	0 279	0 101	0.067	0.201	0.155	0 279	0 109	0.224	0.012
p	0.354	0.497	0.566	0.332	0.511	0.820	0.308	0.594	0.332	0.713	0.437	0.966
R^2	-0.005	-0.048	-0.063	0.004	-0.051	-0.094	0.014	-0.068	0.004	-0.084	-0.032	-0.100
Coleoptera												
Est	0.357	0.333	0.446	0.185	0.304	0.433	0.276	0.433	0.130	0.671	0.129	0.394
p ₂	0.204	0.239	0.103	0.525	0.285	0.116	0.335	0.115	0.656	0.006	0.659	0.157
K ² Coleoptera	0.071	0.049	0.168	-0.054	0.024	0.152	0.002	0.152	-0.077	0.505	-0.078	0.108
(FIT-U)												
Èst	0.329	0.332	0.331	0.382	0.363	0.128	0.425	0.378	0.414	-0.045	0.209	0.135
$p R^2$	$0.246 \\ 0.045$	0.240 0.049	0.242	0.171	0.196	0.660 - 0.078	$0.124 \\ 0.142$	0.177	0.134	0.879 -0.097	0.471 -0.042	-0.075
Fungi (wood/	0.010	0.017	0.010	0.070	0.077	0.070	0.112	0.072	0.101	0.077	0.012	0.070
bark species)	0.222	0.279	0.410	0.200	0.200	0.2(1	0.252	0.446	0.205	0.2((0.012	0.279
EST D	0.323	0.378	0.418	0.309 0.277	0.388	0.361	0.353	0.446	0.305	0.366	0.213	0.378
\mathbf{R}^{2}	0.040	0.092	0.135	0.028	0.103	0.075	0.067	0.167	0.025	0.080	-0.039	0.092
Predator												
Birds												
(breeding)												
Est	0.571	0.594	0.624	0.493	0.579	0.661	0.527	0.618	0.455	0.637	0.457	0.642
\mathbf{R}^{2}	0.339	0.374	0.424	0.227	0.351	0.487	0.273	0.413	0.178	0.446	0.181	0.454

Table G9. Continued.

	7	4	2	2	2	2	2	2	2	2	2	2
Trophic guild	Attrib	4 Attrib	3 AttribA	3 AttribB	AttribC	3 AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Birds												
(overwintering)	0 772	0 755	0.643	0 743	0 771	0 788	0.661	0.653	0 745	0 380	0 774	0.820
p	0.000	0.001	0.043	0.001	0.000	0.788	0.001	0.008	0.001	0.389	0.000	0.029
R^2	0.701	0.666	0.456	0.643	0.698	0.735	0.488	0.474	0.647	0.104	0.706	0.825
Small												
Est	0.429	0.517	0.440	0.492	0.522	0.585	0.427	0.438	0.484	0.332	0.544	0.613
<u>р</u> _	0.119	0.052	0.109	0.068	0.050	0.023	0.121	0.111	0.073	0.241	0.038	0.016
\mathbf{R}^2	0.148	0.259	0.160	0.225	0.266	0.360	0.145	0.158	0.215	0.048	0.298	0.405
(APF)												
Est	0.119	0.179	0.194	0.151	0.171	0.196	0.167	0.187	0.135	0.199	0.138	0.179
p ₂	0.684	0.536	0.504	0.605	0.557	0.499	0.564	0.519	0.644	0.493	0.637	0.536
R ² Colooptoro	-0.081	-0.057	-0.050	-0.069	-0.061	-0.048	-0.062	-0.053	-0.076	-0.047	-0.074	-0.057
(FIT-C)												
Èst	-0.007	-0.011	-0.001	-0.040	-0.026	0.057	-0.042	-0.020	-0.059	0.115	0.004	0.043
p_{p_2}	0.981	0.970	0.996	0.891	0.930	0.846	0.886	0.945	0.840	0.694	0.989	0.882
Coleoptera	-0.100	-0.100	-0.100	-0.098	-0.099	-0.096	-0.098	-0.099	-0.095	-0.082	-0.100	-0.097
(FIT-U)												
Est	0.073	0.097	0.112	0.146	0.124	-0.085	0.191	0.154	0.179	-0.160	-0.005	-0.077
$p R^2$	-0.093	-0.087	-0.02	-0.017	-0.079	0.770	-0.0510	-0.596	-0.538	-0.583	-0.987	-0.092
Coleoptera	-0.075	-0.007	-0.005	-0.071	-0.079	-0.070	-0.031	-0.000	-0.037	-0.000	-0.100	-0.072
(PT)												
Est	-0.412	-0.454	-0.531	-0.403	-0.438	-0.382	-0.502	-0.530	-0.372	-0.426	-0.265	-0.321
$\frac{P}{R^2}$	0.137	0.090	0.043	0.140	0.158	0.096	0.001	0.045	0.184	0.123	-0.005	0.238
Heteroptera												
(APE)	0 1 4 4	0.000	0.045	0 107	0.000	0 1 1 1	0.004	0.02(0.100	0.000	0.175	0 1 1 4
Est	-0.144 0.621	-0.099 0.735	-0.045 0.877	-0.127 0.663	-0.099 0.736	-0.111 0.703	-0.084 0.774	-0.036	-0.128	0.026	-0.175 0.547	-0.114 0.698
R^2	-0.072	-0.087	-0.097	-0.078	-0.087	-0.083	-0.091	-0.098	-0.078	-0.099	-0.059	-0.083
Heteroptera												
(FII-C) Fet	0 275	0 289	0 323	0.282	0 292	0 190	0 340	0.340	0.280	0 161	0 164	0 167
p	0.337	0.312	0.254	0.324	0.305	0.512	0.229	0.229	0.327	0.581	0.573	0.565
R^2	0.002	0.012	0.041	0.007	0.015	-0.051	0.055	0.055	0.006	-0.065	-0.064	-0.062
Heteroptera												
Est	-0.116	-0.203	-0.319	-0.074	-0.196	-0.246	-0.168	-0.335	-0.047	-0.490	0.025	-0.241
p_	0.692	0.483	0.261	0.800	0.499	0.392	0.564	0.237	0.873	0.069	0.932	0.403
R ²	-0.082	-0.045	0.037	-0.093	-0.049	-0.019	-0.062	0.050	-0.097	0.223	-0.099	-0.022
(APE)												
Est	0.190	0.222	0.124	0.298	0.254	0.131	0.233	0.153	0.338	-0.183	0.285	0.177
p ₂	0.513	0.442	0.670	0.295	0.376	0.653	0.418	0.600	0.232	0.528	0.318	0.543
K ⁻ Neuropterida	-0.052	-0.034	-0.079	0.020	-0.013	-0.077	-0.027	-0.069	0.053	-0.055	0.009	-0.058
(FIT-C)												
Èst	0.324	0.286	0.317	0.252	0.289	0.244	0.295	0.332	0.247	0.236	0.169	0.237
$p_{\mathbf{P}^2}$	0.253	0.317	0.263	0.380	0.312	0.396	0.301	0.241	0.391	0.412	0.562	0.410
Neuropterida	0.041	0.010	0.055	-0.014	0.012	-0.020	0.017	0.040	-0.018	-0.025	-0.062	-0.024
(FIT-U)												
Est	0.372	0.326	0.300	0.303	0.313	0.378	0.285	0.281	0.280	0.274	0.337	0.360
$\frac{p}{R^2}$	0.183	0.249	0.292	0.287	0.270	0.177	0.318	0.325	0.327	0.339	0.233	0.200
Opiliones	0.007	0.0-10	0.021	0.020	0.002	0.072	0.007	0.000	0.000	0.001	0.000	0.075
(APE)	0.101	0.10-	0.00	0.100	0.115	0.011	0.000	0.00	0.450	0.07	0.10	0.250
Est	-0.484	-0.402 0.147	-0.324 0.253	-0.438	-0.417 0.132	-0.361 0.199	-0.390	-0.334	-0.450	-0.076	-0.434 0.115	-0.378
\mathbf{R}^2	0.215	0.118	0.041	0.157	0.133	0.075	0.102	0.050	0.172	-0.092	0.153	0.092

Table G9. Continued.

Trophic guild	7 Attrib	4 Attrib	3 AttribA	3 AttribB	3 AttribC	3 AttribD	2 AttribA	2 AttribB	2 AttribC	2 AttribD	2 AttribE	2 AttribF
Oniliones (PT)												
Est	-0.410	-0.409	-0.447	-0.330	-0.419	-0.407	-0.370	-0.475	-0.324	-0.409	-0.240	-0.428
p	0.139	0.141	0.102	0 244	0.129	0.142	0.187	0.079	0.253	0.140	0.405	0.120
$\mathbf{P}_{\mathbf{R}^2}$	0.135	0.141 0.124	0.102	0.244	0.12)	0.142	0.107	0.079	0.233	0.140	_0.405	0.120 0.147
Herbiyore	0.120	0.124	0.107	0.040	0.100	0.120	0.004	0.201	0.011	0.120	0.020	0.147
Chowor												
Colooptora												
(APE)												
(ALL) Ect	0 578	0 564	0.476	0.640	0 507	0 200	0.610	0.512	0.674	0.002	0 544	0.420
Est	0.025	0.004	0.470	0.040	0.097	0.399	0.010	0.012	0.074	-0.003	0.029	0.420
$p_{\mathbf{p}^2}$	0.025	0.050	0.079	0.010	0.020	0.152	0.010	0.055	0.005	0.992	0.050	0.120
K Calcartera	0.349	0.328	0.205	0.452	0.379	0.114	0.400	0.252	0.511	-0.100	0.298	0.138
Coleoptera												
(FII-C)	0.074	0.150	0.070	0.0(7	0.100	0.007	0.007	0.074	0.000	0.01/	0.004	0.000
Est	-0.274	-0.170	-0.073	-0.267	-0.183	-0.086	-0.207	-0.074	-0.289	0.216	-0.284	-0.089
p ₂	0.339	0.557	0.804	0.352	0.528	0.770	0.475	0.802	0.311	0.456	0.321	0.762
R-	0.001	-0.061	-0.093	-0.004	-0.055	-0.090	-0.043	-0.093	0.013	-0.037	0.008	-0.089
Coleoptera												
(FIT-U)												
Est	0.537	0.626	0.700	0.554	0.591	0.597	0.654	0.676	0.498	0.622	0.444	0.505
P.	0.042	0.013	0.003	0.034	0.021	0.019	0.008	0.005	0.063	0.013	0.105	0.059
\tilde{R}^2	0.288	0.426	0.559	0.313	0.370	0.379	0.474	0.514	0.234	0.420	0.165	0.243
Coleoptera												
(GPE)												
Èst	0.302	0.341	0.402	0.301	0.293	0.338	0.383	0.355	0.239	0.394	0.251	0.221
p	0.311	0.247	0.165	0.311	0.325	0.252	0.189	0.226	0.428	0.175	0.403	0.465
R^2	0.015	0.051	0.113	0.015	0.008	0.047	0.093	0.064	-0.032	0.105	-0.023	-0.044
Sucker												
Heteroptera												
(APF)												
Fst	0 469	0 498	0 523	0 4 4 0	0 471	0 528	0 479	0 498	0 396	0 495	0.412	0.472
p	0.407	0.470	0.049	0.110	0.083	0.047	0.475	0.490	0.154	0.425	0.112	0.472
P_2	0.004	0.001	0.047	0.161	0.000	0.047	0.070	0.001	0.134	0.000	0.128	0.002
Heteroptera	0.170	0.200	0.207	0.101	0.170	0.274	0.20)	0.200	0.111	0.22)	0.120	0.177
(EIT C)												
(FII-C)	0.165	0.001	0.022	0.156	0 1 1 2	0 101	0.049	0.026	0.105	0 104	0.245	0.152
ESt	0.105	0.091	-0.032	0.130	0.112	0.101	0.040	-0.020	0.100	-0.194	0.245	0.135
p P ²	0.570	0.757	0.913	0.591	0.701	0.729	0.870	0.931	0.525	0.504	0.394	0.598
R	-0.063	-0.089	-0.099	-0.067	-0.083	-0.086	-0.097	-0.099	-0.054	-0.049	-0.019	-0.068
Heteroptera												
(FIT-U)												
Est	0.078	0.079	0.169	0.061	0.079	-0.037	0.162	0.188	0.057	0.095	-0.093	-0.073
P ₂	0.791	0.786	0.561	0.836	0.787	0.900	0.577	0.518	0.846	0.745	0.750	0.803
R ²	-0.092	-0.092	-0.062	-0.095	-0.092	-0.098	-0.065	-0.053	-0.096	-0.088	-0.088	-0.093
Symbiont												
Fungi												
(Mycorrhiza)												
Èst	0.154	0.018	-0.093	0.135	0.063	-0.113	0.057	-0.054	0.196	-0.437	0.121	-0.050
р	0.596	0.950	0.750	0.643	0.831	0.699	0.847	0.855	0.499	0.112	0.680	0.864
R^2	-0.068	-0.100	-0.088	-0.075	-0.095	-0.083	-0.096	-0.096	-0.048	0.156	-0.080	-0.097
Producer												
Vascular plants												
Est	-0.276	-0.215	-0.269	-0.141	-0.219	-0.229	-0.187	-0.287	-0.132	-0.313	-0.073	-0.239
n	0 334	0.456	0 348	0.628	0 449	0 4 2 8	0 510	0 315	0.650	0 271	0.804	0.406
$\frac{P}{R^2}$	0.004	_0.130	_0.010	_0.020	_0.11)	_0.120	_0.517	0.011	-0.000	0.271	_0.004	_0.100
Mossee	0.000	0.000	-0.005	-0.075	0.000	0.000	-0.033	0.011	-0.077	0.001	0.075	-0.023
Fet	_0 420	_0.401	_0 351	_0 412	-0.308	_0.300	_0 387	_0.344	_0 402	_0 189	_0.416	_0 370
151	0.120	0.1401	0.001	0.127	0.152	0.141	0.144	0.044	0.1403	0.100	0.122	0.175
P_{P^2}	0.128	0.149	0.212	0.13/	0.152	0.101	0.100	0.223	0.140	0.010	0.133	0.175
Л	0.137	0.110	0.066	0.128	0.115	0.105	0.101	0.059	0.119	-0.053	0.132	0.093

Table G10. Effects of naturalness, measures of management intensity, and stand structural attributes regarding stand age and dead and living wood volume (see Table 1) on the entropy (bias-corrected exponential Shannon's entropy eHbc) of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R² and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Decomposer								
Mycetophage								
Coleoptera (APE)								
Est	0.509	-0.443	-0.452	-0.436	0.464	0.386	-0.075	-0.324
p ₂	0.057	0.106	0.098	0.112	0.088	0.167	0.798	0.253
K ⁻ Coloomtono (EIT C)	0.248	0.164	0.175	0.156	0.189	0.100	-0.092	0.041
Est	0.316	_0.238	_0.263	_0 272	0 304	0.276	0 117	_0.071
p	0.266	0.410	0.359	0.342	0.285	0.334	0.688	0.808
R^2	0.034	-0.024	-0.007	< 0.001	0.024	0.003	-0.082	-0.093
Coleoptera (FIT-U)								
Est	-0.170	0.016	0.066	0.099	-0.069	-0.182	-0.593	-0.231
p ₂	0.558	0.957	0.822	0.736	0.812	0.532	0.021	0.424
R^2	-0.061	-0.100	-0.094	-0.087	-0.094	-0.056	0.373	-0.029
Saprophage								
Est	_0.263	0 301	0.255	0.275	_0 327	_0.299	_0.160	0 370
p	0.359	0.290	0.374	0.336	0.249	0.295	0.583	0.187
\mathbf{R}^2	-0.007	0.022	-0.012	0.002	0.043	0.020	-0.066	0.084
Fungi (soil saprophytes)								
Est	-0.170	0.272	0.308	0.286	-0.201	-0.260	-0.252	-0.053
\underline{P}_{2}	0.558	0.343	0.279	0.317	0.488	0.364	0.380	0.857
R^2	-0.061	-0.001	0.028	0.010	-0.046	-0.009	-0.015	-0.096
Isopoda (P1)	0.211	0.202	0.255	0.252	0.206	0.164	0.055	0 1 2 1
ESt	-0.211	0.392	0.355	0.353	-0.296	-0.164 0.572	-0.055	0.121
$\frac{P}{R^2}$	-0.040	0.107	0.208	0.209	0.298	-0.064	-0.002	-0.080
Xvlophage	0.040	0.107	0.007	0.000	0.010	0.004	0.070	0.000
Coleoptera (APE)								
Est	0.024	0.043	0.011	0.023	-0.256	-0.196	-0.026	0.225
P ₂	0.935	0.884	0.970	0.938	0.373	0.498	0.929	0.435
R ²	-0.099	-0.098	-0.100	-0.099	-0.012	-0.048	-0.099	-0.032
Coleoptera (FII-C)	0.207	0.275	0.207	0.225	0.400	0.270	0 (12	0.110
ESt	0.307	-0.275	-0.297	-0.335	0.406	0.379	0.015	0.119
$\frac{p}{R^2}$	0.280	0.336	0.297	0.255	0.143	0.176	0.015	-0.081
Coleoptera (FIT-U)	0.027	0.002	0.017	0.001	0.122	0.075	0.400	0.001
Est	0.522	-0.614	-0.619	-0.580	0.188	0.295	0.010	-0.270
p_	0.050	0.015	0.014	0.025	0.517	0.300	0.973	0.346
\tilde{R}^2	0.266	0.407	0.415	0.352	-0.053	0.017	-0.100	-0.002
Fungi (wood/bark species)		~		a . .				
Est	0.592	-0.464	-0.475	-0.474	0.325	0.307	0.298	-0.223
$p \\ P^2$	0.021	0.088	0.080	0.080	0.251	0.280	0.295	0.440
Predator	0.372	0.169	0.203	0.202	0.042	0.027	0.020	-0.055
Big								
Birds (breeding)								
Est	0.512	-0.481	-0.496	-0.515	0.432	0.574	0.514	-0.160
p	0.055	0.075	0.065	0.053	0.117	0.027	0.054	0.582
\mathbb{R}^2	0.252	0.211	0.230	0.257	0.150	0.343	0.255	-0.065
Birds (overwintering)	0 (10	0.500	0.500	0.500	0.404	0.070	0.000	0.007
Est	0.640	-0.520	-0.520	-0.533	0.424	0.370	0.380	-0.227
P R ²	0.010	0.051	0.051	0.044	0.124	0.187	0.174	0.431
Small	0.431	0.203	0.203	0.201	0.142	0.004	0.094	-0.031
Araneae (APE)								
Est	0.580	-0.480	-0.485	-0.500	0.347	0.542	0.366	-0.391
		-	-	-				

September 2014 🛠 Volume 5(9) 🛠 Article 113

Table G10. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
p P ²	0.025	0.076	0.072	0.063	0.218	0.040	0.192	0.160
Coleoptera (APE)	0.352	0.210	0.210	0.230	0.002	0.294	0.000	0.100
Est	0.403	-0.338	-0.363	-0.377	0.310	0.359	0.178	-0.244
p ₂	0.147	0.232	0.196	0.177	0.276	0.201	0.539	0.397
R^2	0.118	0.054	0.077	0.091	0.029	0.074	-0.057	-0.020
Coleoptera (FII-C)	0.314	0 196	0 100	0.216	0.310	0 167	0.001	0.068
D D	0.314	0.498	0 491	0.456	0.319	0.107	0.091	-0.008
R^2	0.032	-0.048	-0.047	-0.037	0.037	-0.062	-0.089	-0.094
Coleoptera (FIT-U)								
Est	0.052	-0.131	-0.096	-0.065	-0.111	-0.219	-0.166	-0.063
p ₂	0.860	0.654	0.742	0.824	0.704	0.448	0.569	0.831
K ⁻ Colooptora (PT)	-0.096	-0.077	-0.088	-0.094	-0.083	-0.035	-0.063	-0.095
Est	-0.470	0.503	0.476	0.477	-0.546	-0.413	-0.264	0.316
p	0.083	0.061	0.079	0.078	0.038	0.135	0.358	0.265
R^2	0.197	0.240	0.204	0.206	0.301	0.130	-0.007	0.034
Heteroptera (APE)								
Est	0.311	-0.467	-0.446	-0.408	0.073	0.187	-0.265	-0.368
p P ²	0.273	0.086	0.103	0.141	0.804	0.520	0.355	0.190
N Heteroptera (EIT-C)	0.050	0.195	0.100	0.125	-0.095	-0.055	-0.005	0.062
Est	0.407	-0.440	-0.396	-0.413	0.330	0.255	0.353	-0.236
p	0.143	0.108	0.155	0.136	0.243	0.375	0.210	0.413
R^2	0.122	0.161	0.111	0.129	0.047	-0.013	0.068	-0.025
Heteroptera (FIT-U)								
Est	-0.170	-0.011	0.025	0.057	-0.044	-0.159	-0.599	-0.141
$p_{\mathbf{p}^2}$	0.559	0.969	0.932	0.845	0.881	0.584	0.019	0.628
Neuropterida (APF)	-0.001	-0.10	-0.099	-0.090	-0.097	-0.000	0.382	-0.073
Est	-0.019	-0.008	0.013	0.029	-0.243	-0.135	-0.303	-0.105
p_	0.948	0.978	0.964	0.922	0.399	0.643	0.287	0.719
R^2	-0.10	-0.10	-0.100	-0.099	-0.021	-0.075	0.023	-0.085
Neuropterida (FIT-C)				0.040	0.044	a aa -	0.00	0.447
Est	0.237	-0.392	-0.375	-0.348	-0.041	0.087	-0.026	-0.116
p R^2	-0.024	0.139	0.181	0.216	0.890	-0.090	0.929	-0.092
Neuropterida (FIT-U)	-0.024	0.107	0.007	0.005	-0.070	-0.070	-0.077	-0.002
Est	0.077	-0.099	-0.081	-0.080	0.339	0.156	0.036	-0.042
p	0.793	0.734	0.781	0.785	0.230	0.591	0.902	0.886
R^2	-0.092	-0.087	-0.091	-0.091	0.054	-0.067	-0.098	-0.098
Opiliones (APE)	0.471	0.252	0.267	0.276	0.229	0.225	0.125	0.166
Est	-0.471	0.332	0.367	0.376	-0.326	-0.335	-0.135	0.100
$\frac{P}{R^2}$	0.198	0.067	0.081	0.090	0.045	0.051	-0.076	-0.063
Opiliones (PT)					0.000			
Est	-0.406	0.342	0.325	0.353	-0.054	-0.125	-0.392	0.086
p	0.143	0.225	0.251	0.210	0.853	0.669	0.160	0.769
K ²	0.122	0.057	0.042	0.067	-0.096	-0.079	0.106	-0.090
Chewer								
Coleoptera (APE)								
Est	0.578	-0.617	-0.607	-0.572	0.187	0.252	-0.131	-0.391
p ₂	0.025	0.014	0.017	0.027	0.518	0.381	0.653	0.161
\mathbb{R}^2	0.350	0.413	0.396	0.340	-0.053	-0.015	-0.077	0.105
Coleoptera (FII-C)	0.211	0.200	0.255	0 201	0.279	0 107	0.202	0.210
ESI	0.311 0.274	0.309	-0.255 0.375	-0.281 0.325	0.278	0.197	0.302	-0.218
R^2	0.030	0.013	-0.013	0.007	0.004	-0.048	0.022	-0.036
Coleoptera (FIT-U)	0.000	0.010	0.010			0.010		5.000
Est	0.704	-0.758	-0.771	-0.767	0.764	0.763	0.328	-0.423
p ₂	0.003	0.001	< 0.001	< 0.001	0.001	0.001	0.246	0.125
K ²	0.567	0.672	0.700	0.692	0.684	0.682	0.045	0.141
Coleoptera (GPE)	0.628	-0 593	_0.619	-0.640	0 763	0 773	0.458	_0 366
p	0.016	0.026	0.018	0.013	0.001	0.001	0.108	0.211
Г	0.010	0.020	0.010	0.010		0.001	0.100	

Table G10. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
R ²	0.437	0.378	0.421	0.457	0.697	0.720	0.180	0.075
Sucker								
Heteroptera (APE)								
Est	0.171	-0.097	-0.112	-0.14	0.467	0.476	0.292	-0.225
p	0.556	0.741	0.703	0.630	0.085	0.079	0.305	0.435
R ²	-0.061	-0.087	-0.083	-0.073	0.194	0.205	0.015	-0.032
Heteroptera (FIT-C)								
Est	-0.070	0.120	0.158	0.133	-0.056	-0.078	-0.162	-0.100
p	0.812	0.681	0.587	0.649	0.848	0.791	0.577	0.733
Ŕ ²	-0.093	-0.081	-0.066	-0.076	-0.096	-0.092	-0.065	-0.087
Heteroptera (FIT-U)								
Est	0.065	-0.146	-0.184	-0.151	-0.105	0.035	0.064	0.135
p	0.823	0.616	0.527	0.603	0.720	0.905	0.828	0.642
R^2	-0.094	-0.071	-0.055	-0.069	-0.085	-0.098	-0.095	-0.075
Symbiont								
Fungi (Mycorrhiza)								
Est	0.025	0.005	-0.01	0.018	0.015	-0.115	-0.242	0.110
p_	0.932	0.985	0.973	0.952	0.959	0.695	0.400	0.707
\hat{R}^2	-0.099	-0.100	-0.100	-0.100	-0.100	-0.082	-0.021	-0.084
Producer								
Vascular plants								
Est	-0.288	0.255	0.230	0.252	-0.152	-0.043	-0.314	-0.054
p_	0.313	0.375	0.425	0.380	0.603	0.884	0.270	0.855
\hat{R}^2	0.011	-0.013	-0.029	-0.015	-0.069	-0.098	0.032	-0.096
Mosses								
Est	-0.495	0.526	0.533	0.54	-0.423	-0.541	-0.122	0.346
P ₂	0.066	0.047	0.044	0.04	0.126	0.040	0.676	0.219
\hat{R}^2	0.229	0.272	0.282	0.293	0.140	0.294	-0.08	0.061

Table G11. Effects of stand structural attributes except stand age and wood volume (see Table 1) on the entropy (bias-corrected exponential Shannon's entropy eHbc) of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Decomposer	
Decomposer	
Mycetophage	
Coleoptera (APE)	0.500 0.1/0
Est -0.425 -0.266 0.533 0.566 -0.554 0.354	0.538 - 0.168
p = 0.125 - 0.054 - 0.044 - 0.050 - 0.054 - 0.212 - 0.220 - 0.143 - 0.055 - 0.282 - 0.330 - 0.312 - 0.066	0.042 0.562
K 0.145 -0.005 0.262 0.550 0.512 0.006 Coleoptera (FIT-C)	0.269 -0.062
-0.116 - 0.174 - 0.432 - 0.137 - 0.277 - 0.284	0.319 -0.610
p 0.692 0.550 0.117 0.638 0.333 0.321	0.260 0.016
R^2 -0.082 -0.059 0.150 -0.075 0.003 0.008	0.037 0.400
Coleoptera (FIT-U)	
Est -0.185 0.120 0.161 0.176 -0.069 0.023	0.076 0.270
p 0.523 0.680 0.579 0.545 0.813 0.938	0.794 0.346
R^2 -0.054 -0.081 -0.065 -0.058 -0.094 -0.09	9 -0.092 -0.002
Saprophage	
Coleoptera (P1)	- 0.122 0.052
Est 0.344 0.314 -0.161 -0.18 0.224 -0.29	5 -0.133 0.052
$P^2 = 0.050 0.022 0.005 0.050 0.450 0.000 0.002 0.005 0.022 0.045 0.057 0.022 0.015 0.015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.00$	0.040 0.059
R (0.057 0.053 -0.005 -0.057 -0.055 -0.057 -0.055 0.017	-0.076 -0.096
Est 0.051 0.083 0.403 0.218 0.214 0.001	0.079 0.174
p 0.862 0.778 0.147 0.451 0.459 0.999	0.787 0.550
R^2 -0.096 -0.091 0.118 -0.036 -0.038 -0.10	0 -0.092 -0.059
Isopoda (PT)	
Ést 0.062 -0.136 -0.125 0.113 0.307 -0.42	6 -0.289 0.350
p 0.832 0.640 0.667 0.698 0.281 0.122	0.312 0.215
\hat{R}^2 -0.095 -0.075 -0.079 -0.083 0.026 0.144	0.012 0.064
Xylophage	
Coleoptera (APE)	
Est 0.189 0.261 0.167 -0.052 0.011 -0.062	6 0.026 -0.248
p = 0.515 - 0.363 - 0.567 - 0.859 - 0.970 - 0.821	0.928 0.388
K^{-} -0.052 -0.008 -0.063 -0.096 -0.100 -0.09	4 -0.099 -0.017
Coleoptera (FII-C) 0.121 0.045 0.092 0.145 0.160 0.221	0.241 0.240
Est $0.151 - 0.005 - 0.062 - 0.145 - 0.100 0.051$	0.241 - 0.349
R^2 = 0.035 0.025 0.776 0.020 0.031 0.242	-0.022 0.64
Coleontera (EIT-LI)	-0.022 0.004
-0.412 - 0.031 0.208 0.387 - 0.624 0.292	0.327 -0.083
p 0.137 0.916 0.472 0.165 0.013 0.307	0.249 0.776
R^2 0.128 -0.099 -0.042 0.101 0.423 0.014	0.044 -0.091
Fungi (wood/bark species)	
Est -0.33 -0.285 0.391 0.246 -0.429 0.252	0.258 -0.394
p 0.243 0.318 0.161 0.393 0.119 0.380	0.368 0.157
$R^2 0.047 0.009 0.105 -0.019 0.148 -0.01$	5 -0.01 0.108
Predator	
Big Dide (herediae)	
$E_{r,t}$ 0.221 0.240 0.128 0.226 0.471 0.200	0.385 0.300
Est -0.221 -0.249 0.126 0.550 -0.471 0.595	0.383 - 0.399
R^2 = -0.034 -0.017 -0.078 0.052 0.109 0.114	0.103 0.131
Birds (overwintering)	0.099 0.114
Est $-0.296 -0.230 0.420 0.320 -0.467 0.395$	0.412 -0.282
p 0.299 0.424 0.129 0.260 0.086 0.156	0.137 0.324
R^2 0.018 -0.029 0.137 0.037 0.193 0.109	0.128 0.007
Small	
Araneae (APE)	
Est -0.499 -0.501 0.378 0.503 -0.484 0.318	0.264 -0.402
p ₂ 0.063 0.062 0.177 0.060 0.073 0.263	0.358 0.147
R ² 0.234 0.238 0.092 0.240 0.215 0.036	-0.006 0.118

Table G11. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Coleoptera (APE)								
Est	-0.345	-0.397	0.342	0.166	-0.277	0.266	0.157	-0.239
p ₂	0.221	0.153	0.226	0.568	0.333	0.353	0.590	0.407
K ⁻	0.060	0.112	0.057	-0.063	0.003	-0.005	-0.067	-0.023
Coleoptera (FII-C)	0.066	0.062	0.455	0.242	0 222	0.206	0.425	0 199
Est	-0.000	-0.002	0.435	0.242	-0.223	0.300	0.423	-0.100
$\frac{P}{R^2}$	-0.094	-0.095	0.095	-0.021	-0.033	0.285	0.123	-0.053
Coleoptera (FIT-U)	0.071	0.070	0.170	0.021	0.000	0.020	0.110	0.000
Est	-0.057	0.193	0.021	-0.112	-0.093	-0.031	-0.057	-0.008
p_	0.847	0.506	0.944	0.702	0.752	0.916	0.847	0.977
\hat{R}^2	-0.096	-0.050	-0.099	-0.083	-0.088	-0.099	-0.096	-0.100
Coleoptera (PT)								
Est	0.342	0.289	-0.128	-0.136	0.439	-0.359	-0.283	0.254
p p2	0.225	0.311	0.662	0.642	0.110	0.201	0.322	0.377
K ⁻	0.057	0.012	-0.078	-0.075	0.159	0.073	0.008	-0.013
Ect	0.457	0.029	0.282	0 422	0.508	0.264	0.259	0.011
D D	0.94	0.029	0.202	0.422	0.057	0.204	0.259	0.011
$\frac{P}{R^2}$	0.181	-0.099	0.007	0.139	0.247	-0.007	-0.010	-0.100
Heteroptera (FIT-C)	01101	01077	01007	01107	01217	01007	01010	01100
Est	-0.203	-0.116	0.163	0.025	-0.312	0.373	0.206	-0.313
p_	0.483	0.690	0.576	0.932	0.273	0.183	0.476	0.271
R^2	-0.045	-0.082	-0.064	-0.099	0.031	0.087	-0.043	0.032
Heteroptera (FIT-U)								
Est	-0.098	0.250	0.139	0.203	-0.101	0.102	0.206	0.405
p p2	0.738	0.385	0.632	0.482	0.730	0.728	0.478	0.144
K ⁻ Nourceptoride (ADE)	-0.087	-0.016	-0.074	-0.044	-0.086	-0.086	-0.043	0.121
Ect	0.080	0 153	0 370	0.277	0 109	0.06	0.125	0 203
D D	0.762	0.155	0.379	0.333	0.710	0.837	0.125	0.203
R^2	-0.089	-0.069	0.093	0.003	-0.084	-0.095	-0.079	-0.044
Neuropterida (FIT-C)	0.000	01005	01070	01000	01001	0.070	0107.7	01011
Est	-0.155	0.234	0.042	0.233	-0.381	0.231	0.227	0.056
p_	0.595	0.417	0.885	0.418	0.172	0.422	0.432	0.848
\hat{R}^2	-0.068	-0.027	-0.098	-0.027	0.095	-0.028	-0.031	-0.096
Neuropterida (FIT-U)								
Est	0.002	-0.001	-0.054	0.102	-0.148	0.142	0.261	0.047
p p2	0.996	0.998	0.854	0.728	0.612	0.626	0.364	0.871
K ⁻ Omilianas (ADE)	-0.100	-0.100	-0.096	-0.086	-0.071	-0.073	-0.009	-0.097
Est	0.225	0 132	_0 523	-0 533	0.426	-0.376	_0 543	0 175
n	0.436	0.652	0.049	0.044	0.122	0.179	0.039	0.175
R^2	-0.032	-0.077	0.267	0.282	0.144	0.090	0.296	-0.059
Opiliones (PT)	0.002	01077	0.207	01202	01111	0.070	0.270	0.0007
Est	0.081	-0.027	-0.316	-0.134	0.219	-0.326	-0.216	0.211
p	0.782	0.926	0.265	0.647	0.447	0.250	0.455	0.466
R^2	-0.091	-0.099	0.034	-0.076	-0.035	0.043	-0.037	-0.04
Herbivore								
Chewer								
Coleoptera (APE)	0 510	0.072	0 520	0 592	0.((0	0.2(5	0.446	0.059
Est	-0.519	-0.072	0.520	0.582	-0.660	0.365	0.446	-0.058
\mathbf{P}^2	0.051	_0.007	0.050	0.024	0.007	0.194	0.103	_0.045
Coleoptera (FIT-C)	0.202	-0.075	0.204	0.000	0.405	0.077	0.107	-0.075
Est	-0.180	-0.213	0.239	-0.051	-0.165	0.294	0.099	-0.390
p	0.536	0.462	0.407	0.863	0.570	0.303	0.735	0.162
Ř ²	-0.057	-0.039	-0.023	-0.097	-0.063	0.016	-0.087	0.104
Coleoptera (FIT-U)								
Est	-0.556	-0.503	0.235	0.331	-0.726	0.536	0.459	-0.441
p ₂	0.034	0.061	0.415	0.243	0.002	0.042	0.092	0.107
	0.315	0.240	-0.026	0.047	0.608	0.287	0.183	0.162
Coleoptera (GPE)	0.465	0.705	0.150	0 172	0 521	0.450	0.207	0.422
ESI	-0.405	-0.705	0.150	0.172	-0.521	0.450	0.297	-0.432
$\frac{P}{R^2}$	0.189	0.579	-0.023	-0.070	0.266	0.170	0.012	0.132
	0.107	0.077	0.000	0.070	0.200	0.170	0.012	0.11)

Table G11. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Sucker								
Heteroptera (APE)								
Est	-0.268	-0.585	-0.076	0.133	-0.082	0.095	0.022	-0.021
р	0.350	0.023	0.796	0.649	0.779	0.746	0.940	0.942
R^2	-0.003	0.360	-0.092	-0.076	-0.091	-0.088	-0.099	-0.099
Heteroptera (FIT-C)								
Est	0.006	0.076	0.403	0.324	0.053	0.168	0.244	0.091
р	0.983	0.796	0.147	0.253	0.855	0.564	0.397	0.755
R^2	-0.100	-0.092	0.118	0.041	-0.096	-0.062	-0.020	-0.089
Heteroptera (FIT-U)								
Est	0.034	0.140	-0.287	-0.091	-0.145	-0.097	-0.079	-0.030
р	0.908	0.631	0.315	0.755	0.620	0.741	0.787	0.919
\mathbf{R}^2	-0.098	-0.074	0.011	-0.089	-0.072	-0.087	-0.092	-0.099
Symbiont								
Fungi (Mycorrhiza)								
Est	0.086	0.227	0.147	0.154	-0.114	-0.011	0.248	0.079
p_	0.768	0.430	0.614	0.596	0.697	0.970	0.388	0.788
$\mathbf{\hat{R}}^2$	-0.090	-0.030	-0.071	-0.068	-0.083	-0.100	-0.017	-0.092
Producer								
Vascular plants								
Est	-0.125	-0.219	-0.245	-0.002	0.175	-0.339	-0.329	0.276
р	0.670	0.448	0.395	0.993	0.546	0.230	0.245	0.334
$\mathbf{\hat{R}}^2$	-0.079	-0.035	-0.020	-0.100	-0.059	0.054	0.046	0.003
Mosses								
Est	0.422	0.311	-0.494	-0.433	0.555	-0.510	-0.462	0.513
p_	0.127	0.274	0.066	0.116	0.034	0.056	0.090	0.054
Ř ²	0.139	0.030	0.229	0.152	0.314	0.250	0.187	0.254

Table G12. Effects of stand structural complexity indices (see Appendix A: Table A3) on the entropy (biascorrected exponential Shannon's entropy eHbc) of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flightinterception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown.

	7	4	3	3	3	3	2	2	2	2	2	2
Trophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Decomposer Mycetophage Coleoptera												
(APE) Est	0 577	0 539	0 441	0 592	0 551	0.475	0 537	0 445	0.601	0 105	0 584	0 481
p_	0.026	0.041	0.108	0.021	0.035	0.079	0.042	0.104	0.011	0.719	0.023	0.075
R^2	0.348	0.291	0.161	0.370	0.309	0.204	0.288	0.167	0.386	-0.085	0.359	0.211
(FIT-C)												
Est	0.210	0.265	0.283	0.253	0.258	0.229	0.286	0.279	0.239	0.195	0.199	0.199
$p_{\mathbf{P}^2}$	0.469	0.355	0.323	0.379	0.369	0.428	0.317	0.329	0.407	0.502	0.492	0.492
Coleoptera	-0.041	-0.005	0.007	-0.014	-0.011	-0.030	0.010	0.005	-0.023	-0.049	-0.047	-0.047
(FIT-U)												
Est	-0.039 0.893	-0.063 0.831	-0.164 0 574	0.080	-0.043 0.884	-0.201 0.487	0.020 0.947	-0.157 0.589	0.120	-0.488	0.087	-0.197 0.496
R^2	-0.098	-0.095	-0.064	-0.091	-0.098	-0.046	-0.099	-0.067	-0.081	0.220	-0.090	-0.048
Saprophage Coleoptera (PT)												
Ëst	-0.212	-0.264	-0.262	-0.241	-0.253	-0.285	-0.247	-0.249	-0.222	-0.233	-0.240	-0.264
$p_{\mathbf{P}^2}$	0.463	0.357	0.362	0.402	0.378	0.319	0.391	0.386	0.441	0.419	0.404	0.357
K Fungi (soil	-0.040	-0.006	-0.008	-0.022	-0.014	0.009	-0.018	-0.016	-0.034	-0.027	-0.022	-0.006
saprophytes)												
Est	-0.093	-0.133	-0.276	-0.079	-0.111	-0.033	-0.231	-0.275	-0.047	-0.282 0.324	0.097	0.049
$\frac{P}{R^2}$	-0.088	-0.047	0.002	-0.092	-0.083	-0.099	-0.029	0.001	-0.097	0.007	-0.087	-0.097
Isopoda (PT)	0.400	0.4.0		0.450	0.450	0.014			0.454	0.405	0.040	
Est	-0.139 0.633	-0.162 0.578	-0.264 0.356	-0.159 0.585	-0.158 0.587	0.011	-0.287 0.315	-0.282 0.325	-0.151 0.603	-0.105 0 719	0.042	0.072
R^2	-0.074	-0.065	-0.006	-0.066	-0.066	-0.100	0.011	0.007	-0.069	-0.085	-0.098	-0.093
Xylophage Coleoptera												
Est	-0.054	-0.057	-0.051	-0.055	-0.035	-0.103	-0.050	-0.019	-0.029	-0.098	-0.104	-0.064
p ₂	0.854	0.845	0.862	0.852	0.906	0.724	0.865	0.948	0.920	0.737	0.722	0.826
K ⁻ Coleoptera	-0.096	-0.096	-0.097	-0.096	-0.098	-0.086	-0.097	-0.100	-0.099	-0.087	-0.085	-0.094
(FIT-C)												
Est	0.248	0.231	0.369	0.093	0.203	0.287	0.211	0.361	0.043	0.582	0.000	0.239
p R ²	-0.017	-0.029	0.189	-0.088	-0.045	0.315	-0.040	0.199	-0.098	0.024	-0.100	-0.023
Coleoptera												
(FIT-U) Fet	0 536	0 521	0 501	0 552	0.545	0 362	0 576	0 536	0 571	0 127	0.409	0 366
p	0.042	0.050	0.062	0.035	0.0345	0.362	0.026	0.030	0.028	0.127	0.409	0.300
R^2	0.286	0.265	0.237	0.309	0.299	0.077	0.347	0.287	0.338	-0.078	0.125	0.080
Fungi (wood/												
Est	0.377	0.433	0.452	0.387	0.444	0.400	0.418	0.475	0.384	0.334	0.298	0.410
p ₂	0.177	0.115	0.098	0.166	0.105	0.150	0.130	0.079	0.169	0.238	0.296	0.139
K ⁻ Predator	0.091	0.153	0.174	0.101	0.165	0.115	0.135	0.204	0.098	0.050	0.019	0.126
Big												
Birds												
(breeding) Est	0.564	0.575	0.595	0.484	0.563	0.638	0.508	0.589	0.450	0.592	0.455	0.625
P ₂	0.030	0.026	0.020	0.073	0.031	0.010	0.058	0.022	0.100	0.021	0.096	0.013
R²	0.328	0.344	0.375	0.215	0.326	0.447	0.247	0.367	0.172	0.372	0.178	0.425

Table G12. Continued.

	7	4	3	3	3	3	2	2	2	2	2	2
Trophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Birds (overwintering)												
Est	0.512	0.508	0.515	0.446	0.518	0.508	0.462	0.537	0.440	0.416	0.378	0.528
$p_{\mathbf{P}^2}$	0.055	0.057	0.054	0.104	0.051	0.058	0.090	0.042	0.109	0.133	0.177	0.046
Small	0.255	0.247	0.230	0.107	0.201	0.247	0.107	0.200	0.100	0.155	0.092	0.270
Araneae (APE)	0 512	0 602	0 552	0 550	0 500	0.690	0 512	0 547	0 520	0.476	0 591	0.601
p	0.054	0.003	0.035	0.036	0.019	0.005	0.055	0.037	0.329	0.478	0.024	0.004
R^2	0.254	0.388	0.311	0.307	0.383	0.521	0.252	0.302	0.277	0.205	0.354	0.541
Coleoptera (APE)												
Est	0.244	0.301	0.316	0.276	0.285	0.300	0.303	0.301	0.251	0.271	0.248	0.263
$p R^2$	0.396 -0.020	0.291	0.266	0.336	0.318	0.292	0.287	0.290	0.383 -0.015	0.344 -0.001	0.388 - 0.017	0.360 -0.007
Coleoptera	0.020	0.022	0.001	0.002	0.009	0.021	0.020	0.022	0.010	0.001	0.017	0.007
(FIT-C)	0 208	0.252	0.217	0.245	0.260	0.261	0.210	0.224	0.248	0 122	0.250	0.280
p	0.308	0.232	0.217	0.243	0.260	0.362	0.219	0.224 0.439	0.248	0.132	0.230	0.280
\hat{R}^2	0.027	-0.015	-0.037	-0.019	-0.009	-0.008	-0.036	-0.033	-0.017	-0.077	-0.016	0.006
(FIT-U)												
Est	-0.088	-0.058	-0.024	-0.020	-0.032	-0.217	0.031	0.019	0.013	-0.205	-0.160	-0.205
p R ²	0.764 -0.090	0.844 -0.096	-0.0936	-0.0945	-0.0914	-0.036	-0.0915	-0.100	-0.100	-0.043	-0.066	-0.0479
Coleoptera	0.070	0.070	0.077	0.077	0.077	0.000	0.077	0.100	0.100	0.010	0.000	0.011
(PT) Fet	0 363	0.406	0 467	0 366	0 396	0 334	0.448	0 471	0 344	0 352	0.240	0.287
p_	0.195	0.144	0.086	0.192	0.155	0.238	0.102	0.083	0.223	0.211	0.404	0.316
R ²	0.078	0.121	0.193	0.080	0.111	0.050	0.170	0.198	0.059	0.067	-0.022	0.010
(APE)												
Èst	0.385	0.391	0.315	0.482	0.415	0.229	0.458	0.337	0.510	-0.109	0.404	0.231
$\frac{p}{R^2}$	0.167	0.160	0.268	0.075	0.134	-0.428	0.093	0.233	0.056	-0.084	$0.146 \\ 0.119$	-0.028
Heteroptera	01100	01100	01000	01212	01101	0.000	01100	0.000	01200	01001	01117	0.020
(FIT-C) Fst	0.238	0 296	0 375	0 227	0 296	0.253	0 310	0 395	0 214	0 350	0.100	0.238
P ₂	0.408	0.299	0.180	0.431	0.299	0.379	0.275	0.156	0.460	0.214	0.732	0.409
R ² Hotoroptora	-0.024	0.018	0.089	-0.031	0.018	-0.014	0.029	0.110	-0.039	0.065	-0.087	-0.024
(FIT-U)												
Èst	0.068	-0.034	-0.139	0.112	-0.014	-0.178	0.050	-0.132	0.152	-0.483	0.117	-0.175
p R ²	-0.094	-0.098	-0.034	-0.083	-0.963	-0.540 -0.057	-0.863	-0.076	-0.069	0.074 0.213	-0.089	-0.059
Neuropterida												
(APE) Est	0.037	0.069	-0.039	0.149	0.099	0.020	0.062	-0.018	0.189	-0.266	0.185	0.074
p ₂	0.898	0.813	0.895	0.610	0.734	0.947	0.832	0.952	0.515	0.353	0.525	0.802
R² Neuropterida	-0.098	-0.094	-0.098	-0.070	-0.087	-0.099	-0.095	-0.100	-0.052	-0.005	-0.054	-0.093
(FIT-C)												
Ést	0.345	0.297	0.279	0.322	0.323	0.179	0.333	0.316	0.348	0.017	0.218	0.201
$\frac{P}{R^2}$	0.222	0.297	0.329	0.236	0.234 0.041	-0.057	0.239	0.266	0.217	-0.933	-0.036	-0.046
Neuropterida												
(FII-U) Est	0.214	0.147	0.144	0.147	0.142	0.132	0.154	0.139	0.139	0.089	0.132	0.117
P ₂	0.460	0.615	0.621	0.614	0.626	0.650	0.596	0.633	0.632	0.761	0.651	0.690
R ² Opiliones	-0.039	-0.071	-0.072	-0.071	-0.073	-0.076	-0.068	-0.074	-0.074	-0.089	-0.077	-0.082
(APE)												
Est	-0.571	-0.500	-0.405 0.145	-0.498	-0.515	-0.536	-0.422 0.127	-0.413	-0.504	-0.231	-0.542	-0.578
R^2	0.338	0.236	0.140	0.233	0.256	0.287	0.127	0.129	0.242	-0.028	0.294	0.349

Table G12. Continued.

			-	-			_	_	_	-	_	-
Trophic guild	7 Attrib	4 Attrib	3 AttribA	3 AttribB	3 AttribC	3 AttribD	2 AttribA	2 AttribB	2 AttribC	2 AttribD	2 AttribE	2 AttribF
Opiliones (PT)												
Est	-0.272	-0.276	-0.298	-0.196	-0.293	-0.313	-0.207	-0.330	-0.200	-0.324	-0.148	-0.362
p ₂	0.341	0.335	0.296	0.499	0.304	0.270	0.474	0.243	0.490	0.253	0.610	0.197
R ²	0.000	0.002	0.019	-0.048	0.016	0.032	-0.042	0.047	-0.046	0.041	-0.070	0.077
Herbivore												
Chewer												
(APE)												
Est	0 595	0 571	0 476	0.640	0.608	0 4 2 4	0 597	0 516	0.677	0.011	0 555	0 461
n	0.020	0.028	0.079	0.010	0.017	0.125	0.019	0.053	0.005	0.969	0.034	0.090
R^2	0.377	0.339	0.204	0.450	0.398	0.141	0.380	0.257	0.516	-0.100	0.314	0.186
Coleoptera												
(FIT-C)												
Est	0.071	0.169	0.245	0.105	0.161	0.159	0.177	0.251	0.086	0.291	0.020	0.136
p ₂	0.808	0.561	0.395	0.719	0.579	0.585	0.542	0.383	0.769	0.308	0.945	0.640
R ²	-0.093	-0.062	-0.020	-0.085	-0.065	-0.066	-0.058	-0.015	-0.090	0.014	-0.099	-0.075
Coleoptera												
(FII-U) Ect	0.620	0.604	0.752	0.657	0 660	0 500	0 757	0 720	0.612	0.540	0 500	0.507
ESI	0.039	0.094	0.755	0.057	0.009	0.599	0.757	0.739	0.015	0.340	0.509	0.507
$\frac{P}{R^2}$	0.010	0.004 0.548	0.001	0.007	0.000	0.382	0.670	0.635	0.015	0.040	0.037	0.038
Coleoptera	0.100	0.010	0.000	0.100	0.002	0.002	0.070	0.000	0.100	0.272	0.21)	0.210
(GPE)												
Èst	0.509	0.576	0.653	0.490	0.531	0.581	0.592	0.617	0.421	0.624	0.396	0.471
p_	0.067	0.032	0.011	0.081	0.054	0.030	0.027	0.019	0.144	0.017	0.172	0.096
\mathbb{R}^2	0.249	0.350	0.482	0.223	0.281	0.358	0.375	0.418	0.135	0.430	0.107	0.197
Sucker												
Heteroptera												
(APE)	0.100	0.005	0.000	0.1(7	0 1 9 2	0.2(2	0.1((0 177	0.110	0.200	0.059	0.201
Est	0.182	0.225	0.232	0.167	0.182	0.362	0.166	0.177	0.110	0.398	0.258	0.301
$\frac{P}{R^2}$	-0.055	-0.032	-0.421	-0.063	-0.052	0.197	-0.063	-0.043	-0.084	0.132	-0.011	0.290
Heteroptera	-0.055	-0.052	-0.027	-0.005	-0.050	0.070	-0.005	-0.050	-0.004	0.115	-0.011	0.022
(FIT-C)												
Èst	0.095	0.038	-0.101	0.080	0.055	0.134	-0.060	-0.105	0.103	-0.145	0.241	0.202
p	0.744	0.897	0.729	0.784	0.852	0.645	0.837	0.720	0.725	0.619	0.403	0.485
R^2	-0.088	-0.098	-0.086	-0.091	-0.096	-0.076	-0.095	-0.085	-0.086	-0.072	-0.022	-0.045
Heteroptera												
(FTT-U)	0.071	0.077	0.100	0.054	0.070	0.00(0 107	0 1 47	0.055	0.050	0.044	0.046
Est	0.071	0.066	0.129	0.054	0.069	-0.026	0.127	0.147	0.055	0.059	-0.064	-0.046
$p_{\mathbf{P}^2}$	0.009	0.022	0.039	0.655	0.015	0.929	0.004	0.015	0.650	0.041	0.020	0.675
Symbiont	-0.095	-0.094	-0.078	-0.090	-0.094	-0.099	-0.078	-0.071	-0.090	-0.095	-0.095	-0.097
Fungi												
(Mycorrhiza)												
Est	0.146	0.045	-0.013	0.108	0.069	-0.034	0.070	0.009	0.140	-0.216	0.090	-0.004
p_	0.617	0.878	0.965	0.712	0.815	0.906	0.810	0.976	0.632	0.455	0.757	0.989
\mathbb{R}^2	-0.071	-0.097	-0.100	-0.084	-0.094	-0.098	-0.093	-0.100	-0.074	-0.037	-0.089	-0.100
Producer												
Vascular plants	0.015	0.175	0.000	0 100	0.100	0.1(0	0.154	0.0(4	0.115	0.000	0.015	0 102
Est	-0.215	-0.1/5	-0.228	-0.109	-0.192	-0.160	-0.154	-0.264	-0.115	-0.236	-0.015	-0.193
$\frac{P}{R^2}$	0.408	_0.546	0.429	0.709	_0.007	0.382	0.398	0.357	0.093	0.413	0.958	-0.000
Mosses	-0.036	-0.039	-0.030	-0.004	-0.030	-0.000	-0.000	-0.000	-0.082	-0.023	-0.100	-0.030
Est	-0.505	-0.559	-0.529	-0.564	-0.550	-0.515	-0.570	-0.518	-0.545	-0.306	-0.524	-0.477
p	0.060	0.032	0.046	0.030	0.036	0.053	0.028	0.052	0.038	0.283	0.049	0.078
\mathbf{R}^2	0.242	0.321	0.276	0.328	0.307	0.256	0.337	0.261	0.300	0.026	0.269	0.206

Table G13. Relationship between forest types and the abundance of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Residual degrees of freedom (df), p-values of a Fligner-Killeen test of homogeneity of variances, estimates (Est) for each forest type (UM = unmanaged deciduous forest, MD = Managed deciduous forest, MM = Managed Mixed beech-spruce forest, MS = Managed spruce forest), adjusted R² and p-values of ANOVAs are shown. Additionally the standard error (SE) of the multcomp comparison (Hothorn et al. 2010) is given.

					Abunda	nce			
Trophic guild	df	p> Fligner	p- value	adj- R ²	Est UF	Est MD	Est MM	Est MS	SE
Decomposer									
Mycetophage									
Coleoptera (APE)	8	0.482	0.016	0.594	-0.497	-0.552	-0.187	1.236	0.470
Coleoptera (FIT-C)	8	0.848	0.500	-0.040	0.221	-0.727	0.140	0.366	0.753
Coleoptera (FIT-U)	8	0.687	0 111	0.325	0.564	-0.807	-0.393	0.636	0.607
Saprophage	0	0.007	0.111	0.020	0.001	0.007	0.070	0.000	0.007
Coleoptera (PT)	8	0.899	0 320	0.091	0.106	0 758	-0.603	_0.261	0 704
Eurgi (soil corrorbytos)	8	0.099	0.020	0.578	0.100	0.639	0.827	0.201	0.701
Longda(PT)	0	0.501	0.019	0.378	-0.790	0.682	0.027	0.002	0.400
Sopoua(F1)	0	0.510	0.002	0.762	0.000	0.062	-0.775	-0.795	0.360
Aylophage	0	0.002	0.001	0.005	0 5 4 0	0.000	0.014	0 507	0 (50
Coleoptera (APE)	8	0.893	0.201	0.205	0.540	-0.233	-0.814	0.507	0.658
Coleoptera (FII-C)	8	0.699	0.700	-0.162	0.146	-0.426	0.473	-0.193	0.796
Coleoptera (FII-U)	8	0.893	0.780	-0.209	0.193	-0.420	-0.134	0.361	0.812
Fungi (wood/bark species)	8	0.731	0.023	0.554	0.924	0.270	-0.159	-1.036	0.493
Predator									
Big									
Birds (breeding)	8	0.946	0.028	0.532	1.069	-0.059	-0.103	-0.907	0.505
Birds (overwintering)	8	0.778	0.005	0.699	1.243	-0.787	-0.034	-0.422	0.405
Small									
Araneae (APE)	8	0.597	0.507	-0.044	-0.038	-0.300	-0.367	0.704	0.755
Coleoptera (APE)	8	0.773	0.643	-0.128	-0.231	0.556	-0.410	0.086	0.784
Coleoptera (FIT-C)	8	0.643	0.065	0.416	0.911	0.184	-0.185	-0.910	0.564
Coleoptera (FIT-U)	8	0.609	0.080	0.383	-0.221	-0.920	0.803	0.338	0.580
Coleoptera (PT)	8	0.699	0.746	-0.190	-0.293	0.535	-0.161	-0.082	0.805
Heteroptera (APF)	8	0.591	0.557	-0.076	-0.053	-0.313	-0.309	0.675	0.000
Heteroptera (FIT-C)	8	0.855	0.032	0.516	0.555	0.688	_0.180	-1.063	0.514
Hotoroptora (FIT II)	8	0.000	0.881	0.310	0.333	0.000	0.242	0.041	0.814
Neuropteride (ADE)	0	0.091	0.001	-0.271	-0.571	0.170	0.242	0.709	0.000
Neuropterida (AFE)	0	0.962	0.510	0.100	-0.555	0.230	-0.429	0.708	0.701
Neuropierida (FII-C)	0	0.624	0.555	-0.062	0.157	0.465	0.010	-0.651	0.701
Neuropterida (FII-U)	8	0.850	0.654	-0.135	0.054	-0.182	0.554	-0.425	0.787
Opiliones (APE)	8	0.528	0.980	-0.345	0.151	0.040	-0.201	0.009	0.857
Opiliones (PT)	8	0.802	0.684	-0.153	-0.451	-0.090	0.018	0.523	0.793
Herbivore									
Chewer									
Coleoptera (APE)	8	0.672	0.464	-0.016	-0.159	0.087	-0.575	0.647	0.744
Coleoptera (FIT-C)	8	0.944	0.326	0.087	0.551	0.414	-0.299	-0.666	0.706
Coleoptera (FIT-U)	8	0.643	0.626	-0.118	-0.059	-0.291	0.628	-0.279	0.781
Coleoptera (GPE)	8	0.896	0.290	0.136	-0.691	0.641	0.286	-0.353	0.679
Sucker									
Heteroptera (APE)	8	0.796	0.103	0.339	0.276	0.890	-0.516	-0.650	0.601
Heteroptera (FIT-C)	8	0.931	0.023	0.555	-0.076	1.146	-0.797	-0.273	0.493
Heteroptera (FIT-U)	8	0.830	0.471	-0.020	0.537	0.144	0.001	-0.682	0.746
Symbiont									
Fungi (Mycorrhiza)	8	0.802	0.218	0.186	-0.956	0.376	0.300	0.281	0.666
Producer	C	0.002	0.210	0.100	0.700	0.070	0.000	0.201	0.000
Vascular plants	8	0.915	0 314	0.097	0.085	0 761	-0.630	-0.216	0 702
Moesee	8	0.915	0.020	0.572	_0.545	_0.805	0.351	0.210	0.483
1105505	0	0.001	0.020	0.372	-0.040	-0.003	0.551	0.222	0.403

Table G14. Relationship between forest types and the species richness of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Residual degrees of freedom (df), p-values of a Fligner-Killeen test of homogeneity of variances, estimates (Est) for each forest type (UM = unmanaged deciduous forest, MD = Managed deciduous forest, MM = Managed Mixed beech-spruce forest, MS = Managed spruce forest), adjusted R² and p-values of ANOVAs are shown. Additionally the standard error (SE) of the multcomp comparison (Hothorn et al. 2010) is given.

					Species ric	hness			
Trophic guild	df	p> Fligner	p- value	adj- R ²	Est UF	Est MD	Est MM	Est MS	SE
Decomposer									
Mycetophage									
Coleoptera (APE)	8	0.731	0.151	0.266	0.263	0.382	0.376	-1.021	0.633
Coleoptera (FIT-Ć)	8	0.843	0.332	0.082	0.576	-0.608	-0.368	0.400	0.708
Coleoptera (FIT-U)	8	0.923	0.734	-0.182	-0.126	0.446	-0.438	0.118	0.803
Saprophage									
Coleoptera (PT)	8	0.928	0.001	0.805	0.096	1.231	-0.375	-0.953	0.326
Fungi (soil saprophytes)	8	0.899	0.164	0 249	-0.541	-0.513	0.881	0.173	0.640
Isopoda (PT)	8	0.919	0.003	0.731	1 077	0.215	-0.215	-1.077	0.383
Xvlophage	0	0.717	0.000	0.701	1.077	0.210	0.210	1.077	0.000
Colooptora (APE)	8	0.926	0.082	0 378	0.657	0.028	0.261	0 531	0 582
Coleoptera (FIT C)	0	0.920	0.002	0.077	0.037	-0.928	0.005	0.025	0.302
Coleoptera (FIT-U)	0	0.917	0.405	0.027	0.070	-0.047	0.005	-0.035	0.720
Coleoptera (FII-O)	0	0.976	0.969	-0.555	0.240	-0.100	-0.123	-0.023	0.655
Fungi (wood/bark species)	8	0.858	0.064	0.419	0.859	0.220	-0.112	-0.967	0.563
Predator									
Big	0	0.01/	0.040	0.400	1.0/0	0.004	0.107	0.050	0.500
Birds (breeding)	8	0.946	0.040	0.488	1.060	-0.094	-0.107	-0.859	0.529
Birds (overwintering)	8	0.727	0.034	0.509	0.519	0.105	0.540	-1.165	0.517
Small									
Araneae (APE)	8	0.624	0.446	-0.003	0.635	0.099	-0.621	-0.112	0.740
Coleoptera (APE)	8	0.863	0.075	0.394	0.311	0.871	-0.841	-0.341	0.575
Coleoptera (FIT-C)	8	0.731	0.131	0.294	0.640	0.495	-0.282	-0.853	0.620
Coleoptera (FIT-U)	8	0.863	0.793	-0.217	-0.269	-0.296	0.168	0.396	0.815
Coleoptera (PT)	8	0.672	0.025	0.548	-0.629	-0.705	1.008	0.326	0.496
Heteroptera (APE)	8	0.919	0.741	-0.186	-0.148	0.128	-0.423	0.442	0.804
Heteroptera (FIT-Ć)	8	0.877	0.016	0.594	0.756	0.696	-0.756	-0.696	0.471
Heteroptera (FIT-U)	8	0.665	0.217	0.187	-0.883	0.648	0.102	0.132	0.666
Neuropterida (APE)	8	0 714	0.553	-0.073	-0.561	0 579	0.053	-0.071	0 765
Neuropterida (FIT-C)	8	0.946	0.555	-0.075	-0.166	0.682	-0.377	-0.139	0.766
Neuropterida (FIT-U)	8	0.672	0.410	0.022	0.363	_0.342	0.545	-0.566	0.730
Opilionos (APE)	8	0.672	0.910	0.022	0.303	0.063	0.189	0.315	0.750
Opiliones (PT)	0	0.001	0.502	-0.222	-0.441	-0.003	0.109	0.313	0.010
Horbiyoro	0	0.957	0.500	-0.040	-0.078	-0.032	0.230	0.452	0.755
Chawar									
Colooptono (ADE)	0	0.044	0.066	0.412	0.625	0 669	0 500	0.704	0 566
Coleoptera (APE)	8	0.944	0.066	0.412	0.625	0.668	-0.500	-0.794	0.566
Coleoptera (FII-C)	8	0.931	0.501	-0.041	0.532	0.307	-0.421	-0.419	0.753
Coleoptera (FII-U)	8	0.951	0.164	0.249	0.774	0.342	-0.664	-0.451	0.640
Coleoptera (GPE)	8	0.081	0.026	0.591	0.564	0.630	-1.081	-0.169	0.467
Sucker									
Heteroptera (APE)	8	0.612	0.377	0.046	0.314	0.614	-0.545	-0.383	0.721
Heteroptera (FIT-C)	8	0.415	0.957	-0.324	-0.116	0.270	-0.154	0.000	0.850
Heteroptera (FIT-U)	8	0.863	0.020	0.574	0.986	0.242	-0.992	-0.235	0.482
Symbiont									
Fungi (Mycorrhiza)	8	0.737	0.396	0.032	-0.782	0.397	0.343	0.042	0.726
Producer									
Vascular plants	8	0.868	0.518	-0.051	-0.657	0.356	0.378	-0.077	0.757
Mosses	8	0.951	0.047	0.464	-0.606	-0.715	0.462	0.859	0.541
	-								

Table G15. Relationship between forest types and the diversity of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Residual degrees of freedom (df), p-values of a Fligner-Killeen test of homogeneity of variances, estimates (Est) for each forest type (UM = unmanaged deciduous forest, MD = Managed deciduous forest, MM = Managed Mixed beech-spruce forest, MS = Managed spruce forest), adjusted R² and p-values of ANOVAs are shown. Additionally the standard error (SE) of the multcomp comparison (Hothorn et al. 2010) is given.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Diversity								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trophic guild	df	p> Fligner	p- value	adj- R ²	Est UF	Est MD	Est MM	Est MS	SE
$\begin{array}{c} \mbox{Myceircs} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Decomposer									
	Mycetophage									
$\begin{array}{c} {\rm Coleoptera}({\rm FT-C}) & 8 & 0.672 & 0.588 & -0.095 & 0.551 & 0.185 & -0.339 & -0.390 & 0.773 \\ {\rm Coleoptera}({\rm FT-U}) & 8 & 0.502 & 0.086 & 0.371 & -1.014 & 0.729 & 0.258 & 0.027 & 0.586 \\ {\rm Saprophage} & & & & & & & & & & & & & & & & & & &$	Coleoptera (APE)	8	0.802	0.028	0.534	0.343	0.509	0.363	-1.214	0.504
$\begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Coleoptera (FIT-C)	8	0.672	0.588	-0.095	0.551	0.185	-0.339	-0.397	0.773
Saprophage Cole Loc Loc <thloc< th=""> Loc <thloc< th=""> <thlo< td=""><td>Coleoptera (FIT-U)</td><td>8</td><td>0.502</td><td>0.086</td><td>0.371</td><td>-1.014</td><td>0.729</td><td>0.258</td><td>0.027</td><td>0.586</td></thlo<></thloc<></thloc<>	Coleoptera (FIT-U)	8	0.502	0.086	0.371	-1.014	0.729	0.258	0.027	0.586
Colsoptera (PT) 8 0.930 0.793 -0.217 -0.051 -0.453 0.184 0.320 0.814 Fungi (soil aprophytes) 8 0.976 0.0480 0.462 -0.781 -0.451 0.973 0.228 0.542 Isopoda(PT) 8 0.737 0.105 0.336 0.396 -1.050 0.524 0.109 -0.441 Coleoptera (APE) 8 0.737 0.105 0.336 0.396 -1.050 0.524 0.130 0.602 Coleoptera (FIT-U) 8 0.814 0.019 0.576 1.196 -0.700 -0.375 -0.120 0.481 Coleoptera (FIT-U) 8 0.843 0.163 0.250 0.951 -0.087 -0.235 -0.629 0.640 Predator Bir Birds (breeding) 8 0.774 0.088 0.366 1.081 -0.227 -1.405 0.182 Small Ararea (APE) 8 0.489 0.189 0.218 0.591 0.068 <t< td=""><td>Saprophage</td><td>Ũ</td><td>0.002</td><td>0.000</td><td>0107 1</td><td>11011</td><td>017 27</td><td>0.200</td><td>0102</td><td>0.000</td></t<>	Saprophage	Ũ	0.002	0.000	0107 1	11011	017 27	0.200	0102	0.000
Fungi (soil saprophytes) 8 0.972 0.048 0.462 -0.780 -0.451 0.973 0.228 0.542 Isopoda(PT) 8 0.769 0.090 0.363 0.060 -0.628 1.009 -0.441 0.589 Valophage 0 0.073 0.155 0.336 0.396 -1.050 0.524 0.0441 0.576 Coleoptera (FT-C) 8 0.740 0.072 0.400 0.099 1.010 -0.708 -0.401 0.572 Fungi (wood/bark species) 8 0.740 0.072 0.400 0.099 1.010 -0.708 -0.401 0.572 Predator Birds (overwintering) 8 0.774 0.088 0.366 1.081 -0.232 -0.209 -0.550 0.588 Small Araneae (APE) 8 0.481 0.018 0.218 0.291 0.068 0.271 -0.931 0.653 Small Araneae (APE) 8 0.851 0.664 -0.141 0.354	Coleoptera (PT)	8	0.930	0 793	-0.217	-0.051	-0.453	0 184	0.320	0.815
Ling (constraint) S 0.773 0.774 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.7741 0.753 Coleoptera (APE) 8 0.737 0.105 0.336 0.396 -1.050 0.524 0.130 0.602 Coleoptera (FIT-C) 8 0.814 0.019 0.576 1.196 -0.700 -0.420 0.441 0.572 Fungi (wood/bark species) 8 0.774 0.077 0.400 0.099 1.010 -0.708 -0.420 0.440 Predator Big Birds (overwintering) 8 0.624 0.000 0.393 0.284 0.257 -1.405 0.182 Small Araneae (APE) 8 0.851 0.664 -0.141 0.354 0.353 -0.420 -0.288 0.789 Coleoptera (FIT-C) 8 0.851 0.664 -0.141 0.354 0.353 -0.420 -0.288 0.789 0.157 0.157 0.15	Fungi (soil saprophytes)	8	0.900	0.048	0.462	_0.780	-0.451	0.973	0.258	0.542
Tsippolar Top B 0.703 0.090 0.900 -0.900 -0.925 1.009 -0.941 0.939 Sylophage Coleoptera (FIT-C) 8 0.814 0.019 0.576 1.196 -0.700 -0.375 -0.120 0.481 Coleoptera (FIT-C) 8 0.814 0.019 0.576 1.196 -0.700 -0.375 -0.120 0.481 Coleoptera (FIT-U) 8 0.740 0.072 0.400 0.099 1.010 -0.708 -0.29 0.640 Predator Birds (overwintering) 8 0.774 0.088 0.366 1.081 -0.322 -0.209 -0.550 0.588 Birds (overwintering) 8 0.624 0.000 0.939 0.863 0.284 0.257 -1.405 0.182 Small Arareae (APE) 8 0.489 0.189 0.218 0.591 0.068 0.271 -0.931 0.653 Coleoptera (FIT-C) 8 0.851 0.395 0.033	Isopoda(PT)	8	0.770	0.040	0.363	0.700	0.431	1 000	0.441	0.542
Coleoptera (APE) 8 0.737 0.105 0.336 0.396 -1.050 0.524 0.130 0.602 Coleoptera (FIT-C) 8 0.814 0.019 0.576 1.196 -0.700 -0.375 -0.120 0.481 Coleoptera (FIT-U) 8 0.740 0.072 0.400 0.099 1.010 -0.708 -0.401 0.572 Fungi (wood/bark species) 8 0.843 0.163 0.250 0.951 -0.087 -0.235 -0.629 0.640 Predator Birds (overwintering) 8 0.624 0.000 0.939 0.863 0.284 0.257 -1.405 0.183 Araneae (APE) 8 0.489 0.189 0.218 0.591 0.068 0.271 -0.931 0.653 Coleoptera (FIT-C) 8 0.851 0.664 -0.141 0.354 0.353 -0.420 -0.288 0.789 Coleoptera (FIT-U) 8 0.923 0.588 -0.091 0.769 -0.515 -0	Yvlophago	0	0.709	0.090	0.505	0.000	-0.028	1.009	-0.441	0.569
Coleoptera (FIT-C) 8 0.737 0.103 0.538 0.538 0.737 0.120 0.482 Coleoptera (FIT-C) 8 0.740 0.072 0.400 0.099 1.010 -0.735 -0.120 0.481 Coleoptera (FIT-C) 8 0.740 0.072 0.400 0.099 1.010 -0.735 -0.120 0.481 Fungi (wood/bark species) 8 0.741 0.088 0.366 1.081 -0.235 -0.629 0.640 Predator Birds (breeding) 8 0.774 0.088 0.366 1.081 -0.322 -0.209 -0.550 0.588 Small	Colooptore (ADE)	0	0 727	0.105	0.226	0.206	1.050	0 524	0.120	0 602
Coleoptera (FIT-C) 8 0.514 0.019 0.576 1.795 -0.700 -0.573 -0.120 0.461 Coleoptera (FIT-U) 8 0.744 0.072 0.400 0.099 1.010 -0.708 -0.401 0.572 Fungi (wood/bark species) 8 0.843 0.163 0.250 0.951 -0.087 -0.235 -0.629 0.640 Predator Birds (breeding) 8 0.774 0.088 0.366 1.081 -0.322 -0.209 -0.550 0.588 Birds (overwintering) 8 0.624 0.000 0.939 0.863 0.284 0.257 -1.405 0.182 Small Araneae (APE) 8 0.489 0.189 0.218 0.591 0.068 0.271 -0.931 0.653 Coleoptera (PT-U) 8 0.481 0.664 -0.141 0.354 0.353 -0.175 0.713 0.726 Coleoptera (PT) 8 0.830 0.239 0.165 -0.685 -0.352	Coleoptera (AFE)	0	0.757	0.105	0.556	0.396	-1.050	0.324	0.130	0.002
Colleoptera (F11-C) 8 0.740 0.072 0.400 0.099 1.010 -0.708 -0.401 0.572 Fungi (wood/bark species) 8 0.843 0.163 0.250 0.951 -0.089 -0.235 -0.629 0.629 Predator Big Birds (breeding) 8 0.774 0.088 0.366 1.081 -0.322 -0.209 -0.550 0.588 Birds (overwintering) 8 0.624 0.000 0.939 0.863 0.284 0.257 -1.405 0.182 Small Araneae (APE) 8 0.489 0.189 0.218 0.591 0.068 0.271 -0.931 0.653 Coleoptera (PTF-C) 8 0.851 0.664 -0.141 0.354 -0.429 -0.156 0.773 Coleoptera (PTF-C) 8 0.830 0.239 0.165 -0.585 -0.679 -0.515 -0.160 0.322 0.774 Heteroptera (PTF-C) 8 0.831 0.592 -0.091 0.155	Coleoptera (FIT-C)	0	0.014	0.019	0.376	1.196	-0.700	-0.575	-0.120	0.401
rungi (woodpark species) 8 0.843 0.163 0.250 0.951 -0.087 -0.235 -0.629 0.640 Predator Birds (breeding) 8 0.774 0.088 0.366 1.081 -0.322 -0.209 -0.550 0.588 Birds (overwintering) 8 0.624 0.000 0.939 0.863 0.284 0.257 -1.405 0.182 Small Araneae (APE) 8 0.489 0.189 0.218 0.591 0.068 0.271 -0.931 0.653 Coleoptera (FIT-C) 8 0.923 0.588 -0.095 0.351 -0.569 0.375 -0.167 0.773 Coleoptera (FIT-U) 8 0.961 0.395 0.033 -0.091 0.769 -0.515 -0.163 0.774 Coleoptera (FIT-U) 8 0.831 0.592 -0.085 -0.032 0.671 0.366 0.675 Heteroptera (APE) 8 0.831 0.592 -0.098 -0.016 0.323 -0.679 0.140 0.704 Heteroptera (FIT-U) 8 0.873	Coleoptera (FII-U)	8	0.740	0.072	0.400	0.099	1.010	-0.708	-0.401	0.572
Predator Big Birds (breeding) 8 0.774 0.088 0.366 1.081 -0.322 -0.209 -0.550 0.588 Birds (overwintering) 8 0.624 0.000 0.939 0.863 0.284 0.257 -1.405 0.182 Small	Fungi (wood/bark species)	8	0.843	0.163	0.250	0.951	-0.087	-0.235	-0.629	0.640
Big Birds (breeding) 8 0.774 0.088 0.366 1.081 -0.322 -0.209 -0.550 0.588 Birds (overwintering) 8 0.624 0.000 0.939 0.863 0.284 0.257 -1.405 0.182 Small	Predator									
Birds (breeding) 8 0.774 0.088 0.366 1.081 -0.322 -0.209 -0.550 0.588 Birds (overwintering) 8 0.624 0.000 0.939 0.863 0.284 0.257 -1.405 0.182 Small Araneae (APE) 8 0.489 0.189 0.218 0.591 0.068 0.271 -0.931 0.653 Coleoptera (FIT-C) 8 0.923 0.588 -0.095 0.351 -0.569 0.375 -0.157 0.773 Coleoptera (FIT-U) 8 0.961 0.395 0.033 -0.091 0.769 -0.352 0.671 0.366 0.625 Heteroptera (APE) 8 0.830 0.229 -0.098 -0.016 0.323 -0.629 0.322 0.774 Heteroptera (FIT-U) 8 0.919 0.669 -1.097 0.557 0.416 0.125 0.568 Neuropterida (FIT-U) 8 0.576 -0.044 -0.311 0.709 -0.651 -0.352 <td>Big</td> <td>0</td> <td>0 == 1</td> <td>0.000</td> <td>0.044</td> <td>4 004</td> <td></td> <td>0.000</td> <td>00</td> <td>0 =00</td>	Big	0	0 == 1	0.000	0.044	4 004		0.000	00	0 =00
Birds (overwintering) 8 0.624 0.000 0.939 0.863 0.284 0.257 -1.405 0.182 Small Araneae (APE) 8 0.489 0.189 0.218 0.591 0.068 0.271 -0.931 0.653 Coleoptera (PTC) 8 0.851 0.664 -0.141 0.353 -0.420 -0.288 0.789 Coleoptera (PTC) 8 0.923 0.033 -0.091 0.769 -0.515 -0.163 0.726 Coleoptera (PT) 8 0.830 0.239 0.165 -0.085 -0.352 0.671 0.366 0.675 Heteroptera (PTLC) 8 0.831 0.592 -0.098 -0.016 0.323 -0.629 0.322 0.774 Heteroptera (FT-U) 8 0.596 0.320 0.091 0.155 0.660 -0.705 -0.140 0.704 Neuropterida (FT-U) 8 0.873 0.483 -0.028 0.271 0.457 -0.688 -0.040 0.749	Birds (breeding)	8	0.774	0.088	0.366	1.081	-0.322	-0.209	-0.550	0.588
Small Araneae (APE) 8 0.489 0.189 0.218 0.591 0.068 0.271 -0.931 0.633 Coleoptera (APE) 8 0.923 0.588 -0.095 0.351 -0.569 0.375 -0.157 0.773 Coleoptera (FIT-U) 8 0.961 0.395 0.033 -0.091 0.769 -0.515 -0.163 0.726 Coleoptera (FIT-U) 8 0.830 0.239 0.165 -0.685 -0.352 0.671 0.366 0.675 Heteroptera (FIT-C) 8 0.831 0.592 -0.098 -0.016 0.323 -0.629 0.322 0.774 Heteroptera (FIT-U) 8 0.919 0.069 0.406 -1.097 0.557 0.416 0.125 0.569 Neuropterida (FIT-C) 8 0.873 0.483 -0.028 0.271 0.457 -0.688 -0.040 0.749 Neuropterida (FIT-C) 8 0.873 0.467 -0.361 0.419 -0.525 0.742 </td <td>Birds (overwintering)</td> <td>8</td> <td>0.624</td> <td>0.000</td> <td>0.939</td> <td>0.863</td> <td>0.284</td> <td>0.257</td> <td>-1.405</td> <td>0.182</td>	Birds (overwintering)	8	0.624	0.000	0.939	0.863	0.284	0.257	-1.405	0.182
Arancae (APE) 8 0.489 0.189 0.218 0.591 0.068 0.271 -0.931 0.653 Coleoptera (FIT-C) 8 0.851 0.664 -0.041 0.354 0.333 -0.420 -0.288 0.789 Coleoptera (FIT-C) 8 0.923 0.588 -0.091 0.769 -0.515 -0.163 0.726 Coleoptera (FIT-C) 8 0.830 0.239 0.165 -0.685 -0.352 0.671 0.366 0.675 Heteroptera (APE) 8 0.831 0.592 -0.098 -0.016 0.323 -0.629 0.322 0.774 Heteroptera (FIT-U) 8 0.996 0.320 0.091 0.155 0.690 -0.705 -0.140 0.704 Neuropterida (APE) 8 0.816 0.507 -0.046 -1.097 0.557 0.416 0.125 0.569 Neuropterida (APE) 8 0.873 0.483 -0.028 0.271 0.457 -0.688 -0.040 0.749 Opiliones (APE) 8 0.474 0.257 0.667 -0.361<	Small	_								
$\begin{array}{c ccccc} Coleoptera (APE) & 8 & 0.851 & 0.664 & -0.141 & 0.354 & 0.353 & -0.420 & -0.288 & 0.789 \\ Coleoptera (FIT-C) & 8 & 0.923 & 0.588 & -0.095 & 0.351 & -0.569 & 0.375 & -0.157 & 0.773 \\ Coleoptera (FIT-U) & 8 & 0.830 & 0.239 & 0.165 & -0.685 & -0.352 & 0.671 & 0.366 & 0.675 \\ Heteroptera (APE) & 8 & 0.831 & 0.592 & -0.098 & -0.016 & 0.323 & -0.629 & 0.322 & 0.774 \\ Heteroptera (FIT-C) & 8 & 0.596 & 0.320 & 0.091 & 0.155 & 0.690 & -0.705 & -0.140 & 0.704 \\ Heteroptera (FIT-C) & 8 & 0.816 & 0.507 & -0.044 & -0.311 & 0.709 & -0.051 & -0.347 & 0.755 \\ Neuropterida (APE) & 8 & 0.816 & 0.507 & -0.044 & -0.311 & 0.709 & -0.051 & -0.347 & 0.755 \\ Neuropterida (FIT-C) & 8 & 0.873 & 0.483 & -0.028 & 0.271 & 0.457 & -0.688 & -0.040 & 0.749 \\ Neuropterida (FIT-C) & 8 & 0.774 & 0.291 & 0.166 & -0.371 & -0.094 & -0.358 & 0.823 & 0.715 \\ Opiliones (APE) & 8 & 0.407 & 0.357 & 0.061 & -0.371 & -0.094 & -0.358 & 0.823 & 0.715 \\ Opiliones (APE) & 8 & 0.644 & 0.002 & 0.753 & 0.151 & 1.167 & -0.338 & -0.980 & 0.367 \\ Coleoptera (FIT-C) & 8 & 0.875 & 0.455 & -0.010 & 0.274 & -0.492 & -0.368 & 0.587 & 0.742 \\ Coleoptera (FIT-C) & 8 & 0.875 & 0.455 & -0.010 & 0.274 & -0.492 & -0.368 & 0.587 & 0.742 \\ Coleoptera (APE) & 8 & 0.666 & 0.075 & 0.393 & 0.921 & 0.285 & -0.700 & -0.506 & 0.575 \\ Coleoptera (FIT-C) & 8 & 0.842 & 0.702 & -0.182 & 0.451 & 0.132 & -0.469 & -0.172 & 0.794 \\ Sucker & & & & & & & & & & & & & & & & & & &$	Araneae (APE)	8	0.489	0.189	0.218	0.591	0.068	0.271	-0.931	0.653
$\begin{array}{c ccccc} Coleoptera (FIT-C) & 8 & 0.923 & 0.588 & -0.095 & 0.351 & -0.569 & 0.375 & -0.157 & 0.773 \\ Coleoptera (FIT-U) & 8 & 0.961 & 0.395 & 0.033 & -0.091 & 0.769 & -0.515 & -0.163 & 0.726 \\ Coleoptera (PT) & 8 & 0.830 & 0.239 & 0.165 & -0.685 & -0.352 & 0.671 & 0.366 & 0.675 \\ Heteroptera (APE) & 8 & 0.831 & 0.592 & -0.098 & -0.016 & 0.323 & -0.629 & 0.322 & 0.774 \\ Heteroptera (FIT-C) & 8 & 0.596 & 0.320 & 0.091 & 0.155 & 0.690 & -0.705 & -0.140 & 0.704 \\ Heteroptera (FIT-U) & 8 & 0.919 & 0.069 & 0.406 & -1.097 & 0.557 & 0.416 & 0.125 & 0.569 \\ Neuropterida (APE) & 8 & 0.816 & 0.507 & -0.044 & -0.311 & 0.709 & -0.051 & -0.347 & 0.755 \\ Neuropterida (FIT-C) & 8 & 0.873 & 0.483 & -0.028 & 0.271 & 0.457 & -0.688 & -0.040 & 0.749 \\ Neuropterida (FIT-U) & 8 & 0.773 & 0.454 & -0.009 & 0.467 & -0.361 & 0.419 & -0.525 & 0.742 \\ Opiliones (APE) & 8 & 0.407 & 0.357 & 0.061 & -0.371 & -0.094 & -0.358 & 0.823 & 0.715 \\ Opiliones (PT) & 8 & 0.774 & 0.291 & 0.116 & -0.816 & -0.031 & 0.573 & 0.274 & 0.694 \\ Herbivore \\ Coleoptera (FIT-C) & 8 & 0.875 & 0.455 & -0.010 & 0.274 & -0.492 & -0.368 & 0.587 & 0.742 \\ Coleoptera (FIT-C) & 8 & 0.676 & 0.075 & 0.393 & 0.921 & 0.285 & -0.700 & -0.506 & 0.575 \\ Coleoptera (FIT-C) & 8 & 0.816 & 0.331 & 0.083 & 0.765 & -0.003 & -0.133 & -0.629 & 0.707 \\ Heteroptera (APE) & 8 & 0.816 & 0.331 & 0.083 & 0.765 & -0.003 & -0.133 & -0.629 & 0.707 \\ Heteroptera (FIT-C) & 8 & 0.866 & 0.735 & -0.183 & -0.336 & 0.214 & 0.417 & -0.294 & 0.803 \\ Heteroptera (FIT-U) & 8 & 0.888 & 0.548 & -0.071 & 0.225 & 0.273 & -0.704 & 0.206 & 0.764 \\ Symbiont & & & & & & & & & & & & & & & & & & &$	Coleoptera (APE)	8	0.851	0.664	-0.141	0.354	0.353	-0.420	-0.288	0.789
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-C)	8	0.923	0.588	-0.095	0.351	-0.569	0.375	-0.157	0.773
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-U)	8	0.961	0.395	0.033	-0.091	0.769	-0.515	-0.163	0.726
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Coleoptera (PT)	8	0.830	0.239	0.165	-0.685	-0.352	0.671	0.366	0.675
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Heteroptera (APE)	8	0.831	0.592	-0.098	-0.016	0.323	-0.629	0.322	0.774
Heteroptera (FIT-U) 8 0.919 0.069 0.406 -1.097 0.557 0.416 0.125 0.569 Neuropterida (APE) 8 0.816 0.507 -0.044 -0.311 0.709 -0.051 -0.347 0.755 Neuropterida (FIT-C) 8 0.873 0.483 -0.028 0.271 0.457 -0.688 -0.040 0.749 Neuropterida (FIT-U) 8 0.703 0.454 -0.009 0.467 -0.361 0.419 -0.555 0.742 Opiliones (APE) 8 0.407 0.357 0.061 -0.371 -0.094 -0.358 0.823 0.712 Opiliones (PT) 8 0.774 0.291 0.116 -0.816 -0.031 0.573 0.274 0.694 Herbivore C Coleoptera (APE) 8 0.644 0.002 0.753 0.151 1.167 -0.338 -0.980 0.367 Coleoptera (APE) 8 0.875 0.455 -0.010 0.274 -0.492	Heteroptera (FIT-Ć)	8	0.596	0.320	0.091	0.155	0.690	-0.705	-0.140	0.704
Neuropterida (APE) 8 0.816 0.507 -0.044 -0.311 0.709 -0.051 -0.347 0.755 Neuropterida (FIT-C) 8 0.873 0.483 -0.028 0.271 0.457 -0.688 -0.040 0.749 Neuropterida (FIT-U) 8 0.703 0.454 -0.009 0.467 -0.361 0.419 -0.525 0.742 Opiliones (APE) 8 0.407 0.357 0.061 -0.371 -0.094 -0.358 0.823 0.715 Opiliones (PT) 8 0.407 0.357 0.061 -0.371 -0.094 -0.358 0.823 0.715 Herbivore Coleoptera (PT) 8 0.774 0.291 0.116 -0.816 -0.031 0.573 0.274 0.694 Herbivore Coleoptera (APE) 8 0.676 0.075 0.393 0.921 -0.368 0.587 0.742 Coleoptera (GPE) 8 0.842 0.702 -0.182 0.451 0.132 -0.469	Heteroptera (FIT-U)	8	0.919	0.069	0.406	-1.097	0.557	0.416	0.125	0.569
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Neuropterida (APE)	8	0.816	0.507	-0.044	-0.311	0.709	-0.051	-0.347	0.755
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Neuropterida (FIT-C)	8	0.873	0.483	-0.028	0.271	0.457	-0.688	-0.040	0.749
Opiliones (APE) 8 0.407 0.357 0.061 -0.371 -0.094 -0.358 0.823 0.715 Opiliones (PT) 8 0.774 0.291 0.116 -0.816 -0.031 0.573 0.274 0.694 Herbivore Chewer Coleoptera (APE) 8 0.644 0.002 0.753 0.151 1.167 -0.338 -0.980 0.367 Coleoptera (FIT-C) 8 0.875 0.455 -0.010 0.274 -0.492 -0.368 0.587 0.742 Coleoptera (FIT-U) 8 0.676 0.075 0.393 0.921 0.285 -0.700 -0.506 0.575 Coleoptera (GPE) 8 0.842 0.702 -0.182 0.451 0.132 -0.469 -0.172 0.794 Sucker - - 8 0.816 0.331 0.083 0.765 -0.003 -0.133 -0.629 0.707 Heteroptera (APE) 8 0.816 0.331 0.083 0.765 -0.0	Neuropterida (FIT-U)	8	0.703	0.454	-0.009	0.467	-0.361	0.419	-0.525	0.742
Opiniones (PT) 8 0.774 0.291 0.116 -0.817 0.091 0.573 0.274 0.694 Herbivore Chewer Coleoptera (APE) 8 0.644 0.002 0.753 0.151 1.167 -0.338 -0.980 0.367 Coleoptera (APE) 8 0.644 0.002 0.753 0.151 1.167 -0.338 -0.980 0.367 Coleoptera (FIT-C) 8 0.875 0.455 -0.010 0.274 -0.492 -0.368 0.587 0.742 Coleoptera (FIT-U) 8 0.676 0.075 0.393 0.921 0.285 -0.700 -0.506 0.575 Coleoptera (GPE) 8 0.842 0.702 -0.182 0.451 0.132 -0.469 -0.172 0.794 Sucker - - - - 0.833 -0.625 0.273 -0.704 0.206 0.764 Symbiont - - - - 0.273 -0.707 0.280 0.314 </td <td>Opiliones (APE)</td> <td>8</td> <td>0.407</td> <td>0.357</td> <td>0.061</td> <td>-0.371</td> <td>-0.094</td> <td>-0.358</td> <td>0.823</td> <td>0.715</td>	Opiliones (APE)	8	0.407	0.357	0.061	-0.371	-0.094	-0.358	0.823	0.715
Herbivore Coleoptera (APE) 8 0.644 0.002 0.753 0.151 1.167 -0.338 -0.980 0.367 Coleoptera (FIT-C) 8 0.875 0.455 -0.010 0.274 -0.492 -0.368 0.587 0.742 Coleoptera (FIT-C) 8 0.676 0.075 0.393 0.921 0.285 -0.700 -0.506 0.575 Coleoptera (GPE) 8 0.842 0.702 -0.182 0.451 0.132 -0.469 -0.172 0.794 Sucker - - - 8 0.842 0.702 -0.182 0.451 0.132 -0.469 -0.172 0.794 Sucker - - - - - -0.499 -0.133 -0.629 0.707 Heteroptera (APE) 8 0.816 0.331 0.083 0.765 -0.003 -0.133 -0.629 0.707 Heteroptera (FIT-C) 8 0.966 0.735 -0.183 -0.336 0.214 0.417 -0.294 0.803 Heteroptera (FIT-U) 8 0.888	Opiliones (PT)	8	0.774	0.291	0.116	-0.816	-0.031	0.573	0 274	0.694
Chewer Coleoptera (APE) 8 0.644 0.002 0.753 0.151 1.167 -0.338 -0.980 0.367 Coleoptera (FIT-C) 8 0.875 0.455 -0.010 0.274 -0.492 -0.368 0.587 0.742 Coleoptera (FIT-U) 8 0.676 0.075 0.393 0.921 0.285 -0.700 -0.506 0.575 Coleoptera (GPE) 8 0.842 0.702 -0.182 0.451 0.132 -0.469 -0.172 0.794 Sucker - - - - -0.499 -0.133 -0.629 0.707 Heteroptera (APE) 8 0.816 0.331 0.083 0.765 -0.003 -0.133 -0.629 0.707 Heteroptera (FIT-C) 8 0.966 0.735 -0.183 -0.336 0.214 0.417 -0.294 0.803 Heteroptera (FIT-U) 8 0.888 0.548 -0.071 0.225 0.273 -0.704 0.206 0.764 Symbiont - - - - 0.450 -0.	Herbivore	0	0.771	0.271	0.110	0.010	0.001	0.070	0.27 1	0.071
Coleoptera (APE) 8 0.644 0.002 0.753 0.151 1.167 -0.338 -0.980 0.367 Coleoptera (FIT-C) 8 0.875 0.455 -0.010 0.274 -0.492 -0.368 0.587 0.742 Coleoptera (FIT-U) 8 0.676 0.075 0.393 0.921 0.285 -0.700 -0.506 0.575 Coleoptera (GPE) 8 0.842 0.702 -0.182 0.451 0.132 -0.469 -0.172 0.794 Sucker - - - - 0.451 0.132 -0.469 -0.172 0.794 Sucker - - - 0.816 0.331 0.083 0.765 -0.003 -0.133 -0.629 0.707 Heteroptera (APE) 8 0.816 0.735 -0.183 -0.336 0.214 0.417 -0.294 0.803 Heteroptera (FIT-U) 8 0.888 0.548 -0.071 0.225 0.273 -0.704 0.206<	Chewer									
$\begin{array}{c} \text{Colcoptera} (\text{FIT-C}) & 8 & 0.875 & 0.452 & -0.010 & 0.274 & -0.492 & -0.368 & 0.587 & 0.742 \\ \text{Colcoptera} (\text{FIT-U}) & 8 & 0.875 & 0.455 & -0.010 & 0.274 & -0.492 & -0.368 & 0.587 & 0.742 \\ \text{Colcoptera} (\text{GPE}) & 8 & 0.842 & 0.702 & -0.182 & 0.451 & 0.132 & -0.469 & -0.172 & 0.794 \\ \text{Sucker} & & & & & & & & & & & & & & & & & & &$	Coleoptera (APE)	8	0 644	0.002	0.753	0 151	1 167	-0.338	-0.980	0 367
$\begin{array}{c} \text{Coleoptera (H1-C)} & 8 & 0.675 & 0.455 & -0.010 & -0.274 & -0.492 & -0.305 & 0.507 & 0.742 \\ \text{Coleoptera (FIT-U)} & 8 & 0.676 & 0.075 & 0.393 & 0.921 & 0.285 & -0.700 & -0.506 & 0.575 \\ \text{Coleoptera (GPE)} & 8 & 0.842 & 0.702 & -0.182 & 0.451 & 0.132 & -0.469 & -0.172 & 0.794 \\ \text{Sucker} & & & & & & & & & & & & & & & & & & &$	Colcoptora (FIT C)	8	0.875	0.002	0.010	0.131	0.492	0.368	0.587	0.742
Coleoptera (ITI-C) 8 0.870 0.070 0.073 0.393 0.321 0.285 -0.700 -0.300 0.375 Sucker - - - - - - - - - 0.172 0.794 Sucker - - - - - - - 0.132 - 0.451 0.132 - 0.469 - 0.794 Sucker - - - - - 0.133 - 0.629 0.707 Heteroptera (FIT-C) 8 0.966 0.735 - 0.183 - 0.336 0.214 0.417 - 0.294 0.803 Heteroptera (FIT-U) 8 0.888 0.548 - 0.071 0.225 0.273 - 0.704 0.206 0.764 Symbiont - - - - - 0.006 -0.514 0.564 0.308 -0.357 0.741 Producer - - - - - 0.206 0.777 0.637 0.280	Colcoptera (FIT-C)	8	0.676	0.433	0.303	0.274	0.492	0.300	0.506	0.742
Coleoptera (GFE) 8 0.642 0.702 -0.102 0.431 0.132 -0.469 -0.172 0.794 Sucker Heteroptera (APE) 8 0.816 0.331 0.083 0.765 -0.003 -0.133 -0.629 0.707 Heteroptera (FIT-C) 8 0.966 0.735 -0.183 -0.336 0.214 0.417 -0.294 0.803 Heteroptera (FIT-U) 8 0.888 0.548 -0.071 0.225 0.273 -0.704 0.206 0.764 Symbiont Fungi (Mycorrhiza) 8 0.802 0.450 -0.006 -0.514 0.564 0.308 -0.357 0.741 Producer Vascular plants 8 0.699 0.607 -0.107 -0.637 0.280 0.314 0.044 0.777 Mosses 8 0.667 0.855 -0.254 -0.280 -0.164 0.049 0.395 0.827	Coleoptera (CDE)	0	0.070	0.075	0.393	0.921	0.285	-0.700	-0.300	0.575
Bucker 8 0.816 0.331 0.083 0.765 -0.003 -0.133 -0.629 0.707 Heteroptera (FIT-C) 8 0.966 0.735 -0.183 -0.336 0.214 0.417 -0.294 0.803 Heteroptera (FIT-C) 8 0.888 0.548 -0.071 0.225 0.273 -0.704 0.206 0.764 Symbiont Fungi (Mycorrhiza) 8 0.802 0.450 -0.006 -0.514 0.564 0.308 -0.357 0.741 Producer Vascular plants 8 0.699 0.607 -0.107 -0.637 0.280 0.314 0.044 0.777 Mosses 8 0.667 0.855 -0.254 -0.280 -0.164 0.049 0.395 0.827	Coleopiera (GFE)	0	0.042	0.702	-0.162	0.431	0.132	-0.469	-0.172	0.794
Heteroptera (APE) 8 0.816 0.331 0.083 0.765 -0.003 -0.133 -0.629 0.707 Heteroptera (FIT-C) 8 0.966 0.735 -0.183 -0.336 0.214 0.417 -0.294 0.803 Heteroptera (FIT-U) 8 0.888 0.548 -0.071 0.225 0.273 -0.704 0.206 0.764 Symbiont - - - - - 0.564 0.308 -0.357 0.741 Producer - - - - - 0.667 -0.107 -0.637 0.280 0.314 0.044 0.777 Mosses 8 0.667 0.855 -0.254 -0.280 -0.164 0.049 0.395 0.827	Sucker	0	0.01/	0.221	0.002	0 7/5	0.002	0 1 2 2	0 (20)	0 707
Heteroptera (H1-C) 8 0.966 0.735 -0.183 -0.336 0.214 0.417 -0.294 0.803 Heteroptera (FIT-U) 8 0.888 0.548 -0.071 0.225 0.273 -0.704 0.206 0.764 Symbiont - - - - 0.514 0.564 0.308 -0.357 0.741 Producer - - - - - - 0.607 - 0.107 - 0.637 0.280 0.314 0.044 0.777 Mosses 8 0.667 0.855 - 0.254 - 0.280 0.314 0.044 0.777	Heteroptera (APE)	8	0.816	0.331	0.083	0.765	-0.003	-0.133	-0.629	0.707
Heteroptera (FII-U) 8 0.888 0.548 -0.0/1 0.225 0.273 -0.704 0.206 0.764 Symbiont - - - - - - 0.205 0.273 - 0.704 0.206 0.764 Symbiont - - - 0.006 - 0.514 0.564 0.308 - 0.357 0.741 Producer - - - - 0.607 - 0.107 - 0.637 0.280 0.314 0.044 0.777 Mosses 8 0.667 0.855 - 0.280 - 0.164 0.049 0.395 0.827	Heteroptera (FII-C)	8	0.966	0.735	-0.183	-0.336	0.214	0.417	-0.294	0.803
Symbiont Fungi (Mycorrhiza) 8 0.802 0.450 -0.006 -0.514 0.564 0.308 -0.357 0.741 Producer Vascular plants 8 0.699 0.607 -0.107 -0.637 0.280 0.314 0.044 0.777 Mosses 8 0.667 0.855 -0.254 -0.280 -0.164 0.049 0.395 0.827	Heteroptera (FII-U)	8	0.888	0.548	-0.071	0.225	0.273	-0.704	0.206	0.764
Fungi (Mycorrhiza) 8 0.802 0.450 -0.006 -0.514 0.564 0.308 -0.357 0.741 Producer Vascular plants 8 0.699 0.607 -0.107 -0.637 0.280 0.314 0.044 0.777 Mosses 8 0.667 0.855 -0.254 -0.280 -0.164 0.049 0.395 0.827	Symbiont									
Producer Vascular plants 8 0.699 0.607 -0.107 -0.637 0.280 0.314 0.044 0.777 Mosses 8 0.667 0.855 -0.254 -0.280 -0.164 0.049 0.395 0.827	Fungi (Mycorrhiza)	8	0.802	0.450	-0.006	-0.514	0.564	0.308	-0.357	0.741
Vascular plants 8 0.699 0.607 -0.107 -0.637 0.280 0.314 0.044 0.777 Mosses 8 0.667 0.855 -0.254 -0.280 -0.164 0.049 0.395 0.827	Producer									
Mosses 8 0.667 0.855 -0.254 -0.280 -0.164 0.049 0.395 0.827	Vascular plants	8	0.699	0.607	-0.107	-0.637	0.280	0.314	0.044	0.777
	Mosses	8	0.667	0.855	-0.254	-0.280	-0.164	0.049	0.395	0.827

Table G16. Relationship between forest types and the entropy of various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Residual degrees of freedom (df), p-values of a Fligner-Killeen test of homogeneity of variances, estimates (Est) for each forest type (UM = unmanaged deciduous forest, MD = Managed deciduous forest, MM = Managed Mixed beech-spruce forest, MS = Managed spruce forest), adjusted R² and p-values of ANOVAs are shown. Additionally the standard error (SE) of the multcomp comparison (Hothorn et al. 2010) is given.

	Entropy								
Trophic guild	df	p> Fligner	p- value	adj- R ²	Est UF	Est MD	Est MM	Est MS	SE
Decomposer									
Mycetophage									
Coleoptera (APE)	8	0.672	0.066	0.413	0.389	0.436	0.308	-1.133	0.566
Coleoptera (FIT-Ć)	8	0.773	0.810	-0.227	0.464	-0.014	-0.173	-0.277	0.818
Coleoptera (FIT-U)	8	0.873	0.017	0.589	-1.014	1.034	0.037	-0.058	0.474
Saprophage				010 07					
Coleoptera (PT)	8	0.731	0.822	-0.235	-0.165	-0.367	0.303	0.229	0.821
Fungi (soil saprophytes)	8	0.644	0.252	0.152	-0.428	-0.196	0.918	-0.293	0.680
Isonoda(PT)	8	0.830	0.017	0.587	-0.024	-0.716	1 180	-0.440	0.474
Xylophage	0	0.000	0.017	0.007	0.021	0.710	1.100	0.110	0.17 1
Coleoptera (APE)	8	0.981	0.987	_0 352	0 147	_0.166	0.006	0.014	0.859
Coleoptera (FIT-C)	8	0.901	0.048	0.462	1.026	-0.100	-0.570	0.186	0.542
Colcoptora (FIT II)	8	0.671	0.040	0.453	0.330	0.042	0.592	0.100	0.546
Eungi (wood/bark anagios)	0	0.000	0.031	0.455	0.339	0.935	0.100	-0.082	0.540
Prodator	0	0.875	0.149	0.200	0.001	0.080	-0.199	-0.762	0.032
Pia									
Dig Binda (broading)	0	0 697	0.125	0.202	1 010	0.242	0.115	0 560	0.617
Binds (breeding)	0	0.007	0.125	0.303	1.010	-0.342	-0.115	-0.360	0.017
birds (overwintering)	8	0.624	0.064	0.419	1.005	-0.036	-0.129	-0.839	0.563
Small	0	0 50/	0 1 0 0	0.244	0.025	0.002	0 107	0.02(0 500
Araneae (APE)	8	0.506	0.100	0.344	0.825	0.003	0.107	-0.936	0.598
Coleoptera (APE)	8	0.923	0.473	-0.022	0.457	0.417	-0.484	-0.390	0.747
Coleoptera (FII-C)	8	0.586	0.543	-0.068	0.480	-0.175	0.274	-0.579	0.763
Coleoptera (FII-U)	8	0.961	0.545	-0.068	-0.233	0.601	-0.489	0.122	0.763
Coleoptera (PT)	8	0.510	0.396	0.032	-0.579	-0.338	0.557	0.359	0.726
Heteroptera (APE)	8	0.762	0.009	0.654	-0.285	1.289	-0.493	-0.510	0.434
Heteroptera (FIT-C)	8	0.624	0.403	0.027	0.573	0.200	-0.711	-0.061	0.728
Heteroptera (FIT-U)	8	0.714	0.020	0.572	-0.983	1.048	-0.012	-0.053	0.483
Neuropterida (APE)	8	0.796	0.696	-0.160	-0.439	0.382	0.282	-0.225	0.795
Neuropterida (FIT-C)	8	0.991	0.442	-0.001	0.017	0.705	-0.532	-0.191	0.739
Neuropterida (FIT-U)	8	0.737	0.903	-0.286	0.171	-0.208	0.266	-0.228	0.837
Opiliones (APE)	8	0.606	0.067	0.412	-0.651	0.115	-0.485	1.022	0.566
Opiliones (PT)	8	0.982	0.505	-0.043	-0.719	0.095	0.354	0.271	0.754
Herbivore									
Chewer									
Coleoptera (APE)	8	0.686	0.005	0.700	0.209	1.082	-0.260	-1.031	0.405
Coleoptera (FIT-Ć)	8	0.774	0.604	-0.105	0.450	0.113	-0.610	0.047	0.776
Coleoptera (FIT-U)	8	0.558	0.008	0.657	0.826	0.661	-0.860	-0.627	0.432
Coleoptera (GPE)	8	0.723	0.111	0.363	0.849	0.228	-0.703	-0.562	0.583
Sucker									
Heteroptera (APE)	8	0.957	0.690	-0.156	0.458	-0.325	0.211	-0.343	0.794
Heteroptera (FIT-C)	8	0.659	0.415	0.018	-0.281	-0.165	0 794	-0.348	0.732
Heteroptera (FIT-U)	8	0.875	0.793	-0.217	0.173	0 200	-0.507	0.135	0.815
Symbiont	0	0.070	0.7 90	0.217	0.170	0.200	0.007	0.100	0.010
Fungi (Mycorrhiza)	8	0.687	0 768	-0.202	-0.059	0.004	0 459	-0.404	0.810
Producer	0	0.007	0.700	0.202	0.007	0.004	0.407	0.404	0.010
Vascular plante	8	0.875	0.621	-0.115	-0.628	0 306	0 277	0.044	0 780
Mossoe	8	0.375	0.021	0.074	0.020	0.500	0.277	0.540	0.700
1102262	0	0.700	0.042	0.074	-0.400	-0.379	0.437	0.540	0.711

Table G17. Number of cases (NC) in which a significant effect of forest types, combined land-use measures, single structural attributes and stand structural complexity indices on species abundance/richness/diversity/entropy was observed. Significant results based on jackknife analyses were only counted when all 4/3 (if unmanaged forests were kept) resamplings regarding forest type and 12 resamplings regarding the quantitative measures were significant. The second column gives the number of cases in which at least one of the community attributes showed a significant response of a particular trophic guild.

Explanatory variable	NC across organismic groups	NC across organismic groups and measures	Jackknifed NCs across organismic groups and measures
Maximum	35	140	140
Forest types (management categories)	19 (54%)	30 (21%)	5 (4%)/8 (6%)
Land-use measures			
'Naturalness'	18 (51%)	34 (24%)	20 (14%)
Silviculural management intensity (SMIG) [†]	19 (54%)	32 (23%)	20 (14%)
Silviculural management intensity (SMIV)†	19 (54%)	35 (25%)	20 (14%)
Silviculural management intensity (SMIVD) [†]	19 (54%)	36 (26%)	18 (13%)
Single structural attributes			
Maximum stand age (maxAge)	9 (26%)	18 (13%)	11 (8%)
Average stand age (avgAge years)	14 (40%)	26 (19%)	11 (8%)
Dead wood volume (DWV m^3/ha^{-1})	8 (23%)	12 (9%)	4 (3%)
Wood volume (WV $m^3 ha^{-1}$)	1 (3%)	1(1%)	0 (0%)
Basal area (G m^2 ha ⁻¹)	7 (20%)	9 (6%)	3 (2%)
Stand density (no. trees ha^{-1})	5 (14%)	7 (5%)	1 (1%)
Quadratic mean diameter (OMD cm)	0 (0%)	0 (0%)	0 (0%)
Arithmetic mean diameter (MD cm)	0 (0%)	0 (0%)	0 (0%)
Tree species richness (SR)	8 (23%)	11 (8%)	1 (1%)
Tree species diversity (SD)	8 (23%)	14 (10%)	5 (4%)
Proportion of conifers (Con)	15 (43%)	26 (19%)	14 (10%)
Proportion of broad-leaved trees excl. beech (OBL)	6 (17%)	7 (5%)	0 (0%)
Vertical structural diversity (VS)	5 (14%)	7 (5%)	1 (1%)
Horizontal structural diversity (HS)	2 (6%)	4 (3%)	0 (0%)
Stand structural complexity indices			
7 Attributes (Con, avgAge, SD, DWV, VS, HS, WV)	14 (40%)	25 (18%)	12 (9%)
4 Attributes (Con, avgAge, SD, DWV)	16 (46%)	29 (21%)	14 (10%)
3 AttributesA (Con avgAge, DWV)	17 (49%)	29 (21%)	16 (11%)
3 AttributesB (Con, avgAge, SD)	15 (43%)	25 (18%)	14 (10%)
3 AttributesC (Con, SD, DWV)	15 (43%)	31 (22%)	16 (11%)
3 AttributesD (avgAge, SD, DWV)	16 (46%)	24 (17%)	14 (10%)
2 AttributesA (Con, avgAge)	17 (49%)	28 (20%)	15 (11%)
2 AttributesB (Con, DWV)	17 (49%)	28 (20%)	14 (10%)
2 AttributesC (Con, SD)	15 (43%)	25 (18%)	11 (8%)
2 AttributesD (avgAge, DWV)	10 (29%)	19 (14%)	4 (3%)
2 AttributesE (avgAge, SD)	10 (29%)	20 (14%)	7 (5%)
2 AttributesF (SD, DWV)	12 (34%)	20 (14%)	12 (9%)

† See Schall and Ammer (2013).

Table G18. Effects of naturalness, measures of management intensity, and stand structural attributes regarding stand age and dead and living wood volume (see Table 1) on the abundance of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Decomposer Mycetophage								
Coleoptera (APE)	0.460	0 500	0.400	0.406	0.((2	0 (17	0.01/	0.252
Est	-0.460	0.502	0.488	0.496	-0.663	-0.61/	-0.016	0.352
$\frac{P}{R^2}$	0.185	0.239	0.220	0.231	0.492	0.411	-0.100	0.067
Coleoptera (FIT-C)	0.100	0.209	0.220	0.201	0.172	0.111	0.100	0.007
Est	-0.180	0.224	0.245	0.244	-0.205	-0.356	-0.015	0.236
P ₂	0.534	0.437	0.394	0.397	0.480	0.206	0.960	0.412
\mathbb{R}^2	-0.056	-0.032	-0.019	-0.020	-0.044	0.070	-0.100	-0.025
Coleoptera (FIT-U)	0.005	0.000	0.1(0	0.1(0	0.140	0.020	0.207	0.242
Est	-0.205	0.209	0.160	0.162	-0.148	-0.038	0.306	0.343
p P ²	0.479	0.470	0.583	0.577	0.612	0.896	0.282	0.224
Saprophage	-0.044	-0.041	-0.000	-0.005	-0.071	-0.070	0.020	0.050
Coleoptera (PT)								
Est	0.721	-0.804	-0.782	-0.762	0.529	0.597	0.070	-0.499
р	0.002	< 0.001	< 0.001	0.001	0.046	0.019	0.811	0.063
$\mathbf{\hat{R}}^2$	0.598	0.769	0.722	0.680	0.276	0.380	-0.093	0.234
Predator Small								
Araneae (APE)								
Est	-0.181	0.110	0.125	0.091	-0.026	-0.092	0.161	0.164
P ₂	0.532	0.706	0.669	0.755	0.930	0.753	0.581	0.572
\mathbb{R}^2	-0.056	-0.084	-0.079	-0.089	-0.099	-0.089	-0.065	-0.064
Coleoptera (APE)	0.040	0.405	0.000	0.044	0.100	0.010	0.007	0.007
Est	-0.040	-0.105	-0.083	-0.064	-0.133	0.010	0.006	-0.087
P_{P^2}	0.093	0.721	0.776	0.020	0.046	0.972	0.965	0.767
Coleoptera (FIT-C)	-0.098	-0.005	-0.091	-0.094	-0.070	-0.100	-0.100	-0.090
Est	0.403	-0.289	-0.327	-0.337	0.073	0.297	0.312	-0.134
р	0.147	0.311	0.249	0.233	0.804	0.298	0.272	0.645
R ²	0.118	0.013	0.044	0.053	-0.093	0.018	0.031	-0.076
Coleoptera (FIT-U)								
Est	-0.481	0.582	0.547	0.535	-0.275	-0.215	-0.089	0.299
p_{p_2}	0.075	0.024	0.037	0.043	0.338	0.456	0.762	0.293
K Colooptora (PT)	0.211	0.355	0.303	0.285	0.001	-0.038	-0.089	0.020
Est	0.262	_0 304	_0 271	_0.265	0 313	0 188	0.005	_0 321
n	0.202	0.285	0 344	0.356	0.271	0.100	0.005	0.521
R^2	-0.001	0.024	-0.001	-0.006	0.031	-0.052	-0.100	0.038
Herbivore								
Chewer								
Coleoptera (APE)								
Est	-0.163	0.084	0.077	0.057	-0.112	-0.011	0.145	-0.001
p_{p_2}	0.575	0.774	0.794	0.847	0.701	0.971	0.620	0.996
K Colooptoro (EIT C)	-0.064	-0.091	-0.092	-0.096	-0.083	-0.100	-0.072	-0.100
Fst (111-C)	0 439	-0.362	-0.379	-0.357	0.019	0.075	0.031	-0.151
n	0.110	0.197	0.175	0.205	0.948	0.798	0.916	0.603
R^2	0.159	0.076	0.094	0.071	-0.100	-0.092	-0.099	-0.069
Coleoptera (FIT-U)								
Est	-0.103	0.223	0.189	0.178	-0.196	-0.045	0.018	-0.120
P ₂	0.724	0.440	0.514	0.540	0.498	0.878	0.952	0.682
R ²	-0.086	-0.033	-0.052	-0.057	-0.048	-0.097	-0.100	-0.081
Coleoptera (GPE)	0.007	0.000	0.000	0.040	0.424	0.07/	0.2/7	0.000
Est	-0.227	0.223	0.220	0.242	-0.426	-0.376	-0.367	-0.033
$\frac{P}{R^2}$	-0.432	_0.400	-0.044	000	0.139	0.190	0.210	0.913
11	0.010	0.014	0.011	0.027	0.171	0.005	0.070	0.110

Table G18. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Producer Vascular plants Est P R ²	0.304 0.285 0.024	$-0.456 \\ 0.095 \\ 0.179$	-0.446 0.104 0.167	-0.421 0.127 0.139	0.302 0.288 0.023	0.266 0.353 0.005	$0.006 \\ 0.984 \\ -0.100$	$-0.203 \\ 0.484 \\ -0.045$
Table G19. Effects of stand structural attributes except stand age and wood volume (see Table 1) on the abundance of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Decomposer Mycetophage								
Coleoptera (APE)	0.404	0.0/7	0.424	0.404	0 5 (0	0 5 4 5	0 5 4	0.040
Est	0.424	0.367	-0.424	-0.404	0.569	-0.545	-0.564	0.343
$\frac{P}{R^2}$	0.124	0.191	0.124	0.140	0.028	0.038	0.030	0.224
Coleoptera (FIT-C)	0.142	0.001	0.142	0.11)	0.000	0.000	0.027	0.000
Est	0.361	0.396	0.003	-0.166	0.208	-0.085	0.013	-0.056
P ₂	0.199	0.154	0.993	0.569	0.473	0.770	0.964	0.848
R^2	0.075	0.111	-0.100	-0.063	-0.042	-0.09	-0.100	-0.096
Coleoptera (FII-U)	0.000	0.010	0.(00	0.456	0.0(0)	0.255	0.415	0.052
Est	0.299	0.018	-0.628	-0.456	0.268	-0.355	-0.415	-0.053
R^2	0.020	-0.100	0.431	0.180	-0.003	0.070	0.134	-0.096
Saprophage	0.020	0.100	0.101	0.100	0.000	0.070	0.101	0.070
Coleoptera (PT)								
Est	-0.644	-0.303	0.430	0.577	-0.819	0.558	0.548	-0.198
p ₂	0.009	0.287	0.118	0.026	< 0.001	0.033	0.037	0.493
K ²	0.457	0.023	0.149	0.347	0.801	0.318	0.303	-0.047
Small								
Araneae (APE)								
Est	0.313	0.245	-0.085	-0.273	0.217	0.158	0.028	-0.031
P ₂	0.270	0.394	0.772	0.341	0.454	0.586	0.923	0.915
R^2	0.032	-0.019	-0.090	< 0.001	-0.037	-0.066	-0.099	-0.099
Coleoptera (APE)	0.000	0.074	0.000	0.000	0.074	0.025	0.101	0.1(0
Est	-0.089	0.076	-0.282	0.009	-0.074	-0.035	-0.134	0.160
\mathbf{P}^2	-0.089	-0.092	0.324	-0.100	-0.093	-0.098	-0.045	-0.066
Coleoptera (FIT-C)	0.007	0.072	0.007	0.100	0.090	0.070	0.070	0.000
Est	-0.242	-0.290	0.342	0.264	-0.263	0.159	0.111	-0.455
P ₂	0.400	0.309	0.226	0.358	0.359	0.584	0.703	0.096
R ²	-0.021	0.013	0.057	-0.007	-0.007	-0.066	-0.083	0.178
Coleoptera (FII-U)	0.212	0.022	0.220	0.100	0 507	0.455	0.2(0	0.0(1
Est	0.313	-0.022	-0.339	-0.189	0.507	-0.455	-0.360	0.261
$\frac{P}{R^2}$	0.271	-0.099	0.230	-0.052	0.058	0.090	0.200	-0.008
Coleoptera (PT)	0.001	0.077	0.000	0.002	0.210	0.170	0.07 1	0.000
Est	-0.305	-0.174	0.176	0.168	-0.291	0.237	0.188	-0.100
P ₂	0.283	0.549	0.544	0.563	0.307	0.410	0.516	0.734
R^2	0.025	-0.059	-0.058	-0.062	0.014	-0.024	-0.052	-0.087
Herbivore								
Coleoptera (APF)								
Est	0.053	-0.068	-0.192	-0.269	0.210	-0.025	-0.274	-0.061
р	0.858	0.816	0.507	0.347	0.468	0.931	0.339	0.834
R^2	-0.096	-0.094	-0.050	-0.003	-0.041	-0.099	0.001	-0.095
Coleoptera (FIT-C)								
Est	-0.284	-0.090	0.378	0.235	-0.353	0.101	0.143	-0.221
p R^2	0.319	0.760	0.176	0.414	0.210	0.730	0.623	0.445
Coleoptera (FIT-U)	0.009	-0.009	0.095	-0.020	0.007	-0.000	-0.072	-0.034
Est	-0.162	-0.363	-0.007	0.077	0.249	-0.282	-0.358	0.189
р	0.578	0.196	0.980	0.793	0.387	0.323	0.203	0.514
₿²	-0.065	0.077	-0.100	-0.092	-0.017	0.007	0.072	-0.052
Coleoptera (GPE)								
Est	-0.084	0.043	-0.015	0.008	0.227	-0.331	-0.332	0.462
$p_{\mathbf{P}^2}$	0.784	0.888	0.962	0.980	0.451	0.263	0.260	0.104
K	-0.101	-0.109	-0.111	-0.111	-0.039	0.041	0.042	0.186

Table G19. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Producer Vascular plants Est P R ²	-0.295 0.302 0.017	-0.094 0.748 -0.088	-0.077 0.792 -0.092	-0.001 0.998 -0.100	-0.393 0.158 0.108	0.224 0.437 -0.032	0.129 0.659 -0.078	0.020 0.945 -0.099

Table G20. Effects of stand structural complexity indices (see Appendix A: Table A3) on the abundance of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown.

Trophic quild	7 A ttrib	4 A ttrib	3 A 44#ib A	3 A ttribP	3 AttribC	3 A thribD	2 A ttrib A	2 A ttribP	2 AttribC	2 A thribD	2 AttribE	2 Attribu
	Attrib	Attrib	AttribA	Attribb	Attribe	AttribD	AttribA	Attribb	Attribe	AttribD	Attribe	Auribr
Decomposer Mycetophage												
Coleoptera												
(APE)	0 546	0 5 4 2	0 501	0 572	0 520	0.465	0 509	0.400	0 5 4 2	0.2(2	0 522	0.295
ESt	-0.546 0.038	-0.545 0.039	-0.521 0.050	-0.573 0.027	-0.520 0.051	-0.465 0.087	-0.598 0.019	-0.492 0.067	-0.545 0.039	-0.263 0.360	-0.523 0.049	-0.385 0.167
R^2	0.300	0.296	0.265	0.341	0.263	0.191	0.380	0.226	0.296	-0.007	0.268	0.100
Coleoptera												
(FII-C) Fst	-0.186	-0.224	-0.216	-0.235	_0 199	-0.223	-0.245	-0.183	-0.206	-0 155	-0.247	-0.163
p_	0.522	0.437	0.455	0.415	0.492	0.441	0.395	0.529	0.477	0.594	0.391	0.575
\hat{R}^2	-0.054	-0.032	-0.037	-0.026	-0.047	-0.033	-0.019	-0.055	-0.043	-0.068	-0.018	-0.064
Coleoptera (FIT II)												
Est	-0.286	-0.243	-0.105	-0.334	-0.269	-0.194	-0.229	-0.117	-0.369	0.198	-0.386	-0.238
P ₂	0.317	0.399	0.720	0.238	0.348	0.504	0.427	0.688	0.189	0.494	0.167	0.409
R ²	0.010	-0.021	-0.085	0.050	-0.003	-0.050	-0.029	-0.082	0.083	-0.047	0.100	-0.024
Coleoptera												
(PT)												
Est	0.751	0.750	0.711	0.780	0.758	0.609	0.800	0.724	0.778	0.292	0.659	0.579
p R ²	0.001	0.001	0.002	0.000 0.718	0.001 0.672	0.398	0.000 0.759	0.606	0.000	0.015	0.007	0.025
Predator	0.000	0.007	0.000	011 10	0.072	0.070	011 0 2 2	0.000	0011	01010	01101	01001
Small												
Araneae (APE)	-0.158	_0 191	-0 122	-0 242	-0.202	-0 145	_0 198	-0.126	-0.257	0 074	-0.252	-0.156
p	0.586	0.511	0.676	0.400	0.486	0.618	0.494	0.665	0.371	0.799	0.380	0.592
R^2	-0.066	-0.051	-0.080	-0.021	-0.045	-0.072	-0.047	-0.079	-0.011	-0.093	-0.014	-0.067
Coleoptera												
Est	0.028	0.047	0.057	0.048	0.051	0.012	0.063	0.066	0.052	0.009	0.011	0.012
P ₂	0.923	0.874	0.846	0.870	0.861	0.967	0.828	0.822	0.859	0.977	0.971	0.967
R ² Colooptoro	-0.099	-0.097	-0.096	-0.097	-0.096	-0.100	-0.095	-0.094	-0.096	-0.100	-0.100	-0.100
(FIT-C)												
Est	0.264	0.351	0.336	0.296	0.352	0.416	0.279	0.339	0.284	0.339	0.309	0.435
p_{p^2}	0.358	0.213	0.235	0.300	0.211	0.132	0.330	0.231	0.321	0.230	0.277	0.113
Coleoptera	-0.007	0.066	0.051	0.018	0.066	0.133	0.004	0.054	0.008	0.054	0.028	0.155
(FIT-U)												
Est	-0.373	-0.394	-0.427	-0.397	-0.414	-0.236	-0.464	-0.465	-0.411	-0.150	-0.222	-0.230
$\frac{P}{R^2}$	0.183 0.087	0.157	0.121 0.145	0.155	0.135	-0.025	0.088	0.087	0.138 0.127	-0.007	-0.034	-0.029
Coleoptera	0.007	0.10)	0.110	0.112	0.100	0.020	0.109	0.171	0.12/	0.070	0.001	0.02)
(PT)	0.000	0.046	0.040	0.0(0)	0.040	0.154	0.000	0.051	0.0(1	0.000	0.107	0.150
Est	0.208	0.246	0.243	0.260	0.249	0.174	0.280	0.251	0.261	0.080	0.196	0.159
R^2	-0.042	-0.019	-0.021	-0.009	-0.016	-0.059	0.005	-0.016	-0.008	-0.091	-0.048	-0.066
Herbivore												
Coleoptora												
(APE)												
Èst	-0.261	-0.178	-0.108	-0.225	-0.200	-0.128	-0.176	-0.126	-0.251	0.096	-0.224	-0.162
p_{P^2}	0.363	0.539	0.713	0.435	0.489	0.661	0.545	0.665	0.382	0.741	0.438	0.577
Coleoptera	-0.008	-0.037	-0.004	-0.032	-0.040	-0.078	-0.039	-0.079	-0.015	-0.067	-0.033	-0.065
(FIT-C)												
Est	0.257	0.294	0.274	0.305	0.321	0.203	0.307	0.312	0.330	0.052	0.216	0.237
$\frac{P}{R^2}$	-0.011	0.016	0.001	0.284	0.237	-0.044	0.201	0.272	0.244	-0.099	-0.037	-0.024

Table G20. Continued.

	7	4	3	3	3	3	2	2	2	2	2	2
Trophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Coleoptera (FIT-U)												
Est	-0.187	-0.110	-0.180	-0.122	-0.118	0.051	-0.215	-0.206	-0.129	-0.006	0.049	0.082
P ₂	0.519	0.705	0.535	0.677	0.686	0.862	0.457	0.477	0.658	0.983	0.868	0.779
R^2	-0.053	-0.084	-0.056	-0.080	-0.081	-0.097	-0.038	-0.043	-0.078	-0.100	-0.097	-0.091
Coleoptera (GPE)												
Èst	-0.283	-0.270	-0.345	-0.188	-0.247	-0.292	-0.266	-0.333	-0.149	-0.406	-0.116	-0.241
р	0.343	0.367	0.241	0.534	0.412	0.328	0.375	0.259	0.625	0.161	0.703	0.423
R^2	0.000	-0.010	0.055	-0.062	-0.027	0.007	-0.013	0.043	-0.080	0.118	-0.092	-0.031
Producer												
Vascular plants												
Est	0.249	0.252	0.330	0.267	0.245	0.075	0.380	0.338	0.256	0.113	0.083	0.003
p	0.387	0.380	0.244	0.353	0.395	0.798	0.174	0.231	0.373	0.700	0.778	0.992
\mathbf{R}^{2}	-0.017	-0.015	0.046	-0.005	-0.020	-0.092	0.094	0.054	-0.012	-0.083	-0.091	-0.100

Table G21. Effects of naturalness, measures of management intensity, and stand structural attributes regarding stand age and dead and living wood volume (see Table 1) on the species richness of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Decomposer Mycetophage								
Coleoptera (APE) Est	0 510	-0.432	-0.447	-0.461	0 146	0.670	0.621	-0.147
p	0.197	0.307	0.265	0.260	0.788	0.130	0.110	0.682
R^2	0.136	0.034	0.068	0.072	-0.152	0.228	0.264	-0.132
Coleoptera (FIT-C)	0.021	0.110	0.400	0.000	0.000	0.004	0.450	0.400
Est	-0.031	0.119	0.108	0.090	0.038	-0.084	0.178	0.188
R^2	-0.099	-0.081	-0.084	-0.089	-0.098	-0.090	-0.057	-0.052
Coleoptera (FIT-U)	0.077	0.001	0.001	0.007	0.070	0.070	0.007	0.002
Est	-0.074	-0.020	-0.032	-0.019	0.163	0.211	0.060	0.016
p ₂	0.802	0.947	0.913	0.948	0.576	0.466	0.839	0.956
R ²	-0.093	-0.099	-0.099	-0.100	-0.064	-0.040	-0.095	-0.100
Coleoptera (PT)								
Est	0.560	-0.550	-0.530	-0.521	0.433	0.343	-0.094	-0.375
p	0.032	0.036	0.045	0.050	0.115	0.224	0.749	0.180
R ²	0.322	0.307	0.278	0.265	0.152	0.058	-0.088	0.089
Predator								
Small								
Est	0.286	-0.310	-0.310	-0.333	0.062	0 141	0.343	-0.055
p	0.317	0.275	0.276	0.238	0.831	0.628	0.225	0.851
R^2	0.010	0.029	0.029	0.049	-0.095	-0.073	0.058	-0.096
Coleoptera (APE)								
Est	0.331	-0.466	-0.455	-0.452	0.317	0.413	0.031	-0.353
\mathbf{P}^2	0.242	0.067	0.096	0.098	0.265	0.136	-0.099	0.209
Coleoptera (FIT-C)	0.047	0.171	0.170	0.174	0.055	0.129	-0.077	0.000
Est	0.230	-0.139	-0.132	-0.146	0.216	0.119	-0.091	-0.062
P ₂	0.425	0.634	0.651	0.617	0.456	0.683	0.755	0.833
\mathbb{R}^2	-0.029	-0.074	-0.077	-0.072	-0.038	-0.081	-0.089	-0.095
Coleoptera (FII-U)	0.245	0.201	0.274	0.204	0.206	0.208	0 144	0.020
n	0.395	0.290	0.339	0.303	0.282	0.473	-0.144 0.622	0.029
R^2	-0.019	0.022	0.001	0.016	0.026	-0.042	-0.072	-0.099
Coleoptera (PT)								
Est	-0.665	0.654	0.659	0.669	-0.743	-0.664	-0.331	0.381
$p_{\mathbf{P}^2}$	0.006	0.008	0.007	0.006	0.001	0.007	0.243	0.172
Herbiyore	0.494	0.474	0.405	0.302	0.042	0.492	0.047	0.090
Chewer								
Coleoptera (APE)								
Est	0.639	-0.677	-0.664	-0.669	0.303	0.409	0.306	-0.361
$p_{\mathbf{P}^2}$	0.010	0.005	0.007	0.006	0.287	0.140	0.282	0.199
Coleoptera (FIT-C)	0.446	0.316	0.492	0.302	0.025	0.125	0.026	0.075
Est	0.321	-0.319	-0.286	-0.299	0.312	0.158	0.050	-0.271
p_	0.258	0.261	0.316	0.294	0.272	0.586	0.865	0.343
\mathbb{R}^2	0.038	0.037	0.010	0.020	0.031	-0.066	-0.097	-0.001
Coleoptera (FIT-U)	0.719	0.712	0.719	0 720	0.610	0.679	0.275	0 476
Est	0.718	-0.713	-0.718	-0.729	0.619	0.678	0.275	-0.476
$\frac{P}{R^2}$	0.593	0.583	0.593	0.615	0.415	0.518	0.002	0.205
Coleoptera (GPE)								
Est	0.747	-0.771	-0.752	-0.747	0.585	0.574	0.124	-0.486
p_{p^2}	0.001	0.001	0.001	0.001	0.029	0.033	0.683	0.084
K	0.663	0./15	0.674	0.663	0.364	0.346	-0.090	0.217

Table G21. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Producer Vascular plants Est P R ²	0.020 0.944 -0.099	-0.069 0.815 -0.094	-0.079 0.786 -0.092	-0.056 0.847 -0.096	$0.151 \\ 0.604 \\ -0.069$	0.234 0.416 -0.026	-0.194 0.504 -0.049	-0.157 0.590 -0.067

Table G22. Effects of stand structural attributes except stand age and wood volume (see Table 1) on the species richness of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Decomposer								
$\begin{array}{c} \text{Colcoptera} (A7E) \\ \text{Est} & -0.289 & -0.386 & -0.212 & 0.446 & -0.419 & -0.030 & -0.053 & -0.059 \\ \text{p} & 0.414 & 0.294 & 0.704 & 0.262 & 0.337 & 0.965 & 0.918 & 0.885 \\ \text{R}^2 & -0.034 & 0.044 & -0.137 & 0.071 & 0.012 & -0.166 & -0.164 & -0.162 \\ \hline \text{Colcoptera} (FIT-C) & & & & & & & & & & & & & & & & & & &$	Mycetophage								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (APE)	0.280	0.286	0.212	0.446	0.410	0.020	0.052	0.050
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D D	0.289	0 294	0.704	0.440	0.337	0.030	0.033	-0.039
$\begin{array}{cccc} \hline Coleoptera (FT-C) & 0.050 & 0.077 & 0.098 & -0.261 & 0.135 & 0.010 & 0.009 & -0.507 \\ Est & 0.367 & 0.792 & 0.998 & 0.363 & 0.645 & 0.972 & 0.975 & 0.038 \\ \hline Coleoptera (FT-U) & 0.044 & -0.183 & -0.422 & -0.209 & -0.037 & -0.113 & -0.181 & -0.125 \\ p & 0.881 & 0.529 & 0.127 & 0.470 & 0.900 & 0.698 & -0.056 & -0.079 \\ \hline Saprophage & 0.097 & -0.055 & 0.139 & -0.041 & -0.098 & -0.083 & -0.056 & -0.079 \\ \hline Coleoptera (FT) & & & & & & & & & & & & & & & & & & &$	R^2	-0.034	0.044	-0.137	0.071	0.012	-0.166	-0.164	-0.162
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Coleoptera (FIT-C)	0.001	0.011	0.107	0.071	0.012	0.100	0.101	0.102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.259	0.077	0.098	-0.261	0.135	0.010	0.009	-0.507
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P_	0.367	0.792	0.738	0.363	0.645	0.972	0.975	0.058
$\begin{array}{c} \mbox{Colcoptera} ({\rm HT-U}) & -0.044 & -0.183 & -0.422 & -0.209 & -0.037 & -0.113 & -0.181 & -0.125 \\ \mbox{p} & 0.881 & 0.529 & 0.127 & 0.470 & 0.900 & 0.698 & 0.533 & 0.669 \\ \mbox{R}^2 & -0.097 & -0.055 & 0.139 & -0.041 & -0.098 & -0.083 & -0.056 & -0.079 \\ \mbox{Sarophage} & & & & & & & & & & & & & & & & & & &$	Ř ²	-0.010	-0.092	-0.087	-0.008	-0.076	-0.100	-0.100	0.245
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-U)	0.044	0.400	0.400		0.007	0.440	0.4.04	0.405
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Est	-0.044	-0.183	-0.422	-0.209	-0.037	-0.113	-0.181	-0.125
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p \mathbf{P}^2	0.881	0.529	0.127	0.470	0.900	0.698	0.533	0.669
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Saprophage	-0.097	-0.033	0.139	-0.041	-0.098	-0.085	-0.030	-0.079
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Coleoptera (PT)								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Est	-0.456	-0.209	0.674	0.418	-0.593	0.484	0.525	-0.395
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	р	0.095	0.469	0.005	0.131	0.021	0.073	0.048	0.156
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R^2	0.180	-0.041	0.511	0.134	0.372	0.215	0.271	0.110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Predator								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Small								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Araneae (APE)	0.010	0.0(2	0.046	0.000	0 172	0.254	0.105	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ESt	-0.018	0.063	0.246	0.028	-0.173	0.356	0.195	-0.311
$\begin{array}{c ccccc} R & -0.033 & -0.075 & -0.005 & -0.005 & -0.030 & -0.030 & -0.030 & -0.030 & -0.030 & -0.030 & -0.030 & -0.030 & -0.030 & -0.030 & -0.030 & -0.030 & -0.029 \\ \hline Est & -0.0153 & 0.003 & -0.078 & -0.034 & 0.125 & 0.062 & -0.051 & -0.099 \\ \hline Colcoptera (FIT-C) & & & & & & & & & & & & & & & & & & &$	$\frac{P}{R^2}$	_0.931	-0.029	_0.093	_0.923	-0.060	0.200	-0.049	0.273
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (APE)	-0.100	-0.075	-0.017	-0.077	-0.000	0.070	-0.04)	0.050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.433	-0.277	0.128	0.221	-0.409	0.347	0.191	-0.029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	р	0.115	0.333	0.661	0.443	0.140	0.218	0.510	0.921
$\begin{array}{c ccccc} Coleoptera (FIT-C) \\ Est & -0.063 & 0.001 & 0.057 & 0.305 & -0.218 & 0.312 & 0.456 & -0.226 \\ p & 0.829 & 0.998 & 0.029 & 0.284 & 0.451 & 0.273 & 0.095 & 0.434 \\ R^2 & -0.095 & -0.100 & 0.332 & 0.025 & -0.036 & 0.030 & 0.180 & -0.031 \\ \hline Coleoptera (FIT-U) & & & & & & & & & & & & & & & & & & &$	\mathbb{R}^2	0.153	0.003	-0.078	-0.034	0.125	0.062	-0.051	-0.099
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-C)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.063	0.001	0.567	0.305	-0.218	0.312	0.456	-0.226
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p p2	0.829	0.998	0.029	0.284	0.451	0.273	0.095	0.434
$\begin{array}{c} \text{Ext} & -0.036 & -0.169 & -0.267 & -0.138 & 0.273 & -0.480 & -0.490 & 0.155 \\ \text{p} & 0.902 & 0.562 & 0.352 & 0.636 & 0.340 & 0.076 & 0.069 & 0.594 \\ \text{R}^2 & -0.098 & -0.062 & -0.004 & -0.074 & <0.001 & 0.210 & 0.223 & -0.068 \\ \hline \text{Coleoptera} (\text{PT}) & & & & & & & & & & & & & & & & & & &$	K Colooptora (FIT II)	-0.095	-0.100	0.332	0.025	-0.036	0.030	0.180	-0.031
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fst	-0.036	-0.169	-0.267	-0.138	0 273	-0.480	-0.490	0 155
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p	0.902	0.562	0.352	0.636	0.340	0.076	0.069	0.594
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R^2	-0.098	-0.062	-0.004	-0.074	< 0.001	0.210	0.223	-0.068
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (PT)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.471	0.486	-0.375	-0.254	0.612	-0.539	-0.456	0.553
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p ₂	0.083	0.072	0.180	0.378	0.016	0.041	0.095	0.035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K ²	0.198	0.217	0.089	-0.014	0.404	0.290	0.179	0.312
$\begin{array}{c c} Coleoptera (APE) \\ Est & -0.413 & -0.145 & 0.452 & 0.407 & -0.578 & 0.548 & 0.430 & -0.270 \\ p & 0.136 & 0.618 & 0.098 & 0.142 & 0.025 & 0.037 & 0.118 & 0.346 \\ R^2 & 0.129 & -0.072 & 0.174 & 0.123 & 0.349 & 0.304 & 0.149 & -0.002 \\ \hline Coleoptera (FIT-C) \\ Est & -0.22 & -0.058 & 0.395 & 0.269 & -0.278 & 0.394 & 0.380 & <0.001 \\ p & 0.446 & 0.842 & 0.155 & 0.349 & 0.331 & 0.157 & 0.174 & 0.999 \\ R^2 & -0.035 & -0.095 & 0.110 & -0.003 & 0.004 & 0.109 & 0.094 & -0.100 \\ \hline Coleoptera (FIT-U) \\ Est & -0.600 & -0.497 & 0.473 & 0.504 & -0.661 & 0.575 & 0.493 & -0.237 \\ p & 0.019 & 0.064 & 0.081 & 0.060 & 0.007 & 0.026 & 0.067 & 0.410 \\ R^2 & 0.384 & 0.233 & 0.200 & 0.241 & 0.488 & 0.344 & 0.227 & -0.024 \\ \end{array}$	Chower								
$ \begin{array}{cccc} \text{Colcoptera} (\text{FIT-D}) & -0.413 & -0.145 & 0.452 & 0.407 & -0.578 & 0.548 & 0.430 & -0.270 \\ \text{p} & 0.136 & 0.618 & 0.098 & 0.142 & 0.025 & 0.037 & 0.118 & 0.346 \\ \text{R}^2 & 0.129 & -0.072 & 0.174 & 0.123 & 0.349 & 0.304 & 0.149 & -0.002 \\ \hline \text{Coleoptera} (\text{FIT-C}) & & & & & & & & & & & & & & & & & & &$	Coleoptera (APF)								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.413	-0.145	0.452	0.407	-0.578	0.548	0.430	-0.270
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p	0.136	0.618	0.098	0.142	0.025	0.037	0.118	0.346
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R^2	0.129	-0.072	0.174	0.123	0.349	0.304	0.149	-0.002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-C)								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.22	-0.058	0.395	0.269	-0.278	0.394	0.380	< 0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p ₂	0.446	0.842	0.155	0.349	0.331	0.157	0.174	0.999
$ \begin{array}{c} \text{Est} & -0.600 & -0.497 & 0.473 & 0.504 & -0.661 & 0.575 & 0.493 & -0.237 \\ \text{p} & 0.019 & 0.064 & 0.081 & 0.060 & 0.007 & 0.026 & 0.067 & 0.410 \\ \text{R}^2 & 0.384 & 0.233 & 0.200 & 0.241 & 0.488 & 0.344 & 0.227 & -0.024 \\ \end{array} $	K ⁻ Coloomtone (EIT II)	-0.035	-0.095	0.110	-0.003	0.004	0.109	0.094	-0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ect	0.600	0.497	0.473	0.504	0.661	0.575	0.493	0 237
R^2 0.384 0.233 0.200 0.241 0.488 0.344 0.227 -0.024	p	0.019	0.064	0.081	0.060	0.007	0.026	0.067	0.410
	$\mathbf{\tilde{R}}^2$	0.384	0.233	0.200	0.241	0.488	0.344	0.227	-0.024
Coleoptera (GPE)	Coleoptera (GPE)								
Est -0.580 -0.335 0.519 0.532 -0.755 0.616 0.571 -0.210	Est	-0.580	-0.335	0.519	0.532	-0.755	0.616	0.571	-0.210
p 0.031 0.256 0.061 0.054 0.001 0.019 0.035 0.486	р	0.031	0.256	0.061	0.054	0.001	0.019	0.035	0.486

Table G22. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
R ²	0.356	0.045	0.263	0.281	0.681	0.415	0.341	-0.050
Producer								
Vascular plants								
Est	-0.289	-0.306	-0.159	0.141	-0.155	-0.104	-0.068	0.167
p	0.312	0.283	0.584	0.629	0.594	0.721	0.815	0.566
R^2	0.012	0.026	-0.066	-0.073	-0.068	-0.085	-0.094	-0.063

Table G23. Effects of stand structural complexity indices (see Appendix A: Table A3) on the species richness of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/ understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown.

Trachia cuild	7	4	3	3 A thuile D	3 AttaileC	3	2	2 A thrib D	2 Attaile C	2	2	2
	Attrib	Attrib	AttribA	Attribb	AttribC	AttribD	AttribA	Attribb	AttribC	AttribD	Attribe	AttribF
Decomposer Mycetophage Coleoptera												
(APE) Est	0.593	0.631	0.606	0.505	0.621	0.795	0.469	0.582	0.477	0.760	0.526	0.795
p ₂	-0.056	-0.044	-0.014	-0.077	-0.041	-0.036	-0.060	< 0.001	-0.079	0.018	-0.094	-0.026
R ² Coleoptera	0.027	0.022	0.025	0.036	0.018	0.038	0.031	0.017	0.036	0.174	0.090	0.030
(FIT-C)												
Est	0.156	0.116	0.142	0.227	0.121	0.026	0.279	0.153	0.258	0.060	0.178	0.020
$\frac{P}{R^2}$	0.339	0.366	0.375	0.305	0.388	0.286	0.425	0.392	0.306	0.190	0.311	0.225
Coleoptera												
(FII-U) Est	0.190	0.253	0.209	0.104	0.245	0.521	0.056	0.193	0.074	0.383	0.160	0.561
p ₂	0.232	0.192	0.181	0.172	0.213	0.317	0.125	0.199	0.199	0.513	0.275	0.436
R ² Saprophago	0.321	0.281	0.242	0.286	0.294	0.259	0.262	0.256	0.295	0.099	0.269	0.280
Coleoptera (PT)												
Est	-0.199	-0.137	-0.057	-0.189	-0.142	-0.127	-0.129	-0.050	-0.199	0.090	-0.240	-0.135
p R ²	0.053	0.080	0.089 0.401	0.095	0.065	0.010	0.141 0.360	0.075	0.075	-0.052 0.734	0.030	-0.032 0.328
Predator Small												
Araneae (APE)	-0.092	-0.100	-0.091	_0 099	-0.097	-0.095	-0.093	-0.096	-0.094	-0.078	-0.085	-0.066
P ₂	0.218	0.365	0.336	0.403	0.360	0.440	0.349	0.317	0.411	0.524	0.540	0.455
R ²	0.763	0.723	0.678	0.737	0.728	0.612	0.746	0.689	0.728	0.310	0.633	0.584
(APE)												
Èst	0.475	0.497	0.455	0.552	0.511	0.349	0.560	0.472	0.564	0.075	0.449	0.331
p R ²	0.062	-0.009	0.002	-0.022 0.002	-0.007 0.002	-0.033 0.020	-0.003	0.010	-0.025 0.002	-0.054 0.296	-0.057 0.015	-0.037 0.029
Coleoptera						0.020						0.0-2
(FIT-C) Fet	0.080	0.064	0.095	0.035	0.056	0.216	0.032	0.082	0.030	0 799	0 101	0 241
p_	-0.521	-0.592	-0.655	-0.547	-0.568	-0.518	-0.643	-0.643	-0.507	-0.501	-0.415	-0.437
R ²	0.698	0.616	0.528	0.643	0.626	0.409	0.662	0.547	0.626	0.022	0.446	0.363
(FIT-U)												
Èst	0.203	0.232	0.179	0.309	0.250	0.064	0.322	0.199	0.327	-0.093	0.171	0.048
p_{R^2}	$0.050 \\ 0.107$	0.021	0.008	0.037 0.177	0.029	0.052 0.074	$0.010 \\ 0.176$	0.010	0.058 0.161	-0.062	0.133	0.112
Coleoptera	0.107	0.122	0.070	0.177	0.102	0.07 1	0.170	0.002	0.101	0.010	0.109	0.010
(PT) Ect	0.180	0 203	0.253	0 131	0.209	0 210	0 172	0 273	0.124	0 207	0.067	0 234
p	0.265	0.203	0.233	0.303	0.334	0.219	0.455	0.456	0.124	0.237	0.132	0.254
R^2	0.714	0.677	0.750	0.542	0.728	0.800	0.544	0.833	0.580	0.892	0.515	0.964
Chewer												
Coleoptera												
(APE) Ect	0 492	0.640	0.847	0.514	0.627	0.664	0.660	0.865	0 403	0 758	0.404	0.644
p	0.492	0.223	0.149	0.259	0.234	0.208	0.204	0.153	0.493	-0.015	0.404	0.044
R^2	0.038	0.006	-0.021	0.010	0.016	-0.010	-0.007	-0.012	0.017	-0.087	-0.002	0.005
(FIT-C)												
Ëst	-0.047	-0.075	-0.096	-0.052	-0.073	-0.078	-0.078	-0.097	-0.047	-0.089	-0.022	-0.076
p_{R^2}	0.329	0.441 0.697	0.610	0.367 0.673	0.417 0.685	0.472 0.675	0.480 0.686	0.600	0.343 0.645	0.959 0.468	0.315	0.429
	0.000	0.077	0.070	0.070	0.000	0.070	0.000	0.000	0.010	0.100	0.020	0.000

81

September 2014 🛠 Volume 5(9) 🛠 Article 113

Table G23. Continued.

	7	4	3	3	3	3	2	2	2	2	2	2
Trophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Coleoptera												
(FIT-U)												
Est	-0.078	-0.012	0.082	-0.027	-0.046	-0.064	0.074	0.053	-0.065	0.128	-0.105	-0.158
р	0.005	-0.033	-0.070	-0.010	-0.027	-0.042	-0.044	-0.069	-0.001	-0.100	0.011	-0.030
R^2	0.005	0.003	0.005	0.006	0.004	0.005	0.004	0.006	0.009	0.085	0.013	0.011
Coleoptera												
(GPE)												
Èst	0.790	0.968	0.780	0.926	0.876	0.827	0.801	0.856	0.825	0.662	0.719	0.587
р	-0.347	-0.260	-0.276	-0.241	-0.263	-0.223	-0.269	-0.286	-0.237	-0.185	-0.178	-0.216
R^2	0.522	0.553	0.514	0.508	0.531	0.512	0.533	0.494	0.459	0.195	0.424	0.443
Producer												
Vascular plants												
Est	0.535	0.482	0.379	0.652	0.471	0.449	0.553	0.341	0.670	0.298	0.820	0.417
p	0.572	0.588	0.578	0.549	0.603	0.546	0.562	0.605	0.549	0.380	0.461	0.564
R^2	-0.085	-0.080	-0.088	-0.058	-0.086	-0.093	-0.058	-0.095	-0.065	-0.098	-0.052	-0.100

Table G24. Effects of naturalness, measures of management intensity, and stand structural attributes regarding stand age and dead and living wood volume (see Table 1) on the diversity (reciprocal Simpson index 1/D) of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/ understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
$\begin{array}{c} \mbox{Colcoptera} (APE) & -0.480 & -0.505 & 0.304 & 0.474 & 0.717 & -0.052 \\ \mbox{P}_2 & 0.025 & 0.129 & 0.076 & 0.060 & 0.285 & 0.080 & 0.002 & 0.888 \\ \mbox{R} & 0.277 & 0.136 & 0.210 & 0.242 & 0.024 & 0.203 & 0.592 & -0.096 \\ \mbox{Colcoptera} (FIT-C) & & & & & & & & & & & & & & & & & & &$	Decomposer Mycetophage								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (APE)	0 520	0.410	0.480	0 505	0.204	0.474	0.717	0.052
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ESt	0.530	-0.419	-0.480	-0.505	0.304	0.474	0.717	-0.052
$\begin{array}{cccc} Coleoptera (FT-C) & 0.17 & 0.126 & 0.242 & 0.024 & 0.020 & 0.205 & 0.072 \\ Est & -0.257 & 0.326 & 0.276 & 0.372 & -0.144 & -0.118 & 0.107 & 0.279 \\ P_2 & -0.011 & 0.043 & 0.002 & <0.001 & -0.072 & -0.081 & -0.085 & 0.005 \\ \hline Coleoptera (FT-U) & & & & & & & & & & & & & & & & & & &$	$\frac{P}{R^2}$	0.043	0.129	0.070	0.000	0.285	0.000	0.002	0.096
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Coleoptera (FIT-C)	0.277	0.150	0.210	0.242	0.024	0.205	0.372	-0.070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.257	0.326	0.276	0.272	-0.144	-0.118	0.107	0.279
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	p	0.370	0.249	0.335	0.342	0.62	0.686	0.714	0.329
$\begin{array}{c} \mbox{Coleoptera (FIT-U)} \\ \mbox{Est} & 0.043 & -0.148 & -0.083 & -0.072 & 0.156 & 0.007 & -0.431 & -0.325 \\ \mbox{R}^2 & -0.098 & -0.070 & -0.091 & -0.093 & -0.067 & -0.100 & 0.150 & 0.042 \\ \mbox{Saprophage} & -0.0631 & 0.654 & 0.665 & 0.665 & -0.645 & -0.780 & -0.351 & 0.456 \\ \mbox{P} & 0.012 & 0.008 & 0.006 & 0.006 & 0.009 & <0.001 & 0.213 & 0.094 \\ \mbox{R}^2 & 0.436 & 0.475 & 0.494 & 0.046 & 0.0459 & 0.718 & 0.066 & 0.180 \\ \mbox{Predator} & & & & & & & & & & & & & & & & & & &$	R^2	-0.011	0.043	0.002	< 0.001	-0.072	-0.081	-0.085	0.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-U)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.043	-0.148	-0.083	-0.072	0.156	0.007	-0.431	-0.325
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P_	0.884	0.611	0.777	0.806	0.591	0.982	0.117	0.251
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ř ²	-0.098	-0.070	-0.091	-0.093	-0.067	-0.100	0.150	0.042
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Saprophage Coleoptera (PT)								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Est	-0.631	0.654	0.665	0.665	-0.645	-0.780	-0.351	0.456
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p ₂	0.012	0.008	0.006	0.006	0.009	< 0.001	0.213	0.094
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K ⁻	0.436	0.475	0.494	0.494	0.459	0.718	0.066	0.180
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Small								
Est 0.436 -0.366 -0.373 -0.37 0.207 0.377 0.203 -0.377 R ² 0.182 0.082 0.087 0.091 -0.042 0.092 -0.044 0.096 Coleoptera (APE) Est 0.249 -0.202 -0.248 -0.247 -0.065 0.166 0.214 -0.102 p 0.386 0.486 0.388 0.390 0.825 0.569 0.459 0.726 R ² -0.016 -0.045 -0.017 -0.018 -0.094 -0.063 -0.038 -0.086 Coleoptera (FIT-C) Est 0.107 0.057 0.039 0.013 0.235 0.121 0.157 0.082 p 0.715 0.846 0.894 0.964 0.415 0.678 0.590 0.781 R ² -0.085 -0.096 -0.098 -0.100 -0.026 -0.080 -0.067 -0.091 Coleoptera (FIT-U) Est 0.125 -0.171 -0.142 -0.115 0.010 -0.140 -0.207 -0.140 p 0.668 0.557 0.625 0.694 0.974 0.630 0.475 0.632 R ² -0.079 -0.061 -0.073 -0.082 -0.100 -0.073 -0.042 -0.074 Coleoptera (PT) Est 0.125 -0.171 -0.142 -0.115 0.010 -0.073 -0.042 -0.074 Coleoptera (PT) Est -0.565 0.537 0.529 0.534 -0.603 -0.459 -0.265 0.347 p 0.030 0.042 0.046 0.043 0.018 0.092 0.356 0.219 R ² 0.329 0.287 0.276 0.284 0.389 0.183 -0.006 0.062 Herbivore Chewer Coleoptera (APE) Est 0.567 -0.608 -0.584 -0.548 0.197 0.275 -0.153 -0.396 p 0.029 0.017 0.023 0.037 0.496 0.337 0.599 0.155 R ² 0.332 0.397 0.358 0.303 -0.048 0.001 -0.069 0.111 Coleoptera (FIT-C) Est 0.567 -0.608 -0.584 -0.548 0.197 0.275 -0.153 -0.396 p 0.029 0.017 0.023 0.037 0.496 0.337 0.599 0.155 R ² 0.332 0.397 0.358 0.303 -0.048 0.001 -0.069 0.111 Coleoptera (FIT-C) Est 0.567 -0.608 -0.584 -0.548 0.197 0.275 -0.153 -0.396 p 0.516 0.505 0.544 0.614 0.462 0.654 0.426 0.749 P 0.516 0.505 0.544 0.614 0.462 0.654 0.426 0.749 R ² -0.052 -0.050 -0.058 -0.071 -0.039 -0.077 -0.029 -0.088 Coleoptera (FIT-C) Est 0.506 -0.544 -0.563 -0.579 0.659 0.724 0.485 -0.372 P 0.032 0.038 0.031 0.025 0.007 0.002 0.072 0.184	Araneae (APE)	0.459	0.269	0.272	0.277	0.207	0.277	0.205	0 201
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ESI	0.456	-0.368	-0.373	-0.377	0.207	0.377	0.205	-0.361
$\begin{array}{cccc} {\rm Colceoptera} \ ({\rm APE}) & 0.002 & 0.007 & 0.007 & -0.042 & 0.092 & -0.044 & 0.090 \\ {\rm Est} & 0.249 & -0.202 & -0.248 & -0.247 & -0.065 & 0.166 & 0.214 & -0.102 \\ {\rm p} & 0.386 & 0.486 & 0.388 & 0.390 & 0.825 & 0.569 & 0.459 & 0.726 \\ {\rm R}^2 & -0.016 & -0.017 & -0.018 & -0.094 & -0.063 & -0.038 & -0.086 \\ {\rm Colceoptera} \ ({\rm FIT-C}) & {\rm Est} & 0.107 & 0.057 & 0.039 & 0.013 & 0.235 & 0.121 & 0.157 & 0.082 \\ {\rm p} & 0.715 & 0.846 & 0.894 & 0.964 & 0.415 & 0.678 & 0.590 & 0.781 \\ {\rm R}^2 & -0.085 & -0.096 & -0.098 & -0.100 & -0.026 & -0.080 & -0.067 & -0.091 \\ {\rm Colceoptera} \ ({\rm FIT-U}) & {\rm Est} & 0.125 & -0.171 & -0.142 & -0.115 & 0.010 & -0.140 & -0.207 & -0.140 \\ {\rm p} & 0.668 & 0.557 & 0.625 & 0.694 & 0.974 & 0.630 & 0.475 & 0.632 \\ {\rm R}^2 & -0.079 & -0.061 & -0.073 & -0.082 & -0.100 & -0.073 & -0.042 & -0.074 \\ {\rm Colceoptera} \ ({\rm PT}) & {\rm Est} & -0.565 & 0.537 & 0.529 & 0.534 & -0.603 & -0.459 & -0.265 & 0.347 \\ {\rm p} & 0.030 & 0.042 & 0.046 & 0.043 & 0.018 & 0.092 & 0.356 & 0.219 \\ {\rm R}^2 & 0.329 & 0.287 & 0.276 & 0.284 & 0.389 & 0.183 & -0.006 & 0.062 \\ {\rm Herbivore} & {\rm Colceoptera} \ ({\rm FIT-C}) & {\rm Est} & 0.567 & -0.608 & -0.584 & -0.548 & 0.197 & 0.275 & -0.153 & -0.396 \\ {\rm p} & 0.032 & 0.037 & 0.358 & 0.303 & -0.048 & 0.001 & -0.069 & 0.111 \\ {\rm Colceoptera} \ ({\rm FIT-C}) & {\rm Est} & 0.567 & -0.608 & -0.584 & -0.548 & 0.197 & 0.275 & -0.153 & -0.396 \\ {\rm p} & 0.516 & 0.555 & 0.544 & 0.614 & 0.462 & 0.654 & 0.426 & 0.749 \\ {\rm p} & 0.516 & 0.555 & 0.544 & 0.614 & 0.462 & 0.654 & 0.426 & 0.749 \\ {\rm R}^2 & -0.052 & -0.050 & -0.058 & -0.071 & -0.039 & -0.077 & -0.029 & -0.088 \\ {\rm Colceoptera} \ ({\rm FIT-C}) & {\rm Est} & -0.563 & -0.579 & 0.659 & 0.724 & 0.485 & -0.372 \\ {\rm p} & 0.032 & 0.038 & 0.031 & 0.025 & 0.007 & 0.002 & 0.072 & 0.184 \\ \end{array}$	$\frac{P}{P^2}$	0.093	0.190	0.182	0.178	0.474	0.002	0.479	0.172
$\begin{array}{cccc} \text{Est} & 0.249 & -0.202 & -0.248 & -0.247 & -0.065 & 0.166 & 0.214 & -0.102 \\ p & 0.386 & 0.486 & 0.388 & 0.390 & 0.825 & 0.569 & 0.459 & 0.726 \\ R^2 & -0.016 & -0.045 & -0.017 & -0.018 & -0.094 & -0.063 & -0.086 \\ \hline \text{Coleoptera} (FIT-C) \\ \text{Est} & 0.107 & 0.057 & 0.039 & 0.013 & 0.235 & 0.121 & 0.157 & 0.082 \\ p & 0.715 & 0.846 & 0.894 & 0.964 & 0.415 & 0.678 & 0.590 & 0.781 \\ R^2 & -0.085 & -0.096 & -0.098 & -0.100 & -0.026 & -0.080 & -0.067 & -0.091 \\ \hline \text{Coleoptera} (FIT-U) \\ \text{Est} & 0.125 & -0.171 & -0.142 & -0.115 & 0.010 & -0.140 & -0.207 & -0.140 \\ p & 0.668 & 0.557 & 0.625 & 0.694 & 0.974 & 0.630 & 0.475 & 0.632 \\ R^2 & -0.079 & -0.061 & -0.073 & -0.082 & -0.100 & -0.073 & -0.042 & -0.074 \\ \hline \text{Coleoptera} (PT) \\ \text{Est} & -0.565 & 0.537 & 0.529 & 0.534 & -0.603 & -0.459 & -0.265 & 0.347 \\ p & 0.030 & 0.042 & 0.046 & 0.043 & 0.018 & 0.092 & 0.356 & 0.219 \\ R^2 & 0.329 & 0.287 & 0.276 & 0.284 & 0.389 & 0.183 & -0.006 & 0.062 \\ \hline \text{Herbivore} \\ \hline \text{Chewer} \\ \hline \text{Coleoptera} (APE) \\ \text{Est} & 0.567 & -0.608 & -0.584 & -0.548 & 0.197 & 0.275 & -0.153 & -0.396 \\ p & 0.032 & 0.037 & 0.496 & 0.337 & 0.599 & 0.155 \\ R^2 & 0.332 & 0.397 & 0.358 & 0.303 & -0.048 & 0.001 & -0.069 & 0.111 \\ \hline \text{Coleoptera} (FIT-C) \\ \text{Est} & -0.189 & 0.193 & 0.176 & 0.147 & -0.213 & -0.131 & 0.229 & 0.094 \\ p & 0.516 & 0.505 & 0.544 & 0.614 & 0.462 & 0.654 & 0.426 & 0.749 \\ R^2 & -0.052 & -0.050 & -0.058 & -0.071 & -0.039 & -0.077 & -0.029 & -0.088 \\ \hline \text{Coleoptera} (FIT-U) \\ \text{Est} & 0.560 & -0.544 & -0.563 & -0.579 & 0.659 & 0.724 & 0.485 & -0.372 \\ p & 0.032 & 0.038 & 0.031 & 0.025 & 0.007 & 0.002 & 0.072 & 0.184 \\ \hline \end{array}$	Coleoptera (APE)	0.102	0.002	0.007	0.071	-0.042	0.072	-0.044	0.070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.249	-0.202	-0.248	-0.247	-0.065	0.166	0.214	-0.102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p	0.386	0.486	0.388	0.390	0.825	0.569	0.459	0.726
$\begin{array}{c} \mbox{Coleoptera (FIT-C)} \\ \mbox{Est} & 0.107 & 0.057 & 0.039 & 0.013 & 0.235 & 0.121 & 0.157 & 0.082 \\ \mbox{p} & 0.715 & 0.846 & 0.894 & 0.964 & 0.415 & 0.678 & 0.590 & 0.781 \\ \mbox{R}^2 & -0.085 & -0.096 & -0.098 & -0.100 & -0.026 & -0.080 & -0.067 & -0.091 \\ \mbox{Coleoptera (FIT-U)} & \mbox{Est} & 0.125 & -0.171 & -0.142 & -0.115 & 0.010 & -0.140 & -0.207 & -0.140 \\ \mbox{p} & 0.668 & 0.557 & 0.625 & 0.694 & 0.974 & 0.630 & 0.475 & 0.632 \\ \mbox{R}^2 & -0.079 & -0.061 & -0.073 & -0.082 & -0.100 & -0.073 & -0.042 & -0.074 \\ \mbox{Coleoptera (PT)} & \mbox{Est} & -0.565 & 0.537 & 0.529 & 0.534 & -0.603 & -0.459 & -0.265 & 0.347 \\ \mbox{p} & 0.030 & 0.042 & 0.046 & 0.043 & 0.018 & 0.092 & 0.356 & 0.219 \\ \mbox{R}^2 & 0.329 & 0.287 & 0.276 & 0.284 & 0.389 & 0.183 & -0.006 & 0.062 \\ \mbox{Herbivore} & \mbox{Chewer} & \mbox{Coleoptera (APE)} & \mbox{Est} & 0.567 & -0.608 & -0.584 & -0.548 & 0.197 & 0.275 & -0.153 & -0.396 \\ \mbox{p} & 0.029 & 0.017 & 0.023 & 0.037 & 0.496 & 0.337 & 0.599 & 0.155 \\ \mbox{R}^2 & 0.332 & 0.397 & 0.358 & 0.303 & -0.048 & 0.001 & -0.069 & 0.111 \\ \mbox{Coleoptera (FIT-C)} & \mbox{Est} & -0.516 & 0.505 & 0.544 & 0.614 & 0.462 & 0.654 & 0.426 & 0.749 \\ \mbox{p} & 0.516 & 0.505 & 0.544 & 0.614 & 0.462 & 0.654 & 0.426 & 0.749 \\ \mbox{R}^2 & -0.052 & -0.050 & -0.058 & -0.071 & -0.039 & -0.077 & -0.029 & -0.088 \\ \mbox{Coleoptera (FIT-U)} & \\mbox{Est} & 0.560 & -0.544 & -0.563 & -0.579 & 0.659 & 0.724 & 0.485 & -0.372 \\ \mbox{p} & 0.032 & 0.038 & 0.031 & 0.025 & 0.007 & 0.002 & 0.072 & 0.184 \\ \mbox{coleoptera (FIT-U)} & \\mbox{Est} & 0.560 & -0.544 & -0.563 & -0.579 & 0.659 & 0.724 & 0.485 & -0.372 \\ \mbox{p} & 0.032 & 0.038 & 0.031 & 0.025 & 0.007 & 0.002 & 0.072 & 0.184 \\ \mbox{coleoptera (FIT-U)} & \\mbox{coleoptera (FIT-U)} & \\\mbox{coleoptera (FIT-U)} & \\coleop$	R^2	-0.016	-0.045	-0.017	-0.018	-0.094	-0.063	-0.038	-0.086
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-C)								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Est	0.107	0.057	0.039	0.013	0.235	0.121	0.157	0.082
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p_	0.715	0.846	0.894	0.964	0.415	0.678	0.590	0.781
$\begin{array}{c cccc} Coleoptera (FIT-U) \\ Est & 0.125 & -0.171 & -0.142 & -0.115 & 0.010 & -0.140 & -0.207 & -0.140 \\ p & 0.668 & 0.557 & 0.625 & 0.694 & 0.974 & 0.630 & 0.475 & 0.632 \\ R^2 & -0.079 & -0.061 & -0.073 & -0.082 & -0.100 & -0.073 & -0.042 & -0.074 \\ \hline Coleoptera (PT) & & & & & & & & & & & & & & & & & & &$	ĪR ²	-0.085	-0.096	-0.098	-0.100	-0.026	-0.080	-0.067	-0.091
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-U)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.125	-0.171	-0.142	-0.115	0.010	-0.140	-0.207	-0.140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\underline{p}_2	0.668	0.557	0.625	0.694	0.974	0.630	0.475	0.632
$\begin{array}{c cccc} Coleoptera (P1) \\ \hline Est & -0.565 & 0.537 & 0.529 & 0.534 & -0.603 & -0.459 & -0.265 & 0.347 \\ p & 0.030 & 0.042 & 0.046 & 0.043 & 0.018 & 0.092 & 0.356 & 0.219 \\ R^2 & 0.329 & 0.287 & 0.276 & 0.284 & 0.389 & 0.183 & -0.006 & 0.062 \\ \hline Herbivore & & & & & & & & & & & & & & & & & & &$	R ²	-0.079	-0.061	-0.073	-0.082	-0.100	-0.073	-0.042	-0.074
Est -0.565 0.537 0.529 0.534 -0.603 -0.499 -0.265 0.347 p 0.030 0.042 0.046 0.043 0.018 0.092 0.356 0.219 R ² 0.329 0.287 0.276 0.284 0.389 0.183 -0.006 0.062 Herbivore Chewer Coleoptera (APE) Est 0.567 -0.608 -0.584 -0.548 0.197 0.275 -0.153 -0.396 p 0.029 0.017 0.023 0.037 0.496 0.337 0.599 0.155 R ² 0.332 0.397 0.358 0.303 -0.048 0.001 -0.069 0.111 Coleoptera (FIT-C) Est -0.189 0.193 0.176 0.147 -0.213 -0.131 0.229 0.094 p 0.516 0.505 0.544 0.614 0.462 0.654 0.426 0.749 R ² -0.052 -0.050 -0.058 -0.071 -0.039 -0.077 -0.029 -0.088 Coleoptera (FIT-U) Est 0.560 -0.544 -0.563 -0.579 0.659 0.724 0.485 -0.372 p 0.032 0.038 0.031 0.025 0.007 0.002 0.072 0.184	Coleoptera (P1)	0 5 4 5	0 527	0.500	0 524	0.(02	0.450	0.045	0.247
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Est	-0.565	0.537	0.529	0.534	-0.603	-0.459	-0.265	0.347
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p_{B^2}	0.030	0.042	0.046	0.043	0.018	0.092	0.356	0.219
$\begin{array}{c} \mbode \\ \mbod \\ \mbode \\ \mbod \\ \mbode \\ \mbode \\ \mbode \\ \mbode \\ \mbode \\ \mbode $	N Harbiyara	0.329	0.267	0.276	0.264	0.369	0.165	-0.006	0.062
$\begin{array}{c c} Coleoptera (APE) \\ Est & 0.567 & -0.608 & -0.584 & -0.548 & 0.197 & 0.275 & -0.153 & -0.396 \\ p & 0.029 & 0.017 & 0.023 & 0.037 & 0.496 & 0.337 & 0.599 & 0.155 \\ R^2 & 0.332 & 0.397 & 0.358 & 0.303 & -0.048 & 0.001 & -0.069 & 0.111 \\ \hline Coleoptera (FIT-C) \\ Est & -0.189 & 0.193 & 0.176 & 0.147 & -0.213 & -0.131 & 0.229 & 0.094 \\ p & 0.516 & 0.505 & 0.544 & 0.614 & 0.462 & 0.654 & 0.426 & 0.749 \\ R^2 & -0.052 & -0.050 & -0.058 & -0.071 & -0.039 & -0.077 & -0.029 & -0.088 \\ \hline Coleoptera (FIT-U) \\ Est & 0.560 & -0.544 & -0.563 & -0.579 & 0.659 & 0.724 & 0.485 & -0.372 \\ p & 0.032 & 0.038 & 0.031 & 0.025 & 0.007 & 0.002 & 0.072 & 0.184 \\ \end{array}$	Chower								
$ \begin{array}{c ccccc} \text{Est} & 0.567 & -0.608 & -0.584 & -0.548 & 0.197 & 0.275 & -0.153 & -0.396 \\ \text{p} & 0.029 & 0.017 & 0.023 & 0.037 & 0.496 & 0.337 & 0.599 & 0.155 \\ \text{R}^2 & 0.332 & 0.397 & 0.358 & 0.303 & -0.048 & 0.001 & -0.069 & 0.111 \\ \hline \text{Coleoptera (FIT-C)} & & & & & & & & & & & & & & & & & & &$	Coleoptera (APE)								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	0.567	-0.608	-0.584	-0.548	0.197	0.275	-0.153	-0.396
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	p	0.029	0.017	0.023	0.037	0.496	0.337	0 599	0 155
$ \begin{array}{cccc} Coleoptera (FIT-C) & & & & & & & & & & & & & & & & & & &$	R^2	0.332	0.397	0.358	0.303	-0.048	0.001	-0.069	0.111
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coleoptera (FIT-C)	01002	01077	0.000	0.000	01010	01001	0.005	01111
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Est	-0.189	0.193	0.176	0.147	-0.213	-0.131	0.229	0.094
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	р	0.516	0.505	0.544	0.614	0.462	0.654	0.426	0.749
Coleoptera (FIT-U) Est 0.560 -0.544 -0.563 -0.579 0.659 0.724 0.485 -0.372 p 0.032 0.038 0.031 0.025 0.007 0.002 0.072 0.184	Ŕ ²	-0.052	-0.050	-0.058	-0.071	-0.039	-0.077	-0.029	-0.088
Est 0.560 -0.544 -0.563 -0.579 0.659 0.724 0.485 -0.372 p 0.032 0.038 0.031 0.025 0.007 0.002 0.072 0.184	Coleoptera (FIT-U)								
p 0.032 0.038 0.031 0.025 0.007 0.002 0.072 0.184	Est	0.560	-0.544	-0.563	-0.579	0.659	0.724	0.485	-0.372
	р	0.032	0.038	0.031	0.025	0.007	0.002	0.072	0.184

Table G24. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
R^2	0.322	0.298	0.326	0.351	0.483	0.605	0.217	0.086
Est	0.575	-0.533	-0.534	-0.550	0.747	0.655	0.186	-0.375
p R ²	0.033 0.349	0.053 0.284	0.052 0.285	0.044 0.309	0.001 0.663	$0.010 \\ 0.484$	$0.539 \\ -0.063$	0.199 0.084
Producer Vaccular plants								
Est	0.203	-0.172	-0.153	-0.124	0.190	0.206	-0.369	-0.312
p R ²	-0.483 -0.044	-0.060	-0.068	-0.671 -0.079	-0.512 -0.051	-0.0478	0.188 0.083	0.272 0.031

Table G25. Effects of stand structural attributes except stand age and wood volume (see Table 1) on the diversity (reciprocal Simpson index 1/D) of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Decomposer Mycetophage								
Coleoptera (APE)	0.4.4	0.044	0.015	0.044	0.044	0.010	0.000	0.044
Est	-0.167	-0.366	0.017	0.064	-0.266	0.210	0.080	-0.341
\mathbf{p}^2	-0.062	0.192	-0.954	-0.828	-0.005	0.468	0.784	0.228
Coleoptera (FIT-C)	0.002	0.000	0.100	0.075	0.000	0.011	0.071	0.000
Est	0.245	-0.094	-0.341	-0.450	0.347	-0.372	-0.419	-0.210
P ₂	0.395	0.747	0.227	0.100	0.218	0.184	0.129	0.467
\mathbb{R}^2	-0.019	-0.088	0.057	0.172	0.062	0.086	0.136	-0.040
Coleoptera (FII-U)	0.2(5	0.029	0.2(2	0.212	0.000	0.272	0.212	0.154
ESI	-0.265	0.038	0.362	0.313	-0.228	0.272	0.313	0.154
R^2	-0.006	-0.098	0.077	0.032	-0.030	< 0.001	0.031	-0.068
Saprophage	0.000	0.070	01077	0.002	01000	-01001	01001	0.000
Coleoptera (PT)								
Est	0.611	0.602	-0.107	-0.471	0.643	-0.403	-0.336	0.171
p ₂	0.016	0.018	0.715	0.082	0.009	0.147	0.235	0.556
K ²	0.402	0.388	-0.085	0.199	0.457	0.118	0.052	-0.061
Small								
Araneae (APE)								
Est	-0.465	-0.421	0.403	0.494	-0.388	0.222	0.195	-0.314
P.	0.087	0.127	0.146	0.066	0.165	0.442	0.500	0.268
R^2	0.191	0.139	0.119	0.228	0.102	-0.034	-0.049	0.033
Coleoptera (APE)	0.041	0.075	0.020	0.070	0.100	0.02(0.154	0.000
Est	-0.241	-0.275	0.038	0.079	-0.108	-0.036	-0.156	-0.029
\mathbf{P}^2	-0.022	0.336	-0.098	-0.092	-0.084	-0.903	-0.092	-0.920
Coleoptera (FIT-C)	0.022	0.002	0.070	0.072	0.004	0.070	0.007	0.077
Est	0.101	-0.108	0.252	0.090	0.003	0.104	0.234	-0.262
P ₂	0.730	0.712	0.380	0.759	0.992	0.721	0.416	0.360
R ²	-0.086	-0.084	-0.014	-0.089	-0.100	-0.085	-0.026	-0.007
Coleoptera (FII-U)	0 1 4 1	0 101	0.172	0.015	0.1/0	0.050	0.050	0.07(
Est	-0.141	0.101	0.173	-0.015	-0.168	0.050	0.052	-0.076
$\frac{P}{R^2}$	-0.029	-0.086	-0.060	-0.901	-0.062	-0.097	-0.096	-0.092
Coleoptera (PT)	0.070	0.000	0.000	0.100	0.002	0.077	0.070	0.072
Est	0.390	0.351	-0.321	-0.235	0.493	-0.426	-0.385	0.335
P ₂	0.162	0.213	0.258	0.415	0.067	0.123	0.168	0.235
R^2	0.105	0.065	0.038	-0.026	0.227	0.143	0.099	0.051
Herbivore								
Coleoptera (APF)								
Est	-0.538	-0.101	0.493	0.573	-0.669	0.346	0.426	-0.080
p	0.042	0.731	0.067	0.027	0.006	0.220	0.122	0.784
R^2	0.289	-0.086	0.227	0.342	0.502	0.061	0.144	-0.091
Coleoptera (FIT-C)								
Est	0.179	-0.012	-0.113	-0.319	0.329	-0.086	-0.310	-0.170
$p_{\mathbf{P}^2}$	0.537	0.968	0.698	0.260	0.244	0.769	0.276	0.558
K Coleoptera (FIT-U)	-0.037	-0.100	-0.085	0.057	0.040	-0.090	0.029	-0.061
Est	-0.467	-0.618	0.103	0.237	-0.491	0.38	0.241	-0.468
p	0.086	0.014	0.725	0.411	0.068	0.174	0.402	0.085
R^2	0.193	0.413	-0.086	-0.025	0.224	0.094	-0.022	0.194
Coleoptera (GPE)								
Est	-0.442	-0.548	0.420	0.325	-0.547	0.522	0.49	-0.405
p p2	0.123	0.045	0.145	0.272	0.045	0.060	0.081	0.162
K	0.160	0.307	0.134	0.036	0.305	0.267	0.222	0.117

Table G25. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Producer Vascular plants Est P R ²	-0.424 0.125 0.141	-0.258 0.370 -0.011	0.354 0.209 0.068	0.514 0.054 0.255	-0.369 0.188 0.083	0.065 0.824 -0.094	0.256 0.373 -0.012	-0.033 0.911 -0.099

Table G26. Effects of stand structural complexity indices (see Appendix A: Table A3) on the diversity (reciprocal Simpson index 1/D) of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown.

Trophic guild	7 Attrib	4 Attrib	3 AttribA	3 AttribB	3 AttribC	3 AttribD	2 AttribA	2 AttribB	2 AttribC	2 AttribD	2 AttribE	2 AttribF
Decomposer												
Mycetophage												
(APE)												
Est	0.347	0.400	0.493	0.247	0.380	0.511	0.318	0.489	0.201	0.694	0.201	0.496
p ₂	0.219	0.150	0.067	0.390	0.174	0.056	0.263	0.070	0.488	0.004	0.488	0.065
K ⁻ Coleoptera	0.061	0.115	0.227	-0.018	0.094	0.251	0.036	0.221	-0.046	0.547	-0.046	0.230
(FIT-C)												
Est	-0.433	-0.341	-0.236	-0.389	-0.368	-0.304	-0.311	-0.257	-0.417	0.026	-0.405	-0.353
p_{p_2}	0.116	0.227	0.413	0.163	0.189	0.285	0.274	0.370	0.131	0.928	0.144	0.209
Coleoptera	0.152	0.056	-0.025	0.103	0.082	0.024	0.030	-0.011	0.134	-0.099	0.121	0.068
(FIT-U)												
Èst	0.177	0.137	0.033	0.252	0.154	0.024	0.190	0.038	0.282	-0.298	0.258	0.029
$p_{\mathbf{P}^2}$	0.542	0.640	0.911	0.381	0.598	0.935	0.512	0.898	0.324	0.296	0.368	0.922
Saprophage	-0.058	-0.075	-0.099	-0.015	-0.068	-0.099	-0.051	-0.098	0.007	0.019	-0.010	-0.099
Coleoptera												
(F1) Fst	-0.670	-0.707	-0.705	-0.665	-0.681	-0.715	-0.693	-0.677	-0.620	-0 563	-0.630	-0.652
p	0.006	0.003	0.003	0.006	0.005	0.002	0.004	0.005	0.014	0.031	0.012	0.008
R^2	0.504	0.573	0.568	0.495	0.524	0.587	0.545	0.517	0.416	0.326	0.434	0.471
Predator												
Araneae (APE)												
Est	0.398	0.487	0.406	0.467	0.494	0.553	0.398	0.406	0.463	0.297	0.523	0.584
p ₂	0.152	0.071	0.143	0.086	0.067	0.035	0.152	0.144	0.089	0.298	0.049	0.023
R ² Coleoptora	0.113	0.219	0.122	0.193	0.227	0.311	0.113	0.121	0.188	0.019	0.267	0.359
(APE)												
Est	0.097	0.160	0.172	0.117	0.155	0.202	0.124	0.171	0.104	0.217	0.116	0.203
p ₂	0.741	0.583	0.554	0.689	0.593	0.486	0.672	0.557	0.722	0.453	0.690	0.482
R ² Coleoptora	-0.087	-0.066	-0.060	-0.082	-0.068	-0.045	-0.079	-0.061	-0.085	-0.037	-0.082	-0.044
(FIT-C)												
Est	0.107	0.084	0.067	0.050	0.076	0.171	0.023	0.055	0.036	0.159	0.112	0.179
p ₂	0.715	0.775	0.818	0.865	0.795	0.557	0.938	0.852	0.901	0.585	0.703	0.538
K ⁻ Coleoptera	-0.085	-0.091	-0.094	-0.097	-0.092	-0.061	-0.099	-0.096	-0.098	-0.066	-0.083	-0.057
(FIT-U)												
Est	-0.013	0.019	0.032	0.072	0.043	-0.146	0.110	0.068	0.103	-0.202	-0.056	-0.139
p ₂	0.965	0.948	0.914	0.807	0.883	0.617	0.707	0.817	0.724	0.486	0.849	0.633
K ⁻ Coleoptera	-0.100	-0.100	-0.099	-0.093	-0.097	-0.071	-0.084	-0.094	-0.086	-0.045	-0.096	-0.074
(PT)												
Èst	-0.438	-0.477	-0.514	-0.442	-0.470	-0.418	-0.502	-0.518	-0.421	-0.372	-0.336	-0.380
p ₂	0.110	0.078	0.054	0.107	0.083	0.131	0.061	0.052	0.127	0.184	0.234	0.174
K ⁻ Herbiyore	0.158	0.206	0.255	0.163	0.197	0.134	0.239	0.260	0.139	0.086	0.052	0.094
Chewer												
Coleoptera												
(APE)	0 505	0 550	0.400	0 () (0.005	0.41.4	0 (10	0 51 (0.000	0.005	0 ===	0.440
Est	0.585	0.572	0.480 0.076	0.646	0.605	0.414 0.135	0.610	0.516	0.680	0.005	0.555	0.440 0.109
R^2	0.361	0.339	0.209	0.460	0.393	0.130	0.400	0.258	0.521	-0.100	0.315	0.161
Coleoptera												
(FIT-C)	0.252	0.050	0 100	0.221	0.072	0.157	0.200	0 100	0.250	0.107	0.202	0.157
ESI	-0.353 0.210	-0.258	-0.188 0.516	-0.331 0.242	-0.272 0.342	-0.157 0.590	-0.299 0.294	-0.198 0.495	-0.350 0.213	0.715	-0.302 0.288	-0.157 0.588
\mathbf{R}^2	0.067	-0.010	-0.052	0.047	0.000	-0.067	0.020	-0.047	0.065	-0.085	0.023	-0.067

Table G26. Continued.

	_						-	-			-	-
	7	4	3	3	3	3	2	2	2	2	2	2
Trophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Coleoptera												
(FIT-U)												
Est	0.459	0.564	0.627	0.479	0.527	0.595	0.555	0.596	0.420	0.634	0.420	0.515
р	0.092	0.030	0.013	0.076	0.047	0.020	0.034	0.020	0.128	0.011	0.128	0.053
R^2	0.183	0.328	0.428	0.209	0.274	0.375	0.314	0.377	0.138	0.440	0.138	0.257
Coleoptera												
(GPĒ)												
Èst	0.550	0.560	0.564	0.546	0.531	0.518	0.589	0.536	0.503	0.385	0.486	0.432
р	0.044	0.039	0.038	0.046	0.054	0.062	0.027	0.052	0.072	0.186	0.084	0.132
$\mathbf{\hat{R}}^2$	0.308	0.325	0.331	0.304	0.281	0.261	0.371	0.287	0.240	0.095	0.218	0.148
Producer												
Vascular plants												
Est	0.322	0.327	0.188	0.439	0.338	0.251	0.348	0.181	0.459	-0.174	0.485	0.253
р	0.256	0.249	0.518	0.110	0.231	0.382	0.217	0.533	0.092	0.549	0.072	0.378
R ²	0.039	0.044	-0.053	0.159	0.054	-0.015	0.062	-0.056	0.183	-0.059	0.216	-0.014

Table G27. Effects of naturalness, measures of management intensity, and stand structural attributes regarding stand age and dead and living wood volume (see Table 1) on the entropy (bias-corrected exponential Shannon's entropy eHbc) of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Decomposer Mycetophage								
Coleoptera (APE)								
Est	0.60	-0.539	-0.547	-0.566	0.741	0.69	0.322	-0.348
p ₂	0.019	0.041	0.037	0.030	0.001	0.004	0.256	0.217
K ⁻ Coloomtore (EIT C)	0.384	0.290	0.303	0.330	0.638	0.540	0.040	0.063
Est	0 198	_0 105	_0.156	_0.182	0 323	0 356	0 363	_0.031
p	0.494	0.720	0.591	0.532	0.255	0.206	0.195	0.916
$\mathbf{R}^{\mathbf{P}}$	-0.047	-0.085	-0.067	-0.056	0.040	0.070	0.078	-0.099
Coleoptera (FIT-U)								
Est	0.121	-0.255	-0.191	-0.176	0.183	0.084	-0.43	-0.382
P ₂	0.679	0.375	0.510	0.545	0.529	0.774	0.118	0.171
R^2	-0.080	-0.013	-0.051	-0.058	-0.055	-0.09	0.149	0.097
Saprophage Coleoptera (PT)								
Est	-0.178	0.264	0.242	0.247	-0.279	-0.279	-0.122	0.330
p B2	0.541	0.356	0.400	0.391	0.329	0.329	0.677	0.244
K ⁻	-0.058	-0.006	-0.021	-0.018	0.005	0.005	-0.08	0.046
Small								
Araneae (APE)								
Est	-0.079	0.234	0.185	0.185	-0.375	-0.134	0.197	0.108
р	0.787	0.416	0.524	0.524	0.180	0.647	0.496	0.712
R^2	-0.092	-0.026	-0.054	-0.054	0.090	-0.076	-0.048	-0.084
Coleoptera (APE)								
Est	0.214	-0.166	-0.197	-0.208	0.165	0.206	0.059	-0.121
p _{p2}	0.459	0.569	0.497	0.471	0.569	0.477	0.841	0.678
K Colooptoro (EIT C)	-0.038	-0.063	-0.048	-0.042	-0.063	-0.043	-0.095	-0.080
Fet	0 384	-0.293	-0.282	-0.291	0 381	0.257	0.001	-0.145
p	0.169	0.304	0.324	0.308	0.173	0.371	0.998	0.618
$\frac{F}{R^2}$	0.098	0.015	0.007	0.014	0.095	-0.011	-0.100	-0.072
Coleoptera (FIT-U)								
Est	0.091	-0.168	-0.137	-0.108	-0.025	-0.148	-0.162	-0.120
P ₂	0.755	0.564	0.638	0.711	0.931	0.612	0.577	0.680
R ²	-0.089	-0.062	-0.075	-0.084	-0.099	-0.071	-0.065	-0.081
Coleoptera (P1)	0 517	0.400	0.401	0.400	0 594	0.446	0.201	0 220
ESt p	0.052	0.499	0.491	0.499	0.023	0.103	0.307	0.338
R^2	0.259	0.235	0.224	0.234	0.359	0.168	0.014	0.054
Herbivore	0.207		0		0.000			0.000
Chewer								
Coleoptera (APE)								
Est	0.624	-0.653	-0.631	-0.599	0.259	0.324	-0.092	-0.408
p ₂	0.013	0.008	0.012	0.019	0.367	0.253	0.753	0.141
K ⁻ Colooptono (EIT C)	0.424	0.474	0.435	0.382	-0.010	0.041	-0.089	0.124
Est	0.054	0.039	0.057	0.028	0 101	0.010	0.047	0 116
n n	0.853	0.039	0.845	0.028	0.191	0.019	0.871	0.692
R^2	-0.096	-0.098	-0.096	-0.099	-0.051	-0.100	-0.097	-0.082
Coleoptera (FIT-U)								
Est	0.786	-0.797	-0.809	-0.813	0.766	0.825	0.432	-0.455
p	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	0.116	0.095
R [∠]	0.730	0.755	0.779	0.789	0.689	0.815	0.151	0.179

September 2014 🛠 Volume 5(9) 🛠 Article 113

Table G27. Continued.

Trophic guild	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Coleoptera (GPE)								
Est	0.656	-0.633	-0.63	-0.64	0.768	0.69	0.196	-0.421
р	0.010	0.015	0.016	0.013	0.001	0.005	0.518	0.144
\mathbf{R}^2	0.486	0.445	0.44	0.457	0.708	0.55	-0.058	0.135
Producer								
Vascular plants								
Est	-0.018	-0.019	-0.029	-0.006	0.139	0.209	-0.214	-0.145
p_	0.951	0.949	0.923	0.984	0.633	0.471	0.460	0.619
\bar{R}^2	-0.100	-0.100	-0.099	-0.100	-0.074	-0.041	-0.039	-0.072

Table G28. Effects of stand structural attributes except stand age and wood volume (see Table 1) on the entropy (bias-corrected exponential Shannon's entropy eHbc) of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the table.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Decomposer Mycetophage								
Est	-0.437	-0.506	0.320	0.432	-0.546	0.487	0.511	-0.229
p_	0.111	0.059	0.259	0.116	0.037	0.071	0.056	0.428
\mathbb{R}^2	0.157	0.244	0.038	0.151	0.301	0.219	0.251	-0.03
Coleoptera (FII-C)	0 101	0.446	0.022	0.120	0.042	0.067	0.055	0 478
p	0.731	0.103	0.940	0.635	0.887	0.820	0.852	0.078
R^2	-0.086	0.168	-0.099	-0.074	-0.098	-0.094	-0.096	0.207
Coleoptera (FIT-U)								
Est	-0.354	-0.005	0.396	0.355	-0.328	0.328	0.337	0.097
$p R^2$	0.208	-0.988	0.154	0.207	0.247	0.247	0.233	-0.739
Saprophage	0.009	0.100	0.111	0.007	0.045	0.045	0.000	0.007
Coleoptera (PT)								
Est	0.318	0.273	0.052	-0.134	0.199	-0.196	-0.046	-0.090
p_{P^2}	0.262	0.340	0.860	0.645	0.491	0.500	0.875	0.759
Predator	0.036	<0.001	-0.096	-0.076	-0.047	-0.049	-0.097	-0.069
Small								
Araneae (APE)								
Est	0.036	-0.138	-0.196	0.042	0.254	-0.408	-0.391	0.199
$p R^2$	0.904	-0.036	0.498	0.886	0.376	0.141	0.161	0.492
Coleoptera (APE)	-0.070	-0.074	-0.040	-0.070	-0.015	0.124	0.105	-0.047
Est	-0.207	-0.293	0.259	0.039	-0.118	0.128	0.044	-0.213
p ₂	0.475	0.305	0.368	0.895	0.685	0.660	0.881	0.461
K ⁻ Colcoptora (FIT C)	-0.043	0.015	-0.010	-0.098	-0.081	-0.078	-0.097	-0.039
Est	-0.169	-0.075	0.542	0.402	-0.374	0.387	0.554	-0.207
p_	0.562	0.797	0.039	0.147	0.182	0.166	0.034	0.475
R ²	-0.062	-0.092	0.295	0.118	0.088	0.101	0.313	-0.043
Coleoptera (FIT-U)	0.114	0.125	0.045	0.056	0.145	0.021	0.002	0.006
ESt	-0.114 0.696	0.135	0.045	-0.056	-0.145	0.021	-0.003	-0.006
R^2	-0.082	-0.076	-0.097	-0.096	-0.072	-0.099	-0.100	-0.100
Coleoptera (PT)								
Est	0.366	0.355	-0.245	-0.188	0.443	-0.395	-0.327	0.314
$p R^2$	0.191	0.207	0.394	0.518	0.106	0.156	0.248	0.268
Herbivore	0.001	0.007	0.017	0.000	0.104	0.110	0.011	0.000
Chewer								
Coleoptera (APE)	0.550	0.100	0.500	0 505	0 705	0.202	0.470	0.10(
ESt	-0.550	-0.129	0.522	0.587	-0.705	0.393	0.470	-0.126
\mathbf{R}^{2}	0.307	-0.078	0.267	0.363	0.568	0.108	0.197	-0.079
Coleoptera (FIT-C)								
Est	-0.007	-0.099	0.246	-0.123	0.09	0.208	0.082	-0.208
p B ²	0.981	0.736	0.392	0.674	0.757	0.471	0.780	0.473
Coleoptera (FIT-U)	-0.100	-0.087	-0.018	-0.080	-0.089	-0.042	-0.091	-0.042
Est	-0.603	-0.574	0.292	0.411	-0.755	0.565	0.473	-0.467
P ₂	0.018	0.027	0.306	0.138	0.001	0.030	0.081	0.086
R ²	0.389	0.343	0.015	0.127	0.666	0.329	0.201	0.194
Coleoptera (GPE)	-0 505	-0.54	0 4 2 1	0 377	-0.64	0 561	0 524	_0 375
p	0.070	0.049	0.144	0.196	0.013	0.039	0.058	0.199
R ²	0.243	0.294	0.135	0.087	0.459	0.325	0.271	0.084

Table G28. Continued.

Trophic guild	G	Ν	SR	SD	Con	OBL	VS	HS
Producer Vascular plants Est P R ²	-0.268 0.350 -0.004	-0.301 0.291 0.022	-0.177 0.542 -0.058	0.147 0.613 -0.071	-0.118 0.686 -0.081	-0.137 0.639 -0.075	-0.080 0.785 -0.091	0.213 0.461 -0.039

Table G29. Effects of stand structural complexity indices (see Appendix A: Table A3) on the entropy (biascorrected exponential Shannon's entropy eHbc) of forest specialists, including various groups of organisms (N = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Estimates, R^2 and p-values of linear models are shown.

Trophic guild	7 Attrib	4 Attrib	3 AttribA	3 AttribB	3 AttribC	3 AttribD	2 AttribA	2 AttribB	2 AttribC	2 AttribD	2 AttribE	2 AttribF
Decomposer												
Mycetophage												
(APE)												
Est	0.637	0.621	0.611	0.581	0.598	0.649	0.594	0.584	0.540	0.506	0.569	0.598
p ₂	0.011	0.014	0.016	0.024	0.019	0.009	0.020	0.023	0.041	0.059	0.028	0.019
R ² Colcoptoro	0.445	0.419	0.401	0.353	0.380	0.466	0.374	0.359	0.291	0.244	0.336	0.380
(FIT-C)												
Est	-0.008	0.107	0.204	0.023	0.066	0.168	0.108	0.168	-0.032	0.399	-0.002	0.092
p ₂	0.978	0.715	0.481	0.937	0.822	0.562	0.712	0.563	0.914	0.151	0.994	0.752
R ² Coleoptora	-0.100	-0.085	-0.044	-0.099	-0.094	-0.062	-0.084	-0.062	-0.099	0.114	-0.100	-0.089
(FIT-U)												
Est	0.241	0.217	0.118	0.337	0.233	0.076	0.288	0.123	0.364	-0.266	0.317	0.068
p ₂	0.402	0.453	0.686	0.233	0.420	0.796	0.313	0.673	0.194	0.354	0.264	0.816
R ²	-0.022	-0.037	-0.081	0.053	-0.027	-0.092	0.012	-0.080	0.079	-0.005	0.035	-0.094
Coleoptera												
Est	-0.186	-0.223	-0.229	-0.207	-0.210	-0.230	-0.222	-0.215	-0.187	-0.199	-0.197	-0.199
P ₂	0.521	0.440	0.427	0.474	0.468	0.426	0.441	0.458	0.519	0.492	0.496	0.492
R ²	-0.053	-0.033	-0.030	-0.042	-0.041	-0.029	-0.034	-0.038	-0.053	-0.047	-0.048	-0.047
Small												
Araneae (APE)												
Est	-0.130	-0.096	-0.145	-0.151	-0.088	0.086	-0.238	-0.145	-0.148	0.083	-0.007	0.159
$p_{\mathbf{P}^2}$	0.656	0.743	0.619	0.604	0.763	0.769	0.410	0.619	0.612	0.776	0.980	0.584
Coleoptera	-0.077	-0.000	-0.072	-0.069	-0.090	-0.090	-0.024	-0.072	-0.071	-0.091	-0.100	-0.066
(APE)												
Èst	0.064	0.120	0.139	0.113	0.104	0.111	0.140	0.123	0.094	0.125	0.096	0.072
p P ²	0.826	0.680	0.633	0.698	0.721	0.703	0.630	0.675	0.749	0.669	0.742	0.807
K Coleoptera	-0.094	-0.081	-0.074	-0.085	-0.085	-0.085	-0.074	-0.080	-0.088	-0.079	-0.088	-0.093
(FIT-C)												
Èst	0.452	0.383	0.313	0.407	0.394	0.359	0.362	0.319	0.415	0.105	0.410	0.375
p P2	0.098	0.171	0.271	0.143	0.157	0.202	0.198	0.260	0.134	0.719	0.139	0.181
K Coleoptera	0.175	0.097	0.031	0.122	0.109	0.073	0.076	0.037	0.131	-0.085	0.126	0.089
(FIT-U)												
Èst	-0.026	0.001	0.028	0.042	0.024	-0.156	0.089	0.065	0.071	-0.173	-0.092	-0.150
p_{P^2}	0.929	0.996	0.924	0.887	0.933	0.591	0.760	0.825	0.809	0.551	0.754	0.605
Coleoptera	-0.099	-0.100	-0.099	-0.098	-0.099	-0.067	-0.069	-0.094	-0.095	-0.060	-0.069	-0.070
(PT)												
Est	-0.390	-0.437	-0.484	-0.393	-0.427	-0.393	-0.458	-0.484	-0.368	-0.385	-0.293	-0.352
p_{P^2}	0.162	0.111	0.073	0.158	0.121	0.158	0.093	0.073	0.189	0.167	0.304	0.212
K Herbivore	0.104	0.157	0.215	0.108	0.145	0.107	0.182	0.216	0.082	0.099	0.016	0.066
Chewer												
Coleoptera												
(APE) Eat	0.620	0.617	0 522	0 679	0.640	0.466	0.640	0 569	0.700	0.069	0 592	0.400
ESI D	0.030	0.017	0.032	0.005	0.049	0.466 0.087	0.049	0.029	0.003	0.000	0.024	0.490
R^2	0.434	0.411	0.281	0.519	0.466	0.192	0.467	0.334	0.575	-0.094	0.355	0.223
Coleoptera												
(FIT-C) Fet	_0 150	_0 102	_0.076	_0.096	_0 118	_0 105	-0.071	_0.095	_0 111	_0.026	_0.095	-0 143
p	0.607	0.728	0.796	0.742	0.686	0.720	0.809	0.747	0.704	0.930	0.746	0.624
Ř ²	-0.070	-0.086	-0.092	-0.088	-0.081	-0.085	-0.093	-0.088	-0.083	-0.099	-0.088	-0.073

Table G29. Continued.

	7	4	3	3	3	3	2	2	2	2	2	2
Trophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Coleoptera (FIT-U)												
Est	0.709	0.772	0.817	0.713	0.747	0.722	0.794	0.802	0.666	0.638	0.594	0.645
P ₂	0.003	0.000	0.000	0.002	0.001	0.002	0.000	0.000	0.006	0.010	0.020	0.009
R ²	0.576	0.700	0.797	0.584	0.650	0.600	0.747	0.765	0.497	0.447	0.375	0.459
Coleoptera												
(GPE)	0.400	0.400	0 (10	0.407	0 (1 1	0 ==4	0.474	0 (10	0 505	0.407	0 = 10	0.400
Est	0.638	0.638	0.640	0.627	0.614	0.571	0.674	0.618	0.587	0.406	0.542	0.488
P ₂	0.014	0.014	0.013	0.016	0.020	0.035	0.007	0.018	0.028	0.161	0.048	0.083
R^2	0.455	0.455	0.457	0.435	0.413	0.341	0.520	0.420	0.367	0.117	0.297	0.219
Producer												
Vascular plants												
Est	0.090	0.096	0.056	0.154	0.076	0.062	0.141	0.023	0.139	-0.064	0.186	0.007
p_	0.759	0.744	0.848	0.596	0.795	0.831	0.630	0.938	0.632	0.827	0.522	0.981
\mathbb{R}^2	-0.089	-0.088	-0.096	-0.068	-0.092	-0.095	-0.073	-0.099	-0.074	-0.095	-0.054	-0.100

Table G30. Effects of forest type, naturalness, measures of management intensity, and stand structural attributes regarding stand age and dead and living wood volume (see Table 1) on the community composition of various groups of organisms (df = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Analyses are based on a partial constrained correspondence analysis (pCCA) by removing effect of region.

Trophic guild	FT	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Decomposer Mycetophage									
Coleoptera (APE)									
Chi ²	0.305	0.137	0.156	0.168	0.162	0.097	0.122	0.062	0.109
p_{P^2}	0.330	0.150	0.057	0.032	0.054	0.260	0.170	0.580	0.270
K Coleoptera (FIT-C)	0.335	0.151	0.171	0.164	0.178	0.107	0.134	0.000	0.119
Chi ²	0.369	0.189	0.158	0.172	0.166	0.100	0.127	0.120	0.115
p	0.380	0.078	0.100	0.145	0.097	0.480	0.270	0.390	0.450
R^2	0.357	0.183	0.153	0.167	0.160	0.097	0.123	0.116	0.111
Coleoptera (FIT-U)									
Chi ²	0.324	0.135	0.140	0.138	0.141	0.141	0.139	0.117	0.128
p p2	0.240	0.210	0.088	0.190	0.105	0.130	0.170	0.280	0.190
K ⁻ Sanronhaga	0.372	0.154	0.161	0.158	0.161	0.162	0.159	0.135	0.147
Coleoptera (PT)									
Chi ²	0.216	0.128	0.141	0.137	0.139	0.177	0.161	0.023	0.167
p	0.270	0.054	0.036	0.025	0.036	0.010	0.015	0.900	0.010
R^2	0.344	0.203	0.225	0.219	0.222	0.282	0.257	0.037	0.267
Fungi (soil saprophytes)									
Chi ²	0.511	0.226	0.227	0.227	0.225	0.207	0.201	0.157	0.204
p ₂	0.068	0.025	0.020	0.024	0.015	0.048	0.074	0.390	0.056
R ²	0.370	0.164	0.165	0.165	0.163	0.150	0.146	0.114	0.148
Isopoda (PT)	0.075	0.000	0.010	0.011	0.010	0.014	0.024	0.050	0.040
Chi	0.065	0.033	0.013	0.011	0.019	0.014	0.024	0.050	0.042
$p_{\mathbf{P}^2}$	0.970	0.620	0.870	0.930	0.850	0.870	0.620	0.340	0.430
Xvlonhage	0.241	0.123	0.047	0.042	0.070	0.031	0.090	0.165	0.134
Coleoptera (APE)									
Chi ²	0.931	0.345	0.354	0.340	0.349	0.409	0.348	0.346	0.377
p	0.530	0.280	0.220	0.320	0.240	0.130	0.290	0.300	0.300
R^2	0.287	0.106	0.109	0.105	0.108	0.126	0.107	0.107	0.116
Coleoptera (FIT-C)									
Chi ²	0.451	0.204	0.183	0.181	0.188	0.177	0.194	0.192	0.179
p p2	0.430	0.070	0.140	0.200	0.135	0.250	0.135	0.107	0.230
K ⁻	0.317	0.143	0.129	0.127	0.132	0.124	0.136	0.135	0.126
Chieoptera (FII-U)	0.662	0.282	0 266	0.282	0.201	0.277	0.280	0.200	0 222
n	0.003	0.382	0.300	0.362	0.091	0.377	0.380	0.309	0.222
$\frac{P}{R^2}$	0.140	0.000	0.013	0.010	0.005	0.020	0.249	0.000	0.300
Fungi (wood/bark species)	0.100	0.201	0.210	0.200	0.200	0.217	0.21)	0.202	0.110
Chi ²	0.564	0.277	0.260	0.262	0.263	0.218	0.235	0.206	0.228
p	0.010	0.005	0.005	0.005	0.015	0.030	0.010	0.053	0.020
R^2	0.421	0.207	0.195	0.195	0.197	0.163	0.176	0.154	0.170
Predator									
Big									
Chi ²	0.125	0.005	0.004	0.002	0.002	0.070	0.082	0.051	0.078
n	0.135	0.095	0.094	0.093	0.093	0.079	0.082	0.051	0.078
$\frac{P}{R^2}$	0.130	0.003	0.010	0.005	0.005	0.020	0.252	0.170	0.013
Birds (overwintering)	0.110	0.271	0.207	0.200	0.200	0.210	0.202	0.100	0.210
Chi ²	0.179	0.118	0.117	0.116	0.115	0.086	0.099	0.055	0.106
P ₂	0.010	0.005	0.015	0.010	0.010	0.028	0.010	0.210	0.010
$\mathbf{\hat{R}}^2$	0.524	0.348	0.344	0.341	0.337	0.253	0.292	0.160	0.311
Small									
Araneae (APE)		0.57.	0.0	0.001	0.670	0.01	0.000	04.5	0.000
Chi ²	0.702	0.354	0.372	0.386	0.378	0.261	0.328	0.142	0.319
р	0.062	0.015	0.025	0.005	0.015	0.220	0.041	0.740	0.063

Table G30. Continued.

Trophic guild	FT	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
R ²	0.444	0.224	0.235	0.244	0.239	0.165	0.208	0.090	0.202
Coleoptera (APE)	0.941	0.244	0.250	0.271	0.261	0 1 9 7	0.262	0.115	0 284
p	0.041	$0.344 \\ 0.140$	0.339	0.093	0.361	0.187	0.262	0.115	0.264
R^2	0.498	0.204	0.212	0.219	0.214	0.111	0.155	0.068	0.168
Coleoptera (FIT-C)	0.480	0.240	0.252	0.246	0.247	0 194	0 183	0 158	0 187
p	0.460	0.240	0.232	0.240	0.247	0.260	0.185	0.138	0.187
R^2	0.331	0.165	0.174	0.169	0.170	0.134	0.126	0.109	0.129
Coleoptera (FII-U)	0.638	0.250	0 270	0 259	0.260	0.206	0 198	0 190	0 248
p	0.390	0.180	0.115	0.170	0.180	0.470	0.560	0.730	0.180
\hat{R}^2	0.339	0.133	0.143	0.138	0.138	0.109	0.105	0.101	0.132
Coleoptera (P1)	0 276	0 177	0 197	0 195	0 194	0.186	0 180	0.054	0 167
p_	0.250	0.010	0.005	0.010	0.010	0.010	0.010	0.770	0.023
\hat{R}^2	0.383	0.245	0.273	0.270	0.269	0.257	0.249	0.074	0.231
Chi ²	0 768	0.380	0.430	0 439	0 426	0 181	0 207	0.213	0 245
p ₂	0.290	0.230	0.160	0.090	0.140	0.670	0.520	0.500	0.470
R^2	0.416	0.205	0.233	0.237	0.230	0.098	0.112	0.115	0.132
Chi ²	0.544	0.278	0.271	0.276	0.276	0.215	0.270	0.119	0.234
P ₂	0.150	0.010	0.010	0.018	0.010	0.150	0.030	0.610	0.051
R ² Hotoroptoro (FIT II)	0.313	0.141	0.173	0.169	0.172	0.165	0.161	0.057	0.143
Chi ²	1.442	0.591	0.593	0.591	0.609	0.575	0.629	0.511	0.533
p ₂	0.310	0.170	0.130	0.140	0.115	0.130	0.140	0.390	0.270
R ² Neuropterida (APE)	0.352	0.131	0.132	0.132	0.136	0.128	0.141	0.112	0.117
Chi ²	0.851	0.559	0.587	0.584	0.583	0.500	0.443	0.167	0.569
p p2	0.093	0.010	0.015	0.020	0.005	0.025	0.030	0.530	0.010
K ² Neuropterida (FIT-C)	0.524	0.344	0.362	0.359	0.359	0.308	0.273	0.103	0.350
Chi ²	0.506	0.270	0.250	0.250	0.261	0.215	0.241	0.248	0.181
p B2	0.103	0.013	0.025	0.033	0.032	0.180	0.060	0.031	0.230
K Neuropterida (FIT-U)	0.477	0.254	0.235	0.236	0.246	0.203	0.227	0.234	0.171
Chi ²	0.995	0.400	0.423	0.442	0.427	0.405	0.395	0.267	0.338
p_{p^2}	0.180	0.180	0.110	0.066	0.092	0.140	0.260	0.690	0.420
Opiliones (APE)	0.300	0.147	0.155	0.102	0.137	0.149	0.145	0.098	0.124
¹ Chi ²	0.222	0.110	0.097	0.097	0.100	0.098	0.102	0.083	0.107
$p \\ R^2$	0.260	0.135	0.220	0.240	0.260	0.240	0.130	0.330	0.170
Opiliones (PT)	0.500	0.200	0.221	0.221	0.22)	0.224	0.200	0.107	0.211
Chi ²	0.281	0.079	0.101	0.099	0.101	0.121	0.098	0.092	0.074
p R ²	$0.140 \\ 0.448$	0.480	0.180	0.230	0.200	0.160	0.250	0.240 0.147	0.510
Herbivore									
Colooptora (APE)									
Chi ²	0.995	0.714	0.714	0.712	0.715	0.676	0.670	0.335	0.704
p ₂	0.024	0.005	0.010	0.005	0.010	0.005	0.015	0.310	0.015
K ² Coleoptera (FIT-C)	0.566	0.406	0.406	0.405	0.406	0.385	0.381	0.190	0.400
Chi ²	0.521	0.265	0.257	0.254	0.257	0.210	0.198	0.108	0.214
p p2	0.190	0.083	0.051	0.060	0.052	0.240	0.300	0.660	0.180
K ⁻ Coleoptera (FIT-U)	0.356	0.181	0.176	0.174	0.176	0.143	0.135	0.074	0.146
Chi ²	0.534	0.373	0.392	0.384	0.398	0.382	0.340	0.240	0.217
p P ²	0.055	0.005	0.005	0.010	0.005	0.005	0.010	0.077	0.150
K Coleoptera (GPE)	0.481	0.336	0.353	0.346	0.359	0.344	0.306	0.216	0.196
Chi ²	0.586	0.286	0.247	0.253	0.263	0.252	0.257	0.222	0.172
$p_{\mathbf{R}^2}$	0.480	0.103	0.220	0.140	0.170	0.180	0.140	0.350	0.570
IX	0.411	0.201	0.175	0.177	0.104	0.177	0.100	0.130	0.121

Table G30. Continued.

Trophic guild	FT	Nat	SMIG	SMIV	SMIVD	max Age	avg Age	DWV	WV
Sucker									
Heteroptera (APE)									
Chi ²	0.872	0.475	0.504	0.513	0.502	0.267	0.378	0.172	0.491
p	0.034	0.029	0.023	0.005	0.025	0.340	0.080	0.610	0.025
R ²	0.529	0.294	0.318	0.325	0.316	0.146	0.221	0.090	0.307
Heteroptera (FIT-C)									
Chi ²	0.477	0.245	0.300	0.294	0.298	0.287	0.279	0.099	0.248
p ₂	0.057	0.025	0.005	0.020	0.010	0.025	0.015	0.680	0.046
R ²	0.485	0.751	0.695	0.702	0.697	0.708	0.717	0.900	0.748
Heteroptera (FIT-U)									
Chi ²	1.123	0.562	0.532	0.527	0.532	0.485	0.473	0.339	0.537
p_	0.130	0.010	0.005	0.026	0.034	0.105	0.140	0.500	0.037
R ²	0.403	0.202	0.191	0.189	0.191	0.174	0.170	0.121	0.192
Symbiont									
Fungi (Mycorrhiza)									
Chi ²	0.757	0.354	0.363	0.356	0.355	0.320	0.311	0.213	0.334
P ₂	0.150	0.027	0.017	0.028	0.010	0.110	0.150	0.600	0.059
R ²	0.410	0.192	0.196	0.193	0.192	0.174	0.168	0.115	0.181
Producer									
Vascular plants									
Chi ²	0.479	0.240	0.241	0.246	0.241	0.198	0.198	0.082	0.212
P ₂	0.230	0.044	0.035	0.034	0.046	0.210	0.200	0.950	0.130
R ²	0.369	0.185	0.185	0.190	0.185	0.152	0.153	0.063	0.164
Mosses									
Chi ²	0.813	0.565	0.608	0.589	0.592	0.518	0.542	0.164	0.637
P ₂	0.130	0.005	0.017	0.025	0.015	0.010	0.010	0.730	0.005
R ²	0.440	0.306	0.329	0.319	0.320	0.280	0.293	0.088	0.344

Table G31. Effects of stand structural attributes except stand age and wood volume (see Table 1) on the community composition of various groups of organisms (df = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/ understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Analyses are based on a partial constrained correspondence analysis (pCCA) by removing effect of region.

Trophic guild	G	Ν	Dg	Dm	SR	SD	Con	OBL	VS	HS
Decomposer										
Mycetophage										
Coleoptera (APE)	0 125	0.075	0 104	0 104	0.077	0 111	0 162	0 133	0 120	0.075
p	0.120	0.510	0.290	0.260	0.530	0.280	0.058	0.190	0.120	0.480
\mathbf{R}^{r}	0.137	0.082	0.114	0.114	0.084	0.122	0.178	0.146	0.132	0.082
Coleoptera (FIT-C)										
Chi ²	0.154	0.119	0.116	0.128	0.100	0.143	0.173	0.106	0.134	0.107
$p_{\mathbf{p}^2}$	0.210	0.330	0.410	0.320	0.520	0.210	0.130	0.590	0.250	0.480
Coleoptera (FIT-U)	0.149	0.110	0.112	0.124	0.097	0.139	0.100	0.105	0.150	0.104
Chi ²	0.101	0.108	0.138	0.132	0.143	0.102	0.144	0.182	0.171	0.142
p	0.530	0.370	0.115	0.260	0.150	0.440	0.075	0.015	0.010	0.090
R^2	0.116	0.124	0.158	0.152	0.164	0.118	0.165	0.209	0.197	0.163
Saprophage										
Chi ²	0 155	0 140	0.082	0.063	0.068	0.073	0 133	0 158	0 109	0.076
p	0.010	0.027	0.300	0.400	0.460	0.340	0.052	0.028	0.170	0.280
Ŕ²	0.247	0.223	0.130	0.101	0.109	0.116	0.212	0.252	0.174	0.121
Fungi (soil saprophytes)										
Chi ²	0.200	0.174	0.179	0.182	0.141	0.185	0.240	0.217	0.222	0.182
p p2	0.140	0.320	0.170	0.180	0.500	0.180	0.010	0.034	0.030	0.180
K Isopoda (PT)	0.145	0.126	0.130	0.132	0.102	0.134	0.174	0.158	0.161	0.132
Chi ²	0.025	0.050	0.093	0.090	0.093	0.026	0.014	0.059	0.015	0.046
p	0.600	0.360	0.180	0.160	0.200	0.710	0.720	0.300	0.840	0.370
\hat{R}^2	0.091	0.183	0.343	0.330	0.343	0.095	0.052	0.216	0.056	0.170
Xylophage										
Coleoptera (APE)	0.210	0.212	0.261	0.226	0.250	0.244	0.210	0.202	0.247	0 220
Chi p	0.319	0.312	0.261	0.226	0.350	0.244	0.318	0.382	0.347	0.330
$\mathbf{R}^{\mathbf{P}}$	0.098	0.096	0.081	0.070	0.108	0.075	0.098	0.118	0.107	0.102
Coleoptera (FIT-C)										
Chi ²	0.168	0.164	0.172	0.148	0.184	0.141	0.170	0.202	0.174	0.197
p p2	0.310	0.420	0.250	0.450	0.300	0.620	0.250	0.113	0.230	0.170
K ⁻ Colooptora (FIT II)	0.118	0.115	0.121	0.104	0.129	0.099	0.119	0.142	0.122	0.138
Chi ²	0.233	0.265	0.257	0.174	0.161	0.170	0.328	0.351	0.286	0.309
p	0.300	0.200	0.190	0.450	0.530	0.630	0.050	0.025	0.130	0.090
R^2	0.153	0.174	0.169	0.114	0.105	0.112	0.215	0.230	0.188	0.203
Fungi (wood/bark species)	0.000	0.177	0.1(0	0.150	0.007	0.00(0.077	0.0/5	0.000	0.150
Chi ⁻	0.228	0.177	0.160	0.159	0.207	0.226	0.277	0.265	0.280	0.158
\mathbf{R}^2	0.023	0.220	0.350	0.500	0.160	0.029	0.003	0.005	0.003	0.300
Predator	0.170	0.100	0.120	0.117	0.101	0.109	0.207	0.170	0.209	0.110
Big										
Birds (breeding)	0 0 77		0.044		0.050	0.0/0	0.404	0.007		0.070
Chi ²	0.077	0.055	0.041	0.033	0.050	0.062	0.101	0.096	0.078	0.060
p R ²	0.025	0.150	0.340 0.125	0.550	0.200	0.066	0.005	0.010	0.015	0.080
Birds (overwintering)	0.257	0.107	0.125	0.102	0.151	0.107	0.000	0.275	0.257	0.105
Chi ²	0.113	0.076	0.049	0.037	0.034	0.085	0.124	0.095	0.068	0.036
p ₂	0.005	0.043	0.310	0.390	0.540	0.031	0.005	0.015	0.090	0.450
R^2	0.331	0.223	0.143	0.109	0.099	0.249	0.363	0.280	0.199	0.106
Small Arapozo (APE)										
Chi ²	0.369	0.198	0.135	0.169	0.305	0.364	0.398	0.331	0.350	0.140
p	0.023	0.430	0.770	0.660	0.180	0.033	0.013	0.058	0.045	0.710
R^2	0.234	0.125	0.085	0.107	0.193	0.230	0.252	0.209	0.222	0.088
Coleoptera (APE)		0.5		0.57				0.515	0.000	0.1.1-
Chi	0.375	0.257	0.211	0.256	0.257	0.380	0.366	0.312	0.321	0.143
$\frac{P}{R^2}$	0.093	0.410 0.152	0.530	0.330	0.320	0.150	0.130	0.230	0.190	0.820
17	0.222	0.132	0.120	0.131	0.132	0.225	0.217	0.105	0.190	0.004

Table G31. Continued.

Trophic guild	G	N	Dg	Dm	SR	SD	Con	OBL	VS	HS
Coleoptera (FIT-C)			0							
Chi ²	0.167	0.134	0.170	0.171	0.184	0.119	0.231	0.260	0.241	0.206
p ₂	0.420	0.700	0.390	0.370	0.220	0.770	0.046	0.005	0.017	0.140
R^2	0.115	0.092	0.117	0.117	0.127	0.082	0.159	0.179	0.166	0.142
Coleoptera (FII-U)	0 227	0.204	0.224	0 222	0.246	0 100	0.245	0.284	0.262	0.205
chi p	0.227	0.204	0.234	0.232	0.240	0.190	0.245	0.284	0.202	0.203
R^2	0.121	0.108	0.124	0.123	0.131	0.101	0.130	0.151	0.139	0.109
Coleoptera (PT)				0						0.207
Chi ²	0.159	0.109	0.078	0.083	0.093	0.128	0.205	0.211	0.193	0.095
p ₂	0.017	0.210	0.450	0.420	0.290	0.150	0.005	0.005	0.010	0.280
R ²	0.220	0.150	0.107	0.115	0.129	0.177	0.283	0.292	0.267	0.132
Chi ²	0.270	0 155	0.312	0 375	0 387	0.240	0.401	0 301	0.404	0 164
p	0.390	0.790	0.190	0.200	0.160	0.240	0.180	0.115	0.140	0.740
R^2	0.146	0.084	0.169	0.203	0.209	0.130	0.217	0.212	0.219	0.089
Heteroptera (FIT-C)										
Chi ²	0.283	0.193	0.137	0.143	0.146	0.264	0.297	0.272	0.307	0.184
p P2	0.020	0.130	0.570	0.490	0.570	0.033	0.015	0.035	0.015	0.270
K ⁻	0.124	0.067	0.047	0.051	0.086	0.101	0.157	0.187	0.159	0.088
Chi ²	0 533	0 427	0 385	0 353	0.605	0 532	0 576	0.641	0 570	0 551
p	0.360	0.580	0.650	0.780	0.170	0.300	0.190	0.105	0.250	0.220
R^2	0.117	0.092	0.082	0.075	0.135	0.117	0.128	0.144	0.126	0.122
Neuropterida (APE)										
Chi ²	0.537	0.275	0.217	0.230	0.363	0.409	0.594	0.605	0.559	0.347
p P2	0.010	0.200	0.310	0.370	0.100	0.048	0.010	0.010	0.015	0.130
K ⁻ Nouroptorida (FIT C)	0.330	0.169	0.134	0.142	0.223	0.252	0.365	0.373	0.344	0.214
Chi ²	0 178	0 170	0 127	0 112	0 147	0 155	0.216	0 241	0 204	0 129
p	0.260	0.330	0.740	0.770	0.430	0.440	0.130	0.042	0.107	0.730
R^2	0.168	0.160	0.120	0.105	0.139	0.146	0.204	0.227	0.192	0.122
Neuropterida (FIT-U)										
Chi ²	0.386	0.376	0.290	0.279	0.186	0.330	0.439	0.343	0.351	0.378
p P2	0.260	0.240	0.490	0.510	0.840	0.330	0.076	0.390	0.310	0.220
N Opiliones (APF)	0.142	0.156	0.106	0.105	0.000	0.121	0.161	0.120	0.129	0.139
Chi ²	0.094	0.103	0.084	0.062	0.085	0.082	0.096	0.112	0.109	0.133
р	0.260	0.240	0.390	0.380	0.280	0.380	0.300	0.150	0.260	0.074
R ²	0.214	0.235	0.191	0.140	0.193	0.186	0.219	0.256	0.249	0.303
Opiliones (PT)		0.0/5		0.050	0.0/0	0.000	0.004	0.404	0.074	0.050
Chi ²	0.077	0.065	0.057	0.050	0.062	0.083	0.081	0.104	0.074	0.053
$\frac{P}{R^2}$	0.500	0.550	0.710	0.730	0.370	0.460	0.400	0.150	0.500	0.720
Herbivore	0.120	0.104	0.071	0.000	0.077	0.102	0.12)	0.107	0.117	0.000
Chewer										
Coleoptera (APE)										
Chi ²	0.672	0.522	0.341	0.178	0.618	0.650	0.721	0.709	0.682	0.566
p P2	0.010	0.055	0.140	0.590	0.020	0.013	0.005	0.010	0.010	0.030
K Coleoptera (FIT-C)	0.362	0.297	0.194	0.101	0.551	0.369	0.410	0.405	0.300	0.322
Chi ²	0.194	0.166	0.118	0.113	0.159	0.215	0.248	0.288	0.269	0.187
p	0.200	0.360	0.580	0.490	0.300	0.170	0.100	0.088	0.080	0.290
R^2	0.132	0.114	0.080	0.077	0.108	0.147	0.169	0.197	0.183	0.128
Coleoptera (FIT-U)										
Chi ²	0.191	0.193	0.230	0.152	0.136	0.105	0.329	0.435	0.324	0.287
$p_{\mathbf{P}^2}$	0.230	0.180 0.174	0.130	0.260	0.380	0.580	0.010	0.005	0.020	0.037
Coleoptera (GPE)	0.172	0.174	0.207	0.137	0.122	0.074	0.290	0.372	0.272	0.239
Chi ²	0.176	0.237	0.212	0.175	0.194	0.123	0.217	0.273	0.218	0.239
P ₂	0.540	0.280	0.360	0.530	0.450	0.860	0.390	0.150	0.360	0.300
\bar{R}^2	0.124	0.166	0.149	0.123	0.136	0.086	0.152	0.192	0.153	0.168
Sucker										
Heteroptera (APE) Chi^2	0 522	0 204	0 145	0 224	0 442	0 521	0 524	0.490	0 514	0.204
p	0.020	0.204	0.165	0.450	0.445	0.005	0.0354	0.400	0.014	0.204
$\mathbf{\tilde{R}}^2$	0.334	0.108	0.086	0.127	0.269	0.332	0.343	0.298	0.326	0.108

Table G31. Continued.

Trophic guild	G	Ν	Dg	Dm	SR	SD	Con	OBL	VS	HS
Heteroptera (FIT-C)										
Chi ²¹	0.216	0.116	0.082	0.089	0.150	0.175	0.273	0.325	0.275	0.153
P ₂	0.088	0.600	0.770	0.800	0.260	0.260	0.020	0.010	0.027	0.290
\hat{R}^2	0.780	0.882	0.916	0.910	0.848	0.822	0.723	0.669	0.720	0.845
Heteroptera (FIT-U)										
Chi ²	0.503	0.388	0.300	0.241	0.581	0.548	0.550	0.580	0.595	0.510
p_	0.074	0.420	0.480	0.750	0.025	0.035	0.028	0.023	0.015	0.060
Ř ²	0.180	0.139	0.108	0.086	0.208	0.196	0.197	0.208	0.213	0.183
Symbiont										
Fungi (Mycorrhiza)										
Chi ²	0.309	0.249	0.314	0.329	0.287	0.349	0.392	0.396	0.388	0.250
p	0.085	0.320	0.093	0.130	0.160	0.037	0.015	0.010	0.015	0.360
Ř ²	0.167	0.135	0.170	0.178	0.155	0.189	0.212	0.215	0.210	0.135
Producer										
Vascular plants										
Chi ²	0.224	0.162	0.115	0.135	0.196	0.234	0.264	0.241	0.273	0.112
p_	0.069	0.310	0.770	0.610	0.230	0.053	0.026	0.043	0.028	0.780
R ²	0.173	0.125	0.088	0.104	0.151	0.180	0.203	0.185	0.210	0.087
Mosses										
Chi ²	0.597	0.402	0.220	0.162	0.260	0.398	0.586	0.546	0.422	0.267
P ₂	0.015	0.058	0.410	0.580	0.320	0.058	0.015	0.005	0.044	0.210
R²	0.323	0.217	0.119	0.088	0.140	0.216	0.317	0.296	0.228	0.144

Table G32. Effects of stand structural complexity indices (see Appendix A: Table A3) on the community composition of various groups of organisms (df = 12 forest sites). Arthropods were sampled by different trapping methods (APE = arboreal photo eclectors; FIT-C/U = flight-interception traps canopy/understorey; GPE = ground photo eclectors; PT = pitfall traps; for details see Appendix E). Analyses are based on a partial constrained correspondence analysis (pCCA) by removing effect of region.

Trophic guild	7 Attrib	4 Attrib	3 AttribA	3 AttribB	3 AttribC	3 AttribD	2 AttribA	2 AttribB	2 AttribC	2 AttribD	2 AttribE	2 AttribF
Decomposer Mycetophage Coleoptera (APE)												
$\frac{(2 \pi L)}{Chi^2}$ \underline{P}_2	0.155 0.130	0.145 0.130	0.143 0.098	0.149 0.130	$0.145 \\ 0.098$	0.121 0.230	$0.159 \\ 0.140$	$\begin{array}{c} 0.144\\ 0.140\end{array}$	$0.147 \\ 0.180$	0.125 0.170	0.079 0.510	0.114 0.210
R ² Coleoptera (FIT-C)	0.171	0.159	0.156	0.164	0.159	0.133	0.175	0.158	0.161	0.137	0.087	0.125
Chi^2 P_R^2	0.169 0.180 0.163	0.168 0.130 0.163	0.158 0.130 0.153	0.170 0.117 0.165	0.174 0.084 0.168	0.153 0.150 0.148	0.164 0.130 0.159	0.165 0.130 0.159	0.175 0.095 0.169	0.151 0.220 0.146	0.125 0.270 0.121	0.157 0.140 0.152
Coleoptera (FIT-U) Chi ²	0.140	0.138	0.140	0.137	0.137	0.127	0.144	0.139	0.135	0.116	0.128	0.119
p R ² Saprophage	0.125 0.160	0.097 0.158	0.130 0.161	0.170 0.157	0.145 0.157	0.170 0.146	0.068 0.165	0.170 0.159	0.180 0.155	0.280 0.134	0.230 0.147	0.340 0.136
Coleoptera (PT)	0 109	0 1 2 7	0.120	0 122	0 120	0.102	0.145	0 110	0.114	0.000	0.055	0.082
p R^2	$0.108 \\ 0.150 \\ 0.172$	0.051 0.203	0.130 0.046 0.207	0.123 0.066 0.196	0.120 0.077 0.191	$0.102 \\ 0.140 \\ 0.162$	0.145 0.038 0.230	0.097 0.190	0.095 0.181	0.130 0.158	0.000 0.500 0.088	0.082 0.210 0.131
Fungi (soil saprophytes) Chi ²	0.235	0.232	0.225	0.232	0.232	0.216	0.236	0.228	0.229	0.210	0.176	0.208
p R ² Isopoda (PT)	0.010 0.170	$0.005 \\ 0.168$	0.005 0.163	0.017 0.168	0.015 0.168	0.033 0.157	0.010 0.171	0.010 0.165	0.020 0.166	0.046 0.152	0.250 0.128	0.045 0.151
Chi ² p R ²	$0.013 \\ 0.900 \\ 0.047$	0.017 0.820 0.063	0.014 0.870 0.053	$0.014 \\ 0.890 \\ 0.050$	0.016 0.800 0.060	$0.045 \\ 0.450 \\ 0.164$	0.009 0.920 0.034	0.012 0.850 0.045	0.016 0.780 0.059	0.026 0.660 0.097	0.044 0.390 0.161	0.052 0.330 0.192
Xylophage Coleoptera	01017	01000	0.000	0.000	0.000	01101	01001	01010	01003	01077	01101	01172
Chi^2 p_2	0.304	0.314 0.390	0.351 0.300	0.295 0.530	0.308	0.301 0.460	0.328 0.450	0.350 0.290	0.286	0.266 0.650	0.356 0.270	0.289
Coleoptera (FIT-C)	0.094	0.097	0.106	0.091	0.095	0.095	0.101	0.105	0.000	0.082	0.110	0.009
p R^2	0.176 0.200 0.124	0.189 0.130 0.133	0.196 0.110 0.138	0.171 0.290 0.120	0.188 0.160 0.132	0.198 0.110 0.139	0.177 0.260 0.124	0.195 0.093 0.137	0.166 0.360 0.116	0.158 0.460 0.111	$0.205 \\ 0.115 \\ 0.144$	0.194 0.150 0.137
Coleoptera (FIT-U) Chi ²	0.334	0.342	0.392	0.292	0.328	0.334	0.349	0.388	0.269	0.232	0.378	0.297
p R ² Fungi (wood/	0.036 0.219	0.036 0.224	0.005 0.257	0.105 0.192	0.048 0.215	0.035 0.219	0.023 0.228	0.010 0.254	0.210 0.176	0.270 0.152	0.023 0.248	0.140 0.195
bark species) Chi ² p	0.283 0.005	0.281 0.005	0.264 0.005	0.283 0.005	0.285 0.005	0.262 0.010	0.274 0.005	0.266 0.005	0.283 0.005	0.256 0.010	0.219 0.027	0.257 0.015
R ² Predator Big Birds	0.211	0.210	0.197	0.211	0.213	0.196	0.204	0.199	0.212	0.192	0.164	0.192
(breeding) Chi ² p R ²	0.096 0.010 0.294	0.099 0.005 0.303	0.093 0.005 0.285	0.099 0.005 0.302	$0.100 \\ 0.005 \\ 0.305$	0.088 0.010 0.267	0.100 0.005 0.306	0.094 0.010 0.286	0.097 0.015 0.297	0.082 0.015 0.251	0.064 0.056 0.196	0.085 0.010 0.259

101

September 2014 🛠 Volume 5(9) 🛠 Article 113

Table G32. Continued.

	7	4	2	2	2	2	2	2	2	2	2	2
Trophic guild	/ Attrib	4 Attrib	3 AttribA	3 AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	2 AttribD	AttribE	AttribF
Birds												
(overwintering)	0.125	0.105	0.110	0.12(0.107	0.112	0.100	0.112	0.105	0.110	0.072	0 1 1 2
n	0.125	0.125	0.112	0.126	0.127	0.113	0.122	0.113	0.125	0.112	0.073	0.112
R^2	0.368	0.368	0.330	0.371	0.374	0.333	0.359	0.331	0.367	0.328	0.216	0.328
Small												
Araneae (APE)	0.402	0.200	0.2(0	0.404	0.202	0.240	0.200	0.0(1	0.402	0.001	0.104	0.225
n	0.403	0.390	0.360	0.404	0.392	0.340	0.398	0.361	0.403	0.381	0.194	0.335 0.047
R^2	0.255	0.246	0.228	0.256	0.248	0.215	0.252	0.228	0.255	0.241	0.123	0.212
Coleoptera												
(APE)	0.202	0.264	0.225	0.276	0.2(0	0.249	0.2(1	0.225	0.275	0.200	0.100	0.250
Chi	0.382	0.364	0.325	0.376	0.369	$0.348 \\ 0.130$	0.361	0.335	0.375	0.390	0.108	0.359
R^2	0.226	0.216	0.170	0.100	0.130	0.206	0.130	0.198	0.022	0.231	0.064	0.213
Coleoptera												
(FIT-C)	0.000	0.007	0.004	0.107	0.000	0.154	0.005	0.000	0.100	0.1.10	0.154	0.177
Chi ⁻	0.208	0.207	0.224	0.196	0.208	0.174	0.225	0.232	0.193	0.143	0.174	0.166
R^2	0.130	0.103	0.154	0.135	0.143	0.120	0.005	0.045	0.133	0.040	0.120	0.114
Coleoptera	012.20					0						
(FIT-U)												
Chi ²	0.214	0.222	0.230	0.220	0.224	0.206	0.236	0.236	0.220	0.199	0.194	0.204
$\frac{P}{R^2}$	0.400	0.410	0.290	0.350	0.310	0.550	0.310	0.250	0.410	0.000	0.580	0.460
Coleoptera	0.111	0.110	0.122	0.117	0.117	0.10)	0.120	0.120	0.117	0.100	0.100	0.100
(PT)												
Chi ²	0.193	0.195	0.190	0.196	0.192	0.160	0.208	0.188	0.189	0.163	0.093	0.142
p_{R^2}	0.005	0.005	0.015	0.005 0.271	0.005	0.020	0.005	0.005	0.015	0.015	0.330	0.051
Heteroptera	0.207	0.270	0.205	0.271	0.200	0.222	0.200	0.200	0.201	0.225	0.12)	0.170
(APE)												
Chi ²	0.349	0.306	0.321	0.327	0.320	0.203	0.368	0.346	0.341	0.234	0.181	0.201
p_{P^2}	0.150	0.350	0.260	0.200	0.240	0.510	0.210	0.250	0.210	0.360	0.570	0.590
Heteroptera	0.109	0.100	0.174	0.177	0.175	0.110	0.199	0.107	0.104	0.127	0.090	0.109
(FIT-C)												
Chi ²	0.355	0.344	0.284	0.342	0.346	0.328	0.309	0.281	0.328	0.349	0.163	0.328
p_{P^2}	0.005	0.005	0.020	0.015	0.005	0.010	0.015	0.010	0.010	0.005	0.330	0.005
Heteroptera	0.105	0.102	0.170	0.151	0.150	0.145	0.107	0.100	0.140	0.135	0.090	0.132
(FIT-U)												
Ċhi ²	0.609	0.611	0.624	0.590	0.605	0.585	0.600	0.615	0.578	0.560	0.569	0.568
p_{P^2}	0.130	0.130	0.105	0.180	0.133	0.200	0.130	0.130	0.210	0.180	0.220	0.230
Neuropterida	0.136	0.157	0.140	0.151	0.155	0.130	0.134	0.156	0.120	0.124	0.120	0.120
(APE)												
Chi ²	0.548	0.555	0.541	0.564	0.546	0.469	0.599	0.545	0.545	0.491	0.225	0.430
p P ²	0.017	0.005	0.018	0.010	0.020	0.015	0.015	0.015	0.025	0.015	0.310	0.037
K Neuropterida	0.338	0.341	0.333	0.347	0.336	0.289	0.369	0.335	0.336	0.302	0.138	0.265
(FIT-C)												
Ċhi ²	0.246	0.255	0.271	0.215	0.253	0.270	0.228	0.274	0.203	0.195	0.267	0.267
p ₂	0.051	0.030	0.020	0.130	0.024	0.017	0.090	0.023	0.105	0.140	0.025	0.020
K ⁻ Neuropterida	0.232	0.241	0.255	0.203	0.238	0.254	0.215	0.258	0.192	0.184	0.251	0.252
(FIT-U)												
Chi ²	0.371	0.392	0.411	0.402	0.385	0.333	0.440	0.412	0.388	0.366	0.313	0.299
p ₂	0.260	0.140	0.150	0.135	0.145	0.420	0.150	0.160	0.180	0.290	0.490	0.590
K ²	0.136	0.144	0.151	0.148	0.141	0.122	0.162	0.151	0.142	0.134	0.115	0.110
(APE)												
Chi ²	0.104	0.111	0.105	0.103	0.110	0.118	0.101	0.105	0.098	0.105	0.095	0.117
p ₂	0.170	0.190	0.135	0.180	0.140	0.170	0.270	0.190	0.240	0.160	0.220	0.107
K-	0.238	0.252	0.240	0.235	0.250	0.268	0.230	0.239	0.224	0.239	0.217	0.268

Table G32. Continued.

	7	4	3	3	3	3	2	2	2	2	2	2
Trophic guild	Attrib	Attrib	AttribA	AttribB	AttribC	AttribD	AttribA	AttribB	AttribC	AttribD	AttribE	AttribF
Opiliones (PT)												
Chi ²	0.081	0.079	0.091	0.077	0.077	0.078	0.084	0.090	0.075	0.080	0.100	0.075
p p2	0.430	0.450	0.230	0.490	0.370	0.430	0.370	0.270	0.510	0.500	0.190	0.470
K ⁻ Horbiyoro	0.129	0.126	0.146	0.122	0.122	0.124	0.135	0.143	0.119	0.128	0.160	0.120
Chewer												
Coleoptera												
(APE)												
Ċhi ²	0.713	0.727	0.709	0.726	0.723	0.692	0.732	0.707	0.713	0.706	0.493	0.676
p ₂	0.015	0.005	0.010	0.005	0.005	0.013	0.010	0.005	0.005	0.015	0.070	0.005
R ²	0.405	0.413	0.403	0.413	0.411	0.393	0.416	0.402	0.405	0.401	0.280	0.385
(FIT C)												
(111-C) Chi ²	0.241	0.246	0.237	0.240	0.247	0.242	0.244	0.243	0.235	0.243	0.147	0.241
p	0.130	0.093	0.107	0.150	0.092	0.123	0.130	0.085	0.170	0.120	0.410	0.180
R^2	0.165	0.168	0.162	0.164	0.169	0.165	0.167	0.166	0.160	0.166	0.100	0.165
Coleoptera												
(FIT-U)	0.045			0.000	0.010	a a aa	0.045	0.000		0.4.04	0.045	0.051
Chi ²	0.315	0.323	0.382	0.270	0.310	0.290	0.345	0.383	0.244	0.181	0.317	0.251
p_{R^2}	0.015	0.017	0.005	0.051	0.024	0.037	0.005	0.010	0.065	0.210	0.020	0.074
Coleoptera	0.204	0.291	0.544	0.243	0.279	0.201	0.510	0.545	0.220	0.105	0.205	0.220
(GPE)												
Chi ²	0.222	0.233	0.253	0.199	0.225	0.258	0.224	0.251	0.187	0.161	0.256	0.230
p_	0.300	0.330	0.190	0.420	0.370	0.125	0.340	0.230	0.490	0.630	0.180	0.260
R^2	0.156	0.164	0.177	0.139	0.158	0.181	0.157	0.176	0.131	0.113	0.180	0.162
Sucker												
(APE)												
(241L) Chi ²	0.546	0.526	0.459	0.551	0.534	0.465	0.527	0.469	0.551	0.542	0.188	0.472
p	0.010	0.005	0.045	0.013	0.020	0.025	0.020	0.037	0.005	0.010	0.580	0.024
R^2	0.354	0.336	0.282	0.358	0.343	0.286	0.337	0.289	0.358	0.350	0.099	0.292
Heteroptera												
(FIT-C)	0.007		0.005	0.0/0	0.051	0.050			0.044	0.004	0.4 (=	
Chi ⁻	0.286	0.280	0.295	0.262	0.271	0.252	0.289	0.292	0.244	0.234	0.167	0.229
$\frac{P}{R^2}$	0.010	0.030	0.023	0.031 0.734	0.013 0.724	0.038	0.015	0.010	0.040	0.005	0.270	0.000
Heteroptera	0.710	0.715	0.700	0.754	0.721	0.740	0.700	0.700	0.752	0.702	0.000	0.707
(FIT-U)												
Ċhi ²	0.559	0.572	0.531	0.574	0.581	0.548	0.549	0.540	0.570	0.582	0.400	0.562
\underline{p}_{2}	0.029	0.013	0.036	0.015	0.010	0.020	0.013	0.030	0.010	0.020	0.330	0.010
R^2	0.201	0.205	0.190	0.206	0.208	0.197	0.197	0.194	0.204	0.209	0.143	0.201
Symbiont												
(Mycorrhiza)												
Chi ²	0.373	0.378	0.351	0.391	0.382	0.340	0.383	0.355	0.394	0.368	0.243	0.329
р	0.023	0.020	0.033	0.010	0.010	0.053	0.010	0.023	0.010	0.020	0.380	0.110
R^2	0.202	0.205	0.190	0.212	0.207	0.184	0.207	0.192	0.213	0.199	0.132	0.178
Producer												
Vascular plants	0.070	0.051	0.001	0.2(7	0.054	0.010	0.057	0.224	0.2(0	0.054	0 1 1 1	0.014
Cni	0.272	0.201	0.221	0.267	0.234	0.219	0.257	0.224	0.208	0.254	0.111	0.214
$\frac{P}{R^2}$	0.210	0.193	0.170	0.206	0.196	0.169	0.198	0.173	0.207	0.025	0.086	0.165
Mosses	0.210	0.170	0.170	0.200	0.170	0.107	0.170	0.170	0.207	0.170	0.000	0.100
Chi ²	0.541	0.593	0.581	0.575	0.584	0.524	0.604	0.576	0.550	0.503	0.316	0.478
p ₂	0.020	0.005	0.013	0.005	0.005	0.015	0.015	0.017	0.020	0.018	0.180	0.020
R ²	0.293	0.321	0.314	0.311	0.316	0.283	0.327	0.311	0.297	0.272	0.171	0.259

APPENDIX H Relationships between land-use measures and community attributes

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD <u>Stand structural attributes</u>:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods:

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. H1. Effects of 'naturalness' and different measures of land-use intensity, stand structural attributes (Appendix A: Table A2) and stand structural complexity indices (Appendix A: Table A3) on the abundance of various groups of organisms (df = 12 forest sites). Arthropods were sampled by different trapping methods. The sign (+ or -) indicates the direction and the grey scale the strength (based on estimate values of the statistical model) of the relationship. White signs on grey background indicate that by using the jackknife method all resampled subsets were significant. Statistical details are shown in Appendix G. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figures.

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD Stand structural attributes:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. H2. Effects of 'naturalness' and different measures of land-use intensity, stand structural attributes (Appendix A: Table A2) and stand structural complexity indices (see Appendix A: Table A3) on the diversity (reciprocal Simpson index 1/D) of various groups of organisms (df = 12 forest sites). Arthropods were sampled by different trapping methods. The sign (+ or -) indicates the direction and the grey scale the strength (based on estimate values of the statistical model) of the relationship. White signs on grey background indicate that by using the jackknife method all resampled subsets were significant. Statistical details are shown in Appendix G. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figures.

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD Stand structural attributes:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods:

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. H3. Effects of 'naturalness' and different measures of land-use intensity, stand structural attributes (Appendix A: Table A2) and stand structural complexity indices (see Appendix A: Table A3) on entropy (biascorrected exponential Shannon's entropy eHbc) of various groups of organisms (df = 12 forest sites). Arthropods were sampled by different trapping methods. The sign (+ or -) indicates the direction and the grey scale the strength (based on estimate values of the statistical model) of the relationship. White signs on grey background indicate that by using the jackknife method all resampled subsets were significant. Statistical details are shown in Appendix G. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figures.

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD <u>Stand structural attributes</u>:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods:

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. H4. Effects of 'naturalness' and different measures of management intensity, stand structural attributes (Appendix A: Table A2) and stand structural complexity indices (see Appendix A: Table A3) on the abundance of forest specialists among beetles, spiders and vascular plants (df = 12 forest sites). The sign (+ or -) indicates the direction and the grey scale the strength (based on estimate values) of the relationship. White signs on grey background indicate that by using the jackknife method all resampled subsets were significant. Statistical details are shown in Appendix G. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figures.

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD <u>Stand structural attributes</u>:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods:

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. H5. Effects of 'naturalness' and different measures of management intensity, stand structural attributes (Appendix A: Table A2) and stand structural complexity indices (see Appendix A: Table A3) on species richness of forest specialists among beetles, spiders and vascular plants (df = 12 forest sites). The sign (+ or –) indicates the direction and the grey scale the strength (based on estimate values) of the relationship. White signs on grey background indicate that by using the jackknife method all resampled subsets were significant. Statistical details are shown in Appendix G. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figures.

Nat=Naturalness

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD Stand structural attributes:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods:

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. H6. Effects of 'naturalness' and different measures of management intensity, stand structural attributes (Appendix A: Table A2) and stand structural complexity indices (see Appendix A: Table A3) on the diversity (reciprocal Simpson) of forest specialists among beetles, spiders and vascular plants (df = 12 forest sites). The sign (+ or -) indicates the direction and the grey scale the strength (based on estimate values) of the relationship. White signs on grey background indicate that by using the jackknife method all resampled subsets were significant. Statistical details are shown in Appendix G. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figures.

Nat=Naturalness

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD Stand structural attributes:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods:

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. H7. Effects of 'naturalness' and different measures of management intensity, stand structural attributes (Appendix A: Table A2) and stand structural complexity indices (see Appendix A: Table A3) on the entropy (biascorrected exponential Shannon's entropy eHbc) of forest specialists among beetles, spiders and vascular plants (df = 12 forest sites). The sign (+ or -) indicates the direction and the grey scale the strength (based on estimate values) of the relationship. White signs on grey background indicate that by using the jackknife method all resampled subsets were significant. Statistical details are shown in Appendix G. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figures.

≥0.65 ≥0.55 ≥0.45 ≥0.35 ≥0.25 ≥0.15 Explained variance			For	Nat Mar inte	ura nag ensi	lne: em ty	ss/ ent		:	Stai	nd s	stru	ictu	ral	attr	ibu	tes				St	truc	tur	al C	Con	nple	xity	/ In	dice	es	
Strength of relationships			est type	Nat	SMIG	SMIV	SMIVD	maxAge	avgAge	MD	Ŵ	U	z	SR	SD	Con	OBL	VS	Я	7Attrib	4 Attrib	3AttribA	3AttribB	3AttribC	3AttribD	2AttribA	2AttribB	2AttribC	2AttribD	2AttribE	2AttribF
Pro- Sym- Herbiv lucer biont I I		Mosses	-	**	*	*	*	*	*		**	*				*	**	*		*	**	*	**	**	*	*	*	*	*		*
		Vascular plants	-	*	*	*	*		-	-	-					*	*	*		*	*		*	*		*		*	*	-	-
		Fundi (mycorrhiza)	-	*	*	*	*			-	-				*	*	*	*		*	*	*	*	*		*	*	*	*	-	_
	Suc	Heteroptera (FIT-C)		*	**	*	*	×	*		*			*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	_	*
	ker	Heteroptera (APE)	*	*	*	**	*	*	*		*	*		*	**	*	*	*		*	**	*	*	*	*	*	*	**	*	_	*
		Coleoptera (GPE)			-	للملك						-			يلديك.	-		*			-	-			-		*	علميان	*	_	
voré	Ğ	Coleoptera (FIT-U)		**	**	*	**	**	*							*	**	*	*	*	*	**		*	*	**	*			*	\square
Ø	ewe	Coleoptera (FIT-C)	\vdash																												_
	L.	Coleoptera (APE)	*	**	*	**	*	**	*		*	*		*	*	**	*	*	*	*	**	*	**	**	*	*	**	**	*		**
		Opiliones (APE) Opiliones (PT)																													_
		Neuropterida (FIT-U)																													
		Neuropterida (FIT-C)		*	*	*	*			*							*				*	*		*	*		*			*	*
Predator		Neuropterida (APE)		*	*	*	**	*	*		*	*			*	*	*	*		*	**	*	*	*	*	*	*	*	*		*
		Heteroptera (FIT-U)																													
		Heteroptera (FIT-C)		*	*	*	*		*			*			*	*	*	*		**	**	*	*	**	*	*	*	*	**		**
	S	Heteroptera (APE)																													
	mal	Coleoptera (PT)		*	**	*	*	*	*		*	*				**	**	*		**	**	*	**	**	*	**	**	*	*		
	_	Coleoptera (FIT-U)																													
		Coleoptera (FIT-C)		*	*	*	*									*	**	*									*				
		Coleoptera (APE)																													
		Araneae (APE)		*	*	**	*		*			*			*	*		*		**	*	*	*	*	*	**	*	*	*		*
	Ξ	Birds (overwintering)	*	**	*	*	*	*	*		*	**	*		*	**	*			**	*	**	**	**	**	**	**	**	*		*
_	5	Birds (breeding)		**	*	**	**	*	*		*	*				**	*	*		*	**	**	**	**	*	**	*	*	*		*
	-	Fungi (wood/bark)	*	**	**	**	*	*	*	-	*	*			*	**	**	**		**	**	**	**	**	*	**	**	**	*	*	*
Decomposer	Noc	Coleoptera (FIT-U)		**	*	*	**	*	*								*			*	*	**		*	*	*	*			*	
	рс	Coleoptera (FIT-C)																													
		Coleoptera (APE)																												-	
	Pla	Isopoda (PT)	\vdash							-	-																			-	
	ant ritus	Fungi (soil saprophytes)	-	*	*	*	*	*		-						*	*	*		*	**	**	*	*	*	*	*	*	*	-	*
		Coleoptera (PT)	-		*	*	*	*	*		*	*	*				*					*		-		*			_	-	_
	Fur	Coleoptera (FIT-C)	-														*	*												_	_
	igr	Coleoptera (APE)	-							-	-													-							_
_		Calcontoro (ADE)				*																									

Nat=Naturalness

SMIG/V/VD=Silvicultural Management Intensity based on basal area G or solid volume of either living V or living and dead biomass VD Stand structural attributes:

max/avgAge=age of the oldest tree/mean tree age; DWV=Dead Wood Volume; WV=Living Wood Volume; G=basal area, N=number of trees; SR=Species Richness of trees; SD=Shannon Diversity of trees; Con=proportion of Conifers; OBL=proportion of broad-leaved trees excl. beech; VS=Vertical Structural diversity; HS Horizontal Structural diversity)

Trapping methods:

APE=Arboreal Photo Eclectors; FIT-C/U=Flight-Interception Traps Canopy/Understorey; GPE=Ground Photo Eclectors; PT=Pitfall Traps

Fig. H8. Effects of forest type, 'naturalness' and different measures of management intensity, stand structural attributes (Appendix A: Table A2), and stand structural complexity indices (see Appendix A: Table A3) on the community composition of various groups of organisms (df = 12 forest sites). Arthropods were sampled by different trapping methods. The stars indicate the significance based on an ANOVA like permutation test (maximum 2000 permutations) for constrained correspondence analysis (***p < 0.001, **p < 0.01, *p < 0.05) and the grey scale the strength of the relationship (constrained inertia/(total inertia – conditional inertia)). Analyses are based on a partial constrained correspondence analysis (pCCA) by removing effect of region. Statistical details are shown in Appendix G. Tree diameter related variables (Dg = quadratic mean diameter at breast height, Dm = arithmetic mean dbh) did not show any effect on organismic community attributes and are thus not shown in the figures.