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Zusammenfassung

Es wird die Erzeugung eines geheimen Schliissels an zwei Datenendgeraten betrach-
tet. Jedes Datenendgerét beobachtet dabei jeweils einen Ausgang einer Quelle mit zwei
korrelierten Komponenten. Zusétzlich kann eine Hilfsnachricht vom ersten Datenend-
gerat zum zweiten Datenendgerdt tiber einen rauschfreien, offentlichen Kanal gesen-
det werden. Es wird angenommen, dass die Hilfsnachricht bzw. die privacy leakage
ratenbeschrankt ist. Es wird die maximale geheime Schliisselrate bestimmt, die erreicht
werden kann, so dass der Schliissel gleichverteilt und perfekt sicher ist. Damit ist der
Schliissel unabhangig von der Hilfsnachricht. Entsprechende Resultate werden fiir ver-
schiedene Quellenmodelle bewiesen. Dazu zéhlen ein Compoundmodell und verschiedene
Szenarien mit Stérsendern, bei denen die Quelle von einem aktiven Angreifer manipuliert
wird.

Abstract

Secret key generation at two terminals is considered. Each terminal observes one of the
outputs of a source with two correlated components. Additionally one terminal can send
a helper message to the second terminal via a noiseless public channel. It is assumed
that this message or the privacy leakage respectively is rate constrained. The maximum
secret key rate, that can be achieved such that the key is uniformly distributed and meets
the perfect secrecy requirement, is determined. So the key is independent of the helper
message. Corresponding results are established for different source models, comprising
a compound model and various jamming scenarios, where the source is manipulated by
an active attacker.
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Notation

We use standard notation, comparable to the notation introduced in [26] or [47]. For the
convenience of the reader we repeat some of these conventions used in this work. For
n € N we define [n] = {1,--- ,n}. The convex hull of a set A is denoted by conv(A). For
x € R we define |z|" := max{z,0} whereas |z| and [z] denote the largest integer k with
k < z and the smallest integer [ with [ = x respectively. We write log for the logarithm
to base 2 and exp(x) for 2. The natural logarithm to base e is denoted by In. For a set
X and a subset A € X we write A° for X\\A and we denote the indicator function of A
by 14: X — {1,0} . So for x € X we have 1 4(z) = 1 if and only if x € A. We denote
the set of all distributions on X by P(X’) and define the set of all channels from X to )
(i.e. stochastic matrices)

P|X) = {(W(|z))eex: W(|z) e P(Y) Vze X}

Let P,@Q € P(X). We define the total variation distance between P and @ such that

|P=Qli= )] IP(x) - Q(x)|-

TeX

For P e P(X) and @ € P(Y) we define P®Q € P(X x Y) by

(P®Q)(z,y) = P(z)Q(y)
for all (z,y) € X x Y. For n € N we define P®" € P(X™) by
P (a") = [ | P(xs)
i=1
for all 2" € X™. For W € P(Y|X) and V € P(Y|X) we define W @V € P(Y x Y|X x X)
by

W V)(y, yle, ) = W(ylz)V (y|7)

for all (z,Z,y,7) € X x X x Y x Y. Consider random variables X, Y and Z. We denote
the entropy of X by H(X), the conditional entropy of X given Y by H(X|Y) and the
mutual information of X and Y by I(X AY). X —Y — Z means that these random
variables form a Markov chain in this order.






1 Introduction

1.1 Motivation

Lately, considerable effort has been devoted to deriving information theoretic results
that can be applied in communication scenarios where low delay is an essential require-
ment [40]. For many of these applications, the communication task should be performed
securely due to the presence of eavesdroppers. Examples for such applications in the con-
text of the Tactile Internet are discussed in [27]. These applications range from vehicle
to vehicle communications to automation in industry. The authors of [27] also discuss
the infrastructure requirements to realize these applications. The Tactile Internet is
considered a promising forthcoming innovation and motivated considerable fundamental
research. Currently the Tactile Internet is in the process of standardization and the cor-
responding results can contribute fundamentally to the fifth generation mobile network
5G and systems beyond, especially 6G [1]. As discussed in [27], information theoretic
security can contribute significantly to realize communication systems that combine low
latency and security. Encryption algorithms that exploit the limited computing power
of an eavesdropper to achieve secure communication are implemented at higher proto-
col layers. So the low delay constraints imposed by the applications that we want to
realize can not be met using such encryption algorithms. In contrast, security should
be implemented together with error correction on the physical layer. By not separa-
ting encryption from error correction information theoretic security allows for secure
communication with low delay.

A well known model in information theoretic security is the source model for secret
key (SK) generation with one way public communication where we study the problem of
establishing a SK at two terminals. We consider SK generation based on the correlated
outputs of a source with two components where one of the outputs is available at each
terminal. Additionally information can be transmitted from one terminal to the other
via a noiseless public channel. So in this work we consider SK generation from a two
component source with one way forward communication which is a special case of the
general problem of SK generation from a source. We are interested in the largest possible
SK that can be generated from the source output.

The problem of SK generation was introduced by Maurer in [36] and by Ahlswede &
Csiszar in [5]. There it is allowed that the message sent over the noiseless public channel
is arbitrarily large. In [25] various extensions of the model are studied. In particular the
authors consider the setting where the public message is rate constrained. In [46] the
source is replaced by a compound source, thus taking uncertainty on the source statistics
into account, while also assuming that the public message is rate constrained. (For an
introduction to SK generation see the standard reference for physical layer security [20].)
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In a different line of research Ignatenko & Willems study SK generation from a bio-
metric source in [32]. They analyse the source model described in [5] but they regard
the privacy leakage of the SK generation process. The privacy leakage is the information
on the source output observed at the first terminal contained in the public message. In
[32] the privacy leakage is rate constrained. In [29] the corresponding compound setting
is studied.

In the literature different secrecy requirements and different requirements on the key
distribution are considered. In [5] Ahlswede & Csiszar prove their results for perfect
secrecy and uniform key distribution. In [25], [29], [32] and [46] the authors allow for
weaker secrecy conditions and weaker requirements on the key distributions.

The SK generated from the source can for example be used for secure storage. For this
purpose the SK is used as a one time pad. The model for SK generation further serves
as the basis for an information theoretic treatment of authentication when an additional
privacy leakage rate constraint on the source observations is imposed [32].

1.2 Contributions

In this work we consider generalizations of the source model for SK generation. In
contrast to a lot of the literature on source models for SK generation we describe pro-
tocols for this model that achieve perfect secrecy and uniform distribution of the SK.
As discussed, in large parts of the literature protocols for SK generation meet weaker
requirements such as weak secrecy or strong secrecy and near uniform distribution of the
SK. Determining the largest possible SK that can be generated from the source output
under the strongest requirements, that is perfect secrecy and uniform key distribution,
has only been achieved for the unconstrained public communication case.

We generalize the source model by taking source uncertainty into account. In particu-
lar we study the compound source model and a jammed source that is modeled by means
of an arbitrarily varying channel (AVC). For the latter model we distinguish between the
case where the jammer knows the public message and the case where the public message
is only known to the eavesdropper but not to the jammer. For all of these settings
we consider SK generation with a privacy leakage rate constraint. The corresponding
capacity results are derived in Chapter 3 (and auxiliary results needed for the proofs in
Chapter 2). Parts of the results are published in [7], [8], [9] and [10].

We also consider the case where the public message is rate constrained. Again we
study a compound model and an AVC based model. Various jamming constellations are
taken into account. That is a jammer that has access to the public message and a jammer
without access to the public message. In the context of AVCs common randomness (CR)
is known to be an important resource. Thus we also consider jamming scenarios where
CR is available to the legitimate users. Capacity results for these scenarios are proved
in Chapter 4. These results are published in [12] and [13].



Contributions

Further Results

During my time as a research assistant at the Technische Universitat Miinchen we obtai-
ned further interesting results not included in this thesis:

e Ahlswede & Dueck introduced identification via channels as a new paradigm in
information theory. They showed that the number of messages that can reliably
be identified over a noisy channel grows doubly exponentially with the block length.
In [14] we also consider identification, but we assume that messages are stored on
a database such that they can be identified. Additionally the legitimate users have
access to the output of a source. This source allows us to store messages securely.
It is also used to increase the number of messages that can be stored securely on
the database and identified reliably. We define a protocol for secure storage for
identification such that the number of stored messages that can be identified grows
doubly exponentially with the number of symbols read from the source and the
number of storage cells available respectively. We also consider the privacy leakage
of the protocols used for identification. So it makes sense to consider two sources.
We assume one source is public whereas the other source only is available to the
legitimate users. The public source is used to increase the number of messages
that can be identified while the second source is used to guarantee secrecy. Using
the public source does not increase the privacy leakage. So we can possibly achieve
a higher number of messages that can be identified while the privacy leakage does
not increase using two sources. As a by-product we also get new results on common
randomness generation.

e In [11] a scenario related to the source model for SK generation is considered where
instead of SK generation, the goal is to securely store data in a public database.
The database allows for error-free storing of the data, but is constrained in its
size which imposes a rate constraint on the storing. The corresponding capacity
for secure storage is known and it has been shown that the capacity-achieving
strategy satisfies the strong secrecy criterion. Then the case when the storage in
the public database is subject to errors is considered and the corresponding capa-
city is characterized. Additionally, the continuity properties of the two capacity
functions are analyzed. These capacity functions are continuous as opposed to the
discontinuous secret key capacity with rate constraint. It is shown that for secure
storage the phenomenon of super activation can occur. Finally, it is discussed how
the results differ from previous results on super activation.

A complete list of publications is given at the end of the thesis.

Copyright Information

Parts of this thesis have already been published in the journals and conference pro-
ceedings [7-14]. The parts, which are, up to minor modifications, identical with the
corresponding scientific publication, are copyrighted by the publisher of the correspon-
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ding journal or conference proceedings. The publications [7,9,11,14] are (©2017-2019
IEEE. Passages are reprinted with permission.



2 Preliminaries

In this chapter we briefly review the source model for SK generation. We present various
definitions of achievability for this model and motivate our interest in protocols for SK
generation that achieve perfect secrecy. We also explain how the source model for SK
generation can be interpreted as a model for secure storage of cryptographic keys using
physical unclonable functions (PUFs). As mentioned above this allows the source model
for SK generation to provide a basis for an information theoretic study of authentication.

In the second part of this chapter we summarize fundamental results of information
theory that will prove to be useful in later parts of this work.

2.1 Source model for SK generation and perfect secrecy

In [25] several scenarios for SK generation from a source are considered. One of these
is the basis for the settings that we consider in this work. It is depicted in Figure 2.1.
As described before, a SK K should be generated at two terminals. SK generation is
based on the correlated source outputs X" and Y™, where at each terminal one of these
source outputs is available. Additionally a helper message M can be transmitted from
one terminal to the other via a noiseless public channel.

Consider the RVs X and Y. The source puts out RVs X" = (Xy,---,X,,) observed
at one terminal and Y" = (Y7,---,Y,,) observed at the other terminal, both of block
lengths n € N. We assume Pxnyn = P)%’ﬁ, i.e., the source is a discrete memoryless
multiple source (DMMS) with two components. As in [25] we represent the terminals
by the symbol of the corresponding alphabet. Terminal X represents the terminal that
sends the helper message, whereas terminal ) represents the terminal that receives the
helper message. So the RV M that represents the helper message and the RV K that

Eavesdropper
1 S

L

A Xn A Yn

Encoder Decoder

Source

Figure 2.1: SK generation with one way public communication as in [25].



Chapter 2 — Preliminaries

represents the SK are generated at terminal A (making use of X™). The RV K that
represents the reconstruction of the SK is generated at terminal ) (making use of M
and Y").

In [25] it is assumed that (K, M) = f(X™) and K = g(M,Y™) are generated from the
data available at X and ) respectively using deterministic functions (i.e., no randomiza-
tion is used to generate these RVs) and that K and K take values in the same alphabet
K. We call the pair (f,g) with f: X" - K x M and g: V" x M — K a SK generation

protocol.

The considerations above establish the joint distribution of K, M and K as follows.
For all (k,m, k) € K x M x K we have

KMK (k,m, k Z PXY "yt ILf 1((km))( "1 gfl(g)((ynam))-
eX™
yrey”

A SK generation protocol should have certain properties, specified in the following
definition, to be considered a good SK generation protocol. (This definition is equivalent
to the corresponding definition in [25], cf. [25, Definition 1.2].)

Definition 2.1. Let L = 0. We call R = 0 an achievable secret key rate with rate
constraint L if for any € > 0 and sufficiently large n there is a SK generation protocol
such that

Pr(K # K) < ¢

LK AM)<e
LH(K) = Llog|K| — €
Llog|K| = R—¢

1

log M| < L +e.

~~ o~~~ —~
O = W N =
— — — ~— ~—

The SK capacity with rate constraint L is the largest achievable secret key rate with
rate constraint L and is denoted by Csk (L).

According to this definition the RVs K and K represent a SK for the terminals X and
Y if it holds that the SK can be reconstructed at terminal ) with high probability which
follows from (2.1), the weak secrecy requirement (2.2) is met and K is nearly uniformly
distributed which follows from (2.3). Moreover the rate of the SK is < log |K| (cf. (2.4))
and the noiseless public channel from terminal X’ to terminal ) is rate constrained (cf.

(2.5)).
Csk (L) (which corresponds to Csi (0, L) in [25]) is characterized in [25, Theorem 2.4].

Theorem 2.1 ([25]). It holds that

Csx(L) = m[?xl(U AY)

10



Secure storage of cryptographic keys using PUFs

where the maximization is over all RVs U such that U — X — Y and

IUAX)=I(UAY) < L.

In fact it is shown in [25] that replacing each € in Definition 2.1 by exp(—na) with some
a > 0 small enough but independent of n (which means replacing (2.1) - (2.5) by stronger
constraints for n sufficiently large) does not reduce Csx(L). As mentioned in [25] the
fact that stronger constraints often do not reduce capacity has been demonstrated for
various models in information theoretic security. In [37] it has been pointed out that it
is desirable to strengthen the (secrecy) conditions under which a given performance is
achievable. This is one of the motivations of this work.

In [5] Ahlswede & Csiszar consider a simplified version of the setting studied in [25]
described above in the sense that the public channel is not rate constrained. They cha-
racterize the corresponding capacity. Interestingly the authors of [5] show that replacing
€ in (2.2) and (2.3) by 0 does not reduce the capacity for the unconstrained public com-
munication setting. (It is pointed out in [5] that this can not be expected for a model
where the eavesdropper has access to a third correlated output of the source. Thus
we do not assume that the eavesdropper has such side information in our work.) This
naturally motivates the problem of characterizing C'six (L) when € is replaced by zero in
(2.2) and (2.3).

I(K AM)=0,ie., K and M are independent, is known as the perfect secrecy requi-
rement and log |[K| = H(K) means the SK is uniformly distributed. (The combination of
both requirements is equivalent to the requirement H (K |M) = log|K|.) Our interest in
characterizing Cgx (L) when these requirements are met has an additional motivation.
Perfect secrecy in SK generation and uniform distribution of the SK are optimal in the
sense described in [26, Proposition 17.1] and [20, Lemma 3.1]. There the generated SK is
used as a one time pad to encrypt a message. The encrypted message then is transmitted
via a public channel together with the helper message corresponding to SK generation.
Then it is shown that perfect secrecy and uniform distribution of the SK allow for the
best possible properties of this protocol in terms of secrecy. In order to achieve perfect
secrecy and uniform distribution of the SK we allow for randomization at terminal X in
contrast to the protocols used in [25].

2.2 Secure storage of cryptographic keys using PUFs

As described in [43, Chapter 13] variations in the manufacturing process of physical
circuits lead to unpredictable variations of certain properties of the circuits (e.g. different
run times). These variations can be exploited to construct PUFs. This means these PUF's
are constructed from standard circuit components. Thus they can easily be integrated
in the manufacturing process. The PUFs can be used to bind a SK to a physical device
without storing the SK in secured non-volatile memory [43, Chapter 13]. So PUF's offer

11
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a low cost alternative to storing a SK in secured non-volatile memory which is not always
available.

We now describe how SK storage with PUFs can be realized according to [43, Chap-
ter 13]. The PUF puts out a PUF response (by using a certain challenge as input to
the PUF). This is a sequence of symbols from a finite alphabet after quantization (e.g.
a sequence of bits). The PUF response can be generated whenever needed but it is
influenced by noise. So the PUF response is not used as a SK directly. Instead error
correction is used to generate a reliable SK. For this purpose after manufacturing the
PUF a helper message, that is generated from a PUF response, is stored in non-secured
non-volatile memory. This helper message is used for error correction. So all following
PUF responses generated from the PUF can be mapped on the same SK making use of
the helper message. As the helper message is stored in non-secured memory it should
not reveal information about the SK as we have to assume that an attacker interested
in the SK has access to the helper message. Additionally the helper message should be
small such that the size of the non-volatile memory needed to store the helper message is
small. This is important as the non-volatile memory is an expensive resource compared
to the PUF construction.

We can interpret the source model for SK generation as a model for SK storage with
PUFs. The PUF response used to generate the helper message is modeled by X". It is
a RV as the manufacturing process is subject to unpredictable variations. The helper
message corresponds to M and the corresponding SK is modeled by K. The noisy PUF
response is modeled by Y and K models the reconstruction of the SK from Y™ and M.

In [32] the same model is used for a treatment of SK generation from a biometric
source. In this model the source represents a biometric source, thus X" models biometric
data. Here the authors consider an additional quantity that is the privacy leakage. The
privacy leakage represents the information about X™ contained in M. Motivated by the
information theoretic interpretation of mutual information it is defined as I(X™ A M).
The privacy leakage should be as small as possible because an eavesdropper should not
learn a lot about the biometric data. In the context of SK storage with PUFs we can
also try to minimize the privacy leakage (or more precisely the privacy leakage rate). As
stated in [28] the privacy leakage should be minimized so that an eavesdropper cannot
obtain information about a second SK stored using a second helper message but using
the same PUF response.

In the remainder of this work we call the source in the source model for SK generation
a PUF source or biometric source when we want to consider SK generation protocols
that meet requirements (2.1)-(2.4) but where (2.5) is replaced by the privacy leakage rate
constraint %I (X™ A M) < L+ 6. Denote the corresponding SK capacity with privacy
leakage rate constraint L by CEE(L). From I(X"™ A M) < log|M]| it is clear that a
constraint on the rate of the helper message at the same time is a constraint on the
privacy leakage rate. So CLE(L) > Cgi(L) for all L > 0. In [32, Theorem 3.1] it is
shown that CEE(L) = Cs (L) for all L > 0.

12
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2.3 Fundamentals, types and typical sequences

In this work we make use of some fundamental results in information theory which can
for the most part be found in the corresponding textbooks like [26]. For the convenience
of the reader we state some of these results. We also present proofs for some of the
results for reasons of completeness.

Lemma 2.2 (Pinsker inequality [26]). Let P,Q € P(X). It holds that
D(P|Q) > g31P - QI

Lemma 2.3 (Continuity of entropy [26]). Let P,Q € P(X) and [P — Q|1 =6 <
It holds that

1
3

Definition 2.2 ([26]). Let 2" € X" and y™ € Y", n € N. We define
N(ala") = [{i € [n]: i = a}
and
N(a,blz",y") = {i € [n]: z; = a A y; = b}|

where (a,b) € X x Y.

Definition 2.3 (Type and joint type [26]). The type of a sequence ™ € X™ is the
empirical probability Pyn where Pyn(a) = 1N (a|a™) for all a € X. We denote the set
of all sequences of type P by Tp. We denote the set of all types of sequences in X™ by
P(n,X).

Correspondingly the joint type of a tuple of sequences (x",y™) € X™ x Y™ is the
empirical probability Pyn ,n where Pyn yn(a,b) = %N(a,b|x",y”) for all (a,b) € X x ).
We denote the set of all tuples of sequences of joint type P by Tj. We denote the set of
all joint types of tuples of sequences in X™ x Y™ by P(n,X x ).

Lemma 2.4 ([26]). It holds that |P(n, X)| < (n+1)|*| and correspondingly |P(n, X x
V)| < (n+ 1)\/\’\\3/\,

Lemma 2.5 ([4]). Let P € P(n,X). It holds that

o exp(nH(P)) < |TE| < exp(nH(P)).

13
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Lemma 2.6 ([26]). Let P € P(n,X) and Q € P(X). It holds that
Q%" (z") = exp(—n(H(P) + D(P|Q)))
for all ™ € T and

e exp(-nD(P[Q)) < QF"(TE) < exp(~nD(P[Q)).

Definition 2.4 ([26]). Let P € P(X), ne N and § > 0. We define

QeP(n,X):
|Q(a)—P(a)|<0VaeX
AQ(a)>0=P(a)>0

If ™ € TS5 we say 2" is P-typical with constant §.

Lemma 2.7 ([45,50]). Let 6 > 0, ne€ N and P € P(X). It holds that

PEMTES) 21— (n+ 1) exp(—ngy6%).

Proof. Consider

(Tps) = {z" € X": Jae X: |Pyn(a) — P(a)| > 0}
u{z" e X" Ja€ X: Pyn(a) >0 A Pla) = 0}
c{z"eX": |Pyn — Py >0} u{z" € X":Jae X: Pypn(a) >0 A P(a) = 0}.

We define

A={z" € X": |Pyn — P|; > 6}
B={z"eX": 3ae X: Pyn(a) >0 A P(a) = 0}.

It holds that

P B)y= > [[P@)= > [[P@™) =o0.

x"eB ig[n| z"eB acX
Moreover we have
A= |J 713
QeP(n,X):
[P-Ql1>0

14
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So
PP A =PE () T3 = ) PRI < ), exp(-nD(Q|P))
QeP(n,X): QeP(n,X): QeP(n,X):
1P—Ql1>6 1P=QJ1>0 1P=Q[1>06

where we use Lemma 2.6 for the last step. With the Pinsker inequality we can upper
bound this expression by

S epnghglP Q< Y exp(nghyd)
QeP(n,X): QeP(n,X):
1P=Ql1>6 1P=Q[1>6

< (n+ 1) exp(—nyis02).
So we have

PE(A) — PE(B)

(n+ 1) exp(—ngi50%).

PE(Ts) = 1= PEY(Ty)") > 1 -
>1-—

Lemma 2.8 ([26]). Let 6 > 0 with ¢ < ﬁ and P € P(X). It holds for all n € N large
enough that

(IR (e < 25| < (n + 1) exp(n(H(P) + (=6|X|log 9)).

Proof. We have

Tes = U e U 1
QEP(n,X): QEP(n,X):
|Q(a)—P(a) | <s¥aeX IP—Qlh<dl|
AQ(a)>0=P(a)>0

and thus

TEsl< ), T3l ), exp(nH(Q)
QeP(n,X): QeP(n,X):
1P=Q[1<d|X]| 1P=Ql1<d]X]|

where the last step follows from Lemma 2.5. From the continuity of entropy it follows
from |P — Q|1 < 6|X]| that H(Q) < H(P) + (—J|X|logd). So we can upper bound the
expression above by

Y, exp(n(H(P) +(=6]X|10g4))) < (n + DM exp(n(H(P) + (=3 X|log 9))).

QeP(n,X):
1P=Ql1<d] x|

15
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Let Tjs # & (for n large enough this follows from Lemma 2.7). So thereis a Q € P(n, X)
such that [P — Q[1 < 4|X| and T < Tps, lLe.,

|T£6| = |TQn| = Wexp(nH(Q))

where the last step follows from Lemma 2.5. From the continuity of entropy we can
lower bound this expression by

iy exp(n(H(P) — (=3]X|log ).

Remark 2.9 ([26]). We can write joint types as
Px”,y" (.T, y) = Pyn (.I)V(y|(17)

for all (z,y) € X x Y where V € P(Y|X). V(y|r) is not uniquely determined given
Py yn(z,y) for the x € X that do not occur in z™.

Definition 2.5 (Conditional type and V-shell [26]). The sequence y" € Y" has
conditional type V € P(Y|X) given 2" € X™ if

N(z,yla",y") = N(zlz")V (y|x) (2.6)

for all (x,y) € X x Y. For 2™ € X™ and stochastic matrix V € P(Y|X) we call the set of
all sequences y™ € Y™ with conditional type V given x™ the V-shell of x™ and denote it

by Tv(z") (or T (z™)).

Remark 2.10 ([26]). The conditional type of y" given z™ is not determined uniquely
if there is a © € X that does not occur in z", but the set Ty (z™) that contains y" is
determined uniquely. (This set is the same for all choices of V (y|z) for the x € X that
do not occur in z", because (2.6) is independent of these V (y|x).)

Lemma 2.11 ([26]). For 2™ € X™ and V € P(Y|X) such that Ty(a") # & it holds
that

(n+ 1)~ P exp(nH (V| Ppn)) < [Ty (a")] < exp(nH (V| Pyn).

Lemma 2.12 ([26]). Let n € N, 2" € X™ and V,W € P(Y|X) such that Ty (") # .
It holds that

W (y"z™) = exp(—n(D(V|W|Pyn) + H(V|Pyn)))
for y" € Ty (™) and
o exp(=n(D(V[W]Pe)) < WE(Ty (a™)|2") < exp(=nD(V||[W|Py)).
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Definition 2.6 ([26]). Let W e P(Y|X), ne N, 2™ € X™ and § > 0. We define

TW,&@”) = U TV(Q) (xn)7
QeP(n,XxY):
Dbey Q(a,b)=Pyn(a)VaeX
A Pyn (@)W (bla)—Q(a,b)|<6Y(a,b)eX xY
AW (ba)=0s Q(a)=0

where V(Q) € P(Y|X) with

_ Qab) .
V(Q)(bla) = {Zl:bey Q(ab) ey Qla,0) >0

Wl otherwise

Lemma 2.13 ([45,50]). Let 6 >0, ne N, 2 € X™ and W € P(Y|X). It holds that

W®"(Tw,5($n)|x”) >1—(n+ 1)‘)"/”3)| exp(—nﬁ(ﬁ).

Proof. We show
W (Tws(2™))l2") < (n + 1) P exp(—ngps0%).
We know

(Tws(z™) ={y" € Y": I(a,b) € X x Y: |Pyn yn(a,b) — Ppn(a)W (b|a)| > 0}
u{z" e X" 3(a,b) € X x YV: Pynyn(a,b) >0 A W(bla) = 0}

c{y"e)": Z | Pynyn (a,b) — Pyn(a)W (bla)| > 0}

(a,b)eX xY
u{y" e V" 3(a,b) € X x Y: Ppn yn(a,b) >0 A W(bla) = 0}.

We define

A={y"e)m™: Z | Pyn yn (@, b) — Pyn(a)W (bla)| > &}

(a,b)eX xy
={y" € YV": 3(a,b) € X x Y: Pyn yn(a,b) >0 A W(bla) = 0}.

It holds that

We(B|z™) Z H W (yilzi) = Z H W (bla)N(@bl="v™) — ¢,

y"eBie[n] y"eB (a,b)eX xy

17
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Moreover we have

A= U Tv@(@")
QeP(n,XxY):
Dvey Qlab)=Pyn(a)VaeX

A Dayex xy [Pen (@)W (bla)—Q(a,b)|>0
Thus

W@n(_A|xn) — W®n( U TV(Q)(I-”)LQ:TL)
QeP(n,XxY):
Ypey Qa,b)=Ppn(a)¥YaeX
A 2ap)ex xy [Pon (@)W (bla)—Q(a,b)[>0
} 2, W (Ty ) "))
QeP(n,XxY):
Dbey Q(a,b)=Pyn(a)VaeX
A Xapyex xy Pen (@)W (bla)—V(Q)(bla)|>5
) 2. exp(~nD(V (@)W |Py»)
QEP(H,Xxy) :
Dvey Qlab)=Pyn(a)VaeX
A Yapyex xy Pen (@)|W(bla)—V(Q)(bla)|>5

where we use Lemma 2.12 for the last step. As

D(V(Q)|W|Py) - b)Z)]( B @V(Q) o) log Hjilefen (o)
a,b)eX x

we can use the Pinsker inequality to upper bound this expression by

2 exp(—ngty 2 Pon(a)[W([a) = V(Q)(|a)]})
QeP(n,XxY): aeX
Ypey Qa,b)=Pyn(a)VaeX
A X peaxy Pen (@)W (bla)=V(Q)(bla)|>d
< Z exp(—nyi50%) < (n+ 1)1xi exp(—nyi50%).
QeP(n,XxY):
Zbey Q(a,b)=Pyn(a)VaeX
A D peaxy Pen (@)W (bla)=V(Q)(bla)|>d

So we have
WO (Tys(x™)|z") = 1 = WE((Tyw,s(2™))"|z")
1-— W®”(A|x”) — W®"(B|x")

=
>1—(n+1)*M exp(—nyi502).

Lemma 2.14 ([26]). Let 6 > 0 with § < and W e P(Y|X), ™ € X™. It holds

2\XIILVI
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for all n € N large enough that
(n+ 1) exp(n(H(W|Ppn) =€) < [Tis(a")| < (n+ DI¥P exp(n(H(W|Pen) + €)),
where € = €(0,|X|,|Y|) = —d8|X||Y|logd. For z" € Tps, P € P(X), it holds that

(n+ )PP exp(n(H(W|P) = 8)) < [Tss ()| < (n+ DV exp(n(H(W|P) + ).

where € = € + 6|X|log |Y|.

Proof. We have

TW&(xn) = U TV(Q) (xn)
QeP(n,XxY):
2bey Q(a,b)=Pyn(a)VaeX
A Pyn (@)W (bla)—Q(a,b)|<6Y(a,b)eX xY
AW (bla)=0=Q(a,b)=0

Thus it holds that

"I < (4 1) n
i@ < (n+1) Sl Too ()
Ypey Qlab)=Ppn(a)VaeX
A|Pyn (@)W (bla)—Q(a,b)|<6Y(a,b)eX xY
AW (bla)=0=Q(a,b)=0
< (n+ 1)*V exp(nH(V(Q)|Pyn)).
(n+1) T D(H(V(Q)|Py))
Zbey Q(a,b)=P,n(a)VaeX
A|Ppn (@)W (bla)—Q(a,b)|<Y(a,b)eX xY
AW (bla)=0=Q(a,b)=0

It holds that

HV(@Q)Pm) == Y,  Pu(@)V(Q)(bla)log(Pun(a)V(Q)(bla)) — H(Pyn)

(a,b)EX XY

and form the continuity of entropy it follows from

Y, [Pe(@V(Q)(bla) = PonW (b]a)| < 61XV
(a,b)eX xy

that
H(V(Q)|Per) < HW|[Ppn) + (—6|X||Y|log d), (2.7)
so we can upper bound [Ty s(z™)| by
(n + 1) Plexp(n(H(W|Pyn) + (=5|X||V| log 8))).

Moreover, we have for n large enough that Ty s(2") # & and thus for a V(Q) € P(YV|X)
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(with corresponding Q)

[ Tivs(@™)| = [Ty )@ = (n+ 1) Plexp(nH (V(Q)| Por)

>
> (n+ 1) Plexp(n(H(W|Pn) — (=3X(|Y|log 8))),

where the last step follows from the continuity of entropy. For the case z™ € T7; the
result follows from

[H(W|Pur) = HWI|P)| = | )} HW(]a))(Pon(a) = P(a))]

aeX
< Y H(W(-|a))| Pen(a) — P(a)]
aeX
<log|¥| Y [Pen(a) — P(a)| < 6]X|log |V).
aeX | |

Lemma 2.15 ([26]). Consider 01,62 > 0, n € N, P € P(X) and W € P(Y|X). Let
a" € Tps, and y" € Tw,es,(2"). It holds that (z",y") € T34 15, With Q € P(X x V),
Q(z,y) = P(x)W (y|x) for all (x,y) € X x Y and y™ € Tpw,s,+5,)|x| With PW € P(Y),
PW(y) = > ex P(@)W (ylx) for all y e Y.

Lemma 2.16. Let n € N, W € P(Y|X),P € P(X) and 61,02 > 0. Let z" € Ty

and y" € Tjs («"). It holds that PW®"(y") < exp(—n(H(PW) — 0log [31)) where
0 = (01 + 02)|X]|V].

Proof. With Lemma 2.15, 2" € Tg; and y" € Ty s (z") we have y" € TJQW(61+62)|X\'
Thus

| Pyr = PW |1 < (01 + 02) | X[ |V]. (2.8)
It holds that
PWE"(y") = exp(=n(D(Py«|[PW) + H(Py»))) < exp(—nH(Py»)).
With (2.8) and Lemma 2.3 it holds that

H(Pyn) = H(PW) —6log 2.

Lemma 2.17. Let n€ N, § > 0, 0 < n < 51:56% and P € P(X). Let A < X" such that
P®(A) = exp(—nn). It holds for all n large enough that

Liog |A] = H(P) - 6|X|log s —n— L — Xl 1og(n +1).
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Proof. We have with Lemma 2.7

PO AN TEs) = PE(A) + PP (Th5) — 1

=
> exp(—nn) — (n + 1)I¥!

eXP(_n21}1252) > exp(—nn)/2

for n large enough. It holds that

AnTgs=An U BcAn | T8
QeP(n,X): QeP(n,X):
|Q(a)—P(a)|<oVaeX 1P-Q[1<6]X|

AQ(a)>0=P(a)>0
Thus

exp(—nn)/2 < PPANTE) < PE"(An | 73)

QeP(n,X):
IP—Ql1<d|X]|

= > P ().
IneAﬁU QEP(TL,X)I T(S’
IP—Ql1<d]X|

For all z" € T¢y we know that P®(z") is constant, so we have for

e An U 7'5

QEP(n,X):
1P=Qll1<d|X]
that
PO () < ma 1
(") QePlni): T3]
1P-Qlli<s|X]|
With Lemma 2.3 and Lemma 2.5 it follows for 2" € AN J gep(n,x): T¢ that
IP-Ql1<d|X|

P& (2™) < (n + 1) exp(—n(H(P) — 8]X|logd)).
Thus we have
exp(—nn)/2 < [Al(n + )M exp(—n(H(P) - 6|X|log 6))
and consequently

Llog|A| = H(P) — 6|X|logd —n — —%log(n—i-l).

n

Theorem 2.18 (Fano’s inequality [26]). For RVs X and Y on the alphabet X it

21



Chapter 2 — Preliminaries

holds that

H(X|Y) < Pr(X #Y)log(]X| — 1) + h(Pr(X #Y)).
Theorem 2.19. Let A,B,C and D be jointly distributed RVs. It holds that

A-B-C&(C-B-A (2.9)
AB-C-D=B-C-D (2.10)
AB-C—-D=A-BC—-D (2.11)
Papc(a,b,¢) = Pap(a,b)Po(c) V(a,b,c)e Ax B xC

AA-BC-D= A—B—CD. (2.12)

Proof. We give a proof for each of the statements.

e We have
Papc(a,b,c) 2 Py p(alb) Ppc(b, c)
= Py plalb) Pc p(c|b) Pp(b) = Pag(a,b) Poip(c|b)

for all (a,b,c) € A x B x C. Here a) follows from A — B — C. So we see that (2.9)
is true.

e We have Papcp(a,b, c,d) = Pypic(a,blc)Pop(c, d) for all (a, b, c,d) € AxBxCxD
from AB — C — D. Summing both sides over all b € B we get (2.10).

e We have
PABCD(aa b7 C, d) (2 PAB|C(a7 b|C)PC’D(C, d)
= Pp|c(b, ) Pajpc(alb, c)Pep(c, d)
b
2 Pusclalb, ¢) Peop(ble, d)Pep(e, )
= Py pclalb,c)Ppep(b, ¢, d)

for all (a,b,c,d) € A x B x C x D, where a) follows from AB — C — D and b) from
(2.10). This means (2.11) is true.

e We have
Pypep(a,b, c,d) 2 Pypclald, c)Ppep(b, ¢, d)
= Py pc(alb, ¢) Pppc(dlb, ¢) Pec (b, )

2 Pap(a,b)Po(c ¢)Pp|pc(d[b, c)
= P p(alb)Pp(b)Pc(c) Ppipc(d[b, ¢)

)
2 Pyp(alb) Pac(b, o) Pojse(dlb, o)
= PA\B( |b)PBCD(b C, d)
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—  Encoder Channel Decoder —

Figure 2.2: Message transmission over point-to-point channel.

for all (a,b,c,d) € A x B x C x D, where a) follows from A — BC — D and b) and
c) follow as C' is independent of AB. So we have (2.12).

2.4 Channel coding

A discussion on the noisy channel coding problem for the discrete memoryless channel
(DMC) can be found in the standard textbooks on information theory, e.g. [26]. In
Figure 2.2 we see a block diagram of the setting. Here a message from a set M should
be transmitted over a channel where we assume this channel is the DMC W®" with
W e P(Y|X). For this purpose we use an encoder f: M — X™ to map the message to
a codeword that serves as the input of the DMC. After transmission we use a decoder
g: Y™ — M to reconstruct the message. We call (f,g) a channel code.

Consequently, for this scenario of message transmission the probability that message
m € M is reconstructed correctly is W®"(g~!(m)|f(m)). The set of possible messages
M and the probability to correctly reconstruct the message should be as large as possible.
This suggests the following definition.

Definition 2.7. We call R > 0 an achievable rate if for all 6 > 0 there is an N € N and
a ¢ > 0 such that for all n > N there is a channel code (f, g) with

min WE (g™ (m)|f(m)) = 1 — exp(—nc)

Llog|M| = R —4.

We call the supremum of all achievable rates the channel capacity C(W).

According to this definition the error probability decays exponentially with the block
length n for n large enough. The error probability that we consider is the maximum
probability of error. We can prove the following achievability result.

Theorem 2.20. It holds that C(W) = maxpepx) [ (P, W).

This result is well known and one can find various proofs in the literature. Nevertheless
we present a proof below. After presenting this proof we add an additional requirement
to the achievability requirements in Definition 2.7. Then we can use the same proof
technique to prove a corresponding achievability result. The following proof is based on
the proof of [26, Lemma 6.3].
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Proof. Let 01,d2,¢ > 0 small enough and P € P(X). We construct the code for all n
large enough using an iterative procedure. (Assume w.l.o.g. that M = [k], k € N.) In
the first step choose f(1) € Tp5 and g 1) c Tiws5,(f(1)) such that

W (g (1)]£(1)) = 1 — exp(—nc)

holds true. We know from Lemma 2.13 that this is possible with 0 < ¢ < 71565 for
n large enough. We choose ¢ = d5/2 and n large enough. In the m-th step choose

Fm) € Tis \F(Im = 1]) and g7 (m) & T, (FmD\Upnepsy 9~ () such that
WE (g~ (m)| f(m)) > 1 — exp(—nc)

holds true. After the k-th step we can not find an additional code word with an appropri-
ate decoding set. (As the sets that we choose the code words and the decoding sets from
are finite, the procedure will terminate.) For the remaining y" € Y™\, ,epq 9 () we
choose for g(y™) an arbitrary m € M. Assume the procedure terminates because we can
not find an additional decoding set. Then for all 2™ € T s \ f(M) it holds that

W (T ) | g7 (m)la) < 1— exp(—nc) (2.13)
meM

as otherwise the procedure would not have terminated yet. For f(m), m € M, it holds
that

WE (T, (FmN [ 97 ()] f(m)) < W (Tt 5, (f (m)\g~ (m)| £ (m))
meM
< W (g7 (m))°| f(m)) < exp(—nc),

so (2.13) holds true for all 2™ € T, for n large enough. For the left hand side of (2.13)
we can write

WO (Tits, (@) o (| 971 (m)J2")
meM

which equals

WO (Tits, (@) |2") + 1= WE( ] g7 (m)]z")
meM

W@ o (L g )l
meM

=W (T,

)

5, (@M)]z") = WE ([ g7 (m)|a").
meM
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With Lemma 2.13 we get
wWE ([ g m)le™) 21— (n+ DM exp(—nyy63)

memM
— W (T, (U g7 m)la™)
meM

>exp(—n5§/2>—<n+1>"f"y'exp< ngeg03) > exp(—nd),

where for the second to last inequality we use (2.13). The last step holds for all n large
enough. Furthermore with Lemma 2.7 it holds that

e o= S IS P@W

meM y"eUmeMg 1(m)l 1zeX
>, PEEmWE(| ] g7 (m)2")
nexn meM
> > PEEmwE (] g m)l") (2.14)
x"e’T}gﬁl memM
> (1 - (n+ D) exp(—ng1567)) exp(—nd3). (2.15)

Here we can prove a) for all n € N by induction. Now consider

PwE( | ] g t(m)) = > PWE(y")
meM v e 971 (m)
= 2 PWE(y")
V€U pmerd (97 (M)NT g, (F(m)))
exp(—n(H(PW) — 6 1log 121))
Y €U ert (97 (M)NT 5, (F(m)))
= D exp(—n(H(PW) — 6log 121))
yneUmEM g_l (m)

= a7 m)]exp(=n(H(PW) — 0logI5]))
meM

N

where we use Lemma 2.16 for the third step and define 6 accordingly. Note that here
we also use that f(m) € Tp.s, for all m e M. So we get

| U a7 m)l = (1= (n+ 1) exp(—nyt503)) exp(—nd3) exp(n(H(PW) — 0log 1)),
meM
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With Lemma 2.14 it holds that

U gt <1 U Taaatm)l < ) T, (Fa(m)

memM meM memM
< [Mlexp(n(H(W|P) + | X|| V16 log(1/6) + 61|] log [Y)) (n + 1.

Thus overall we obtain

1
|M| —(n+1)1*l exp(— nméf)
(n+1)IXTII

cexp(n(I(P,W) — 63 — flog 151 — |X||V]62 log(1/) — &1|X| log [V])).

If the procedure terminates because we can not choose an additional code word from the
set of possible code words we have with Lemma 2.8

M > it exp(n(H(P) )

for € > 0 and n large enough.
[

As mentioned above we want to add a requirement to the achievability requirements in
Definition 2.7. We want to consider channel codes such that the code words are elements
of a set A with a certain property (which guarantees that A is large enough).

Definition 2.8. Let P € P(X). We call R > 0 an achievable rate given P if for all
0 > 0 there is an N € N, a ¢ > 0 and n > 0 such that for all n > N, given A € X" with
P®"(A) > exp(—nn), there is a channel code (f,g) with

min WS (g (m)|f(m)) > 1~ exp(-nc)

me

LlogM|=R—-9¢

and f(M) c A.

We prove the following theorem (which is very similar to [26, Theorem 6.10]).

Theorem 2.21. Let P € P(X). The rate I(P,W) is achievable given P.

Proof. To prove this result we change the iterative procedure for the code construction
such that in the m-th step f(m) is not chosen from 77 \ f([m — 1]) anymore but from
(A Tps, )\f([m —1]). At first we consider the case where the procedure terminates
because we can not find an appropriate decoding set. So after the procedure terminates
we have (2.13) for all 2™ € A n Tpy, for all n large enough. Moreover with Lemma 2.7
we have

PE(ANTEs) 21— (n+ 1)1 exp(—nyi507) + exp(—nn) — 1 > exp(—nn)/2
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for all n large enough. In (2.14), instead of summing over 755 we take the sum over
An TP and get instead of (2.15) that

PWE (| ) g7 (m)) = exp(—nn) exp(—nd3)/2
meM

and thus overall

|M| > 1/2

[CESIEIIR]

cexp(n(I(P; W) = 85 — 1 — 0log 151 — | X[|¥|62 log(1/65) — 61| X log | V).

Lemma 2.17 implies that if the procedure terminates because we can not choose a code
word anymore we have

(M| = exp(n(H(P) — ¢))

for € > 0 and all n large enough if we choose 7 small enough.
Note that the encoders constructed in the proofs above are injective.

2.5 Compound channels

The compound channel is introduced in [17]. It is used to incorporate channel uncertainty
in the model for message transmission over a point-to-point channel. The compound
channel is also discussed for example in [26].

In the block diagram depicted in Figure 2.2 the channel is now assumed to not be
known perfectly. A message from a set M should be transmitted over the channel which
is one of the DMCs of the set {W&"} s, Wi € P(Y]X) for all s € S. Again an encoder
f: M — X"™ and a decoder g: Y"* — M are used to map the message on a codeword
and to reconstruct the message from the channel output respectively. We call (f,g) a
compound channel code.

A compound channel code should allow for reliable reconstruction of the message sent
for all possible DMCs i.e. the compound channel codes should be robust against channel
uncertainty. This suggests the following definition.

Definition 2.9. We call R > 0 an achievable rate if for all § > 0 there is an N € N and
a ¢ > 0 such that for all n > N there is a compound channel (f, g) code with

inf min W& (g~ (m)|f(m)) = 1 — exp(—nc)
S€S meM

Llog|M| = R—-46.

We call the supremum of all achievable rates the compond channel capacity C({Ws}ses).
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So the error probability decays exponentially with the block length n for n large enough
for all DMCs in the compound set and again we consider the maximum probability of
error.

We now assume that |S| < c0. We can prove the following achievability result.

Theorem 2.22. [t holds that C({W}ses) = max pep(x) Milses I(P,Wy).

This result is well known, see for example [26, Corollary 10.10]. We prove a result that
implies Theorem 2.22. Similarly to the channel coding problem we add the requirement
that the code words of the compound channel codes are elements of a set A with a
certain property. (For the following definition we do not assume |S| < 0.)

Definition 2.10. Let P € P(X). We call R > 0 an achievable rate given P if for all
0 > 0 thereisan N € N, a ¢ > 0 and nn > 0 such that for all n > N, given A c X" with
P®"(A) > exp(—nn), there is a compound channel code (f,g) with

inf min W (g7 (m)|f(m)) = 1 — exp(—nc)
s€S meM

Llog|M| =R -6

and f(M) c A.

We prove the following theorem.

Theorem 2.23. Let P € P(X). The rate minges I(P, W) is achievable given P.

The proof again is based on the proof of [26, Lemma 6.3].

Proof. Let 01,d2,¢ > 0 small enough and P € P(X). We construct the code for all n
large enough using an iterative procedure. (We assume w.l.o.g. that M = [k], k € N.)

In the first step choose f(1) € Tps N A and g 1) € Uses T, 5,(f(1)) such that for
all se S

WE (g D)If(1)) = 1 — exp(—nc)

holds true. We know from Lemma 2.13 that this is possible with 0 < ¢ < 57563 for

n large enough. We choose ¢ = 63/2 and n large enough. In the m-th step choose

f(m) e (Tgs, 0 ANf([m —1]) and g~ (m) = Uses T, 5, (F )\ Ujepm—1) 9" (72) such
that for all se S

WE (g~ (m)|f(m)) =1 — exp(—nc)

holds true. After the k-th step we can not choose an additional code word with appro-
priate decoding set. (As the set the code words and decoding sets are chosen form are
finite the procedure terminates.) For the remaining y™ € Y™\ |J,,enq 97" (m) we choose
for g(y™) an arbitrary m € M. Assume the procedure terminates because we can not

28



Compound channels

find an additional appropriate decoding set. Then for all 2™ € (Tg5, N A)\f(M) there
is an s € S such that

WE (| T s @™\ 97 (m)]a™) < 1 — exp(—nc) (2.16)
s5e$S meM

as otherwise the procedure would not have terminated yet. For f(m), m € M, we have
forall se S

WE (| T, o, (PN | g7 m)1F(m) < WE (| Tk, 5, (Fm)\g ™ (m) £ (m)
seS meM seS
<SWE (g1 (m))°|f(m)) < exp(—ne),

s0 (2.16) holds true for all 2™ € Tps N A for all n large enough for at least one s € S.
Moreover with Lemma 2.7 it holds that

PO (TRs, 1 A) = PO (A) + P (T35 ) — 1 > exp(—nn) /2

)

for all n large enough. (Similarly to the proof without channel uncertainty.) Now
consider for all s € S the set

Aw,: = (2" € Ty, 0 A WE( Tt s, @0 | g7 (m)]a™) < 1 - exp(—ne)}.

S

5eS meM
It is clear that | s Aw, = T N Aas for all 2™ € Tg; n A there is at least one s € S
such that (2.16) holds true. Thus we have
exp(—m)/2 < PP(Ths, n A) = P Aw) < 3 PR (Aw,) < I8] max P& (Aw,).
seS seS

So there is an § € S such that for all 2™ € Ay, it holds that

wE (| T, s, @™\ 97 (m)]a") < 1= exp(—nc) (2.17)
seS meM
and
PO (Aw,) > exp(—nn)/(2]S)). (2.18)
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Moreover for the left hand side of (2.17) we have

Wg®n(U WS,(SQ U 9 1 ))<lz™)
seS meM
=W (| T, o, @)™ + 1= WE (] g " (m)|2")
seS memM
—WE(J T, 5 o (| g 'm) ")
SeS meM
2WE (Tt 5, (")) = WE (| g~ (m)]a").
meM

With Lemma 2.13 we get

WE (| J g7 m)le") = 1 — (n + DI exp(—n i, 62)

meM
_W§®H(U Ws'762 U g 1 m C|$n)
seS meM

= exp(—né%/Q) —(n+ 1)‘X‘|y| exp(—nﬁd%),

where for the last inequality we use (2.17). So we have

wer(lJ g7ty o | T @2

meM zeTps,
>WE( g7 )l +wE( | T, @) 1
meM zeTps,
> exp(—nd3/2) — 2(n + 1)V exp(—n 7i503) = exp(—nd3)

where for the second to last inequality we use Lemma 2.13. The last step holds true for
all n large enough. Moreover, with (2.18) it holds that

PWEJ gt m)n U Ta@)

T n
meM T eTP,él

- 2 [13] PeWitue)

Y €U mem g*l(m)muing—n W 62(:2")2 1zeXx

= P®"<w">W?“<U gl | T s @)

TnEX™ meM g‘c"eTgé
> 3, PEEWE( ' m)n | T e @)
Z"EAWE meM :1:”67-”’

> exp(—n1)/(2]S]) exp(—nd3).
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Now consider

PpweE | gt m)n | Ti.s@")

meM i”ETﬁ’él
= > PWE™(y")
Y €Umert 9 m)Ugnern 5 Tiw,55(2")

N

exp(—n(H(PWs) — 0log 121y)
yn€U77LEM 971 (m)mUi”’ETig’él TVTIL/L;,(SQ (jn)

U g7 m)n | T s @) exp(—n(H(PWs) - 0log 151))

meM TeTE,,

where we use Lemma 2.16 for the third step and define 6 correspondingly. So we get

IU g~ '(m) n U T, 5,(2")]
meM 5"67—1?,51
> exp(—n1)/(2]S]) exp(—nd3) exp(n(H(PWs) — 0log 15)).
Furthermore we have
IU g~ (m) n U Tw, s, (") = | U (g~ (m) n U Tw, 5,(2"))]

T n 1 n
meM T ETP,(Sl meM T eTP,él

< 2 letma | T e

o~ n
meM w"ETRgl

< 2 UM s(fm)n U T, 5@l

meM se§S ;f”eTlgf&l
We define for all m € M

Sm={seS: T s(fm) | T, a@") = @)

Sy
n n
z"€TE 5
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So we have
U ma U Ts@l
meM 56"67’1251
< D D TR 5, (F(m) n U Tz, (Z")]
meM seSk, TeTEs,
< ), max|T 5, (F(m)]|S]
meM €S
<|s| ) mgxexp( n(H(W|P) + | X||V]62 log(1/62) + 61]X|log [V])) (n + 1)I* ¥
meM

< 1811M] ma mas exp(n(H (W, P) + |X]|V152 los(1/62) + 811X log [P D) + 1) V1P
m SESH,
For all m € M it holds that for all s € S}, there is a y" € Y" such that y" € Ty 5 (f(m))
and y" € Ty 5, (") foraa™ € Tps . With Lemma 2.15 it follows that y™ € Ty, 515, x|

n n
and y" € TPW§7(51+52)‘X|. So we have

|PWs = PWs|1 = ) [PWs(y) — PWs(y)|

yey
= Y [PWi(y) = N(yly™)/n + N(yly™)/n — PWi(y)|
yey
< Y PWi(y) = N(yly™)/nl + IN(yly™) /n — PWs(y)| < 21V|(61 + 62)| X ].
yey

With Lemma 2.3 it follows that
|H(PWs) — H(PW3)| < 2|Y|(61 + 52)|X|10gm

for all m € M and all s € S5,. (We assume 0; and d2 are small enough.) So altogether
we have

IM| = exp(n(H(PWs) — 0log 151 — 5 — |X||V|82 log(1/62) — 61| X| log [ V)
1
" S (nt )T exp(—n52) eXP(—n(nrfélﬁt ;né{,} H(W,|P)))

= exp(n(H(PW5) — H(Wx|P) — 0log 15 —n — | X||V[62log(1/52) — 61| | log | ¥]))

1
sy exXp(—nd3),

for a s* e So we have

meM m

M = exp(n(=2|V](d1 + 62)| X |og 5575,y — 0 log 2L — = | X)|V]62 log(1/62)))
. W exp(—nég —nd1|X|log |Y]) exp(nl (P, Wssx)).

The result follows as I( P, Wy«) > minges I(P, W;). (If the procedure terminates because
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we can not choose an additional code word we get the same bound as in the case without
channel uncertainty.)

Now we consider the case of an arbitrary compound channel, i.e. |S| < oo does not
necessarily hold true. We use the following theorem which essentially is [17, Lemma 4].
(We omit one statement of [17, Lemma 4] in the theorem presented here.) The proof
can also be found in [17].

Theorem 2.24 ([17]). Let M € N, M > 2|Y|* and {Ws}ses with W, € P(Y|X) for
all s € 8. We can construct {V;}e7 with V; € P(Y|X) for all t € T such that |T| <
(M + D)Xl and for all s € S there is at € T with

Wi(ylz) — Vi(ylo)| < 2
Wi(ylz) < 2PPMY, (y]a)
for all (x,y) € X x ).

Similarly to the approach in [17] we use Theorem 2.24 to prove the following achieva-
bility result for arbitrary compound channels.

Theorem 2.25. Let P € P(X). The rate infses I(P, W5) is achievable given P.

Proof. Consider the smallest possible set {V;};e7 as described in Theorem 2.24 (where
M is determined below and chosen large enough). For all s € S we denote the t € T
corresponding to s by t(s). From Theorem 2.23 we know that given ¢ > 0, for all n large
enough there is a compound channel code (f,g), such that

Llog | M| > IIllIlI(PVt) )

min min V®"( H(m)]f(m)) = 1 — exp(—nc)

for a ¢ > 0. Let t* = argminge7 I(P,V}) and s* such that
2
[Wee (-2) = Ve (J2) |1 < B

for all z € X. (The existence of such an s* follows as we consider the smallest possible
set {Vi}ter.) Thus it holds that
ummw«mm#mww%<mw
= | ), P(@)(HWe(J2)) = H(Vex(-]2)))]

zeX

<;ynmﬁwm H(Vis ()] < 3 log 3
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Moreover we have

inf I(P, W,) < I(P, W) < I(P, Vi) + 3 log 5 = min I(P, V) + 5 log 3.

For all s € S and m € M Theorem 2.24 implies

WE (g7 m)[fm) = D) WE("If(m)
yre(gt(m))e
< Y PN f(m))
yne(g=t(m))e

= 2ERMYE (g (m)*|f(m)) < XM exp(—ne).

Now we choose M = n2. Thus the desired result follows.

Note that the encoders constructed in the proofs above are injective.

2.6 Arbitrarily varying channels

The AVC is presented for the first time in [18]. It is another model that allows to
include channel uncertainty in the scenario of message transmission over a point-to-point
channel. A discussion on AVCs can for example be found in [26].

Compared to the compound channel the AVC is a more pessimistic model in the
following sense. As described in [26, Chapter 12], for the compound channel the unknown
parameter is constant during the transmission of a codeword, whereas for the AVC the
parameter can vary from symbol to symbol.

So again consider Figure 2.2 where this time the channel is an AVC. A code word is
generated from a message that should be transmitted over the channel using an encoder
f: M — X" This code word serves as the channel input. For each of the n symbols
of the code word the channel is represented by one of the stochastic matrices in the
set {Ws}ses, Ws € P(Y|X) for all s € S. So the channel for the whole transmission is
one of the stochastic matrices in the set {Wgn}snesn where we define Wgn = @?:1 Wi,
for s™ € 8™. Then we use a decoder g: J'* — M to reconstruct the message from the
channel output. We assume that S is finite and we call the tuple (f,g) an AVC code.

For the DMC and the compound channel achievability is defined with respect to the
maximum probability of error. For the AVC we consider the average probability of error.
(For a discussion on these two possibilities to measure the performance of AVC codes
see for example [26, Chapter 12].) Consequently we arrive at the following definition.

Definition 2.11. We call R > 0 an achievable rate if for all § > 0 there is an N € N
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Arbitrarily varying channels

such that for all n > N there is an AVC code (f, g) with

max i Y, Wen((97!(m))|f(m)) <&

smeS™
meM

Llog|M| = R —6.

We call the supremum of all achievable rates the AVC capacity C({Ws}ses)-

It is well known that the best possible transmission rate for reliable communication
over an AVC (evaluated in terms of average error probability) strongly depends on
whether the AVC is symmetrizable. An AVC corresponding to {Ws}ses, Wy € P(Y|X),
is symmetrizable if there is a U € P(S|X) such that

DI Walyla)U(sla’) = ) Walyla)U(s|z)
seS seS
for all z, 2,y € X2 x Y [24, Definition 2].
In order to illustrate the concept of symmetrizability of AVCs we present an example

of a symmetrizable AVC. (This example is also discussed in [18] and [2, Example 1], cf.
[21].) Assume |X| = |S| =2 and |Y| = 3. We define

Wi(1) = , Wa([1) =

Wi(2) = , Wa(-2) =

OO O O
OO~ P OO

We can easily check that for all y € Y

Wi(y|)gr + Waly|1)(1 — q1)
= Wi(y|2)g2 + Wa(y|2)(1 — ¢2)

holds true for q; = 1 and g2 = 0. So the corresponding AVC is symmetrizable which is
illustrated in Figure 2.3.
Now we can state an achievability result for AVCs which is proved in [24].

Theorem 2.26. If the AVC corresponding to {Ws}ses is not symmetrizable then

C({Wilses) = in [(P,W
({(Ws}ses) Prer;aaé)vtvnelg_v( )

where we define W = conv({Ws}ses)-

Similarly to the previous models we now want to add the requirement that the code
words corresponding to the AVC code are elements of a set A with a specific property.
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(0,0,1)

(1,0,0) (0,1,0)

Figure 2.3: The simplex is the set of all distributions on Y. Wi (:|1), Wi(+2), Wa(-|1)
and Wa(+|2) correspond to extreme points. It can be seen that the two sets
of convex combinations (represented by the black lines) intersect at (1,0,0).

To prove this achievability result we use the following lemma, which basically is [24,
Lemma A1]. We give the complete proof from [24] for the reader’s convenience.

Lemma 2.27 ([24]). Let Z,---Zn be arbitrary (discrete) RVs (on a finite alphabet)
and let fi(Z---Z;) be arbitrary with 0 < f; < 1,7=1,---N. Then

2 PZi\Zl~--Zi71(Zi|Zl tee zi_l)fi(zl e Zl) <a (2.19)

2,€EZ;
forall zy-++zj1€ 21 x-+-x Z;_1 and all i € {1--- N} implies

N

Pr(3 Y. fi(Zy-+ Zi) > t) < exp(—N(t — aloge)).
i=1

Proof. We have

N N
Pr(% Y fi(Zy-+ Zi) > t) = Pr(exp Y. fiZy -+ Z;) > exp(Nt))
=1 =1

N
< exp(~Nt)E(exp Y fi(Z1 -+ Zi))
i=1

where for the last inequality we use Markov’s inequality. The expectation in the last
line equals

N—1
dr Prezs(an-n)ep( )] filzeez)
21 ZN -1 i=1

€EZ1XXZN_1

. Z PZN\Z1~~-ZN,1(ZN|21"'ZNfl)eXp(fN(Zl"'ZN))-
ZNEZN
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As 0 < f < 1 implies expf < 1+ f we use (2.19) to bound the second factor by
1+ a < e® = exp(aloge). Repeating this procedure N — 1 times we get the desired
result.

m

Using Lemma 2.27 we prove the next lemma that is similar to [24, Lemma 3] (see also
[23, Lemma V.1]). Compared to [24, Lemma 3], the code words are contained in a more
restricted set. We also show how to choose the code words such that they are distinct.

Lemma 2.28 ([24]). Let 1 >n > 0,0 > 0 and P € P(n,X’). Choose real numbers R, €
that satisfy 0 < e < R < H(P). There is a ng(e n,|X|,|S]) € N such that for all n = ng
it holds that given A < T} with P®"(A) > 0 +1)|X| and N = exp([nR]) there exist (not
necessarily distinct) codewords z% - - - 2’} € A such that for every z" € X", s" € §" and
Pyxg€P(n, X x X xS) we have

4G a5 e TR} < exp(n(|R— I(X A XS)[* +¢) (2.20)
+|{i: (2}, s™) € Py}l < exp(—ne/2) FI(X AS) > e (2.21)
+ i (7,2}, s") € Tp, ., for some j # i}| < exp(—ne/2)

FI(X AXS)—|R=—I(X AS)|" >« (2.22)

Assume R > €. Then we can choose a set of at least | N exp(—n(e 4 0))| sequences from
x -~y which are all distinct.

The proof relies on the probabilistic method. It basically differs from the proof of
[24, Lemma 3] in the set the codewords are randomly chosen from. We also add a
requirement such that most of the code words can be chosen distinct.

In short, for the proof we randomly choose the codewords from A. For an arbitrary ",
s" and Py xg we use Chernoff bounds to show that (2.20), (2.21) and (2.22) hold with
probabilities going to 1 doubly exponentially with respect to n. (An additional property
used to have distinct codewords is proved similarly.) As 8", X™ and P(n, X x X x S)
depend at most exponentially on n the union bound gives the desired result for the
probabilistic method.

Proof. As in [24, Proof of Lemma 3] let Z; --- Zn be independent RVs each uniformly
distributed on A. For Pxg # Pyn gn or Pg # P (2.20) holds trivially. Now we consider
Pxg = Pyn ¢n and Pg = P. As done in [24, Proof of Lemma 3] define for all i € {1--- N}

s
X|xs . (2.23)
0 otherwise

fi(Zl---Z@-)={1 120 € T s (077

It holds that

n(n + 1)~ < PE(A) = |AIPF" (2") = | A exp(—nH (P)).
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We see that (2.19) is fulfilled with

By ()0 A

a = PI‘(Zj € T];lX‘XS (ZU”, Sn)) _ ‘A‘
exp(nH(X na1)Xl _
< (nﬂ)g(wﬁ(ji))((ni})(lg)) = +;) exp(—nl(X A X))

where the last step follows from H(P) = H(X). Now we continue as in [24, Proof of Lemma 3],
i.e., we choose

t==xexp(n(|R—I(X A XS)|" +¢)).
Thus N(t — aloge) > exp(ne)/2 if n = ny(e,n, |X]|), where

ni(e,n,|X|) = min(n: | log e < £ exp(ne)).

(n+1)1%
n
Lemma 2.27 implies

Pr(|{j: Z; € TP

X|XxS

(2", s™)}] > exp(n(|R — I(X A X9)|T +¢))) < exp(—% exp(ne)).
By the same argumentation, replacing Tﬁx‘xs(x”, s™) by TIEX‘X(m”) in (2.23), we get

Pr(|{j: Z; € Tp.

XX

(™)} > exp(n(|[R— I(X A X)|T +¢))) < exp(—% exp(ne)) (2.24)
for Py = P.

Now it is clear that using the same argumentation as in [24, Proof of Lemma 3] we
also get

Pr(LI(: Z) € TR, ()| > exp(-ne/2)) < exp(— L exp(ne/2)).
if I(X A S) > e and
Pr(%|{z’: Z; € TPX\XS(Zj’ s") for some j # i}| > exp(—%)) < 4exp(—% exp(2))
if (X AXS)>|R—1I(X AS)|" +e€and n>ni(e/4,n,]|X]).

Now we use the same argumentation as in [24, Proof of Lemma 3]. The number of
all possible combinations of z™ € A", s" € S and Pxgg € P(n,X x X x §) grows
exponentially in n. Thus the doubly exponential probability bounds ensure that with
probability close to 1 the above inequalities hold simultaneously if n is sufficiently large.
So there are codewords 27, --- , 2R}, with the desired properties.

As done in the proof of [22, Lemma 2] we can now select a set of at least | N exp(—n(e+
9))| sequences from 7 - - - 2}, which are all distinct (if we assume R > €). This works as
follows. We know from (2.24) that for all 2" € X" and all Py € P(n, X x X)
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[{j: 2} €Tp,

Pxx

(@™)}] < exp(n(|R — I(X A X)|" +¢)). (2.25)

Assume [(z' A 27) < R for i # j. Now assume 27 = 7. This implies H(P) < R
which contradicts our assumption R < H(P). So if we keep only the codewords with
I(z} A 2}) < R we know that they are all distinct. Now (2.25) implies that

s 2} € TR (&™)} < exp(ne)

| X

if I(P, P x) > R. As [P(n, X x X)| < (n+ 1) this implies for all i < N

(s I(z? A 2}) = R}| < exp(ne)(n + 1)I*F, (2.26)

Now successively choose sequences from 7 - - - 'y, such that for these sequences it holds
that I(z]' A 2’) < R for i # j. Assume we have ¢ such sequences and can not find an
additional one. Then from (2.26) we know

qexp(ne)(n + 1)'““{‘2 > N.

exp(—ne)

This means ¢ > N(n+1)|2€\2

> | N exp(—n(e + 0))] for n large enough.

Now we can prove the result on channel codes for arbitrarily varying channels. This
is a slight variation of [24, Theorem 1]. The main difference again is that the codewords
are taken from a more restricted set. Additionally we consider injective encoders.

Lemma 2.29 ([24]). Let 1> 7 >0, ¢ >0, 5557 > 6 > 0, 7 > 0, Px € P(X) with

min Px (x) > ¢
zeX

and D a finite set. Consider the AVC corresponding to {Ws}ses, Ws € P(Y|X) for
all s € S and assume it is not symmetrizable. There is an ng(e,n,7,|X|,|S|,|V|) € N
such that for all n = ng for all A c Tp_, Pgx € P(n,X) with |Px — Px[1 < 0 (thus
mingex Px(x) > 8> 0) and

PE"(A) > -exp(—nD(Px|Px))

n
(n+DI¥
there is a pair of mappings (fn, ®n), fn: D — X", ¢p: V" — D, f,(D) c A, such that

+log D] = min I(Px, W) — 7 — p(d)
Wew
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where p: Ry — R, p(§) = —|V|0 log % +1og | V|5, W = conv({Ws}ses) and

max 7y > Wen (¢, (d)°[fu(d)) < e. (2:27)

n Sn
e deD

We call such tuples ( fn, ¢n) constant composition (n, €)-codes for the AVC corresponding
to {Ws}ses. Additionally f,, is injective.

For the proof we use Lemma 2.28 and [24, Lemma 4]. The proof then follows the same
argumentation as the proof of [24, Lemma 5|. Additionally we use [26, Lemma 2.7]. So
the result above follows from Lemma 2.28 exactly as in [24]. We only need an additional
continuity argument.

Proof. From PZ"(A) > neXp(znnﬁ()ﬁ“PX D) e have

A > ne?p:g‘(/flx))'

So we have

PEM(A) = |Alexp(—nH(Px)) > -

So from Lemma 2.28 and [24, Lemma 4] we can show in the same way as in the proof
of [24, Lemma 5] that (fy, ¢n) with

2log|D| = min I(Pg,W)—7
Wew

and (2.27) exist for all n large enough. The corresponding decoder is the decoder descri-
bed in [24, Definition 3|, which can be chosen such that the decoding rule is unambiguous
as shown in [24, Lemma 4]. (f, is injective as the codewords can be chosen distinct as
described in Lemma 2.28.) Now consider

[I(Px, W) — I(Pg,W)| = [[(X AY) = I(X A V)]
<|HY) = HY)| +[HY|X) = HY[X)|

where Pyy (z,y) = Px(2)W (y|z) and Py (z,y) = Pg(2)W (y|z) for all (z,y) € X x V.
We have

|Py = Ppli= )| D} (Px(2) — Pg(2))W(ylz)|

yeY zxeX

<)) 2 Wyl |Px(x) — Px(a) < V6.

yeY xeX

So [26, Lemma 2.7] implies

[H(Y) — H(Y)| < —[Y|5log 23]
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for § < ﬁ We also have

HY|X =2)= HW(-]z)) = HY|X =)
for all z € X. So

[H(Y|X) = H(Y|X)| =] ), Px(2)H(Y|X = z) = Pg(e)H(Y|X = 2)]

reX

< ) IPx(2)H(Y|X = 2) - Pg(x)H(Y|X = )|
TEX

= Y H(Y|X = 2)|Px(x) — Pg(x)| < log|V|s.
reX

Now let miny ey I(Pg, W) = I(Pg, W). We have

I(Px,W)—12=2I(Px,W)—7—p(§) 2 min I(Px,W) — 7 — p(6).
Wew
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3 SK Generation with Constrained Privacy
Leakage Rate

In this chapter we consider SK generation from a PUF source, i.e. the source model
for SK generation with a rate constraint on the privacy leakage cf. Section 2.2. As
described in Section 2.2 we can study secure storage of a key using a PUF with this
model. Motivated by the discussion in Section 2.1 we consider generation of a uniformly
distributed SK such that perfect secrecy is achieved. In the course of this chapter we
vary the model inasmuch as we weaken the assumptions on our knowledge of the PUF
source statistics. For all three settings that we consider we derive corresponding capacity
results.

3.1 SK generation from a PUF source

The scenario for SK generation from a PUF source is depicted in Figure 3.1. As discussed
in Section 2.1 and Section 2.2 a SK (represented by the RV K) is generated at one
terminal and reconstructed at a second terminal (where the reconstruction is represented
by the RV K). A message (represented by the RV M) can be sent from one terminal to
the other via a noiseless public channel. The PUF source, represented by a DMMS with
generic RVs X and Y, puts out RVs X™ and Y™. X" is observed at the first terminal
whereas Y™ is observed at the second terminal.

As mentioned in Section 2.1 we consider a randomized encoder F. So (K, M) are
generated from X™ using a randomized encoder F and K = g(M,Y"™) where we call the
tuple (F,g) with F € P(K x M|X"™) and g: V" x M — K a SK generation protocol.

A~

Eavesdropper
% T

K
L
Encoder > Decoder
} xn Jy yn
PUF Source

Figure 3.1: SK generation from a PUF source (or equivalently from a biomatric source
as considered in [32], cf. Section 2.2).
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This model establishes the joint distribution of K, M and K. For all (k,m, l%) €
K x M x K we have

Pryriebom, k) = 37 PRy F (kymla™) L, g (4" m)).
anexX™
yneyn
A SK generation protocol should have certain properties to be considered a good SK
generation protocol which are specified in the following definition.

Definition 3.1. A tuple (R,L), R,L > 0, is an achievable SK generation/privacy le-
akage rate pair if for all § > 0 there is an ng € N and a ¢ > 0 such that for all n = ng
there is a SK generation protocol (F, g) such that

Pr(K + K) < exp(—nc)
I(K A M) =0

H(K) = log K|
Llog|K| = R -6

LI(M AX") <L+

We call the set of all such achievable rate pairs the capacity region RgIL(

In particular we want to control the privacy leakage rate of the protocols as we consider
a PUF source, cf. Section 2.2, and we want that the protocols meet the perfect secrecy
requirement and that the SK is uniformly distributed, cf. Section 2.1.

We now want to characterize RgIL(

Theorem 3.1. It holds that

Rég 2 HRL): 0SRSIUAY), L2 I{UAX)=I(U AY)}
U

where the union is taken over all RVs U withU — X — Y.

The proof technique is based on [5, Proof of Proposition 1a)].

Proof. Let § > 0. Choose n > 0 and ¢ > 0 small enough. Choose the RV U such
that U — X — Y. For all n large enough construct the set J = {uk m}(km)ex xm Where
Ug,m € U™ and

K| = exp(n(I(U A Y) =5 - €)) (3.1)

where 0 < € < % such that n(I(U AY) —0 — &) is an integer. Moreover J is chosen such
that it holds that

PE(T) > 1 — exp(—nn)(n + iUl
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SK generation from a PUF source

and for all m € M there is a g,,: Y™ — K such that
P (9" () |k m) = 1 — exp(—nc) (3.2)

for all k € KL and for all m € M there is a P € P(n,U) such that for all £ € K it holds
that ug ., € Tlg

We can construct J as follows. First choose a P € P(n,U). Then choose an arbitrary
set A; < T2 with P¥"(A;) > exp(—nn). For 77 small enough and all n large enough we
can choose a channel code for the DMC P YU corresponding to (ug1,97 L(k)) gexc such
that (3.2) and (3.1) hold true and {u1}rex < A1 This follows from Theorem 2.21. In
the i-th step choose A; < TP\ Ujegi—1{uk,jtrexc with PR"(A;) = exp(—nn). If this is not
possible anymore (that is this choice of A;) do the same procedure for all P € P(n,U).
Thus after this procedure terminates it holds that PE"(J) > 1 — exp(—nn)(n + 1)1,

Now define (F, g) as follows.

F(k,m|z") = PR (unml|z") + PE (T 12" jrying

g(y",m) = gm(y")

It holds that

Pr(K # K)

22 2 PR yER mla") L gy (" m)

meMkke}Cx’n 7L

k;éfc
2 Z Z P)%y; z"y" PU|X(ukm|$) *1(/;)(.@”)
meM ke ™ Y"

k;tl%

1

+ 22 PRE YR L @)
meM f ke T™Y"

k#k

For the second summand we have

10 D) PRy PR (TN et D L

meM kelC x™,y" kek:

k+#k
2 2 2 P)C?Q "y P%’}(Jclwn)“q\l

meM kelC z™,y™

as Zl%glcz ) (y™) < 1 for all k € K. This expression equals

Ttk
PRI A ISRy

meM kekC

< exp(=n)(n+ 1M
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Chapter 3 — SK Generation with Constrained Privacy Leakage Rate

For the first summand we have

)IDY ZP%?J "tk ) P (ke m) Ly 1y (U7

meM g fec Y"
k;ﬁfc
- 2 2 Pl?n(“km)Z 2 lg;@l(/;)(yn)P%%(ank,m)
meM kekC Y ek
k+k
Z Z P® Uk;m Y|U(( 1( ))c|uk,m)
meM kekl
< Y D PR (k) exp(—ne) < exp(—nc).
meM kekl

Now consider
Pr(K =k, M =m) Z Z PEy (2", y" ) F (k,m|z") 1, gy (4", m)

- R U\X<uk,m|x”>+2pé?" " PER(T ™)

x’ﬂ
and
= 2 2 PR B (i ml2™) + 3 PR P (Tl g
kel ™ zn

Consider a permutation 7 on [n] (and we also denote by 7 the corresponding permutation
on e.g. X™). So we have 7~1(X") = A™. It holds that

Y, PP (rlurm)la™) = Y, PRUw(@M) PR (m(ukm) Iw(2"))

ThEXT zren—1(xn)

= 2 Pgn(jn)P(%X ukm|x Z P®n U‘X(Ukmu' )
grer—1(xn) znexn

For the second step we use the product structure of the distribution. As according to
our construction there is a P € P(n,U) such that uy,, € TS for all k € K we have

22P®n ") U\X(“'f’mhj |K|Zp®n ") U\X(uk7m|xn)

kelkC xz™

for an arbitrary k£ € K. Thus we get
Pr(K=k,M
Pr(K = k|M =m) = 7“1%(]\4 m)m>
| Shan PR @M PR (ukm )+ S P @) P (Tl ] T
KIS P ) P )+ PO @) PG (et gy

—_

which means H(K|M) = log |K]|.
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SK generation from a PUF source
Moreover, using Fano’s inequality, we get H(K|MY"™) < F for a F > 0 arbitrarily
small for all n large enough. So it holds that

I(M AX")<I(MAX")— HEKMY™) + F
= (MK A X") — H(K|IMY") + F — I(K A X"|M).

With I(K A X"|M) = H(K|M) — H(K|MX"™) and H(K|M) = log|K]| it follows that
I(MAX")<I(MK AX")—log|K| - H(K|MY™)+ HK|MX") + F.
It is obvious that KM — X™ — Y™. This implies K — M X™ — Y™. So it holds that
H(KIMX"™) = HK|MX"Y") < HK|MY™)
and as log || = n(I(U AY) — § — &) we have
IMAX")YSTI(MKAX")=n(I(UAY)—=6—&)+F.

Now consider the mapping ¢: L x M — U", q(k, m) = uj . This mapping is injective.
So it holds that I(KM A X") = I(q(K, M) A X™). Furthermore we have

Pyganxe@'z") = > Flk,mla™) 1y, w").
(k,m)ex M
Now consider
IPascanxe =P8l = S PR Y] PSRl ey + PEN(T)
nexn (k,m)ekx M
= 2PF"(JT°) < 2exp(—nn)(n + Hl.

From the continuity of entropy it follows that
(K, M) A X™") < I(U" A X"™) + 6
for all n large enough and the RV U™ such that Pynxn = P((]@; Altogether we thus have

LIMAXY)YSIUAX)—I{UAY)+F/n+6+&+6/n.

Now we prove the converse result.

Theorem 3.2. It holds that

Rk S| JURL): 0<SRSIWAY), L2 I(U A X)—I(U AY)}
U

where the union is taken over all RVs U withU — X — Y.
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Chapter 3 — SK Generation with Constrained Privacy Leakage Rate

Proof. Tt holds that
log|K| = H(K) = (K A K) + HK|K) < I(K A MY™) + F
where we use Fano’s inequality and thus F is arbitrarily small for all n large enough (and

K — MY™ — K). Additionally it holds that I(K A Y"M) = I(K A M) + I(K A Y"|M)
and (K AY"|M) < I(Y™ A MK). We also have

n
log |[K| < I(Y" A MK) 2 I(KMY™' AY;) + F.
We know that MK — X™ — Y™, This implies KM — X" 'X;Y; — Y1 Thus we get
KMY; — X1 — Y1 and consequently Y; — KM X*1 — Y1 This means
I(KEMY"™'AY) S IIKMYTIXTAY) = (KMX™ A Y).

So

n n
log |[K| < Y I(KMX"™' AY;))+ F =Y I(U; AY;) + F
i=1 i=1

where for the last step we define U; = KM X!, From KM — X" — Y™ it follows that
KM — X*71X; —Y; and thus KM X! — X; —Y;, so U; — X; — Y;. Moreover we have

I(X™ A M)=H(M)—HM|X") = HM|Y") — HKM|X")
= H(KM|Y™) — H(K|Y"M) — H(KM|X") = I(KM A X") = (KM AY") — F,

where for the last step we again use Fano’s inequality (and K — MY™ — K ). Following
the same argumentation as above we thus have

I(X"AM)>iI(UMX Zn] I(U; AY)
=1 i=1

Define U = QUg and consider Xg and Yy where @ is a RV uniformly distributed on [n]
and independent of X"Y"U™. It is clear that PXQYQ = Pxy as XY™ are i.i.d. random
vectors. So we have

PUXQYQ((Q) U), x, y) = PQUquYq(Q7 ’LL,ZL’,y) = PQ(Q)PUq|Xq(u|$)PXqu(x7 y)

where the last step follows from U, — X, — Y,. As Px,v, = Pxy we have

Puxove((q,u), z,y) = Polq) Py, x, (ulz) Pxy (2,y) = Pux, (¢ w]2) Pxgvy (2,y)
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SK generation from a compound PUF source
Eavesdropper
% T

Lo

Encoder > Decoder

Compound
PUF Source

Figure 3.2: SK generation from a compound PUF source.
with Py x, ((¢,u)|z) = Po(q) Py, x,(ulz) (e. U— Xqg —Yg). Finally consider

Z%U/\Y ZPQ I(Ug A Yg|Q =q) = I1(Ug A Yq|Q)

H(Yq|Q) — (YQIUQQ) = H(Yg) — H(YQ|U) = I(U A Yg)

and

M:

I(U; A X;) 2 (U; AY;) = I{Ug A X0|Q) — I(Ug A YolQ)
1 i=1

H(Xq|Q) — H(Yq|Q) — H(Xq|U) + H(Yq|U)
H(Xq) — H(Yg) — H(Xq|U) + HYQ|U) = I(U A Xq) — I(U A Yq).

<.
l

3.2 SK generation from a compound PUF source

Now we consider SK generation from a PUF source where the source statistics are not
known exactly. Instead we know a set of distributions the actual distribution belongs
to. We call this PUF source with source uncertainty a compound PUF source. These
considerations not only generalize our results, but they also make sense from a practical
point of view. When a probabilistic model is used in practice, it might be hard to
determine the corresponding distributions with measurements. By incorporating the
possible measurement errors into our model we get SK generation protocols that are
robust against these errors. Good system performance has to be guaranteed for all
possible source statistics.

The scenario for SK generation from a PUF source is depicted in Figure 3.2. So
for the model for SK generation from a compound PUF source we replace the PUF
source by a compound PUF source. This means we consider the RVs {X;Y;}ses and the
random vectors {X'Y'}es with Pxnyn = P)%TLYS for all s € S. X and YY" represent
the source output observed at terminal X and terminal ) respectively when the actual
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Chapter 3 — SK Generation with Constrained Privacy Leakage Rate

source statistics are determined by the parameter s € S. Correspondingly the RVs
(K, Ms) model the SK and the helper message and K, represents the reconstruction
of the SK. Again we consider a randomized encoder F' € P(K x M|X™) and a decoder
g: V" x M — K. In the context of SK generation from a compound PUF source we call
(F,g) a compound SK generation protocol. Thus we get the joint distributions of the
RVs KM K

PKSMSKS(k’m’ l;:) = Z P)C?.:LYg (m",y”)F(k:,m|x”)ﬂg,1(k)(y”,m)
T YneXn xYn

for all (k,m,k) € K x M x K and s € S.
We also define the set

I(3) = {s€S: ). Px,v.(z,y) = Px,(z) for all z € X}
yey

for § € S. We choose an arbitrary set of representatives corresponding to the equivalence
relation ~c § x S defined by this partition of S and denote it by S. Additionally we
define f¢: S — S, fg(s) = sifand only if s ~ 5forallse S, ¢ S. For the RVs {Xs}ics
we now define PYS\XfS(S) = Py,|x, (for s # fs(s)). Thus it holds that Px,y, = Png(s)Ys
for all se€ S.

In the following we assume that |S| < 0.

A compound SK generation protocol should have certain properties despite the source
uncertainty. These properties are determined by the following definition.

Definition 3.2. A tuple (R,L), R,L > 0, is an achievable SK generation/privacy le-
akage rate pair if for all § > 0 there is an ng € N and a ¢ > 0 such that for all n = ng
there is a compound SK generation protocol (F,g) such that

sup Pr(K, # K,) < exp(—nc)
s€S

supI(Ks A Ms) =0
seS

inf H(K;) = log K|
seS

Llog|K| =R -6

sup 2I1(Ms A X)) < L + 0.
SES

We call the set of all such achievable rate pairs the capacity region Rgf(’comp )

So for the compound model we also want to control the privacy leakage rate of the
protocols and we require perfect secrecy and uniform key distribution.

In the following we want to characterize Rgfgcomp :
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SK generation from a compound PUF source

Theorem 3.3. It holds that

Re“™ 2 (N J@®RL):0< R< Seig(fg)I(Ug AY),
5e8 Us

SEZ(S)

where for all § € S the union is taken over all RVs U; with Us — X; — Y, for all s € Z(3).

Again the proof technique is based on [5, Proof of Proposition 1a)].

Proof. Let § > 0. Choose n > 0 and ¢ > 0 small enough. Choose RVs {Us}. ¢ such
that U; — X; — Y for all s € Z(s). For all n large enough construct the sets J; =
{uk,m}(kjm)e,gsAxMé with uy ,, € U™ for all € S,

|ICs| = exp(n( inf I(Us AYs) — 9 —&)) (3.3)

SEZ(3)

with 0 < & < 1 such that the n(infeezesy I(Us A Ys) — 0 — &) are integers and disjoint

n

sets M, S € S. Moreover for J; it should hold that
PEM(Js) > 1 — exp(—nn)(n + )4
and for all m € M; there is a g, : V" — K such that

inf PO ((gm) (k) ugm) > 1 — exp(—nc) (3.4)
seEZ(8) “sIT8
for all k € IC; and for all m € Mj there is a P € P(n,U) such that for all k£ € K; it holds
that uy n, € T4 Additionally we define M = | J, ¢ M.

We choose for all § € S the set J; as follows. At first choose a P € P(n,U). Then
choose an arbitrary set A(; 5y  Tp with P[%"(A(L 5)) = exp(—nn). For n small enough
and all n large enough we can choose a compound channel code for the compound channel
{Py,|u, }sez(3) corresponding to (uy (1 4), (g(lﬁ))_l(k))kegg such that (3.4) and (3.3) hold
true with {uy, (1 s }kex; < A(1,5)- This follows from Theorem 2.25. In the i-th step choose
Ai,s) © TE\Ujefi—1p{tr,(,3) e, with P(%"(A(i’g)) > exp(—nn). If this is not possible
anymore (that is this choice of A(; 5)) repeat this procedure for all P € P(n,U). So at
the end of the procedure it holds that PU®§"(j§) > 1 — exp(—nn)(n + 1)U,

Moreover we define K = [min,_g [K;|] and for all 5 € S mappings hz: Kz — K U {k}
with ¢ K such that for all k € K it holds that [h;"(k)] = [f¢!]. Thus it holds for
Ks| > |K| that |h; (k)| < |K| and |h; (k)| = 0 for |[Ks| = |K].

We have

2 Z P[(]@én(uk,m) < 1.

meM;z kelCs
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Chapter 3 — SK Generation with Constrained Privacy Leakage Rate

Moreover, for all k,k € Kz, k # k, there is a permutation 7 on X™ such that Uk, =
(U ). Thus we have

P upm) = PEM( (ug ) = PE (uf )
which follows from the product structure of P[CX”. So it holds that
> P (ke m) = el PE" (ugem)
keK;

for an arbitrary k € 3. Thus we have

Z sz”(uk’m) < \’Clg-\'
mGM;

Now we have the bound

D0 D PEMuwm) = Y, DL PEMurm) < glhi (R

meMs keh (k) keh, ' (k) mEMs

If K] < |Ks| we can upper bound this expression by

\|ICKA| <exp(—n( inf I(Uz AYs) — & —min inf I(U; A Y5))) < exp(—n(2e — &)
8 seZ(3) 3eS s€Z(3)

with € > 0 and thus for all n large enough we have the upper bound exp(—ne). If
IIC| = |KCs] we have 0 as an upper bound.

(Additionally define h: Ku{k} — K, h(k) = k for k € K and h(k) = k for an arbitrary
ke and §: M — S, §(m) = § for m € M;.)

Consider RVs {K'}ses, {M!}ses and {K!}ss with Proaicr € P(Kgy(s) X Mygs) %
Ktys) and

P

K aar i xpy s (K k" y") = PRy (a", V) g (Rym|z™)1 -1 gy (y"m)

fa(s)

where for all (k,m,z",y") € K5 x Mz x X™ x Y™ it holds that

Fs(k,m|z") = PICJ%\LXS; (upe,ml") + PI%TILXg (T5le") \M§1||’C§|

gs(y",m) = gm(y").

Using the same argumentation as in the proof of Theorem 3.1 we can show that the
following properties hold for these RVs. (In order to show this we use the properties of
the sets Jz.) For all s € S it holds for all n large enough that
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SK generation from a compound PUF source

Pr(K’ # K') < exp(—nc)
H(K|M;) = log Ky (s)]
LI(MIA XY S T(Upoy A Xp(e)) — inf  I(Upgy A Ys) + 6.
(Mo A X3 < TUsg9) A X)) = _nl 0 TWUpg(s) A 15)
Now define (F) g) as follows. (For ¢ small enough such that the sets 77 s are disjoint
for all $ € S.)
F(k,mla™y =Y (>, Fi(ks,mlz™) + > Fg(kg,m|x")ﬁ)1M§(m)nTgN(x”)

8eS kseh (k) kseh7 ' (k)

1 n
A L Uses 78,027
which is equivalent to

Flhbmls") = 330 3% PRl (mmle™) + 35 PR, (unnle") gty
seSkzeh () ksehy (

QN c
P (T e

sl

P )]lMg(m)]lT}ng’(;(:Un) + %A HUses Tﬁxé,a)c(@"n)
and

9", m) = h(hgm)(gm(y"™)))

Now consider for s € S the mapping gs: M fals) = M, gs(m) = m. This mapping is
injective so we have I{M. A X™) = I(qs(M]}) n~ X™). Tt is clear that for all s € S

|Paxy = Proamyxgli < PE?;K(S) (@) [ Par,jxcp (l2™) = Pyyaryixn Cla™)
aneTh, °
fg()”
X 2
+2(n + 1)* exp(— nyps6")

= 2(n + 1)!*lexp(— nyis06°).

So for all n large enough we have

LI(Mg A X7) < LI(q(M) A XD) +e=2T(M, A XD) +€
I(Usp oy A Xpo) — inf  I(Up. o) AYs) 40
WUrsto) A Xgstor) = Gl o IUsso) A Ys) 0+ ¢
for all s € S. This implies

LI(My A X7) <maxI(Us A Xg) — inf I(Us A Yz) +0 +e

seS 5€Z(8)
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Chapter 3 — SK Generation with Constrained Privacy Leakage Rate

Moreover note that

(o) (92)) " ()7 = (g (il (0 (R)))
= (g (W y (R))° © (g (ks))*

with k; € hs(1 )( ). We have for all s € S that
Pr(K,# K= ). > > Py (2", y" F (k, m|z™) L (v m)
meM k kel (x™,y™)eX ™ x Yn
k#k

Z 2 Xf (S)Ys< ", y")

mEM k k)EK: x’lL7y7L
k:;e/%

S PR (el L (M) D (T (67 m)
%S kAehfl(k;) ¢

+ Z Z Xf (S)YS( " y")

meM g ke T"Y"
k;él%

-2 P (2" e g, ()L (") Ly iy (07 m)
€S ksehy ' (k)

+ Z Z Z P)C?;L(S)Ys 2", y")

meM ke ™Y
k#k

®
ZPUTX (F512") Lt () ey L7 (@) Loy (4™ m)
3€8
® 1
LD YD VD N § AR CRT N ir s U SN G R VA OF
meM g keic ™ yreX x Y™
k#k

We can rewrite the first summand as

Z 2 2 Z Xf (Q)Ys 2", y")

meMy o (s) k kel T"€TE, S ynEV"
k;éi{ fs(s)
PO Uk, m|Z™L 1 (Y™, m
Z Ufs(s)\xfs(s)( ks,m| ) g l(k)(y ;M)
kseh> 1( ) (k)

- Z Z Z P)C?;l (s)Ys ’yn)

kel T ¢Tp, s yreyn
kth Is()’

22 Z P?Tx (ukgm|2™) D @)Ly (5", )

368§ MEMs kgehy
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SK generation from a compound PUF source

where again we consider both summands separately. At first we have

PRI VD I S At

mEM;s(s) kkeK IHETPXfA(s) s YTEY”
Kk s
& n n
Z PUnA OIX 7o (Uksm|2 )]lg—l(lg)(y ,m)
ra@Xrg()
ks Eh; (5)( )

IIEDIEDINND DI s At

mEMys () KK kgeh ! (k) Y€V hekC: aEX™
NO)
k#k
&n

am
PUfg(s)‘st‘(S) (U m|2" )ﬂg_l(k) (", m)

Z Z 2 PI%Z(S) (uka7m)

merS(S) ke kgeh;sl(s)(k)
@n n
2 ) 2 PYs|Ufg(s)(y ko) g5 0152y -ty W)
YV fek: hh
) IS Pl%nm( kg,m)Px%T\lUfg@)((9%1(h&%)(h_l(k))))cmké’m)

meMi o (s) k€K kgen’ 1( (k)

XXX PR )Py, (o () k)

mEM o (s) KK ksen ! L)

PIEDID) Pz%’;(s)(%,m)exp(—nc)<exp(—nc).

meM . (s) k€K kgeh;;(s)(k)

N

N

/N
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Furthermore it holds that

Z Z Z Xf <S)Ys " y")

kel e ¢T5 s YneYyr
kth fg(s)

2 2 Z P, (ks U7 (@) Loy (y™m)

368 MEM s kgeh ' (k)

2 Z Z Xf (s)Y " y")

ke z™¢ TS 5 yneyn

Z XY Pl (k)i (6")

3eS MEM;s foeh T (k)

< Z P)C?;l(s) Z 2 Z U|X (Whemlz™) Ly (2")

Px .,
568 ks€s me M ?

< 2 P)C?;;(S)(mn)§(n+1)|X|exp(—nﬁ52),

where the first step follows as > ;-

k#k
step follows because the Tﬁxﬂ 5> 5 €S, are disjoint.

Ilgfl(,;)(y") < 1 for all k € K and the second to last

Now we consider the second summand, that is

2 Z Z Xf()Ys ’yn)

meM g Lerc =" y"

k#k
N P (ke L () T (@) (07 m)
eS8 ks ehy L(k)
meMy () kel " €TE, s yneV"
k;é/;: fS(S)
Z Pg)n 51X (Ukg m |2" )f\]l 71(1;)(yn7m)
L Ure) g0
ksehT (k)
n
+ Z 2 Z Xf (S)YS )y )
kel T ¢Tp, Ssyreyn
k#k Ts(®)
22 Z P, (W ml” )m]lT“Xﬁ(ﬂ?")ﬂg—l(;;)(ymm)‘

3eS MEM ;s kgeh (k)

Again we consider the summands separately. So starting with the first summand we
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have

PRV I S At

me/\/lfs( ) kaEZC x”eTPXf ) P yneymn
k#k s

@n ny_1 (aT

kAeh’l(fc)
< Xn n
MmEM s o (s) TMEXT k, eh; (k)
- 2 Z ngfi(s) (uké,m) < exp(—ne),
S

mEMfS.(s) kéehé_l(l;)
where the last step follows as described above. Furthermore it holds that

2 Z Z X, (S)Yg 7" y")

neyn
k,kezcif ¢TprA(S)’5 Y Y
Kk B

202 X P uml

se8 MEM k~eh_1(k)

2 Z 2 Xf (5>Y5 7" y")

kek x"%T” 5 yneymn
Xr 5(s)’

Z Z 2 PU |Xs (kg mlz" );%;|]1T£X S(xn)

3eS MEMs kgeh ' (k)

Wl LT RS ki, )

368 meMs koeh (k)

< Z P)(?:’;(s)(xn) < (n+ 1 exp(—n U 252)

]]'T ,5 ('rn)]]'g_l(ig)(yn7m)
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For the third summand we have

Z Z Z P)C?;l (S)YS( n,yn)

meM g kejc T yreX T x Y

k#k
&N
DL P
3€S

- Z 2 2 2 Xf IRACES

meM; (s) kkek " €TE, s ymEYn
S o Xrals)
k2k s

") L ag, (m )mﬂTﬁxé,é(mn)ﬂg—l(,@ (y",m)

&n c n 1 o
PUf~(S)|Xf$(S) (Tisle )|’C||Mf$.(s)| Lo-1y (0" )

- Z Z Z Xf (5)Ys " y")

k ek =" €Tp s yneyn
kth fg(é)

2 2 PO TR e L7, @ Ly (7 m)
seS meM; °

and again we consider both summands separately. At first we again have

Z Z Z Z X, IACHRD

mEM s < (s) k kel e €TP. SYnEY™
ki’;’ fs(s)
Xn c n 1 1 N n m
Use)1Xsg(s )(jfs (s) | )“CHMfA( )l g_l(k)(y ,m)
n
S IED YD WY APRACET D
mer . (s) kEK x"eT s YrEY™
3(5)’
P®n c 2" 1
Uf3(5)|XfS(s)(jf$(5)| )IICIIMfS(s)I

which we upper bound by

Z Z Z Z Xf ()Ys ,yn)P®”

c n 1
Ur ol o (s 12 et
fa(s)I 2 fs(s) S fg(s)
me./\/lf (s) KEK zeX™ yne)™

PR (Tiy) < (0 ) exp(—m).
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Additionally it holds that

Z Z 2 Xf (S)Ys "yt

kykelC 2" €T, s Yyneyn

kth fa(s)’
® ~
Z Z Prlix, (J5]" )|ICHM| Thy, 5($n)1g—1(k)(yn,m)
58 MEM;
Z 2 Z Xf (S)YQ 7yn)
kekC ZB"¢T" P yneyn
Frgte
& 1
Z Z PUT\LX jg|xn)|’CHM§|ﬂTlgxﬁ,5 (")
38§ MEM; s
— X
= 2 PXJZ*(S) (1‘”) U |X (jc )ﬂTgxgaé (:L'n)
a7, PXf " 35S
S S

and as the 'T]?XA 5) SE S, are disjoint we can upper bound this expression by

2 P)C?;;(s)(x") < (n+ 1)1 exp(—ngi507).

x"ETE
X
fS

For the fourth summand we have

DIEDID VN AR AC VDL v L I SIS C ORI A0

mEM [ kekc T yreX T x Y
k#k

&) 1
<2 X PR @) LU T, (@)

meM kek x™ yreXn xYn
_ ®n n n @n c
= 2 PXf ()($ )]l(UgeSTlgxg,g)c(x ) < PX (s)«T]ngS(s)v‘;) )

TmEX™

< (n+ 1)1 exp(—nyi502).

So for n large enough we upper bounded all four summands by exp(—nd) for a d > 0
and thus the sum by exp(—nb) for a b > 0. Thus we have

sup Pr(K, # K,) < exp(—nb),
s€S
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because exp(—nb) is an upper bound. Now consider

Pr(K, =k, My =m) =Y > PE (", y")F (k,m|z") 1, 5 (y" m)
I;; xn yn
=2 PR Y PR (umla™ + Y PR (k2™
z" 8eS kseh (k) kseh; ' (k)
A (j5|x")m)ﬂ%(m)]l’fﬁxé,a(x”)+| A MUses T, (7))
= 2 PEEM Y, D PRk (hmlr)lu (m) Ly (27)
anexn 3eS ksehI1 (k) °
+ Y P P (kg ml2™) piy L, (m ”TPX L@
zhEX™ seS kseh; ' (k)
® &
+ >, PR ZPUTX (T£12"™) ey vt (m m)lry (")
TxheXm €S s
®
+ 2, PR wrx LUues 7ty o077
:l-neX’n
and
Pr(Ms; =m)
=P Y PR (ugmle™) + Y Pl (kg mle™)
keKC 8eS kseh (k) kseh7 ' (k)
+ PR, (TS e s () () + et LU, 75,0 (7))

=2, ), PR

ke xneX ™

+ > P

TneX™

+ > PYa”

TneX™

+ > P¥Mx

TmeX™

Consider permutations {7y, }x.ex, on [n] (and we denote by 7y, the corresponding per-
mutation on e.g. X™). As W,;él(/l’”) =X

&Xn
PU | X3

)2

3€8 ksehy

2

(kg 2" L (m) D7 (2™)
(k) ’

)Y Y PO (ke L ()17 (")
€S kseh ' (k) °

) 25 P, (Tl g L, (m) 17 (™)

By

ML Uies 78,00 (@"):

™ it holds that

Z PR (") Z Z PU X (“ks,mmn)ﬂ/\/@(m)lﬂ;‘xﬂ& (")
anexn 3€8 kseh; ! (k) s
= X 2 PR NP (el L (M) (")
ksehy ! (k) arem, ! (X™) €8 °
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Given the product structure of P)C?f and Pg)TX (and as HTgxéﬁ(xn) is invariant to per-
mutations of ™) this expression equals

Z 2 PE™ (s, ( Z U, (s (g m ) | (27)) T (m) D (e, (27))
kseh ! (k) amem, H(xm) se$ °
= 2 PR Y, Y PR (ke (wng ) [E) Lt (m m)Lyy (@),

TEA™ €8 kseh ' (k)

According to our construction there is a P € P(n,U) such that wuy,,, € T2 for all
ks € Ks. So for all £ € K we can choose the permutations {ﬂ'kg}kAehA—l(l‘c) such that

{7k, (uksm)}k eh\ (k) = {ngm}k eh. (k) for an arbitrary k € K. Thus it holds that

2 2 PRGN 2 Pk, (ke s ()17 (")

keK zrexm seS kseh, ' (k)
= Ikl Y PR Y Y PO (e g, (m) iy (27)
anexn s€8 kseh (k) °

for an arbitrary k € K. So we have

Pr(Ks—k,M,—
Pr(K, = k|M; =m) = W - ﬁ

which means H(K;|M;) = log|K| for all s € S and accordingly

inf H (K| M) = log|K]|.
seS

So we showed that

Rgolr(npg{ L}J {(R>L)10<R<I;a€gaselg(fs)l(U A Ys),
Us}ses

L >maxI(U; A Xg) — inf I(U; AY5)}
3e8 S€ZL(3)
U ﬂ Ré(Us)
{Us}ies 3eS
where we define

Rs(Us) = {(R,L): 0< R < inf IU; AY,), L= I(Us A X5) — inf I(Us A Y3)}.
S€E S SE S

It holds that

U Nrwa=U U ([ Rl R (Us)).

{Us}ses 38 Usy {Usses sy seS\{sl}
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Now we apply the distributive law two times, so
U U ( ﬂ Rs(Us) N Rs, (Us,))

Usi {Uskses\gsyy  5€S\{81}

“U(C U N R nRaws)

Us {U§}ge$\{§1} §€$\{§1}

= ( U ﬂ Rs(Us)) n (URgl(Ugl))-

{Uﬁ}geé\{él} 3eS\{51}

If we repeat these steps for all § € S we arrive at
U MR = URs(Us).
{Us}ses 3e8 3e8 Us m
Now consider the converse.

Theorem 3.4. It holds that

comp,PL . . .
R e Q EJ«R, L):0< R< inf 1(Us AYS),
S€ 3

L>IU; A X;) — irzl(f'A)I(Ug A Y}
SE S

where for all § € S the union is taken over all RVs U; with Us — X5 — Y for all s € Z(3).

Proof. Using the same steps as in the proof of Theorem 3.2 we can show that for § > 0
and RVs {Us}ses with Ug = QU g, where U, ; = K M;X~! and Q uniformly distributed
on [n] and independent of {X]'Y'U!}ses, it holds that

PUSXS,QYs,Q (((L u)? Zz, y) = PQ(q)PUS,q|Xs,q (u|x)PX5YS (x’ y)
for all s€ S,
Llog |K| < I(U, A Yag) +4
and
TI(My A XT) 2 I(Us A Xs) = 1(Us A Yag) = 0.
It holds that

PUsXs,Q((Q7 ’U,), fI,') = PQ(q)PUSVquyq (U, I’)
= PKSMSX;?’lXS,q (u,2)Pg(q) = PKSMSX;?’lXS,q ((k,m, xqfl), x)Pg(q)
=Polg) > PR (@ map )Pk, ml(a® "z, 2l,,)),

. T X
Ty EXT Y
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which only depends on s via fg(s). (We introduce u = (k,m,29 ') above to access
the components of u.) Correspondingly we can consider the RVs {Us}. s and define for

s # fg(s)

PYs,Q|Uf3(s)Xf$(s),Q =Py ol.Xq

Then it holds that PUfS(s)XfS(s),QYS,Q = PUSXS,QYS,Q for all s € S and Ufs(s) — st(s),Q —
Y 0. Additionally we have for all s € S

%log |/C| < I(Ufg(s) A Ys,Q) + 0

and
sup LI(Mg A X™) 2 I(Us. sy A X )= I(Ut. sy A Ys) — 6.
Seg n s s) = f4(s) f5(8),Q fs(s) 5,Q
So
1 .
~log|K| < éIelg I(Ufs(s) AYs0)+9
= inf I(Us AYsq)+d=min inf I(U; AY;0)+0
(5,8)e8%S: 38 s€J(8)
s=fg(s)
and

SU}SZ‘) %I(Ms A X?) = SugI(UfS(s) A stz(s),Q) — I(Ufg(s) A Y;,Q) — 0
s€ o
=max [(Us A Xgq) — inf I(Us A Ysq) — 6.
5e8 s€J(3)

This implies

R’ < | [ R:(U:) = ﬂURg(Ug)-

{Us}ses 38 58 Us m

3.3 SK generation from a jammed PUF source

In information theoretic security a very basic channel model is the wiretap channel
introduced in [49]. In this scenario we assume that additionally to a legitimate receiver
there is an eavesdropper. A sender wants to send a message reliably to the legitimate
receiver. The eavesdropper gets the messages from the sender via a channel different
from the channel to the legitimate receiver. Nevertheless the eavesdropper should not
be able to decode the message correctly from his received signal. One problem of this
model is that we assume perfect knowledge of the channel to the eavesdropper, which
obviously is an unrealistic assumption. We can improve the model by considering channel
uncertainty [44]. Accordingly in [16, 35] the authors consider the compound wiretap
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channel to account for the channel uncertainty. This means we assume that the channels
the model comprises are not known perfectly. Instead, for each channel we know a set
of channels the actual channel belongs to. This channel is used for the whole duration
of transmission which means for all channel uses. In [15,39] the authors consider the
arbitrarily varying wiretap channel. This is a different way to model channel uncertainty.
Again we do not know the channels in the model but a set of channels to the legitimate
receiver and the eavesdropper respectively. For each channel use the actual channels are
elements of the corresponding sets. So the channels do not necessarily remain constant
during the whole duration of transmission. These models also allow for modeling an
active attacker who jams the communication.

The standard scenario for SK generation from a PUF source described in Section 3.1
is very restrictive as it only allows for passive attacks where an eavesdropper who is
interested in K gets to know M. If we want to model more powerful attackers we have
to expand the standard scenario by considering active attacks. After the first phase
the active attacker could try to manipulate the statistics of the PUF source. We call
such an active attacker a jammer. In general, incorporating a jammer in models for
information theoretic security is natural, as active attacks fit the scenarios considered
in this context. As discussed for the wiretap channel, a compound model can be used
to model an active attacker. So a compound PUF source can be interpreted as a PUF
source that is jammed by an active attacker. It is discussed in [43, Chapter 13] that such
a scenario, where an active attacker jams the PUF source is relevant from a practical
point of view. An active attacker could for example use electromagnetic waves to jam
the PUF. As mentioned in [43, Chapter 13] the active attacker could also tamper with
the environmental parameters like temperature to influence the PUF.

So now we look at SK generation from a PUF source where we want to incorporate
an active attacker in the model. In our model we allow for very general active attacks.
They are more powerful than the jamming attacks modeled by a compound PUF source
as we will see later.

From a practical and especially from a cryptanalytic point of view we should assume
that the jammer knows the encoder F' and the decoder g, i.e. the algorithm for generating
K, M and K. We denote the set of all possible encoding and decoding algorithms by F
and G. Then all functions

At FxG—-8§"

are possible jamming strategies, where A € Mapp(F x G,S™). This scenario is depicted
in Figure 3.3. (There is an additional eavesdropper interested in K with access to M.)

The most powerful jamming attack results from a jammer choosing s while additio-
nally knowing M. Then all functions

B:FxGgxM-—->S8"

are possible jamming strategies, where B € Mapp(F x G x M,S8"). This scenario is
depicted in Figure 3.4. (Again there is an additional eavesdropper interested in K with
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I Kk Eavesdropper I i

o
Encoder F > Decoder ¢

Txn Jammer tyn

‘s” = A(F, T)
PUF Source

Figure 3.3: SK generation process under jamming attacks where the jammer knows F'

and g.
I K Eavesdropper I i
|
Encoder F ‘ > Decoder ¢
Txn Jammer T Vg

‘s” = B(F,T,M)
PUF Source

Figure 3.4: SK generation process under jamming attacks where the jammer knows M,
F and g.

access to M.)

We will see that (in our model) the knowledge of the jammer has a substantial influence
on his potential of preventing a successful SK generation. It turns out that when the
jammer knows M in some cases no successful SK generation is possible at all. This is
the case when the PUF source has a property that is strongly connected to the property
of symmetrizability of AVCs.

Similarly to the model of a compound PUF source we could interpret our model of
a jammed PUF source as a model for source uncertainty. This directly makes sense for
the case where the jammer does not know M. For the case where the jammer knows M
we can still interpret the model as a model for source uncertainty but now the publicly
transmitted helper message influences the environment and simultaneously the PUF
source. So our models are not restricted to the case where a jammer is present.

For the model for SK generation from a jammed PUF source we consider the RVs
X and {Ys}ses with Pxy,(x,y) = Px(x)Ws(y|z) for all (z,y) € X x ), Px € P(X),
Ws e P(Y|X) for all s € S, i.e. {Ws}ses corresponds to an AVC. Consider the random
vectors X™ and Yk with

Pr(X"YR) = (a",y")) = PY" (") Wer (y"|2")

65



Chapter 3 — SK Generation with Constrained Privacy Leakage Rate

for all (z",y") € X" x Y™ and s" € 8", where Wyn = Q)" W, for s" € S". X™ and
Y% represent the source output observed at terminal X and terminal ) respectively
when the actual source statistics are determined by s” € S™. Correspondingly the RVs
(K, M) model the SK and the helper message and Kon represents the reconstruction
of the SK. Again we consider a randomized encoder F' € P(K x M|X™) and a decoder
g: V" x M — K. In the context of SK generation from a jammed PUF source we call
(F, g) a SK generation protocol. The RVs K and M are generated from X™ using F' and
the RVs Kyn are generated from Y]: and M using g for all s € S™.

s

Thus we get the joint distributions of the RVs KM Kgn

Pipic, (Remk) = Y0 PR Wan (y"|a") F (k,m|2") L1 gy (4", m)
In7yne/\gn xyn

for all (k,m, k) e K x M x K and s™ € S™.

Again we want to specify properties that the SK generation protocols should have.
The SK should be reconstructed correctly with high probability in spite of the possible
jamming attacks. Again we want to construct protocols that achieve perfect secrecy and
uniform distribution of the SK.

This motivates the following definitions of achievability for the source model.

Definition 3.3. We call the tuple (R, L), R,L > 0, an achievable SK versus privacy
leakage rate pair for the source model if for all § > 0 there is an ng = no(d) such that
for all n = ng there is a SK generation protocol such that

min P(K = Kn)=1-90 (3.5)
smeS™

H(K) = log|K],

I(MAK)=0

Llog|K| = R -,
LI(M AX") <L+

We call the set of all rate pairs that are achievable using such SK generation protocols
the capacity region Ry, .

Definition 3.4. We call the tuple (R, L), R,L > 0, an achievable SK versus privacy
leakage rate pair for the source model when the jammer knows the helper message if
for all 6 > 0 there is an ny = ng(d) such that for all n > ng there is a SK generation
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protocol such that

> Pu(m) min P(K = Ke|[M =m) >1-6 (3.6)
snesSn

memM

H(K) = log K|

I(M AK)=0

%lOg|K"| ; R_67

LI(M AX")<L+0.

We call the set of all rate pairs that are achievable using such SK generation protocols
the capacity region R ayc.

We have two definitions of achievability, one for the case where the jammer does not
know M, that is Definition 3.3, and one for the case where the jammer has access to M,
that is Definition 3.4.

Note that in Definition 3.3 the mapping A does not appear explicitly. It is clear that
the reconstructed SK depends on the jamming strategy that is used for the correspon-
ding SK generation protocol (F,g), i.e. K = K(A(F,g)). Thus in the definition of
achievability one could expect that (3.5) is replaced by

min Pr(K = K(A(F,g)) =1—26.

But this is equivalent to (3.5). Correspondingly in Definition 3.4 the mapping B does not
appear explicitly. Here we have K = K(B(F,g,-)) and in the definition of achievability
one could expect that (3.6) is replaced by

min Pr(K = K(B(F,g,"))) > 1-5,

which is equivalent to (3.6).
We are interested in characterizing R 4y ¢ and RlAVC' It is clear that

Rave € Rayve- (3.9)

Given a jammed PUF source described by RVs X and {Y;}ses as described above we
define R as the set

JUR.L): R < min I(Py, W)
7 Wew

LZI(PX7PU|X)_ Emfl I(PUaW)}a
Wew

where the union is over all RVs U such that

Puxy, (u,z,y) = Wi(ylz) Py x (u|lz) Px (z)
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for all (u,z,y) €U x X x Y, Pyjx € PU|X) and all s € S and W = conv({Py, |/ }ses)-

In this work we will prove two central results.

Theorem 3.5. It holds that R’y = R.

In the scenario corresponding to Theorem 3.5 the jammer can freely choose the state
of the system s™ € 8", but he has no knowledge about the helper message. As discussed
the jammer knows the protocol, i.e. the encoding and decoding algorithm F' and g,
because they are assumed to be standardized in our application scenario of a public
communication system.

When analyzing R we see that the presence of the jammer, who is able to suitably
choose the system state, has an influence on the capacity region R'yy .

R is a single letter characterization of the capacity region R’y ~ which in principle
can be computed and analyzed easily. It is interesting that it is not clear if there is such
a single letter characterization of the capacity of the compound wiretap channel or the
arbitrarily varying wiretap channel [16,39,48].

Remark 3.6. As mentioned before, in [32,33] the authors consider protocols with wea-
ker secrecy requirements. For example in [32] they replace (3.7) and (3.8) by

log || — H(K) < 6, I(M A K) <.

1
n
We will see that one might show that weakening our secrecy requirements in such a way
does not increase the corresponding capacity region. So in this sense we do not pay a
prize for requiring perfect secrecy and a uniform distribution of the secret key instead
of the weaker requirements.

Now we consider the case where the jammer knows the helper message.

Theorem 3.7. If the AVC corresponding to {Ws}ses is symmetrizable then Rayc =
{(R,L): R<0,L>0}. If the AVC is not symmetrizable then Rayc = R.

Thus we get the following corollary.

Corollary 3.8. It holds that Rayvc = Ry if and only if the AVC corresponding to
{Ws}ses is not symmetrizable.

Theorem 3.5, 3.7 and Corollary 3.8 show the influence of the presence of a jammer
with knowledge of the helper message compared to a jammer without this knowledge.
We remember that the jammer is absolutely adversarial, i.e. he tries to make SK genera-
tion impossible. If the jammer knows the helper message, he can succeed if the channel
corresponding to the PUF source is symmetrizable. This means if the corresponding
channel is symmetrizable there is a denial of service attack for each possible SK gene-
ration protocol (F,g). We will explicitly prove the existence of such denial of service
attacks. If the channel is not symmetrizable the jammer has no additional benefit from
knowing the helper message, because in this case it holds that Rayvc = Rlyy o

For our considerations we also need the following result which can for example be
found in [41].
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Lemma 3.9 ([41]). Consider the RV X"Y". If Pxn = X);_, Px, then I(X™ AY") >
i H(Xi A YG).

For the construction of the SK generation protocol that we use in the achievability
proof, we use the following observation which can also be found in [39].

Lemma 3.10 ([39]). Consider the AVC corresponding to {Ws}ses, Ws € P(Y|X) for
all s € §, which we suppose is not symmetrizable and the AVC corresponding to {Vs}ses,
Vs € P(V|U) for all s € S. Let m € N. The AVC corresponding to {Vym—1 Q@ Wy, }smesmis
not symmetrizable as well.

Proof. Assume {Vin-1 @ Wy, }smesm is symmetrizable. Then there exists a stochastic
matrix U € P(S™U™ 1 x X) such that for all y™, u™ 1 2, u™ 1V 2!

2 Ve (" T YW (il ) U (™ ™ )

sm

= 2 Vet (" T W, (Y )U (™ ™~ ).

sm

m—1

Taking the sum over all y on both sides we get

Z Wi, (ym|$;n)0(3m|umilxm)

= Z Wy (Ym2m)U (8 |u™ )

Sm

for all 9, m, !, (and an arbitrary choice of «™~1) where U € P(S|U™! x X) such
that

U(sm|u™ ', z) = 2 U(s™ 1, splu™ 1, 2).

sm—1

This contradicts the assumption that the AVC corresponding to {W;}ses is not symme-
trizable.
]

The following theorem is one of our main achievability results. This theorem is equi-
valent to the achievability part of Theorem 3.7.

Theorem 3.11. If the AVC corresponding to {Ws}ses is non symmetrizable it holds
that Rave 2 R.

For the proof we use a technique similar to the one that is used for the direct proof of
[5, Proposition 1a)]. For this proof the set, the first output of the source is distributed
on, is exhausted by subsequently choosing channel codes with codewords from this set.
For our achievability proof we use the first output of the source to generate a sequence
from a set ™. We use the technique discussed above to exhaust ™. As we use a
randomized encoder we use blocking to guarantee that the corresponding channel is non
symmetrizable, cf. Lemma 3.10.
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Proof. Let 7 > 0. (We can assume mingey Px(x) = 8 > 0. If this is not the case we
construct our protocol for the support of Px. This protocol has the desired performance
as entropy only depends on the support of the corresponding distributions.) Choose the
RV U (where we again can assume min,egy Py(u) = S > 0) such that U — X — Y for all
s € S. Choose | € N large enough such that €1 (1) and €4(1) are both less than §/2 (where
the functions €1, e4: N — R will be determined later). For all ¢ large enough, construct
constant composition (£, €)-codes {(fI™, &7V ment, [ K — U x X)E, ¢t Yt
IC, for the AVC corresponding to {®i;i P}/Si|U®PYSl|X}SleSl with ftm’l(IC) N tml’l(lC) =
for all m,m’ € M, m # m’ and

K| = lexp(t( min I(PF' @ Px,W') —1))|
Wiewt
for Wl = COHV({@El% PYsi|U ® PYSZ\X}SIESZ)'
For this purpose choose these codes iteratively for each P € P(t,U'~! x X) with

|P—PF @ Px|i <6

ﬁ > 6 >0, < Bl (Note that M1 gt x X P(?l_l ® Px(u!=t 2) = B > 0.)
Start by choosing A, < T}, mi € M, with

_ exp(—tD(P| P@'~'@Px))
(PF' 1 @ Px)® (Am,) > =5 i

Now choose (fi™, 7"} such that f"*'(K) © Ap,,. This is possible for & small enough,
as follows from Lemma 3.10 and Lemma 2.29. Now choose A, < TE\f, LK), my € M,
such that

nexp(—tD(P| P& '®Px))
(1)l x x|

(PF'® Px)® (Amy) >

and choose (f; 7l 7¢m2’ ) such that fth’l(/C) C Ap,. In the m;-th step choose A, <
Tt\Ujeu -1} fmj’ (), m; € M, such that

_ exp(—tD(P|P2'~'@Px))
(P ® Px)®(Am,) > 155 i

and choose (fI™', ¢!} such that f" (k) < Ap,.

When we can not find a set Ap,,, < 75\ mj’l(lC), mi+1 € M, with

je{l- %}
nexp(—tD(P| P2~ '®Px))

(Pg)lfl ® PX)®t(~Ami+1) > (t+1)\“l*1XX|

anymore, we continue with the next type.
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We repeat the procedure for all types P € P(t,U'~! x X) such that
HP — Pgblil ®PXH1 <.

We denote the set of indices m € M corresponding to type ]? by Mp,ie. M =Jp Mp,
where the union is over all P € P(t,U!" x X) such that [P — P! ® Px|; < 4.

So we have

(P o PoB(( | £ 00))
meM

= (PP @ Px)® (T

C
PE oy 3/t x 1))

+ (PE T @ P (Thoragpy syui ) UM 1K)
me

where the first summand can be upper bounded by £ > 0 arbitrarily small for ¢ large
enough. We also have

Tretgpy o1 UM 1) € ( U 7’5)\ U #K)

U _
PeP(tU'=1xX): meM
|P—P2'"'®@Px|1<6

U (U ).
PeP(t U~ xX): meMp
| P-P§' ' ®@Px|1<6

So the second summand can be upper bounded by

Y EE e | AM0)
PeP(tU' =1 xX): meMp
|P—PF' ' ®Px|1<6

nexp(—tD(P| P2 "' ®Px))
< Z (t+1)U' x| <7
PeP(tU' =1 xX):
|P—PE' " ®Px|1<5
and thus altogether we have
_ J
(P @ P)® (| A0 <€+ (3.10)
meM
Define vy, : Xt <yt — U x X)) vm(aztl,utl) = ul_lxlu?hlxgl---ufi:ll)lﬂxtl.

Consider the independent RV Z; uniformly distributed on K and the mappings fu: Xt x
UM x Z) > K x M and ¢y: Y x M — K

() e uh))om) v (@, u't) € f(K)

(z1,m) else

thl(xtlv utlv 21) = {
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Su(y",m) = o7 (y")

for all m € M and an arbitrary m € M. Note that fy(z®, u, 21) is well defined as
the f;" ! are injective. (Above we introduce the following notation. Given a sequence
z" € X" and 1 < i < j < n we write 2 for the subsequence z;, -, x;.)

Consider the RV U™ with

Pr(U"X"Yj = (u", 2", y")) = PE"(x") PE (u"|a") War (5" |2")

for all (u", 2™, y™) e U™ x X™ x Y™ and all s™ € §™. We define

F(k,m|z") = Pr(fin (o' UM, 20) = (k. m))
9(y" m) = ény, (411}, m)

for all (k,m, 2", y") € K x M x X" x Y™ and we have n = | 7]l +7 withr e N, 0 < r <.

We now analyse the performance of this SK generation protocol. For notational con-
venience we define

_ U i
Vi = v (XL URED.

We have
Pr(K = k|M =m)
— _ _ m,l m,l _
= Pr(K = k|M =m, V[?J,l € f[%J(’C))Pr(V[%J,z € f[%J(IC)|M =m)

m,l m,l _ _
T Pr(K = MM = m,Vin) ¢ fla (K)Pr(Vn), ¢ flz) (M = m) = -

For the last step consider

Pr(K = kM =m,Vin,, € f71(K))
L7) 7]

_ _ m,l
= Pr(K = K|Vjn € fl2)(K)
i m7l 71

_ pm,l AV on
Pr(VL%JJ_f[%J(k) VLTJ,lef

. n m,l

|
1
L J(/C))

3

Pr(Vn ef™iK
r( Ly fl%( )

n
Pr(Vin, =115 () (PRI @P) T L ()
' l l

- L
Pr(‘/lﬂj lefm’l(IC)) = = Kp (3.11)
l )

Pr(Va ef 5 (K)
171 LT 1T
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where the last step follows as the type me,z(k) is the same for all k € IC,
L7

m,l _ _

for m # m and

_ m,l _
We have for all m e M

min Pr(K = K |M = m)

smesS™

> PY(V[%U ( )M =m) mlél Pr(K = Ko|M = m, ‘/[n € fml( K)).
k) e n

This equals

m,l .

. _ N m,l
- min, ke’CPr(K = k[M =m,Vn € f[%J(’C))

Pr(K = Kg|M =m, K = k,Vanlefm’l( )

m,l
:Pr(Vl%J,lefll (K)|M = m) min \IC\ Z Wgn—r(

sedn “H(k )Ifm’( k),  (3.12)

where we use (3.11) and the definition of the SK generation protocol. So

ZPM( min Pr(K = K |M = m)

meM S"ES"
> 2, Pr(Vig) € 4w (), M = m) min 7 ), Woer (017 (013 (1)
ey ¥ T 171 s"ES

ke
> Pr(Vny € (K Sgnegln‘,QZWw o) ()If"”( k)
meM ke

> (1 —-e)Pr(Vin,, € U fml
S (-O-t—n) o1
for n large enough, where we use (3.12), (2.27) and (3.10).
We have

lT1og|/C| mln I(P®l lo Py, WhH — 7 —
l

—
N\S‘H
=

for n large enough. Consider W' € W! corresponding to Pg: € P(S') with marginals Pg, €
P(S), i € {1- T

--1}. Define W; € P(YU) such that W;(ylu) = X5 Ps,(s) Py, (y[u),
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i€{l---1—1}, and W; € P(Y|X) such that Wi(ylz) = 3 o5 Ps,(s)Py, x(ylz) for all
(x,y,u) € X x Y xU. As according to Lemma 3.9

l

1
(PR~ @ Py, WY = N I(Py, W;) + I(Px, W)

7

1

we have

-1
min I(P?l_1 ® Px, W' > min
Wiew!

min I(Py,W;) + 1(Px, W)
Whtew i1

Wew Wew,

where W = conv({ Py, |v}ses) and W, = conv({Ws}ses). So

~|—=

min (P~ @ Px,W') = 5L min I(Py, W)
Wiew! Wew

Wew

for 7 > 0 (where 7 depends on [ such that 7(I) — 0 for [ — o). So we have

g |K| = [%Jlm log || = Hlléﬂuﬁlog K]
l
> —L—(min I(Py,W) -7 -7 - % 7
1+-7; Wew

7

3

) = min I(Py, W) — e (1) — e2(l,n)
Wew

for €1(1), e2(l,n) > 0 and €1(I) — 0 for | — oo and €3(l,n) — 0 for n — oo for all [ € N.

Note that

H(U" M) = H(U" X\ Xo1 - X ny[M) = H(X\ Xog -+ Xyn | MU")
> H(Vjn |M) — log | X|7.

Now we consider

meM meM !
Pr(M =m|Vin,, € U f@’j(lC))H(Vl%MM —m,1
meM

Unen fl’”ﬂ’j(m(VL%J,z) =1)
l
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As fﬁ’l is injective we have
1

|

HWVin M =m1, fﬁ@j(ic)(vl?“) -
l

It follows that

H(U"|M) > log |K[Pr(Vay, € | f["é’f(/C)) — log | X%
meM
> (1— € — ) log K| — log |2 (3.13)

and (for an arbitrary s" € S")
H(U™) — H(M|X™) — I({U" A X") = H{U"X") — H(M|X")
U'M|X"™) — HM|X")
UMMX")=HU"|MX"Y])
Vo MY +log Ul ([%] +1)
log [U](% + 1) + es, (3.14)

N

where €3 > 0 arbitrarily small for n large enough which follows from H(M|U"X™) = 0
[26, Problem 3.1}, U" M — X" —Y % which implies U" — M X™ —Y; and Fano’s inequality
[26, Lemma 3.8] in combination with

n,, = Ml 3 = n Ml 4 =
Pr(Vin, fﬁJ(g(Ys,M>>>/pr(v[lj,lemEJMfl%(lc)Ag(n,M> K)

which can be lower bounded by

Pr(Vin e | Ful(K) +Pr(g(Yeh, M) = K) = 1> 1-2{ -2 —e
Lk meM 171

for n large enough.

Thus we get
I(MAX"Y=1I(MAU") —H(M|X")+ H(M|U™)
HU™) - HU"|M) - H(M|X"™) +log |X|(} +1)

<
<nI(U A X) = (1= € —n)log K] + e + log |X% x U|(3 +1),

75



Chapter 3 — SK Generation with Constrained Privacy Leakage Rate

where we use

H(M|U"™)
= H(M|Un(XlaX2l7 e 7X|_%Jl))

+ H(XlaX2l7 T 7X|_%J1|Un) - H(leXQZa e )XL%JZ|UTLM)
< log |X|7

together with [26, Problem 3.1] and (3.13) and (3.14) for the last inequality.
So

LI(M A X™) < I(Px, Pyjx) — min I(Py, W) + es(l) + €5(1,n),
Wwew

for e4(1),e5(l,n) > 0 and e4(l) — 0 for [ — o0 and e5(l,n) — 0 for n — oo for all [ € N.
u

Our second achievability result is the following theorem. This theorem is equivalent
to the achievability part of Theorem 3.5.

Theorem 3.12. It holds that Ry~ D R.

For the proof we use the Ahlswede robustification that is for example applied in [3].
This means we can use a result for compound sources to prove our result.

Proof. Given § > 0 there is an ng € N and a ¢ > 0 such that for alln > ng and (R, L) e R
we can find (F,, g.), where F, € P(K. x M.|X™) and g.: Y™ x M. — K, such that for
RVs K. and M, with

PKcMc(k7 m) = Z Pgn(xn)FC(k7 m|xn)

zneX™

for all (k,m) e K. x M, it holds that

max 2 2 Z P)C?"(x")W@)"(yﬂx”)Fc(k,m|x")]lg;1(f€)(y",m) < exp(—nc)
conv({Wi}ses) & V" k,]AcA meMe
k#k
H(K.) = log |’Cc|
I(K. A M) =0
Llog|Ke| > R—6

LI(M. A X") < L+56,

as follows from Theorem 3.3.
We now define {(F™, ¢")}rem,, F™ € P(Ke x M |X™) and g": V" x M, — V" for all
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e II,, by
F™(k,m|z") = F.(k,m|rx")
9" (y",m) = ge(my", m)

for all (z",y" k,m) € X" x Y™ x K. x M., where I, is the set of all permutations on
{1---n}. (With a slight abuse of notation we write 72" for z,-1(1y -+ T;-1(,) so in this
sense 7 induces a bijection on X™.)

Now we define h: 8™ — [0, 1]

h(s") = Z Z P®” Wen (y"|2™) c(/{:,m|x")]lgc—1(k)(y",m).
z"eX™ kek.
yneyn mEMc

For all P € P(S) we have

D h(s")PE(s™)

snesn
D1 PEs) DT Y PRI Wan (Y a") Felk, mla™) 11 g (y", m)
snesSn z"eX™ kek.

yreY" meMe.

which equals

Yoo PEan) Y T IWawiled P(si) ok, mla™) Ty sy (57" m)

z"eX" kek. smeS" i=1
y"eY™ meM.

D >, PRME T D0 Welyilz) P(s)Felk, m|z™) Lo (6" m).

z"eX™ ke, i=1 seS
y"eY"™ meM.

So for W such that W(y|z) = X ,.s Ws(y|z)P(s) for all (z,y) € X x Y (ie. W €
conv({Ws}ses)) we have

D1 RPN = Y DL PR WE Ny ") Fulk, mla™) 11 g (4" m).
smeSn z"eX™ ke,
yreyn meMc

From our choice of (F¢, g.) we thus know that

2 h(s™)P®"(s") > 1 — exp(—nc).

smeS™

Using [3, Theorem RT] we get

% 2 h(ms") > 1 —exp(—nc)(n + 1)|‘5|. (3.15)

well,
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Now we consider for = € I,

h(ws™) = Z Z P®" "YWsn (Y™ 2™) c(k,m|x”)]lg;1(k)(y”,m).
z"eX" kel
Yy eV meM.

This equals

Z Z HPX 71'(1 Sz(yﬂ'(l |$ z)) C(k7m|$n)lg;1(k)(ynvm)'

z"eX™ keK. i=1
y"eYV™ meM.

As 7 is a bijection and we take the sum over all (2", y™) this equals

Z Z HPX )W, (yi|zs) C(k:,m|7m”)]19;1(k)(7ryn,m)

z"eX™ keK. i=1
y"eY™ meM.

= D1 D PRI Wan(y ") FT (kymla") Ligry1 (4", m)-
zneX™ kel
yreY™ meM.
So considering (3.15) we conclude that the SK generation protocol (F,g), F € P(K. x
(M, x II,)|X™) and g: Y™ x (M. x II,,) — K., achieves an arbitrarily small error
probability for n large enough when used to generate a SK from {Pxy,}ses, where for
all (z™, y" k,m,m) € X" x Y™ x Ko x M, x 11,

F(k, (m,m)|z") = %F”(k,mm")
g(yn’ (mv 7T)) = gﬂ-(yn7m)'

Correspondingly we define K = K, and M = M, x II,,. It holds for (k,m,7) € K x M
that

Prcur(ky (m,m) = 37 PE"(@")F(k, (m, 7)[2")
zneX™
S5 A
TheEX™
= Z PO (2™ F.(k, m|mz™)
zneXn
=0 D, PEUa™F(k,mla") = 4 P, (k,m). (3.16)

zneX™

So we have

Prejpr(klm, m) = zkffﬁfi((m@)w» = Py (kIm) = 5
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which is equivalent to I(K A M) =0 and H(K) = log |K|. Finally consider

PMXn( Z P®Tl n (’I’)’L,7T)|$n)
ke
= > PO @) FT (k,m|a")
ke
= D mPE (") Fu(k, m|ma"). (3.17)
ke

It holds that

IMAXY) = 33 Puxe((m,m),a") log praelinma),
(m,m)eM zmeX™

Using (3.16) and (3.17) we see that this expression equals

>0 D Puxn((m,w),a") logw
(m,T)eM zreX™

= Y ) Pue((mm),m ") log e ellmle)
(m,m)eM zneX™ -

where we make use of the summation over all " € X". Again using (3.17) this equals

SN S AP g Felk, mla") log Pen (i)

(m,m)eM zneX™ keK

ns n n Py xn{m|z™
= Y S APk, mle )10g1”1‘3f487((m)|)

(m,m)eEM z"eX™ keK

® Paoxn(m]z™)
2 2 ZP "(x™) Fe(k, m|a™ )logiMPj;C(m)
meM. zneX™ kelkC

— I(M, A X™) < n(L +6).
|

Now we prove converse results, complementing our achievability results. The first
converse result is equivalent to the first part of the converse part of Theorem 3.7, that
is the part where the corresponding AVC is symmetrizable.

Theorem 3.13. If the AVC corresponding to {Ws}ses is symmetrizable, then R ay ¢ <
{(R,L): R<0,L > 0}.

Here we proof the existence of a jamming strategy s™ for all m € M such that reliable
SK generation can be prevented using the probabilistic method, cf. [24].

Proof. Consider the SK generation protocol (F,g). We want to show that

Z Prr(m) max Pr(K # Kg|M =m) > €

snesSn
meM
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for an € > 0. For this purpose we show

max Pr(K # Kg|M =m) > ¢ (3.18)

sneS™
for all m € M. So let m € M. Consider RVs {Sk}rex, such that
TneX™
where Pg|y symmetrizes {W}ses.We have for all ke

D1 Pr(S; = s")Pr(Ke # K|M =m)

smeSn
= & D1 DT Pr(S; = s")Pr(Ken # kM =m, K = k)
kel smeS™
:72 D Lggaye(Wmm) DL Pr(Sp=5") D) Pyupux(a"m, B)Wen (y"|2").
kel yne)ym sneS™ neXxn
We have
DT Pr(Sp=5") > Py (a”|m, k)Wan (y" ")
smeSn TPEXT

= 2 Z Pxn iy (as|m, k) S\X( |y ) Pxenyna e (2 [m, K)Wen (3" [27)
s"eS™ xTex™
pexn

which is equal to

Z PXn\MK(fUELWaE)Pxn\MK(fUmm k) Z HPS|X silz2,i) W, (yilw1,)

rlex” sneSn i=1

anexn
D7 Pxnparc (a8 m, k) Pxn i (a7 Im, k) H D Pojx (s|za,) W (yil1.)
xPexm i=1seS
ahexn

where the last step can be shown by induction. Now we use that the AVC corresponding
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to {Ws}ses is symmetrizable and get

2 PX”|MK($3|maE)PX"|MK(:B?|mk HZPSIX sl@1,:) Ws(yil2,)

x?EX” i=1 seS
THeX™

D Pxnpar (@8]m, k) Pxnpyc (27 m, k) HPS\X si|71,i) Wi, (yilz2,0)
zex™ snesSn i=1
chexn

which equals

Z Z Pxen v (w5]m, k?)Pg??(( ") Pxenaric (27 [my B)Wen (3" |25)

sneS™ xeX™

xhex™
= > Pr(Sp=5") Y| Pxajux(z"m, k)We (y"|2").
smeS™ zmeEX™

So it holds that

D Ly @t m) D, Pr(Sk=5") D, Pxnpr (@ |m, k)W (y"|2")

yneyn sneS™ zneX ™
+ > Lgmaye ™ m) Y Pr(Sp=5") Y Py (a™m, k) Wen (y"]2")
yneyn sneSn zneXn

can be lower bounded by

D1 Pr(Sk=5") Y Pxupr(@"|m, k)W (y"]a") = 1

YyreYyn sneSn zneXm

for k # k and for all h: K? — [0,1] with h(k, k) + h(k,k) > 1 for k # k we have

fe Y AR = YRR > Z (1K1 =)

k,kek k,kek
k#k
_ _ (K= 1)2 +(K-1) _ |K|-1
= [KI(1K| — 1) - CeL.
Thus we get
IKI-1 - 1
) ZS SPr(Kgn # KM =m) > et > 4
k:

for |[IC| = 2. So for all m € M there is at least one strategy s" of the attacker such that

Pr(K # Ka|M =m) > €
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which implies (3.18) for all m e M (with € = 1/4).

Remark 3.14. The jamming strategy the existence of which we prove above is a denial
of service attack which consequently exists for all SK generation protocols if the jammer
knows M and the PUF source is such that the corresponding channel is symmetrizable.

Now we prove our second converse result. This result is equivalent to the converse
part of Theorem 3.5. Together with (3.9) it implies the second converse part of Theorem
3.7, that is the part where the corresponding AVC is not symmetrizable.

Theorem 3.15. It holds that R’y € R.

Proof. Consider a SK generation protocol (F,g) for {Pxy,}ses. We have

n}sz%XPr(KqéKSn = max 2 2 P®” "YWen (y" |2™) F (k,m|x")ﬂ(gf1(k))c(y”,m)

T"eX™ meM
ymeY"™ kek
> max ZHPS si)) Y, Y, PR Wan (y" |2 F (k,ml|a™) 1 g1 ye (v, m)
S1 Snogn 7 z"eX™ meM
EP(S) yrEYT  keK

which equals

n

pmax D P ™)k, mla™ Loy (" m) [ [ D] P, (8)Walyil:)
S0 Snopne xn me M i=1seS
EP(S) yneym kek

n
> mmax DT> PR F (ke mla™) Loy (y™ m) [ [ D) Ps(s)Walyilz:)-
z"eX™ meM i=1seS
y"eY"™ kek
This implies that a rate pair (R, L) that is achievable according to Definition 3.3 is
also achievable according to Definition 3.2, using the same SK generation protocol
for the compound source {Pw }weconv({W.}oes)s Pw € P(X x V) , where Py (x,y) =
Px(z)W (y|z) for all (x,y) € X x Y. So from Theorem 3.4 we have

Rave < {R,L): R<  inf  I(UAY)
U Py‘Xe
COHV({WS}SGS)
I(UAX)— inf I({UAY)}
Pylxe
conv({Ws}ses)

for RVs U and Y with U — X — Y. As the mutual information is continuous, P(U|X)
and conv({W;s}ses) are compact and

min ~ [(UAY) = min I[(Py, W)
Py |xe Wew
conv({Ws}ses)
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we get the result.
u

Remark 3.16. In [30] the authors prove a capacity result for SK generation from a
compound PUF source with weaker secrecy requirements. We can also use the converse
part of this result instead of Theorem 3.4, cf. Remark 3.6.

We have derived a single letter characterization of the capacity regions Rayc and

"wwo- We have seen that the performance of the SK generation protocols strongly
depends on whether the AVC corresponding to the source {Pxy,}ses is symmetrizable
or not given the jammer knows the helper message. For the symmetrizable case we have
proved the existence of a denial of service attack for all SK generation protocols. If the
jammer does not know the helper message we can use a common randomness assisted
protocol. Then symmetrizability does not decrease the performance.
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4 SK Generation with Constrained Public
Communication Rate

In this chapter we consider SK generation with a rate constraint on the helper message.
As done for SK generation from a PUF source, we require perfect secrecy and uniform
distribution of the SK. We study various models that differ in the assumptions on the
source uncertainty and we prove corresponding capacity results.

4.1 Results for the compound source

In addition to strengthening the achievability requirements of the protocols for SK gene-
ration we consider a more general setting for SK generation in this section compared to
the setting of [25] described in Section 2.1. As in Section 3.2 we assume that the source
used for SK generation is not perfectly known. Thus now we consider the RVs X and
{Ys}ses (where S is a possibly infinite set). The source puts out RVs X" = (X3,---, X,,)
observed at terminal X and Y = (Y 1,---,Ys,) observed at terminal Y for a s € S
and we assume Pxnyn = P)@?{}S. This means we still consider a DMMS but now the
distribution of the corresponding generic RVs is not known. Instead we know that this
distribution is an element of the set {Pxy,}ses. This is called a compound DMMS.

Taking into account that we now allow for randomized encoders the generation of
the SK K and the helper message M from X' is described by a stochastic matrix
F e P(K x M|X™). For the reconstruction of the SK we have to consider a set of RVs
{K s}ses that represent the reconstruction for each possible source statistic. The decoder
is assumed to be a deterministic function g: Y™ x M — K, i.e., K, = g(Yr, M) for all
s € S. So here the pair (F,g) is a SK generation protocol.

The joint distributions of K, M and {K}ss are as follows. For all (k,m, k) € K x
M x K and s € S we have

Prerri. (Bym, k) Z PR (@, g™ F(k,m|z™) 1 (47 m)).

We adjust Definition 2.1 accordingly.

Definition 4.1. Let L > 0. We call R = 0 an achievable compound secret key rate
with rate constraint L if for any € > 0 and sufficiently large n there is a SK generation
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protocol such that

sup Pr(K # K,) < e (4.1)
seS

H(K|M) = log K]

1

~log|K| > R—¢

1

slog M| < L +e. (4.2)

The compound SK capacity with rate constraint L is the largest achievable compound
secret key rate with rate constraint L and is denoted by Cg/'*(L).

As discussed in Chapter 3 models that take source uncertainty into account are impor-
tant from a practical point of view and can also be interpreted as models for a jammed
source.

Our first result is the following characterization of Cgy; " (L).

Theorem 4.1. It holds that
CEP(L) = maxinf I(U AY
SK ( ) lz]i ;eS ( N S)

where the maximization is over all RVs U such that U — X — Y, and I(U A X) —
infees (U AY;) < L forallseS .

Proof. The converse follows from Theorem 3.4. There SK generation protocols are con-
sidered that instead of (4.2) meet the requirement

LI(X" AM)<L+5.

From I(X™ A M) < log |M]| it is clear that the corresponding converse result implies the
converse part of Theorem 4.1.
The achievability follows directly from Lemma 4.4 below.
u

For the special case where |{ Pxy, }ses| = 1 Theorem 4.1 shows that replacing (2.2) and
(2.3) by the requirement H (K |M) = log |K| does not decrease Csi (L) (cf. Theorem 2.1).

As explained, we can assume that the source statistics are chosen by a jammer. As
the helper message is transmitted publicly we could assume that the jammer knows the
helper message. So the jammer can choose the source statistics based on the helper
message. (This attack scenario makes sense because the marginal distribution of the
source output available at terminal X', which is used to generate K and M, is the same
for all distributions that the jammer can choose.) So we can replace (4.1) by the stronger
requirement

Z Pr(m)supPr(K # KM =m) <e.
meM seS

86



Achievability proofs for the compound source

Eavesdropper
1 T

Lo

Encoder i > Decoder
Txn Jammer tyn
Is
Source

Figure 4.1: SK generation from a jammed source, where the jammer knows the helper
message.

The setting that we consider is depicted in Figure 4.1. We denote the corresponding
capacity by Cgxr "™ (L). Our next result is the characterization of Cg;™"™ (L).

Theorem 4.2. It holds that

CEEr(L) = O (L),

So the SK capacity does not decrease, even if the jammer knows the helper message
and chooses the source statistics based on the helper message.

Proof. The achievability part of the proof follows directly from Lemma 4.5 below. The
converse part is clear from the converse part of Theorem 4.1.

4.2 Achievability proofs for the compound source

In order to prove Lemma 4.4 (which basically is the achievability part of Theorem 4.1)
we need the following lemma.

Lemma 4.3. Let U, X be RVs with Pyx € P(n,U x X) for some . € N such that
H(U|X) > 0. Choose a § > 0 such that 6 < H(U|X). Choose real numbers ¢, R
satisfying R,e > 0. For any n € N, define integers K, L, M satisfying

L=KM =exp([n(I(U A X) +9)])
K = exp([nR]).

Then there exist constants c1,co > 0 such that for every sufficiently large multiple n of
n there is a set J = {Ugm}(k,m)e[k]x[M] € T¢7 satistying

(1~ exp(—nen) T L < 1T o @) < (1t exp(nen)) AL (43)
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for all ™ € Ty. Moreover, let Y be any additional RV with

Pyxy(u,z,y) = Pux(u,z)Pyx(y|r)

for all (u,z,y) eU x X x Y and R < I(U AY) —e. For k€ |K]|, m e |M] we define
Dy, = U {y": I(Y" A upm) < I(Y" A ugm)}-
a€[K]

q#k

Then

em =17 Y. P%(Dk,mm,m) < exp(—ney), (4.4)
ke[K]

for all m € [M].

The proof technique is based on [23, Poof of Theorem IV.1] and [24, Proof of Lemma 3].

Proof. 1t is clear that Pyx € P(n,U x X). We randomly choose uy,: - ,ur, from T}
without replacement according to a uniform distribution and let ugm = Ug(m-1)1k
for all (k,m) € [K] x [M]. Denote the corresponding RVs by Uy,---,Ur. Consider
a™ € Ty and the RV Zpn = >0 ZL,. with Zl, = ILT,§L|X(93”)(UZ) for [ € [L]. So Zgn
is hypergeometrically distributed such that Z,» ~ H(|T}|, | U] (@™)], L). From [38] we
know that for 0 < ( <1

TGl

Tox &y o™ 1721

75|
This can be upper bounded by
267% exp(—nI(UAX))(n+1) "1 ¥ exp([n(I(U A X)+6)])

< 26—§(n+1)*w”u| exp(nd)

using the definition of L and bounds on the corresponding type classes, cf. [26]. So we
can choose ¢ = exp(—nc;) for

0<c1<3(6— %log(n +1)),

e.g. c] = g for n large enough such that

(\G][S%)

3l log(n + 1),

n

>

and get

Pr(|Zyn — % o> C% L) < 2e-exp(n3/D)2
U U
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Now consider u™ € T} and the RV U such that P € P(n,U xU) and Py = Py. We
define
Pyrgu”
(Pyg )(Ul,ma - 7Uk,m) = ]]_TéllU(un)(Uk’7m)

k,m

for all k € [K] and m € [M]. Consider

Z kaUU7u )( Ul,m, " 7uk,m)

uk7m€7~U
Py U e Uy (Whem | Wms =+ 5 Uk—1,m) (4.5)
which equals
2 > Ly )y (o) P 001 Uy Wk 01,152 Uk—1,m)
wem€TY K

G(Tl}l)K(M7l)
k—1, m)

)

Km
'Pler(’,lm 1|Uk 1m(u11 |u
where we introduce the notation

K,
U™ = (U1, Ukm-1)

Uk 1m = (Ul,ma T 7Uk’—1,m)
Km 1

ull = (ul,lv"' auK,mfl)
k
u1,ml’m = (Utm, s Uk—1,m) (4.6)

We can exchange the sums and get

P ( K,m—1 k—l,m)
U{(Im 1|Uk 1,m ull ul,m
K,m—1
Ui

e(7—n)K(m—1)

> L7 um) Wi PUy 01,1, Uk o (k[ 01,1, -5 We—1,m)
uk’me'r[?

which equals

p Km—1 T (W )Mut, 1, sug—1,m |
2 Pyt (0 ) R
K,m—1

u g

E(T’!’L)K(mfl)

75 (™)l exp(—nI(U AU))(n+ 1)U
\T”||U s 1—2exi(n(—H(U\X)+6))(n+1)IU\' (4.7)
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So we can apply Lemma [24, Lemma A 1] with

exp(—nI(U AU))(n+1)U
1—2exp(n(—H(U|X)+8))(n+1)HI"

a =
We thus get for all m € [M] and

2 kaUU’ l Ulma"'ka,m)

that
Pr(Z(m amy > Kt) < exp(—K(t —aloge)).
Choose
t=rexp(n(|R—I(U AU)|T +e)).

So K(t —aloge) = exp(ne)/2 if n = ny(€) where ni(e€) is defined as

2(n+1)|u‘loge ( )}

min{n: 0< 1—2exp(n(—H(U|X)+3))(n+ 1) < 2 expin

As T3, TR, |P(n,U xU)| and M only increase exponentially with respect to n we can
use the union bound to show that the probability that 7 has the following properties
is greater than 0. This follows as we showed that the probabilities of the corresponding
complementary events each go to 0 doubly exponentially with respect to n. So for all n
large enough there is a J such that (4.3) holds for all 2™ € Ty and for all m e [M], all
u" € T} and all Py € P(n,U x U) we have

{k: ugm € T[%U(u")ﬂ <exp(n(|R—I(U AU)|" +¢)). (4.8)

For each y™ € Y™ there is a RV Y such that (Wkm, y™) € T” So there is a set of RVs
{V1,--,Yp} with P < [P(n,U x V)| such that {T ‘U(uk m)}pe forms a partition of

Y™. So for each m € [M] we can write €,, defined in (4.4) as

% 2 P)(?‘nU( U T£)|U(uk,m) a Dk,m|uk,m)
ke[K] pe[P]
Z Z exp(=n(D(Py, ;| Py | Pv) + H(Y,|U))] T3 1 (k) O Digml.
For each

y" € TE (ukm) 0 Y™ T A uin) <T@ A ugm)},
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q € [K] and q # k, there is a RV U with I(Y, A U) < I(Y, A U) and Py = Py such that

(Y™, Ukm, Ug,m) € TY v So there is a set of RVs {or,--- ,ng} with

Op < [P(n, Y x U xU)]

such that {T"‘UUP (Uk,m.s Ug,m)}oe[0,] forms a partition of
T3 o (Wesm) 0 {y™ s L™ A ugem) < (Y™ A g m)}
and I(Y, A U) < I(Y, A U2), Pgr = Py. We can write

T2 (k) 0 Din = (TE (W) 0 " I A ) < T A tigm)})
q€[K]
gk

U U v, oz (Wem: Ugm)

Q¢k

U U T3, o (ks Ugm)-

0€[Op] ¢e[K]
q#k

So
| Ugerx.qze T3 ‘UUP(uk moUg,m)|

em < 2 exp(=n(D(Py,y [BrwlPo) 3 % 2
g exp(nH (Y, |U)))
pe[P] 0€[Op] ke[K]

It is clear that an upper bound for

‘ UqG[K],q;ék TYZ?‘UAUCI; (uk,mvu%’m)‘
exp(nt (Yp|U)))

is 1. So we have

em < Y exp(~n(D(Py | Pyl Po)))

pe[P]
Z 1 min{ ‘ qu[K],q#k T)Z/;lU}‘]g (uk,m tg,m)| }
K exp(nH (Yp|U))) ’

0€[Op]  ke[K]

AS TYZ|UU§ (U]g7m,uq7m) = @ fOI‘ ('LLk7m, Uq,m) ¢ T[?U(Z)’ we have

U 73 w0 (wem: tam) = U T3, s (thms tg.m)

q€[K]q#k qe[K]: q#k
A (uk,m 7uq,m)e7-lyﬁg
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and thus
| T%‘Uﬁg(uk,m7uq,m)| < Z |T3Z‘Uljg(uk,m7uq,m)|' (4.9)
q€[K],q#k q€[K]: g#k
/\(uk,'rnvuq,m)eT;ﬁg
As

|T};;|UUP (Uk,m sUq,m)| exp(nH(Y |UUp)) - ~ —
°— < pl-—0/) — — P — 4
exp(nH (Y, |U)) = exp(nH(Yp|U)) €Xp( n(I(UO A UYP) I(U A Uo)))

we can upper bound (4.9) by

Hq7&k : (uk,m 7uq’m)€Tl7l75 }‘

exp(n(I(UP AUY,)—I(U AUE)Y))

and thus
em < Z eXp(_n(D(PprHPY|U|PU)))
pe[P]

Ha#k: (uk,m tg,m)€T " p}l
1 . . UGk
DY mm{exp(n(I(UgAU?p)—I(UAUg’)))’ }
0e[Op]  ke[K]

which can be upper bounded by

Z exp(—n(D(Py/pWHPY|U|PU)))

pe[P]
|{Q¢ki (uk: mvuq,m)eTn’p}'
1 ’ uU,
’ ( 2 K Z exp(n(I(Ug/\Uf/p)fl(U/\Ug)))
0e[0,]: ke[K]
I({UAUD)>R
[{a#k: (ur,m,uq,m)ET" p}

1 ) , Uk

+ 2 mm{expm(z(ﬁgAUYPHWAU;”))))’ D-
OG[Op]Z k}E[K]

We have with (4.8)
g # : (gms tgm) € Tiep}| < exp(n(R — I A TD)[* + ).

For I(U A UY) > R this equals exp(ne) and for I(U A UY) < R it equals R — I(U A UY),
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Achievability proofs for the compound source

SO

em < Y exp(—n(D(Py | Pl Pr))

pe[P]
) . exp(ne))
( oe[;]' mm{eXp(n(I<U£’AUYpH(UAUé’))))’1}
I(U/\UZJ)>R

. exp(n(R—I(U AUE)+e))
’ oe[;]. i T AUv) -1 ATE) ) -
I(U/\UZ’)éR

For I(U A UY) > R we have

exp(ne) exp(—n(I(U? A UY,) — (U A UP)))
< exp(—n(I(TP A Y,) — I(U A UP) —¢))
< exp(—n(I(UP AY,) — R—¢)).

So we have

en < Y exp(—n(D(Py | Pyl Po))
pe[P]
(> min{exp(—n(I(TF A Y,) — R—¢)), 1}

0€[Op]:
I(UAUDY>R

+ Z min{exp(—n(I(Y,U A UF) — R — ¢)),1})
0€[Op]:
I(UAUDXR

which can be upper bounded by

Y, exp(=n(D(Py | Pyio|P))) Y, minfexp(—n(I(U} A Y,) = R —¢)),1}

Pe[P] 0€[Op]
< ) exp(=n(D(Py | Pyio|Py))) Y, minfexp(—n(I(U A Y,) = R —¢)),1}
pe[P] 0€[O0p]

which is less or equal than

(n+ P S exp(—n(D(Py, 1/ [Py | Pu)) exp(—n|I(¥, A U) = R — ¢[*)

pe[P]
< (4 )Y mas xp(n(D(Py, | Py Pu))) exsp(-nlT (¥ # U) = B = ef)
<+ )P max esp(=n(D(V 1Py | Po))) exp(=nlI (P, V) = R = )
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This implies that for all Pyy; such that I(Y A U) — e > R we have &,, < exp(—nca).

Now we can prove Lemma 4.4.

Lemma 4.4. Consider the RVs X and {?s}ses with Pgy € P(X x ) for all s € S and

a RV U such that U — X —Y, forall s€ S, Py e P(U). Let § > 0. For all n large enough
there is a stochastic matrix F' € P(K x M|X”) and a mapping g: Y" x M — K such
that for the RVs K, M, {K,}ss and X™ with Prvii.ixn € P(K x M x K x X™) for all
s € § defined by

Pyexaic sen (kym = ), PRy F(kmla) Ly gy (0" )

yneyn

for (k,m, k,z") € K x M x K x X" it holds that

sup Pr(K # K,) <6 (4.10)
seS
H(K|M) = log |K]| (4.11)

Llog|K| Ziné[((?/\ffs)—(S
S€E
Llog | M| <I(U/\X)—in£1(0/\}75)+5.
S€E

Proof. Assume first that H(U|X) > 0. The case H(U|X) = 0 is treated at the end of
the proof. We can also assume that infs,g 1 (U A f’s) > 0, because the result follows
trivially for infseg I((j A 375) = 0. Let 01,82 > 0 small enough.

Consider sets of RVs {Xi}ierry and {Ut}erry with T' < [P(n, X)| such that P, v €
PU x X xY) and Py,x, € P(n,U x X), Py y v (u,x,y) = Py ¢ (y|z) Py, x, (u, x) for all
(u,2,y) €U x X x Y for all s € S and t € [T] while {T¥ };¢[7] forms a partition of 72
and

751

|PUtXt(u7x) - PUX(uva < 01 + 02

for all (u,z) e x X for all ¢t € [T]. Such RVs exist which can be seen as follows. First
choose {X¢}yerr). Then consider {z}e[r) with z; € T¢, for all ¢ € [T]. For each t € [T]]
choose a u; € T 1% 62 (z¢). Define the RVs {Ut}epr) with Py, x, = Py, 2, € P(n,U x X).
(This choice of Py, x, is possible for n large enough, cf. [26, Chapter 2].)

From [26, Lemma 2.7] we know that for all ¢t € [T'] it holds that H (U X;) > 0 and
infees I(Up A }7'5) > 0 for d1, 69 small enough.

For each t € [T] generate the set J; according to Lemma 4.3 with

R = IIllIllIlfI(Ut/\Y) 0/2,
te[T] seS
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(and the corresponding K, M; and L;). For all t € [T] define for all u" € J;

Q( 7’1) 1 ljtnT["]‘tlxt(xn)(un)

u = n n n

t nzw TR TTATE e
xr

]1 ,u7l
Z ! Tgtlxt (In)( )
3 T 11707,
xeX™

_ 1
= ) mEm e
a:”G'T)?t‘Ut (um

and Q; = mingne s, Q(u™). From (4.3) we know that for ¢ € [T] and all u™ € J;
1 1 1 1
Trew( e L < Q") < gy 1o (4.12)
Here we also use that

TG NTx v, (W) = [T Ty x, ()] = [T x|

for u™ € T and 2" € Ty,. Let u* € U™\ Uyepry Jo- Consider the RV Uy, Py, € P(U").
We define U, such that for all ¢ € [T'] it holds that

. npny _ _ Qt 1
PU7L|X"(U |:U ) T Qi(um) |‘7tm7—(?t\xt(xn)‘

n n n n n
for 2™ € T, and u e~7tﬁTUt|Xt($ ),

_ n ny _ _ Qt 1
Py, 50 (W"fa") = 1 DI NGy

ueJt mTJt\Xt (zm)
for " € Tg¢, and u" = u* and
Py, s ("la") =0
for 2™ € T, and all other u™ € U". For " € X™\ e[ Tx, define

1 v =u*

P, . (u™z™) =
U"‘X( ") {O else
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We have for t € [T] and all u" € J;

Pr(U, = u"|X" e T#

t

)= Y Pr(U, =u"|X" =2")Pr(X" =2"|X" € TR,

t

x"ET)’(Lt
— — YN — ) 1
= ) Pr(U, =u"X :”)IT;?A
x"eT;{Lt
LT o @ ()
= ~Qt JtmTUt|Xt(:C ) 1 _
Z/’:\f Qe(un) [T T, 5, @ T, Qt- (4.13)
T"EX™

For ¢t € [T] and all 2" € T¢, we have by (4.12)

Pr(U, # u*| X" = 2") = D
ueJtmTl}ltht(:c")
> Li(1 — exp(—ncy1))Qy

1—exp(—nc1) _ 2 exp(—nci)
> Trap(ne) = 1~ Tren(ne)- (4.14)

Qt 1
Qi(u) [T T, x, (@™)]

Now we consider for ¢ € [T], u" € J; and (z",u") € T¢,p,

Pr(f(":a:",Un=u"|)~("€7}?t)
Pr(Un=u"|X"€TY,)

Pr(X" =2"|X" e T, U, = u") =

which equals

Pr(X"=a"|X"eT¢ Pr(Un=u"|X"=z") ), 1 1
Qt T Qu(un) [T T, @ Qe TR,
= 1 —
TN TAT, e, (@] @e ()

From (4.3) and (4.12) this implies

on ol - 1+exp(—ncy) 1
PH(X" = a"|X" € TR, Un = ") < bz o Ly (4.15)

We also know Pr(X" = z"|X" € T¢,Un = u") = 0 for 2" € X”\T;t|Ut(u"). Define
K = [K], M = [max,er] M;] and M = M x [T]. Let 2™ € T, t € [T]. We define for
ke KK and m € [ M]

F(k,(m,t)|z") = Pr(U, = u27m|)~(" = z") 4 Pr(U, = u*| X" = x")L%,

where we denote the elements in J; by uj ,, for all k € [K] and m € [M,]. For M; <
m < maxye[r] My and k € K we define

F(k, (m,t)|z") = 0.
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For t € [T], t # t we define for (k,m) € K x M
F(k, (m, D]z") = 0.
Let " € X"\ Uerr) Tx,- We define

F(k, (m,t)|z") = m

for all (k,m,t) € K x M x [T] with m < M,. For (k,m,t) € K x M x [T] with m > M,
we define

Fk, (m,t)|z") = 0.

We have not defined g yet, but nevertheless start analyzing the properties of F'. We in-
troduce the definition of g when needed. We start the analysis with the error probability.
Let s € S. We have

Pr(K # K,) < ) Pr(K # K| X" e T )Pr(X" e TR) + Pr(X" ¢ T ). (4.16)
te[T] ’
Thus we now consider Pr(K # K| X" € Tx,) for t € [T].
~ ~ _ X n
Pr(K # KJX"eTg)= > > > e P (0" l")
(mB)eMx[T] ke Yy €Y z"€T,
k#h

s (Dl ()
=2 X X X m W)

me[M] ; kel y"EV" m”GT"
ksk

) F(k7 (ma t)|xn)]lgfl(]})(ynv (ma t))7

where we make use of the definition of F'(k, (m, t)|z™). With our choice of F'(k, (m,t)|z")
this equals

Z 2 Z Z |7-n P®n (y"[z")Pr(U;, = ulltc,m|Xn = x”)]lgil(fc)(y",(m’t))
mE[Mt] k feek y"EV™ " €TY,
k£k

TN N N PR P U = wt X = a") Ty (0 ().
me[M¢] i ek yneyn :Jc"ET"
k+#k
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Using (4.14) the second summand can be upper bounded by

2 exp(—nc ® R
1+exp —ncl1 Z Z Z Z |’7’” PYT‘LX ) |$ )Lt g~ 1(k) (yn, (m7t))
me[M¢] k ek yneyn :B"ET"
k+#k

2exp(—nc1)
< T+exp(—nc1) Z Z Z Z
me[M] ek y"EV™ z"€TR,
_ 2exp(=nci) ® 1
- 1+(§xp( 71011) 2 Z Z |7—7L PYTX Yy |xn)ﬁt

me[M] yney™ zneTy,

) L (0 (. )

2 exp(—ncy)
1+exp(—ney)”

The first summand equals

IINDINDIND IR AL

me[M] k kelc y"EV" a:"eT“
k+#k

-Pr(U, = uzm,f(" = x”|)~(" € T" )1 ,l(k)(y”, (m,t))

= 22 2 PR

me[M] kel yEV" x”eT”
k#k

Pr(X" = 2" |Up = ), X" € TE)PE(Un = 1t | X" € TE)L g (0" (1, 1)).

Using (4.15) and (4.13) this can be upper bounded by

1+exp 14exp(—nc1) @n n 1 (T
T oxp(_nc1) Z Z 2 Z PY\Xy j )|7}"”Ut(u§wn)\Qt]lg—l(k)(y , (M, 1))
me[Mz] g ek y"EV™ z"ETY,
k#k

It is clear (cf. [26]) that for n large enough and z" € Ty,

1
% X¢|Ug (uz,m)‘

< exp(n (H(Xt\Ut) g = = exp(nf) Xt\Ut( n|“§cm) (4.17)

for £ > 0. So we get the upper bound

Featna o) > 3 X X PEL)
me[M] kel y"EV" x"ET"
k+#k

P)(?n‘U ( n|u§c,m)Qtﬂg—1(1}) (yn7 (m7 t)) (418)

We now define for y” € Y, t € [T] and m € [M] the mapping g such that g(y", (m,t)) =
k (for k € K) satisfies

(g, AY" )—f,?f}éif( U e AY"™)-
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So using (4.12) we can upper bound (4.18) by

1
Tl e Y k2, 2 PE Dl P, @ k), (419)
me[Mt] kel xmeXxn

where

D= |J W 1" Au,) <TW" Aul,,)})
qek,q#k

This equals

e expnd) 3, D, & 2, PEL, (Dl m) (4.20)
me[Mt] kel

From our choice of R we can upper bound this expression for all s € S and t € [T'] by

% exp(né) exp(—ncy) = exp(—ncs)

for a ¢g > 0, n large enough and an appropriate choice of £. So

D1 Pr(K # K |X" e T)Pr(X" € TE,)

te[T]

< exp(—nc3) Z Pr(X" e Tx,) < exp(—ncs3).
te[T]

Thus with (4.16) and [26, Lemma 2.12] overall the error probability goes to 0 expo-
nentially with respect to n. Now we consider the secrecy requirement. For k € K and
(m,t) € M x [T] such that m € [M] consider

Pr(K =k, M = (m,t))
= ). Pr(K =k, M = (m,t)| X" € T¢,)Pr(X" € T,)
te[T]
+Pr(K =k, M = (m, )| X" e X"\ | | T#)Pr(X" e x™ J TR)
te[T] t

= Pr(K =k, M = (m,t)| X" € T3, )Pr(X" € TR,) + gy Pr(X™ € 4™ U )
Te[T]
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where we use the properties of F'(k, (m,t)|z™) for the last step. We have

g
=
I
“W‘
I
3

The first summand equals

3 Pr(X" = "X € TE)Pr(Un = uf, | X" = 2", X" € TE,)

t
m"ET)?t

= > Pr(X" =2"|Uy = uf,p, X" € TR)Pr(Un = i}, | X" € TR,) = Q1.

n n
T ETXt
For the second summand we have

£ D Pr(U, =u*X" e TE)Pr(X" = 2"|U, = u*, X" € TR,).

weT,
As
Z Pr(U, = u|X" =2") =1

ueJro{u*}
we have

Pr(U, = u*| X" € T{) =1 — LiQ:.
So we have

Pr(K =k, M =(m,t)|X"eT¢) = Qi+ £ — Qi = £ (4.21)

Thus

PT(K = k,M = (m,t)) = %tPT(Xn € T)?t) + WPT(XTI € Xn\ 7U 7}?{)

te[T]
and consequently
Pr(M = (m.1) = £ Pr(X" € TR,) + gyt Pr(X" e 2™\ | TR)

te[T]
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which implies
LPr(X" e TR) + gy PrX ™ € A"\ Userny T>?-)

= %
ﬁtPr(X" € Xt) + WPI‘ Xn Xn\ Ute

Pr(K = k|M = (m,t)) =

So H(K|M) = log |K|.
Finally we consider the cardinalities of X and M. From our choice of Py, x, we know
that for all ¢ € [T] it holds that

1Pox. — Py gl < (1 + 02) ][ X].
This also implies for all ¢ € [T'] and all s € S that

1Py, — Pyl < (01 + 62) U] X].
Consequently [26, Lemma 2.7] implies for §; and d2 small enough that

max [(Up A X;) —inf I(U; AY,) S I(U A X) —inf I(U A Y,) + 7
te[T] seS seS

and

mlnlan(Ut/\Y) 1an(U/\}~/S)—
te[T] s€S

for a 7 > 0 arbitrarily small. So from our choice of R we know
Llog|K| = inf I(U A Y;) —
seS
and

Llog | M| <I(U/\X)—in‘gl(U/\}Z)—i-T—i-‘nﬂlog(n—i-l),
sE

where the last summand is an upper bound for %log T.

We still have to consider the case H(U|X) = 0. It holds that I(U A X) = H(U). For
the protocol constructed in the proof of Theorem 3.3 we know

Llog| M| < H(U) - 1n£I(U/\§~/S)+5.
s€

This proves the result for the case H(U|X) = 0.
u

Thus Theorem 4.1 is proved. Note that we actually have shown that the error pro-

bability decreases exponentially with n. For the achievability part of Theorem 4.2 we
adjust the analysis of the error probability in the achievability proof of Theorem 4.1.
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Lemma 4.5. Lemma 4.4 holds true even when we replace (4.10) by

Z Py (m)sup Pr(K # KM =) < 6.
B seS
meM

Proof. In order to prove this result we rewrite the analysis of the error probability
starting from (4.16) and implement the necessary adjustments. We have

Z Py(m,t)sup Pr(K # K |M = (m,t))
(m,t)e seS

JLEM
= Pyy(m,t)(sup > Pr(X™ € TRIM = (m, 1))
(m,t)eM S€S te[T]

Pr(K # K,|M = (m,t),X" € T.)
+ Pr(K # K| M = (m,t), X" ¢ T¢ )
Pr(X" ¢ TZ, 1M = (m, 1))
which can be upper bounded by

> Py(m,t)(sup Pr(K # KM = (m,t), X" € TZ,)
(m,t)eM ses

Pr(X" e TR |M = (m,1))
+sup Pr(K # K |M = (m,t), X" ¢ TZs.)
seS ’
Pr(X" ¢ T2, 1M = (m,1))
which is smaller or equal than

> Py(m,t)(supPr(K # KM = (m,t), X" € T,)
(m,)eM ses

Pr(X"e T, IM = (m,t))
m,t)

+Pr(X" ¢ T3¢ 5, 1M = (m, 1)) (4.22)
= Z Pyy(m,t)sup Pr(K # KM = (m,t), X" € TX,)
(m,t)eM seS
Pr(X" e T, |M = (m,t))
+Pr(X"¢ T2 )

(4.23)
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Thus we now consider Pr(K # K |M = (m,t), X" € T¢,) for (m,t) e M and s€ S.

Pr(K#Ks /\M:(m,t)|)~("€7}?t)
Pr(]\7[=(m,t)|)~(”67}’gt)

= MPr(K # K, A M = (m,t)| X" € Tx,)

PI‘(K * K5|M = (mvt)aXn € T)?t) =

which follows from (4.21). This expression equals

MY YN e P W ek, ()l Ly (07 (m, ).
k kel ymeY™ aneTy,
k#k

Similar to the corresponding steps in the proof of Lemma 4.4, with our choice of
F(k, (m,t)|z™) this equals

LIDIEDY Z m PE (" PE(Un = | X = 2™y (07 ()
k;ék

+ My Z 2 2 \T" PgTX y"|z")Pr(Un = U*|Xn = xn)%t]lgfl(;;)(yna (m,1)).

ke y" eV 2 ETR,
kot

The second summand can be upper bounded by

2 exp(— nc) ®
TrowCnen Mt 20 2 2 m P (" 2" 2Ly gy W (m, 1)
k;élc

e LUDIDY Z
T+exp(—nc1)
kejc yneY™ z"eT"
2 exp(—ncy) Z Z &n ny 1.
1+exp(—ncl \Tn PYS|X Yy |‘T )Mt
"e)i" neTn

//\

") g (67 ()

— 2exp(=nci)
~ 1+exp(—nc1)”

The first summand equals

WY %X )

k kel ymEY™ x"eT"
k#k

t

=M Yy Y, D PR Pr(Un = | X € TR,y (4" (m, 1)
k,]AcE]C yneyn mneTn
k#k

Pr(X" = 2"|U, = u';c7m,)2” eTy.)

t

-Pr(U, = u};m,f(" = 2" X" e T} )Ilg,l(k)(y", (m,t))
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Using (4.15) and (4.13) this can be upper bounded by

1+exp(— nc) ®

T—exp(— nci) Z Z Z PYTX y* " )m@t ( ", (m, ).
k k?EIC yneyn wne’rn
kth

With (4.17) we get the upper bound

FonChel eRmOM: 3 3 3 PR (")
ke ym eV 2 eTR,
k;tl%

P QL (7 (). (4.24)

We use the same definition for g as in the proof of Lemma 4.4. So together with (4.12)
we can upper bound (4.24) by

14+exp(—
ety exp(n) gy Mi ) Y, PO (Dhla™) PRy, (0" ).

kel xmeX™
This equals
1+exp(—nec1) @n  (pt t
(I—exp(—ne1))? P n§ 2 PY |U¢ km|ukm)
kel

Again, from our choice of R we can upper bound this expression for all s € S and ¢ € [T
by

% exp(ng) exp(—ncy) = exp(—ncs)

for a c¢g > 0, n large enough and an appropriate choice of £&. We thus have
D1 Py(m,t)sup Pr(K # KoM = (m,t), X" € Tx,)Pr(X" € T, |M = (m,1))
(m,t)eM ses
<exp(—ncg) Y. Pr(X"eTE)Pr(M = (m,t)|X" e TZ,),
(m,t)eM

which equals

exp(—ncg) >, Pr(X" € Tg,) >, Pr(M = (m,t)|X"eTg,)

te[T] t me[M] t

< exp(—ncs) Z Pr(X" e Ty,) < exp(—nc3).
te[T]

Thus with (4.23) and [26, Lemma 2.12] altogether the error probability goes to 0 expo-
nentially with respect to n.
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Eavesdropper
= [
L
Encoder > Decoder
T xn Jammer tyn
is"
Source

Figure 4.2: SK generation from a jammed source. The jammer does not know the helper
message and can choose an attack strategy s € S™.

4.3 Results for the jammed source

As described in Chapter 3, besides the compound DMMS, there is another possibility
of modeling jammers in our setting for SK generation. We again consider RVs X and
{Ys}ses, but now we assume that |S| < c0. The jammer can choose a sequence s" € 8"
(which we call an attack strategy) and the source puts out RVs X" = (Xi,---, X,)
observed at terminal X and Y = (Ys, 1,---,Ys, n) observed at terminal ) and we
assume Pxnygl = ®?:1 PXYSi- In contrast to the compound DMMS here the jammer
can choose the source statistics for each pair of symbols read from the source. For the
compound DMMS the distribution is chosen once, i.e., it is fixed for the whole block
length n. Obviously a jammer who can choose the source distribution for each pair of
symbols read from the source is more powerful.

We also note that the set of conditional distributions { Py, x}ses determines an AVC.

Again we allow for randomized encoders, i.e., the SK K and the helper message M
are generated from X" which is described by a stochastic matrix F € P(K x M|X™).
For the reconstruction of the SK we now have to consider a set of RVs {K sn }snesn that
represent the reconstruction for each possible attack strategy s™ € S™. The decoder
again is assumed to be a deterministic function g: Y" x M — K, i.e., Ko = g(Yh, M)
for all s™ € 8™. As before the tuple (F, g) is a SK generation protocol.

It follows that for all s" € 8" the joint distribution of K, M and Ky is

Prricn bk = 3 T Povs, o) Fll, mla™1, - g (5", m))
z"eX™ i=1

for all (k,m, k) e K x M x K.

At first we assume that the jammer does not read the helper message from the public
database. The setting is depicted in Figure 4.2.

Again we determine desirable properties for SK generation protocols in this setting.

Definition 4.2. Let L > 0. We call R = 0 an achievable AVC secret key rate with rate
constraint L if for any € > 0 and sufficiently large n there is a SK generation protocol
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Chapter 4 — SK Generation with Constrained Public Communication Rate

such that
max Pr(K # Ksn) <e
Snesn
H(K|M) = 10g K|
Llog|K| > R—e

110g|/\/l| L+e.

The AVC SK capacity with rate constraint L is the largest achievable compound secret
key rate with rate constraint L and is denoted by C4y.¢(L).

C4YC(L) can be characterized as follows.
Theorem 4.6. It holds that

CAVC max min I(P, ,W
( ) U WECO’I’LU({PYS|U}SES) ( v )

where the maximization is over all RVs U such that U — X — Y, and

IUAX) - min I(Py,W) < L

Weconv({Py,|u}ses)

forallse S .

Proof. The converse is a consequence of Theorem 3.15. It follows in the same way as
the converse part of Theorem 4.1 follows from Theorem 3.4.
Achievability follows from Lemma 4.10 below.
[

As mentioned before, { Py, |x }ses corresponds to an AVC. When considering this AVC
we assume that, given the block length n, the probability of receiving 4™ € Y™ at the
channel output is given by

n
[ [ Pr.,ix(ile:)

i=1

where 2 € X™ is the channel input and s™ € S™ is a state sequence. In [31] list decoding
with fixed list size L is considered for communication over an AVC (see also [19]). This
means the receiver does not necessarily try to decode the channel output. Instead the
receiver tries to construct a list of size at most L that should contain the message sent
over the channel. L is independent of n.

As described in [31] the best possible transmission rate for reliable communication
(with respect to the average probability of error criterion) over an AVC with list decoding
and a given list size strongly depends on the symmetrizability of the AVC.
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Eavesdropper .
= [
L
Encoder i > Decoder
T xn Jammer tyn
is"
Source

Figure 4.3: SK generation from a jammed source. The jammer chooses an attack strategy
s™ € 8™ based on the helper message M.

Definition 4.3 ([31]). For 7 = 1 the AVC corresponding to {W}ses, Ws € P(Y|X) is
- symmetrizable if there is a stochastic matrix U € P(S|X™) such that

S W, (yla)U sk, )
seS

is invariant over all permutations of &, x1,--- ,xy, for all (y,x,z1,-+ ,T3) € Y x X™MF!
[31, Definition 2]. We also say

S Wa(yl2)U(slar, - )
seS
is symmetric in x, Ty, , Ty-

All AVCs are said to be 0-symmetrizable. The symmetrizability of the AVC denoted
by M is the largest integer 1 such that the AVC is m-symmetrizable. If no such m
exists, we take M = oo [31, Definition 3].

In the following we make use of the notion of symmetrizability for our model of SK
generation from a jammed source.

As done for the compound source we now assume that the jammer has access to the
helper message from the public database and thus can choose the attack strategy s”
based on the helper message. The setting is depicted in Figure 4.3.

We also generalize the SK generation protocols as we now consider list decoding with
fixed list size L at terminal ). Again we allow for randomized encoders F € P(K x

M|X™). Instead of the reconstruction of the SK we now consider a set of RVs {K sLAn }snesn
distributed on the set of all subsets of K with cardinality at most L, which we denote

by 75L. K fn represents the list of size at most L generated at terminal ) for attack
strategy s" € S". The decoder is a deterministic function g; : V" x M — 75@ ie.,

IA(!?L = g; (Y, M) for all s € S". The tuple (F,g;) is a SK generation protocol.
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So for all s™ € 8" the joint distribution of K, M and IA(L# is

Pyt OB = 3 T Pavs oo ) F by mla™) 1y (67 m)
z"eX™ i=1

for all (k,m, k) € K x M x P;.
The following definition again determines the properties we want the SK generation
protocols to have.

Definition 4.4. Let L > 0 and L >0 Wecal R > 0 an achievable AVC SK rate with
rate constraint L and list decoding with list size L if for any € > 0 and sufficiently large
n there is a SK generation protocol such that

2 Pyr(m) max Pr(K ¢ IA(;'HM =m) <e
snesSn

meM

H(K|M) = log K

1 K]
EIOgTZR—E

LlogIM| < L+e.

The AVC SK capacity with rate constraint L and list decoding with list size L is the
largest achievable AVC SK rate with rate constraint L and list decoding with list size L

and is denoted by C’g‘}go’f“(L).

Our next result is the following lower bound on Cg}‘go’i(L).

Theorem 4.7. Denote the symmetrizability of the AVC corresponding to {Py,|x}ses
by M and assume M < 0. Let L = M + 1. Tt holds that C§y <" (L) = C4YC(L).

Corollary 4.8. It holds that Cg‘l‘(/c’l(L) = C4YC(L) if the AVC corresponding to
{Py,|x }ses is not symmetrizable (i.e., has symmetrizability 0), otherwise C’g‘}éc’l(L) = 0.

Proof. Theorem 4.7 follows from Lemma 4.13 below. The achievability part of the
corollary is a direct consequence of Theorem 4.7.
The converse part of the corollary follows from the converse part of Theorem 3.7 in
the same way as the converse part of Theorem 4.1 follows from Theorem 3.4.
[

Finally we consider the setting depicted in Figure 4.4. Here we do not consider list
decoding (or equivalently, only lists of size 1) i.e., the SK is reconstructed at terminal ).
We still assume the jammer knows the helper message, but now there is CR available at
both terminals. We assume the jammer does not know the CR while the eavesdropper
knows the CR. This means both terminals have access to a RV I' which we assume is
uniformly distributed on a set G and independent of X™ and Y:. Again we allow for
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CR

15y

rl 1K Eavesdropper KT ‘

| T
I
Encoder ‘ > Decoder
T xn Jammer y»t
15"
Source

Figure 4.4: SK generation from a jammed source. The jammer chooses an attack strategy
s™ € 8™ based on the helper message M. CR not known to the jammer is
available at terminal X and ) and known to the eavesdropper.

randomized encoders, i.e., the SK K and the helper message M are generated from
X™ and T which is described by a stochastic matrix F' € P(K x M|X™ x G). For the
reconstruction of the SK we again consider a set of RVs {K sn}snesn. The decoder is
assumed to be a deterministic function g: Y" x M x G — K, i.e., Ko = g(Yh, M, T)
for all s™ € 8™. The tuple (F,g) is a SK generation protocol.

It follows that for all s" € ™ the joint distribution of K, M, K¢ and I is

~

Pirricr(ksm ky)y = 30 T Pxve, (i i) (b, mla™ )Ty (67 m, 7)) Pr(v)
z"eX™ i=1

for all (k,m,k,7) e K x M x K x G.
We want to consider the case where the amount of CR available is small. So the SK
generation protocols should have the properties specified by the following definition.

Definition 4.5. Let L > 0. We call R > 0 an achievable CR assisted AVC secret
key rate with rate constraint L if for any ¢ > 0 and sufficiently large n there is a SK
generation protocol such that

2 Prr(m) max Pr(K ¢ Kg|M =m) <e
snesSn

meM

H(K|MT) = log |K]|

Llog|K| > R—¢

Llog|M| < L+e

%log|g| <e.

The CR assisted AVC SK capacity with rate constraint L is the largest achievable CR
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assisted AVC secret key rate with rate constraint L and is denoted by C:;‘XC’CR(L).

The following theorem characterizes C’?XC’CR(L).

Theorem 4.9. It holds that Cgy < “™(L) = C4YC(L).

Proof. Achievability follows from Lemma 4.15. When the helper message is not known
to the jammer, the CR can be made available to both terminals by generating I' at
terminal X and appending it to the helper message. As %log|g | < e this does not
increase the rate of the helper message. This argumentation implies the converse, as
C’AVC( ) is the capacity where the jammer does not know the helper message.

Note that the achievability proof provides an application for identification codes. One
could expect that it is possible to prove the achievability part of Theorem 4.9 using
Theorem 4.2 and Ahlswede robustification with elimination of correlation. This does
not work as expected because the union bound as used e.g. to get from (4.30) to (4.31)
does not work for this case. So instead, motivated by [34] and [42], we use list decoding
with a constrained list size at terminal ) and an identification code to find out which of
the keys in the list is the actual key generated at terminal X. Additionally we encrypt
the part of the helper message corresponding to the identification code with two keys.
One key is unknown to the eavesdropper (this key is generated using some CR), the
other key is unknown to the jammer (for this key we can directly use some CR).

Assume that the amount of CR is arbitrarily large. Theorem 3.15 implies that this
does not increase the corresponding capacity compared to CAVC CR(L), i.e. the case
with small amount of CR.

4.4 Achievability proofs for the jammed source

Lemma 4.10, which proves the achievability part of Theorem 4.6, is proved with the
Ahlswede robustification technique.

Lemma 4.10. Consider the RVs X and {Y.}ses, |S| < oo with Pgy € P(X x )
for all s € S and a RV U such that U — X — Y, for all s € S, Py € P(U). Let
d > 0. For all n large enough there is a stochastic matrix For € P(K x M|X™)
and a mapping gcgr: Y" x M — K such that for RVs K, M and {f(sn}snegn with

Preiricn € P(K x M x K) for all s™ € 8" defined by

Piexprc o (ks k) = ) HPXY (@i, yi) Fer(k, mz") 1 -1 g, ((y",m))
erexm i=1
y Eyn
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~

for (k,m, k) € K x M x K it holds that

max Pr(K # Ksn) )

S7lesn
H(K|M) = log |K|
Llog|K| = min I(Pg, W) =4

Weconv({Py \U}ses)

Liog M| < I(U A X min I(Pr, W) +9.
n g| | ( ) Weconv({P; |U}5es) ( v )

Proof. Given § > 0 there is a ¢ > 0 such that for all n large enough we can find
FeP(Kx M|X™) and g: V" x M — K such that for RVs K’ and M’ with

PK/M/km:ZP®nn km|x)
TneXn
for all (k,m) e K x M it holds that
max D P @)Wy )

Weconv({ Py ‘X}SES) " y" km

Pl i)y (5, m) < xp(=ne) (4.25)
%10g|/€|> n;I(UAYt)—é (4.27)
wlog| M| < I(U A X) = inf I(U A Y) +0 (4.28)
€

where the RVs {Y;},e7 are such that {P, |X}t€T = conv({Py ‘X}Seg) and U — X — Y, for
all t € T. This follows from the achievablhty proof of Lemma 4.4.
Define h: 8™ — [0, 1] such that for all s" € S™

=2 2 HPXY 2y P (b, mla™) Ly o (" m)).

z"eX™ kme 1=1
Y EV" Kx M

It holds for all P € P(n,S) that

2 h(s™)P®"(s")

snesSn”

= > Py Y Y] HPXY (@i, y) F(k,m|a™) L1y (", m))
snesSn y"gi}("kmeleMz 1

= 23 3 TTPew, o sd POOF (b mia Ly (" m)

z"eX" k,mekx M s"eSn i=1
yreyn
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which equals

Y Y X Py, @i y) PG (e mla™) g (4" m))

z"eX™ k,mekx M i=1 seS
= > D PEE WOy ") F (k,mlr") L gy (4" m)

z"eX™ k,mekx M
yreyn

with W € conv({Pf,S‘ }ses) defined appropriately. So from our choice of F' and g we
know that

2 h(s™)P®"(s") > 1 — exp(—nc),

sneS™

cf. (4.25) According to [3, Theorem RT] this implies for all s € S™

% 2 h(ms"™) > 1 — exp(—nc)(n + 1)\S|

well,

where II,, is the set of all permutations on [n] and we write for 7 € II, mwz™ for

Tr-1(1)," " s Tx—1(n), 1-€. 7 is a bijection on X™. Now consider (equivalently to the
proof of [47, Lemma 5.11]) independent RVs P, ---, Py, N = [n'™"], n > 0, each dis-
tributed uniformly on II,,. We want to show that there is a realization pi,--- ,py such

that (for n large enough)
N
2 >1— 3\, (4.29)

A > 0, for all s™ € S™. For this purpose we show (similar to the proof of [47, Lemma 5.11])

N
Pr(% > h(P;s") = 13 for all s" € S") > 0. (4.30)
=1

As |S™| grows exponentially with respect to n it is sufficient to show that
N
r(% > h(Pis") <1-3))

or equivalently

N
Z ) > 3)) (4.31)

is superexponentially small for all s" € 8". According to [47, Lemma 5.12] (4.31) is
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smaller than
exp(—(3A —eE(1 — h(Pys")))N).
As for n large enough and s™ € "

E(1 — h(Ps") —1——2h7r5

well,

the exponent is negative and as N = [n!"7] this yields the superexponential bound we
need. We define for all 7 € II,, and all (k,m,z") e K x M x X"

F™(k,m|z") = F(k, m|mrz")
9" (y",m) = g(my", m).

We can write for all s™ € S™ and 7 € 11,

= X% TP G w Pl (" m)

T eX”kaICXMZ 1
yreyn

=2 2 H 7, (i Yn (o)) F (B, m]z") Loy (4" ).
x” EX"kaICXMz 1
yreyn

As 7 is a bijection on X™ and )" respectively and we sum over all elements of these sets
this equals

> Y T Pey, @oy) Pl mima™) 1y (ry",m)

z"eX™ kmekx M i=1
yreyn"

=) X H (@i ) T (R, m|z") L gmy-10) (4" m)). (4.32)

z"eX™ kmekx M i=1
yreyn"

Define the distribution I" € P(Il,,) such that for all = € II,,

N
= 2, Ly (/N
i=1

Define M = M x supp(I'). We now define for all (k,m,p) € K x M x supp(I') and
" e A"

Fer(k, (m,p)lz"™) = FP(k,m|z")T(p)
ger(y", (m,p)) = g"(y", m).
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This means the permutation p is chosen randomly according to the distribution I' at
terminal X. Then p is made available to terminal ) as a part of the helper message.
The encoder and decoder are chosen form a set of encoders and decoders according to
D.

From (4.29) and (4.32) it follows that Pr(K # K ) < 3\ for all s” € S". Now consider
for (k,m,p) € K x M

Pyejp(k,m,p) = > PE"(@")FP(k,m|z")T(p)
rneXn

ST PO E (kymla™)T(p)

zneXn

which follows as p is a bijection on X" and we sum over all ™ € X™. So we get
Senexn P2 (@™)F(k,m|z™)T (p)
Frap(kim.p) = 5205 e PO e T 0)
Sonexn PE(@™)F (kmla™) 1

Zkelcz nexn P®n(zn)F(k mlz™) K]

where we use the corresponding property (4.26) of F' for the last step.
Consider ¢t € T. There is a P € P(S) such that for all (u,y) el x Y

Yt|U (ylu) = Z Vi X (ylz) X‘U(az|u)
TeX

Z ZP Y\X (ylz)) P X|0 7(2|u)

zeX seS

= D1 P(s) X, Py 3 (o) Py (fu)

seS T€X

—ZP y\U y|u)

SeES

where we use U — X — Y, forallt e T and U — X — Y, for all s € S. So {PYt\U}tGT c
conv({ Py V| 7}ses). Thus it follows that

inf I(U AY) = mf I(P PYt|U) inf I(Pg, W).

teT WGCOTL'U({ ‘U}SE‘S)
Accordingly we have with (4.27) and (4.28)

Liog K| = inf I(Pg, W) =4
n | | Weconv({ Py, |7} ses) ( v )

and

Llog | M| <I(UAX)— inf I(Pg,W) + 0.

Weconv({ P |U}seS)
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The bound on & log| M| = Llog| M| + Llog |supp(T')| follows for n large enough as
Llog |supp(I')| < L1log N < 1(2 + n)logn.

The infimum can be replaced by a minimum as com)({PYS \U} ses) is compact and I(Pg, W)
is continuous in W.
[

We have thus shown the achievability part of Theorem 4.6. Now we turn to the achie-
vability proof of Theorem 4.7. For this purpose we prove Lemma 4.13 below. We need
the following auxiliary results.

Lemma 4.11. Consider RVs X, {Y;}ses, U and U’ such that
|Puxy, — Puxy,lli < e
for e > 0 and all s € S and minygy Py(u) > 0, ming,gy Pys(u) > 0. It holds that

| min I(Fy, W) — MI/%%,I(PU’ W)l < é(e)

with 0(¢) — 0 for ¢ — 0 and §(¢) > 0, where W = conv({Py,y}ses) and W' =
conv({ Py, v} ses)-

Proof. Let W € W, so there is a P € P(S) such that for all (y,u) € Y x U it holds that

Wylu) = EP $) Py, v (ylu).

SES
We have
P Py u) Py 1 (y,u)+e€lX|
Wylu) = Y, D5 Z P AT
SES
P, /(”LL) E‘X‘
= Z P(s)(Py, v (ylu) pU,(USJ em\y\) Pyr(u)—e X[[Y]
seS
< 3 P(s) Py (ylu) + 61(6).
seS

where we define 01(€) > 0 appropriately and it is clear that d;(e) — 0 for ¢ = 0. In the
same way we can show

W(ylu) = Y P(s) Py, (ylu) = 81(e).
seS

So for all W e W there is a W’ € W’ such that

W (ylu) = W (ylu)| < 01(€)
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for all (y,u) € Y x U. From [26, Lemma 2.7] we thus get

I}I/lelll/l\/ I(Py, W) = I(Py, WI) — do(€) = I/%/Iéll/I\l} I(Py, W) —da(¢) = HélVI%}II(PU/ W) —6(e),
where we define d2(€) > 0 appropriately and it is clear that d2(¢) — 0 for ¢ — 0. The
last step follows as minycy, I(Py, W) is continuous in Py, as discussed in the context
of [24, Lemma 5]. Using similar steps we can show

I(Py, W) < I(Pyr, W) + 8(e).
Inin I(Py, W) M%%’(U ) +6(e)

Lemma 4.12. Let U, X be RVs with Pyx € P(n,U x X) for some n € N such that
HU|X) > 0 and minyegy Py(u) = 8 > 0. Choose a § > 0 such that § < H(U|X).
Additionally consider RVs {Ys}ses, |S| < o0, with Yy — X — U for all s € S. Denote the
symmetrizability of { Py, }ses by M and assume M < oo. Let L = M + 1. Assume Py
I(Py,W) > 0. Choose real numbers 7, R satisfying

is such that mmWeeonv({Pysw}ses)
7> 0 and
i I(Py,W)—17T<R< i I(Py, W) —27/3.
Weeonulthagtoes) LU TT WeeomilFtes) 0 72T

For any n € N, define integers K, L, M satisfying

L=KM =exp(|n(I(U A X) +6)])
K = exp([nR])L.

Then there exist constants cy,co > 0 such that for every sufficiently large multiple n of
n there is a set J = {Ugm}(k,m)e[k]x[M] € T¢7 satistying

1T )] 17 ()]

(1 — exp(—ncy)) T L<|TnTyx@E")| <+ exp(—ncl))WL (4.33)

~

for all z™ € T¢. Additionally we can choose sets L(y", m) c [K]| with |L(y",m)| < L
for all y" € Y™ and m € [M] such that for all m € [M] we have

Z > H Ve, U (Wil (Ukm)i) < exp(=nca), (4.34)

[K]ym: kgL(ynm) i=1

for all s" € §".

The first part of the proof is based on [31, Proof of Lemma 1]. There the probabilistic
method is used. Sequences are chosen randomly from a set with replacement according
to a uniform distribution. In contrast we choose the sequences without replacement. We
also prove additional properties compared to [31, Proof of Lemma 1]. The second part
of the proof essentially is [31, Proof of Lemma 3].
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Proof. We randomly choose u1,--- ,uy from 7} without replacement according to a
uniform distribution. Denote the corresponding RVs by Uy, -+ ,Ur. Consider 2" € T¢
and the RV Zgn = 301, ZL. with ZL, = ]szﬁx(w")(Ul) for [ € [L]. We can show as in
the proof of Lemma 4.3 that for 2" € 7§ and n large enough

Pr(|Zmn — %IJ > C%L) < 2efexp(n6/4)/2
U U

where ( = exp(—nc;) with ¢; = g.

Now consider the RVs S and UL = Uy - U such that Pgyz,, € P(n,S x Ukt x U)

and Py, = Py for all k € [L]. Let (s, u") € g7+ Similarly to [31, Proof of Lemma 1],
for each m € [M] we first estimate the size of the sets

{k: (u", U, ™) € Tiig, s

for 1 <1 < L. As in [31, Proof of Lemma 1], define for all 1 < I < L and (k,m) €
[K] > [M]

(Pug,s-u™s™)

k,m (Ul,mv Tty Uk,m) = ]ngllUS(u”,s")(Uk,m)-

Using the steps from (4.5) to (4.7) but replacing TU|U( ™) by TY |US( , 8") we can upper
bound

(Pyg,su™:s")
Z fk ! ( Ulm, auk,m)PUk77n|U1’m,--- Uk—1,m (uk,m|u1,m7 e 7uk‘fl,m)
Uk mET

by

|T[%\Us(un’sn)| < exp(—nI (U AUS))(n+1)IU
[TF=KM = 1-2F exp(n(—H(U|X)+6))(n+ 1)Ul *

So we can apply Lemma [24, Lemma A 1] with

exp(—nI (U, AUS))(n+1)4!
1—2L exp(n(—H(U|X)+8))(n+1)IUl "

a =
We thus get for all 1 <1 < L, m € [M] and

(P, u™,s™)
Zt 2 s e Uk

(PUUlsvu ,8™
that

pr(Z"! > Kt) < exp(—K(t — aloge)). (4.35)

(PUU 5-u™,8™)
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Choose an € satisfying 0 < € < R and

t=4xexp(n(|R—I(U AUS)|T +¢)).

So K(t — aloge) = exp(ne)/2 if n = ny(e, L), where we define ny (e, L) as

2(n+1)UF1oge

. . 1
min{n: 0 < 1-2L exp(n(—H(U|X)+6))(n+1)] < g exp(ne)}-

If 72

o g(u™, s") is replaced by 7'[1]“” 4(s™) then analogously we get for

(Pg,s:5™)

k' Urms o Ukm) = Ty (om) (Ukan)

Pgls,s")

m,l (
and Z(p o) = Zke[k] Trm(Uramy - Ukm)

pr(Z! > exp(n(|R —I(U; A S)|* +¢€))) < exp(—3 exp(ne))

(Pg,s»5™)

for n > nq (e, I:) Equivalently, as done in [31, Proof of Lemma 1], if 77 (s") is replaced

1S
by [}"S(s") and € with § +log(L)/n we get for

Pyg,s™
f’gmlis )(U17m7 T Uk,m) = :U'TU|S(3n)(Uk7m)

m Pyg,s™
and Z(PUS,s") = Zkze[K] flg,n[is )(Ul,ma tet ,Uk,m)

Pr(Zfh, o oy > Lexp(n(|R — I(U A S)|* +¢/2))) < exp(—5 exp(ne/2))
for n > n1(e/2,1). If I(U A S) > ¢ then
IR—I({UAS)|"=R—min{R,I(UAS)}<R—¢
(as R >€). So

Pr(f 20 ) > exp(—n6/2)) < exp(— & exp(ne/2)).

As in [31] denote by P; the set of all subsets of [K| with cardinality L and by P; s
k € [K], the collection of sets in P; that do not contain k. Now it is clear that continuing,
using the same steps as in [31, Proof of Lemma 1], we also get for all m € [M]

Pr([{JeP;: (u",Ujm,s") € T

UUﬁS}| > exp(ne)) < I:exp(—% exp(ne/L))

for R < ming ) I(U; A S) and n = ni(e/L,L). (Here we use the notation from [31,

Proof of Lemma, 1]. For J € P;, J = {j1, -+, j; } we denote by Uy, the ordered L-tuple
(Ujyms =+, Uj; m) where the indices are ordered as ji < j» < --- < j;.) Still using the
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steps from [31, Proof of Lemma 1] we additionally get

Pr(K (ks (Ukm Usm: s") € Tl

< (L + 1) exp(ne/6 — %exp(ne/élﬁ)).

for some J € P; , }| > exp(—ne/2))

for I(U/\U£S) Z €, R < min;;, I(U;AS) and all m € [M], n > max{n, (¢/(12L), 1),1log(2L)}

and n large enough such that
n(L +1)%(log U] + 1) < exp(ne/6)
and finally
Pr(K ' [{k: (Uk.m, Uim,s™) € Tirg,s for some i € Py i}| > exp(—ne/2))
< 2exp(ne/6 — 3 exp(ne/4)).

for I(U A U;S) — |R —I({U; A S)|* = e and all [ € [L], m € [M] and n > ni(e/12,1) and
n large enough such that

nd(log [U| + 1) < exp(ne/6).

As T3, TR, |S™, [P(n,U x UF x S)| and M increase exponentially with respect
to n we can use the union bound to show that the probability that J has the following
properties is greater than 0. This follows as we showed that the probabilities of the
corresponding complementary events each go to 0 doubly exponentially with respect to
n. So for all n large enough there is a 7 such that (4.33) holds for all 2™ € T¢ and for
all me [M], all u" € T}, all s" € 8" and all P, ;o € P(n,U x U" x §) we have
Kk upm € Tins(s™)} < exp(—ne/2))

for [(UAS)>e€

K7k (ugm, im, s™) € Tirg,s for some i # k}| < exp(—ne/2)
for (U A U;S) = |R—I(U; A S)|* + € and all [ € [L]

{k: (u", ugm, s") € T(}lUZSH <exp(n(|R—I(U, AUS)|T +¢))
for all I € [L]

{J € Pi: (W' usm. ") € T51 o} < exp(ne)

for R < min I(U; A S)
le[L]
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K {k: (ugm, wgm,s") € Tiois

for R < min I(U; A S) and I(U A ULS) =€
le[L]

for some J € P; , } < exp(—ne/2)

Comparing the properties above and our choice of R with [31, Proof of Lemma 3] it
is clear that we can show for each m € [M] that (4.34) holds by following the steps
in [31, Proof of Lemma 3]. |£(y", m)| < L for all y" € Y and m € [M] follows from
[31, Lemma 2].

Now we can prove Lemma 4.13.

Lemma 4.13. Consider the RVs X and {Y}.es, |S| < o with Pg %7, € P(X x V) for
all s € S and a RV U such that U — X — Y, for all s € S, Py € P(U). Denote the
symmetrizability of the AVC corresponding to {Py 7| <}ses by M and assume M < oo.
Let L = M +1and § > 0. For alln large eflough there is a stochastic matrix F' €
P(K x M|X") and a mapping g: Y™ x M — P; such that for RVs K, M, {K}snesn

and X™ with PKMK xn € P(K x M x ﬁi x X™) for all s"™ € 8™ defined by

PKMKSan(kama Z HPXYSZ xlayz (k7m|xn):ﬂ'g*1(fg)((ynam))

yneYyn i=1

for (k,m, k,z™) € K x M x K x X™ it holds that

> Pr(M =m) max Pr(K ¢ Ke|M =1m) <6 (4.36)
meM sres
H(K|M) = log K| (4.37)
Llog & > min I(Pg, W) =6 (4.38)

WGCOHV({P{,S | 0}365)

Moo IM| < I(U A X min I(Pr, W) + 9. 4.39
HoalMIS IO AR = win (R W) (4.39)

Proof. Assume first that H(U|X) > 0. The case H(U|X) = 0 is treated at the end of
the proof. Additionally assume that minyey Py (u), mingex Pg(z) > B > 0 for B small
enough. (Note that (4.36) - (4.39) depend on X and U only via the support of Py and
Pg.) We can also assume that

min I(Pz,W) >0
Weconv({Pys‘O}seg)

because otherwise the result follows trivially. Choose 41,52 > 0 and ¢ € N such that
€1(q)+e€3(q) +72(q, 01 +82)/q < §/2 where the functions €;,e3: N > Rand 75: NxR - R
are determined at the end of the proof. Son = [%Jq + 7 for 0 < r < ¢q. Consider RVs
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{Uhterr)s {Xi}tepr) and {Yio}soese with T < |P(| 7], X7)| such that
PUtXtqu € P((Z/lq’l X X) x X9 x yq)

and Py,x, € P([Z], U™ x X) x X9),

q

Py, x, v, ('™ @), 2%, y%) = Pux, ('™ )29 | [Py z(vileo)
=1

for all ((u?1 2),29,y7) € (UI™! x X) x X9 x Y9 for all s € S? and t € [T] while

7 te[7) forms a partition of 7 g and
X X 61
| Pu, x; (u, ©) — Py, x, (u,z)| < 1 + 02 (4.40)

for all (u,z) € (UT™! x X) x X9, where Uy X, are RVs such that Py, x, € P((UI™! x X) x
X9) with

PUqu((uq_17x)7xq) = P0®)q“(_1 ®PX'(uq_1v xq_lvxq)]l{x}(mq)'

Such RVs exist which can be seen as follows. First choose {T }te . Then consider
n n

{t}ierr) with ¢ € T)[(tqj for all ¢t € [T]. For each t € [T]| choose a u; € TUjXq762 (x¢)

(which implies that the ¢j-th component of u; equals the gj-th component of z;, for all
Jj € [17]]). Define the RVs {Ut}ier) with Py, x, = Pu, e, (This construction of Py, x, is
possible for n large enough, cf. [26, Chapter 2].)

Denote the symmetrizability of W := {Pysq|Ut} siese by M and assume M > M. This

means there exists a stochastic matrix U € P(SI|(U™ ' x X)M) such that

> Prau 0 U (] ), ()

s1eS9
q
_ _ — —1 —1
= > % TP, s wilm P G0 a)U )™ 20), o, ()
s1€89 $Ie X1 i=1

-1
7'%' )7 7(“’(]1\;[

(f ’xj\;[)- Summing over all y49~t € Y91 we
X)M),

is symmetric in (u? 1, z), (u
X

get with U € P(S|(U™ 1

U(Sq|(“({71a$1)7"' ,(U(]]r;l,l‘]\;[)) = Z U(Sq|(ulf*17x1)7' e ,(U?‘il,w‘M))
Sa—1
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that
_ _ — = -1 -1
D 2 ProxWalto) DL P @ @)U (sl (uf ), (u ayg))
5qES TqeX za—lexa—1
_ — = -1 -1
= D PrxWale) D5 P (@™ @)U (sl (uf ™ n), - (w2 )
5qES TIeXq

where the last step follows as
D Py (@i 2) =0
za-lexa—1
for z, # x. This equals

3 Py W) UGl ™) ().

5q€S

Thus this expression is symmetric in z, 21, - - - , ¥ ;; for an arbitrary choice of u‘f_l, )
It follows that W := {Py,q|U, }stese has symmetrizability M < M.

From mingex Py (z) = 3 we have for all ¢ € [T] that for d; + do small enough

=9
=

min Py, (u) = 8 > 0.

It is also clear from [26, Lemma 2.7] that for d; 4+ d2 small enough
H(Ut|Xt) >0
and

min _ I(Py,, W) > 0.

Weconv(W)

This can be seen as follows. Define RVs {ffsq}sqegq such that for all s7 € 87
q
—1 -1
P)?'SquXq(yq7 (uq ,LE),IEq) = HPYSi‘X(yi|mi)PUqu((uq ’:L.),xQ)
i=1

for all (y4, (ud 1, z),29) € Y4 x UT ! x X) x X1. From (4.40) and [26, Lemma 2.7] we
have for { > 0

min _ I(Py,, W) > min I(Py,,W) -, (4.41)

WEC(mU(W) WEconv({PY,Sq \Uq}quSq)

which is also discussed more explicitly in Lemma 4.11. For all convex combinations
W e com;({PY,q‘ Uq} saesa) consider the corresponding Pgq € P(SY) with marginals Pg, €
P(S), i € {1,--- ,q}. Define W; € P(Y|U) such that W;(y|lu) = > .5 Pgi(s)P5~,5|l~](y|u),

122



Achievability proofs for the jammed source

ief{l,---,q—1}, and W, € P(Y|X) such that W,(y|z) = > s Psq(s)Pys‘X(yM) for all
(x,y,u) € X x Y xU. According to Lemma 3.9 we have

q—1
min I(Py W) = min I(P~, W;) + I(Pg, W,
WEConv({PYSquq}sqesq) ( E ) Weconv({P{,sq‘Uq}sqesq) P ( U ) ( X q)
=(¢—1 min I(PqH, W
( ) Weaonv({Pys‘U})ses ( v )
+ min I(Pg,W). (4.42)

WGconv({P{,S‘X})SeS
For each t € [T'] generate the set J; accoding to Theorem 4.12 with

min _ I(Py,,W)—-7<R< min _I(Py,,W)—27/3,

Weconv(W) Weconv(W)

with 7 > 0 (and the corresponding K, M; and L;), where the RVs corresponding to U,
X and {Ys}ses are Uy, X and {Ysa}s0ese and the block length (corresponding to n in
Theorem 4.12) is [ 2].

We define for all ¢ € [T]

15
TX7t = TX;J

and for " " e X™"
n—r [%J n—r
TU\X,t(x ) = TUt\Xt(x ).

For all ¢t € [T'] define for all uq, € J;

Qulug) = ) 1 Ly enn) ()
t\"q [Tx,tl [TenTyx e (am=")]
xn—'f‘eXﬂ—T
Z 1 ﬂTleﬂt(xn—r)(uq)
ITx,tl [Tt Ty x ¢ (2™77)]

xn—TreXn—r

1
- 2 ITx e[| T Ty x,e (2™ 7)]
TV TeT x v, (uq)

and Q¢ = miny ez, Q:(ug). From (4.33) we know that for ¢ € [T] and all u, € J;
ST < Qelug) < —Lm—4 (4.43)

Texp(—[ g Jer) L—exp(—[ 7 Jer) Lt

Let u* € U7 x X)' a0\ U,ep Ji. Comsider the RV U, , Py, , € P(U? " x x)lal),

123



Chapter 4 — SK Generation with Constrained Public Communication Rate

such that for "™ € Tx 4, t € [T]

. n—ry _ _ Q¢ 1
PU7L7T‘X7L77'(uq|$ ) Qt(uq) |$QTU‘X¢($TL—'I’)‘

for ug € Ji 0 Toxp(z™77),

- n—ry _ 1 _ Q¢ 1
PUn—'r|Xn7T (Uq|1' ) - 1 Z Qt(u) |jtﬁTU\X,t($n_r)‘

ueJin Ty x, (&"T)
for uq = v* and

PUn_r\f("—’” (uq|xn—r) =0

else and for """ € X"\ Ute[T] Tx .t

B 1 u, =u*
PUn_T|Xn_T(Uq|xn T‘) — { q

0 else
We have for ¢t € [T and all u4 € J;

Pr(Up—r = ug| X" " € Txt)
- 2 Pr(Up—r = ug| X" " = 2" ")Pr(X"" = 2" 7| X" " € Txy)

:E”*TGTxyt
_ _ n—T __ n—T 1
N Pl e
" TET X ¢

1 n—ry(tiq)
Qi < TinTyxt@PTT)N B
B Z Qi(ug) [ TenTuix @) [Tl = Q. (4.44)

xn—’l’eX?‘l—T‘

For t € [T] and all z"~" € Tx; we have

®|VN—T _ _n—ry\ _ Qt 1
PI’(Un—r Fu |X =T ) = 2 Qt(u) ‘jtﬁTle’t(LanrN
ueJen Ty x,¢(™™T)

> Li(1 — exp(—[7]c1))Q:
1fexp(f[%J61) _ 28XP(*[%J01)

1+exp(—[%]c1) - 1+exp(—[%]cl)'

Now we consider for ¢ € [T], 2"™" € Tx and uq € Jp 0 Ty x, (")

Sn— ol on— Pr(X"="=z""" Up—r=uq| X" "€Tx )
Pr(X" 7" =" "|X" " e = Ug) = s :
( T | TX7t7 Un r Uq) Pr(Un7r=uq‘X”_TETX7t)
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which equals

Pr(X" "=z " | X" "eTx 4 )Pr(Up—r=uq| X" "=2""") Q: 1 1
Q¢ T Qulug) 1T Ty x 1 (2™ )| Q¢ Tx i
1
T 1T T o N @)

From (4.33) and (4.43) this implies

1+exp(flgjcl) 1

=T _ . n—T|yvn—r =
Pr(X"™" = 2" "X € Tx 4, Un—r = ug) < L—exp(—[ len) [Tx e (ua)l”

(4.45)

1 7]
where Tx|v4(uq) = TX:I\Ut
ug) = 0 for ug ¢ Ty "="). Define K = [K], M = [max,e[r) M;] and M = M x [T].

X,t(fl?
Let 2" € Txy, t € [T]. We define for k € K and m € [M;]

(ug). We also know Pr(X" " = 2" "|X"" € Txy,Un—y =

F(k,(m,t)|z") =Pr(Up—, = ufc,m|X"7T = 2" ") 4+ Pr(Up_, = u¥| X" = x"*r)i,
where we denote the elements in J; by u! = for all k € [K| and m € [M;]. For

M; < m < max M;
te[T]

and k € K we define
F(k, (m,t)|z"™) = 0.
For t € [T], t # t we define for (k,m) € K x M
F(k,(m,t)|z") = 0.
Let 2" " e X"\ Ute[T] Tx . We define
F(k (m, O™ = gy p

for all (k,m,t) € K x M x |T| with m < M;. (Here 2™ = (z"~",2") with and arbitrary
x" e X".) For (k,m,t) € K x M x [T] with m > M, we define

F(k,(m,t)|z"™) = 0.
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For k € K and (m,t) € M x [T] such that m € [M;] consider

Pr(K =k, M = (m,t))
= Y Pr(X" 7 e Ty )Pr(K =k, M = (m,t)| X" € Ty )
te[T]

+Pr(K =k, M = (m, )| X" " e x" "\ | | Txz)
Te[T]

Pr(X" e M\ | Txo)

te[T]
=Pr(K =k, M = (m,t)|X"" € Txs)Pr(X"™" € Tx.)

+ KZtel[Ti] MtPr(Xn_r c X’n—r\ U TXf)
te[T]
where we use the properties of F'(k, (m,t)|z™) for the last step. We have

Pr(K =k, M = (m,t)| X" " € Tx,)
= > A Pr(E =k M=(mt) X" ="

I Tx ¢l
xn TGTX,t
D
z"iTETX,t
0 B P =T =)
:E"_TETX’t

The first summand equals

Z Pr(Xvnfr _ xnfrpznfr € Txt)Pr(Un_, = u'];,mp?nfr =T X e TX,t)
:L'"*TETXJ
= D Pr(Unr =t | X" € Tx ) Pr(X"" = 2" "|Upp =ty X" 7" € Tixy)

:En_TETXJ

= Qt.
For the second summand we have

£ D Pr(Uny = u*| X" € T )Pr(X"" = 2" " |Un_yr = u*, X"77 € Txy).

"E"—"‘GT}Qt

Z Pr(U, , =ulX" " =z"") =1

uejtu{u*}
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we have
Pr(Up—r = u*| X" " € Txs) = 1 — LiQy.
So we have
Pr(K =k, M = (m,t)| X" € Txy) = Qi+ £ — Qi = £ (4.46)
Thus

Pr(K =k, M = (m,t)) = £Pr(X"™" € Tx,) +K27

te[T]

Pr(X" e X"\ | ] Txz)
te[T]

and consequently

PI‘(M _ (m,t)) _ ﬁPT(Xn_T € TX,t) WP (Xn Te X" 'r\ U TXt
te[T]

which implies

1 S 1 S -
Pr(X" €Ty 1)+ v Pr(X™ " eX™ "\ Userr Tx.0)
_ s TR Y i Mo te[T] ' X, 1
PI’(K = I{|M = (m, t)) = LP X’n—r p= 51 o X’nfr pr— —_ = e
ar, Pl € X,t)+72tem ar; Pl € \Userr 7x,)

So H(K|M) = log|K]|.

Now consider

D1 Py(m,t) max Pr(K ¢ K| M = (m,t)) =

(m.)eM sest
> Py(m,t)(max > Pr(X™" € Tz M = (m, 1))
(m.t)eM S T

Pr(K ¢ K| M = (m,t), X" " € Txz)

17] l |

+Pr(K ¢ Koo |M = (m, ), X" ¢ T1 OPr(X"7" ¢ Tl |[M = (m,1))

which can be upper bounded by

Z Py (m, t)(r,gwggPr(X” "€ Tx|M = (m,t))
(m.t)eM e
Pr(K ¢ Ko|M = (m,t), X" " € Tx.)

l |

+ max Pr(K¢KSn|M (m,t), X" ¢ T, Xq(; )
1

P g T 37 = (1)
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which is less or equal than

D1 Py(m,t)(max Pr(X"" € Ty |M = (m, 1))

(m,t)eM shest
Pr(K ¢ Kon|M = (m,t), X" € Tx.)
v Nn—T [QJ v
+Pr(X"T ¢ Ted | IM = (m, t)).

This expression equals
> Py(m,t) max Pr(X" " € Tx4|M = (m,t))
(m,t)eM e
-Pr(K ¢ Ksn|M = (m, t),f(”_r € Txt)
l%J

+ Pr(anT ¢ T)Z'q 51). (447)

Thus we now consider
Pr(K ¢ Ko|M = (m,t), X" " € Tx.)
for (m,t) € M and s" € S™.

Pr(K ¢ Ken|M = (m,t), X" " € Txt)

_ Pr(K¢Kn AM=(mt)| X" "eTx,)
B Pr(M=(m,t)| X"~"€Tx 1)

= MPr(K ¢ Kgo A M = (m, )| X" " € Tx)

which follows from (4.46). We will define g such that it only depends on 3"~". So for
all 2/ € X" and vy’ € J" this expression equals

Me) 2 2 marl [ Prgxuile)

Ake]AC yn—reyn—r itn_TETX,t =1
kJEPi/
k¢k

Pk, (m, 1)]2") L, 4y (4" (m, 1)),
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where 2" = (2" ", ') and y" =

n—r

(y ). With our choice of F(k, (m,t)|z™) this equals

wy Y Y o410

e L] P x (il
Ake]AC ynf'reynf'r xnf'reTX t =1
kEPL

k¢k

-Pr(U,—, = u};,mpZ"—T =z"")

M) )

1 SN PP P
ITx ¢ H PYsi\X(yzLTz)
Ak;elc yn—reyn=r T —TeT x4 =1
k‘EPI:

kek
Pr(Up_, = u*| X"

]1971(1;) (y", (m, 1))

YL gy (4 (1)),

The second summand can be upper bounded by

2exp(— ﬂ
q
Trexp(—| Zler) M DY 2 |TX,|H Ve \X(ylm)Lz Ly (y", (m, 1)
kell yn—reyn—ragn-reTx 1=1
keP
kgg/%
2exp(—|

n—r
1 S O P S (Y™
S ———n = Texp(— JC1) M, Z 2 2 [Tx 2] H PYSZ,\X(?JA%) M; ]]-gfl(k)(y ; (m, 1))
keP; y"~" anTTeTx i=1
eyn—r

which equals

2exp(— [EJ 1)

n—r
_ 2exp(—ncr)
1+exp{—|~ Jcl)Mt Z 2 |TX ] H Vs, | X yz|x2) 1+exp(—ncy)*
n Teyn T pn— 767—Xt =1

The first summand equals

wmyY Y Y TPl

Ake]AC yn—reyn—'r xn—reTX,t 1=1
k’EPﬁ

kik

Pr(Un—T = ui,mv Xnr = xnfrpz'n*?” € TXt) _1(k’)(

y", (m, 1))
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which equals

172 VNS YRR WS B PSP

Ake]AC yn-reyn—r xn_TET)Qt =1
kEPﬁ

kek
Pr(Un— = UZ,mIX"*T € TX,t)]lg—l(;;) (y", (m, 1))

Pr(X"T = 2" Uy, = uzm,X"*r € Tx.)

Using (4.45) and (4.44) this can be upper bounded by

1+exp(—| Jc1
1- exi< [Fler) tZ DY HPY (1% (ilz) mm T @iy (W™ (ms ).

n—r pn—r =1
keP eyn— TETXt
k¢1%

It is clear (cf. [26]) that for n large enough and 2"~" € Tx

[n
1 1 T t
‘TX|U,t(uZ,m)‘ < exp([%J(H(Xt\Ut) &) eXp(l JE) Xt‘Ut( |uk7m)

for £ > 0. So we get the upper bound

1+exp(—| QJCI
e en(2I Y, Y Y T1 P, 5 k)
! kel yn—reyn—r gn—reTx  i=1
keP
keéfc
Lyl
PXt\([J]z(xn T|“Z,m)Qtlg_1(,;)(y”,(m,t)). (4.48)

We now define for y" € Y, t € [T] and m € [M;] the mapping g such that k € g(y", (m,t))
(for k € K) if and only if

ke [t

yrrme
(It is clear that |£tyn,r ml < L.) So together with (4.43) we can upper bound (4.48) by

1+exp(— lq Jc1)

(1 exp( l Jl (l Jg)Mt

n

YN TRl Pt @ . (4.49)

kel ynf'r': zn—rexn—r i=1
REL!

,m
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This equals
1+exp(— [ Je1) n 1
(1—exp(— 2 J61)) eXp([EJ@K

>3 2 H Vg 10 ()il (U )i)- (4.50)

kel YT k‘¢£t

—r
;MM

Here we use the notation

(") = (S(i—l)q—i-lv e ,Siq)
(" ")i= (y(zel)qﬂa L Yig)
(ui:m)l = (u(ifl)qul’ S 7uiq)7
where v " = U}; m» for the corresponding projections. (Note that ufc n denotes a se-

quence in J; and thus we introduce this notation to access the components of uf , .)
From our choice of R we can upper bound this expression for all s € 8" and ¢ € [T] by

Lexp(—|7 1)

—q n _|n — _In
(1—exp(— [%J 1 GXp([qu) exp( [qJC2) eXp( [qJC3)
for a ¢g > 0, n large enough and an appropriate choice of £&. We thus have
> Py(m,t) glaglpr(xn "€ Tx | M = (m,t))
(m.t)eM sres
Pr(K ¢ Kan|M = (m,t), X" " € Txy)
< exp(—| 2 es)
D1 Pr(X"T e Tx ) Pr(M = (m,t)| X" € Txy),

(m,t)eM

which equals

te[T] me[Mt]
= exp(—|2]es) Y Pr(X"7" € Tx) < exp(—|2]cs).
te[T]

So considering (4.47), altogether the error probability goes to 0 exponentially with re-
spect to [7].
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From our choice of R, (4.41) and (4.42) we know that

.
llOgQZ (22 min I(P~, W
L lEJJrl( a Weoonv({Pf/slU}ses) ( U )
d min I(Py ) W) —(t+
q Weconv({PY,SlX}SEs) ( X ) ( C)/Q)
P min I(Pg, W) —e1(q) — e2(q,n),

Weconv({ Py, & }ses)

where €1(q), €2(q,n) > 0, €1(q) — 0 for ¢ — oo and e2(q,n) — 0 for n — oo for all ¢ € N.
We also have

T < (2] + 1)l
and (from continuity of entropy [26, Lemma 2.7] and (4.40)) for 72(q, 1 + d2) > 0
U A Xp) < LUy A Xg) + 72(q, 01 + 02))
= I(U A X) + e3(q) + 72(q, 61 + 62)/q.

where €3(q) > 0, e3(q) — 0 for ¢ — o0 and 7»(q, 01 + d2) — 0 for §; + 2 — 0 for all g € N.
So

Llog M| < I(U A X) - min I(Ps, W) + e1(q)

We
COWU({P{/SW}seS)

+ 72(g, 01 + 02)/q + €3(q) + e2(q, n) + MM 1og(n).

For the case H(U|X) = 0 we define a RV U’ with Pg, € P(U u {u'}) for a v’ ¢ U such
that

1Py 2piry = Pyoxinlh < €

for an € > 0 arbitrarily small, where b: U — U u {u'}, b(u) = u. We can choose U’ such
that at the same time H(U’|X) > 0. For this purpose define for all z € X

Pf],‘;((u'|x) =¢€/2
and

Py g (ulz) = Py 3 (ulz) — /2

for the unique u € U with ij((uhc) = 1. We then construct the protocol for this new

RV U’. The corresponding rates of this protocol are arbitrarily close to the desired rates
which follows from [26, Lemma 2.7], cf. Lemma 4.11.
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For the achievability part of Theorem 4.9 we now want to prove Lemma 4.15. For the
proof we use the following auxiliary result.

Lemma 4.14. Consider the RVs X and {Y}ses, |S| < o0 with Pgy € P(X x V) for
all s € S, the RV U such that U — X — Y, for all s € S, P; € P(U) and the RV T,
Pr € P([n!]) with Pr(y) = % for all v € [n!]. Let § > 0. For all n large enough there is a
stochastic matrix For € P(K x M|X™ x [n!]) and a mapping gor: Y™ x M x[n] - K
such that for RVs K, M, {Ksn}sne,Sn and X™ with PKMK n € P(K x M x K x X™)
for all s™ € 8™ defined by

Pyt i o snr (K5 M koa",7) Z H HCZ,yz YEcr(k,m|z™, )
yreyni=1
.]lgCR( )((3/ m, 7)) Pr(v)
for (k,m, k, ", v) € K x M x K x X™ x [n!] it holds that

Z Py (m) max Pr(K # Kg|M =m) <6

mem

H(K|MT) = log|K]|

Llog|KC min I(P-,W)—19¢

gl > ol ) (Fo, W)

Llog M| < I(U A X) - min I(Ps, W) +6.

Weconv({P; |U}5€5)

Proof. We again use Ahlswede robustification to prove this result. Given 9,61 > 0
there is a ¢ > 0 such that for all n large enough we can find F € P(K x M|X™) and
g: V" x M — K such that for RVs K’, M’ and {K!},ey with

Preoprier son (ks b2y = 7 PED (@, g™ F(k,mla™) L,y (57" m)

yneyn

for all (k,m, k,z") € K x M x K x X™ it holds that

supPr(K’ # K'|M' = m, X" e T3 5,) < exp(—nc) (4.51)
vey ’
H(K'|M") = log |K]| (4.52)
Llog|K| = ingf(ﬁ AY,) —6 (4.53)
VE
Llog M| < I(U A X) - inf IUAY,) +6 (4.54)
Ve

where the RVs {Y, },ep are such that {P, ‘X}Uev = conv({Py |X}3€5) and U — X — Y, for
all v € V. This follows from the achlevablhty proof of Lemma 4.5, (cf. (4.22) for (4.51)).
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Define h;;: 8™ — [0,1] for all m € M such that for all s” € S®

Yarexn Lrex [z XyS (ml,yl)F(k,m\x”)]lg,l(k)((y”,m))

(M) . _YrEY”
hm(s ) 2 snexn ZkE)CP (,7;"74) (k,ﬁl‘g)n)

It holds for all Py € P(n,S), m € M, that

Z - P@n n)
snesSn
Yarexn Zrex [z XY (z3,yi) F (k,m\z")]lg,l(k)((y",m))
- ) e f
m Ygnexn Yrex PR (z)F(k,m|z")

sneS™

which equals

Dgn yn 2 Don [1i1 Pry,, (@iyi) Pa(si) F(k;m|z"™)1 1) ((y" )
Sanexn Lrex PY" (@) F (km|zm)

This expression equals
San yn D 1lic Yes Pry,, (wisyi) Pa(s)F(kimla™) L -1, (4" m))
Dlanexn Likek P®n(mn)F(k m|z™)
Yanexn ek PRI @MWE™ (™2™ F (kmlz™)1 -1, ((y"m))

yrey”
Danexn 2kek P)@?"(;cn)F(k,m\g;n)

with Wy, € conv({Py 7| }ses) defined appropriately. This expression equals

! ARVl - ! ARl _ vn
Pr(K' = K|M' = m) > Pr(K' = K |M'=m, X" e T¢ ;)

Pr(X"e 7;?761|]\_4' =1m)
for the v € V corresponding to Pys,. So from our choice of F' and g we know that

Y. h(s")PE(s") > (1 - exp(—ne))Pr(X™ € T¢ 5 |M' = m)
smeS” ’

> 1 — (exp(—nc) + Pr(X" ¢ T)?,éJM/ =m)).

Now we use the Ahlswede robustification as seen before, so according to [3, Theorem RT]
this implies for all s € S™

o D hm(ws™) > 1— (exp(—ne) + Pr(X" ¢ T o [M' = 1m))(n + sl

well,

where II,, is the set of all permutations on [n] and again we write for = € II,, mz" for
Tr-1(1)," " Tx—1(n), 1.6. T induces a bijection on X™. We define for all = € II,, and all
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(k,m,z") e K x M x X"
F7(k,m|z") = F(k, m|mz")
9" (y",m) = g(my", m).

We can write for all s € S™ and 7 € II,,

Zz neXx™ Zkezc Hz 1 XYS

(xivyi)F(kvm‘xn)]lg—l(k)((ynvm))
hin (ws™) =4

1)

Danexn 2kek P}Q?"(xn)F(k,m\xn)

S ST Prg,, (nto tm(o) POamfa™) T 1 (077)
2ianexn 2ikek Pf‘?n(xn)F(kv"mxn) '

As 7 is a bijection on X™ and Y™ respectively and we sum over all elements of these sets
this equals

Zgj eg}(" Zke;cl_h 1 xy (‘Tﬂyl)F(k Tn|7‘—JD ) 1(k)((wy”,m))
Yy e

Senexn Sex PL" (@) F (kml|zn)
which equals

Yarexn 2rex izt qu (z3,y:)F W(kvm‘xn)]l(gﬂ')fl(k)((ynvm))

yrey”
Zz”e){n ZkEIC P)‘( (In)F(k,’ﬁ’L‘xn)

So we get

w2y > Pamhp(rs) > 1= (exp(—ne) + Pr(X" ¢ T¢ , ))(n+ IS (4.55)

well, meM

for all (sf,--- ,s"h‘) € (8")MI. Note that Pr(X™ ¢ T 51) decreases exponentially with
n. We now define for all (k,m) € K x M, {7y} eny = In, and 2™ € X"

We thus have

D) Py(m)Pr(K # K |M = m)

meM

=2 > D halwsy) Y, Y, P2 FT(k,mla")
well, meM TneX™ kek

=53 D halwsy) D) D P @) F(k, m|a")
7ell, meM neX™ ke

=& 2, 2 Pu(mha(rsy),
7ell, meM
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and with (4.55) this expression is arbitrarily small for all n large enough for all (s7,-- - , s"j\;”) €
(8")MI. Now consider for (k,m,v) € K x M x [n!]

Py (k,m,y) = 2 P®n ") F™ (k,mlz") Pr(y)
TneX™

Z P®” "YF(k,m|z")Pr(y)

zneX™

which follows as ., is a bijection on X", P)C?”(x”) = P)C?"(ﬂyx”) and we sum over all
" € X™. So we get

Pt ([, ) = — e PY" (@) F(kom|2") Pr ()
(KM ) = S s o PG Fhmam) Fr (7)
Smexn P®"(a: VF (k,m|z™)
Zkelcz nexn P (x”)F(k,m\z") 1K

where we use the corresponding property (4.52) of F' for the last step.
Consider v € V. There is a P € P(S) such that for all (u,y) el x Y

YUIU (ylu) = 2 Y| X (ylz) X\U( |u)
TEX

= 213 P(s) Py, 5 (y]2)) Py g (lw)

zeX seS

= D P(s) D Py, 5 (yle) Py (o)

seS TeX

—ZP y\U (ylu)

seS

where we use U — X — Y, forallveVand U — X — Y, for all s€ S. So {Py U}Uev c
conv({PYS‘ i7}ses). Thus it follows that

11)121@ U AY,) = 1nf I(Pg, Py, |U) inf I(Pg, W).

Weconv({ Py ‘U}ses)
Accordingly we have with (4.53) and (4.54)

Llog|K| = inf I(Pg,W) —4.

Weconv({ Py \U}ses)

and

LlogIM| < I(U A X) - inf I(Py,W) + 6.

Weconv({ Py |U}seS)

Now we can prove Lemma 4.15.

Lemma 4.15. Consider the RVs X and {Yi}ses, |S| < o with Pgy. € P(X x V) for all

136



Achievability proofs for the jammed source

s€ S, the RVf] such that U — X — Y for all s € S, Py € P(U) and the RVT, Pr € P(G)
with Pr(v) = |g\ for all v e G. Let § > 0. For all n large enough there is a stochastic

matrix Fog € 73(1§ x M|X"™ x G) and a mapping gcr: Y™ x M x G — K such that for
RVs K, M and {Kn}gnesn with PKMK € P(K x M x K) for all s™ € S defined by

PKMKnF g = HPXY zi, yi) For(k, mlz™, )
i=1
Loy (", 7)) Pr(7)
for (k,m, k,~v) € K x M x K x G it holds that

2 Pi;(m) max Pr(K # Ka|M =m) <6

mEM Sne Tl

H(K|MT) = log|K|

Llog|K min P W) =96

m | | Weconv({P; ‘U}ses) ( v )

Llog M| < I(U A X) — min I(P:, W)+
n | | ( ) WECOHV({PY/S'O}SGS) ( v )
%log G| <6

Proof. Let I' = (I'1, '3, ') where I'y, T'y, I's are independent RVs uniformly distributed
on Gi, Gy and Gs respectively. Let G; = [exp([|cilogn| — )] where ¢; > 1 and [ € N
(independent of n).

Given a DMC V € P(Y|X) in [6] an identification (ID) code (n’, N, A1, A2) is defined
as a family {(Q(-]7), D;)}igpny with Q(-|d) € P(X™), D; « Y™ for all i € [N]. The ID
code also satisfies bounds on the probabilities of an error of the first kind and an error
of the second kind respectively such that

M Q™) VE (D) < A

T"eX™

D QEMHVE(Dila") < A

TeX
for all 4,7 € [N], i # 7.

We are interested in ID codes for the noiseless binary channel. In the proof of [6,
Theorem 1 a)] the authors construct an ID code for the binary noiseless channel. They
consider a family Aj,-- -, Ay of subsets of {0,1}" with

N = exp(—n’) exp(exp(n’ — 1)) — 1.
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Each subset has cardinality exp(n’ —1). [ is chosen large enough such that
Alog(exp(l) — 1) > 2 exp(l) > 6
for a A € (0,1). Additionally it holds that
i~ Aj] < Aexp(n! — 1)

for i # j. Such a family exists according to [6, Proposition 1]. The (n’, N, 0, A) ID code
for the noiseless binary channel is defined such that

Q™ li) = sty La(2)

for all 2 € X" and D; = A; for i € [N].
Accordingly we know that there is a ([¢q logn], |K|,0,A) ID code for the noiseless
binary channel with

K| = exp(—[c1 logn]) exp(exp([e1 log n] — 1)) — 1.

So there is a mapping T': K x G — [exp([c1 logn])] such that

ﬁ Z ]]'{T(k:’Yl)}(T(kal)) < A
v1€G1

for all k, k € IC with k # k. More explicitly we can define

T(k,m) = d(cz, ()

for all k € K (and for convenience we assume w.l.o.g. that K = [|K|]) where c4, : Ar —
G1 is an arbitrary bijection for all Ay, and d: {0, 1}l¢1187] — [exp([c; logn])] is a bijection
too. For n large enough we have

—1o—1 lo
Llog|K| = n "2 —@20{

for an arbitrary choice of a > 0. (We could also use different constructions for identifi-
cation protocols in this step.)

Consider (F, g1) as described in Lemma 4.14 with block length n; = [calogn], ¢z > 0,
for all n large enough and we choose the corresponding U; = X. For the corresponding
set Ky we have

K1 = exp([e2 log nle)

for an € > 0. (If such a lower bound does not hold the theorem we want to prove is
trivially true.) So for an appropriate choice of co we have

exp([(e1 + ¢) logn]) > || > exp([e; logn]).
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We also have for an appropriate choice of ¢g > 0
M, < exp(|cz logn|cs)

and n1! < ([ezlogn])[¢21°871, So for an appropriate choice of ¢4 > 0 we have

Llog(n!) < ca(log(n))?

We choose Go = [n1!] and G5 = K.

Finally choose (F, gr) as described in Lemma 4.13 with block length n—ny and choose
the corresponding Uy, = U. We can assume that the symmetrizability of {Py V| S }ses is

M < . Otherwise the lemma we want to prove holds trivially [31, Theorem 1]. So we
have the corresponding list size L < co.

Choose K = K. Define (for an arbitrary injective mapping b: [exp([c; logn]|)] — Ki)
for all (k,k,mr,my) € KxKyx Mpx My, (71,72,73) € G1 xGa xGg and (2", 2" ™) € A"

FCR(k (l~€ mr, m)|([13 733“7”1) (71772773))
= F((O(T(k, 7))~ # kg o™ y2) Fr (k, mp |2 ™),

where * is a commutative group operation on X, and for ky € K, we denote the cor-
responding inverse element by k- L (This definition makes sense as f: K; — K,
f(k) = (T (k,7))) "' * k #~3" is a bijection for all k € K, 71 € G; and 73 € G3.)
So we have M = K; x M x M,.

We also define for all (k,l%,mL,m!) €K x Ky x Mg x My, (71,72,73) € G1 x G2 x G3
and (yn n— nl) c yn

ger((y™,y" ™), (k,mr,m), (11,72,73)) €
{gegr(y" ™ mr): bk xys = (g(y™,mu,72)) 1) = Tlg,m))
if the set on the right hand side has cardinality 1. So for this case the decoder is

specified. If this cardinality is not 1, an arbitrary element from X is chosen. Here we
define b=1(k)) = 1 for all ky ¢ b([exp(|e1 logn])]).

It holds that

Son For(k,(kmp m)|z™, (n ,72,73))P§”(x”)
Sion Xy For(k,(komp,m)lam,(v1,72,73)) PE" (@)

PK|MF(k|mL7m' k VY2, Y3) =

In the following we use the notation ™ = (z™, 2"~ ™). The numerator of the fraction
above equals

ZF' T(k,m)) "t xkw gt mula™, 2) PE™ (a™)

Z FL(ka mL|xn nl)P)@?ninl (xn—n1)7

Zn—mn1
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for the denominator we have

ZZF' T(k,7) ))71*%*737177%!@“1772)

k z"1
PEM (™) . Fr(k,mpla™ ™) P (@ ™).

xn—n1

Now we use the properties of (F}, g1) and get

ZF' Tk, 7)) ™ % kowyy L ufa™, 7o) PEM (a™)
- Z 3 Ak mufa™ 32 PE (@)
kel z™1

which is independent of k. So the complete fraction equals

Y nong Frlkamp |z )P " @rmy

Shnny Sy Fremp on =) P2 (gr=na) K]

where the last step follows from the properties of (Fp,gr).

Now we consider

Z Py (m) max Pr(K # K|M = m)

meM
= > Py(m) max > Pr(k # Ke|M = m, K = k)
et 1S ek
" Preprr (K|, ) Pry (v]m)
=Y
= Z Py (m) rrlga)%wl‘ 2 Pr(k # Ke|M = m, K = k)
e SMeST T ek

The term Pr(k # Ko |M = m, K = k) for (k,m) € K x M and s" € 8" can be written
as the fraction with numerator

Z Z H X’ff fUz,yz FL(k‘ mL|$” nl)

kexc: x"y" i=1
k;tk ’)’19{2/?3

E(BT e )) e mfe™ ) sy 6, (R ), (1,72,75) - (4.56)
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and denominator

Z H Py, (IZ-,yi)FL(k:,mL|x”’”1)ﬁE((b(T(k;,71)))*1 w koo L 2™, ).
Zhyn i=1
'717’72yv"/3
(4.57)

For all k € K and (y", (k,mr,m), (71,72,73)) € V" x M x G it holds that

Z 1 g5k (k) /~€ smp,m), (71,72,73))

k:eIC
k+£k

L (T o))~y e (U 7205 72)
+ L")
+1 {(y" ™1, mp k) (y”_nl s, k;’ '71)7

dqegr (y" "1 ,mL):
q#knT(g,71)=T(k,1)}

where we use y" = (y"t,y"""™).

Thus we can upper bound the fraction with numerator (4.56) and denominator (4.57)
by the sum of the three fractions with the same denominator and the numerators

2 H PXY/SZ, (i, i) Fr(k,mp|z" ")

z™y" i=1
Y1,72,73

’ ﬁﬂ((b(T(k,’yl)))il  fo 73*1’ 2™, ~2)
L (0o ) taang e (U T 12); (4.58)

n
n—n
2 HPX iy yi) Fr(k,mp |z ™)
oy i=1
Y1,72,73

) ﬁﬂ((b(T(kal)))il * ]~§ * 73_1’ m!|xn17,.)/2)
Lg-1qaye W™ M) (4.59)
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and

Z H PXY/SZ, (i, i) Fr(k,mp |z ")

z™y" i=1

Y1,72,73
’ ﬁﬂ((b(T(k,’}/l)))il % ko 73*1’ 2™, 2)
‘1 {w™ ™ mp k1): (yn—nlij’ k,fyl)_ (4.60)

Jdgegr (y"~"1,mp):
q#kAT(q,71)=T(k,11)}

At first consider the fraction with numerator (4.58). This numerator can be rewritten
as

ni
> [ Per, @iy g BT (koy2)) ™ # ke gt mufa™, )

™l y"l =1
71,772,773

' 1(971((b(T(k,w1)))—1*ic*»y;l))c(ynl,m!, v2)

Z H Pgy, (@i yi) Fr(k,mp|z")

Fn—ng 7ynfnl i=ni1+1
while the denominator can be rewritten as

ny
Z HPX'Y/QZ (:L"Lvyl)ﬁE((b(T(ka’Yl)))_l # ko 73_17m!|xn1772)

"1 ,ynl =1
V1,725,773

> 11 Pgy, (@i, yi) FrL(k, mp [2"7™).

" gyl i=n1+1
We can again rewrite this fraction and get
TLl — —
2y 124 P;zysl, (@4,y:) Fi (y3,my|z™ 7’72)11(9;1@3))6(2;"1 S Y2)

2,73
a1y 1y 2ivg 12, Pivs, (@i,y:) Fi(ys,mu]z™1,y2)

This is possible because f: G3 — Gs, f(7y3) = (bN(T(k7'Yl)))_1 # k3! is a bijection.

(Note that this expression does not depend on k, k& and my.) Now we consider the
fraction with numerator (4.59). This numerator can be rewritten as

ni
> T Pes, (o w) BT (e, 30)) ™" Fox g 2™, )

™1l y"l =1
V1,725,773

2 H PXY/SZ, (zi, i) FL(k, mL|f'5n7n1)ﬂ(gzl(k))c(ynfm ML)

AL S TLC | i=n1+1
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while the denominator can be rewritten as before. We can again rewrite this fraction
and get the fraction with numerator

Z H Pfdfsi (i, yi)Fr(k,mp|x"~")

N1 1=nq

y’VL—7l1
. l(gzl(k))ﬁ (yn—n1 , mL)
and denominator
n
DT Pey. (@o ) Frk,mpla™™). (4.61)
TN 1=n1 !
yn—nl

(This expression does not depend on m; and l;:) Now we consider the the fraction with
numerator (4.60). Using the same steps as for the second fraction this fraction can be
rewritten as the fraction with numerator

Z 1_[ PX{’sv (:Ci>yi)FL(k,’l7_’LL|$n_nl)

TN i=n1
yn777/1

1 =
'WZR (i ko) WML k)
m Jqegr(y"~"1,mL):
q#k AT (q,y1)=T(k71)}

and denominator (4.61). We have

1 e
WZI}' {(y" "1, mp,ky1): (yn nlme7k771)
gt dqegr (y" "1 ,mL):
q#kAT(g,71)=T(k,v1)}

<|g%|Z 2 ) Lyrgeq )y (T(g,71))
a#k '

- Z ﬁz Ly (T(g,71))
71

qegr (Y™ ™, mr):
q#k

< (L -1

So the third fraction can be upper bounded by (L — 1)A. Now we write Fy (i, s™) for
the first fraction and Fy(k,mp,s"™ ™) for the second fraction (and we use the notation
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s = (s",s" ™). Consequently we have

Z Py (m) max Pr(K # K |M = )

snesSn
meM
- 1 = n

< 2, Py(m) max T 2 Fi(my, s™)

meM kel
+ 3 Pulm) _max | gy 35 Falk o, o)

memM kekC
+ Y. Py(m) max w2 (D=1

meM ke

The first and second summand are arbitrarily small for n large enough, which follows
from our choice of (F},¢1) and (Fp,gr) respectively. Thus the error probability of the
whole protocol is arbitrarily small for n large enough.

Finally consider

Liog K| = (1 — lelanhy1_jo0 1, )

n n—mni
and
+log | M| = +(log |My| + log M| + log [Ky)
< n—1n1 log |Mp| + %([02 logn|cs + [(c1 + €) logn])

and thus the desired results for 1log|K| and Ilog|M| follow from the properties of
(Fr,gr). We also have

+log |G| = +(log |G| + log |Ga| + log |Gs])
< %([cl logn] — 1+ c;;(log(n))2 + [(e1 + €) logn]).
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