A High-Order Discontinuous Galerkin Solver with Dynamic Adaptive Mesh Refinement to Simulate Cloud Formation Processes

PPAM 2019

Lukas Krenz, Leonhard Rannabauer and Michael Bader Technical University of Munich

10th September 2019

2

The ExaHyPE-Engine¹

Goals

A PDE 'engine' ('engine' as in 'game engine'). Provides numerics/mesh for user-defined applications. Allow **smaller** teams to realize **large-scale** simulations of hyperbolic PDEs.

Capabilities

- Numerics: ADER-DG (optimized) & Finite Volume
- Dynamic Adaptive Mesh Refinement (AMR)
- Hybrid MPI + Intel TBB Parallelization

Available (open-source) at example.eu

¹A. Reinarz et al. 'ExaHyPE: An Engine for Parallel Dynamically Adaptive Simulations of Wave Problems'. In: arXiv e-prints (May 2019).

Two Bubbles: Hydrostatic Equilibrium²

- Air is in hydrostatic equilibrium: Gravitational force and pressure-gradient force are **exactly balanced**.
- Constant potential temperature (temperature normalized by pressure) with larger, warm bubble and small, cold bubble on top.

Background pressure in equilibrium

²A. Robert. 'Bubble Convection Experiments with a Semi-implicit Formulation of the Euler Equations'. In: Journal of the Atmospheric Sciences 50.13 (July 1993).

Two Bubbles: Simulation

The ADER-DG Approach³

Solve hyperbolic conservation laws of the form

$$\frac{\partial}{\partial_t} \boldsymbol{Q} + \boldsymbol{\nabla} \cdot \boldsymbol{F}(\boldsymbol{Q}) = \boldsymbol{S}(\boldsymbol{x}, t, \boldsymbol{Q})$$
(1)

with **Q** vector of conserved variables, **x** position, *t* time, $\nabla \cdot F(\mathbf{Q})$ divergence of flux and $S(\mathbf{x}, t, \mathbf{Q})$ source term.

Discontinuous Galerkin (DG) divides domain into disjoint elements, approximates solutions by piecewise-polynomials. Elements are connected by solving the Riemann problem.

ADER-Approach uses space-time polynomials for time integration instead of Runge-Kutta procedures.

³M. Dumbser et al. 'A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes'. In: Journal of Computational Physics 227.18 (Sept. 2008).

(2)

The Navier-Stokes Equations

$$\frac{\partial}{\partial t} \underbrace{\begin{pmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{pmatrix}}_{\mathbf{Q}} + \nabla \cdot \underbrace{\begin{pmatrix} \rho \mathbf{v} \\ \mathbf{v} \otimes \rho \mathbf{v} + \mathbf{I} p + \sigma(\mathbf{Q}, \nabla \mathbf{Q}) \\ \mathbf{v} \cdot (\mathbf{I} \rho E + \mathbf{I} p + \sigma(\mathbf{Q}, \nabla \mathbf{Q})) - \kappa \nabla T \end{pmatrix}}_{\mathbf{F}(\mathbf{Q}, \nabla \mathbf{Q})} = \underbrace{\begin{pmatrix} S_{\rho} \\ -\mathbf{k} \rho g \\ S_{\rho E} \end{pmatrix}}_{\mathbf{S}(\mathbf{Q}, \mathbf{x}, t)} - \mathbf{v} \cdot \mathbf{v}$$

With ρ density of fluid, ρv velocity density, ρE energy density, and k unit vector in z-direction.

Pressure with gravitational term $p(\mathbf{Q}, z)$, stress tensor σ , heat diffusion $\kappa \nabla T$ with temperature T.

Trick: cancel out constant background pressure in flux and source.

Problem: Not hyperbolic

ExaHyPE (thus far) solves equations of the form (e.g. Euler):

$$\mathbf{P}\frac{\partial \mathbf{Q}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{Q}) + \sum_{i=1}^{d} \mathbf{B}_{i}(\mathbf{Q})\frac{\partial \mathbf{Q}}{\partial x_{i}} = \mathbf{S}(\mathbf{x}, t, \mathbf{Q})$$
(3)

We have:

$$\mathbf{P}\frac{\partial \mathbf{Q}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{Q}, \nabla \mathbf{Q}) + \sum_{i=1}^{d} \mathbf{B}_{i}(\mathbf{Q})\frac{\partial \mathbf{Q}}{\partial x_{i}} = \mathbf{S}(\mathbf{x}, t, \mathbf{Q})$$
(4)

Solution: Modify numerical flux (Riemann solver), time step size (CFL-condition) and boundary conditions to **allow diffusive terms**⁴.

No explicit discretization of gradient ∇Q .

⁴M. Dumbser. 'Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations'. In: *Computers & Fluids* 39.1 (Jan. 2010); G. Gassner, F. Lörcher and C.-D. Munz. 'A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions'. In: *Journal of Scientific Computing* 34.3 (2008).

(5)

8

Adaptive Mesh Refinement: Indicator

Total Variation

 $f(\mathbf{x}) : \mathbb{R}^{N_{vars}} \to \mathbb{R}$ maps solution to indicator variable (here: potential temperature). Total variation of f for a cell C:

$$\mathsf{TV}\left[f(\boldsymbol{x})\right] = \|\int_{C} |\boldsymbol{\nabla}f(\boldsymbol{x})| \,\mathrm{d}\boldsymbol{x}\|_{1}$$

Intuition

- Large total variation \mapsto interesting
- Small total variation \mapsto boring
- 'Edge detection' of numerical solution

(6)

Adaptive Mesh Refinement: Feature Detection

Chebyshev's inequality

$$\mathbb{P}(|\pmb{X}-\mu|\geq \pmb{c}\sigma)\leq 1/c^2$$

Mean μ , standard deviation σ , constant *c* Better bounds exist with further assumptions on distribution.

Intuition

Not all variables are sufficiently special. Feature detection

(7)

Adaptive Mesh Refinement: Global Criterion

Criterion

$$\text{evaluate-refinement}(\boldsymbol{Q}, \mu, \sigma) = \begin{cases} \text{refine} & \text{if } \mathsf{TV}(\boldsymbol{f}(\boldsymbol{Q})) \geq \mu + \mathcal{T}_{\text{refine}}\sigma \\ \text{delete} & \text{if } \mathsf{TV}(\boldsymbol{f}(\boldsymbol{Q})) < \mu + \mathcal{T}_{\text{delete}}\sigma \\ \text{keep} & \text{otherwise} \end{cases}$$

Choose T_{refine} and T_{delete} according to cost-accuracy trade-off. Computation of mean μ , standard deviation σ with **stable**, pairwise reduction⁵.

⁵T. F. Chan, G. H. Golub and R. J. LeVeque. 'Updating Formulae and a Pairwise Algorithm for Computing Sample Variances'. In: COMPSTAT 1982 5th Symposium held at Toulouse 1982. 1982.

AMR vs. Fully Refined Grid

Settings

AMR Mesh with sizes from 1000/81 m \approx 12.35 m to 1000/9 m \approx 111.11 m. Two levels of dynamic AMR. $T_{refine} = 2.5$ and $T_{delete} = -0.5$. Reference $81 \times 81 = 6561$ cells.

Both polynomial order 6. Viscosity $\mu = 0.01$. Simulate until $t_{end} = 600$ s.

Results

AMR grid: 1953 cells. Less than **30%** of full grid! Relative L_2 -error between AMR and fully refined: 2.6×10^{-6} .

AMR vs. Fully Refined Grid: Grid

AMR vs. Fully Refined Grid: Error

Potential temperature of fully refined solution minus AMR solution.

3D Cosine Bubble⁶

⁶J. F. Kelly and F. X. Giraldo. 'Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode'. In: *Journal of Computational Physics* 231.24 (Oct. 2012).

MUSCL-Hancock Scheme

Finite Volume scheme: store only **cell averages Reconstruction** of linear function **Second order** in time and space⁷ **Stabilized** with (Van Albada⁸) slope limiter Very stable, larger **numerical viscosity**

⁷B. van Leer. 'Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method'. In: *Journal of Computational Physics* 32.1 (July 1979).

⁸G. Van Albada, B. Van Leer and W. Roberts. 'A comparative study of computational methods in cosmic gas dynamics'. In: Upwind and High-Resolution Schemes. 1997.

Two Bubbles: Finite Volume

- 7² patches with 90² cells each
- Euler equations ($\mu = 0$)
- Numerical viscosity smooths solution

Summary

- **ADER-DG** can be used to simulate Navier-Stokes equations.
- Total variation **measures edges** of numerical solution.
- Chebyshev's criterion finds interesting cells.
- Combination of both **accurately tracks** cloud.
- AMR solution is close to fully refined solution but needs fewer cells.
- Artificial viscosity of Finite Volume has a similar effect as physical viscosity of Navier-Stokes.

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823844 (**ChEESE**) and 671698 (**ExaHyPE**).

Shared-Memory Scaling (from⁹)

⁹A. Reinarz et al. 'ExaHyPE: An Engine for Parallel Dynamically Adaptive Simulations of Wave Problems'. In: arXiv e-prints (May 2019).