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Abstract

The level of sophistication and the scope of machine control in current and upcom-
ing automated driving systems are steadily on the rise. On the road towards highly
and fully automated driving, this new complexity poses significant challenges for de-
velopment and validation procedures of these systems. A virtual world provides an
environment that is safe and completely controlled with perfectly reproducible condi-
tions. These are the perfect qualifications to facilitate and accelerate the development,
testing, and validation of automated driving systems. One of the core components of
an automated driving system is the perception of the vehicle’s environment. This envi-
ronmental perception is performed by sensors mounted on the vehicle. They generate
the necessary input data that ultimately serve as input for the decision making units of
the automated driving system. In a virtual environment, sensor models serve the func-
tion of providing data that match as close as possible the data from the actual vehicle
sensors in a corresponding real world scenario. Ideally, the subsequent components in
the processing chain are not able to distinguish whether they are operating in a virtual
environment or the real world. As perception sensors like radar, lidar, or camera sen-
sors generally provide only a lossy description of the environment, the purpose of the
sensor model is to capture and reproduce these characteristics for the perception of the
virtual environment.

Investigating virtual environmental perception is the focus of this work. For this
purpose, different types of sensor models are defined according to their level of abstrac-
tion of the perception process: Statistical models on the one hand comprise the whole
perception process in a unified model and generally operate on higher abstraction levels
like that of object lists. Physical models on the other hand deal with the measurement
process exclusively and generate sensor-specific low level data that can be used as input
for a perception function to obtain higher level output. In this work, a special emphasis
is placed on the architecture of the virtual environmental perception processing chain
and its interfaces. For the construction of statistical sensor error models, a modular ar-
chitecture is defined. A classification scheme for the various types of sensor errors that
can be identified in real sensor characteristics is proposed and matched with the mod-
ular architecture. The meaning of statistical equivalence of sensor output between real
and virtual sensors is closely investigated for several exemplary quantities measured by
vehicle sensors. Additionally, a physical sensor model for an automotive lidar sensor is
introduced. The model is based on a ray tracing implementation for the generation of
a simulated point cloud as low level sensor output on the basis of the three-dimensional
geometry of the virtual world. The simulated point cloud is then coupled with subse-
quent processing functions that explicitly build on the low level sensor interfaces for
the construction of an internal environmental representation of the vehicle.
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1 Introduction

The advent of advanced computational capabilities in embedded and mobile devices
brought with it a newfound wealth of potential applications in vehicle technology.
Among these is the potential of an automated system taking over an increasing share
of driving responsibilities, going hand in hand with increased safety and comfort for
the driver. In the long term, these developments are expected to have fundamental
implications for the automotive industry at large up to a general revolution of personal
mobility [1].

In order to fully realize the technology’s potential for automated driving, a plethora
of unresolved challenges have to be tackled and solved. Among the core challenges is
the system’s ability to perceive, understand, and react to its dynamic environment, an
environment that typically involves a multitude of interacting road users of all kinds.
The foundation for this ability is formed by sufficiently advanced environmental per-
ception that is performed by gathering raw detections through the vehicle’s sensors and
processing and interpreting these sensory input data. The development and validation
of these sensors and systems for environmental perception are key to moving forward
on the road to higher degrees of automation in on-road driving.

1.1 Driving Automation Systems

The development of all driving automation systems is motivated by two central goals:
the safety and the comfort of road users. In this context, the term road users spans the
full spectrum from the vehicle’s driver and the other passengers to any other traffic par-
ticipant, regardless whether they are motorized or not. Originally starting from active
safety systems, increasing levels of automation of the dynamic driving task take load
off the driver or provide the driver with additional information. A detailed discussion
of the history of driving automation systems can be found in [1, 2].

In order to establish a common vocabulary on the road to automated driving systems,
the Society of Automotive Engineers (SAE International) has defined a taxonomy con-
sisting of six levels of varying degree of driving automation [3]. The definition of these
automation levels centers on the respective roles of (human) driver and driving automa-
tion system in the driving task. They therefore describe quite well a specific system or
feature from the human as well as the technical perspective by defining guidelines of
the tasks expected to be performed by the human and the driving automation system.

Shown as an overview in Fig. 1.1, the meaning of the individual levels is as follows:
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Figure 1.1: Levels of driving automation as specified by SAE J3016T™ [3].

Level 0 — No Driving Automation: The driver performs the entire dynamic
driving task. The driver may be aided by active safety systems that have a short-
term influence on vehicle control, e.g. electronic stability control or automated
emergency braking. Further, the driver may be given additional information or
warnings, e.g. from a navigation system or lane departure warnings. Systems
like cruise control may relieve the driver from having to continuously perform a
specific action, e.g. keeping up pressure on the throttle pedal. However, this level
is defined by the absence of any system that takes over any part of the dynamic
driving task on a sustained basis.

Level 1 — Driver Assistance: A driving automation system performs either the
longitudinal or lateral vehicle motion control subtask in a sustained manner while
the driver performs the rest of the dynamic driving task. This includes adaptive
cruise control (longitudinal) or lane keeping (lateral) assistance systems.

Level 2 — Partial Driving Automation: A driving automation system per-
forms both longitudinal and lateral vehicle motion control while at all times super-
vised by the driver. The driver is also responsible for object and event detection
and response, especially when the system’s behavior may lead to a dangerous
situation.

Level 3 — Conditional Driving Automation: An automated driving system
performs the entire dynamic driving task while engaged. This includes full vehicle
motion control as well as object and event detection and response. The driver’s
role is that of a fallback-ready user who must be receptive at all times to timely
requests for takeover by the system.

Level 4 — High Driving Automation: In its specific operational design do-
main, the automated driving system performs the entire dynamic driving task
including fallback. In case of failures or exit of its operational design domain, the



1.1 Driving Automation Systems 3

Vehicle Stat
Vehicle cHeie a%us —> Internal Sensors —— Vehicle Control
& Dynamics
Immediate Environmental Environment .
. . —_— —> Tactical Planner
Environment Perception Sensors
Environment Map & Backend —— External Uplink —— Strategic Planner
at large
. Automated
Context Data Data Provider

Driving System

Figure 1.2: Schematic overview of data streams for automated driving systems.

system’s fallback capabilities need to be able to achieve a minimal risk condition
(a “safe state”) in any situation. At this level, the driver becomes a passenger in
the vehicle while the system is engaged and is not expected to be available as a

fallback.

e Level 5 — Full Driving Automation: The automated driving system performs
the entire dynamic driving task and fallback without restriction to a specific op-
erational design domain. The system is expected to be able to operate the vehicle
under all on-road conditions manageable by a human driver.

Within this six-level taxonomy all systems that automate at least some part of the
dynamic driving task for a sustained period of time, i.e. level one or higher, are termed
driving automation systems. In contrast, the expression automated driving systems
applies only to those systems that may perform the dynamic driving task entirely
for a sustained period of time, i.e. level three or higher. Throughout this work the
expressions automated driving system or automated driving feature are used exclusively
to highlight the focus on this type of system. In many cases, the discussion may also
be applicable more generally to driving automation systems without explicit mention.
In cases where a logical separation from the environmental perception is required, the
expression automated driving feature is used to specifically refer to the part of the system
that is responsible for determining the automated driving response, e.g. trajectory
planning, based on the input provided by the environmental perception.

The input data streams used by automated driving systems can be divided into
three general contexts depending on the source and scope of data: The vehicle specific
context encompasses internal state data and in particular includes measurements of
the vehicle dynamics. The context of environmental perception is comprised of data
of the immediate environment of the vehicle as it is perceived by that vehicle. Finally,
the context of the environment at large includes data provided by maps or from an
uplink to an external source. An overview of these three input stream contexts and
their relation to parts of the automated driving system is shown in Fig. 1.2.
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Data in the vehicle specific context come from in-vehicle sensors that measure the
dynamic state of the vehicle, e.g. wheel speed sensors and inertial measurement units for
odometry measurements. This type of data is especially important on the operational
level, i.e. vehicle motion control, for automated driving systems. It also enables active
safety systems including anti-lock brake system (ABS) and electronic stability control,
as well as comfort features such as cruise control. Note that all of these systems by
themselves are categorized as level 0 (no driving automation) under the SAE J3016™
taxonomy (see Fig. 1.1).

Data provided by maps and external sources, including location information on the
basis of global navigation satellite systems (GNSS), are used in order to provide in-
formation to the driver. For automated driving systems, these data are important on
the tactical level, e.g. to know (in advance) the number and semantic role of lanes at
a specific location or the location of accidents, as well as on the strategic level, e.g. for
navigation and route planning.

Data provided by environmental perception are used to respond to the immediate
environment of the vehicle. This includes reaction to the layout of the vehicle’s sur-
roundings and fixed obstacles (static environment) as well as the behavior of other
road users (dynamic environment). While input data from all data stream contexts
in Fig. 1.2 are essential, all automated driving systems rely fundamentally on the data
provided by environmental perception. Without this input their operation is straight
out impossible as reactions to the dynamic surroundings cannot be performed. Because
of this central position, the environmental perception in vehicle systems in particular
has seen a wealth of research activity over recent years. This has enabled great strides
in driving automation, allowing several seconds of hands-off time with longitudinal and
lateral control of the vehicle managed by a driving automation system in series produc-
tion vehicles, and enabling research vehicles to navigate specific scenarios completely
on their own [4, 5, 6].

1.2 Environmental Perception

A vehicle navigating the complexity of on-road traffic in a typical road environment has
to react to and interact with a variety of different road users as well as static infrastruc-
ture. In order to handle this complexity, an automated driving system first needs to
have a clear, comprehensive, and up-to-date internal representation of its environment.
This is the goal of environmental perception. The system’s perception has to achieve a
high level of performance under a multitude of different environmental conditions. This
then forms the foundation for higher levels of automation in automated driving systems
that aim to increase safety and comfort for all road users. The increasing abilities of
environmental perception within vehicle systems give rise to a number of increasingly
sophisticated driving automation systems, summarized well in reference [7]. In terms
of road user safety, the ultimate goal of these systems is formulated by the Vision Zero:
“Vision Zero means that eventually no one will be killed or seriously injured within the
road transport system” [8].
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Environmental perception is performed by sensors mounted on the vehicle. The sen-
sors consist of measurement units that interact with the physical environment of the
vehicle as well as processing units that interpret the measurement data to derive a
semantic representation of the environment. Using the fused data from multiple indi-
vidual vehicle sensors, a central environment model can be constructed that underlies
the automated driving feature for higher levels of automation. Typical automotive sen-
sors for the environmental perception in automated driving systems are radar, lidar,
camera, and ultrasound sensors [2, 4, 9, 5, 6]. Fig. 1.3 shows a schematic view of mul-
tiple sensors mounted at different points on a vehicle and their approximate fields of
view covering the area around the vehicle.

Figure 1.3: Schematic, exemplary view of the various sensors around a vehicle with a driving automa-
tion system. The picture is taken from a highway scene within a virtual environment.
The colored sensor cones show each sensors approximate field of view. The different colors
indicate different types of sensors (radar, lidar, and camera sensors).

Sensors based on the radio detection and ranging (radar) principle have been used
in the automotive industry since the introduction of adaptive cruise control systems in
1999 [1, 10, 11]. Automotive radar sensors are active sensors, i.e. they transmit a signal
and detect the echo response. Typical operating frequencies are 24 GHz and 76 GHz,
with the former being phased out from active use. Radar sensors are especially useful
to detect objects, especially metallic targets like vehicles, and in addition to object po-
sitions can measure object speed directly using the Doppler effect. Furthermore, radar
sensors can achieve high detection ranges, exceeding 200 m, and are largely unaffected
by adverse environmental conditions like rain, snow, or fog that trouble human drivers
and optical sensors. However, they suffer from low angular resolution due to the usually
very restricted package size for automotive use. Further, object classification based on
the radar cross section is generally not highly reliable.

Operating in a different part of the electro-magnetic spectrum, light detection and
ranging (lidar) sensors, sometimes also referred to as laser detection and ranging (ladar)
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sensors, typically use wavelengths in the near infrared (around 905nm). These wave-
length provide increased eye-safety and better attenuation properties than light in the
visible spectrum. Lidar sensors, usually in the form of laserscanner technology with
mostly mechanical scanning, enjoy widespread use in research vehicles [12, 4, 9, 5], yet
at the current time are virtually non-existent in series mass production vehicles as even
early forms of automated driving systems have not yet passed homologation. Related
techniques to laserscanner technology like structured light scanning have also seen ad-
vances [13], but are currently still unsuited to the automotive use case. Although their
use is still in the early stages, lidar sensors are prime candidates to enable automated
driving systems due to their high angular and distance resolution that allows detec-
tion of features and therefore classification of objects, obstacles, and drivable terrain
with high fidelity. For this reason, there is increased attention on developments to
make lidar technology fit for automotive series production, by aiming to lower both
size and form factor [14, 15, 16, 17, 18, 19]. As lidar sensors are optical sensors, a
major downside compared to millimeter wave radar sensors is their susceptibility to
adverse weather influences that can seriously degrade their performance in rainy, foggy,
or snowy conditions [20].

Camera sensors use a different operating principle. These are passive sensors, where
the detector converts incoming light from external illumination sources, e.g. the sun,
street lamps, or the car’s headlights, into brightness values in a two-dimensional pixel
array. With the exception of the specialty night-vision systems, cameras in the automo-
tive context operate in the spectrum of visible light. The recorded image frames require
sophisticated image processing algorithms to extract usable information. This requires
the availability of large computational resources, yet offers a very broad spectrum of
information that is hardly or not at all available from other sensors. Besides object
detection, this includes the detection and classification of traffic signs, traffic lights,
and road markings. Further, object classification is usually superior due to the larger
pool of detected features. The angular resolution is among the highest of any available
sensor. On the downside, there is no direct measurement of distance, although stereo-
or multi-camera systems can achieve remarkable depth accuracy, at least for shorter
distances up to 20 or 30 m. Additionally, operating in the optical spectrum brings with
it a high susceptibility to negative influences from bad weather conditions like rain,
fog, or snow. Due to the dependency on external sources of illumination, there is also
a major difference in sensor performance between day-time and night-time.

Ultrasound sensors are commonly used for short range obstacle detection. These
acoustic sensors detect obstacles using the time-of-flight principle for distance mea-
surements and a setup consisting of multiple transducers for angular resolution via
triangulation. This type of sensor is commonly used for parking assistance systems
that first entered the market in the mid 1990s [21]. As ultrasound sensors are very
small and cost effective, multiple transducers are used to cover the short range area
around the vehicle. The shortcomings of the acoustic principle are the low range of just
a couple of meters, the high susceptibility to external influences, e.g. acoustic damp-
ing of snow or dirt, and the inability to differentiate between obstacles that may be
harmful or harmless to the vehicle, which may overly limit detected available driving
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space. Regardless of these shortcomings, their small cost and the widespread use of
parking assistance systems make ultrasound sensors the most common environment
sensor found in series production vehicles around the world today.

Further possible sources of information on the direct environment of the vehicle in-
clude sensors detecting the environmental state, e.g. temperature, rain, or time-of-day,
a data connection to backend servers or direct vehicle-to-vehicle communication that
transmit information about dangerous road conditions or other events. Additionally,
information about the driver or other vehicle occupants may be gathered by internal
monitoring sensors. This type of information is especially important if the system has
to monitor the driver’s ability to perform the driving task fallback or take over the driv-
ing task upon exit of the operational design domain in level 3 or 4 automated driving
systems (see Fig. 1.1 for the overview of levels of automation).

Until recently, it has been common for a specific driving automation feature to be
directly coupled to the input data of a specific sensor [2]. This coupling allows a sep-
aration of concerns during development, reducing complexity and allowing individual
vendors to easily offer ready-made solutions for integration into a vehicle. However,
with increasing functional complexity the requirements on the environmental percep-
tion have also rapidly increased. This requires a unified internal representation of the
environment that combines data from all vehicle sensors in order to provide the func-
tional logic algorithms with the required information for their decision making. The
type of description typically in use today are lists of objects in the environment. These
objects represent other road users, e.g. vehicles, bikes, pedestrians, and static obstacles
in the environment. Additionally, a representation of drivable space is required for nav-
igation by an automated driving system. For this a type of occupancy grid mapping is
typically used that gives a probabilistic view on the vehicle’s surroundings [22, 23, 24].

Due to the crucial role of environmental perception for automated driving systems,
having a controlled environment for development and validation of the system is a
large benefit. This role can be filled by the virtual environment of driving simulators.
Environmental perception close to reality in the virtual environment is the task of
sensor models. The type of sensor model required depends on the specific application
and the goals of the simulation. The focus of this thesis is the discussion of sensor
models and their role in the development and validation of automated driving systems.

1.3 Thesis Scope and Goals

In the quest to enable automated driving systems to take over the dynamic driving
task for extended periods of time, a major focus of research is the navigation of re-
search vehicles through real world environments. This has been publicly demonstrated
on numerous occasions [4, 5, 6]. Several challenges remain that have to be solved be-
fore automated driving systems leave the stage of research vehicles with trained safety
drivers and become available to the general public. One of the central challenges is en-
suring the safe conduct of the automated driving system in the highly diverse driving
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environment of roads around the world [1]. Tt is estimated that several billion kilome-
ters of real world test drives are required to allow a statistically significant conclusion
to be drawn regarding the safety of an automated driving system [25].

Using virtual environments with sensor models for environmental perception facil-
itates the advancement of this new technology by providing quick feedback on the
viability and robustness of automated driving systems and features. The advantages
of virtualization are having a controlled environment with reproducible conditions, the
early availability as there is no need for hardware prototypes, and the ability to re-
configure or alter the system including sensor setup and sensor properties at the click
of a button. In order to achieve the goal of increased system quality, it is important
that within the virtual environment the input to the automated driving feature, i.e. the
functional logic components of the automated driving system (see Fig. 1.2), matches
the real world on-road scenario as faithfully as possible. To achieve this matching, there
has been research dedicated to the construction of sensor models emulating the sensor
behavior in the virtual environment. Some sensor models are based on a probabilistic
approach [26, 27, 28, 29, 30, 31], and others are derived from a physical description of
the measurement process [32, 33]. Similar sensor models have been in use outside of
the automotive context for a longer period of time [34, 35]. Common to these models
is an integrated approach that uses data from the virtual environment and directly
transforms them to sensor output data by a variety of ways that each highlight the
particular focus of each research project.

This thesis aims to provide a systematic approach to sensor models. This approach
covers categorizing sensor models according their particular design domain depending
on the application, for which they are used. Further, this approach deconstructs the
building of sensor models into a series of steps with defined interfaces and individual,
separate logical components. This lays guidelines for the creation of sensor models
purpose-built for various applications as well as iterative extensions of models and the
ability to integrate content from multiple sources or vendors into a common framework.
The creation of abstraction layers that allow multi-vendor integration is particular focus
of the research work. Building on this groundwork, within this thesis sensor model
processing chains are constructed that perform real time generation of virtual sensor
data and that are used to build an exemplary setup of an end-to-end tool chain of a
driving simulation framework with a sensor model as an intermediate creating the input
for an automated driving feature in the research stage. This work aims to provide the
foundation for future research and development efforts in the creation of virtual world
development and testing frameworks.

This thesis is structured as follows: A general framework for sensor models based
on a modular approach is introduced and guidelines for the gathering of reference data
and model parametrization are outlined in chapter 2. In chapter 3, the probabilistic ap-
proach of sensor error models built out of modular components is discussed that aims to
reproduce the statistical properties of the perception process in the vehicle. Chapter 4
deals with sensor measurement models for a physical simulation of the measurement
process and introduces a first example of a full processing chain using a bottom-up ap-
proach to sensor simulation to generate low level lidar point cloud data that are fed as
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input to the initial high level environmental perception function of an automated driv-
ing feature in a real time setup. Finally, the thesis closes with a summary in chapter 5
that completes the circle by highlighting the implications of this work and provides an
outlook on potential future research opportunities building on this work.






2 Virtual Environmental Perception

In an automated driving system, the perception of the vehicle’s environment provides
one of the key input data streams for the automated driving feature, the decision making
algorithms within an automated driving systems. In a virtual world setup, therefore, a
proper model of the environmental perception is one of the most central aspects for the
success of virtual development and testing. This virtual environmental perception is
achieved by means of sensor models that generate synthetic sensor data. This chapter
discusses sensor models in the context of virtual development and testing and provides
an overview on the current state of the art in sensor models. To complete the chapter,
this is closely followed by introducing the work of this thesis in defining different sensor
model types with their respective applications and architecture as well as introducing
a systematic, modular approach to the construction of sensor models with separated
interfaces and logical components. As a new, open standard for the interface descrip-
tion, the open simulation interface (OSI), is introduced. These components serve as
the groundwork on which the work of the subsequent chapters is built.

2.1 Virtual Development and Testing

Due to advancements in sensor technology and data processing algorithms in recent
years, research is making great strides to enable automated driving systems that have
the purpose of increased safety and comfort for the vehicle driver and occupants as well
as other road users. Yet, due to their complexity, one of the main challenges remains
ensuring and validating the safe conduct of automated driving systems in order to
make them fit for public use [1, 25]. Extensive road tests, as carried out for driver
assistance systems publicly available today, are certainly part of the solution. Yet, as
the system has to autonomously handle an increasing variety and increasing complexity
of situations, there is a tremendous rise in testing requirements [1]. To some degree this
can be handled by making use of virtual world testing that, for this reason, is seeing
an increasing amount of attention [36, 37, 38] This section discusses how real world
and virtual world testing can complement each other to cope with the rising testing
requirements for automated driving systems, and shows where virtual environmental
perception comes into play in a development approach relying on virtual world testing.

2.1.1 Real World and Virtual World Testing

To see the contribution of simulations and virtual world testing in this context, the
general outline of the development process needs to be considered. The development of
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Figure 2.1: The process chart in the center illustrates the test and development process loop for
iterative updates of an automated driving system based on data gathered during real
world or virtual world test drives. Each test drive is the result of the current iteration of
the automated driving system, the definition of the driving scenario, and the environmental
factors at play during the test drive. The result of each test drive is a set of recorded data
that is then used for evaluation of the system’s performance. The properties of real world
testing (left gray box) and virtual world testing (right gray box) are given for each part
of input or output for comparison in order to highlight their difference. As a result both
methods complement each other quite well in achieving the overall goal of overall system
improvement.

automated driving systems, as with most other complex systems, follows an iterative,
empirical process, where development increments are tested, the performance of the
system evaluated, and adjustments made for the next iterations. A process chart of
this test and update iteration cycle is shown in the center of Fig. 2.1. For clarity, the
chart only shows a single process loop, whereas in a large scale development project
typically a multitude of these loops are running in parallel, testing different parts of
the system under development. For each test run, on an abstract level, the input can
be summarized as consisting of three components: The first is the current iteration of
the automated driving system, which stands for the combination of hardware versions
and setup as well as software versions that defines the system at the current point
in development. The second is the definition of the driving scenario, which outlines
the general parameters of the test environment, e.g. the start and end points of the
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test run, road types, time of day, general weather conditions, and other parameters.
Finally, the third is the sum of environmental factors, which summarize all outside
influences that cannot be defined as part of the scenario. These include traffic conditions
and pathways of other road users relevant to the automated driving system, detailed
environmental influences like the current point of the sun, the placement of slippery
road segments, and so on. With these three general components as input, the test drive
is executed and drive data recorded. Based on these data, an evaluation of the system’s
performance under the circumstances it encountered during the test drive is performed
and adjustments to the system are made. As shown in Fig. 2.1, this concludes one cycle
of the iterative development loop .

Based on this general description of the underlying iterative development process,
a comparison of real world and virtual world testing can be made. This is shown in
Fig. 2.1 in the gray boxes to the left and right side of the process chart. Considering the
three generalized input components to a test run, the defining differences between real
world and virtual world testing become easily apparent: On the one hand, providing
the test setup itself, i.e. the automated driving system, for a test run in the real world
requires preparing hardware and software, safety measures, a dedicated test track or a
license for public road tests, and more. On the other hand, providing the test setup
for a virtual world test run can be fully automated to happen at the click of button,
with the main effort required for the initial setup of the virtual environment. This
leads to comparably much slower iterations in real world testing, while virtual world
testing allows fast iterations in the system’s development. For the scenario definition,
in a real world test the scenario run can only be roughly defined as many parameters
(e.g. surrounding traffic or weather conditions) cannot be controlled in detail and are
instead part of the largely random environmental factors. This is in contrast to a
simulation environment, which provides the ability to exactly define the scenario and
all environmental factors. If required to sample a certain configuration space with a
sequence of test runs, a well-defined stochastic variation can be applied.

On the output side, the limited control of inputs in real world test drives results in
generally non-deterministic output. To get the full picture and allow analysis, the input
parameters encountered by the system have to be recorded in addition to the system’s
behavior as a reference. However, this also has an important upside: due to the lack
of full control of test parameters, at any time unexpected situations can be observed
in real world testing. These can range from the microscopic, e.g. a temporary lack
of internal data transmission from a sensor, to the macroscopic, e.g. encountering an
unexpected obstacle or traffic situation. Virtual world testing, in contrast, shows fully
deterministic output with controlled randomness, as defined for the input. This enables
precise repetition of tests and allows precise variation of individual variables, either
within the automated driving system or within the scenario or environmental input,
and observing and evaluating the results. Given these different and complementing
properties of real world and virtual world testing, neither can and should be the single
way to go. Instead, splitting the testing effort between the two worlds can boost
development speed as well as enhance system quality and accomplish a further step
towards the goal of automated driving systems in large scale use.
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2.1.2 Perception Models within the Development Process

From the line of thought in the previous discussion of real and virtual world testing,
the benefits of virtual world testing complementing real world road tests become clear.
Yet, as cars are ultimately meant to drive in the real world, two key components are
required for meaningful virtual world testing: On the one hand, the driving scenario
and road conditions in the virtual world have to closely follow conditions encountered
in the real world, which is the task of proper generation of virtual testing scenarios as
described in [39, 40, 41, 42]. On the other hand, the input data for the automated
driving system generated by the simulation environment have to closely match the
data it receives when installed in a real car under comparable real world conditions.
The main input data are provided by the sensory perception of sensors such as radar,
lidar, and camera systems mounted on the car. To generate realistic sensor data from
the information in the virtual environment, a model of the generally lossy sensory
perception process is required. There is an ongoing effort to build a standardized, cross-
vendor tool chain for the test and validation of automated driving systems including a
simulation tool chain with models of the sensory perception as part of the European
cooperation project Pegasus. Some of the work of this thesis, especially regarding the
proposal of standardized interfaces for such a tool chain presented in the last section
of this chapter, has in part been triggered by the Pegasus project and the results have
found their way into the project work-stream for a common, cross-vendor simulation
tool chain.

Models of the sensory perception can be built in a variety of ways for different ap-
plications. These applications and the type of models required for them can most
easily be understood when considering the framework of the well known V-model for
system development that can also be applied to the development of automated driv-
ing systems. The initial left side of the V describes the specification on the system,
sub-system, and component levels in this order of increasing detail. Following the im-
plementation, the right side of the V describes the testing and validation efforts on
component, sub-system, and system level that are usually performed in this order of
increasing complexity.

For the description of the processing chain for the simulation of automated driving
systems, the same three levels of abstraction can be used: system, sub-system, and
component level. Shown as an overview in Fig. 2.2, the input for an automated driving
system is always given by a representation of the virtual world and the output consists
of the system’s and therefore the car’s behavior. Naturally, on a more detailed level
a more detailed output can be given and a more detailed world representation on the
input side is required. While for an abstract simulation on the system level, an abstract
representation of the static environment and dynamic actors in the virtual world is
sufficient, a detailed component level simulation requires a detailed representation of the
three-dimensional geometry of all elements in the environment. The relation between
these three abstraction levels and the scale of the simulation of the automated driving
system’s processing chain is introduced in the following.

On the system level, the scale of the simulation is the scale of the whole car. In



2.1 Virtual Development and Testing 15

World level

World Behavioral model Car behavior
Carlevel
. Aut ted
World Perception . u omate Car behavior

driving feature

Processing level

Perception Automated Motion

World | Measurement —/ N e — —1 Car behavior
processing driving feature control

Figure 2.2: Overview of the different levels of abstraction when considering the processing chain in
automated driving system. With regards to a simulation environment, it has to be deter-
mined whether the simulation is to be performed on the world, car, or processing level,
which correspond to the system, sub-system, and component levels of the V model in sys-
tem development. The type of sensor model handling the perception process is different
depending on the level of abstraction chosen for the simulation.

this context, the focus is on the general behavior of the car and its interaction with its
surroundings. As shown in the top row of Fig. 2.2, a system level simulation requires
no more than an abstract model of the behavior of the car, where the car may be
steered by means of an automated driving system. Models for the perception process
on this level will be concerned with basic perception properties, e.g. the field of view
and occlusion, if they are used at all.

On the sub-system level, the goal is to investigate the behavior of the individual sub-
systems within in the car as well as their interaction. In the context of automated
driving systems, sensor models play a role in this type of simulation when investigat-
ing the decision making of the automated driving function in its interaction with the
environment. Perception is important for modeling the object and event detection and
response part of an automated driving system (see Fig. 1.1 in the introduction).

On the most detailed level, the component level, the simulation deals separately with
each component in the processing chains within an automated driving system. The
goal usually is either to closely investigate the interaction of different components or
zoom into the details of one single component and study its behavior, especially when
changing some of its parameters. At this level of simulation, it is important that a
sensor model manages to very closely reproduce real world sensor output so that a
subsequent step in the processing chain may be stimulated with adequate input values.
Depending on the context or when investigating the sensing process itself, it may be
required to build a model that includes the physical details of the measurement process.

Depending on whether a test is supposed to run on sub-system or component level,
different types of sensor models are required, tailored to the specific requirements.
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Figure 2.3: Data flow in the processing chain for the simulation of automated driving systems. Starting
from the virtual environment, a sensor model performs virtual measurements, resulting in
sensor output data. For the purpose of re-usability of sensor models for sensors of different
type, vendor, or generation, a generic interface is used for the model’s output. In the next
step, this is transformed to the specific interface defined by the sensor under investigation
and passed on to the perception data processing of the automated driving system in the
same format as the sensor data in a real world setup. The resulting internal environment
representation is used by the algorithms of the automated driving system to determine
the driving actions undertaken by the vehicle. Forwarding these to driving simulator for
the update of the virtual environment results in a closed loop simulation.

Even though their focus is mostly testing, sensor models may be used on either side of
the V model, providing valuable insight for the specification early on as no hardware
samples for sensors are required. Sensor models may in general be divided in two
categories: statistical and physical models. The level of detail that a physical model
provides is especially useful on the component level and allows detailed investigations,
e.g. about the specific placement and field of view of a sensor, that are not possible
with a statistical model. On the other hand, the superior performance in execution
speed of statistical models makes them a perfect candidate for the use on the system
and sub-system levels, where exploring a large number of scenarios to determine the
system’s behavior resulting from a wide variation of input signals is more important
than simulating the exact behavior of a component under very specific conditions down
to the last detail.

The defining task of a sensor model within the processing chain for virtual develop-
ment and testing is the generation of sensor output data that captures the real world
process of environmental perception within the virtual world. As these perception data
are key for many of the computations of the automated driving feature, the fidelity by
which the sensor model is able to reproduce the real world sensor behavior is a deciding
factor for the viability and validity of virtual development and testing. Therefore, the
main goal of sensor modeling is providing synthetic sensor data that is indistinguishable
from real world sensor data. This task has been a long running quest [43]. Further-
more, depending on which part of the processing chain is under investigation and on
the goals that are to be achieved with the virtual world testing, the requirements on
the desired virtual sensor output data vary by a large margin. For each case, a specific
sensor model has to be designed and implemented to fit these requirements.

Deriving from the view of the processing chains for different levels of abstraction
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shown in Fig. 2.2, the general processing chain for a simulation making use of sensor
models involves the steps shown in Fig. 2.3. With the aim of employing the virtual
environment and sensor model in the development of an automated driving system,
the goal is the setup of a closed loop simulation. Closed loop refers to environment
data from the virtual environment being passed as input to the automated driving
system and the results of the system’s processing, i.e. the actions taken by the car at
the current simulation update step, being fed back to the driving simulation framework
for calculating the next update step of the virtual environment. This loop involves
the following steps: Starting from the virtual environment, a sensor model performs a
virtual measurement resulting in synthetically generated sensor output data. At the
next step, this information is transmitted to the software framework handling processing
for the automated driving system in a data representation form that is structurally
identical to the data format used by the sensor under investigation. At this point,
the sensor model’s output data becomes, at least in the way it is stored and used,
indistinguishable from a real world setup. Using the input data in the way as it would
use output data from a real sensor, the perception data processing of the automated
driving system, e.g. sensor fusion and data interpretation algorithms, construct an
internal environment representation that is used by the subsequent processing steps of
the automated driving feature, e.g. a trajectory planner. Finally, closing the simulation
loop shown in Fig. 2.3, this environment information is used by the automated driving
feature to calculate the driving action of the vehicle that is reported back to the driving
simulation framework for the calculation of the next simulation update step.

One aspect of the work presented in this thesis is an effort to allow multiple different
implementations of the general processing chain for simulation of automated driving
systems shown in Fig. 2.3 to reuse components, specifically sensor model implemen-
tations. For the virtual environment, a variety of driving simulation frameworks from
different vendors exist that each have different strong points in line with their main
application focus. Similarly, for the algorithms of the perception data processing and
the automated driving feature, multiple frameworks exist and are in active use. For
the goal of enabling these components to readily interact with each other, standard-
ized interfaces on the input and output of the sensor model can be utilized. Using
standardized interfaces for sensor models further allows to readily use different types of
sensor models, e.g. vendor specific models for different types of sensors, within a com-
pact setup of the closed loop simulation processing chain. In this work, a standardized
interface for this purpose is introduced. This is the Open Simulation Interface (OSI),
of which a detailed discussion is the topic of section 2.5. Further, with the help of a
standardized interface, the internal layout of sensor models can be separated into a se-
quence of modular components that helps to define a procedure for constructing sensor
models. This is discussed in section 2.4, which introduced the systematic approach to
sensor models proposed in this thesis.

In the context of the different views on the processing chain for automated driving
systems introduced in Fig. 2.2, it has become clear that different types of sensor models
are needed to properly suit different types of application. These model types range from
general statistical models as an abstract description of the perception process on the
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abstract level to detailed physical models of the measurement process when an in-
depth modeling of the steps in the perception chain is aimed for. In the next section,
the current, typically integrated, approach to building sensor models is shown.

2.2 Sensor Simulation — General Concepts

In order to discuss the variants of sensor models, one has to start by looking at the
series of steps performed during the sensing and perception process. Depending on
how this series of steps is implemented in a simulation model, different types of models
for different applications emerge. In a general view of the perception process, a sensor
maps sensor targets in the environment (e.g. road users or static obstacles) onto a
digital representation that can then be used for further processing ranging from simple
visualization to the sophisticated processing of an automated driving function. The
digital representation is usually a list of objects, although alternative representations
like occupancy grids exist [44, 23]. The sensing process consists of two subsequent
steps: measurement and processing as shown in Fig. 2.4. For a real world sensor,
the measurement is the detection of sensor targets in the environment by means of
an electro-magnetic (radar, lidar, camera) or acoustic (ultrasound) interaction. The
measurement is performed by either detecting an incoming signal for passive sensors,
e.g. dectecting light in a camera, or transmitting a probing signal and detecting the
responses from the environment for active sensors, e.g. a lidar sending out a laser pulse
and detecting the reflected light. The detection is performed by the analog front-end,
converted to a digital signal by an analog-digital (A/D) converter, then subjected to
low-level processing algorithms that clean the received signal and turn it into a usable
low level representation. This low level representation is sensor raw data that may take
many forms that are largely dependent on the type of sensor as well as the vendor. For
a lidar sensor this is typically a lidar point cloud of reflection points, for a radar sensor
this representation can take the form of a list of radar detections obtained by analyzing
the Fourier transform of the reflected wave. From this raw data representation finally
a signal processing unit extracts objects and object properties, often by also making
use of tracking algorithms that take into account multiple subsequent measurements.
This processing chain is shown in Fig. 2.4 (a).

In a virtual environment the input consists of virtual objects provided and updated
by a driving simulation framework. In the mapping between these virtual objects and
the output list of detected objects, three general classes of model applications can be
distinguished. The differentiating factor between these is the treatment of their respec-
tive treatment of the measurement and processing steps of the sensing process. The
most straightforward type is the direct mapping from the virtual objects of the simula-
tion environment to the output object list. This direct mapping encompasses both the
measurement and processing steps as shown in Fig. 2.4 (b) and is achieved by means
of an object-based sensor model. This type of model is typically a stochastic model
as used for example in references [26, 45, 27, 28, 30, 31]. It can also incorporate some
input from the physical quantities involved as discussed e.g. in [46] or the model can be
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based on some type of machine learning approach, either based on data from previously
recorded data sets[47, 48] or on measurements from a previous point in time as used
in [49] for a robotic model. Treating the two steps, measurement and processing, sepa-
rately within a simulation model comes at the cost of increased complexity and requires
a raw data interface within the model as shown in Fig. 2.4 (¢). This type of model ac-
tually consists of two separate parts: a measurement model for the measurement step
that is generating sensor raw data and a signal processing model for the processing
step that turns the sensor raw data into the final output object list. With the help of
a measurement model generating sensor raw data that uses the identical format as a
corresponding real world sensor, it is also possible to directly feed the generated raw
data into the signal processing algorithms within the electronic control unit (ECU) of
the sensor. This is shown in Fig. 2.4 (d) and allows to build a hardware-in-the-loop
setup from sensor data generated in a virtual environment. A practical limitation of
this approach, however, is the requirement for an input interface on the sensor ECU
that allows feeding sensor raw data from an external source, which is not necessarily
provided on typical automotive sensor hardware.
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Figure 2.4: Overview of the sensing process: (a) Detection and processing chain of a real sensor.
(b) Direct mapping of virtual objects in the simulated environment onto an output object
list. (c) Separate models for the measurement and processing steps connected by a raw
data interface. (d) Sensor raw data generated by a measurement model used as stimulation
for the signal processing on the sensor ECU in a hardware-in-the-loop setup.

With the goal of achieving results as close to reality as possible, the signal processing
based on sensor raw data generated from a measurement model should typically make
use the actual algorithms also used in the corresponding real world sensor. The task
of the sensor model in this case is then the generation of the low level sensor data.
With this focus on the measurement model, with regards to the sensor model imple-
mentation the processing chains for cases Fig. 2.4 (¢) and (d) with a signal processing
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model in software or on the target hardware can be viewed as having identical require-
ments. On the large, therefore, two types of sensor models can be differentiated that
differ significantly in their approach to modeling sensor behavior: On the one hand,
there are object-based sensor models that aim to generate equivalent sensor output to
a real sensor based on higher level interfaces after the measurement and processing
steps. These types model typically try to emulate the properties of the sensing pro-
cess on a statistical level. Examples can be found in [28, 29, 30, 31]. On the other
hand, measurement models aims to generate low level sensor output by modeling the
measurement step in the sensing process. Typically, these types of models employ a
physical description of the measurement process in order to achieve realistic output of
the resulting low level data that can then be input back into the sensors processing
chain. Physical measurement models are commonly used for a variety of sensors in
robotics research [34, 35, 50], where they are also used inversely to learn the layout of
the three-dimensional static environment from noisy sensor measurement data [51, 52].
In the automotive context, first measurement models for automotive radar sensors are
only just emerging [32, 33]. As a special case, measurement models of camera sensors
are in their most fundamental form identical to the image rendering performed by any
simulation framework. For this reason, there are efforts to utilize synthetic images for
the training of image recognition algorithms [53, 54].

Given this disparity in model types, a clear definition is important when using the
term sensor model, as it may apply to a model of the measurement process or may
include the perception function interpreting the measurement data. A dedicated mea-
surement model has its specific advantages inherent to a physical or otherwise low level
approach regarding realism and free configuration of the sensor position. However,
capturing the complexity of the measurement process to a sufficient degree with low
enough computational requirements to allow for real-time processing as well as the
availability of the perception function software to interpret the generated raw data are
significant challenges. An integrated object-based, typically stochastic model of the
sensory perception encompasses the whole process of mapping environmental data to
the output interface specific to the sensor of interest. For this type of model, com-
putational complexity is usually much lower. Furthermore, the challenge of realism is
partially shifted to the acquisition of appropriate reference data used as input of the
model. Inherent to the approach, equivalence to the real sensor behavior is established
on a statistical level.

Following this discussion, it is clear that one should abandon the notion of a single
equivalent sensor model of a virtual sensor in the virtual world representing the real
sensor mounted on a real car with regard to every imaginable application. Instead,
the specific application establishes the design goals and determines the specifics of
the simulation model most appropriate for the task at hand. The design application
for a specific model is mainly determined by the unit under test in the target setup
and therefore closely linked to the different levels in the system description introduced
in Fig. 2.2 in the discussion of perception models within the development process.
Generally, on higher levels of abstraction in the system description, e.g. when the unit
under test is the system as a whole, more generic and fast object-based sensor models
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are used. As the level of detail increases, down to the component level, also the level
of detail in the sensor simulation needs to increase. Detailed measurement models
generating low level sensor data can be construction to fit this type of application. It
is also possible to use very detailed physical sensor models for the sensor development,
e.g. in figuring out the positioning of sensors within the vehicle or the required sensor
parameters like range or field or view.

This work aims to provide a structured approach to the construction of sensor models
for all the different types of applications. For this reason, starting from these general
concepts for the sensing process and sensor simulation, a formal description of the
sensing process and therefore sensor models is needed. This is the focus of the next
section.

2.3 Formal Description of Sensor Models

The process of measurement and perception of the environment by means of sensors
can be broken down into several sequential steps. Fig. 2.5 shows the flow of data: Ob-
jects present in the environment (a) are represented after the measurement process (b)
by measurement raw data (c). This sensory input is interpreted by a perception func-
tion (d) handling object detection and tracking. The results are object data that in
turn are encoded and packaged in a specific sensor output interface format (e). In this
form, the information is transmitted on vehicle bus level by the sensor for further pro-
cessing. It may then be used directly by the functional component of a driver assistance
system. Alternatively, collective data from multiple sensors may be used to construct
an internal, comprehensive representation of the environment required for sophisticated
automated driving systems.

Perception Packaging
‘[”*;;”“ < Té*”? ] C
I I I < ! ] I |
g = B R S 8 w8
E < R o
= L L eA) Q& LB
. 8 5 — 5 T SE— £ §!
- Z 7B S = -y
& g s g = Bl
| m | 2 \2 | | |
(a) (b) (c) (d) ()

Figure 2.5: Processing chain, starting with the environment (a) that is mapped in a measurement step
(b) onto measurement raw data (c). The raw data are processed by a perception function
(d) and the resulting data encoded in the sensor output interface (e) during the packaging
stage.

In the context of the perception chain shown in Fig. 2.5, the different types of sen-
sor models operate on different parts of the chain. Object based sensor models cover
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the whole perception chain including the measurement process and perception func-
tion. In contrast, measurement models as indicated by their name are specific to the
measurement step of the perception chain.

For the simulation of sensors, it is required that the simulation environment handling
the virtual world provides all the necessary input data to the sensor model. The details
of the information required by a specific sensor model depend on the complexity of the
model and may include besides information about all the static and dynamic objects in
the virtual world also information about weather, the day-night cycle, road conditions,
and small objects that could cause stray reflections but are not explicitly model within
the simulation. These environment conditions constitute a further input for the sensor
model and need to be provided by the simulation framework. In addition to all this
information about the virtual environment, the internal parameters of the sensor model
have to determined and defined for a simulation run.

In the following the sensing process is put into mathematical terms. The output as
the result of the perception process including all the objects with their properties as
detected by the specific sensor define the perception data, denoted by the vector ®.
These data are the result of sensory perception of the physical environment, denoted
by the state vector ® for a real world environment. In short, sensory perception can
therefore be seen as the mapping

S b — D,

This relation is illustrated in Fig. 2.6 (a). In a simulation environment, the state vector
of the virtual world is denoted as W. As illustrated in Fig. 2.6 (b), the action of a sensor
model is then a mapping of the state vector ¥ to the simulated perception data \T/, ie.
the model is defined by

M:U — .

While the exact state of the simulation environment is known at any time and avail-
able as ground truth data providing a virtual reference U, the state vector ® of the
real world environment is never known exactly and always has to be approximated
by measurement. For this reason, a reference measurement ® is introduced that also
constitutes a sensor measurement typically using specialized very high fidelity sensors
in addition to analysis in post-processing to generate the best known approximation of
the world state ®. This reference measurement is then defined as

Sref HKOJEEN 6,

also illustrated in Fig. 2.6 (a). This raises an important issue: As a glance at the flow of
information in Fig. 2.6 reveals, the sensor models operate in the same way as the sensor
in the real world by mapping the current world state to perception data. The quality
of a sensor model is then defined by its ability to match the behavior of its real world
counterpart as faithfully as possible. However, as the true state ® in the real world is
never known, gauging the quality of a sensor model and performing a model validation
is not possible in a straight forward manner. Instead, it always depends on additional
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Figure 2.6: Overview of relations between data: (a) In real world scenarios, the sensory perception
process maps the environmental state ® of the physical world on perception data 3.
Similarly, reference data ® are obtained in a reference measurement. (b) In a sensor
simulation, the current state ¥ of the virtual world is mapped onto simulated perception
data ¥ by means of a sensor model. Virtual world reference data ¥ are easily obtained
from the simulation ground truth. The aim of any sensor model is achieving as close to
equivalence as possible of simulated perception data ¥ to the real sensors perception ®
given identical or largely similar world states ® and W. As the exact true state ® of the
real world is never known, it has to be approximated by a reference measurement ®.

reference measurements ® to provide a close enough approximation of the state of the
environment. Moreover, the underlying task of model construction as finding a virtual
correspondence to the sensor mapping S : & — @ is ill-formed as no information about
this mapping is available. Instead, model construction and parametrization will always
be based on the observable sensor mapping of reference to perception data of the sensor
under investigation, i.e. Sgps :  — P, which is illustrated by the dashed gray arrow in
Fig. 2.6 (a).

For the subset of object data, the model mapping M : ¥ — U can be written more
explicit. We define the set X € W of ground truth objects, where each element x; € X
is a vector containing all the object properties. In same way, we define the set Z € ¥
as the set of output objects, where each element z; € Z is also a vector containing
the object properties of a detected object. Note that the properties for the elements
in the sensor output Z differ from the properties of elements in the ground truth X.
The sensing process for objects is then defined as the mapping M that maps the set
of sensor targets X = {x;},c; v, onto the set of observed targets Z = {z;},.; v,
depending on sensor parameters p and environmental conditions c:

M(p,c) : {Xi}ie[l,NX} - {Zj}je[l,NZ] : (2.1)

The indices 7 and j enumerate the objects in the respective set. Note that the number
of elements Ny = | X| and Nz = |Z| in the sets X and Z need not match and mapping
need not be on a per-element basis, therefore in general x; /4 z; and |X| # |Z|. This
reflects the fact that not all targets in the environment are detected at all times, i.e.
false negatives are present in addition to a limited range and field of view of the sensor,
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and that also additional ghost targets, i.e. false positives, may be present in the set of
observed targets.

The general processing chain for sensor simulation, initially shown in Fig. 2.3, starts
from a virtual environment and then goes through the virtual measurement step by
means of a sensor model generating output data, which is transformed to the sensor
specific interface format inherited from the corresponding real sensor and given as
input to the perception data processing of the automated driving system. Based on
this definition, it becomes apparent that the task of creating virtual sensors mainly
focuses on the setup of the specific processing chain for the design application, the
construction of a sensor model of the appropriate type, and the definition of generic
input and output interfaces used by the sensor model. A systematic approach towards
this task of sensor model construction will be introduced in the following.

2.4 Virtual Sensorics — A Systematic Approach to Sensor Models

Generally, two types of sensor models can be distinguished: Sensor error models aim to
reproduce the statistical characteristics of errors, i.e. deviations between the perceived
and true values, of the measurement and perception performed by vehicle sensors [28,
29, 30, 31]. Sensor measurement models are based on a physical description of the
measurement process and generate low level measurement data based on the virtual
scene. Models of this type are commonly used for a variety of sensors in robotics
research [34, 35], while first measurement models for automotive radar sensors are only
just emerging [32, 33, 48|.

As illustrated in Fig. 2.7, operating on high level object data is the domain of sensor
error models. For these statistical models, the design application is centered around
the generation of input data for an automated driving system to evaluate its behavior
in a large number of driving scenarios. For this purpose, the entire simulation tool
chain operates with data on the level of objects. In this case, objects denote entities in
the environment that are of significance to the functional behavior and detected by the
car’s sensors. These include dynamic objects such as other road users, static obstacles
that limit the available driving space, traffic signs and lights, and road markings. This
type of sensor model aims to simulate the object output of a sensor, i.e. the result of
the measurement process already interpreted by sensor internal perception functions.
Owing to its design use case, a sensor error model’s main objective is computational
speed to allow efficient running of a large number of scenarios.

In the case of sensor measurement models, which are physically motivated models of
the measurement process, the design application is the generation of low level sensor
data that can either be used to understand the sensors behavior in the driving context
or used to generate input data for low level perception processing functionality. This
is illustrated in the lower part of Fig. 2.7. The output of this low level perception
processing can be again used as input for higher level perception processing in the
same manner as the object level output of a sensor error model. In contrast, the tool
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Figure 2.7: Overview of different types of models and simulation tool chains, allowing different types
of applications. For the development of higher level functionality within an automated
driving system, where the unit under test is either the system as a whole in a closed
loop environment or the high level perception processing in an open loop environment, a
sensor error model can give the required input and provide a high level of computational
performance. For development of lower level functionality like the low level perception
processing or investigations into the sensor setup, a sensor measurement model is needed
that is able to generate the required low level output data. The more complex tool chain
including the low level processing can be linked to the higher level processing, which allows
applications on every abstractions level, although the computational requirements prohibit
many large scale applications.

chain including a sensor measurement model is purpose-built to achieve a very high
degree of realism for a specific scenario. Its high computational requirements usually
make it prohibitive to be used on large scale simulation testing in the same way as a
sensor error model. The ability of sensor measurement models to generate very realistic
low level sensor output data opens up the ability to use it directly in the development
of a sensor or a setup of sensors mounted on a vehicle. As this type of model is based
around a physically motivated approach, no statistical input data obtained from a
specific sensor setup is required to define the model’s parameters. This allows among
others investigations around the placement of a sensor on the vehicle as well as tuning
of the sensor’s specification parameter, e.g. its field of view, and estimating the impact
of adding sensors to or removing them from a vehicle’s sensor setup without the need for
time-consuming and costly real world vehicle preparations. This opens up a significant
tool box for sensor development in the context of automated driving systems.

Aside from the design application of a sensor model, there is an additional practical
limitation in the construction of a sensor model describing the behavior of a specific
sensor. As the simulation tool chain including the sensor model is always based on
the real world tool chain, the output format of the original sensor has to be exactly



26 2. Virtual Environmental Perception

reproduced at some point in the simulation tool chain. This point in the tool chain
is the first point at which a comparison of the model’s output data with real world
reference data can be performed. Therefore, if a specific sensor only has an output
interface on a higher abstraction layer, e.g. object descriptions, it is impossible to
validate the output data of intermediate model steps if a more complex model type has
been chosen. In many research applications, e.g. robotics simulations [34, 35], sensor
models are typically used to simulate the sensor measurement process as the sensors
used in this context usually offer the required low level data interfaces. However, in
an automotive context sensors are often a package of the measurement hardware and
sophisticated perception functions that provide functionality such as object detection
and tracking. The sensor model is therefore limited to the use of the corresponding
high level interfaces.

In many cases, even if the sensor additionally offers a low level data interface, several
component of the automated driving system make use of the high level output of the
sensors internal perception processing. As the specifics of the sensor internal perception
processing is usually propriety intellectual property of the sensor manufacturer, they
are typically not available for the development of a simulation-based processing chain.
In addition to their computational complexity, this limits the scope of applications for
sensor measurements models. Sensor error models, which are statistical models of the
perception process, avoid this problem by their nature they include the complete per-
ception step including measurement and the processing by sensor internal perception
functions. Examples of statistical models can be found in references [26, 27, 28, 55, 31,
56, 30, 29]. Statistical models however turn the main challenge in model construction
towards obtaining suitable reference data that is used to determine the model parame-
ters and behavior. This holds regardless of whether the model is using a parametric |26,
27, 28, 55, 31] or nonparametric statistical approach [56, 30].

2.5 Open Simulation Interface

One of the most critical aspects in the development of sensor models is the usage of
interfaces between components in the virtual world setup. As individual components
should be as independent of each other as possible to allow reuse in a variety of different
setups, e.g. using driving simulation frameworks that each have different strong points
and are therefore used for different purposes, it is important to decouple the sensor
model from the specifics of any one simulation framework. For this reason, a proposal
for a standardized interface, the Open Simulation Interface (OSI), is introduced that
has been extensively developed within the scope of this work.

2.5.1 Design Objectives of the Open Simulation Interface

The open simulation interface (OSI) is designed an abstraction layer for the purpose of
developing sensor models independently of the specific implementation of the simulation
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Figure 2.8: Data flow in the processing chain for the simulation of automated driving systems using
the interfaces definitions of the Open Simulation Interface (OSI), highlighted in bold.
The figure is based on the general data flow shown in Fig. 2.3. The OSI::GroundTruth
interface is used as output of the virtual environment and standardized input for the
sensor model. In case of physical sensor models, it may be complemented by 3D geometry
data. The output of the sensor model is either in the form of the OSI::SensorData or
OSI:LowLevelData interfaces, depending on the type of model. If correspondence with
a specific hardware setup is required, these data need to be transformed into a vendor-
specific sensor interface to serve as structurally identical input for the perception data
processing of the automated driving system.

environment and the automated driving system’s processing chain. OSI encapsulated
the link between the ground truth given by the virtual environment on the input side of
virtual perception and the resulting sensor data in the form used for further processing
on the output side. Given the necessary adapters, a sensor model developed with OSI
can therefore be deployed in a multitude of environments.

Within the processing chain for the simulation of automated driving systems, initially
introduced in Fig. 2.3, sensor models constitute the link between the input and output
sides of the virtual perception step. The goal of OSI is to provide data structures for
the input and output of sensor models as well as their inner workings. The updated
processing chain using the OSI interfaces is shown in Fig. 2.8. Therefore OSI defines
a generic object-level interface between the virtual environment and the sensor model
and sensor data output interface on the object-level as well as the level of low level
sensor data. Respectively, these correspond to the object representation, object output,
and low level data output steps shown in the illustration of the simulation tool chains
in Fig. 2.7. A three-dimensional geometric representation of the virtual environment as
required by a sensor measurement model is not part of OSI, as such a representation has
very high requirements to computational efficiency and does not lend itself to the generic
approach behind a standardized exchange interface like OSI. The first publication of
the open simulation interface (OSI) by the author and collaborators can be found in
reference [57]. In the time since this first publication, OSI has been publicized as an
active open source project maintained by a consortium consisting of members from
several automotive companies and research institutions. The most recent version of
OSI can be found in the open source project’s repository in reference [58].
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2.5.2 Semantic Structures of the Open Simulation Interface

Within the Open Simulation Interface, there are two different types of data structures
defined: osi::GroundTruth and osi::SensorData define high level object-type data and
osi::LowLevelData defines low level sensor data. For the purpose of OSI, objects are
defined as any non-transient entity that has a collection of physical and non-physical
attributes and can be easily referenced by a static identifier. This includes vehicles,
pedestrians, static road infrastructure, lane segments and so on. The sum of all objects
at a specific point in time makes up a static snapshot of the environment at that time.
Low level data on the other hand is a description of the usually transient physical values
that represent detailed sensor measurements. For the example of a laserscanner, these
include the detected reflections making up the three dimensional point cloud with their
measurement parameters like signal strength or derived physical quantities such as the
reflection coefficient of the reflecting surface.

Environment Measurement Sensor Processing Observation
osi::GroundTruth ' Sensor Error Model :—'—’ osi::SensorData
' Signal Process- !
\ PR R 1 ing Model |
! | Sensor ! R
———————— _—_—_—:3 Measurement — osi::LowLevelData [ r------------- |
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Figure 2.9: Processing chains for the Open Simulation Interface (OSI) illustrating the relation between
the different message types of the interface. Transitions between the different interfaces
are performed by different types of sensor models.

The interplay between the different OSI interfaces and their location within the sensor
model tool chain is illustrated in Fig. 2.9. For an object based sensor model like a
sensor error model osi::GroundTruth defines the input from the virtual environment
and osi::SensorData defines the output of the objects detected by the virtual sensor.
For a physically motivated sensor measurement model the osi::LowLevelData interface
defines the format of the output sensor data. On the input side, it is possible to use the
object-level description in osi::GroundTruth, however usually a representation of the
three-dimensional environment that is specific to the simulation framework will be used
for performance reasons. As physical calculations for the generation of low level sensor
output usually require highly optimized graphics processing with their own optimized
environment representation, these kind of optimized interfaces are considered out of
scope for OSI, which instead focuses standardizing the output for all types of sensor
models.
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Figure 2.10: Overview of the information contained in the main interface of the Open Simulation
Interface (OSI). The interface osi::GroundTruth is designed as object level output data
of a simulation environment that describes the current scene and is used by a sensor
model to derive sensor output data. The interface osi::SensorData is designed to be
used internally by a sensor model and to provide a generic output interface for synthetic
sensor data generated by a sensor model. It also contains a copy of the original ground
truth data used for internal processing by a sensor model as well as to allow a direct
comparison of the model’s output to the original data. The interface osi::LowLevelData
is designed for low level sensor output data as the result of a sensor measurement model.

The top level elements for each of the three OSI interfaces are shown in Fig. 2.10. In
the object-type interfaces osi::GroundTruth and osi::SensorData, the object data are
stored in arrays for the different semantic types of objects. These arrays are marked by
brackets | | in Fig. 2.10. Each element of an array corresponds to one object. For each
object, a set of object properties is stored that differs for every semantic type resulting
in the different arrays in the interface. Among these properties are for example a
unique identifier, the position, bounding box, and the orientation for each object. The
osi::GroundTruth interface stores all object properties exactly as they appear at one
specified update step in the virtual environment. In order to decrease the interface size
for very large virtual environments, only a certain distance around each ego vehicle has
to be included in the ground truth interface. An ego vehicle is defines as any vehicle
that may hold a sensor that is represented by a sensor model that uses the ground
truth data for simulation of the sensor output. The specific distance is defined by
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the implementation of the respective simulation framework. In addition to the arrays
containing the objects, the interface includes its own version as meta data, and the
current simulation timestamp as well as a set of environmental conditions that may be
relevant for perception by sensors, e.g. the ambient lighting conditions, which may be
relevant for a sensor model representing a camera sensor dependent on ambient light.

The osi::SensorData interface as shown in the central column of Fig. 2.10 contains
a arrays for the storing of objects similar to the ground truth interface. As the
osi::SensorData interface represents the output data of a sensor model, it contains
a semantic separation of objects are well as object properties for each of the objects
that matches the data that can be perceived by a sensor. As an example, while the
ground truth interface differentiates between vehicles, (other) moving objects, and sta-
tionary objects as each has a different set of properties with only a shared subset, in the
SensorData output interface these are merged to one single type: DetectedObject. The
reason for this is that an object detection algorithm can only estimate a probability for
a detected object to be of a certain semantic type, which has to be reflected in the in-
terface. Additionally, some properties like an existence probability or a sensor internal
tracking identifier are added to the data types in the osi::SensorData interface that do
not have a direct logical correspondence in the ground truth description. In addition
to the arrays containing the objects, the osi::SensorData interface includes information
about the sensor that is not present in the ground truth interface but instead is part
of the sensor’s and therefore also sensor model’s parameter. These are the identifier of
the sensor within the vehicle, the identifier of the ego vehicle itself, and the mounting
position of the sensor on the vehicle relative to the vehicle’s own coordinate system.
Furthermore, the interface contains the time stamp of the sensor data, which can differ
from the ground truth time stamp if the sensor model takes the sensor’s measurement
time into account. A copy of the original ground truth data allows for an easy matching
of sensor model output and original data. This is mainly used for validation purposes
and for internal processing by the sensor model. For internal processing by the sensor
model, there is an additional Modellnternal object that is used by sensor models using
the osi::SensorData interface as their internal data structure to store temporary values.
This objects is removed from any final output data of the sensor model.

Finally, the third interface osi::LowLevelData does not store object data, but holds
low level sensor data that is very specific to each type of sensor. A general definition
for low level data is data that relates directly to the sensor’s measurement process and
might be processed by specific algorithms for cleaning or de-noising, yet has not been
processed by higher level perception functions. Aside from the general items of the
sensor’s identifier, the sensor time stamp and the sensor’s mounting position, a lidar
point cloud and a radar reflection list are defined in the interface. At the current point
in time, sensor measurement models for lidar and radar sensors have been investigated
and as such have a representation in the interface defintion. Within the scope of this
work, the lidar sensor measurement model is discussed in chapter 4. The lidar point
cloud represents the low level output data for an automotive lidar sensor and consists of
a list of reflection points in three dimensional space. Each reflection point is additionally
enriched with data of additional measured quantities depending on the specifics of the
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lidar sensor. Examples are the classification of reflecting target or the intensity of
reflected light.

A closing remark concerning the open simulation interface is owed to coordinate
systems. The ground truth interface osi::GroundTruth is defined independent of any
specific object or sensor and therefore uses a global coordinate system that can be
defined by the simulation framework following some standardized rules, e.g. using a
right-hand coordinate system. As the osi::SensorData and osi::LowLevelData inter-
faces each hold data that represents the output of a specific sensor, the environment
description within these interfaces is given with respect to the sensor’s own coordinate
system. Using the information about the position and orientation of the sensor with
respect to the standardized vehicle coordinate system that is encoded in the Mount-
ingPosition item within each interface description, the sensor data can be transformed
from the sensor coordinate system to the vehicle coordinate system if this is required.

2.6 Summary

In this chapter general concepts regarding virtual environmental perception and sen-
sor simulation are introduced and discussed. This starts with an introduction of the
framework and processing chains for virtual development and testing. It is discussed
that depending on the design application for a sensor model, which is closely linked to
the level of abstraction that is considered, a different type of sensor model is required.
For the purpose of virtual testing, the most relevant abstraction levels are the object
level and the level of low level sensor data processing. Within the object level the focus
lies on the dynamics of objects making it most suited for testing the behavior of the
full system in a virtual environment. The lower processing level has its focus on the
details of the perception process and is therefore more suited to understand and test the
perception part of the system. The definition of the sensor error model as a statistical
description of the sensing process and the sensor measurement model as a physically
motivated approach to a low level description of the sensor measurement process are
introduced. As a main pain point in the development of sensor models are varying input
and output formats, the Open Simulation Interface (OSI) is introduced as a proposed
standard for use by sensor models. The layout of OSI is directly based on the target
architecture for the development of sensor models for virtual perception. This provides
the foundation for the discussion of the sensor error and sensor measurement models
in the next chapters.






3 Sensor Error Model

As one of the general two types of sensor models from the introductory overview in
section 2.4, sensor error models aim to reproduce the sensor output after processing
by the perception function on a statistical level. In the simulation of environmental
perception using this type of model, the sensory perception process is handled by a
software component that maps the ground truth to the sensor output, which is usually
a high-level description of objects. The software component containing the sensor error
model modifies the properties of the ground truth objects in the virtual environment
in such a way that the resulting output exhibits the same statistical properties as the
output of the original real world sensors.

This chapter discusses first the scope of sensor error models and their typical applica-
tion, followed by the introduction of a new modular approach as a general recipe for the
construction of sensor error models. Then, the real world setup for gathering reference
data used in model construction and the virtual world setup for using the model with
the driving simulation environment are introduced as used in the scope of this thesis.
Finally, for a number of modules the derivation from reference data for each module’s
particular scope is discussed and a representation in the simulation model defined based
on the reference data.

3.1 Scope and Applications of Sensor Error Models

Sensor error models have the purpose to form a single model for the virtual represen-
tation of an automotive sensor that provides high level object data as its output. This
type of sensor model has two main design applications: They can reach a high compu-
tational performance due to their low complexity. This allows their use for a large scale
simulations that include a wide variety of different scenarios as they are used for the
functional validation of an automated driving system Further, as this type of model op-
erates as a black box model on the object level interfaces of a sensor, constructing and
using a sensor error model does not require intricate knowledge of the inner workings
of a sensor. This knowledge is in many cases is not readily available, thereby forcing
the use of a sensor error model. For these reasons, sensor error models are mainly used
to either test the high level perception processing, e.g. sensor fusion, on the object level
within an automated driving system or the automated driving system as a whole.

The general context for the usage of sensor error models in the larger context of
virtual development and testing is shown in Fig. 3.1. The fast computation of sensor
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Figure 3.1: Main application of sensor error models in the larger context of virtual development and
testing. The fast computation of sensor error models enables running closed loop simula-
tions with an automated driving feature under test at faster than real time speed (lowest
part of the figure). This in turn enables a large number of test drives being run in short
order, cycling through different configuration for either the scenario or environmental fac-
tors (mid part of the figure). Finally, this allows an overall evaluation of the system based
on a large configuration space sampled by the testing series of repeated virtual world test
drives (upper part of the figure).

error models enables running closed loop simulations with an automated driving feature
under test at faster than real time speed. This enables enables a large number of test
drives being run in short order, cycling through different configuration for either the
scenario or environmental factors. This is performed by either running a long-term
continuous simulation of a large scale scenario with a large number of actors or by
repeated tests of individual scenarios with a variation of parameters, e.g. parameters of
the dynamic environment like traffic density or parameters of the static environment
like road layout, number of lanes, highway exits, lane mergers, or similar. As a result,
simulations using sensor error models allow a speedy overall evaluation of the system
based on a sampling a large configuration space by means of virtual world test drives.

The sensor error model is a statistical model that aims to reproduce the statistical
properties of the sensor output data. For this reason, the parametrization of a sensor
error model requires statistics gathered from observed sensor data in a variety of test
drive scenarios. In order to arrive at valid statistics, the sensor setup, i.e. type and
location of sensors on the vehicle, is fixed for these test drives. Owing to this, a sensor
error model with a specific parametrization always reproduces data from this exact
setup. It is not possible to investigate the influence of changes in the sensor setup with
this type of model. This is the domain of physically motivated sensor measurement
models discussed in chapter 4. However, for some parts of the model, e.g. a simple field
of view model, it is possible to use parameters directly from the sensor specification
without the need to gather sophisticated statistics data from test drives.
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Figure 3.2: Sequence of steps in the construction of a sensor error model, from left to right: Record,
Define, Run. From a statistical analysis of recorded sensor output and reference mea-
surements from real world test drives, the model and its parameters can be defined. The
sensor error model constructed in this way can then be used to produce virtual sensor
output data from a virtual environment that matches the real world sensor output on a
statistical level.

We consider the sensor model statistically matching the sensory perception data of a
real sensor if the generated sensor output data stimulate the automated driving system
in the same way over a large number of driving scenarios. An exact matching of the
data generated by a sensor in a specific situation is not required (or even possible)
as long as the model reproduces the relevant statistical properties, e.g. variances, and
correctly handles trigger conditions for the occurrence of specific effects. Note that
a direct inclusion of causal relations of trigger conditions to an error in the sensor
output data is not required. Instead, a correct reproduction of the relevant correlations
between effects that impact the behavior of the automated driving system is sufficient.

Reference data come in two flavors, dynamic or static, depending on the object
property in question. This has a significant impact on the gathering of reference data
and is also reflected in the category of affected model units according to Fig. 3.6.
Dynamic properties like position and velocity of a dynamic object in the environment
constantly change in value and the true value corresponding to a measurement only
exists for the instant that the measurement was taken. Therefore, reference data have
to be acquired at the same time as the sensor measurement data and with generally
higher precision. In contrast, static properties have a fixed true value that does not
change with time, e.g. the classification and size of an object have fixed values that
the sensor is attempting to determine correctly during the perception process. This
simplifies the acquisition of reference data immensely as any one point in time may be
used.

The series of steps required for construction a sensor error model are shown in Fig. 3.2.
This series of steps follows the sequence: Record, Define, Run. A sensor error model
is always built based on real world test drive data, where during a data analysis step
the recorded sensor output is matched against a reference measurement. This is the
Record step, and followed by the Define step that deduces the mathematical definition
of the model as well as the model parameters from the analysis of the test drive data.
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Finally, in the Run step, the sensor model needs to be implemented and embedded in
a virtual world perception processing chain using ground truth data from the virtual
environment of a driving simulator to generator virtual sensor output data. If all steps
during model constructing have been performed correctly, this virtual sensor output
data should match the real world sensor output on a statistical level. Validating this
based on reference measurements and the simulation ground truth is then the task of
sensor model validation.

3.2 A Modular Approach to Sensor Model Construction

There are a variety of ways to construct a sensor model that maps ground truth data
from the simulation framework to virtual sensor output. With an iterative development
methodology, simplifying future extensions as well as allowing the reuse of the sensor
model in a variety of contexts in mind, a modular approach to sensor model construc-
tion naturally arises to fit these requirements. This approach lies at the heart of the
discussions of sensor error models in the scope of this thesis and the idea behind the
approach is introduced in this section.

3.2.1 From integrated to modular sensor models

In section 2.3 on the formal description of sensor models, equation 2.1 was introduced,
which renders the perception process as a mapping M, depending on sensor parameters
p and environmental conditions ¢ and mapping the set of sensor targets X = {x;} i€[1,Nx]

onto the set of observed targets Z = {Zj}jeu Ny

M(p,C) : {Xi}iE[LNx] — {Zj}je[l,NZ] . (31)

Based on this equation, it is possible to introduce the idea of splitting the mapping
representing the sensor model into a chain of subsequent partial mappings, i.e.

M=M"oM"Vo...o M® oMW,

where the output of each individual mapping becomes the input for the next mapping.
It is a good idea to define the first mapping MY as a mapping between the ground
truth data format and a standardized intermediate and output format, which then
becomes the identical format for input and output of all subsequent mapping, i.e.

(1) . B¢y
MY (p,c): {Xl}z’e[l,Nx] - {Z]}je[lyNél)] 5

k—1 k
MO (p, )« {m} 2 omn, = {20 ) b€ 2]

(3.2)

In this formulation, the sensor model is broken down into a series of modules that are
applied to the current iteration of the sensor data in sequence. Due to the identical
format of the input and output data, it is possible to execute the modules in any order
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Figure 3.3: The Record, Define, Run sequence of steps in the construction of a sensor error model
modified for a model using modules. The sequence of deriving model and parameters from
statistical analysis of recorded data remains the same and is executed individually for each
module, iteratively expanding the model as a whole.

as long as any modules do not operate on the same properties within the data. This
allows to build individual modules for the modeling of a specific effect or aspect of the
detection process, which enables a continuous, iterative improvement of the model as
well as a separation of effects. When using a standardized format for the intermediate
and final output data like the osi::SensorData format introduced in section 2.5, it also
becomes possible to easily combine modules from different developers into one single
sensor model.

The characteristics of the sensor mapping M in (2.1) are split into n modules M ®*)
with k& € [1,n]. Operating in sequence, each module takes a set of objects Z*~1 =
{zi}gk_l) as input and returns a modified set Z(*). The composition of all individual
modules then defines M. The specific order of modules is an assumption of the model
and the composition is in general not commutative. Modules are interchangeable if their
effect on the final output set Z( is restricted either to separate subsets of elements
in Z™ e.g. targets in front of the vehicle and those behind it, or separate subsets of
target properties, e.g. target position and size of bounding box. The set of configuration
parameters for module M *) is denoted by =, and comprises the relevant subset of the
sensor properties p and environmental conditions ¢ or quantities calculated from these

depending on the specific requirements of the module. The sensor model is then defined
by

M(p,c) =M™ (y,)o0...0 MP(y5) 0 MV (), (3.3a)
(k)
( ) {Z }ze[l Ng_1] —> {Zj}je[LNk]? (3'3b)
where {Zl}( ) = = {x;}, corresponds to ground truth data and {z]} = {z;}, to the

final output data of the sensor model. Correlations between modules or correlations in
time can be taken into account by considering the output of previous modules in the
sequence as well as the sensor output Z;_; from the last update for the configuration

Yk
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Applying the general methodology for construction of a sensor error model shown in
Fig. 3.2 to the modular approach, results in the adapted process shown in Fig. 3.3. The
sequence Record, Define, Run in the sensor model construction remains unchanged.
The difference is that now step with definition of the model an its parameters now
becomes a series of steps for the definition of individual modules and their module
parameters. Each of the modules constitutes a partial sensor error model that is re-
sponsible for a part of of the simulated sensor output and therefore for each model a
piecewise statistical matching between real world sensor output and virtual world sen-
sor output can be performed. With each added module the sensor error model should
come closer to the final goal of fully matching all effects observed in the real world
sensor data.

For the construction of the statistical sensor model, we define atomic units of the
model, each capturing one specific error resulting from the lossy perception chain, i.e.
M® U — Uk where U* is a subset of the simulated perception data. The direct
sum of the output of all n model units then defines the complete output interface, i.e.
U = @P;_, ¥®  where the combination of the n units defines the model for the task
at hand. For modeling the perception process, each unit is tasked with the mapping of
environmental data to one specific object property in the output interface in a way that
replicates errors and uncertainties of the perception process for this particular quantity
on a statistical level. Packaging errors concern the sensor interface at large. Each unit
therefore deals with specific limitations of the interface and data transmission errors
that may occur until the sensor data arrive at the intended recipient.

In this framework, each of the modules constituting the sensor model is responsible
for modeling a specific effect or aspect of the detection process. This structure allows
a continuous, iterative improvement of the model as well as a separation of effects. A
straight-forward example for a module is the modeling of the sensor field-of-view via
the removal of all elements in the set Z®* 1 with positions outside of the defined area.
Other possibilities include adding or removing elements to account for false-positives
or false-negatives, and the stochastic variation of target properties like object position.
An implementation of the latter is shown in the following section.

For the general concept of a modular approach to sensor model construction intro-
duced in this section, it is easy to build a very generic software design that can be
enhanced step by step in continuous iterations. This makes the modular approach a
great asset in the development of sensor models operating on the object level. In the
following section, the software design for the realization of the modular architecture is
introduced in detail.

3.2.2 Modular Architecture

The model architecture discussed in this work enables a stochastic model corresponding
to a mapping as illustrated in Fig. 2.6 (b) of the previous chapter. The design aim is to
provide a flexible framework facilitating an iterative development. This is achieved by
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Figure 3.4: Overview of relations between data: (a) The sensory perception process maps the envi-

ronmental state ® of the physical world on perception data ®. Similarly, reference data ®
are obtained in a reference measurement. (b) In the simulation, the current state ¥ of

the virtual world is mapped onto simulated perception data ¥ by means of a sensor error
model. This model is comprised of several (atomic) units ¥(*) with index k € [1,n]. The

aim of the statistical sensor model is an equivalence of sensory perception data ® and
simulated perception data ¥ on a statistical level given comparable input states ® and W.

decoupling the sensor model logic from the specifics of the simulation framework using
well-defined interfaces as described in the section 2.5, introducing the open simulation
interface, as well as specifying a modular structure for the model components.

The proposed architecture is shown in Fig. 3.5. [see Fig. 3.5].

This type of flexible architecture allows to build a sensor model by combination of
individual modules, where each module corresponds to an atomic unit of the model.
The specific combination is determined by the output interface (or subset thereof)
required for the use case of the desired application. The sequence order of model units
belonging to the perception categories follows the natural ordering of the perception
sequence as shown in Fig. 3.6. Packaging model units related to the interface contents
are placed at the end of the sequence as they modify the interface in its entirety. An
exception are effects that result in no data being transmitted at all, e.g. the sensor
startup state. In this case the corresponding module should be first in sequence to
avoid unnecessary computations. Packaging model units on the interface level are not
part of the sequence that processes and modifies interface contents. Instead, these
require implementation on framework-level, especially in regard to timing specifics.

3.2.3 Sensor Error Classification

On the object level, all data output by the sensor are the result of sophisticated ob-
ject detection and tracking algorithms. However, the processing required to arrive at
the sensor output data from measurement raw data varies significantly for the various
object properties. Given a distance measuring sensor like a radar system, calculation



40 3. Sensor Error Model
simulation reference
framework l data

[ 70) = x }ﬁ c
M () ‘[ mn }
e N l
Z(l) <—‘ M
_ J l
M(Q)( ) -, module 5
12 config.
e N
7(2) ;—‘ \—\—r
_ J j
MO () { " }
.
ADA.S *[ Zn) =z - Z = Zp
function )

Figure 3.5: Modular architecture of the sensor model: The driving simulation framework provides the
ground truth data Z() = X that is then operated on by the n sensor model modules
M®) () in sequence, each producing a modified set of objects Z*) = {zi}gk). The final
result is the list of detected objects Z(™ = Z that can be used as input for the ADAS
function algorithms to establish a closed control loop. The individual modules represent
the sensor characteristics. Their configuration is given by the set of module parameters -y
that is determined in a previous step. It depends on sensor properties p and environmental
conditions ¢ as well as the output of previous modules M-*~1) and the sensor output
Z;_1 from the last update to account for correlations in time and between modules. Values
for parametrization are determined using reference data, for example statistics for relative
position readings from a sensor in comparison to higher precision measurements made by
a reference system.

of the target object position from the measured data is rather straightforward. In
contrast, differentiating between different types of objects on the basis of the abstract
radar cross section will require significantly more processing. The complexity of the
respective processing will in turn significantly influence the behavior of the quantity
when considering a sensor update in the simulation, i.e. the generation of the current
simulated sensor output data from the state of the virtual environment. For a sys-
tematic approach to sensor model construction, it is useful to sort sensor errors and
their corresponding model units into different classification categories according to their
position in the processing chain.

The choice of categories is motivated by two factors: the type of stochastic descrip-
tion constituting the specific model unit and the type of data required for reference
and validation purposes. On this basis, we propose a classification scheme defined by
the classification hierarchy shown in Fig. 3.6. An overview of where the sensory per-
ception of several typical object properties fits into the classification hierarchy is given
in Table 3.1.
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Figure 3.6: Classification hierarchy for model units constituting the sensor error model. Perception
errors are divided into three classes: detection, direct or indirect perception. Direct per-
ception encompasses those object properties that have a direct relation to measurement
raw data through straightforward calculation whereas indirect perception signifies proba-
bilistic inference. The arrows indicate the perception sequence.

On the most basic level, errors are divided into perception errors pertaining to the
measurement, and perception process, and packaging errors concerning the encoding of
perception data into the sensor output interface. For perception, we further distinguish
between detection, direct and indirect perception.

Direct perception usually deals with dynamic data. In this case, the statistical prop-
erties of the sensor measurement are deduced from a comparison of sensor readings
and simultaneous reference measurements. It is important that variance of reference
measurements is small compared to that of the sensor and that correlations between
sensor and reference measurements are insignificant. The former increases, and the lat-
ter decreases the variance extracted for the sensor model, both of which would require
a heuristic correction factor.

Indirect perception usually deals with quantities that are either static in nature,
e.g. object classification, or where the true value is up to manual interpretation for
each specific scenario, e.g. deciding whether another vehicle should be classified as
cutting into the ego lane at the current point in time. For the former, it is important
that the sensor model reproduces the transitions from the initial value at the time
of first detection of the object to updated values of the probabilistic estimation of the
sensor’s perception function. For the latter, the model only has to adequately reproduce
correlations between trigger conditions and state transitions over a large set of driving
scenarios.

For models in the indirect perception category, this allows the definition of two pa-
rameters for model optimization and proof of validity by applying the model logic
to recorded traces of real world reference data. If reference data show changes in the
quantity handled by a specific model unit that are not reproduced by the corresponding
trigger conditions, the model is not comprehensive and requires extension. In contrast,
if trigger conditions predict a change that is not present in the data, the model is not
specific and requires additional constraints.
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Table 3.1: Error classification for various measured quantities depending on sensor type

Meas. Quantity Radar Lidar Camera
Detection existence existence existence
Position directly meas. directly meas. directly meas.
Velocity directly meas. directly inf. directly inf.
Acceleration directly inf. directly inf. directly inf.

Bounding box

Orientation

Rotation rate

Type/Class.1

Associated lane

Cutting in?
Light state

Lane markings3

indirectly inf.
directly inf.
directly inf.
indirectly inf.
derived

derived

directly meas.

directly meas.

directly inf.

indirectly inf.

derived

derived

directly inf.

directly meas.
directly inf.
directly inf.
indirectly inf.
derived
derived
directly meas.

directly inf.

I Type defines the general category of an object, e.g. vehicle, static
obstacle, or traffic sign. Classification defines a fine-grained sub-
type, e.g. car, truck, or bike for vehicles.

2 Cutting in is exemplary of similar derived qualifiers depending on
multi-object data (in this case: ego vehicle, other vehicle, and ego
lane data).

3 Lane markings is used as shorthand for all lane and lane marking
related information, e.g. type, color, width, curvature.

There is a natural ordering to the perception sequence indicated by the arrows in
Fig. 3.6. If there are correlations between two effects, errors occurring earlier in the
perception sequence have an impact on those in subsequent steps but not vice versa. For
example, an incorrect position measurement, positioning a vehicle in an adjacent lane
closer to the ego lane than it actually is, will impact the lane mapping or the detection
whether the vehicle is cutting into the ego lane. However, an erroneous association of
the vehicle with the ego lane will not impact the position measurement.

3.3 Virtual and Real World Driving

As introduced in the discussions so far, the basic premise of a sensor error model is the
use of real world test drive and reference data to define the model and model parameters.
These reference measurements are used to deduce parameters for the sensor model so
that it matches the specific real world sensor setup that has been used during recording
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of the data. The sensor error model constructed in this way can be considered to
statistically match the sensory perception data of a real sensor if the generated sensor
output data stimulate the automated driving system in the same way over a large
number of driving scenarios. An exact matching of the data generated by a sensor in a
specific situation is not required (or even possible) as long as the model reproduces the
relevant statistical properties, e.g. variances, and correctly handles trigger conditions
for the occurrence of specific effects.

In the following the real world setup is introduced that is used for performing the
reference measurements to determine model parameters, followed by the introduction
of the virtual world setup for sensor simulation.

3.3.1 Real World Setup for Gathering Reference Data

Figure 3.7: Rendering of the position and approximate field of view of four IBEO Lux laserscanner
units placed on each side of the vehicle. The research vehicle used in real world test drives
employs this configuration, which is used gathering of sensor and reference data, with
the reference provided by a differential GPS system. The same sensor configuration is
simulated in the virtual world.

In order to gather reference data that can be used in the definition of a sensor model
and its parameters, two things are required: the sensor under investigation to record its
output and another reference sensor that provides measurements of sufficiently higher
quality to be matched as ground truth against the sensor’s output. For the purposes of
the analysis shown in this work, a setup consisting of two research vehicles is used. On
of the vehicle, the so called ego vehicle, hosts the sensor under investigation: an IBEO
Lux laserscanner setup. This sensor setup consists of four IBEO Lux laserscanner units
mounted directly within the chassis at the front, rear and to each side of the vehicle,
and a separate electronic control unit for data processing. The mounting positions and
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the respective approximate field of view of each sensor are shown in a virtual rendering
in Fig. 3.7. The IBEO Lux sensors used in this setup use a 905 nm laser and the time
of flight principle to detect the distance to a reflecting surface for each scanning point.
For these test drives, a 4-layer sensor has been used that has a horizontal field of view of
110° and a vertical field of view of 3.2°. In the setup consisting of four sensors located
on each side of the vehicle, the horizontal field’s of view overlap, creating (after some
initial distance) a full 360° coverage of the surrounding. For this reason, the resulting
fused object list contains objects that may be in any direction from the car as long
as they are within the sensor’s range. The electronic control unit handling the data
processing of the laserscanner setup receives the raw data streams directly from each
of the four sensor units. It runs the proprietary sensor fusion, object detection and
tracking algorithms of the sensors’ vendor and offers output interfaces for the resulting
fused object list as well as the point cloud raw data for each of the sensor units at an
update rate of 25 Hz. As the input streams for the four sensors are merged before object
detection, only the fused object list can be obtained as the individual lidar sensors in
this setup do not output an object list based only on their own measurements.
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Figure 3.8: Real world setup for gathering reference data. On the left side, (a) shows a still frame
recorded by a camera mounted on the ego vehicle’s dashboard that shows the target vehicle
to the front of the ego vehicle. On the right side, (b) shows data gathered at this point
in time. The black outline shows the target vehicle’s relative position, size as well as
orientation and the black arrows shows its velocity vector as reported by the lidar sensor
setup mounted on the ego vehicle. The green outline and arrow show the ground truth
data as recorded by the reference measurement system. The ego vehicle is shown in red,
with the center point of it’s rear axis defining the origin of the relative coordinate system.

In addition to the laserscanner setup, a camera is mounted on the ego vehicle’s
dashboard in order to provide a visual reference. A still frame snapshot of a test drive
during a highway-like scene on a test track is shown in Fig. 3.8 (a). As can be seen
on this camera frame, a second vehicle, usually referred to as target vehicle, is part
of the test setup and driving within the sensor’s field of view. Both, ego and target

50
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vehicles, are equipped with differential GPS measurement units and linked by means
of an OxTS RT-Range setup to provide high accuracy ground truth measurement for
relative position, velocity and orientation that can be compared to the lidar sensor’s
measurements. The output from this setup is shown in Fig. 3.8 (b). The frame of
reference is defined by the standard coordinate system of the ego vehicle where the
center of the ego vehicle’s rear axis defines the origin. The outline of the ego vehicle
is shown in red in the figure, the outline and position of the target vehicle according
to the reference measurement system is shown in green, and the data recorded from
the lidar sensor setup is shown in black. The green and black arrows indicate the
absolute velocity vectors of the target vehicle as reported by reference and lidar sensors,

respectively.
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Figure 3.9: Data acquisition setup during real world test drives for gathering sensor and reference
data. All the input data are handled by a computer running several sensor processing
nodes within the Robot Operating System (ROS). Inputs to this computer are provided by
an IBEO data processing ECU, a dashboard camera and an RT-Range system. The IBEO
ECU provides lidar point cloud data from four IBEO Lux sensors mounted on the ego
vehicle as well as the fused object list. The dashboard camera provides a compressed image
stream for visual reference data. The RT-Range system is coupled by a wireless link to
another RT-Range system on the target vehicle and provides the reference measurements.
All data are handled as ROS topics (marked by dotted outlines) and recorded using the
standard rosbag mechanism to a hard disk for offline processing and analysis.

To combine all of these individual input, the ego vehicle is outfitted with a computer
running the Robot Operating System (ROS). The full set for acquisition of sensor
and reference data in the research vehicle is shown in Fig. 3.9. For each of the data
input streams, lidar sensor data from the IBEO ECU, a camera image stream from
the dashboard camera, and the reference measurements from the RT-Range system, a
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ROS node is installed that decodes the respective data streams from their specific wire
format and publishes the data within ROS in the from of ROS topics. For the setup
considered for the scope of this work, the topics carrying relevant data are the fused
object list from the lidar sensor setup and the lidar point cloud data from each of the
sensors, the image stream from the dashboard camera, the reference object data from
the RT-Range setup, and the transformations topic carrying information about the ego
vehicle’s motion as the frame of reference. These data streams are saved to a hard disk
for offline analysis outside of the vehicle using the standard rosbag mechanism provided
by the framework. Timestamping of data is performed by the ROS Framework upon
reception of data, assuming that no significant lag in data forwarding occurs in any of
the different streams in relation to the others. This is a necessary trade-off due to the
limitation of a lacking synchronized time source that can push a time stamp to each
component.

After gathering data during a set of test drives with different driving scenarios in-
volving the ego and target vehicle, the recorded data needs to be cleaned and prepared
for analysis. These steps in particular include the matching of the observed object
list from the lidar sensor against the reference measurements, associating objects, and
synchronizing data. As the lidar sensor and the reference sensor have different frame
rates and do not perform synchronized measurements, the measurement time points
have to synchronized in order to allow a proper comparison of sensor measurement
against reference ground truth data. For this purpose, the data from the reference
sensor is linearly interpolated to exactly fit with the sensor data’s timestamps. Further
processing and preparation needs to be applied before the data are ready for analy-
sis for the purpose of obtaining sensor model parameters. These steps are explained
in more detail in reference [59], which is the work of a colleague of the author, who
is largely responsible for the implementation of the data preparation framework that
allows turning the recorded rosbag files from test drives into usable Matlab data for
analysis.

Armed with the data from these real world test drives, a sensor model can be con-
structed that is employed in a virtual environment. The setup used for this virtual
environment is introduced in the following.

3.3.2 Virtual World Setup for Sensor Error Model

The virtual world setup for running a sensor error model consists of three components,
each of which is a framework running one part of the sensor simulation processing
chain: the driving simulation framework, the sensor simulation framework, and the
framework running the automated driving feature or other subsequent components
using the virtual sensor data. During the research for this work, different frameworks
have been employed at times for each of these three components. However, the following
setup has emerged as the standard setup for most of the scope of this work due its
accessibility and usability: As driving simulation framework the software Vires Virtual
Test Drive (VTD), described in references [37, 60], is used. As an alternative driving
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simulation framework, especially for testing the compatibility of sensor simulation with
different frameworks, the SPIDER framework [61] has been occasionally used. The
sensor simulation framework is a stand-alone application that has been custom-built
for the scope of this work. As the framework handling sensor data output, the Robot
Operating System (ROS) is used as in the real world vehicle setup including the same
ROS nodes that make use of the sensor data topics.

Using the same output handling framework as in the real world setup allows a direct
reuse between the real and virtual world setups for the implementation of the automated
driving function making use of the sensor data. The difference in the ROS configuration
between the real and virtual environments lies solely in the use and configuration of
ROS nodes that read sensor data. While the real world setup uses nodes for each sensor
that decode the specific sensor data stream to publish them as a ROS sensor data
topic, in the virtual world setup a custom-built virtual sensorics node is implemented
that receives data from the sensor simulation framework using the OSI::SensorData
(or OSL:LowLevelData) interfaces. The virtual sensorics node then converts these
input data streams based on its configuration to the exact data structures of the ROS
topics that are published for real world sensor data of the respective sensor. The
virtual sensorics node is therefore the link between the simulation environment and the
components making use of sensor data by providing an abstraction that prevents any
of these components from realizing whether they are running in a real or virtual world
environment.
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Figure 3.10: Output from the virtual environment showing the workings of the sensor model processing
chain. On the left side, (a) shows a rendering of a highway scene from the ego vehicle’s
point of view as a visual reference. On the right side, (b) shows the outline of objects in
the ground truth (blue) as well as the position measurement of a reference point on the
back of the target vehicles as output by a sensor error model that only handles position
measurement simulation (red).

Data handling before the virtual sensorics ROS node is heavily reliant on the inter-
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faces of the open simulation interface (OSI) that have been introduced in section 2.5.
Within the driving simulation framework a sensor plugin is implemented that sends
the simulation’s ground truth data at each update step of the simulation using the
OSI::GroundTruth interface over a TCP /IP connection to the sensor simulation frame-
work. In addition graphics data may be grabbed directly from the driving simulation
framework’s graphics renderer to provide a visualization similar to the dashboard cam-
era of the real world setup. Such a graphical rendering of a highway scene in a virtual
environment is shown in Fig. 3.10 (a). The OSL:GroundTruth data are received by
the sensor simulation framework, which generates multiple instances of the data, one
for each configured sensor, and transforms it into the relative sensor coordinate frame
using the OSI::SensorData interface to store the data. Each data set is then processed
by a series of modules forming the sensor error model for the respective sensor with
continuous use of the OSI::SensorData format. The output of each sensor model is
provided in the update rate of the target sensor, e.g. 25 Hz for the IBEO Lux lidar
sensor model, and transmitted by a TCP/IP connection to the virtual sensorics node
in the ROS framework.

Due to the use of TCP/IP connections between the driving simulation framework,
sensor simulation framework, and ROS framework, each component can easily be par-
titioned on the same or different physical machines. For the scope of this work, mostly
an integrated setup with all components on a single machine is used. This workstation
runs an Ubuntu Linux system on an Intel Xeon CPU with 8 cores at 3.5 GHz each,
64 GB of working memory, and an Nvidia Quadro M4000 graphics unit for graphical
rendering. The driving simulation framework Vires VTD in version 2.1 and the sensor
simulation framework are run directly on the Linux operating system, while the ROS
framework is running in a virtual machine based on the same image that is also used
for in vehicle testing.

Equipped with the real world setup for the recording of reference data and running
data analysis and the virtual world setup for running the simulation and resulting
sensor error model described in this section, a series of modules can be defined and
parametrized that define the sensor error model. This is discussed in the next section.

3.4 Modules for Sensor Error Models

A sensor error model consists of a sequence of modules that each simulate a specific
characteristic of the sensor behavior. For each of the different types of sensor errors
introduced in section 3.2.3, a specific modeling approach is best suited to replicate
sensor behavior in the simulation environment. In the following, several exemplary
modules are introduced based on the reference data gathered from the setup introduced
in section 3.3.1.
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3.4.1 Detection

Detection is typically the first step when dealing with sensor data on the object level.
This part of the model is responsible for the existence or non-existence of objects in
the output interface, i.e. whether the simulated sensor reports seeing the object. In
a statistical sensor error model, the mathematical description of the detection module
takes the form of the following mapping:

Mdetection(/Yd) : {Zi}ie[LN] — {Z;}je[l,N/] ) (34)

where z; are a set of N objects in the list of objects before applying the module, and
z); are N' objects after applying the module. For a field of view model, the modules
parameter set 7y, consists of the horizontal and vertical field of view angles as well as
the range of the sensor, assuming all objects are already given in coordinates relative
to the sensor’s position and orientation. Due to the nature of the sensor setup under
investigation, with a combination of four lidar sensors with overlapping field of views
as shown in Fig. 3.7 and the sensor output only providing a fused object list, the
field of view of this sensor setup does not show any borders in the horizontal field of
view. Unfortunately, from the set of measurements obtained from the real world test
drives, a detailed analysis of the range of the sensor setup could not be determined.
However, as a simple substitute, the range given in the sensor’s specification sheet can
be used for the implementation of a simple detection module. With possible further
additions, requiring a larger database of real world sensor data, the detection module
may be extended to additionally add false positives, i.e. non-existent ghost objects, to
the data. Furthermore, requiring two target vehicles equipped with reference sensors,
it would be possible to determine the behavior of shadowing, when one of the vehicles
it blocking the sensor’s view of the other. Due to the tracking algorithms used, this
may not immediately mean the loss of the shadowed object in the sensor data.

3.4.2 Direct Perception

Direct perception encompasses all those object properties where straightforward calcu-
lations from measurement raw data may yield current values. Note that on the object
level, filter algorithms during object detection and tracking have been applied to the
measured data to arrive at the output values instead of straightforward calculations. In
the framework of the statistical sensor error model, we assume a direct relation with a
probabilistic mapping between the current environmental state and the sensor output.
However, one has to be clear that this is not equal to a probabilistic model of the
measurement process as it implicitly includes effects of the perception function.

A direct perception model can be constructed in two ways: Either as a probabilistic
mapping M (k) () = ¥y — ‘ngk) that the state of the virtual environment W, at time ¢ on
the subset of the perceived state of the environment \Tlgk), i.e. the sensor output. The
upper index (k) defines the number of the module in the sequence in the notation of
Eq. 3.3. Or, alternatively, including possible auto-correlations in the measurements, a
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direct perception model unit takes as input the current environmental state as well as
the state during last update and the resulting model output, approximating the process
as a Markov chain. This is an approximation of the categorization and more complex
time dependencies require the model unit to shift to the indirect perception category.
In this case, the probabilistic mapping takes the form M, Lgfgect(\llt,l, \nglf)l) W, — U
where W,;_; denotes the state of the virtual environment at the previous time increment
t—1, and \Tfik) denotes sensor output at t — 1.

We further split direct perception into those quantities accessible through direct mea-
surement or direct inference. The current values of directly measured quantities are
directly accessible from a sensor measurement, e.g. object position for a lidar sensor.
Note that the representation and coordinate system are insignificant for the classifica-
tion as long as there exists a static transformation, e.g. object position may be given
in polar or Cartesian coordinates and relative to the sensor or the vehicle reference
frame. In contrast, the current value of directly inferred quantities is calculated from a
sequence of sensor measurements. For a lidar sensor, an example for a directly inferred
quantity is the object velocity as the current value of the object velocity is calculated
from a series of position measurements that in turn are directly measured quantities.
The the following exemplary modules implementing position and velocity measurements
are discussed.

3.4.2.1 Position Measurement

The position measurement of a target object is performed by the lidar sensor setup
based on object detection from the fused point cloud data of the four individual lidar
sensors. In Fig. 3.11, a set of traces for the position measurement relative to the ego
vehicle from test drive data are shown. The setup consists of the ego vehicle hosting
the sensor and the a target vehicle as described in section 3.3.1. All measurements
are transformed to the relative coordinate system of the ego vehicle, which is shown
as a red outline in the graph. The forward, longitudinal direction of the ego vehicle is
the rightwards direction in the graph. The relative positions reported by the reference
measurement system based on a differential GPS system are shown in green in Fig. 3.11.
Due to the nature of the test track, the target vehicle can have a large distance from the
ego vehicle along the longitudinal direction, but only a comparably small lateral offset
owing to the boundaries of the road. The measurements of the lidar sensor system with
four IBEO Lux laser scanner sensors covering each side of the vehicle, is shown as the
black line. As a comparison of the traces from the reference and sensor measurements
clearly show, there typically is a difference in the measured position, constituting a
sensor error to be captured by the simulation model.

Using a set of 21 such measurement series of sensor output matched against reference
data as input, including a total of 32550 measurement points, a analysis of the data can
be performed to determine model parameters. Using the relative coordinate system of
the ego vehicle and denoting the longitudinal offset of the target vehicle relative to the
ego vehicle as x and the lateral offset as y, the distribution of sensor measurement error
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Figure 3.11: A set of traces of test drive data showing the relative position measurements of a target
vehicle from sensor and reference measurements. The setup consists of two vehicles: The
ego vehicle hosting the sensor and the target vehicle. The ego vehicle is shown as a red
box with the center of its rear axle as the origin of the coordinate system. The forward,
longitudinal direction of the ego vehicle is the rightwards direction in the graphic. The
relative positions reported by the reference measurement system are shown in green and
the sensor position measurements are shown in black. Note that the lateral offset is
scaled differently to the longitudinal offset by a factor of 2 for better clarity.

p(z) in the longitudinal direction and p(y) in the lateral direction can be computed.
The sensor error in longitudinal direction £ = = — T is given as the difference of the
sensor measurement = and the reference measurement 7. Same applies for the lateral
measurement: § = y — y. The resulting normalized histograms approximating the
probability density functions are shown in Fig. 3.12. No further processing is applied
at this stage.

The distribution of the lateral position offset, shown on the right side of Fig. 3.12,
shows a very symmetric distribution with an offset of 4 = —0.511m in the negative
y-direction, where p is the mean of the sample. The standard deviation of the sample is
o = 0.442m. A normal distribution defined by these parameters is shown as reference
as the red line in the figure. A notable difference is that the measured distribution
appears more sharply peaked than the fitted normal distribution. A similar behavior
can be observed in the distribution of the longitudinal position offset, shown on the
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Figure 3.12: Probability density function for the offset between the longitudinal (left) and lateral
(right) position measurement of the sensor setup and the position reported by the ref-
erence sensor for the same point in time. To each measured distribution, a normal
distribution is fitted (red line). The resulting fit parameters for the mean u and stan-
dard deviation ¢ computed from the measurement data are given in the top left corner
of each graph.

left side of Fig. 3.12. For this distribution, the mean is 4 = —0.403 m and the standard
deviation is ¢ = 1.488 m. Comparing the measured distribution to the fitted normal
distribution, reveals two characteristics: One, the computed standard deviation seems
very large in comparison to the sharpness of the central peak, and two, there appears
to be a smaller peak at around —2m.

The first observation is explained by long tails with low probability (therefore not
visible in the figure) of the distribution due to some very large deviations between the
position measurements of the sensor and reference. This can be seen when looking
at the minimum and maximum values found in the data: for the longitudinal offset
between sensor and reference min(z) = —44.6 m, max(2) = 28.4m, and for the lateral
offset min(z) = —8.5m, max(z) = 11.1m. These long tails have a significant impact
on the standard deviation, but may simply be a result of low accuracy for high ranges
that have occurred during some of the test drives. Whether these long tails still have a
significant statistical weight within a massively increased data set, remains to be seen.
The second observation of small secondary peaks can be explained by the observation of
a great variation of the mean of the measured data for each individual test drive. The
distribution of these means of the measurements of each individual continuous object
tracking series is shown in Fig. 3.13.

From the histograms shown in Fig. 3.13 for the mean longitudinal and lateral offsets
for each individual tracking series during the test drives, the large variation of the series’
means in the longitudinal direction becomes apparent. These deviations between the
means in the measurement and reference data very likely are a combination of three
effects: First, the calibration of the reference system and the sensor system within the
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Figure 3.13: Histogram normalized as a probability density function of the mean offset between the
sensor position measurement and reference position, with the mean calculated over each
individual, continuous measurement series of an object. The mean offset in the longitu-
dinal direction on the ego vehicle’s relative coordinate system is shown on the left, and
the mean offset in the lateral direction is shown on the right.

ego and target vehicles is likely not perfect as minimizing this systematic error requires
immense effort in the hardware setup of the vehicle. Second, the reference point used
in the reporting of the target vehicle may likely have been falsely estimated by the
sensor’s tracking algorithms in some cases. As typically one of the corners of the target
is used as a reference point, with the most likely being the closest corner to the lidar
sensor setup, a false estimation of the reference corner leads to a continuous offset
of the reported trace on the order of the distance between corners, i.e. the vehicle’s
dimensions. Such an effect is possibly responsible for the larger variations seen in the
mean longitudinal offsets on the left side of Fig. 3.13. Finally, third, the logic of the
object tracking algorithms can lead to a sustained offset during a continuous tracking
series of an object if such an offset was reported in the beginning as the history of
previous measurements typically figures heavily into the object tracking algorithm.

These effects that systematically cause a shift in the mean offset during a track-
ing series, defined as the continuous trace of an object from initial detection to ob-
ject loss for the tracking algorithm, may be handled in a separate model from the
error of the position measurement during individual sensor update cycles. In order
to differentiate these effects, the position measurements of the sensor and reference
during a continuous trace of an object are corrected for the mean of that trace, i.e.
Tom = (T — |Z|p,q) — (T — |Z|1,.g), Wwhere the mean is taken over each continuous track-
ing series. The resulting distribution is shown in Fig. 3.14. By definition, the distribu-
tion in this case has a zero mean. Both, the distribution of the offset in the longitudinal
direction and the lateral direction, are more sharply peaked around zero and exhibit a
smaller standard deviation of ¢ = 1.333m in the longitudinal and ¢ = 0.390m in the
lateral direction, when computed in this way compared to the distributions without the
mean correction shown in Fig. 3.13. However, the effect of the long tails still persists,
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Figure 3.14: Probability density function for the offset between the longitudinal (left) and lateral
(right) position measurement of the sensor setup and the position reported by the refer-
ence sensor for the same point in time. For each tracking series the mean of the sensor
data and the reference data has been calculated and subtracted from the data in order
to arrive at a zero mean distribution solely showing the random variation with separate
handling of the mean values. To each measured distribution, a normal distribution is
fitted (red line), whose standard deviation o is given in the top left corner of each graph.

raising the question, whether these are a feature of these distributions and needs to
be accounted for in a simulation model by using a non-gaussian distribution. As more
extensive data are required for a conclusive investigation, this topic is not followed up
within the scope of this work and left for future research.

Another interesting effect can be observed in the data, when considering the time
evolution of the error distribution over the course of a tracking series. An a priori
assumption would be that after the initial detection of an object with the accumulation
of additional measurements over the course of a tracking series, the filtering applied
by the tracking algorithms would lead to a decrease in the sensor error. Based on
the available measurement data and the methods of analysis introduced so far, this
hypothesis can be easily investigated. This is done by splitting the tracking series
of objects at a certain point into a first an second segment and computing the error
distributions separately for each of the segments. The results for such a split with the
first segment consisting of the first 20% of the tracking series and the second segment
consisting of the remaining 80% is shown in Fig. 3.15. Each measurement series is
again corrected for the mean to focus on the error in the measurement at each sensor
update. The split at a fixed percentage of the length of the tracking series has been
chosen to allow for easier processing of drives with varying length, however splitting
the drive after a fixed amount of measurements to separate the initial and latter part
of a tracking series reveals largely the same results. As can be seen from the difference
in the distribution between the first segment (top row in Fig. 3.15) and the second
segment, (bottom row), there is a dynamic behavior in the sensor error distributions.
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Figure 3.15: Probability density function for the offset between the longitudinal (left) and lateral
(right) position measurement of the sensor setup and the position reported by the ref-
erence sensor for the same point in time. The tracking series for each object has been
split into a segment containing the first 20% of the drive (top row) and another segment
containing the remainder (bottom row). For each tracking series the mean of the sensor
data and the reference data has been calculated and subtracted from the data in order
to arrive at a zero mean distribution solely showing the random variation with separate
handling of the mean values. The standard deviation o to each distribution is given in
the top left corner of each graph with the corresponding normal distribution shown in
red.
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For the longitudinal distribution, the width of the central peak around 0 increases while
the standard deviation o decreases, which is attributed to a decrease in the likelihood
of large offset represented by the distributions long tails. From the data, these long
tails are more pronounced during the first segment, matching the expectation that
accuracy is lowest during initial object detection and increases due to the effects of
the tracking algorithms. However, for the longitudinal offset, where the long tails are
not as pronounced, the widening of the distribution causes an increase in the standard
deviation.

From the point of view of modular sensor error model construction, each of these
effects can be captured within its own module. A model can use a sequence of mod-
ules separately treating the distribution in the mean offset during a tracking series by
randomly selecting an offset once for each tracked object, then the random error for
individual measurements can be applied by using the a distribution with parameters
obtained from the mean corrected measurements, and finally even the dynamic quality
can be accounted for by introducing e.g. a module that applies a random distribution
with a parameter set depending on how long an object has already been tracked.

3.4.2.2 Velocity Measurement

A similar analysis to the position measurements can be performed for the measurement
of the object’s velocity. In contrast to the position measurements, for the velocity, it
is better to use the absolute values instead of the relative velocity to the ego vehicle.
The direction of the relative velocity vector may easily experience large changes simply
due to changes in the speed of the ego vehicle and the computation of a movement
model for object tracking is more readily performed using absolute velocities. For these
reasons, the absolute velocity of the target objects is better suited to data analysis and
model building.

A set of sample traces for the absolute velocity is shown in Fig. 3.16. In the figure,
the current velocity of the target object is represented by a vector arrow with its base
at the reported position of the target. The coordinate system for both position and
velocity vectors is defined by the position and orientation of the ego vehicle, with the
ego vehicle’s forward driving direction defining the longitudinal direction (towards the
right in the figure). Both vehicles move in the same direction, indicated by the general
orientation of the target vehicle’s velocity vectors in the longitudinal direction of the
ego vehicle. Both, reference (green) and sensor (black) measurements, are shown in the
figure. From the figure, it can be discovered that both the orientation and the magni-
tude of the velocity vectors can differ between the reference and sensor measurements.
For the same set of test drives used during the analysis of the position measurements, a
similar analysis is performed for the velocity vectors. The probability density function
for the error in the measurements of the components of the absolute velocity vector is
defined as p(9,) and p(0,), with 0, = v, — U, being the longitudinal component of the
difference between the velocity detected by the sensor v and the velocity reported by
the reference system v, and 0, = v, — U, being the lateral component. A plot of this
function as computed from the measurement data is shown in Fig. 3.17.



3.4 Modules for Sensor Error Models 57

10

Reference Measurement

%ﬁs —_ ——= Sensor Measurement
= e
—%_>—%

—

210 I I | | | I
-50 0 50 100 150 200

longitudinal velocity / (m/s)

lateral velocity / (m/s)
o

10

e =

10 ! ! ! ! ! !
-50 0 50 100 150 200

longitudinal velocity / (m/s)

lateral velocity / (m/s)
o

10

= SeSae s —S—>
—==
— —_—
—— == —_
,:—;h_% \
-10 I I ! ! ! I
-50 0 50 100 150 200

longitudinal velocity / (m/s)

lateral velocity / (m/s)
[=)

Figure 3.16: Set of traces of test drive data showing the absolute velocity of a target vehicle from
sensor and reference measurements. Reference measurements for the velocity are shown
as green vector arrows, sensor measurements shown as black vector arrows. The base
of each vector arrow gives the position of the target vehicle at the moment of mea-
surement as reported by either the reference system or the sensor. The position of the
ego vehicle in the coordinate origin is shown by a red outline. Only a small subset of
measurements,equally spaced in time, for each trace is shown to improve readability.

As can be seen in Fig. 3.17, the components of the velocity vector show the reverse
characteristic compared to the position measurements. For the velocity, the lateral
component (right in the figure) shows a very wide distribution with a standard deviation
of 0 = 2.415ms™! indicating a low accuracy, while the longitudinal component (left in
the figure) shows a much narrower peaked distribution with a standard deviation of
o = 0.486ms~!. Comparing the shapes of the distributions, the longitudinal velocity
error shows an asymmetric shape with the peak towards positive error values, i.e.
overestimating the speed of the target, while the lateral velocity error shows a largely
symmetric shape. It is striking that the lateral component does not show a distribution
centered around zero, with a mean of ;1 = 0.718 ms~!. This can likely be attributed
to the target vehicle not driving equally on both sides of the ego vehicle and in this
way creating a bias in the distribution. However, this discovery reveals an important
characteristics that can be captured as part of a sensor model: the lateral velocity error
seems to depend on the relative position of the target vehicle.
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Figure 3.17: Probability density function for the error in the longitudinal (left) and lateral (right)
velocity measurement of the lidar sensor compared to the velocity reported by the refer-
ence sensor for the same point in time. For each tracking series the mean of the sensor
data and the reference data has been calculated and subtracted from the data in order
to arrive at a zero mean distribution solely showing the random variation with separate
handling of the mean values. To each measured distribution, a normal distribution is
fitted (red line), whose standard deviation o is given in the top left corner of each graph.

Focusing on the asymmetric shape of the longitudinal velocity error in Fig. 3.17 and

-1

the clear bias towards positive error values with the sample mean of y = 0.872ms™",
the question arises if this behavior is consisting over a number of object tracking series.
This question can most easily be answered by computing the distribution of mean errors,
where in analogy to the corresponding analysis in the position measurements the mean
is computed over each continuous tracking series. This distribution of mean errors is
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3.18: Distribution of the mean error in the measurement of the longitudinal (left) and lateral
(right) velocity compared to the reference.
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shown in Fig. 3.18. It can be clearly seen from the narrow distribution of the mean
longitudinal velocity errors (left in the figure) that there is a consistent bias for each
individual tracking series towards a positive error, overestimating the target’s speed in
the direction of the ego vehicle. This is a property that can easily incorporated into a
sensor error model. The distribution of mean lateral velocity errors however shows no
clear trend with a wide distribution of values.
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Figure 3.19: Probability density function for the error in the longitudinal (left) and lateral (right) ve-
locity measurement of the lidar sensor compared to the velocity reported by the reference
sensor for the same point in time. To each measured distribution, a normal distribution
is fitted (red line). The resulting fit parameters for the mean p and standard deviation
o computed from the measurement data are given in the top left corner of each graph.

As a next step, the distribution of longitudinal and lateral velocity errors is cor-
rected by the mean for each continuous tracking series, in order to differentiate be-
tween systematic effects affecting the mean and the random variations for individual
measurements. The result of computing the probability density functions corrected in
this way to zero mean distributions is shown in Fig. 3.19. As expected by the narrow
distribution of mean values for the longitudinal velocity component (Fig. 3.18), this
operation for the most part only shifts the distribution to a zero mean, yet has hardly
any influence on the standard deviation, only slightly changing it from ¢ = 0.486 ms™!
to o = 0.447ms!, or the shape of the distribution. The distribution keeps its slightly
asymmetric shape with the peak shifted towards larger values, indicating that this
behavior is a general feature of the longitudinal velocity measurement for this type of
sensor. In contrast, the distribution for the lateral velocity error has changed its shaped
with this operation from the largely symmetric shape in Fig. 3.17 to an asymmetric
one. Given that the mean values for the lateral velocity component for most tracking
series are offset to the same side, this is likely an indication that the lateral velocity
measurement exhibits a similar behavior as the longitudinal component, with an asym-
metric error distribution that favors a direction that is likely dependent on the relative
position of the target vehicle. The last statement is an assumption that unfortunately
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cannot be proven from these data, yet warrants further analysis with larger data set.

Equipped with the knowledge gathered from the analysis of the data for the position
and velocity measurements, it is now possible to construct an exemplary module for a
sensor error model that can be parametrized with the parameters obtained during the
analysis of this section.

3.4.2.3 Model Implementation

We construct a stochastic model for errors in the position measurement as an exemplary
implementation of the architecture shown in Fig. 3.5. This model consists of one
module that varies the two-dimensional positions, given by coordinates x; and y; for the
object with ID j. The variation is introduced by a random Gaussian white noise offset
Ax;, Ay, that has zero mean and is uncorrelated in time and space. The constitutive
equations (3.3) of the model then become:

M(p,c) = M9 (y,), (3.5a)
M@ () @,y = (@' + Az, o' + Ay)) V5, (3.5b)

where (xSO) , yj(o)) denotes the ground truth position. The module configuration is given
by the standard deviations of the noise distributions: v, = {o,,0,}, assuming that o,
and o, are not functions of the relative position. Figure 3.20 shows a sample trajectory
obtained using the model described in (3.5). In general, values for the parameters
04,0, can be determined using test drive data, where high-precision reference sensors
in the ego and target vehicles provide the ground truth data in addition to the relative
positions reported by the sensor under consideration.

3.4.3 Indirect Perception

Indirect perception comprises those quantities that have no straightforward relation to
directly measured sensor data. The calculation of these quantities makes use of complex
tracking techniques involving probabilistic hypotheses created, validated or invalidated
taking into account a larger number of previous measurements. Examples are object
classification or the mapping of a road user to a specific driving lane. Typically, the
output of indirect perception is one value out of a discrete set of available states.

In the framework of the statistical sensor model, we treat indirect perception as a
probabilistic state transition process based on predefined trigger conditions and variable
transition rates. This is expressed in the probabilistic mapping Mi%irect(\lfﬁﬁ)) W —
(@Ek), U (k)). The output consists of the subset of the sensor output interface @gk) for
which the model unit is responsible as well as additional internal state data denoted as
{Ivf: *) that monitors the status of the trigger conditions.

An example of a trigger condition is the relation between the estimated bounding
box and the object classification. Assuming for example a lidar sensor initially can
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Figure 3.20: Comparison of simulated ground truth trajectory (dashed black line) and corresponding
model output (solid gray line) with a Gaussian white noise applied to the vehicle’s 2 and
y coordinates. The vehicle is moving with speed v &~ 70 km/h. The update rate is 20 Hz
and 0, = 0, = 0.1m. A sketch of the scene (not to scale) is shown on the right: vehicle
2 approaches from behind and passes by the ego vehicle (labeled 1) statically positioned
at the origin. To avoid the ego vehicle that is partly blocking its path, it initiates a lane
change at £ &~ —150m. The inset shows the bounding box of vehicle 2 at ground truth
position and after variation at subsequent points in time spaced one second apart.

only properly estimate the width but not length of an object due to the geometric
configuration of the scene and further is not able to properly classify the object; if
a change in the object classification output is usually accompanied by a change in
the length estimation, this correlation can be exploited in the model. The change
in the bounding box estimation constitutes the trigger condition for the change in
the classification. Note that causation between trigger condition and effect is neither
implied nor required, only correlation.

Indirect perception is further subdivided depending on whether the inference of a
specific object property is restricted to that specific object or an advanced understand-
ing of the scene is required. The former are termed indirectly inferred quantities. These
are characteristics of the specific object inferred based on probabilistic estimation. Ex-
amples are the classification of a dynamic object or estimation of the motion state, i.e.
moving, parking, or static. The latter require a more comprehensive understanding of
the scene beyond the specific object and are termed derived qualifiers. An examples is
the mapping of a (dynamic) object to a driving lane requiring information about the
object position as well as information on position and course of driving lanes.

As an example, we consider the classification of dynamic objects, specifically the
transition of an unclassified object to being classified as a car. Fig. 3.21 shows two ex-
emplary traces where the length or width estimation of a lidar sensor correlate with the
object classification as determined by the sensor’s perception function. The five points
in time shown in Fig. 3.21 (a) to (e) have an offset of 5 frames each, corresponding to
approximately 0.2s at the sensor update frequency of 25 Hz. In both cases, classification
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Figure 3.21: Time traces showing a correlation between width and length estimation and the object
classification of a lidar sensor. The upper part shows the length estimation for a vehicle
passing the ego vehicle on the left and the lower part shows the width estimation for a
vehicle about 90 m in front of the ego vehicle as a larger part of the target object becomes
visible to the sensor. Size and orientation data are taken directly from sensor output
(scale bar for 1 m in the lower right corner). Positions have been set solely for illustration
purposes and are not to scale.

changes at (c) from unclassified (black) to car (red). In these traces, this corresponds
to the point in time where for the first time estimated length surpasses 2.0m (upper
trace) or estimated width surpasses 1.0m (lower trace). These two conditions can be
defined as trigger conditions, such that when either length or width estimation sur-
passes the threshold value for the first time, a change in classification is predicted by
the model to occur immediately or after a small time lag. A first evaluation of a data
set containing about 1400 of these classification transitions is shown in Fig. 3.22, where
the number of observed transitions after a specific number of sensor updates after the
trigger condition has matched is plotted. The graph shows that based on these very
simple trigger conditions a large number of the unclassified to car transitions can be
correctly predicted. However, when evaluating the incorrectly predicted transitions, it
turns out that these occur on a rate of approximately one time for every three correct
predictions. This very simple model therefore does not score particularly high on com-
prehensiveness or specificity, yet provides a sound starting point for refinement of the
trigger conditions.

3.4.4 Packaging

During packaging, i.e. encoding and transmitting of the sensor output interface, we
differentiate between two types of error-like effects. Those concerning the content of
the interface, but not specific to any object, and those that impact the interface and
data transmission on a general level. Examples of the former are incorrect or varying
timestamps of the data, limitations of the interface specifications, e.g. a maximum
number of objects reported by the sensor due to restrictions on message size, or the
absence of any data due to the sensor being temporarily in a blocked, startup, or
calibration state. The latter deal mostly with transmission timing. Varying processing
times of the perception functions usually result in irregularly timed update intervals.
As timing of input data is relevant for the subsequent functional processing chain of
the automated driving system, the sensor model has to account for these effects for a
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Figure 3.22: Chart of the number of transitions from unclassified object to object being classified as
a car as a function of the number of sensor updates after a trigger conditions using the
sensor output for the object’s width and length has matched.

correct emulation of sensor behavior. Correct handling of timing is largely a task for
the underlying simulation framework that coordinates the transmission of output data
of the sensor model.

3.5 Summary

In this chapter, sensor error models are introduced that aim to reproduce the char-
acteristics of sensors in a virtual environment on a statistical level. A sensor error is
defined as any difference between the sensor output and the original ground truth data
arising during the perception process, giving the sensor error model its name. Due
to the nature of a statistical model, it requires statistics obtained from observation
data in order to derive the appropriate parameters required for the simulation of sensor
behavior with regard to any quantity observed by the sensor. Obtaining these data
requires reference measurements for each quantity that is being investigated. A generic
modular approach for the design and construction of sensor error models is introduced.
The modular approach enables the building of individual modules that are executed
in sequence, allowing each module to handle a different aspect of the sensing process.
Moreover, this design enables an iterative development process for a sensor model,
where each iteration can add an additional feature in the form of an extra module
handling a specific aspect that has been analyzed and replicated in the framework of
the model.

For the construction of a sensor error model using this modular approach, reference
data are required. The real world setup for gathering reference data is introduced as
well as the virtual world setup for implementing a sensor error model. Based on the
data gathered from the real world test drives, an in-depth analysis is performed for a
number of object properties detected by the sensor setup under investigation, a setup



64 3. Sensor Error Model

consisting of four IBEO Lux lidar sensors. Properties for the model are extracted from
the data analysis that can be used for the parametrization of a sensor error model.

As an outlook, further additions to the sophistication of the sensor error model may
be achieved by using machine learning techniques like a generative model using neural
networks to replicate characteristic output based on learned behavior from test drive
data. As the main design feature of the modular approach to model building introduced
in this work is its flexibility, it is a straightforward extension to include a model unit
that makes use of e.g. a neural network. An interesting and very recent approach to
generate sensor data from mobile devices using adversary neural networks can be found
in [62]. Adopting this approach for automotive sensors may prove worthwhile for future
investigations.



4 Sensor Measurement Model

As the second of the general two types of sensor models from the introductory overview
given in section 2.4, sensor measurement models aim for a physically motivated bottom-
up approach for the simulation of the sensor measurement process. These types of
models allow a high level of flexibility as they are not intrinsically reliant on reference
measurements from an existing sensor and can even be used to evaluate the effect of
changing some of the sensor properties to create a sensor not (yet) existing in a real
world setup. However, due to their by far increased computational complexity, they
require special optimized interfaces from the driving simulation framework, limiting
their scope of applications.

This chapter discusses first the scope of sensor measurement models and their typical
applications, followed by the discussion of the physical simulation of the sensor mea-
surement process for a lidar sensor. A ray tracing based sensor measurement model for
the simulation of lidar point cloud data is introduced, based on real world observations.
Finally, a direct application for the low level data output of the sensor measurement
model is discussed, where simulated low level data are used to stimulate in real time
the input for a higher level perception function based on an occupancy grid implemen-
tation. Using the occupancy grid representation, a side-by-side comparison between
the real and virtual world sensor data generation and usage is performed.

4.1 Scope and Applications of Sensor Measurement Models

A sensor measurement model is a physically motivated model of the sensor measurement
process that aims for a high degree of realism in the generation of low level sensor
output data. The purpose of this type of sensor model is to serve as the first step in the
perception chain, linking the geometry and properties of the three-dimensional virtual
world with the sensor data processing of the perception system under test. Low level
sensor data are largely unprocessed data directly derived from the sensor measurements.
In the case of automotive lidar sensors, which are the focus of this work, these data
typically have the form of a lidar point cloud, i.e. a set of points in three-dimensional
space that outline the reflecting obstacles encountered by the sensor’s measuring laser
beam. An example of such data is shown in Fig. 4.1. On the left side, Fig. 4.1 (a)
provides a visual reference for the scene, which consists of two vehicles on a closed
test track. On the right side, Fig. 4.1 (b) shows the point cloud output from the front
lidar sensor of the ego vehicle as well as the output of object tracking and reference
measurements.
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Figure 4.1: Real world example for low level sensor data from a lidar sensor that a sensor measurement
model aims to simulate. On the left side, (a) shows a still frame recorded by a camera
mounted on the ego vehicle’s dashboard that shows a target vehicle to the front of the
ego vehicle. On the right side, (b) shows data gathered at this point in time: The black
dots show a top view of the point cloud data output from the front lidar sensor of the
ego vehicle, the black outline shows the output of the object detection. The green outline
shows the reference measurement for the target vehicle’s position. The ego vehicle is shown
in red, with the center point of it’s rear axis defining the origin of the relative coordinate
system.

Due to their ability to generate synthetic low level data, sensor measurement models
are used for applications that require a high degree of realism and flexibility. This comes
at a significant computational cost, but enables two areas of applications that are largely
inaccessible to other types of sensor models: One, the simulation-based study of sensor
types and configurations even if the sensor types themselves or vehicles with the specific
configuration are not (yet) available. Two, the individual components in the perception
chain, i.e. measurement and perception processing, can be individually studied using
the low level data interface of the sensor measurement model as the connecting element.
To this end, it is possible to use software or even hardware components in the perception
chain that make direct use of the low level sensor data. Using a sensor measurement
model, it is therefore possible to build a simulation setup where the only difference to
real world testing setups is the substitution of the measurement apparatus of the sensor
by a simulation model of the physical processes within the sensor.

Comparing sensor measurement models to the sensor error models discussed in chap-
ter 3, the main difference between the two types of sensor models is that applications
using sensor measurement models aim for a detailed and exact replication of the in-
dividual steps of the perception chain whereas applications using sensor error models
aim for a unified single model of the complete perception chain that replicates the final
output on a statistical level. By limiting the scope of the sensor model to the physical
measurement process, the model can be used in a variety of use cases where a detailed
view of the perception process is aimed for. Among these use cases is the study of the
effect of the vehicle’s sensor setup, i.e. number and location of sensors within the vehi-
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cle, as the position of the sensors can be easily modified when a physical measurement
model is used. Further, sensor measurement models enable any application where raw
data or low level sensor output is required, e.g. when investigating the behavior of a
specific sensor fusion or object detection algorithm in the perception stage. One such
sensor fusion algorithm, the occupancy grid, is briefly discussed later in section 4.4
as an example for a consumer of the low level sensor data generated by the sensor
measurement model discussed in this work.

The capabilities of sensor measurement models to enable additional applications due
to their flexibility, however, come with the cost of requiring more detailed input data
when building and validating the model. As the model’s output includes measurement
data from the sensor, the same type of data from real world sensors has to be used in
order to define and test the model and the model’s parameters. This type of low level
sensor data in the required quality is in many cases not easily available, especially as
appropriate ground truth data are required to make use of the real world measurements
of a sensor under test. However, ground truth data in the quality required for e.g. lidar
measurements are very hard to come by. To some degree this limits the ability to
validate these types of models. Nevertheless, when deriving a sensor measurement
model from basic physical principles as well as available measurements, a model can
be constructed that is useful for a variety of applications. In contrast, for the sensor
error models of chapter 3, it is easier to come by valid measurements as the object level
interfaces that are employed by these models are much more commonly used in current
systems and therefore easy to record. A further difference between the two types of
models is their computational performance: The statistical high level approach of the
sensor error model can achieve fast computational performance and therefore lends itself
to the simulation of a large number of scenarios. This is in contrast to the detailed
approach of the sensor measurement model that has high computational requirements,
e.g. for ray tracing computations, and is more readily suited to fit small scale simulations
with a limited scope, e.g. for research into optimal sensor placements or sophisticated
low level based sensor fusion algorithms.

4.2 Physical Simulation of the Sensor Measurement Process

This section describes the integration of the sensor measurement model in the vir-
tual perception chain. The model represents the first step of environmental perception
building directly on the three-dimensional virtual world without an abstract functional
world representation, e.g. an object level representation, as an intermediary. The in-
teraction between the sensor and the virtual world is captured within the model using
a ray tracing approach.

4.2.1 Processing Chain for the Low Level Data Model

The perception process in the simulation of an automated driving system can be split
into individual, sequential components. The resulting perception chain was initially
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introduced in chapter 2. The perception chain starts with the virtual environment
on the input side and culminates on the output side in the internal environmental
description that is used by the decision making algorithms of the automated driving
system, i.e. the automated driving feature. Within the context of the perception chain,
a sensor measurement model constitutes the initial link between the environment of
the virtual world and the first low level representation of the virtual environment This
low level representation is directly derived from the sensor measurement process and
used for further processing in the perception chain of the automated driving system.

Virtwal Driving Action Automated Driving
Environment (for closed loop sim.) Feature
Geometry, Perception Function Sensor Fusion
meta data Replacement Model
S Object List
N ensor Low level Perception Function
easurement data in SiLL / HiL. Setup
Model
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Figure 4.2: Sensor measurement model in the context of the simulation setup. In the top figure (a),
the variations of the processing chain for perception using a sensor measurement model is
shown: The low level data output from the sensor measurement model enables the use of
a real world sensor’s perception function for object detection within a Sil. or HiLL Setup,
or the use of a non-object based perception function operating directly on the low level
sensor data. The bottom figure (b) shows the technical components and interfaces of the
sensor measurement model: The model is implemented as part of a sensor plugin executed
by the simulation framework. The plugin code makes use of the OptiX ray tracing engine
to determine intersection points within the geometry provided by the virtual environment,
and processes these data into a point cloud output. An OSI data exporter converts the
data into the OSI::LowLevelData format and offers an interface to data consumers.

Based on this understanding of the purpose of a sensor measurement model, the
placement of the model is shown in Fig. 4.2 (a) in the context of the simulation setup as
a whole. The sensor measurement model receives geometry and meta data defining the
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virtual environment as input and returns sensor specific low level data as output. The
next component in the perception chain can take one of three forms, depending on the
goals of the simulation setup. If the goal of the simulation setup is served by re-creating
the output of an existing real world sensor on the level of an object list, then either
a replacement model of the perception function, i.e. object detection, of this sensor is
required or the identical code of the sensor’s perception function can be used. The
latter case is used in either a software-in-the-loop setup (Sili) or hardware-in-the-loop
setup (HiL), which also allows the testing of the perception function behavior itself and
constitutes a valid use case for simulations setups making use of a sensor measurement
model. If the goal of the simulation setup is different, however, and does not make
use of an existing real world sensor or the object list representation, the low level data
output of the sensor measurement model can be used as input for a custom low level
data perception function that constructs a complex environment representation for the
use e.g. in sophisticated raw data based sensor fusion algorithms. In either case, if it
is desired to build a closed loop simulation, the output of sensor measurement models
and perception functions for multiple sensors is fused and can in this way serve as input
for the automated driving feature. The automated driving feature in turn can report
the driving actions taken by the ego vehicle back to the simulation framework for the
next update step in the closed loop simulation.

For automotive lidar sensors as the focus of this work, the low level representation of
sensor data usually has the form of a point cloud that consists of individual reflection
points in three-dimensional space. For each of the points, a number of associated
properties specific to the measurement process of the sensor is stored in addition to the
position measurement of the reflecting object.

Within the scope of this work, a ray tracing approach is used for the purpose of
constructing a sensor measurement model for an automotive lidar sensor. Ray tracing
is a flexible simulation approach that has originally been introduced in the context
of computer graphics in the 1980s with the goal of generating high quality computer
rendered images [63, 64, 65]. Ray tracing is well suited for the purpose of simulating
the propagation and scattering of electro-magnetic waves and can easily be employed
for simulation on various levels of complexity, examples can be found in references [66,
67, 68, 69, 70]. The components used in the implementation of the model are shown in
Fig. 4.2 (b): The simulation framework controls the virtual environment and executes
the sensor plugin, which contains all the custom code for the implementation of the
sensor measurement model. The sensor plugin configures the ray tracing engine, i.e.
defines ray parameters like starting points, directions, and hit functions, and triggers the
sending of rays on each sensor update. The ray tracing engine uses the geometry data
provided by the virtual environment to calculate intersections between rays and surfaces
in the three-dimensional virtual world, which are returned to the sensor plugin for
further processing. The sensor plugin uses these data to derive low level sensor data in
the form of a point cloud for the simulation of a lidar sensor. These data are sent to the
OSI data exporter, which transforms them into the format of the OSI::LowLevelData
interface, introduced in section 2.5 on the open simulation interface (OSI). The OSI data
are then transmitted to the consumers further processing, which is usually performed
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by a perception function that uses low level sensor data as input. For the definition
of the model within the sensor plugin, using the basic assumption that each ray in the
model adheres to the same physical behavior, it is the task of the model to properly
capture the interaction of one ray with its environment. With this assumption the
number and direction of rays can be set and enhanced arbitrarily, which allows for
a very high flexibility in the application of the model. In particular, this allows to
approximate the behavior of many different real world sensors with basic information
from their specification sheet alone as well as allowing a largely free placement of the
sensor within the vehicle.

For the construction of the sensor measurement model, the scanning type of lidar
sensor is considered that is typically used for automotive applications. This type of
sensor determines distance by measuring the time of flight of a laser pulse that is sent
by the sensor, reflected by a target surface, and then again detected by the sensor. Its
angular resolution is achieved by means of scanning, i.e. by moving the transmitted laser
beam as well as the selective field of view of the optical detector array successively over
the sensor’s complete field of view. Most commercially available systems at this time
employ a mechanically rotating mirror for the scanning task. The operating principle
of this type of sensor lends itself to a modeling approach using ray tracing techniques.
The specific implementation chosen for the sensor measurement model discussed within
this work is introduced in the following section.

4.2.2 Ray Tracing Simulation Framework

The virtual environment for the proposed sensor model is provided by the Vires VTD
driving simulation software, which offers a ray tracing framework based on the Nvidia
OptiX ray tracing engine as an optional extension. A detailed description of the ray
tracing engine can be found in [71]. The use of this framework for the simulation of
automotive radar sensors has recently been reported in [32, 33].

The purpose of the sensor measurement model is the mapping of the three-dimensional
virtual world as input to sensor output data that should be largely indistinguishable
from the data provided by a real sensor mounted on a vehicle. A detailed graph of the
control and data flow in the model and virtual environment is shown in Fig. 4.3. As in-
troduced in the previous section and the high level view of the model shown in Fig. 4.2,
the model is implemented as a sensor plugin in the driving simulation framework. In
a more detailed view, the sensor plugin contains several components as described in
the following, whose relations are illustrated in Fig. 4.3. Generation of rays is handled
by the virtual sensor’s camera program. This encompasses the calculation of the ray
starting points, their launch directions at the current simulation update step, and the
appropriate configuration of the ray tracing engine. The camera program is invoked by
the sensor plugin on each update frame of the sensor. After configuration is finished,
the ray tracing engine is invoked by launching the rays. The ray tracing engine then
performs a traversal of the node graph representing the virtual environment for each
ray in order to determine the intersection points with the world’s three-dimensional
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geometry. The specialized OptiX node graph used for traversal of rays is updated
on each simulation update step by the virtual environment of the driving simulation
framework. For each intersection found during node graph traversal, a material lookup
is performed by the ray tracing engine. The material lookup is performed in a cus-
tom, purpose-built material database that defines the appropriate hit program and the
relevant material properties. The relevant hit program is then invoked and given the
position of the intersection point, the ray’s properties, and the material properties as
context parameters. The hit programs and material database both constitute parts of
the sensor measurement model and are central to its implementation. The reflection
model is defined in the hit program, which includes the calculation of the contribution
of light sources, the definition and launching of any secondary rays if desired, and even
determining whether an intersection needs to be included for further calculations at
all or disregarded, e.g. in case of a transparent material. Finally, the hit programs
modify the payload of the primary rays by saving the calculated reflection points and
required context data and returning these to the camera program for post-processing.
All of these steps, starting from ray generation in the camera program, are computed
in parallel on the GPU for each ray and therefore for each point in the point cloud in
order to achieve real-time performance. During post processing in the camera program
the point cloud and associated quantities are calculated for export of data. After post
processing, the camera program forwards the data to an OSI data exporter component
for further handling.
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Figure 4.3: Data and control flow in the functional processing chain of the sensor model, split into
the domains of the simulation environment, virtual sensor, and sensor output. The sensor
model is defined by the components of the sensor plugin, specifically the camera and hit
programs, as well as the purpose-built material database.

The OSI data exporter establishes a TCP connection to a pre-defined target address
and transmits the data to the registered consumers listening on the target port. Before
transmission, the OSI data exporter converts the data to an interface format specified by
the OSI standard. For the serialization of the generated data and their transmission to
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the Robot Operating System (ROS) used as development framework on the output side,
the point cloud representation in the OSI::LowLevelData message is used. The open
simulation interface and its messages are described in [57] and have been introduced
in section 2.5. The resulting data stream is received by a wvirtual sensorics ROS node
and translated to ROS internal sensor data topics that publish the exact same message
format as a corresponding sensor node for the lidar sensor in a real vehicle setup. As
the sensor measurement model described in this chapter is capable of real time output
of generated low level sensor data, it is at this point that ROS nodes that consume
the sensor data output of the virtual sensorics node do not experience a difference in
the data format arriving from a real or virtual world setup. This serves the original
design goal of the sensor measurement model of producing synthetic sensor data largely
indistinguishable from real world sensor data.

4.2.3 Virtual World Setup for Sensor Measurement Model

The virtual world setup for running the sensor measurement model is similar to the
setup described in section 3.3.2 on the virtual world setup used for the sensor error
model. However, for the purpose of running the sensor measurement model additional
components are required. In general, the virtual world setup consists of three compo-
nents: the driving simulation framework responsible for updating and controlling the
virtual world, the framework running the sensor model, and the framework hosting
the components that are using the generated sensor data, i.e. perception function and
automated driving feature. For the purpose of this work, the following setup has been
used for the most part for developing and running the sensor measurement model: As
hardware a workstation with an Intel Xeon CPU as main processing unit is used, which
has 8 logical cores running at 3.5 GHz. The machine further has 64 GB of main working
memory and uses for graphics processing a single graphics card with an Nvidia Quadro
M4000 GPU with 8 GB of graphics memory. As operating system an 64-bit Ubuntu
Linux in version 16.04 LTS is installed. For the driving simulation framework, the
software Vires Virtual Test Drive (VTD) in Version 2.1 is used.

Vires VTD offers with an additional extension the integration of a ray tracing frame-
work into its graphics processing pipeline, which can be extended with custom code
for the purpose of e.g. sensor simulation. As ray tracing engine Vires VTD makes
use of the Nvidia OptiX ray tracing engine [71], which is used in version 4.0.2. The
implementation of the sensor measurement model described in this work makes use of
the interfaces offered by the Nvidia OptiX integration within Vires VTD, which sac-
rifices portability of the model but is necessary to achieve the required computational
performance to make a real time ray tracing approach feasible. The OptiX integration
within the graphics processing pipeline of the driving simulation framework takes care
of the syncing of the simulation framework’s internal scene graph as the representation
of the three-dimensional geometry of the current scene and the OptiX node graph used
by the ray tracer. The custom code for the implementation of the sensor measurement
model can then be used to directly program the ray tracing engine that interacts with
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the node graph provided by the framework. This allows to lay the focus of develop-
ment work on the architecture of the sensor measurement model and its inner workings
while the framework handles the actual ray tracing and interaction with the scene.
The sensor plugin developed within the scope of this work hosting the custom code for
the sensor measurement model exports all data in the format of the Open Simulation
Interface (OSI) described in section 2.5, and uses zeroMQ [72] as messaging library for
communication with consumers. The version 2.0.0 of OSI and version 4.1 of zeroMQ
is used. The consumer for the low level sensor data is a virtual sensorics node within
the Robot Operating System (ROS), receiving messages in the OSI::LowLevelData for-
mat from the sensor measurement model and other required data from the simulation
framework. The virtual sensorics node then transforms these input data into messages
of equal format to an existing laser scanner system, which makes further handling of
data indistinguishable between the simulation and a comparable real world setup. Fur-
ther processing and usage of the data generated by the sensor measurement model is
similar to the usage described in section 3.3.2 for the sensor error model. The main
difference is the type of data received, low level sensor data compared to object level
data, and therefore the consumers handling further processing of the data within the
ROS framework are different. However, the processing of generated sensor data is the
focus of this work and therefore the further usage of data within the ROS framework is
not discussed in detail. An exemplary use case will be briefly introduced in section 4.4,
describing an occupancy grid implementation making use of the synthetic low level
sensor data generated by the sensor measurement model.

To measure the performance of the sensor plugin implementing the sensor measure-
ment model, the following setup is investigated: The sensor model is configured to
generate point cloud output data matching the specification of the IBEO Lux laser-
scanner sensor, with the simulated sensor located on the front of the ego vehicle. This
sensor covers a horizontal field of view of 110° and a vertical field of view of 3.2°. In the
horizontal direction, the resolution, i.e. azimuthal distance between scan points, varies
in different segments of the field of view between 0.25° in the central segment and 0.5°
on the sides, resulting in a total of 390 scan points per layer. In the vertical direction,
the sensor has four layers that are spaced 0.8° apart in the elevation angle. The scan
grid for the instantiation of measuring rays in the ray tracing framework therefore is
a matrix containing 1560 entries of tuples of azimuth and elevation angles. For each
scan point, one central ray and two additional rays above and below the central ray
in the elevation direction are launched. The additional rays account for dispersion of
the ray and can result in multiple echos for a single scan tuple, which will be discussed
in detail during the model introduction. This results in a total of 4680 primary rays
generated and traced during each update cycle of the sensor measurement model. As
an exemplary scenario a standard setup from Vires VI'D of a highway scenario with
the ego vehicle and one single target vehicle in front of the ego vehicle is used. The
distribution of relative frequencies of the sensor plugin’s cycle time during a run of the
simulation is shown in Fig. 4.4.

Each cycle of the sensor plugin includes the steps from calculating ray starting points
and directions at the current simulation update step for configuration of the ray tracing
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Figure 4.4: Relative frequencies in the distribution of cycle times of the sensor plugin implementing
the sensor measurement model. Each bar represents an interval of 2ms. One cycle of
the sensor plugin includes ray generation and ray tracing, post processing of results, and
exporting the resulting point cloud data.

engine, the ray tracing including evaluation of material properties and hit programs for
each intersection, the post processing of ray tracing data, and the export of data after
conversion into the OSI::LowLevelData format. The average cycle time of the sensor
plugin is 25.4 ms, with individual values in the range from 11ms to 71 ms. As can be
seen in Fig. 4.4, the vast majority of values is below 40 ms, which marks the required
boundary to enable a sensor update rate of 25 Hz to match the real world sensor. For
this reason it is safe to say that the sensor measurement model discussed in this work
enables the real time generation of low level sensor data. However, not a large margin
of computational reserves remain, which further highlights the need to start with a
simple model during the development of the sensor measurement model and increase
complexity, e.g. by including higher order reflections through secondary ray generation,
only when there is a dire need. Note that although a fixed number of 4680 primary
rays are generated during each update cycle of the model, the number of points in the
resulting point cloud data is not a fixed number as any rays without intersection within
the defined maximum ray tracing distance, e.g. any ray pointing skywards, does not
result in an entry in the point cloud. The same applies for the additional rays that
can detect potential multiple echos, which only in some situations occur. For the test
scenario described here, the point cloud has an average number of 575 points, with
individual values ranging from 217 to 1201 points. While the number of points in the
point cloud has an effect on the processing steps, especially post processing and data
export, there is no direct relation apparent between the number of points reported
during an update cycle and the cycle time of the sensor plugin.

In addition to the single machine hardware setup described in this section, another
setup has been built as a proof of concept for multi sensor integration. This larger setup
uses four separate workstations, each running the Vires VI'D simulation framework
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with the OptiX extension and the sensor plugin implementing the sensor measurement
model. Each model is configured to match one of four lidar sensors placed on the
front, back, and to the sides of a vehicle, replicating part of the sensor setup of a real
world research vehicle. One of the simulation instances controls the setup and updates
the simulation and replicates the current state of the simulation in each update step
to the other instances. All four instances send the generated point cloud data in
the format of the OSI::LowLevelData interface using ZeroMQ connections to a fifth
workstation running the ROS framework and the data consumers. The real time input
of simulated data from all four sensors is used as input to a sensor fusion algorithm
developed by another team. As this is not the focus of this work, this multi machine
setup is not discussed in further detail. However, mentioning it here serves the purpose
of highlighting that the approach to the construction of a sensor measurement model
described in this work is scalable and can be used in a variety of applications, where
controlled generation of virtual low level sensor data in real time is required.

4.3 Simulation of Lidar Point Cloud Data

The sensor measurement model described in this section is built to simulate the point
cloud data output of an automotive lidar sensor. For a lidar sensor this constitutes a
low level data format that contains the directional information of each light pulse sent
and received as well as the distance to the reflecting target surface. This information
can be encoded as points in a three-dimensional space, which form the point cloud
output of the lidar sensor. In a subsequent processing step, these data can be used by a
higher level perception function, e.g. an object detection or a grid mapping algorithm,
which constitutes a first step in the interpretation of the measurement data.

4.3.1 Ray casting Model

For the purpose of this work, a specific type of ray tracing model, also called ray
casting, is used. In this section, the reasoning for the choice of the model in this work
is discussed, followed by the description of the ray casting model. This description
of the basic ray casting model forms the foundation for the step-wise introduction of
extensions to increase the sophistication of the model, which will be discussed in the
next section.

4.3.1.1 Selection of the Model

There are several approaches for handling the simulation of ray propagation. The
basic principle is always the same: A ray tracing model aims to trace the path of
light between a light source and a light detector. When using ray tracing for image
rendering purposes, the typical approach is tracing rays backwards, i.e. starting from the
detector and not the light sources. This approach is therefore also typically referred to
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as backward ray tracing. For the purpose of determining the intensity of light that hits
the detector in a defined angular segment, this segment is sampled by a certain number
of rays, which are called primary rays. The number and distribution of rays within
the angular segment are some of the model’s parameters. Usually a higher number of
sampling rays will result in increased fidelity at the cost of additional computational
expenses.

For each of the primary rays, the first intersection point with the geometry of the
environment is calculated by the ray tracing engine. For each of the intersection points,
the direct contribution of all relevant light sources is calculated. This is done by
determining how much light from each light source is scattered from the area around
the intersection point in the direction of the detector, i.e. along the direction of the ray
that was traced starting from the detector to determine the intersection point. The
sum of all of these contributions yields the incoming light from first-order reflections,
when light coming directly from the light sources is scattered by the surface that this
angular segment of the detector is aiming at. If higher-order contributions should be
accounted for, a recursive mechanism starting from each reflection point needs to be
employed in order to determine the light falling on the surface segment that is not
coming directly from one of the light sources. This is performed by using so called
secondary rays starting from the initial point of intersection, and recursively applying
the same logic as for the primary rays’ intersection points at each further intersection
point. With the increase in the order of reflections that is accounted for by a ray tracing
model, the number of rays and therefore the required computational power increases
exponentially.

In terms of computational requirements, the most efficient choice is choosing the
lowest order that still yields the desired model fidelity. A natural starting point for a
sensor measurement model for an automotive lidar sensor is therefore a model employing
only primary rays, i.e. a ray casting model. In this type of model, the intersection points
of the primary rays form the basis for directly deriving the point cloud output of the
sensor. Given the high computational performance of a ray casting model compared to
more complex ray tracing models, this type of model lends itself to the application in
the real time environment of an automotive driving simulator.

Besides the advantage regarding the computational requirements, the following rea-
soning supports the implementation of a ray casting model as a starting point for a lidar
sensor measurement model: Both the light source and the detector in an automotive
lidar sensor are usually part of the same package and their relative distance is in the
order of a few centimeters. In comparison, the measured distances range in the span
of one to over a hundred meters. For this reason, the light source and detector may be
considered as being located in the same position. In a scanning type of lidar sensor,
the illuminated area of the sensor’s light source as well as the detector’s field of view
are both moving in a synchronized scanning motion and largely overlap. By design,
the detector is only susceptible to a narrow bandwidth around the wavelength of the
sensor’s light source. This is achieved by using a filter that is designed to minimize
outside influence, especially ambient solar lighting. For this reason, the sensor’s own
light source is by a large margin the dominant source of light within the momentary
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field of view of the detector. Under the assumption that the sensor’s own light source is
the largely dominant light source, the influence of higher order reflections also becomes
largely negligible when considering that the light source is only illuminating an area
that for the most part corresponds with the detector’s current field of view. Therefore,
light from the sensor’s own light source will typically only be scattered back to the
detector directly or is not scattered back at all.

As the area illuminated by the sensor’s light source as well as the potential surface
area covered by the detector’s field of view increases quadratically with the distance
from the sensor and the desired sensor range in an automotive application is rather
high, this area can grow beyond the typical size of a target depending on the specific
build of each sensor. For the purpose of a sensor measurement model, it is important
to incorporate this effect, which can be done by employing multiple primary rays and
their intersection points in the calculation of the final point cloud as sensor output.
This shows, that starting from a simple ray casting model, bit by bit additions can be
made that incorporate additional effects observed in real world sensor data. Therefore,
the ray casting model forms a natural starting point for an iterative model development
cycle that is closely matched to comparison with real world data. In this context, an
extension to a full ray tracing model including secondary, tertiary, and higher order
rays for higher order reflections is just one possibility that can be followed if the need
for such an extension to the simulation model arises.

4.3.1.2 Description of the Model

As described in the flow diagram for data and control flow in the sensor measurement
model introduced earlier in Fig. 4.3, the generation of primary rays is part of the camera
program of the sensor measurement model. The specification parameters of the lidar
sensor that is to be simulated by the sensor measurement model are reflected in the
parameters used by the camera program in the generation of the primary rays. These
parameters include the sensor’s field of view, i.e. the range in azimuth and elevation
angle that is covered by the sensor, the number of scanning points in each direction,
and the maximum range of the sensor. The field of view and the number of scanning
points is transformed to a set of azimuth and elevation tuples that characterize the
sensor. The camera program proceeds to generate a primary ray for each tuple in
this set, where the sensor origin defines the eye point and the specific azimuth and
elevation angles define the direction of the ray. This is shown schematically in Fig. 4.5,
where Fig. 4.5 (a) shows the top view with rays generated in a defined pattern in the
azimuth direction, and Fig. 4.5 (b) shows the side view with layers defined by discrete
values of the elevation angle. Note that the azimuth and elevation angles are typically
not measured quantities in a laser scanning sensor but rather statically defined by the
hardware setup. The static definition in the model is therefore an exact match to the
output data of a real sensor. The ray generated for each azimuth and elevation tuple
results in a point in the output point cloud if a valid distance measurement is obtained.
For the distance measurement, the sensor’s maximum range is used as the maximum
limiting boundary required by the ray tracing engine for performance reasons.
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(a) (b) ()

Figure 4.5: Schematic sketch of the basic principle of the ray casting model. (a) Top view: from the
sensor’s eye point primary rays are generated at defined angles spaced over the sensor’s
horizontal field of view. (b) Side view: Vertically, rays are grouped in layers with a
common elevation angle. (c¢) Schematic path of light that is scattered back to the detector
by an opaque surface element of a sensor target illuminated by the sensor’s light source
after passing through a transparent surface. The offset between rays is for illustration
purposes only.

The ray tracing engine takes over the task of finding for each ray its intersections with
the virtual world geometry, if any exist within the specified maximum range. When
intersections are found, they are processed in the order of their distance from the ray’s
origin. The additional intersections past the first one for the same ray are important
to take into account transparency of surfaces. For the scope of the basic ray casting
model, the first intersection with a non-transparent material has to be found. This is
sketched in Fig. 4.5 (c): A ray starts from the sensor and passes all transparent surfaces
until it hits the first non-transparent surface in its path. From this point it is assumed
that a fraction of the light is scattered back to the sensor and this point is the base for
deriving the synthetic point cloud output. For this purpose, the light source and the
detector within the sensor are assumed to be at the same position, which means that
the ray traced to determine the intersection point can be considered as a backwards
traced ray from the detector and at the same time as a forwards traced ray from the
sensor’s light source, eliminating the need for additional ray calculations.

At this point, the surface material properties at the intersection points come into play.
Within the context of the ray tracing engine, there is a material model accompanying
the node graph that defines all objects and surfaces in the virtual environment. The
material model is defined by a material database that contains information about the
properties for each type of surface. At each intersection point, the ray tracing engine
performs a lookup of the material properties for the particular surface. The material
model of the ray tracing engine allows the definition of any number of custom properties.
These properties include any number of scalar parameters as well as the definition of
a material specific hit program that is executed for each intersection point with the
following context parameters: the ray’s properties, the intersection point’s properties,
and the respective material properties from the material database. The hit programs
and the custom-built material database form the foundation of the sensor model’s
ability to emulate several of the specific effects observed in the lidar point cloud data, as
detailed in the next section on extensions of the basic model. Custom properties include
the definition of physical properties, e.g. reflection coefficients, as well as semantic
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properties, e.g. type of object, for use by the sensor model.

One of the most important uses of the material model and therefore part of the basic
functionality of the ray casting sensor model is the handling of transparency. The
graphics renderer of the driving simulation framework uses the rendering technique of
software sprites for many static objects with a complex outline, e.g. trees, to decrease
computational load and make their real time rendering feasible. In this technique, a
rough bounding box with a simple two-dimensional shape, e.g. a rectangle, is drawn at
the location of the object that is always oriented perpendicular to the viewing direction
of the camera eye point. On this surface, the outline is rendered using a texture with an
alpha channel. The alpha channel determines the transparency value for each pixel. All
the area outside of the complex outline is transparent and therefore only the object’s
actual outline is apparent to the viewer. As the same graphics objects are used by the
ray tracing engine, intersections are found for rays crossing the bounding box of any
such shape at any point. In order to avoid phantom detections from these shapes, the
model has to perform a texture lookup for each intersection and decide based on the
alpha channel value of the texture at the point of intersection whether the respective
intersection point should be discarded from the list of candidates. This look-up and
decision is part of the hit program for any surface type and therefore an integral part
of the basic model.

Finally, when the first intersection point with a non-transparent surface has been
found for each primary ray originating from the sensor’s eye point, this point is used
for further processing. The position of this point forms the base for post-processing in
determining the properties the corresponding point that is part of the synthetic point
cloud output. Within the context of the ray casting model, this point is the closest
approximation for where the sensor’s light beam hits a sensor target. Based on this
definition of the model, it is possible to determine an output point for each tuple of
azimuth and elevation angles that is scanned by the lidar sensor. This constitutes the
basic definition of a sensor measurement model that can emulate the point cloud output
of a lidar sensor within a virtual environment and provide real time sensor output.

Figure 4.6: Snapshot of the output of point cloud data generated by the ray casting model in a dynamic
virtual driving scene. On the left, (a) shows the output of the standard visual renderer with
the eye point set to the sensor’s position within the ego vehicle. The standard renderer of
the Vires VTD driving simulation framework is used. On the right, (b) shows the point
cloud of a simulated hypothetical 10-layer laser scanner sensor mounted on the ego vehicle.
The color of the points denotes the object classification: orange points are ground points,
white points are dynamic or static objects and obstacles in the environment.
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The output of the ray casting model is shown in Fig. 4.6. The usual rendering
of the scene with the camera located at the point of view of the sensor is shown as
reference on the left side in Fig. 4.6 (a). The unnatural looking colors of the scene are
the result of a currently unresolved issue in the graphics renderer that occurs when
the ray tracing engine is used in parallel, however it does not affect the workings of
the sensor measurement model in the slightest. On the right side, in Fig. 4.6 (b) the
corresponding snapshot of the synthetic point cloud generated by a sensor measurement
model as described here is shown rendered within a three-dimensional environment. The
sensors parameters were chosen arbitrarily for illustration purposes with ten layers in
the elevation direction with 2° distance between layers and a field of view of 140° in
the azimuth direction. Note that the reference camera rendering has a much smaller
field of view to avoid optical distortions.

The synthetic point cloud output generated by the model, shown in Fig. 4.6 (b),
clearly contains all relevant features of the scene, including the static obstacles like
buildings, trees, and shrubbery as well as the dynamic obstacles, i.e. cars, in the scene.
In addition, the outline of the ground is clearly visible, flat on the street and with
an upwards slope on the grassy surface to the right. For better illustration, ground
points are shown in orange while objects are shown in white. This distinction between
object and ground points within the model is one of the possible extensions of the
basic ray casting model described in this section. In general, this implementation of a
sensor measurement model lends itself to a variety of extensions that serve the purpose
of increasing realism within the model as well as adding additional properties to the
point cloud output. These additional properties are important in order to allow the
substitution of a real sensor’s data stream with a synthetic data stream from a sensor
measurement model within the processing chain of an automated driving system that
uses a simulated environment as its source of input. Building on the basic ray casting
model, extensions of the model are the subject of the next section.

4.3.2 Model Extensions

Using the basic ray casting model introduced in the previous section as a starting
point, a refinement of the sensor measurement model can be performed in a step-wise
fashion. Based on observations in real sensor data, additional effects can be identified
and a corresponding component added to the sensor measurement model. These effects
include the classification of reflection points depending on the type of target that caused
the reflection, multiple echos due to beam divergence, a detection threshold based on
the light intensity received from a reflection, and the addition of noise effects. Typically,
each addition requires modification in multiple components of the sensor measurement
model, which consist of the camera program for ray generation and post processing
of ray data, the material definitions within the material database, the hit programs
performing calculations on intersections found by the ray tracing engine, and the data
exporter that forwards data to the consumers for further processing. The overview of
the sensor measurement model’s components is given in Fig. 4.7 in a simplified view
with a focus on the different components to provide a reference for the discussion of this
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section. The incorporation of these various effects into the sensor measurement model
is the subject of this section, with the exception of noise. Noise effects are discussed
separately in the next section.
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Figure 4.7: Components defining the sensor measurement model and their relation.

Classification

The point cloud output of an automotive lidar sensor typically contains not only the
coordinates for each reflection point, but also additional information for each point that
is the result of sensor internal low level processing on the results of the measurement
process. One of these properties is the estimate for the classification of the sensor target
that is responsible for the reflection. The classification algorithm used by the sensor
is a proprietary implementation specific for each sensor and vendor. The classification
is performed in an sensor internal processing step based on the measurement raw data
from the physical measurement, as shown in Fig. 4.8 (a).

For the highest degree of realism, a sensor model has to generate measurement raw
data from a model of the physical measurement within the virtual environment, which
is done by the ray casting implementation described so far, and then pass these data
to the identical classification algorithm that is used in the sensor internal low level
processing step. This, however, this a major issue in the implementation of a sensor
measurement model as typically there is no interface for this sensor internal interme-
diate raw data available and the detail of the proprietary classification algorithms are
not accessible for the simulation model in the context of this work. This issue is the
low level equivalent of the object detection algorithms described at the beginning of the
chapter in Fig. 4.2 (a), where the original algorithms for object detection are usually
not accessible and a replacement model has to be used. For this reason, within the
scope of this work a replacement model for the point classification based on ground
truth data is chosen. Instead of deriving the classification from the measured reflection
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Figure 4.8: Sensor processing chain for low level sensor output data, i.e. point cloud data for a lidar
sensor. The top row (a) shows the processing chain for a real sensor, the bottom row
(b) shows the processing chain for a sensor measurement model. Whereas the processing
chain for a real sensor can be separated into a physical measurement step and an internal
processing step, without the corresponding internal interfaces for comparison of data the
sensor measurement model is limited to incorporating both within one processing step.

points, the classification becomes a directly measured quantity in the simulation con-
text as shown in as shown in Fig. 4.8 (b). As the information about the object type
can be encoded in the virtual environment, the sensor measurement model reads the
classification information directly during the virtual measurement step.

The classification categories are specific for each sensor, but usually follow a common
pattern. For the purpose of the sensor measurement model, the following classification
types are used: Ground reflections, i.e. surface area that is potentially accessible to
the car, object reflections, i.e. obstacles to be avoided by the car, and other reflections
marked as invalid, which may be caused by rain or spray if these effects are added
to the model or generally any type of surface that is unable to be classified as either
of the other categories. Object reflections are further subdivided into dynamic and
static objects. Dynamic objects are all moving actors in the simulation, i.e. cars and
pedestrians, whereas static objects are any fixed parts of the environment that do
not classify as ground, e.g. trees, buildings, and guard railing. Ground reflections are
further subdivided into reflections from road markings, which can be detected by some
real world sensors due to their higher reflectivity characteristics, and generic ground,
which applies to road surface and any other flat surfaces.

In the implementation of the sensor measurement model, the information about the
object type is encoded as part of the material definitions. As shown initially in the
overview of sensor measurement model components, Fig. 4.7, this allows the lookup of
this material property when detecting an intersection. The semantic information of the
object classification is then processed as a custom property in the material definition by
the hit program. For this reason, the material database has to be extended with the type
information for all surface materials, e.g. street surface materials are given the ground
classification and car surface materials are given the dynamic object classification. This
approach results in a ground truth approach to transmitting object classification, i.e.



4.3 Simulation of Lidar Point Cloud Data 83

the value in the final output is always correct as taken directly from the description of
the virtual world, and constitutes a basic replacement model for the low level processing
within a sensor.

Beam Divergence and Multiple Echos

For each tuple of azimuth and elevation angles in the scanning grid, an automotive
lidar sensor typically is able to return multiple echos resulting in multiple points in the
output point cloud. These multiple echos are largely caused by partial illumination due
to beam divergence. The area Apeqr, illuminated by the laser beam approximately scales
with distance r from the sensor as Apeqm < 72. On the scale of distances that automotive
lidar sensors operate, the beam divergence is usually noticable as the illuminated area
quickly grows bigger than the size of targets. Partial illumination then occurs if some of
the light is reflected by a target that is either smaller than the beam area Apeq,, () at the
given distance or if the beam hits the target along one of its edges. The remaining light
can be reflected by another surface at a further distance, resulting in an additional echo
reported by the sensor. Additionally, multiple echos can be caused by semi-transparent,
partially reflecting surfaces. The occurrence of multiple echos in the point cloud data
of an IBEO Lux sensor mounted on the front of a vehicle is shown in Fig. 4.9. As
shown on the camera recording on the left side in Fig. 4.9 (a) for reference, the scenario
is a highway like closed test track with a target vehicle in front of the ego vehicle and
noticeable guard railings on each side of the road. The point cloud output of the lidar
sensor with the echo index of each point defined by the color code is shown on the right
side in Fig. 4.9 (b). Gray dots denote the closest echos (echo index 0), while red and
blue dots denote second (index 1) and third (index 2) echos. In this scene, higher index
echos occur mostly in the reflections from the guard railings, which is likely the effect
of their surface structure leading to partial illumination and therefore multiple echos
in many cases.

Further, Fig. 4.9 (b) shows that secondary reflections with echo index 1 occur only in
some places and that the majority of reflections are primary reflections with echo index
0 as would be expected. Third echos with echo index 2 are even less likely to occur
with only a small number present in the point cloud data. This visual impression can
be quantified by calculating the relative frequencies of echo indices within the point
cloud data averaged over the complete test drive instead of a single sensor frame. The
resulting normalized distribution is shown in Fig. 4.10. The vast majority of points
with 79% reports echo index 0, around 20% report echo index 1, and only about 1%
of points have echo index 2. This confirms the assumption that higher index echos are
increasingly less likely to occur. However, it also shows that there is a non-negligible
percentage of higher index echos present in the data that should therefore be accounted
for in the sensor measurement model.

As the cause of higher index echos is the divergence of the laser beam, the divergence
needs to be incorporated into the model. The basic ray casting model introduced in
the previous section 4.3.1 uses only a single primary ray to determine the reflection
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Figure 4.9: Real world lidar point cloud data with echo index for each reflection point. On the left
side, (a) shows a still frame recorded by a camera mounted on the ego vehicle’s dashboard
for a reference of the scene. On the right side, (b) shows the point cloud data from the
ego vehicle’s front lidar sensor with the echo index marked by each point’s color. Gray
dots show the first echo (index 0), red dots the second echo (index 1), and blue dots the
third echo (index 2) as reported by the sensor. The ego vehicle is shown in red, with the
center point of it’s rear axis defining the origin of the relative coordinate system.

point for each tuple of azimuth and elevation angles in the scanning grid, which does not
allow determining multiple reflection points. The divergence of the beam in the azimuth
and elevation direction are fixed properties of the lidar sensor under investigation and
usually known quantities as part of the sensor’s specification sheet. For the purpose
of extending the sensor measurement model, these therefore become additional model
parameters that determine the illuminated area at a given distance. Within the ray
tracing approach used by the sensor measurement model, the area illuminated by the
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Figure 4.10: Relative frequencies of first, second and third echos (indices 0, 1, 2) within the point
cloud data averaged over a recorded test drive.
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beam needs to be sub-sampled by multiple primary rays for each azimuth and elevation
tuple in the scanning grid in order to detect multiple intersecting surfaces that can
cause the occurrence of multiple echos. This is illustrated in Fig. 4.11. For each
azimuth and elevation tuple in the scanning grid, additional primary rays with an
offset from the central direction are generated in addition to the central ray from the
basic model introduced in the previous section 4.3.1. The number of rays used for
sub-sampling is a trade-off between performance and the ability to detect additional
reflecting surfaces. As a starting point, either two or four additional rays can be used.
With two additional rays only the divergence in the elevation or azimuth direction
is handled. With four additional rays both directions are handled. In this case two
of the rays are offset by half the divergence angle in both directions of the elevation
direction, and the other two rays in both directions of the azimuth direction. This is
based on the assumption of an elliptical beam profile, where in addition to the center
the end points of the major and minor axis are sampled. As very small objects are
uncommon to have explicit representations in the virtual environment for performance
reasons, this approximation captures the case of edge illumination nicely while requiring
only a minimum of additional computational resources over the base model. A further
performance improvement is the usage of only two rays, when assuming that divergence
in either angle is the dominating factor, e.g. in the case of the IBEO Lux sensor, the
illumination profile is larger in the elevation angle.

Figure 4.11: Schematic sketch of ray generation including the accounting for beam divergence within
the scope of the lidar sensor measurement model. For each azimuth and elevation tuple
characterizing a scan point, a number of sub-sampling rays around the central ray are
generated in order to model the effect of beam divergence, as shown in the enlargement
inset on the right.

From these three or five sub-sampling rays, a maximum of three or five valid first
intersections can be obtained. However, most of the time all of the intersections belong
to a surface on the same object. As the beam area is continuous in a real sensor,
this case would not result in multiple, differentiated echos detected by the sensor. To
counteract this artifact of the sensor measurement model, a small threshold distance
is introduced. The distance measurements of all valid intersections are compared and
if the distance obtained from any two intersections are smaller than the threshold
distance these measurements are merged to one measurement result with a distance
given by the average of both results. Only if the distance is larger than the threshold,
two distinct echos are reported as independent points in the point cloud output. Note
that from the sub-sampling rays only the distance measurements are used as all output
points are mapped on the original azimuth and elevation tuples from the scanning grid.
The scanning grid is fixed by the hardware layout of the scanner, so this behavior
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corresponds to the output of the real sensor. Choosing the threshold distance is done
empirically with an upper bound obtained from investigating real world sensor data:
The threshold must be chosen smaller than the lowest distance observed between any
two points with identical azimuth and elevation angles in the point cloud output of the
real sensor.

Intensity Detection Threshold

In the base model the only limit imposed on the maximum distance of reflection points
in the output of the sensor measurement model is defined as a parameter of the model.
This parameter is used as the range limit given to the ray tracing engine, which requires
this limit for efficient node graph traversal. The parameter is taken from the maximum
range given in the specification of the lidar sensor under investigation or estimated
empirically by determining the maximum observed range in real world test data. With
this definition, the output of the model constitutes a superset of reflections actually
detectable for the lidar sensor. In order to increase realism in the sensor measurement
model with respect to the detection range, an estimate for the reflected intensity of
light is calculated. The reflected intensity is then compared to the light receiver’s
internal detection threshold, which constitutes an additional model parameter. Only if
the intensity of a reflection is greater than the detection threshold, an output point is
added to the point cloud.

For determining the reflected intensity, the ratio between received and transmitted
power, P, and P,,, is calculated as

Pmc
Pt:v

where A;, is determined by the attenuation experienced by the beam while traveling a
distance r to the reflecting surface, A,, is determined by the attenuation experienced
on the way back, R determines the fraction of incident power reflected by the target
surface and includes effects of partial illumination, absorption, and relative geometric
orientation as well as the material’s reflection coefficient, and L; is a factor account-
ing for internal losses of the receiver array. Assuming constant values for power P, of
receiver noise, transmitted power P, and internal loss factor L; as well as an expo-
nential attenuation of the form A,,/, oc exp™" with a fixed attenuation coefficient ,
the above equation results in a threshold distance for a fixed signal-to-noise ratio that
is a function of the target’s reflection properties:

r< dthreshold (R) .

Neglecting all geometric influences on the reflected fraction of incident power R and
focusing only on the target-specific properties, the threshold distance dyy eshola becomes
a material property for the purpose of the sensor model. This property then is a
parameter of the model and can be measured empirically from real world data for a
specific set of environmental conditions and type of target. This allows the inclusion
of various maximum detection distances for different types of targets in the context of
the simulation environment.

= Ll ATx (7’) R Atx(T'),
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4.3.3 Measurement Uncertainties

Up to this point, the construction of the sensor measurement model have all been based
around finding a way to represent the physical properties of the measurement process
in the virtual environment with the use of exact calculations. However, in order to
finally arrive at the realistically seeming synthetic point cloud output shown earlier in
the introduction of the sensor measurement model in Fig. 4.6 (b), a feature found in the
observed real world sensor data is still missing: noise. There are a variety of reasons
for the presence of noisy characteristics in the distance measurements of a lidar sensor,
ranging from receiver internal noise to the target surface being not at all smooth on
the scale of the beam area at the given distance as is e.g. the case for trees, grass and
shrubbery.

The three-dimensional virtual environment of the driving simulation is largely an
idealized representation as very high fidelity models for objects and surfaces in the
environment could not be rendered in a real time environment. For this reason, the
noisy behavior is added within the scope of the sensor measurement model in the final
post-processing step (see Fig. 4.7 for the overview of the processing steps of the model).
Before encoding the output data in point cloud form, a random variation in the position
of the detected reflection point is introduced in the model in the form

(T7€7Oé)_> (7’+77M76704)7

where r is the radial distance coordinate of the measurement, € the elevation, « the
azimuth, and 7y, is a random variable. Note that only the distance measurement is
affected by the random noise as the elevation and azimuth angles are fixed on the
scanning raster by the hardware layout of the sensor and are not measured quantities
in both the real sensor and the sensor measurement model.

As a starting point for the model a Gaussian white noise distribution is used for the
random variable 7, with a variance that is dependent on the material properties of
the reflecting surface. This variance therefore becomes an additional model parameter
as part of the material definitions that has to be determined empirically for different
types of surfaces. This dependency on the type of reflecting surface is added due to
the observed behavior of largely increased noise in the output point cloud of a lidar
sensor in areas of non-flat surfaces, e.g. ground vegetation like grass, compared to flat
surfaces, e.g. walls or the outline of cars. Flatness in this context is always relative
to the illuminated beam area. In addition, other dependencies may be included in
the distribution of the random variable. One example is the distance from the sensor,
however, for lidar sensors the measurement distance plays an insignificant role in the
noise characteristics of the output point cloud.

So far, several ingredients for the construction of a ray casting based sensor mea-
surement model for an automotive lidar sensor have been discussed in this chapter.
With all of these ingredients the model is able to produce a realistically seeming out-
put point cloud as initially shown in Fig. 4.6 (b) that also includes all additional
properties for each measurement point as present in a real sensor’s output. Using the
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OSI::LowLevelData data format (see section 2.5 for the description of the Open Simu-
lation Interface OSI), this virtual point cloud data can be transmitted to a perception
function of an automated driving system for the construction of the system’s internal
environment representation. This is the focus of the next chapter.

4.4 Creating Low Level Sensor Data in a Virtual World

With the tool of a sensor measurement model in hand that is able to generate a point
cloud output including all properties also found in a real lidar sensor, we are equipped
to turn to the task of using the sensor model to feed input to a perception function
that generates an internal environment representation for an automated driving system.
The low level sensor output data of a lidar sensor’s point cloud can be especially used
for modern environment representations that are more detailed than the object repre-
sentation of static and dynamic objects in the environment. One such representation
is the so called occupancy grid. The focus of this section is the coupling between the
virtual environment of a driving simulation framework and the first step in the pro-
cessing of an automated driving system, the construction of an internal environment
representation.

4.4.1 Occupancy Grid and Occupancy Grid Map

The occupancy grid representation of the vehicle’s environment segments the area sur-
rounding the vehicle into a grid of uniform size and assigns a probability of occupancy
to each grid cell. For each grid cell it is determined whether the respective cell is free
of obstacles and drivable or part of an obstacle and has to be avoided in the trajec-
tory calculation. As this decision is usually not a strictly binary decision based on the
available evidence, a probability is calculated for each grid cell. The data source for
this calculation is the sensor data from one or multiple of the vehicle’s sensors. The
occupancy grid method therefore also functions as a type of sensor fusion algorithm,
merging the data obtained from several sensors. Details of the occupancy grid method
can be found in references [44, 22, 23, 24]. The grid is usually a two-dimensional rep-
resentation of the environment, although some three-dimensional extensions are being
investigated.

An occupancy grid representation of the environment may be based on one static
snapshot of sensor data or it can be updated as new sensor data are recorded while also
taking in account the previous history. In the latter case, the motion of the vehicle itself
with respect to its environment also has to be accounted for, which requires additional
odometry sensor data. In order to clearly differentiate between the two cases, we refer
to the case of a static snapshot as an occupancy grid and the case including the history
of measurements as an occupancy grid map. The occupancy grid map can be seen as a
fusion of all the current and previous sensor data available to the vehicle, resulting in
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the best representation of the environment within the limits of this type of perception
description.

The occupancy grid map representation of the environment is especially suited to
give a very good view on the static environment of the vehicle including the drivable
and non-drivable space. This information can then be easily used by a trajectory
planning algorithm or similar processing step within an automated driving system. The
occupancy grid map is therefore a good candidate for an abstraction layer representing
the output of a perception function that is based on low level sensor data. Serving as
input for subsequent steps in the automated driving system, such an abstraction layer
can be used to gauge the realism of the sensor measurement model. One goal of sensor
models in the context of automated driving is the realistic stimulation of the algorithms
of an automated driving feature, i.e. providing input data generated within a virtual
environment that are indistinguishable for these algorithms from real world data. As
it is very difficult to properly compare low level sensor output data like a lidar point
cloud between a simulation environment and real world sensor data, a comparison on
the abstracted level of the occupancy grid or occupancy grid map is favorable for this
purpose.

In order to arrive at the occupancy grid map representation from a virtual environ-
ment several steps have to be performed. The output of each step is shown in Fig. 4.12.
The driving simulation framework provides and updates the virtual world, which is
shown in a typical camera rendering in Fig. 4.12 (a) for a standard highway scenario.
Based on the virtual environment, a sensor measurement model as discussed in this
chapter is implemented. Matching the setup of a real world test vehicle, the sensor
model is parametrized for a four-layer lidar sensor with a horizontal field of view of
145° mounted at the front of the vehicle and oriented in the vehicle’s forward direction.
The point cloud output generated from the model is shown in Fig. 4.12 (b). Individual
points are colored according to their classification, with ground points shown in orange,
and reflections from objects shown in white. As objects, the outline of one vehicle in
front of the ego vehicle as well as reflections from the central barrier of the road as well
as some street signs are clearly visible.

The output of the sensor measurement model is then given as input to an occupancy
grid generation algorithm in the same way that the algorithm would receive input
data from a real sensor. The momentary snapshot of the occupancy grid is shown in
Fig. 4.12 (c). The occupancy probability is encoded as a gray scale color for each grid
cell: Grid cells with an obstacle, i.e. high occupancy probability are shown in black, grid
cells with zero or low occupancy probability are shown in white or light grays. Using
the physical properties of laser reflections, the occupancy grid generation algorithm
can assign a zero or low occupancy probability to all grid cells between the sensor
and the reflection point, while at the point of reflection a high occupancy probability
can be assumed. Building on a time-series of occupancy grids, the occupancy grid
map is generated as shown in Fig. 4.12 (d). As is easily recognized, the occupancy
grid map representation contains information for areas to the side and behind the
vehicle that are outside of the current field of view of the sensor. This information is
the result of calculations using the history of previous sensor measurements and the
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Figure 4.12: Different representations of the environment linked by the sensor measurement model.
(a) shows a rendered snapshot of the virtual environment within a highway scenario, (b)
shows the same scene in the form of the point cloud output from the sensor measurement
model for a lidar sensor mounted on the ego vehicle (rendered for clarity in addition
to the point cloud), (¢) shows the occupancy grid representation of the environment as
constructed from the sensor model’s point cloud output, and (d) shows the occupancy
grid map representation that also includes the history of measurements before the current
snapshot in its construction.

vehicle’s motion. The occupancy grid map representation in this form is visually very
similar to the output seen during real world test drives and can be used for further
processing by an automated driving system, realizing the original goal of stimulating
an automated driving system’s environmental perception with sensor data generated
from virtual environment. The processing chain that realizes all the processing steps
shown in Fig. 4.12 is the focus of the next section.

4.4.2 Occupancy Grid Generation in a Virtual Environment

Arriving at the occupancy grid map representation from the virtual environment is
the result of a close interplay between components in the driving simulation frame-
work and the framework handling the components of the automated driving feature.
As driving simulation framework in this work, the software Vires VID [60] is used.
For the framework handling occupancy grid generation the Robot Operating System
(ROS) [73] is used. For all interfaces between the driving simulation frameworks and
the ROS framework, the interface definitions of the Open Simulation Interface (OSI)
as introduced in section 2.5 are used. The goal in the setup of the processing chain is
to maximize realism by utilizing components that are used in a real world test vehicle
setup as much as possible. The use of a sensor measurement model generating low level
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sensor data adds to the realism as no abstractions, e.g. object hypothesis, are included
in the sensor model.
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Figure 4.13: Processing chain including all components required for real time generation of the occu-
pancy grid map environment representation from a virtual environment using virtual low
level sensor data generated by a sensor measurement model The driving simulation frame-
work is responsible for generating and updating the virtual environment and running the
OptiX ray tracer used by the sensor measurement model. The sensor plugin generates
a point cloud that is transferred to the ROS environment using the OSI::LowLevelData
format. Additionally an OSIL::GroundTruth export from the simulation framework is
transmitted to the ROS framework containing the odometry information of the ego vehi-
cle that is required for calculation of the occupancy grid map within the occupancy grid
node in the ROS framework.

The components of the processing chain and their relations are illustrated in Fig. 4.13.
This is a specific implementation including the definition of all the used interfaces
derived from the general outline for a ray tracing processing chain introduced in the
beginning of the chapter in section 4.2.1. There are three frameworks involved in the
setup: The driving simulation framework is responsible for the virtual environment and
running the sensor measurement model as a plugin. Its output is the low level sensor
data from the sensor model as well as ground truth data. A separate sensor simulation
framework is used to convert the osi::GroundTruth data to osi::SensorData. This sensor
simulation framework is also used to implement sensor error models as discussed in
chapter 3. In this context however, there is only a straight forward OSI converter
present that does not modify the content of the ground truth data, but tranforms it to
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the osi::SensorData interface in order to satisfy the input requirements of the virtual
sensorics node within the ROS framework. Finally, the ROS framework receives all
these data streams in a similar way as it would receive input data from vehicle mounted
sensors in a real world setup. These individual components are discussed in more detail
in the following.

The driving simulation framework is at the heart of the virtual environment setup.
Within the simulation framework the virtual environment is initially generated and
continuously updated over the course of the simulation. As shown in the top left
part of Fig. 4.13 a task scheduler works to trigger among others the two relevant
components for the sensor processing chain at defined intervals: The OSI exporter
operates on the object level and generates osi::GroundTruth data. The image generator
updates its internal scene graph and uses it to render the current scene from a defined
camera position to the screen, giving a visual representation of the environment as
shown in Fig. 4.12 (a). In addition, the updated scene graph of the image generator
is synchronized to the OptiX scene graph of the OptiX ray tracing engine. Once the
OptiX scene graph has also been updated, the sensor plugin is invoked that contains
the implementation of the sensor measurement model as described in this chapter. The
output of the sensor measurement model is a point cloud in the osi::LowLevelData
format. The point cloud data as well as the transformed object ground truth data
for the odometry information is transmitted to the ROS framework via a network
connection in a similar way as real sensor hardware would use its specific data format
to send data to the computing unit running the processing of an automated driving
feature.

In the ROS framework a specific virtual sensorics node is implemented in analogy
to specific sensor nodes for each type of sensor sending data to the ROS framework in
a real world setup. The virtual sensorics node has the task of handling the network
connection, de-serializing of the input data and publishing it in the form of ROS topics
for use by other components. For the purpose of a test setup for the generation of
an occupancy grid map, three ROS topics have to be generated by the virtual sen-
sorics node as shown in Fig. 4.13. These are the transformation topic that contains the
odometry information from the ego vehicle, the lidar_scaninfo topic that contains in-
formation about the scanning sensor and meta information about the point cloud, and
the lidar_pointcloud topic that contains the point cloud data. All three of these top-
ics are not specific to the processing chain using a virtual environment input, but have
been defined for the real world vehicle use case. The lidar_scaninfo and lidar_pointcloud
topics are specific to the type of lidar sensor used in test vehicles, and therefore the
guidelines for the task of model construction have been largely set in order to generate
all the required data for these interfaces. It is at this point in the processing chain
that from the data format alone, there is no difference to a real world processing chain.
Therefore the combining link between the real world and the virtual environment is
the virtual sensorics node in the ROS environment. The virtual sensorics node receives
sensor model data from the standardized OSI interfaces and adopts these to the specific
interface of the original sensor that the model aims to simulate.

The transformation, lidar_scaninfo, and lidar_pointcloud topics constitute the re-
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quired input for the occupancy grid node, which is the next processing step for the
sensor data within the ROS framework in our setup. This node is responsible for the
generation of an occupancy grid from the current snapshot of sensor data, which it
publishes in the form of another ROS topic. The visual representation of these data is
shown in Fig. 4.12 (c). Using this most recent grid snapshot as input the occupancy grid
map node then updates the occupancy grid map with the newly available information,
which is again published in the form of a ROS topic. The visual representation of the
occupancy grid map as the final step in the processing chain is shown in Fig. 4.12 (d).
The occupancy grid map can then be used by any arbitrary other ROS node that im-
plements the next step in the processing chain of an automated driving feature. As for
the occupancy grid representation itself, this is the subject of ongoing research.

4.4.3 Using Low Level Sensor Data in the Real and Virtual World

Based on the processing chain discussed in the previous section for using a sensor
measurement model to generate an abstracted representation of the environment in the
form of an occupancy grid map on the basis of input data generated from a virtual
environment, it is possible to perform a meaningful comparison of the model’s output
data with real world reference data. When performed in a systematic manner, this
comparison of the data output can provide the foundation for the validation of the
sensor measurement model. However, the validation of sensor models is not the focus
of this work, but subject of an accompanying, ongoing investigation. First results have
been published in collaboration with the author in references [74, 75]. In this section,
only a short overview of the underlying idea of comparing data on an abstracted level
and its application to the sensor model is given.

Reference Reference

Test Scenarios 4 \ Env. Representation

Occupancy Grid
Generation

Virtual World v / Virtual

Test Scenarios Measurement Model Env. Representation

(‘(,)l‘l'(,‘,b‘])(,)lld(,‘l 1Ce

Figure 4.14: Outline of the principle behind the comparison of sensor model output data to real world
reference data. Given a correspondence between reference test scenarios for real world
test drives and virtual world test scenarios for virtual test drives, the low level output
data in both cases can be given to the identical occupancy grid generation algorithm.
The resulting environment representation in the reference case and the simulation should
then show a close correspondence.

An outline of the flow of data for comparison of model and real world sensor output
data is illustrated in Fig. 4.14. The starting point are reference test scenarios for
real world test drives and corresponding virtual world test scenarios. The details of
this correspondence depend on the manner of comparison used for the output data.
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Generally two types of correspondences can be differentiated: statistical or exact. When
the focus is on comparing statistical properties of the sensor output data, a statistical
correspondence between the test scenarios is sufficient. The method chosen in e.g.
reference [75] is the other one: With the addition of high-fidelity reference sensors,
the environment including the time evolution of all object motion during a reference
test drive is recorded as best as possible. From these data a virtual world scenario is
generated that exactly matches the real world reference scenario within the limitations
of the reference sensor’s perception abilities.

With defined test scenarios, the low level output of the sensor in the real world
testing as well as the corresponding output of the sensor model in the virtual environ-
ment testing are forwarded to the exactly same implementation of the occupancy grid
generation algorithm. As has been discussed in the previous section, the component
responsible for the occupancy grid generation receives the exact same input format
in both cases. The resulting output of the occupancy grid map is then recorded as
the reference environment representation in the real world test drive and the virtual
environment representation obtained from the virtual environment. As highlighted by
the double sided arrows in Fig. 4.14, there should be a close correspondence between
the two recorded outputs matching the correspondence of the test scenarios in the be-
ginning as long as the sensor measurement model accurately depicts the behavior of
the sensor. To put it in different words: the fidelity of the sensor measurement model
with regard to the relevant effects that influence the occupancy grid map generation
can be tested qualitatively and potentially quantitatively by comparing the resulting
occupancy grid map output data in a qualitative, respectively quantitative way.

At this point, it is important to note that the sensor measurement model has several
parameters that can be adjusted to fit a specific type of sensor. Some of these param-
eters, e.g. the set of azimuth and elevation tuples in the scanning raster or the beam
divergence, can be directly taken from the sensor’s specification or independently mea-
sured in a lab environment. Other parameters like the variance of the distance noise
added in post-processing are based on empirical observations of the sensor’s behavior.
It is important that the data set that is used to determine these parameters does not
match the data set used for validation, and that at best another method is used to
determine the model’s parameters that does not involve the occupancy grid represen-
tation. This ensures that the sensor measurement model validation as described here
remains valid.

A qualitative comparison between the perception processing chain in the real and
virtual world is shown in Fig. 4.15. In both cases, similar but not identical scenarios
are chosen: In the real world example a recorded test drive on a highway near Munich
is used, while in the virtual world example a generic highway setup is used. The top
row shows the scenario in a camera snapshot in Fig. 4.15 (a) for the real world and
the rendering of the image generator in Fig. 4.15 (d) for the virtual world. For this
point in time, the sensor output from the real lidar sensor located at the front of the
ego vehicle and the sensor measurement model with matching parameters is shown in
Fig. 4.15 (b) and (e) for the real and virtual world, respectively. In the real world
example, reflections on drivable terrain have been filtered by the sensor while in the



4.4 Creating Low Level Sensor Data in a Virtual World 95

Real world Virtual world
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Figure 4.15: Side by side comparison between sensor data generation in the real world (left, a—c)
and virtual world (right, d—f). On the real world side, (a) shows a camera snapshot
of a highway scenario, (b) shows the point cloud data from a lidar sensor mounted on
the front of the ego vehicle, and (c) shows the occupancy grid map generated from the
point cloud data and previous measurements. On the virtual world side, a comparable
but not identical scenario is shown: (d) shows the rendered snapshot of the virtual
environment with similar highway scenario, (e) shows the point cloud as generated by
the sensor measurement model, and (f) shows the occupancy grid map generated from
the synthetic sensor data. Note that the color scheme for the occupancy grid map in
the virtual world scenario is set differently and that reflections on drivable surfaces are
shown in the sensor model’s output, which have been filtered from the view in the real
world sensor. A visual comparison between the real and virtual world data shows a clear
correspondence, highlighting that the sensor measurement model has the ability to match
the output of a real world sensor.
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virtual world output all reflections points are shown. Aside from this filtering difference,
the same features can be seen: the outline of other cars as well as the guard rails and
the boundaries outside of the road. Finally, from these point cloud data in both cases
an occupancy grid map is constructed, which is shown in Fig. 4.15 (c¢) and (f) for the
real and virtual world, respectively. The drivable terrain, static obstacles outside of
the road like trees and the guard rails are clearly visible in a similar manner in both
cases. Note that moving objects are not present in this type of static occupancy grid
map representation. The strong visual similarity between the occupancy grid map
representations in the real and virtual world environments shows that, at least on a
qualitative level, the original goal of providing low level sensor output data in real time
from a virtual environment has been met by the sensor measurement model that has
been the subject of discussion of this chapter.

4.5 Summary

In this chapter the construction of a sensor measurement model for an automotive lidar
sensor based on a ray tracing approach is discussed. A sequence of actions for the sensor
measurement model is given as well as a recipe for embedding the model in a driving
simulation framework. The basic assumptions of the model are defined and several
extensions added that are required to match all the information in the output format
of low level point cloud data of a real lidar sensor. Using the sensor measurement
model, a processing chain is defined that allows starting from the virtual environment
of a driving simulator and passing through multiple processing steps in analogy to the
sensing process to arrive at an occupancy grid map representation of the environment,
which is an internal representation currently being investigates for internal use by the
automated driving feature. In producing the low level sensor output data in the form of
a lidar point cloud, the approach of the sensor measurement model allows to reuse the
real world data processing chain of an automated driving system at a very early step.
This is shown in an example with a side-by-side comparison of real world and virtual
world perception resulting in an occupancy grid map generated from lidar point cloud
data. This constitutes a major step towards increasing realism in sensor modeling as
well as broadening the scope of applications for virtual environments in development
and testing of automated driving systems.
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The topic of this work is the simulated environment perception for automated driving
systems. The underlying theme is the increasing rise of complexity in automated driving
system, bringing new challenges for the development and testing of the systems. Within
the scope of this work, the potential of the use of a virtual environment as a controlled
environment for development and testing of automated driving systems is investigated
with the focus on the system’s environment perception and the sensors that perform this
task. The goal is investigating chances and challenges in the simulation of automotive
sensors and deriving guidelines that help in the implementation of such an simulation
tool chain.

For this purpose, the different applications and the derived requirements for purpose-
built sensor models are discussed. This results in a the identification and definition of
different model types and the introduction of a generic simulation tool chain in chap-
ter 2. This is followed by the discussion of statistical sensor error models in chapter 3,
constituting a top-down development approach in the construction of a sensor model.
In chapter 4, a bottom-up approach for the construction of a physically motivated
sensor measurement model introduced and discussed in detail.

To start the discussion of virtual environment perception, the processing chain of an
automated driving function is broken down with a focus on perception into different
levels of abstraction. The levels of abstractions are identified from the well known
V-model of system development: The system level corresponding to large scale simu-
lation of an automated driving systems general behavior in a large number of driving
scenarios. The sub-system level focusing on individual steps in the processing chain
and separating the perception from the automated driving feature. Finally, the compo-
nent level separating the perception process into the measurement step and subsequent
perception processing to arrive at an internal environment representation for use by the
automated driving system. For simulations that make use of sensors models, especially
the sub-system and component levels are relevant. Based on this systematic approach,
two types of sensor models are identified: the sensor error model for applications on the
sub-system level and the sensor measurement model for applications on the component
level.

Equipped with these definitions of the model types, a general tool chain for sensor
simulation is introduced. In order to enable closed loop simulation that allows the real
time testing of an automated driving system in a virtual environment, this tool chain
features the following steps: Starting from the virtual environment of a driving simula-
tor generating a standardized environment description, a sensor model performs virtual
measurements resulting in synthetically generated sensor output data. In the next step,
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this output data in the standardized format of the sensor model is transformed into the
specific format defined by the sensor that should be virtually replicated by the sensor
model. From this point on, the tool chain is identical to a real world setup. Synthetic
sensor data in the identical format as defined by the original sensor is processed by
the automated driving system’s perception processing and then used in the process of
determining the vehicle’s next actions.

A special emphasis is given to the standardized interfaces for input and output data
of the sensor model. Typically, a variety of driving simulation frameworks as well as
processing tool chains exist in the development of an automated driving system, result-
ing in severe difficulties for the development of multi-purpose sensor models. For this
reason, the standardized open simulation interface (OSI) is introduced, which defines
an interface for the description of object-level ground truth data as input for sensor er-
ror models as well as interfaces for object-level and low level sensor output data. Using
the OSI interfaces in the construction of a sensor model gives the benefit of enabling
easy re-usability of a sensor model implementation in a variety of different contexts.
In addition, also using the OSI interface for the internal data structure of the sensor
model, it is possible to easily source sensor model components from different develop-
ers and merge them to a single sensor model. This allows multi-source and parallel
development on sensor models, which is a special feature of the design of the tool chain
introduced in this work.

The sensor error models discussed in chapter 3 have the purpose to form a single
model for the virtual representation of an automotive sensor that provides high level
object data as its output. The sensor error model has two main design applications:
Due to low complexity, it can reach a high computational performance that is required
for a large scale simulations that include a wide variety of different scenarios. As it
operates as a black box model on the object level interfaces of a sensor, constructing and
using a sensor error model does not require intricate knowledge of the inner workings
of a sensor, which in many cases is not readily available. Owing to the nature of its
design applications, the sensor error model is a statistical model that aims to reproduce
the statistical properties of the sensor output data.

Regarding sensor error models, a specific focus of this work is on the process of their
construction and the model design. Due to the nature of a statistical model, it requires
statistics obtained from observation data in order to derive the appropriate parameters
required for the simulation of sensor behavior with regard to any quantity observed by
the sensor. Obtaining these data requires a reference measurement for each quantity
that is being investigated. For this reason, a modular approach in the design of sensor
errors models is introduced in this work. The modular approach enables the building
of individual modules that are executed in sequence, allowing each module to handle
a different aspect of the sensing process. Moreover, this design enables an iterative
development process for a sensor model, where each iteration can add an additional
feature in the form of an extra module handling a specific aspect that has been analyzed
and replicated in the framework of the model.

Based on the idea of the modular approach to sensor model construction, a classi-



99

fication hierarchy is introduced for different types of sensor errors. A sensor error is
defined as any difference between the sensor output and the original ground truth data
arising during the perception process, giving the sensor error model its name. The clas-
sification hierarchy sorts sensor errors in the categories of detection, direct perception,
indirect perception, and packaging. The idea behind the classification is that some
errors behave very similar while others have vastly different properties. As an example
all sensor errors in the detection category concern the existence of objects in the sensor
output, which includes effects such as limited range and field of view of the sensor as
well as occlusion effects. The classification hierarchy also sorts the effects along the
perception chain, giving a guideline with regard to the ordering of the sequence of
modules that constitute the sensor model.

The sensor measurement model discussed in chapter 4 has the purpose to match
the low level point cloud output generated by an automotive lidar sensor. Given the
currently still largely experimental status of lidar sensors in the automotive context
in combination with their high fidelity in the measurement of the three-dimensional
structure of the vehicle’s surrounding, the low level data for this sensor type is espe-
cially important for research purposes. Within the scope of this work, the goal in the
construction of a sensor measurement model for a lidar sensor is the generation of a
qualitatively realistic point cloud output that is generated in real time with a simula-
tion framework. The synthetically generated point cloud data has to include all the
relevant information that is also output by a real world lidar sensor in order to enable
linking it to low level perception processing functions that are also used in real world
test drives of research vehicles.

Within the scope of this work, the construction of the sensor measurement model
for an automotive lidar sensor is based on a ray tracing based approach. The software
tool chain for the implementation of a sensor measurement model is introduced using
a driving simulation framework running the Nvidia OptiX ray tracing engine. The
implementation of the model’s components and their interplay with the ray tracing
engine is described, as is the necessity of a custom-built database for material properties.
Building the model in an iterative fashion, a basic ray casting, i.e. first-hit, approach
is introduced and extended to include additional properties and effects observed in
real world sensor data. With the inclusion of several model extensions, the full output
data of a real world lidar sensor can be qualitatively reproduced, paving the way for the
model’s use in the study of low level perception processing functions. Utilizing the point
cloud output data of the sensor measurement generated in real time, an environment
representation in the form of an occupancy grid and occupancy grid map is generated.
This constitutes the first reported use of synthetic low level lidar sensor data generated
in real time by a driving simulation framework using a sensor measurement model for
the construction of an environment representation used for internal processing by an
automated driving system.

Besides the construction of a sensor measurement model generating low level sensor
data, a major task is the testing and validation of the sensor model in comparison to the
original sensor. Due to the nature of the low level point cloud data, a direct comparison
is largely impossible on a meaningful quantitative level as even small inconsistencies
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between the three-dimensional geometry in the virtual environment and the original
scene affect the point cloud in a way that is hard to compensate in a direct comparison
metric. However, the occupancy grid environment representation can be used as an
abstraction layer that provides a unified interface for the comparison of real world
to virtual world scenarios. While first preliminary investigations into this topic have
been performed and reported in reference [75], this largely represents a topic for future
research.

As an outlook for other future research opportunities building on the results dis-
cussed in this work, many open points in regards to virtual environmental perception
remain. The obvious points are the extension of the models described in this work
to include additional effects, deriving parameter from a proper data set of observation
data, extending them to other types of sensors. This holds true for both the sensor
error models and the sensor measurement model introduced within the scope of this
work, which only scratches the surface and aims to provide a solid starting point for
future efforts in this area. Another major point is the design of testing procedures for
automated driving systems that includes the abilities of simulation based testing. In
this context falls the design of a scenario database with a standard set of test scenarios,
both for automated driving systems and for the validation of sensor models. On the
point of sensor model validation, research is ongoing on a methodology and tool chain
to match sensor model output against reference data and obtain quantitative measures
for the model’s performance. On a different note, the ever growing availability of large
scale computing power in addition to an increasing availability of observed sensor data
as a foundation allows research into completely different types of sensor models than the
ones described in this work, e.g. based on machine learning techniques and automati-
cally learning and enhancing themselves as additional training data becomes available.
Finally, establishing a standardized tool chain for use by many involved parties has the
potential to benefit every user of a simulation framework running virtual environment
perception components. The definition of the open simulation interface (OSI) and its
publication as an open source software is a starting point for further development,
which is currently ongoing.
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