TUTI

TECHNISCHE UNIVERSITAT MUNCHEN
FAKULTAT FUR INFORMATIK

Fault Tolerant Optimizations for High
Performance Computing Systems

Dai Yang

Vollstandiger Abdruck der von der Fakultdt fiir Informatik der Technischen
Universitat Miinchen zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Martin Bichler
Priifende der Dissertation:
1. Prof. Dr. Dr. h.c. (NAS RA) Arndt Bode
2. Prof. Dr. Dieter Kranzlmiiller

Ludwig-Maximilians-Universitdt Miinchen

Die Dissertation wurde am 16.09.2019 bei der Technischen Universitiat Miinchen
eingereicht und durch die Fakultét fiir Informatik am 18.12.2019 angenommen.

Acknowledgments

This extensive work could only be accomplished thanks to the successful teamwork
of present and past colleagues at TUM, KIT, RWTH, and Uni Mainz. I can only express
my wholehearted thanks to all my colleagues, professors, students, and friends.

First, I would like to thank my advisor, Prof. Dr. Dr. h.c. Arndt Bode, for his
inspiring advice and help throughout these years. In addition, I would like to thank Dr.
Carsten Trinitis, who was always extremely helpful whenever I needed him. I would
like to thank Prof. Dr. Dieter Kranzlmiiller for his role as secondary advisor. Finally, I
want to thank Prof. Dr. Martin Schulz, who has only recently joined the chair, for his
support and help in improving my work, especially with the MPI-related topics.

I also want to thank all of my other colleagues at the Chair of Computer Architecture
and Parallel Systems at TUM and LRZ, especially Josef Weidendorfer, Tilman Kiistner
and Amir Raoofy, who contributed many papers and helped me a lot. I will never forget
the technical discussions with Josef and Amir, and all the encouraging words from Til
which guided me through thick and thin. I would like to thank Beate Hinterwimmer
and Silke Albrecht for their best support in the chair that anyone could imagine.

I also want to thank my other colleagues for their help: Andreas Wilhelm, Alexis
Engelke, Marcel Meyer, Jiirgen Obermeier, and H# #7E. Furthermore, I want to thank
several colleagues at the Chair of Astronautics at TUM: Sebastian Riickerl, Nicolas
Appel, Martin Langer, and Florian Schummer for all the fun they sparked.

In addition, I would like to thank the Federal Ministry of Education and Research of
the Federal Republic of Germany for providing the grant for the project ENVELOPE
under the grant title 011 H16010D. I gratefully acknowledge the Gauss Centre for
Supercomputing e.V. for funding this project by providing computing time on the GCS
Supercomputer SuperMUC and Linux Cluster at the Leibniz Supercomputing Centre.

Finally, I want to especially thank my family and friends for providing me all kinds
of support. They helped me to make crucial decisions. Just to mention some names:
Nina Harders, Clemens Jonischkeit, Michael Schreier, Simon RofSkopf, Leonhard Wank,
Lukas von Sturmberg, Marcel Stuht, and 7. 1 also want to thank all the Bachelor
and Master students, IDP Project students, and the guided research students for your
contributions to my research.

Dai Yang
September 10, 2019

Abstract

On the road to exascale computing, a clear trend toward a greater number of nodes and
increasing heterogeneity in the architecture of High Performance Computing (HPC)
systems can be observed. Classic resilience approaches which are mainly reactive cause
significant overhead on large scale parallel applications.

In this dissertation, we present a comprehensive survey on the state-of-the-practice
failure prediction methods for HPC systems. We further introduce the concept of data
migration as a promising way of achieving proactive fault tolerance in HPC systems. We
present a lightweight application library — called LAIK — to assist application program-
mers in making their applications fault-tolerant. Moreover, we propose an extension —
called MPI sessions and MPI process sets — to the state-of-the-art programming model
for HPC applications — the Message Passing Interface (MPI) — in order to benefit from
failure prediction.

Our evaluation shows that there is no significant additional overhead generated by
using both LAIK and MPI sessions for the example applications LULESH and MLEM.

1ii

Zusammenfassung

Auf dem Weg zum Exascale Computing ist ein deutlicher Trend beziiglich hoher Paral-
lelitat und hoher Heterogenitit in den Rechnerarchitekturen der Hochstleistungsrech-
nensysteme (HLRS) zu beobachten. Klassische Ansédtze zur Behandlung von Fehler-
toleranz, die hauptsdchlich reaktiv sind, verursachen erheblichen Mehraufwand bei
grofien parallelen Anwendungen.

In dieser Dissertation wird ein umfassender Uberblick iiber den Stand der Technik
zur Fehlervorhersage fiir HLRS présentiert. Dartiber hinaus stellen wir das Konzept
der Datenmigration als vielversprechenden Weg zur proaktiven Fehlertoleranz in HLRS
vor. Wir fiihren eine leichtgewichtige Anwendungsbibliothek — LAIK - ein, die den
Anwendungsprogrammierer dabei unterstiitzt, seine Anwendungen fehlertolerant zu
machen. Aufierdem schlagen wir eine Erweiterung — genannt MPI-Sessions und MPI-
Prozesssets — fiir die Standardkommunikationsbibliothek fiir HPC-Anwendungen — das
Message Passing Interface (MPI) — vor, um von der Fehlervorhersage zu profitieren.

Unsere Auswertungen zeigen keinen signifikanten Mehraufwand, welcher durch
LAIK oder MPI sessions fiir die Beispielanwendungen LULESH und MLEM eingefiihrt
wurde.

v

Contents

Acknowledgments

Abstract

Zusammenfassung

1. Intro
1.1.

1.2.

1.3.
1.4.
1.5.

duction

Technical Background of Computer Architecture.
1.1.1. Types of Parallelism
1.1.2. Amdahl’'sLaw
1.1.3. Gustafson’'sLaw
1.1.4. Heterogeneous Computing
1.1.5. Other Factors in Processor Design
Modern HPC System Architectures
1.2.1. TOP500 and the High Performance LINPACK (HPL) Benchmark
1.2.2. Parallelism and Heterogeneity in Modern HPC Systems
Motivation e e e e e
Contribution
Structure of This Dissertation

2. Terminology and Technical Background

2.1.

2.2.
2.3.

24.

Terminology on Fault Tolerance
2.1.1. Fault, Error, Failure.
2.1.2. Faulttolerance
Terminology on Machine Learning and Failure Prediction
Terminology on Parallel Computer Architecture
2.3.1. Flynn’s Taxonomy of Computer Architectures
2.3.2. Memory Architectures L
23.3. Scalability o
Terminology in Parallel Programming
24.1. Message Passing Interface
242, OpenMP e

ot o
ot o e
=2y =%

e
O O 0 NI N U NN = <

[T
gl = W O

Contents

3. Failure Prediction: A State-of-the-practice Survey 26
3.1. Methodology and Scope 26
3.2. Survey on Failure Modes in High Performance Computing (HPC) Systems 27

321. FailureModes 28
3.22. On Root Causes Analysis 29
3.3. Survey of Failure Prediction Methods 33
3.3.1. Probability and Correlation 37
3.3.2. Rule-based Methods 40
3.3.3. Mathematical/Analytical Methods 41
3.34. Decision Trees/Forests 42
335. Regression 46
3.3.6. Classification, 47
3.3.7. Bayesian Networks and Markov Models 49
33.8. Neural Networks 50
3.3.9. Meta-Learning 51
3.4. Insights and Discussions on Failure Predictions in High Performance
Computing Systems 0L 52
3.4.1. Effectiveness of Failure Prediction System 53
3.4.2. Availability of Datasets, Reproducibility of Research 54
3.4.3. Metrics and the Effect of False Positive Rate 54
3.4.4. Failure Prediction and Fault-mitigation Techniques 55

4. Fault Tolerance Strategies 56
4.1. System Architecture of Batch Job Processing System 56
4.2. Fault-mitigation Mechanisms 59

42.1. Overview of Fault Tolerance Techniques 61
422. Application-integrated vs. Application-transparent Techniques . 62
423. Checkpointand Restart 62
424, Migration L 64
4.2.5. Algorithm-based Fault Tolerance 69
42.6. Summary of Fault Tolerance Techniques 69

5. Data Migration 71
5.1. Basic Action Sequence for Data Migration., 73
5.2. Data Organization of Parallel Applications 76
5.3. Data Consistency and Synchronization of Processes 82
5.4. Summary: The Concept of Data Migration 85

Vi

Contents

6. LAIK: An Application-integrated Index-space Based Abstraction Library

6.1.

6.2.

6.3.

6.4.

The LAIK Library
6.1.1. BasicConceptof LAIK
6.1.2. Architecture of LAIK
6.1.3. Overview of LAIKAPIs
6.1.4. User APIL: The Process Group API Layer
6.1.5. User APIL: The Index Space API Layer
6.1.6. User APIL: The Data Container APl Layer
6.1.7. Callback APIs
6.1.8. The External Interface
6.1.9. The Communication Backend Driver Interface
6.1.10. Utilities L
6.1.11. Limitations and Assumptions in Our Prototype Implementation
Basic Example of a LAIK Program
6.2.1. Extended Example of Automatic Data Migration with LAIK . . .
Evaluation of the LAIK Library with Real-world Applications
6.3.1. Application Example 1: Image Reconstruction with the Maximum-

Likelihood Expectation-Maximization (MLEM) Algorithm
6.3.2. MPI Parallelization
6.3.3. Evaluation of Application Example 1: MLEM
6.3.4. Application Example 2: The Livermore Unstructured Lagrangian

Explicit Shock Hydrodynamics (LULESH) Benchmark
6.3.5. Evaluation of Application Example 2: LULESH
Discussion on Effectiveness of Data Migration with LAIK
6.4.1. Advantagesof LAIK
6.4.2. Disadvantages and Limitations of LAIK
6.4.3. LessonsLearned

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

7.1.

7.2.

MPISessions e
7.1.1. MPI Sessions and Fault Tolerance
7.1.2. MPI Sessions and Data Migration
Extension Proposal for MPI Sessions: MPI Process Sets
7.2.1. Components in Our MPI Sessions / MPI Process Sets Design . .
7.2.2. Semantics of MPI Process Sets
7.2.3. Storage of Process Set Information
7.2.4. Change Management of the MPI Process Set
7.2.5. Implementation of Our MPI Process Set Module

88
88
90
92
95
98
100
103
108
109
110
111
112
112
114
114

114
117
119

126
132
139
139
140
140

142
144
147
147
148
150
152
154
155
156

vii

Contents

7.3.

74.

7.2.6. Known Limitations of Our MPI Sessions / MPI Process Set Pro-
totype
Evaluation of MPI Sessions and MPI Process Sets
7.3.1. Basic Example of an MPI Sessions Program
7.3.2. Application Example 1: The Maximum Likelihood Expectation
Maximization (MLEM) Algorithm
7.3.3. Application Example 2: The Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics (LULESH)
Discussion on the Effectiveness of MPI Sessions and MPI Process Sets .
7.4.1. Functionality of MPI Sessions and MPI Process Sets
7.4.2. Advantages of MPI Sessions and MPI Process Sets for Fault
Tolerance.
7.4.3. Disadvantages of MPI Sessions and MPI Process Sets for Fault
Tolerance.
7.4.4. Limitations of Our Prototype

Discussion

8.1.

Fault Tolerance with Data Migration

8.2. From Fault Tolerance to Malleability
Related Work

9.1. State-of-the-practice on Failure Prediction
9.2. Migration and Checkpointing
9.3. Fault-tolerant Programming Models

10. Conclusion

11. Future Work

Appendices

A.

Description of Systems

Al. SuperMUC Phase Il
A2 CoolMUC-2 e
A3. CoolMUC-3 e

The System Matrix of MADPET-II

C. Data Structures from LULESH 2.0

List of Proposed Calls for MPI Sessions

177

178
178

180
180
181

183
183
183
184

185

186

187

188
188
189
190

192

194

196

viii

Contents

E. New Calls Introduced by Our MPI Sessions / MPI Process Set Library

E.1. MPI Sessions Interface . .

E.2. Key-value Store Interface
FE. List of Own Publications
Acronyms
List of Figures
List of Tables
List of Algorithms

Bibliography

198
198
199

200

202

206

209

211

212

iX

1. Introduction

HPC is an essential branch of computer science, which covers processing and com-
putation of complex scientific and engineering problems using powerful systems. A
wide range of computationally intensive tasks are the major application area of HPC
systems, including but not limited to weather forecasting, climate simulation, oil and
gas exploration, biomedical modeling, fluid failure prediction, astrophysics, and me-
chanical engineering. With its roots back in the 1960s, when Seymour Cray designed
the first supercomputer — the Cray-I at Control Data Corporation [HTC+89], HPC
has grown rapidly and become one of the most important research areas in computer
science. Superpowers in the world — such as China and the United States — are racing
head to head in research and construction of the most powerful HPC systems. Nowa-
days, HPC systems are massively parallel supercomputers consisting of millions of
Commercial-off-the-Shelf (COTS) processors.

Currently, HPC systems are in the last decade of the petascale! era, and are about
to reach their next milestone — the exascale? era. With the introduction of Sierra® and
Summit*, the US has regained the champion position in the race of supercomputers
after a five-year lead by China. Moreover, these two machines are believed to be the
last systems before the exascale era. With an increasing number of COTS components,
such as processors, memory chips, nodes, and network components, HPC systems are
becoming increasingly complex.

Similar to all complex systems, uncertainties — such as potential component faults
— may propagate throughout the entire system, resulting in significant impact on the
system’s availability. The US Defense Advance Research Projects Agency (DARPA) has
published a report [Ber+08] in 2008, stating that "Energy and Power", "Memory and
Storage", "Concurrency and Locality", and "Resiliency" will be the major challenges in
the exascale computing era. For resiliency, classic approaches to address faults, which
are typically based on Checkpoint & Restart, require a significant amount of resources,

Lpetascale, a computer system that is capable of at least one petaFLOPS. One petaFLOPS is 10> Floating
Point Operations per Second (FLOPS).

2exascale, a computer system that is capable of at least one exaFLOPS. One exaFLOPS is 10'® Floating
Point Operations per Second (FLOPS).

Shttps://hpc.1lnl.gov/hardware/platforms/sierra, accessed in March 2019

“https://www.olcf.ornl.gov/summit/, accessed in March 2019

https://hpc.llnl.gov/hardware/platforms/sierra
https://www.olcf.ornl.gov/summit/

1. Introduction

which is contradictory to the goals in efficiency [Ber+08]. Therefore, new approaches
for achieving fault tolerance in HPC systems must be developed.

In this dissertation, we focus on the resiliency challenge in HPC systems. We analyze
the state-of-the-practice of fault management in HPC systems and introduce two
approaches to provide more efficient fault management in future HPC systems.

1.1. Technical Background of Computer Architecture

1.1.1. Types of Parallelism

To understand the development of the architectures in HPC systems, we first introduce
the different types of hardware parallelism. While detailed descriptions of different
technologies of parallelism can be found in textbooks on computer architecture [HP11],
we introduce the most prominent type of parallelism used for HPC systems. For a better
understanding, we present a taxonomy of parallelism in Figure 1.1. The definition of
these different types of parallelism is mostly taken from Hennessy and Patterson [HP11].
A detailed description of these types of parallelism is presented below [HP11].

Types of Parallelism

e
r A r B
Parallelism in a Data Processor .
-)) Multicomputer
Uniprocessor Parallelism Parallelism
Je e
s N | r A
Bit Level Instruction Level SIMD Multiprocessor Multicore
Parallelism Parallelism

Figure 1.1.: Taxonomy of Parallelism

1. Introduction

8 Bit 8 Bit | 8 Bit 8 Bit | 8 Bit | 8 Bit | 8 Bit
Bit Level
Parallelism
= | | |
8 Bit 16 Bit 32 Bit
Processor Processor Processor
(F | D | EXE [MEM| wB
Pipelining F | D | ExeE |[mMEM]| wB
F | b [Exe|meEm]| wB
F | o | Exe|[mEM]| wB
F | b [Exe|meEM| wB
F | D [ExeE|[mEM| wB
f“;’;;ﬁﬁﬁg IF | ID | EXE |MEM| wB
'nSEfUCt:OH _{ IF | ID | EXE |MEM| wB
eve
Parallelism F | o [Exe|meEm]| wB
| F | D [ExE|mMEM| wB |
EXE
| F | D [ExE|[mMEM| wB |
VLIW + e
Pipelining
| F | o | ExE|mMEM| wB |
g EXE
Scalar N
Processor + -
Data |A0|A1]A2] A3 A4|As| A6| A7
Parallelism o eator + = [co|c1c2|ca|c4|cs|cs|c7]
rocessor

|Bo|B1|B2|B3|B4|B5| B6| B7|

Figure 1.2.: Parallelism in a Processor

e Parallelism in a Uniprocessor: This group includes parallelism techniques that are
used to improve the performance of a single processor (core). The most prominent
examples are shown in Figure 1.2, and described below:

- Bit level parallelism (cf. Figure 1.2 top): This technique aims at increasing

1. Introduction

the computer performance by doubling the word size — the unit of data used
by a particular processor. This way, the amount of information which can
be processed by the processor is increased. The trend of increasing bit level
parallelism has come to an end for Central Processing Units (CPUs) with the
introduction of the 64-bit architecture. However, this type of parallelism is
still used to increase the performance of other components, such as in the
High Bandwidth Memory [GMO3].

— Instruction level parallelism (cf. Figure 1.2 middle): This is designed to
increase the number of instructions that can be processed within one clock
cycle. Any program can be treated as a stream of instructions. Furthermore,
each instruction can be divided into multiple stages on modern processors.
For example, in a classic processor, a single instruction is divided into five
stages [HP11]: Instruction fetch (IF), instruction decode (ID), execution (EXE),
memory access (MEM), and writeback (WB). There are three well-known
types of instruction level parallelism. Pipelining is used to partially overlap
multiple instruction execution. Superscalar techniques introduce multiple
units for each of the instruction stages to provide parallelism. Very Long
Instruction Word (VLIW) introduces multiple units for the execution (EXE)
stage.

e Data parallelism (cf. Figure 1.2 bottom): This inherits the concept of vector
processors introduced in the CRAY-I [Rus78] computer. Instead of processing
scalars, which consist of a single value, data parallelism allows the processing
of multiple data values — called a vector. Modern processors provide special
units for vector processing to improve performance, e.g., Advanced Vector Ex-
tensions (AVX) [Fir+08] in Intel x86 processors and Advanced SIMD Extension
(NEON) [Red08] in ARM processors. Graphical Processing Units (GPUs) greatly
benefit from data parallelism to achieve high computational performance.

e Processor parallelism: This is the technology where multiple physical processors
(or processor cores) are deployed on the same computer (node) to provide concur-
rent execution of applications. There are two different subtypes: Multicore and
multiprocessor, which are illustrated in Figure 1.3 (top). While multiprocessors
comprise multiple full processors including IO controller and memory subsystem,
a multicore processor usually shares the same memory subsystem and I/O units.

e Multicomputer or cluster: This is the technique used to combine multiple indepen-
dent computers with the same or different hardware configuration to concurrently
solve the same problem. Figure 1.3 (bottom) shows an example configuration for
a multicomputer.

1. Introduction

Today, the above-mentioned parallelism technologies are widely used in supercom-
puters. Instead of the deployment of a specific technology, usually different technologies
are combined to enhance the performance of supercomputers. However, in recent de-
velopments in the architecture of supercomputers, some techniques, such as multi-core
and data parallelism, are rather common. This development is a result of many different
factors. Besides the physical limits such as power and thermal design, the parallel
performance of applications — which is usually analyzed by Amdahl’s and Gustafson’s
Law — is also a contributing factor in the development of parallel computers.

Processor
Processor [« Processor > Processor
CORE|CORE|CORE|CORH|
Processor ¢ \ 4 ¢ ¢ ¢ ¢
Parallelism
10 MEM 10 MEM 10 MEM
Single Multi-Core Multi-
Processor Processor Processor
Node Node Node
Processor [«»| Processor Processor [€» Processor Processor [«>» Processor
Multicomputers, ¢ ¢ ¢ ¢ ¢ ¢
Clusters
10 MEM 10 MEM 10 MEM

f f f
| | High-Speed Interconnect | |

Figure 1.3.: Multicore, Multiprocessor and Multicomputer

1.1.2. Amdahl’s Law

The Amdahl’s Law [Amd67] is a well-known formula for calculating the theoretical
maximum speedup of the execution of a given task for a fixed amount of workload. It
is the standard way to predict the theoretical speedup for a parallel applications. It is
defined in Equation 1.1, where S is the theoretical speedup of an application, s is the
speedup of the part of the task that benefits from parallelization, and p stands for the
proportion of the part of the task which benefits from parallelization in the original

1. Introduction

application.

Amdahl’s law states that the theoretical speedup of the execution of a parallel task
increases with the number of resources in the system and that it is limited by the
non-parallel portion of the task. A graphical representation of Amdahl’s law with
different percentages of the parallel portion and numbers of processors is given in
Figure 1.4.

1
S(s) =
_ p
(1—=p)+3
1
S(s) < —— (1.1)
1—p
. 1
lim S(s) = ——
5—00 1— p
= 50% parallel portion
9 —— 60% parallel portion
= 70% parallel portion
= B0% parallel portion
8 = 90% parallel portion
7
6
o
=
o
g 5
a
v
4
3
2
1
20 40 60 80 100

Mumber of Processors

Figure 1.4.: Amdahl’s Law

1. Introduction

1.1.3. Gustafson’s Law

In parallel computing, as an extension of Amdahl’s Law, Gustafson’s Law [Gus88] gives
the theoretical speedup of the execution of a given task at a fixed execution time with
respect to parallelization. It is shown in Equation 1.2, Sy, is the theoretical speedup of
the application, s is the speedup of the parallel part of the application that benefits from
parallelization, and p stands for the proportion of the part of the task which benefits
from parallelization in the original application.

Unlike Amdahl’s law, Gustafson’s Law aims to estimate the maximum amount of
work a parallel system can process, with a given parallel application in a fixed amount
of time. It also shows that the maximum amount of work increases with the number of
resources and is still limited by the non-parallel portion of the application. Figure 1.5
shows the estimates according to Gustafson’s law for total speedup with a different
number of processors and a different portion of application that is not sequential.

Stheo(s) =1—p+sp (1.2)

100 —p=1
p=05
80 ——p=04
——p=03
——p=02
—p=01

20 40 60 20 100

Number of Processors

Figure 1.5.: Gustafson’s Law

1.1.4. Heterogeneous Computing

Heterogeneous computing is a term that refers to a system which uses more than one
type of processor [Sha06]. ARM big.LITTLE [CKC12] technology, which includes both
high-performance and high-efficiency cores in a single chip computer, is an example

1. Introduction

of this from the consumer market. In the context of HPC, a system which consists of
different processing units (such as CPU and GPU) is considered to be heterogeneous.

The benefit of a heterogeneous system architecture is to provide the best performance
and efficiency by dividing application tasks into different roles: While the CPU can
take over general processing roles, a GPUs can take over all computationally intensive
tasks. This way, a much higher system performance can usually be achieved.

Nevertheless, heterogeneous system architectures introduce many new challenges
[KK11]. Different programs have to be developed to support the different types of
processing units according to their instruction-set architecture and their application
binary interface. Furthermore, libraries may differ on different types of systems. Finally,
data management and communication organization greatly impact the performance
gain on heterogeneous systems.

1.1.5. Other Factors in Processor Design

One limiting factor for the architectural design of modern processors is heat flux, which
describes the flow of energy per unit of area per unit of time [Liel1]. While more energy
is required to power a more complex processor (which consists of more transistors), the
size of the chip does not necessarily grow due to the (currently) never-ending shrink of
the semiconductor manufacturing process. The per unit heat flux therefore increases.
Furthermore, as the yield of healthy processor chips significantly drops with increasing
size of the chip [Mitl16], the physical size of the processor cannot grow without any
limit. Therefore, parallelism in a uniprocessor alone is no longer enough for modern
HPC systems.

Furthermore, an increase in clock frequency (which usually leads to an increase in
single-core performance) would also lead to significantly higher power dissipation,
according to the following equations [Int04]:

P~ Cayn* V2 f (1.3)

and
f~V (1.4)

with Equation 1.4 in Equation 1.3 we have:
P ~ Cyyy % V° (1.5)

where P = power, Cy, = dynamic capacitance, V = voltage, = f frequency. This
means that even a slight increase in voltage, which is required to make the processor
faster, will cause a significant increase in heat dissipation. Consequently, increasing the
processor speed by increasing the clock speed is also not an option for performance

1. Introduction

improvement. Combined with the heat flux problem previously mentioned, an increase
in processor frequency cannot be easily achieved.

1.2. Modern HPC System Architectures

1.2.1. TOP500 and the High Performance LINPACK (HPL) Benchmark

For investigating the trends and developments in HPC architectures, the TOP500 list®
is the best source of representative data. TOP500 is a project which was launched back
in the early 90s to publish and present recent statistics on the development of HPC
systems [TOP19]. The central idea is to use a benchmark, now well known as the
High Performance LINPACK (HPL) [Don+79] to determine the performance of a given
HPC system. This way, a comparable ranking of different machines can be created.
Nevertheless, there is no common definition of what an High Performance Computing
(HPC) system (supercomputer)® is. For everyday use and the sake of simplicity, people
usually refer to HPC for all general-purpose computers that can achieve a high Floating
Point Operations per Second (FLOPS) measure.

The HPL [Don+79], which was introduced by Jack Dongarra et al. in 1979, is an
old but well-known benchmark. The basic idea of HPC is to benchmark a system’s
floating point number computing power, which is commonly known as FLOPS. The
benchmark itself uses a kernel — that is the subroutine which performs the main
computational work — a linear equation solver A - x = b for a dense symmetric n by n
system matrix. This kernel is a common routine required by many engineering and
physics applications. The HPL version used for benchmarking is typically parallelized
with the Message Passing Interface (MPI) [WD96] and utilizes Basic Linear Algebra
Subprograms (BLAS) [Law+77] as its math backend. However, as the deployment
of accelerators has become common today, many other specifically optimized versions
exist.

Benchmarking with HPL is effective, but is frequently criticized by many researchers.
First, HPL only represents the application class of dense linear algebra, which is typ-
ically known to be compute intensive. However, many applications have different
requirements regarding resources, such as memory bandwidth and interconnect band-
width. Second, as the main source of funding for HPC systems is mostly governmental
entities, the demand for a high rank in TOP500 and a ranking list purely based on a
single compute intensive benchmark may lead to a wrong focus when procuring an
HPC system. Finally, the HPL version used for benchmarking is usually developed

Shttps://www.top500.org, accessed in March 2019
®In the scope of this thesis, the terms HPC and supercomputer are used as exact synonyms

https://www.top500.org

1. Introduction

and optimized carefully for a given specific system. The additional optimization effort
is usually carried out by special system experts. This is typically not the case for
applications from a real production environment. Targeting these problems, newer
benchmarks, most notably the High Performance Conjugate Gradient (HPCG) bench-
mark [DHL15], are designed for a better ranking of HPC systems when compared with
a real-world application environment.

Nevertheless, TOP500 and the HPL are still seen as the metric for judging HPC
systems. Hence, the results and discussions in this work about the development and
trends of HPC systems are still based on TOP500, which was published in November,
20187.

1.2.2. Parallelism and Heterogeneity in Modern HPC Systems

To cope with the increasing demand for performance in HPC systems, one of the
most common trends is the large amount of cores deployed, which comes with no
big surprise. While the early systems such as the Cray-I [Rus78] relied on compact
design with local parallelism using vector processors under the principle of SIMD (cf.
Section 1.1.1), today’s systems are based on the massively parallel architecture, which
features a tremendous amount of compute units. Parallelism is everywhere in modern
HPC architecture, from each processor core to the entire system (cf. Section 1.1.1,
multicomputer).

Inside each core, instruction level parallelism and data parallelism approaches, such
as AVX, have become the standard. Furthermore, bit level parallelism is used to
increase memory bandwidth. At the processor level, more and more cores are being
incorporated into a single chip. The increasing number of cores per processor results
in an increasing complexity per chip. More transistors and die space are required to
house the cores and their management units. At the system level, the number of nodes
is increasing rapidly. The increase in number of nodes results in a high number of
components, which leads to higher aggregated failure rates.

Furthermore, accelerators, such as GPUs, which benefit from data parallelism, are
being deployed into many of state-of-the-art HPC systems, e.g., in Sierra and Summit.
Heterogeneous system architectures have become one of the best ways to increase
performance in HPC systems. Besides the system design with CPUs and GPUs, other
accelerators (such as the manycore architecture - Xeon Phi [JR13] - and the Chinese
Matrix-2000%) are becoming additional sources of compute power in HPC systems.

To visualize the correlation between the number of cores and maximum performance,
we have plotted these respective values for the first 100 systems on the TOP500 list in

"https://www.top500.org/lists/2018/11/, accessed in March 2019
8https://en.wikichip.org/wiki/nudt/matrix-2000, accessed in July 2019

10

https://www.top500.org/lists/2018/11/
https://en.wikichip.org/wiki/nudt/matrix-2000

1. Introduction

-1le+08
1le+07 -

-le+07
1e+06 -

)
IS ° ° ° . o° .
S > -1e+06 X
O 1e+05 3 Het
5 o ° o o 2 eterogeneous
S Lo ¢ ¢ o, =
2 . . | FALSE
<}
> e TRUE
= 2
- L,
o
= -1e+05
le+04 -
-1le+04
le+03-
(I) 25 50 75 100

Rank on the Top 500 List

Figure 1.6.: Overview of Top 100 Systems on the November 2018 TOP500 list

Figure 1.6. In Figure 1.6, the dots represent the number of cores of a given system, and
the trend line below represents the maximum performance (of HPL) for these systems
in the TOP500 list published in November, 2018. Note that the y-axis of this figure
has a log scale. The dots represent the number of cores of a given system, and the
color of the dots represents its heterogeneity. The trend line represents the maximum
LINPACK performance (R;;qx) in TFLOPS (Teraflops per Second). Moreover, as shown
in Figure 1.6, many of the fastest systems on the TOP500 are heterogeneous, most
notably Summit and Sierra.

As shown in the figure, a clear correlation between these trends can be observed. In
Figure 1.7, we further observe that no clear correlation between flops per core and their
corresponding ranking can be observed. This observation supports our conclusion that
performance gain in modern HPC systems is mainly due to increased multiprocessor
parallelism, rather than to improved design of a uniprocessor.

11

1. Introduction

75~

oy
S
Ke)
e
v 50-
3
O
9]
<%
x
©
£
14

25-

® o
0 = =
0 100 200 360 400 500

Rank

Figure 1.7.: Maximum Performance per Core for all Systems on the November 2018
TOP500 list

12

1. Introduction

1.3. Motivation

The trends in the architecture of modern HPC systems show that an increasing par-
allelism based on an increasing number of processor cores, independent nodes, and
accelerators is to be expected in future HPC systems. Reliability, besides the man-
agement of parallelism and energy efficiency, has become a major goal in exascale
computing [Ber+08]. Although there is no indication of an increasing failure rate in
modern HPC systems yet, the challenge in resilience remains. Existing approaches
suffer from the challenge of being mostly reactive, since failures can happen at any
time with a higher probability due to the increased number of components in exascale
computing. Therefore, a wide body of research targets predictive fault tolerance, which
aims at forecasting upcoming failures and performing proactive measurements to
prevent a failure. This way, mitigation mechanisms are applied when the system is still
in nominal operation, which eliminates the need for an expensive recovery mechanism.

However, existing work in the field of failure prediction is diverse and lacks structure.
Many different sources of failures, as well as data, and a large amount of different
techniques for failure prediction exist. Some of the works are more general and target
various scenarios, while others are tuned to solve a specific problem. To conclude, the
current state-of-the-practice of failure prediction and the gaps and remaining challenges
in failure prediction are still unclear. In the first part of this dissertation, we will look
closely at existing work in failure prediction, and identify the gaps and challenges in
the current state-of-the-practice in failure prediction.

Sufficient failure prediction is only a premise of efficient proactive failure prevention.
An efficient approach for fault mitigation is the other integral part. Existing techniques
such as checkpoint&restart(cf. Section 4.2.3), which cannot take advantage of any failure
prediction, will require an extensive amount of resources and contradict to the high
efficiency goals of HPC. Therefore, it is no longer sufficient to handle the evolving
requirements in fault tolerance and reliability [Ber+08]. More recent techniques, which
are transparent to the application, include process level migration [Wan+08] or virtual
machines [Cla+05]. Nevertheless, these solutions still demand a significant amount
of resources similar to the classic checkpoint&restart. Furthermore, these approaches
impose a high overhead on the application, limiting an application’s scalability and thus
providing only limited applicability to emerging exascale requirements. In contrast to
application transparent methods, an application can be modified to support fault toler-
ance and react to the prediction of an upcoming error. This way, resource management
overhead by the framework that provides fault tolerance is reduced. The overall impact
on performance and scalability is limited to a minimum. In the second part of this
dissertation, we will present the concept of data migration, an application-integrated

13

1. Introduction

approach for proactive fault tolerance. We further propose an application-integrated
library — called LAIK — to help application programmers to utilize data migration to
achieve proactive fault tolerance. Moreover, we present a potential extension to the de
facto standard programming model in parallel programming Message Passing Interface
(MPI) — The MPI sessions and MPI process sets, which are capable of utilizing the
advantages in failure prediction and provide a sufficient interface for programmers to
achieve proactive fault tolerance.

1.4. Contribution

In this dissertation, we will provide two new different methods for fault tolerance based
on data migration according to the trends in the development of exascale HPC systems.
With this work we hope to address a gap and point out promising new approaches to
this emerging topic.

In particular, the main contributions in this dissertation are as follows:

e We provide a high quality in-depth survey using a large amount of recent lit-
erature on state-of-the-art failure prediction methods. Furthermore, research
gaps, limitations, and applicability of these methods to modern HPC systems are
discussed and analyzed.

e We present an overview of fault tolerance methodologies at different levels:
system level, application level, and algorithm level.

e We present the concept of Data Migration, a proactive fault tolerance technique
based on the repartitioning and redistribution of data combined with fault pre-
diction.

e We introduce LAIK, an application-integrated fault tolerance library. The main
goal of LAIK is to assist application programmers in achieving fault tolerance
based on data migration by redistributing the data and removing any failing node
from parallel execution. We evaluate the efficiency and overhead of LAIK using
two existing applications: MLEM and LULESH.

e We introduce MPI sessions, a proposal to extend the MPI standard, and our
extension to MPI sessions named MPI process sets. We present a prototype imple-
mentation for MPI sessions and MPI process set. Moreover, we show that the
added functionalities can be used to achieve data migration based fault toler-
ance. We present evaluation results on the effectiveness of our prototype for data
migration.

14

1. Introduction

We extend the concept of data migration and its role in creating more dynamic
and malleable applications in the exascale era.

This dissertation is not the result of a standalone work flow. It is the combined result
of a wide body of our publications in the last three years. A full list of our publications
is given in Appendix F.

1.5.

Structure of This Dissertation

The remainder of this dissertation is structured as follows:

Chapter 2 introduces and explains important terminology used in this dissertation.

Chapter 3 provides an in-depth overview of failure prediction methods in HPC
systems and a discussion on their effectiveness.

Chapter 4 outlines an overview of different fault management techniques.

Chapter 5 presents the key concept for fault tolerance that this dissertation focuses
on — data migration.

Chapter 6 introduces and describes LAIK, a library for application-integrated fault
tolerance based on index space abstraction and data migration. We also present
the effectiveness and efficiency of LAIK by porting two existing applications —
MLEM and LULESH.

In Chapter 7, we propose a possible extension to the Message Passing Interface
(MPI), the de facto standard in parallel programming, in order to support fault tol-
erance based on data migration. The effectiveness and efficiency of our extension
is also evaluated with an adapted version of both MLEM and LULESH.

Chapter 8 includes a discussion on fault management based on failure prediction
and data migration in modern HPC systems.

Chapter 9 provides a range of related work featuring similar topics and ap-
proaches for fault tolerance.

Chapter 10 and 11 conclude this dissertation and provide an outlook on future
work.

15

2. Terminology and Technical Background

The terminology used in this work is presented, clarified, and discussed in this chapter.

2.1. Terminology on Fault Tolerance

2.1.1. Fault, Error, Failure

Among different literature, there are many different definitions of the terms fault, error,
and failure. The definitions introduced by Avizienis et al. [Avi+04] are used as references
in this dissertation. Deviations from these definitions used in this dissertation are
indicated explicitly in the remainder of this dissertation. Note that the terms of fault,
error, and failure are used inconsistently across the literature.

e Faults are often referred to as a static defect in software or hardware [Avi+04],
which can be the cause of an error. A fault is not directly observable, however,
its manifestation — the error is visible. A fault in a system does not necessarily
lead to an error in a system. Such systems which are resistant to faults, are called
fault-tolerant. Examples of a fault in a computer system include a bit-flip in a
Dynamic Random Access Memory (DRAM), or a transient failure in a transistor
in the CPU.

e An error occurs when the current (internal) state of the system deviates from
the correct state. Errors do not necessarily cause failures, however, they may
even go entirely unnoticed (undetected error). The root cause (or each root cause
in combination with the root cause of an error) is typically a fault (or multiple
faults).

An example of an error would be an erroneous result calculated by the CPU due
to the impact of a transient fault on a transistor in the CPU.

e A failure is any incorrect system behavior with respect to system response or
a deviation from the desired functionality [Avi+04]. The same failure can be
manifested in different behaviors, e.g., a node being unavailable or delivering
wrong results to users and the rest of the system due to a faulty network card.
Sometimes the root cause of a failure may remain unspecified. For example,

16

2. Terminology and Technical Background

Schroeder and Gibson [SG10] interpret every event as a failure that requires the
attention of an administrator, and in many studies relying on log files simply all
events tagged with a specific string. Klinkenberg et al. [Kli+17] use a so-called
“lock event”, that is an event preventing the user from using a node as the key
description for failure.

To summarize, the relation between fault, error, and failure is shown in Figure 2.1. A
fault may lead to an error in a system, which may propagate through the system and
cause a failure. A failure is caused by one or multiple errors, which can eventually be
tracked back to one or multiple faults as root causes.

—undetected>| —may cause—>|
Fault Error Failure
<—root cause— <€—caused by—

Figure 2.1.: Relation between Fault, Error, and Failure

2.1.2. Fault tolerance

Fault tolerance is the capability of a given system, which allows the system to con-
tinuously operate even after failure of some components. Most fault-tolerant systems
are designed to cope with specific types of failures in the system [Avi76]. For ex-
ample, a computer is fault-tolerant against power failure, if it is equipped with an
Uninterruptible Power Supply (UPS) system [GDUO07].

The most trivial way of fault tolerance is fault avoidance, also known as fault intolerance
[Avi76]. Here are some examples: By selecting enterprise-grade hardware which
provides higher reliability, potential manufacturing faults in hardware components can
be avoided, effectively making the system more reliable.

Another technique among the most common fault tolerance techniques is redun-
dancy. Quoting Avizienis [Avi76]: “The redundancy techniques that have been devel-
oped to protect computer systems against operational faults may assume three different
forms: hardware (additional components), software (special programs), and time (rep-
etition).” The use of redundancy is widely spread in all kinds of computer systems:
The UPS system already mentioned is a redundancy in the power supply system. The
widely used Redundant Array of Independent/Inexpensive Disks (RAID) [Pat+89]
technology is redundancy of a storage system. The well-known and used Checkpoint &
Restart in HPC applications is a kind of software redundancy, which secures relevant
data on persistent storage. Having some degree of redundancy might be the most
efficient way of improving reliability. It is manifested as the motto of avoiding single
points of failure in systems engineering.

17

2. Terminology and Technical Background

True False

Positives Positives

False True
Negatives Negatives
L JL J
Rl R
Groud Truth: Groud Truth:
Positive Negative

Figure 2.2.: Venn Diagram on the Relation between True Positive, False Positive, True
Negative, and False Negative

2.2. Terminology on Machine Learning and Failure Prediction

The first part of this dissertation is an in-depth analysis of the state-of-the-practice in
failure prediction. Most prediction methods are based on machine learning techniques.
For better understanding, the basic concepts used for a machine learning device for
a binary classification (prediction) problem, which is also known as a perceptron, are
explained below.

In a binary classifier for failures, True Positives (TP) refer to correctly classified failures
and True Negatives (TN) refer to correctly classified non-failure (in the following: ok)
events. Similarly, False Negatives (FN) refer to misclassified failures and False Positives
(FP) to ok events that are misclassified as failures.

To help understand the concepts of TN, TP, FN, and FP, Figure 2.2 visualizes their
relation. In Figure 2.2, the square represents the total set of events in an experiment. The
left half of the square represents the set of events whose ground truth is “positive”. The
right half of the square represents the set of events whose ground truth is “negative”.
The circle represents the prediction results “positive”, and the difference set of the square
and circle are the events predicted to be “negative”. With this premise, true positives are

18

2. Terminology and Technical Background

represented in blue, false positives in red, true negatives in green, and false negatives
in yellow.

The relation between the events and their predictions is also illustrated in the confusion
matrix in Table 2.1, where events are partitioned into failure events (E) and non-failure
(ok) events (K). A binary classifier can therefore predict events to be positive (failure,
(4)) or negative (non-failure, (—)). False positives are false alarms that would trigger a
checkpoint even if no failure were imminent in this case.

Table 2.1.: Confusion Matrix for Failure Prediction
Ground Truth

Failure (E) Non-Failure (K)

Failure (+) True Positive (TP) False Positive (FP)

Non-Failure (-) | False Negative (FN) | True Negative (TN)

Predicted

The literature that discusses failure prediction methods uses the following key metrics
to evaluate their quality [Faw06]:

e Precision: the probability of a positive prediction to be correct, also expressed as
TP

the positive predictive value, calculated with 757 +5.
e Recall: the probability of correctly classifying errors, also expressed as the true
positive rate, calculated with TPZiI}N

e Miss rate: the probability of misclassifying errors as ok events, also expressed as
the false negative rate, calculated with TPF+7NFN

e Specificity: the probability of correctly classifying ok events, also expressed as true
negative rate, calculated with #ﬁ]ﬂ)

e Fall-Out: the probability of misclassifying an ok event as an error, also expressed

as false positive rate, calculated with PPi%

e Accuracy: the proportion of correctly predicted events among the total number of
TP+TN

events, calculated with TPIEPLENTTN -

As Salfner et al. [SLM10] remark, such basic statistical metrics are less useful, es-
pecially if failure events are rare, which is the case for HPC systems. For example, a
classifier prediction that was always true would have a perfect precision, yet zero recall.
However, these metrics — especially precision and recall — are considered as quality
criteria for failure prediction systems. In general, a higher precision value with a good

19

2. Terminology and Technical Background

recall value is considered good for a classifier. However, there is no general threshold
for these metrics to be considered "good". By contrast, these metrics only underline the
effectivity of a classifier in a given setup.

Other researchers [Tae+10; Zhe+10; EZS17] have criticized these measures as being
unsuitable for HPC as they do not account for lost compute time. They also suggest that
a weighted metric might be a better solution for HPC. Despite the known deficiencies
in classic metrics for failure prediction systems, these metrics are widely used by
most researchers. Therefore, we still stick to these metrics when evaluating the failure
prediction methods in this work.

2.3. Terminology on Parallel Computer Architecture

2.3.1. Flynn’s Taxonomy of Computer Architectures

Flynn's Taxonomy
e

r 0
Single Data Stream Multiple Data Streams
e e
r R r R
Single Instruction Multiple Instructions Single Instruction Multiple Instructions
Single Data Single Data Multiple Data Multiple Data
A
. R
Single Program Multiple Programs
Multiple Data Multiple Data

Figure 2.3.: Extended Flynn’s Taxonomy [Fly72; Ata98]

Flynn’s taxonomy is a classification of computer architectures, which was first intro-
duced by Michael Flynn in the 1972 [Fly72]. This taxonomy has been widely used in
the design of modern processor architectures, especially for those with a high degree
of parallelism. Figure 2.3 illustrates Flynn’s taxonomy. The four original categories
defined by Flynn [Fly72] are based on the number of concurrent instructions and the
number of parallel data streams available in the architecture. They are:

e Single Instruction Stream Single Data Stream (SISD).

An SISD computer is a sequential computer which provides no parallelism at
all. The Control Unit (CU) can only fetch a single instruction at once, and the
Processing Unit (PU) can only process one single data stream. An example of an
SISD computer is the early x86 processor such as the Intel 8086. Figure 2.4 (top
left) illustrates an SISD architecture.

20

2. Terminology and Technical Background

e Single Instruction Stream Multiple Data Streams (SIMD).

An SIMD computer can still fetch a single instruction at a time, but many PUs
execute the instruction to multiple data streams in parallel at the same time. An
example of SIMD is Intel’s AVX/2/512 instructions, which can compute up to eight
floating point operations at once. It is capable of executing the same instruction
using multiple hardware threads concurrently. Figure 2.4 (bottom left) shows an
SIMD architecture.

e Multiple Instruction Streams Single Data Stream (MISD).

An MISD computer operates on one data stream, while many PUs execute
different instructions on that data stream. This architecture is uncommon, with
the Space Shuttle flight control computer [SG84] being the most prominent example
of an MISD architecture. Figure 2.4 (top right) highlights an MISD architecture.

e Multiple Instruction Streams Multiple Data Streams (MIMD).

An MIMD computer features many PUs which can execute different instructions
on different data streams independently in parallel. It is the most widely used
technique to exploit parallelism in modern computer architectures. While each
multicore processor is an MIMD example, the Intel Xeon Phi manycore processor
is a prominent example of an MIMD processor. All TOP500 supercomputers are
based on the MIMD architecture nowadays. Figure 2.4 (bottom right) represents
an MIMD architecture.

The MIMD architecture can be further divided into subcategories [Ata98]:
- Single Program Multiple Data (SPMD)

SPMD [Dar+88] is the most frequently used architecture in parallel program-
ming. Multiple independent PUs execute the same program asynchronously
on different data sets. When compared with SIMD, the programs in SPMD
does not necessarily run at the same time point, while in SIMD a single in-
struction is applied to multiple data streams in lockstep. The most prominent
programming model for SPMD architecture is the Message Passing Interface
(MPI).

— Multiple Program Multiple Data (MPMD)

In MPMD, multiple PU executes different programs concurrently. A typical
programming model for MPMD architecture is “Master-Slave”, where the
master runs a program which facilitates the distribution of workload and
the slave calculates the workload using another program. The best-known
example is the Cell microarchitecture [Gsc+06].

21

2. Terminology and Technical Background

Instruction Stream

Instruction Stream

Instruction Stream ‘

SISD MISD l i
Processing Processing Processing
Data Unit Data Unit Unit
Stream Stream

Instruction Stream

Instruction Stream Instruction Stream
SIMD MIMD

Y \ 4 \ 4
Processing Processing > Processing
Data Unit Data Unit Unit
Stream Stream
Processing Processing Processing
Unit €] ‘ it (< unt [
Data
Stream
Processing Processing Processing
Unit <« Unit alig Unit €

Figure 2.4.: Visualization of SISD, SIMD, MISD, and MIMD

2.3.2. Memory Architectures
In the context of parallel computing, two memory architectures are usually referred to:

e Shared Memory: Shared memory architecture refers to the design of a memory
subsystem where memory can be accessed by multiple PUs at the same time. It
is an efficient means of data transfer across different PUs, as no redundant data
storage is required. An example of a shared memory design is the L3 Cache
or the main memory of a state-of-the-art Intel multi-core processor, such as in
the Skylake microarchitecture. Figure 2.5 (left) illustrates the shared memory
architecture. There are three different types of access patterns for a shared
memory system [EAO05]:

— Uniform Memory Access (UMA), where all PUs share the physical memory
equally with the same latency.

22

2. Terminology and Technical Background

- Non-uniform Memory Access (NUMA), where memory access time is differ-
ent depending on the locality of the physical memory relative to a processor.

- Cache-Only Memory Architecture (COMA), where the local memories for
the processor are used as cache only (instead of main memory). This is also
known as scratchpad memory.

e Distributed Memory: A distributed memory architecture refers to a system with
multiple PUs, in which each PU has its own private memory region, which cannot
be accessed directly from another PU. Any application running on a specific PU
can only work on its local data, and data which belongs to other PUs must be
communicated through a (high speed) interconnect. Figure 2.5 (right) depicts the
distributed memory architecture.

| | Interconnect | |
1
1 1 . 1 1 v v v v

PU PU PU PU

| | System Bus | | PU PU PU PU
Memory Memory | |Memory| |Memory| [Memory

Shared Memory

Distributed Memory

Figure 2.5.: Shared Memory vs. Distributed Memory

2.3.3. Scalability

In parallel programming, scalability is the property of a (parallel) application to handle
an increasing amount of workload by adding more computational resources to the
system [Bon00]. In the context of High Performance Computing (HPC), there are two
common types of scalability:

e Strong scaling is defined as the change in program execution time when varying
the number of processors for a fixed size of problem. The definition is based on
Amdahl’s law (cf. Section 1.1.2), which states that the upper limit of speedup for a
fixed problem size is determined by the sequential part of the code.

23

2. Terminology and Technical Background

o Weak scaling is defined as the change in program execution time when varying
the number of processors for a fixed size of problem per processor. The definition is
based on Gustafson’s law (cf. Section 1.1.3), which states that in the ideal case, the
(scaled) speedup in weak scaling increases linearly with respect to the number of
processors without an upper limit.

2.4. Terminology in Parallel Programming

We use two major programming techniques in this work — namely MPI and OpenMP.
An overview of these is given below.

2.4.1. Message Passing Interface

MPI is a portable standard for parallel programming, and is mostly used in HPC
systems. It was introduced by Walker et al. in the 1990s [WD96]. Since then, the MPI
Forum has been the governing body responsible for the MPI standard.

Technically, MPI is a communication protocol for a parallel application running on
parallel computers. Today, MPI is the de facto standard for communication in parallel
applications designed for systems with distributed memory (cf. Section 2.3.2). It also
serves as the most dominant programming model for HPC systems [SKP06]. The most
current version of the MPI standard is MPI-3 [Mes18].

MPI covers a wide range of functionalities and concepts. Currently, the MPI standard
defines the syntax and semantics for functions in the programming languages C, C++,
and FORTRAN. The most basic concepts in MPI are process, group, and communicator.
MPI follows the SPMD architecture in Flynn's Taxonomy (cf. Section 2.3.1). Each
process is an instance of the application, which is usually an application process in the
operating system. An MPI group (MPI_Group) is an abstract object which represents a
collection of processes. An MPI communicator (MPI_Comm) is an object which provides
a connection for a group of processes. Each communicator assigns every process
within the communicator with a unique identifier called Rank. Users can create new
communicators from an existing communicator, e.g., using MPI_Comm_Split. There
are two trivial communicators in MPI: MPI_COMM_WORLD, in which all processes in an
MPI instance are included; and MPI_COMM_SELF, in which only the calling process is
included. Within a given communicator, both point-to-point based (such as send and
receive) and collective communication (such as all-reduction) can be performed.

A detailed introduction to MPI is way beyond the scope of this dissertation. For
detailed information, please refer to the MPI standard document [Mes18].

24

2. Terminology and Technical Background

2.4.2. OpenMP

Open Multi-Processing (OpenMP) is a portable Application Programming Interface
(API) designed for parallel programming on shared memory systems (cf. Section 2.3.1).
Similar to MP], it also provides language bindings in the programming languages C,
C++, and FORTRAN. The standardization body of OpenMP is the OpenMP Architecture
Review Board, which is a consortium of major computer hardware and software vendors.
The first version of OpenMP was published in 1997 (for FORTRAN) and 1998 (for
C) [DM98], respectively.

Technically, OpenMP is an implementation for multithreading following the fork-join
model. At execution time, a master thread (usually the main process) forks a given
number of threads. Each thread is uniquely identified by an id, where the master holds
the id 0. Using the ids, the workload can be divided into partitions, where each thread
works on a different partition.

Correctly deployed, an application can be written with using hybrid model, in which
MPI is used for handling communication on the distributed memory part, and OpenMP
is used to achieve high efficiency on a shared-memory node.

A detailed introduction to OpenMP is also beyond the scope of this dissertation. A
variety of textbooks such as [Cha+01] teach parallel programming with OpenMP.

25

3. Failure Prediction: A
State-of-the-practice Survey

3.1. Methodology and Scope

Failure prediction is a widely researched area in different fields because the emerging
era of deep learning and advanced machine learning techniques has become a major
focus of the recent research body. The idea of failure prediction is rather simple: By
utilizing existing knowledge and heuristics of system behavior and information on the
current system state, one can predict an upcoming event. This way, a dynamic failure
avoidance method can be initialized, preventing the system from entering an erroneous
state and hence preventing failure.

In HPC systems, the possible upsides of being able to predict future failures accurately
are significant:

e It is proactive: It simplifies any mitigation mechanism by being able to react while
the system is still working;

o It is efficient: It eliminates the need for frequent storage of the application
state. Furthermore, combined with hot-swap hardware, it can simplify system
management and increase utilization.

The work involved in carrying of this literature survey as part of this dissertation
in this area is quite diverse: It covers a wide range of failure scenarios, systems and
prediction techniques, to a point where it is hard to understand the coverage achieved
with existing work and to identify gaps that are still present. As there are already many
different failure prediction methods out there, we do not want to provide yet another
failure prediction mechanism which demonstrates its capability on exactly one system.
Instead, we are focusing on a cross analysis of the current state of the practice.

This chapter is related to and similar to the previous work in studies conducted
by Salfner et al. [SLM10] and Xue et al. [Xue+07]. However, both of these studies
mentioned are outdated and do not specifically focus on the current generation of
large-scale HPC systems. For our analysis, a total of over 70 papers from 2010-2018
were screened, more than 30 of which were then selected for detailed interpretation.

26

3. Failure Prediction: A State-of-the-practice Survey

The major outcome is a two dimensional matrix of prediction methods, which provides
a categorization of current failure prediction methods. Unlike Salfner et al. [SLM10],
this paper does not provide a taxonomy of methods. Previous effort [Jaul7] shows that
our 2-D classification provides a more comprehensive visualization of fault prediction
methods, as many of the methods do not necessarily target a single specific problem.
The main aims of the classification are:

1. The type of failure it covers, i.e., aims at predicting, and
2. the class of prediction method used.

It is important to mention that although the main search scope of our literature
survey is HPC systems, we also include some research covering Cloud Computing (CC)
systems. This is motivated by the fact that we are currently seeing a convergence trend
between HPC and CC [GR17]. Moreover, it is generally expected that the convergence
of these two systems will continue to accelerate in the near future.

A survey on failure modes that current work has been targeting is presented in Sec-
tion 3.2 in the remainder of this chapter. These results are then used as drivers for
forming the classification of the survey work, along with the prediction methods used.
The result is a two dimensional matrix, which we will derive in Section 3.3 and present
in Table 3.4.

The basic literature research part of this chapter was previously covered and intro-
duced by Jauk [Jaul7]. Partial results from the evaluation used in this chapter were
also published in our previous paper [JYS19].

3.2. Survey on Failure Modes in HPC Systems

Raw failures - that is a set of data which clearly marks failures - in any supercomputer
are hard to acquire. Hence, secondary literature currently is the main source of
insight into this matter. Notable work in this field was done by Bianca Schroeder and
various coauthors [SG10; ES13; EZS17], analyzing raw failure data from a cluster of
11k machines deployed at Google! (in the following called the “Google dataset”) and
a Hadoop Cluster at Carnegie Mellon University?. Furthermore, some other datasets
regarding failures in (HPC) Data Centers are provided in the Computer Failure Data
Repository (CFDR)?. Currently, a total number of 13 datasets are mentioned in the CFDR.

Ihttps://research.googleblog.com/2011/11/more-google- cluster-data.html, accessed in June
2019

2ftp://ftp.pdl.cmu.edu/pub/datasets/hla/, accessed in June 2019

Shttps://www.usenix.org/cfdr, accessed in June 2019

27

https://research.googleblog.com/2011/11/more-google-cluster-data.html
ftp://ftp.pdl.cmu.edu/pub/datasets/hla/
https://www.usenix.org/cfdr

3. Failure Prediction: A State-of-the-practice Survey

3.2.1. Failure Modes

As expected, most existing research focuses on memory errors in HPC systems, due to
their high occurrence. There are slightly fewer studies on disk failure. Nevertheless,
disk errors have been the research focus of much independent research in failure
prediction. Against trends in the HPC community, though, two areas have received
surprisingly little attention: GPU failures and failures caused by the Operating System
(0S).

Node failures have been the research focus of many papers. However, most of the
papers, which deal with node failures, treat all types of failures equally and do not
distinguish between the actual errors occurred, nor do they pinpoint the root causes of
the failures.

As a prominent example, Di Martino et al. [Di +15] analyzed more than five million
application runs in the span of 517 days on the 22,640-node Blue Waters Cray system.
Their findings regarding application success and failure are listed in Table 3.1, which
also includes another earlier study [LHY10] that examined 2,084 jobs from the Franklin
Cray system. As shown in the Table 3.1, both studies provide similar findings on failure
distribution.

Table 3.1.: Causes of Application Failure on Two Cray systems [Di +15; LHY10]

Termination | Blue Waters | Franklin
successful 66.47% 61.8%
user 18.75% 25.0%
system 1.53% 1.5%
user / system 8.53% 11.7%
walltime 4.71% -

In their 2010 study [SG10], Schroeder and Gibson investigated failure data from 22
HPC systems at Los Alamos National Laboratory (LANL) over 10 years, gathered from
1996 until 2005, as well as a dataset with failure data from an unnamed supercomputing
site over a period of one year. The Los Alamos National Laboratory (LANL) cluster
consisted of 4,750 nodes with 24,101 processors. The anonymous site had 20 nodes
with 10,240 processors. Failure reasons for the two facilities along with the respective
percentages of their occurrence are presented in Table 3.2. The authors concluded that
some systems showed a decrease in failures with unknown causes over time. However,
the relative percentages of the other failure categories remained constant.

28

3. Failure Prediction: A State-of-the-practice Survey

Table 3.2.: Root Causes of Failures in Two High Performance Systems [SG10]

LANL (%) || Unnamed Site | (%)
hardware 64 hardware 53
software 18 software 22
network 2 - -
environment 2 - -
human <1 human 2
unknown 14 unknown 23

In addition, their data show that “failure rates do not grow significantly faster than
linearly with system size.” [SG10] Furthermore, failure rates on a per-node basis show
significant variance, depending on the node’s workload. The Cumulative Distribution
Function (CDF) of the failure rate per node is best shown as a normal or log-normal
distribution.

By analyzing failure rates over time, the systems follow one of two patterns [SG10]:

1. An initial high failure rate with a significant drop after approximately three
months. This is consistent with the commonly known concept of “burn in” or
“infant mortality”: Initial failures, which remain undetected during the testing
period, occur and are subsequently eliminated.

2. Increasing failure rates during the first approximately 20 months, followed by
continuously decreasing failure rates afterward (time toward full operational
system state). The continuous process of adapting the system to full production
is most likely to have caused this observation.

Earlier results from two IBM Blue Gene systems by Hacker et al. [HRC09] are
confirmed by Schroeder and Gibson, who also point out that node failures in general
are still best modeled by a Weibull or gamma distribution®.

In an earlier study, H.-C. Lin et al. [SG10] did not find any spatial correlation for
errors of the six categories - hardware, software, network, environment, human, unknown.
This result is contrary to a later study, which found that “when the number of correlated
failures [...] is relatively high, the spatial correlation dominates” [Ghi+16].

3.2.2. On Root Causes Analysis

By analyzing failure modes, approaches for predicting failure occurrence can be de-
rived. Some examples on this are provided by El-Sayed et al. [EZS17] and Pinheiro

4also known as bathtub curve

29

3. Failure Prediction: A State-of-the-practice Survey

Table 3.3.: Most Common Root Causes of Failures [SG10]

Hardware (%) || Software (%)
Memory Dimm 30.1 || Other Software 30.0
Node Board 16.4 | OS 26.0
Other 11.8 | Parallel File System 11.8
Power Supply 9.7 || Kernel software 6.0
Interconnect Interface 6.6 || Scheduler Software 4.9
Interconnect Soft Error | 3.1 | Cluster File System 3.6
CrPu 2.4 || Resource Management System | 3.2
Fan Assembly 1.8 || Network 2.7
Router Board 1.5 || User Code 24
Fibre Raid Controller 1.4 || NFS 1.6

et al. [PWBO07]. Schroeder and Gibson [SG10] list out some of the most common root
causes of hardware and software failures. Table 3.3 lists these root causes. They indicate
that hardware problems are the most probable cause of failures in HPC systems. They
further point out that “memory was the single most common ‘low-level” root cause
for all systems (across all failures not only hardware failures)...” However, their study
does not treat errors which are from the user software itself. Most errors that lead to
application abortions are the applications themselves [Fra+19].

In the following we present results from different studies covering the most probable
root causes.

Memory

Many studies, such as by Schroeder et al. [SPW09] and Sridharan et al. [Sri+13], deal
with memory errors because they are the most frequent hardware error. In [SPW09],
Schroeder et al. analyzed two years of DRAM error data from Google’s computing
infrastructure (i.e., not HPC data). In [Sri+13], Sridharan et al. investigated DRAM
faults from the Jaguar and Cielo supercomputers. The main findings from both studies
include the following;:

e DRAM age correlates with failure rates. According to Schroeder et al. [SPW09], an
increasing rate for correctable errors in the first twenty months and uncorrectable
errors in the first three to five months can be observed. This failure rate is then
plateaus out afterward. In contrast, according to Sridharan et al. [Sri+13], total
failure rates decrease for approximately the first two years of operation.

30

3. Failure Prediction: A State-of-the-practice Survey

[SPWO09] and [Sri+13] agree that there is no clear correlation between error rates
and memory technology (e.g., DDR1, DDR2, and DDR3), with [SPW09] examining
DDR1, DDR2, and FBDIMM and [Sri+13] examining DDR2 and DDR3.

e A conclusive correlation between error rates and DRAM vendors is not observable.

e Although the effect is small, Schroeder et al. [SPW09] point out a correlation
between error rates and temperature which again correlates with CPU utilization.

e While no spatial correlation of memory errors themselves is found in these
two studies, this correlation is existent and documented in many different stud-
ies [Bau+16; Pat+17; HS512].

Disks

Notable studies on disk failures include work by Schroeder et al. [SG07a], Pinheiro
et al. [PWB07], and Ma et al. [Ma+15]. A large number of drives is used as a dataset
by Schroeder&Gibson and Pinheiro et al.., while Ma et al. introduce some prediction
methods, which analyze more than 100,000 hard drives each. Schroeder and Gibson
use data from seven different sites - four HPC sites and three cloud providers - and
gather data on Serial AT Attachment (SATA), Small Computer System Interface (SCSI),
and Fibre Channel (FC) drives from four different vendors. Pinheiro et al. use data
from Google’s computing infrastructure, which includes SATA and elder parallel ATA
drives from nine different vendors. A more recent paper covering Solid State Drives
(SSDs) within the HPC environment is not known by the time of writing.

Both Pinheiro et al. and Ma et al. point out that stress tests provided by manufacturers
do not reflect the realistic picture, since the definition of drive failure varies between
different manufacturers [SG07a; PWBO07]. Furthermore, customers tend to express a
“better safe than sorry” mentality, demanding “overly reliable” components. Hard
drives tend to be returned even when the manufacturer finds them to be in a perfectly
fine working condition. In addition, the pressure on the manufacturers regarding
warranty is high. These phenomena further lead to a high margin in endurance
specification. Both studies take the same approach by defining failure as the necessity
of a drive to be replaced and calculate Annualized Replacement Rate (ARR) instead of
Annualized Failure Rates (AFR). The ARR is calculated as the number of disks returned
to the manufacturer, while the AFR based on the number of disks that is likely to fail.
Also the AFR is defined as a fix quotient from the Mean Time Between Failure (MTBF):

—8766

AFR=1- exp(MTBF

) (3.1)

31

3. Failure Prediction: A State-of-the-practice Survey

Both studies come to a conclusion that ARRs are significantly higher than the respective
AFRs. In contrast to the AFR of 0.58% to 0.88% commonly found in manufacturers’
data sheets [SG07a]: [SG07a] reports ARRs of 0.5% up to 13.5% and an average ARR of
3.01% while [PWB07] reports ARRs of 1.7% to 8.6%.

All studies mentioned further investigate different aspects of drive failures, where
no significant difference in replacement rate is observed with different (rotating Hard
Disk Drive (HDD)) technologies. Error rates in most hard drives show an increasing
trend over time with a peak at year 3-4. The replacement rates of SATA and SCSI / FC
disks reject the commonly assumed “bathtub” model for failure rates. Infant mortality
is relatively low and there is no flat bottom: failure rates continuously increase for the
tirst few years of the drive’s life. Another work [Ma+15] finds the same trend for most
of the drive population, with failure rates reaching a peak in their third or fourth year
of operation. Less than 50% of the population, however, show no increasing trend, but
exhibit an almost constant failure rate over the observation period. Furthermore, a
significant autocorrelation for disk failure rates within a period of 30 weeks is observed,
most probably because of parameters affecting the entire population [SG07a].

Pinheiro et al. [PWBO07] propose to model the failure rates as a function of utilization
and temperature. Surprisingly, the authors find that drive failures are correlated with
high utilization only in brand new and very old drives. Moreover, failure rates increase
both with increasing and decreasing temperature, although a higher temperature
appears to be more harmful.

Finally, several investigations [PWB07; Ma+15] suggest that Self-monitoring, Analysis
and Reporting Technology (SMART) parameters of hard drives reveal that the number
of reallocated sectors is highly correlated with disk failure.

GPUs

To our knowledge, the study by Tiwari et al. [Tiw+15b] and a “sister study” by Tiwari
and other co-authors [Tiw+15a] on the Titan supercomputer are the only comprehensive
studies of hardware GPU errors in HPC systems. This area has received surprisingly
little attention, although there is a clear trend toward deploying GPU-based systems.
In addition, Martino et al. [Di +15] show that GPUs produce more faults.

Tiwari et al. researched in their study on GPU failures (which are defined as
GPU errors that led to an application crash) on 18,688 GPUs installed at the Titan
supercomputer at Oak Ridge National Laboratory (ORNL) over 18 months. First, the
authors find that GPU errors occur approximately once every two days, which is rarer
than the manufacturer’s MTBF would suggest. A Weibull distribution with high “infant
mortality” also models their failure data best. Further, proper stress testing may reveal
taulty GPUs prior to production operation Finally, newer GPUs (e.g., Kepler vs. Fermi)

32

3. Failure Prediction: A State-of-the-practice Survey

show a better fault behavior.
The study also yields several policy recommendations [Tiw+15b]:

e Rigorous stress testing before and during the production run (e.g., for cards
which experience a high number of errors) improves the MTBF of the system
significantly. (Notably, six GPUs experienced 25% of all double bit errors, and
ten cards experienced 98% of all single bit errors). Soldering of cards also helped
reduce the high number of errors whenever connection to the host was lost.

e NVIDIA’s Kepler architecture shows several improvements over the previous
Fermi architecture. The increased resiliency is reflected in with a comparable rate
of double bit errors despite the smaller transistor size, a lower vulnerability to
radiation-induced bit corruption, and a better dispersal of workloads.

Although nothing has been published yet, the failure rate and distribution among
GPUs have been under study by some researchers in the context of bitcoin mining.

Software and Application

Software and application failures in HPC were examined by Yuan et al. [Yua+12] and
recently by El-Sayed et al. [EZS17], with the first study gathering data from eight sites
and the latter covering three sites. [EZS17] explores failure prediction as well. Both
studies agree that users are the main reason for job failures. El-Sayed concludes that
many users are “optimistic beyond hope, wasting significant cluster resources” when
it comes to re-executing failed tasks, consuming significantly more CPU time than
successful jobs. A limitation on job retries may help to solve this problem. Moreover,
they propose a speculative execution for tasks in the form of redundant scheduling. This
is normally because a user only terminates hanging jobs only after they consume more
time than usual. The configuration of jobs submitted within an Hadoop framework is
also analyzed by El-Sayed et al. [EZS17]. Their result shows that most of the failed jobs
deviate from the default configuration. Schroeder et al. also suggest the implementation
of limits on the retries, as well as additional job monitoring.

In a most recent study, Alvaro et al. [Fra+19] point out a potential way to filter
out job failures caused by application failure by using the combination of the Simple
Linux Utility for Resource Management Workload Manager (SLURM) log and cluster
monitoring data.

3.3. Survey of Failure Prediction Methods

A survey by Salfner et al. from 2010 [SLM10], which also provides a taxonomy of
failure prediction, is also related to this work. However, it has two shortcomings:

33

3. Failure Prediction: A State-of-the-practice Survey

1. Certain prediction methods cannot be classified to a specific branch of the taxon-
omy;

2. The type of failure, as well as the affected components, are not considered.
Consequently, no recommendation can be made for a certain system.

The results presented in this chapter are also included in our recent paper [JYS19].

To eliminate these shortcomings, Table 3.4 shows a classification of failure prediction
methods in HPC by using a matrix representation of failure types vs. prediction
methods. The horizontal dimension of the proposed classification categorizes failures,
thereby showing what is failing. We took the failure modes from Chapter 3.2 with these
changes [JYS19]:

e SW/S stands for Software or System Failure.

e Node stands for hardware failure. In both cases, a root cause was unspecified by
the corresponding predictor (non-pinpointable).

e On the pinpointable side, we have subdivided surveyed work into Disk, Memory
and Network failure prediction. Since we only found very limited work on failure
prediction for GPUs/accelerators, we have omitted this column for space reasons
(see discussion in Section 3.2.2).

e The category "Log" indicates methods that predict upcoming events in log files,
regardless of whether this entry actually correlates with an actual failure. This
is especially the case for many of the prediction methods based on IBM Blue
Gene log files. There are several studies which do not predict failures, but the
occurrence of a log message with severity FATAL or FAILURE.

e Other studies may predict any fault in a given system or several faults at once,
these are illustrated by the underlying blue fields within in multiple columns.

On the vertical axis, we group prediction methods in different categories each
representing one major concept of prediction. The structure of their vertical direction is
denoted as the follows:

e "Correlation, Probability" represents methods that are based on correlation of
probabilities.

e "Rule" represents methods that are based on rules.

e "Math./Analytical" shows purely mathematical modeling methods that do not
use a statistical approach.

34

3. Failure Prediction: A State-of-the-practice Survey

Table 3.4.: A Classification of Literature on Failure Prediction in High Performance

Computing [JYS19]

Class SW/S ‘ Node |Disk ‘Mem.‘Net. L
. og
Root cause unspecified pinpointable
[Lia+06] | /82
| [Bra+09] | -]
z | [6ekizl | e3/43 | | | |]
5 | [Cos+14] | R
- o sys
% | [Fus1214Be 69 / 58
2] 88 / 46
2 |[Gai+12] P*| 91.2 /458
S | 83 /75 B
[Fu+14]2P 77 / 69
81 /85
[RBP12] -/-
Rule [[Wat+12><] | | | Jso/90
[womiaPs| [AL
C Ma+15P | | /-]
Math., | [Zhe+10]¢ 40 / 80
Analyticali 7[:I'P7107+71(7J] 7777777777777 - /-
[Rin+17] - /-
o | [Gan+16] | [/x0T]
$ [Naciyy | w/a |||
ki | /o1 | | |]
~ -+ _ 41 721 T [I PR (U
g | [SKT15] |94.2/859 R
i [EZS17]BP 79.5/50
g 95 / 94
AT r I Y PR e R A
[GZF11] -/-
| [sB6C | 27870 | | | |

35

3. Failure Prediction: A State-of-the-practice Survey

(Table continued)

Class SW/S‘ Node Disk‘Mem.‘Net.
: Log
Root cause unspecified pinpoint-able
Regression| [Liu+11b] -/-
. Laro? m 55+ / 807
S [pwrio] | lesasos ||
= |[Zhu+13)0C g2) T IO
& | PPella] Jx/xe| e/ ||
“ [[Thot10]? /-
Bayesion | [WR1S] | | 93/9L | | |
Network, [Yu+11]B D 82.3/85.4
Markov 64.8/65.2
e [7 N
[=//=
o B CTZr N I B I B O
22 | w8
80/-
Meta- | [Gu+08]° | | ||| 90*/70%
Learning | [Lan+10] -/-

4. Results for different data sets.
B. Results for different training parameters.
C:. Results vary greatly with different parameters.
D: Paper lists several methods or setups.
*: Many results provided, see reference.
~: No numerical result is given.

36

3. Failure Prediction: A State-of-the-practice Survey

e "Meta" stands for approaches based on Meta Learning.

e As a large amount of prediction methods are based on decision tree and random
forest, these methods are selected and categorized specifically.

The blue cells indicate whether a specific method is used to predict failures within
a category. Multiple blue cells within one row indicate that this method can predict
failures related to multiple error/root causes. Respective values for precision and
recalls (precision/recall) are shown in the table. "-" denotes that no value is given in
the reference. "*" means that many values are given for different setups. Many of these
references utilize more than one method or dataset, which is why a given respective
value is futile in many cases. In addition, different training parameters also affect the
precision/recall values. These references are marked in table 3.4 with “B” and “C” .
Furthermore, values are only listed if the respective paper explicitly list precision and
recall values according to the definition in Section 3.1 to ensure comparability [JYS19].

A detailed discussion on references based on the classification of prediction methods
is presented in the remainder of this chapter. However, this classification is not perfect,
as many of these classes are dependent on each other in the sense of mathematics.

3.3.1. Probability and Correlation

Probability theory is a mathematical branch which deals with probability. Probability is the
quality or state of being probable, that is, the likelihood that a specific event will occur [SW89].
The most common understanding of probability is the quantification using a number between
0 and 1, for which the larger the number, the more probable an event will occur. Probability
theory provides concepts and axioms in terms of mathematics. Probability theory also provides
the foundation of modern machine learning approaches [JYS19].

Correlation is any statistical relationship between different random variables. The random
variable itself is a function that maps a specific outcome of an event to a probability. In practical
use, correlation commonly refers to the linear relation between variables. A typical way to
explore correlation between the probability distribution of these random variables [JYS19].

The calculation of probability and correlation scores is an easy way to gain insight into
potential failures. It is an integral part of many failure analysis methods, such as Fault Tree
Analysis (FTA) and Markov Analysis [J[YS19].

Many of the papers mentioned above estimate the probabilities of failures. Pinheiro
et al. [PWB07] find that the probability of disk failure with 60 days after observing a
certain SMART value increases 39 times after one scan error, 14 times after one realloca-
tion count, and 21 times after one offline reallocation count. Schroeder et al. [SPW09]

37

3. Failure Prediction: A State-of-the-practice Survey

point out that a correctable memory error increases the probability of an uncorrectable
error occurring in the same month by 27-400 times and by 9-47 times in the following
month.

Liang et al. [Lia+06] propose simple prediction methods based on spatial and tempo-
ral skewness in the distribution of failures in a BlueGene/L system. For example, 50%
of network failures occur within 30 minutes of the previous failure; 6% of midplanes
encounter 61% of network failures. The strategies trigger increased monitoring (for a
certain time / for a specific midplane) after a failure has been encountered. Another
proposed strategy based on the correlation between fatal and non-fatal events triggers
monitoring when two non-fatal events occur in a job.

Gainaru et al. [GCK12] introduce a signal-based approach for failure prediction.
Considering events as signals, they extract periodic, silent, and noisy signals from
system logs, which usually correspond to daemons or monitoring information; bursts
of error messages; and warning messages, which are generated both in case of failure
and normal behavior. Using data from LANL, they predict failures for the six categories
in Table 3.2 (left) and achieve a precision / recall of 93% / 43% at a lead time of 32
seconds on average. In follow-on work [Gai+12], they use correlation analysis building
on their previous work, where the authors merge their approach with data mining
algorithms. The prediction model uses the work of Gainaru et al. (2011) [GCK12]
as a first step to generate signals. Then, after removing erroneous data, they use an
algorithm to mine gradual association rules [DLT09] in order to compute temporal
correlations between events as well as simple correlation analysis for spatial correlation.
This hybrid approach of signal analysis and data mining yields a precision of 91.2%
and a recall of 45.8%. Further discussion of this approach is given by the authors in
[Gai+13] and in [Gai+14], and the approach is extended to consider locality of failure.

Using OVIS®, an HPC monitoring tool developed at Sandia National Laboratory
(SNL), Brandt et al. [Bra+09] show that statistical abnormalities in system behavior
can indicate imminent resource failure. The “goal is to discover anomalous behavior
in some metric(s) that precede failure of a resource far enough in advance and with
enough reliability that knowledge of the behavior could allow the system and/or ap-
plication to take proactive action” [Bra+09]. Abnormalities are detected by comparing
data to a previously established model of the system; the comparison is done using
descriptive statistics, multivariate correlative statistics or a probabilistic model. Testing
their approach for Out-of-memory errors on the Glory Cluster at SNL, they found that

Shttps:/ / github.com/ovis-hpc/ovis - accessed March 2019

38

3. Failure Prediction: A State-of-the-practice Survey

one problem could have been detected two hours before the first manifestation in the
log file. As a result, they could predict an Out-Of-Memory (OOM) error. The authors
examined the case of Out-of-Memory errors; collecting data over 16 days, they found
that when monitoring active memory, one problem could have been predicted two
hours before an entry in the corresponding log file appeared, which could be used
for further analysis. Multivariate Mahalanobis distance was then used to determine
whether any values had deviated from their ideal values, i.e., values a healthy system
would show. Such ideal values had been gathered in a previous monitoring phase.

Costa et al. [Cos+14] use spatial and temporal correlation of memory errors to iden-
tify unhealthy memory chips on a Blue Gene/P system at Argonne National Laboratory
(ANL). If either repetition coincides with an error rate greater than 1 error/second, they
find that in 100% of the cases, chipkill — a technology used to protect memory [Del97]
by reconstructing data from a redundant storage — will be automatically activated.
This strategy covers more than 80% of chipkill occurrences and gives better results
than using spatial correlation alone. Using data from the Intrepid (Blue Gene) system
at ANL, they first examine spatial correlation. Not surprisingly, if multiple repeated
errors occur at the same DRAM address, chipkill is more likely to be activated. Thus,
they attempt to provide predictions based on repeated error occurrence at the same
DRAM address. However, prediction based solely on spatial characteristics only yields
a prediction coverage of 40%. Taking temporal correlation (i.e., errors per second) into
account, however, they were able to predict 100% of chipkill occurrences at a prediction
coverage of more than 80%. In addition, the authors deployed a migration-based page
protection by reconfiguring the interrupt controller and creating a custom interrupt
handler. The authors conclude with an average of 76% of chipkill being avoided by
using their approach.

A more advanced method based on correlation and modeled in graphs is provided by
Fu et al. [Fu+12]. They deploy an a-priori algorithm to gather sequences of distinct and
correlated events based on data from three sites. Furthermore, a modified mine associa-
tion rule with a standard Apriori algorithm, which only considers events happening at
the same node or application or have the same type (hardware, system, application,
file system, network), is used to create association rules. These rules are modeled as a
slightly modified Apriori algorithm. The rules are modeled as directed, acyclic event
correlation graphs, where each vertex represents an event or the co-occurrence of events
(e.g. AN B for events A, B) and each edge A — B is annotated with the correlation
of A and B. They then calculate probabilities along the edges in the graph and, if a
specified threshold is reached, they issue a failure prediction. In a later refinement of
their approach [Fu+14], where casual dependency graphs are introduced, they achieve

39

3. Failure Prediction: A State-of-the-practice Survey

slightly better prediction results.

3.3.2. Rule-based Methods

Rule-based prediction is intended to establish a set of rules, i.e., IF-THEN-ELSE-statements,
which trigger a failure warning if certain conditions are met. Such rules are (usually) auto-
matically generated from a training data set and called Rule-based Machine Learning (RBML).
Ideally, the set of rules should be as small as possible; a larger set of rules usually leads to the
overfitting of the problem, which means that the algorithm is “remembering the training set”
[KZP06] rather than using learned relationships [JYS19].

Rajachandrasekar et al. [RBP12] use a rule-based approach to predict node failures
with hardware root causes. They offer a lightweight implementation of their method
with only around 1.5% CPU utilization overhead on a 160-node Linux cluster. They
collect sensor data by periodically querying Intelligent Platform Management Interface
(IPMI) and categorizing sensor data by assigning severity levels. Communication is
done using a publish/subscribe system on top of a self-healing tree topology. The
Fault-Tolerant Backplane (FTB) - “a common infrastructure for the Operating System,
Middleware, Libraries and Applications to exchange information related to hardware
and software failures in real time.” [RBP12] - is then used to publish a warning and
notifies subscribed components if a change of sensor state is detected. An example of a
rule is, that it triggers a warning if three messages in a row with severity WARNING
are collected from the same sensor. Additional rules correct for false flags: CRITICAL
events where a value of 0 is read are discarded, because the most probable cause
is a sensor failure. Furthermore, a modified MVAPICH2 version is implemented to
demonstrate the effectiveness of their approach. This version triggers proactive process
migration upon a predicted failure. However, the work does not include an evaluation
of precision and recall metrics, as these rules are mostly human-selected.

Watanabe et al. [Wat+12] propose an online approach to failure prediction based on
message pattern recognition. In this work, “Failure” refers to any event classified as
such in the system under inspection on a commercial cloud platform across multiple
nodes. First, they group messages by identifying overlapping contents, which they
assume to be clear text for the targeted application. Then, they identify message pat-
terns, where a pattern is an unordered set of messages within the same time window.
The temporal order of incoming messages is ignored as there is no inter-nodal time
synchronization. Using classic Bayes’” theorem, they then calculate the probability of

40

3. Failure Prediction: A State-of-the-practice Survey

a failure occurring when observing a certain pattern. Each incoming message is com-
pared against predefined patterns and the system issues a warning if the probability for
this pattern exceeds a specified threshold. Almost 10 million messages were gathered
over 90 days; 112 failures were observed. Varying the failure prediction threshold from
0.1 to 0.99 yields a precision of 5% to 37% and a recall of 70% to 67% (time window of 5
min.), outperforming a naive Bayes classifier, which achieves a precision / recall of 4%
/ 30%. The authors further refine their approach in a follow-on paper [WOM14], where
they consider the problem of rare events by calculating the conditional probability of
P(=failure|~messagepattern) to include information on whether a message pattern is
“typical” (which is a second threshold they introduced to specify this). Unfortunately,
no overall precision / recall is given; authors only state some values for different failure
types. Precision ranges from approx. 10% to 60%; recall lies between 0% and over 90%.

Ma et al. [Ma+15] introduce an algorithm RaidShield to predict hard disk failure. The
algorithm has two components: PLATE, which detects deteriorating disk health and
allows proactive measurements, and ARMOR, which prevents multiple-disk failures
in RAID arrays. The authors find that some SMART attributes are highly correlated
with disk failure, especially the number of reallocated sectors. Replacing disks only
based on the reallocated sector count yields a false positive rate between 0.27% and
4.5%. Considering the median time for disk replacement in a typical data center and
the cost incurred by unnecessarily replaced drives, they conclude that a reallocated
sector count of 200 is an optimal threshold for disk replacement. However, PLATE does
not take into account that disks may fail before the threshold of specific SMART values
is reached or multiple disks may fail at the same time. For ARMOR, the second part of
RaidShield, this approach is extended to multiple disks. This is motivated by the fact
that many common RAID levels can handle at most two disks simultaneously failing;
if a third disk fails while RAID data is being restored, data loss is inevitable. Their
approach is then extended to first calculate the probability of failure for a healthy disk
group — that is the disk groups with zero individual failures and bad groups — then
they exam the disk groups with at least one individual failure. This technique captures
80% of disk group failures.

3.3.3. Mathematical/Analytical Methods

Besides methods based on statistics, other mathematical concepts are also being used to predict
failures. In this work, two of them are presented. One example is the first method presented,
that is based on a genetic algorithm, which is a biology-inspired modeling method. Genetic
Algorithm represents the evolution of a population under the “survival of the fittest” rule,
where the fitness function is defined by the user. In this section, two examples using non-

41

3. Failure Prediction: A State-of-the-practice Survey

statistical math methods are presented [JYS19].

Zheng et al. (2010) [Zhe+10] apply a genetic algorithm approach on RAS (Reliability,
Availability, Serviceability) metrics and job termination logs from a 40,960 node IBM
Blue Gene/P system at ANL with 163,840 cores. First, they design a set of rules to
predict, from a sequence of non-fatal events, that a failure will happen after a specific
lead time at a specific location. Second, they collect an initial population, both by
selecting promising rules by hand to speed up convergence. As a fitness function,
fitness = (wy - recall + wy - precision) is defined. Weights w1, w, reflect their pref-
erences regarding precision and recall. Evolution then consists of three operations:
Selection of promising individuals; crossover of these individuals to generate children;
and mutation to increase genetic diversity. From 520 fatal events collected, they use 430
for training and the remaining 190 for evaluation. They redefine positive and negative
rates to consider whether the correct location (i.e., rack) was predicted and whether
enough lead time was given. They report precision values of 0.4 to 0.3 and recall values
of 0.8 to 0.55, both decreasing with lead time (which varies between 0 and 600 seconds).
Precision and recall decrease with lead time, which varies between 0 and 600 seconds.
Precision for the same algorithm trained with the standard definitions of precision and
recall achieves a significantly lower precision and approximately the same recall (worse
for shorter lead times). Furthermore, they estimate that their algorithm can decrease
service unit loss (i.e., computing time lost because of checkpointing, etc.) by as much
as 52.4%.

Thompson et al. [Tho+10] use the multivariate state estimation technique (MSET) to
identify failure events on a Blue Gene/P system at ORNL. With MSET, a matrix of input
data is used to define a transformation ® mapping input data onto a so-called similarity
space. A new datapoint that is similar to existing data is left relatively unchanged by ®;
however, if the new datapoint differs greatly, so does its mapping. The residual, which
is the difference between a data point and its image, can be used to predict a failure if
it exceeds a predefined value. Using this method, the authors were able to correctly
predict four out of six failures and also predict a seventh failure, which was missed by
standard monitoring tools.

3.3.4. Decision Trees/Forests

Decision trees use a tree data structure to store classification rules. A tree is a graph data
structure without any circles. A non-empty tree contains one designated node that has no
incoming vertices - the root node. Based on the analysis of a set of instances, interior nodes are
generated, which contain decision rules, and exterior nodes (leaves), which contain the predicted
outcome. Starting with the root node, each node directs to one of its subtrees, depending on the

42

3. Failure Prediction: A State-of-the-practice Survey

outcome of the rule / test that was mapped to the specific node. Once a leaf is reached, the result
mapped to that leaf is returned as the result [Bab+00]. Random Forests were introduced in the
1990s [Ho095] to avoid overfitting complex decision trees. With this, an ensemble of decision
trees is generated using a randomized algorithm; the final prediction is then made using a
combination of results from individual trees [[YS19].

Rincoén et al. [Rin+17] use a decision tree to predict hard disk failures in a dataset
from a cloud storage company. The authors use 2015 data (approx. 62k drives, 17m
records) to train their model and 2016 data (approx. 81k drives, 24m records) to evaluate
their model. The disk records contained 88 SMART parameters, out of which six were
chosen after statistical analysis to build a decision tree:

1. Reallocated Sectors Count: Number of bad sectors that have been remapped,

2. Reported Uncorrectable Errors: Number of errors which ECC was not able to
correct,

3. Command Timeout: Number of failed operations due to disk timeout,

4. Reallocation Event Count: Number of attempts to transfer data from a reallocated
to a spare sector,

5. Current Pending Sector Count: Number of sectors designated to be remapped
and

6. Uncorrectable Sector Count: Number of uncorrectable errors when accessing a
sector

The authors estimate a regression model and train a neural network. Holes in the
training set — that is the missing SMART values — make a regression model or a neural
network unsuitable to being able to predict arbitrary disk failures. Therefore, the
authors only analyze decision trees further. They construct a binary decision tree with
seven levels (root node + six SMART attributes) for prediction. Their prediction results
(cf. Table 3.4 correspond to the findings of Pinheiro et al. [PWB07], who identify four
promising SMART attributes for failure prediction: Scan Errors, Reallocation Count,
Offline Reallocations, and Probational Counts. However, over 56% of all failures do not
show a count in these attributes. Even with additional several other SMART attributes
such as Power Cycles, Seek Errors and CRC Errors, 36% of the failed drive population
is not covered. The authors conclude that SMART signals alone are insufficient for
failure prediction of individual drives.

43

3. Failure Prediction: A State-of-the-practice Survey

Motivated by practical reasons such as cost reduction and improving customer ser-
vice, Ganguly et al. [Gan+16] from Microsoft Corporation build a two-stage prediction
model (decision tree followed by logistic regression) to predict disk failure. Notably,
they use performance measures (e.g., Avg. Disk sec/Read, Avg. Disk sec/Transfer, and
Avg. Disk sec/Write) as an additional data source besides SMART values. In addition,
features, such as derivatives, are used apart from the raw values of SMART attributes.
To avoid overfitting, the decision tree (1st stage) is comparably shallow with a depth of
four levels (including the root node). In the second stage, the result from the fourth
level of the tree is used as an input vector for a logistic regression model. The authors
do not provide no numerical measurement of accuracy. However, they do state that the
Receiver Operating Characteristic Curve (ROCC) of the two stage model is “distinctly
better” than an Support Vector Machine (SVM) model for the same dataset, which has
a precision of 75% and a recall of 62%.

Nakka et al. [NAC11] build a decision tree to predict node failure up to one hour
in advance. They use the same dataset from LANL previously analyzed by Schroeder
et al. [SG10], and also include usage logs in their dataset. After cleaning, curating,
and merging logs, the authors use a variety of machine learning techniques on the
data, among them REPTree, Random Trees and Random Forests. The random forest
approach yields the best result when including both the root cause of the failure as well
as usage and failure information. They achieve a precision of 73.9% and recall of 81.3%.

Klinkenberg et al. [Kli+17] from the RWTH Aachen University present a node failure
prediction approach using time windows in a recent study. They gather a timeline
of unlock and lock events from compute nodes of a cluster. Lock events refer to an
event where a node stops accepting batch jobs; after an unlock event, batch jobs can
be run on that specific node again. The system consisted of two different node types
using either Broadwell or Westmere processors. Dividing this trace timeline into equally
sized frames yields many non-critical frames (normal operation) and a few critical
frames (immediately prior to failure). For each trace they extract a set of features
which represents descriptive statistics such as median, variance, kurtosis, and root
mean square. They apply a variety of statistical methods, including logistic regression,
Random Forests, SVMs, and multi-layer perceptrons, of which Random Forests yield
the best results, but results differ for the two types: On Broadwell nodes, increasing
time frame duration has no significant effect on precision, while on Westmere nodes
precision decreases. Mean precision ranges from 90.8% to 96.6%; mean recall is between
91.0% and 95.6%.

The authors also elaborate on the infrastructure used: A five-node Hadoop cluster
was used with HBase and OpenTSDB for data storage, Spark for computation and IMPI-

44

3. Failure Prediction: A State-of-the-practice Survey

tool and sar for data gathering.

Soualhia et al. [SKT15] use one month of publicly available job failure data from
Google’s server fleet to predict job failure. For each job, they extract attributes such
as job ID, waiting time, number of finished, killed, failed, etc. tasks within the job,
and total number of tasks of this job to test several prediction models. For each job,
they extract attributes, such as job ID and waiting time, to test several prediction
models. With 94.2% and 85.9%, respectively, Random Forests deliver the best precision
and recall, outperforming other prediction algorithms including conventional trees,
conditional trees, neural networks and generalized linear models. Prediction results
for task failures are even better. The authors further put their prediction model into
practice with GloudSim, a tool developed by Google to simulate the typical workload on
Google’s computing infrastructure. Using a scheduler equipped with their prediction
approach, the authors were able to reduce job failure rates and optimize execution
time by proactively rescheduling jobs predicted to fail. El-Sayed et al. [EZS17] present
similar results using the same dataset. Assuming that the Random Forest approach can
be used to reschedule failing tasks to a node with more spare resources ahead of task
failure, they implement their prediction method into GloudSim. They find that all in all,
the number of failures decreased whereas the number of successes increased both on
job and task level. Additionally, job execution times were optimized.

El-Sayed et al. [EZS17] base their analysis of job failures in part on the same dataset
as Soualhia et al. - it comes as no surprise that they reach similar conclusions. Using a
Random Forest model, they achieve a precision of 80% and recall of 50% by only taking
into account the information known at the start time of the job and the resource usage
in the first five minutes of job execution. Introducing an additional flag into the model
which takes the value TRUE as soon as a single task failure of one of the tasks of the job
is detected increases precision and recall to 95% and 94%, respectively. Slightly lower
values are achieved when predicting the failure of individual task attempts.

Chalermarrewong et al. [CAS12] use a two-stage model to predict hardware failures
including overheating, resource exhausion, bad sector access or power supply failure.
First, they calculate prediction values for several of the input parameters using an
AutoRegressive Moving Average (ARMA) model. Additionally, the results of the model
are regularly compared to the actual data. If a statistical t-test indicates significant
deviation of the predicted values from the actual data, they initiate a re-training of the
model. The ARMA predictions are then used to conduct a FTA [RS15]. The authors
define threshold values for the outputs of the ARMA model and according to these
thresholds they map the leaves of the tree to 0 or 1. These boolean values are propagated
toward the root node, where, finally, a binary prediction is calculated. For evaluation,

45

3. Failure Prediction: A State-of-the-practice Survey

the authors use the simulator system Simics® to simulate eight virtual machines, where
their model yields a precision of 100% and a recall of 93%. No evaluation in a real-world
physical system is done.

Guan et al. [GZF11] present an integrated approach that uses a collection of Bayesian
models to detect anomalies which are then classified as failure by a system adminis-
trator. A decision tree is further used for prediction. This decision tree is generated
algorithmically by defining a gain function G(x;,n) = H(n) — H(x;,n), where H(n)
is the entropy of node n; and H(x;, 1) is the sum of entropies of all child nodes of
node n when splitting at attribute x;. Since the algorithm may create an overfitted or
unnecessary complex tree, a part of the dataset unused for training is then used for
pruning. The work uses a cloud consisting of eleven Linux clusters at the University
of North Texas as testing ground where performance data is gathered using sysstat”.
No quantitative statement for precision and recall are given.

Sirbu and Babaoglu [SB16] use one month of Google job failure data to predict node
failures within 24 hours using an ensemble of Random Forests. Data points were
classified as SAFE (no failure) and FAIL (failure). Since the SAFE class was much larger,
random subsampling was used for these points. Attempts at reducing the feature set
via principal component analysis or correlation analysis were not successful. Sirbu and
Babaoglu found that using a simple Random Forest approach did not yield promising
results, which is why they opted for an ensemble approach combining individual
predictions using precision-weighted voting. With this approach, precision ranges
between 50.2% and 72.8% and recall between 27.2% and 88.6%, depending on the size
of the SAFE dataset.

3.3.5. Regression

Linear regression models the influence of one explanatory variable or a linear combination
of several variables x1,...,x, on a dependent variable y. Several variations of this approach
exist: the standard linear regression model assumes that y is continuous, whereas the logistic
regression model assumes that y is categorical, making this model especially useful for (binary)
failure prediction. The autoregressive model assumes that the independent variable y depends
linearly on its own preceding values. Together with moving average models, which assume that
the output value depends linearly on the current and past values of a stochastic term, these
two models form the so-called AutoRegressive Moving Average (ARMA) models, which are
frequently used in time series analysis [[YS19].

®https://www.windriver.com/products/simics/, accessed in December 2018
"https://github.com/sysstat/sysstat, accessed in December 2018

46

https://www.windriver.com/products/simics/
https://github.com/sysstat/sysstat

3. Failure Prediction: A State-of-the-practice Survey

Expanding on their prior work [Liu+11a], which uses a simple moving average, Liu et
al. [Liu+11b] use an autoregressive model to predict failures in long-running computing.
They further use a bootstrapping approach [ET93] to avoid problems coming from small
sample sizes and a Bayesian framework to account for the fact that in long-running
systems there is a learning effect, which manifests itself in increasing reliability and
failure rates following an exponential function (with negative power). Using data from
LANL, they find an accuracy of 80% for their method.

3.3.6. Classification

Statistical classification - or commonly known as perceptions - aims to classify a new observa-
tion into a specific category when a number of observations whose category is known already
exists. Classification is similar to clustering, where determining the categories is part of the
problem. Support Vector Machine (SVM) are binary linear classifiers that aim at maximizing
the distance between observations and (linear) classification line. The idea behind SVM is to
project the dataset into a higher dimensional space where a linear hyperplane separating the
classes can be found [BGV92] [J[YS19].

The k-nearest neighbor method is another classification technique commonly used for higher-
dimensional data. Each datapoint is classified by examining the k nearest neighbors as mea-
sured by a given distance metric in the training data set. k-means clustering is a technique
where each datapoint is assigned to the cluster whose mean is nearest to the datapoint. In this
approach, no classification is given [JYS19].

Zhang et al. [Lia+07] use a statistical classification to predict failures in a Blue Gene/L
system, where “failures” are any event declared as FAILURE in the system logs. 142
days of logging data are divided into equal-sized time windows. Using data from the
current window and a specified number of previous ones, a failure is predicted for
the next time window. A time window of several hours gives enough head time to
perform prophylactic measures. After identifying features (key features that include
the number of events of any severity in the current time window / observation period;
time distribution of events; and time elapsed since last fatal event) and normalizing
numerical values, the authors apply three classification techniques: (1) RIPPER, a
rule-based classification algorithm [Coh95], (2) a support vector machine approach
with radial basis function, which comes with a significant drawback in the form of
high training cost (ten hours in this specific case), and (3) a bi-modal nearest neighbor
predictor, which uses two distance values for classification. With a twelve hour predic-
tion window, the bi-modal nearest neighbor, RIPPER, and the support vector machine
perform reasonably well with a precision / recall of approx. 55% / 80% (approx. 70%

47

3. Failure Prediction: A State-of-the-practice Survey

for RIPPER). As the time windows decrease in size, however, performance becomes
significantly worse, with SVM facing the fastest decline. The bi-modal nearest neighbor
predictor works well, achieving better results at six hours, four hours, and one hour
than the other classifiers.

Nonnegative matrix factorization, a generalization of k-means clustering [DHS05],
is used by Thompson et al. [Tho+10] to predict failure (as defined via log events) at
Oak Ridge National Laboratory’s Blue Gene/P system. First, data from both logfiles and
hardware is gathered in a data matrix D, where each column represents a different
point in time and each row represents measurements from a different sensor. Since all
entries of D are positive, nonnegative matrix factorization yields two matrices W and
H with D ~ W - H. W then gives the mean of the clusters and H indicates whether a
datapoint belongs to a cluster. The classification into fault and non-fault data is then
refined using a Generalized Linear Discriminant Analysis. Using a sliding window
approach, which raises an alarm if two out of the last three signals indicate fault, this
method correctly predicted five out of six failures.

Zhu et al. [Zhu+13] use both an SVM approach and a neural network approach (cf.
Section 3.3.8) to build prediction models for disk failures. Using data from a 20,000
disk population at a Baidu® datacenter in China, they both consider SMART values and
changes in SMART values when building their models. An SVM with a radial basis
function is able to achieve false alarm rates (FAR) lower than 0.03% with a recall of
80%; higher recall values come at the expense of a greater false alarm rate or a longer
training window. The average lead time for a prediction with a FAR / recall of 68.5% /
0.03% is 334 hours.

Apart from predicting node failure, Pelaez et al. [Pel+14] focus on low overhead and
online capabilities of their prediction method, which is a decentralized online cluster-
ing algorithm running on distributed nodes. The n-dimensional observation space is
divided into several regions, where each region shows a higher-than-average density of
observation points. Then, each region is assigned to one node that determines clusters
and outliers and, if necessary, communicates with other nodes covering adjacent regions.
To lower the false positive rate of the algorithm, the authors apply two additional tech-
niques: Temporal correlation, where several time intervals are used to detect outliers;
and multiple clustering which works on several different feature sets. A precision of
52% and a recall of 94% are achieved for predicting node failure on 32 processing nodes
of the Stampede supercomputer. The runtime of the algorithm grows sublinear in the

84ww.baidu.com

48

www.baidu.com

3. Failure Prediction: A State-of-the-practice Survey

number of events and higher than linearly with increasing numbers of nodes. Still,
a test on several thousand notes yields acceptable results of approx. 2% CPU utilization.

Xu et al. [Xu+10] chose a k-nearest neighbor method to predict failures in a distributed
system with 200 nodes. Notably, their approach involves mapping higher-dimensional
input data to a lower-dimensional space and using Supervised Local Linear Embedding
(SLLE) to extract failure features. They find that SLLE outperforms a simple k-NN
predictor and achieves a precision / recall of 66.4% / 59.3% when predicting failure in
a file-transfer application.

3.3.7. Bayesian Networks and Markov Models

A Bayesian network is “a graphical model for representing conditional independences between
a set of random variables.” [Gha02]. A directed arc from a node A to a node B means that B is
dependent or conditional on A; the absence of an arc means independence. The Hidden Markov
Models (HMM) [Gha02], which have been prominently used in speech, handwriting and image
recognition, introduce a further assumption to regular Markov models: They assume that the
process generating the model is unobservable. For each state S; of this process, however, the
Markov property still holds: The current state depends only on a limited number of previous
states [JYS19].

Yu et al. [Yu+11] differentiate between period-based and event-driven prediction. For
both, they apply a Bayesian network to predict events of severity FATAL using RAS
logs from the Intrepid (Blue Gene/P) system at ANL. They find that the optimal duration
of the observation window differs significantly for both approaches (10 min vs. 48
hrs), with the event-driven approach being more suitable for short-term predictions
and the period-based approach being more suitable for long-term predictions. The
period-based approach is less strongly influenced by lead time than the event-driven
approach.

Agrawal et al. [AWR15] use a Hidden Markov Model to predict failure at the software
level of a Hadoop cluster. In a preprocessing step, they use clustering to categorize
errors from log files into six categories: Network, Memory Overflow, Security, Unknown,
Java I/0O, and NameNodes. Then, they apply the Viterbi algorithm [For73] to find the
optimal (hidden) state sequence of the model. Using 650h hours of training data from
an 11-node Hadoop Cluster, the authors find a precision of 93% and a recall of 91%
for their prediction model. Regarding scalability, they find that with their approach,
execution time increases in data size and decreases with number of nodes, although

49

3. Failure Prediction: A State-of-the-practice Survey

not linearly.

3.3.8. Neural Networks

Most machine learning and statistics textbooks (e.g., [Pat98; FHT01; RN03]) discuss Neural
Networks (NNs), which have become a trendy topic in recent years. Although neural networks
can be still classed into the group of perception (that is classifiers), I decided to pull this method
out to emphasize its prominence. Similar to Support Vector Machine (SVM), NN is based
on the idea of projecting (data) into higher dimension to find (linear) separation between these
data [[YS19]. Zhang [Zha00] summarizes three important points, which should suffice for this
section: (1) Neural networks “are data driven self-adaptive methods”. They are (2) “universal
functional approximators in that [they] can approximate any function with arbitrary accuracy”,
and (3) they “are nonlinear models”, which makes them especially compelling for practical
applications [JYS19].

Using the above mentioned Google dataset, Chen et al. [CLP14] use a Recurrent
Neural Network (RNN) to predict job failures from task failures. An advantage of
RNNs compared to other methods is that they consider interdependencies across time.
Task priority and number of resubmissions, resource usage (including only mean CPU,
disk and memory usage, unmapped page cache, and mean disk I/O time) and user
profile, which is available in the Google dataset, are used for prediction. The prediction
achieves an accuracy of 84% and a recall of 86% at the task level. Accuracy at the job
level rises from more than 30% after one quarter of the job execution to more than 40%
at the end of the execution; recall rises from more than 40% to approximately 70%.
The authors estimate that their prediction could save 6% to 10% of resources at the job
level when making predictions at halftime using prediction thresholds that are not too
aggressive.

In comparison with an SVM, Zhu et al. [Zhu+13] test a three-layer neural network
with a sigmoid function as activation function on hard disk failure data from 20,000
drives. While offering a higher recall (94% to 100%), the neural network also comes with
a higher false alarm rate of 0.48% to 2.26%. The authors suggest to using a boosting
method such as AdaBoost to further improve the performance of the neural network.

In a recent study, Islam et al. [IM17] propose a Long Short-Term Memory (LSTM)
network to predict job failures using the Google dataset. Extending recurrent neural
networks with short-term memory, LSTM networks are especially suitable for long-term
temporal dependencies. Both raw resource measures and task attributes are fed into

50

3. Failure Prediction: A State-of-the-practice Survey

the network, which achieves slightly better results for task failure prediction than for
job failure prediction. A precision of 89% and a recall of 85% for task failure prediction
is given. Results for job failure prediction are slightly worse with a precision / recall of
80% / 83%. Both were found to outperform an SVM using the same data. Finally, the
authors find that even when resubmitting tasks, their approach leads to considerable
resource savings (e.g. 10% of CPU time even when resubmitting failed tasks 5 times).
They also state that up to 10% of CPU time and other resources can be saved using
their predictive approach.

In the latest study by Nie et al.. [Nie+17], the authors present an in-depth analysis
of the correlation between temperature, power and soft errors in GPUs and propose
a neural network based prediction method, PRACTISE, for predicting soft errors in
GPUs. According to our knowledge, this is the only reference dealing with GPU failure
prediction. The evaluation on 4 cabinets (384 nodes) on the TITAN supercomputer
shows a precision of 82% and a recall of 95%.

3.3.9. Meta-Learning

Meta-Learning is a method, in which the metadata of a given dataset is used for machine learn-
ing. An intuitive interpretation is that meta learning is the combination of several individual
predictors to improve overall precision accuracy. In modern machine learning terms, the term
deep learning is often used as a synonym [[YS19].

Gu et al. [Gu+08] present one such approach: On 130 weeks of data gathered from
an IBM Blue Gene/L system, they test an algorithm that consists of three steps:

1. Meta-Learning: The meta-learner gathers several “base predictors” that are indi-
vidually calculated from the last k weeks of data (sliding window).

2. Revision: The Reviser uses the phenomenon that failures in high performance
computing usually show temporal correlation to generate an effective rule set
by applying the rules gathered in the first step to data from the k-th week.If a
rule does not perform well according to some measure (e.g., ROC analysis), it is
discarded.

3. Prediction: Finally, the predictor monitors runtime events and predicts failures
for the (k+ 1) — th week.

The authors test a Java implementation with the Weka Data Mining Tool® for prediction

Shttps://www.cs.waikato.ac.nz/ml/weka/

51

https://www.cs.waikato.ac.nz/ml/weka/

3. Failure Prediction: A State-of-the-practice Survey

and an Oracle database for storing knowledge on a Blue Gene/L system. In step (1), they
choose one rule-based classifier and one statistical method. Precision and recall stabilize
at 0.9 and 0.7, respectively, after increasing for the first ten weeks for k € {2,4,6,8,10}.
While a small value of k is initially necessary to build a rule set, the window size can
be increased later on when the prediction accuracy has saturated.

In follow up work [Lan+10], Gu et al. provide a more detailed analysis of the
meta-learning approach mentioned above. Now, they consider that severity levels of
IBM Blue Gene/L logs might not correctly indicate underlying failures and develop a
categorization of fatal events in cooperation with system administrators. A second
data preprocessing step involves temporal and spatial filtering of log data and for the
meta-learning step they use a third base predictor: They calculate a CDF of failure
occurrence and give a warning if the probability of a failure occurring is higher than a
specified threshold. For evaluation, two systems at San Diego Supercomputing Center
(3,072 dual-core compute nodes) and ANL (1,024 dual-core compute nodes) are used.
A dynamically increasing training set yields better prediction results than the static
training but then training has a considerable overhead. Precision and recall range
between 70% - 83% and 56% - 70%, respectively.

Alvaro et al. [Fra+19] introduce a Deep Neural Network (DNN) method using the
combination of different neural networks to predict upcoming failure in the MOGON
cluster at JGU Mainz. Different networks using different length of lead time windows
are trained using a dataset collected over 6 months. These networks are then combined
together using a “majority voter”-like structure. The authors focus on the previously
under-researched problem of false positive prediction, which becomes prominent for
large-scale jobs requiring many nodes. While recall values (ranged between 85% and
73%) decreases with increasing number of networks used, the precision values (ranged
between 96% and 99.5%) increases. With four networks, the false positive rate becomes
neglectable with 0.04%.

3.4. Insights and Discussions on Failure Predictions in High
Performance Computing Systems

By screening more than 70 publications regarding failure prediction systems in HPC
and Cloud environments, a total of over 30 papers with best-performance results were
selected and presented above. These trends and gaps are presented and discussed in
the next chapter.

52

3. Failure Prediction: A State-of-the-practice Survey

3.4.1. Effectiveness of Failure Prediction System

With Table 3.4, it is easy to observe that tree-based methods, such as random forest
algorithms, have shown excellent prediction results in terms of precision and recall.
Classic machine-learning methods such as NN and SVM perform worse than tree-based
methods. The reason for this is the unbalanced distribution of features and classes used
for training, as the failure events are rare [SB16]. The emergence of tree-based methods
is also observable because the most dominate methods in the 2010 survey of Salfner
et al. [SLM10] use neural networks. Analytical and rule based methods also provide
good results with easy setup bound to specific systems. However, due to the selection
of rules, these methods are hard to generalize. Meta learning methods are gaining
increasing prominence with the recent boom of research in the field of deep learning. By
combining many sources and features, these methods are able to deliver good results.
Furthermore, these methods [Gu+08; Lan+10; Gai+14; AWR15; GCK12; Pel+14] show
low runtime overhead, making them useful as online learning methods [JYS19].

With Table 3.4, it is easy to see that most of the prediction methods do not pinpoint
the specific fault or error (that is, the root cause) of the failure. This is most likely
due to multiple reasons: First, most data collected from datacenters in its raw format
do not provide information on the root cause. They just contain operation data
regarding system state and failure information. Exploring the root cause is a manual
and expensive step. Second, the backtrace of the root cause usually does not add much
value because the aim of the failure prediction itself is to prevent user applications
from failing. Nevertheless, we think it is important to pinpoint the root causes for
the operators of these systems, in order to understand the weakest part within the
“Liebig’s Barrel”. While disk and memory failures are easy to predict nowadays due to
advanced failure avoidance and monitoring, RAID, chipkill and registered ECC, emerging
components including GPU is under-researched. With even newer technology such as
Non-volatile Memory (NVM) being deployed in data centers, the understanding and
prediction of component failures may become challenging yet important for modern
data centers [JYS19].

A further note is, that similar algorithms do not necessarily produce the same
prediction results; the training parameters (known as parameter tuning in modern
machine-learning textbooks) are significant for the prediction results. In addition, as
Klinkenberg et al. [Kli+17] point out, the feature extraction and selection steps are also
vital for the performance of a prediction system. However, many papers do not show
the detailed parameter tuning and feature selection steps and do not provide analysis
on the potential correlation between bias in the measurements and potential failure
conditions. This leads to contradictionary conclusions, making it hard to comment on a
the general-ability of specific phenomena [JYS19].

53

3. Failure Prediction: A State-of-the-practice Survey

3.4.2. Availability of Datasets, Reproducibility of Research

In other research fields dealing with machine learning, a common dataset is used
to ensure the reproducibility and generality of results. For example, the Common
Objects in Context (COCO)' [Lin+14] is used in most of the publications in the fields
image segmentation, text recognition, computer vision, and much other image-related
research. This large-scale controlled dataset makes the comparison and reproduction
of results very easy. _This is clearly not the case in failure prediction. Although over
70 papers have been screened in this work, only a limited amount of undocumented
and outdated data sets exists. Prior to the publication of the Google Job Dataset in
2011, no studies on job failures had existed. Half of the datasets provided in the
CFDR database are not accessible and all of them lack suitable metadata or proper
description. This limitation significantly hardens the research in this field and closes
the door to researchers who do not have access to such systems. Moreover, modern
machine-learning approached such as transferred learning cannot be used [JYS19].

3.4.3. Metrics and the Effect of False Positive Rate

fpr: = 0.0001 0.0005 = 0.001 0.0025 =— =—0.01

1.0

UC probability
o o
o (4]
X

0.5K 1.0K 1.5K 2.0K
nodes

Figure 3.1.: Probability of Triggering an Unnecessary Migration or Checkpoint Due to
Certain False Positive Prediction Rates [Fra+19].

Researchers criticized these metrics in the past because they did not account for
the loss of compute time or the overhead for migrations and checkpointing [SLM10;
Tae+10; Zhe+10; EZS17]. The high false positive rate is one prominent issue because
it triggers unnecessary checkpoints or proactive migrations [EZS17]. The fallout is
always calculated based on the probability of misclassifying an ok event for a single
node. The problem therefore significantly increases with the maximum job size and
consequently with the number of nodes, making failure predictions useless for practical
use in large-scale HPC centers. Most notably, in a previous work [Fra+19] we point out
that with any large job an unnecessary fault-mitigation becomes almost certain.

Ohttp://cocodataset.org/home, accessed in December 2018

54

http://cocodataset.org/home

3. Failure Prediction: A State-of-the-practice Survey

Although the significance of the false positive rate for the overall performance of a
fault prediction system is very high, none of our surveyed paper focus on this problem.
In fact, our previous work [Fra+19] was the first work to introduce a metric that had
practical importance for a large-scale batch cluster system.

3.4.4. Failure Prediction and Fault-mitigation Techniques

To conclude, current fault prediction methods presented in literature are able to predict
errors with practical performance. However, the problem of false positives is not well
understood and needs to be further researched. Since the overhead of performing
fault-mitigation upon any predicted error varies, a sufficiently low overhead fault-
mitigation method is required to support the fault-predictions, which produce a fairly
large amount of false positives nowadays. To understand the different fault-mitigation
techniques, we will present the state-of-the-art methods for fault-mitigation and failure
avoidance in the next chapter.

55

4. Fault Tolerance Strategies

In Chapter 3, we worked through a summary of the current state of the practice in
the field of failure prediction. Several shortcomings have also been identified. Most
prominently, the false positive rates are neither covered nor discussed in existing
literature or methods [JYS19]. Without this information, an accurate evaluation of a
real-world system with different fault mitigation techniques cannot be conducted.

To introduce different state-of-the-art methods involved in fault management, the
scope of this dissertation - the Batch Job Processing Clustering System (BJPCS) is
introduced in this chapter. Followed by a taxonomy of methods for failure handling,
the concepts of checkpointing and migration are explained in detail.

It is not possible to compare different fault mitigation techniques without a proper
context. Consequently, we do not aim to provide a manual on fault mitigation strategies.
Instead, the focus and requirements are introduced and discussed in this chapter.

4.1. System Architecture of Batch Job Processing System

The focus of this dissertation is the Batch Job Processing Clustering System (BJPCS),
which includes both classic HPC systems, but also some of the modern cloud systems
such as the Amazon AWS Batch System' and Google Cloud Platform?. We define BJPCS as
stated in Definition 4.1.1. The analogy among these systems is the use case, which is
illustrated in Figure 4.1.

Definition 4.1.1. Batch Job Processing Cluster System A Batch Job Processing Clustering
System (BJPCS) is a distributed cluster system, consisting of a set of physical com-
puting nodes (servers), that can handle a batch (scripted) job from a potential user
synchronously or asynchronously. The batch job is executed according to some schedule
on the processing cluster, and the execution results are delivered to the user.

A user of such a system provides a particular application and corresponding data, which
is called a job. This job is submitted to a job processing queue through a frontend node.
According to a certain scheduling algorithm, the jobs in the job queue are scheduled to a

Ihttps://aws.amazon.com/batch/, accessed in March 2019
2https://cloud.google.com/dataflow/, accessed in March 2019

56

https://aws.amazon.com/batch/
https://cloud.google.com/dataflow/

4. Fault Tolerance Strategies

Submission——> Dl | |4 Schedule

Job Queue

5 ade

Processing Cluster

Y

. / e

)\‘ esult

User

Figure 4.1.: Typical Use Case for a Batch Processing System

processing cluster. The cluster then processes each job and returns the result according
to the respective user’s instruction.

In the scope of this work, only failures which occur in the cluster are considered
because it is the most crucial part of such a system. Furthermore, as most of the
servers and computers in such a system are in the processing cluster, failures are also
more likely to occur there. Moreover, since the user does not have the control nor is
allowed to access the processing cluster, a “hot ” failure cannot be addressed by the user
online. Hence, user-provided applications must be capable of overcoming these failures.

With this background, one needs to have an overview of the hardware and software
architecture of such a system. Although this is an emerging field, there is a generic
design, which is visualized in Figure 4.2. Components such as frontend (login) nodes
and management nodes are not included in Figure 4.2. However, these components are
specialized nodes that can also be treated as a simple “node” for modeling purposes.

The components of such a generic cluster, including the applications and its compo-
nents running on the cluster, are described as follows:

e Node: Node is the hardware entity of this cluster. It is typically a bare metal server,
which contains a specific configuration of the hardware.

e Operating System (OS): The system software on each node, including the software

57

4. Fault Tolerance Strategies

Node Node Node
Operating System Operating System Operating System
' Container/ | ' Container/ | . Container/ |

VM ; ; VM ; 5 VM
Process Process Process
Data Data Data

Communication

File System

Figure 4.2.: System Architecture Overview of a Generic Batch Processing Cluster

that is responsible for working with the intra-node resource manager such as

SLURMIYJGO03].

e Container and Virtual Machine (VM): Recent approaches [Pic+18; Pic+16a; Pic+14]
suggest placing the actual application in containers or VMs. This way, with proper
support of the underlying OS and hardware, these containers can be migrated to
another node. The dashed line in Figure 4.2 also indicates that it is optional. In
fact, as far as the author knows, these techniques are not used in any productional
environment for an HPC system yet; however, almost all cloud systems are based

on either VMs or container.

e (Application) Process: In this case, we mean the user applications’ process. There

can be multiple processes on the same node.

e Data: Any useful application in a batch processing job is designed to process
some data. By Data we refer to the application data that is to be processed by a

specific kernel.

e Kernel: In a useful application, the (computer) kernel is the subroutine (or part
of the program) that is responsible for processing the data. In a well-engineered

application, a kernel should be decoupled from the data.

58

4. Fault Tolerance Strategies

e Communication: This is the crucial part of connecting the independent server
nodes to a whole processing cluster system. Typically, this includes both hardware
and software working together. Examples of the hardware (physical layer) include
standards such as InfiniBand and OmniPath for HPC systems, and usually Gigabit
Ethernet (GbE) or Terabit Ethernet (TbE) for the cloud systems. Software for user-
level communication (transport layer and above) is usually a library that handles
data transfer, such as Message Passing Interface (MPI) for HPC or Transport Control
Protocol (TCP) and User Datagram Protocol (UDP) in cloud systems.

e File system: A distributed or shared file system is also crucial for the operation
of a batch processing cluster. Hardware for the shared file system includes
Network Accessed Storage (NAS) and Storage Area Network (SAN). As for the
software, alongside with the well known NFS, examples include IBM Spectrum
Scale (GPFS)3, Intel Lustre*, Google Cloud Filesystem®, and Distributed File System
(DFS)®.

Typically, such a batch cluster is designed to tolerate a single point of failure. However,
from our knowledge, some of the crucial parts are more likely to propagate faults
and errors to another part of the system. Among these parts, the communication
components and the file system are common troublemakers, as these are shared
resources from all nodes. For example, if a network switch is malfunctioning, all the
nodes connected to that specific switch may suffer from the fault. Any application
running on those nodes would fail, and most likely there would be no prediction
available on a per-node basis.

In the following section, different methods for fault mitigation are introduced and
discussed.

4.2. Fault-mitigation Mechanisms

Fault-mitigation is the required step of reacting to a failure condition. Fault-mitigation
can be achieved on both hardware and software levels. For example, the well-known
Error Correcting Code (ECC)-Memory is a hardware technology that adds parity
bits to detect and mitigate internal data corruption. In this dissertation, the focus of
fault-mitigation techniques is on the software and the user application.

Shttps://www.ibm.com/us-en/marketplace/scale-out-file-and-object-storage, accessed in
March 2019

“http://lustre.org, accessed in March 2019

Shttps://cloud.google.com/filestore/, accessed in March 2019

®https://docs.microsoft.com/en-us/windows-server/storage/dfs-namespaces/dfs-overview,

accessed in March 2019

59

https://www.ibm.com/us-en/marketplace/scale-out-file-and-object-storage
http://lustre.org
https://cloud.google.com/filestore/
https://docs.microsoft.com/en-us/windows-server/storage/dfs-namespaces/dfs-overview

4. Fault Tolerance Strategies

In the terminology of systems engineering, there are two types of strategies:

e Fail-Safe: The fault does not lead to harming of other components, the environ-
ment or human life.

e Fail Operational: The system can provide continuous operation, despite the
occurrence of a fault. A fail-operational system is often also referred as a fault-
tolerant system.

However, this terminology does not fit directly for fault topics on HPC and cloud
systems. In this dissertation, we introduce the the following definitions for fault-tolerant
applications:

Definition 4.2.1. Fail-Safe Applications

An application (for a batch cluster system) is considered fail-safe, if it is terminated
properly upon an error or fault and does not propagate its fault across the system,
affecting other parts of the whole system. Besides, it should be able to be re-executed
without user intervention.

Definition 4.2.2. Fail-Operation Applications
An application (for a batch cluster system) is considered fail-operational, if it can
continue execution even after encountering a fault.

The simplest example of a fail-safe method is termination. An application instance
terminates if any fault is detected. This way, it is certain that no further error propaga-
tion would happen. Today’s job schedulers would kill any job that has encountered a
fault. Moreover, most applications are not designed to tolerate node failure, causing
them to fail automatically due to the unsuccessful access to resources. However, this
has no value in terms of fault-mitigation. Any reasonable BCS nowadays provides at
least the auto-requeue function or known as retry, which automatically sends the failed
job back to the job queue and reschedules it to be done later.

For all fail operational strategies, two subcategories are the most important:

e Fault-mitigation: A fault-mitigation approach is also known as reactive fault
tolerance. It is based on the detection of a fault occurrence and reactively deploys
a mechanism to handle any failure that occurs.

e Failure avoidance: Failure avoidance is also called proactive fault tolerance. It is
based on the idea of forecasting upcoming potential faults and actively avoids
any failure. The usefulness of failure avoidance methods relies heavily on the
quality of the prediction about these faults.

60

4. Fault Tolerance Strategies

4.2.1. Overview of Fault Tolerance Techniques

To help to provide and overview of the vast amount of different techniques for fault
tolerance, we have created a taxonomy of strategies shown in Figure 4.3. Recalling the
Definitions 4.2.1 and 4.2.2, we have grouped the fault strategies termination and auto-
requeue into the fail-safe strategies because they only limit error propagation and do
not save previous work. The concept of checkpoint&restart is a strategy which provides
basic fail-operation, but a significant overhead is expected as the application needs to
be restarted and potentially a significant workload has to be redone. Both migration
and Algorithm-based Fault Tolerance (ABFT) are included in the fail-operation category
because they provide continuous operation, even when encountering a fault. However,
migration relies on the support of modern hardware and software, and typically some
prediction on upcoming faults.

VM and container migration are fault avoidance methods, which focus on the pre-
vention of any upcoming fault. Therefore, they rely on sufficient prediction systems
to predict an upcoming event. However, they have the advantage of being application
transparent, which means that the existing application does not need to be changed for
supporting fault tolerance.

Checkpoint&restart is the state-of-the-art technology for fault tolerance and the sole
efficient method for handling random, unpredicted faults. It can be both application
transparent and application cooperative by checkpointing on different levels. On the
system level, components such as VMs and containers can be checkpointed. On the
application level, user-space applications can checkpoint their intermediate result (data).
This method can also be combined with migration based methods to provide both
proactive and reactive fault tolerance.

Algorithm-based Fault Tolerance (ABFT) is an application-integrated approach for pro-
viding fault-tolerant algorithms in math-intensive applications. The nature of it makes
it unsuitable for more service-oriented cloud systems. These methods are discussed in
detail in the following section.

61

4. Fault Tolerance Strategies

Fault
Mitigation

v L4

m reereen
Termination Auto-Requeue Checkpoint-Restart Algorithm-based
Fault Tolerance

VM Migration Container Migration Process Migration Data Migration

Application - Application - Not Fault
Transparent Integrated Tolerant

Figure 4.3.: Taxonomy of Different Fault-handling Techniques

Either Application
Integrated or Tranparent

4.2.2. Application-integrated vs. Application-transparent Techniques

Another way often used to classify different fault-handling approaches is bound to
the role of applications. As previously shown in Figure 4.2, there are many (logical)
components in which faults can be handled. As a result, two classes of fault tolerance
approaches can be derived:

e Application-integrated: An application-integrated fault tolerance strategy requires
the modification of the implementation.

e Application-transparent: An application-transparent fault tolerance strategy relies
on the system-level components such as OS, VM or containers.

For new applications, application-integrated methods usually deliver better perfor-
mance, as fault tolerance can be programmed tightly into the application. However,
for an existing application, an application-transparent strategy often yields better cost
efficiency because the redevelopment of an existing large-scale application is very costly.
The selection of method depends heavily on the user case.

4.2.3. Checkpoint and Restart

Checkpoint&Researt [Ell+12; JDD12; Wan+10] is still the state-of-the-art technique for
fault-mitigation both in the fields of HPC and cloud systems. The principle is straight-
forward: The application creates a checkpoint periodically. The period for a checkpoint

62

4. Fault Tolerance Strategies

‘ Checkpoint

initialized

Checkpointing

timer trigger
\ 99 finished—)@
Execution X

failure

Initialization

initialized

Restarting Terminated

Figure 4.4.: State Chart for Classic Checkpoint&Restart

is related to the size of the application, the MTBF of the system and many other factors.
Upon encountering a fault, the application can be terminated and restarted from a
previously saved checkpoint on a different set of nodes. This way, depending on the
frequency of checkpointing, only a minimum amount of work needs to be redone on a
failure. This mechanism is visualized in the state chart in Figure 4.4.

The process of checkpoint&restart is described as follows:

e The application is initialized and executing normally.

e At a given frequency and a predefined timepoint a checkpoint is created to save
current work progress (checkpoint).

e The application continues executing.

e If a fault occurs, the application is restarted and initialized using the previously
secured checkpoint (restart).

e The execution then continues until the application finishes.

Combined with a fault prediction system, the frequency for a checkpoint can be
reduced. With excellent predictions, it is also possible to trigger a checkpoint on
demand. This further reduces the overhead caused by checkpoint&restart, adding
scalability of checkpoint&restart. The adapted state chart for checkpoint&restart with fault
prediction is shown in Figure 4.5.

As checkpoint&restart is a very sound and well understood method, many well-
known examples exist in the literature. The most used examples for HPC systems
include Checkpoint/Restart in Userspace (CRIU) [LH10], Berkeley Lab Checkpoint Restart
(BLCR) [HDO06] and Distributed Multi-Threaded Checkpointing (DMTCP) [AACO09].

63

4. Fault Tolerance Strategies

Checkpoint e E_/__'E
. : Prediction

Checkpointing

finished—>©

failure

Initialization

Restarting Terminated

Figure 4.5.: State Chart for Checkpoint&Restart with fault Prediction

4.2.4. Migration

Migration is an attempt to reduce the overhead of checkpoint&restart. Depending on what
is being migrated, there are two different approaches well-known among researchers:
process migration and VM/Container migration. Any migration framework would require
someone to actively trigger a migration. Ideally, using a fault prediction system,
migration can be triggered upon a positive prediction for fault. As the application
is never terminated, the overhead of the concept of migration is theoretically lower
than checkpoint&restart. Furthermore, since the affected parts of an application are only
small (that is usually on one node suffering from an upcoming error), the scalability
is also better than checkpoint&restart. This argument is also used repeatedly in many
studies in migration research [Wan+08; Wan+12; Pic+14; Pic+18; Pic+16a]. Due to their
nature, since both state information and application data need to be migrated during
the migration process, most migration techniques are application transparent.

The process of migration is as follows:

e The application is executed normally on the BJPCS.

e A trigger system (such as a fault prediction system) informs the migration system
that migration needs to be performed.

¢ (Optional) The application is informed, synchronized and halted.

e Migration is performed.

64

4. Fault Tolerance Strategies

Prediction

Initialization initialized

Execution migrated

>< > Terminated

random failure

@(—finished

Figure 4.6.: State Chart for Migration

e The application continues normal execution.

This process is also visualized in Figure 4.6.

The big drawback of these migration-based methods is that spontaneous errors which
are not covered by the prediction cannot be handled by the migration framework as
there is no stateful checkpoint stored on the system for recovery. In this sense, migration
is a failure avoidance method rather than fault-mitigation. Nevertheless, migration
can be used alongside with checkpoint&restart to reduce the frequency of checkpoints,
thus decreasing the overall overhead resulting from the fault-mitigation.

In the remainder of this section, we will explore the difference between process migra-
tion and VM/container based migration method.

Process Migration

Process migration is the way of moving a process to another physical machine [DO91;
Mil+00]. It is not a new concept. Consequently, many attempts [Ste96; CLGO5] have
been made to extend existing programming models such as MPI. The idea of process
migration is that with proper support of the operating system and runtime system,
a process can be migrated to another machine transparently at runtime. However,
process migration is not common in real-world applications, as there are so-called
residual dependencies on the machine where a process is being migrated from [Mil+00].

One most notable example of such work is from Wang et al. [Wan+08], who ex-
tend MPI with migration functionality. To accomplish this job, they extended an
MPI implementation with BLCR. A running process state and data is secured using
BLCR, and the process is terminated. This checkpoint is then transferred to another
node, and the state and data are restored. Afterward, the process can be restarted

65

4. Fault Tolerance Strategies

on the new node. The proposed solution requires the modification of MPI, as well as
the support from a operating system. This limitation is quite significant because the
modification of MPI and the particular system requirement are not possible everywhere.

Virtual Machine Migration

Migration of VMs is a well-developed technology nowadays. There is a significant
amount of research in VM Migration, including [NLH+05; Cla+05; Woo+07; Pic+18;
Pic+16a; Pic+14; XSC13; Voo+09]. The most important use case for VM migration is
in the field of cloud computing, where resource elasticity is required, and the VM
might be resized and moved to another physical location at runtime. Everyone who
has moved a virtual machine from one physical machine to another and restarts the
execution has already performed a VM migration manually. One of the first Virtual
Machine Managers (VMMs) that supports live migration is Xen” [Cla+05].

In a modern VM migration approach such as in [Cla+05], live migration is typically
performed in the following manner: First, the required resources are verified on the
migration target. If all requirements hold, a quick snapshot is created for the VM. The
data (such as memory pages), resource requirement information (such as I/O devices)
and state information regarding the VM are sent to the new destination, and all the
dirty pages and changes are sent incrementally to the destination. At a certain point,
the VM on the origin machine is halted, and all remaining states and changes are
committed to the target. Afterward, the VM on the origin machine can be terminated,
and the VM on the target machine can be started and continues the operation. This
way, the downtime (service outage) can be kept within the millisecond range [Cla+05].

VM migration has been tested for HPC systems as well [Nag+07; Pic+16b; Pic+14].
The major problem when deploying VM migration is, that it may consist of special
communication interfaces such as InfiniBand and OmniPath, which do not support a live
migration. A major reason for the lack of support is, that as there are requirements on
latency and throughput, technologies such as Remote Direct Memory Access (RDMA)
are deployed in these systems. Any driver does not yet support the rebuilding of the
mappings for RDMA without modification. As a workaround, Pickartz et al. [Pic+18]
propose to switch to TCP/IP based communication before migration and switch back
to the InfiniBand connection after migration. However, this requires the active support
by the MPI library or the user application. Another issue is that accelerators in
heterogeneous compute nodes such as GPUs and Field Programmable Gate Arrays
(FPGAs) cannot be halted easily.

"https://xen.org, accessed in March 2019

66

https://xen.org

4. Fault Tolerance Strategies

To conclude, VM migration is a prominent and solid method of fault management.
In the area of cloud computing, VM migration is already a state-of-the-art technology.
However, in the field of HPC, the overhead of a virtual machine and the lack of support
for HPC specific hardware and technology are drawbacks.

Container Migration

A modern, modified “flavor” of VM migration is the so-called container migration. A
container is a technology through which the OS provides multiple isolated user-space
instances on top of the same kernel space. The main advantage is reduced overhead
compared to VM technology. The most famous examples for containers are DockerS,
LXC?, and Singularity'®. The migration of a container requires similar steps. However,
only user-space data and state need to be migrated from one to another host. This
concept has also been extensively investigated for cloud computing [MYL17; Qiu+17;
Nad+17]. In the field of HPC systems, initial work also exists, such as [Pic+14; Pic+16a].
However, the same limitations from system and hardware support are required for
container migration.

Combining Migration with Checkpoint&Restart

Migration-based methods can also be combined with checkpoint&restart. In a cloud
environment, this is often used for testing purposes. By checkpointing the system state
at a given time, a restart (or rollback) can be initiated. This way, the migration based
method can be extended to support random faults!!, which are hard to be supported
using migration only. The state chart for this combined method is given in Figure 4.7.
The downside of checkpointing (a VM or container) is the significant overhead, as not
only application data, but also data that is required by the operating system to facilitate
the application instance is subject to being checkpointed.

An example for migration based fault tolerance combined with checkpoint&restart is
given in Figure 4.7. Its functional principle is summarized as the follows:

e Assuming that the application is running normally, a checkpoint is created at a
given frequency.

e A fault prediction system continuously produces predictions regarding upcoming
faults.

8https: ://docker.io, accessed in March 2019
https://linuxcontainers.org, accessed in March 2019
Onttps://wuw.sylabs.io/docs, accessed in March 2019
n this context, by random fault we refer to faults which are not predicted by a fault prediction system.

67

https://docker.io
https://linuxcontainers.org
https://www.sylabs.io/docs

4. Fault Tolerance Strategies

random failure

restarted

restart

Restarting

Figure 4.7.: State Chart for Migration with Checkpointing

e If a fault predicted, a migration is done to avoid the failure of the application.

e If there is a random failure, a restart routine is executed to restart the application
from the last checkpoint saved.

To summarize, with VM and container migration, two different application transparent
means of failure avoidance techniques are introduced. Their most significant advantage
is, that the user application does not need to be changed, which increases the usability
from the user’s point of view. One of their major disadvantages is the relatively
high overhead because both migration methods are virtualization-based methods. In
addition, these two migration methods rely on the support of the hardware platform.
With process migration, the runtime overhead is eliminated because the method directly
operates on the application process. However, process migration demands both OS
and runtime library support. At migration time, all of the above mentioned migration
methods have to migrate more data than just only the useful application data, as they
have to reconstruct the application process at the destination location.

It is easy to see that with proper application support, overhead at migration time
can be reduced by migrating only useful application data. In addition, the application
can make use of existing hardware, OS and libraries to complete the migration. A
reconstruction of an application instance is not necessary. In the next chapter, we will
introduce data migration, an application-integrated migration method, which features a

68

4. Fault Tolerance Strategies

low overhead and requires neither hardware nor OS support.

4.2.5. Algorithm-based Fault Tolerance

Unlike system-level fault tolerance strategies such as migration and data-level fault
tolerance checkpoint-restart, Algorithm-based Fault Tolerance (ABFT) is an attempt to
provide fault tolerance on the compute kernels of the application. First introduced by
Huang and Abraham [Hua+84], ABFT is under active research in many studies [Bos+09;
CDO08; Ban+90; AL88; Chel3], especially for HPC applications, as most of the HPC
applications are somehow iterative. There are many kinds of ABFT, in the original work
by Huang et al. [Hua+84], they introduce a checksum to verify the result from different
matrix operations, which can detect faulty operation due to data corruption. A more
modern idea of ABFT is, that with proper partitioning the actual error of calculation
from a given number of a faulty processors (or other components) can be compensated
for and kept at a small level. As machine error cannot be fully eliminated anyways,
the approximation is considered useful if its margin is small enough. The effect of
additional errors can also be kept within an acceptable range.

Since modern applications rely typically on external math libraries such as Intel
MKL [Wan+14] or BLAS [Law+77] to perform mathematical operations, developing
one’s own ABFT kernel requires significant development effort, especially for existing
code. Any ABFT based approach must target these libraries to provide sufficient
support for real-world scenarios.

4.2.6. Summary of Fault Tolerance Techniques

To conclude this chapter, Table 4.1 summarizes all the fail-operational methods dis-
cussed in this chapter. While checkpoint&restart supports a variety of system configu-
rations, migration-based methods have lower overhead. The highly specialized ABFT
provides lightweight fault tolerance for HPC applications. However, it cannot handle
all kind of errors and does not suit for most cloud systems.

With sufficient fault prediction, migration-based fault tolerance should be more effi-
cient than checkpoint&restart. This is also the conclusion from many studies by Pickartz
et al. [Pic+14; Pic+16a; Pic+16b; Pic+18]. However, combined with the previously
mentioned high false positive rate problem, the decision for migration can be still costly
in case of false positives. Nevertheless, without a prediction system, it is generally
not possible to recover from a fault by using migration. This limits the use cases for
migration-based fault tolerance approaches.

The overhead of fault tolerance approaches has not been quantitatively analyzed
in this chapter. The reason is that depending on the use case, the overhead can vary

69

4. Fault Tolerance Strategies

Table 4.1.: Overview of Fault Tolerance Techniques

Location | Name Prediction | Special Cloud/HPC
Required? | Hardware
Required?
Data Checkpoint optional none both
Restart
Data Migration yes none both
System VM M‘igratio%n yes yes both
Container Migra- | yes yes both
tion
Algorithm | Algorithm-based | none hone HPC
Fault Tolerance
(ABFT)

significantly. For example, the live migration of the main memory Database Manage-
ment System (DBMS) takes a significantly higher overhead than checkpoint&restart a

non-volatile memory based DBMS.

The next chapter deals with the concept of data migration in detail and present two
different techniques are presented: one technique with system support and another

one without system support.

70

5. Data Migration

Numerous fault tolerance strategies were introduced and discussed in the last chapter.
Now, in this dissertation, we are going to focus on the concept of data migration, a
promising concept. Data migration is a proactive and application-integrated fault avoidance
technique from the class migration techniques. As mentioned before, it features a low
overhead by design at runtime as well as at migration time because no virtualization
is deployed. Instead of migrating a whole Virtual Machine (VM) or a container, the
application is in charge of choosing the relevant information to be migrated. This
reduces the footprint for the migration operation. It also gives the programmer the
options of either reacting to an event or not. Furthermore, since classic applications
usually provide support for checkpoint&restart, the selection of relevant data is a
natural step. This means that low transition cost for an existing application can be
expected by using this approach. However, any existing application has to be modified
to support data migration as it is not application-transparent. The trade-off between
the development cost and the overhead at runtime needs to be considered thoroughly.

The basic idea of data migration is simple; two examples are shown in Figure 5.1. For
an application running on two nodes (nodes 0 and 1), the data of this application is
distributed on these nodes. Upon (predicted) failure of node 0, the data on node 0
is then transferred to node 1. The affected node 0 is eliminated from the concurrent
execution. If any spare node (node 2) is available to the application, the data on node 0
can be moved to the spare node, where another instance of the application is started.
This way, the failure of the application is avoided. Fault tolerance is achieved in systems
both with and without a spare node by migrating the data of a failing node.

From this example, we can see that data migration is useful if the distributed parallel
application is following the Single Program Multiple Data (SPMD) model, which is
also the most common model for parallel programming. Nevertheless, the data mi-
gration technique can also be derived for other programming styles and distributed
applications, if the application part running on the target node can provide the same
functionality.

Load balancing resulting from data migration is also an important issue to be addressed.
Data in parallel applications is usually carefully partitioned into equal subsets to be

71

5. Data Migration

without Spare Node

Node 1

Failure on Node 0 -
Application

with Spare Node

Node 0 Node 1
Application Application
Data 0
Node 0 Node 1
Application Application
Data 0

Failure on Node 0

Node 1 Node 2

Application Application

Figure 5.1.: Schematic Example of Data Migration

72

5. Data Migration

processed with similar time requirements. This way, waiting time can be kept at a
minimum, and synchronous communication can be carried out with minimum time
effort. However, the migration of application data without the spare node will break
this balance. The application must react to this imbalance in order to restore efficient
execution. To sufficiently support data migration, an application must be able to
dynamically repartition after migration.

Another technical challenge is to expose the information on upcoming events to the
application so that it can react to these events. As there are many programming models
and libraries in parallel programming, the unification, and standardization of such
interfaces for external information is a real challenge. One right way is to extend an
existing programming model and library for this purpose.

In the remainder of this chapter, the concept of data migration and its requirements
is introduced in detail. Later in this work, we provide two different library prototypes
to support data migration for existing and new applications.

5.1. Basic Action Sequence for Data Migration

In the following, the steps for data migration without a spare node are explained in
detail. An example of an application with three instances and a fault predictor without
a spare node is presented in Figure 5.2.

For triggering data migration without a spare node, the running application must
react to the command of a predicted upcoming event from a fault prediction system.
Such a system can be an extension to a runtime system such as SLRUM, or a standalone
application that has access to the monitoring infrastructure. The prediction result should
be broadcast to all nodes so that this event is known by all participating instances
of a running application. In the event of a fault, if the prediction system does not
broadcast the information on fault, but only informs the failing node, the application
instance on the failing node needs to relay this information and forward this to its
other instances. Without information about any upcoming fault on all the application
instances, the non-failing instances cannot initiate the action for data handover and
application synchronization. It is also important to point out that the lead time of the
prediction system must be long enough so that a live migration can be carried out by
the application before its failure.

After all the application instances perceive a predicted fault, the failing instance
must transfer its data to the other application instances. The data transfer can be done
asynchronously. However, one must be sure that the data transfer process succeeds
on all application instances. Otherwise, the application becomes corrupted, and data
migration fails. In practice, it is essential to restore the balance of the distribution of

73

5. Data Migration

sd:data migration)

Fault Prediction

Application on Node 0

Application on Node 1

Application on Node 2

Idop: o/ : :
predict()
break: faylt predicted : :
fault_predicted() _
fault_predicted() | o
fault_predicted() " R
prepare_data_ g
predict() “— and_reparititon()
transfer_data()
transfer_data()
... data_received()
; DS B N data_received()

X

synchronize & rebalance()

synchronize & rebalance()

A\ 4

Figure 5.2.: Sequence Diagram of a Basic Data Migration

74

5. Data Migration

sd:data migration with spare)
Fault Prediction ’ Application on Node 0 ’ Application on Node 1 ‘ ’ Application on Node 2 ‘ ’ Spare Node
lgop: 09/
predict()
break: faylt predicted
fault_predicted() :
fault_predicted() - o
fault_predicted() | g
fault ict prepare_data() N
predict() ault_predicted() <«
transfer_all_data() >
5 I S data_received() || ...
o synchronization()
: synchronizaton() |
: synchronization()
>:< ------ synchronization()->>|

Figure 5.3.: Sequence Diagram of a Basic Data Migration with a Spare Node

data across the remaining nodes after the migration succeeds. The load balancing often
limits the efficiency of a parallel application significantly. Therefore, the load balancing
must be preserved or restored after failing nodes are removed from the application.

In the case where a spare node is available to the application, the action sequence is
only slightly different from the previous case. Figure 5.3 shows the required steps for
repartitioning with one spare node for an application with three instances and nodes.
Upon prediction of an upcoming fault, an application instance must be started on the
spare node. Instead of redistributing the data among the remaining nodes, data from
the failing node can be transferred to the newly connected application instance. This
way, the unaffected application instances can continue operation until the next global
synchronization point is reached. Data migration with a spare node may also require a
global redistribution of data for load balance purposes, if the number of failing nodes
and the number of additional nodes are not the same.

Advantages and Disadvantages of Data Migration

As we can see from Figure 5.2 and Figure 5.3, the concept of data migration requires no
system support apart from the fault predictor. The user application can fully achieve
a data migration alone. This is the most significant advantage of data migration
over other system based migration approaches. Moreover, as only application data is

75

5. Data Migration

communicated and not system-level state information, a lower overhead is expected.

The disadvantages of data migration also rely on the required application support.
As the application is needed in order to react to future fault predictions, an existing
application has to be adapted to be able to perform this task. However, this is an accept-
able task because good parallel applications usually use modular data abstractions and
communication routines. The required demand for adaptation is expected to be small.

Like any other migration-based methods, if there is no fault prediction available the
effectiveness of data migration relies on the reconstructability of the data range on the
failing node.

As mentioned above, load rebalancing is a crucial task enabling practical use of data
migration. For clarity’s sake, the key concepts in organizing the data of typical
distributed parallel applications are introduced and explained in the following section.

5.2. Data Organization of Parallel Applications

In this section, we investigate the typical ways of organizing data in parallel applications.
The scope of data migration in this work is limited to parallel applications; it is based
on the Single Program Multiple Data (SPMD) model because it is a widely used
programming model for parallel applications in a BJPCS, most prominently for HPC
systems. To understand the different states of a data structure in an application, we
briefly recap the basic concept by utilizing an example of a program as with four
instances on two different nodes. Figure 5.4 highlights this example, in which two
independent program instances run on each node. In this example, there are three
different data structures: DS0, DS1 and DS2. The distribution of data structures is
called partitioning in this dissertation. Each part of the data (that is a subset of the total
dataset) is called a partition. As shown in Figure 5.4, the location of data is different for
all three data structures in this example application. A specific subroutine calculates the
location of data in the parallel application. We call this subroutine a partitioner in this
work. A partitioner can be static, where the partitioning itself cannot be changed after
its creation. It can also be dynamic, where the partitioning can change as required. A
typical example of changing the existing partitioning is load balancing. If the workload
amount among the participating program instances is no longer balanced, the current
partitioning has to be adapted to ensure load balancing. In this work, we call this
process of adaptation or modification of an existing partitioning repartitioning. In
addition to load balancing, a repartitioning can also be triggered by data migration,
because existing data needs to be redistributed to other program instances. The relation
between partition, partitioning, partitioner and repartitioning is shown in Figure 5.5.

76

5. Data Migration

Node 0 Node 1
Program Instance 0 Program Instance 1 Program Instance 2 Program Instance 3
DS0-0 DS0-1 DS0-2 DSo0-3
DS1-0 | DS1-1 DS1-0 | DS1-1 | DS1-2 DS1-1 | DS1-2 | DS1-3 DS1-2 | DS1-3

Data native on Instance 0, Node 0 I:I Data native on Instance 1, Node O

I:] Data native on Instance 2, Node 1 I:l Data native on Instance 3, Node 1

-Replicated data on all instances

Figure 5.4.: Example for Data Distribution in a Parallel Distributed Application. DS
stands for “Data Structure”.

; o ; ©
H s H =
= o
£
(] —
@ o ;
i - - b=
© IS
E Partitioner _ Partitioner S
c
= N
k= £
<
& g
Partitioning Partitioning
L J

~
Process of Repartitioning

Figure 5.5.: Relation between Partitioner, Partitioning, Partition, and Repartitioning

77

5. Data Migration

Common Partitionings

There are three different basic partitionings in the example shown in Figure 5.4. The
native location (ownership) of these data structures is visualized in different colors:
yellow for program instance 0, purple for program instance 1, green for program
instance 2, and white for program instance 3. The DS2 data structure (dark blue) is
replicated and held by all program instances. The DSO and DS1 data structures are
distributed. DSI1 is additionally replicated on various program instances locally. These
three basic partitionings are widely used by parallel and distributed applications. We
have summarized these partitionings as follows:

e Exclusive Partitioning: A data structure is in an exclusive partitioning if each
program instance holds a mutually exclusive range of the data. The intersection
between any partition is empty. This partitioning is usually used for kernels
where the data on other program instances is not required. An example of
this partitioning is found in a matrix-vector multiplication application solving
A - x =y, where A is the input matrix, and x is the input vector. If the partitioner
is based on row-wise slicing of the matrix A, the resulting partitioning for A
and the result vector y is in an exclusive partitioning. In Figure 5.4, DS0 is in an
exclusive partitioning and divided into partitions DS0-[0...4].

e Replicated Partitioning: A data structure is in a replicated partitioning if each
participating program instance holds a copy of the data. The data is replicated
on all program instances. In the example of matrix-vector multiplication, the
input vector x needs to be in replicated partitioning because it has to be accessed
by all program instances. In Figure 5.4, the data structure DS2 is in replicated
partitioning.

e Shared Partitioning: Shared partitioning is used for data structures, the partitions
of which are required by various program instances. In parallel applications,
since the calculation is executed independently on different program instances,
a specific data range can be used by different program instances. A reduction is
required to combine multiple partitions into one for data structures in shared
partitioning. A simple example of shared partitioning is the Halo exchange
pattern, in which access to the data from the immediate neighborhood instance
is required. The borders of one’s neighbor partitions must be known by each
program instance so that the calculation can be performed. After each iteration,
these borders are communicated and updated. In Figure 5.4, DS1 is in shared
partitioning (DS1-[0...4]). Each program instance holds a copy of its neighbor
partition.

78

5. Data Migration

A variety of further different partitionings can be derived from these three basic
partitionings. For example, a single partitioning, where only a single program instance
holds a specific data structure is a special case of the exclusive partitioning. The concept
of partitioning and repartitioning is the most important foundation for data migration
based fault tolerance, as the data migration is simply a (corner) use case of repartition-

ing.

Repartitioning Strategies

Two different repartitioning strategies can be used for restoring the balance and opti-
mizing for the amount of data transfer:

e Incremental Repartitioning: The data from the failing node is equally redis-
tributed among the remaining nodes. In the ideal case, only a minimum amount
of data (that is the data on the failing node) is transferred. It results in minimum
overhead at migration time. This scheme is illustrated in Figure 5.6.

However, this approach can only be applied if the application kernels support the
execution of non-consecutive data ranges. Furthermore, certain application classes
will have higher communication overhead. For example, the Jacobi kernel [FH60]
code with Halo exchange will certainly have higher communication demand after
a data migration based on the incremental repartitioning scheme. The data on
the first node is scattered across several nodes after migration.

¢ Global Repartitioning: All application data is redistributed across all non-failing
nodes. A new partitioning is calculated globally at migration time, excluding the
failing node. The application data is then transferred to a corresponding new

Node 0 Node 1 Node 2

(1]
v

Node 1 Node 2

[T]

Figure 5.6.: A Incremental Repartitioning Scheme

79

5. Data Migration

Node 0 Node 1 Node 2

LT]

v

Node 1 Node 2

] |

Figure 5.7.: A Global Repartitioning Scheme

destination. This scheme guarantees continuous data ranges on each remaining
partition. Figure 5.7 visualizes this scheme.

The overhead at migration time is high: A large amount of data needs to be
transferred across multiple nodes. The advantage of this approach is compatibil-
ity. When properly executed, the remaining, non-failing nodes can continue to
operate as if the failing node had never participated in the parallel processing
at any time. Furthermore, communication optimizations at runtime are easily
achieved as the application can utilize its original code for communication with-
out modification. The data migration also does not affect the performance of the
previously-mentioned example of the Jacobi kernel either.

Selection of Repartitioning Strategy

The selection of a repartitioning strategy depends highly relies on the data partitioning,
the application kernel support, the access pattern (read/write), the importance of data
preservation, and the amount of data to be redistributed. It is the users” responsibility to
select the most efficient and effective repartitioning strategy. Some examples are given
in Table 5.1. However, some general guidelines apply: A replicated partitioning does
not require repartitioning at all, because all the program instances replicate the data.
A shared partitioning usually works better with global repartitioning to the reduce
communication overhead at runtime. For exclusive partitioning, the repartitioning
strategy depends on the ability of the application kernel to process non-continuous
data ranges. If the data structure is not required to be persistent (i.e., a local working
vector that is accessed and updated regularly per iteration), then repartitioning is not
required.

80

5. Data Migration

Table 5.1.: Examples for Selecting Repartitioning Strategy

Partitioning Access Pattern Persistence Kernel ‘ Repartitioning Strategy
exclusive any yes continuous data range | global repartitioning
exclusive any yes any data ranges incremental repartitioning
replicated any any any not required

shared any yes any global repartitioning

Repartitioning and Data Migration

Ultimately, repartitioning and data migration are similar processes. The target partition-
ing after a data migration can be calculated by re-executing the partitioner excluding
the failing program instances. The only difference between repartitioning and data
migration are the different abstraction levels. For a given data structure, there are two
different abstraction levels: The index space and the data itself. In the simple example of
an array with a length of 1, identified by a pointer p, the data is the content stored in the
memory at the pointer location. The index space is a collection of indices [0...(n — 1)]
for the data structure. To access the data in a specific cell of the array, its index is used
as offset to the pointer. This way, any data in a data structure can be addressed directly.

It is the responsibility of the partitioner in a parallel application to divide the index
space into partitions, forming a partitioning. Following this partitioning, the actual data
can be chunked into data slices and transferred to their designated location. Figure 5.8
illustrates the relation between partition, data slice and partitioning for the example of
a 1-dimensional array.

At the abstraction level of index space, a repartitioning can be performed to free a
failing program instance from any partition. Its corresponding data slice can then be
transferred to its new location according to the new partitioning. While the reparti-

Partitioning
e
(Partition W
e
.
IndexSpace . 0 = 1 | 2 3 | 4 | 5 | 6 | 7 | 8 | 9 Offset
Data 4—— Pointer *
L J
hE
Data Slice

Figure 5.8.: Relation between Index Space and Data Slice

81

5. Data Migration

tioning process operates on the index space of a data structure, the process of data
migration works on the actual data in the memory. Ultimately, a data migration process
is based on the new partitioning producd from repartitioning.

In the remainder of this work, the terms partition and partitioning are exclusively used
to refer to the index space of a data structure. The term data slice is used to refer to the
actual data in memory. In order to perform data migration, data consistency must be
preserved. In the next section, the data consistency model and process synchronization
for data migration are discussed.

5.3. Data Consistency and Synchronization of Processes

In the previous section, we focused on the data distribution and organization for parallel
applications. In this section, we focus on the data consistency within a (potentially
heterogeneous) node and its effect on data migration.

Figure 5.9 shows an example setup with two heterogeneous nodes, each equipped
with a single (multicore) CPU and two GPUs. These nodes feature a high-speed
network interface (e.g., InfiniBand), which is connected to a high-speed interconnect.
As an example of state-of-the-art technology, both the network card and the GPU are
capable of performing Direct Memory Access (DMA). This allows peer-to-peer access
of GPU memory with modern protocols, i.e., GPUDirect [RT+15]. Besides, the GPUs
are connected via a high-speed near-range communication link, such as NVLink [FD17],
turther speeding up the peer-to-peer connection of GPUs within a node. All devices on
the node are connected to the CPU using a Peripheral Component Interconnect Express
(PCle) [BAS04] bus.

Further, in this example, a parallel application, which supports the execution on both
CPU and GPU (often known as a hybrid application), works with two data structures:
DS0 and DS1. The application data is partitioned in exclusive partitioning (cf. Section
5.2). It is started on the CPU and transfers part of its data to the GPUs for accelerated
processing. It is written in line with the SPMD model. Moreover, it can benefit from
all the hardware features and perform peer-to-peer data transfer without involving
the CPU. This means that data on the GPU is only transferred back to the main
memory if it is processed by the CPU. This approach is also the standard approach for
hybrid applications nowadays. The effects of cache are not discussed, as its consistency
with main memory is ensured by the hardware. For data migration, data stored in a
persistent storage — the globally distributed file system — does not require migration.

The activity diagram of this example hybrid application is illustrated in Figure 5.10.
In this application, one GPU-only synchronization is performed for data communi-

82

5. Data Migration

Node 0
GPUO
Main Memory » DSO0- | DS1-
Distributed Memory 0/0 0/0
File System DS 0-0 Controller o
NVLink
DS 1-0 GPU1
» DSO- | DS1-
01 01
DMA
A
PCI-E:
< > <€ DMA (e.g. GPU Direct)
1
High-Speed Network Interface
Node 1
i GPUO
1 Main Memory » | DSO- | DS 1-
Memory 1/0 1/0
. Controll
DS 0-1 ontroller a0
NVLink
DS 1-1 GPU1
» | DSO- | DS 1-
1 11
PCI-E:
DMA (e.g. GPU Direct)
1
High-Speed High-Speed Network Interface
Interconnect

Figure 5.9.: Scheme of Data Distribution in a Dual-node System

83

5. Data Migration

cation. Furthermore, part of the data is calculated on the CPU in parallel. In the
activity diagram in Figure 5.10, the yellow and blue colors indicate activities performed
in parallel on Node 0 and Node 1. The grey area indicates a non-parallel region that
requires synchronization between Nodes 0 and 1. The red boxed region stands for
activities on the GPUs without any CPU involved.

act: Example Parallel
Application Global Global Global
Synchronization Synchronization Synchronization

Initialization Calculate Partition
Start Instances Distribute Data

Initialization Calculate Partition

GPU Region
Perform Calculation Transfer Data on
on GPUs Device
Data Communication Perform
for GPUs Calculation on CPU
Perform Calculation Transfer Data on Calculation
on GPUs Device yes~.on GPU?
GPU
Synchronization no
Perform
Calculation on CPU
Perform Calculation | | | S I
Finalize
T tor Dat Result
Perform Calculation ra?os:gsta a
on GPUs
GPU Local (per Node) Global
Synchronization Synchronization Synchronization
Q Non-Parallel Region D Parallel Region, Node 0 Parallel Region, Node 1

Figure 5.10.: Activity Diagram of an Example Hybrid Application

From this example, we can see that the data is not consistent in main memory
after the data transfer to the device (GPU) memory. It remains inconsistent until the
last global synchronization occurs. However, in order to perform a data migration
(e.g., from Node 0 to Node 1), a global data consistent state in the main memory of all
nodes must be reached. Recapping Section 5.2, in order to perform data migration,

84

5. Data Migration

repartitioning has to be done in order to obtain a new valid partitioning that excludes
all failing application instances. The new partitioning often requires moving large data
blocks globally. If the data is inconsistent (i.e., if different application instances are in
different iterations), it cannot be moved safely. Furthermore, as movement of data is
often initiated by the CPU, data on the device must be copied back to the main memory.
Although peer-to-peer data migration in a device is possible, the implementation of
such migration kernels is very complicated and inefficient, as a global redistribution of
data may change the workload assignment between the CPU and GPU. Therefore, data
consistency is a requirement prior to any data migration.

In our application, a migration can only be performed at the very beginning or at the
very end. This is not the desired use of data migration. Fortunately, most real-world
applications require global synchronization more often. The above-mentioned condition
regarding data consistency for data migration exists in more phases throughout the
application.

In a standard Batch Job Processing Clustering System (BJPCS), the operating system
does not have sufficient information regarding the location and distribution of the
application data. Consequently, an automatic transfer from device memory to host
memory is not possible without the support of the application. Furthermore, most GPU
kernels cannot be interrupted. For this reason, data migration can only be achieved
with proper support from the application. The application must be modified so that it
can to react to the outside information regarding upcoming failures. Moreover, it has
to perform the required data migration at a suitable time point.

5.4. Summary: The Concept of Data Migration

In this chapter, we have introduced the basic concept of data migration, which is a
fail-operational fault tolerance strategy based on proactively migrating the data from
a failing node to another location. Data migration is also an application-integrated
fault tolerance strategy because it requires the application to react to system-level
information regarding an upcoming event. It can be performed with or without a spare
node.

The main advantages of data migration over other migration methods is the reduced
overhead. It does not request a full migration of all process or system-level information.
Since the application controls the migration process, the overhead of data migration
can be further reduced by selectively migrating only the critical data. As current failure
prediction systems can cover a large variety of upcoming hardware failures and also
have a high or undeterminable false alarm rate, the overhead of migration significantly

85

5. Data Migration

act: data Failure
migration
9 Prediction

' no
‘ Application . Failure Device
Execution redicted? Memory?
. completed (Synchronize Redistribute
K Process Data

Figure 5.11.: Activity Diagram of the Data Migration Process

)

Transfer to Synchronize
Main Mem. Processes

Repartitioning

impacts the usefulness of migration-based fault tolerance methods. With data migration,
the lower overhead can help reduce the overhead created by a false positive prediction.
Redundant data migration can be reverted with less impact on the program execution.
Moreover, a data migration can be achieved by repartitioning the data structures and
redistributing the data. This means that it can be seen as a corner case of dynamic load
balancing operation. The latter is supported by many existing parallel applications.
Finally, data migration is a user-level only action, which does not rely on hardware, the
OS or system-level libraries.

However, some drawbacks of data migration apply. Due to the nature of being
application-integrated, an existing application has to be adapted to support data
migration. Data migration can only be performed in a state in which data consistency
is ensured by the application. This means that additional synchronization might be
required prior to any data migration. Finally, like any other migration based fault
tolerance strategy, data migration alone cannot handle any random error.

Although the scope of our concept currently includes SPMD-based parallel appli-
cations, the concept of data migration can also be used in other kinds of distributed
and parallel applications. For example, a master-slave application can achieve data
migration by selecting a new master or redistributing the workload of the slaves.

The conceptual process of data migration is modeled in Figure 5.11. The required
steps and conditions are summarized as follows:

1. Assume a (parallel) application is running in a normal state. It periodically checks
on external information as to whether a failure has been predicted.

2. On a predicted upcoming failure, the application chooses the next possible
timepoint to react to the prediction.

86

5. Data Migration

3. If kernel execution is performed on an accelerator (such as a GPU), the data is
copied back to the main memory.

4. All the process instances are synchronized. The application ensures a consistent
data state.

5. A new partitioning of all the data is calculated by repartitioning that excludes the
failing nodes.

6. All the data is redistributed according to the new partitioning.
7. The process is synchronized again to ensure data consistency after repartitioning.

8. The data migration has now been done. The application continues normal
execution.

In this chapter, we have identified several important design quality factors and also its
limitations. These are:

Data migration can be seen as a corner case for any load balancing operation.

The impact of data migration on performance depends heavily on load balancing
after migration.

Data migration can only be performed in a consistent data state.

Data migration cannot be performed easily on device memory on a peer-to-peer
basis.

In summary, data migration is a versatile tool for achieving proactive fault tolerance
on an application-integrated basis. In order to demonstrate the usefulness of data
migration, a user-level library, called LAIK, has been developed to assist parallel-
application programmers in supporting data migration more easily. We are going to
introduce and evaluate the LAIK library in the next chapter.

87

6. LAIK: An Application-integrated
Index-space Based Abstraction Library

In the last chapter, we discussed the concept of data migration as a fault-tolerant strategy,
along with its advantages and disadvantages. The requirements and constraints of data
migration were also introduced and explained. Furthermore, we identified that data
migration can be treated as a corner case of dynamic load balancing by excluding the
failing nodes from the parallel application.

In this chapter, based on the previous knowledge, we focus on a possible library proto-
type for assisting data migration in parallel applications called Lightweight Application-
Integrated Fault-Tolerant Data Container (LAIK). LAIK stands for “Leichtgewichtige An-
wendungsintegrierte DatenhaltungsKomponente” (translation: Lightweight Application-
integrated Data Container). The basic idea of LAIK is to provide a lightweight library
that helps HPC programmers to achieve (proactive) fault tolerance based on the concept
of data migration. The library includes a set of Application Programming Interface
(API)s to assist programmers to dynamically partition and repartition data. By handing
over the responsibility for data partitioning, LAIK can calculate and recalculate the
best partitioning option according to the current workload and hardware situation. If
a prediction regarding an upcoming failure is made, LAIK can take that information
and repartition. The user can then adapt the data distribution and free the failing node
from any application data.

The concepts and structure of LAIK are discussed in detail in the following. Fur-
thermore, the performance evaluation of LAIK confirms the usefulness of LAIK for
fault tolerance. In the end, the performance impact is given in order to show the low
overhead introduced by LAIK.

6.1. The LAIK Library

As introduced in Section 2.3.1, Single Program Multiple Data (SPMD) is a widely used
programming model to exploit data parallelism in HPC systems. The basic idea of
SPMD is to apply the same kernels (calculations) to a portion of data multiple times in
parallel on different Processing Unit (PU)s. For an SPMD-based application, the index
space of the user data is usually partitioned into a specific, user-defined partitioning.

88

6. LAIK: An Application-integrated Index-space Based Abstraction Library

The data slices are distributed across different program instances according to this
partitioning. Each instance of the parallel application computes on its part of data —
this rule is commonly known as “owner computes”. The user-defined partitionings
should support the efficient execution of the parallel application. It is the programmer’s
responsibility to provide a proper implementation of a partitioner, by utilizing his and
her knowledge in the communication pattern, the compute kernel, and the importance
of load balancing.

The LAIK library (in the following: LAIK) makes use of this model and assists
applications written in the SPMD model with data migration by taking over control
of partitioning from the user application. This way, LAIK can expose system-level
information regarding a predicted upcoming fault to the user application by adapting
the partitioning and excluding failing nodes. Accordingly, an application can react
proactively on the prediction by adopting the new partitioning.

Furthermore, LAIK can take over the responsibility of repartitioning and redistribut-
ing the data if the programmer transfers the responsibility for application data to LAIK.
The programmer specifies a partitioner to tell LAIK how data is distributed across
different program instances. This way, the programmer only needs to specify when
data migration is allowed. The actual process of repartitioning and data migration
is automatically completed by LAIK. For different purposes and different layers of
abstraction (index space or data space), LAIK provides different APIs. The layered
design of LAIK will be introduced and presented later in this chapter.

By transferring the responsibility of data distribution to LAIK, implicit communica-
tion can be achieved. The programmer only needs to specify which part of the data is
required and when. With LAIK, this is achieved by providing multiple partitionings
that are bound to the same data structure. By changing the currently active partitioning,
which is a process called “switch”, data can be redistributed across available program
instances, resulting in implicit communication.

Another advantage of automatic data distribution and redistribution is that load
balancing can be ensured throughout program execution. With HPC systems emerging
in the future, load balancing becomes a crucial task to ensure scalability. For traditional
HPC applications, adaptive load balancing is usually achieved explicitly. This results
in high application-specific engineering and implementation, leading to high code
complexity. This type of high code complexity eventually leads to maintainability
issues. With LAIK, this responsibility can also be fully transferred to LAIK to ensure
high modularity and low complexity of user code.

This section of our work focuses on the design and interfaces of LAIK in detail. Besides
the basic feature of providing fault tolerance based on data migration, other highlights
of LAIK include the following:

89

6. LAIK: An Application-integrated Index-space Based Abstraction Library

e LAIK is modularized. Every component layer and its corresponding APIs can be
changed, without affecting other LAIK components.

e LAIK is incremental. Different layers of APIs can be used at different levels of
abstraction, resulting in adapting applications incrementally. Different features
can be achieved with different layers of APIs. This means that an application
programmer can transform his and her existing application on a step-by-step
basis.

o LAIK s lightweight. Unlike related programming models such as Charm++ [KK93]
and Legion [Bau+12], and task based programming model such as OmpSs [Dur+11]
and StarPU [Aug+11], LAIK neither requires a specialized compiler nor a runtime
system, thus resulting in low performance overhead per design and low system
complexity.

LAIK is provided as open source software and can be obtained from Github?.

6.1.1. Basic Concept of LAIK

Application Instance Application Instance

__ Systeminfo |

Partitioning |

Data

Comm. Library OS + Libraries

Comm. Library OS + Libraries

Hardware (Node)

Hardware (Node)

Figure 6.1.: Basic Components of the LAIK Library

Figure 6.1 schematically illustrates the role of LAIK and its interaction with the user
application in a schematic view. Technically, LAIK is a C library which runs completely
in user space within the application process. Each application (process) instance
contains also a LAIK instance, as shown in Figure 6.2.

Ihttps://github.com/envelope-project/laik, accessed in July 2019

90

https://github.com/envelope-project/laik

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Application Application Application Application
Instance Instance Instance Instance

LAIK | LAIK | LAIK | LAIK

Communication, e.g., MPI

| Node 0 | | Node 1 | | Node N |

Figure 6.2.: Location of LAIK Library on a Multinode Setup

LAIK provides different API layers for controlling either the process groups only , or
the index space (partitioning), or both the index space and the actual data slices (cf. Sec-
tion 5.2). The LAIK library is designed to use existing communication backends, such
as the Message Passing Interface (MPI) or the Transport Control Protocol (TCP). It is nei-
ther designed to become a runtime system, nor a communication library. It is designed
to be a dedicated library which helps programmers control the partitioning of data at
different timepoints during program execution. This enables LAIK to be lightweight
with little to no performance overhead. In a basic setup, LAIK neither changes an
application’s kernel execution, nor its communication. However, by transferring the
responsibility of data slices to LAIK, communication can then be fully abstracted in
LAIK. This way, implicit communication is executed instead of explicit programming
required by communication routines. An advantage of implicit communication with
LAIK is its ease of transition to other communication backends.

Information from the system environment, such as a predicted upcoming error is
inserted into LAIK by utilizing a so-called “agent”, which is a type of adapter that
intercepts information from the operating system or from the runtime system. This
way, fault tolerance through data migration can be achieved.

In order to support different communication backends as well as different agents,
APIs for backend and external information are created. Furthermore, two layers for user
level APIs, the index space APIs and data container APIs are included to allow operations
at different abstraction levels. The detailed architecture of LAIK and its APIs are
explained in the following subsection.

91

6. LAIK: An Application-integrated Index-space Based Abstraction Library

6.1.2. Architecture of LAIK

component:
LAIK+App

Fault Prediction
Agent Drive

LAK |

-

External

Utilities

r Agents Utility API
r=essscosas Process Group Information Logging
External APl &+ 70T TTTTTTTTTRTO : Profiling
P - O — O} ------ 1
1 Process Group Index Space Space API 1
,Group API - 1
1 LY !
1 - 1 1
. . p rt't;lo) Partiioner APl |1 papitioning
1 Location Information L Qiutielng I Repartitioning
1 i Communication . 1 [
1 o] ' 1 1
. \ 4 v 1
1 : I .|]
' Communication }L" . :
1
' Backend Comm. API Data Container Data AP X '
1 1 1
1
: l I ot : |
artitioner i
: R ‘ :Data Slices
. Comm: Driver Types APl Layout API . '
1
: Data Layout : 1
. Data Type . '
. MPI Application >
. (€ send/recv/reduce ---------------

.
Process and Resource Location, Faults

Figure 6.3.: Component Diagram of LAIK

As already mentioned, LAIK is designed to be modular with different components
providing different sets of functionalities. There are six major components in LAIK.
Their relations and interfaces are presented in Figure 6.3 above.

An overview of the components showcased in Figure 6.3 is listed in Table 6.1 on the
following page. Detailed descriptions of the functionalities of these components are
given below.

e Process Group Component (Figure 6.3 light red): The process group component
of LAIK takes care of the size and assignment of process numbers, as well as their
mappings to the PUs (usually processor cores). LAIK may also make use of the
other components, such as the communication backend and external agents to
optimally calculate group information. This information is stored in a Laik_Group
object and provided to the application and other LAIK components using the
Group API.

92

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Table 6.1.: Overview of LAIK Components and Their APIs

Component API Usage
Process Group Group API Creating and managing process groups in
LAIK.
Space API Create and manage index space partition-

Index Space

ing in LAIK.

Partitioner API

Provide callback for partitioners to LAIK.

Data API Creating and managing data structure
(and storage) in LAIK.
Layout API Providing callback function for packing
Data Container and unpacking data to LAIK.
Types API Creating and managing user-defined data
types in LAIK.
Communication | Communication | Providing communication interface for
Backend Driver LAIK, such as MPL

External Agents

Agent Driver

Providing runtime and system informa-
tion provider (agent) to LAIK.

Utilities

Utility API

Providing debugging and profiling func-
tionalities.

93

6. LAIK: An Application-integrated Index-space Based Abstraction Library

In our current prototype, LAIK groups are static, which means a Laik_Group
object is immutable. Any changes to a group (such as information regarding a
failing node) create a new group object. Programmers are advised to explicitly
free group handles that are no longer in use.

Index Space Component (Figure 6.3 light blue): The index space component of
LAIK is responsible for handling partitioning and repartitioning over abstract
index space. As explained in Section 5.2, the index space is used to identify a
specific data offset within a data structure. In SPMD-based applications, the
entire index space is usually split into partitions according to a given partitioning
scheme. In LAIK, the calculation of partitionings is done by the index space
component, which can be based on either a generic or a user-provided partitioner.
The index space component provides the Space API to the user application so that
it can operate on partitioning and its related information.

Data Container Component (Figure 6.3 light green): The data container is a
component of LAIK which operates on the data slices of the application data
structures by providing memory management functionalities. It features the
Data API which is ultimately based on an allocator interface that utilizes the
partitionings calculated from the index space module. By using the data API,
application programmers can get managed memory space for storing the data
slices. Furthermore, if the application data is managed by LAIK, communication
is triggered implicitly when switching a data container from one partitioning to
another, if the application data is managed by LAIK.

The data container component includes two user-provided callback interfaces:
Layout API and Types API. The layout API is used to gather user provided dense
representation of given data structures, thus increasing communication efficiency
by packing data slices into this dense format. The types API is used to register
user-specified data types in addition to the primitive data types.

Communication Backend (Figure 6.3 grey, bottom): The communication backend
component is responsible for handling the communications resulting from any
LAIK operations, such as switching between different partitionings for a data
container. Furthermore, it provides LAIK with environmental information from
the communication library, such as the location of process instances. The com-
munication component is an internal-only component; therefore its API - the
Communication API cannot be accessed by user application. A communication
backend includes a communication driver for a specific communication technol-
ogy, such as the MPI, the Transport Control Protocol (TCP), or Shared Memory
(cf. Figure 6.1 and Figure 6.2).

94

6. LAIK: An Application-integrated Index-space Based Abstraction Library

e External Agents (Figure 6.3 grey, top): The external agents component is responsi-
ble for handling information that comes from “external” locations, such as the
runtime system, the Operating System (OS) or an external operator. For fault
tolerance purposes, a fault predictor can be attached to LAIK as an external agent.
External agents are loaded as dynamic libraries at runtime.

Each LAIK instance can load multiple external agents. There is no predefined
rule on what an external agent can do. Consequently, it is the user’s responsibility
to provide the implementation and desired functionality.

o Utilities (Figure 6.3 light yellow): The utilities component provides a Utility API
with basic functionalities such as comprehensive logging, profiling, and recording
of program execution information (e.g., current iteration and phase). It also
feeds the process group API with crucial information regarding fault prediction.
Furthermore, the utilities API provides most basic functionalities for the LAIK,
such as initialization and deinitialization.

Among all these components, the utility, process group, index space, and data
container are used to provide functionalities to the application programmer. The
external agents and communication backend components are used by LAIK to access
system resource and runtime information. The utility and process group components
together provide the most basic functionalities of LAIK. For this reason, we also call
them the LAIK Core component together.

6.1.3. Overview of LAIK APIs

In the last section, we discussed the major components of LAIK. With these components,
LAIK provides three different types of APIs (see also Table 6.2):

1. User APIs: The user APIs are used to provide functionalities from LAIK that
are required application programmers. There are four sets of user APIs: Utility,
Process Group, Index Space, and Data Container. Except for the Utility API, which is
used to provide the most basic functionalities, the other three APIs are designed
to assist data migration at different abstraction levels.

2. Callback APIs: The callback APIs are used by LAIK to gather information and
functionality from the programmer or from a third-party library. Callback APIs
in LAIK include Agent Driver, Communication Driver, Partitioner, Data Types, and
Data Layout.

3. Internal APIs: The internal APIs are currently designed to be used by neither the
application programmers, nor by any third-party library. They are designed to

95

6. LAIK: An Application-integrated Index-space Based Abstraction Library

support LAIK’s modularity and the ease of interchanging components in future

development.
Memory Management,
Data Implicit Communication,
Automatic Data (Re-)Distribution
Partitioning,
Index Space Repartitioning
Process
Incremental Group Info Additional
Porting Managed
Functionalities
API Layers Functionalities

Figure 6.4.: API Layers of LAIK for Incremental Porting

With regard to the user APIs, three sets of user APIs can be used by the application:
Group, Space, and Data. This design is intended to support incremental porting of
existing applications, which can make use of different API layers, in order to gain
increasing functionality. This way, the user can adapt different functionalities in a
step-by-step manner, reducing the overhead and turn-around time for porting existing
applications. The functionalities of each layer of API are listed in Table 6.2.

96

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Table 6.2.: Overview of LAIK API Layers

Abbreviation

API Layer

Operand

Functionality

Group

Process
Group

Process In-
stances

Provides basic information on cur-
rent process instances. Information
about the process location and its
identification, the size (total num-
ber of participating processes) of the
parallel application, and upcoming
failures is provided by this interface.

Space

Index Space

Index Space
of Data
Structures

Provides operations and information
on index space (partitioning). Calcu-
late a valid partitioning and provide
repartitioning functionality accord-
ing to a change in a process group,
such as in failure cases. Calculate
the difference of two partitionings (a
so-called Action Sequence) to advise
the user to communicate efficiently.

Data

Data Con-
tainer

Data Slices
(Memory) of
Data Struc-
tures

Provides operations and informa-
tion on data slices (memory) with
an allocator interface to allocate data
storage space in memory for a given
partitioning. Provides automatic
data and communication manage-
ment functionalities. Provides an
allocator interface, perform the ac-
tion sequences (communication) on
the switch between different parti-
tionings for a given data structure.

In the following, we will introduce these different layers of APIs by looking at the ex-
ample of porting a matrix-vector multiplication application to LAIK using the different
API layers. For this example, let A be the matrix, which is stored in a 2D array, and
let x be the vector, which is stored in a 1D array. The calculation for the matrix-vector
multiplication is shown in Equation 6.1. The primitive implementation of an MPI-based
matrix-vector multiplication is given in Algorithm 1.

AX=7 (6.1)

97

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Algorithm 1: MPI-based Matrix Vector Multiplication
A : The Input Matrix
x :The Input Vector
y :Result of Matrix-Vector-Multiplication

MPL init();

(myStart, myEnd) < partitionMatrix(A, MPI_size(COMM_WORLD),
MPI_rank(COMM_WORLD));

for i <— myStart to myEnd do
‘ y[i] < calculateDotProduct(A[i], x);
end

MPI_Allreduce(y);

if MPI_rank(COMM_WORLD) == 0 then
returnResult(y);

end

MPI_Finalize();

6.1.4. User API: The Process Group API Layer

J

LAIK Group __

world h 4—_2 Subset of
) "world"
Derived
LAIK Group - -~ J
nqn
Derived 4—) Subset of
LAIK Group ‘“——— "
non

Figure 6.5.: Schematic of Different LAIK Groups

Similar to MPI Groups [WD96], LAIK process groups (object type LAIK_Group, also
called LAIK group) are collections of process instances. Figure 6.6 illustrates the
potential distribution of process groups of an example parallel application. The LAIK
group world is a default process group that contains all the process instances of a
LAIK application. Further LAIK groups can be derived from existing LAIK groups by
subsetting them. Different LAIK groups are showcased in Figure 6.5.

In the prototype we have implemented for LAIK, the LAIK process groups are static,

98

6. LAIK: An Application-integrated Index-space Based Abstraction Library

which means they cannot be changed after creation. The advantage of static process
groups lies in their simple semantics. Furthermore, this concept is very similar to
the concept of MPI groups, allowing an easier transition of MPI applications to LAIK.
However, static groups come with the downside of having many group handles, which
may become orphaned and cause high memory overhead.

For fault tolerance, LAIK provides the function Laik_get_failed() to enable the
application to get a list of failing process instances within the world group. This
information can be used by the application to create a subgroup of the initial world
group, thus excluding the failing instances in order to achieve fault tolerance.

Process Group 2

Process Group 1

Application Application Application Application
Process Process Process Process
Instance Instance Instance Instance

| LAIK | | LAIK | | LAIK | 1 | LAIK |

Communication, e.g., MPI

| Node 0 | | Node 1 | | Node N |

Figure 6.6.: Schematic Overview of LAIK Process Group Concept (cf. Figure 6.2)

For the example of a matrix-vector multiplication application only using LAIK’s
Group API Layer, the application can be handed to LAIK as presented in Algorithm 2.
The information regarding the process instances is transited to LAIK’s responsibility
instead of to MPI's. With LAIK’s MPI backend, LAIK inherits backend size and rank
information to reduce porting effort, which then further reduces the effort for porting
existing MPI application to LAIK.

As a result, almost no changes need to be done in the application code. Note that the
partitioning and communication are still the responsibility of the user code with the
Group APL

99

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Algorithm 2: LAIK-based Matrix Vector Multiplication with Group API Layer

A : The Input Matrix
x :The Input Vector
y :Result of Matrix-Vector-Multiplication

LAIK _init();
(myStart, myEnd) < partitionMatrix(A, LAIK _size(LAIK_WORLD),
LAIK_id(LAIK_WORLD));
for i <— myStart to myEnd do
‘ yl[i] < calculateDotProduct(A[i], x);
end
MPI_Allreduce(y);
//The communication still stays in MPI.
//finalization
if LAIK_rank(LAIK_WORLD) == 0 then
‘ returnResult(y);
end
LAIK_Finalize();

6.1.5. User API: The Index Space API Layer

With the next API layer, the Index Space API, an application specifies a partitioner it
intends to use and does not need to care about the partitioning anymore. For each data
structure, multiple partitionings may be required in different phases for the same data

structure. An example is shown in Figure 6.7.

Index Space | | | | | | | | | | |

Partitioning Process 2 | |
1
Process 3
Partitioning Process 2 | |
2
Process 3

Figure 6.7.: Schematic Overview of Two Example Partitionings for a Single Index Space

LAIK’s partitioning interface is bound to the previously introduced group interface
introduced. It uses the process group information as an input to calculate the best

100

6. LAIK: An Application-integrated Index-space Based Abstraction Library

partitioning. The subroutine that performs the actual partitioning calculation is called
a partitioner. Partitioners for LAIK are either directly provided by LAIK or specified by
the application programmer by utilizing the Partitioner Callback API.

Out of the box, LAIK provides default partitioners for some regular data structures,
such as 1D/2D/3D arrays. LAIK provides a set of default partitioning algorithms,
which are illustrated in Figure 6.8:

e Master: Only one process holds the data structure completely.
e Block: The data is distributed equally among all the instances.

e Halo: The data is distributed equally among all the instances, with each instance
holding a read-only part of its neighbors.

Space
R DProcessO

Master
Partitioning v B Process 1

—_

—

Process 2
Block
Partitioning 1 2118 112187 Process 3
wao o] o [
Partitioning Y v > . ® @ U

Figure 6.8.: Overview of Different Built-In Partitioners of LAIK

If different partitionings are applied to the same data structure, the application can
specify which data is needed and when. The change from one partitioning to another
is called a transition in LAIK. When there is a transition, a communication sequence
that is required to switch between one partitioning to another can be calculated. This
sequence of communication is called Action Sequence in the LAIK terminology. Potential
actions can be send/receive, broadcast, or reduction. An example of a transition and
its corresponding action sequence is given in Figure 6.9. A calculated action sequence
can be accessed by the application and executed by either the application or (with the
Data APIs) by LAIK.

101

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Index Space Transition (SUM) Action Sequence
A i

7 D—+—> D Reduce and broadcast between 2 and 3

Process 1

Process 3 | ¢ Send to 1 from 3

5 ' -l Reduce between 2 and 3 and broadcast
+ between 1and 3

4 ‘ ‘ Send to 3 from 2
3 Send to 3 from 1
2 Send from 1 to 2 and keep on 1

1 O > Initialize on 1 and 2

Partitioning 1 Partitioning 2

\4

Figure 6.9.: Schematic Overview of a Transition

For our Matrix-Vector multiplication example, two partitionings are created:

e Sub-Partitioning(pSub) for the matrix and the resultant vector, which is a dis-
tributed partitioning where each process instance holds a portion of the data
(default block partitioning), and

e Total Partitioning(pTotal), where the data is only held by one process instance
(default master partitioning).

The computation kernel is adapted so that each instance asks LAIK for its partition.
LAIK does not necessarily ensure the continuity of partitions for any given process
instance. As a result, an additional while-loop is added to enable the application to
work on multiple non-continuous subpartitions. Finally, the application can obtain a
list of communication operations that need to be done. Our algorithm is transformed

102

6. LAIK: An Application-integrated Index-space Based Abstraction Library

as shown in Algorithm 3 on the next page.

Algorithm 3: LAIK-based Matrix Vector Multiplication with Space API Layer
A : The Input Matrix
x :The Input Vector
y :Result of Matrix-Vector-Multiplication
LAIK_init();

//subMatrix and wholeMatrix are partitioners

//Create partitioning for data
pSub < LAIK_new_partitioning(A, subMatrix);
pTotal <— LAIK_new_partitioning(A, wholeMatrix);
(myStart,myEnd) < LAIK_my_partition(pSub);
while (myStart, myEnd)! = NULL do

for i < myStart to myEnd do

‘ y[i] < calculateDotProduct(Ali], x);

end

(myStart, myEnd) < LAIK_my_next_partition();
end
transition <— LAIK_calc_transition(pSub, pTotal);
foreach t in transition do

executeTransition(t);

//This is still responsibility of the programmer!
end
if LAIK_rank(LAIK_WORLD) == 0 then

‘ returnResult(y);

end
LAIK_Finalize();

6.1.6. User API: The Data Container API Layer

The LAIK Data API layer is the most advanced API layer in LAIK, operating on the
application data itself and providing memory and communication management for
data structures. It utilizes both the information from process groups, as well as the
partitionings calculated from the space API (cf. Section 6.1.5). The user specifies the
data types and layouts of its data structures, and LAIK performs memory allocation
and deallocation for these data structures. LAIK provides primitive data types — such
as integers and floating point numbers — and default data layouts — such as 1D/2D/3D
arrays. Customized data type and layout can be added by utilizing the Data Type and
the Data Layout callback APIs (cf. Section 6.1.7).

103

6. LAIK: An Application-integrated Index-space Based Abstraction Library

To access a data structure, the application calls the Laik_map() function to get the
underlying pointer and range for its data slice. Each time after a transition between
different partitionings is executed, the data pointer may become obsolete and will then
need to be updated by calling the Laik_map () function again.

To reduce the overhead from frequently mapping and invalidating the pointers to
the data structure, LAIK provides a feature called pointer reservation. By requesting
pointer reservation, the application can enforce LAIK to keep a pointer persistent. The
pointer to the data slice remains valid until a change is allowed at a future timepoint.
A schematic view of this concept is given below in Figure 6.10.

allocate

pointer pointer
Without l valid _)i valid _)|
Pointer { — F——> time
Reservation | I
map map
transition(p1) transition(p2) transition(p1)
reserve(p1)
reserve(p2)
allocate | pointer N
With ™ valid 1
Pointer — J—— time
Reservation l |
map allow_change
transition(p1) transition(p2) transition(p1)

Figure 6.10.: Schematic Overview of Pointer Reservation

However, by utilizing the pointer reservation, higher memory overhead can be
produced. Figure 6.11 showcases an example. To ensure pointer validity, the data
structure is not kept dense on the memory. Instead, sufficient memory space is allocated
for storing data that is used in all the required partitionings.

104

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Partitioning (p1)

Partitioning 2 (p2)

0 1 2 3 4 5 6 7 0 2 3 4 5 6 7
Memory Layout Memory Layout
on Process 0 on Process 1
Without o |1]2 3 p1 4 | 5 | 6 | 7 pi
Pointer
Reservation | 0 2 4 6 p2 1 3 5 7 p2
wn Lot l2fsf [| [[[[| Jalslel7]| p
Pointer
Resevaon | © | 2| [af [| [a1 [s] [s] [7] p
Process 0 Process 1 I:l Empty Cells

Figure 6.11.: Example Memory Layout with and without Pointer Reservation

In addition to the location of data, LAIK also keeps track of the access pattern to
data structures, such as read-only, read /write. Furthermore, LAIK stores information
regarding the usefulness of the data at a given timepoint (these timepoints are called
access phases), such as preserve data, initialize data, or useless data. This way, LAIK can
optimally calculate and minimize communication overhead. For example, data that
is not required at in a subsequent access phase does not need to be transferred, thus
reducing communication demand. An example of the relation between transition and
different access patterns is given in Figure 6.12.

Reduce 1) Read In 1 Reduce 1) Read In 1
Initialize 2 ! Reduce 2 ' Read In 2 ! Reduce 2 '
Data Structure 1 —>» I —> I o I —> I
0 E E : E
Data Structure 2 —» ' > ' >
—> time
Phase 1 ; Phase 2 ; Phase 3 ; Phase 4

Figure 6.12.: Schematic Overview of Access Pattern and Transition

The action sequences calculated in the Space API can be executed in the data API
by calling the Laik_exec_transision() function, triggering communication and data
exchange. This way, LAIK performs implicit communication for the application. With
LAIK’s Data API, the communication can be purely achieved by describing the required
location of data (partitioning) and the transition between different partitionings.

105

6. LAIK: An Application-integrated Index-space Based Abstraction Library

To further reduce the overhead caused by the calculation of action sequences, pro-
grammers can ask LAIK for a pre-calculated action sequence between different pariti-
tonings. Combined with the pointer reservation functionality, these preserved action
sequences also remain valid until the memory layout is changed. This way, the applica-
tion can keep executing the same action sequence for the same transition between two
particular partitionings, unless a change in a given partitioning occurs.

For fault tolerance, LAIK’s Data API uses Laik_repartition_and_repart (), which
obtains node failures from the external interface (cf. Section 6.1.8. This function also
calculates a new derived partitioning by using the derived, shrunk group excluding the
failing nodes. Finally, it triggers all the necessary communication operations for data
migration by executing a transition from the original to the derived partitioning.

In our Matrix-Vector-Multiplication example, with the Data API Layer, all the com-
munication and memory management is done by LAIK. The resulting program is given
in Algorithm 4. The resultant vector y becomes a LAIK data container, as well as the
matrix A, because they are distributed across all nodes. Initially, both y and A are as-
signed with pSub partitioning for parallel computation. After the kernel execution, the
resultant vector is switched to pTotal partitioning, which gathers the data to instance
with the ID 0. This transition between the partitioning pSub and pTotal also triggers
gather on instance ID 0 automatically.

In summary, the three different levels of user APIs allow the programmer to port an
existing application in SPMD model to LAIK in an incremental, step-by-step manner.
Data migration is possible at all API layers (cf. Table 6.2): With Group API, the user is
informed about current process instance and group information. With Space API, data
partitioning and repartitioning is calculated by LAIK. The user only needs to carry out
the specific data operations corresponding to the change in data partitioning. With Data
API, all the operation required for data migration is covered by LAIK. The programmer
only needs to tell LAIK about when an operation is allowed.

106

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Algorithm 4: LAIK-based Matrix Vector Multiplication with Data API Layer

A : The Input Matrix
x :The Input Vector
y :Result of Matrix-Vector-Multiplication

LAIK _init();

//subMatrix and wholeMatrix are partitioners
//Create partitioning for data

pSub < LAIK_new_partitioning(1D, subMatrix);
pTotal <— LAIK_new_partitioning(1D, wholeMatrix);

//create data containers
matrix <— LAIK_new_data(1d, A, pSub); y < LAIK_new_data (1d, y, pSub);
(myStart,myEnd) < LAIK_my_partition(pSub);
while (myStart,myEnd)! = NULL do
LAIK_get_data_pointers(matrix, y);
for i <— myStart to myEnd do
‘ result[i] < calculateDotProduct(matrix[i], x);
end
(myStart, myEnd) < LAIK_my_next_partition();
end
LAIK_switch_to_partitioning(result, pTotal);
if LAIK _rank(LAIK_WORLD) == 0 then
returnResult(y);
end
LAIK_Finalize();

107

6. LAIK: An Application-integrated Index-space Based Abstraction Library

6.1.7. Callback APIs

The callback APIs are interfaces that enable the user to configure LAIK in order to
support customized partitionings, data types, and data layouts. There are three callback
APIs:

o The partitioner API is used to allow the user to create a LAIK-compatible partitioner
for data partitioning. This way, the index space component can handle arbitrary
data structures that come from the user application. An example of a partitioner
will be given later in this chapter.

o The data types API is used to enable the user to configure customized data types
and their operations in the data container component. This is crucial for LAIK to
be able to carry out automatic communication on arbitrary data structures. To
register a data type, simply specify its name and size, as well as two functions:
One for setting the values of a referenced array of elements to the neutral element
of the reduction; and another for doing element-wise custom reduction on two
arrays of values.

e The data layout API is used to allow LAIK to efficiently manage memory as well
as communication. As user-defined data structures are usually driven by the
logic of user application, these data structures can have complex data layouts.
In order to handle such layouts, the programmer has to supply LAIK with this
layout information. The layout callback API is utilized by specifying a pack and
an unpack function to allow LAIK to serialize and deserialize a data structure.

A partitioner for LAIK is structured as following: It should provide LAIK with
the information about which index range belongs to which partitioning. Figure 6.13
illustrates an example of partitioning to showcase the partitioner APL In this example,
a 2D index space is equally distributed row-wise in two tasks. Such partitioning is
useful for applications such as matrix multiplication. For each row, 4 elements are
added to partition 1 and partition 2, respectively. The example partitioner for LAIK
is given in Algorithm 5. Our example partitioner loops over the rows in this matrix,
and adds 4 elements (called slices) to the given partition. This way, the index space is
partitioned into two partitions.

108

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Partition 1 Partition 2

O = N W &~ O

0 1 2 34 5 6 7

Figure 6.13.: Example Partitioning for LAIK Partitioner API Demonstration

Algorithm 5: Example Partitioner of the Example Partitioning in Figure 6.13
t0, t1: LAIK Tasks
p :LAIK Partitioning

for i +— 0to5do
LAIK_append_slice(p, t0, i, 4);
LAIK _append_slice(p, t1, i+4, 4);

end

return p;

6.1.8. The External Interface

LAIK’s external interface is designed to communicate with external programs or
routines — called Agents. The agents are provided by the user, according to his and her
needs. Each agent is a dynamic library, which is loaded demand at initialization time.
The agent is executed synchronously within LAIK instances” process. Therefore, agent
programmers have to implement their own asynchronous communication if required.
Each LAIK agent must provide the implementation of agent_init () function, stating
its name, version, and capabilities. This function is also the main entry point for each
LAIK agent.

LAIK supports the loading of multiple agents at the same time. However, loading
a large amount of agents may cause significant memory and performance overhead
because they run within the same scope of the LAIK instance. Currently, LAIK only
supports agents for fault tolerance purposes which feature an agent_get_failed()
function, reporting the identifiers of the upcoming failing nodes. The LAIK agent
component provides a synchronous call Laik_get_failed (), which can be used by the

109

6. LAIK: An Application-integrated Index-space Based Abstraction Library

application of LAIK internals to query information on either upcoming faults or on
current faults from all loaded agents. This way, LAIK exposes system and runtime level
information to the application.

The schematics for the LAIK external interfaces are given in Figure 6.14 below.

Load

_O)
-O} - -

get_failed

Agent 1

Laik_load_Agent()

Load C)
—O) % Agent %
Agent 2 —— —Q)
—O} Laik_get_failed()

I
I"I--__

get_failed 1

|

Load 1

-)) 1

Agent 3 |

—O)- - -
get_failed

Figure 6.14.: Schematics for the LAIK External Interface

6.1.9. The Communication Backend Driver Interface

LAIK supports arbitrary communication backends to help its operation. Out of the box,
LAIK currently provides two different backends:

e MPI backend, and
o TCP backend.

However, application programmers can provide additional LAIK backends by imple-
menting a set of callback functions. The most important callback functions are:

e init(): This is the main entry point for initializing the backend. It is called before
any application code is called and create a LAIK instance with the given backend.
It also allows the backend driver to initialize the communication library.

e finalize(): This function is used to advise the backend to clean up its resource
and the communication library. It is also used to destroy the corresponding LAIK
instance.

110

6. LAIK: An Application-integrated Index-space Based Abstraction Library

e prepare(): The prepare () function is used by the backend driver to analyze the
action sequence and translate the LAIK action sequence to the communication
sequence actual required. Furthermore, the backend driver can use this function
to allocate the resources for communication operations. As the same transition is
expected to occur frequently, the backend driver can preallocate these resources
(such as send and recv buffers) and preserve them to improve the performance.

e cleanup(): The cleanup() function enables the backend to clean up resources
allocated by the prepare () function, such as such as send and recv buffers.

e exec(): This function triggers the actual communication in the backend for a
given action sequence.

e updateGroup(): As LAIK is designed to be fault-tolerant, the underlying backend
may need to react on changes to the process group (such as the removal of a
process instance in a group). The adaptation of the group-specific data in the
backend is achieved by calling this function.

The application programmer is required to call the initialization function of his and
her desired backend directly to obtain a LAIK instance with that given backend (e.g.,
LAIK_Init_mpi). LAIK can run with multiple backends at the same time. However,
each LAIK backend will create an independent LAIK instance, albeit these instances
are running in the same application. Any operation on a specific LAIK instance has no
effect on other LAIK instances.

6.1.10. Utilities

LAIK’s utility interface is mainly responsible for providing basic profiling operations,
debugging printouts, and exposing the program information to LAIK. The profiling
functions provide basic functionalities such as starting/stopping a timer, printing
out timing information and writing such information to file. The program control
functions enable any program to set identifiers for an application’s current status
information, such as iteration (LAIK_set_iteration) and program phase information
(LAIK_set_phase). Finally, the debugging functions provide the capability of printing
information to standard output tagged with detailed information about LAIK groups
and sizes at different debugging levels.

111

6. LAIK: An Application-integrated Index-space Based Abstraction Library

6.1.11. Limitations and Assumptions in Our Prototype Implementation

Our current LAIK implementation is provided as open source software on Github?. As
LAIK is still a prototype, some limitations apply:

o At the time of this writing, our LAIK implementation comes with two communi-
cation backends: TCP backend and MPI backend.

e The MPI backend is used for evaluating the performance of LAIK, as well as
its overhead on runtime and memory. However, as MPI does not provide fault
tolerance capabilities such as shutting down some of the existing ranks gracefully,
an empty LAIK process without active data to calculate cannot be shut down.
In our evaluations, such processes call laik_finalize and wait until the other
processes also finish.

e The TCP backend is a lightweight implementation that provides a minimum set of
communication functions (send/receive) to allow LAIK to operate. This backend
is not used for performance benchmarking. However, it overcomes the drawback
of not allowing empty processes to shutdown and can be used to demonstrate
the fault-tolerant capability of LAIK.

e Currently, LAIK only supports the “shrinking” of process groups because the
external interface only allows the transmission regarding failure information
(get_failed). This means that data migration with spare nodes is currently not
supported.

6.2. Basic Example of a LAIK Program

Before we get started with our evaluation of LAIK, let us understand LAIK with
the help of a simple example application called vsum. vsum is an application which
calculates the sum of a given vector A which is stored as a simple C array. For the
sake of simplicity, we assume that the length of the vector is divisible by the number of
processes. This simple application is illustrated as pseudocode in Algorithm 6 on the
next page.

To implement this algorithm in LAIK, we select the MPI backend of LAIK. This way,
the application can be started through mpirun and controlled as an MPI application.
Figure 6.15 on the following page illustrates the necessary steps for the vsum example.
After the initialization of LAIK, a Laik_Space object s is created for the index space of

2https://github.com/envelope-project/laik/commit/a2641901de9a0fe3c3£236be165cd5a94430b70a,
accessed in December 2018

112

https://github.com/envelope-project/laik/commit/a2641901de9a0fe3c3f236be165cd5a94430b70a

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Algorithm 6: Example Application of vsum using MPI
A : The Input Vector
y :Result of Vector Sum

MPI_Init();

n < Alength() / num_processes;
myStart < n*my_rank;

myEnd < myStart+n;

for i < myStart to myEnd do
|y += Alil;
end

MPI_Allreduce(SUM, y, WORLD);
MPI_Finalize();

vector A. A Laik_Partitioning object p is created using the built-in block partitioner,
where each process instance has an equal range of the index space assigned. Afterward,
a Laik_Data object a is created for A with the previously created Laik_Space object s.
The data is switched to the partitioning p, triggering redistribution of data, if required.
Before the calculation can be started, each process instance must call laik_my_slice
to identify its range for processing. Finally, the calculation is executed. After the
calculation has been done, we create another partitioning with the built-in all parti-
tioner, where each process instance holds the entire vector. By switching the currently
active partitioning to the new partitioning, LAIK triggers the specified all reduction
automatically, after which every process instance holds the result of the vector sum.
In the end, laik_finalize is called, indicating the end of the program.

ad: LAIK vsum J

‘ Initialize LAIK Create Laik_Space s Create Laik_Data a
for Vector A for Vector A with s

Create
Laik_Partitioning p

switch Laik_Data* a
to Partitioning p

switch Laik_Data* a Create Caclulate Vector
Finalize LAIK with Partitioning p2 Laik_Partitioning p2 laik_get_my_slice
! : g | SUM
n R i with built-in "all

Figure 6.15.: Activity Diagram of LAIK-based vsum

113

6. LAIK: An Application-integrated Index-space Based Abstraction Library

6.2.1. Extended Example of Automatic Data Migration with LAIK

Given the previous example of vsum, we extend this application with data migration
functionality. The adapted activity diagram is shown in Figure 6.16.

ad: LAIK vsum J
. . Create .) N
‘ Initialize LAIK Create Laik_Space s Create Lalk,Dgta Laik_Partitioning p switch Le}|_l<7l2_)ata a
for Vector A for Vector A with s - e w " to Partitioning p
ith built-in "block’ \l/
Caclulate Vector ik G G e
SUM —gelmy_

Create
Laik_Partitioning p2

with

switch Laik_Data* a
with Partitioning p2
n m R i

Finalize LAIK

ilt-in "all

Create new
<— Laik_Partitioning pNew <—
with built-in "block"

Create a derived

Laik_Group g2 yes')etected

switch Laik_Data* a
with Partitioing pNew

|

Figure 6.16.: Activity Diagram of LAIK-based vsum with Data Migration

Upon a predicted fault, the application can ask LAIK to create a derived new Laik_Group
object g2, thus excluding all failing process instances. Based on this new group, a new
Laik_Partitioning object pNew is created with the built-in partitioner block. Finally, by
executing a transition to the new partitioning, data transfer (and migration) is executed
automatically. This way, LAIK ensures that no workload remains on the failing process
instances.

6.3. Evaluation of the LAIK Library with Real-world
Applications

6.3.1. Application Example 1: Image Reconstruction with the
Maximum-Likelihood Expectation-Maximization (MLEM) Algorithm

In order to evaluate the performance impact and the effectiveness of data migration,
two applications have been ported to LAIK. The first application we evaluated is
the Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for Positron
Emission Tomography (PET) image reconstruction [SV82]. A PET is a medical imaging
technique to observe the metabolism process in order to detect, stage and monitor a
range of diseases. For this purpose, a radioactive tracer has to be injected into the
observational object. Such tracers emit positrons during their -decay. Two 511keV
gamma photons, which travel in opposite directions, are created through annihilation

114

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Figure 6.17.: Schematic View of the MADPET-II PET Scanner [Kiis+09]

of the positrons with electrons [Kiis+09]. To detect these photons, a PET scanner
equipped with a ring of detectors based on scintillator crystals and photodiodes is used.
If two detectors record a photon within a certain time window, an event is assumed
somewhere along the line connecting the detectors. Such a line is called a Line of
Response (LOR). In 3D space, the two detectors can detect events not only from a line,
but rather a larger polyhedral 3D space inside the scanner, called the Field of View
(FOV). The number of detected events influences the quality of measurements, and the
coverage of the FOV by LORs affects the resolution. The FOV is generally divided into
a 3D grid, where each grid cell is called a voxel [Kiis+09].

In this dissertation, the example scanner used is called MADPET-II, which was
developed at Klinikum rechts der Isar der TU Miinchen. It is designed for high-resolution
3D imaging of small animals. MADPET-II features a unique design with two concentric
rings of detectors. This way, the sensitivity increases without loss of resolution. A
schematic view of the MADPET-II scanner is given in Figure 6.17.

The output from the detector - called list-mode sinogram - must be reconstructed
using the system matrix. The latter describes the geometrical and physical properties
of the scanner.

115

6. LAIK: An Application-integrated Index-space Based Abstraction Library

The Maximum Likelihood Expectation Maximization (MLEM) Algorithm

The algorithm used to reconstruct the image for our MADPET-II scanner is MLEM,
developed originally by Shepp and Vardi [SV82] in 1982.

FlrD i % 8 6.2)

1
= a::
N M q
! Yulq s k= dikfy

The algorithm uses the iteration scheme shown in Equation 6.2 above, where

e N is the number of voxels,
e M is the number of detector pairs (LORs),
e f is the 3D image that is reconstructed,

e A is the system matrix of size M x N, which describes the geometrical and
physical properties of the scanner,

e ¢ is the measured list-mode sinogram of size M, and
e g is the iteration number.

The algorithm is based on the probability matrix A = 4;;, where each element represents
the probability of a gamma photon discharge from a voxel j being recorded by a given
pair of detectors i [Kiis+09].

In particular, this algorithm can be divided into four major steps:

1. Forward Projection: i = Af. In this step, the current approximation of the image
is projected into the detector space.

2. Correlation: ¢; = % The projection from step 1 is correlated with the actual
measurement. Z

3. Backward projection: u = ATc. The correlation factor is projected back into
image space by multiplying with the transposed system matrix.

u .
4. Update image: f]qH = n—] f]g. An update for the image with the back-projectiong
correlation factor is calculated and a normalization 7 is applied.

The algorithm assumes an initial estimated gray image, which is calculated by
summing up the elements of g, which is the measured data, and then dividing this by
the sum of the elements of A, which is the geometry matrix. This process is given in
Equation 6.3 [Kiis+09] on the following pages.

116

6. LAIK: An Application-integrated Index-space Based Abstraction Library

le\il 8i
fO ==
Ly 6.3)

N
where,nj =Y " aj
=

The runtime of the algorithm is dominated by the forward and backward projection,
both being sparse matrix-vector operation. This algorithm is known to be memory
(bandwidth) bound [K{is+09].

The System Matrix of MADPET-II

The system matrix A of MADPET-II contains its geometrical and physical description.
The FOV is divided into a grid of 140 x 140 x 140 voxels in (x, y,z) direction. There is a
total of 1152 detectors in MADPET-II, which result in 664128 unique LORs. The content
of the system matrix is generated by the detector response function model as described
in [Kiis+10; Str+03]. The matrix is stored in Compressed Sparse Row (CSR) [Saa03]
format to save space. The elements are stored in single precision floating point number
format [Kiis+10].

A more detailed description of this system matrix and a density plot for visualization
are given in Appendix B of this dissertation. Although the transposed system matrix
is required in the backward project, we do not store the transposed matrix. This is
because the backward projection can be written as ul = cTA, which only requires the
original CSR matrix [Kiis+09].

6.3.2. MPI Parallelization

For parallelization, the matrix is partitioned into blocks of rows with approximately the
same number of non-zero elements per block. This results in good, albeit not perfect
load balancing. The reference implementation of MLEM is written using MPI. It features
a checkpointing possibility after each iteration and a command-line parameter controls
this option. The implementation of the MPI-based MLEM is shown in Algorithm 7.
The implementation of the reference MLEM is available as open source software on
Github®.

Shttps://github.com/envelope-project/mlem, accessed in December 2018

117

https://github.com/envelope-project/mlem

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Algorithm 7: MPI Based MLEM Implementation

matrix :Input: The System Matrix

Imsino: Input: The Listmode Sinogram

nlter :Input: The Number of Total Iterations
chkpt :Input: Flag for Checkpointing

image :Output: The Reconstructed Image

(myStart, myEnd) < splitMatrix (rank, size);
//myStart = starting row, myEnd = ending row
calcColumnSums(ranges, matrix, norm);
if needToRestore then

‘ restore(checkpoint, image, iter);
else

‘ initlmage(norm, image, Imsino);
end
for i <— 1 to nlter do
calcFwProj(myStart, myEnd, matrix, image, fwproj);
MPI_Allreduce(fwproj);
calcCorrel(fwproj, Imsino, correlation);
calcBkProj(myStart, myEnd, matrix, correlation, update);
MPI_Allreduce(update); calcUpdate(update, norm, image);
if chkpt then

checkpoint(image, i);

end

end

if rank==0 then
| writeImage(image);
end

118

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Porting MLEM to LAIK

In order to port MLEM to LAIK, the code is transformed in several steps [Yan+18]:

1.

Matrix Loading Routine: The sparse matrix class file reading the data from the
csr file* is modified to support the reading of non-contiguous data ranges. This is
required in order to support multiple non-contiguous partitions (and data slices),
which is created with an incremental partitioner (cf. Section 5.2).

. Data Partitioning: Create the index space object (Laik_Space) over the rows of the

sparse matrix, as well as a corresponding partitioning object (Laik_Partitioning).
The built-in block partitioner with a weighted index is chosen to support the
unbalanced rows of the sparse matrix. Furthermore, a shared partitioning (cf.
Section 5.2) is created with the built-in all partitioner for the replacement of
allreduce operations.

Data Container: Create data storage space (Laik_Data) for all working vectors,
including norm, correlation, fwproj and image.

Kernel Wrapping: The calculation kernels for the forward projection and the
backward projection are encapsulated with an additional loop, in order to process
non-contiguous data slices.

Communication Transformation: All the MPI communication routines are re-
placed by switching the partitioning of the respective LAIK data container to the
all partitioning previously created. This triggers an implicit allreduce operation.

The workload of porting the application (excluding the preparation work) was
approximately half a day without any previous experience with LAIK [Yan+18]. The
LAIK version of MLEM is available as open source software on Github®.

6.3.3. Evaluation of Application Example 1: MLEM

The evaluation of our LAIK-based MLEM implementation (in the following: laik-mlem)
in comparison with the original MPI-based MLEM code (in the following: reference
mlem) was carried out on the CoolMUC-2 system at the Leibniz Rechenzentrum der
Bayerischen Akademie der Wissenschaft (LRZ) (the Leibniz Supercomputing Centre
of the Bavarian Academy of Sciences and Humanities) 6. Each node on CoolMUC-2 is
equipped with two processors with Intel Haswell architecture and 14 cores. The RAM

“Compressed Sparse Row [Saa03]
Shttps://github.com/envelope-project/mlem
6https ://www.lrz.de, accessed in June 2019

119

https://github.com/envelope-project/mlem
https://www.lrz.de

6. LAIK: An Application-integrated Index-space Based Abstraction Library

available per node is 64 GB. More detailed information of CooIMUC-2 is provided in
the Appendix A.2.

Both laik-mlem and reference mlem are compiled using gcc version 5 and Intel MPI
version 2017. All binaries are compiled with the -march=nativ -03 flags to ensure
maximum optimization. We ran laik-mlem and reference-mlem with 1 to 28 MPI processes.
Furthermore, we pinned these processes equally among the four NUMA domains of
a node (with the environmental variable for Intel MPI I_MPI_PIN_DOMAIN=numa). For
both programs, we executed ten MLEM iterations and captured four independent
measurements for each task/binary combination. All the experiments were carried out
the same physical node. To eliminate delays from the file system, the initial time of
loading the sparse matrix from the file system was not considered in the scalability
evaluation. All evaluation is completed on a single node because the sparse matrix
is small enough to fit into the system’s main memory. Furthermore, the single-node
setup allows us to understand the minimum overhead of LAIK. The original evaluation
results were published in [Yan+18]. Figures 6.18 — 6.22 represent the evaluation results.

As shown in Figure 6.18, LAIK does not produce much overhead over the reference
mlem. This is also reflected in Figure 6.19. As a result, a total speedup of up to 12x
can be achieved. The same speedup is achieved with the reference mlem. Furthermore,
Figure 6.19 shows that the speedup flattens out starting from approximately 16 MPI
processes, and oscillates with a higher number of MPI processes. This is expected
behavior, as MLEM is memory (bandwidth) bound [Kiis+09]. The architecture of our
testbed features a dual-socket design with two NUMA domains on each processor
chip (also known as cluster-on-die), resulting in a total of four NUMA domains. This
architecture negatively affects performance if the number of total MPI processes is not
divisible by four.

To better understand the overhead produced by LAIK, Figure 6.20 shows the de-
composition of runtime per iteration produced by different operations as a relative
percentage. As expected, time spent in the backend (communication library, i.e., MPI)
increases with the number of processes, as MLEM requires allreduce operations. Poten-
tial overhead produced by LAIK is very low and does not scale with the number of
processes. This conclusion is also confirmed by Figure 6.21. Therefore, we conclude
that the overhead of LAIK for MLEM is low, and it does not change the scaling behavior
of MLEM.

We now compare different repartitioning algorithms. Since we implemented laik-mlem
in a way so that it can handle a non-contiguous range of sparse matrix rows, we use
two different (re-)partitioners to create two different partitionings for data migration.
The first one is the incremental (re-)partitioner (cf. Section 5.2), which equally divides

120

6. LAIK: An Application-integrated Index-space Based Abstraction Library

20 B LAIK
B Native
15
4]
E
1=
=3
@
c
2 10
@
0
a
[=5
<
«©
°
L 5
0

2 4 6 8 0 12 14 16 18 20 22 24 26 28

Number of MPI Tasks

Figure 6.18.: Average Runtime per Iteration laitk-mlem vs. reference mlem [Yan+18]

the workload of MPI instances leaving, and appends those to the remaining instances.
This partitioner is implemented by the application programmer of MLEM. The second
one is the continuous (re-)partitioner, which is the default block partitioning provided by
LAIK. It calculates a new partitioning from scratch with the modified group, excluding
those MPI instances leaving. The implementation for this partitioner is provided by
LAIK.

For our experiment, we explicitly removed one of the working MPI instances after the
sixth iteration. This way, we ensured that the time we measured was for repartitioning
only, and not for the synchronizing the processes. The result is shown in Figure 6.22.
One can see that the incremental (re-)partitioner outperforms the continuous one by a
factor of two. The reason is that the MLEM code has to reload new parts of the sparse
matrix from the file system in order to execute the computation. With the incremental
partitioner, a significantly lower amount of data has to be reloaded and transferred
because only the rows on the nodes leaving need to be loaded by a remaining process.
With the continuous (re-)partitioner, a higher amount of data must be loaded from the
file system because the workload ranges are shifted globally. This causes a higher time
consumption for the first iteration after repartitioning. Further, we can see on Figure 6.22
that the execution time both before and after repartitioning remains constant, while the

121

6. LAIK: An Application-integrated Index-space Based Abstraction Library

8 = Speedup LAIK
= Speedup MPI

s
3 4
@
o
0
2
0

5 10 15 20 25

Number of MPI Tasks

Figure 6.19.: Speedup Curve for laik-mlem vs. reference mlem [Yan+18]

time for the first iteration after repartitioning differs. Moreover, it is observable that the
runtime per iteration increases by only a minimum after repartitioning, indicating that
LAIK has restored the load balance across all the remaining MPI tasks. This observation
demonstrates that data migration is successful and does not change the scaling behavior
of MLEM. Therefore, we conclude that with LAIK, fault tolerance can be achieved by
data migration.

Our experiments with different partitioners confirm our theory introduced in Chapter
5: Different repartitioning strategies are useful in different cases. For some applications,
which are more rigid and do not support multiple slices with their kernels, the continu-
ous (global block) partitioner works best. For other applications, which can be adapted
to support non-contiguous data slices (such as MLEM), their performance benefits from
incremental repartitioning.

122

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Percentage of Consumed Time

100% Backend Time
B LAIK Time

B Compute Time

75%

50%

25%

0%
2 4 6 8 10 12 14 16 18 20 22 24 26 28

Number of MPI Tasks

Figure 6.20.: Overhead Analysis for laik-mlem [Yan+18]

123

6. LAIK: An Application-integrated Index-space Based Abstraction Library

20 W Total
= Compute
= Backend
= LAIK
15
g
1=
3
lia
§10
8
a
(=%
<<
=
e

w

2 4 6 8 10 12 14 16 18 20 22 24 26 28

#Task

Figure 6.21.: Overhead Scalability Analysis for laik-mlem [Yan+18]

124

6. LAIK: An Application-integrated Index-space Based Abstraction Library

4 -4 4 -4
-6 -6
-8 -8
-10 =10
3 =12 3 =12
-14 -14
§ -16 K] -16
S -18 S -18
[Q
2 2 20 5 2 -20
) -22) -22
2 £
E -24 = -24
2 -26 & -26
1 A o ! o
— e s e i
e — e e ————
e E————
0 0
5 6 7 8 9 5 6 7 8 9
Iteration Number Iteration Number

Figure 6.22.: Comparison of Different Repartitioning Strategies for laik-mlem [Yan+18]
Left: Repartitioning using the Incremental Partitioner
Right: Repartitioning using the Default Block Partitioner

125

6. LAIK: An Application-integrated Index-space Based Abstraction Library

6.3.4. Application Example 2: The Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics (LULESH) Benchmark

With laik-mlem, we show the feasibility of achieving data migration to rescue data
from a failing node. Furthermore, we have shown low overhead of LAIK for an
application running on a single node. However, this experiment is not sufficient to
prove the effectiveness of LAIK for large-scale (parallel) applications designed for
cluster systems. Consequently, we have also ported another application — the Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) benchmark — in
order to understand the efficiency of LAIK for data migration.

LULESH is a benchmark for targeting the solution to the Sedov Blast Problem
(SBP) [Sed46] using Lagrangian hydrodynamics [HKG]. The SBP represents a class of
classical HPC applications. According to Hornung et al. [HKG], the reference LULESH
implementation provided on Github’ is drawn from a production hydrodynamics code
from the Lawrence Livermore National Laboratory (LLNL).

The basic idea of achieving a solution to SBP lies in solving the Euler equations
as shown in Equation 6.4, where U is the velocity, p is the density, e is the internal
energy, p is the isotropic pressure, g is the artifical viscosity, and ayc and éyg are the
acceleration and heating terms due to the hourglass filter [HKG].

Dﬁ —

Ppr = A (p+aq)+panc 64)
De DV, . '
ﬁ:_(erq). DS:QCWLEHG

The exact physics involved is beyond the scope of this work because we focus on
porting the existing LULESH implementation to LAIK. While detailed information
on physics and implementation of LULESH can be found in [HKG], here is a brief
summary:

e The reference code simulates the SBP in three spatial dimensions x,y,z. A point
source of energy is deposited at the origin as the initial condition of the simulation.

e The initial mesh is a uniform Cartesian mesh. It is divided into logically-
rectangular collections of elements, which are called domains. Each domain —
which is implemented as a C++ class — represents a context for data locality. It
holds the data for all the elements as well as the nodes surrounding those ele-
ments. The schematic of LULESH mesh decomposition is depicted in Figure 6.23.
Boundary data is replicated if the domains are mapped to different processors.

"https://github.com/LLNL/LULESH, accessed in December 2018

126

https://github.com/LLNL/LULESH

6. LAIK: An Application-integrated Index-space Based Abstraction Library

e There are two different types of data stored in the domain class: the initially
cube-shaped finite elements (in the following: elemental data), and the related
vertices of the finite elements (in the following: nodal data). There are a total of
13 nodal variables and 13 elemental variables in each domain. A detailed list is
given in Tables C.1 and C.2.

e Two different operations are carried out in each iteration (timestep):

CalcTimeIncrement (), which calculates the time increment At" for the current
timestep.

And LagrangeLeapFrog(), which advances the solution of the elements from #"
to 11,

The pseudocode for the MPI-based implementation is given in Algorithm 8.

e For our work, we use the MPI/OpenMP hybrid implementation of LULESH
2.0. There are two main types of communication: (1) Halo exchange at borders
of domains for stencil-wise updates of data structure (e.g., volume gradient).
(2) Reduction (aggregation) of calculations from the element quantities to the
surrounding nodes (e.g., force vector). MPI communication is explicitly coded,
and communication routines are pre-initialized (e.g., finding out communication
partners and setup buffers) at mesh decomposition time.

Elements.

(local)
Domain

X

~

(global) Mesh

Figure 6.23.: LULESH Mesh Decomposition Schematic [HKG]

127

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Algorithm 8: MPI-based Implementation of LULESH [HKG]

sz :Input: Size of the Mesh
nlter:Input: The Number of Total Iterations

MPI_Init();
Domain locDom <— InitMeshDecomposition(rank, size, sz);
while (lendOfSimulation && nlter>0) do
CalcTimelncrement();
LagrangelLeapFrog();
nlter—;
end

if rank==0 then
| printStatistics();

end
MPI_Finalize();

Subroutine LagrangeLeapFrog()
LagrangeNodal();

//Advance Node Quantities
CalcForceForNodes();

//Calculate Node Forces
LagrangeElements();

//Advance Element Quantities
CalcTimeConstrantsForElems();

//Calculate Time Constrains for Elements

Porting LULESH to LAIK

After having identified the basic program structure, data structures, and communication
patterns, we ported LULESH to LAIK. In the remainder of this work, reference lulesh
is used to reference the original MPI-based LULESH implementation provided by the
Lawrence Livermore National Laboratory (LLNL), and laik [ulesh is used to reference
our ported version. A detailed documentation for the porting was published in our
previous publication [Rao+19]. The main goal of porting LULESH to LAIK is to keep
the number of changes as small as possible and achieve fault tolerance by allowing
LULESH to migrate data from any potentially failing node. Therefore, several rules
were introduced to keep the porting progress aligned with our goals:

e Code accessing data structures and computational kernels must not be changed.

128

6. LAIK: An Application-integrated Index-space Based Abstraction Library

e Explicit MPI communication code should be replaced by transitions between
different partitionings in LAIK in order to achieve implicit communication.

e By porting data structures from reference lulesh into LAIK data containers, the
above mentioned implicit communication can be fully performed under LAIK’s
control. This also enables us to use LAIK’s automatic data migration functionali-
ties from the Data API Layer for fault tolerance purposes (cf. Section 6.1.6).

Accordingly, the two different types of data structures are completed in two steps:

1. We transform original communication by reimplementing all the data structures
listed in Table C.1 and C.2 in Appendix C with Laik_Data and let LAIK to
maintain these data structures, which are then updated in the regular iterations.

2. For fault tolerance, also data structures which are used purely locally are also
transferred to be maintained by LAIK because it also requires migration whenever
there is a data migration request. An overview of data structures is given in Table
C.3 in Appendix C.

Furthermore, small modifications are required in the main iteration loop to check for
repartitioning requests and trigger a data repartitioning in LAIK.
The detailed steps performed for porting LULESH to LAIK are as follows: [Rao+19]:

1. Adaptation of Data Structures which Requires MPI Communication during
Kernel Execution.

LULESH uses asynchronous communication for force fields (?) and nodal Mass
followed by aggregation. In order to support the transitions (and implicit commu-
nication) as specified by LAIK, data must be bound to different partitionings. As
LULESH kernels operate with local indexes within a domain instead of global
numbering, the default partitioners in LAIK which are based on global indexes
cannot be used. Therefore, we have created a customized partitioner called over-
lapping on the global nodal index space, which is illustrated in Figure 6.25. Nodal
index space is partitioned among all the tasks, in which the neighboring tasks
share one layer of nodes. Laik lulesh uses partitioners similar to the reference code
with different layouts. However, some adaptation has to be made, as LULESH
relies on 1D data structures which are mapped from a 3D domain in the x-y-z
direction. Instead of a compact data structure as provided in reference lulesh (cf.
Figure 6.24 right), our implementation of laik lulesh relies on a non-compact x-y-z
layout (cf. Figure 6.24 left) based on many “pieces”. The overlapping region is
shared between two neighboring tasks and updated by each task independently.
By transiting from the same overlapping partitioning, LAIK ensures that the

129

6. LAIK: An Application-integrated Index-space Based Abstraction Library

overlapping region is properly reduced among all the sharing process instances,
thus achieving the same communication as provided explicitly by reference lulesh.

Figure 6.24.: Illustration of a Domain for Elemental Data with a Problem Size of 4x4x4
Elements [Rao+19]

Iy

PP S

T T 7

Figure 6.25.: Illustration of Nodal Data with Overlapping Partitioning [Rao+19]

LULESH also uses an asynchronous halo exchange pattern for velocity gradi-
ent fields, which is different to the overlapping communication pattern. For
supporting halo exchange, we have created two partitioners — exclusive and halo
partitioners — for these data. A transition between these two partitionings results
in the required communications for the halo exchange. This is illustrated in
Figure 6.26).

130

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Figure 6.26.: Illustration of the Elemental Data with Exclusive Partitioning (left) and
Halo (right) Partitioning [Rao+19]

2. Adaptation of Additional Data Structures Required for Live Data Migration

LULESH uses a large number of additional temporary data structures. For live
data migration, these data structures need to be handed over to LAIK for migra-
tion as well. Therefore, this data are fully transferred to LAIK’s responsibility
with built-in block partitioners according to data distribution before and after
repartitioning at the time of the respective data migration request. After data
migration, this data are restored to LULESH's original structure.

Moreover, we modified the main while loop to check for a repartitioning request
in each iteration. If a process is no longer a part of an active calculation after
repartitioning, this process is then discarded by calling laik_finalize().

3. Additional Performance Optimizations

Multiple optimizations are implemented in order to enhance the performance of
laik lulesh. We use LAIK’s transition caching feature to pre-calculate the transitions
between different iterations. Moreover, these transitions are used for calculating
and caching their corresponding action sequences between different partitionings
because these sequences are executed in each iteration. Moreover, our implemen-
tation creates many 1D “pieces” because the index regions are not contiguous for
a given domain on a global view in the x-y—z domain decomposition. After each
transition, pointers to these data structures typically become invalid. This causes
major performance overhead. Consequently, we utilize the pointer reservation
function (cf. Section 6.1.6 from LAIK to reduce this overhead.

Porting LULESH to LAIK took approximately six months for an experienced MPI
programmer who was not at all familiar with LAIK and LULESH. The code is available
as an open source project on Github®. It is important to mention that reference lulesh
only supports cubic numbers of process instances (e.g., 1, 8, 27, 64, ...). This limitation
is not changed in laik lulesh to align with the kernel design of LULESH.

8https://github.com/envelope-project/laik-1lulesh, accessed in December 2018

131

https://github.com/envelope-project/laik-lulesh

6. LAIK: An Application-integrated Index-space Based Abstraction Library

6.3.5. Evaluation of Application Example 2: LULESH

Extensive experiments and measurements were performed on SuperMUC Phase II (in
following: SuperMUC) in order to evaluate the performance of our ported LULESH
code. SuperMUC consists of 3072 nodes, each equipped with two Intel Haswell Xeon
Processors E5-2697v3 and 64 GB of main memory. A detailed description of SuperMUC
is given in Appendix A.1.

Both the LAIK Library, laik lulesh, and reference lulesh are compiled with Intel Compiler
version 2017. The MPI library used is IBM MPI version 1.4. Furthermore, all binaries
are compiled with -03 -xCORE=AVX2 to achieve maximum optimization by the compiler.

For each experiment/binary combination, a total of 5 runs was carried out to exclude
interference from the system. Weak scaling (cf. Section 2.3.3), strong scaling (cf.
Section 2.3.3), and repartitioning tests were performed. The results were originally
published in [Rao+19].

Weak Scaling

We selected a problem size of 16 (option -s 30) for both laik lulesh and the reference
code. The upper bound of the number of iterations is set to 10000 iterations (option -i
10000). The result are presented in the Figures 6.27 and 6.28. The time reported here
does not include initialization and finalization. For weak scaling, we ensured that the
workload remained the same for each participating process involved (cf. Section 2.3.3).
We calculated the runtime per iteration by dividing the reported time by the number of
iterations.

Figure 6.27 shows the comparison of the normalized runtime per iteration between
laik lulesh and reference lulesh, which are noted as box plots in the vertical axis. The
horizontal axis represents the number of MPI instances used in each experiment. An
increase in iteration runtime with an increasing number of MPI tasks from laik [ulesh is
clearly observable. In contrast, the reference code scales almost perfectly with only a
slight increase [Rao+19].

To showcase the exact difference in the normalized runtime per iteration, the red line
in Figure 6.28 represents this overhead. We can see that it scales up with the number
of processes. Our hypothesis for the reason for this increasing overhead is the lack of
support for asynchronous communication in LAIK. By analyzing the Figures 6.27 and
6.28, one can see that LAIK introduces a constant part of the overhead which does not
scale with the number of processes, and a non-constant part of the overhead which
scales with the increasing number of processes. The source of the constant overhead is
the added layer of abstraction for data structure access, while the scaling part is most
likely induced by the different MPI communication pattern [Rao+19].

132

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Nevertheless, we conclude that the overhead is an acceptable range for a mid-size
run (up to 512 parallel process instances).

0.04 -

0.03 -

program

0.02 - laik—lulesh
B reference

Normalized Runtime per Iteration (s)
o
o
=]

0.00 -
1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375
Number of MPI Tasks

Figure 6.27.: Weak Scaling Runtime Comparison for laik lulesh vs. reference lulesh with
-s=16 [Rao+19]

133

6. LAIK: An Application-integrated Index-space Based Abstraction Library

0.03 -

Time Difference (s)

0.01-

0.00 -

o

o

]
)

1 8

27

64

125

216 343 512 729 1000 1331 1728 2197 2744 3375
Number of MPI Tasks

line
t_diff

Figure 6.28.: Overhead of laik lulesh over reference lulesh with -s=16 [Rao+19]

134

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Strong Scaling

Since laik lulesh and reference-lulesh only support a cubic number of processes, we
carefully constructed a test case for strong scaling. The design of the test case is
presented below.

Let C be the global 3-dimensional problem size, which needs to be constant for all
strong scaling experiments (cf. Section 2.3.3), and s be the local 1-dimensional problem
size (parameter -s).The term C = s> x p applies. Furthermore, let p be the number of
MPI process instances in the parallel execution, and S = C3, then following implication
applies

(C=s>xp) = (S:sxp%). (6.5)

As the limitation for the cubic number of MPI processes still applies, p% and s must
be natural numbers. For the sake of simplicity, we set up our strong scaling experiments
with p% being the powers of 2 and S = 256. The resulting corresponding tuples of (p, s)
which are used in this experiment for strong scaling are therefore [Rao+19]:

(1% = 1,256),
(23 = 8,128),
(4° = 64,64), (6.6)
(8% = 512,32),
and(16° = 4096, 16).

The results from these experiments are illustrated in Figure 6.29. Note that the
vertical axis is log scaled. As in the weak scaling experiment, similar scaling behavior
can be observed for both LAIK and the reference version with up to 512 processes.

With 4096 processes, laik lulesh shows a significant overhead, where our port is at
least a factor of 2x slower than the reference code. In addition, we can observe that
the overhead curve first decreases, then increases with a large number of processes.
Figure 6.29 further confirms the relatively constant overhead for experiments with 8,
64, and 512 processes, where the added abstraction by using 1D slices in the LAIK
implementation is the dominant source of overhead. The same scaling overhead as
in the weak scaling test for laik lulesh with a large number of processes can also be
observed in Figure 6.29. This again confirms that the source of scaling overhead is the
result of a lack of support for asynchronous communication in LAIK, which scales with
the number of point-to-point communication (and the number of processes) [Rao+19].

135

6. LAIK: An Application-integrated Index-space Based Abstraction Library

-6.000
-5.000

-4.000
-3.000

-2.000
-1.500

-1.000
-0.800

-0.600
-0.500

-0.400
-0.300

-0.200 g
-0.150 %
>
[}
-0.100 P
-0.080&

-0.060
-0.050

-0.040
-0.030

-0.020
-0.015

-0.010

' '
8 64 512 4096

Number of MPI Tasks

program

laik-lulesh

E reference
5 tdiff

Figure 6.29.: Strong Scaling Comparison for laik lulesh vs. reference lulesh [Rao+19]

136

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Repartitioning

Using LAIK, we can now migrate the execution of laik lulesh to a smaller number of
MPI processes at runtime. This is the desired result for fault tolerance through data
migration provided by LAIK.

To understand the impact of migration on the scaling behavior, we conducted a row
of scalability experiments, which are similar to the strong scaling experiments.

Again, we choose p% being the powers of two, and S = 64. We simulate a potential
fault by enforcing a repartitioning and data migration to the smaller, next supported
number of MPI process instances, where p% remains a power of two. This results in the
following repartitioning experiments: From 8 to 1, from 64 to 8, and from 512 to 64,
respectively. [Rao+19]

We held the number of iterations (parameter -i) constant at 2000 iterations for all the
experiments. We executed the kernel for 250 iterations with the initial number of MPI
processes and then performed the repartitioning. Finally, the kernel was executed for
another 1750 iterations until completion. This way the total runtime before and after
migration should be the same. A total of 5 runs were executed on SuperMUC for each
configuration. [Rao+19]

Figure 6.30 showcases the result from this experiment. On the horizontal axis, the
type of migration is given. The vertical axis again represents the normalized time
per iteration (note that this is log(2)-scaled). As expected, both time before and after
repartitioning is linear on a log scale. In addition, the normalized runtime for a given
number of MPI processes (e.g. 64) is almost the same, regardless of whether it is
an initial set number of processes or the final state after repartitioning. This means
that a data migration performed by LAIK does not affect the runtime behavior of laik
lulesh [Rao+19].

The measurements reflect a good result in the effectivity of repartitioning and
automatic data migration performed by LAIK. However, the limitation of only allowing
a cubic number of MPI processes significantly reduces the gain of proactive migration
because the failure of a single node leads to the elimination of a large number of
processes [Rao+19].

Table 6.3 shows the time consumption for repartitioning and data migration in sec-
onds. Compared to the long runtime of LULESH, the time effort for the repartitioning
remains negligible.

137

6. LAIK: An Application-integrated Index-space Based Abstraction Library

0.1250000 -

Repartitioning

before
0.0312500 -
— after

Normalized Time Per Iteration (s)

0.0078125 -

5121064 64108 8tol
Type of Migration

Figure 6.30.: Runtime Comparison Before and After Repartitioning for Iaik
lulesh [Rao+19]

138

6. LAIK: An Application-integrated Index-space Based Abstraction Library

Table 6.3.: Time Consumption for Data Migration Using LAIK
Configuration ’ Time for Repartitioning

512 to 64 ~1.5678s
64 to 8 ~0.8803s
8tol ~1.6979s

6.4. Discussion on Effectiveness of Data Migration with LAIK

In conclusion, LAIK is an approach to assist programmers in enhancing their application
with data migration capabilities. It features a layered and modular design, which
programmers can utilize to adapt their applications in an incremental manner.

With LAIK, an application can transfer the responsibility of data partitioning to LAIK,
thus achieving implicit communication by transitions between different partitionings.
Fault tolerance with data migration is triggered automatically because LAIK can simply
exclude failing nodes from a partitioning and redistribute their partitions to other
process instances.

We have further evaluated the effectiveness and performance of LAIK using two
examples in this chapter: MLEM and LULESH. We have performed different tests for
repartitioning and data migration and also conducted a scalability analysis. We can
now summarize the advantages and disadvantages of LAIK as follows.

6.4.1. Advantages of LAIK
LAIK provides a list of advantages, most prominently:

e LAIK achieves a low overhead for fault tolerance per design. LAIK is an application-
integrated approach for fault tolerance with data migration. The user has full
control over the migration of application data in case of a fault, hence reducing
the overhead to a desired minimum.

e LAIK ensures incremental porting. Managing existing code is a major challenge
within the context of parallel computing. With LAIK, an existing application can
be ported in a step-by-step manner by utilizing the different layers of the APIs.

e LAIK enables fault tolerance automatically by repartitioning and data migration,
if the data responsibility has been fully transferred to LAIK. With LAIK’s Data
APIs, the user only has to specify where the data is needed and when.

139

6. LAIK: An Application-integrated Index-space Based Abstraction Library

e LAIK achieves communication management by using implicit communication, if
Data APIs are used. This way, communication optimization can be fully realized
in a future release of LAIK.

e Experiments with MLEM and LULESH have shown that LAIK only adds a mini-
mum amount of runtime overhead. Although tests with LULESH have indicated
some scaling-based overhead, that overhead is caused by the implementation
of our LAIK prototype and not by design. The additional layer of abstraction
introduced by LAIK (index space) only adds 10% more overhead and remains
constant.

6.4.2. Disadvantages and Limitations of LAIK

Besides the advantages of LAIK, there are some disadvantages and limitations:

e The time demand of porting an existing complex applications to LAIK is very high.
For LULESH, this was 6 person-months for an experienced parallel programmer.
This was mainly due to the transition from pure MPI to LAIK. For MPI-based
applications, a local view of data is typically used. However, as LAIK works on
the global distribution of data, the data handling has to be adapted to a global one.
For applications with complex data structures, this change requires a significant
amount of adaptations. The return-on-investment of such adaptations might be
too low for code owners to port their code in order to support data migration.

e LAIK’s fault tolerance capability relies strongly on the backend support. If the
backend (such as MPI in our prototype) does not support fault tolerance, LAIK
cannot achieve true fault tolerance. In the case of MPI, since we cannot safely shut
down failing MPI ranks, it is not possible to achieve fault tolerance with LAIK.

e LAIK currently only supports regular data structures, which is a huge limitation
on real world applications. To make LAIK become a competitive solution for fault
tolerance based on data migration, future implementations will have to support
arbitrary data structures.

6.4.3. Lessons Learned

Based on the experiments and experience in porting MLEM and LULESH, we believe
that LAIK is a possible candidate for achieving fault tolerance by using data migration.
Furthermore, with LAIK, we have shown that data migration is a promising technique
for fault tolerance in parallel applications.

140

6. LAIK: An Application-integrated Index-space Based Abstraction Library

However, additional implementation and optimization efforts have to be invested to
make LAIK a competitive solution for application-integrated fault tolerance. The rather
complex concept of LAIK can be an overkill for a fault tolerance concept only. Moreover,
adequate support for fault tolerance has to be integrated into popular runtime libraries
such as MPI. Without such support, application-integrated fault tolerance methods can
hardly become effective.

Based on the experience with LAIK, we are going to introduce MPI sessions and MPI
process sets, featuring a leaner design in order to achieve fault tolerance by using data
migration.

141

7. Extending MPI for Data Migration: MPI
Sessions and MPI Process Sets

In the last chapter, we introduced a new user-level library called LAIK, which can assist
programmers with data migration for existing and new applications. However, there
is still one crucial drawback in using LAIK: The actual fault-tolerant characteristics
strongly rely on the support of the communication backend and the process manager.
With MPI being the de facto standard for parallel applications, our LAIK prototype
features a communication backend which is based on MPI. However, since MPI does
not support the safe shutdown of a process instance, true fault tolerance with LAIK
and MPI as a backend is not possible at the moment. Consequently, we have decided
to take a closer look at the MPI standard itself and identify potential gaps and room
for improvement to the MPI standard.

Many efforts in extending MPI with fault tolerance capability have been made in recent
years. User Level Failure Mitigation (ULFM) in MPI [Bla+12] is the most prominent
proposal. Bland et al. [Bla+12] have suggested the introduction of a list of new MPI
constructs, which can be used to inform the application about a failed communication
in MPI. Here are the key concepts [Bla+12]:

e MPI_COMM_FAILURE_ACK and MPI_COMM_FAILURE_GET_ACKED are responsible for de-
termining which processes within an MPI communicator have failed. After
acknowledging the failures, a program can resume any point-to-point communi-
cation between healthy process instances.

e MPI_COMM_REVOKE allows the application to cancel an existing communicator. It is
required to propagate error information to those processes, which are not affected
immediately by the failure.

e MPI_COMM_SHRINK creates a new communicator by removing failed processes from
a revoked communicator. This call is collective also executes a consensus protocol
to make sure that all processes agree on the same process group.

e MPI_COMM_AGREE is an agreement algorithm which ensures strong consistency
between processes. This collective function provides an agreement, even after a

142

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

failure or in the event of a communicator revocation.

With ULFM-MPI, communication failure is exposed to the user application. The pro-
grammer can achieve user-level fault mitigation by revoking an existing communicator
with failed processes. The application can then create a derived communicator without
the failed processes and continue the calculation.

Another approach to making MPI more dynamic is called Adaptive MPI (AMPI) [HLKO04].
Huang et al. utilize a virtualization called processor virtualization, which detaches a
physical process instance from a physical processor. Instead of issuing real processes
at user level, AMPI creates virtual processes that can be later mapped to a set of
processors. This way, AMPI can achieve fault tolerance by utilizing techniques such
as process migration (cf. Section 4.2.4) or checkpoint&restart (cf. Section 4.2.3). Al-
though AMPI is designed to allow dynamic load balancing, it can achieve application
transparent fault tolerance with only minimal code changes required. Special MPI calls
such as MPI_Migrate and MPI_Checkpoint are added to support these operations. The
implementation of AMPI is based on the runtime system of Charm++ [KK93]. This
requirement limits the deployability of AMPI for a wide range of real-world scenarios.

Invasive MPI (IMPI) [Ure+12] is another attempt to enhance the flexibility of MPIL. IMPI
enables dynamic process management functionalities by adapting the underlying pro-
cess manager. Urena et al. introduced a new implementation for the Simple Linux
Utility for Resource Management Workload Manager (SLURM) named Invasive Resource
Manager (IRM), which allows destroying and spawning new processes at program ex-
ecution time. The added MPI call MPI_Comm_invade can be used to secure additional
resources from the job scheduler. The new call MPI_Comm_infect enables the applica-
tion to expand itself to the newly added resources by creating new process instances.
MPI_Comm_retreat allows the application to migrate to a smaller number of process
instances. Data migration can be achieved by the application by withdrawing itself to
a subset of the initial process instances. However, the requirement of a modified job
schedule significantly limits it from being deployed by any large-scale data center.

In this dissertation, we follow an approach similar to the ULFM MPI by proposing a
standard extension to the MPI Forum!. However, unlike ULFM, which focuses on the
failure mitigation after a process has failed, we focus on the proactive migration of
data before any predicted upcoming faults actually occur. Using MPI sessions, the most
recent proposal based on the MPI standard extensions, we introduce a technique for

IMPI Forum is the governing and standardization task force for MPI standards. More information is
provided on https://www.mpi-forum.org.

143

https://www.mpi-forum.org

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

dynamic process management for MPI sessions. Our goal is to allow changes to be
made to the size of participating process instances at any time of application execution.

In this chapter, we will introduce the basic concepts of MPI sessions. We further
present our proposed standard extension as well as an implementation prototype for
our extension — the MPI process sets. Finally, we show the feasibility of performing data
migration with MPI sessions/sets by using the previously used examples of MLEM
and LULESH.

7.1. MPI Sessions

MPI sessions is a proposed extension to the MPI standard, which is likely to be integrated
into the MPI standard version 3.2. The original idea of MPI sessions was introduced by
Holmes et al. in 2016 [Hol+16]; active discussions and suggestions for improvement
have been made and updated since then.

According to Holmes et al. [Hol+16], the original intention of MPI Sessions was to
solve a range of essential issues:

e Scalability limitations due to the dense mapping of the default communicator
MPI_COMM_WORLD.

e Lack of isolation of libraries. MPI can only be initialized once and does not work
well in combination with threads.

e Conservative role of the runtime systems. MPI does not really interact with the
runtime system, such as the OS or job scheduler.

e Lack of support for use cases outside the HPC field domain.

e Lack of support for fault tolerance, due to the impact of a failing process on the
trivial MPT_COMM_WORLD.

The solution provided in the proposal by Holmes et al. [Hol+16] is based on the idea
of making MPI less rigid. The main ideas are [Hol+16]:

1. Allowing live instantiation and deinstantiation of MPI library instances at runtime.
This way, the MPI library can be instantiated many times, allowing multiple MPI
instances within the same process — each identified by an MPI session handle at
the same time.

2. Decoupling of communicator and MPI library instance. Instead of using the
trivial communicator MPI_COMM_WORLD, named sets of processes should be used.
By using Uniform Resource Identifiers (URIs) (i.e., mpi://WORLD), new dynamic

144

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

functionalities can be implemented without affecting backward compatibility.
Furthermore, since the URIs are shared resources between Application, MPI
library, and the runtime system, information exchange among these systems can
be achieved.

3. Creation of new communicators without an existing communicator. Currently,
MPI only allows the creation of new communicators from an existing commu-
nicator. With MPI sessions, creation of new communicators should be possible
directly from a group, without the intermediate step of another communicator.
This downplays the role of the trivial communicator MPI_COMM_WORLD.

4. Adding support for topology awareness. Topology-aware communicators can be
created to allow efficient communication.

5. Enhance communication efficiency by removing MPI_COMM_WORLD and MPI_COMM_
SELF.

6. Improve usability by implicit calls to MPI_Init and MPI_Finalize.

This proposal was eventually edited into a draft document for the MPI standard —
MPI standard 3.2. Two new objects, alongside with adaptations for the existing objects,
have been introduced to implement the above mentioned new functionalities [Mes18]:

e MPI Session: The MPI session is a local, immutable handle to an MPI library
instance. It is created by calling MPI_Session_init and should be destroyed
by MPI_Session_finalize. The MPI session object represents an MPI library
instance and holds all the required information regarding configurations, groups,
and communicators. With MPI sessions, the legacy MPI_Init and MPI_Finalize
have become optional. These legacy calls are retrofitted to provide backward
compatibility for the legacy MPI_COMM_WORLD and MPI_COMM_SELF communicators.

e Process Sets: A process set is used to hold information regarding the physical
processes in which an MPI library instance is running. Detailed definition of
process sets is still under discussion and has not yet been standardized in the
draft [Mes18]. The process set object is used to map runtime system information
to MPI instances.

e MPI Group: The semantics of MPI groups remain the same. However, it is
now bound to a process set in order to provide both backward compatibil-
ity and the dynamic environment introduced by MPI sessions. A new call
MPI_Group_from_pset has been introduced to enable a programmer to create a
group from an active process set.

145

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

e MPI Communicator: Similar to the MPI group, the semantics of MPI commu-
nicators remain unchanged. However, a new call MPI_Comm_create_group() is
introduced to allow communicator creation without any preexisting communi-
cators. This is required to loosen the requirement on the MPI_COMM_WORLD and
MPI_COMM_SELF communicators.

Figure 7.1 illustrates the relation of these objects in MPI with the sessions concept.
The yellow objects have already been proposed by the MPI forum, while the gray ones
have not been proposed yet. An MPI communicator is derived from an MPI group, and
an MPI Group is bound to a process set. The process set takes information from the
runtime system and is part of an MPI session.

Objects in MPI
Sessions

MPI Session

report
* Runtime System

* Information
feed in

(Process Sets)

MPI Group | remmmmmmmemmmsmseemseoees '
Legends

Proposed by
H MPI Forum !

I:I Mentioned, but
not proposed

MPI Communicator | ~ t---mmmmmmmmmmmemmeioeo

Figure 7.1.: Relations between Different Objects in MPI Sessions

146

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

7.1.1. MPI Sessions and Fault Tolerance

As Holmes et al. [Hol+16] point out, MPI sessions attempt to make the currently manda-
tory calls MPI_Init and MPI_Finalize as well as the global objects MPI_COMM_WORLD
and MPI_COMM_SELF optional. This way, failure mitigation and fault tolerance are much
easier to accomplish because a fault does not propagate to a global level automatically.
This goal covers current efforts in the MPI Forum, which is considering mechanisms
to determine faults in communicators and trigger a mitigation on the detection of any
failure [Bla+12].

As we pointed out in the evaluation of LAIK (cf. Section 6.4), a current limitation of
LAIK is that its backend based on MPI does not provide fault tolerance. Consequently,
we cannot shutdown “empty” processes which are free from workload. However, with
the concept in MPI Sessions, it is possible to implement a slightly adapted backend for
LAIK, which is truly fault-tolerant by updating participating process sets and shutting
down the “empty” processes.

7.1.2. MPI Sessions and Data Migration

Apart from data migration with LAIK, maintainers of existing applications can also
achieve data migration with the proposed MPI sessions. Figure 7.2 illustrates a simple
process of data migration based on the MPI sessions proposal. Unlike LAIK, since MPI
sessions can exchange information with the runtime system, a failure prediction or
change in an active process set can be passed to an application by MPI sessions. On
receiving the information about an upcoming failure, manual repartitioning and data
redistribution are performed. Afterward, the current process set can be adapted and the
new MPI group and communicator can be created, respectively. Finally, communication
routines can be migrated to the new communicator.

As one can easily see, the role of the process set is most crucial for the functionality
of data migration and fault tolerance. As the MPI sessions are local (which means
they are only known by the process which creates them) and static (which means they
cannot be changed after their creation), any failure prediction at runtime have to be
supported by the process sets. Therefore, in the remainder of this chapter, we will
propose numerous design considerations and discussions for MPI sessions/sets, as
well as our reference implementation in order to support fault tolerance based on data
migration. At the end of this chapter, we will present our first evaluation results of
fault tolerance based on data migration using MPI sessions/sets.

147

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

ad: Data Migration wity
MPI Sessions

Fault Predicted

Migrate Data Adapt Process Set

Replace Current
Communicator with
the New One

Create a Shrinked
MPI Group

Get a Communicator
from the new Group

Figure 7.2.: Activity Diagram for Data Migration with MPI Sessions

7.2. Extension Proposal for MPI Sessions: MPI Process Sets

Allowing dynamic data migration in MPI sessions, we have created a comprehensive
design for the MPI process sets within the context of MPI sessions. The main responsi-
bility of the MPI process sets module is to relay information from the runtime system
to both the MPI library and the application. This way, both the MPI library and the
application can utilize this information and react to any change, such as a failure or
revocation of resource. Figure 7.3 illustrates the required interfaces in our design to
achieve these functionalities. The most important interfaces are the PMIx and Key-value
Store interfaces in Figure 7.3, which are responsible for communication with the run-
time system. In the remainder of this section, we will present all the detailed design
considerations for our MPI process sets prototype. In addition to this dissertation, some
basic concepts and detailed discussions on design considerations have been published
by Anilkumar Suma [Sum19].

148

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

MPI Sessions/Sets

MPI Sessions
A Interfacing
+ MPI
v Sessions PMIx
7
MPI S kO Runtime
ets Syst
CO ystem
yy Key-Value-Store
+ Interfacing
' MPI Groups
A 4
MPI Groups

!} ---------------------- Application E
N}

Figure 7.3.: Interfaces for MPI Process Sets

149

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

7.2.1. Components in Our MPI Sessions / MPI Process Sets Design

To illustrate the responsibility of the different components in our MPI Sessions and MPI
process sets design, we have summarized all the components as illustrated in Figure 7.3
and their respective interfaces in Table 7.1. Note that although the interface to the
runtime system is a crucial part of our design, we do not provide an implementation
in our prototype because our prototype is designed to demonstrate the possibility of
achieving data migration using the MPI sessions concept.

The modular and layered design of Our MPI sessions concept enables the possibility
of exchanging key components with other implementations. For example, Anilkumar
Suma [Sum19] has provided an implementation of our sessions design using the
FLUX [Ahn+14] runtime system.

150

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

Table 7.1.: Overview of Components and Their Responsibilities within Our MPI Ses-
sions / MPI Process Set Design

Component Responsibility Application Pro- | Required Inter-
gramming Inter- | faces
face

MPI Sessions / | Providing the dy-| MPI sessions | MPI, Key-Value

MPI Process Sets | namic process set | interface, ~which | Store, Runtime

Library management, facili- | is the proposal | System (not in our
tate and delivering | for ~ standardiza- | prototype)
the additional fail- | tion and used as
ure prediction as | an extension to
proposed by the | the existing MPI
MPI forum and in | implementation.
this work.

MPI Library Providing the func- | MPI (mpi.h), the | As specified in the
tionality of the cur- | MPI Library. MPI standard.
rent MPI standard.

In this work, MPI
standard version 3
is used.

Key-value Store Providing the | Key-Value Store | General: none.
required dis- | Interface, which | Our Prototype:
tributed storage | provides basic | Linux Shared
space for MPI | getter and setter | Memory
sessions. Main- | functionalities
taining consistency | to string-based
of information | key-value pairs.
stored by our MPI
Sessions Library.

Runtime Sys- | Providing real- | Suggested: As specified by

tem (not in our | time and stateful | PMI [Bal+10], | PMI/PMIx

prototype) information on the | PMIx [Cas+17]

runtime system,
such as process
states, locations,
topology, etc.

151

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

7.2.2. Semantics of MPI Process Sets

To understand our reasons for designing the MPI process sets, we first introduce the
definition of an MPI (process) set. In our prototype, we adhere to the proposal by the
MPI Forum [Mes18], in which each set is identified by a Uniform Resource Identifier
(URI), starting with the identifier mpi:// or app://. Examples of MPI set names are
listed in Figure 7.4.

The semantics of our MPI process sets are defined in accordance with the following
rules:

e An MPI set can be created either by the runtime system (noted as mpi://, cf.
Figure 7.4(1)—(8)), or by the user application itself (noted as app://, cf. Fig-
ure 7.4(9)-(10)).

e An MPI set can be hierarchical, i.e., in order to represent different failure domains.
A failure domain is an organizational entity within a cluster, such as rack, chassis,
and blade. A more coarse-grain failure domain can be further divided into
multiple fine-grain failure domains, which are denoted as path in the URI of MPI
process sets. An example of different failure domains is illustrated in Figure 7.5
and the corresponding set names are given in Figure 7.4(5)—(8).

o An MPI set is immutable. This means that it cannot be changed nor be deleted
once it has been created, as long as at least one active MPI session is still bounded
to the given set.

¢ A change to any given, existing process set is achieved by issuing a new version
of the process set. A simple integer number at the end of the path in the URI for a
given set is used to reference a specific version of this process set (cf. Figure 7.4(2)-
(3), (6), and (8)). An older version of a process set remains valid until no reference
exists for that specific version. Moreover, an older version of the process set is
called “inactive”, and the most recent version of the process set is called “active”.

e If the URI for a given set is used without its version number (e.g., Figure 7.4(1)),
the currently active process set is referenced.

e Our design for the MPI process set features a semi-global accessibility. Each process
can only see and access that particular process set in which it is a member of. We
believe that this design provides the best usability while preserving scalability.
Figure 7.6 illustrates this design.

152

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

(1) mpi://world

(2) mpi://world/1

(3) mpi://world/2

(4) mpi:/ /self

(5) mpi://islandl/rackl/

(6) mpi://islandl/rackl/1

(7) mpi://island1/rackl/chassis3/blade0
(8) mpi://island1/rackl/chassis3/blade0/1
(9) app://mlem

(10) app://lulesh

Figure 7.4.: Examples for MPI Set Names

C - I e
Island Rack Chassis Blade

Figure 7.5.: Illustrations of Different Failure Domains

153

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

mpi://world

mpi://rack0/chassisO

Sets visible to
mpi://rackO/chassisO/blade1 mpi://rackO/chassisO/blade2 mpi://rackO/chassisO/blade3 Process 0

e e
r ar 0

mpi://self mpi://self mpi://self mpi://self mpi://self mpi://self

T T T —

Process 0 Process 1 Process 2 Process 3 Process 4 Process 5
L J
i
app://compute app://visualize

Figure 7.6.: Illustration of the Semi-global Accessibility of MPI Process Sets

7.2.3. Storage of Process Set Information

The semantics of the MPI process sets left one question unanswered: What is responsible
for storing the set information because it needs to be consistent across all the MPI
processes? The short answer is: the runtime system.

With our design, two different types of process sets are introduced: Architectural
process sets, which are process sets provided by the MPI library or the runtime system
according to the architecture or topology of the cluster system; and application process
sets, which are provided by the user application. Since the architectural process sets
are expected to be greater in number due to the different granularity, we believe it is
best practice to transfer the process set related information to the responsibility of the
runtime system. This way, the identifiers and handles to the architectural process sets
can be generated dynamically on demand, thus reducing the impact on scalability. This
means that all the application-related process sets have to also be stored in the runtime
system, potentially using a callback API provided by the runtime system or through
a distributed key-value store. Such ambitions also cope with the recent development
in interface standards for runtime systems, such as the PMIx [Cas+17], the proposed
extension of the well-known PMI standard [Bal+10].

To distinguish the MPI processes, a simple new scheme has been introduced to
uniquely identify the processes. Currently, the identification of the MPI processes can be

154

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

simply done by calling the MPI_Comm_rank() function with the default MPT_COMM_WORLD
communicator. However, without the world communicator, the MPI process sets
need to store a mapping between the physical process instances and the abstract
process sets. For our prototype, this process identifier is generated automatically by
calling the MPI_Get_processor_name, combined with the process ID from the Oper-
ating System (OS). Here is an example: An MPI process running on the machine
nodel.mysupercluster.de with the process ID 1024 bears the globally unique identifier as
shown below.

nodel.mysupercluster.de_1024 (7.1)

7.2.4. Change Management of the MPI Process Set

To achieve best scalability, we provide an asynchronous design for change management
in MPI process sets. The sequence diagram in Figure 7.7 illustrates this design, which
can be summarized as follows:

e If an application wants to react to changes to a process set, it issues a watch on
that process set by calling MPI_Session_iwatch_pset (). An MPI_Info object is
created as a handle to the watch issued by the application.

e If a change occurs from outside (or is explicitly triggered by the application), this
information is queued by the MPI runtime, which also creates a new version of
the set asynchronously. This way, the latency is hidden in the MPI library, which
reacts to the change event.

e At a later stage of program execution, the application can query the status of the
watch by calling MPI_Session_check_psetupdate () with the previously created
MPI_Info object. As the change event has already been processed by the MPI
runtime, this call returns almost immediately.

e The application is now aware of this change and can obtain the latest version of
the process set, perform data migration and continue its operation.

Besides reacting to changes which come from the runtime system (such as faults),
our design also enables the application to delete (or add) process from (to) a process
set. For this purpose, we have introduced the calls MPI_Session_deletefrom_pset
and MPI_Session_addto_pset. This use case is especially interesting, if an application
needs to switch to a smaller configuration with fewer processes, i.e., after the prediction
of a failure.

155

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

sd: Set Change J

Runtime System MPI User Application

Start Job ;

Dispatch Job

|

Start Application

_Issue Watch on PSet

MPI_Info Object
.. MPL_Info Object |

Inform Set Change |

[~Create new PSet Program Execution

_ Query Set Change

Set Changed

Get Latest

Latest pSet

N
. Migration
i +—

Figure 7.7.: Sequence Diagram of MPI Process Set Change Management

7.2.5. Implementation of Our MPI Process Set Module

For demonstration and evaluation purposes, we have implemented a standalone static
library which implements the functionality of MPI sessions and process sets (in the
following: MPI sessions library). The main reasons for this decision is the fact, that
mainstream open source MPI distributions (OpenMPI, MPICH, LAM/MPI, and MVA-
PICH?2) are hard to modify because they lack modularity and are tuned for performance.
Since our aim is to demonstrate and evaluate our concept, the adaptation of an existing
MPI library is not required. For this reason, our MPI sessions library is designed
to work alongside any existing MPI libraries. For the development, we have chosen
OpenMPI version 3.1 as a reference. The resulting architecture of our library, the
OpenMPI library, and the application are illustrated in Figure 7.8.

In Figure 7.8, we can see that besides the sessions library, the required Key-value
Store has also been implemented by us. This is required in order to store and distribute
information related to process sets (cf. Section 7.2.3). In our prototype implementation,

156

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

we use Linux shared memory to implement this key-value store. This leads, however,
to a limitation on our current prototype, which only supports shared memory systems.

Our prototype features three different type of interfaces:

o MPI sessions interfaces are the new calls proposed by the MPI Forum [Mes18] and
us. They provide the new functionalities introduced by our proposal for the
application. Detailed documentation of all the calls in this interface is provided
in Appendix E.1.

Internal MPI_S interfaces are connections from our library to a standard MPI
library in order to provide the required MPI functionalities, which are used in our
prototype. Except the MPI_Comm_spawn, all the MPI_S interface calls are standard
MPI functions provided by the underlying MPI library without any modification.

Key-value Store interfaces are a collection of function calls that are used to mimic
the runtime system with a key-value store. This way, we simulate the interaction
with the runtime system. Detailed documentation of all the calls in this interface
is provided in Appendix E.2.

As mentioned above, except for MPI_Comm_spawn, our library does not replicate nor

override any existing MPI function, therefore, it is fully compatible with any existing
application without modification.

MPI Process 0 MPI Process 1
Application Application
MPI_Sessions Interface MPI 3.1 MPI_Sessions Interface MPI 3.1
MPI Sessions & MPI Sessions &
MPI Process Sets <«—>» OpenMPI 3.1 MPI Process Sets <€«—>» OpenMPI 3.1
Library Library
Internal Internal
T MPI_S Interface T MPI_S Interface
Key-Value Store Key-Value Store
Interface Interface
Key-Value Store
Provided by Untouched OpenMPI I
our Prototype Distribution I:I User Application

Figure 7.8.: Schematic View of Our MPI Sessions / MPI Process Set Library

157

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

7.2.6. Known Limitations of Our MPI Sessions / MPI Process Set Prototype

The goal of our prototype is to demonstrate the feasibility of achieving fault tolerance
with the MPI sessions / MPI process sets concept. With sufficient progress, we can
drive the related discussions into the MPI Forum and help push MPI sessions and MPI
process sets into the standardization process. Consequently, we will not implement all
the proposed MPI sessions function calls that have been suggested by the MPI Forum
as listed in Appendix D. Instead, only a subset of functions has been implemented in
order to provide the minimum required set of functionalities on top of the standard
MPI 3.

Moreover, our prototype works only on a shared memory system, due to the limita-
tion of the key-value store that we have implemented based on shared memory. This is
a major limitation in functionality of our prototype. Previous attempts have been made
to utilize 3rd-party key-value stores to support distributed memory. Our MPI sessions
prototype has also been adapted to support the key-value store of FLUX [Ahn+14]
by Anilkumar Suma [Sum19], which is a proposed next-generation resource manager.
However, the immature nature of FLUX makes it hard to deploy for evaluation. For this
reason, we have selected our shared memory key-value store for evaluation purposes.

The specification of process sets in which the application is running, is currently done
by a configuration file. Our library provides support for process sets by simulating
process sets by using a subset of MPI processes started by mpirun. Such subsets can be
specified by the user by composing a configuration file with pairs of process-set names
and process-rank ranges. An example is illustrated in Figure 7.9. The process set app1,
which is used by the user application is specified with a configuration file containing
the content as shown in below.

appl 0 —2 (7.2)

Finally, our current prototype has not yet been tuned for performance. Our current
design heavily relies heavily on the key-value store to provide the required data and
state consistency across all the MPI process instances. However, we have chosen to use
serial consistency [Mos93] as a simple but effective consistency model. Unfortunately,
this model also introduces additional serialization overhead when accessing the key-
value store. Our simple implementation of the key-value store has not been optimized
yet to provide best performance for this prototype.

158

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

Blue: mpirun -np 5 creates 5 MP| Processes

r 1

1 MPI Process MPI Process MPI Process MPI Process MPI Process I
rh e s mEm--m-—--Eme----- = 1
(. [[
1 MPI Sessions MPI Sessions MPI Sessions | |
'L 1 i
(. [[
1 ! [[
'L Application Application Application | |
(. [[
1 ! [[
I [] ol

= Em E E R E Em E E S E Em Em E S E Em E E g E Em E E E Em Em = ==

Red: Only 3 out of the 5 processes is member of process set app://app1

Figure 7.9.: Simulated MPI Process Set

Our prototype implementation used for evaluation is accessible as open source software
on Github?. In the next section, application examples for achieving data migration with
MPI sessions and MPI process sets are given and discussed. For the sake of simplicity,
MPI sessions is used to reference the prototype implementation provided by us in the
remainder of this section.

7.3. Evaluation of MPI Sessions and MPI Process Sets

7.3.1. Basic Example of an MPI Sessions Program

Before we get started with our evaluation of MPI sessions, let us implement the same
example application in MPI sessions as before (cf. Section 6.2), i.e., the simple vsum
example application. Recap that vsum is an application which calculates the sum of a
given vector A, stored as a simple C array. For simplicity’s sake, we assume that the
length of the vector is divisible by the number of processes. This MPI implementation
of a simple application is illustrated as pseudocode in Algorithm 9.

The primitive transition of the application using our MPI sessions is trivial because
we provide backward compatibility. No modification is required at all. To enable the
MPI session, simply replace MPI_Init with MPI_Session_Init and MPI_Finalize with
MPI_Session_Finalize.

2https://github.com/caps-tum/MPI-Sessions-Sets, accessed in July 2019

159

https://github.com/caps-tum/MPI-Sessions-Sets

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

Algorithm 9: MPI Implementation of Example Application vsum
A : The Input Vector
y :Result of Vector Sum

MPI_Init(argc, argv);
n < A.length() / num_processes; myStart <— n*my_rank; myEnd < myStart+n;

for i <— myStart to myEnd do
|y += Alil;
end
MPI_Comm_size(&size, MPI_COMM_WORLD);

MPI_Allreduce(SUM, y, size, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
MPI_Finalize();

Since the MPI_COMM_WORLD does not exist anymore within the context of MPI sessions,
a new world communicator has to be created. This can be done by calling the respective
calls as provided in Figure 7.10. Instead of the MPI_COMM_WORLD communicator, the
newly created world communicator Comm_world must be used.

To achieve fault tolerance with data migration, a simple asynchronous process
set watch can be issued using MPI_MPI_Session_iwatch_ps. This way, potential
changes in the currently active process set (mpi://world) can be detected by calling
MPI_Session_check_psupdate. After detecting the change, a new world communicator
can be created by calling the function sequence as indicated in Figure 7.10 again. How-
ever, unlike with LAIK, the application is responsible for preserving data that are after
this change.

MPI _Info setInfo;

MPI_ Group gWorld,;

MPI_Comm Comm _ world;

MPI_Session _get_setinfo(&session, "mpi://world", &setlnfo);
MPI_Group create from _session(session, "mpi://world",

& gWorld, setlnfo);

MPI_Comm_create_from _group(gWorld, NULL, &Comm _world, setInfo);

Figure 7.10.: Creating of the World Communicator with MPI Sessions

160

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

7.3.2. Application Example 1: The Maximum Likelihood Expectation
Maximization (MLEM) Algorithm

In this chapter, we introduce the required changes for porting the Maximum-Likelihood
Expectation-Maximization (MLEM) algorithm to MPI sessions.

Recap that MLEM is the algorithm used to reconstruct images from a medical PET
scanner (cf. Section 6.3.1). The main kernel of MLEM consists of four major steps:
forward projection, correlation, backward projection, and update. The forward and
backward projection are the major computationally-intensive sub-kernels and both
calculate Sparse Matrix-Vector (SpMV) multiplication. The input data are the system
matrix stored in CSR format, the list-mode sinogram and the total number of iterations.
A detailed description of the MLEM algorithm is presented in Section 6.3.1.

Porting MLEM to MPI Sessions

The porting process for MLEM in order to support MPI Sessions is trivial. Like many
classic MPI applications, MLEM operates on the MPI_COMM_WORLD communicator. This
has to be replaced by a communicator derived from an MPI set. For this, we have created
a process set with the name app://mlem. Similar to the trivial example given in Sec-
tion 7.3.1, a communicator is created using this set by calling the functions as indicated
in Figure 7.11. Followed by a search and replace, all the occurrences of MPI_COMM_WORLD
are replaced by the global variable mpi. current_comm, which relies on the process set
app://mlem. The MPI_finalize is also replaced by MPI_Session_finalize accordingly.

MPI_Session _init(&mpi.session);
Info ps_info;
Session _get set info(&mpi.session, "app://mlem", &ps info);
Group create from _session(&mpi.session, "app://mlem",
&mpi.current _group, ps_info);
Comm _create from _group(mpi.current _group, NULL ,&mpi.current _comm, ps_info);

Figure 7.11.: Creating the MLEM Communicator with MPI Sessions

After this modification, the MPI sessions version of MLEM is already fully opera-
tional. No additional changes are required because our MPI sessions implementation
ensures full compatibility with existing MPIs. We have not changed any data structure,
communication patterns, or compute kernels. Consequently, no performance impact is
imposed by our implementation as per design.

161

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

Enabling Fault Tolerance by Using Data Migration

ad:mlem)

. InitializeMpi SplitMatrix CalcForwardProj H CalcCorrelation)
no

Reached? AllIReduce CalcUpdate HGachackwardProD
yes

Figure 7.12.: Activity Diagram of Original MPI-based MLEM

Maxlter

The original MPI-based MLEM application can be summarized in the activity dia-
gram as shown in Figure 7.12. In this iterative algorithm, the four basic kernels
(CalcForwardProj, CalcCorrelation, CalcBackwardProj, and CalcUpdate) and one
communication step (Al1Reduce) are executed in each iteration. This means that the
current result increment — the image update — is communicated across every participat-
ing process at the end of each iteration. Therefore, no data redistribution is required
for fault tolerance with data migration.

Furthermore, the system matrix does not require a migration either, albeit it is
partitioned at the beginning of the application. This is because the SplitMatrix
function only returns an abstract range of rows to be processed by each MPI process
instance, and the Matrix itself is only mapped into memory using mmap [Joy+83]. The
data of the matrix is only cached in main memory. Consequently, data can be remapped
after repartitioning upon a fault. No communication of the actual matrix is required.

To obtain information on changes in an MPI set, MPI_Session_iwatch_pset is called
to issue a watch on the current process set, as part of the modified InitializeMpi
routine. This way, any process set changes can be determined at a later stage by calling
MPI_Session_check_psetupdate. If a change is detected, a new group and communi-
cator can be created from the latest version of the process set. As mentioned before, no
communication or data redistribution is required at all. Repartitioning is achieved by
calling the SplitMatrix function. Figure 7.13 illustrates the adapted application with
fault tolerance capability. The above mentioned changes are highlighted in blue.

162

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

ad:mlem-ft)

InitializeMpi CalcCorrelation

SplitMatrix
AlIReduce

Change in
Process Set?

WriteResult FinalizeMPI

Figure 7.13.: Activity Diagram of MPI Session-based MLEM with Fault Tolerance

CalcForwardProj

CalcUpdate HCachackwardProj)

J

Create New GrouH CCreate New)
ommunicator

MaxlIter
Reached?

Evaluation

Our MPI session-based MLEM implementation is provided as open source software
on Github®. We have tested the MLEM application for correctness and effectiveness by
shrinking the process set of MLEM, which worked as expected.

Although our MPI sessions prototype is not designed for performance evaluation,
we have run a small scale test on a single node server. The results show that no
overhead at all is introduced by using our prototype for the MPI session-based MLEM
implementation.

Porting of MLEM has taken approximately 2 hours for a programmer, who is
experienced with MPI sessions, but not experienced with MLEM, and so had some
minor assistance from the MLEM developers.

7.3.3. Application Example 2: The Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics (LULESH)

As in the evaluations in LAIK (cf. Section 6.3.5), LULESH is the second application
we have evaluated for our MPI sessions prototype. Recapping, the Livermore Unstruc-
tured Lagrangian Explicit Shock Hydrodynamics (LULESH) is a benchmark targeting
the solution to the SBP [Sed46] by using Lagrangian hydrodynamics [HKG], which
represents a class of a classic HPC application. It features two types of data structures,

Shttps://github.com/envelope-project/mlem, accessed in June 2019

163

https://github.com/envelope-project/mlem

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

the elemental data and nodal data, which are accessed in a halo and overlapping manner,
respectively. Moreover, these data are used by compute kernels, which require neigh-
borhood communication. The iterative solver terminates either based on a predefined
convergence goal, or after a specified number of iterations. Details of the LULESH
application are given in Section 6.3.4.

Porting LULESH to MPI Sessions

Unlike MLEM, LULESH is a very complex application, which sets up its communi-
cation routines, targets, and buffers at the beginning within the initMeshDecomp call.
Furthermore, as an application tuned for performance, all the data structures are stored
in a struct of arrays, whose size is not designed to be modified. In order to achieve fault
tolerance by using data migration, two major porting steps are required: Transform
existing MPI communication to MPI communication with MPI sessions, and then
change data structures to allow data migration. Unlike with LAIK, no new partitioners
are required as we can use the existing partitioner provided from the reference LULESH
implementation. Detailed documentation of the changes made to the LULESH code is
given below.

1. Enabling MPI Sessions by Eliminating Trivial MPI Objects in LULESH.

The rather simple first step is to create a communicator from the application’s
process set (named app://lulesh). This step is done by replacing the MPI_Init
with the same sequence of MPI sessions calls as in the case of MLEM.

This communicator is stored as a global variable for the sake of simplicity. With a
search-and-replace function, we replace all access to the trivial MPI_COMM_WORLD
communicator with access to the communicator that we have just created. The
replacement of MPI_Finalize using MPI_Session_finalize concludes the first
step.

With this modification, we have created a semantically identical implementation
of LULESH using the MPI sessions library. We have also tested this intermediate
implementation for its correctness.

2. Adapting All the Data Structures. To achieve fault tolerance, the data containers
held in each Domain (cf. Section 6.3.4) have to be elastic. Unlike porting to LAIK,
there is no difference between data structures that require communication and
those that do not. For simplicity, we replace all the array structures in the Domain
class with std: :vectors. This way, we utilize the build-in resize feature of the
std: :vectors to reallocate memory space for data containers.

164

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

3. Creating Mapping Function for Local and Global View of Domain.

For the sake of simplicity and better understanding, we have selected the global
repartitioning method (cf. Section 5.2).

Two mandatory functions for data repartitioning are created to calculate the new
mesh decomposition and data location. Figure 7.14 illustrates these two functions.

The pack function takes the current mesh decomposition and calculates the
indexing of the respective data structure in a global view within the whole mesh.
It then copies the data from the local domain into a vector that holds data from
the whole mesh for further processing. For entries in the elements (or nodes)
data structure that are not owned by current process, MAX_DOUBLE is used for their
initialization.

The unpack function is the exact opposite of the pack function, which takes a data
structure in global view and copies the relevant data for my process into a local
domain object.

4. Creating Function for Data Migration and Replacement of Communicator.

To enable fault tolerance, we have added data migration routines into the main
loop of LULESH. Since we aim for demonstration purposes and not for best
performance, our data migration is achieved by calling MPI_Allreduce using
the MPI_MIN reduction on the packed global vector. All data structures given in
Appendix C have to be communicated and transferred.

After the data migration, we have created a new MPI group and communicator
from the latest version of the MPI process set. Similarly as in the first step, this
new communicator replaces the existing communicator created in step one. The
InitMeshDecomposition function is then called again to create new local domains
for further processing.

Finally, the globally distributed data is unpacked into the new local domains
using the unpack function created in the previous step. All the temporary global
vectors are then freed as they are no longer required.

5. Enabling Fault Tolerance by Adding Watch to the MPI Process Set.

The last step in our porting effort is to add a process set watch at MPI session
initialization time by calling MPI_Session_iwatch_ps. Similar to the MLEM
example, the status of this watch is queried after each iteration. Unlike MLEM,
LULESH does not perform global synchronization after each iteration by calling
MPI_Session_check_psupdate. For this reason, we have inserted an MPI_Barrier
to ensure synchronization before the check for process set change. Any processes

165

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

7 8 9 7 8 9 31 32 33 34 35 36
(local)
Domain 4 5 6 4 5 6 | 25 26 27 28 29 30
1 2 3 1 2 3 19 20 21 22 23 24
Pack

7 8 © 7 8 9 13 14 15 16 17 18

4 5 6

1 2 3

z
X
local Indexing

(local)
Domain

X

(new) local Indexing

Figure 7.14.: Schematics of Local Numbering vs. Global Numbering for LULESH
Elements

166

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

that are no longer part of the process set call MPI_Session_finalize and go to
idle.

The implementation of our adapted LULESH is available as open source software
on Github*. The porting effort is approximately ten hours for two programmers: one
with in-depth knowledge of MPI sessions, and the other with in-depth knowledge of
LULESH. It is important to mention that similar to the LAIK-based LULESH implemen-
tation, we do not change the precondition imposed by LULESH of requiring a cubic
number of processes for execution.

Evaluation

We conducted a series of experiments similar to the laik lulesh as described in Sec-
tion 6.3.5. In all experiments, we compared the reference LULESH code provided by
LLNL on their Github® (in the following, reference lulesh), our laik lulesh code as intro-
duced in Section 6.3.4, and the MPI sessions based implementation (in the following,
sessions lulesh).

As sessions lulesh only support shared memory systems, we selected the CoolMUC-III
cluster system at Leibniz Rechenzentrum der Bayerischen Akademie der Wissenschaft
(LRZ) for our experiments. Each node of the CoolMUC-III system features an Intel
Xeon Phi 7210F processor with 64 physical cores. Each core provides up to four
hyper-threads, providing a total of 256 logical processors on each node. A detailed
description of the CoolMUC-III system is given in Appendix A.3. For our experiments,
no specific configuration for the High Bandwidth Memory (HBM) on the Xeon Phi chip
was selected. The default configuration is all-to-all associativity with HBM working in
cache mode [Sod15].

All the binaries, including the MPI sessions library and LAIK library, were com-
piled with an Intel Compiler version 17. OpenMP was disabled as our prototype is
not thread safe. All experiments were repeated ten times to minimize the impact of
other disturbances such as OS and runtime system. The results from all the experi-
ments are documented in Figures 7.15 — 7.19. Detailed results are given in the following.

Weak Scaling

Weak scaling experiments were conducted with the settings -s 15 -i 1000 for all
three applications (i.e., sessions lulesh, laik lulesh, and reference lulesh). These applications

“https://github.com/caps-tum/mpi-sessions-lulesh, accessed in June 2019
Shttps://github.com/LLNL/LULESH, accessed in June 2019

167

https://github.com/caps-tum/mpi-sessions-lulesh
https://github.com/LLNL/LULESH

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

were run with n =1, 8,27, 64,125,216 MPI processes. The results for weak scaling are
presented in Figure 7.15. The number of MPI processes is indicated on the horizontal
axis. The normalized runtime per iteration in seconds is shown on the vertical axis. All
the values noted in the charts represent the arithmetic mean of the ten independent
runs.

As expected, all three applications performed equally well without hyperthreading.
There is no significant difference or overhead in terms of runtime scaling behavior
between these versions. This indicates a low overhead introduced by our sessions library.
However, a very small overhead can be observed for sessions lulesh with an increasing
number of processes. This is most likely due to the additional synchronization overhead
introduced by the added MPI_Barrier in order to check the change status of MPI
process set.

The results from the hyperthreaded part is not useful for performance analysis.
However, the significant increase in runtime in the hyperthreaded experiments also
supports our theory of synchronization overhead introduced by the MPI_Barrier
because the all processes must synchronize at this point.

168

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

0,3

Non-Hyperthreading

Hypertheading

0,25

o
N}

0,15

o
=
Normalized Runtime per Iteration (s)

0,05

|
|
1
1 8 27 64
Number of Processes

125 216

—s=Reference =e=LAIK ===Sessions

Figure 7.15.: Weak Scaling Comparison of reference LULESH, sessions LULESH, and
LAIK lulesh on CoolMUC-III

169

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

Strong Scaling

Strong scaling experiments were conducted by fixing the global mesh size C (cf. Sec-
tion 6.3.5). In this case, we have selected C = 216000. This resulted in the following
configuration (n,s) for the experiment with n = 1, 8,27, 64,125,216 processes:

(1° = 1,60),
(2° = 8,30),
(3% =27,20), 73)
(4° = 64,15), '
(5° = 125,12),
)-

and (6% = 216,10

We then fixed the maximum number of iterations (-i) at 1000. The results for strong
scaling are provided in Figure 7.16, where the horizontal axis shows the number of
processes, and the vertical axis shows the normalized runtime per iteration in seconds
on a log(3) scale. The corresponding speedup achieved for strong scaling is presented
in Figure 7.17, where the vertical axis shows the achieved speedup. All the values
shown on the charts represent the arithmetic mean of the ten independent runs.

Similar to weak scaling, no significant difference between reference lulesh, laik lulesh,
and sessions lulesh is observable. The effect of the additional MPI_Barrier is also existent
in the strong scaling experiments, most clearly seen on the speedup chart in Figure 7.17.
All three applications show the same scaling tendency. Our MPI sessions library does
not significantly change the performance of LULESH.

Remarkably, the laik lulesh even outperforms the reference implementation in some
configurations. Our explanation for this phenomenon is an interference between the
adapted data structure in LAIK (data is stored as “slices” of independent data regions
rather than as a continuous block of data), and the high bandwidth memory used in
cache mode. However, since performance engineering is not the goal of this dissertation,
we have not conducted any further analysis of this phenomenon.

Again, the scaling curve for the hyperthreaded configurations confirms our theory
that the overhead of sessions lulesh is mainly due to the additional MPI_Barrier.

170

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

Non-Hyperthreading Hyperthreading

0,3333333

0,1111111

Normalized Runtime per Iteration (s)

0,037037

|

|

|
0,0123457 I
Number of Processes 1

—s—Reference =e=LAIK ===Sessions

Figure 7.16.: Strong Scaling Comparison of reference LULESH, sessions LULESH, and
LAIK Iulesh on CoolMUC-III

171

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

50
Hyperthreading

Non-Hyperthreading

45

40

35

Speedup (x)
N w
¢ o

N
o

15

10

1 8 27 64 125 216
Number of Processes

—s=Reference =e=LAIK ===Sessions

Figure 7.17.: Strong Scaling Speedups of reference LULESH, sessions LULESH, and LAIK
Iulesh on CoolMUC-III

172

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

Repartitioning and Fault Tolerance

The last experiment we did was intended to show the capability of achieving fault
tolerance using repartitioning and data migration. A similar experiment as described in
Section 6.3.5 was introduced here. Using the same setup as in the strong scaling test (cf.
Listing 7.3), we migrated the the application to the next supported configuration with
a smaller number of processes, i.e., from 64 processes to 27 processes (4% — 3%). We
documented the normalized runtime per iteration before and after repartitioning for
both sessions Iulesh and laik [ulesh for comparison. Ideally, the normalized runtime per
iteration should be the same for an execution before and after repartitioning with the
same number of processes. For example, for one test we started the experiment using
64 processes and then reduced it to 27 after 500 iterations. The normalized runtime
for this configuration after repartitioning (27 processes) should be the same as for an
experiment using 27 processes before repartitioning.

The results of our experiments are shown in Figure 7.18. The configuration used for
a specific experiment is shown on the horizontal axis. The normalized runtime per
iteration is shown on the vertical axis. All the values noted in the charts represent the
arithmetic mean of the ten independent runs. Blue-colored bars indicate results from
laik lulesh, and red-colored bars stand for results from sessions lulesh. The darker-colored
bars denote normalized runtime per iteration before repartitioning, while light-colored
bars denote normalized runtime per iteration after repartitioning.

From Figure 7.18, we can see the expected ideal behavior as described above. Each
dark-colored bar in a given color (blue or red) matches the light-colored bar on the
next configuration to the right of it. This means that both sessions lulesh and laik lulesh
are equally efficient for data migration. The data migration is successful and does not
change the runtime behavior of the application after the data migration. This is the best
case scenario we aimed to achieve with our implementations.

As a final test, we evaluated the time required for executing repartitioning and the
data migration processes. This result is presented in Figure 7.19. The configuration is
depicted on the horizontal axis. The time needed for repartitioning is shown on the
vertical axis. It can be clearly seen that the MPI sessions implementation outperforms
the laik lulesh. This is because that during the sessions implementation we used
MPI_Allreduce rather than complex point-to-point communication. For data migration,
laik lulesh calculates a transition plan, which is then tuned for minimum communication
demand. However, the communication overhead in a shared memory system is minimal,
whereas overhead of the transition plan calculation becomes dominant. Our sessions
lulesh benefits from the simple communication pattern, which leads to a smaller time
requirement. Nevertheless, both approaches are fairly fast for data migration and are
suitable for achieving fault tolerance with data migration.

173

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

14

Non-Hyperthreading

1,2

0,8

0,6

Normalized Runtime per Iteration (s)

0,4

0,2

1

8tol 27to8 64t027

Hyperthreading

H LAIK-Before

m LAIK-After

m Sessions-Before
M Sessions-After

125to64 216to125

Number of Processes before and after Repartitioning

Figure 7.18.: Repartitioning Effect of sessions lulesh and laik Iulesh on Cool MUC-III

174

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

18

Non-Hyperthreading Hyperthreading

16

14

= =
o N

(o]

Time Consumption for Repartitioning

8tol 27to8 64j027 125to64 216to125
Number of Processes before and after Repartitioniong

——LAIKtRepart —=—SessionstRepart

Figure 7.19.: Time for Repartitioning for sessions lulesh and laik lulesh on Cool MUC-III

175

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

7.4. Discussion on the Effectiveness of MPI Sessions and MPI
Process Sets

In this chapter, we have introduced and considered the concept of the MPI sessions, the
MPI Forum’s proposal, as well as our own extension to the MPI Forum'’s proposal — the
MPI process sets. We have implemented a prototype of our extension for a minimum set
of MPI sessions and MPI process sets functionalities in order to verify the effectiveness
of our prototype in achieving fault tolerance by using data migration.

With two real world applications, MLEM and LULESH, we have demonstrated the
functionalities of MPI sessions and MPI process sets. Although our prototype has
not been optimized for performance evaluation, we have proven that the scalability of
LULESH is not affected.

We finish this chapter in the following section, consider what we have discussed, and
present our conclusions on the MPI sessions and MPI process sets interfaces.

7.4.1. Functionality of MPI Sessions and MPI Process Sets

The concept of MPI sessions is an active topic in the MPI Forum. Many efforts and
discussions on important topics related to MPI sessions have been made within the
MPI Forum, including but not limited to:

e Dynamic Session vs. Static Session: Discussions on whether an MPI session can
be changed after it has been created. recent discussions from 2019 prefer the
static-session approach.

e Local Session vs. Global Session: Discussions on whether an MPI session is a local
handle to a local instance of MPI library, which is only accessible and known to
the process which creates it. Currently, the MPI Forum prefers the local instance.

However, little effort has been put into the discussions on the role of the MPI process
sets. In this work, we provide a potential design for the MPI process-set management
part in the MPI sessions proposal, which has the following characteristics:

e MPI process sets are static and versioned: A process set is an immutable object
that cannot be changed. Any changes to a process set will automatically trigger
the creation of a new version of that given set. This approach matches the current
static-sessions concept of the MPI Forum.

e MPI process sets are named using URIs, and they are local objects: Although the
MPI process set information is shared with the runtime system, the MPI process
set itself is designed to be a local object. A process can only see sets that it belongs

176

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

to. This matches the current efforts of the MPI Forum on the sessions concept
and helps provide better scalability.

e MPI process sets can be created by the application or the runtime system: In
our current design and implementation, the MPI process set is used to share
information between the application and the runtime system in both directions.
Consequently, it can be used as a bridge between those.

e Asynchronous operation on process sets: Any changes on a process set are queued
and performed on the library level. As part of the static design of MPI process sets,
any changes are not necessarily propagated to the user application. This reduces
performance impact on the application while ensuring backward compatibility.

With our prototype implementation, we have demonstrated the feasibility of these
design criteria. We have also shown that our MPI sessions and MPI process sets
concepts are fully compatible with existing MPI implementation because our library
does not overwrite any existing MPI functions.

We have also proven the usefulness of MPI sessions and MPI process sets for fault
tolerance. Since information such as changes to a given process set can be queried by the
application, the programmer can choose to react on receiving such information, allowing
the application to perform a fault mitigation mechanism, such as data migration. The
added dynamic and exposure of runtime system information is beneficial for future
applications.

7.4.2. Advantages of MPI Sessions and MPI Process Sets for Fault Tolerance
The main advantages of MPI sessions and MPI process sets for fault tolerance are:

e Simple porting of existing applications: Complex HPC applications, which are
based on MPI, usually contain carefully designed communication routines and
optimizations in MPIL. Our design provides full backward compatibility, which
reduces the workload of programmers in porting existing applications. In fact,
for the highly optimized example application LULESH, it only takes one hour
to program first fully-functional adaptation with our sessions prototype. Appli-
cation programmers can rely heavily on old code and reuse all of the existing
implementation.

e Programmer controlled: Everything is controlled by the programmer: What is
being migrated, when a migration is carried out, and what happens to the objects,
such as MPI_Groups and MPI_Communicators. Fine-grained control is often desired
by professional application programmer for HPC systems. Furthermore, it limits

177

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

the overhead or fault tolerance, as programmers know best what data are required
for migration.

e Low design overhead: We do not change any semantics nor implementation of
existing MPI functions (except MPI_Comm_Spawn, where the implementation, but
not semantics is changed). This results in zero overhead introduced by our library.

7.4.3. Disadvantages of MPI Sessions and MPI Process Sets for Fault
Tolerance

Our design still has some disadvantages:

e Rookie user-unfriendly: Since we count on the programmers to react to changes
to a process set, a higher requirement is placed on the application programmer.
Most programmers do not deal with fault tolerance questions nowadays because
they prefer to just restart the application if it has failed. This is a significant
drawback of our approach when compared to application transparent solutions.

e Changing the program structure to support fault tolerance: in order to support
fault tolerance with MPI sessions and MPI process set concepts, major changes
are required. Such changes can be error-prone and demanding, e.g., for our
LULESH example, roughly about half of the time required for the implementation
was spent on debugging (but still lower than for laik lulesh). Furthermore, as
shown with our evaluations (cf. Section 7.3.3), such changes (e.g., addition of
MPI_Barrier) in the program flow can lead to degradation of performance.

e The whole design of our MPI process sets interface relies on a scalable and
efficient key-value store because shared data is processed by the key-value store.
Consequently, such a key-value store must be scalable and efficient, otherwise
our design cannot be scalable. Fortunately, current research on runtime systems
such as PMIx [Cas+17] targets this issue and may be a promising solution to this
dependency.

7.4.4. Limitations of Our Prototype

Since our prototype has been designed for demonstrating of fault tolerance, some
shortcomings remain:

e Our prototype does not support the termination of empty processes. An idle pro-
cess, which is no longer part of an active computation, may call MPI_Session_finalize

178

7. Extending MPI for Data Migration: MPI Sessions and MPI Process Sets

and terminate itself. However, as the prototype is based on a standard MPI distri-
bution, this call does not terminate the process. Instead, it puts the process into a
sleep state until every MPI process has been terminated.

e Our prototype does not implement all the functionalities of MPI sessions proposed
by the MPI Forum. Instead, it only provides a minimum set of functionalities
to enable support for fault tolerance based on data migration. A list of all the
implemented functions is given in Appendix E.1.

e Our prototype only supports shared-memory systems. This is a big drawback
because MPI is designed for distributed memory system. However, we were not
able to find a suitable key-value store that meets our requirements and, at the
same time, is designed for HPC systems. Consequently, we have accepted this
limitation because out goal was to demonstrate out technique.

Despite all the disadvantages and limitations mentioned above, we firmly believe that
MPI sessions and MPI process sets are promising extensions to the MPI standard. The
added failure prediction and runtime system information will greatly help in making
future applications more fault-tolerant, which has been demonstrated in our examples.
Furthermore, since MPI is the de facto standard programming model for HPC systems,
the embodiment of dynamic concepts will also help to change the paradigm of future
HPC applications.

179

8. Discussion

8.1. Fault Tolerance with Data Migration

With LAIK, MPI sessions, and MPI process sets (in the following, just MPI sessions), we
have shown two different ways of achieving fault tolerance with data migration. Using
two example applications, namely MLEM and LULESH, we have demonstrated the
effectiveness of both methods. Furthermore, we have shown low performance overhead
for mid-scale applications with both LAIK and MPI sessions.

As a result, we believe that, combined with a proper failure prediction system,
data migration is a promising technique to achieve fault tolerance for future High
Performance Computing (HPC) systems. As introduced in Section 4.2, existing fault
mitigation mechanisms such as checkpoint&restart, process migration, and data migra-
tion, suffer from a high overhead. Since our proposed solution, data migration, is more
closer to the application itself, the overhead of data migration can be reduced to a
minimum. This is also confirmed in our evaluations.

However, data migration also comes with a significant drawback: For any existing
application, data migration requires code changes to be made in the existing implemen-
tation. This results in a considerable amount of work for any application programmer.
Nevertheless, with MPI sessions, we have shown that the adaptation can be easily done,
given that the underlying communication library provides support for proactive fault
tolerance. In this case, redistributing the data structures is the only change that an
application programmer has to make in order to support data migration. Even for
complex applications, such as LULESH, it was possible to port the application within a
single day.

Unlike MPI sessions, LAIK goes one step further by providing automatic creation
of partitionings, data management, and communication management. This way, fault
tolerance with data migration is automatically achieved. However, LAIK follows a
different programming model that is based on partitioning the data rather than on
the typical message-passing model. Consequently, one has to change a considerable
amount of existing code in order to support LAIK. This significantly reduces the usabil-
ity of LAIK for any existing application.

In summary, we conclude that data migration combined with failure prediction is a

180

8. Discussion

promising approach to achieving fault tolerance in HPC systems for both existing and
new applications. For existing applications, MPI sessions is a good solution because
it provides full backward compatibility. For new applications, LAIK is a promising
new programming model, which automatically provides a solution for data migration.
However, the current design of LAIK is highly turned for performance, which results
in poor usability.

8.2. From Fault Tolerance to Malleability

The focus of this dissertation is on fault tolerance. However, the trend in HPC systems
as well as an increasing demand for efficiency also raises the question of whether an
application can be resource adaptive during execution?

The HPC community is carrying out active research on this issue. The so-called
“malleability”, which is the ability of being adaptive and elastic at different timepoints
throughout execution, is a major research topic nowadays. Unlike classic HPC appli-
cations, which run in a “fire-and-forget” manner, malleable applications should be
resource-aware and be able to adapt to changes in resources during execution. This
way, the overall system efficiency can be improved. An example use case is given in
Figure 8.1 and described as follows:

e A malleable parallel application is running on three nodes.

e At alater timepoint, this application is informed that one node which it is running
on is undergoing a high priority maintenance task and the application has to be
removed from the node.

e Upon this request, the application repartitions itself and redistributes its data
across the remaining nodes.

e The application continues its calculation.

e Maintenance is performed quickly, and the application can restore its initial
configuration and continue its calculation.

e At a later timepoint, the runtime system informs the application that it can use
more resources in the HPC system because many of its nodes are idle.

e The application decides to expand itself to six nodes instead of three in order to
finish sooner.

181

8. Discussion

In this example, we can see that malleability is very similar to fault tolerance. The
only difference is that the application has to not only support data migration to a
smaller process size, but also data migration to a larger process size.

Consequently, if an application supports fault tolerance based on data migration, the

steps for enabling malleability based on data migration are then trivial.

Node 0 Node 1 Node 2
Node 1 Node 2
Node 0 Node 1 Node 2

7

Node 0 Node 1

Node 2 Node 3

|

Node 4 Node 5

-
. Fault
Tolerance
_J
M

~ Expansion

_J

Figure 8.1.: Fault Tolerance vs. Malleability

-

. Malleability,
Elasticity

This means that all the concepts and design we have featured for both LAIK and MPI
sessions are still valid and suitable for future application to support malleability based
on data migration. With our current MPI sessions implementation, expansion of any
process set is already supported because it does not require any additional interfaces
from the application’s point of view. For LAIK, the support for malleability again relies
on the support of the communication backend.

182

9. Related Work

9.1. State-of-the-practice on Failure Prediction

The main motivation for failure prediction within HPC is the reduction of resource
used for re-executing applications.

Two DARPA white papers by Cappello et al. [Cap+14; Cap+09] on resilience for
exascale systems showed that HPC systems waste 20% of their computing resources on
failure and recovery.

The most important state-of-the-practice survey on failure prediction is provided by
Salfner et al. [SLM10], last released in 2010. Their survey provides a classification of
online fault prediction methods, in the form of a 1D taxonomy of failure prediction
methods. Our work presents an enhanced, 2-D classification of failure prediction
methods.

Schroeder et al. repeatedly present different large scale studies on failure mode and
failure effect analysis in HPC systems, covering both system level and component level
failures. The most prominent examples include but are not limited to [SG07b; SG10;
SG07a; SPW09; MSS17].

Many authors criticize the deficiencies in classic prediction metrics. Salfner et
al. [SLM10] point out that the accuracy metric is not useful because failure events are
rare. Zheng et al. [Zhe+10] present new definitions of TP, FN, and FP with respect
to lead time and locality of a predicted failure. Taerat et al. [Tae+10] also show the
insufficiency of existing statistical metrics due to their not including failure mitigation
effects. They introduce a proficiency metric with regard to the time required for
mitigation.

9.2. Migration and Checkpointing

Most existing studies on fault tolerance techniques are based on checkpoint&restart.
Among all the techniques the most prominent solutions are the Berkeley Lab Check-
point/Restart (BLCR) for Linux clusters [HDO06], Linux kernel module checkpoint/restart
(CRAK) [ZNO01], Distributed Multi-Threaded CheckPointing (DMTCP) [AAC09] and
Checkpoint/Restore In User space (CRIU) [Vir].

183

9. Related Work

Pickartz et al. [Pic+14] provide an overview of migration methods suitable for failure
resilience based on a predicted failure. Gad et al. [Gad+18] provide ways of accelerating
VM migration upon a predicted failure. The improved VM migration makes it possible
to protect applications within a short lead time. Wang et al. [Wan+08] show that
successful live process migration with a lead time of less than 10 seconds could take up
to half a minute compared with VM migration.

Further details on migration and checkpointing methods can be found in Chapter 4.

9.3. Fault-tolerant Programming Models

Apart from the MPI-based message passing model for parallel programming, the so-
called Partitioned Global Address Space (PGAS) model provides global address spaces
and enables programming for good locality of accesses. Implementations for PGAS in-
clude new programming languages, such as Chapel [CCZ07] and X10 [Sar+14]. Chapel
and X10 suffer from the drawback of requiring programmers to rewrite their legacy
codes. Furthermore, user libraries such as the Global Array Toolkit (GAT) [Nie+06],
GASPI [GS13], and DASH [Fiir+14; IFG16] provide support for the PGAS programming
model. GAT and GASPI are based on RDMA technology which is barely failure resilient
on state-of-the-art HPC communication backbones. DASH relies on C++ templates
functionality to provide a selection of standard data structures for the application
programmers, while its communication abstraction is built on top of the DART runtime
library [Zho+14]. This requirement imposes an additional performance footprint which
is hard to optimize by the programmer.

Other approaches similar to LAIK include Legion [TBA13] — a data region based
programming system — and Charm++ [KK93; ZSK04] — a C++ library encapsulating
workload as so called chares — handling partitioning in a manner similar to LAIK.
However, unlike LAIK, both solutions come with their own runtimes, which impose
additional overhead on the application.

Many efforts in extending MPI with fault tolerance capabilities have been made in
recent years. Bland et al. [Bla+12] introduce User Level Failure Mitigation (ULFM)
in MPI which provides fault handling using error codes and messages. Huang et
al. [HLKO4] present the Adaptive MPI (AMPI) which introduces an abstract mapping
between processes and virtual processors. A virtual processor can be remapped to other
healthy processors in order to achieve fault tolerance. Their implementation is based on
Charm++ [KK93]. Urena et al. [Ure+12] have developed Invasive MPI (IMPI) alongside
with the Invasive Resource Manager (IRM), which is capable of dynamic resource
(re-)allocation for MPI-based applications while preserving backward compatibility.

184

10. Conclusion

In this dissertation, we have carried out a comprehensive survey on a large amount
of recent literature on state-of-the-art failure prediction methods. We have identified
several gaps in the current state of practice for failure prediction, including network
components, accelerators (such as GPUs), and recent storage technologies (such as
SSD and NVM). We have also determined that the restricted access to failure data
and monitoring data, as well as the lack of standardized data sets for training and
evaluation, have contributed to the poor comparability of research in failure prediction
in HPC systems. Furthermore, We have concluded that the classic evaluation metrics for
failure prediction are insufficient. Consequently, we have now committed ourselves to
conducting future research that will focus on the practical relevance of fault prediction
in HPC system:s.

We have presented the concept of Data Migration, a proactive fault tolerance technique
that is based on the repartitioning and redistribution of data combined with fault
prediction. The basic idea behind using data migration is to achieve fault tolerance by
removing application data from the failing nodes — this process is called repartitioning.
Combined with a failure prediction with sufficient lead time, an application can
perform repartitioning prior to any failure, thus reducing the demand of resource for
re-calculation.

Using two implementations, LAIK and the MPI sessions/MPI process sets, together
with two real-world example applications, MLEM and LULESH, we have proven that
data migration is a promising concept for fault tolerance. We have also demonstrated
the low overhead on performance for both example applications. We conclude that
both LAIK and MPI sessions are suitable for fault tolerance based on data migration,
while MPI sessions/MPI process sets provide a better backward compatibility and are
especially useful for existing applications. Finally, we have extended the concept of
data migration for malleability, which not only enables the removal of participating
processes but also allows the expansion of process instances that are part of the parallel
execution.

185

11. Future Work

With regard to future work, we are planning to investigate the real-world evaluation
metrics of failure prediction methods that take important variables into account, such
as the false positive rate and lead time. Furthermore, we intend to quantitatively
investigate the impact of failure prediction on different fault-mitigation methods for
large scale systems. Moreover, we are preparing to publish an open-access data set
containing failure data and monitoring data from HPC systems.

For LAIK, we are planning to simplify LAIK’s concept and provide a better API and
tools to support application programmers in porting existing applications to LAIK. We
are also going to investigate LAIK with other backends. Moreover, we are planning to
evaluate concepts from LAIK for other programming models (e.g., MPI), such as the
pre-calculation of communication action sequences.

We also intend to work closely with the MPI Forum in order to drive the discussions on
the standardization of the MPI sessions/MPI process sets, which are very promising
concepts for both fault tolerance and malleability. We are going to compose require-
ments engineering documents for the runtime system, which is crucial to the further
development of MPI sessions. We are also planning to work on the MPI tools interface
to provide development support for fault tolerance, such as a fault simulator and a
simulated fault predictor.

186

Appendices

187

A. Description of Systems

The systems used for the evaluation in this work are introduced and described in this
appendix.

A.1. SuperMUC Phase II

SuperMUC Phase II! is a high performance computing system installed and operated
by the Leibniz Rechenzentrum (LRZ). It was installed by Lenovo in 2015. It consists of
3,072 nodes of Lenovo NeXtScale nx360M5 WCT machines, each equipped with 2 Intel
Xeon Haswell Processors E5-2697 v3. The detailed information is shown in Table A.1.

Ihttps://www.lrz.de/services/compute/supermuc/systemdescription/, accessed May 2019

188

https://www.lrz.de/services/compute/supermuc/systemdescription/

A. Description of Systems

Table A.1.: Configuration of SuperMUC Phase II

Components SuperMUC Phase 11
CrPU 2x Intel Xeon E5-2697 v3
Nominal Fregency 2.6 GHz

Number of Nodes 3072

Number of Cores 86016

Cores per Node 28

NUMA Domains per Node | 4

L3 Cache per Node 2x18 MB

Peak Performance 3.58 PFLOP/s
LINPACK Performance 2.814 PFLOP/s
Total Size of Memory 194 TB

Memory per Node 64 GB

Memory Bandwidth 137 GB/s

Number of Islands 6

Interconnect InfiniBand FDR 14
Intra-Island Topology non-blocking Tree
Inter-Island Topology Pruned Tree 4:1
Bisection Bandwidth 5.1TB/s

Operating System SUSE Linux Enterprise Server
Batch System IBM Loadleveler
Parallel File System IBM GPFS

HOME File System NetApp NAS
Monitoring Icinga, Splunk

A.2. CoolMUC-2

The CoolMUC-22 system is a cluster with Intel Haswell-based nodes and InfiniBand
FDR14 interconnect. It is part of the Linux Cluster, which is operated by the Leibniz

Rechenzentrum (LRZ). The hardware and system software configuration is shown in
Table A.2.

2https://www.lrz.de/services/compute/linux-cluster/overview/, accessed May 2019

189

https://www.lrz.de/services/compute/linux-cluster/overview/

A. Description of Systems

Table A.2.: Configuration of LRZ CoolMUC-2

Components CoolMUC-2

CrPU 2x Intel Xeon E5-2697 v3
Nominal Fregency 2.6 GHz

Number of Nodes 384

Number of Cores 10752

Cores per Node 28

NUMA Domains per Node | 2

L3 Cache per Node 2x18 MB

Max Nodes per Job 60

Max Cores per Job 1680

Max Wall Time 48 h

Max Aggregated Memory | 3.8 TB

Interconnect InfiniBand FDR 14
Operating System SUSE Linux Enterprise Server
Batch System SLRUM

Parallel File System IBM GPFS

HOME File System NetApp NAS

A.3. CoolMUC-3

The CoolMUC-3% system is a recent cluster, based on the Intel manycore processor,
which is also known as Knight’s Landing. Unlike other LRZ systems, it features the new
Intel OmniPATH Interconnect technology. It is also part of the Linux Cluster, which is
operated by LRZ. The detailed hardware and system software configuration is shown
in Table Table A.3.

Shttps://www.lrz.de/services/compute/linux-cluster/coolmic3/overview/, accessed May 2019

190

https://www.lrz.de/services/compute/linux-cluster/coolmuc3/overview/

A. Description of Systems

Table A.3.: Configuration of LRZ CoolMUC-3

Components CoolMUC-3

CPU 1x Intel Xeon Phi CPU 7210F
Nominal Fregency 1.3 GHz

Number of Nodes 148

Number of Cores 9,472

Cores per Node 64

Hyperthreads per Core 4

Peak Performance 394 TFlop/s
High Bandwidth Memory per Node 16 GB

Main Memory per Node 96 GB
Interconnect Intel OmpiPATH
Maximum Bandwidth to Interconnect per Node | 25 GB/s (2 Links)
Bisection Bandwidth 1.6 TB/s

Latency of Interconnect 2.3 us

Operating System
Batch System
Parallel File System
HOME File System
MPI

Compilers

SUSE Linux Enterprise Server
SLRUM

IBM GPFS

NetApp NAS

Intel MPI 2017

Intel icc, icpc, ifort

191

B. The System Matrix of MADPET-II

All the data are referenced from [Kiis+09; Kiis+10].

Table B.1.: MADPET-II Matrix Characteristics

Parameter Value
Total Size (Bytes) 12,838,607,884
Rows (Pair of detectors) 1,327,104
Columns (Voxels) 784,000
Total number of non-zero elements (NNZ) | 1,603,498,863
Matrix density (%) 0.1541
Max NNZ in a row 6,537
Min NNZ in a row 0
Avg NNZ in a row 1,208
Max NNZ in a column 6,404
Min NNZ in a column 0
Avg NNZ in a column 2,045

192

B. The System Matrix of MADPET-II

Ahh

Figure B.1.: Density Plot of the System Matrix MADPET-II

193

C. Data Structures from LULESH 2.0

Three different types of data structures have been adapted for porting LULESH to both
LAIK and the MPI Process Sets:

e Node-related (nodal) data: Listed in Table C.1.
e Element-related (elemental) data: Listed in Table C.2.

e Local temporary data: Listed in Table C.3

Table C.1.: Nodal Variables in LULESH [HKG]

Physical Variable Description Program Accessor
X = (x,y,2) position vector x(), y0), z()

U= (Uy, Uy, U,) velocity vector xd(), yd(), zd()

X = (Ayx, Ay, A;) acceleration vector xdd(), ydd(), zdd()
F = (E,F,E) force vector (), £50), £2()

mo nodal mass nodalMass()

194

C. Data Structures from LULESH 2.0

Table C.2.: Elemental Variables in LULESH [HKG]

Physical Variable Description Program Accessor
p pressure 10}

e internal energy e()

q artificial viscosity q()

\% relative volume v()

p pressure 10}

p pressure 0]

V/V relative volume change per volume vdov()

AV = V™1 V" relative volume change delv()

Vo initial volume volo()

Lehar characteristic length arealg()

€ = (€xx,€yy,€2z) diagonal terms of deviatoric strain dxx(), dyy(), dzz()
Qlin artificial viscosity linear term ql()

Jquad artificial viscosity quadratic term qq()

Table C.3.: Additional Local Variables in LULESH

Description

Program Accessor

principle strains
velocity gradients
coordinate gradients
new relative volume

dxx(), dyy(), dzz()
delv_xi(), delv_eta(), delv_zeta()

delx_xi(), delx_eta(), delx_zeta()
vnew()

195

D. List of Proposed Calls for MPI Sessions

A list of proposed additional MPI calls related to the sessions proposal as given
in [Mes18] and [Hol+16] is shown in Table D.1. This information is based on the draft
version of MPI Standard 3.2 as of September 2018.

The respective calling parameters and return values are not listed. For detailed
information, please refer to the standard draft [Mes18].

Table D.1.: Overview of Proposed Functions for MPI Sessions [Mes18; Hol+16]

Call

] Description

MPI_Session_init()

MPI_Session_finalize()

Basic Session Functions

Create a session object and initialize an MPI in-
stance.
Clean up a session object and finalize an MPI in-
stance.

MPI Group-related Operations

MPI_Group_from_pset()

MPI_Comm_create_group()

Create a process group, bounded to a session, with
the processes in a given process set.
Create a communicator from a group.

MPI_Session_get_num_psets()
MPI_Session_get_psetlen()

MPI_Session_get_psetname()
MPI_Info_get_nth_pset()

MPI_Session_get_info

Runtime Queries

Query the runtime for available process sets.
Returns the length of the n-th process set name in
bytes.

Return the process set name of the n-th process
set.

Get the information on a given process set by its
ID.

Get the information on a given process set by its
name.

MPI_T_pvar_handle_alloc()

MPI_T_pvar_handle_free()

MPI Tools Interface

Binds a specified performance variable to the MPI
session object.
Unbind a performance variable from a session.

196

D. List of Proposed Calls for MPI Sessions

Table D.1.: Overview of Proposed Functions for MPI Sessions [Mes18; Hol+16]

Call

Description

MPI_T_pvar_read()
MPI_T_pvar_write()

MPI_T_pvar_reset()
MPI_T_pvar_readreset()

Query information from a performance variable in
a given session.

Write data into a performance variable in a given
session.

Reset the performance variable in a given session.
Read the information, and reset the performance
variable in a given session.

Session Specific Caching Functions

MPI_Session_create_keyval()
MPI_Session_free_keyval()
MPI_Session_set_attr()
MPI_Session_get_attr()
MPI_Session_delete_attr()

Create a caching key-value store (KVS) in a session.
Delete a caching in a session.

Store a key-value pair in a KVS.

Load a key-value pair from a KVS by its key.
Delete a key-value pair from a KVS.

Sessions
MPI_Session_create_errhandler()

MPI_Session_set_errhandler()
MPI_Session_get_errhandler()

MPI_Session_call_errhandler()

Related Error Handling
Create an error handler that can be attached to a
sessions object.
Attaches a new error handler to a session.
Retrieves the error handler currently associated
with a session.
Invokes the error handler assigned to a session.

197

E. New Calls Introduced by Our MPI
Sessions / MPI Process Set Library

Detailed information on new calls and interfaces introduced by our MPI session and
MPI process set library are documented in this appendix. The adapted designs are
based on the previous work by Anilkumar Suma [Sum19].

E.1. MPI Sessions Interface

Table E.1.: Overview of MPI Sessions and MPI Process Sets Calls implemented in our

Prototype
Call

’ Description

Basic Session Functions

MPI_Session_preparation()
MPI_Session_init()

MPI_Session_finalize()

MPI_Session_free()

Facilitate internals to initialize existing MPI library.
Create a session object and initialize an MPI in-
stance.

Clean up a session object and finalize an MPI in-
stance.

Free all resources used by MPI sessions, including
underlying MPI library.

MPI Set Management Operations

MPI_Session_get_nsets()

MPI_Session_get_pset_names()
MPI_Session_check_in_processet()
MPI_Session_iwatch_pset()

MPI_Session_check_psetupdate()
MPI_Session_watch_pset()

MPI_Session_fetch_latestversion()
MPI_Session_addto_pset()

Query the runtime for number of available process
sets.

Get the names of all available process sets.

Check if current process is in a process set.

Issue an asynchronous watch for a process set to
query its change status later.

Check if the current process set is updated.

Issue a synchronous watch for a process set and
wait until it is changed.

Get the latest version of a given process set.

Add the calling process to a given process set.

198

E. New Calls Introduced by Our MPI Sessions / MPI Process Set Library

Table E.1.: Overview of MPI Sessions and MPI Process Sets Calls implemented in our

Prototype
Call

Description

MPI_Session_deletefrom_pset()
MPI_Session_get_set_info()

Remove a calling process from a given process set.
Get internal information from a given process set.

MPI Group and Communicator-related Operations

MPI_Group_create_from_session()

MPI_Comm_create_from_group()
MPIS_Comm_spawn()

Create a process group, bounded to a session, with
the processes in a given process set.

Create a communicator from a group.

Overwrite for MPI Spawn to allow creating new
communicator using sessions concept.

E.2. Key-value Store Interface

Table E.2.: Overview of Key-value Store Interface Calls

Call ’ Description
Basic KVS Functions

KVS_Get() Get an entry from the KVS.
KVS_Put() Set an entry in the KVS.
KVS_Add() Add a new entry into the KVS.
KVS_Del() Delete an entry from the KVS.
KVS_initialise() Initialize and create an entity of the KVS.
KVS_open() Open an existing KVS.
KVS_free() Clean up and destroy a KVS.

Derived KVS Functions

KVS_Get_local_nsets()
KVS_Get_local_processsets()
KVS_addto_world()
KVS_Watch_keyupdate()
KVS_ask_for_update()

KVS_Watch_keyupdate_blocking()

Get the number of process sets from KVS.

Get the name of process sets from the KVS.

Add a process to the "world" process set in KVS.
Issue a watch on a KVS entry.

Query whether a previously issued watch is trig-
gered.

Issue a blocking watch on a KVS entry.

199

F. List of Own Publications

Conference Full Papers

e Alvaro Frank, Dai Yang, Tim Siifs, Martin Schulz, and André Brinkmann. Reduc-
ing False Node Failure Predictions in HPC. 26th IEEE International Conference
on High Performance Computing, Data and Analytics (HiPC) 2019. Accepted for
publication.

e Bengisu Elis, Dai Yang, and Martin Schulz. 2019. QMPI: A Next Generation
MPI Profiling Interface for Modern HPC Platforms. In Proceedings of the 26th
European MPI Users” Group Meeting (EuroMPI "19), Torsten Hoefler and Jesper
Larsson Tréff (Eds.). ACM, New York, NY, USA, Article 4, 10 pages

e David Jauk, Dai Yang, and Martin Schulz. Predicting Faults in High Perfor-
mance Computing Systems: An In-Depth Survey of the State-of-the-Practice.
In SC 19: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, 2019, Denver, Colorado, United
States. Accepted for publication.

e Dai Yang, Josef Weidendorfer, Tilman Kiistner, Carsten Trinitis, and Sibylle Ziegler.
Enabling Application-Integrated Proactive Fault Tolerance. In Parallel Comput-
ing (PARCO) 2017, Bologna, Italy

Workshop Papers

e Amir Raoofy, Dai Yang, Josef Weidendorfer, Carsten Trinitis, and Martin Schulz.
Enabling Malleability for Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics using LAIK. In PARS-Mitteilungen 2019, Berlin, Germany

e Thomas Becker, Nico Rudolf, Dai Yang, and Wolfgang Karl. Symptom-based
Fault Detection in Modern Computer Systems. In PARS-Mitteilungen 2019,
Berlin, Germany

e Thomas Becker, Dai Yang, Tilman Kiistner, and Martin Schulz. Co-Scheduling in
a Tasked-Based Programming Model. In Workshop on Co-Scheduling of HPC

200

F. List of Own Publications

Applications (COSH’18) in Conjunction with HiPEAC Conference 2018. January
2018, Manchester, United Kingdom

e Josef Weidendorfer, Dai Yang, and Carsten Trinitis. LAIK: A Library for Fault
Tolerant Distribution of Global Data for Parallel Applications. In PARS Mit-
teilungen 2017, Hagen, Germany

Articles

e Martin Schulz, Marc-André Hermanns, Michael Knobloch, Kathryn Mohror,
Nathan T. Hjelm, Bengisu Elis, Karlo Kraljic, and Dai Yang. The MPI Tool
Interfaces: Past, Present, and Future.

Posters

e Dai Yang, Moritz Doétterl, Sebastian Riickerl and Amir Raoofy. Hardening the
Linux Kernel agains Soft Errors. Poster for The 13th International School on the
Effects of Radiation on Embedded Systems for Space Applications (SERESSA’17),
Garching, Germany.

o Tejas Kale, Dai Yang, Sebastian Riickerl, Martin Schulz. Event Driven Program-
ming for Embedded Systems. Poster for 10th European CubeSat Symposium
2018. Toulouse, France

201

Acronyms

ABFT
AFR
AMPI
ANL
API
ARMA
ARR
AVX

BJPCS
BLAS
BLCR

CDF
CFDR
COMA
COTS
CPU
CRIU
CSR
Cu

DARPA
DBMS
DFS
DMA
DMTCP
DNN
DRAM

ECC

Algorithm-based Fault Tolerance.
Annualized Failure Rates.

Adaptive MPL.

Argonne National Laboratory.
Application Programming Interface.
AutoRegressive Moving Average.
Annualized Replacement Rate.
Advanced Vector Extensions.

Batch Job Processing Clustering System.
Basic Linear Algebra Subprograms.
Berkeley Lab Checkpoint Restart.

Cumulative Distribution Function.
Computer Failure Data Repository.
Cache-Only Memory Architecture.
Commercial-off-the-Shelf.

Central Processing Unit.
Checkpoint/Restart in Userspace.
Compressed Sparse Row.

Control Unit.

Defense Advance Research Projects Agency.
Database Management System.

Distributed File System.

Direct Memory Access.

Distributed Multi-Threaded Checkpointing.
Deep Neural Network.

Dynamic Random Access Memory.

Error Correcting Code.

202

Acronyms

FC
FLOPS
FOV
FPGA
FTA

GPU

HBM
HDD
HMM
HPC
HPCG
HPL

IMPI
IPMI
IRM

LAIK

LANL
LLNL
LOR
LRZ

LSTM
LULESH

MIMD
MISD
MLEM
MP1
MPMD
MTBF

NAS

Fibre Channel.

Floating Point Operations per Second.
Field of View.

Field Programmable Gate Array.
Fault Tree Analysis.

Graphical Processing Unit.

High Bandwidth Memory.

Hard Disk Drive.

Hidden Markov Models.

High Performance Computing.

High Performance Conjugate Gradient.
High Performance LINPACK.

Invasive MPL.
Intelligent Platform Management Interface.
Invasive Resource Manager.

Lightweight Application-Integrated Fault-Tolerant
Data Container.

Los Alamos National Laboratory.

Lawrence Livermore National Laboratory.

Line of Response.

Leibniz Rechenzentrum der Bayerischen Akademie
der Wissenschaft.

Long Short-Term Memory:.

Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics.

Multiple Instruction Streams Multiple Data Streams.
Multiple Instruction Streams Single Data Stream.
Maximum-Likelihood Expectation-Maximization.
Message Passing Interface.

Multiple Program Multiple Data.

Mean Time Between Failure.

Network Accessed Storage.

203

Acronyms

NEON
NN
NUMA
NVM

ORNL
oS

PCle
PET
PGAS
PMI
PU

RAID

RBML
RDMA

ROCC

SAN
SATA
SBP
SCSI
SIMD
SISD
SLURM

SMART
SNL
SPMD
SpMV
SSD
SVM

TCP

UDP

Advanced SIMD Extension.
Neural Network.
Non-uniform Memory Access.
Non-volatile Memory.

Oak Ridge National Laboratory.
Operating System.

Peripheral Component Interconnect Express.
Positron Emission Tomography.

Partitioned Global Address Space.

Process Management Interface.

Processing Unit.

Redundant Array of Independent/Inexpensive
Disks.

Rule-based Machine Learning.

Remote Direct Memory Access.

Recurrent Neural Network.

Receiver Operating Characteristic Curve.

Storage Area Network.

Serial AT Attachment.

Sedov Blast Problem.

Small Computer System Interface.

Single Instruction Stream Multiple Data Streams.
Single Instruction Stream Single Data Stream.
Simple Linux Utility for Resource Management
Workload Manager.

Self-monitoring, Analysis and Reporting Technology.
Sandia National Laboratory.

Single Program Multiple Data.

Sparse Matrix-Vector.

Solid State Drive.

Support Vector Machine.

Transport Control Protocol.

User Datagram Protocol.

204

Acronyms

ULFM
UMA
UPS
URI

VLIW
VM
VMM

User Level Failure Mitigation.
Uniform Memory Access.
Uninterruptible Power Supply.
Uniform Resource Identifier.

Very Long Instruction Word.
Virtual Machine.
Virtual Machine Manager.

205

List of Figures

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.

2.1.
2.2.

2.3.
24.
2.5.

3.1.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.

5.1.
5.2.
5.3.
54.
5.5.
5.6.

Taxonomy of Parallelism
Parallelism ina Processor
Multicore, Multiprocessor and Multicomputer
Amdahl’'sLaw L
Gustafson'sLaw L Lo
Overview of Top 100 Systems on the November 2018 TOP500 list
Maximum Performance per Core for all Systems on the November 2018
TOP5S00 list oo

Relation between Fault, Error, and Failure
Venn Diagram on the Relation between True Positive, False Positive, True
Negative, and False Negative
Extended Flynn’s Taxonomy [Fly72; Ata98]
Visualization of SISD, SIMD, MISD, and MIMD
Shared Memory vs. Distributed Memory

Probability of Triggering an Unnecessary Migration or Checkpoint Due
to Certain False Positive Prediction Rates [Fra+19].

Typical Use Case for a Batch Processing System
System Architecture Overview of a Generic Batch Processing Cluster . .
Taxonomy of Different Fault-handling Techniques
State Chart for Classic Checkpoint&Restart
State Chart for Checkpoint&Restart with fault Prediction
State Chart for Migration
State Chart for Migration with Checkpointing

Schematic Example of Data Migration
Sequence Diagram of a Basic Data Migration
Sequence Diagram of a Basic Data Migration with a Spare Node
Example of Data Distribution in a Parallel Distributed Application . . .
Relation between Partitioner, Partitioning, Partition, and Repartitioning
A Incremental Repartitioning Scheme

N OO W

11

12

17

18
20
22
23

54

57
58
62
63
64
65
68

72
74
75
77
77

206

List of Figures

5.7.
5.8.
5.9.
5.10.
5.11.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.
6.18.
6.19.
6.20.
6.21.
6.22.
6.23.
6.24.

6.25.
6.26.

6.27.
6.28.

6.29.
6.30.

A Global Repartitioning Scheme 80
Relation between Index Space and Data Slice 81
Scheme of Data Distribution in a Dual-node System 83
Activity Diagram of an Example Hybrid Application 84
Activity Diagram of the Data Migration Process 86
Basic Components of the LAIK Library 90
Location of LAIK Library on a Multinode Setup 91
Component Diagram of LAIK 92
API Layers of LAIK for Incremental Porting 96
Schematic of Different LAIK Groups 98
Schematic Overview of LAIK Process Group Concept (cf. Figure 6.2) . . 99
Schematic Overview of Two Example Partitionings for a Single Index Space100
Overview of Different Built-In Partitioners of LAIK 101
Schematic Overview of a Transition 102
Schematic Overview of Pointer Reservation 104
Example Memory Layout with and without Pointer Reservation 105
Schematic Overview of Access Pattern and Transition 105
Example Partitioning for LAIK Partitioner API Demonstration 109
Schematics for the LAIK External Interface 110
Activity Diagram of LAIK-based vsum 113
Activity Diagram of LAIK-based vsum with Data Migration 114
Schematic View of the MADPET-II PET Scanner [Kiis+09] 115
Average Runtime per Iteration laik-mlem vs. reference mlem [Yan+18] . . 121
Speedup Curve for laik-mlem vs. reference mlem [Yan+18] 122
Overhead Analysis for laik-mlem [Yan+18] 123
Overhead Scalability Analysis for laik-mlem [Yan+18] 124
Comparison of Different Repartitioning Strategies for laik-mlem [Yan+18] 125
LULESH Mesh Decomposition Schematic [HKG] 127
[lustration of a Domain for Elemental Data with a Problem Size of 4x4x4

Elements [Rao+19] 130
[ustration of Nodal Data with Overlapping Partitioning [Rao+19] . . . 130
[lustration of the Elemental Data with Exclusive Partitioning (left) and

Halo (right) Partitioning [Rao+19] 131
Weak Scaling Runtime Comparison for laik lulesh vs. reference lulesh with

-s=16 [Rao+19] e 133
Overhead of laik lulesh over reference lulesh with -s=16 [Rao+19] 134
Strong Scaling Comparison for laik lulesh vs. reference lulesh [Rao+19] . . 136
Runtime Comparison Before and After Repartitioning for laik [ulesh [Rao+19]138

207

List of Figures

7.1.
7.2.
7.3.
74.
7.5.
7.6.
7.7.
7.8.
7.9.

7.10.
7.11.
7.12.
7.13.
7.14.

7.15.

7.16.

7.17.

7.18.
7.19.

8.1.

B.1.

Relations between Different Objects in MPI Sessions 146
Activity Diagram for Data Migration with MPI Sessions 148
Interfaces for MPI Process Sets 149
Examples for MPI Set Names 153
[lustrations of Different Failure Domains 153
[ustration of the Semi-global Accessibility of MPI Process Sets 154
Sequence Diagram of MPI Process Set Change Management 156
Schematic View of Our MPI Sessions / MPI Process Set Library 157
Simulated MPI Process Set. 159
Creating of the World Communicator with MPI Sessions 160
Creating the MLEM Communicator with MPI Sessions 161
Activity Diagram of Original MPI-based MLEM 162
Activity Diagram of MPI Session-based MLEM with Fault Tolerance . . 163

Schematics of Local Numbering vs. Global Numbering for LULESH

Elements 166
Weak Scaling Comparison of reference LULESH, sessions LULESH, and
LAIK lulesh on CoolMUC-III 169
Strong Scaling Comparison of reference LULESH, sessions LULESH, and
LAIK lulesh on CoolMUC-IIT 171
Strong Scaling Speedups of reference LULESH, sessions LULESH, and
LAIK lulesh on CoolMUC-III 172

Repartitioning Effect of sessions lulesh and laik lulesh on CoolMUC-III . . 174
Time for Repartitioning for sessions lulesh and laik lulesh on CoolMUC-III 175

Fault Tolerance vs. Malleability 182

Density Plot of the System Matrix MADPET-IT 193

208

List of Tables

2.1.

3.1.
3.2.
3.3.
3.4.

4.1.

5.1.

6.1.
6.2.
6.3.

7.1.

Al
A2.
A3.

B.1.

C.1.
Cz2.
C.3.

D.1.
D.1.

E.1.

Confusion Matrix for Failure Prediction 19
Causes of Application Failure on Two Cray systems [Di +15; LHY10] . . 28
Root Causes of Failures in Two High Performance Systems [SG10] . . . 29
Most Common Root Causes of Failures [SG10] 30
A Classification of Literature on Failure Prediction in High Performance

Computing [JYSIO] 35
Overview of Fault Tolerance Techniques 70
Examples for Selecting Repartitioning Strategy 81
Overview of LAIK Components and Their APIs 93
Overview of LAIK API Layers 97
Time Consumption for Data Migration Using LAIK 139
Overview of Components and Their Responsibilities within Our MPI

Sessions / MPI Process Set Design 151
Configuration of SuperMUC PhaseIl 189
Configuration of LRZ CoolMUC-2 190
Configuration of LRZ CoolMUC-3 191
MADPET-II Matrix Characteristics 192
Nodal Variables in LULESH[HKG] 194
Elemental Variables in LULESH [HKG] 195
Additional Local Variablesin LULESH 195
Overview of Proposed Functions for MPI Sessions [Mes18; Hol+16] . . 196
Overview of Proposed Functions for MPI Sessions [Mes18; Hol+16] . . 197

Overview of MPI Sessions and MPI Process Sets Calls implemented in
our Prototype 198

209

List of Tables

E.1. Overview of MPI Sessions and MPI Process Sets Calls implemented in
our Prototype
E.2. Overview of Key-value Store Interface Calls

210

List of Algorithms

PN PN

o

MPI-based Matrix Vector Multiplication 98
LAIK-based Matrix Vector Multiplication with Group API Layer 100
LAIK-based Matrix Vector Multiplication with Space API Layer 103
LAIK-based Matrix Vector Multiplication with Data API Layer 107
Example Partitioner of the Example Partitioning in Figure 6.13 109
Example Application of vsum using MPL 113
MPI Based MLEM Implementation 118
MPI-based Implementation of LULESH [HKG] 128
MPI Implementation of Example Application vsum 160

211

Bibliography

[AACO09]

[Ahn+14]

[ALSS]

[Amd67]

[Ata98]

[Aug+11]

[Avi+04]

[Avi76]

[AWR15]

J. Ansel, K. Arya, and G. Cooperman. “DMTCP: Transparent checkpointing
for cluster computations and the desktop.” In: 2009 IEEE International
Symposium on Parallel & Distributed Processing. IEEE. 2009, pp. 1-12.

D. H. Ahn, J. Garlick, M. Grondona, D. Lipari, B. Springmeyer, and M.
Schulz. “Flux: a next-generation resource management framework for large

HPC centers.” In: 2014 43rd International Conference on Parallel Processing
Workshops. IEEE. 2014, pp. 9-17.

C.J. Anfinson and E. T. Luk. “A linear algebraic model of algorithm-based
fault tolerance.” In: IEEE Transactions on Computers 37.12 (1988), pp. 1599—
1604.

G. M. Amdahl. “Validity of the single processor approach to achieving
large scale computing capabilities.” In: Proceedings of the April 18-20, 1967,
spring joint computer conference. ACM. 1967, pp. 483-485.

M. J. Atallah. Algorithms and theory of computation handbook. CRC press,
1998.

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: a
unified platform for task scheduling on heterogeneous multicore architec-

tures.” In: Concurrency and Computation: Practice and Experience 23.2 (2011),
pp- 187-198.

A. Avizienis,]. Laprie, B. Randell, and C. Landwehr. “Basic concepts and
taxonomy of dependable and secure computing.” In: IEEE Transactions on
Dependable and Secure Computing 1.1 (Jan. 2004), pp. 11-33. 1ssN: 1545-5971.
DOI: 10.1109/TDSC.2004.2.

A. Avizienis. “Fault-tolerant systems.” In: IEEE Trans. Computers 25.12
(1976), pp. 1304-1312.

B. Agrawal, T. Wiktorski, and C. Rong. “Analyzing and Predicting Failure
in Hadoop Clusters Using Distributed Hidden Markov Model.” In: Revised
Selected Papers of the Second Int’l Conf. on Cloud Computing and Big Data -
Volume 9106. CloudCom-Asia 2015. Huangshan, China: Springer New York,
2015, pp. 232-246.

212

https://doi.org/10.1109/TDSC.2004.2

Bibliography

[Bab+00]

[Bal+10]

[Ban+90]

[BAS04]

[Bau+12]

[Bau+16]

[Ber+08]

[BGV92]

[Bla+12]

S. H. Babig, P. Kokol, V. Podgorelec, M. Zorman, M. éprogar, and M. M.
Stiglic. “The Art of Building Decision Trees.” In: Journal of Medical Systems
24.1 (Feb. 2000), pp. 43-52. 1ssN: 1573-689X.

P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Krishna, E. Lusk, and
R. Thakur. “PMI: A scalable parallel process-management interface for

extreme-scale systems.” In: European MPI Users” Group Meeting. Springer.
2010, pp. 31-41.

P. Banerjee, J. T. Rahmeh, C. Stunkel, V. Nair, K. Roy, V. Balasubramanian,
and J. A. Abraham. “Algorithm-based fault tolerance on a hypercube
multiprocessor.” In: IEEE Transactions on Computers 39.9 (1990), pp. 1132—
1145.

R. Budruk, D. Anderson, and T. Shanley. PCI express system architecture.
Addison-Wesley Professional, 2004.

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. “Legion: Expressing
locality and independence with logical regions.” In: SC'12: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE. 2012, pp. 1-11.

L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith. “Un-
protected Computing: A Large-Scale Study of DRAM Raw Error Rate
on a Supercomputer.” In: SC16: Int’l Conf. for High Performance Computing,
Networking, Storage and Analysis. Nov. 2016, pp. 645-655.

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, K. Hill, J. Hiller, et al. “Exascale computing study:
Technology challenges in achieving exascale systems.” In: Defense Advanced
Research Projects Agency Information Processing Techniques Office (DARPA
IPTO), Tech. Rep 15 (2008).

B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A Training Algorithm for
Optimal Margin Classifiers.” In: Proceedings of the Fifth Annual Workshop on
Computational Learning Theory. COLT "92. Pittsburgh, Pennsylvania, USA:
ACM, 1992, pp. 144-152. 1sBN: 0-89791-497-X.

W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and].]. Dongarra.
Recent Advances in the Message Passing Interface: 19th European MPI Users’
Group Meeting. Vol. 28. Chapter: An Evaluation of User-Level Failure Mit-
igation Support in MPI, pages 193-203. Vienna, Austria: Springer Berlin
Heidelberg, Berlin,Heidelberg, 2012.

213

Bibliography

[Bon00]

[Bos+09]

[Bra+09]

[Cap+09]

[Cap+14]

[Cas+17]

[CAS12]

[CCZ07]

[CDO8]

[Cha+01]

[Chel3]

A. B. Bondi. “Characteristics of scalability and their impact on perfor-
mance.” In: Proceedings of the 2nd international workshop on Software and
performance. ACM. 2000, pp. 195-203.

G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. “Algorithm-based fault
tolerance applied to high performance computing.” In: Journal of Parallel
and Distributed Computing 69.4 (2009), pp. 410—416.

J. Brandt, A. Gentile, J]. Mayo, P. Pébay, D. Roe, D. Thompson, and M. Wong.
“Methodologies for Advance Warning of Compute Cluster Problems via
Statistical Analysis: A Case Study.” In: Proceedings of the 2009 Workshop on
Resiliency in High Performance. Resilience '09. Garching, Germany: ACM,
2009, pp. 7-14.

F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. “To-
ward exascale resilience.” In: The International Journal of High Performance
Computing Applications 23.4 (2009), pp. 374-388.

F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. “To-
ward exascale resilience: 2014 update.” In: Supercomputing frontiers and
innovations 1.1 (2014), pp. 5-28.

R. H. Castain, D. Solt, J. Hursey, and A. Bouteiller. “PMIx: Process Man-
agement for Exascale Environments.” In: Proceedings of the 24th European
MPI Users” Group Meeting. EuroMPI "17. Chicago, Illinois: ACM, 2017, 14:1-
14:10. 1sBN: 978-1-4503-4849-2. por: 10.1145/3127024.3127027.

T. Chalermarrewong, T. Achalakul, and S. C. W. See. “Failure Prediction of
Data Centers Using Time Series and Fault Tree Analysis.” In: 2012 IEEE
18th Int’l Conf. on Parallel and Distributed Systems. Dec. 2012, pp. 794-799.

B. L. Chamberlain, D. Callahan, and H. P. Zima. “Parallel programmability
and the chapel language.” In: The International Journal of High Performance
Computing Applications 21.3 (2007), pp. 291-312.

Z. Chen and J. Dongarra. “Algorithm-based fault tolerance for fail-stop fail-
ures.” In: IEEE Transactions on Parallel and Distributed Systems 19.12 (2008),
pp- 1628-1641.

R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald.
Parallel programming in OpenMP. Morgan kaufmann, 2001.

Z. Chen. “Online-ABFT: An online algorithm based fault tolerance scheme
for soft error detection in iterative methods.” In: ACM SIGPLAN Notices.
Vol. 48. 8. ACM. 2013, pp. 167-176.

214

https://doi.org/10.1145/3127024.3127027

Bibliography

[CKC12]

[Cla+05]

[CLGO5]

[CLP14]

[Coh95]

[Cos+14]

[Dar+88]

[Del97]

[DHL15]

[DHSO05]

[Di +15]

H. Chung, M. Kang, and H.-D. Cho. “Heterogeneous Multi-Processing So-
lution of Exynos 5 Octa with ARM(®) big.LITTLE Technology.” In: Samsung
White Paper (2012).

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, L. Pratt, and
A. Warfield. “Live migration of virtual machines.” In: Proceedings of the
2nd conference on Symposium on Networked Systems Design & Implementation-
Volume 2. USENIX Association. 2005, pp. 273-286.

J. Cao, Y. Li, and M. Guo. “Process migration for MPI applications based
on coordinated checkpoint.” In: 11th International Conference on Parallel and
Distributed Systems (ICPADS’05). Vol. 1. IEEE. 2005, pp. 306-312.

X. Chen, C.-D. Lu, and K. Pattabiraman. “Failure Prediction of Jobs in
Compute Clouds: A Google Cluster Case Study.” In: 2014 IEEE Int’l. Symp.
on Software Reliability Engineering Workshops. Nov. 2014, pp. 341-346.

W. W. Cohen. “Fast Effective Rule Induction.” In: Proceedings of the Twelfth
Int’l Conf. on Machine Learning. ICML'95. Tahoe City, California, USA: Mor-
gan Kaufmann Publishers Inc., 1995, pp. 115-123. 1sBN: 1-55860-377-8.

C. H. Costa, Y. Park, B. S. Rosenburg, C.-Y. Cher, and K. D. Ryu. “A System
Software Approach to Proactive Memory-Error Avoidance.” In: SC14: Int’l
Conf. for High Performance Computing, Networking, Storage and Analysis. Nov.
2014, pp. 707-718.

E. Darema, D. A. George, V. A. Norton, and G. F. Pfister. “A single-program-
multiple-data computational model for EPEX/FORTRAN.” In: Parallel
Computing 7.1 (1988), pp. 11-24.

T. J. Dell. “A white paper on the benefits of chipkill-correct ECC for PC
server main memory.” In: IBM Microelectronics Division 11 (1997), pp. 1-23.

J. Dongarra, M. A. Heroux, and P. Luszczek. “HPCG benchmark: a new
metric for ranking high performance computing systems.” In: Knoxville,
Tennessee (2015).

C. Ding, X. He, and H. D. Simon. “On the equivalence of nonnegative
matrix factorization and spectral clustering.” In: Proceedings of the 2005
SIAM international conference on data mining. SIAM. 2005, pp. 606-610.

C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer. “Measuring and
Understanding Extreme-Scale Application Resilience: A Field Study of
5,000,000 HPC Application Runs.” In: 2015 45th Annual IEEE/IFIP Int’l
Conf. on Dependable Systems and Networks. June 2015, pp. 25-36.

215

Bibliography

[DLT09]

[DM98]

[DO91]

[Don+79]

[Dur+11]

[EA05]

[Ell+12]

[ES13]

[ET93]

[EZS17]

[Faw06]

[FD17]

L. Di-Jorio, A. Laurent, and M. Teisseire. “Mining Frequent Gradual Item-
sets from Large Databases.” In: Advances in Intelligent Data Analysis VIII:
8th Int’l. Symp. on Intelligent Data Analysis, IDA 2009, Lyon, France. Ed. by
N. M. Adams, C. Robardet, A. Siebes, and].-F. Boulicaut. Berlin, Heidel-
berg: Springer, 2009, pp. 297-308.

L. Dagum and R. Menon. “OpenMP: An industry-standard API for shared-
memory programming.” In: Computing in Science & Engineering 1 (1998),
pp. 46-55.

E. Douglis and J. Ousterhout. “Transparent process migration: Design alter-
natives and the Sprite implementation.” In: Software: Practice and Experience
21.8 (1991), pp. 757-785.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK users’
guide. Vol. 8. Siam, 1979.

A. Duran, E. Ayguadé, R. M. Badia,]J. Labarta, L. Martinell, X. Martorell,
and J. Planas. “Ompss: a proposal for programming heterogeneous multi-
core architectures.” In: Parallel processing letters 21.02 (2011), pp. 173-193.

H. El-Rewini and M. Abd-El-Barr. Advanced computer architecture and par-
allel processing. Vol. 42. John Wiley & Sons, 2005.

J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann.
“Combining Partial Redundancy and Checkpointing for HPC.” In: 2012
IEEE 32nd International Conference on Distributed Computing Systems. June
2012, pp. 615-626. DOT: 10.1109/ICDCS.2012.56.

N. El-Sayed and B. Schroeder. “Reading between the lines of failure logs:
Understanding how HPC systems fail.” In: 2013 43rd Annual IEEE/IFIP
Int’l Conf. on Dependable Systems and Networks (DSN). June 2013, pp. 1-12.

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. New York:
Chapman & Hall, 1993.

N. El-Sayed, H. Zhu, and B. Schroeder. “Learning from Failure Across Mul-
tiple Clusters: A Trace-Driven Approach to Understanding, Predicting, and
Mitigating Job Terminations.” In: 2017 IEEE 37th Int’l Conf. on Distributed
Computing Systems (ICDCS). June 2017, pp. 1333-1344.

T. Fawcett. “An Introduction to ROC Analysis.” In: Pattern Recogn. Lett.
27.8 (June 2006), pp. 861-874. 1ssN: 0167-8655. por: 10.1016/j . patrec.
2005.10.010.

D. Foley and]. Danskin. “Ultra-performance Pascal GPU and NVLink
interconnect.” In: IEEE Micro 37.2 (2017), pp. 7-17.

216

https://doi.org/10.1109/ICDCS.2012.56
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010

Bibliography

[FH60]

[FHTO1]

[Fir+08]

[Fly72]

[For73]

[Fra+19]

[Fu+12]

[Fu+14]

[Fiir+14]

[Gad+18]

G. E. Forsythe and P. Henrici. “The cyclic Jacobi method for computing
the principal values of a complex matrix.” In: Transactions of the American
Mathematical Society 94.1 (1960), pp. 1-23.

J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning.
Springer Series in Statistics. New York, NY, USA: Springer New York Inc.,
2001.

N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo. “Intel AVX: New
frontiers in performance improvements and energy efficiency.” In: Intel
white paper 19.20 (2008).

M. J. Flynn. “Some Computer Organizations and Their Effectiveness.”
In: IEEE Transactions on Computers C-21.9 (Sept. 1972), pp. 948-960. 1ssN:
0018-9340. por: 10.1109/TC.1972.5009071.

G. D. Forney. “The viterbi algorithm.” In: Proceedings of the IEEE 61.3 (1973),
pp- 268-278.

A. Frank, D. Yang, T. Siif5, and A. Brinkmann. “Reducing False Node
Failure Predictions in HPC.” In: 26th IEEE International Conference on High
Performance Computing, Data, Analtics and Data Science (2019). Accepted for
Publication.

X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu. “LogMaster: Mining
Event Correlations in Logs of Large-Scale Cluster Systems.” In: 2012 IEEE
31st Symp. on Reliable Distributed Systems. Oct. 2012, pp. 71-80.

X. Fu, R. Ren, S. A. McKee, J. Zhan, and N. Sun. “Digging deeper into
cluster system logs for failure prediction and root cause diagnosis.” In:
2014 IEEE Int’l Conf. on Cluster Computing (CLUSTER). Sept. 2014, pp. 103—
112.

K. Fiirlinger, C. Glass, J. Gracia, A. Kniipfer, J. Tao, D. Hiinich, K. Idrees,
M. Maiterth, Y. Mhedheb, and H. Zhou. “DASH: Data structures and
algorithms with support for hierarchical locality.” In: European Conference
on Parallel Processing. Springer. 2014, pp. 542-552.

R. Gad, S. Pickartz, T. Siifs, L. Nagel, S. Lankes, A. Monti, and A. Brinkmann.
“Zeroing memory deallocator to reduce checkpoint sizes in virtualized HPC

environments.” In: The Journal of Supercomputing 74.11 (2018), pp. 6236—
6257.

217

https://doi.org/10.1109/TC.1972.5009071

Bibliography

[Gai+12]

[Gai+13]

[Gai+14]

[Gan+16]

[GCK12]

[GDUO07]

[Gha02]

[Ghi+16]

[GMO03]

[GR17]

A. Gainaru, F. Cappello, M. Snir, and W. Kramer. “Fault prediction under
the microscope: A closer look into HPC systems.” In: High Performance
Computing, Networking, Storage and Analysis (SC), 2012 Int’l Conf. for. Nov.
2012, pp. 1-11.

A. Gainaru, F. Cappello, M. Snir, and W. Kramer. “Failure prediction for
HPC systems and applications: Current situation and open issues.” In: The
Int’l Journal of High Performance Computing Applications 27.3 (2013), pp. 273—
282.

A. Gainaru, M. S. Bouguerra, F. Cappello, M. Snir, and W. Kramer. “Navi-
gating the blue waters: Online failure prediction in the petascale era.” In:
Argonne National Laboratory Technical Report, ANL/MCS-P5219-1014 (2014).

S. Ganguly, A. Consul, A. Khan, B. Bussone, J. Richards, and A. Miguel. “A
Practical Approach to Hard Disk Failure Prediction in Cloud Platforms: Big
Data Model for Failure Management in Datacenters.” In: 2016 IEEE Second
Int’l Conf. on Big Data Computing Service and Applications (BigDataService).
Mar. 2016, pp. 105-116.

A. Gainaru, F. Cappello, and W. Kramer. “Taming of the Shrew: Modeling
the Normal and Faulty Behaviour of Large-scale HPC Systems.” In: 26th
IEEE Int’l Parallel and Distributed Processing Symp. May 2012, pp. 1168-1179.

J. M. Guerrero, L. G. De Vicuna, and]J. Uceda. “Uninterruptible power
supply systems provide protection.” In: IEEE Industrial Electronics Magazine
1.1 (2007), pp. 28-38.

Z. Ghahramani. “Hidden Markov Models.” In: River Edge, NJ, USA: World
Scientific Publishing Co., Inc., 2002. Chap. An Introduction to Hidden
Markov Models and Bayesian Networks, pp. 9-42. 1sBN: 981-02-4564-5.

S. Ghiasvand, E. M. Ciorba, R. Tschiiter, and W. E. Nagel. “Lessons Learned
from Spatial and Temporal Correlation of Node Failures in High Perfor-
mance Computers.” In: 2016 24th Euromicro Int’l Conf. on Parallel, Dis-
tributed, and Network-Based Processing (PDP). Feb. 2016, pp. 377-381.

P. Gillingham and B. Millar. High bandwidth memory interface. US Patent
6,510,503. Jan. 2003.

A. Geist and D. A. Reed. “A survey of high-performance computing scaling
challenges.” In: The Int’l Journal of High Performance Computing Applications
31.1 (2017), pp. 104-113.

218

Bibliography

[GS13]

[Gsc+06]

[Gu+08]

[Gus88]

[GZF11]

[HDO6]

[HKG]

[HLKO4]

[Ho95]

[Hol+16]

[HP11]

D. Griinewald and C. Simmendinger. “The GASPI API specification and
its implementation GPI 2.0.” In: 7th International Conference on PGAS Pro-
gramming Models. 2013, p. 243.

M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki. “Synergistic processing in cell’s multicore architecture.” In:
IEEE micro 26.2 (2006), pp. 10-24.

J. Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, and B.-H. Park. “Dynamic Meta-
Learning for Failure Prediction in Large-Scale Systems: A Case Study.” In:
2008 37th Int’l Conf. on Parallel Processing. Sept. 2008, pp. 157-164.

J. L. Gustafson. “Reevaluating Amdahl’s law.” In: Communications of the
ACM 31.5 (1988), pp. 532-533.

Q. Guan, Z. Zhang, and S. Fu. “Proactive Failure Management by In-
tegrated Unsupervised and Semi-Supervised Learning for Dependable
Cloud Systems.” In: 2011 Sixth Int’l Conf. on Availability, Reliability and Se-
curity. Aug. 2011, pp. 83-90.

P. H. Hargrove and J. C. Duell. “Berkeley Lab Checkpoint/Restart (BLCR)
for linux clusters.” In: Journal of Physics: Conference Series. Vol. 46. 1. IOP
Publishing. 2006, p. 494.

R. D. Hornung, J. A. Keasler, and M. B. Gokhale. Hydrofailure prediction
Challenge Problem, Lawrence Livermore National Laboratory. Tech. rep. LLNL-
TR-490254. Livermore, CA, pp. 1-17.

C. Huang, O. Lawlor, and L. V. Kalé. “Adaptive MPL.” In: Languages and
Compilers for Parallel Computing. Ed. by L. Rauchwerger. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 2004, pp. 306-322. 1sBN: 978-3-540-24644-2.

T. K. Ho. “Random Decision Forests.” In: Proceedings of the Third Int’'l Conf.
on Document Analysis and Recognition (Vol. 1). ICDAR "95. Washington, DC,
USA: IEEE Computer Society, 1995. 1sBN: 0-8186-7128-9.

D. Holmes, K. Mohror, R. E. Grant, A. Skjellum, M. Schulz, W. Bland,
and J. M. Squyres. “MPI Sessions: Leveraging Runtime Infrastructure to
Increase Scalability of Applications at Exascale.” In: Proceedings of the 23rd
European MPI Users” Group Meeting. EuroMPI 2016. Edinburgh, United
Kingdom: ACM, 2016, pp. 121-129. 1sBN: 978-1-4503-4234-6. DOI: 10.1145/
2966884 .2966915.

J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

219

https://doi.org/10.1145/2966884.2966915
https://doi.org/10.1145/2966884.2966915

Bibliography

[HRCO09]

[HSS12]

[HTC+89]

[Hua+84]

[IFG16]

[IM17]

[Int04]
[Jaul?]

[JDD12]

[Joy+83]

[JR13]

[JYS19]

T. J. Hacker, F. Romero, and C. D. Carothers. “An analysis of clustered
failures on large supercomputing systems.” In: Journal of Parallel and Dis-
tributed Computing 69.7 (2009), pp. 652-665. 1ssN: 0743-7315.

A. A. Hwang, I. A. Stefanovici, and B. Schroeder. “Cosmic Rays Don'T
Strike Twice: Understanding the Nature of DRAM Errors and the Implica-
tions for System Design.” In: SIGPLAN Not. 47.4 (Mar. 2012), pp. 111-122.
1ssN: 0362-1340.

A. R. Hoffman, J. E. Traub, N. R. Council, et al. Supercomputers: directions
in technology and applications. National Academies, 1989.

K.-H. Huang et al. “Algorithm-based fault tolerance for matrix operations.”
In: IEEE transactions on computers 100.6 (1984), pp. 518-528.

K. Idrees, T. Fuchs, and C. W. Glass. “Effective use of the PGAS paradigm:
Driving transformations and self-adaptive behavior in dash-applications.”
In: arXiv preprint arXiv:1603.01536 (2016).

T. Islam and D. Manivannan. “Predicting Application Failure in Cloud:
A Machine Learning Approach.” In: 2017 IEEE Int’l Conf. on Cognitive
Computing (ICCC). June 2017.

Intel Corporation. “Enhanced SpeedStep® technology for the Intel®
Pentium®) M processor.” In: Intel Technology White Paper (2004).

D. Jauk. “Failure Prediction in High Performance Computing.” MA thesis.
Boltzmannstr. 3, 85748 Garching: Technical University Munich, 2017.

W. M. Jones, J. T. Daly, and N. DeBardeleben. “Application Monitoring and
Checkpointing in HPC: Looking Towards Exascale Systems.” In: Proceedings
of the 50th Annual Southeast Regional Conference. ACM-SE "12. Tuscaloosa,
Alabama: ACM, 2012, pp. 262-267. 1sBN: 978-1-4503-1203-5. por: 10.1145/
2184512.2184574.

W.Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and D. Mosher. 4.2 BSD
system manual. Tech. rep. Technical report, Computer Systems Research
Group, University of California, 1983.

J. Jeffers and]. Reinders. Intel Xeon Phi coprocessor high performance pro-
gramming. Newnes, 2013.

D. Jauk, D. Yang, and M. Schulz. “Predicting Faults in High Performance
Computing Systems: An In-Depth Survey of the State-of-the-Practice.”
In: SC: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage, and Analysis. Accepted for Publication. ACM
Press. 2019, t.b.d.

220

https://doi.org/10.1145/2184512.2184574
https://doi.org/10.1145/2184512.2184574

Bibliography

[KK11]

[KK93]

[Kli+17]

[Kiis+09]

[Kiis+10]

[KZP06]

[Lan+10]

[Law+77]

[LH10]

[LHY10]

[Lia+06]

[Lia+07]

D. M. Kunzman and L. V. Kale. “Programming Heterogeneous Systems.”
In: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum. May 2011, pp. 2061-2064. por: 10.1109/IPDPS.
2011.377.

L. V. Kale and S. Krishnan. CHARM-++: a portable concurrent object oriented
system based on C++. Vol. 28. Citeseer, 1993.

J. Klinkenberg, C. Terboven, S. Lankes, and M. S. Miiller. “Data Mining-
Based Analysis of HPC Center Operations.” In: 2017 IEEE Int’l Conf. on
Cluster Computing (CLUSTER). Sept. 2017, pp. 766-773.

T. Kiistner, J. Weidendorfer, J. Schirmer, T. Klug, C. Trinitis, and S. Ziegler.
“Parallel MLEM on Multicore Architectures.” In: Computational Science —
ICCS 2009. Ed. by G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J.
Dongarra, and P. M. A. Sloot. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 491-500. 1sBN: 978-3-642-01970-8.

T. Kiistner, P. Pedron, J. Schirmer, M. Hohberg, J. Weidendorfer, and
S. L. Ziegler. “Fast system matrix generation using the detector response
function model on Fermi GPUs.” In: 2010 Nuclear Science Symposium and
Medical Imaging Conference. 2010.

S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. “Machine learning: a
review of classification and combining techniques.” In: Artificial Intelligence
Review 26.3 (Nov. 2006), pp. 159-190. 1ssN: 1573-7462.

Z.Lan, J. Gu, Z. Zheng, R. Thakur, and S. Coghlan. “A study of dynamic
meta-learning for failure prediction in large-scale systems.” In: Journal of
Parallel and Distributed Computing 70.6 (2010), pp. 630-643.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. “Basic linear
algebra subprograms for Fortran usage.” In: (1977).

O. Laadan and S. E. Hallyn. “Linux-CR: Transparent application checkpoint-
restart in Linux.” In: Linux Symposium. Vol. 159. Citeseer. 2010.

H.-C. W. Lin, Y. (He, and W.-S. Yang. “Franklin Job Completion Analysis.”
In: CUG 2010 Proceedings. 2010, pp. 1-12.

Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. “BlueGene/L Failure Analysis
and Prediction Models.” In: Int’l Conf. on Dependable Systems and Networks
(DSN’06). June 2006, pp. 425-434.

Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. “Failure Prediction in IBM Blue-
Gene/L Event Logs.” In: Seventh IEEE Int’l Conf. on Data Mining (ICDM
2007). Oct. 2007, pp. 583-588.

221

https://doi.org/10.1109/IPDPS.2011.377
https://doi.org/10.1109/IPDPS.2011.377

Bibliography

[Liell]
[Lin+14]

[Liu+11a]

[Liu+11b]

[Ma+15]

[Mes18]

[Mil+00]

[Mit16]

[Mos93]

[MSS17]

[MYL17]

[NAC11]

J. H. Lienhard. A heat transfer textbook. Courier Corporation, 2011.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dol-
lar, and C. L. Zitnick. “Microsoft coco: Common objects in context.” In:
European conference on computer vision. Springer. 2014, pp. 740-755.

Q. Liu, G. Jin, J. Zhou, Q. Sun, and M. Xi. “Bayesian serial revision method
for RLLC cluster systems failure prediction.” In: Journal of Systems Engi-
neering and Electronics 22.2 (Apr. 2011).

Q. Liu, J. Zhou, G. Jin, Q. Sun, and M. Xi. “FaBSR: a method for cluster
failure prediction based on Bayesian serial revision and an application
to LANL cluster.” In: Quality and Reliability Engineering Int’l 27.4 (2011),
pp. 515-527. 1ssN: 1099-1638.

A. Ma, R. Traylor, E. Douglis, M. Chamness, G. Lu, D. Sawyer, S. Chandra,
and W. Hsu. “RAIDShield: Characterizing, Monitoring, and Proactively
Protecting Against Disk Failures.” In: ACM Trans. Storage 11.4 (Nov. 2015),
17:1-17:28. 1ssN: 1553-3077.

Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard, Version 3.2 (draft). Unofficial, for comment only. 2018.

D. S. Milojici¢, E. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. “Process
migration.” In: ACM Computing Surveys (CSUR) 32.3 (2000), pp. 241-299.

S. Mittal. “A Survey Of Architectural Techniques for Managing Process
Variation.” In: ACM Computing Surveys 48 (Feb. 2016). por: 10 . 1145/
2871167.

D. Mosberger. “Memory Consistency Models.” In: SIGOPS Oper. Syst. Rev.
27.1 (Jan. 1993), pp. 18-26. 1ssN: 0163-5980. por: 10.1145/160551.160553.

FE. Mahdisoltani, I. Stefanovici, and B. Schroeder. “Proactive error prediction
to improve storage system reliability.” In: 2017 USENIX Annual Technical
Conference (USENIX ATC 17). 2017, pp. 391-402.

L. Ma, S. Yi, and Q. Li. “Efficient service handoff across edge servers
via docker container migration.” In: Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. ACM. 2017, p. 11.

N. Nakka, A. Agrawal, and A. Choudhary. “Predicting node failure in high
performance computing systems from failure and usage logs.” In: IEEE
Int’l. Parallel and Distributed Processing Symp., Workshops and Phd Forum,
(IPDPSW). 2011, pp. 1557-1566. 1sBN: 9780769543857 .

222

https://doi.org/10.1145/2871167
https://doi.org/10.1145/2871167
https://doi.org/10.1145/160551.160553

Bibliography

[Nad+17]

[Nag+07]

[Nie+06]

[Nie+17]

[NLH+05]

[Pat+17]

[Pat+89]

[Pat98]

[Pel+14]

S. Nadgowda, S. Suneja, N. Bila, and C. Isci. “Voyager: Complete container
state migration.” In: 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). IEEE. 2017, pp. 2137-2142.

A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott. “Proactive
Fault Tolerance for HPC with Xen Virtualization.” In: Proceedings of the 21st
Annual International Conference on Supercomputing. ICS '07. Seattle, Wash-
ington: ACM, 2007, pp. 23-32. 1sBN: 978-1-59593-768-1. por: 10 . 1145/
1274971.1274978.

J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Apra.
“Advances, applications and performance of the global arrays shared mem-
ory programming toolkit.” In: The International Journal of High Performance
Computing Applications 20.2 (2006), pp. 203-231.

B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari. “Char-
acterizing Temperature, Power, and Soft-Error Behaviors in Data Center
Systems: Insights, Challenges, and Opportunities.” In: 2017 IEEE 25th Int’l.
Symp. on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS). IEEE. 2017, pp. 22-31.

M. Nelson, B.-H. Lim, G. Hutchins, et al. “Fast Transparent Migration
for Virtual Machines.” In: USENIX Annual technical conference, general track.
2005, pp. 391-394.

A. Patwari, I. Laguna, M. Schulz, and S. Bagchi. “Understanding the
Spatial Characteristics of DRAM Errors in HPC Clusters.” In: Proceedings
of the 2017 Workshop on Fault Tolerance for HPC at Extreme Scale. FTXS "17.
Washington, DC, USA: ACM, 2017, pp. 17-22.

D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz. “Introduction to redun-
dant arrays of inexpensive disks (RAID).” In: Digest of Papers. COMPCON
Spring 89. Thirty-Fourth IEEE Computer Society International Conference: In-
tellectual Leverage. IEEE. 1989, pp. 112-117.

D. W. Patterson. Artificial Neural Networks: Theory and Applications. 1st. Up-
per Saddle River, NJ, USA: Prentice Hall PTR, 1998. 1sBN: 0132953536.

A. Pelaez, A. Quiroz, J. C. Browne, E. Chuah, and M. Parashar. “Online
failure prediction for HPC resources using decentralized clustering.” In:
2014 21st Int’l Conf. on High Performance Computing (HiPC). Dec. 2014, pp. 1-
9.

223

https://doi.org/10.1145/1274971.1274978
https://doi.org/10.1145/1274971.1274978

Bibliography

[Pic+14]

[Pic+16a]

[Pic+16b]

[Pic+18]

[PWB07]

[Qiu+17]

[Rao+19]

[RBP12]

[Red08]

[Rin+17]

[RNO3]

S. Pickartz, R. Gad, S. Lankes, L. Nagel, T. Siif3, A. Brinkmann, and S. Krem-
pel. “Migration techniques in HPC environments.” In: European Conference
on Parallel Processing. Springer. 2014, pp. 486—497.

S. Pickartz, N. Eiling, S. Lankes, L. Razik, and A. Monti. “Migrating LinuX
containers using CRIU.” In: International Conference on High Performance
Computing. Springer. 2016, pp. 674-684.

S. Pickartz, S. Lankes, A. Monti, C. Clauss, and J. Breitbart. “Application
migration in HPC - A driver of the exasclae era?” In: 2016 International Con-
ference on High Performance Computing and Simulation (HPCS). IEEE. 2016,
pp- 318-325.

S. Pickartz, C. Clauss, J. Breitbart, S. Lankes, and A. Monti. “Prospects
and challenges of virtual machine migration in HPC.” In: Concurrency and
Computation: Practice and Experience 30.9 (2018), e4412.

E. Pinheiro, W.-D. Weber, and L. A. Barroso. “Failure Trends in a Large
Disk Drive Population.” In: 5th USENIX Conference on File and Storage
Technologies (FAST 2007). 2007, pp. 17-29.

Y. Qiu, C. Lung, S. Ajila, and P. Srivastava. “LXC Container Migration
in Cloudlets under Multipath TCP.” In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC). Vol. 2. July 2017, pp. 31-
36. por: 10.1109/COMPSAC.2017.163.

A. Raoofy, D. Yang,]. Weidendorfer, C. Trinitis, and M. Schulz. “Enabling
Malleability for Livermore Unstructured Lagrangian Explicit Shock Hy-
drodynamics using LAIK.” In: PARS-Mitteilungen 2019, Berlin, Germany.
Accepted for Publication. 2019.

R. Rajachandrasekar, X. Besseron, and D. K. Panda. “Monitoring and Pre-
dicting Hardware Failures in HPC Clusters with FTB-IPML" In: 26th IEEE
Int’l Parallel and Distributed Processing Symp., Workshops and PhD Forum.
May 2012.

V. G. Reddy. “Neon technology introduction.” In: ARM Corporation 4 (2008),

p- 1.

C. A. Rincén, J.-F. Paris, R. Vilalta, A. M. Cheng, and D. D. Long. “Disk fail-
ure prediction in heterogeneous environments.” In: 2017 Int’l. Symp. on Per-
formance Evaluation of Computer and Telecommunication Systems (SPECTS).
July 2017, pp. 1-7.

S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 2nd ed.
Pearson Education, 2003. 1sBN: 0137903952.

224

https://doi.org/10.1109/COMPSAC.2017.163

Bibliography

[RS15]

[RT+15]

[Rus78]

[Saa03]
[Sar+14]

[SB16]

[Sed46]

[SG07a]

[SGO7b]

[SG10]

[SG84]

[Sha06]

[SKP06]

E. Ruijters and M. Stoelinga. “Fault tree analysis: A survey of the state-
of-the-art in modeling, analysis and tools.” In: Computer Science Review
15-16.Supplement C (2015), pp. 29-62. 1ssN: 1574-0137.

D. Rossetti, S. Team, et al. GPUDirect: integrating the GPU with a network
interface. 2015.

R. M. Russell. “The CRAY-1 computer system.” In: Communications of the
ACM 21.1 (1978), pp. 63-72.

Y. Saad. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, D. Grove, A. Shinnar, M.
Takeuchi, et al. X10 Language Specification Version 2.5. Citeseer, 2014.

A. Sirbu and O. Babaoglu. “Towards operator-less data centers through
data-driven, predictive, proactive autonomics.” In: Cluster Computing 19.2
(June 2016), pp. 865-878.

L. I. Sedov. “Propagation of strong shock waves.” In: Journal of Applied
Mathematics and Mechanics 10 (1946), pp. 241-250.

B. Schroeder and G. Gibson. “Disk Failures in the Real World: What
Does an MTTF of 1,000,000 Hours Mean to You?” In: Proceedings of the 5th
USENIX Conference on File and Storage Technologies. FAST '07. San Jose, CA:
USENIX Association, 2007.

B. Schroeder and G. A. Gibson. “Understanding failures in petascale com-
puters.” In: Journal of Physics: Conference Series. Vol. 78. 1. IOP Publishing.
2007, p. 012022.

B. Schroeder and G. Gibson. “A Large-Scale Study of Failures in High-
Performance Computing Systems.” In: IEEE Transactions on Dependable and
Secure Computing 7.4 (Oct. 2010), pp. 337-350. 1ssN: 1545-5971.

A. Spector and D. Gifford. “The space shuttle primary computer system.”
In: Communications of the ACM 27.9 (1984), pp. 872-900.

A. Shan. “Heterogeneous processing: a strategy for augmenting moore’s
law.” In: Linux Journal 2006.142 (2006), p. 7.

S. Sur, M. J. Koop, and D. K. Panda. “High-performance and scalable MPI
over InfiniBand with reduced memory usage: an in-depth performance
analysis.” In: Proceedings of the 2006 ACM/IEEE conference on Supercomput-
ing. ACM. 2006, p. 105.

225

Bibliography

[SKT15]

[SLM10]

[Sod15]

[SPW09]

[Sri+13]

[Ste96]

[Str+03]

[Sum19]

[SV82]

[SW89]

M. Soualhia, F. Khomh, and S. Tahar. “Predicting Scheduling Failures in the
Cloud: A Case Study with Google Clusters and Hadoop on Amazon EMR.”
In: Proceedings of the 2015 IEEE 17th Int’l Conf. on High Performance Com-
puting and Communications, 7th Int. Symp. on Cyberspace Safety and Security,
and 12th Int’l Conf. on Embedded Software and Systems. HPCC-CSS-ICESS "15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 58-65.

E. Salfner, M. Lenk, and M. Malek. “A Survey of Online Failure Prediction
Methods.” In: ACM Comput. Surv. 42.3 (Mar. 2010), 10:1-10:42. 1ssN: 0360-
0300.

A. Sodani. “Knights landing (knl): 2nd generation Intel® xeon phi pro-
cessor.” In: 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE. 2015, pp. 1-
24.

B. Schroeder, E. Pinheiro, and W.-D. Weber. “DRAM errors in the wild:
a large-scale field study.” In: ACM SIGMETRICS Performance Evaluation
Review. Vol. 37. 1. ACM. 2009, pp. 193-204.

V. Sridharan,]. Stearley, N. DeBardeleben, S. Blanchard, and S. Gurumurthi.
“Feng Shui of Supercomputer Memory: Positional Effects in DRAM and
SRAM Faults.” In: Proceedings of the Int’l Conf. on High Performance Com-
puting, Networking, Storage and Analysis. SC "13. Denver, Colorado: ACM,
2013.

G. Stellner. “CoCheck: Checkpointing and process migration for MPL”
In: Proceedings of International Conference on Parallel Processing. IEEE. 1996,
pp- 526-531.

D. Strul, R. B. Slates, M. Dahlbom, S. R. Cherry, and P. K. Marsden.
“An improved analytical detector response function model for multilayer
small-diameter PET scanners.” In: Physics in Medicine and Biology 48 (2003),
pp. 979-994.

V. A. Suma. “Exploring and Prototyping the MPI Process Set Management
of MPI Sessions.” Masterarbeit. 85375 Neufahrn Bei Freising: Technische
Universitat Miinchen, 2019.

L. A. Shepp and Y. Vardi. “Maximum likelihood reconstruction for emission
tomography.” In: IEEE transactions on medical imaging 1.2 (1982), pp. 113—
122.

J. Simpson and E. Weiner. The Oxford English Dictionary. Oxford, England:
Oxford University Press, 1989.

226

Bibliography

[Tae+10]

[TBA13]

[Tho+10]

[Tiw+15a]

[Tiw+15b]

[TOP19]

[Ure+12]

[Vir]

[Voo+09]

[Wan+08]

N. Taerat, C. Leangsuksun, C. Chandler, and N. Naksinehaboon. “Profi-
ciency Metrics for Failure Prediction in High Performance Computing.”
In: Int’l. Symp. on Parallel and Distributed Processing with Applications. Sept.
2010, pp. 491-498.

S. Treichler, M. Bauer, and A. Aiken. “Language support for dynamic,
hierarchical data partitioning.” In: ACM SIGPLAN Notices. Vol. 48. 10.
ACM. 2013, pp. 495-514.

J. Thompson, D. W. Dreisigmeyer, T. Jones, M. Kirby, and J. Ladd. “Accu-
rate fault prediction of BlueGene/P RAS logs via geometric reduction.”
In: 2010 Int’l Conf. on Dependable Systems and Networks Workshops (DSN-W).
June 2010, pp. 8-14.

D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell. “Reliability
Lessons Learned from GPU Experience with the Titan Supercomputer at
Oak Ridge Leadership Computing Facility.” In: Proceedings of the Int’l Conf.
for High Performance Computing, Networking, Storage and Analysis. SC "15.
Austin, Texas: ACM, 2015, 38:1-38:12. 1sBN: 978-1-4503-3723-6.

D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D.
Oliveira, D. Londo, N. DeBardeleben, P. Navaux, et al. “Understanding
GPU errors on large-scale HPC systems and the implications for system
design and operation.” In: 2015 IEEE 21st Int’l. Symp. on High Performance
Computer Architecture (HPCA). Feb. 2015, pp. 331-342.

TOP500.0org. TOP 500, The List. 2019. URL: https : / /www . top500 . org
(visited on 03/17/2019).

I. A. C. Urefia, M. Riepen, M. Konow, and M. Gerndt. “Invasive MPI on
Intel’s Single-Chip cloud computer.” In: International Conference on Archi-
tecture of Computing Systems. Springer. 2012, pp. 74-85.

Virtuozzo. Checkpoint/Restore In Userspace. https://criu.org/Main_Page.
accessed on 29.06.2019.

W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. “Cost of virtual
machine live migration in clouds: A performance evaluation.” In: I[EEE
International Conference on Cloud Computing. Springer. 2009, pp. 254-265.

C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. “Proactive process-level
live migration in HPC environments.” In: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. IEEE Press. 2008, p. 43.

227

https://www.top500.org
https://criu.org/Main_Page

Bibliography

[Wan+10]

[Wan+12]

[Wan+14]

[Wat+12]

[WD96]

[WOM14]

[Woo+07]

[XSC13]

[Xu+10]

[Xue+07]

[Yan+18]

C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. “Hybrid checkpoint-
ing for MPI jobs in HPC environments.” In: 2010 IEEE 16th International
Conference on Parallel and Distributed Systems. IEEE. 2010, pp. 524-533.

C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. “Proactive process-level
live migration and back migration in HPC environments.” In: Journal of
Parallel and Distributed Computing 72.2 (2012), pp. 254-267.

E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang. “Intel
math kernel library.” In: High-Performance Computing on the Intel® Xeon
Phi(TM). Springer, 2014, pp. 167-188.

Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, and Y. Matsumoto. “On-
line failure prediction in cloud datacenters by real-time message pattern
learning.” In: 4th IEEE Int’l Conf. on Cloud Computing Technology and Science
Proceedings. Dec. 2012, pp. 504-511.

D. W. Walker and J. J. Dongarra. “MPI: a standard message passing inter-
face.” In: Supercomputer 12 (1996), pp. 56-68.

Y. Watanabe, H. Otsuka, and Y. Matsumoto. “Failure Prediction for Cloud
Datacenter by Hybrid Message Pattern Learning.” In: 2014 IEEE 11th Intl
Conf on Ubiquitous Intelligence and Computing. Dec. 2014, pp. 425-432.

T. Wood, P. J. Shenoy, A. Venkataramani, M. S. Yousif, et al. “Black-box
and Gray-box Strategies for Virtual Machine Migration.” In: NSDI. Vol. 7.
2007, pp. 17-17.

Z. Xiao, W. Song, and Q. Chen. “Dynamic resource allocation using vir-
tual machines for cloud computing environment.” In: IEEE transactions on
parallel and distributed systems 24.6 (2013), pp. 1107-1117.

L. Xu, H.-Q. Wang, R.-J. Zhou, and B.-Y. Ge. “Autonomic failure predic-
tion based on manifold learning for large-scale distributed systems.” In:
The Journal of China Universities of Posts and Telecommunications 17.4 (2010),
pp- 116-124. 1ssn: 1005-8885.

Z. Xue, X. Dong, S. Ma, and W. Dong. “A Survey on Failure Prediction of
Large-Scale Server Clusters.” In: Eighth ACIS Int’l Conf. on Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/Distributed Computing
(SNPD 2007). Vol. 2. July 2007, pp. 733-738.

D. Yang, J]. Weidendorfer, C. Trinitis, T. Kiistner, and S. Ziegler. “Enabling
Application-Integrated Proactive Fault Tolerance.” In: PARCO 2017: Parallel
Computing is Everywhere. 10S Press. 2018, pp. 475-484.

228

Bibliography

[Y]JGO3]

[Yu+11]

[Yua+12]

[ZhaO00]

[Zhe+10]

[Zho+14]

[Zhu+13]

[ZNO1]

[ZSK04]

A. B. Yoo, M. A. Jette, and M. Grondona. “Slurm: Simple linux utility for
resource management.” In: Workshop on Job Scheduling Strategies for Parallel
Processing. Springer. 2003, pp. 44-60.

L. Yu, Z. Zheng, Z. Lan, and S. Coghlan. “Practical online failure prediction
for Blue Gene/P: Period-based vs event-driven.” In: 2011 IEEE/IFIP 41st
Int’l Conf. on Dependable Systems and Networks Workshops (DSN-W). June
2011, pp. 259-264.

Y. Yuan, Y. Wu, Q. Wang, G. Yang, and W. Zheng. “Job failures in high
performance computing systems: A large-scale empirical study.” In: Com-
puters & Mathematics with Applications 63.2 (2012). Advances in context,
cognitive, and secure computing, pp. 365-377.

G. P. Zhang. “Neural networks for classification: a survey.” In: IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
30.4 (Nov. 2000), pp. 451-462.

Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, and P. Beckman. “A practical
failure prediction with location and lead time for Blue Gene/P.” In: 2010
Int’l Conf. on Dependable Systems and Networks Workshops (DSN-W). June
2010, pp. 15-22.

H. Zhou, Y. Mhedheb, K. Idrees, C. W. Glass, J. Gracia, and K. Fiirlinger.
“Dart-mpi: An mpi-based implementation of a pgas runtime system.” In:
Proceedings of the 8th International Conference on Partitioned Global Address
Space Programming Models. ACM. 2014, p. 3.

B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma. “Proactive drive failure
prediction for large scale storage systems.” In: 2013 IEEE 29th Symp. on
Mass Storage Systems and Technologies (MSST). May 2013, pp. 1-5.

H. Zhong and J. Nieh. CRAK: Linux checkpoint/restart as a kernel module.
Tech. rep. Technical Report CUCS-014-01, Department of Computer Science,
Columbia University, 2001.

G. Zheng, L. Shi, and L. V. Kalé. “FTC-Charm++: an in-memory checkpoint-
based fault-tolerant runtime for Charm++ and MPL"” In: 2004 ieee inter-
national conference on cluster computing (ieee cat. no. 04EX935). IEEE. 2004,
pp- 93-103.

229

	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Technical Background of Computer Architecture
	Types of Parallelism
	Amdahl's Law
	Gustafson's Law
	Heterogeneous Computing
	Other Factors in Processor Design

	Modern HPC System Architectures
	TOP500 and the HPL Benchmark
	Parallelism and Heterogeneity in Modern HPC Systems

	Motivation
	Contribution
	Structure of This Dissertation

	Terminology and Technical Background
	Terminology on Fault Tolerance
	Fault, Error, Failure
	Fault tolerance

	Terminology on Machine Learning and Failure Prediction
	Terminology on Parallel Computer Architecture
	Flynn's Taxonomy of Computer Architectures
	Memory Architectures
	Scalability

	Terminology in Parallel Programming
	Message Passing Interface
	OpenMP

	Failure Prediction: A State-of-the-practice Survey
	Methodology and Scope
	Survey on Failure Modes in HPC Systems
	Failure Modes
	On Root Causes Analysis

	Survey of Failure Prediction Methods
	Probability and Correlation
	Rule-based Methods
	Mathematical/Analytical Methods
	Decision Trees/Forests
	Regression
	Classification
	Bayesian Networks and Markov Models
	Neural Networks
	Meta-Learning

	Insights and Discussions on Failure Predictions in High Performance Computing Systems
	Effectiveness of Failure Prediction System
	Availability of Datasets, Reproducibility of Research
	Metrics and the Effect of False Positive Rate
	Failure Prediction and Fault-mitigation Techniques

	Fault Tolerance Strategies
	System Architecture of Batch Job Processing System
	Fault-mitigation Mechanisms
	Overview of Fault Tolerance Techniques
	Application-integrated vs. Application-transparent Techniques
	Checkpoint and Restart
	Migration
	Algorithm-based Fault Tolerance
	Summary of Fault Tolerance Techniques

	Data Migration
	Basic Action Sequence for Data Migration
	Data Organization of Parallel Applications
	Data Consistency and Synchronization of Processes
	Summary: The Concept of Data Migration

	LAIK: An Application-integrated Index-space Based Abstraction Library
	The LAIK Library
	Basic Concept of LAIK
	Architecture of LAIK
	Overview of LAIK APIs
	User API: The Process Group API Layer
	User API: The Index Space API Layer
	User API: The Data Container API Layer
	Callback APIs
	The External Interface
	The Communication Backend Driver Interface
	Utilities
	Limitations and Assumptions in Our Prototype Implementation

	Basic Example of a LAIK Program
	Extended Example of Automatic Data Migration with LAIK

	Evaluation of the LAIK Library with Real-world Applications
	Application Example 1: Image Reconstruction with the Maximum-Likelihood Expectation-Maximization (MLEM) Algorithm
	MPI Parallelization
	Evaluation of Application Example 1: MLEM
	Application Example 2: The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) Benchmark
	Evaluation of Application Example 2: LULESH

	Discussion on Effectiveness of Data Migration with LAIK
	Advantages of LAIK
	Disadvantages and Limitations of LAIK
	Lessons Learned

	Extending MPI for Data Migration: MPI Sessions and MPI Process Sets
	MPI Sessions
	MPI Sessions and Fault Tolerance
	MPI Sessions and Data Migration

	Extension Proposal for MPI Sessions: MPI Process Sets
	Components in Our MPI Sessions / MPI Process Sets Design
	Semantics of MPI Process Sets
	Storage of Process Set Information
	Change Management of the MPI Process Set
	Implementation of Our MPI Process Set Module
	Known Limitations of Our MPI Sessions / MPI Process Set Prototype

	Evaluation of MPI Sessions and MPI Process Sets
	Basic Example of an MPI Sessions Program
	Application Example 1: The Maximum Likelihood Expectation Maximization (MLEM) Algorithm
	Application Example 2: The LULESH

	Discussion on the Effectiveness of MPI Sessions and MPI Process Sets
	Functionality of MPI Sessions and MPI Process Sets
	Advantages of MPI Sessions and MPI Process Sets for Fault Tolerance
	Disadvantages of MPI Sessions and MPI Process Sets for Fault Tolerance
	Limitations of Our Prototype

	Discussion
	Fault Tolerance with Data Migration
	From Fault Tolerance to Malleability

	Related Work
	State-of-the-practice on Failure Prediction
	Migration and Checkpointing
	Fault-tolerant Programming Models

	Conclusion
	Future Work
	Appendices
	Description of Systems
	SuperMUC Phase II
	CoolMUC-2
	CoolMUC-3

	The System Matrix of MADPET-II
	Data Structures from LULESH 2.0
	List of Proposed Calls for MPI Sessions
	New Calls Introduced by Our MPI Sessions / MPI Process Set Library
	MPI Sessions Interface
	Key-value Store Interface

	List of Own Publications
	Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

