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Structures with periodically arranged resonators have attracted attention within vibroacoustics recently.
These periodic structures attenuate wave propagation in a defined frequency range. Engineers can tune
the resonators to produce structures with a desired band gap behavior. The majority of the established
stop band materials is produced by additive manufacturing today. While promising scientific results have
been achieved with this method, it is not yet fit for industrial applications. In order to develop new man-
ufacturing approaches and to close the gap between science and industry, the influence of uncertainties
of periodic structures has to be quantified. In this study, the influence of geometrical uncertainties on
periodic structures is investigated. The authors develop a finite element model of an epoxy plate with
beam resonators for this purpose. In a parameter study, the influence of some parameters is identified.
Afterwards, the behavior of stop band material with uncertain input parameters is studied using spectral
stochastic methods. Having predefined probability density functions, the generalized polynomial chaos
expansion is used to propagate the uncertainty of these parameters. The stop band behavior is accord-
ingly represented by the generalized polynomial chaos having unknown deterministic coefficients.
A collocation-based stochastic simulation is used to estimate the coefficients employing the deterministic
finite element model as a black-box. The results show the necessity of regarding uncertainties in periodic
structures. The performed stochastic simulations are suitable to define manufacturing tolerances for the
production of stop band material.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

the vibration transmission. Similar structures have been consid-
ered with regard to the sound transmission loss in [3]. They

During recent years, acoustic metamaterials received growing
attention due to their possibility to gain acoustic properties which
can not be found in nature. In particular, the possibility to attain
structures with band gap behavior is useful in applications with
vibroacoustic issues. A sonic crystal by locally resonant material
is presented by [ 1] where rubber coated spheres of lead are embed-
ded in an epoxy matrix to attain a three dimensional lattice. Thus,
high sound transmission loss can be achieved at certain frequen-
cies. Flexural waves in thin plates with spring-mass resonators
are investigated in [2]. It is shown that wave propagation can be
attenuated by locally attached spring-mass resonators. The
behavior of different excitations is investigated with regard to
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demonstrated that the frequency band of increased sound trans-
mission loss in a metamaterial-based plate can be broadened sig-
nificantly by replacing a single resonator in each unit cell with
multiple smaller appropriately damped resonators. The effect of
periodic, tuned resonators with regard to vibroacoustics is investi-
gated in the studies [4,5]. The stop band behavior of a sandwich
plate with a stepped resonator has been explained in [6]. It has
been shown that the sound transmission of the sandwich plate is
significantly reduced within the stop band of the structure. The
studies [7,8] investigate the attenuation of structural vibrations
in a duct by applying locally resonant metamaterials. It is shown
that the combination of different resonator configurations in one
structure can lead to combined stop bands if they are appropriately
designed. In [9], an approach using topology optimization for
acoustic metamaterial is presented. In [10], it is shown that reso-
nant stop band material is suitable to reduce mechanical cross-
coupling in phased array transducers. Another approach realizing
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acoustic metamaterial is using a very thin membrane having adjus-
table concentrated masses, known as membrane-type acoustic
metamaterials [11,12]. Further approaches to realize structures
with band gap behavior are presented in literature like [13-15].

Summarizing the results found in literature, stop band materi-
als which are achieved with periodic structures of tuned resonators
are a suitable solution for vibroacoustic applications. However, the
application of these structures in industrial sectors is quite small.
One reason for this is the missing evaluation of the influence of
uncertainties. One of the few works is presented by [16] addressing
seismic metamaterials with the focus of robust-to-uncertainties
optimal design. The influence of point defects in a phononic crystal
Timoshenko beam is investigated in [17]. In [18], the influence of
point defects in periodic crystal thin plates is investigated. It is
shown that the defect modes existing in the first band gap depend
strongly on the size of the point defect and the filling fraction of the
system. In [19], the wave finite element method is employed to
investigate a structure with one-dimensional periodicity which is
locally perturbed. The applied approach is based on the method
presented in [20]. However, the impact of parameter uncertainty,
e.g. manufacturing tolerances for structures with two-
dimensional periodicity has not been investigated. Up to now, no
possibility to specify tolerances for the manufacturing of periodi-
cally arranged acoustic metamaterial is discussed in literature.
An effective method to overcome such drawback is to use stochas-
tic analysis in the design stage, as introduced in this paper.

Uncertainty quantification in such material can be investigated
using two techniques, i.e. sampling and non-sampling based meth-
ods. Monte Carlo simulation plays a major role in the former
method in which large number of samples of uncertain parameters
are required to realize the structure responses [21,19]. Though even
the method is straightforward to use, it suffers the lack of fast con-
vergence for large uncertainty and is ineffective in terms of compu-
tational time for a large number of parameter realizations. The
latter, in contrast, shows reasonable accuracy and computational
efficiency for representation of parameter uncertainty. The method
is based on a radically different approach, namely constructing the
functional dependence expressed in terms of spectral decomposi-
tion with unknown coefficients and orthogonal polynomial basis
[22-27]. Among various available non-sampling techniques, the
generalized Polynomial Chaos (gPC) expansion method has
received considerable attention, particularly for non-Gaussian ran-
dom variables [28,29]. The gPC is able to represent uncertainties in
parameters as an expansion of orthogonal polynomials of standard
random variables. Here, in this paper, this method is applied to
propagate uncertain input parameters in acoustic metamaterials.
The results show that uncertainty in the geometry of resonators
leads to a randomly distributed band gap. Based on these results,
manufacturing tolerances of the periodic structure can be tolerated
to attain a band gap within a certain frequency band.

This work is structured as follows: initially, we focus on the the-
oretical background of wave finite element method. In Section 3,
an introduction to the spectral discretization of uncertain parame-
ters is given. In an explanatory example, the application of the gPC
is demonstrated. The finite element model is presented in Section 4.
The band gap behavior and the results of the uncertainty quantifi-
cation are given in Section 5. Finally, a conclusion is drawn.

2. Dispersion in periodic, infinite structures

In this section, the employed method to calculate the dispersion
relations in periodic structures applying the Bloch theorem is
described. The dynamic behavior of periodic structures can be
described by dispersion relations to characterize the wave propa-

gation in such structures. A possible method to obtain the disper-
sion relations is an approach where the Bloch theorem is applied.
The wave propagation can be described in a so called unit cell
which is repeated infinitely [30]. A detailed elaboration of the the-
ory, known as wave finite element method, can be found in [31-
33]. For freely propagating, time harmonic waves with angular fre-
quency « a response variable y can be expressed by

l// _ Wei(wt—kxx—kyy)7 (1)

with W describing the wave mode through the thickness of the
structure and kg, k, being the components of the wavenumber in
x and y direction. This can be obtained by employing finite element
methods. Thus, the motion is described by a finite number of gen-
eralized displacements q. In case of one-dimensional periodicity,

q=[q, q,]" contains the generalized displacements at nodes 1
and 2, cf. Fig. 1(a).

According to Bloch theorem, the displacements are related to
each other by [31]

q, = /xq1, 2)
with
Jx = e ikeTx and  u, = kyrx (3)

where ry and p, represent the length of the periodic lattice and the
propagation constant in the direction of periodicity, respectively.
Thus, the generalized displacement vector can be described depen-
dent on q;,

q=Arq, with Ag=[ iI" (4)

The generalized displacements are related to generalized forces in
the absence of damping by

K- w*M]q =f, ()

with K, M, andf being the stiffness matrix, mass matrix, and force
vector, respectively. Inserting Eq. (4) into Eq. (5) leads to

[K— o’M]Arq, =f. (6)
Assuming zero forces at the node 1

Af=0 Av=1[1 2] (7)

with .
gives a reduced eigenvalue problem with
ALK — 0*M]Agrq, = 0. (8)

This eigenvalue problem can be solved for @ which is a function of
the propagation constant . The solutions for w(u,) characterize
the free wave propagation in the periodic structure. This approach
can be applied easily to two-dimensional periodicity, cf. Fig. 1 (b).
Thus, the vector of generalized displacements changes to

=09, 9@ q q. 9)
Consequently, the reduction matrices are given by

Av=[1 il A1 ki)'  and

AL = [l PRl ) ;;;.;11], (10)
with

Jx = e k™ and

Jy = ey, (11)

In equivalence to u,, the propagation constant in y direction is
defined by

Hy = kyry (12)
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Fig. 1. Generalized displacements q at various points in case of (a) one-dimensional periodicity (b) two-dimensional periodicity, based on [31].

As w(,ux, ,uy) is a function of the propagation constants (i, ft, in

case of two dimensional periodicity, the eigenvalue problem has to
be solved for any combination of the propagation vectors in order
to obtain a dispersion surface. Due to the periodicity of the struc-
ture, only the first Brillouin zone (BZ) with f,, i, = [-7, 7] needs
to be considered to identify band gaps [34]. Dependent on the sym-
metry of the unit cell, the calculation of the band gap can be
reduced to the contour of a part of the BZ, the so called irreducible
Brillouin zone (IBZ). Thus, the computational effort to identify band
gaps can be reduced. In case of asymmetric unit cells, special atten-
tion must be shown to the definition of the IBZ as shown in [35].
The relevance for the present study is further discussed in
Section 5.2.

3. Spectral discretization of uncertain parameters

In the following section, the applied method for the spectral dis-
cretization of uncertain parameters is introduced. In the first part,
the theoretical background is discussed briefly. Afterwards, an
explanatory example on how to apply the gPC is given.

3.1. Theoretical background

The spectral discretization methods are the key advantage for
the efficient stochastic reduced basis representation of uncertain
parameters in finite element modeling. This is because these meth-
ods provide a similar application of the deterministic Galerkin pro-
jection and collocation methods to reduce the order of complex
systems. In this way, it is common to employ truncated expansions
to discretize random input parameters and structural response.
The generalized Polynomial Chaos (gPC) expansion permits such
a discretization. The idea is that an uncertain quantity of interest
can be approximated by summation of polynomials with random
independent variables and deterministic coefficients. Thus, a new
dimension is generated by the uncertainty which is sought as a
set of orthogonal functions. The classical gPC expansion employs
Hermite polynomials with multidimensional random variables as
a trial basis for the probability space to represent uncertainty.
Using this approach, the random parameter X is expanded as, see
[23] for more details

X&) = iai%(cj) (13)
i=0

where a; are deterministic unknown coefficient functions and ¥;
are a set of orthogonal polynomials in terms of the random variable
& with the orthogonality relation of

(¥:,'¥)) =E[¥;, V)] = E[‘P?] 3 = hi oy (14)

in which h; is the norm of the polynomial. The unknown determin-
istic coefficients can be determined using the Galerkin projection as

X(), Fi(9)

a =222 i=0,1,2,... 15
(#i(9?) "

where

(X(&),¥i(8)) = E[X(&), ¥i(9)] = /QX(f)‘Pi(é)f(é)dé (16)

here, fis the probability density function (PDF) corresponding to the
random variable ¢ and Q denotes the random domain. For practical
simulation, the gPC is truncated to a finite number of terms, here-
after denoted by N,

(n+p)! 1
n!p!

X(@~Y a¥i¢) and N= (17)

in which, p is the maximum order of the expansion and n denotes
the random dimensionality. While the first few coefficients of
parameters with small uncertainty range seem to be enough for
accurate gPC representation, higher order expansion is used for an
accurate representation of parameters having large uncertainty.
Details of numerical simulation using the gPC expansion are given
in many works, cf. [28,23,36,37,24,38].

3.2. Explanatory example

In this section, a basic example is given for uncertainty quantifi-
cation employing the approach of generalized polynomial chaos
expansion. The examination for this example as well as for the
later presented example with periodic structures follows the work-
flow shown in Fig. 2. The unknown coefficients of the gPC are cal-
culated using the non-intrusive method, namely employing the
stochastic collocation points. It allows the use of a deterministic
black box model. Thus, it is suitable to perform the gPC to a wide
range of models. For this basic example, the first eigenfrequency
of a square plate under completely free boundary conditions is
considered as objective of interest. The calculation is done with
the classical plate theory. This theory is discussed in detail in
[39,40]. The first eigenfrequency f, can be calculated by

2 En’
I =ome (upa v2>)’ i

including the dimensionless frequency parameter 4, the edge length
L, the Young’s modulus E, the plate thickness h, the volume density
p and the Poisson’s ratio v. Considering a square plate with com-
pletely free boundary conditions and Poisson’s ratio v =0.3,?
denotes to 13.49 for the first eigenfrequency [40]. In this basic
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Fig. 2. The scheme illustrates the workflow to perfom the gPC employing the collocation method. Any arbitrary model can be used as a black box model. Note: In order to
keep the overview in this scheme, the notation of the index of summation as well as the lower and upper bounds of summation are neglected.

example, only one uncertain input parameter, the Young’s modulus
E, is considered for the calculation of the eigenfrequency. The edge
length L = 100 mm, the plate thickness h = 2 mm, and the volume
density p = 2.7 %; are deterministic input parameters. The uncer-
tain parameter follows a Beta distribution with the shape factors
o=4 and f=4 and lower and upper limit being 63 GPa and
77 GPa, respectively. The truncation order of the polynomial is cho-
sen to be two. Corresponding to the Beta distribution, Jacobi poly-
nomial provides optimal orthogonality. In the given example, the
set of polynomials is Wi =1,%¥;, =4¢, and Vi3 = %cfz —2. The
collocation points CP are obtained by the roots of the third order
Jacobi polynomial, resulting in CP; =0,CP, =0.522, and
CP3; = —0.522. In the given example, the unknown deterministic
coefficients are identified using the Galerkin projection resulting
in ajo=7-10%a;; =1.357-10% and a;, = 0. As in this example
only one uncertain parameter is considered, only one function X;
is present. Employing the input polynomial and the collocation
points, three realizations R; = 70000, R, = 73655, and R; = 66344
are obtained. Each of the realization denotes a single input of the
Young’s modulus for the deterministic black box model. Hence,
the eigenfrequency is calculated three times and the results are
stored in a solution vector Sol. The set of collocation points is intro-
duced in y, a set which is obtained by the truncation of n polynomi-
als ¥, ... ¥,. In this way, the matrix A is obtained. In this example,
A results in

1.0000 0 -1.25

A= 10000 -2.09 1.82 (19)
1.0000 2.09 1.82

Solving the equation

Sol = Ab (20)

leads to three coefficients by =93556.19,b;; =1170.01, and
by, = —10.41. Together with the previous defined polynomials,

these coefficients lead to a result function f. The number of result
functions corresponds to the number of objective functions which
are obtained from a single calculation of the black box model. In this
example only the first eigenfrequency is obtained from the

model. Hence, one result function f, =9.36-10* +4.68-10°¢c—

1.17 -10?¢* is obtained. This function can now be sampled with
the random variable ¢ which follows the previously defined distri-
bution. Finally, the probability density function (PDF) as well as
the statistical moments of the resulting function can be calculated.
Thus, the influence of an uncertain input parameter, in this example
the Young’s modulus, is quantified.

Finally, the results obtained from the gPC are compared to
results from a classical Monte Carlo simulation, cf. Table 1 and
Fig. 3. For the sake of brevity, the theoretical background of the
gPC is not fully discussed in this work. In [23], a comprehensive
introduction as well as a tutorial to this topic is given.

The example shows the possibility to realize uncertainty quan-
tification with a small number of realizations employing the gener-
alized polynomial chaos expansion. It should be denoted that the
convergence gets slower when employing a higher number a
uncorrelated uncertain input parameters. However, compared to
classical Monte Carlo simulations, in most of the cases a faster con-
vergence is obtained anyway.

4. Finite element model

The spectral discretization method explained in the previous
section allows us to investigate the impact of uncertainties in geo-
metrical parameters of periodic structures on the stop band via a
finite element model. Therefore, the test cases unit cell, 2 x 2 super
cell (SC), 3 x 3 SC, and 4 x 4 SC are considered. The generic model
represents a UC. By applying the Bloch theorem, this structure is
assumed to be repeated infinitely in x and y direction, cf. Fig. 4.

As the unit cell is repeated infinitely, the analysis with
uncertain inputs in this unit cell can be interpreted as analysis of



J. Henneberg et al. / Applied Acoustics 157 (2020) 107026 5

Table 1
Comparison of the results between a generalized polynomial chaos expansion (gPC) and a Monte Carlo simulation (MC) with different numbers of realizations (R).
gPCR=3 MC R=100 MC R =10000 MC R =1 mio.
Mean value [Hz] 93556 93677 93588 93556
Standard deviation [Hz] 1560 1532 1562 1559
-4
x 10
3 1 1 1 1 1
—»— oPC R=3
—MC R=100
25r - --"MCR=10° |7
z 2f .
7
=}
1)
o
>
E15F 1
=
Ra)
=
& 1F .
05F -
0 1 1 1
8.8 9 9.2 9.4 9.6 9.8 10
eigenfrequency [Hz] x10*

Fig. 3. Comparison of the results between a gPC and a Monte Carlo simulation (MC) with different numbers of realizations (R).

Fig. 4. Finite element models used for the uncertainty quantification in periodic structures. From left to right: unit cell, 2 x 2 super cell and 3 x 3 super cell.

different specimens wherein one specimen all periodic structures
are identical. This may be useful to identify the influence of man-
ufacturing tolerances which are caused by processes repeated after
producing one specimen. However, the changes due to the uncer-
tainty have to be identical for each unit cell within the periodic
structure. Another important matter is the consideration of uncer-
tainties within one specimen. As the unit cell is assumed to be
repeated infinitely, this is not a suitable model to investigate this
question. Therefore, a couple of unit cells are modeled together
and is then used as a new unit cell. In adoption to the study [17],
this cell is called super cell. In a m x m super cell, m is called the
size of the super cell.

The unit cell consists of a plate like structure with an added
beam resonator. Its geometry is equal to the example presented
in [41,42]. The resonator radius and length are 3.5mm and
5 mm, respectively. The plate thickness is denoted to 1 mm. The
finite element model is meshed with second-order hexagonal ele-
ments. In order to obtain a model with a small number of degrees

of freedom and little mesh dependency of the results, a mesh con-
vergence study is carried out, applying the guidelines given in [43].
Thus, the finite element model, cf. Fig. 4, shows less than 2% error
for the band gap when changing the element edge length to halve.
The simulations are carried out with the commercial software
Comsol Multiphysics [44]. An epoxy material with Young’s modu-
lus E =3500 MPa, Poisson’s ratio v=0.33, and mass density
p = 1.14 E;is considered. The material model is assumed to have
linear elastic behavior in accordance to Hooke’s law.

The above mentioned FE-models are considered then as black-
box to investigate the impact of parameter uncertainty on the band
gap. To this end, the band gap is considered as random output
approximated using the gPC expansion with unknown determinis-
tic coefficients. The spectral stochastic method is employed, cf.
[37], where a set of collocation points are generated in the random
domain. The FE-models are then executed for realizations of sam-
ples at each collocation point. Once the realizations are known, a
least-squares minimization procedure is used to calculate the
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unknown deterministic coefficients. This leads to a closed form for
the band gap depending on uncertainties in the random input
parameters. The results are presented in the following section.

5. Numerical results

The influence of uncertainty in input parameters on the band
gap is investigated. The parameters are assumed as random vari-
ables having a predefined PDF. In this study, the uncertainties in
parameters are assumed to be characterized by beta distributions
owing to the fact that the parameters are defined within a bounded
positive range. The boundary values of uncertain input parameters
and shape factors of the employed beta distributions, oc and f, are
given in Table 2. By adjusting the boundary values and shape fac-
tors, the distributions can be easily adopted to a wide range of
uncertain geometrical parameters arising in manufacturing
processes.

The width and the position of the band gap are considered as
the random outputs of the structures. They are approximated by
the gPC expansions having unknown deterministic coefficients
and multi-dimensional orthogonal basis. The basis is constructed
from the tensor dyadic product of the individual orthogonal poly-
nomials employed as basis of uncertain input parameters, cf. [23]
for details.

5.1. Unit cell

In a first step, the deterministic solution of the unit cell model is
calculated. Fig. 5 shows the Bravais lattice with the contour of the
IBZ TXMI and the dispersion curves in a band diagram. The calcu-
lation along the contour of the IBZ is suitable due to the symmetry
of the unit cell. Referring to the nomenclature of crystallography,
the unit cell of this study represents a p4mm lattice, for details
see [45,46]. The probability to obtain the full band gap on the con-

Table 2
Range of input uncertain parameters with associated distribution shape factors
Beta(a, f8).

distribution factors

Beta(4,4)
Beta(4,4)
Beta(6,6)

Uncertain parameter Boundary values [mm)]

[0.9,1.1]

[4.5,5.5]
3.15,3.85]

Plate thickness
Resonator length
Resonator radius

4

tour of the IBZ is denoted to 99.46% for a pAmm lattice as shown by
numerical test in [35].

The center position of the band gap and the associated width
are denoted as B, and B, respectively, as shown in Fig. 5. The cal-
culation is easily done by

Bub + Bip

2 b
with By, and By, being the lower and upper frequency boundary of
the band gap, respectively. The width B,, is defined by

By = Bu, — Bip. (22)

B, = (21)

Caused by the beam resonator, the periodic structure exhibits a res-
onant stop band. The band gap center position is obtained at
B, = 15370 Hz and with a band gap width B,, = 3240 Hz for the
deterministic model. In a parameter study, the influence of different
geometrical parameters to the band gap behavior of the structure is
analyzed. Therefore, plate thickness, resonator length, and res-
onator radius are varied in a range from 90% to 110% with regard
to the nominal values. The results are shown in Fig. 6. It can be seen
that the band gap behavior is sensitive to geometrical changes of
the investigated parameters. As a result, the band gap center posi-
tion shows an almost linear dependency for all three parameters
within the investigated ranges. The relation between plate thick-
ness and resonator radius, and band gap center position are charac-
terized by a positive gradient of nearly the same value. In contrast,
the resonator length and band gap center position are related by a
negative gradient. A similar behavior is found for plate thickness
and resonator radius when estimating the band gap width. How-
ever, in this case the influence of uncertainty in the resonator radius
has higher impact then of the plate thickness. A particular relation
is obtained for the sensitivity to uncertainty in the resonator length.
Especially when reducing the resonator length, the influence
decreases. Furthermore, an extremum is obtained at a band gap
width of 3300 Hz.

The PDF of outputs for the unit cell are given in Fig. 7. It seems
that the PDFs for the band gap center positions are identical for the
three parameters considered as single uncertain inputs due to the
fact that they have the same magnitude of the gradient. Concerning
the band gap width, the lower influence of the plate thickness com-
pared to the resonator radius results in a lower standard deviation.
As in case of the parameter study, a particular behavior is obtained

3.5
3.0 |

N

T 25|

Do
[a)
T

=
frequency
—_
ey

\,
\,
—_
e}
T

)1
>
o
o

0

r

X M r

Fig. 5. Bravais lattice with the contour of the irreducible Brillouin zone I'XMI" and the dispersion curves of the unit cell with highlighted band gap center position B, and band

gap width B,,.
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Fig. 6. Parameter study to identify the influence of plate thickness, resonator radius, and resonator length to band gap width and band gap center position. The value are

investigated in a range from 90% to 110% from the nominal value of the parameter.

in the PDF for the band width B,, when the resonator length is con-
sidered as an uncertain input parameter. The accumulation at a
band gap width of 3300 Hz is related to the extremum which is
found in the parameter study. In a secondary investigation, a unit
cell with two uncertain input parameters, resonator length and
radius, is considered. The resulting PDFs show similar mean values
for band gap center position and band gap width compared to the
investigations with only one uncertain input parameter as given in
Table 3. However, taking two uncertain input parameters into
account results in an increased standard deviation for both, band
gap center position and band gap width. Furthermore, the PDFs
show nearly symmetrical behavior. In order to evaluate the results
obtained with the gPC, two cases (resonator length and resonator
length + radius) have been calculated with a direct Monte Carlo
simulation. Therefore, 10000 realization are considered to get a
converged result. The results from gPC and Monte Carlo simulation
show good accordance with respect to the mean value, standard
deviation, and form of the PDF, cf. Fig. 7 and Table 3. As mentioned
above, the unit cell is assumed to be repeated infinitely. Thus, the
results can be interpreted as an uncertainty quantification in peri-
odic structures where the uncertainty arises between different
specimens but not within one specimen. Taking this into account,
a scenario where the thickness varies between each specimen
seem most likely. Assuming a molding manufacturing process,
uncertainties are induced by the closing and opening process
between every fabricated specimen. However, also resonator
length and resonator radius could change between each specimen
depending on the manufacturing process. In such a case, the given
model of a unit cell is suitable to quantify the influence of uncer-
tainties to the band gap behavior.

5.2. Super cell

In contrast to unit cells, SCs offer the possibility to consider
uncertainties arising within the periodic structure. Here, different
independent input parameters are used to quantify the uncertainty
in band gaps of resonators. The SC in this form does not show any

symmetry. Thus, uncertainties which appear within one specimen
are estimated. Applying the Bloch theorem to the SC, it is repeated
infinitely as well.

When calculating the band gap behavior in a SC with uncertain
input parameters, special attention must be paid to the definition
of the applied BZ. It is shown that the possibility to observe a full
band gap on the contour of the IBZ strongly depends on the sym-
metry of the lattice [35]. Generally, a SC can be considered as a
new unit cell because periodic boundary conditions are applied
to its boundaries. Hence, the findings from [35] must be taken into
account. By introducing uncertain input parameters to the geome-
try of the resonators, the SC does not show symmetry anymore.
Hence, it belongs to the plane crystallographic group p1. In this
case, the presence of a full, omni-directional band gap can only
be verified by calculating the entire area of the BZ. This leads to
a much higher computational effort to identify full band gaps
within the SC. Furthermore, in a SC a larger number of uncertain
input parameters is considered. Thus, more realizations are
required to solve the gPC expansion. Finally, the computational
time to solve the gPC expansion of a SC increases tremendously
compared to the unit cell. In order to identify positions and values
of the extrema within one dispersion surface, the full area of the BZ
is calculated for a SC with the most asymmetrical realization used
in the gPC, cf. Fig. 9. This realization is identified by the highest
deviation of the center of mass compared the SC with nominal val-
ues of geometrical parameters, cf. Section 4.

The three-dimensional plot of the dispersion surfaces of this SC
is shown in Fig. 8. Fig. 8 (a) shows the first 16 dispersion surfaces of
the structure. A detailed view is given in Fig. 8 (b) in order to pro-
vide more insight to the band gap behavior of the structure. Com-
pared to the previous discussed unit cell, a larger number of
dispersion surfaces are obtained in the equivalent frequency range.
This is the result of a higher number of resonators which results in
a higher number of modes when solving the eigenvalue problem,
cf. Eq. (8). Thus, the dispersion surfaces within a given frequency
range are obtained. Cutting along the contour of the BZ, cf. Fig. 9,
would result in a two dimensional band diagram, similar to the
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Fig. 7. Probability density functions of band gap width and band gap position for various uncertain inputs parameters in a unit cell. Inputs: (a) plate thickness, (b) resonator
radius, (c) resonator length, (d) radius and length of resonator, (e) resonator length with Monte Carlo simulation, (f) radius and length with Monte Carlo simulation.

Table 3

Mean value and standard deviation from uncertainty quantification in a unit cell. The
values are given for the band gap position B, and the band gap width B,,. For
comparison, the results of a Monte Carlo (MC) simulation are shown besides the
results from the generalized polynomial chaos expansion.

Uncertain input Mean value Standard deviation
[Hz] [Hz]
plate thickness By 15357 450
By 3234 61
resonator radius B, 15383 390
Bw 3233 104
resonator length By 15382 424
: 3197 118
resonator length & radius By 15406 589
By 3195 164
resonator length MC By 15376 425
By 3190 116
resonator length & radius MC B, 15394 579
By 3191 158

one shown in Fig. 5. However, this would consist of 16 dispersion
curves. The band gap is obtained between the 12th and 13th disper-
sion surface for the 2 x 2 SC. Thus, the band gap is defined by the
maximum of dispersion surface 12 and minimum of dispersion sur-
face 13. The minimum and maximum of each dispersion surface are
indicated in Fig. 9. They are located on the contour of the first BZ
I'XMYNXI shown in Fig. 9. This is due to the fact that the deviation
from the symmetry criteria is small. Similar results are obtained for
the 3 x 3 SC. A detailed investigation of the results shows that all
extrema can be found calculating only the points I',X, M, andY.
Based on these results, the band gap calculation for the realization
of the gPC expansion is performed only at 4 points of the contour of
the BZ TI',X,M,andY. Accordingly, the computational time is
reduced significantly. It has to be pointed out that the calculation
of the dispersion relations at certain points of the BZ is suitable
for the investigated structure with the given distributions of the
uncertain input parameters. For different structures and different
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distributions of the uncertain input parameters, it is necessary to
prove whether the calculation is required for the full area of the
BZ, only along the contour of the BZ, or only at certain point of
the contour of the BZ. The results for uncertainty quantification in
aunitcell,a2 x 2,3 x 3 and 4 x 4 SC are shown in Fig. 10. The res-
onator length is considered as independent uncertain input. Thus, 4,
9, and 16 uncorrelated resonator lengths with a beta distribution
are considered in the 2 x 2, 3 x 3 and 4 x 4 SC, respectively. The
mean values and standard deviations are given in Table 4. Analyz-
ing the band gap center position, the deviation of the mean value
is less than 1% comparing the different cell types. However, the
standard deviation decreases significantly from 2.76% to 0.69%
comparing the results from the unit cell and the 4 x 4 SC. The band
gap width shows different behavior when taking more uncertain
input parameters into account. Thus, the mean value of the band
gap width is reduced slightly. The standard deviation is decreased
from 3.69% in the unit cell to 1.60% in the 4 x 4 SC.

Especially, the shape of the PDF changes when taking more
uncertain input parameters into account. In order to characterize
the obtained output distributions, the 3rd and 4rd central
moments are considered, cf. Table 5. Employing the Pearson model

of probability density function, it is possible to distinguish differ-
ent types of distributions, cf. [29]. In the investigated test cases,
the skewness of the PDF reduced when taking more uncertain
input parameters into account. However, all PDFs are identified
having a Pearson type 1 distribution, which is known as a general-
ized beta distribution. The mean value of the band gap center posi-
tion shows convergence already for a 2 x 2 SC. Regarding the band
gap width no clear convergence can be found. However, the anal-
ysis of the 3rd and 4rd statistical moment shows negligible differ-
ences between the 3 x3 SC and 4 x 4 SC. Thus, the 3 x 3 SC
provides an appropriate approximation of the influence of uncer-
tainties in the investigated case.

5.3. Guidelines to quantify uncertainties in periodic structures

Summarizing the results of this section, the authors provide a
guideline to perform uncertainty quantification in periodic struc-
tures. While the gPC expansion can be applied straightforward in
a unit cell, attention must be paid when using a SC approach espe-
cially in case of symmetric unit cells. In this case, a deviation from
symmetry criteria is introduced by uncertain parameters. Thus, the
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independent, uncertain resonator lengths, respectively.

Table 4

Mean value and standard deviation from uncertainty quantification in a unit cell and
in super cells with resonator length being an uncertain input parameter. The values
are given for the band gap position B, and the band gap width B,,.

Uncertain input Mean value [Hz] Standard deviation [Hz]

uc By 15382 424
Bw 3197 118

2x28C By 15467 211
Bw 3154 70

3x3SC B, 15470 147
Bw 3087 57

4 x4 SC By 15473 107
Bw 3053 49

Table 5

3rd and 4rd standardized moment from uncertainty quantification in a unit cell and
in super cells with resonator length being an uncertain input parameter. The values
are given for the band gap position B, and the band gap width B,,.

Uncertain input 3rd central moment [-]  4rd central moment [-]

uc By 0.158 2.479
Bw —1.425 4.749

2x28SC B, 0.052 2.847
Bw -0.327 2.928

3x3SC B, 0.048 2.937
Bw —0.650 3.676

4 x 4 SC B, 0.032 2.958
Bw -0.544 3.629

calculation of the band gap can not be reduced to the contour of
the BZ as in a symmetric unit cell. The dispersion surfaces must
be calculated for the first BZ. In order to reduce the computational
effort, this should be done for the most asymmetrical realization
required to perform the gPC expansion. In case the extrema to
define the band gap are still located on the contour or at some
characteristic points, the band gap calculation can be reduced for
all realizations required. The workflow is given in Fig. 11. The size
m of the super cell depends on the required approximation quality.
Thus, some sort of stop criterion is defined. The size m is increased
until the stop criterion is fulfilled. In case of the presented super

cell approach of Section 5.2, a possible stop criterion for the band
gap center position B, could be

with €= E[Bp(m:i)] - E[Bp(m:iq)]
E[Bp(mzifl)]

Consequently, the stop criterion is fulfilled with the 3 x 3 super cell.
However, any other stop criterion would be possible and can be
adopted to the requirements of a specific task. In order to reduced
the computational effort, new methods for the fast computation
of band gaps, like presented in [47] or [48], could be implemented.

€<0.1%

. (23)

6. Conclusion

A study on uncertainty quantification in periodic structures has
been presented. The investigated structure consists of a plate like
part with an added beam resonator. Thus, a band gap is achieved
where no free wave propagation is possible. It has been character-
ized by the center position and the band gap width. In stochastic
analysis, the influence of uncertainties in the geometrical parame-
ters plate thickness, resonator radius and resonator length has
been investigated. The spectral method based on the gPC is
employed to represent uncertainty in parameters as well as in
the center position and the width as outputs of finite element sim-
ulation. As a results, the presented approach offers a possibility to
quantify the influence of uncertainties in periodic structures. The
major contributions can be stated as follows:

(i) the gPC expansion is adequately accurate to quantify the
influence of uncertain geometrical input parameter in periodic
structures,

(ii) super cells consisting of multiple unit cells are suitable to
approximate the influence of uncertainties arising within the
periodic structure,

(iii) band gap calculation in super cells consisting of symmetri-
cal unit cells can be carried out at certain points of the BZ if
deviation from symmetry criteria caused by introduction of
uncertainties is low. The presence of band extrema on the BZ
contour should be checked prior to the uncertainty quantifica-
tion. For that, the dispersion surfaces within the full BZ area
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Fig. 11. Guideline for uncertainty quantification in periodic structures for (a) unit cell approach to consider uncertainties between different specimens (b) super cell approach

to approximate uncertainties within one specimen.

are calculated for the realization with the highest deviation
from symmetry criteria, and

(iv) guidelines to apply uncertainty quantification in periodic
structures are developed.

The presented approach contributes to close the gap of uncer-
tainty quantification in periodic structures. The obtained PDFs
and statistical moments offer a feasible solution to define manu-
facturing tolerances for periodic structure in order to obtain a band
gap behavior within certain requirements. This is important to
transfer the promising results shown in scientific studies into
industrial applications.
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