
An Integrated Framework for Multimodal Human-
Robot Interaction

Luis Fernando D’Haro*, Andreea I. Niculescu*, Caixia Cai†, Suraj Nair†,

Rafael E. Banchs*, Alois Knoll§ and Haizhou Li*

* Human Language Technology Dept. Institute for Infocomm Research, A*STAR

One Fusionopolis Way # 21-01, Connexis South Tower, Singapore, 138632
E-mail: {luisdhe, andreea-n, rembanchs, hli}@i2r.a-star.edu.sg Tel: +65-6408 2146

† TUMCREATE, One Create Way #10-02 Create Tower, Singapore 138602

E-mail: {caixia.cai, suraj.nair}@tum-create.edu.sg Tel: +65 6601 4016

§ Robotics and Embedded Systems, Technische Universität München, 80333, Germany
E-mail: {knoll}@in.tum.de Tel: +49 89289 18104

Abstract— Recent research progresses in speech recognition,
text-to-speech, natural language understanding, or dialog
management components are improving the way humans
interact with advanced robot machines. However, far from being
solved, we are just starting the process of creating meaningful
multimodal platforms that can allow operators to use and
control industrial robots through spoken dialogue.

This paper describes our ongoing efforts on creating a
modular platform that combines different technologies to cover
typical requirements in an industrial setting, i.e. robust speech
recognition, low level skill functions to operate the robot,
recommendations and validation procedures to setup parameters,
combination of audio-visual information for challenging
environments, integration of domain-knowledge by means of an
ontology, a flexible definition of the dialog model and natural
language rules, as well as a test and control interface to quickly
check the functionality of each module during development and
operation. All platform modules are intercommunicated by the
ROS operative system which allows the integration of external
plugins and modules easily.

Finally, a preliminary user study with IT experts simulating a
welding task has been doing giving us clues on what should be
the focus of our next developments.

I. INTRODUCTION

Human-Robot interaction is an important topic that is gaining
more and more attention as many robust and highly accurate
technologies (e.g. speech and object recognition, natural
language understanding, grounding, etc.) are included into
commercial or industrial robots in order to allow
entertainment or the performance of repetitive tasks. In this
kind of setups, speech is a natural modality for
communication. However, its integration with other
components and modalities poses some requirements in terms
of reliability, speed, flexibility and modularity. In this paper,
we want to describe a scalable platform which allows
different kind of industrial tasks to be performed (in our case,

we have used to resemble a welding task, a gluing task and a
drawing by example task [1][2]). This way, for instance the
operator can set the values of different parameters required
for each task, e.g. the speed of the welding process, the name
of the piece to glue, request default values or recommended
values for the task to perform, or to perform some frame-
based dialogs. Since providing detailed information about
each of the tasks we implemented is beyond the scope of this
paper, we prefer instead to explain the whole architecture and
detailed information about each module and its
implementation.

The paper is arranged as follows: section II fully describes
each module in the architecture of the proposed system.
Section III describes the usability evaluation done with
experts; finally, section IV presents the conclusions and future
work.

II. PROPOSED ARCHITECTURE

This section describes each of the integrating modules of
the platform (see Figure 1), their capabilities and limitations.

A. Speech Recognizer and Machine Translation
 The main goal for the Automatic Speech Recognizer (ASR)
is to transcribe the uttered speech by the operator when
requesting the robot or the system to perform a given action.
Currently there are two main approaches applied to speech to
text transcription systems: a) continuous Hidden Markov
Models (HMM) [3], and b) deep neural networks (DNN)
models [4]. Recent improvements in the latter have allowed
achieving results that are even better than human transcribers
[5]. Given that the ASR provides one of the input modalities
used by the operator, the requirements for a high quality
transcription, noise and channel robustness, as well as the
easiness to integrate it into the developed interface (see
section I) are important parameters to select the ASR.

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017076

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:30:08 UTC from IEEE Xplore. Restrictions apply.

Figure 1: System architecture

In [6] a comparative study among six different recognizers

is presented. Overall, along different domains and audio
conditions, one of the best recognizers was Google ASR,
therefore we decided to use it in our system as default
recognizer (although other engines can be integrated). The
Google ASR is integrated in the Chrome browser by using the
webkitSpeechRecognition toolkit, which connects with their
cloud based service and sends the collected speech to the
service as a HTML POST request and receive back a sorted n-
best list of transcription results.

Despite all its advantages, it has an important limitation
since developers cannot adapt the acoustic models, and there
are limitations to specify language models and vocabulary. In
[7] we proposed an automatic correction mechanism based on
using a machine translation system trained using words and
phonetic encoding representations of the n-best lists of ASR
results. This mechanism provides a quick but robust
mechanism to improve the ASR performance by reducing the
word error rate (WER), the occurrence of OOVs, and
increasing the matching of the corrected transcriptions to the
ones allowed by the NLU grammars. In our system, after each
recognition, the interface calls the MT-ASR service which
retrieves the translated/adapted result.

B. Text-to-Speech and Natural Language Generation
The goal of the Natural Language Generator (NLG) is to
define how the concepts coming from different modules in the
architecture are expressed to the operator in the form of
syntactic structures and words. Two main approaches are
addressed in the literature: template-based (or prompts) and
generative models [8]. Our current implementation allows
mainly the usage of templates defined in the definition of the
dialog states (see section D), although basic generation is also
allowed by using the open-sourced toolkit SimpleNLG1.

The Text-To-Speech (TTS) converts a given prompt or
generated sentence into an acoustical signal that can be played
to the user. Several high quality TTS are available specially
based on unit selection synthesis [9], although there are recent
advances using deep learning with important improvements in
quality [10] and speed [11]. Our current module makes use of
Google TTS voices (using the speechSynthesis library
available in Chrome) which allows the selection of up to 18
different voices in different languages (English, Spanish,
Chinese, Russian, etc.). Designers can change the default
voice easily by using the control interface (see section J).

1 https://github.com/simplenlg/simplenlg

Rules
Mappings

First State

State 2
State 4

State 5 Final
State

State 3 State 6

States

config.yaml

MT-ASR
Translator

NLG

DM

Skill
Server Ontology OWL

Validator Rules

TTS
Handler

Watchdog

Workcell
visualizer
controller

NLU

RecommenderIndex

Main GUI

Control GUI

State
Publisher

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017077

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:30:08 UTC from IEEE Xplore. Restrictions apply.

C. Natural Language Understanding
The NLU provides an interpretation of a given sentence or
command (e.g. typed in on a textbox in the GUI or recognized
using the ASR) in a form that can be used by the computer.
Several approaches for parsing have been proposed in the
literature from using semantic grammars [12], hidden Markov
models [13], machine translation approaches [14], conditional
random fields [15], or deep learning networks [16][17]

Our NLU module is based on the use of regular expressions
intended to match the given sentence with a set of predefined
patterns. The use of regular expressions provides a trade-off
between maintenance, available resources, accuracy, diversity
of the command sentences, and robustness which are very
common and important factors in industrial settings.
Developers can specify the set of rules that are active for each
state with the goal of increasing the accuracy and speeding up
the parsing process. Besides, it is possible to specify a set of
general rules that are always active independent of the state
(e.g. salutations, yes/no, help requests, etc.). This capability of
the system to switch between general and specific rules
allows the system to deal with the dynamic characteristics of
the human-computer interactions, while reducing the designer
workload. Finally, the module includes the possibility of
creating one-to-many mappings allowing the creation of
regular expressions using special labels (e.g. NUMBERS)
which are expanded at real time using the OR condition in the
regular expression.

D. Dialog Management (DM)
The DM is the most complex module since it must handle
asynchronously different sources of information and
commands (e.g. the NLU interpretation of the operator speech,
the direct inputs from the interface), as well as interchanging
information with other modules (skills server, watchdog,
NLG), everything to be done in a correct and prioritized
sequence of actions to successfully achieve the required tasks.
In the literature we can find different approaches to the
definition of the actions (i.e. through state machines, frames,
or reinforcement learning techniques [18][19]), as well as
toolkits like OpenDial [20], Galaxy [21], or Trindikit [22].

Currently, our DM module follows the states and
transitions defined in a state machine (specified in a
configuration file as shown in Figure 2); here the designer can
specify the default values for process or internal variables
(number 1 and 2 in the figure), the different states (number 3),
prompts that the system will use to call the attention of the
user to request or provide him/her a given information, as
well as possible conditions for each prompt (4), e.g. using
different prompts depending on the times the state is trigger,
or to provide help prompts to make clear to the user what s/he
needs to say (5), and the actions to be done by the skill server,
calls to ROS services and input arguments, and the conditions
to jump to another state, or in case of error (6 and 7).

To speed up the design, there are some predefined actions
done by the DM without the designer being required to
specify them (although some level of configuration is
allowed). For instance, the DM classifies the messages

coming from different modules in the robot and notifies the
user about the actions to be done based on them. This way, if
the NLU cannot extract meaningful information from an
utterance, then the DM sends a message to the NLG/TTS to
inform the user that s/he needs to repeat the utterance again.
Or if the validation of the parameters is unsuccessful, the DM
receives the message and sends it to the interface to inform
the user.

Figure 2. YAML configuration file for defining states

E. Skill Server
This module acts as a mediator between the low level
primitives of the simulator, the validator, or the access to the
ontology providing a high-level API for other modules. This
way, specific details of the robot implementation are handled
while keeping the same calls from the platform point of view.

F. Ontology and State Publisher
The ontology is the formal representation of the types,
properties and relationships between the entities that can be
found in the domain of the particular task. For example, this
information will allow a welder robot to know the
characteristics of the pieces to weld or the best parameters and
available tools to perform the task. The ontology can also be
used to save or access general information that is available to
any module in the platform. For our welding application, the
ontology (OWL and RDF content) was created using Protégé
and stored on a SESAME repository running in a Tomcat
server and accessible by means of a RESTful-based interface.

On the other hand, the state publisher is a ROS publisher
that gets all the parameters from the ontology and frequently
publishes them as a topic to any module subscribed to the
topic. In addition, the module provides an ordered way for all
other modules to read and write information into the ontology.
In our system, the state publisher is accessed mainly by the

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017078

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:30:08 UTC from IEEE Xplore. Restrictions apply.

web interface or the DM every time the user changes the
value of one of the task parameters by typing or using the
speech, or whenever the user loads a previous configuration
project; in addition, the validator and recommender modules
use it to know the limits or thresholds of the task parameters.

G. Validation and Recommendation
The goal of the validation module is to check that the
parameters provided by the user are correct and that the robot
has what is required to perform the task (e.g. the robot is
operative or there are enough source materials); The validator
consults the ontology by means of a set of expert rules and in
case of an error, it will send a warning or error message to the
user and forbid the execution of the task.

On the other hand, the recommendation module allows
expert knowledge to be integrated into the system which can
provide default parameters for specific or common situations
(e.g. valid ranges of parameters to perform the welding of a
given piece). Our current module uses an index allowing the
designer to provide sets of question-answer pairs (i.e. FAQ).

H. Watchdog
This module is responsible for doing a periodical scanning or
checking of the “robot health” in order to guarantee that it can
perform the tasks required by the user. This checking is
inspired in the human autonomic nervous system (ANS),
where critical tasks are performed independently, and with
higher priority, over the somatic nervous system (SNS) in
order to guarantee the correct functionality of the body. In the
robot, the SNS tasks typically are the ones required by the
human operators through the multimodal interface (e.g.
performing the welding, scanning pieces to weld, etc).

While the ANS tasks mainly refer to periodically checking
the robot internal functionalities, safety regulations or
availability of source materials (e.g. power status, temperature,
close presence of humans, availability of welding material,
etc); the module provides visual and audible alerts to the
operator, and perform actions like stopping the robot in case
of problems.

I. Multimodal Graphical User Interface
The web-based interface (Figure 3) allows the operator to get
access to several configuration parameters required to
perform the task. The interface was designed following
requirements found during our field study in [23] and
implemented using HTML5 and CSS3 specifications,
modular Javascript libraries, including the Rosbridge2 library,
to allow the communication with ROS and the available
topics, services and publishers, as well as handling
compatibility among browsers and operative systems

In addition, we used the MpegCanvasJS3 library to stream
the simulator images into the browser, and made use of
responsive libraries like Booststrap to allow displaying on
different mobile or desktop screens, and the Validator library4

2 http://wiki.ros.org/rosbridge_suite
3 http://wiki.ros.org/mjpegcanvasjs
4 https://github.com/1000hz/bootstrap-validator

to allow the connection to our modules to quickly validate the
parameters introduced through the forms in the screen.

J. Control Interface
Given the amount of different modules that are available in
the platform and the number of configurable parameters that
each of them could have (e.g. grammars, states, speed of the
robot, thresholds for alerts, etc.), we created a web interface
(Figure 4) that could allow developers to start/stop each
module, manually modify its configuration parameters, test
the output of the most common services for each module, and
check the logs of each module independently.

Here, we used the Rosbridge library again to allow the
communication with the different modules; however, in order
to allow starting or stopping each module (or all of them), we
implemented a post request service into our web server which
receives the commands from the interface by using AJAX
messages and then executes the required ROS launch files,
services or kill functions. This workaround was needed since
Rosbridge currently do not implement this functionality.

K. Communication Framework (ROS)
The Robot Operating System (ROS) is a robotics middleware
consisting of a huge collection of software libraries and tools
that help developers to build robot applications providing
operating system-like functionality on heterogeneous
environments, as well as low-level device control, hardware
abstraction, message-passing between processes, package
management, and open-sourced implementations of
commonly used functionalities. Since all our modules make
use of ROS, it is possible to include new plugins and third-
party components to expand the capabilities of the platform.

L. Simulator
In order to evaluate the different tasks that the real robot can
perform, we included a robot simulator which resembles a
COMAU arm and includes different tools (e.g. gripper, scan
sensor, welding gun, etc.) that can be interchanged depending
on the required task. The code is based on the rlCoachMdl
demo of the robotics library 5 , but it can be replaced for
another one provided that the designer modifies the calls and
parameters defined in the configuration file (see section D).

III. EVALUATION

Given the current integration and development stage of our
platform, we focused on evaluating it with IT experts who
were able to provide quick feedback on the integrated
technologies and overall performance, welder’s challenges
and preparation techniques needed to ensure a good welding
quality.

Our evaluation was carried out using both qualitative and
quantitative methods: the qualitative study was performed
with 4 participants using Nielsen’s heuristics in a think-loud
approach.

5 http://www.roboticslibrary.org/

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017079

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:30:08 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Aspect of the main graphical interface

Figure 4. Interface to test and configure each module

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017080

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:30:08 UTC from IEEE Xplore. Restrictions apply.

In the second study, 15 participants performed 3 scenarios
and evaluated the interface using a questionnaire focusing on
screen layout, terminology & system information, multimodal
combination, system capabilities, voice quality, verbosity and
overall user experience. For both studies participants were
briefed before the experiment. The briefing consisted in
watching a power point presentation and a video about
presenting a user case welding scenario. Results from both
studies showed that the user interface d design was found to
be pleasant, clear and task supportive. The speech
functionality was found to be very useful for hands free
interaction, feedback and Q&A session. Generally,
participants seemed to appreciate the multimodal interaction
features. The camera streaming was found to be a must-have
functionality. Participants also requested a zoom in/out
feature. Improvement suggestions referred to the recognition
robustness, understanding capabilities, support for error
recovery and decreasing information redundancy. More
information about the evolution can be found in [24].

IV. CONCLUSIONS AND FUTURE WORK

 This paper described in detail an integrated platform for
operating and controlling industrial robots by using speech
and a task oriented graphical interface. The proposed
architecture consists of independent modules that
communicate among them by means of the ROS operative
system which also allows the integration of external
components. In addition, a control interface and a defined set
of services and topics allow developers to configure, replace
or extend the provided modules, as well as re-train and update
MT models and NLU rules. Finally, results of a survey with
IT experts allowed us to evaluate the usability of the proposed
platform and plan for new features and improvements.

As future work, we plan to improve the robustness of the
ASR module by a) allowing developers to define domain-state
dependent language models that can be passed to the ASR to
restrict the vocabulary of the transcriptions and avoid the
occurrences of OOV terms, and b) including automatic
mechanisms that can build the MT models without necessarily
requiring users to train it with their own speech [25]. Besides,
we are considering the possibility of creating a graphical
interface (similar to [26] or [27]) that can be used to define
and test the dialog state machine, prompts, transition
conditions, and grammars defined in the configuration file.
Also, we plan to include new speech and NLP modules from
our internal platform [28][29] by porting them to ROS
framework. Finally, we will be introducing additional
strategies for error handling as proposed in [30].

ACKNOWLEDGMENT

This project was supported by SERC Industrial Project (EC-
2013-045). We also thank Aravindkumar Vijayalingam and
Eloy Retamino for their contributions to the project.

REFERENCES

[1] Wu, Y., Chan, W. L., Li, Y., Tee, K.P., Yan, R., and Limbu,
D.K., "Improving Human-Robot Interactivity for Tele-operated
Industrial and Service Robot Applications", in Proceedings of
the 7th IEEE International Conference on Cybernetics and
Intelligent Systems (CIS) and IEEE Conference on Robotics,
Automation and Mechatronics (RAM), July 2015, Cambodia.

[2] Ko, W.K.H., Wu, Y., and Tee, K.P., "LAP: A Human-in-the-
loop Adaptation Approach for Industrial Robots", in
Proceedings 4th International Conference on Human-Agent
Interaction (HAI 2016), Oct 2016, Singapore.

[3] Young, S. “A review of large-vocabulary continuous-speech”.
Signal Processing Magazine, IEEE, 13(5), 45. 1996.

[4] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R.,
Jaitly, N., & Kingsbury, B. “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four
research groups”. Signal Processing Magazine, IEEE, 29(6), 82-
97. 2012.

[5] Xiong, Wayne, Jasha Droppo, Xuedong Huang, Frank Seide,
Mike Seltzer, Andreas Stolcke, Dong Yu, and Geoffrey Zweig.
"Achieving human parity in conversational speech recognition."
arXiv preprint arXiv:1610.05256 (2016).

[6] Morbini, F., Audhkhasi, K., Sagae, K., Artstein, R., Can, D.,
Georgiou, P., & Traum, D. “Which ASR should I choose for my
dialogue system?” Proc. SIGDIAL, August, 2013.

[7] D’Haro, L. F., Banchs, R. E. “Automatic Correction of ASR
Outputs by Using Machine Translation”, in proceedings
Interspeech 2016, 3469-3473. 2016

[8] Reiter, Ehud, Robert Dale, and Zhiwei Feng. “Building natural
language generation systems”. Vol. 33. Cambridge: Cambridge
university press, 2000.

[9] Hunt, Andrew J., and Alan W. Black. "Unit selection in a
concatenative speech synthesis system using a large speech
database." In Proceedings IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96.,
vol. 1, pp. 373-376. IEEE, 1996.

[10] Aaron van den Oord, Sander Dieleman, Heiga Zen, et al.
“WaveNet: A Generative Model for Raw Audio”, arXiv
preprint arXiv:1609.03499. 2016.

[11] Sercan O. Arik, Mike Chrzanowski, Adam Coates, et al. “Deep
Voice: Real-time Neural Text-to-Speech”, arXiv preprint arXiv:
1702.07825. 2017.

[12] Issar, Sunil, and Wayne Ward. "CMU's robust spoken language
understanding system." In Proceedings of Eurospeech, vol. 93.
1993.

[13] Pieraccini, Roberto, Esther Levin, and Chin-Hui Lee.
"Stochastic Representation of Conceptual Structure in the ATIS
Task." In HLT. 1991.

[14] Macherey, Klaus, Franz Josef Och, and Hermann Ney. "Natural
language understanding using statistical machine translation." In
INTERSPEECH, pp. 2205-2208. 2001.

[15] Yao, Kaisheng, Baolin Peng, Geoffrey Zweig, Dong Yu,
Xiaolong Li, and Feng Gao. "Recurrent conditional random
field for language understanding." in Proceedings IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014 pp. 4077-4081. IEEE, 2014.

[16] Sarikaya, R., Hinton, G. E., & Deoras, A. “Application of deep
belief networks for natural language understanding”, in
IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), 22(4), 778-784. 2014.

[17] Jaech, Aaron, Larry Heck, and Mari Ostendorf. "Domain
adaptation of recurrent neural networks for natural language
understanding." arXiv preprint arXiv:1604.00117 (2016).

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017081

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:30:08 UTC from IEEE Xplore. Restrictions apply.

[18] Levin, Esther, Roberto Pieraccini, and Wieland Eckert. "A
stochastic model of human-machine interaction for learning
dialog strategies." IEEE Transactions on speech and audio
processing 8, no. 1 (2000): 11-23.

[19] Paek, Tim, and Roberto Pieraccini. "Automating spoken
dialogue management design using machine learning: An
industry perspective." Speech communication 50, no. 8 (2008):
716-729.

[20] Lison, Pierre, and Casey Kennington. "OpenDial: A toolkit for
developing spoken dialogue systems with probabilistic rules."
ACL 2016 (2016): 67.

[21] Seneff, Stephanie, Edward Hurley, Raymond Lau, Christine Pao,
Philipp Schmid, and Victor Zue. "GALAXY-II: a reference
architecture for conversational system development." In ICSLP,
vol. 98, pp. 931-934. 1998.

[22] Ljunglöf, Peter. "trindikit.py: An open-source Python library for
developing ISU-based dialogue systems." Proc. of IWSDS 9
(2009).

[23] Niculescu, Andreea I and D'Haro, Luis Fernando and Banchs,
Rafael E and Yeo, Kheng Hui and Vyas, Dhaval.
“Understanding welding practices on shipyards: An
ethnographic study for designing any interactive robot welder”
in Proceedings 3rd International Conference on User Science
and Engineering (i-USEr), 2014.

[24] Niculescu, Andreea. I., Luis Fernando D'Haro and Rafael E.
Banchs, “When industrial robots become more social: on the
desihn and evaluation of a multimodal interface for welding
robots,” APSIPA 2017, Kuala Lumpur, Malaysia.

[25] D'Haro, Luis Fernando, Seokhwan Kim, and Rafael E. Banchs.
"A robust spoken Q&A system with scarce in-domain
resources." In Signal and Information Processing Association
Annual Summit and Conference (APSIPA), 2015 Asia-Pacific,
pp. 47-53. IEEE, 2015.

[26] McTear, Michael F. “Developing a Spoken Dialogue System
Using the CSLU Toolkit”, Spoken Dialogue Technology, pp.
163-203, Springer London, 2004.

[27] D'Haro, Luis Fernando, Cordoba, R., San-Segundo, R.,
Ferreiros, J., Pardo, J. M. "Design and evaluation of acceleration
strategies for speeding up the development of dialog
applications" Speech Communication, Vol. 53, Iss. 8, pp. 1002-
1025, ISSN: 0167-6393, 2011.

[28] Jiang, Ridong, Rafael E. Banchs, Seokhwan Kim, Luis F.
D'Haro, Andreea I. Niculescu, and Kheng Hui Yeo.
"Configuration of dialogue agent with multiple knowledge
sources." In Signal and Information Processing Association
Annual Summit and Conference (APSIPA), 2015 Asia-Pacific,
pp. 840-849. IEEE, 2015.

[29] Jiang, Ridong, Yeow Kee Tan, Dilip Kumar Limbu, A. T. Tung,
and Haizhou Li. "A configurable dialogue platform for ASORO
robots." In Asia Pacific Signal and Information Processing
Association Annual Summit and Conference, APSIPA ASC.
2011.

[30] Niculescu, Andreea I and Banchs, Rafael E. “Strategies to cope
with errors in human-machine spoken interactions: using
chatbots as back-off mechanism for task-oriented dialogues” in
Proceedings ERRARE 2015 - Errors by Humans and Machines
in multimedia, multimodal and multilingual data processing,
2015.

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017082

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 14:30:08 UTC from IEEE Xplore. Restrictions apply.

