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Abstract

Grating-based X-ray interferometry is a novel imaging technique that offers great potential for

the visualization of materials and tissues that are not easily depicted using conventional X-ray

imaging methods. Tomographic reconstruction based on interferometric data provides not only

access to the distribution of an object’s attenuation but also to its refraction and ultra-small-

angle scattering power. These images provide valuable additional information that could well

expand the diagnostic capabilities of a clinical computer tomography (CT) scanner.

One of the main reasons why this technique has not yet been implemented in a modern CT

scanner is that the improved functionality comes at the cost of longer measurement times. Ex-

isting projection-based processing algorithms require not a single measurement per projection

angle but several measurements with precise grating movements in between. A further reason

is that these signal estimation algorithms are also very sensitive to changes in the system align-

ment due to mechanical vibrations or thermal drifts, which are abound in a clinical high-power

CT using a continuously rotating gantry.

Several solutions for these problems have been proposed but all suffer from major drawbacks.

In this thesis first two simple improvements to existing signal estimation methods are pre-

sented and then a novel direct reconstruction method is introduced. A fast algorithm for

reconstructions using this method is developed, the technique is tested at scans using just a

single measurement per angular position and further enhancements that make the reconstruc-

tions robust to vibrations and drifts are implemented and tested.

The results in this thesis demonstrate that it is possible to successfully reconstruct the attenu-

ation, refraction, and ultra-small-angle scattering of an object using only a single measurement

per projection angle on a system influenced by significant vibrations and drifts.

This is a milestone for the future implementation of a grating interferometer onto a continuously

rotating clinical CT scanner.
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Zusammenfassung

Röntgen-Interferometrie mit Gittern ist eine neue Bildgebungstechnik die großes Potential in der

Darstellung von Materialien und Geweben hat, die sich mit der konventionellem Röntgenbild-

gebung nicht zufriedenstellend abbilden lassen. Die tomographische Rekonstruktion basierend

auf den Daten von Interferometermessungen erlaubt es nicht nur die Verteilung des Absorptions-

koeffizienten für Röntgenstrahlen darzustellen, sondern man erhält auch eine genaue Karte

des Brechungsindexes und der Kleinwinkelstreukraft des Materials. Bei diesen zusätzlichen

Bildern handelt es sich um wertvolle Informationen, die die diagnostischen Möglichkeiten eines

Computertomographen stark verbessern könnten.

Einer der Hauptgründe warum diese Technik noch nicht in moderne CT Scanner eingebaut

wurde ist, dass die erhöhte Funktionalität bis jetzt mit einer längeren Messzeit erkauft werden

musste. Konventionelle Algorithmen zur Signalverarbeitung von Gitterinterferometrie-Daten-

sätzen benötigen nämlich nicht nur eine einzelne Messung pro Winkel, sondern mehrere Mes-

sungen pro Winkel und zwischen diesen Messungen müssen die Gitter noch zusätzlich präzise

positioniert werden. Ein weiterer Grund ist, dass diese Algorithmen sehr anfällig für klein-

ste Änderungen der Gitterpositionen durch Vibrationen und Erwärmung des Systems sind.

Bei einem leistungsstarken CT Scanner mit einer kontinuierlich rotierenden Gantry kommt es

zwangsläufig zu starken Vibrationen und thermischen Drifts.

In der Literatur wurden bereits mehrere Lösungen für diese Probleme vorgeschlagen aber alle

diese Lösungen haben spezifische Nachteile. In dieser Arbeit werden zunächst zwei einfache

Verbesserungen für bereits existierende Signalverarbeitungsalgorithmen entwickelt und dann

wird eine neue direkte Rekonstruktionstechnik vorgestellt. Im Folgenden wird ein schneller Al-

gorithmus zur Verwendung dieser neuen Rekonstruktionstechnik entwickelt, die Technik wird

an Messungen mit nur einer Messung pro Winkelschritt getestet und es werden Erweiterungen

der Technik implementiert und getestet, die die Rekonstruktion robust gegen Vibrationen und

Drifts machen.

Die Ergebnisse dieser Arbeit zeigen, dass es möglich ist die Absorption, Brechung und die

Kleinwinkelstreukraft eines Objekts mit nur einer einzelnen Messung pro Winkelschritt, auch

auf einem System, dass von Vibrationen beeinträchtigt wird, zu rekonstruieren.

Diese Erkenntnisse stellen einen bedeutenden Schritt für die zukünftige Verwendung eines Git-

terinterferometers auf einem klinischen CT mit kontinuierlich rotierender Gantry dar.
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Chapter 1

Introduction

Wilhelm Conrad Röntgen was one of the first persons in the world that experienced the imaging

power of X-rays when he discovered that radiation emitting from a discharge tube was able to

penetrate through a seemingly opaque matter and bring a fluorescence screen to glow. Shortly

after this observation he used a fine-grained photographic plate to take the first radiography

of a human body part, the hand of his wife Anna Bertha [1]. From this moment on there

was a strong interest in research on all applications of X-ray radiation and imaging methods

utilizing the penetration power of X-rays. These methods quickly became, and still are today,

the most important tools in medical diagnostic imaging. X-rays not only proved their merit

in medical applications, but they also became one of the most important tools in industrial

non-destructive testing.

A shortcoming of X-ray radiography is its two-dimensional nature. An X-ray radiograph col-

lapses the three-dimensional structure of an object onto a two-dimensional image, which makes

it impossible to guess the distance between multiple parts behind each other and can cause

different objects to show identical radiographs. A more suited depiction of the structure of

a three-dimensional object would be a three-dimensional image. This task has been solved

by the invention of computed tomography (CT) by Godfrey N. Hounsfield and Allan M. Cor-

mack in 1973 [2]. Using a series of two-dimensional projections images from different directions

they were able to reconstruct the three-dimensional distribution of the X-ray attenuation of

1



2 Chapter 1. Introduction

the scanned object. CT images have proven to be far more powerful for the diagnostics of

various medical conditions than X-ray radiographs and have found extremely wide usage in an

uncountable number of medical diagnosis tasks.

For decades the reconstruction of CT images was performed by using algorithms based on a

direct analytic solution to a simplified form of the CT reconstruction problem. A major change

in the development of CT reconstruction algorithms has been a move away from direct, one-

step reconstruction algorithms towards iterative reconstruction algorithms. These algorithms

are more computationally expensive but allow to accurately model the real physics behind the

X-ray imaging system and to correctly consider the statistical nature of the measurements by

employing models of the noise specific to the imaging process. These iterative reconstruction

methods allowed for a significant reduction of the necessary X-ray dose applied to patients for

a specific exam [3].

A much more fundamental issue inherent to all widely used X-ray imaging techniques is that

the contrast of X-ray imaging is solely based on the difference in attenuation of X-ray pho-

tons by different materials: bones or metals strongly attenuate X-rays, whereas soft tissue like

muscle or organs are more transparent to X-rays. This makes a differentiation between dif-

ferent soft tissues using X-rays a challenging task. Especially X-ray microscopy of biological

samples, like autopsies, is severely hindered by this weak contrast. A solution to this problem

has been proposed by using not only the attenuation of X-ray photons for imaging, but also

utilizing other optical phenomena, like refraction and scattering. Several techniques provid-

ing additional contrasts based on these phenomena have been demonstrated successfully under

laboratory conditions of varying rigidity [4], i.e. some requiring synchrotron X-ray sources. A

promising technique than can exploit these effects for imaging and that has been demonstrated

in various laboratory experiments is called grating-based X-ray imaging (GBI). Apart from the

conventional attenuation contrast, it gives access to differential phase-contrast, which depends

on differences in the refractive index of the specimen, and to the so-called dark-field contrast,

which is based on small-angle scattering in the specimen.

Various studies have demonstrated phase-contrast and dark-field X-ray radiography and com-

puter tomography (GBCT) using grating-based X-ray imaging setups but few of these works
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have used iterative reconstruction during the CT reconstruction [5, 6, 7, 8, 9, 10, 11, 12].

The scope of this work is to develop novel algorithms for GBI signal extraction and GBCT

reconstruction and verify their utility compared to the use of existing signal extraction and

reconstruction algorithms.

In Chapter 2 an introduction to the necessary theories needed to understand the physical work-

ing principles and the image formation process of GBI will be given. Then known analytic and

tomographic reconstruction algorithms for attenuation, differential phase and dark-field CT

will be explained and a general method for the development of novel reconstruction algorithms

will be presented.

Chapter 3 will review existing techniques for signal estimation from GBI measurements and

propose new methods with reduced estimation bias.

Problematic use scenarios of the sliding window interpolation technique, and possible ways to

ease the problems with them, will be discussed in Chapter 4.

Chapter 5 is the largest chapter of this thesis and introduces a novel iterative model-based re-

construction method for GBCT. The derivation of efficient algorithms to calculate the solution

of this method and the application of the algorithm for the reconstruction of previously hard

reconstruction scenarios will be shown. This chapter is concluded with a further expansion

of the reconstruction model that allows to reduce the effects of vibrations and various system

drifts on the reconstruction.

The thesis is concluded by a final chapter that contains a general discussion of the results and

gives an outlook into further areas that would benefit from additional future work.



Chapter 2

Background

In this chapter a brief summary of some of the key concepts necessary to understand the work

presented in this thesis will be given. First the principles of X-ray imaging are reviewed, then the

fundamentals of GBI are introduced and the formation of the measured signal using a grating

interferometer is explained. The third subsection introduces the most widely used analytic

CT reconstruction algorithm and explains the working principles of model-based statistical

iterative reconstruction. The chapter is concluded by the introduction of a general optimization

framework based on optimization of surrogate functions that can be used for the derivation of

CT reconstruction algorithms.

2.1 Principles of X-ray imaging

2.1.1 Complex index of refraction

The simplest way to describe X-ray wave propagation in vacuum and matter is by using the

projection approximation. This means an incident plane X-ray wave is following a ray path

and that a scatterer, if present, is so weak that he does not perturb the ray path. This way

any amplitude and phase shifts the X-ray wave experiences while traversing from one point

to another can be simply treated as a sum of these shifts along the wave path. The material

4



2.1. Principles of X-ray imaging 5

Figure 2.1: Angle of refraction α between two parallel X-ray beams separated by distance ∆y
after transversing a wedge-shaped medium with real index of refraction greater than unity.

property that contains information about the change in amplitude and phase a material causes,

while a wave transverses it, is called the complex refractive index n. The complex refractive

index is often written as

n = 1− δ + iβ , (2.1)

where δ is called the refractive index decrement and β is the imaginary part of the refractive

index. In vacuum the refractive index is unity, resulting in a δ and β equal to zero, but in

matter δ and β are different from zero. Usually δ is negative and β is positive but in the X-ray

regime δ is positive for energies well away from an objects electron binding energies (e.g. for

polymethylmethacrylate (PMMA): δPMMA(30keV ) = 2.9 · 10−7 and βPMMA = 1.18 · 10−10).

Using the refractive index a plane wave ψ0 with wave number k = 2π
λ

, where λ is the wave

length of the X-rays, traveling in direction k
k

through a homogeneous medium with refractive

index n from a starting point r0 = 0 to a point r can be described using the following equation:

ψ(r) = ψ0e
ink·r = ψ0e

i(1−δ)k·re−βk·r . (2.2)

It is obvious from this equation that passing through this medium has two separate effects on

the wave. The first exponential describes a phase shift of the incident wave ψ0 depending on

the real part of the refractive index, whereas the second exponential describes a reduction of

the incoming waves amplitude, depending on the imaginary part of the refractive index.

The change of amplitude can be characterized by the ratio of the incident waves intensity and
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the exit waves intensity, which is called the transmission T

T =
Iout
Iin

=
|ψout|2

|ψin|2

= e−2β k·r

= e−2kβd .

(2.3)

In the last line we rewrote the product of k
k

and r with the distance d the X-ray traveled through

the medium. If we rewrite the last line using the linear attenuation coefficient µ = 2kβ and

replace the distance d with the integral along the beam path l and allow for a spatially varying

index of refraction, we arrive at the famous Lambert-Beer law governing X-ray transmission

through an attenuating medium:

T = e−
∫
µ(l)dl . (2.4)

In an analogue fashion, the change of the X-ray waves phase, while traversing along the beam

path l, is given by the following equation

∆Φ =

∫
(1− δ(l)) k dl . (2.5)

Of further interest, especially in the context of grating-based X-ray imaging, is the comparison

of the phase change between two X-rays separated only by a small distance ∆y. As one can see

in Fig. 2.1, two neighboring X-ray waves are not in phase anymore, compared in the original

direction, after passing through a medium. By applying Huygens principle one can treat the

exit points of both waves as new point sources of X-rays, and in the far-field these new X-rays

will again form a plane wave (meaning neighboring rays are in-phase) propagating in a new

direction, which has an angle α to the old propagation direction. For small refractive angles α
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and looking at infinitesimal small distances ∆y, α is given as

tanα =
∆Φ λ

2π

∆y

≈ α =
∆Φ λ

2π

∆y

α = ∆Φ
∆y

λ
2π

= ∆Φ
∆y

1
k

α = ∂Φ
∂y

1
k

= ∂
∂y

1
k

∫
δ(x, y)k dx

α = ∂
∂y

∫
δ(x, y) dx .

(2.6)

2.2 Grating-based X-ray imaging

Grating-based X-ray imaging (GBI) is one of the most promising phase-sensitive X-ray imaging

techniques [13] because it can be used with conventional X-ray tubes and achieves a high

sensitivity of the signal to phase effects. The main working principle is based on the Talbot

effect, which is a near-field refraction effect that produces a reference intensity pattern. This

reference pattern is locally sensitive to attenuation, phase-shifts, and small-angle scattering

from objects in the beam path. In the following the Talbot effect will be briefly introduced and

the functional principle of a grating interferometer as well as the signal formation in GBI will

be discussed.

2.2.1 Talbot effect

Henry Fox Talbot discovered [14], that a periodic structure that is illuminated by a coherent

light wave produces a self-similar intensity pattern at certain propagation distances after the

periodic structure. These distances are called the Talbot distances zT and are given as

zT =
λ

1−
√

1− λ2

a2

≈
↓

for λ� a

2a2

λ
(2.7)

for an absorbing periodic structure with grating period a illuminated by light of wavelength

λ [15]. Interestingly, the Talbot effect is not only found for attenuating gratings but also for



8 Chapter 2. Background

Figure 2.2: The X-ray intensity reaching the detector pixels depends on the position of the
analyzer grating G2 and on the alignment of the interference pattern, which depends on the
position of the interference grating G1.

pure phase gratings. Here the appearance of the self-images does not simply follow the formula

given above, but the self-images appear at so-called fractional Talbot distances, which are, as

the name implies, specific fractions of the original Talbot distances. A through study of possible

fractional Talbot distances can be found in [16].

2.2.2 Grating interferometer

The simplest X-ray grating interferometer would consist of just a single attenuating or phase-

shifting periodic grating illuminated by a coherent X-ray beam. As explained by the Talbot

effect, there would be self-images of the grating at the Talbot distances down the beam path.

But, if one looks at Eq. 2.7 and plugs in realistic numbers for an X-ray imaging setup powered

by a conventional X-ray tube, one sees that a single grating interferometer would hardly work:

To maintain a high enough flux from a conventional X-ray source and to be able to fit the

setup in conventional laboratory spaces, it is unrealistic to work with Talbot distances larger

than two meters. Combined with a necessary X-ray energy for medical purposes of at very
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Figure 2.3: The intensity recorded in a single detector pixel changes periodically, with a peri-
odicity of the grating pitch pg, as function of the analyzer grating position.

least 40 keV, the necessary grating pitch and thus the resulting interference pattern pitch at

the first Talbot distance is around 5.5 µm. To be able to measure the exact location of the

interference pattern it would be necessary to sample the pattern with a resolution at least three

times smaller than the interference pattern pitch. As a conventional medical X-ray detector has

a pixel size of several hundreds of micrometers directly resolving the interference pattern is not

possible with a conventional medical X-ray detector. Similar setups have been demonstrated

but require highly specialized laboratory equipment [17, 18, 19].

To solve the problem of a too low detector resolution, a second grating with a grating pitch

close to the interference pattern pitch is introduced into the beam path. This grating is called

the analyzer grating and, if it is placed parallel to the intensity pattern produced by the

interference grating, it will block different parts of the interference pattern, see Fig. 2.2. If

the grating is shifted perpendicular to the grating bars, the intensity reaching the detector

will change periodically, see Fig. 2.3. Measuring the shape of this so-called stepping curve for

each pixel is the aim of most GBI experiments, as it contains averaged information about the

interference patterns in front of each detector pixel.

A second restriction has to be considered when designing an X-ray grating interferometer: To be

able to witness interference effects sufficient beam coherence is necessary. But, as the grating

interferometer is only relying on interference effects in one spatial direction, it is enough to

have sufficient transverse coherence in this direction. One way to quantify this necessity is to
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Figure 2.4: The incoherent X-ray source is turned into a series of small slit sources by the source
grating G0. These slit sources show sufficient coherence to produce an interference pattern after
the interference grating G1.

consider the X-ray source to be made up of numerous small slit sources [20]. Each of these

slit sources will produce an interference pattern at a distance d from the interference grating

and L from the slit source. If the next slit is placed at a distance ε to the first one it will also

cause the same interference pattern at the distance d but shifted by a distance ε L
L−d . If this

distance is exactly half the pitch of the interference pattern, the signals will cancel each other

out. From this rough estimation we can infer that the distance between neighboring slit sources

should be much smaller than g2

2
to avoid a loss of intensity of the interference pattern. One

way to construct such a multi-slit source is to place an absorption grating G0 with a period p0

satisfying

p0 � p2
1

2

L

L− d
, (2.8)

in front of the conventional X-ray source.

A schematic of such a three-grating Talbot-Lau interferometer is given in Fig. 2.4 and was first

proposed in [21].
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2.2.3 Moiré pattern

(a) (b) (c)

Figure 2.5: An overlay of two periodic structures with matching pitches (a) and two Moiré
pattern caused by slight mismatch of the pitches (b) and rotation of the patterns against each
other (c).

In an ideal world the pitch and positioning of the interference pattern and the analyzer grat-

ing could perfectly match, resulting in identical stepping curves for all pixels of an extended

detector. But in real measurements, the periods will always be slightly mismatched, and if two

fine pitched periodic structures with similar pitches are placed on top of each other a larger

pitched periodic structure can be observed. This is called the Moiré effect and is illustrated

in Figure 2.5 for three different alignments of a periodic illumination with a periodic absorp-

tion grating, each resulting in a different pattern of transmitted intensity. If the periods of

the patterns match perfectly and are aligned in the same direction no pattern is visible, see

Fig. 2.5A. But if the pitch of the patterns is slightly mismatched, see Fig. 2.5B, large periodic

structures in the direction of the periodic structures appear. The periodicity of these larger

structures becomes faster and faster with increasing mismatch between the periods of the fine

pitched structures. In grating interferometry this effect is observable if the periodicity of the

Talbot carpet (which is given by the periodicity of the interference grating and a possible op-

tical magnification) does not exactly match the periodicity of the analyzer grating and can be

easily created by moving the analyzer grating slightly out of the Talbot distance. Large peri-

odic structures in the direction perpendicular to the periodic structures are created if the fine

pitched structures are slightly rotated against each other (Fig. 2.5C), which causes a periodic
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matching and mismatching of the structures. This effect is also readily observed at a grating

interferometer if the gratings are slightly rotated with respect to each other. If these patterns

are measured with a resolution much larger than the fine structures, only the larger pitched

structures will be visible in the resulting image. In addition to the regular patterns with a

constant pitch often patterns with a spatially varying periodicity can be observed, see Fig. 2.6.

This can be caused by a multitude of effects: Slight bending of the gratings in the direction of

the beam, slight twisting of the grating structures due to fixation on a grating holder or simply

due to manufacturing errors resulting in a not perfect periodicity of the gratings.

Figure 2.6: A typical Moiré fringe pattern as observed at a grating interferometer.

2.2.4 Signal formation

Introducing a sample into the beam path changes the intensity, shape, and location of the

interference pattern depending on the structure of the sample, see Fig. 2.7. As mentioned

in the last section it is usually not possible to directly resolve the interference pattern on a

conventional detector, but the analyzer grating G2 is placed in front of the detector to raster

over the interference pattern. Near the Talbot distances, shifting the analyzer grating by one

period causes the readout of the detector pixels to change in a nearly sinusoidal pattern [20].
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Figure 2.7: The shape of the interference pattern is influenced by the object in the beam path.
The red object is a purely attenuating object, which causes a decrease in the mean value of
the interference pattern. The blue object is a purely phase-shifting object, which causes a shift
of the interference pattern and the green object is a purely scattering object, which causes a
decrease in the relative amplitude of the interference pattern.

Alternatively, shifting the source grating or interference grating causes the same effect (in this

case the interference pattern is moved over the stationary analyzer grating instead of vice-

versa). This process of shifting the analyzer grating multiple times and performing subsequent

measurements of points on the sinusoidal curve is called phase-stepping because each step

causes a change of the phase of the sinusoidal curve. The thus acquired phase-stepping curve

contains information about three mean quantities of the interference pattern in front of each

pixel: The mean intensity a0, the mean amplitude a1 and the mean phase φ1 (at a specific

grating position). These quantities can be compared between a scan with a sample in the

beam path (denoted by superscript s) and a reference scan without a sample in the beam path

(denoted by superscript r) to gain information about the optical properties of the sample, see

Fig. 2.8.

The relative change in the mean intensity
as0
ar0

directly relates to the X-ray transmission T through

the sample, which is governed by Lambert-Beers law, and connects directly to the line integral
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Figure 2.8: The shape of the stepping curve is changed in three different ways by an object
present in the beam path: The mean intensity a0 is reduced, the amplitude a1 is reduced, and
the phase φ1 of the curve is changed relative to a reference scan without an object in the beam
path.

over the linear attenuation coefficient µ of the sample:

T =
a0

ar0
= exp

[
−
∫
l

µ(l) dl

]
. (2.9)

The change of the stepping curves phase,

∆φ1 = φs1 − φr1 , (2.10)

is directly proportional to the mean lateral shift of the interference pattern

S =
∆φ1

2π
g2 , (2.11)

which in turn can be expressed as the angle between the propagation direction of the X-ray

after the sample to the X-ray propagation direction before the sample:

α ≈ tanα =
S

d
=

∆φ1

2π

g2

d
, (2.12)

where d is the distance between sample and detector. This refraction angle α was already

introduced in Eq. 2.6 and directly connects the phase shift of the phase stepping curves ∆φ1
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with the real part of the refractive index and the differential phase shift of the wave fronts

phase Φ in the direction y, which is perpendicular to the grating bars:

∂

∂y

∫
δ dx =

∆φ1

2π

g2

d
=
∂Φ

∂y
. (2.13)

The relative change of the amplitude
as1
ar1

of the phase stepping curve is called the dark-field

contrast. The main cause for the change of the amplitude of the stepping curve is a change

in the mean amplitude of the interference pattern caused by small-angle X-ray scattering from

randomly distributed unresolved structures in the sample [22]. But, also locally unresolved

edges or structures that cause a non-constant, but possibly zero-sum, shift of the interference

pattern can result in a local extinction of the interference pattern, which results in a lowered

mean amplitude of the interference pattern [23].

For the scope of this work, the origin of the dark-field contrast will be modeled by a single simple

material coefficient, analogous to the attenuation coefficient, the linear diffusion coefficient

ε [20]. A single sharp X-ray beam traversing a thin slice of a coherently scattering material

will not be sharp anymore after exiting the material but will be transformed into an angular

distribution of intensity A1(θ). If this distribution is assumed to be Gaussian shaped, one can

write

A1(θ) =
1

σ1

√
2π

e
− θ2

2σ2
1 , (2.14)

where σ1 is the width of the scattering distribution.

If another slice of a scattering material is added directly behind the first slice, the scattering

distributionA1(θ) will be further broadened, which is mathematically expressed as a convolution

of A1(θ) with the scattering distribution A2(θ) caused by the second slice. More general one

can write for N slices of materials behind each other

A(θ) = A1(θ) ∗ A2(θ) ∗ ... ∗ AN(θ) . (2.15)

If all these distributions are Gaussian shaped, the resulting angular beam profile A(θ) again
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takes Gaussian shape

A(θ) =
1

σ
√

2π
e−

θ2

2σ2 , (2.16)

with

σ2 =
N∑
i

σ2
i (2.17)

for discrete scattering materials or

σ2 =

∫
σ2(x)

∆x
dx =

∫
ε dx (2.18)

for a series of infinitesimal small scattering structures with extent ∆x along the beam path in

x-direction. On a detector in distance d behind the scattering object, this will smear out an

interference pattern Ir(x) as follows

Is(y) = Ir(y) ∗ A(y) , (2.19)

with the scattering distribution A(θ) propagated onto the detector (assuming small θ) as

A(y) =
1

σd
√

2π
e−

y2

2σ2d2 . (2.20)

For a sinusoidal interference pattern Ir(y) with period 2π
p

this smearing will result in a new

sinusoidal pattern with the same mean value and phase but with its amplitude reduced by

D = e
− 2π2d2

p2
σ2

= e
− 2π2d2

p2

∫
ε dx

, (2.21)

which can be identified with the dark-field contrast.

2.3 CT reconstruction

X-ray radiography was a breakthrough in medical diagnosis when it was discovered but it

was still hampered in its efficiency by its lack of depth information. A shortcoming, which
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was solved by an invention of the engineers Godfrey N. Hounsfield and Allan M. Cormack

in 1973 [2], and for which they were awarded the Nobel prize for physiology or medicine in

1979. They called their invention computerized tomography (CT). This technique consists

of two main steps: Signal acquisition and CT image reconstruction. During the acquisition

multiple two-dimensional projections of an object are acquired from a number of different

angular positions and in the subsequent image reconstruction an algorithm is used to estimate

the three dimensional spatial distribution of the attenuation coefficients of the scanned sample.

Since its invention, CT has become one of the most important medical examinations worldwide,

e.g. 143 CT exams per 1000 inhabitants were performed in Germany in 2015 [24]. This

number shows the importance of CT exams for medical diagnosis today, but it does not come

without a drawback: Medical applications account for 98% of the public exposure to ionizing

radiation from non-natural sources [25], and of these CT examinations are the largest single

contributor [25].

These two sides of the same coin have also been the major drivers for research and development

in the field of CT imaging: Improving the image quality allows for more precise diagnosis and

allows to use CT imaging to diagnose ever more pathologies but at the same time the necessary

level of patient irradiation to achieve images with a predefined quality has to be reduced.

Next to hardware improvements that encompassed nearly all components of a CT scanner,

a major contributor to increasing CT imaging power are improvements of the reconstruction

algorithms.

As this thesis is mainly concerned with developing novel CT reconstruction algorithms for data

acquired using GBI, the following section will present the necessary previous works and theories

to understand the most recent techniques for reconstruction of conventional attenuation CT.

In addition a short overview of previous approaches for the reconstruction of the differential

phase-contrast signal for phase-contrast CT (PCCT) and of the dark-field signal for dark-field

CT (DFCT) will be given.
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2.3.1 Analytic reconstruction

Decades before Hounsfield and Cormack performed and reconstructed the first CT scan, the

Austrian mathematician Johann Radon laid the theoretical foundation for an analytic recon-

struction algorithm in his work “Über die Bestimmung von Funktionen durch ihre Integralw-

erte längs gewisser Mannigfaltigkeiten” [26]. Johann Radon introduces what is known today

as Radon transform, proves that it, and its inverse, are uniquely defined, and gives a solution

on how to calculate the inverse Radon transform.

The Radon transform describes the transformation of a given two-dimensional function f(x, y)

into the space spanned by the line integrals p(s) over f(x, y) along straight lines s. For a single

straight line si we can write

p(si) =

∫
si

f(x, y) dl . (2.22)

If we identify f(x, y) with the spatially varying linear attenuation coefficient µ(x, y) and the

straight lines s with the straight lines from an X-ray source to an X-ray detector and solve

Lambert-Beers law, Eq. 2.45, for the line integral over µ we arrive at

− log
Ii
I0
i

=

∫
si

µ(x, y) dl . (2.23)

This equation shows that, for an ideal noiseless CT scan, the detector pixel measurements (after

normalization and log-transform) are points in the Radon transformed space of the scanned

object. Consequently, CT reconstruction can now simply be seen as the process of performing

an inverse Radon transformation!

To find such an inversion to the Radon transform we will define a coordinate system in which

the function f is a function of the coordinates x and y and the lines s can be describes by the

coordinates θ and r, where θ is the angle of the normal with respect to the line which crosses

the origin and r is the distance of the line to the origin. Using this notation we can define all

line integrals under a certain angle θ as follows

pθ(r) =

∫
s(θ,r)

f(x, y), dl (2.24)
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This set of line integrals for all relevant r at a given θ is called a parallel projection. Using

a parallel illumination, or by scanning a finite illumination collimated to a pencil beam shape

over the sample, allows to measure such a parallel projection. In conventional medical X-ray

systems fan- or cone-beam geometries are more common, but to keep this chapter concise it will

be limited to the case of a parallel beam as the more general geometries become increasingly

complex and do not add much value in the understanding of analytic CT reconstruction. More

information on this topic can be found in [27].

2.3.2 Filtered backprojection

The most widely used analytic reconstruction algorithm is called filtered backprojection (FBP)

because it relies on two operations, a filter operation applied to all projections pθ and the

backprojection operation. The backprojection operation means that the values of all projec-

tions are simply smeared out along their respective lines and added up. Mathematically this

backprojection g(x, y) of p can be written as

g(x, y) =

∫ π

0

pθ(r) dθ . (2.25)

The rigorous derivation of the algorithm is elaborate, see [27], but is quickly summarized in the

following.

We can write the function f(x, y) as a function of its two-dimensional Fourier transform F (u, v)

and perform a change of the coordinate system of the Fourier space to polar coordinates (ρ, θ)

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v) e2πi(xu+yv) du dv (2.26)

f(x, y) =

∫ π

−π

∫ ∞
0

F (ρ cos (θ), ρ sin (θ)) ρ e2πi(xρ cos (θ)+yρ sin (θ)) dρ dθ (2.27)

with u = ρ cos (θ) and v = ρ sin (θ) . (2.28)
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Employing the symmetries of the equation above [27], one arrives at the following form

f(x, y) =

∫ π

0

∫ ∞
−∞

F (ρ cos (θ), ρ sin (θ)) |ρ| e2πiρ(x cos (θ)+y sin (θ)) dρ dθ . (2.29)

Now one can utilize the Fourier slice theorem [27], which states that the values along one line

through the origin of F (u, v) under angle θ is equal to the one dimensional Fourier transform

of the parallel projection of f(x, y) along r under the angle θ,

F (ρ cos (θ), ρ sin (θ)) = Pθ(ρ) (2.30)

F (ρ cos(θ), ρ sin(θ)) = F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) e−2πi(xu+yv) dx dy

Pθ(ρ) =

∫ ∞
−∞

pθ(r) e−2πirρ dt .

Inserting Eq. 2.30 into Eq. 2.29 to substitute F (ρ cos(θ), ρ sin(θ)) yields

f(x, y) =

∫ π

0

∫ ∞
−∞

Pθ(ρ) |ρ| e2πiρ(x cos (θ)+y sin (θ)) dρ dθ , (2.31)

which can be understood as a filter operation in Fourier space on the projections,

p̄θ(r) =

∫ ∞
−∞

Pθ(ρ) |ρ| e2πiρr dρ , (2.32)

and a subsequent backprojection of the filtered projections,

f(x, y) =

∫ π

0

p̄θ(x cos (θ) + y sin (θ)) dθ . (2.33)

2.3.3 Sampling

The previous derivation of the filtered backprojection algorithm assumed the full continuous

projection space p(r, θ) to be known, which, of course, is unrealistic for a real reconstruction

problem: During a scan, the Radon space is only sampled at discrete positions. Now a funda-

mental question is: How many measurements are necessary to achieve a certain image quality
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Figure 2.9: Sampling points for a CT scan in parallel beam geometry with equidistantly dis-
tributed angular positions over 180 deg in Radon space with coordinates (θ,r) on a Cartesian
and a spherical grid.

and how should these be distributed in the sampling space? To answer this question it is helpful

to visualize the sampling space. Two different visualization of the Radon space are commonly

used: One using Cartesian coordinates (θ,r), which is called the sinogram and is often used to

visualize the projection data acquired during a CT scan, and one using the coordinates (θ,r) in

a polar coordinate system, see Fig. 2.9. For parallel beam illumination the measurements fall

on regular points inside of a rectangle in the Cartesian grid and on straight lines through the

origin in the spherical grid. The Cartesian grid is ideally suited for visualization of measured

parallel-beam data as pixels without requiring interpolation. Scans acquired using equiangular

and equidistant Fan-beam geometries are situated on curved lines through the origin in the

spherical coordinate system, see [28] for further information. For sampling considerations the

visualization using the spherical coordinate is quite helpful because, if one recalls the Fourier

slice theorem employed in the derivation of the FBP algorithm, see Eq. 2.30. One can realize

that the visualization of Radon space sampling is equivalent to visualizing points sampled on

the 2D Fourier transform of our object.
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The first consideration about sampling can be derived from the Nyquist-Shannon sampling

theorem [29], which states that a band-limited function with a maximum frequency of fmax

can only be exactly recovered if it is sampled with a frequency fsampling of at least two times

fmax. This is not directly applicable to the ideal sampling situation, as real objects and their

projections may have sharp edges and thus their frequency representation is not necessarily

band limited, but it is applicable to the real case where we have a pixelated detector with a

certain pixel size B and our measurements are actually a convolution of the ideal signal with

the rectangular window function of the detector, which is causing a low-pass filtering that limits

the resolvable bandwidth of our signal. It can be calculated [28] that the low-pass filter through

convolution with a box of size B limits the maximum frequency of the signal to fmax = 1
B

. Thus,

we should sample the projections at least twice on the length of a detector pixel. An easy way

to achieve this is by constructing the CT scanner with a quarter detector offset [28], which

means that the central pixel on the detector is offset by one quarter of the detector spacing

from the optical axis. This results in a sampling pattern that after rotation of the setup by

180◦ is again sampling under the same angle but at sampling points shifted by a distance of

1
2
B.

The second consideration [28] about sampling can be derived directly from the Fourier slice

theorem: The Fourier transforms of two adjacent projections measured with an angular dis-

tance of δ = π
Nproj

and with Nsamp sampling points each correspond to the same number of

measurements along two lines through the origin of the two-dimensional Fourier transform of

the scanned slice of our sample, see Fig. 2.10. As the arrangement of sampling points does

not change between projections the highest frequency fmax measured in each radial line of

the Fourier space is the same for each projection, thus the highest frequencies measured in all

projections lie on a circle around the origin with a radius of fmax in the Fourier space of the

measured object. For small δ the distance between two measurements with frequency fmax is

∆ang = δfmax and the distance between two measurements on the radial lines is ∆rad = 2fmax
Nsamp

.

If we want to achieve a consistent estimate of both the features with highest angular and ra-

dial resolution, we should sample the Fourier space in angular direction at least as well as in

radial direction (which is given by the density of sampling points per projection as in the first
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Figure 2.10: Sampling points on the two-dimensional Fourier space of a scanned object slice
acquired by one dimensional Fourier transforms of two projections with an angular distance δ
and 2

fmax
sampling points per projection (adapted from [28]).

consideration), so the following relation should be fulfilled:

∆ang . ∆rad

δfmax .
2fmax
Nsamp

π

Nproj

.
2

Nsamp

Nproj

Nsamp

&
π

2
. (2.34)

2.3.4 Statistical iterative reconstruction

A more sophisticated approach to CT reconstruction is to treat the reconstruction as a statistical

signal estimation from a series of measurements that are generated from stochastic processes.

Following this school of thought allows to take into account the probability distributions of the

measurements and results in reconstructions with reduced noise.

The most common statistical estimation approach for CT reconstruction is derived from the
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maximum a posteriori probability (MAP) principle based on Bayesian statistics.

2.3.4.1 Maximum a posteriori probability

Assuming a CT scan with measurements y is the result of a stochastic process which depends

on the (non-stochastic) spatial distribution of the attenuation coefficient µ one can write the

probability p of recording a measurement y given the distribution of µ as follows: p(y|µ). This

way of writing p should emphasize that p is the probability for measuring the specific realization

of a stochastic process y, given that µ is the true value of the attenuation coefficients that

governs the shape of the probability distributions of our measurements [30].

Using Bayes’ theorem [30], one can rewrite this equation:

p(y|µ) = p(µ|y)
p(y)

p(µ)
. (2.35)

The first term on the right side seems much more suitable for the goal of statistical estimation

of µ because it describes the probability that a certain µ is the true value of µ given an

observed measurement y. The terms p(y) and p(µ) are called prior probabilities because they

are the probability, based on prior knowledge of the world, of witnessing the measurement y

regardless of the object present, and of the measured object having the shape µ, regardless of

the performed measurement.

The MAP estimator µ̂ is now simply the value of µ that maximizes the probability p(µ|y):

µ̂ = arg max
µ

p(µ|y). (2.36)

Using Eq. 2.35 this becomes

µ̂ = arg max
µ

p(y|µ)
p(µ)

p(y)
(2.37)

which can be simplified to

µ̂ = arg max
µ

p(y|µ) p(µ) (2.38)
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as p(y) does not depend on µ. Often finding the maximum of the product of two functions is

harder than finding the maximum of the sum of two functions. Fortunately, the logarithm of

a function still has the same optima as the original function, which one can use to rewrite the

problem:

µ̂ = arg max
µ

ln [p(y|µ)p(µ)]

= arg max
µ

ln [p(y|µ)] + ln [p(µ)]

= arg min
µ

L(y|µ) +R(µ) .

(2.39)

As most optimization literature is written in the view of minimizing objective functions, a

cosmetic change from maximization to minimization was performed in the last equation. To be

able to numerically solve this optimization problem one first needs to find suitable expressions

for the data fidelity term L, which is the negative logarithm of the likelihood term p(y|µ),

and for the regularizer term R, which is the negative logarithm of the prior probability p(µ).

It should be noted that the MAP estimator is identical to the maximum likelihood estimator

if the prior knowledge R is constant for all possible µ, which means that no prior knowledge

about the object, that allows us to prioritize any specific µ is known at all.

2.3.4.2 Likelihood terms

The statistical distribution of the measurements is quite complex if analyzed in-depth [27], but

can in many cases be approximated very well by independent Poisson or Gaussian distribu-

tions [31].

2.3.4.2.1 Poisson distributed noise In the case of Poisson distributed measurements y,

the probability of measuring a certain number of photons yi at one measurement i given the

expected number of Photons of this measurement ȳi is given by the following probability

pP (yi|ȳi) =
ȳyii
yi!

e−ȳi . (2.40)
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The probability for a specific scan with n independent measurements follows as:

pP (y|ȳ) =
n∏
i=0

ȳyii
yi!

e−ȳi . (2.41)

Taking the negative logarithm of this probability gives us the data fidelity term for Poisson

distributed measurements

LP (y|ȳ) = − ln pP (y|ȳ) =
n∑
i=0

ȳi − yi ln ȳi, (2.42)

after dropping constant terms.

2.3.4.2.2 Gaussian distributed noise For Gaussian distributed noise there are two pa-

rameters that describe the shape of the probability distribution for a measurement yi: The

expected (or mean) measurement ȳi and the measurement’s variance σ2
i . The corresponding

probability distribution reads

pG(yi|ȳi, σ2
i ) =

1√
2πσ2

i

e
− (yi−ȳi)

2

2σ2
i . (2.43)

If the measurements are independently distributed, the joint negative log-likelihood without

constant factors is given as

LG(y|ȳ,σ2) = − ln pG(y|ȳ,σ2) =
∑
i

(yi − ȳi)2 1

σ2
i

+
∑
i

lnσ2
i . (2.44)

2.3.4.3 Forward model

The data fidelity terms for both Poisson and Gaussian distributed measurements are dependent

on the expected measurements ȳ, which in their turn are dependent on the expected distribution

of the attenuation coefficient µ of the scanned object. The connection between µ and ȳ (as well

as σ̄, if applicable) is called the forward model of the reconstruction task. For the attenuation

of the intensity of a monochromatic electromagnetic wave passing through matter this forward
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model is simply the Lambert-Beer law, see Eq. 2.4:

Īi = Īri e−
∫
µ d`i , (2.45)

where Īri is the expected intensity of a reference scan without any object present and
∫
d`i

represents an integration along a ray pointing from the X-ray source to the detector pixel i.

For ideal detectors, the expected intensities Ī are equal to the expected measurements ȳ and

one can directly use this equation, with ȳ = Ī as the forward model. But for realistic, non-ideal

detectors, there are many detector specific effects [27] (offsets, detector blur, non-linearities,

afterglow and many more) that must be corrected before the measured data is quantitative. So

many CT systems only give access to the measurement data after corrections for these effects

are applied, the measurements are normalized with respect to the reference scan intensity, and

after taking the negative logarithm. The mean value of this data should than be proportional

to the expected line integrals l̄

l̄i = − ln
Īi
Ī0
i

=

∫
µ d`i (2.46)

It should be noted that the noise of these line integrals is not Poisson distributed even if the

intensity measured by the detector was Poisson distributed before the transformation because

of the non-linearity of the logarithm (and of any other non-linear correction steps before).

The forward model for the variance, if using a Gaussian noise model, is extremely dependent

on the detector used. In the case of an ideal detector and a monochromatic X-ray source

with sufficient flux and the expected variance would be directly proportional to the expected

measured intensity,

σ̄2
i = Īi . (2.47)

For a realistic energy integrating detector this noise model will not be enough and the noise

model will have to incorporate a sensitivity si and detector readout noise with variance Σ2
i for

each individual detector element, which would lead to the following noise model,

σ̄2
i = siĪi + Σ2

i . (2.48)
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Depending on the detector utilized and on whether non-linear correction steps are performed on

the data prior to reconstruction different combinations of noise model and forward model will

constitute the most accurate data fidelity term L. For example combing uncorrected intensity

measurements, see Eq. 2.45, with an ideal detector with Gaussian noise approximation, see

Eq. 2.47, would result in the following likelihood term

L(I|µ) =
∑
i

(
Ii − Iri e−

∫
µ dli

)2 1

Iri e−
∫
µ dli
−
∫

µ dli . (2.49)

It should be noted that including a forward model of the measurements variances into the data

fidelity term makes the term much more complicated to optimize. The most common solution

to this problem is to estimate the expected variances from the actual measurements prior to

reconstruction. In the case of Poisson noise an unbiased and efficient estimator of the variance

is the mean value of the measurements, or in the case of one measurement simply the value of

this measurement

ˆ̄σ2
i = Ii. (2.50)

Using this, the data fidelity term from Eq. 2.51 becomes much simpler,

L(I|µ) =
∑
i

(
Ii − Iri e−

∫
µ dli

)2 1

ˆ̄σ2
i

. (2.51)

If the estimate for µ is almost converged, the estimate for σ̄2
i can be updated periodically

according to Eq. 2.47 for higher accuracy [31].

2.3.4.4 Regularizer term

Formulating a function that describes the prior probability for the reconstruction estimate

to exist is much less straight forward than devising a physical and statistical model for the

measurements, as was outlined in the last subsection. Although this can be achieved by using

probabilistic approaches [27, 32], this procedure is not particularly intuitive, nor does it seem to

be strongly motivated towards a specific solution but mostly seems to be an ex post justification

of a successful regularization term.
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Figure 2.11: Estimation of a step function from measurements corrupted by Gaussian dis-
tributed noise. The estimation is regularized by penalizing nearest neighbor differences using
different potential functions. The regularization strength is chosen to give the same mean
variance in the constant area.

It is more intuitive to see the regularization term as a counterweight to an over-fitting of the

estimated quantity to the noise in the measurements: Near the minimum of L(I|µ) there are

a vast number of different possible estimates of µ that all reduce L to a comparable level.

One (or possibly more) of these estimates actually minimizes L(I|µ) and is thus the maximum

likelihood estimate,

µ̂ML = arg min
µ

L(I|µ) , (2.52)

for this scan. But for a second identical scan of the same object there would be a different

µ̂ML from the pool of possible estimates simply because the noise of the second scan realized

differently. Much more desirable than letting chance decide which estimate the algorithm favors

would be designing a criterion which lets the user decide which estimate he favors and thus

reducing the effect of chance on the estimate.

A vast number of different criterions based on different assumptions and motivations have

been designed by various authors, see [32]. The most widely used criterion is that we assume
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our image to be locally smooth. The simplest way to enforce this criterion is to penalize the

differences in neighboring voxel values:

R(x) =
1

2

∑
j

∑
k∈Nj

wjkψ(xj − xk) , (2.53)

where Nj is a small neighborhood of j and wjk are distance dependent weights to make the

small neighborhood more isotropic [33]. The potential function ψ(r) penalizes large values and

can take many different forms. The simplest choice for the potential function is the quadratic

function

ψL2(r) = r2 . (2.54)

This is a choice which is easy for optimization as the function is convex and quadratic, but it is

also problematic as it blurs out sharp edges over several pixels, as dividing the sharp edge into

several small step drastically reduces the sum of the squared differences. A potential function

that does not suffer from this problem is the absolute value function,

ψL1(r) = |r| . (2.55)

It preserves edges quite well but suffers from two drawbacks: First it produces a piece-wise

constant noise pattern that can look quite unnatural, see Fig. 2.11, and it is not differentiable at

each point which can cause problems for minimization. Fortunately, there is a group of functions

which combines the advantages of regularizers using the quadratic function and of regularizers

using the absolute value function. These functions behave like the quadratic function for small

arguments and like the absolute value function for large arguments. One of them is the Huber

potential function

ψH(r) =


1
2
r2 if |r| < δ

δ(|r| − 1
2
δ) else

, (2.56)

where δ is a shape parameter defining the turning point from quadratic to linear behavior.

Convex potential functions behaving like the absolute value function for large differences and
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like the quadratic function are the most often used potential functions in CT reconstruction,

e.g. in [34, 35, 36, 11, 12, 37, 32], because they are easy to optimize, work well for diverse

objects, and their behavior during the reconstruction is easy to understand.

2.3.5 Reconstruction for dark-field

In first approximation, reconstructions from the dark-field signal D can be treated completely

analogous to the reconstruction of the linear attenuation coefficient from the transmission signal.

Under some assumptions [38, 39], the small angle scattering power in a volume element of the

sample can be quantified by the linear diffusion coefficient ε.

For this quantity the forward model connecting D and ε is given as, see Sec. 2.2.4,

Di = e
− 2π2d2

p2

∫
ε d`i , (2.57)

which can be further transformed to a function of the line integrals over ε

∫
ε d`i = − ln (Di)

p2

2π2d2
. (2.58)

In this form the linear diffusion coefficient can be reconstructed using any reconstruction algo-

rithm suitable for transmission CT, e.g. FBP or SIR.

It should be noted that the approximations in the introduction of the linear diffusion coeffi-

cient are not viable for all materials and setup combinations. Various publications have been

published investigating the scattering distribution beyond the Gaussian approximation [40, 41]

as well as the directionality of dark-field signal caused by non-isotropic scattering in sam-

ples [42, 43], and its connection to the well-established fields of small angle X-ray scattering

(SAXS) and ultra-small angle X-ray scattering (USAXS) [44].
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2.3.6 Reconstruction for differential phase contrast

The reconstruction of the refractive index from the differential phase contrast (DPC) signal

∂Φ
∂y

has to be treated differently to the reconstruction from the attenuation or dark-field signal,

because of the differential nature of the measured signal.

Again one can directly infer the forward model connecting the refractive index decrement δ

with the DPC signal ∂Φ
∂y

, respectively with the shift of the phase stepping curve ∆φ, from

Sec. 2.2.4:

∂

∂y

∫
δ d`i =

∆φi
2π

g2

d
=
∂Φi

∂y
. (2.59)

To transform the DPC signal into measurement points of the Radon space of δ an integration

along the y-direction, which is perpendicular to the grating bars, is necessary. Any numerical

integration algorithm is suitable for this task. However, the constant of integration has to ensure

that the phase-contrast signal Φ is zero in regions outside of the sample. For the phase-contrast

signal Φ we can write ∫
δ d`i = Φi , (2.60)

which is easily reconstructable using any reconstruction algorithm.

If the reconstruction is performed using the FBP algorithm there is a particularly fast and

convenient choice of integration algorithm: Integration in Fourier space.

The Fourier transform of the derivative of a function f(y) can be written as

Fyρ
[
∂f(y)

∂y

]
= 2πiρ F (ρ) , (2.61)

where F (ρ) is the Fourier transform of f(y), ρ is the spatial frequency in y-direction. Conse-

quently, the integral over a function f(y) can also be expressed in Fourier space:

Fyρ
[∫

f(y) dy

]
=
F (ρ)

2πiρ
+ c δ(ρ) (2.62)

where δ(u) is the delta-distribution and c is an arbitrary constant of integration.

Applying this to the case of DPC data one can write the Fourier transform of the integrated
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PC projection under angle θ as follows

Pθ(ρ) = Fyρ [Φ(y, θ)] = Fyρ
[∫

∂Φ

∂y
(y, θ) dy

]
= Fyρ

[
∂Φ

∂y
(y, θ)

]
1

2πiρ
+ c δ(ρ) . (2.63)

Now if this equation is inserted into the equation used for the derivation of the FBP, see

Eq. 2.31, and c set equal to zero, one arrives at the following equation

f(x, y) =

∫ π

0

∫ ∞
−∞
Fyρ

[
∂Φ

∂y
(y, θ)

]
1

2πiρ
|ρ| e2πiρ(x cos (θ)+y sin (θ)) dρ dθ

=

∫ π

0

∫ ∞
−∞
Fyρ

[
∂Φ

∂y
(y, θ)

]
sgn(ρ)

2πi
e2πiρ(x cos (θ)+y sin (θ)) dρ dθ ,

(2.64)

where sgn(ρ) is the sign-function that simply returns the sign of its argument. Now the FBP

algorithm for differential data looks very similar to the FBP algorithm for conventional pro-

jection data: the Fourier transform of the data is multiplied by sgn(ρ)
2πi

, the so-called Hilbert

filter [45], instead of |ρ|, and subsequently backprojected.

2.4 Optimization transfer principle

Almost any general purpose optimization algorithm that requires only the value and gradient of

the cost function, can be used to minimize the cost functions of the various statistical iterative

CT reconstruction problems, e.g. gradient descent, L-BFGS, (non-linear) conjugate gradient,

and many more. Thorough information about these algorithms can be found in all textbooks

on numerical optimization [46].

Various algorithms have been specifically designed for the use in CT reconstruction and of these

the family of so-called separable quadratic (or paraboloid) surrogate (SQS / SPS) algorithms

have found widespread usage. They are all designed using the optimization transfer principle,

which will be explained in the following for the case of CT reconstruction.

The optimization transfer principle is a very general framework for the design of optimization

algorithms. It tries to solve a seemingly hard optimization problem by repeatably solving eas-

ier optimization problems. Many existing optimization algorithms can be explained using the
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optimization transfer principle and it is also a very helpful tool in creating custom algorithms

specifically designed for a specific optimization problem.

It was first introduced into medical image reconstruction by De Pierro [47] and Lange [48]

and subsequently made extremely popular for CT image reconstruction by various work by

Fessler et al. [48, 49, 35].

A general treatment of the framework (under the name ”majorization minimization” algo-

rithms) is given by Lange in [50]. A theoretical treatment of convergence is provided by Jacob-

sen in [51].

2.4.1 General principle

As the name majorization minimization implies, the algorithm consists of two steps. The first

step is the majorization step, where a suitable surrogate function Q(n)(x|x(n)) of the objective

function L(x) at the current iteration step n and variable estimate x(n) is found. Q(n) implies

that even the general shape of the surrogate function can change between iterations, not just

its constants as implied by |x(n). Such a function must fulfill two conditions: The tangency

condition

Q(n)(x(n)|x(n)) = L(x(n)) (2.65)

and the domination condition

Q(n)(x|x(n)) > L(x) for all x . (2.66)

These two conditions guarantee that minimizing the surrogate function in the second step (the

minimization step) causes the original objective function to decrease:

L(x(n+1)) ≤ Q(n)(x(n+1)|x(n)) ≤ Q(n)(x(n)|x(n)) = L(x(n)) . (2.67)

It would be sufficient to find an x(n+1) with a lower function value than x(n) but for most useful

algorithms the surrogate function is something easy to minimize or even directly solvable.

The hard part in designing majorization-minimization algorithms is finding suitable surrogate
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functions that fulfil the tangency and domination conditions, are easy to minimize, and stay as

close as possible to the original function.

2.4.2 Quadratic surrogates

Often the simplest valid surrogate for a more complex function h(x) is a quadratic function. All

continuous functions can be approximated by a second-order Taylor expansion of the objective

at the current estimate,

h(x) = h(x(n)) +
∂h(x)

∂x

∣∣∣∣
x(n)

(
x− x(n)

)
+

1

2

∂2h(x)

∂x2

∣∣∣∣
x(n)

(
x− x(n)

)2
+O(x3) . (2.68)

If ∂2h(x)
∂x2 is bounded for all viable x than there is a quadratic surrogate q(x|x(n)) for h(x) at x(n)

that looks very similar to the second order Taylor series [50],

q(x|x(n)) = h(x(n)) +
∂h(x)

∂x

∣∣∣∣
x(n)

(
x− x(n)

)
+

1

2
c(n)

(
x− x(n)

)2
, (2.69)

with a positive curvature c(n). By construction this quadratic function fulfils the tangency

condition at x(n)

q(x(n)|x(n)) = h(x(n)) (2.70)

and

∂h(x)

∂x

∣∣∣∣
x(n)

=
∂q(x)

∂x

∣∣∣∣
x(n)

(2.71)

as well as the domination condition for a large enough curvature c(n). Minimizing this surrogate

function is directly achieved by a Newton step

x(n+1) = x(n) − 1

c(n)

∂h(x)

∂x

∣∣∣∣
x(n)

. (2.72)

From this equation it can be seen that a small curvature c(n) of the surrogate function causes

a large update step, thus one would want to choose a c(n) that is as low as possible to achieve

a fast convergence of the algorithm, see [52] for an in depth discussion on the optimal choice
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of c(n).

Optimization problems in imaging are typically multivariate so we can apply the same procedure

to create a multivariate quadratic surrogate function Q(x) to our objective function H(x),

Q(x|x(n)) = H(x(n)) +∇H(x)T
∣∣∣∣
x(n)

(
x− x(n)

)
+

1

2

(
x− x(n)

)T
C(n)

(
x− x(n)

)
. (2.73)

Here the matrix C(n) has to be chosen carefully to ensure that the domination condition is

fulfilled for all x. This is the case for a choice of C that ensures a positive definite matrix C−

HH(x), where HH(x) is the Hessian matrix of H for all possible x. Although this might not be the

sharpest quadratic surrogate, finding a general way of constructing sharp multivariate quadratic

surrogates for (not necessarily convex) functions is still an open problem [52]. Choosing the

optimal C is not as straight forward for this case as it was for the one-dimensional case, but

choosing a viable C with low diagonal values will generally lead to a faster convergence of the

Newton iteration

x(n+1) = x(n) + C(n)−1∇H(x)

∣∣∣∣
x(n)

. (2.74)

2.4.3 Separable quadratic surrogates

Minimizing a quadratic surrogate can still be quite challenging if the problem at hand is large

and the non-diagonal entries of C are non-zero, because then we need to calculate the inverse

of C to minimize our surrogate function.

Fortunately for many problems in imaging, e.g. CT reconstruction, the cost function can be

written in the following way

H(x) =
∑
i

hi(li(x)) , (2.75)

with li =
∑

j aijxj.

This form allows to construct a surrogate function that separates the variables from each

other [53]. First, one chooses quadratic surrogate functions qi (as in the last subsection) for

each original potential function hi, which results in a quadratic surrogate function QQS for the
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whole objective function,

H(x) ≤ QQS(x|x(n)) =
∑
i

qi(li(x)|l(n)
i ) . (2.76)

Then one rewrites li(x) using the helper variables αij with αij ≥ 0 (αij = 0 only for aij = 0)

and
∑

j αij = 1:

li =
∑
j

aijxj

=
∑
j

aijxj − aijxj(n) + aijxj
(n)

=
∑
j

aij(xj − xj(n)) +
∑
j

aijxj
(n)

=

[∑
j

aij(xj − xj(n))

]
+ li

(n)

=
∑
j

αij
aij
αij

(xj − xj(n)) +
∑
j

αij︸ ︷︷ ︸
=1

li
(n)

=
∑
j

αij(
aij
αij

(xj − xj(n)) + li
(n)) .

(2.77)

With this the quadratic surrogate function can be rewritten as

QQS(x|x(n)) =
∑
i

qi(li(x)|l(n)
i )

=
∑
i

qi

(∑
j

αij

(
aij
αij

(
xj − xj(n)

)
+ li

(n)

)
|l(n)
i

) (2.78)

and, after applying Jensen’s inequality [50], one ends up with a new surrogate function,

QSQS(x|x(n)) =
∑
i

∑
j

αijqi(
aij
αij

(xj − xj(n)) + li
(n)|l(n)

i ) , (2.79)

that dominates the quadratic surrogate function.

Looking at this functions value and gradient at x(n) reveals that it does fulfil the tangency

conditions by construction and looking at its Hessian matrix reveals that all variables are
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separated:

QSQS(x(n)|x(n)) =
∑
i,j

αijqi(
aij
αij

(x
(n)
j − xj(n))︸ ︷︷ ︸

=0

+li
(n)|l(n)

i )

=
∑
i

∑
j

αij︸ ︷︷ ︸
=1

qi(l
(n)
i |l

(n)
i )︸ ︷︷ ︸

=hi(l
(n)
i )

= L(x(n))
(2.80)

∂QSQS(x|x(n))

∂xk

∣∣∣∣
x(n)

=
∑
i

αik
∂qi(

aik
αik

(
xk − xk(n)

)
+ li

(n)|l(n)
i )

∂xk

=
∑
i

q̇i(l
(n)
i |l

(n)
i )︸ ︷︷ ︸

=ḣi(l
(n)
i )

aik =
∂L(x)

∂xk

∣∣∣∣
x(n)

(2.81)

∂2QSQS(x(n)|x)

∂xk∂xl

∣∣∣∣
x(n)

=


∑

i

a2
ik

αik
c

(n)
i if k = l

0 else

. (2.82)

This means the separable quadratic surrogate function can be written as

QSQS(x|x(n)) = H(x(n)) +∇H(x)T
∣∣∣∣
x(n)

(
x− x(n)

)
+

1

2

(
x− x(n)

)T
C(n)

(
x− x(n)

)
, (2.83)

with the diagonal curvature C(n). For CT reconstruction αij are commonly [54] chosen as

αij =
aij∑
j′ aij′

, (2.84)

with which the entries of the diagonal curvature C(n) follow as

C
(n)
kk =

∑
i

aik c
(n)
i

∑
j′

aij′ . (2.85)

Performing an update using the Newton iteration, see Eq. 2.74, is now trivial.
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2.4.4 SQS for CT reconstruction

As written in Sec. 2.3.4, the various possible SIR problems can generally be written as an

optimization problem of the following form

µ̂ = arg min
µ

L(µ|y) +R(µ) . (2.86)

One can design separable quadratic surrogate functions of the cost function C = L + R by

independently finding separable quadratic surrogate functions for the likelihood term L and

the regularizer term R. The curvature C of the cost function is simply the sum of CL and CR.

2.4.4.1 SQS for the data term

For CT reconstruction problems the data fidelity term L can be written as

L(µ|y) =
∑
i

ψi(li|yi) , (2.87)

where li =
∑

j aijµj is the forward projection of the current estimate of µ to a certain detector

element at a specific angular position and yi is the measurement during a scan at that detector

element and angular position.

Depending on the noise model for the measurements different potential functions ψi are suited

for the estimation of µ, see Sec. 2.3.4.2.

One of the simplest forms ψi(li|yi) can take is

ψi(li|yi) =
1

2
(li − yi)2wi , (2.88)

which is the statistically correct term for the maximum-likelihood estimation from measure-

ments yi with Gaussian distributed noise with variance σ2
i = 1

wi
, see Eq. 2.44. Finding a

quadratic surrogate qi for this case is trivial as ψi is already quadratic, thus no surrogate is
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necessary. But for instructional purposes one can employ Eq. 2.69 to construct qi:

qi(li|l(n)
i ) =

1

2
(li − l(n)

i )2wi + (l
(n)
i − yi)wi(li − l

(n)
i ) +

1

2
(li − l(n)

i )2c
(n)
i . (2.89)

The curvature c
(n)
i has to be chosen such, that qi fulfills the domination condition for all li

qi(li|l(n)
i ) ≥ ψi(li|yi)

1
2
l2i (c

(n)
i − wi)− lil

(n)
i (c

(n)
i − wi) + 1

2
l
(n)
i

2
(c

(n)
i − wi) ≥ 0

(li − l(n)
i )2(c

(n)
i − wi) ≥ 0 .

(2.90)

Obviously, any c
(n)
i ≥ wi fulfills this equation and is thus a viable curvature, but the sharpest

curvature is achieved for

c
(n)
i = ci = wi . (2.91)

Using this, the separable quadratic surrogate function LSQS(µ|y) for L(µ|y) is given as

LSQS(µ|µ(n)) = L(µ(n)|y)+∇L(µ|y)T
∣∣∣∣
µ(n)

(
µ− µ(n)

)
+

1

2

(
µ− µ(n)

)T
CL
(
µ− µ(n)

)
, (2.92)

with

CLkl =


∑

i aikwi
∑

j aij if k = l

0 else

. (2.93)

2.4.4.2 SQS for the regularizer term

The same procedure as for the likelihood term has to be performed for the regularizer term,

R(µ) =
1

2

∑
j

∑
k∈Nj

wjkψ(µj − µk) . (2.94)
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ψ depends on two variables but to construct a separable quadratic update a ψ is needed that

depends only on a single variable. This can be achieved using Jensen’s inequality,

R(µ) =
1

2

∑
j

∑
k∈Nj

wjkψ(µj − µk)

=
1

2

∑
j

∑
k∈Nj

wjkψ(
1

2

[
2µj − µ(n)

j − µ
(n)
k

]
− 1

2

[
2µk − µ(n)

j − µ
(n)
k

]
)

≤ 1

4

∑
j

∑
k∈Nj

wjk

[
ψ(2µj − µ(n)

j − µ
(n)
k ) + ψ(2µk − µ(n)

j − µ
(n)
k )
]

= RSS(µ|µ(n)) .

(2.95)

Now one just needs to find a quadratic surrogate ψQS(r) for ψ(r) if ψ(r) is not the quadratic

penalty. The usual shape for a quadratic function that fulfills the tangency condition looks like

this,

ψ(2µj − µ(n)
j − µ

(n)
k ) ≤ ψQSjk (2µj|µ(n)

j , µ
(n)
k )

ψQSjk (2µj|µ(n)
j , µ

(n)
k ) = ψ(µ

(n)
j − µ

(n)
k ) + ψ̇(µ

(n)
j − µ

(n)
k )(µj − µ(n)

j ) + c
(n)
jk (µj − µ(n)

j )2 .
(2.96)

Now a viable value for c
(n)
jk has to be found that fulfills the domination condition. The simplest

choice that ensures this is to take the maximum value of ψ̈(r)

c
(n)
jk = c = max

r
ψ̈(r) . (2.97)

Combining these two surrogates, one finally arrives at the separable quadratic surrogate func-

tion for the regularizer

RSQS(µ|µ(n)) =
1

4

∑
j

∑
k∈Nj

wjk

[
ψQSjk (µj|µ(n)

j , µ
(n)
k ) + ψQSkj (µk|µ(n)

k , µ
(n)
j )
]

=
1

2

∑
j

∑
k∈Nj

wjkψ
QS
jk (µj|µ(n)

j , µ
(n)
k )

=
1

2

∑
j

∑
k∈Nj

wjkψ
QS
jk (µj|µ(n)

j , µ
(n)
k ) ,

(2.98)
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with a matrix of second derivatives CR

CRkl =


∑

k∈Nj wjkc
(n)
jk if k = l

0 else

. (2.99)



Chapter 3

Advanced signal estimation for

grating-based imaging

The estimation of the transmission T , dark-field D, and differential phase contrast φ images is

the main step of generating useful information from a set of interferograms acquired at different

grating positions. The first publications on GBI used a signal estimation based on the Fourier

transformation [55, 56] but this method only works for equidistantly distributed grating po-

sitions and ignores the statistics of the measurement. An approach to calculate T , D, and φ

motivated by the maximum-likelihood principle is the weighted least-squares fitting of a sine-

wave to the measurements. This approach has been used regularly [57, 12] and also an estimate

of the variances of T , D, and φ has been proposed [57, 12]. The bias of this maximum-likelihood

estimation was discussed at least in one study [58].

In the following, the full analytic solution to the maximum-likelihood estimate through lin-

earization will be presented and analytical expressions for the variance of the maximum-

likelihood estimate will be presented.

The expressions for the maximum-likelihood estimates have already been derived in a similar

fashion by Hahn et al. [12] but the proposed estimations of the variances are novel findings

that generalize findings and correct errors made in [12]. After this, the bias of the MLE will

be calculated and novel bias-corrected MLE as well as regularized bias-corrected MLE will be

43



44 Chapter 3. Advanced signal estimation for grating-based imaging

proposed. In the last section the variance and bias of all estimators will be compared using

numerical simulations.

3.1 Maximum likelihood estimator for GBI signal esti-

mation

As argued in Section 2.2.4, the possible intensity measurements of a detector pixel behind

an X-ray grating interferometer lie on a phase stepping curve. This means a single intensity

measurement Ii depends on the characteristics of the stepping curve without an object in the

beam path at the moment the measurement was taken: the mean intensity of the curve Iri , its

relative amplitude (the visibility) V r
i , and its phase Φr

i at the current grating positioning. But

it also depends on characteristics of the object in the beam path: the transmission T , which

reduces the mean intensity of the curve, the dark-field signal D which reduces the visibility of

the curve, and the phase shift φ which shifts the phase position of the stepping curve. This

behavior is described in the following equation:

I = Iri T (1 + V r
i D cos(Φr

i + φ)) . (3.1)

During signal estimation, one is interested in estimating T , D, and φ as accurate as possible

from a series of noisy measurements Ii. It is obvious that even for completely noise-free mea-

surements, at least three measurements with different Φr
i (or possibly differing Iri and/or V r

i )

are necessary to estimate the three object properties T , D, and φ. This is usually performed by

changing Φi between the measurements by a movement of the gratings. The log-likelihood for

a series of N measurements of the same object corrupted by independent Gaussian distributed

noise we can be written as

L(T,D, φ) =
N∑
i

(Iri T (1 + V r
i D cos(φri + φ))− yi)2 wi , (3.2)
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with weights wi = 1
σ2
i
, where σ2

i is the variance of the noise of the measurement.

The maximum-likelihood estimate of the transmission T̂ML, dark-field signal D̂ML and differ-

ential phase signal φ̂ML is given by

T̂ML, D̂ML, φ̂ML = arg min
T,D,φ

L (3.3)

This optimization problem is non-linear and does not have a direct solution. But instead of

trying to find an estimate for T , D, and φ one can perform variable transformations as follows

M = T, C = TD cos(φ), S = TD sin(φ) (3.4)

mi = Iri , ci = Iri V
r
i cos(φri ), si = −Iri V r

i sin(φri ) (3.5)

and estimate the transformed variables M , C, and S:

M̂ML, ĈML, ŜML = arg min
M,C,S

∑
i

(Mmi + Cci + Ssi − yi)2 wi . (3.6)

This weighted-least-squares optimization problem can now be solved using weighted linear

regression, which provides the minimum variance unbiased estimator. The step-by-step solution

for the estimates, their variances, and covariances can be found in App. A.1.

From these maximum-likelihood estimates of M , C, and S, the maximum-likelihood estimates

for T , D, and φ can be calculated by the inverse variable transform:

T̂ML = M̂ML, D̂ML =

√
Ĉ2
ML + Ŝ2

ML

M̂ML

, φ̂ML = arctan

(
ĈML

ŜML

)
(3.7)

The ML-estimate for a linear estimation problem (as the estimation of M , C, and S under

Gaussian noise) is automatically unbiased and is also equal to the minimum variance unbiased

estimator (MVUE), meaning that no other unbiased estimator can have a lower variance. But,

for more general non-linear estimation problems (such as the estimation of T , D, and φ under

Gaussian noise), the ML-estimator is not necessarily unbiased, it is only asymptotically unbi-

ased, meaning that it only becomes unbiased for a large number of measurements. It follows
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that the ML-estimator is not necessarily the MVUE for low numbers of measurements, but it

approaches the MVUE asymptotically for large numbers of measurements. This might seem

like a minor issue, but as medical X-ray imaging is always about achieving an imaging goal as

dose-efficient as possible, an arbitrarily large number of measurements is never available.

3.1.1 Bias of the maximum-likelihood estimator

It has been shown [58] that the ML-estimation of the dark-field signal tends to be biased

towards larger values for high noise scenarios and also for the phase signal a break-down of

signal estimation has been observed [58] for high noise scenarios and attributed to bias in the

ML-estimation of φ. A bias in the estimation of a signal is a serious problem, especially if the

output of the signal estimation is displayed as an image with quantitatively meaningful values.

This is the case because a noisy image can always be filtered with a low-pass filter to reduce

the noise in the image (of course with an associated loss of fine detail) but there is no simple

filter operation that can reduce the error in an image that is caused by a biased estimation.

The human visual perception itself is acting like a low-pass filter: We can see large structures

even in a very noisy image, but if the signal is corrupted by bias our visual perception will not

be able to make this correction.

The bias bθ(θ̂) of an estimator θ̂ of a variable θ is defined as

bθ(θ̂) = E[θ̂(y)− θ] =

∫
(θ̂(y)− θ)P (y, θ)dy . (3.8)

This can often not be explicitly solved, but the expression can be approximated by performing

a Taylor expansion of the estimator around the expected values of the measurements ȳ [58]:

θ̂(y) ≈ θ̂(ȳ) +
∑
i

∂θ̂

∂yi

∣∣∣∣∣
ȳ

(yi − ȳi) +
1

2

∑
i,j

∂2θ̂

∂yi∂yj

∣∣∣∣∣
ȳ

(yi − x̄i)(yj − ȳj) +O(y3
i ) . (3.9)
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For a consistent estimator the following equation approximates the expected value of the esti-

mator:

E[θ̂(y)] ≈ E[θ̂(ȳ)]︸ ︷︷ ︸
θ

+
∑
i

∂θ̂

∂yi

∣∣∣∣∣
ȳ

E[(yi − ȳi)]︸ ︷︷ ︸
=0

+
1

2

∑
i,j

∂2θ̂

∂yi∂yj

∣∣∣∣∣
ȳ

E[(yi − ȳi)(yj − ȳj)]︸ ︷︷ ︸
K(yi,yj)

, (3.10)

with the measurement covariance matrix K. From this follows the approximate bias of the

estimator as

bθ(θ̂) = E[θ̂(y)]− θ ≈ 1

2

∑
i,j

∂2θ̂

∂yi∂yj

∣∣∣∣∣
ȳ

K(yi, yj) . (3.11)

The calculations for the derivatives necessary for the approximate bias of T̂ML, D̂ML, φ̂ML can

be found in the Appendix.

3.2 Bias-corrected maximum likelihood estimator

Fortunately, it is possible to reduce the bias of the ML-estimator: Cox and Snell [59] published

a general formula to calculate the second-order bias-corrected maximum likelihood estimator

(BCMLE) and showed that it is the estimator with the lowest variance of all estimators with

the same bias as the BCMLE. The BCMLE for the estimated parameter θs is given by

θ̂BCs = θ̂ML
s − b̂(2)

s (3.12)

with

b̂(2)
s =

∑
r,t,u

1

2
I−1
rs I

−1
tu (Krtu + 2Jt,ru) (3.13)

where I−1
rs is the inverse of the Fisher information matrix Irs,

Irs = E
[

∂2L

∂θr ∂θs

]
, (3.14)
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and the tensors Jt,ru and Krtu are given by

Jr,st = E
[
∂L

∂θr

∂2L

∂θs ∂θt

]
(3.15)

and

Krst = E
[

∂3L

∂θr ∂θs ∂θt

]
. (3.16)

Now one can use estimators of Irs, Jr,st, and Krst to calculate an estimated second-order bias

correction
ˆ
b

(2)
s to the MLE. Formulas for the calculation of Irs, Jr,st, and Krst are provided in

the Appendix.

3.2.1 Regularized BCMLE

Calculating the BCMLE requires the calculation of Irs, Jr,st, and Krst, which are for the case

of grating-based imaging signal estimation, not independent of the measurements. This means

that they are not exactly known, but only estimated from the measurements. The estimators

provided in the appendix are consistent, meaning they become more accurate with increasing

number of measurements, but for a low number of measurements they might be biased them-

selves. The probably most important term in the calculation, because it affects it quadratically,

is the inverse Fisher matrix I−1
rs , which is strongly dependent on the estimate of the Fisher ma-

trix Irs. Especially, if diagonal elements of Irs are close to zero, its inverse will be strongly

corrupted by inaccuracies. If one looks at the diagonal elements of the Fisher matrix,

E
[
∂2L(T,D, φ)

∂T 2

]
=
∑
i

(mi +D cos(φ) ci +D sin(φ) si)
2 wi

E
[
∂2L(T,D, φ)

∂D2

]
=
∑
i

(T cos(φ) ci + T sin(φ) si)
2 wi

E
[
∂2L(T,D, φ)

∂φ2

]
=
∑
i

(−TD sin(φ) ci + TD cos(φ) si)
2 wi ,

(3.17)

one can see that they all consist of sums over squared terms. From this, it is evident that the

diagonal values can only get small if the summands get small, which is only the case for low

values of T and D (and not at all for the second derivative relative to transmission). A simple
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way to reduce this problem is to replace low values in the diagonal elements of the Fisher matrix

with a given value:

ICrs =


crr if r = s and Irr < crr

Irs else

. (3.18)

This results in a smaller inverse Fisher matrix for measurements with low T and D, i.e. high

noise scenarios. It should be noted that choosing cutoff values of zero results in the unchanged

BCMLE. The result of a smaller inverse Fisher matrix is simply that the bias correction term

gets smaller for medium noise regions and approaches a relatively constant value (it still depends

on the estimates of J and K, which are of minor influence) for high noise regions. It stays

unchanged from the BCMLE for regions with relatively high statistics.

3.3 Results

3.3.1 Dark-field estimator

Simulation studies for two different situations are shown in Fig. 3.1 and Fig. 3.2. In both studies

2 ·108 consecutive phase steppings were performed and the dark-field signal was estimated from

each phase stepping using several different estimators: The MLE, the BCMLE with varying

regularization strengths and the BCMLE with a clipping operation applied to estimates of D

below zero. For all estimators the bias, variance and mean squared error (MSE) was calculated

from the samples. In the first study no object was present in the beam path but 45 differ-

ent numbers of incoming photons per phase stepping (evenly distributed per phase step) were

simulated, resulting in varying noise levels of the scans. In the second study a constant flux

of 103 photons per phase stepping was simulated and 45 different objects in the beam path

with varying dark-field signal from 0.01 to 1 and constant transmission (T = 1) and differential

phase contrast (φ = 0) were simulated. For both studies, five equidistant phase steps per step-

ping where performed and the reference scan phase was altered between five values between
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Figure 3.1: The bias b, variance σ2, and MSE for the estimation of the dark-field signal for
different estimators and different numbers of incoming photons per complete phase stepping
was calculated from a total of 2e8 simulated phase steppings with five stepping positions and
a true dark-field signal of unity for each simulation. The variance and MSE are normalized
to the true Cramer-Rao lower bound (CRLB) for each scan to be able to better compare the
different scenarios. A + behind the name of an estimator means that clipping was performed
for this estimator. A (+) means that the curves of the clipped and unclipped estimators are
visually identical.

the phase steppings. The interferometer for both simulations had a visibility of 0.2.

The BCMLE generally reduces the bias of the estimation compared to the MLE for all

regularization values. The smallest bias is achieved for a regularizer value of zero, i.e. the un-

regularized BCMLE. Increasing the regularizer value generally reduces the bias reduction. The

bias reduction is especially getting smaller with increasing R for high-noise situations, whereas

in low-noise regions the regularized estimators behave more like the unregularized estimator.

The clipping of negative estimates to zero reduces the bias reduction for the unregularized esti-

mator and for very low regularization values, for higher values clipping does not have any effect.
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Figure 3.2: The bias b, variance σ2, and MSE for the estimation of the dark-field signal for
different estimators and different true dark-field values was calculated. The variance and MSE
are normalized to the true Cramer-Rao lower bound (CRLB) for each scan to be able to better
compare the different scenarios. A + behind the name of an estimator means that clipping
was performed for this estimator. A (+) means that the curves of the clipped and unclipped
estimators are visually identical.

The variance of the unregularized and only slightly regularized BCMLE is generally above the

variance of the MLE. More precisely the variance is well above the MLE for high-noise scenarios

and approaching the variance of the MLE for high noise scenarios. For intermediate values of

r, the variance of the BCMLE is even lower than the variance of the MLE up to a certain

noise level and then approaches the variance of the MLE for low-noise scenarios. When the

regularization gets stronger the point where the variance of the BCMLE estimator surpasses

the variance of the MLE moves further into lower noise regions but the maximum variance

reduction of the BCMLE against the MLE reduces until the BCMLE approaches the MLE for

high regularization values. Clipping the negative values generally reduces the variance of the
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BCMLE estimator but has little effect on the variance from a certain regularization strength on.

This combination of bias reduction and variance increase and decrease (depending on the noise

scenario) results in quite complicated behavior of the MSE, which can generally be calculated

from the variance and the bias by the following equation

MSE(θ) = b2(θ) + σ2(θ) . (3.19)

Depending on the regularization strength, the BCMLE may have a decreased MSE for high-

noise scenarios and an increased MSE for low-noise scenarios. The noise-level where the MSE

of the BCMLE is equal to the MLE generally moves further in direction of low-noise scenarios

for increasing regularization strength until the MSE approaches the MSE of the MLE for all

scenarios for very high regularization strength. As the noise level of a measurement is most

often not known before imaging, as the object in the beam path is not known beforehand, and

the noise level of the measurement is never uniform across the field of view, as the object is

never completely uniform, it is not a simple task to choose a suitable regularization parameter

r before the estimation of the signal. But from two observations a good rule of thumb can be

proposed. The first observation is that generally an object in the beam path will increase the

noise level of the measurement, meaning that a known region without an object or a reference

scan without an object in the beam path will always have a lower noise level than the sample

scan. The second observation is that the MSE of the BCMLE has a noise level below which

the MSE of the BCMLE is lower than of the MLE and that this noise level increases with

increasing r. From these two observations one can conclude that there is a value for r where

the MSE of the BCMLE crosses the MSE of the MLE at the noise level in background region of

the scan. The BCMLE with this regularization strength will decrease the MSE over the whole

projection and increase it in no region. If the bias-reduction of this estimator is not sufficient

one can define another target function instead of the MSE in the shape of b+ aσ2 (with a < 1)

and apply the same routine.

If the choice of BCMLE or BCMLE+ makes a difference one should keep in mind the following:

A dark-field signal below zero has no plausible physical meaning and should thus be avoided as

a result but on the other hand cutting the range of possible estimates at zero guarantees that
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the estimator is biased for low values of D, e.g. if the true value of D is zero any estimate will

be either zero or larger than zero inevitably resulting in a mean estimate above zero and thus

a bias.

3.3.2 DPC estimator

Figure 3.3: The bias b, variance σ2, and MSE for the estimation of the differential phase signal
for different estimators and different numbers of incoming photons per complete phase stepping
was calculated.

The BCMLE correction term is extremely small for the estimation of the DPC signal and

thus there is no difference in the variance and bias between the BCMLE and the MLE. But

calculating the bias of θ̂ from a sample of measurements yi according to

bθ(θ̂) = E[θ̂(y)− θ] =
∑
i

θ̂i(yi)− θ (3.20)
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clearly shows a bias in the estimation of the DPC signal. To explain the discrepancy between

the theoretically expected value and the measured value of the bias one should reconsider if

the equations are really suited to calculate the bias in this case: The DPC signal is a circular

variable, as one is estimating the phase and thus only the direction of a vector with a length

given by the visibility and the dark-field signal, and the estimated expectation value of a circular

variable is not simply the mean of the individual estimates but the mean of unit vectors with

this phase.

If one calculates the expected value of the DPC signal using the following formula

φ̄ = arg

(∑
i

exp (j φi)

)
, (3.21)

where j is the imaginary unit, the bias suddenly disappears.

This clearly demonstrates that one should keep in mind the nature of the signal one is working

with. For DPC imaging scenarios this implies that denoising by use of conventional low-pass

filters does not provide good results (as conventional low-pass filter does not treat the DPC

signal as a circular variable). A way to denoise images of circular variables would be to replace

each pixel with the value of the (weighted) circular mean or circular median of its neighbors.

3.4 Discussion

The chapter showed that the construction of expressions for the estimation of the dark-field

signal superior to the MLE is possible. The unregularized BCMLE suffers from an extreme

increase in variance and is thus unsuitable for many imaging tasks. The proposed regularized

BCMLE allows to smoothly transition from the unregularized BCMLE to the MLE, which

results not only in an estimator with reduced bias compared to the MLE but also with a

reduced variance for certain noise scenarios. With careful calibration of the regularization

strength, the BCMLE can be strictly superior to the MLE in imaging scenarios affected by

bias.

Further work is needed to examine the performance of the BCMLE in CT imaging. It should
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be noted that here special care must be taken when performing reconstructions using the FBP

algorithm, as the FBP algorithm is based on the negative logarithm of the dark-field signal and

not on the dark-field signal itself. Calculating the logarithm of the dark-field signal is impossible

for estimated dark-field signals below zero. For such a task it would be more suitable to design a

BCMLE directly for the estimation of the logarithm of D (which is, differing from the MLE, not

the same as the estimator for D). Alternatively, iterative reconstruction has to be performed

using a SIR algorithm with a pre-log data model.

The perceived bias of the DPC signal in [58] does not seem to be a real manifestation of bias

but a failure to treat a random circular variable with methods of directional statistics.



Chapter 4

Improved sliding window

interpolation

4.1 Introduction

The signal estimation step, as presented in the last chapter, requires at least three measure-

ments per projection angle. For CT acquisition it would be highly beneficial to be able to

perform a signal estimation using only a single projection per projection angle. A suitable

high-quality method for this problem is proposed with the IBSIR-algorithm in Ch. 5 but the

IBSIR method is a slow iterative method and often a fast direct method would be desirable for

a quick overview and as a starting point for the high-quality method. One possible candidate

for a fast reconstruction method using only a single projection per angle is the sliding window

acquisition scheme combined with interpolation between neighboring projection angles [60, 61].

This method provides good results in an acquisition scenario where the difference between

the line integrals of neighboring projections is only small. This is the case for dense angular

sampling and objects with low or slowly changing contrasts. In most realistic use scenarios of

single-shot GBCT it is evident that the angular sampling is limited by a multitude of factors.

To minimize detector readout noise, one generally wants to limit the number detector readouts

to the lowest possible number to achieve a sampling artifact free reconstruction, i.e. around the

56
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Nyquist sampling frequency Ny = π
2
Npx, where Npx is the number of detector pixels, for FBP

reconstruction. Also for high-flux setups with high rotation speeds, i.e. clinical CT systems or

time-resolved CT applications, the construction of detectors systems with very high readout

speeds and the capability to transfer the measured data to a storage device is challenging. In

addition, the requirement for low or slowly changing contrasts is hard to satisfy, i.e. all imaging

applications require strong contrasts as for the detection of low contrast features long imaging

times are required (which is even more prohibitive in medical X-ray imaging). In the context of

medical imaging many structures, i.e. bones, have both sharp delineations and a high contrast

and are thus bound to create very strong artifacts if imaged using sliding window interpolation.

Interestingly, an interpolated phase stepping that contains information from both sides of a

sharp edge of one of the contrasts, i.e. the pixel in question was measuring air for four of

five projections and a material that is only attenuating for one of the projections, will cause

artifacts not only in the estimation of the attenuation for this pixel but also in the dark-field

and differential phase estimation. A visualization of this effect for three different objects can

be found in Figures 4.1, 4.2, and 4.3.

The figures show that the signal extraction process for the transmission, dark-field and differ-

ential phase contrast by minimizing the least-squares distance to the measurements is not able

to handle this situation without producing strong artifacts in all three channels.

In the following methods to mitigate this effect will be explored and evaluated in simulations.

4.2 Robust signal estimation

To extract the transmission T , dark-field D and differential phase signal φ from a phase stepping

measurement usually a method that minimizes the (possibly weighted) sum of the squared

distance of the measurements to the simulated measurements is chosen:

T̂ , D̂, φ̂ = arg min
T,D,φ

∑
i

r2
i wi , (4.1)
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Figure 4.1: Signal estimation for four different situations during the sliding window scan of
a sample showing only attenuation. Crosses signify measurements without the sample in the
beam path and dots measurements with a sample in the beam path. The solid red lines are
the estimated attenuation signal, green lines the estimated dark-field signal and blue lines the
differential phase contrast signal. The dashed lines show the mean true signal. The blue dashed
line is at zero and the dashed green and red lines are at the same place as the solid lines.

with

ri(T,D, φ) = Iri T (1 + V r
i D cos(Φr

i + φ))− yi . (4.2)

Minimizing this least-squares problem is the maximum likelihood solution for the case of mea-

surements affected by uncorrelated Gaussian noise with a known variance. In the case of sliding

window interpolation, measurement noise is often not the main contributor to errors in the es-
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Figure 4.2: Signal estimation for four different situations during the sliding window scan of a
sample showing only a dark-field signal. Crosses signify measurements without the sample in
the beam path and dots measurements with a sample in the beam path. The solid red lines
are the estimated attenuation signal, green lines the estimated dark-field signal and blue lines
the differential phase contrast signal. The dashed lines show the mean true signal. The blue
dashed line is at zero and the dashed green and red lines are at the same place as the solid
lines.

timation of the signal. The problem is more profound because for the different measurements i

the underlying true values of T , D, and φ are not constant but different for each measurement.

As one cannot estimate a set of parameters for each measurement, one must make some as-

sumptions about the measurement. If one assumes that for each estimation most measurements

have very similar common true values of T , D, and φ and only few of the measurements can
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Figure 4.3: Signal estimation for four different situations during the sliding window scan of
a sample showing only a differential phase signal. Crosses signify measurements without the
sample in the beam path and dots measurements with a sample in the beam path. The solid
red lines are the estimated attenuation signal, green lines the estimated dark-field signal and
blue lines the differential phase contrast signal. The dashed lines show the mean true signal.
The blue dashed line is at zero and the dashed green and red lines are at the same place as the
solid lines.

not be explained using these three values, one can treat these measurements as outliers.

A common way to estimate a signal in the presence of outliers is to minimize a different function

of the absolute errors of the estimation than the squared errors. A suitable function that is

more robust to outliers is, for example, the minimization of the sum of absolute errors. This is

often called minimization of the l1 norm of the error vector (as opposed to the minimization of
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the l2 norm of the error vector in the least-squares problem),

T̂ , D̂, φ̂ = arg min
T,D,φ

∑
i

|r| wi . (4.3)

This approach is less susceptible to large errors because they are not squared and thus are not

as significant to the cost function as during l2-norm minimization. However this l1 loss function

is non-convex at zero and is not as efficient at estimation as the l2 loss function in the presence

of Gaussian noise. A loss function that combines the advantages of both the l2- and the l1 loss

function is the Huber loss function, it is equivalent to the l2-loss function for small errors and

equivalent to the l1 loss function for large errors:

T̂ , D̂, φ̂ = arg min
T,D,φ

∑
i

h(ri) wi , (4.4)

with

h(r) =


1
2
r2 if |r| < δ

δ(|r| − 1
2
δ) else

. (4.5)

The parameter δ provides a smooth variation between robustness and efficiency in the presence

of Gaussian noise. In addition the Huber function is convex.

For the minimization of the resulting cost function one should note that even though h(r) is

convex with respect to r the cost function is not convex in respect to the variables of inter-

est T , D, and φ as r is not a convex function of these. Using a gradient based optimization

algorithm for this problem could be slow and is not guaranteed to converge to the global mini-

mum. Fortunately many optimization problems of this kind can be solved using the method of

iteratively re-weighted least-squares (IRLS). This method iteratively approaches the solution

of the optimization problem by solving continuously re-weighted least-squares problems. This

is extremely helpful for the problem as there exists a unique, analytic solution for the mini-

mization of the weighted least-squares estimation problem, see Sec. 3.1. Thus one can optimize

the non-convex cost function by repeatedly solving convex problems with unique solutions. For
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further information on the IRLS algorithm see [62].

Various other non-convex loss functions exist that are even better at rejecting outliers [63].

But these loss functions will generally have multiple minima and there is no guarantee to find

the best solution during optimization. Especially if the optimization of these non-convex loss

functions is started at the l2-minimum it is even highly probable that the new minimum will

always be a minimum near the l2-minimum and not the globally optimal one.

A visualization of the effectiveness of suppressing outliers in the same situations as in Fig-

ures 4.1, 4.2, and 4.3 can be found in Fig. 4.4. From these graphs a shortcoming of this

approach becomes evident: Even if the measurements inside the sample are treated as outliers

and almost ignored by the signal estimation, the estimated values are not correct. They ap-

proach the value of the signal in the region of which most measurements were taken, not a

weighted mean value of the values in these two regions. During a tomographic reconstruction

this will cause a blurring of the edge. On the other hand, the values of the l2-optimization are

often not even between the values in both regions but far larger or smaller, resulting in sharp

artifacts in the reconstruction.

A further step should be employed to reduce the effect of edge artifacts in the signal extrac-

tion: As the non-linear signal estimation is often causing very strong artifacts at the border

the use of a median filter along the angular direction of the sinogram will greatly reduce these

artifacts without strongly compromising the resolution along this direction. The quality of the

signal estimation in each pixel is not equal, as some contain edges, and some do not. Various

goodness-of-fit measures are available from the signal estimation process and this information

can be used during the filter step. A possible way to do this is by using a weighted median

filter [64, S. 111], instead of a plain median filter, along the angular direction of the signal

sinograms. As weights wq for this filter one can use the inverse of the mean of the absolute

values of the residuals of the fit in each pixel. As one optimally wants to use a median filter

that has a range smaller than the sliding window distance this would often result in a very

small number of values for each filter process (usual numbers if stepping positions are between

three and ten) which make the use of a median filter very unstable. To counteract this problem,

another weighting factor wd, which decrease quickly with distance to the central pixel, is added.
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Figure 4.4: Signal estimation for two different situations during the sliding window scan of
three different samples showing only attenuation, dark-field or differential phase signal (top to
bottom).

Using this factor one can increase the reach of the filter in regions with low wq while keeping

it very local in the case of relatively high wq. The result of the weighted median filter is the
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minimum of the following optimization problem,

β̂i = arg min
βi

∑
j∈Ni

|xj − βi|wqjwd(i, j) (4.6)

with

wd(i, j) = s−|i−j|. (4.7)

For information on the computation of the weighted median filter see [64, S. 111].

4.3 Results

To evaluate the performance of the proposed improvements numerical simulations were per-

formed. As no general numerical phantoms consisting of the map of attenuation coefficient µ,

refractive index decrement δ, and linear diffusion coefficient ε are readily available, a suitable

numerical phantom was created. As the performance at a very specific situation was not of

interest but the performance for a general, diverse and challenging imaging task, an anthropo-

morphic shape of the phantom was not necessary. Nevertheless, the basic shape and contrast

ratios of the well-established FORBILD head phantom [65] were chosen, because this phantom

consists of several different sets of features: Many small, grouped, high contrast regions, which

are prone to undersampling artifacts and require a high resolution to properly reconstruct, and

several larger low contrast regions which require high sensitivity to properly reconstruct. The

shape and contrast ratios of this phantom were used for all three material properties. If all the

material properties are perfectly co-aligned it is hard to differentiate which material property

is responsible for causing a specific artifact as the artifacts are all originating from the same

region. Although this is most often the case in real measurements, more insight about the origin

of artifacts can be gained from the simulations if the maps of the three material properties are

simply rotated with respect to each other. Of course, this destroys any anthropomorphology of

the phantom but now one has regions in the phantom which are only attenuating, refracting

or scattering and regions with an overlap of these effects. The signal level in each channel was

chosen to result in a minimum transmission and dark-field signal of 50% and a maximum differ-
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ential phase-contrast of 0.1. The geometry of the imaging setup was simulated to be in parallel

beam. The simulations were performed on a 512x512x100 voxel grid and the image formation

process was assumed to follow the equations given in Ch. 2. We assumed a monochromatic

mean reference scan intensity per pixel of 109 photons, resulting in virtually noise-free images,

a uniform setup visibility of 0.4 and a distribution of low frequency Moiré fringes on the de-

tector with a period of 18 pixels in both detector dimensions. Measurements from 1205 angles

were taken from equidistant positions between 0 and 360 degrees and the grating period of

one grating was simulated to move by 1
5

of a grating position per change of projection angle.

The transmission, differential phase contrast, and dark-field contrast were estimated from the

resulting interferograms using sliding window interpolation with a window size of five projec-

tions. Once the l2-optimization objective, see Eq. 4.1, and once the l1-optimization objective,

see Eq. 4.3, was used. All estimations were than filtered using a median filter with a range of

five projections in the angular projection direction and afterwards with a Gaussian filter with

a width of σ = 1 and a cutoff after 2 projections. The resulting sinograms, respectively their

distance to the ground truth, can be seen in Fig. 4.5. Upon close inspection it is observable

that some of the estimation errors in the dark-field and differential phase-contrast image have

a slightly smaller local extent in the l1 estimation than in the l2 estimation, the black and

white pattern of the artifact has a small gray area between them. This is likely caused by l1

estimation being able to remove a not-consistent measurement from the estimation in these

pixels. A comparison of the filtered images reveals that these regions are filtered by the median

filter more effectively. A look at the MSE and the MAE indicates a strong error reduction for D

and Φ for the choice of l1-estimation over l2-estimation if no filtering is applied. After filtering

this difference in the characteristics is not as strongly pronounced anymore.

The transmission image on the other hand does not benefit from l1 estimation over l2 estima-

tion, both show very comparable estimation errors that are about an order of magnitude lower

than the estimation error of the dark-field signal (at equal signal power). This indicates that

the sliding window interpolation does not strongly harm the estimation of transmission images.

Filtering the attenuation sinograms worsens the estimation as it causes a loss of resolution.

Both findings are supported by the calculated error statistics, which can be found in Tab. 4.1.
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Figure 4.5: Sinograms of the difference to the ground truth for estimated attenuation, differ-
ential phase and dark-field signal using l2- or l1-optimization after and before filtering.

4.4 Discussion

The numerical simulation indicated that l1 estimation of signals can significantly reduce the

estimation error of dark-field and differential phase projections acquired with sliding window

interpolation, this is probably caused by an increased robustness to attenuation edges. The

attenuation signal estimation is not as strongly affected by SWI but does not benefit from l1

NMSE in % NMAE in %
T φ D T φ D

l2 1.0 1.0 1.0 1.0 1.0 1.0
l1 1.06 0.601 0.595 1.05 0.829 0.848
l2-F 1.24 0.251 0.185 0.969 0.567 0.470
l1-F 1.14 0.245 0.159 0.947 0.582 0.462

Table 4.1: Normalized mean squared error (NMSE) and mean average error(NMAE) for sino-
grams estimated using l2- or l1-optimization before and after filtering.
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estimation in the example. It is recommended to utilize the l2 estimation or the estimation of

the attenuation signal, that is readily available at the first iteration of the l1 estimation via

IRLS.

Filtering the attenuation and differential phase-contrast projections in angular direction further

decreases the estimation error. Even a small filter size causes a significant error reduction while

not strongly affecting the signal resolution as it already compromised at edges by edge-artifacts

from the signal estimation.

While the ability to use only a single projection per projection angle is highly beneficial the

resolution acquired using SWI is significantly reduced even with the use of the advanced meth-

ods proposed in this chapter. I assume that further possible improvements of the estimation

are possible but will probably not allow a completely artifact-free signal estimation.

Taking into account that more efficient reconstruction algorithms for single-shot acquisition

schemes (including sliding window acquisition) have been developed in the scope of this the-

sis, see Ch. 5, a utilization of advanced signal estimation from sliding window interpolation is

probably most suited for the generation of starting images for the intensity-based statistical

iterative reconstruction introduced in the next chapter.
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Statistical iterative reconstruction for

grating-based CT

5.1 Introduction

In the previous sections improvements to the conventional workflow for image reconstruction

from GBCT scans were introduced. The conventional workflow consists mainly of the sig-

nal estimation step and the actual image reconstructions based on the estimated attenuation,

dark-field, and differential phase projections. In the following a reconstruction method that

is performing the image reconstruction in a single step by directly estimating the distribution

of material properties from the measured interferograms without any intermediate signal es-

timation in the projection domain will be introduced. The general idea of this method has

been proposed in [10] and recently been employed in several publications by the author and

others [66, 67, 68, 69]. It will be referred to as intensity-(or interferogram-)based statistical

iterative reconstruction (IBSIR) in the following.

Basing the reconstruction directly on the raw measured interferograms provides several strong

advantages over the conventional workflow of signal estimation in the projection domain and

subsequent reconstructions into image space: The statistical distribution of the measurements

is much clearer for the unprocessed detector output than for the estimated projections, lead-

68
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ing to superior image quality in the reconstructions. Furthermore, the process is very easy to

adapt to faulty data points or projections without corrupting larger parts of the signal estima-

tion process or rendering parts of the acquired data points unusable. But the most important

advantage of IBSIR over any other reconstruction technique proposed yet for GBCT is its abil-

ity to reconstruct images acquired with any scan pattern without employing interpolation or

restricting assumptions. It will be shown that this allows highest quality GBCT reconstructions

even from scans with only a single projection per projection angle.

In the following sections first the model and optimization problem behind IBSIR is introduced.

Then an algorithm specifically designed to efficiently solve this optimization problem is devel-

oped. After this the reconstruction from scans with a single projection per projection angle is

demonstrated and a loose sampling criterion for GBCT is proposed. Finally, expansions of the

algorithm allowing the estimation of various system drifts individually for each projection are

proposed and tested.

The results in this chapter are a major part of the novel findings presented in this thesis. Huge

parts of it have already been published in previous works by the author [68, 69, 70, 71] and are

presented in a merged and amended version in the following.

5.2 Formulation

The reconstruction method is formulated as an optimization problem, which requires the min-

imization of a cost function by iterative adaptation of the values of the spatial distribution

of the linear attenuation coefficient µ, the refractive index decrement δ, and the linear diffu-

sion coefficient ε. The cost function C is derived from the principle of maximum-a-posteriori

probability (MAP), see Sec. 2.3.4.1: It consists of two terms, the likelihood term L, which is a

measure of the probability that the measurements originates from the estimated reconstruction,

and the regularization term R that incorporates prior knowledge about the image

C(µ, δ, ε) = L(µ, δ, ε) +R(µ, δ, ε) . (5.1)
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Now the solution of our reconstruction method µ̂, δ̂, and ε̂ are the vectors µ, δ, and ε, that

minimize this cost function

µ̂, δ̂, ε̂ = arg min
µ,δ,ε

C . (5.2)

5.2.1 Data term

The likelihood term L is the negative log-likelihood of the reconstruction given the measure-

ments y and thus depends on the underlying statistical distribution of the measurements.

Without limitation of generality, we will assume that the measured intensity yi at each data

point i is Gaussian distributed around its mean value Īi with variance σ2
i . After normalizing

for pre-factors, this provides the following log-likelihood term L

L(y|I) =
∑
i

1

σ2
i

(Ii(µ, δ, ε)− yi)2 , (5.3)

where Ii is the mean intensity of data point i as predicted by a forward model of the imaging

system.

The forward model for I contains the influence of the variables µ, δ, and ε on the measurements

and it is a direct combination of the model underlying signal extraction using the weighted least

squares approach, see Sec. 3.1, and the iterative reconstruction algorithms for transmission,

dark-field and phase-contrast computed tomography, see Sec. 2.3:

Ii(µ, δ, ε) = I0
i Ti(µ)

[
1 + V 0

i Di(ε) cos (φi(δ) + Φ0
i )
]
. (5.4)

The additional parameters I0, V0 Φ0 are not dependent on the variables to be estimated

and represent the mean intensities, visibilities, and phase positions of the stepping curves of a

hypothetical scan without any sample present in the beam path. They are normally estimated

from a reference scan shortly before or after the scan. The transmission T, dark-field D, and

differential phase contrast φ on the other hand are directly related to the object estimation.

Following Lambert-Beers-Law, see Eq. 2.4, the transmission in one pixel is given by the negative
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exponential of the line integral over the attenuation coefficient µ:

Ti = exp

[
−
∫

li

µ dx

]
, (5.5)

where
∫

li
dx represents the line integral from the X-ray source to a specific detector pixel at a

specific angular position.

The dark-field signal can be modeled in the same way as the attenuation signal, see Eq. 2.21:

Di = exp

[
−
∫

li

cD ε dx

]
(5.6)

with a setup geometry dependent constant cD for quantitatively comparable results [38].

The differential phase contrast is dependent on the distribution of the refractive index decrement

δ as follows, see Eq. 2.13:

Φi = cΦ ∂⊥li

∫
li

δ dx , (5.7)

where ∂⊥li is the partial derivative perpendicular to the direction of the grating bars and the

direction of the line integral li and cφ is a setup geometry specific constant.

For brevity, the explicit dependence of I, T, D, and φ on µ, δ, and ε will be dropped in the

following.

5.2.2 Regularizer

The regularizer term R of the cost function represents prior knowledge about the characteristics

of the sample. Various different choices for this term are possible, see Sec. 2.3.4.4. To cut down

the number of choices only regularizer terms that are separate for each material property will

be used in this thesis:

R =
∑

θ∈{µ,δ,ε}

βθRθ . (5.8)

It is immediately clear that this choice of regularizer is not optimal for the reconstruction

problem at hand, as it is not possible to include a very simple fact about all real objects:

The spatial distributions of the attenuation and refractive index are not independent of each
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other. But the choice is necessary, as the design of suitable multi-channel regularizers for

CT reconstruction is still an open research field and was not part of the work for this thesis.

Also, the range of single channel regularizers is already quite diverse and a huge amount of

different regularizers have been employed for iterative reconstruction of attenuation CT [32].

The simplest regularizers penalize differences in the value of neighboring voxels:

Rθ =
1

2

∑
j

∑
k∈Nj

wjkψ(θj − θk) , (5.9)

where Nj is the neighborhood of voxels around voxel j, wjk is a weighting function dependent

on the distance between voxels j and k, and ψ(θj − θk) is a potential function penalizing value

differences between the voxels j and k.

The advantages of the Huber potential function were discussed in Sec. 2.3.4.4 and as it (and very

similar potential functions) is an extremely common choice of regularizer for CT reconstruction

problems [32]. It was used (with a neighborhood of 26 voxels and weighting dependent on the

inverse distance between the voxels) for all following reconstructions.

5.3 Algorithms

General purpose optimization algorithms can be utilized to minimize the IBSIR optimization

problem [10, 71, 70]. But a specialized solver designed specifically for this problem is necessary

to address the specific challenges inherent to this non-linear, non-convex optimization problem.

The problem size of CT reconstruction generally prohibits the application of conventional New-

ton methods that require storage and computation of complete second order information about

the optimization problem. But the IBSIR optimization problem is not only large-scale but also

non-linear, meaning that a step in the Newton direction (inverse of the Hessian multiplied with

the gradient) could not guarantee to monotonically decrease of the cost function but would

require the additional application of a line search algorithm along the direction of the step

to ensure monotonic decrease of the cost function. Applying a line search at every iteration

is extremely expensive as just for the evaluation of the cost function a forward projection of
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each volume is necessary. From this follows that a suitable algorithm should ensure monotonic

decrease of the cost function without line searches while still maintaining a fast convergence

speed comparable to Newton methods.

Another necessary requirement for the fast convergence of an optimization algorithm is that

the algorithm makes sure that the optimization problem is well conditioned to guarantee that

that all parts of the optimization problem converge at a similar speed. As all CT reconstruc-

tion problems, the IBSIR problem is quite badly conditioned in various aspects: First of all,

between voxels, meaning that a small change in one specific voxel generally carries a differ-

ent influence on the cost function as the same change in another voxel. Another important

conditioning problem can be found in the response of the cost function to changes of different

spatial frequencies [72, 73]: In the attenuation and dark-field channel this means that the con-

vergence of low frequencies is much faster than the convergence of small details contained in

the high frequencies, because large structures have a much higher impact on the cost function

than small details. In refractive index channel the dependency is the other way around: The

differential operation after the forward projection of the refractive index decrement results in

the frequency response of a very strong high-pass filter. This results in the effect that low

frequency components of the refractive index reconstruction have almost no effect on the cost

function, resulting in extremely slow convergence of low image frequencies.

But the IBSIR problem is not only badly conditioned in the spatial and the frequency domain

but also across the different channels: A small change in the attenuation of one voxel will

always carry a larger influence on the cost function than a small change in the refractive index

decrement or linear diffusion coefficient of this voxel.

In the following an optimization algorithm specifically build for IBSIR that addresses all these

challenges will be proposed.

5.3.1 Separable paraboloid surrogate for IBSIR

The majorization-minimization principle has been applied to create the widely used separable

paraboloid surrogate (SPS) algorithm for attenuation CT [49, 35, 37, 54]. This algorithm has
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a spatially even convergence rate and produces update steps that are ensured to monotonically

decrease the cost function. Applying this principle to the IBSIR optimization problem will be

the topic of this section.

As explained for attenuation CT in Sec. 2.4, it is necessary to construct a voxel-wise separable

paraboloid surrogate function for the IBSIR log-likelihood term,

L(µ, ε, δ) =
∑
i

(
yi − I0

i e
−

∑
j aijµj

(
1 + V 0

i e
−cD

∑
j aijεj cos(Φ0

i + cΦ

∑
j

aDijδj)

))2

wi , (5.10)

where aij are the elements of a system matrix describing the forward projection and aDij are the

elements of a system matrix describing the differential forward projection.

To construct a voxel-wise separable surrogate function L has to be written as a function of the

line integrals lµ and lε and the differential line integrals lδ
D

:

lµi =
∑
j

aijµj, lεi = cD
∑
j

aijεj, lδi
D

= −cΦ

∑
j

aDijδj , (5.11)

L(lµ, lε, lδi
D

) =
∑
i

(
yi − I0

i e
−lµi
(

1 + V r
i e
−lεi cos(Φ0

i + lδi
D

)
))2

wi . (5.12)

Using this notation, the cost function can be written as a sum of pixel-wise (but not material-

wise) separate functions hi(li)

L(lµ, lε, lδ
D

) =
∑
i

hi(li) , (5.13)

where li is a vector containing the relevant line integrals for pixel i. Using a suited quadratic

surrogate function qi a convex paraboloid surrogate function QPS,1 can be constructed:

QPS,1(l; l(n)) =
∑
i

qi(li; l
(n)
i ) (5.14)
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with

qi(li; l
(n)
i ) = hi(l

(n)
i )

+
∑
k

∂hi(li)

∂lki

∣∣∣∣
lki =lki

(n)
(lki − lki

(n)
)

+
∑
k

∑
m

ckmi
(n)

(lki − lki
(n)

)(lmi − lmi
(n)) ,

(5.15)

where k and m sum over µ, ε, and δD. The curvature ci ∈ R3x3 needs to be positive definite and

it has to ensure that qi(li; l
(n)
i ) ≥ hi(li) is valid for all li. Possible choices for ci will be discussed

later but first a voxel-wise separable paraboloid surrogate function QSPS will be constructed

on basis of the convex paraboloid surrogate function QPS,1.

Finding a separable surrogate is usually achieved by invoking Jensen’s inequality, see Sec. 2.4,

f(
∑
j

λjθj) ≤
∑
j

λjf(θj) (5.16)

for a convex function f and positive weights λj with
∑

j λj = 1. This equation is valid for

scalar and vector valued θj. It is possible to identify f with qi and θ with a vector containing

µ, ε, and δ. Unfortunately λj cannot be directly identified with aij because the sum over

aij is only connecting µ and ε with their line integral but δ is connected to its differential

line integrals by a sum over aDij . To be able to invoke Jensen’s inequality a surrogate function

QPS,2 will be constructed based on QPS,1, which does not use any differential projections but

only conventional projections. The first step for this effort is to rewrite the differential forward

projection ADx as the differentiated conventional forward projection DAx, where D is a suitable

matrix that differentiates the projections in direction perpendicular to the grating bars:

lδ
D

= ADδ = DAδ = Dlδ . (5.17)
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Expanding the terms of QPS,1,

QPS,1(l; l(n)) =
∑
i

qi(l
µ
i , l

ε
i , l

δ
i

D
; lµi

(n), lεi
(n), lδi

D(n)
)

=
∑
i

h
(n)
i

+
∑
i

ḣi
µ
(lµi − l

µ
i

(n)) +
∑
i

ḣi
ε
(lεi − lεi

(n)) +
∑
i

ḣi
δD

(lδ
D

i − lδ
D

i

(n)
)

+
∑
i

cµµi
(n)(lµi − l

µ
i

(n))(lµi − l
µ
i

(n)) +
∑
i

cεεi
(n)(lεi − lεi

(n))(lεi − lεi
(n))

+
∑
i

cδ
DδD

i

(n)
(lδ

D

i − lδ
D

i

(n)
)(lδ

D

i − lδ
D

i

(n)
) +

∑
i

cµεi
(n)(lµi − l

µ
i

(n))(lεi − lεi
(n))

+
∑
i

cµδ
D

i

(n)
(lµi − l

µ
i

(n))(lδ
D

i − lδ
D

i

(n)
) +

∑
i

cεδ
D

i

(n)
(lεi − lεi

(n))(lδ
D

i − lδ
D

i

(n)
)

, (5.18)

and recalling that the surrogate function should have the same value for l = l(n) and the same

gradient at l = l(n), allows to see that there is no need to change the construction of the constant

and linear part in l. So only the sums which are quadratic in l need attention (and here only
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the ones with lδ
D

i contributions). For the term containing lδ
D

i squared one can write

∑
i

cδ
DδD

i

(
lδ
D

i − lδ
D

i

(n)
)2

=
∑
i

cδ
DδD

i

∑
i′

dii′ l
δ
i′
− lδDi

(n)

2

=
∑
i

cδ
DδD

i

∑
i′

[
dii′ l

δ
i′
− dii′ lδi′

(n)
+ dii′ l

δ
i′

(n)
]
− lδDi

(n)

2

=
∑
i

cδ
DδD

i

∑
i′

[
dii′ (l

δ
i′
− lδ

i′
(n)

)
]

+
∑
i′

dii′ l
δ
i′

(n) − lδDi
(n)

2

=
∑
i

cδ
DδD
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If this term is differentiated two times one will be left with
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(5.20)

This means that the curvature cδ
DδD

i derived for a surrogate problem with a conventional pro-

jection of δ instead of the differential projection needs to be multiplied by two to get a suitable

curvature for the original problem with the differential projection. The terms containing the

off-diagonal elements cδ
Dµ
i and cδ

Dε
i are majorized by terms containing the absolute value of the

respective entry of ci and the conventional line integrals of δ.
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These two results lead to the new surrogate function QPS,2:
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∑
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(5.21)

Now the separation trick (multiplying by
αij
αij

and evoking Jensen’s inequality to get the sum over

j and one αij to the front) can finally be performed to get the following voxel-wise separable

function.
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ḣi
ε
(lεi − lεi

(n)) +
∑
i

ḣi
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(5.22)
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As in Sec. 2.4 αij is chosen as

αij =
aij∑
j′ aij′

. (5.23)

Taking the second derivative towards two different voxels k and l (and arbitrary material

properties θ and θ
′
) reveals that this surrogate function is indeed voxel-wise separated:
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But taking the second derivative towards a single voxel k reveals that it is not separated material

property-wise:
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(5.25)

This quadratic surrogate function can be exactly minimized by a Newton step, which leads to

the following image update:

xn+1 = xn − C−1∇Q , (5.26)
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where C is the Hessian matrix of QSPS.

To calculate the inverse of C one can use the fact that the inverse of a block diagonal matrix is

simply the block matrix consisting of the inverted blocks of the original matrix. As the curvature

matrix C is a block matrix consisting of n, where n is the number of voxels, 3x3 blocks one

now simply needs to invert n 3x3 matrices and, for each voxel j, multiply the corresponding

inverted 3x3 matrix Cj onto the gradient vector in this voxel,


µj

δj

εj


(n+1)

=


µj

δj

εj


(n)

− C−1
j


∂QnSPS
∂µj

∂QnSPS
∂δj

∂QnSPS
∂εj

 . (5.27)

5.3.2 Choice of curvature

Figure 5.1: The blue lines show three different realizations of hµi or hεi . In green optimal
quadratic surrogates are given and in orange surrogates with curvatures equal to the second
derivatives are given.

To utilize the update step derived in the last section, it is necessary to choose a viable curvature
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for the surrogate functions. As there is no general way of constructing a sharp curvature for a

multivariate quadratic surrogate function of a non-convex function [52], two pseudo-curvatures

will be proposed in the following: One based on the sharp curvature calculatable under the

assumption that updates to µ, δ, ε do not directly influence each other in one step and the

other based on the Hessian matrix in each voxel. In addition, a pre-computed curvature based

on the curvature derived from the Hessian matrix will be presented.

5.3.2.1 Optimal diagonal curvature

Figure 5.2: The blue lines show three different realizations of hδi . In green the optimal quadratic
surrogates are given and in orange surrogates with curvatures equal to the second derivatives
are given.

For a 3D function, like hi(li), it is hard to design an optimal curvature, once because there is

no general way to do it and once because even deciding what optimal means is not even clearly

defined. But if the coupling between the dimensions is not too strong it might be viable to

reduce the 3D problem into three separate 1D problems where for each dimension the smallest

possible curvature is clearly the best choice.
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To design optimal curvatures for the separate 1D problems, it helps to rewrite the function

hi(l
µ
i , l

ε
i , l

δD

i ) into three simplified functions hµi (lµi ), hεi(l
ε
i), and hδi (l

δ
i )

hµi = (exp(−lµi )− yµi )2 wµi (5.28)

hεi = (exp(−lεi)− yεi )2 wεi (5.29)

hδi = (cos (Φ0
i + lδ

D

i )− yδi )2 wδi (5.30)

with

yµi = yi / (I0
i (1 + V 0

i exp (−lεi) cos (Φ0
i + lδ

D

i ))) (5.31)

wµi = wi (I0
i (1 + V 0

i exp (−lεi) cos (Φ0
i + lδ

D

i )))2 (5.32)

yεi = (yi − I0
i exp (−lµi ))/(I0

i exp (−lµi ) V 0
i cos (Φ0

i + lδ
D

i )) (5.33)

wεi = wi (I0
i exp (−lµi ) V 0

i cos (Φ0
i + lδ

D

i ))2 (5.34)

yδi = (yi − I0
i exp (−lµi ))/(I0

i exp (−lµi ) V 0
i exp (−lεi)) (5.35)

wδi = wi (I0
i exp (−lµi ) V 0

i exp (−lεi))2 . (5.36)

The shape of hµi and hεi is now equivalent to the per pixel cost function of the non-linearized

CT reconstruction problem. The optimal curvature for this problem with lµi ≥ 0, respectively

lεi ≥ 0, has been published in [35]:

cµi (lµ) =


[
2
hµi (0)−hµi (lµi )+ḣi

µ
(lµi ) lµi

lµi
2

]
+

if lµi ≥ 0[
ḧi
µ
(0)
]

+
otherwise.

(5.37)

It uses the knowledge that lµi and lεi are bound to be positive and the second derivative of hi is

bounded on the interval [0,∞] and monotonically decreasing while ḧi ≥ 0. Several examples of

the shape of hµi or hεi and the paraboloid surrogate function resulting from the optimal curvature

for different values of yµi , wµi , and lµi respectively yεi , w
ε
i , and lεi are given in Fig. 5.1.

Finding the optimal curvature for hδi is much harder as the space of viable values of lδ
D

i is

not limited and the second derivative is non-monotonic. If one cannot find an analytic way to
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calculate the optimal curvature, it is always possible to calculate the optimal curvature by brute

force: Simply start with cδi = 0, numerically check if qδi (l
δD

i ) ≥ hδi (l
δD

i ) for all viable values of

lδ
D

i and increase cδi by a small amount until the domination condition is not violated anymore.

Of course, this process is computationally expensive and this cost prohibits calculating the

optimal curvature individually for each pixel during reconstruction. But cδi can be treated as

a function of yδi and Φ0
i and subsequently be approximated by interpolating between values

previously calculated and saved into a lookup table before the reconstruction. Calculating such

a lookup table is simple at a first glance but as yδi and Φ0
i can both take all values from −∞

to ∞ it would require careful consideration where the points evaluated for the lookup table

should be placed. Fortunately, the function cδi (y
δ
i ,Φ

0
i ) is 2π-periodic in Φ0

i (as hδi is 2π-periodic

in Φ0
i ), thus only input values between −π and π must be considered. Through careful analysis

of different possible input value ranges an analytic formula for |yδi | ≥ 4 can be found:

cδi (l
δ
i ) =


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i ) sin Φ0
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if lδi ≥ 4 ∧ Φ0
i 6= 0

yδi − 1 if lδi ≥ 4 ∧ Φ0
i = 0

(−yδi−cos (π−Φ0
i )) sin (π−Φ0

i )

π−Φ0
i

if lδi ≤ −4 ∧ 0 ≤ Φ0
i ≤ π

−yδi − 1 if lδi ≤ −4 ∧ Φ0
i = π

(−yδi−cos (π−Φ0
i )) sin (π−Φ0

i )

−π−Φ0
i

if lδi ≤ −4 ∧ −π ≤ Φ0
i ≤ 0

−yδi − 1 if lδi ≤ −4 ∧ Φ0
i = −π

cδi (l
δ
i ) else.

(5.38)

These analytic solutions remove the need to calculate lookup table values for data points with

|yδi | ≥ 4. With these two restrictions on the range of the lookup table it is only necessary to

calculate and store points in the ranges yδi ∈ [−4, 4] and Φ0
i ∈ [−π, π]. A visual inspection of

the values of cδi calculated by brute force, see Fig. 5.3, reveals that the function is smoothly

varying with yδi and Φ0
i and thus an approximation with interpolation between points saved in

a lookup table is a viable approximation.
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Figure 5.3: Visualization of the lookup table for the optimal curvature of hδi calculated in the
value range not accessible with the presented analytic solutions.

5.3.2.2 Hessian curvature

Another starting point in designing a curvature is to look at the Hessian matrix of the problem at

hand. For a quadratic problem the Hessian would be constant and equal to the ideal curvature

and would consider dependencies between updates of the different variables. In the case of non-

quadratic problems using the Hessian as curvature will not result in a proper surrogate function,

as there is no guarantee that the surrogate function will lie on top of the original cost function

for all estimates, see Fig. 5.1 and Fig. 5.2. But if the current estimate of the reconstruction is

already near the minimum and if the original cost function is nearly quadratic near its minimum

the use of the Hessian as curvature should result in a quick optimization (but without any

convergence guarantee) [74]. The equations necessary to calculate the Hessian matrix for the

IBSIR problem can be found in App. B.1. Unfortunately, calculating and inverting the full

Hessian in each voxel at every iteration is quite computationally expensive (six backprojections

are necessary to calculate the entries of the hessian matrix and for each voxel a 3x3 matrix has

to be inverted). It would be very beneficial if we could find a curvature that does not need
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recalculation at every iteration but could be precalculated once before the reconstruction.

5.3.2.3 Precalculated Hessian curvature

If one takes a look at the second derivatives of hi, see App. B.1, two ways of simplification may

come to mind: If the reconstruction is sufficiently near to the minimum of the cost function

the residual at each pixel becomes small and the mean of the residuals approaches zero, as

in convergence the residuals are Gaussian distributed around zero. This means the backpro-

jection (which acts as a strong low-pass filter) of terms containing the residual of the pixels

is approximately zero for all voxels. Another simplification we can use is that the phase pi

is approximately equally distributed across all projections and pixels. Actually, this is a nec-

essary condition for an artifact free reconstruction of a GBCT dataset, see Sec. 5.4.1. This

means the backprojection (which acts as a low-pass filter) of terms containing sin(pi), cos(pi)

or sin(pi) cos(pi) is zero and terms containing sin2(pi) or cos2(pi) become equal to 0.5. This

leads to very simple approximations of the entries, which can be found in App. B.1. Here only

IA needs to be estimated in some way: If the first estimate of µ and ε is good the value of IA

before the first iteration is a good estimate or, if no good estimate of µ and ε is available, I0V 0

will be a viable estimate, which will result in a looser curvature.

This curvature does not require recalculation in every iteration and using it could result in a

speed-up compared to the curvature based on the Hessian if the optimization is already near

its minimum.

5.3.3 Ordered subsets

Calculating the gradient is one of the most expensive parts in the reconstruction algorithm and

any possibility to speed up this part of the algorithm will greatly increase the overall speed

of the optimization. One method to achieve this has been proposed: The ordered subsets

method. This method has been used extensively in CT reconstruction in conjunction with the

SPS algorithm under the name OS-SPS [35].
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Taking subsets increases the speed of calculating the gradient of the likelihood function ∇L

by not calculating the gradient using the full available information from all projections but by

using only the information of a 1
M

-fraction of all projections. The gradient calculated from this

sub-sampled dataset ∇Lm will still approximate the gradient of the full dataset quite well (after

scaling with the factor M) but is roughly M -times faster to calculate than the full gradient.

For the best performance the subsets should be ordered, meaning that the k’th subset contains

the projections k, k + M , k + 2M , and so on, and each subsequent sub-iteration should use a

subset that is as orthogonal as possible to the previous subset.

This principle can be used for the IBSIR optimization problem in the same way as it has been

used for attenuation CT, except that care should be taken in selecting a viable number of

subsets that still ensures a good sampling of the enhanced Radon space in each subset. If, for

example, a sliding window phase stepping scan with five different equidistant grating positions

is sub-sampled into five subsets, each subset will only contain projections of the same grating

position, resulting in an extremely uneven sampling of the enhanced Radon space in each subset

and possibly resulting in very uneven and unstable image updates.

It should be noted that the approximation

∇L = M ∇Lm (5.39)

becomes less viable with increasing convergence because the overall structure of the object

becomes more and more fixed and only subtle details remain to be reconstructed and the

information about these details is not evenly distributed across all projections. It is thus

recommended to use a large number of subsets for a strong initial acceleration and decrease the

number of subsets in subsequent iterations.

5.3.4 Fourier space preconditioning

As discussed in the beginning of this section, the optimization problem at hand is not only

badly conditioned in the image-domain and across the channels, which are both addressed by

the choice of curvature, but also in the frequency domain. This can be well observed by look-
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Figure 5.4: Intermediate results of the reconstruction of δ using IBSIR with a gradient descent
solver after 16 (A), 128 (B), and 1000 (C) iterations. The ground truth is shown in (D). The
color windows are [-0.0003,0.0003] (A), [-0.01,0.01] (B), and [-0.01,0.05] (C and D).

ing at intermediate results of a reconstruction of the refractive index using gradient descent,

see Fig. 5.4. In the first iteration only high frequency features are visible and it takes even

a considerable time for mid- frequency features to appear. Low frequency features like in the

central area of the phantom are even not visible after many hundreds of iterations. For the

other channels the frequency convergence is comparable to the frequency behavior observed for

simple attenuation CT reconstruction algorithms [72]: Low frequency image components are

favored over high frequency features.

A possible way to address this challenge is to calculate the PSF caused by the forward- and

backward projection in the reconstruction algorithm and use its inverse as a Fourier space filter

on the image updates. A rough spatially invariant approximation of the PSF can be calculated

by simply forward and backward projecting a δ-peak function placed in the center of the image

space [72]. The image updates generated by filtering the gradient with this filter may reduce

the cost function slightly slower than using the unfiltered image update, but the low frequency

components will improve much faster leading to a far faster convergence of the image impression.

5.3.5 Momentum acceleration

Momentum techniques have been widely used in CT reconstruction to speed up the convergence

of first-order optimization algorithms, like the OS-SPS algorithm [54, 37], and there is no reason

not to use them in the case of the IBSIR cost function. Momentum techniques use information
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about previous descent directions to increase the speed of convergence. It was shown [75]

that such an accelerated gradient method has a rate of convergence of the order O(1/n2) as

compared to conventional gradient methods with a rate of convergence of O(1/n). A possible

choice of momentum acceleration is based on the work of Y. Nesterov [75] and an algorithm

for use in CT reconstruction based on this choice has been proposed [54]:

t(n+1) = (1 +

√
1 + 4t(n)2

)/2

θ(n+1) = (m(n) −D−1∇C)

m(n+1) = θ(n+1) +
t(n) − 1

t(n+1)
(θ(n+1) − θ(n))

(5.40)

with m(0) = θ(0) and t(0) = 1.

If the initial step size is small, it will take the momentum term several iterations to approach

its optimal value. This slow initial acceleration is well suited for combination with the ordered

subset acceleration that provides a strong acceleration during the first iterations.

5.3.6 Simulations

The choice of the proposed acceleration techniques has a tremendous effect on the convergence

of the reconstruction algorithm. The effect of the different options was compared by performing

various reconstructions of the simulated axial scan of a phantom. The scan consisted of 1203

equidistantly spaced projections taken in parallel beam geometry. The simulated detector is

a photon-counting detector with perfect quantum efficiency consisting of 16 lines with 256

pixels in each line. The simulated interferometer has a visibility of 0.4 and 105 monochromatic

photons per pixel were emitted from the X-ray source. The Moiré fringes visible on the detector

were simulated to have a period of 10.1 pixels in both detector dimensions. After acquiring

a projection the grating position was moved by 1
2.618

of the grating pitch. The attenuation

and linear diffusion coefficients of the phantom were chosen such that the lowest transmission

and dark-field signal was around 0.4. The refractive index was chosen such that the highest

differential phase contrast was about 0.6. All reconstructions were started from an empty initial

guess and Huber regularization with a low regularization strength was used for each channel.
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5.3.6.1 Choice of curvature

Figure 5.5: Change of the cost function value and the normalized mean absolute error (NMAE)
in each image channel with the number of iterations for three different choices of curvature for
the surrogate function. No momentum acceleration, subset acceleration, or frequency space
preconditioning was used.

First a reconstruction without any acceleration was performed and the three different proposed

methods to calculate a step size are compared. The pre-computed curvature based on the

Hessian Cprec was only calculated once at the beginning of the reconstruction and the 1D

optimal curvature Copt as well as the curvature based on the Hessian Chess were recomputed

after each iteration.

As Copt is always larger than the corresponding entry of Chess, it is to be expected that the

initial convergence of the reconstruction is slower using Copt than using Chess. In Fig. 5.5 one

can see that this is true in the simulation as the normalized mean absolute error (NMAE) in

all three channels and the value of the cost function initially decreases quicker for Chess but

after several hundreds of iterations the distance becomes marginal. The reconstruction using

the pre-computed Cprec is decreasing the NMAE in the attenuation channel as quick as Chess

per iteration but does not work as well as the other choices for the reconstruction of ε and δ.
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Designing a pre-computed curvature that works well for the reconstruction of ε and δ would be

highly beneficial because an image update using a pre-computed curvature requires only half

as many forward- and backprojections and thus has the potential to double the reconstruction

speed.

A quick solution to ease the problem of calculating the curvature newly in each iteration is

to update the curvature only every few iterations. This will result in a slightly non-optimal

curvature at most iterations but greatly reduces the computational cost. This results only

in a minor decrease in convergence per iteration but decreases the number of forward- and

backprojections by a factor of 1+n
2n

, where n is the number of iterations after which the curvature

is recalculated.

5.3.6.2 Fourier space preconditioning of δ

Figure 5.6: Change of the cost function value and the normalized mean absolute error (NMAE)
in each image channel with the number of iterations for reconstructions using different combi-
nations of the Nesterov momentum acceleration and/or the frequency space preconditioning of
the refractive index channel. A single subset was used for all reconstructions.

As could be seen in the convergence of the un-accelerated reconstructions in Fig. 5.5, the con-
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vergence of the MAE of the refraction index channel is extremely slow, regardless of the choice

of curvature, albeit the value of the cost function is readily decreasing. This is caused by the

fact that only the highest frequencies of δ are correctly reconstructed, these frequencies are

important for the cost function, but the overall image of the refractive index reconstruction

does not converge in a reasonable time. It can be seen in Fig. 5.6 that filtering the update

of δ with the inverse of the Fourier transform of the PSF caused by differential forward- and

backprojection greatly reduces this focus of the optimization on the high frequencies and pro-

vides a consistently decreasing NMAE of δ. The convergence of the other channels is largely

unchanged by this change to the updates of δ.

5.3.6.3 Momentum acceleration

As expected, the momentum acceleration provides a significant overall boost in convergence

speed. The cost function and the NMAE in each channel drop much quicker than for the un-

accelerated reconstruction. Only for the refractive index channel the momentum factor needs

many iterations to pick up speed and accelerate the reconstruction. But the acceleration in

this channel seems to show a ringing behavior and the MAE increases again. This is caused

by the fact that, if no Fourier preconditioning is used on δ, still only the very high frequencies

are reconstructed and even the momentum acceleration cannot efficiently converge the low

frequencies. By far the best results are obtained when Fourier space preconditioning and

momentum acceleration are combined, even quickly converging the refractive index channel.

5.3.6.4 Subset acceleration

Last but not least, the effect of subset acceleration on the convergence of the preconditioned and

momentum accelerated reconstruction algorithm was studied. In Fig. 5.7 it can be seen that

the reconstructions using different numbers of subsets show very similar convergence speed per

iteration as a reconstruction using only a single subset. Only for large numbers of subsets the

convergence speed per iteration starts to slightly decrease and for even higher numbers of subsets

the reconstructions diverge. The results are not shown here, but without any acceleration the
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Figure 5.7: Change of the cost function value and the normalized mean absolute error (NMAE)
in each image channel with the number of iterations for reconstructions using different num-
bers of subsets. All reconstructions use Nesterov momentum acceleration and frequency space
preconditioning of the refractive index channel.

number of subsets can be increased far higher before divergence starts to occur. But the increase

in convergence speed offered by frequency space preconditioning and momentum acceleration

clearly out-weights the acceleration of using an extreme amount of subsets.

5.4 Single shot acquisition

One of the main challenges for the successful translation of GBCT from laboratory setups to

a clinical full body CT scanner is the continuous rotation and signal acquisition of a modern

CT scanner. The conventionally used phase-stepping procedure, see Ch. 3, is not usable in this

scenario. Several solutions have been proposed to overcome this challenge, but those solutions

all come with shortcomings. For example, the reverse projection method [76] combines two

interferograms taken exactly 180 degrees apart. This method poses very strict requirements

on the stability of the grating alignment and gives only access to attenuation and differential
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phase-contrast projection images. Additionally, it is unclear if this technique can be adapted

to systems with significant cone-beam geometry and helical acquisition protocols. The Moiré

analysis method [77, 13] is a true single-shot technique that uses Fourier analysis to detect

subtle changes caused by the measured object on a high-frequency Moiré fringe pattern cre-

ated from slight detuning of the interferometer, see Sec. 2.2.3. This approach does not require

grating movements but suffers from a significant loss in resolution in one dimension of the

detector. A different approach, which is a direct successor of traditional phase-stepping, is the

sliding window method [61], see Ch. 4. This technique requires only a single interferogram

per projection angle but changes the grating position at each angular position. To mimic a

classical phase-stepping scan, the missing interferograms are simply interpolated from adjacent

projection angles. This works well for scans with high angular sampling but if the number

of projection angles is reduced, the interpolation step causes blurring and artifacts. In ad-

dition to techniques that require only a single interferogram per projection angle, a solution

that overcomes the need for precise mechanical grating movements (but still requires multi-

ple measurements per angular position) has been presented: Electromagnetic phase-stepping

(EPS) [78] employs electrical beam steering to move the object’s projection slightly across the

detector while a deliberately created Moiré fringe pattern is fixed on the detector. Several of

these shifted images can be combined to form a pseudo phase-stepping. All these solutions,

including traditional phase-stepping, have in common that they calculate sets of attenuation,

differential phase-contrast and dark-field projections for each projection angle from the inter-

ferograms.

Using the IBSIR reconstruction method allows to circumvent this intermediate signal retrieval

step and should allow for high quality, artifact free reconstructions from just single measure-

ments per projection angle. In the following, considerations about the necessary sampling

required for artifact-free reconstructions are made and then simulations and measurements are

presented for several successful single-shot imaging scenarios.

Many of the following results have already been published by the author in [68]
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5.4.1 Sampling

Figure 5.8: Sampling of expanded Radon space for three different acquisition protocols. The
left image shows the sampling for a sliding window scan. The central image represents a
scan without grating movements and high frequency Moire fringes on the detector and the
right image visualizes the sampling of a scan with high frequency Moiré fringes and SSEPS
acquisition. The color represents the phase of the measurement on the phase stepping curve.

The formulation of the GBCT reconstruction problem in the previous section provides an ex-

tremely versatile reconstruction method that will produce results even for measurement data,

that is acquired in patterns very different to conventional phase-stepping GBCT. The ability

of the IBSIR algorithm to calculate a result for all possible input information does, of course,

not guarantee that the result is similar to the true object. There must be requirements on

the information content necessary for an artifact-free reconstruction. In conventional CT one

would analyze this information content by looking at the positions of the measurements in the

space of possible measurements, the Radon space [28]: Every single measured pixel of a con-

ventional CT scan represents information at one point of the Radon transform of the measured

object and the task of a CT reconstruction algorithm is to reconstruct the measured object

by somehow calculating the inverse Radon transform using this information. In the case of

GBCT, the Radon space representation of the measurements is not sufficient as each measured

pixel is not only taken at a specific angular position and a specific distance from the center of

the detector, but also at a specific phase position of the interferometer stepping curve. This

expands the measurement space by an additional phase dimension in which sampling can be

influenced by various effects: by shifting the gratings, by the presence and position of Moiré

fringes or by the phase shift induced by the object itself. The task of GBCT reconstruction can



96 Chapter 5. Statistical iterative reconstruction for grating-based CT

now be understood as the inversion of this expanded radon space (consisting of the conventional

spatial dimensions and the additional phase dimension) back to the object space (consisting of

the spatial distributions of the linear attenuation coefficient, the refractive index, and the linear

diffusion coefficient). All previous GBCT reconstruction algorithms solve this problem by first

collapsing the phase dimension of the expanded Radon space into three separate conventional

Radon spaces, then inverting them separately. For a conventional phase stepping scan this is

easily done by the signal estimation step, see Sec. 3.1, as the whole phase dimension is suffi-

ciently well sampled (with at least three points along the phase dimension) at each point in the

spatial dimensions. Single shot methods can be understood as a collapse onto coarser grids or as

interpolation of missing values in the expanded Radon space. For example, the Fourier analysis

method [77, 13] collapses onto a coarser grid along the detector pixel dimension of the Radon

space and the sliding window interpolation method [61] uses nearest neighbor interpolation to

fill missing values in the phase dimension with values taken from along the angular dimension.

IBSIR on the other hand takes a very different approach because it directly inverts the expanded

Radon space without first collapsing it. In situations without a complete phase stepping, this

has the potential to be highly beneficial to the image quality of the results because collaps-

ing the expanded Radon space will always loose information and thus necessarily reduce the

possible accuracy of the results. From the theory of compressed sensing it is known that the

highest probability to correctly recover a signal in an unknown under-determined system from

noisy measurements can be achieved if the signal is sampled as non-uniform as possible. The

distribution of the measurements along the conventional axes of the expanded Radon is given

by the setup geometry, but the distribution along the phase axis can be influenced by the ac-

quisition protocol. A way to visualize this expanded Radon space is to use the conventional

Radon space and add color as an additional dimension to show measurement phase positions

between 0 and 2π.

The expanded Radon space for three different acquisition protocols can be found in Fig 5.8.

The first protocol shows the sampling in a scan with a sliding window grating movement. This

scan is quite well sampled in the phase dimension in the central region of the spatial sampling

space, but the sampling becomes worse in regions further out from the center when the spatial
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sampling in angular direction is getting thinner. This will cause under-sampling like artifacts

in regions far from the rotation axis for situations with a sparse angular sampling. The second

figure shows the sampling in an acquisition with constant gratings but high frequency Moiré

fringes across the detector. This provides a quickly changing phase in the radial direction of the

sampling space but a constant phase along the angular direction. This results in a bad phase

sampling in the center of the spatial region of the Radon space and will subsequently result in

ring-like artifacts in the center of the reconstruction, see Fig. 5.9. The last expanded Radon

space is representative for a scan with fixed grating positions, high frequency Moiré fringes and

a sample shift of the object by one pixel per projection angle. This movement can be provided

by changing the position of the focal spot (electromagnetic phase stepping) or by shifting the

object. This pattern is diversely sampled along angular and radial direction and should result

in artifact-free reconstructions. It should be noted that this is a very rough way to analyze the

necessary sampling of a GBCT scan, but it allows for plausible explanations of artifact-prone

and artifact-free acquisition protocols.

Figure 5.9: Reconstruction of attenuation coefficient (A), refractive index decrement (B), and
linear diffusion coefficient (C) from a generic simulated scan with Moiré fringes but without
phase stepping or sample movement.

5.4.2 Single-shot simulations

The performance of using IBSIR to reconstruct single-shot GBCT scans is first demonstrated

on numerical simulations. The simulated phantom exhibits X-ray attenuation, refraction, and
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Figure 5.10: Comparison of different reconstruction methods for several acquisition patterns.
The rows from top to bottom show reconstruction of a phantom’s attenuation, refractive index,
and linear diffusion coefficient. (PS-SIR) shows the reconstruction of a phase-stepping scan
composed of 101 angular positions with three phase-steps each. (PS-IBSIR) shows reconstruc-
tions of the same scan using direct reconstruction. Both reconstructions show distinct artifacts,
market by the arrows, caused by angular undersampling. (SW-IBSIR) uses the IBSIR algorithm
to reconstruct a scan acquired with a sliding window acquisition pattern. (SSEPS-IBSIR) is
the reconstruction of a single-shot electromagnetic phase-stepping acquisition pattern using a
single fixed grating position. Both methods strongly reduce the undersampling artifacts. Below
the images line plots along the yellow box for all channels are given. Figure adapted from [68].

ultra-small-angle scattering. To create this phantom the FORBILD head phantom [65] was

extended to three sub-phantoms with a well-defined linear attenuation coefficient µ, refractive

index decrements δ, and linear diffusion coefficient ε for each material property. The phantom

contains high-contrast elements, which are small in size and whose reconstruction is prone to

undersampling artifacts, and large low-contrast elements that are challenging to reconstruct
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correctly at the same time. Rotating the sub-phantoms with respect to each other (see ground

truth in Fig. 5.10) allowed us to better attribute which property of the phantom was causing

image artifacts. This destroys any anthropomorphology of the phantom but, for example, if all

elements were perfectly co-aligned, artifacts from photon starvation caused by high attenuation

would be visible in all three volumes, but would not be unambiguously attributable to the

attenuation property because at the same location the phantom also exhibits high ultra-small-

angle scattering and refraction. Scans with three different acquisition patterns (phase stepping

(PS), sliding window (SW), and single-shot electro-magnetic phase stepping (SSEPS)) were

simulated. Each simulation used the same total exposure time and number of detector readouts.

The PS scan used three different grating positions at each of 101 angular positions equally

distributed over 360 degrees. The SW scan took measurements at each of 303 angular positions

equally distributed over 360 degrees and after each measurement the grating position was

shifted by one third of the grating period. For the SSEPS scan, 303 measurements equally

distributed over 360 degrees were simulated and the focal spot position of the X-ray tube

was shifted by one pixel after each measurement. The reference phase of the interferograms

was set to mimic vertical Moiré fringes with a frequency of 0.05 px−1 for the PS and the

SW scan and a frequency of 0.38 px−1 for the SSEPS scan. A uniform visibility of 0.75 was

simulated. This unrealistically high visibility was chosen to achieve similar CNR levels in the

attenuation and dark-field image. The geometry constants cD and cφ were set to one. A 500 x

5 pixel ideal photon-counting detector and parallel beam geometry were simulated. Afterwards

Poisson noise corresponding to a total of 1013 emitted photons, evenly distributed over all

angles and pixels, was added to the projections. The values of the material properties of the

phantoms were re-scaled to achieve a similar CNR across all images. All simulations were

performed on a 500 x 500 x 5 voxel volume. The simulations were then reconstructed using

several methods: The PS scan was processed into attenuation, differential phase and dark-

field projections. Then the different sets of projections were reconstructed using FBP and SIR.

Additionally, this scan was directly reconstructed using the IBSIR method. The PS-SIR and the

PS-IBSIR reconstructions are shown in Fig. 5.10. The PS-FBP reconstruction produced vastly

inferior results with strong undersampling artifacts (the image quality metrics can be found in
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NRMSE in % NMAE in % MSSIM
µ δ ε µ δ ε µ δ ε

PS-FBP 26.0 24.9 26.6 19.1 18.0 19.9 .556 .557 .558
PS-SIR .411 .742 3.98 .251 .393 .793 .731 .687 .649
PS-IBSIR .521 .632 3.62 .291 .400 .767 .729 .661 .642
SW-FBP 25.1 35.1 57.3 16.0 25.8 42.8 .543 .537 .472
SW-SIR 17.1 22.4 22.7 3.90 9.77 8.32 .609 .610 .518
SW-IBSIR .632 .637 3.96 .272 .404 .889 .731 .679 .628
EPS-IBSIR .372 .564 3.74 .239 .356 .830 .730 .700 .632

Table 5.1: Normalized root-mean-squared error (NRMSE), mean absolute error (NMAE), and
mean structural similarity (MSSIM) were separately calculated for µ, δ, and ε. PS stands
for the phase stepping simulation, SW for the sliding window simulation and SSEPS for the
single-shot electromagnetic phase stepping simulation. Reconstructions where performed using
filtered backprojection (FBP), statistical iterative reconstruction (SIR) and interferogram-based
SIR (IBSIR). The SIR and IBSIR approaches perform better than the FBP method for all
simulations, whereas superior behavior of IBSIR over SIR can only be claimed for the SW
simulation. The SSEPS simulation, that could only be reconstructed using IBSIR, shows similar
image quality as the IBSIR reconstruction of the SW scan. Table adapted from [68].

Table 5.1). PS-SIR and PS-IBSIR reveal very comparable reconstruction results. Both show

slight but clearly visible undersampling artifacts originating at the high-frequency high-contrast

areas of the phantom in all modalities. Similar image quality was expected as both scans are

based on the same underlying information. In this specific case, adequate photon statistics and

sufficient sampling of the stepping curve enabled the signal estimation step to correctly extract

the underlying signals and correctly propagate the statistical weights for the SIR from the raw

measurements. The SW scan was also reconstructed using FBP, SIR, and IBSIR. Before the

reconstruction using FBP and SIR, a sliding window interpolation between neighboring views

had to be performed. The interpolated data was then processed the same way as the PS scan.

The SW-FBP and SW-SIR reconstructions show severe artifacts, which could be expected as

interpolation between neighboring views is only viable if the information content in one pixel

changes slowly between neighboring views. These reconstructions are not shown, but image

quality metrics can be found in Table 5.1. The SW-IBSIR reconstruction, see Fig. 5.10, does

not require the intermediate interpolation step, but works directly on the interferograms and

thus does not suffer from interpolation artifacts. The increase in angular sampling, compared

to PS-IBSIR, results in reconstructions that do not show angular under-sampling artifacts.

On this note, very weak streak artifacts can be seen in the attenuation reconstruction that
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seem to be originating from the location of the high-frequency high-contrast objects in the

scattering volume. In this instance, the algorithm was not able to attribute the changes in

measured intensity to the correct signal. The SSEPS simulation was only reconstructed using

IBSIR as no other algorithm is able to reconstruct measurements acquired this way. The

resulting SSEPS-IBSIR reconstructions show no artifacts and provide a significant improved

image quality compared to the other results, see Table 5.1.

5.4.3 Single-shot measurements

Figure 5.11: Axial (A-C) and sagittal (D-F) slices of the reconstructed attenuation coefficient
(A, D), refractive index (B, E), and linear diffusion coefficient (C, F) of in-vitro mouse intestines
scanned using the described single-shot electromagnetic phase stepping equivalent acquisition
and the direct reconstruction algorithm. Figure adapted from [68].

As simulations can never reproduce all the effects present in a real measurement, experimental

verification is necessary to fully illustrate the feasibility of single-shot GBCT without grating

movement. Thus, an experiment was performed using a Talbot-Lau interferometer with a

rotating anode X-ray tube as radiation source. Instead of shifting the focal spot position by

applying a magnetic field to the X-ray tubes electron beam, we physically shifted the sample by

a known distance after each measurement. This is readily possible at most X-ray microscopy

setups and (for small opening angles) it produces virtually the same measurements as a focal
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spot shift. For the experiment the intestines of a mouse fixated in formalin and placed in a falcon

tube, were used as a sample, exhibiting a complex combination of attenuation, refraction, and

scattering. To avoid extreme refraction at the falcon tube-air interface the whole sample was

placed in a water bath. For this scan 900 measurements were taken, equally distributed over 360

degrees, and the sample stage was cyclically stepped between five different positions, resulting

in object shifts of 0, 4, 8, 2 and 6 pixels in the direction perpendicular to the rotational axis. The

average period of the Moiré fringes in this direction was about 10 pixels. The setup used was

a symmetric Talbot-Lau interferometer [79] with grating distances G0G1 = G1G2 = 85.7 cm.

The three gratings G0, G1, and G2 are all made of gold on a silicon substrate with periods of

5.4 µm. The absorption gratings G0 and G2 have a height of 70 µm and 65 µm respectively. The

phase grating G1 is designed to give a phase shift of π at the system design energy of 27 keV.

The source was an ENRAF Nonius FR 591 rotating anode X-ray tube with a Molybdenum

target operated at 40 kVp and 70 mA. The detector was a photon-counting PILATUS 100k

with 487 x 195 pixels. It uses an 1 mm thick silicon sensor with a quadratic pixel size of

172× 172 µm2. The effective pixel size is 93× 93 µm2. The source to detector distance was

2.56 m, resulting in a fan angle of 3.7◦. The exposure time for every single interferogram was

6 s. The mean visibility of the interferometer was at 0.27 and the mean frequency of the Moiré

fringes parallel to the rotational axis was 0.1 px−1.

The result of the IBSIR reconstruction of this scan is shown in Fig. 5.11. It shows no image

artifacts and excellent image quality.

5.5 Internal parameter estimation during reconstruction

The second huge challenge of moving GBCT from highly controlled laboratory setups to a large

continuously rotating CT gantry in an only mildly controlled environment is the presence of

vibrations and drifts in such a setup.

Estimating the transmission, dark-field signal and differential phase shift caused by an object

in the beam path requires very precise knowledge about the characteristics of the interferom-

eter (or more precisely about the mean intensity, visibility and phase of all relevant stepping
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curves) without any objects present in the beam path. Of course, the same is true for the

direct estimation of the attenuation coefficient, the refractive index decrement, and the linear

diffusion coefficient using IBSIR.

The required system characterization is usually achieved by performing an as identical as pos-

sible reference scan before or after the sample scan. Unfortunately, the characteristics of every

real setup will change over time due to mechanical vibrations, thermal drifts, or grating re-

positioning inaccuracies [80]. Thus, there is a difference between the characteristics measured

during the reference scan and the real characteristics of the setup during the sample scan.

The effect of these drifts can greatly reduce the image quality of the estimated projections or

reconstructions. Consequently, various methods for the correction of these drifts have been

proposed for the projection-wise signal estimation problem [80, 81, 82, 83] but they are not

usable for the direct reconstruction method using IBSIR as the corrections are applied in the

projection domain after the signal estimation, which does not exist for the IBSIR method.

In the following three different variants of a possible solution for this problem will be presented:

The vibrations and drifts are incorporated into the forward model used for the reconstruction

and the amplitude of the vibrations and drifts is estimated from the measurements simultane-

ously to the reconstruction. The first variant is only concerned with constant phase shifts that

can arise from erroneous grating positioning in direction perpendicular to the grating bars, the

second variant is expanding this concept to slowly spatially varying phase shifts that can be

caused by rotations, shifts or bending of the gratings during the scan, and the third variant

will estimate flux variations and visibility variations in addition to constant phase shifts.

The estimation of drifts of the relative grating position has already been published by the

author in [69].

5.5.1 Extension of the forward model

The forward model proposed at the beginning of this chapter,

Ii(µ, δ, ε) = I0
i Ti
[
1 + V 0

i Di cos (φi + Φ0
i )
]
, (5.41)
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can be slightly rewritten to differentiate at which physical detector pixel p and during which

projection θ (and subsequently at which time and projection angle) a measurement i was taken:

Ip,θ(µ, δ, ε) = I0
p,θTp,θ

[
1 + V 0

p,θDp,θ cos (φp,θ + Φ0
p,θ)
]
. (5.42)

We can also slightly rewrite I0
p,θ, V

0
p,θ, and Φ0

p,θ, which represent the stepping curve of a hypo-

thetical scan without an object in the beam path at exactly the same time as the actual object

scan, into two components each:

I0
p,θ = IRp,θ ∆I0

p,θ , (5.43)

V 0
p,θ = V R

p,θ ∆V 0
p,θ , (5.44)

Φ0
p,θ = ΦR

p,θ + ∆Φ0
p,θ . (5.45)

The first components IRp,θ, V
R
p,θ, and ΦR

p,θ are the values acquired using a reference scan shortly

before (or after) the scan and the second components are ∆I0
p,θ, ∆V 0

p,θ, and ∆Φ0
p,θ are the

difference between the acquired reference scan and the hypothetical true value.

The task of the internal parameter estimation is now to estimate all ∆I0
p,θ, ∆V 0

p,θ, and ∆Φ0
p,θ.

In the form written above, there are three times as many parameters as measurements were

taken, so it is impossible to estimate them all directly and approximations must be made to

reduce the number of parameters to estimate.

5.5.2 Grating position estimation

Precisely known grating positions are of highest importance during a GBCT scan, as the po-

sitioning of the gratings perpendicular to the grating bars strongly influences the phase of the

measured interferograms.

Generally, the reference scan phase Φ0
p,θ can be separated into a spatially varying contribution

that describes the shape of the Moiré fringe pattern on the detector ΦM
p,θ and a component ΦG

θ

that is constant per projection and directly dependent on the positioning of the gratings.

ΦG
θ is directly proportional to the position of each grating in direction perpendicular to the
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grating bars relative to an arbitrary reference point (the choice of this reference point influ-

ences ΦM
θ,p). For each grating g the contribution to ΦG

θ is given as
∆xgθ
pg

2π, where ∆xgθ is the

relative position of the grating g to its reference point at time θ and pg is the period of this

grating. Combining these contributions leads to

ΦG
θ = ∆xθ 2π , (5.46)

with

∆xθ =
∑
g

∆xgθ
pg

. (5.47)

∆xθ depends on the exact positioning of the gratings and even errors in the positioning on a

scale significantly below the grating pitch, will cause deviations in ΦG
θ . This required level of

exact and repeated positioning of the gratings is not only hard to consistently achieve but also

thermal expansion of the gratings and vibrations can easily cause significant changes in the

relative positioning of the gratings [80].

If we assume that the shape of the Moiré fringe pattern (Φ0,M
p,θ ) does not change over time,

there is only a grating drift term ∆Φ0,G
θ left to estimate. The true reference phase can thus be

written as follows:

Φ0
p,θ = ΦR,M

p,θ + ∆Φ0,M
p,θ︸ ︷︷ ︸

=0

+ ΦR,G
θ + ∆Φ0,G

θ︸ ︷︷ ︸
=∆Φ0,G′

θ

. (5.48)

5.5.2.1 Algorithm

Using the notation above, the optimization problem for the simultaneous estimation of the

reconstruction and the grating positions can be written as

µ̂, δ̂, ε̂, ĉ = arg min
µ,δ,ε,c

∑
p,θ

(
yp,θ − I0

p,θTp,θ
(
1 + V 0

p,θDp,θ cos (φp,θ + ΦR
p,θ + cθ)

))2
wp,θ , (5.49)

with cθ = ∆Φ0,G
θ .

Modifying the solver developed for IBSIR in Sec. 5.3 for this new objective might be possi-

ble but the whole estimation problem is non-linear and especially the optimization along the
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cθ-dimensions is difficult as the terms are encompassed in a cosine and, if cθ is large, a gradient-

based optimization (as employed by the OS-SPS algorithm) could easily converge to a local

minimum and not the global minimum. A quick solution that is easy to implement and cir-

cumvents the problem of a gradient-based optimizer converging to an only-local minimum is

presented in the following.

Each iteration of the optimization algorithm is divided into two steps: In the first step only µ,

δ, and ε are updated and in the second step only c is updated. These two steps are repeated

until convergence.

For the first step an iteration of the OS-SPS algorithm for IBSIR is used. The second step uses

an analytic solution to the optimization problem, which will be derived in the following.

For fixed µ, δ, and ε the optimization of c can be written as

ĉ = arg min
c

∑
p,θ

(y
′

p,θ − cos(Φ
′

p,θ + cθ))
2 w

′

p,θ , (5.50)

with y
′

p,θ =
yp,θ−I0

p,θTp,θ

I0
p,θTp,θV

0
p,θDp,θ

, w
′

p,θ = wp,θ (I0
p,θTp,θV

0
p,θDp,θ)

2, and Φ
′

p,θ = φp,θ + ΦR
p,θ .

This optimization problem can be solved separately for each θ and, after dropping the θ index

and the superscript ′ for simplicity, using trigonometric identities it can be rewritten for a single

projection as

ĉ = arg min
c

∑
p

(yp − cos(c) cos(Φp) + sin(c) sin(Φp))
2 wp . (5.51)

Explicitly calculating out the square and factoring out cos(c) and sin(c) leaves

ĉ = arg min
c

∑
p

y2
p wp︸ ︷︷ ︸

=kyy

+ cos2(c)
∑
p

− cos2(Φp) wp︸ ︷︷ ︸
kcc

+ sin2(c)
∑
p

sin2(Φp) wp︸ ︷︷ ︸
=kss

+ cos(c)
∑
p

−2yp cos(Φp) wp︸ ︷︷ ︸
=kc

+ sin(c)
∑
p

2yp sin(Φp) wp︸ ︷︷ ︸
=ks

+ cos(c) sin(c)
∑
p

−2 cos(Φp) sin(Φp) wp︸ ︷︷ ︸
=kcs

.

(5.52)
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Finding the extrema of this second order trigonometric polynomial can be achieved by first

taking the derivative and setting it to zero, which results in a second order trigonometric

polynomial equation,

cos2(c) kcs − sin2(c) kcs + cos(c) sin(c)(2kss − 2kcc) + cos(c) ks − sin(c) kc = 0 . (5.53)

Any trigonometric polynomial equation can be transformed into a two-dimensional polynomial

equation of the same order in C and S under the constraint C2 +S2 = 1 by simply substituting

C = cos(c) and S = sin(c). Directly solving this system of equations is not possible but after

squaring the first equation one can insert the constraint into the equation and arrive at the

following fourth order polynomial equation in C.

C4(2k2
cs + 4(kss − kcc)2)

+C3(4kc(kss − kcc) + 4kcsks)

+C2(k2
c + k2

s − 4k2
cs − 4(kss − kcc)2)

+C(4kc(kss − kcc)− 2kcsks)

+k2
cs − k2

c = 0

(5.54)

Finding the roots of a fourth order polynomial equation can be solved analytically but it is much

faster to use a standard numerical algorithm for finding the roots of polynomials [84]. Finding

the global minimum of the original minimization problem is now just a matter of comparing

the likelihood values all real roots (there may be two or four real roots).

5.5.2.2 Results

5.5.2.2.1 Simulation To assess the viability of the proposed approach first a GBCT scan

was simulated. As scanned object a phantom exhibiting different X-ray attenuation, refractive

index, and linear diffusion coefficient was used, see top row of Fig. 5.12. The GBCT scan

consisted of 403 equidistant angular positions and at each angular position three measurements

at nominally equidistant grating positions were performed. To simulate imprecise grating po-
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Figure 5.12: Different reconstruction techniques were applied to a scan with errors in the,
nominally equidistant, phase stepping positions. SIR and IBSIR show reconstructions corrupted
by high frequency artifact patterns. The artifact appearance is similar but slightly different
for both reconstructions, which can be attributed to cross-talk between channels in the IBSIR
reconstruction. A reconstruction using IBSIR and the proposed grating position correction
(GC) provided reconstruction results comparable to the ground truth. All images are shown
on the same level and window. Figure adapted from [69].
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sitioning or vibrations the actual grating positions were shifted by a random number between

-5% and +5% of the grating period perpendicular to the grating bars separately for each mea-

surement. The visibility of the setup was chosen to be 0.4 and 3400 monochromatic photons

emitted from the X-ray tube per pixel were simulated. The simulated detector was a noise-free

photon counting detector in a parallel beam geometry.

The results of the simulation, see Fig. 5.12, were reconstructed using various reconstruction

methods: First the measurements were analyzed using the maximum-likelihood signal estima-

tion, see Sec. 3.1, to extract attenuation, differential phase, and dark-field sinograms. These

sinograms were then reconstructed using SIR with the projections weights as extracted from the

maximum-likelihood signal estimation. The reconstructions result in volumes that are strongly

corrupted by artifacts. All three images show high frequency artifacts evenly distributed over

the whole volume and the phase image additionally shows a slight gradient in the background of

the reconstructed volume. The shape of these artifacts can be convincingly explained as every

projection angle has slightly different errors from the incorrect grating positions and sometimes

the errors add up in the reconstructed volumes and sometimes, they equal out, resulting in the

observed wavy pattern.

Additionally, the raw measurements were directly reconstructed using the IBSIR algorithm

without internal parameter estimation. Here the results are quite similar, the artifacts seem

somewhat stronger in the attenuation and scattering volumes but the gradient in the phase

image is gone. It is not clearly evident where the differences to the SIR reconstruction come

from but as in the IBSIR model one channel influences the others and it might be that the

regularization forcing a smooth background in the phase image is causing additional errors in

the two other images.

As a last reconstruction technique the IBSIR method with internal parameter estimation for the

grating positions was used. The resulting volumes are artifact free and show a high resolution

close to the ground truth. From these results one can conclude that the errors in the grating

position could be corrected for.
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Figure 5.13: Reconstructions using IBSIR with faulty knowledge about the grating positions.
The reconstructions show foggy artifacts which worsen with less precise knowledge of the grating
position until a meaningful reconstruction is impossible. Using grating position correction (GC)
a reconstruct of the image is possible even with unknown grating positions. The same level
and window were chosen for all reconstructions. Figure adapted from [69].
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5.5.2.2.2 Experiment The grating position optimization was also tested on a real mea-

surement: Several plastic tubes, which were submerged in a water bath and filled with different

liquids, were scanned and reconstructed. The scan was performed using a symmetric Talbot-Lau

interferometer with grating distances G0G1 = G1G2 = 85.7 cm. The three gratings G0, G1, and

G2 are all made of gold on a silicon substrate with periods of 5.4 µm. The absorption gratings

G0 and G2 have a height of 70 µm and 65 µm respectively. The phase grating G1 is designed to

give a phase shift of π at the system design energy of 27 keV. The source is an ENRAF Nonius

FR 591 rotating anode X-ray tube with a Molybdenum target operated at 40 kVp and 70 mA.

The detector used is a single photon counting PILATUS 100k module with 487× 195 pixels and

a pixel size of 172× 172 µm2. The effective resolution is 100× 100 µm2 due to a magnification

of 1.7. 800 projection angles evenly spaced over 360 degrees were measured with 11 different

grating positions at each angular position. All reconstructions were carried out using the IBSIR

algorithm. Prior to reconstruction a random error, uniformly distributed between ±π
4
, ±π

2
or

±π, was added to the phase reference term ΦR,G
θ for every interferogram. This equals to an

uncertainty in the position of the grating of ±p
8
,±p

4
, or ±p

2
, where p is the grating period. Thus

the last scenario does not contain any knowledge about the grating positions at all.

With increasing grating position uncertainty IBSIR reconstructions without grating position

estimation show increasing artifacts (low-frequency cloud-like distortions in all three images,

ring artifacts at the border of the FOV, and cross-talk between images), see Fig. 5.13. For

completely unknown grating positions, the reconstruction of δ and ε failed completely, stopping

after one iteration at a noise like structure for δ or at a very high level for ε. The IBSIR with

grating position estimation converges to the same reconstruction as with complete knowledge

about the grating positions, even for the case of no knowledge about the grating position at

all, compare Fig. 5.13.

5.5.3 Higher order phase drift estimation

The estimation of the grating position, respectively of a constant phase shift per projection,

is definitely the most important phase correction but the phase drifts encountered in real
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systems can often be more complex than the spatially uniform drifts described in the previous

subsection [80, 82]. These non-uniform phase drifts can be caused by various different effects:

e.g. rotation of the gratings with respect to each other, bending of the gratings, or movement

of the gratings in the beam direction.

5.5.3.1 Algorithm

To solve this problem one can stick to the general formulation employed for the grating position

estimation but expand its model by replacing ∆Φ0,G
θ with ∆Φ0

p,θ, which now also encompasses

changes of the shape of the Moiré fringes per projection:

C =
∑
p,θ

(
yp,θ − I0

p,θTp,θ
(
1 + V 0

p,θDp,θ cos (φp,θ + ΦR
p,θ + ∆Φ0

p,θ)
))2

wp,θ . (5.55)

Treating each ∆Φ0
p,θ as a variable that has to be directly estimated is, of course, infeasible as it

would increase the number of unknowns by the number of measurements yp,θ. But as all con-

tinuous functions can be approximated up to an arbitrary degree by polynomials, it is proposed

to approximate each ∆Φ0
p,θ with two-dimensional polynomials P(cθ) with different coefficients

cθ for each projection θ. Many different basis functions for two-dimensional polynomials exist

and the optimal choice is not obvious. In this work only Cartesian polynomials were used, as

they are very simple and the shape of the indeterminates can be linked to different real physical

situations that would change the phase of the interferometer and should thus be well capable

of approximating the total phase shift.

The optimization problem can now be written as

µ̂, δ̂, ε̂, ĉ =
∑
p,θ

(
yp,θ − I0

p,θTp,θ

(
1 + V 0

p,θDp,θ cos (φp,θ + ΦR
p,θ +

n∑
k=0

ck,θ Pk,p)

))2

wp,θ . (5.56)

Solving this non-linear, non-convex problem is challenging and not guaranteed to converge to

the global minimum.

Again, it is proposed to utilize a block-wise optimization approach that alternates between

updating µ, δ, and ε and c. If c is kept fixed, the update to µ, δ, and ε can be handled by the
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OS-SPS solver for IBSIR. If µ, δ, and ε are fixed, calculating an update to c can be performed

in parallel for each θ. Unfortunately, no analytic solution for arbitrary P could be found for

this step, so it is necessary to resort to ordinary gradient-based optimization methods for this

sub-optimization problem. As cθ is usually relatively low dimensional and because there are

simple analytic expressions for the second derivatives of the cost function with respect to the

coefficients c for arbitrary P, it is proposed to use a simple Newton update step as it is not

overly expensive to calculate the full inverse hessian matrix:

c
(n+1)
θ = c

(n)
θ −H

−1
cθ

∇cθ L . (5.57)

5.5.3.1.1 Error correction Finding the global minimum of the cost function with higher

order polynomial phase terms is not trivial as the minimization can easily get stuck in local

minima. Generally, this behavior is hard to track as there is no easy way to check if a minimum

is global or local. But in the specific case at hand, a handy way to verify if the optimization

of the phase term was successful exists: The likelihood in the global minimum per projection

at projection θ′ is extremely similar to the likelihood per projection in the global minimum

at neighboring projections θ, as the values of the transmission and dark-field averaged per

projection do not change quickly (as the object only changes slowly). During the optimization

process we can use this to identify a projection θ′ where the coefficients cθ′ are not at their

global minima by simply comparing the value of the likelihood per projection for projection θ′,

lθ′ =
∑
p

(
yp,θ′ − I0

p,θ′Tp,θ′ (1 + V 0
p,θ′Dp,θ′ cos (φp,θ′ + ΦR

p,θ′ +
n∑
k=0

ck,θ′Pk,p))

)2

wp,θ′ . (5.58)

with the likelihood per projection at neighboring projections θ. If the value of θ′ is much higher

than the lowest value for any of the other θ in the neighborhood of θ′ we can safely assume

that the optimization is stuck in a local minimum.

In most scenarios we can assume that the phase drift between two projections taken right after

each other is smaller than the difference between projections with a longer temporal distance.

This motivates restarting the optimization of cθ′ with the values of cθ′+1 or cθ′−1, whichever
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has a lower value and is thus more probable at its global minimum. If the grating position was

deliberately changed between θ′ and θ′ + 1 respectively θ′ − 1 (e.g. due to phase stepping),

it is highly advised to perform an analytic update of c0,θ′ first to estimate the correct grating

position and then commence the gradient-based optimization of all variables in cθ′ .

This correction was not used in the following results.

5.5.3.2 Results

Figure 5.14: Change of the cost function value and the normalized mean absolute error (NMAE)
in each image channel with the number of iterations for six reconstructions. One reconstruction
was performed with perfect knowledge of the vibrations (”Vib: None”), for the other recon-
structions the phase shift caused by the vibrations was unknown. One of these reconstructions
(”Corr. order: None”) was performed without correction and for the others the proposed phase
shift estimation was used with 2D Cartesian polynomials of different orders as model functions.

To test the algorithm in the presence of phase shifts with a non-constant spatial shape a

simulation study was performed: The simulated scan was in parallel beam geometry with a

photon-counting detector with perfect quantum efficiency consisting of 16 lines with 256 pixels

in each line. 1203 equidistantly spaced projections were taken and between each projection the

grating position was moved by 1
2.618

of the grating pitch. Moiré fringes with a period of 10.1

pixels in both detector dimensions were simulated. The simulated interferometer has a visibil-
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ity of 0.4 and 105 monochromatic photons per pixel were emitted from the X-ray source. The

attenuation and linear diffusion coefficients of the phantom were chosen such that the lowest

transmission and dark-field signal was around 0.4. The refractive index was chosen such that

the highest differential phase contrast was about 0.6. To simulate an unknown spatially non-

uniform phase shift, 2D Cartesian Polynomials with random coefficients were created for each

projection and added to ∆Φ0
p,θ. The value of each random coefficient was chosen from random

uniform distributions of values. The maximum (respectively minimum) value for each of these

distributions was chosen such that this one coefficient alone would cause a phase change of at

most π (respectively −π) per projection.

Five different reconstructions were performed: Without phase estimation and with phase esti-

mation using 2D Cartesian Polynomials of order zero to three. All reconstructions were started

from an empty initial guess. The progress of the reconstructions can be seen in Fig. 5.14. The

distributions of µ and ε are perfectly recovered for corrections of order two and three and the

value of the cost function is also reduced to the same level as for a reconstruction with perfect

knowledge of the phase. Just for the reconstruction of δ we see a behavior that is different:

For correction order zero the NMAE is reduced (compared to the uncorrected reconstruction)

but for a reconstruction with correction order of one or higher the NMAE is larger than for the

uncorrected reconstruction! If we look at the actual reconstruction result of δ, see Fig. 5.15, we

can observe that the reconstruction using corrections of order two successfully removed the high

frequency artifacts but exhibits low frequency artifacts. These artifacts are created because on

the one hand, the cost function is not really increased by them (as low frequency structures

have very little impact on the DPC signal and thus on the cost function), and on the other

hand, the DPC signal (if the reconstruction is not yet perfectly converged) is very prone to be

slightly fitted by the correction polynomial as is not evenly distributed per projection but is

generally negative on the left side and positive on the right sight (or vice versa).

Fortunately, these low frequency artifacts can be easily corrected: We can generate a simulation

of the DPC signal implied by the reconstruction by simply forward projecting δ and we know

that the true DPC signal is distributed around zero in regions without sample (these regions

can be easily distinguished by, for example, looking at the forward projection of µ) and that
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the part of the polynomial that was fitted wrongly is again a polynomial of the same order.

This means we simply have to look for the surface described by a polynomial of the same order

as the correction that best fits the DPC signal at pixels outside of the object and subtract it

from the DPC signal to generate a corrected DPC signal. In Fig. 5.15C we can see a simple

FBP reconstruction from the DPC signal corrected this way. All low frequencies artifacts are

well removed by this correction.

Figure 5.15: Slices from reconstructions of the refractive index decrement. (A) From a recon-
struction without phase shift estimation. (B) from a reconstruction with phase shift estimation
using a second order Cartesian 2D polynomial. (C) from an FBP reconstruction based on the
low-frequency corrected DPC signal generated from (B). (D) Ground truth. All reconstructions
are shown on the same window.

5.5.4 Flux and visibility drifts

5.5.4.1 Flux drift model

Changing the X-ray photon flux per time is a well-established method to reduce the dose applied

to patients and widely used in all modern clinical CTs [85]. But the nominally applied flux

and the real flux emitted are not exactly the same, thus the real flux emitted is often measured

by utilization of a specialized reference detector [86, 87] or by monitoring the mean intensity

in an detector area not covered by the sample. Not all setups utilize a reference detector and

the later solution is not viable for a GBI setup, as the interference pattern changes over time

and thus the change of the measured intensity in a sample-free region is not only depending on

changes of tubes fluence but also on changes of the interference pattern. So having an algorithm

to estimate the fluence from the measurements would be beneficial for GBI.

If we assume that the shape of the X-ray illumination and the specific sensitivity of each
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pixel stays constant over time, the mean intensity IRp,θ acquired at a reference scan is simply

modulated by a time dependent contribution ∆I0
θ that has the same value for all pixels in a

projection. The model function can thus be written as

Ip,θ = ∆I0
θ I

R
p,θTp,θ(1 + V R

p,θDp,θ cos(ΦR
p,θ + φp,θ)) . (5.59)

5.5.4.2 Visibility drift model

Drifts in the relative positioning of the gratings do not only change the phase of the interferom-

eter but can also affect the perceived visibility of the setups: If we assume the nominal visibility

of the setup to be constant over time and we assume that the relative position of one of the

gratings g changes with a constant velocity vt during the integration period of the detector P

centered around time t the measured intensity yp,t can be calculated as follows:

Ip,θ =

∫ P/2

−P/2

IRp,θTp,θ

P
(1 + V R

p,θDp,θ cos(ΦR
p,θ + φp,θ +

vt τ

pg
2π)) dτ

= IRp,θTp,θ +
IRp,θTp,θ

P
V R
p,θDp,θ

∫ P/2

−P/2
cos(ΦR

p,θ + φp,θ +
vt τ

pg
2π) dτ

= IRp,θTp,θ +
IRp,θTp,θ

P
V R
p,θDp,θ cos(ΦR

p,θ + φp,θ)

∫ P/2

−P/2
cos(

vt τ

pg
2π) dτ

−
IRp,θTp,θ

P
V R
p,θDp,θ sin(ΦR

p,θ + φp,θ)

∫ P/2

−P/2
sin(

vt τ

pg
2π) dτ︸ ︷︷ ︸

=0

= IRp,θTp,θ + IRp,θTp,θ V
R
p,θDp,θ cos(ΦR

p,θ + φp,θ) sin(
P v

2 p
2π)

2 p

Pvt

1

2π

= IRp,θTp,θ + IRp,θTp,θ V
R
p,θDp,θ cos(ΦR

p,θ + φp,θ) sinc(
vt P

pg
π)

= IRp,θTp,θ (1 + ∆V 0
θ V

R
p,θDp,θ cos(ΦR

p,θ + φp,θ))

(5.60)

From this calculation one can see that phase drifts during the integration period reduce the

perceived visibility of a GBI setup and, as the velocity of these drifts is seldomly constant over

longer periods of time, the reduction of visibility is possibly different for each measurement.
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5.5.4.3 Algorithm

Combining the flux drift and the visibility drift with a constant phase drift per projection leads

to the following forward model:

Ip,θ(µ, δ, ε,∆I
0
θ ,∆V

0
θ ,∆Φ0

θ) = ∆I0
θ I

R
p,θTp,θ(1 + ∆V 0

θ V
R
p,θDp,θ cos(∆Φ0

θ + Φ0
p,θ + φp,θ)) . (5.61)

The signal estimation in the maximum-likelihood sense can consequently be written as follows:

µ̂, δ̂, ε̂, ∆̂I0, ˆ∆V0, ˆ∆Φ0 = arg min
µ,δ,ε,∆I0,∆V0,∆Φ0

∑
p,θ

(yp,θ − Ip,θ(µ, δ, ε,∆I0
θ ,∆V

0
θ ,∆Φ0

θ))
2 , (5.62)

where the bold symbols are vectors containing the values for all projections θ.

Solving this non-linear, non-convex optimization problem in a straight-forward fashion with a

gradient-based optimization algorithm is again not guaranteed to be fast nor does it necessarily

converge to the global minimum, as it is not guaranteed to have a single minimum. Again the

optimization can be divided into alternating updates of the reconstruction and of the drifts.

The optimization of the reconstruction problem can be solved using the OS-SPS solver for

IBSIR. The optimization problem for the estimation of the drifts,

∆̂I0, ˆ∆V0, ˆ∆Φ0 = arg min
∆I0,∆V0,∆Φ0

∑
p,θ

(yp,θ − Ip,θ(∆I0
θ ,∆V

0
θ ,∆Φ0

θ))
2 , (5.63)

can be solved easily as it can be processed separately for each projection and rewritten as

follows:

∆̂I0, ˆ∆V 0, ˆ∆Φ0 = arg min
∆I0,∆V 0,∆Φ0

∑
p

(yp −∆I0IR
′

p (1 + ∆V 0V R′

p cos(∆Φ0 + ΦR′

p ))2 . (5.64)

This equation has the same shape as the maximum-likelihood signal estimation presented in

Sec. 3.1 and is thus quickly solved using the same linearization approach.
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Figure 5.16: Change of the cost function value and the normalized mean absolute error (NMAE)
in each image channel with the number of iterations for four reconstructions. One reconstruc-
tion was performed with perfect knowledge of the vibrations (”Vib: No”), for the other recon-
structions the effect of the vibrations was initially unknown. One of these reconstructions was
performed without correction, one with the correction active from the first iteration and one
with the correction activated after 40 iterations.

5.5.4.4 Results

The effect of this first order drift correction was evaluated on a set of simulations with nominal

scan parameters as for the simulation in Sec. 5.5.3.2. For one simulation the nominal values

were not changed and for one simulation the nominal values of I0, V 0, and Φ0 where changed

by a random uniform distributed factor per projection between 0.9 and 1.1, respectively −0.1π

and 0.1π, to simulate strong vibrations. These measurements where reconstructed once using

no correction, once using the correction after each IBSIR iteration, starting from the first

iteration on, and once using the correction after each IBSIR iteration but only starting after 40

initial ordinary IBSIR iterations. The reconstruction of the corrupted scan using no parameter

estimation results in an artifact ridden reconstruction in each channel, which results in a high

value of the cost function and high NMAEs in each channel after convergence, see Fig. 5.16.

Using the drift correction after each OS-SPS iteration right from the start of the reconstruction
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results in a much better final reconstruction that is converging to the reference solution, but

the convergence is extremely slow. This is caused by the fact that ∆I0 (and to a smaller extend

∆V0) is highly correlated with µ (respectively ε) and in the beginning the flux estimation is

wrongly trying to fit the reduced measured intensity caused by attenuation in the object by

simply reducing the overall flux of each projection. Over many iterations this over-fitting is

corrected but this takes a long time as in each iteration only a small correction between ∆I0

and µ can be performed.

A simple solution that circumvents this problem is to first create a low quality starting image

by simply not using the parameter estimation step for the first 40 iterations. This way the

over-fitting does not take place and the reconstruction converges much faster.

5.6 Discussion

In this chapter I proposed a novel direct reconstruction method for GBCT that is suitable for

all acquisition schemes and developed a suitable algorithm to efficiently use this reconstruction

method. I showed that the proposed algorithm can produce artifact-free reconstruction even

from single shot GBCT scans and proposed a loose sampling criterion, that is not a rigorous

explanation but nevertheless helps with designing suitable acquisition protocols for GBCT.

One such acquisition protocol is the combination of single shot acquisition with focal spot

sweeping. This protocol is perfectly suited for the application within a continuously rotat-

ing clinical CT system equipped with a grating interferometer as these systems are generally

equipped with the required focal spot sweeping technique.

In addition, I showed that the IBSIR model can be expanded to incorporate various possible

drifts of the setup characteristics. These corrections work extremely well for the estimation of

the grating positions, up to the point, that no knowledge of the grating positions is required

anymore. This might allow for the construction of much simplified GBCT systems with respect

to the required phase stepping accuracy.

The estimation of moderate non-uniform phase drifts is also possible, but it is not guaranteed to

perfectly correct arbitrarily strong phase shifts. There is much room for improved optimization
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algorithms that could provide an improved level of convergence to the global minimum.

The estimation of constant flux and visibility variations is also possible, but the convergence

speed of the algorithm proposed in this thesis can certainly be greatly improved.



Chapter 6

Conclusion and outlook

In this chapter the main results of this PhD thesis are summarized and a brief outlook about

possible worthwhile research areas is given.

Bias reduced signal estimation

The main result of chapter 3 was the introduction of a novel estimator for the dark-field signal.

It was shown that the regularized bias-corrected maximum-likelihood estimator (BCMLE) has a

reduced estimation bias compared to the ordinary maximum-likelihood (MLE) estimator. The

BCMLE may have an increased variance compared to the MLE but, through proper choice of

the regularization parameter, it was possible to create an estimator that is strictly superior to

the MLE. This result proved that the estimation bias in the dark-field signal can be substantially

reduced compared to the MLE by the choice of a proper estimator.

It should be noted that often not the dark-field signal is the final quantity that is of interest,

but the dark-field signal is only used as an intermediate result for the CT reconstruction of

the linear diffusion coefficient. The input for standard reconstruction algorithms (like filtered

backprojection or a statistical iterative reconstruction with a linear forward model) for the

linear diffusion coefficient is not directly the dark-field signal but the negative logarithm of the

dark-field signal. Unfortunately, a good estimator for the dark-field signal is not necessarily

a good estimator for the logarithm of the dark-field signal, as the logarithm is a non-linear

transformation. So, if the final quantity of interest is the linear diffusion coefficient it might be
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advantageous to design an improved, bias-reduced estimator directly for the negative logarithm

of the dark-field signal.

Alternatively, the reconstruction of the linear diffusion coefficient could be performed using

the BCMLE estimate of the dark-field signal but then statistical iterative reconstruction using

a non-linear forward model (analog to the non-linearized forward model for attenuation CT)

should be employed. This approach would benefit from an estimate of the variance of the

BCMLE of the dark-field signal.

The signal estimation break-down of the DPC signal was found to be not directly attributable to

signal estimation bias but more to the fact that the estimation of the DPC signal is the estimate

of a direction and not of a scalar value. Developing proper filter algorithms for the DPC signal

that consider this fact should result in greatly improved results compared to conventional filter

methods.

The development of a signal estimation algorithm that is regularized by taking into account

the estimates in neighboring pixels could prove extremely useful in reducing both the variance

and the bias in the signal estimation for the dark-field signal and the differential phase signal.

Sliding window signal estimation

The estimation of proper values for the attenuation, dark-field and differential phase signal from

a sliding window scan could be slightly improved on by using a method of robust estimation.

But the signal estimation still does not always present satisfactory results at sharp object edges

with strong contrast. The artifacts caused by this can be reduced by subsequent application of

suitable filters but overall it does not seem that sliding window interpolation is able to create

GBCT reconstructions with the highest possible resolution.

A regularized signal estimation that considers the values of neighboring projections and/or

pixels could possibly provide improved results but may be very expensive to calculate.

Intensity-based statistical iterative reconstruction

In the main chapter of the thesis various aspects of the intensity-based statistical iterative re-

construction (IBSIR) algorithm were evaluated.

First a fast optimization algorithm for the optimization problem was proposed and evaluated.

Many different accelerations were tested and could provide a combined speed-up of more than
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two magnitudes compared to the un-accelerated optimization algorithm.

Many different aspects of the optimization algorithm could still be improved on: the curvature

derived from the optimal 1-d curvatures could be expanded to take into account the correlation

between attenuation, dark-field and phase signal, the Fourier preconditioning approach could

be expanded to the attenuation and dark-field channels (e.g. see [72] and [88]), and other mo-

mentum acceleration methods could be explored (see [89]).

The quality of the reconstructions using IBSIR was evaluated for several different acquisition

protocols and compared to reconstructions using projection-based signal estimation and con-

ventional reconstruction algorithms. IBSIR showed an improved reconstruction quality and was

able to perfectly reconstruct a phantom scan using only a single measurement per projection

angle.

A rigorous comparison of the quality of IBSIR compared to conventional reconstruction espe-

cially in the case of low dose scans could provide further insights, especially in the context of

bias in the estimation of the dark-field signal and signal break-down in the differential phase

signal.

The reconstruction using IBSIR can be made far more robust to the presence of vibrations and

drifts by including possible vibration effects into the forward model of the cost function and es-

timating the strength of these effects simultaneously to the reconstruction. The simulation and

experimental results proved that this method works extremely well and fast for the estimation

of drifts in the grating positioning. The estimation of spatially uniform flux variations and of

visibility reductions worked equally well but the convergence speed of the algorithm could still

be greatly improved on. The correction of moderate spatially varying drifts of the reference

phase was also introduced but required a subsequent correction step after the reconstruction.

Better suited optimization approaches and an optimized choice of vibration basis functions may

greatly increase the stability and speed of this approach.

Overall, I believe that the results presented in this thesis represent a major step forwards in

the path of grating-based computed tomography from an experimental laboratory tool to a

robust and highly usable diagnostic imaging technique that may significantly improve clinical

diagnostics in the future.



Appendix A

Signal estimation

A.1 Linearized signal estimation

To solve the linearized signal estimation problem,

M̂, Ĉ, Ŝ = arg min
M,C,S

L(M,C, S) =
∑
i

(Mmi + Cci + Ssi − yi)2wi, (A.1)

we first rewriting the likelihood function as follows

L(M,C, S) = M2
∑
i

mi
2wi + C2

∑
i

ci
2wi + S2

∑
i

si
2wi

+MC
∑
i

2miciwi +MS
∑
i

2misiwi + CS
∑
i

2cisiwi

−M
∑
i

2miyiwi − C
∑
i

2ciyiwi − S
∑
i

2siyiwi +
∑
i

yi
2wi

(A.2)

and simplifying it using

Σmm =
∑
i

mi
2wi,Σcc =

∑
i

ci
2wi,Σss =

∑
i

si
2wi

Σmc =
∑
i

miciwi,Σms =
∑
i

misiwi,Σcs =
∑
i

cisiwi
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Σmy =
∑
i

miyiwi,Σcy =
∑
i

ciyiwi,Σsy =
∑
i

siyiwi,Σyy =
∑
i

yi
2wi

into

L(M,C, S) = M2Σmm + C2Σcc + S2Σss

+ 2MCΣmc + 2MSΣms + 2CSΣcs

− 2MΣmy − 2CΣcy − 2SΣsy + Σyy.

(A.3)

Now the minimization of this quadratic function with respect to M , C, and S is equivalent

to finding the vector x that solves the system of linear equations with system matrix A and

measurement vector b :

∂L

∂M
= 0⇒MΣmm + CΣmc + SΣms = Σmy

∂L

∂C
= 0⇒MΣmc + CΣcc + SΣcs = Σcy

∂L

∂S
= 0⇒MΣms + CΣcs + SΣss = Σsy

⇔


Σmm Σmc Σms

Σmc Σcc Σcs

Σms Σcs Σss


︸ ︷︷ ︸

=A


M

C

S


︸ ︷︷ ︸

=x

=


Σmy

Σcy

Σsy


︸ ︷︷ ︸

=b

(A.4)

. The estimates of M , C, and S are now the solution of A−1b with

A−1 =
1

∆


ΣccΣss − Σ2

cs ΣcsΣms − ΣmcΣss ΣcsΣmc − ΣccΣms

ΣcsΣms − ΣmcΣss ΣmmΣss − Σ2
ms ΣmcΣms − ΣmmΣcs

ΣcsΣmc − ΣccΣms ΣmcΣms − ΣcsΣmm ΣccΣmm − Σ2
mc

 (A.5)

using the determinant

∆ = det(A) = (ΣccΣss − Σ2
cs)Σmm + 2ΣcsΣmcΣms − Σ2

mcΣss − ΣccΣ
2
ms.
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The corresponding covariance matrix K with variances and covariances of x̂ can be calculated

by error propagation, leading to the following entries:

K̂kl =
∑
i

(
∂xk
∂yi

)(
∂xl
∂yi

) σ2
i

=
∑
i

a−1
ki a

−1
li aii

+
∑
i

∑
j 6=i

(a−1
ki a

−1
lj + a−1

kj a
−1
li ) aij

(A.6)

A.2 Bias estimation of the linearized signal estimation

A.2.1 Derivatives

A.2.1.1 Transmission

T̂ = M̂ (A.7)

∂T̂

∂M̂
= 1 (A.8)

∂2T̂

∂M̂2
= 0 (A.9)

A.2.1.2 Dark-field

D̂ = (Ĉ2 + Ŝ2)0.5M̂−1

∂D̂

∂M̂
= −(Ĉ2 + Ŝ2)0.5M̂−2 (A.10)

∂D̂

∂Ĉ
= (Ĉ2 + Ŝ2)−0.5M̂−1C (A.11)

∂D̂

∂Ŝ
= (Ĉ2 + Ŝ2)−0.5M̂−1S (A.12)

∂2D̂

∂M̂2
= 2(Ĉ2 + Ŝ2)0.5M̂−3 (A.13)
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∂2D̂

∂Ĉ2
= Ŝ2(Ĉ2 + Ŝ2)−1.5M̂−1 (A.14)

∂2D̂

∂Ŝ2
= Ĉ2(Ĉ2 + Ŝ2)−1.5M̂−1 (A.15)

∂2D̂

∂M̂∂Ĉ
= −(Ĉ2 + Ŝ2)−0.5M̂−2C (A.16)

∂2D̂

∂M̂∂Ŝ
= −(Ĉ2 + Ŝ2)−0.5M̂−2S (A.17)

∂2D̂

∂Ĉ∂Ŝ
= −(Ĉ2 + Ŝ2)−1.5M̂−1CS (A.18)

A.2.1.3 Phase

φ̂ = arctan
Ĉ

Ŝ
(A.19)

∂φ̂

∂Ĉ
= Ŝ(Ĉ2 + Ŝ2)−1 (A.20)

∂φ̂

∂Ŝ
= −Ĉ(Ĉ2 + Ŝ2)−1 (A.21)

∂2φ̂

∂Ĉ2
= −2ĈŜ(Ĉ2 + Ŝ2)−2 (A.22)

∂2φ̂

∂Ŝ2
= 2ĈŜ(Ĉ2 + Ŝ2)−2 (A.23)

∂2φ̂

∂Ĉ∂Ŝ
= (Ĉ2 − Ŝ2)(Ĉ2 + Ŝ2)−2 (A.24)

A.3 Bias corrected maximum likelihood estimator

To calculate the Cramer-Rao lower bound and the first-order bias corrected maximum-likelihood

estimator the Fisher information and various other derivatives and functions of the maximum-
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likelihood must be calculated in the following.

L(T,D, φ) =
1

2

∑
i

(Tmi + TD cos(φ)ci + TD sin(φ)si − yi)2wi

=
1

2

∑
i

r2
iwi

(A.25)

∂L(T,D, φ)

∂T
=
∑
i

ri (mi +D cos(φ) ci +D sin(φ) si) wi (A.26)

∂L(T,D, φ)

∂D
=
∑
i

ri (T cos(φ) ci + T sin(φ) si) wi (A.27)

∂L(T,D, φ)

∂φ
=
∑
i

ri (−TD sin(φ) ci + TD cos(φ) si) wi (A.28)

∂2L(T,D, φ)

∂T 2
=
∑
i

(mi +D cos(φ) ci +D sin(φ) si)
2 wi (A.29)

∂2L(T,D, φ)

∂D2
=
∑
i

(T cos(φ) ci + T sin(φ) si)
2 wi (A.30)

∂2L(T,D, φ)

∂φ2
=
∑
i

(−TD sin(φ) ci + TD cos(φ) si)
2 wi

+ ri (−TD cos(φ) ci + TD sin(φ) si) wi

(A.31)

∂2L(T,D, φ)

∂T ∂D
=
∑
i

(mi +D cos(φ) ci +D sin(φ) si)(T cos(φ) ci + T sin(φ) si) wi

+ ri (cos(φ) ci + sin(φ) si) wi

(A.32)

∂2L(T,D, φ)

∂T ∂φ
=
∑
i

(mi +D cos(φ) ci +D sin(φ) si)(−TD sin(φ) ci + TD cos(φ) si) wi

+ ri (−D sin(φ) ci +D cos(φ) si) wi

(A.33)
∂2L(T,D, φ)

∂D ∂φ
=
∑
i

(T cos(φ) ci + T sin(φ) si)(−TD sin(φ) ci + TD cos(φ) si) wi

+ ri (−T sin(φ) ci + T cos(φ) wi

(A.34)

∂3L

∂T 3
= 0 (A.35)

∂3L

∂D3
= 0 (A.36)
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∂3L

∂φ3
=
∑
i

2 (−TD sin(φ) ci − TD cos(φ) si) (−TD cos(φ) ci + TD sin(φ) si) wi

+ (−TD sin(φ) ci + TD cos(φ) si) (−TD cos(φ) ci − TD sin(φ) si) wi

+ ri (TD sin(φ) ci − TD cos(φ) si) wi

(A.37)

∂3L

∂T 2 ∂D
=
∑
i

2 (mi +D cos(φ) ci +D sin(φ) si)(cos(φ) ci + sin(φ) si) wi (A.38)

∂3L

∂T 2 ∂φ
=
∑
i

2(mi +D cos(φ) ci +D sin(φ) si)(−D sin(φ) ci +D cos(φ) si) wi (A.39)

∂3L

∂D2 ∂T
=
∑
i

2(T cos(φ) ci + T sin(φ) si)(cos(φ) ci + sin(φ) si) wi (A.40)

∂3L

∂D2 ∂φ
=
∑
i

2(T cos(φ) ci + T sin(φ) si)(−T sin(φ) ci + T cos(φ) si) wi (A.41)

∂3L

∂φ2 ∂T
=
∑
i

2(−TD sin(φ) ci + TD cos(φ) si) (−D sin(φ) ci +D cos(φ) si) wi

+
∑
i

(mi +D cos(φ) ci +D sin(φ) si) (−TD cos(φ) ci − TD sin(φ) si) wi

+
∑
i

ri (−D cos(φ) ci −D sin(φ) si) wi

(A.42)

∂3L

∂φ2 ∂D
=
∑
i

2(−TD sin(φ) ci + TD cos(φ) si) (−T sin(φ) ci + T cos(φ) si) wi

+
∑
i

(T cos(φ) ci + T sin(φ) si) (−TD cos(φ) ci − TD sin(φ) si) wi

+
∑
i

ri (−T cos(φ) ci − T sin(φ) si) wi

(A.43)

∂3L

∂T ∂D ∂φ
=
∑
i

(−D sin(φ) ci +D cos(φ) si)(T cos(φ) ci + T sin(φ) si) wi

+
∑
i

(mi +D cos(φ) ci +D sin(φ) si)(−T sin(φ) ci + T cos(φ) si) wi

+
∑
i

(−TD sin(φ) ci + TD cos(φ) si) (cos(φ) ci + sin(φ) si) wi

+
∑
i

ri (− sin(φ) ci + cos(φ) si) wi

(A.44)
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Expected values

For the analytical calculation of the Fisher Information Matrix and the bias-corrected maximum

likelihood estimator the expected values of various derivative terms are necessary. They can

be easily calculated by considering the following trivial results, which are valid for consistent

estimators and uncorrelated measurements:

E [ri] = 0 (A.45)

E [rirj] = 0 (A.46)

E [riri] = vari =
1

wi
. (A.47)

With these follows for the expected values of the derivatives

E
[
∂L(T,D, φ)

∂T

]
= 0

E
[
∂L(T,D, φ)

∂D

]
= 0

E
[
∂L(T,D, φ)

∂φ

]
= 0

(A.48)

E
[
∂2L(T,D, φ)

∂T 2

]
=
∑
i

(mi +D cos(φ) ci +D sin(φ) si)
2 wi

E
[
∂2L(T,D, φ)

∂D2

]
=
∑
i

(T cos(φ) ci + T sin(φ) si)
2 wi

E
[
∂2L(T,D, φ)

∂φ2

]
=
∑
i

(−TD sin(φ) ci + TD cos(φ) si)
2 wi

E
[
∂2L(T,D, φ)

∂T ∂D

]
=
∑
i

(mi +D cos(φ) ci +D sin(φ) si)(T cos(φ) ci + T sin(φ) si) wi

E
[
∂2L(T,D, φ)

∂T ∂φ

]
=
∑
i

(mi +D cos(φ) ci +D sin(φ) si)(−TD sin(φ) ci + TD cos(φ) si) wi

E
[
∂2L(T,D, φ)

∂D ∂φ

]
=
∑
i

(T cos(φ) ci + T sin(φ) si)(−TD sin(φ) ci + TD cos(φ) si) wi

(A.49)
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E
[
∂3L(T,D, φ)

∂T 3

]
= 0

E
[
∂3L(T,D, φ)

∂D3

]
= 0

E
[
∂3L(T,D, φ)

∂φ3

]
=
∑
i

2 (−TD sin(φ) ci − TD cos(φ) si)(−TD cos(φ)ci + TD sin(φ)si) wi

+ (−TD sin(φ) ci + TD cos(φ) si)(−TD cos(φ)ci − TD sin(φ)si) wi

E
[

∂3L

∂T 2 ∂D

]
=
∑
i

2 (mi +D cos(φ) ci +D sin(φ) si)(cos(φ) ci + sin(φ) si) wi

E
[

∂3L

∂T 2 ∂φ

]
=
∑
i

2 (mi +D cos(φ) ci +D sin(φ) si)(−D sin(φ) ci +D cos(φ) si) wi

E
[

∂3L

∂D2 ∂T

]
=
∑
i

2 (T cos(φ) ci + T sin(φ) si)(cos(φ) ci + sin(φ) si) wi

E
[

∂3L

∂D2 ∂φ

]
=
∑
i

2 (T cos(φ) ci + T sin(φ) si)(−T sin(φ) ci + T cos(φ) si) wi

E
[

∂3L

∂φ2 ∂T

]
=
∑
i

2 (−TD sin(φ) ci + TD cos(φ) si) (−D sin(φ) ci +D cos(φ) si) wi

+ (mi +D cos(φ) ci +D sin(φ) si) (−TD cos(φ) ci − TD sin(φ) si) wi

E
[

∂3L

∂φ2 ∂D

]
=
∑
i

2 (−TD sin(φ) ci + TD cos(φ) si) (−T sin(φ) ci + T cos(φ) si) wi

+ (T cos(φ) ci + T sin(φ) si) (−TD cos(φ) ci − TD sin(φ) si) wi

E
[

∂3L

∂T ∂D ∂φ

]
=
∑
i

(−D sin(φ) ci +D cos(φ) si)(T cos(φ) ci + T sin(φ) si) wi

+ (mi +D cos(φ) ci +D sin(φ) si)(−T sin(φ) ci + T cos(φ) si) wi

+ (−TD sin(φ) ci + TD cos(φ) si) (cos(φ) ci + sin(φ) si) wi

(A.50)

Several expectation values of multiplications of second and first derivatives are also necessary

for the bias correction:

E
[
∂2L

∂T 2

∂L

∂T

]
= E

[
∂2L

∂T 2

∂L

∂D

]
= E

[
∂2L

∂T 2

∂L

∂φ

]
= 0 (A.51)

E
[
∂2L

∂D2

∂L

∂T

]
= E

[
∂2L

∂D2

∂L

∂D

]
= E

[
∂2L

∂D2

∂L

∂φ

]
= 0 (A.52)
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E
[
∂2L

∂φ2

∂L

∂T

]
= E

[∑
i,j

ri rj (−TD cos(φ) ci − TD sin(φ) si)(mj +D cos(φ) cj +D sin(φ) sj) wi wj

]

=
∑
i

(−TD cos(φ) ci − TD sin(φ) si)(mi +D cos(φ) ci +D sin(φ) si) wi

(A.53)

E
[
∂2L

∂φ2

∂L

∂D

]
=
∑
i

(T cos(φ) ci + T sin(φ) si)(−TD cos(φ) ci − TD sin(φ) si) wi (A.54)

E
[
∂2L

∂φ2

∂L

∂φ

]
=
∑
i

(−TD cos(φ) ci − TD sin(φ) si) (−TD sin(φ) ci + TD cos(φ) si) wi (A.55)

E
[
∂2L

∂T∂D

∂L

∂T

]
=
∑
i

(cos(φ) ci + sin(φ) si) (mi +D cos(φ) ci +D sin(φ) si) wi (A.56)

E
[
∂2L

∂T∂D

∂L

∂D

]
=
∑
i

(cos(φ) ci + sin(φ) si) (T cos(φ) ci + T sin(φ) si) wi (A.57)

E
[
∂2L

∂T∂D

∂L

∂φ

]
=
∑
i

(cos(φ) ci + sin(φ) si) (−TD sin(φ) ci + TD cos(φ) si) wi (A.58)

E
[
∂2L

∂T∂φ

∂L

∂T

]
=
∑
i

(−D sin(φ) ci +D cos(φ) si) (mi +D cos(φ) ci +D sin(φ) si) wi (A.59)

E
[
∂2L

∂T∂φ

∂L

∂D

]
=
∑
i

(−D sin(φ) ci +D cos(φ) si) (T cos(φ) ci + T sin(φ) si) wi (A.60)

E
[
∂2L

∂T∂φ

∂L

∂φ

]
=
∑
i

(−D sin(φ) ci +D cos(φ) si) (−TD sin(φ) ci + TD cos(φ) si) wi (A.61)

E
[
∂2L

∂D∂φ

∂L

∂T

]
=
∑
i

(−T sin(φ) ci + T cos(φ) si) (mi +D cos(φ) ci +D sin(φ) si) wi (A.62)

E
[
∂2L

∂D∂φ

∂L

∂D

]
=
∑
i

(−T sin(φ) ci + T cos(φ) si) (T cos(φ) ci + T sin(φ) si) wi (A.63)

E
[
∂2L

∂D∂φ

∂L

∂φ

]
=
∑
i

(−T sin(φ) ci + T cos(φ) si) (−TD sin(φ) ci + TD cos(φ) si) wi (A.64)
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Intensity-based statistical iterative

reconstruction

B.1 Curvatures

B.1.1 Hessian matrix

In the following the derivatives of the per pixel cost functions hi, necessary to calculate the

Hessian matrix in each voxel will be given:

hi =
1

2

Ii − I
r
i e
−lµi︸ ︷︷ ︸

IMi

− Iri e−l
µ
i V r

i e
−lεi︸ ︷︷ ︸

IAi

cos(φri + lδi
D︸ ︷︷ ︸

pi

)

︸ ︷︷ ︸
resi



2

wi (B.1)

∂hi
∂lµi

= resi
(
IMi + IAi cos(pi)

)
wi (B.2)

∂hi
∂lεi

= resiI
A
i cos(pi)wi (B.3)
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∂hi

∂lδ
D

i

= resiI
A
i sin(pi)wi (B.4)

∂2hi

∂lµi
2 =

(
IMi + IAi cos(pi)

)2
wi − resi

(
IMi + IAi cos(pi)

)
wi (B.5)

∂2hi

∂lεi
2 = IAi

2
cos2(pi)wi − resiIAi cos(pi)wi (B.6)

∂2hi

∂lδ
D

i

2 = IAi
2

sin2(pi)wi + resiI
A
i cos(pi)wi (B.7)

∂2hi
∂lµi ∂l

ε
i

=
(
IMi + IAi cos(pi)

)
IAi cos(pi)wi − resiIAi cos(pi)wi (B.8)

∂2hi

∂lµi ∂l
δD
i

=
(
IMi + IAi cos(pi)

)
IAi sin(pi)wi − resiIAi sin(pi)wi (B.9)

∂2hi

∂lεi∂l
δD
i

= IAi
2

cos(pi) sin(pi)wi − resiIAi sin(pi)wi (B.10)

B.1.2 Precomputed curvature

In the following the per voxel terms for the pre-computed curvature will be given:
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