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Abstract: This article extends the Factor-Augmented Vector Autoregression Model (FAVAR) to
mixed-frequency and incomplete panel data. Within the scope of a fully parametric two-step approach,
the alternating application of two expectation-maximization algorithms jointly estimates model
parameters and missing data. In contrast to the existing literature, we do not require observable factor
components to be part of the panel data. For this purpose, we modify the Kalman Filter for factors
consisting of latent and observed components, which significantly improves the reconstruction
of latent factors according to the performed simulation study. To identify model parameters
uniquely, the loadings matrix is constrained. In our empirical application, the presented framework
analyzes US data for measuring the effects of the monetary policy on the real economy and financial
markets. Here, the consequences for the quarterly Gross Domestic Product (GDP) growth rates are of
particular importance.

Keywords: expectation-maximization algorithm; factor-augmented vector autoregression model;
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1. Introduction

The role of money in the case of monetary policy and its impact on the real ecomony have been
thoroughly discussed in the literature. For instance, see Levhari and Patinkin (1968), Grandmont and
Younes (1972) as well as Carr and Darby (1981). In this regard, Mankiw (2010, 2014) distinguishes three
hypotheses: First, classical dichotomy believes in the neutrality of money, that means, it does not affect
the real economy, see for example, Ball and Romer (1990). In this theory, only prices and wages matter.
A second group of economists claims that monetary policy may affect the real economy through falling
interest rates and raising investments, see for example, Serletis and Koustas (1998). Finally, the current
economic theory assumes the neutrality of money in the long run, but it admits the possibility that
monetary policy may absorb economic fluctuations in the short run, see for example, Minsky (1993).
Hence, monetary policy implications are crucial for central banks and it explains why there is abundant
literature about measuring the effects of monetary policy.

Vector Autoregression Models (VARs) have become the standard approach for identifying and
measuring the effects of monetary policy innovations on macroeconomic variables since Bernanke
and Blinder (1992) and Sims (1992). A main advantage of this method is that it clearly discloses the
effects of shocks. Unfortunately, VARs are restricted to a limited number of times series, which may
result in a trade-off for empirical applications. On the one hand, a comprehensive model must take
into account the full information spectrum used by central banks and external sources. On the other
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hand, VARs with too many variables cannot uniquely be estimated based on small data samples.
Then, a pre-analysis is required to extract the most relevant, sparse data from the full information
spectrum. However, if the resulting sparse panel data does not sufficiently reflect the original data,
policy shocks are measured with errors and misleading results are obtained. A second drawback is that
their Impulse Response Functions (IRFs) merely consider the few included variables covering a small
subset of the universe central banks care about. Here, IRFs map how a variable of interest reacts to
exogenous shocks over time. The choice of specific time series representing an economic concept like
“real activity” is arbitrary to some degree and thus, denotes a third disadvantage of the VAR approach.
Bernanke et al. (2005) introduced the Factor-Augmented Vector Autoregression Models (FAVARs)
which combine the VAR approach with factor analysis. The main idea behind FAVARs is to extract the
information inherent in large panel data by a few factors and some observable variables. Because of
this, a FAVAR consists of two equations: The transition equation displays the joint dynamics of the
observed and latent factors as a VAR process, while the measurement equation shows the relation
between both factors and some additional panel data.

For estimating FAVARs several procedures can be pursued. For instance, Bernanke et al. (2005)
suggested a non-parametric two-step approach using Principal Component Analysis (PCA) and
Ordinary Least Squares Regression (OLS). Additionally, they derived a single-step Markov Chain Monte
Carlo method. Bork (2009) as well as Bańbura and Modugno (2014) applied Expectation-Maximization
Algorithms (EMs) instead. Sometimes, the estimation of FAVARs relies on complete panel data, whose
updating frequency is either monthly (Bernanke et al. 2005; Bork 2009; Wu and Xia 2014) or quarterly
(Ellis et al. 2014). In case of macroeconomic data, the Unemployment Rate and Consumer Price Index
are monthly published, but the Gross Domestic Product (GDP) is quarterly reported. All three indices
rank among the relevant guides for monetary policy, although they are not ready at the same frequency.
Therefore, the question of how to best profit from such data arises. A simple solution takes the least
frequently updated time horizon, for example, the quarterly one. However, this approach ignores all
monthly information.

By contrast, we incorporate well-known results regarding temporal aggregation and missing
observations to obtain balanced panel data (Stock and Watson 1999, 2002b; Mariano and Murasawa 2003,
2010; Bańbura et al. 2011, 2013). Thereby, we introduce for each observed time series an artificial,
complete analog and define a proper relation between both. Depending on the relation type, we
distinguish between stock, flow and change in flow variables. In the past, among others, Schumacher
and Breitung (2008); Stock and Watson (2002b) and Bańbura and Modugno (2014) tackled data
irregularities in the area of factor models, while Bańbura and Modugno (2014); Boivin et al. (2010); Bork
(2015) and Marcellino and Sivec (2016) did the same for FAVARs.

In the presence of data incompleteness, Kalman filtering methods and EMs enable
Maximum-Likelihood Estimation (MLE). With regard to this, the seminal work of Dempster et al. (1977)
showed how to integrate missing data out of the likelihood function. Shumway and Stoffer (1982)
deployed EMs for time series with missing observations. At the same time, Rubin and Thayer (1982) and
Watson and Engle (1983) estimated factor models using EMs. Theoretical aspects of EMs, in particular,
some convergence properties were discussed in Wu (1983). Finally, Bańbura and Modugno (2014)
developed an EM for estimating dynamic approximate factor models with arbitrary patterns of missing
data. Bańbura and Modugno (2014) as well as Bork (2015) admit time-dependent selection matrices to
exclude missing data from their MLE. Their state-space representations already take into account which
data type1 each variable belongs to and so, they have a single EM instead of two. However, they must
adjust the whole state-space representation, as soon as for example, new time series are added or
old ones are removed. By contrast, our two-step approach requires changes of single equations for
balanced data instead of the overall model formulation which bears less risks and so, denotes another

1 Distinction between stock, flow or change in flow variables.
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advantage of our procedure. The non-parametric method in Boivin et al. (2010) coincides with ours,
if our second EM is replaced by the two-step principal component approach of Bernanke et al. (2005).
In general, this second EM coincides with Bork (2009), Bork et al. (2010) and Bańbura and Modugno
(2014). The first EM was introduced in Stock and Watson (1999 2002b) and was reused in Schumacher
and Breitung (2008).

In this paper, we extend the FAVAR of Bernanke et al. (2005) to ragged panel data and make the
following three contributions to the existing literature: First, two EMs estimate the model parameters
and reconstruct missing obersations in the form of an iterative scheme. The first EM controls the
relation between the observed and artificial time series, when it constructs balanced data. Based on this,
the second EM performs the actual MLE. Our second contribution is that the observable factors of the
FAVAR are not needed to be a part of the panel data as in Bork (2009) and Marcellino and Sivec (2016).
Therefore, the loadings matrix can be constrained without resorting the panel data. This is convenient
for model selection since existing estimation methods require a special variable order in the panel
data. Nevertheless, for comparison reasons of our empirical results we perform the same data
pre-processing as Bork (2009) including the distinction between slow- and fast-moving variables
as proposed in Bernanke et al. (2005). Finally, our last contribution is the adaption of the classical
Kalman Filter (KF) for the observable factor components. In this regard, we derive KF equations
for a refined state-space representation and show the superiority of our modified KF estimation in a
simulation study.

In the empirical study, we investigate the effects of the United States (US) monetary policy
on its real economy. Thereby, we use data similar to Bernanke et al. (2005). In addition, we have
quarterly indices, for example, GDP, discontinued data, for example, Deutsche Mark-US Dollar Foreign
Exchange (FX) and later starting variables, for example, Euro-US Dollar FX. The updating frequency
is monthly. The time period ranges from January 1959 until October 2015 covering several crises. We
evaluate the impact of the monetary policy decisions using Impulse Response Functions (IRFs) and
Forecast Error Variance Decompositions (FEVDs). The confidence intervals of the IRFs arise from a
non-parametric bootstrap method.

The remainder of this paper is structured as follows: In Section 2, we discuss the definition of
FAVARs and derive an alternative estimation method for incomplete panel data. Thereby, we derive
estimates for missing observations. In Section 3, we compare the estimation quality of the suggested
estimation method with already existing ones. In Section 4, we measure the impact of the US monetary
policy on the real economy based on mixed-frequency US panel data. In Section 5, we summarize our
findings and outline directions for the future research. The appendices provide detailed algorithms,
results of the Monte Carlo (MC) simulations, data descriptions and illustrations of the empirical study.

2. Mathematical Background

We start with the definition of FAVARs and show that parameter ambiguity may affect the
covariance matrices of idiosyncratic shocks. At this stage, we include identification conditions
from Bai et al. (2015). In a next step, we modify the KF from Bork (2009) to take into account that
factors are partially observable. Incomplete time series are reconstructed using the EM of Stock and
Watson (1999, 2002b).

2.1. Parameter Ambiguity and Identification Restrictions

Usually, VARs accomodate a limited number of time series.2 In this regard, FAVARs are more
indulgent and support the modeling of high-dimensional data. Similar to Dynamic Factor Models
(DFMs), FAVARs comprise a transition equation and a measurement equation. But there is an
important difference between both. The transition equation of DFMs describes the dynamics of

2 Of course, there are exceptions from this statement such as Bańbura et al. (2010).
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latent factors Ft ∈ RK at time t, whereas the one of FAVARs maps the joint dynamics of latent factors
Ft ∈ RK and observable variables Yt ∈ RM. This is why the joint factors C′t = [F ′t , Y ′t ] ∈ RK+M are
partially observable.

In the scope of monetary policy analysis with FAVARs, Yt often covers measures controlled by
central banks such as the US Effective Federal Funds Rate (FEDFUNDS). By contrast, VARs require Yt

to collect all data due to Ct = Yt. Thus, VARs must balance covering of relevant information and data
dimension. In FAVARs, important information, which is not yet part of Yt, is condensed in the latent
factors Ft. With this in mind, the transition equation of a FAVAR is given by the following dynamics:[

Ft

Yt

]
= Φ(L)

[
Ft−1

Yt−1

]
+ vt =

[
Φ f f (L) Φ f y(L)
Φy f (L) Φyy(L)

] [
Ft−1

Yt−1

]
+ vt, vt ∼ N (0K+M, Σv) iid, (1)

where Φ(L) is a conformable lag polynomial of finite order p ≥ 1 with Φ(L) = Φ1 + Φ2L1 + · · ·+
ΦpLp−1 and Φi denoting a (K + M) × (K + M)-dimensional matrix of autoregressive coefficients
for i = 1, . . . , p. The error vector vt is supposed to be Gaussian identically and independently
distributed (iid) with zero mean and covariance matrix Σv. For simplicity reasons, let each univariate
times series part of Yt be standardized with zero mean and standard deviation of one. Furthermore,
we assume the VAR process in (1) as covariance-stationary (Hamilton 1994, Proposition 10.1, p. 259).

Equation (1) is a VAR(p) in the variables Yt, if all terms of Φ(L) covering the impact of Ft on Yt are
zero (Bernanke et al. 2005). Otherwise, Bernanke et al. (2005) call (1) the transition equation a FAVAR.
Moreover, they note: First, the FAVAR in (1) nests a VAR supporting comparisons with general VAR
results and the assessment of the marginal contribution of the factors Ft. Second, if the true system
is a FAVAR, ignoring the factors Ft and sticking to the simple VAR in Yt will cause biased estimation
results and so, the interpretation of IRFs and FEVDs may be faulty.

Next, the hidden factors Ft are obtained from the FAVAR measurement equation. For this purpose,
the vector Xt ∈ RN gathers all panel data at time t, where N is “large” (in particular, N may be
greater than the sample length T) and K + M � N holds. As for Yt, let each times series in Xt be
standardized. Then, the measurement equation relates the panel data Xt and the partially observed
factors Ct as follows:

Xt = Λ f Ft + ΛyYt + et =
[
Λ f Λy

]
Ct + et, et ∼ N (0N , Σe) iid, (2)

where Λ f and Λy denote loadings matrices of dimension N × K and N × M, respectively.
The idiosyncratic error et is Gaussian iid with zero mean and covariance matrix Σe. Note, we attach a
greater importance to cross-sectional instead of serial error correlation in this article. In this manner,
we enter a direction different to the work of Bańbura and Modugno (2014).3 Because of (2), the vector
Ct drives the dynamics of Xt. This is why Bernanke et al. (2005) regard all Xt as “noisy measures of the
underlying unobserved factors Ft”. In total, FAVARs are defined by (1) and (2).

The model (1) and (2) is econometrically unidentified, therefore, its parameters cannot be
uniquely estimated. For any non-singular matrix R of dimension (M +K)× (M +K) the measurement
equation obeys:

Xt =
[
Λ f Λy

]
Ct + et =

[
Λ f Λy

]
R−1R Ct + et, (3)

3 In the scope of a MC simulation study in Section 3, we show scenarios, where our estimation approach is superior.
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with R−1 as the inverse of matrix R. The observability of Yt imposes constraints on the shape of R and
so, removes M (K + M) degrees of freedom (Bai et al. 2015). Consequently, the invertible matrix R
consists of the following submatrices:

R =

[
R1 R2

OM×K IM

]
,

with OM×K ∈ RM×K as zero matrix (Bai et al. 2015, Proposition 2.1). Let Σv̆ ∈ R(K+M)×(K+M) be the
covariance matrix of the transformed errors v̆t = Rvt ∈ RK+M from (1), which is given as follows:

Σv̆ =

[
Σ f f

v̆ Σ f y
v̆

Σy f
v̆ Σyy

v̆

]
.

Let the invertible matrix Σ f f
v̆|y = Σ f f

v̆ − Σ f y
v̆

(
Σyy

v̆

)−1
Σy f

v̆ ∈ RK×K be the Schur complement of the

upper left block matrix Σ f f
v̆ ∈ RK×K of the matrix Σv̆. To remove the remaining K (K + M) degrees of

freedom inherent in the submatrices R1 and R2, we consider the special version H ∈ R(K+M)×(K+M)

of the general matrix R defined as follows:

H =

(Σ f f
v̆|y

)− 1
2 −

(
Σ f f

v̆|y

)− 1
2 Σ f y

v̆

(
Σyy

v̆

)−1

OM×K IM

 .

Then, we obtain for vector C̄t = HRCt ∈ RK+M the identification restrictions IRb from
Bai et al. (2015). Thus, the FAVAR in (1) and (2) also meets the following representation:

Xt =
[
Λ f Λy

]
R−1H−1C̄t + et = Λ̄C̄t + et, et ∼ N (0N , Σe) iid, (4)

C̄t = Φ̄(L)C̄t−1 + v̄t, v̄t ∼ N

0K+M,

[
IK OK×M

OM×K Σyy
v

]
︸ ︷︷ ︸

Σv̄

 iid. (5)

Note, by construction the equality Σyy
v̄ = Σyy

v in (5) is justified (Ramsauer 2017, p. 127).
The previous transformation by matrix H decreased the degrees of freedom to K (K− 1) /2. That is,
for any rotation matrix G̃ ∈ RK×K with matrix G ∈ R(K+M)×(K+M) defined by

G =

[
G̃ OK×M

OM×K IM

]
(6)

the FAVAR in (4) and (5) is equivalently rewritten for vector GC̄t. So, linear constraints on the loadings
matrix Λ̄G−1 ensure parameter uniqueness. In this regard, the iterative application of Givens Rotations
(Golub and Van Loan 1996, p. 215, Section 5.1.8) enables us to eliminate all remaining degrees of
freedom and preserve the shape of matrix G in (6). In total, this theoretically justifies the existence
and uniqueness of the FAVAR state-space representation (4) and (5). For more details we refer to
Ramsauer (2017). Eventually, for the FAVAR in (4) and (5) with Λ̄ =

[
Λ̄ f Λ̄y

]
, Λ̄ f as lower triangular

matrix and diagonal covariance matrix Σe, Bai et al. (2015) provide the asymptotic distribution of the
IRFs. As we consider cross-sectionally correlated errors, we pursue the classical approach for IRFs.
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2.2. Estimation and Model Selection for Complete Panel Data

For complete panel data, a MLE of the FAVAR (4) and (5) with linear loadings constraints
can be done similarly to Dempster et al. (1977), Rubin and Thayer (1982), Shumway and Stoffer
(1982) and Bork (2009). Denoting X = [X1, . . . , XT ] ∈ RN×T , Y = [Y1, . . . , YT ] ∈ RM×T and
C̄ = [C̄1, . . . , C̄T ] ∈ R(K+M)×T , the log-likelihood function of the FAVAR (4) and (5) is L (Θ|X, C) =
ln
(

fΘ
(
X, C̄T , . . . , C̄p+1|C̄p, . . . , C̄1

))
. Latent factors are integrated out to obtain the expectation of

L (Θ|X, C) conditioned on the observations X and Y (the expectation step of EM). An estimation of
model parameters Θ =

{
Λ̄, �̄, Σe, Σv̄

}
with �̄ =

[
Φ̄1, . . . , Φ̄p

]
is then obtained by maximizing the

expected log-likelihood

EΘ [L (Θ|X, C) |X, Y] =− TN + (K + M)(T − p)
2

ln (2π)− T
2

ln (|Σe|)−
T − p

2
ln
(∣∣∣Σyy

v

∣∣∣)
− 1

2

T

∑
t=1

X ′tΣ−1
e Xt +

1
2

T

∑
t=1

X ′tΣ−1
e Λ̄EΘ [C̄t|X, Y]

+
1
2

T

∑
t=1

EΘ [C̄t|X, Y]′ Λ̄′Σ−1
e Xt −

1
2

T

∑
t=1

tr
(

Λ̄′Σ−1
e Λ̄EΘ

[
C̄tC̄′t |X, Y

])

− 1
2

T

∑
t=p+1

tr

 IK OK×M

OM×K

(
Σyy

v

)−1

EΘ
[
C̄tC̄′t |X, Y

]
− 1

2

T

∑
t=p+1

p

∑
i,j=1

tr

Φ̄′i

 IK OK×M

OM×K

(
Σyy

v

)−1

 Φ̄jEΘ

[
C̄t−jC̄

′
t−i|X, Y

]
+

1
2

T

∑
t=p+1

p

∑
i=1

tr

 IK OK×M

OM×K

(
Σyy

v

)−1

 Φ̄iEΘ
[
C̄t−iC̄

′
t |X, Y

]
+

1
2

T

∑
t=p+1

p

∑
i=1

tr

Φ̄′i

 IK OK×M

OM×K

(
Σyy

v

)−1

EΘ
[
C̄tC̄′t−i|X, Y

]

(7)

under linear loadings constraints (the maximization step of EM). Here, ln (·) denotes the natural
logarithm and tr (·) is the matrix trace. The conditional moments of the factor C̄t are computed
using Kalman Filter and Kalman Smoother (KS). By iterating the expectation and maximization steps
until convergence of the expected log-likelihood EΘ [L (Θ|X, C) |X, Y], the EM estimates the model
parameters Θ.

The estimation of the FAVAR (4) and (5) with loadings constraints requires knowledge of the
factor dimension K and the lag order p. In empirical analyses, both must be specified. For this purpose,
we choose the usual Akaike Information Criterion (AIC) and leave more advanced approaches for
model selection for the future research. Let 1 ≤ p̄ and 1 ≤ K̄ be upper limits of the autoregressive
order and factor dimension, respectively, to be tested. Moreover, let Θ̂(p,K) be the estimated model
parameters for dimensions (p, K). Then, we take the pair (p∗, K∗) satisfying:

(p∗, K∗) = arg min
1≤p≤ p̄
1≤K≤K̄

{
−2EΘ̂(p,K)

[
L
(

Θ̂(p,K)|X, C
)
|X, Y

]
+ 2N(K + M) + N(N + 1) (8)

+2p(K + M)2 + M(M + 1)− K(K− 1)
}

. (9)

Thereby, the penalty term accomodates the special shape of Σv̄ in (5) and the loadings restrictions.4

4 Alternatively, the information criteria of Bai and Ng (2002, 2008) or Hallin and Liška (2007) enable model selection.
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2.3. Kalman Filter and Smoother

Usually, DFMs with factor dynamics of order p ≥ 1 are converted into large-dimensional DFMs

of order p = 1. For FAVAR (4) and (5) and state vector C̄t =
[
C̄′t, . . . , C̄′t−p+1

]′
∈ Rp(K+M), we receive

Xt =
[
Λ̄, ON×(p−1)(K+M)

]
C̄t + et, et ∼ N (0N , Σe) iid, (10)

C̄t =

[
�̄

I(p−1)(K+M) O(p−1)(K+M)×(K+M)

]
C̄t−1 +

[
v̄t

0(p−1)(K+M)

]
, (11)

[
v̄t

0(p−1)(K+M)

]
∼ N

(
0p(K+M),

[
Σv̄ O(K+M)×(p−1)(K+M)

O(p−1)(K+M)×(K+M) O(p−1)(K+M)×(p−1)(K+M)

])
iid. (12)

Bork (2009) as well as Marcellino and Sivec (2016) considered FAVARs as DFMs and made two
adjustments. First, they added the observable variables Yt part of C̄t to the panel data Xt. Second,
they chose the shape of the loadings matrix Λ̄ in (10) such that Yt in Xt was identically mapped to Yt

in C̄t. In other words, they treated the overall factors C̄t as hidden and forced their last M entries to
coincide with Yt part of Xt.

By contrast, we use an alternative state-space representation. Namely, we separate latent and

observed factors from each other, before the stacking takes place. For vectors F̄t =
[

F̄ ′t , . . . , F̄ ′t−p+1

]′
∈

RpK and Yt =
[
Y ′t , . . . , Y ′t−p+1

]′
∈ RpM, we reformulate the original FAVAR as follows:

Xt =
[
Λ̄ f ON×(p−1)K Λ̄y ON×(p−1)M

] [F̄t

Yt

]
+ et, et ∼ N (0N , Σe) iid, (13)

[
F̄t

Yt

]
=



Φ̄ f f
1 Φ̄ f f

2 · · · Φ̄ f f
p Φ̄ f y

1 Φ̄ f y
2 · · · Φ̄ f y

p

IK OK×K · · · OK×K OK×M OK×M · · · OK×M
...

. . . . . .
...

...
...

...
OK×K · · · IK OK×K OK×M OK×M · · · OK×M

Φ̄y f
1 Φ̄y f

2 · · · Φ̄y f
p Φ̄yy

1 Φ̄yy
2 · · · Φ̄yy

p

OM×K OM×K · · · OM×K IM OM×M · · · OM×M
...

...
...

...
. . . . . .

...
OM×K OM×K · · · OM×K OM×M · · · IM OM×M


︸ ︷︷ ︸

=

A f

Ay

=A

[
F̄t−1

Yt−1

]
+



v̄ f
t

0K
...

0K

v̄y
t

0M
...

0M


︸ ︷︷ ︸
=

v
f
t

v
y
t

=vt

, (14)

where the shocks vt are iid Gaussian with zero mean and covariance matrix Σv defined by:

Σv =

[
Σ f f
v Σ f y

v

Σy f
v Σyy

v

]
=


IK OK×(p−1)K

O(p−1)K×K O(p−1)K×(p−1)K
OpK×pM

OpM×pK
Σyy

v OM×(p−1)M
O(p−1)M×M O(p−1)M×(p−1)M

 . (15)

A comparison of the transition Equations (11) and (14) shows that (14) explicitly acknowledges
that the factors C̄t are partially observed. This enables a modification of the standard KF for observable
factor components Yt which, to the best of our knowledge, was not addressed in recent research.
Second, we are able to linearly constrain the transition coefficients �̄ instead of the loadings matrix
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Λ̄.5 As usual for KF, we assume known model parameters in (13)–(15) and define the filtration:
Ω0 = ∅, Ωt = {X1, . . . , Xt, Y1, . . . , Yt} for t > 0 collecting all observations up to time t ≥ 0. Then,
ΩT covers the overall sample {X, Y}. For the hidden factor moments, we set: ˆ̄Ft|t−1 = EΘ

[
F̄t|Ωt−1

]
,

P̂F̄
t|t−1 = VarΘ

[
F̄t|Ωt−1

]
and P̂F̄,F̄

(t,t−1)|t = CovΘ
[
F̄t, F̄t−1|Ωt

]
. Analogously, we shorten means and

covariance matrices of Xt and Yt, respectively, conditioned on Ωt−1. Algorithm A1 summarizes the
adapted KF with factor estimates obtained by PCA as starting values. Note, the KS is not influenced
by the observed factor components as shown in Ramsauer (2017).

2.4. EM-Algorithm for Incomplete Panel Data

Regarding incomplete data we pursue the method of Stock and Watson (1999, 2002b) which
introduces for each observed time series an artificial, high-frequency analog and defines a proper
relation between both. As in Section 2.2, let N and T denote the number of times series and the total
sample length, respectively. The index 1 ≤ t ≤ T covers each point in time when new information
arrives and thus, captures the highest frequency. For 1 ≤ i ≤ N the vector X i

obs ∈ RT(i) with T(i) ≤ T
collects all observations of signal i and the vector X̃ i ∈ RT serves as its artificial, high-frequency
counterpart. Then, we receive:

X i
obs = QiX̃ i, (16)

with Qi ∈ RT(i)×T . For any complete time series, it holds: T(i) = T and Qi = IT . If a time series is less
often updated or there are missing elements, we have: T(i) < T. Furthermore, the shape of the matrix
Qi specifies the nature of the relation in (16). In the literature, see for example, Bańbura et al. (2013,
ECB working paper), there is a common distinction between stock, flow and change in flow variables6.
Sometimes, this classification is discussed as temporal aggregation. The structure of the matrix Qi
does not affect our subsequent considerations, this is why we proceed with the general version (16).

Let the matrices F̄ := [F̄1, . . . , F̄T ]
′ ∈ RT×K, Y := [Y1, . . . , YT ]

′ ∈ RT×M and E := [e1, . . . , eT ]
′ ∈

RT×N collect all factors, standardized observations and errors in (4), respectively. The panel data in (4)
is supposed to consist of standardized time series, thus, we set: X i = (X̄ i − µX̃i

1T)σ
−1
X̃i

for each time

series i with mean µX̃i
and variance σ2

X̃i
. In Section 4, we replace both by their empirical estimates.

Here, the vector 1T ∈ RT×1 consists of ones only. Using (4) and (16), we derive for 1 ≤ i ≤ N:

X̄ i − µX̃i
1T

σX̃i

= F̄
(

Λ̄
f
i

)′
+ Y

(
Λ̄

y
i

)′
+ Ei ⇔ X̄ i = µX̃i

1T + σX̃i
F̄
(

Λ̄
f
i

)′
+ σX̃i

Y
(

Λ̄
y
i

)′
+ σX̃i

Ei,

X i
obs = QiµX̃i

1T + QiσX̃i
F̄
(

Λ̄
f
i

)′
+ QiσX̃i

Y
(

Λ̄
y
i

)′
+ QiσX̃i

Ei,

5 An EM for parameter estimation subject to linear restrictions of the transition coefficients �̄ is stated in Ramsauer (2017).
6 For signal 1 ≤ i ≤ N, let the integers

(
nj
)

1≤j≤T(i) count the high-frequency periods between two successive observations.

Then, oj = ∑
j
k=1 nk captures when the j-th observation X i

obs,j is made. For stock variables, the observations match with their

artificial counterparts, that is, we have: X i
obs,j = X̃ i

oj
. For flow variables, the observations either represent the sum or the

average of the artificial elements of the respective low-frequency period. Hence, the sum version obeys: X i
obs,j = ∑

nj−1
k=0 X̃ i

oj−k .

The average formulation satisfies: X i
obs,j =

1
nj

∑
nj−1
k=0 X̃ i

oj−k. For change in flow variables, the change in two consecutive

observations is traced back to a linear combination of the changes in the artificial time series. As before, a sum and

average version exist. For the latter it holds: ∆X i
obs,j = X i

obs,j − X i
obs,j−1 = ∑

nj−1
k=0

k+1
nj

∆X̃ i
oj−k + ∑

nj−1−1
k=0

nj−1−1−k
nj−1

∆X̃ i
oj−1−k.

By contrast, the sum version requires the equality nj = n for all 1 ≤ j ≤ T (i) to derive a similar result. To verify this

requirement we assume nj = nj−1 + 1 and obtain: ∆X i
obs,j = X i

obs,j − X i
obs,j−1 = ∑

nj−1
k=0 (k + 1)∆X̃ i

oj−k + ∑
nj−1−2
k=0 (nj − 1−

k)∆X̃ i
oj−1−k + X̃ i

oj−2+1. Since the last term is the signal itself, the observed change does not consist of a pure combination of

high-frequency changes. By similar reasoning the same holds for any nj 6= nj−1.
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where Λ̄
f
i , Λ̄

y
i and Ei denote the i-th row of Λ̄ f and Λ̄y or the i-th column of E. Following Stock and

Watson (1999, 2002b), X̄ i is reconstructed by its conditional expectation given by

E

[
X̄ i
∣∣∣ F̄, Y, X i

obs

]
= µX̃i

1T + σX̃i
F̄
(

Λ̄
f
i

)′
+ σX̃i

Y
(

Λ̄
y
i

)′
+ Qi

(
QiQ′i

)−1
[

X i
obs −Qi

(
µX̃i

1T + σX̃i
F̄
(

Λ̄
f
i

)′
+ σX̃i

Y
(

Λ̄
y
i

)′)]
. (17)

Algorithm A2 summarizes the estimation of FAVARs with incomplete data. Besides the
initialization, it consists of an inner and outer EM. The initialization calls for three steps: First,
we construct an initial guess for the high-frequency panel data using the given observations. If necessary,
gaps are filled by random numbers, interpolation and so forth. At this stage, the time series X̃ i

(0) are
not required to obey (16), since this will be automatically achieved by (17). The second step applies the
two-step principal component approach of Bernanke et al. (2005) to the standardized panel data X(0).
Finally, the third step updates the high-frequency panel data based on the estimated model parameters
and observed time series.

The algorithm from Algorithm A2 also tackles the model selection problem. The optimal lag
length and factor dimension (p∗, K∗) may change during the estimation procedure. To avoid that
changes in (p∗, K∗) affect its termination, changes in the expected log-likelihood E [L |X, Y] instead
of the model parameters serve as termination criteria. In this context, we consider relative instead of
absolute changes.

3. Monte Carlo Simulation

In the scope of a MC simulation study, we compare the estimation accuracy of our two-step
estimation method using the modified KF from Section 2 and three alternative approaches. Besides a
non-parametric ansatz based on PCA and OLS, we test two parametric estimation methods treating
FAVARs as Approximate Dynamic Factor Models. For all procedures, an outer EM reconstructs
complete panel data from observations and latest parameter estimates. Thus, we concentrate on the
estimation quality of the modified KF but also address the issue of incomplete panel data.

The underlying data is simulated as follows: For a, b ∈ R with a < b, let U (a, b) denote the
uniform distribution on the interval [a, b], while diag (u) ∈ RN×N is a diagonal matrix with elements
u = [u1, . . . , uN ] ∈ RN . Furthermore, let Vi ∈ R(K+M)×(K+M), 1 ≤ i ≤ p, Vv ∈ R(K+M)×(K+M) and
Ve ∈ RN×N represent arbitrary orthonormal matrices for fixed dimensions (T, N, K, M, p). Then,
the subsequent FAVARs parameters arise:

Φi = Vi diag
(ui,1

i
, . . . ,

ui,K+M

i

) (
V′i
)

, ui,j ∼ U (0.25, 0.75) iid, 1 ≤ i ≤ p, 1 ≤ j ≤ K + M,

Σv = Vv diag (uv,1, . . . , uv,K+M)
(
V′v
)

, uv,j ∼ U (0.75, 1.25) iid, 1 ≤ j ≤ K + M,

Λ =
(
λn,j
)

n,j , λn,j ∼ U (0, 1) iid, 1 ≤ n ≤ N, 1 ≤ j ≤ K + M,

Σe = Ve diag (ue,1, . . . , ue,N)
(
V′e
)

, ue,n ∼ U (0.5, 1.5) iid, 1 ≤ n ≤ N. (18)

Hence, the parameters in (18) specify a general FAVAR instead of its rotated simplification. If all
matrices Φi, 1 ≤ i ≤ p, do not satisfy the covariance-stationarity of the factor process {[F ′t , Y ′t ]

′}, they
are redrawn. To prevent us from matrices Φi, whose eigenvalues are close to zero, their eigenvalues are
taken from the range of [0.25/i, 0.75/i], where the division by i reduces the impact of lagged factors.
The restriction to matrices Φi with positive eigenvalues and the division by i are made for simplicity
only. Based on (1), we construct the factor sample [F, Y] ∈ RT×(K+M), standardize all univariate time
series in [F, Y] and adjust the matrices Φi, 1 ≤ i ≤ p, and Σv accordingly. Next, we simulate the panel
data X ∈ RT×N based on (2) and matrices W and Σe of full column rank. Eventually, we standardize
all univariate time series in X and adapt the matrices W and Σe correspondingly.
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At this stage, we have complete panel data X. For ρm ∈ [0, 1] as target ratio of gaps, we randomly
delete dρmTe elements from each times series serving as stock variable. For flow or change in flow
variables, we aggegrate the given data accordingly (for more details see Ramsauer (2017)) such
that we receive a regular pattern with observations at times t = d1 + s/(1− ρm)e with 0 ≤ s ≤
b(T − 1) (1− ρm)c and s ∈ N0. None of the four methods estimates hidden factors for points in time
without any observation. Therefore, we reapply this procedure, if the resulting incomplete panel data
comprises an empty row.

In the sequel, we focus on the hidden factors F, since the variables Y are observed in full. This is
why, we determine for each of the four estimation methods the trace R2 defined as follows:

trace R2 =
tr
(

F′ F̂
(

F̂′ F̂
)−1 F̂′F

)
tr (F′F)

.

The trace R2 evaluates the quality of the estimated factors. Since its introduction by Stock and
Watson (2002a), it became a common standard in the literature, see for example, Doz et al. (2012) and
Bańbura and Modugno (2014). If the hidden factors are perfectly estimated, the trace R2 takes value 1.
Otherwise, it is smaller than 1.

For the four estimation methods, Tables A1–A4 report the average of the trace R2 based on 500 MC
samples. We focus on the hidden factors, since the variables Yt are observed in full and therefore, do not
call for estimation. In Table A1, we estimate the simulated FAVARs with the non-parametric method of
Boivin and Giannoni (2008) and Boivin et al. (2010). In Tables A2 and A3, the EM of Bork (2009) serves
as inner EM for the estimation of the model parameters. In Table A2, data reconstruction part of the
outer EM (17) relies on filtered instead of observed factors Yt. By contrast, Table A3 directly utilizes
observed factors Yt. Finally, Table A4 illustrates the average trace R2 for our new KF approach. Except
for the approach in Table A2, the outer EM in all other estimation methods take the observed vectors
Yt into account.

All updates in Algorithm A2 stop, as soon as the absolute value of the relative change in the
expected log-likelihood function is below 10−2. In particular, the termination criterion ξ = 10−2

controls the data reconstruction (outer EM). Based on the reconstructed data, the criterion η = 10−2

terminates the parameter estimation (inner EM). For instance, Bańbura and Modugno (2014, working
paper, 2010), employ 10−4 as termination criterion. In our case, decreasing the termination criterion
from 10−2 to 10−4 did not significantly improve the estimation quality of our method, but it rather
boosted its run time. For all estimation methods we initialize the first guess of the complete panel data
X̄(0) in the same way. That is, for each univariate time series, we fill its gaps by the empirical mean of
its observations. Finally, we do not address the selection of K and p here.

A comparison of Tables A1–A4 shows: First, irrespective of the estimation method, there are no
obvious differences between the trace R2 means of the three data types. Second, a higher percentage
of data gaps, ceteris paribus, deteriorates the trace R2 means. Third, longer samples, that is, larger T,
improve the trace R2 means. The same holds for panel data covering more variables, that is, larger N.
Fourth, higher lag orders improve the trace R2 means, which is rather surprising. So far, all findings
are in place for all four estimation methods.

However, some differences exist: First, the estimation methods in Tables A1–A3 require a
work-around to take the observability of Yt into account. For instance, the non-parametric approach
repeatedly applies PCA and OLS for separating the impacts of Yt and Ft on Xt from each other. In this
regard, the dimensions of the vectors Yt and Ft matter. With a view to Tables A1–A3, the pairs
(K = 1, M = 1) and (K = 3, M = 3) have smaller trace R2 means than the pair (K = 3, M = 1).
By contrast, the estimation method with our modified KF in Table A4 offers for (K = 1, M = 1, p = 1)
larger trace R2 means than for (K = 3, M = 1, p = 1).
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The trace R2 means in Table A4 are usually better than their counterparts in Tables A1–A3.
For clarity, Tables A5–A7 display the corresponding ratios of trace R2 means from Tables A1–A3 and
Table A4, respectively. Thereby, ratios larger than one confirm that the estimation method based on
our modified KF outperforms the respective alternative. Note that all ratios in Tables A5–A7 are larger
than one but for the previously mentioned pairs (K = 1, M = 1) and (K = 3, M = 3) they exceed one
by far. This clearly highlights, why it makes sense to take into account that the variables Yt represent
observed factors.

4. Empirical Application

The US economy ranks among the biggest and most important in the world. Moreover, after many
years of declining interest rates, in December 2015 the US Federal Reserve decided to raise the Effective
Federal Funds Rate (FEDFUNDS) by 25 basis points (bps). So, it was the first large central bank to
leave the path of an extremely relaxed monetary policy. Due to this and, of course, for comparisons
with Bernanke et al. (2005), Bork (2009, 2015) and Bork et al. (2010), we deal with the impact of the US
monetary policy on its real economy in the sequel. At the beginning, we describe the underlying panel
data and observable factors. Then, we briefly summarize some technicalities. Eventually, we discuss
the estimated Impulse Response Functions and Forecast Error Variance Decomposition.

The underlying panel data is an update of the one in Bernanke et al. (2005), except for 24 variables,
which were not available anymore. This is why we have 96 of the original 120 time series over the
period from January 1959 until October 2015. Besides the 96 monthly time series, we have 15 partially
incomplete time series. Among other things, we are interested in how monetary policy decisions may
affect quarterly indices. For this purpose, the quarterly growth rates of GDP, Governmental Total
Expenditures, Real Exports of Goods and Services as well as Real Imports of Goods and Services
belong to these 15 new time series.7

Monetary policy actions can significantly move Foreign Exchange (FX), especially, if unexpected
by markets. As the European Union trades a lot with the US, our data comprises the USD-EUR
FX starting in January 1999 and USD FX against the German Mark, French Franc and Italian Lire
serving as an approximation for the USD-EUR FX before January 1999. By this means, our data is
ragged. Finally, 4 of the 15 new time series offer information about the Federal Reserve Banks’ balance
sheets, which have dramatically increased since the financial crisis in 2007/2008. In total, we have 111
macroeconomic indicators for diverse areas of the US economy from January 1959 until October 2015.
For a detailed overview including sources, data preprocessing and the distinction between slow- and
fast-moving ones based on Bernanke et al. (2005) see Appendix C.

The “Quantitative Easing” programs QE1–QE3 were the response of the Federal Reserve to the
problems arising from the financial crisis, after stimulating the economy by lowering the Effective
Federal Funds Rate reached its limits in December 2008. For instance, the Federal Reserve massively
bought Treasuries and mortgage-backed securities. To obtain a comprehensive picture of the monetary
policy actions, the observable factor Yt consists of Currency in Circulation (CURRCIR), St. Louis
Adjusted Monetary Base (AMBSL) and Effective Federal Funds Rate (FEDFUNDS). Our estimation
method for FAVARs requires the time series {Yt} to be complete. Therefore, holdings of Treasuries and
mortgage-backed securities, which were only available for the years from 2002 until 2015, belong to
the panel data.

In Section 3, we aimed at demonstrating the advantages of our updated KF compared to the
standard approach. For comparisons of our empirical results to Bork (2009), we now perform the same
data pre-processing as originally proposed by Bernanke et al. (2005). In particular, we also distinguish

7 We regard the four quarterly growth rates as sum versions of flow variables, while all other time series serve as stock
variables. For the 107 monthly time series there is no distinction between stock, flow and change in flow variables.
Although some time series start at a later point in time, for example, the USD-EUR FX, or are discontinued, for example,
the German Mark-USD FX, there are no intermediately missing observations.
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between slow- and fast-moving variables. As soon as the sorting of complete, slow-moving variables
has been finished, we repeat this procedure for complete, fast-moving ones, before we add all ragged
time series in arbitrary order. Our technical settings are: T = 682, M = 3, K̄ = 10, p̄ = 5, η = 0.01
and ξ = 0.01. Thus, the termination criteria are not too strict and the run time of the algorithm in
Algorithm A2 remains reasonable. An AIC-based model selection (Ramsauer 2017) yields: (K∗, p∗) =
(9, 1). In this way, we have larger factor dimensions K and M but a smaller lag order than Bork (2009).
Because of this, Table 1 compares the first nine variables of our sorted panel data with their counterparts
in Bork (2009). Thereby, we keep the long expressions of Bork (2009) in the second column and apply
our abbreviations from Appendix C in the third column. At first glance, both subsets cover the same
areas. That is, Bork (2009) has four time series of the group “Real Output and Income”, three time
series belonging to “(Un)employment and Hours”, one time series from “Consumption” and one from
“Price Indices”. Similarly, our subset consists of one, four, one and three, respectively, of those time
series. The main deviation arises from the larger number of price indices, which we are working with,
instead of production data. However, we should keep in mind that some differences possibly arise
from that fact that some time has passed since the work of Bork (2009). Furthermore, the panel data
does not completely match. Note, the different loadings constraints are irrelevant for this pre-analysis.

Table 1. Comparison of panel data sorted by performed pre-analysis.

No. Bork (2009) Our Data (Ticker)

1 Industrial production: manufacturing (1992 = 100, SA) PAYEMS

2 Unemploy. by duration: average (mean) duration in weeks (SA) CPILFESL

3 Purchasing managers’ index (SA) PPIFCG

4 Avg. weekly hrs. of prod. wkrs.: mfg., overtime hrs. (SA) UNRATE

5 CPI-u: commodities (82–84 = 100, SA) USFIRE

6 Employment: ratio; help-wanted ads: no. unemployed clf IPCONGD

7 Capacity util rate: manufac., total (% of capacity, SA) (frb) AWOTMAN

8 Pers cons exp (chained)—tot. dur. (bil 96$, SAAR) PCE

9 Industrial production: total index (1992 = 100, SA) PPICRM

Next, we focus on the shock impact on the FAVAR variables. A properly chosen MA(∞)

representation of the [F̄ ′t , Y ′t ]
′ dynamics implies that each factor is driven by its own innovations

and the ones of preceding factors. For details see Ramsauer (2017). Thus, we obtain the subsequent
innovation weight:

z = [0.38, 0.30,−5.49, 4.53, 5.50,−6.70, 1.66,−1.04,−2.36,−0.06, 0.39,−9.94]

causing an increase in FEDFUNDS of 25 bps at time t = 0, certeris paribus. As in Bernanke et al. (2005),
Bork et al. (2010) and Bork (2015), we derive confidence intervals for the IRFs. In doing so, there
are diverse methods to construct those. For example, Bernanke et al. (2005) and Boivin et al. (2010)
used the bias-adjusted bootstrap approach of Kilian (1998). In this sense, Yamamoto (2012)
also showed bootstrap routines with bias correction. Due to its unknown asymptotic properties,
Benkwitz et al. (1999) rised doubts concerning the approach of Kilian (1998) and recommended the
use of standard bootstrap techniques instead. For instance, Bork et al. (2010) applied the standard
bootstrap method. Alternatively, Bai et al. (2015) derived closed-form expressions for the asymptotic
distributions of IRFs. Since the idiosyncratic errors of their measurement equation are uncorrelated,
we cannot use the findings of Bai et al. (2015) here. For simplicity reasons, we revert to a non-parametric
bootstrap method without any bias correction.
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Reestimation of latent factors and data incompleteness offer some flexibilty, this is why we briefly
sketch our bootstrap method: We first estimate the FAVAR parameters with loadings constraints
taken into account and so, receive error residuals. To gain reliable confidence intervals, we run
10,000 bootstrap simulations. For each path, we randomly draw with replacement from the recentered
errors and keep the first p estimates and observations, respectively, of the vector [F̄ ′t , Y ′t ]

′ to generate a
new sample [(F̄∗t )

′, (Y∗t )
′]′ using standard non-parametric bootstrap. Next, we reestimate the coefficient

matrices of the transition equation based on [(F̄∗t )
′, (Y∗t )

′]′. Thereby, no model selection takes place,
that is, a VAR(1) is estimated. Then, we derive the IRFs of [F̄ ′t , Y ′t ]

′
i for 1 ≤ i ≤ K + M. For the IRFs of

Xt, we fix the initially estimated loadings matrix. In this manner, we ignore uncertainty inherent in the
bootstrapped panel data.

Similar to Bernanke et al. (2005), Bork et al. (2010) and Bork (2015), Figure A1 illustrates the
impact of the shock z on the standardized variables. Our confidence intervals cover confidence levels
of 68% (light gray) and 90% (dark gray) for a time horizon of 48 months. To be more precise, Figure A1
displays for time series 1 ≤ i ≤ N or factors 1 ≤ j ≤ K + M:(

�̄s

[
IK OK×M

OM×K P

]
z

)
j

or

([
Λ̄ f Λ̄y

]
�̄s

[
IK OK×M

OM×K P

]
z

)
i

.

Based on Figures A1–A5 we conclude: An increase in FEDFUNDS weakens the industrial
production (IPFINAL, IPCONGD, IPDCONGD, IPNCONGD, IPBUSEQ, IPMAT, IPB53100N,
IPB53200N, IPMANSICS, INDPRO, NAPM, NAPMPI) in the short term without any long-term effects.
At the same time, capacities (CUMFNS) are less utilized, personal income (RPI, W875RX1) decreases
and unemployment (CE16OV, UNRATE, UEMPMEAN, UEMPLT5, UEMP5TO14, UEMP15OV,
UEMP15T26) rises. Similarly, the number of employees across diverse business areas (PAYEMS,
USPRIV, USGOOD, CES1021000001, USCONS, MANEMP, DMANEMP, NDMANEMP, CES0800000001,
USTPU, USWTRADE, USFIRE, USPBS, USGOVT) and the average production time (AWHMAN,
AWOTMAN) decline in the short run. Note, these declines do not necessarily recover. Higher
unemployment rates together with lower incomes let the reduced personal expenditures (PCE, PCEDG,
PCEND, PCES) appear reasonable.

Housing starts (HOUST, HOUSTNE, HOUSTMW, HOUSTS, HOUSTW, PERMITNSA) are
supposed to increase over the next 48 months. Perhaps, this reflects that people are afraid of additional
interest rate hikes and therefore, bring such projects forward. Since the Effective Federal Funds Rate
applies to the whole US, regional aspects in the case of housing starts do not matter. In the short term,
less new orders (NAPMNOI) increase manufacturing inventories (NAPMII), which also confirms a
reduction in consumption. In the long run, higher interest rates require companies to offer higher
dividends (FSDXP), but boost their costs, too. For example, the same amout of debt calls for higher
interest rate payments. In total, the price-earnings ratio (FSPXE) naturally decreases.

Except for EXCAUS and EXITUS, the United States Dollar (USD) becomes stronger compared to
foreign currencies (EXSZUS, EXJPUS, EXUSUK, EXGEUS, EXFRUS, EXUSEU). Note that EXITUS is the
FX rate between Italian Lira, which the Euro succeeded and USD. Thus, it is not relevant anymore. Here,
it is part of our panel data, as EXGEUS, EXFRUS and EXITUS serve as approximations for EXUSEU,
before the Euro was introduced on 1 January 1999. A stronger USD may come from an increased
demand for USD, when investors increase their exposure to US fixed income products. For instance,
US Treasuries’ yields (TB3MS, TB6MS, GS1, GS5, GS10, TB3SMFFM, TB6SMFFM, T1YFFM, T5YFFM,
T10YFFM) and corporate bond spreads (AAA, BAA, AAAFFM, BAAFFM) follow an increase in
FEDFUNDS.
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The drops in M1SL, TOTRESNS, BUSLOANS and NONREVSL let the available liquidity shrink,
what the US Federal Reserve is exactly aiming at. In addition, prices and inflation (NAPMPRI,
PPIFGS, PPIITM, PPICRM, CPIAUCSL, CPIAPPSL, CPITRNSL, CUSR0000SAC, CUSR0000SAD,
CUSR0000SA0L2, CUSR0000SA0L5) climb in the long term such that the US economy eventually leaves
its crisis mode and comes back to normal. This assumption is supported by the raising composite
leading indicator MEI and GDP. Although there are no long-term effects on the export and import
of goods and serices (EXPGSC1, IMPGSC1), both decrease. The reduced export might arise from the
strong USD, which makes US products more expensive abroad. By contrast, the strong USD reduces
the USD prices of foreign products. Hence, the drop in USD prices is not balanced by a bigger amount
of imported products. Finally, assets and reserves of the Federal Reserve (WALCL, MBST, TREAST,
WRESBAL, AMBSL) possibly change.

Figures A6–A10 illustrate the estimated FEVD. Here, each plot displays the innovations in
CURRCIR, AMBSL and FEDFUNDS. Then, we conclude: First, total contribution as well as single
ones in CURRCIR, AMBSL and FEDFUNDS considerably change over time and depend on the chosen
variable. Second, CURRCIR innovations heavily affect the forecast error variance of IPB53100N,
IPB53200N, RPI, W875RX1, HOUST, HOUSTS, HOUSTW, PERMITNSA, EXPGSC1 and MBST,
which rank among the macroeconomic data. For AMBSL, we have a scattered picture. On the one
hand, its shocks drive the forecast error variance of production data (IPFINAL, IPBUSEQ, IPMAT,
INDPRO, CUMFNS, GDP, IMPGSC1), income (RPI, W875RX1), employment (PAYEMS, USGOOD,
MANEMP, NDMANEMP, CES0800000001, USTPU, USWTRADE, USFIRE, USPBS), consumption (PCE,
PCEND, PCES) and inflation (NAPMPRI, PPIFGS, PPIFCG, PPIITM, PPICRM, CPIAPPSL, CPITRNSL,
CUSR0000SAC, CES3000000008). On the other hand, those also affect the forecast error variance of
financial data (FSPCOM, EXJPUS, EXUSUK, EXCAUS, EXGEUS, EXFRUS, EXITUS, EXUSEU) and
liquidity measures (M1SL, M2SL, TOTRESNS, BUSLOANS). Similarly, FEDFUNDS shocks move all
areas, in particular, US Treasuries (TB3MS, TB6MS, GS1, GS5, GS10, TB3SMFFM, TB6SMFFM, T1YFFM,
T5YFFM, T10YFFM) and corporate bond spreads (AAA, BAA, AAAFFM, BAAFFM). Besides the
observed factors, the idiosyncratic error variance (Σe)ii usually represents an important driver of the
forecast error variance.

5. Conclusions and Final Remarks

This article considers the estimation of FAVARs, when the underlying panel data is incomplete.
Thereby, incompleteness arises from the inclusion of mixed-frequency information and the absence
of single values. Besides the panel data, a FAVAR comprises observable variables which, together
with hidden factors, drive the joint factor dynamics. So far, the presented estimation method calls for
full time series of the observable factors. Therefore, an extension to incomplete observed factors is a
direction of the future research.

Within a maximum likelihood framework, a fully parametric two-step routine simultaneously
estimates unknown model parameters and missing data. In a nutshell, two expectation-maximization
algorithms are alternately applied until a pre-specified convergence criterion is reached. The first
derives complete data from the observations and latest parameter estimates, whereas the second
re-estimates the parameters, whenever the complete data changes. In the scope of a MC simulation
study, the superior estimation quality of the suggested approach compared to already existing methods
is confirmed.

The main contributions of this paper to the existing literature are as follows: First, we extend the
FAVAR of Bernanke et al. (2005) to incomplete panel data. Marcellino and Sivec (2016) did the same,
but their estimation method requires the observable factor components to be part of the panel data.
By contrast, we modify the Kalman filter such that it takes into account that the factors are partially
observed and so, can relax their restriction.
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Second, the presented estimation method adds flexibility to the loadings matrix. As mentioned
before, in Bork (2009) the observable factors are included in the panel data. In doing so, they occupy
certain positions which calls for a specific shape of the loadings matrix, but allows Bork (2009) to
apply estimation methods for dynamic approximate factor model for the estimation of the FAVAR of
Bernanke et al. (2005). A main advantage of our new Kalman filter is the fact that we have to choose a
few loadings constraints to ensure parameter uniqueness, but there is no need for a special structure of
the loadings matrix.

Third, we explicitly separate the observable factors from latent ones. Because of this, we determine
all results for the general case of an arbitrary autoregressive oder p ≥ 1. That is, we do not use the
argument that any VAR of order p ≥ 1 can be traced back to a VAR(1) and do not treat this simplest
case. Therefore, our results can be directly applied without any adjustments.

Fourth, the inclusion of mixed-frequency data enables us to investigate the impact of the monetary
policy on quarterly indicators like GDP. For instance, our empirical study considers the US economy.
Based on a sample, which covers 108 macroeconomic variables and a three-dimensional vector of
observable factors over a period from January 1959 until October 2015, we come to the conclusion that
GDP gains from an increase in the Effectice Federal Funds Rate by 0.25% in the long term.

In the recent literature, FAVARs were primarily used in the context of monetary policy.
However, the extraction of relevant information from big data is already an overarching topic.
Therefore, the application of FAVARs to areas beyond monetary policy (e.g., customer behavior/churn,
macroeconomic forecasting, diagnosis of diseases) based on the proposed estimation method could be
part of the future research. In addition, our approach may be extended to serially correlated errors
such that the overall framework admits cross-sectionally and serially correlated error terms.

In the case of monetary policy, a comprehensive comparison of the presented approach with
Multivariate State-space Time-varying Parameter VARs (MVSS-TVP-VARs), Dynamic Stochastic
General Equilibrium Models (DSGEs), Bayesian VARs and their extensions as in Bekiros and
Paccagnini (2014, 2015) could be performed. In this regard, some of them must be extended to
ragged panel data in a first step. Furthermore, the seemingly unrelated time series equations for
MVSS-TVP-VARs in Bekiros and Paccagnini (2015) rely on the univariate version of the standard
Kalman Filter and consider the observable variables Yt independently. Finally, the vector Yt must be
part of the panel data Xt. Therefore, the most important direction of the future research could be the
combination of the models in Bekiros and Paccagnini (2014, 2015) with our proposed Kalman Filter for
the joint vector

(
F′t, Y′t

)
based on the panel data Xt.
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KS Kalman Smoother
MC Monte Carlo
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Appendix A. Algorithms

Algorithm A1: Kalman Filter for FAVARs with complete panel data
### Initialization
Λ̄, Σe, Φ̄i , Σv̄, Xt, Yt for t = 1, . . . , T and i = 1, . . . , p are known;

ˆ̄Fp|p =

[(
F̄PCA

p

)′
, . . . ,

(
F̄PCA

1
)′]′;

P̂F̄
p|p =

[
IpK OpK×pM

]
ΣF̄,Y

[
IpK

OpM×pK

]
;

Ŷp|p = Yp;
X̂p|p = Xp;

### Forward recursion
for t = p + 1 to T do

# Prediction step

ˆ̄Ft|t−1 = A f

 ˆ̄Ft−1|t−1

Yt−1

;

P̂F̄
t|t−1 = A f

 P̂F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

 (A f )′ + Σ f f
v ;

Ŷt|t−1 =
[
Φ̄y f

1 · · · Φ̄y f
p Φ̄yy

1 · · · Φ̄yy
p

]  ˆ̄Ft−1|t−1

Yt−1

;

P̂Y
t|t−1 =

[
Φ̄y f

1 · · · Φ̄y f
p Φ̄yy

1 · · · Φ̄yy
p

] P̂F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

[Φ̄y f
1 · · · Φ̄y f

p Φ̄yy
1 · · · Φ̄yy

p

]′
+ Σyy

v ;

P̂F̄,Y
t|t−1 = A f

 P̂F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

 [Φ̄y f
1 · · · Φ̄y f

p Φ̄yy
1 · · · Φ̄yy

p

]′
;

X̂t|t−1 =
[
Λ̄ f ON×(p−1)K Λ̄y

]  ˆ̄Ft|t−1

Ŷt|t−1

;

P̂X
t|t−1 =

[
Λ̄ f ON×(p−1)K Λ̄y

] P̂F̄
t|t−1 P̂F̄,Y

t|t−1

P̂Y ,F̄
t|t−1 P̂Y

t|t−1




(
Λ̄ f )′

O(p−1)K×N

(Λ̄y)
′

+ Σe;

P̂F̄,X
t|t−1 =

[
P̂F̄

t|t−1 P̂F̄,Y
t|t−1

] 
(
Λ̄ f )′

O(p−1)K×N

(Λ̄y)
′

;

P̂Y ,X
t|t−1 =

[
Φ̄y f

1 · · · Φ̄y f
p Φ̄yy

1 · · · Φ̄yy
p

]  P̂F̄
t−1|t−1 OpK×pM

OpM×pK OpM×pM

A′


(
Λ̄ f )′

O(p−1)K×N

(Λ̄y)
′

O(p−1)M×N


;

# Correction step

ΓKF
t =

[
P̂F̄,Y

t|t−1 P̂F̄,X
t|t−1

] P̂Y
t|t−1 P̂Y ,X

t|t−1

P̂X,Y
t|t−1 P̂X

t|t−1

−1

;

ˆ̄Ft|t =
ˆ̄Ft|t−1 + ΓKF

t

 Yt − Ŷt|t−1

Xt − X̂t|t−1

;

P̂F̄
t|t = P̂F̄

t|t−1 − ΓKF
t

P̂Y
t|t−1 P̂Y ,X

t|t−1

P̂X,Y
t|t−1 P̂X

t|t−1

 (ΓKF
t
)′;
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Algorithm A2: Estimation of FAVARs with constraints for incomplete panel data

Set relative termination criteria η > 0 and ξ > 0;
Define upper limits of factor dimension K̄ ≥ 1 and lag order p̄ ≥ 1;
Initialize overall parameter set Θ̂ov = ∅;
Initialize overall AIC by AICov = ∞ (or any sufficiently large number);
for K = 1 to K̄ do

for p = 1 to p̄ do

### Initialization

for i = 1 to N do

Initialize X̄i
(0) (if necessary, fill gaps);

Define Qi;

Determine standardized panel data X(0);
Set loop (l) = 0;
Initialize model parameters using PCA and OLS;
Run EM with X(l) and termination criterion η, store (K, p) and estimated parameters Θ̂(l);
Determine EΘ̂(l)

[
L
(

Θ̂(l) |X(l) , C
)
|X(l) , Y

] ;

for i = 1 to N do

Using (17), compute X̄i
(l+1) ;

Determine standardized panel data X(l+1);
Run EM with X(l+1), η, store (K, p) and estimated parameters Θ̂(l+1);
Determine EΘ̂(l+1)

[
L
(

Θ̂(l+1) |X(l+1) , C
)
|X(l+1) , Y

] ;
### Alternating EMs

while

abs

(
EΘ̂(l+1)

[
L
(

Θ̂(l+1) |X(l+1) ,C
)
|X(l+1) ,Y

]
−EΘ̂(l)

[
L
(

Θ̂(l) |X(l) ,C
)
|X(l) ,Y

])
1
2

(
abs

(
EΘ̂(l+1)

[
L
(

Θ̂(l+1) |X(l+1) ,C
)
|X(l+1) ,Y

])
+abs

(
EΘ̂(l)

[
L
(

Θ̂(l) |X(l) ,C
)
|X(l) ,Y

])) > ξ do

Set loop index (l) = (l + 1);
for i = 1 to N do

Using (17), compute X̄i
(l+1) ;

Determine standardized panel data X(l+1);
Run EM with X(l+1), η, store (K, p) and estimated parameters Θ̂(l+1);
Determine EΘ̂(l+1)

[
L
(

Θ̂(l+1) |X(l+1) , C
)
|X(l+1) , Y

] ;

Determine temporary AICtmp ;
if AICtmp < AICov then

Renew overall AIC value by AICov = AICtmp;
Update overall parameter set by Θ̂ov = Θ̂(l+1);



Econometrics 2019, 7, 31 19 of 43

Appendix B. Simulation Results

Table A1. Means of trace R2 based on hidden factors for random FAVARs using PCA and OLS.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1, M = 1, p = 1

80 600 0.49 0.49 0.48 0.49 0.49 0.49 0.48 0.50 0.49 0.49 0.49 0.50
80 800 0.49 0.49 0.50 0.49 0.50 0.49 0.48 0.50 0.49 0.49 0.49 0.48

100 600 0.49 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
100 800 0.50 0.50 0.49 0.49 0.49 0.50 0.49 0.49 0.49 0.49 0.50 0.50
120 600 0.50 0.49 0.50 0.50 0.50 0.49 0.48 0.50 0.50 0.49 0.50 0.48
120 800 0.49 0.50 0.49 0.50 0.49 0.49 0.50 0.49 0.49 0.49 0.49 0.49

K = 3, M = 1, p = 1

80 600 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.74 0.74 0.73 0.73
80 800 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.74 0.74 0.73 0.73

100 600 0.75 0.76 0.76 0.75 0.76 0.75 0.75 0.75 0.76 0.75 0.75 0.74
100 800 0.75 0.76 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.75 0.74
120 600 0.76 0.77 0.76 0.76 0.77 0.77 0.76 0.76 0.77 0.77 0.76 0.75
120 800 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.75 0.76 0.76 0.75 0.75

K = 3, M = 3, p = 1

80 600 0.55 0.56 0.57 0.56 0.56 0.56 0.56 0.56 0.55 0.56 0.56 0.55
80 800 0.56 0.56 0.56 0.56 0.55 0.56 0.55 0.56 0.55 0.55 0.55 0.55

100 600 0.57 0.56 0.57 0.56 0.56 0.57 0.56 0.56 0.56 0.57 0.57 0.56
100 800 0.56 0.56 0.57 0.57 0.56 0.57 0.57 0.56 0.56 0.56 0.56 0.55
120 600 0.57 0.57 0.57 0.58 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.56
120 800 0.56 0.57 0.57 0.57 0.57 0.56 0.57 0.57 0.57 0.57 0.57 0.56

K = 3, M = 1, p = 2

80 600 0.79 0.79 0.79 0.78 0.79 0.79 0.78 0.78 0.79 0.79 0.78 0.77
80 800 0.79 0.79 0.78 0.78 0.79 0.79 0.78 0.78 0.79 0.79 0.78 0.78

100 600 0.80 0.80 0.80 0.79 0.80 0.80 0.80 0.80 0.81 0.81 0.79 0.79
100 800 0.81 0.80 0.80 0.80 0.81 0.80 0.80 0.80 0.80 0.80 0.79 0.79
120 600 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80 0.81 0.81 0.80 0.80
120 800 0.82 0.82 0.81 0.81 0.82 0.81 0.81 0.80 0.81 0.81 0.81 0.80

K = 3, M = 3, p = 2

80 600 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
80 800 0.65 0.65 0.65 0.65 0.66 0.66 0.65 0.65 0.65 0.65 0.65 0.65

100 600 0.66 0.66 0.66 0.65 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.66
100 800 0.67 0.66 0.66 0.67 0.66 0.66 0.66 0.65 0.66 0.66 0.66 0.66
120 600 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.66 0.67 0.67 0.66 0.66
120 800 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.66 0.67 0.67 0.67 0.66

The displayed means are derived from 500 MC simulations for known dimensions K and p. a For incomplete
time series a stock variable is assumed; b For incomplete data, dN/2e and bN/2c time series are stock and flow
(average formulation) variables, respectively; c For incomplete data, dN/2e and bN/2c time series serve as
stock or change in flow (average formulaton) variables.
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Table A2. Means of trace R2 based on hidden factors for random FAVARs using standard KF and KS,
when complete panel data relies on estimated factors instead of observed variables.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1, M = 1, p = 1

80 600 0.46 0.46 0.45 0.46 0.46 0.46 0.45 0.44 0.46 0.47 0.45 0.43
80 800 0.47 0.46 0.47 0.46 0.47 0.47 0.45 0.45 0.47 0.46 0.43 0.43
100 600 0.46 0.47 0.48 0.46 0.47 0.47 0.44 0.40 0.47 0.47 0.41 0.40
100 800 0.48 0.48 0.46 0.47 0.46 0.47 0.44 0.41 0.46 0.47 0.43 0.40
120 600 0.48 0.47 0.48 0.47 0.48 0.47 0.42 0.42 0.48 0.46 0.42 0.40
120 800 0.47 0.48 0.47 0.48 0.47 0.47 0.45 0.40 0.47 0.46 0.42 0.42

K = 3, M = 1, p = 1

80 600 0.68 0.67 0.67 0.66 0.68 0.67 0.65 0.63 0.68 0.67 0.64 0.56
80 800 0.68 0.67 0.67 0.66 0.68 0.67 0.66 0.63 0.68 0.67 0.64 0.57
100 600 0.70 0.69 0.69 0.67 0.70 0.69 0.67 0.63 0.70 0.69 0.66 0.56
100 800 0.69 0.69 0.68 0.68 0.70 0.69 0.68 0.63 0.70 0.69 0.66 0.57
120 600 0.71 0.70 0.70 0.69 0.71 0.71 0.69 0.63 0.71 0.70 0.66 0.56
120 800 0.71 0.70 0.70 0.70 0.71 0.70 0.69 0.65 0.71 0.70 0.66 0.57

K = 3, M = 3, p = 1

80 600 0.38 0.37 0.37 0.35 0.38 0.37 0.35 0.31 0.38 0.37 0.33 0.29
80 800 0.38 0.38 0.36 0.35 0.38 0.36 0.34 0.31 0.37 0.36 0.32 0.29
100 600 0.41 0.39 0.38 0.37 0.41 0.39 0.36 0.31 0.40 0.38 0.33 0.30
100 800 0.40 0.39 0.38 0.37 0.40 0.39 0.36 0.31 0.40 0.38 0.33 0.30
120 600 0.42 0.41 0.40 0.39 0.42 0.41 0.36 0.31 0.42 0.40 0.33 0.28
120 800 0.41 0.41 0.40 0.39 0.42 0.40 0.37 0.31 0.42 0.40 0.34 0.29

K = 3, M = 1, p = 2

80 600 0.75 0.74 0.74 0.73 0.75 0.74 0.73 0.69 0.75 0.74 0.73 0.65
80 800 0.75 0.74 0.73 0.73 0.75 0.75 0.73 0.69 0.75 0.74 0.72 0.66
100 600 0.77 0.76 0.76 0.74 0.76 0.76 0.74 0.70 0.77 0.76 0.72 0.65
100 800 0.77 0.76 0.75 0.75 0.77 0.76 0.75 0.71 0.76 0.76 0.73 0.67
120 600 0.78 0.78 0.76 0.76 0.78 0.77 0.74 0.70 0.78 0.77 0.73 0.65
120 800 0.78 0.78 0.77 0.76 0.78 0.77 0.75 0.71 0.78 0.77 0.74 0.66

K = 3, M = 3, p = 2

80 600 0.54 0.52 0.52 0.51 0.55 0.54 0.50 0.47 0.54 0.52 0.50 0.45
80 800 0.54 0.52 0.53 0.52 0.55 0.54 0.49 0.48 0.55 0.52 0.50 0.47
100 600 0.56 0.55 0.53 0.52 0.56 0.54 0.51 0.47 0.56 0.54 0.48 0.45
100 800 0.57 0.55 0.55 0.54 0.55 0.55 0.52 0.46 0.55 0.54 0.50 0.45
120 600 0.57 0.57 0.56 0.55 0.57 0.57 0.50 0.45 0.58 0.55 0.49 0.42
120 800 0.57 0.57 0.55 0.55 0.57 0.57 0.52 0.46 0.57 0.56 0.49 0.43

The displayed means are derived from 500 MC simulations for known dimensions K and p. a For incomplete
time series a stock variable is assumed; b For incomplete data, dN/2e and bN/2c time series are stock and flow
(average formulation) variables, respectively; c For incomplete data, dN/2e and bN/2c time series serve as
stock or change in flow (average formulaton) variables.
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Table A3. Means of trace R2 based on hidden factors for random FAVARs using standard KF and KS,
when complete panel data takes observed variables into account.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1, M = 1, p = 1

80 600 0.46 0.46 0.45 0.46 0.46 0.46 0.46 0.47 0.46 0.47 0.46 0.46
80 800 0.47 0.46 0.47 0.47 0.47 0.47 0.46 0.47 0.47 0.46 0.46 0.45
100 600 0.46 0.48 0.48 0.46 0.47 0.47 0.47 0.46 0.47 0.47 0.47 0.46
100 800 0.48 0.48 0.47 0.47 0.46 0.47 0.46 0.47 0.46 0.47 0.47 0.47
120 600 0.48 0.47 0.48 0.48 0.48 0.47 0.46 0.47 0.48 0.47 0.48 0.46
120 800 0.47 0.48 0.47 0.48 0.47 0.47 0.48 0.47 0.47 0.47 0.47 0.46

K = 3, M = 1, p = 1

80 600 0.68 0.67 0.67 0.66 0.68 0.68 0.66 0.66 0.68 0.67 0.66 0.64
80 800 0.68 0.67 0.67 0.66 0.68 0.67 0.67 0.66 0.68 0.67 0.66 0.64
100 600 0.70 0.69 0.69 0.68 0.70 0.69 0.68 0.67 0.70 0.69 0.68 0.66
100 800 0.69 0.69 0.68 0.68 0.70 0.69 0.69 0.67 0.70 0.69 0.68 0.66
120 600 0.71 0.71 0.70 0.69 0.71 0.71 0.70 0.69 0.71 0.71 0.69 0.67
120 800 0.71 0.71 0.70 0.70 0.71 0.70 0.70 0.68 0.71 0.70 0.69 0.67

K = 3, M = 3, p = 1

80 600 0.38 0.38 0.38 0.37 0.38 0.38 0.38 0.37 0.38 0.39 0.38 0.36
80 800 0.38 0.39 0.38 0.37 0.38 0.38 0.37 0.37 0.37 0.38 0.37 0.36
100 600 0.41 0.40 0.40 0.39 0.41 0.40 0.39 0.39 0.40 0.40 0.40 0.38
100 800 0.40 0.40 0.39 0.39 0.40 0.40 0.40 0.39 0.40 0.39 0.39 0.38
120 600 0.42 0.42 0.42 0.41 0.42 0.42 0.41 0.41 0.42 0.42 0.42 0.39
120 800 0.41 0.41 0.41 0.41 0.42 0.41 0.41 0.41 0.42 0.42 0.42 0.39

K = 3, M = 1, p = 2

80 600 0.75 0.74 0.74 0.73 0.75 0.74 0.74 0.73 0.75 0.74 0.74 0.72
80 800 0.75 0.74 0.74 0.73 0.75 0.75 0.74 0.72 0.75 0.75 0.73 0.72
100 600 0.77 0.76 0.76 0.74 0.76 0.76 0.76 0.75 0.77 0.77 0.75 0.74
100 800 0.77 0.76 0.76 0.75 0.77 0.76 0.76 0.75 0.76 0.76 0.75 0.74
120 600 0.78 0.78 0.76 0.77 0.78 0.78 0.77 0.76 0.78 0.78 0.76 0.75
120 800 0.78 0.78 0.77 0.76 0.78 0.77 0.77 0.76 0.78 0.78 0.77 0.76

K = 3, M = 3, p = 2

80 600 0.54 0.53 0.53 0.53 0.55 0.55 0.53 0.53 0.54 0.53 0.54 0.53
80 800 0.54 0.53 0.54 0.53 0.55 0.54 0.52 0.54 0.55 0.53 0.54 0.54
100 600 0.56 0.55 0.54 0.53 0.56 0.55 0.55 0.55 0.56 0.55 0.54 0.54
100 800 0.57 0.56 0.56 0.56 0.55 0.56 0.55 0.53 0.55 0.55 0.55 0.54
120 600 0.57 0.57 0.57 0.57 0.57 0.58 0.56 0.56 0.58 0.57 0.56 0.55
120 800 0.57 0.57 0.56 0.56 0.57 0.58 0.57 0.56 0.57 0.57 0.56 0.56

The displayed means are derived from 500 MC simulations for known dimensions K and p. a For incomplete
time series a stock variable is assumed; b For incomplete data, dN/2e and bN/2c time series are stock and flow
(average formulation) variables, respectively; c For incomplete data, dN/2e and bN/2c time series serve as
stock or change in flow (average formulaton) variables.
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Table A4. Means of trace R2 based on hidden factors for random FAVARs using new KF and KS.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1, M = 1, p = 1

80 600 0.92 0.91 0.91 0.91 0.92 0.91 0.90 0.90 0.92 0.91 0.90 0.89
80 800 0.92 0.91 0.91 0.91 0.92 0.91 0.91 0.90 0.92 0.91 0.90 0.89
100 600 0.93 0.93 0.92 0.92 0.93 0.92 0.92 0.91 0.93 0.92 0.91 0.91
100 800 0.93 0.93 0.92 0.92 0.93 0.92 0.92 0.91 0.93 0.92 0.91 0.91
120 600 0.94 0.94 0.93 0.93 0.94 0.94 0.93 0.92 0.94 0.94 0.92 0.92
120 800 0.94 0.94 0.93 0.93 0.94 0.94 0.93 0.92 0.94 0.94 0.92 0.92

K = 3, M = 1, p = 1

80 600 0.83 0.81 0.81 0.79 0.83 0.82 0.81 0.79 0.83 0.82 0.80 0.77
80 800 0.82 0.82 0.80 0.80 0.83 0.82 0.81 0.80 0.83 0.82 0.80 0.77
100 600 0.84 0.84 0.83 0.82 0.85 0.84 0.82 0.82 0.85 0.84 0.82 0.80
100 800 0.85 0.84 0.83 0.82 0.85 0.84 0.84 0.82 0.85 0.84 0.83 0.80
120 600 0.86 0.85 0.85 0.84 0.87 0.86 0.84 0.83 0.87 0.86 0.84 0.81
120 800 0.87 0.86 0.85 0.84 0.87 0.85 0.85 0.83 0.87 0.86 0.84 0.81

K = 3, M = 3, p = 1

80 600 0.76 0.76 0.75 0.73 0.77 0.75 0.73 0.72 0.77 0.76 0.73 0.68
80 800 0.78 0.75 0.75 0.73 0.77 0.76 0.74 0.73 0.77 0.75 0.73 0.69
100 600 0.79 0.77 0.77 0.75 0.79 0.78 0.76 0.75 0.78 0.78 0.76 0.71
100 800 0.79 0.78 0.78 0.75 0.79 0.78 0.78 0.74 0.80 0.78 0.76 0.71
120 600 0.81 0.80 0.77 0.78 0.80 0.79 0.78 0.77 0.80 0.79 0.77 0.72
120 800 0.81 0.80 0.79 0.77 0.81 0.80 0.79 0.77 0.81 0.80 0.78 0.73

K = 3, M = 1, p = 2

80 600 0.85 0.84 0.83 0.82 0.85 0.84 0.83 0.82 0.85 0.84 0.83 0.80
80 800 0.85 0.84 0.83 0.82 0.85 0.84 0.83 0.82 0.85 0.84 0.83 0.81
100 600 0.86 0.86 0.85 0.84 0.86 0.85 0.85 0.84 0.87 0.86 0.85 0.83
100 800 0.87 0.86 0.86 0.85 0.87 0.86 0.85 0.85 0.87 0.86 0.85 0.83
120 600 0.88 0.87 0.87 0.86 0.87 0.87 0.87 0.85 0.88 0.87 0.86 0.85
120 800 0.88 0.88 0.87 0.86 0.88 0.87 0.87 0.86 0.88 0.88 0.86 0.85

K = 3, M = 3, p = 2

80 600 0.79 0.79 0.77 0.76 0.79 0.78 0.77 0.76 0.79 0.78 0.77 0.75
80 800 0.80 0.79 0.78 0.77 0.80 0.79 0.79 0.77 0.80 0.79 0.77 0.76
100 600 0.81 0.81 0.80 0.78 0.81 0.80 0.79 0.78 0.81 0.80 0.79 0.77
100 800 0.82 0.81 0.81 0.79 0.82 0.81 0.80 0.79 0.82 0.82 0.80 0.78
120 600 0.83 0.82 0.81 0.81 0.83 0.82 0.81 0.80 0.83 0.82 0.81 0.79
120 800 0.84 0.83 0.82 0.81 0.84 0.83 0.82 0.81 0.84 0.83 0.82 0.79

The displayed means are derived from 500 MC simulations for known dimensions K and p. a For incomplete
time series a stock variable is assumed; b For incomplete data, dN/2e and bN/2c time series are stock and flow
(average formulation) variables, respectively; c For incomplete data, dN/2e and bN/2c time series serve as
stock or change in flow (average formulaton) variables.
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Table A5. Trace R2 ratios based on hidden factors for random FAVARs using modified KF and KS versus
PCA and OLS. The displayed means are derived from 500 MC simulations for known dimensions K
and p.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1, M = 1, p = 1

80 600 1.88 1.86 1.88 1.85 1.88 1.86 1.87 1.81 1.88 1.84 1.82 1.80
80 800 1.86 1.86 1.84 1.84 1.83 1.84 1.87 1.81 1.85 1.85 1.85 1.85

100 600 1.91 1.87 1.85 1.90 1.88 1.89 1.86 1.87 1.88 1.88 1.85 1.86
100 800 1.86 1.85 1.90 1.86 1.91 1.86 1.89 1.85 1.91 1.87 1.84 1.83
120 600 1.89 1.92 1.87 1.87 1.90 1.91 1.92 1.85 1.90 1.91 1.85 1.90
120 800 1.91 1.89 1.89 1.87 1.91 1.89 1.85 1.87 1.91 1.89 1.87 1.87

K = 3, M = 1, p = 1

80 600 1.12 1.10 1.10 1.07 1.12 1.10 1.10 1.08 1.12 1.10 1.09 1.06
80 800 1.12 1.11 1.09 1.08 1.12 1.11 1.10 1.09 1.12 1.11 1.09 1.07

100 600 1.12 1.11 1.10 1.09 1.12 1.11 1.10 1.09 1.12 1.11 1.10 1.07
100 800 1.13 1.11 1.11 1.10 1.13 1.12 1.11 1.10 1.13 1.12 1.11 1.08
120 600 1.13 1.11 1.11 1.10 1.13 1.12 1.11 1.10 1.13 1.12 1.11 1.08
120 800 1.14 1.12 1.12 1.11 1.14 1.13 1.11 1.11 1.14 1.13 1.11 1.08

K = 3, M = 3, p = 1

80 600 1.38 1.35 1.31 1.31 1.37 1.34 1.31 1.29 1.39 1.34 1.31 1.23
80 800 1.39 1.35 1.34 1.31 1.39 1.36 1.34 1.31 1.39 1.36 1.32 1.25

100 600 1.39 1.37 1.35 1.32 1.40 1.37 1.35 1.33 1.39 1.37 1.33 1.26
100 800 1.41 1.38 1.36 1.33 1.41 1.38 1.37 1.32 1.41 1.38 1.35 1.29
120 600 1.43 1.39 1.36 1.35 1.41 1.39 1.37 1.34 1.41 1.39 1.34 1.29
120 800 1.44 1.40 1.38 1.35 1.42 1.41 1.39 1.35 1.43 1.41 1.36 1.29

K = 3, M = 1, p = 2

80 600 1.07 1.07 1.05 1.04 1.07 1.07 1.06 1.05 1.07 1.07 1.05 1.04
80 800 1.07 1.07 1.06 1.06 1.07 1.07 1.06 1.06 1.07 1.06 1.06 1.04

100 600 1.08 1.07 1.06 1.06 1.08 1.07 1.06 1.05 1.07 1.07 1.07 1.05
100 800 1.07 1.07 1.07 1.06 1.08 1.07 1.07 1.06 1.08 1.07 1.07 1.05
120 600 1.08 1.07 1.08 1.07 1.08 1.07 1.07 1.06 1.08 1.07 1.07 1.06
120 800 1.08 1.08 1.07 1.07 1.08 1.08 1.08 1.06 1.09 1.08 1.07 1.06

K = 3, M = 3, p = 2

80 600 1.22 1.22 1.19 1.17 1.21 1.20 1.19 1.17 1.22 1.21 1.18 1.15
80 800 1.22 1.22 1.20 1.18 1.22 1.21 1.22 1.18 1.22 1.22 1.18 1.16

100 600 1.23 1.22 1.22 1.20 1.23 1.22 1.21 1.19 1.23 1.22 1.22 1.17
100 800 1.23 1.23 1.21 1.18 1.24 1.22 1.22 1.21 1.25 1.24 1.21 1.18
120 600 1.24 1.22 1.22 1.21 1.24 1.22 1.23 1.21 1.24 1.23 1.22 1.20
120 800 1.25 1.23 1.23 1.22 1.26 1.23 1.22 1.23 1.25 1.24 1.23 1.20

a For incomplete time series a stock variable is assumed; b For incomplete data, dN/2e and bN/2c time series
are stock and flow (average formulation) variables, respectively; c For incomplete data, dN/2e and bN/2c time
series serve as stock or change in flow (average formulaton) variables.
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Table A6. Trace R2 ratios based on hidden factors for random FAVARs using modified KF and KS
versus standard KF and KS, when complete panel data relies on estimated factors instead of observed
variables. The displayed means are derived from 500 MC simulations for known dimensions K and p.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1, M = 1, p = 1

80 600 1.99 1.97 2.01 1.98 1.99 1.97 2.01 2.03 1.99 1.95 2.01 2.06
80 800 1.97 1.98 1.95 1.96 1.93 1.95 2.00 2.01 1.96 1.97 2.07 2.09

100 600 2.00 1.96 1.94 2.00 1.97 1.99 2.08 2.25 1.97 1.99 2.21 2.27
100 800 1.95 1.93 2.00 1.96 2.01 1.95 2.09 2.20 2.00 1.98 2.11 2.25
120 600 1.96 2.00 1.95 1.96 1.97 2.00 2.24 2.21 1.97 2.04 2.18 2.28
120 800 1.99 1.97 1.98 1.95 1.98 1.97 2.08 2.31 1.98 2.02 2.18 2.19

K = 3, M = 1, p = 1

80 600 1.22 1.22 1.22 1.20 1.22 1.21 1.23 1.26 1.22 1.22 1.24 1.39
80 800 1.22 1.22 1.20 1.20 1.22 1.22 1.23 1.27 1.22 1.23 1.25 1.37

100 600 1.20 1.21 1.20 1.21 1.22 1.21 1.23 1.30 1.22 1.22 1.25 1.43
100 800 1.22 1.22 1.22 1.21 1.23 1.22 1.23 1.29 1.23 1.22 1.27 1.40
120 600 1.22 1.21 1.21 1.20 1.22 1.22 1.23 1.31 1.22 1.22 1.28 1.44
120 800 1.23 1.22 1.21 1.21 1.23 1.22 1.23 1.29 1.23 1.23 1.26 1.43

K = 3, M = 3, p = 1

80 600 2.02 2.04 2.04 2.10 1.99 2.03 2.12 2.33 2.02 2.05 2.22 2.33
80 800 2.03 2.00 2.07 2.10 2.03 2.09 2.17 2.39 2.06 2.07 2.28 2.36

100 600 1.95 1.97 2.01 2.01 1.95 1.98 2.15 2.39 1.93 2.03 2.28 2.37
100 800 1.96 1.99 2.04 2.05 1.98 1.99 2.17 2.36 1.96 2.06 2.28 2.39
120 600 1.94 1.94 1.92 1.97 1.91 1.94 2.16 2.48 1.90 1.98 2.30 2.59
120 800 1.95 1.98 1.99 1.99 1.93 1.99 2.16 2.50 1.92 2.00 2.27 2.53

K = 3, M = 1, p = 2

80 600 1.12 1.13 1.12 1.12 1.13 1.14 1.14 1.19 1.12 1.13 1.14 1.23
80 800 1.13 1.13 1.13 1.13 1.12 1.13 1.14 1.19 1.13 1.13 1.15 1.21

100 600 1.13 1.13 1.12 1.13 1.13 1.13 1.15 1.20 1.12 1.13 1.18 1.27
100 800 1.12 1.13 1.14 1.14 1.13 1.13 1.14 1.20 1.14 1.14 1.16 1.25
120 600 1.13 1.13 1.14 1.13 1.12 1.13 1.16 1.21 1.13 1.13 1.18 1.30
120 800 1.12 1.13 1.13 1.13 1.12 1.13 1.16 1.20 1.14 1.14 1.17 1.29

K = 3, M = 3, p = 2

80 600 1.47 1.50 1.48 1.48 1.45 1.45 1.54 1.62 1.46 1.51 1.54 1.66
80 800 1.47 1.52 1.48 1.49 1.47 1.48 1.59 1.61 1.46 1.52 1.54 1.62

100 600 1.45 1.47 1.50 1.52 1.45 1.48 1.56 1.68 1.46 1.50 1.65 1.72
100 800 1.44 1.48 1.47 1.45 1.48 1.48 1.55 1.70 1.49 1.51 1.61 1.73
120 600 1.44 1.44 1.46 1.47 1.45 1.44 1.61 1.80 1.44 1.49 1.65 1.86
120 800 1.46 1.46 1.49 1.47 1.47 1.45 1.57 1.78 1.46 1.49 1.67 1.84

a For incomplete time series a stock variable is assumed; b For incomplete data, dN/2e and bN/2c time series
are stock and flow (average formulation) variables, respectively; c For incomplete data, dN/2e and bN/2c time
series serve as stock or change in flow (average formulaton) variables.
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Table A7. Trace R2 ratios based on hidden factors for random FAVARs using modified KF and KS versus
standard KF and KS, when complete panel data takes observed variables into account. The displayed
means are derived from 500 MC simulations for known dimensions K and p.

Stock a Stock/Flow (Average) b Stock/Change in Flow (Average) c

ratio of missing data ratio of missing data ratio of missing data
N T 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%

K = 1, M = 1, p = 1

80 600 1.99 1.96 2.00 1.96 1.99 1.97 1.98 1.92 1.99 1.96 1.94 1.93
80 800 1.97 1.97 1.94 1.94 1.93 1.95 1.99 1.92 1.96 1.96 1.98 1.98

100 600 2.00 1.95 1.93 1.98 1.97 1.98 1.96 1.98 1.97 1.97 1.95 1.98
100 800 1.95 1.93 1.99 1.94 2.01 1.95 1.98 1.95 2.00 1.97 1.94 1.94
120 600 1.96 1.99 1.95 1.95 1.97 1.99 2.00 1.95 1.97 1.99 1.93 2.01
120 800 1.99 1.97 1.97 1.94 1.98 1.97 1.93 1.97 1.98 1.97 1.96 1.98

K = 3, M = 1, p = 1

80 600 1.22 1.21 1.21 1.20 1.22 1.21 1.22 1.21 1.22 1.21 1.20 1.21
80 800 1.22 1.22 1.20 1.20 1.22 1.22 1.22 1.21 1.22 1.22 1.21 1.22

100 600 1.20 1.21 1.20 1.21 1.22 1.21 1.21 1.21 1.22 1.21 1.20 1.21
100 800 1.22 1.22 1.22 1.21 1.23 1.22 1.22 1.21 1.23 1.22 1.22 1.21
120 600 1.22 1.21 1.21 1.20 1.22 1.21 1.21 1.21 1.22 1.21 1.22 1.21
120 800 1.23 1.21 1.22 1.21 1.23 1.22 1.21 1.22 1.23 1.22 1.21 1.20

K = 3, M = 3, p = 1

80 600 2.02 1.99 1.94 1.99 1.99 1.97 1.95 1.95 2.02 1.96 1.94 1.89
80 800 2.03 1.95 2.00 1.99 2.03 2.02 2.00 1.98 2.06 1.99 2.01 1.94

100 600 1.95 1.92 1.93 1.89 1.95 1.93 1.94 1.92 1.93 1.94 1.90 1.84
100 800 1.96 1.95 1.96 1.95 1.98 1.94 1.96 1.90 1.96 1.98 1.95 1.89
120 600 1.94 1.90 1.85 1.88 1.91 1.88 1.88 1.85 1.90 1.89 1.85 1.86
120 800 1.95 1.94 1.92 1.89 1.93 1.93 1.92 1.87 1.92 1.92 1.87 1.89

K = 3, M = 1, p = 2

80 600 1.12 1.13 1.12 1.12 1.13 1.13 1.12 1.13 1.12 1.13 1.12 1.12
80 800 1.13 1.13 1.13 1.13 1.12 1.12 1.12 1.13 1.13 1.12 1.12 1.12

100 600 1.13 1.13 1.12 1.13 1.13 1.12 1.12 1.12 1.12 1.12 1.14 1.12
100 800 1.12 1.13 1.13 1.13 1.13 1.13 1.12 1.13 1.14 1.13 1.13 1.12
120 600 1.13 1.12 1.14 1.13 1.12 1.12 1.13 1.12 1.13 1.12 1.13 1.13
120 800 1.12 1.13 1.12 1.13 1.12 1.13 1.13 1.13 1.14 1.13 1.12 1.13

K = 3, M = 3, p = 2

80 600 1.47 1.48 1.45 1.44 1.45 1.43 1.45 1.43 1.46 1.47 1.43 1.42
80 800 1.47 1.51 1.45 1.45 1.47 1.46 1.50 1.43 1.46 1.50 1.42 1.42

100 600 1.45 1.46 1.47 1.47 1.45 1.46 1.45 1.43 1.46 1.46 1.47 1.42
100 800 1.44 1.46 1.45 1.42 1.48 1.46 1.45 1.47 1.49 1.48 1.45 1.43
120 600 1.44 1.43 1.43 1.43 1.45 1.41 1.45 1.44 1.44 1.44 1.43 1.44
120 800 1.46 1.45 1.47 1.44 1.47 1.44 1.43 1.44 1.46 1.46 1.45 1.43

a For incomplete time series a stock variable is assumed; b For incomplete data, dN/2e and bN/2c time series
are stock and flow (average formulation) variables, respectively; c For incomplete data, dN/2e and bN/2c time
series serve as stock or change in flow (average formulaton) variables.

Appendix C. Underlying Data

Except for a few time series, which were not available anymore and some new, in particular,
incomplete ones, this data is an updated version of the one in Bernanke et al. (2005). In this context,
not available refers to times series, which we could not find anymore, instead of discontinued ones.

For clarity reasons, we distinguish between the following categories: real output and income;
employment and hours; consumption; housing starts and sales; real inventories, orders and unfilled
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orders; stock prices; foreign exchange rates; interest rates; money and credit quantity aggregates; price
indices; average hourly earnings; miscellaneous; mixed-frequency time series; observed variables Yt.

The total sample ranges from January 1959 to October 2015 and is monthly updated. However,
it also comprises quarterly time series marked by “q” in the column Freq. as well as shorter time series
as indicated in the column Time span. For example, see time series MBST with its first observation in
December 2002.

With footnote 6 in mind, we have for the assumed data types in column Type: stock (1), sum
formulation of flow variable (2), average version of flow variable (3), sum formulation of change in
flow variable (4) and average version of change in flow variable (5). Note, for complete time series the
data type does not matter, since all yield an identity matrix for the matrix Qi.

Regarding data transformations in the scope of the preprocessing phase the column Trans.
distinguishes between: no transformation (1), first difference (2), second difference (3), logarithm (4)
and first difference of logarithm (5). This classification is in accordance with Bernanke et al. (2005).

Besides the series number, the first K variables of the sorted data provide their position number
in brackets (Bork 2009). An asterix * next to an abbreviation marks the respective variable as
slow-moving (Bernanke et al. 2005). Thereby, slow-moving variables are not supposed “to respond
contemporaneously to unanticipated changes in monetary policy”, however, they allow fast-moving
variables “to respond contemporaneously to policy shocks”. As most of our data comes from the
research database of the Federal Reserve Bank of St. Louis, the Uniform Resource Locator (URL)
“http://research.stlouisfed.org/fred2/series” is abbreviated by “fred”.

The column Series description provides information on how publication delays are taken
into account and highlights seasonality adjustments: Seasonally Adjusted (SA) and Not Seasonally
Adjusted (NSA).

Real output and income
No. Series ID Time Span Freq. Type Trans. Series Description
1. IPFINAL* 1959:01–2015:10 m 1 5 Industrial Production: Final Products (Market Group), Index

2012=100, SA, delay of 0 months, fred/IPFINAL
(https://fred.stlouisfed.org/series/IPFINAL)

2.[6] IPCONGD* 1959:01–2015:10 m 1 5 Industrial Production: Consumer Goods, Index 2012=100, SA,
delay of 0 months, fred/IPCONGD
(https://fred.stlouisfed.org/series/IPCONGD)

3. IPDCONGD* 1959:01–2015:10 m 1 5 Industrial Production: Durable Consumer Goods, Index 2012=100,
SA, delay of 0 months, fred/IPDCONGD
(https://fred.stlouisfed.org/series/IPDCONGD)

4. IPNCONGD* 1959:01–2015:10 m 1 5 Industrial Production: Nondurable Consumer Goods, Index
2012=100, SA, delay of 0 months, fred/IPNCONGD
(https://fred.stlouisfed.org/series/IPNCONGD)

5. IPBUSEQ* 1959:01–2015:10 m 1 5 Industrial Production: Business Equipment, Index 2012=100, SA,
delay of 0 months, fred/IPBUSEQ
(https://fred.stlouisfed.org/series/IPBUSEQ)

6. IPMAT* 1959:01–2015:10 m 1 5 Industrial Production: Materials, Index 2012=100, SA, delay of 0
months, fred/IPMAT (https://fred.stlouisfed.org/series/IPMAT)

7. IPB53100N* 1959:01–2015:10 m 1 5 Industrial Production: Durable goods materials, Index 2012=100,
NSA, delay of 0 months, fred/IPB53100N
(https://fred.stlouisfed.org/series/IPB53100N)

8. IPB53200N* 1959:01–2015:10 m 1 5 Industrial Production: Nondurable Goods Materials, Index
2012=100, NSA, delay of 0 months, fred/IPB53200N
(https://fred.stlouisfed.org/series/IPB53200N)

9. IPMANSICS* 1959:01-2015:10 m 1 5 Industrial Production: Manufacturing (SIC), Index 2012=100, SA,
delay of 0 months, fred/IPMANSICS
(https://fred.stlouisfed.org/series/IPMANSICS)

10. INDPRO* 1959:01–2015:10 m 1 5 Industrial Production Index, Index 2012=100, SA, delay of 0
months, fred/INDPRO
(https://fred.stlouisfed.org/series/INDPRO)

11. CUMFNS* 1959:01–2015:10 m 1 1 Capacity Utilization: Manufacturing (SIC), Percent of Capacity,
SA, delay of 0 months, fred/CUMFNS
(https://fred.stlouisfed.org/series/CUMFNS)

12. NAPM* 1959:01–2015:10 m 1 1 ISM Manufacturing: PMI Composite Index, Index, SA, delay of 0
months, fred/NAPM (https://fred.stlouisfed.org/series/NAPM)

13. NAPMPI* 1959:01–2015:10 m 1 1 ISM Manufacturing: Production Index, Index, SA, delay of 0
months, fred/NAPMPI
(https://fred.stlouisfed.org/series/NAPMPI)

14. RPI* 1959:01–2015:10 m 1 5 Real Personal Income, billions of chained 2009 USD, SA Annual
Rate, delay of 0 months, fred/RPI
(https://fred.stlouisfed.org/series/RPI)

http://research.stlouisfed.org/fred2/series
https://fred.stlouisfed.org/series/IPFINAL
https://fred.stlouisfed.org/series/IPCONGD
https://fred.stlouisfed.org/series/IPDCONGD
https://fred.stlouisfed.org/series/IPNCONGD
https://fred.stlouisfed.org/series/IPBUSEQ
https://fred.stlouisfed.org/series/IPMAT
https://fred.stlouisfed.org/series/IPB53100N
https://fred.stlouisfed.org/series/IPB53200N
https://fred.stlouisfed.org/series/IPMANSICS
https://fred.stlouisfed.org/series/INDPRO
https://fred.stlouisfed.org/series/CUMFNS
https://fred.stlouisfed.org/series/NAPM
https://fred.stlouisfed.org/series/NAPMPI
https://fred.stlouisfed.org/series/RPI
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15. W875RX1* 1959:01–2015:10 m 1 5 Real Personal Income Excluding Current Transfer Receipts,
billions of chained 2009 USD, SA annual rate, delay of 0 months,
fred/W875RX1 (https://fred.stlouisfed.org/series/W875RX1)

Employment and hours
No. Series ID Time Span Freq. Type Trans. Series Description
16. CE16OV* 1959:01–2015:10 m 1 5 Civilian Employment, thousands of persons, SA, delay of 0

months, fred/CE16OV
(https://fred.stlouisfed.org/series/CE16OV)

17.[4] UNRATE* 1959:01–2015:10 m 1 1 Civilian Unemployment Rate, percent, SA, delay of 0 months,
fred/UNRATE (https://fred.stlouisfed.org/series/UNRATE)

18. UEMPMEAN* 1959:01–2015:10 m 1 5 Average (Mean) Duration of Unemployment, Weeks, SA, delay
of 0 months, fred/UEMPMEAN
(https://fred.stlouisfed.org/series/UEMPMEAN)

19. UEMPLT5* 1959:01–2015:10 m 1 5 Number of Civilians Unemployed for Less Than 5 Weeks,
thousands of persons, SA, delay of 0 months, fred/UEMPLT5
(https://fred.stlouisfed.org/series/UEMPLT5)

20. UEMP5TO14* 1959:01–2015:10 m 1 5 Number of Civilians Unemployed for 5 to 14 Weeks,
thousands of persons, SA, delay of 0 months,
fred/UEMP5TO14
(https://fred.stlouisfed.org/series/UEMP5TO14)

21. UEMP15OV* 1959:01–2015:10 m 1 5 Number of Civilians Unemployed for 15 Weeks and Over,
thousands of persons, SA, delay of 0 months,
fred/UEMP15OV
(https://fred.stlouisfed.org/series/UEMP15OV)

22. UEMP15T26* 1959:01–2015:10 m 1 5 Number of Civilians Unemployed for 15 to 26 Weeks,
thousands of persons, SA, delay of 0 months,
fred/UEMP15T26
(https://fred.stlouisfed.org/series/UEMP15T26)

23.[1] PAYEMS* 1959:01–2015:10 m 1 5 All Employees: Total Nonfarm Payrolls, thousands of persons,
SA, delay of 0 months, fred/PAYEMS
(https://fred.stlouisfed.org/series/PAYEMS)

24. USPRIV* 1959:01–2015:10 m 1 5 All Employees: Total Private Industries, thousands of persons,
SA, delay of 0 months, fred/USPRIV
(https://fred.stlouisfed.org/series/USPRIV)

25. USGOOD* 1959:01–2015:10 m 1 5 All Employees: Goods-Producing Industries, Thousands of
Persons, SA, delay of 0 months, fred/USGOOD
(https://fred.stlouisfed.org/series/USGOOD)

26. CES1021000001* 1959:01–2015:10 m 1 5 All Employees: Mining and Logging: Mining, thousands of
persons, SA, delay of 0 months, fred/CES1021000001
(https://fred.stlouisfed.org/series/CES1021000001)

27. USCONS* 1959:01–2015:10 m 1 5 All Employees: Construction, thousands of persons, SA, delay
of 0 months, fred/USCONS
(https://fred.stlouisfed.org/series/USCONS)

28. MANEMP* 1959:01–2015:10 m 1 5 All Employees: Manufacturing, thousands of persons, SA,
delay of 0 months, fred/MANEMP
(https://fred.stlouisfed.org/series/MANEMP)

29. DMANEMP* 1959:01–2015:10 m 1 5 All Employees: Durable Goods, thousands of persons, SA,
delay of 0 months, fred/DMANEMP
(https://fred.stlouisfed.org/series/DMANEMP)

30. NDMANEMP* 1959:01–2015:10 m 1 5 All Employees: Nondurable Goods, thousands of persons, SA,
delay of 0 months, fred/NDMANEMP
(https://fred.stlouisfed.org/series/NDMANEMP)

31. CES0800000001* 1959:01–2015:10 m 1 5 All Employees: Private Service-Providing, thousands of
persons, SA, delay of 0 months, fred/CES0800000001
(https://fred.stlouisfed.org/series/CES0800000001)

32. USTPU* 1959:01–2015:10 m 1 5 All Employees: Trade, Transportation and Utilities, thousands
of persons, SA, delay of 0 months, fred/USTPU
(https://fred.stlouisfed.org/series/USTPU)

33. USWTRADE* 1959:01–2015:10 m 1 5 All Employees: Wholesale Trade, thousands of persons, SA,
delay of 0 months, fred/USWTRADE
(https://fred.stlouisfed.org/series/USWTRADE)

34.[5] USFIRE* 1959:01–2015:10 m 1 5 All Employees: Financial Activities, thousands of persons, SA,
delay of 0 months, fred/USFIRE
(https://fred.stlouisfed.org/series/USFIRE)

35. USPBS* 1959:01–2015:10 m 1 5 All Employees: Professional and Business Services, thousands
of persons, SA, delay of 0 months, fred/USPBS
(https://fred.stlouisfed.org/series/USPBS)

36. USGOVT* 1959:01–2015:10 m 1 5 All Employees: Government, thousands of persons, SA, delay
of 0 months, fred/USGOVT
(https://fred.stlouisfed.org/series/USGOVT)

37. AWHMAN* 1959:01–2015:10 m 1 1 Average Weekly Hours of Production and Nonsupervisory
Employees: Manufacturing, Hours, SA, delay of 0 months,
fred/AWHMAN
(https://fred.stlouisfed.org/series/AWHMAN)
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Employment and hours
No. Series ID Time Span Freq. Type Trans. Series Description
38.[7] AWOTMAN* 1959:01–2015:10 m 1 1 Average Weekly Overtime Hours of Production and

Nonsupervisory Employees: Manufacturing, Hours, SA, delay
of 0 months, fred/AWOTMAN
(https://fred.stlouisfed.org/series/AWOTMAN)

39. NAPMEI* 1959:01–2015:10 m 1 1 ISM Manufacturing: Employment Index, Index, SA, delay of 0
months, fred/NAPMEI
(https://fred.stlouisfed.org/series/NAPMEI)

Consumption
No. Series ID Time Span Freq. Type Trans. Series Description
40.[8] PCE* 1959:01–2015:10 m 1 5 Personal Consumption Expenditures, billions of USD, SA annual rate,

delay of 0 months, fred/PCE
(https://fred.stlouisfed.org/series/PCE)

41. PCEDG* 1959:01–2015:10 m 1 5 Personal Consumption Expenditures: Durable Goods, billions of
USD, SA annual rate, delay of 0 months, fred/PCEDG
(https://fred.stlouisfed.org/series/PCEDG)

42. PCEND* 1959:01–2015:10 m 1 5 Personal Consumption Expenditures: Nondurable Goods, billions of
USD, SA annual rate, delay of 0 months, fred/PCEND
(https://fred.stlouisfed.org/series/PCEND)

43. PCES* 1959:01–2015:10 m 1 5 Personal Consumption Expenditures: Services, billions of USD, SA
annual rate, delay of 0 months, fred/PCES
(https://fred.stlouisfed.org/series/PCES)

Housing starts and sales
No. Series ID Time Span Freq. Type Trans. Series Description
44. HOUST 1959:01–2015:10 m 1 4 Housing Starts: Total: New Privately Owned Housing Units

Started, thousands of units, SA annual rate, delay of 0 months,
fred/HOUST (https://fred.stlouisfed.org/series/HOUST)

45. HOUSTNE 1959:01–2015:10 m 1 4 Housing Starts in Northeast Census Region, thousands of units,
SA annual rate, delay of 0 months, fred/HOUSTNE
(https://fred.stlouisfed.org/series/HOUSTNE)

46. HOUSTMW 1959:01–2015:10 m 1 4 Housing Starts in Midwest Census Region, thousands of units, SA
annual Rate, delay of 0 months, fred/HOUSTMW
(https://fred.stlouisfed.org/series/HOUSTMW)

47. HOUSTS 1959:01–2015:10 m 1 4 Housing Starts in South Census Region, thousands of units, SA
annual rate, delay of 0 months, fred/HOUSTS
(https://fred.stlouisfed.org/series/HOUSTS)

48. HOUSTW 1959:01–2015:10 m 1 4 Housing Starts in West Census Region, thousands of units, SA
annual rate, delay of 0 months, fred/HOUSTW
(https://fred.stlouisfed.org/series/HOUSTW)

49. PERMITNSA 1959:01–2015:10 m 1 4 New Private Housing Units Authorized by Building Permits,
thousands of units, NSA, delay of 0 months, fred/PERMITNSA
(https://fred.stlouisfed.org/series/PERMITNSA)

Real inventories, orders, and unfilled orders
No. Series ID Time Span Freq. Type Trans. Series Description
50. NAPMII 1959:01–2015:10 m 1 1 ISM Manufacturing: Inventories Index, Index, NSA, delay of 0

months, fred/NAPMII (https://fred.stlouisfed.org/series/NAPMII)
51. NAPMNOI 1959:01–2015:10 m 1 1 ISM Manufacturing: New Orders Index, Index, SA, delay of 0

months, fred/NAPMNOI
(https://fred.stlouisfed.org/series/NAPMNOI)

52. NAPMSDI 1959:01–2015:10 m 1 1 ISM Manufacturing: Supplier Deliveries Index, Index, SA, delay of 0
months, fred/NAPMSDI
(https://fred.stlouisfed.org/series/NAPMSDI)

Stock prices
No. Series ID Time Span Freq. Type Trans. Series Description
53. FSPCOM 1959:01–2015:10 m 1 5 S&P’s Common Stock Price Index: Composite, delay of 0 months,

http://www.econ.yale.edu/∼shiller/data/ie_ data.xls
54. FSDXP 1959:01–2015:10 m 1 1 S&P’s Composite Common Stock: Dividend Yield, delay of 0 months,

http://www.econ.yale.edu/∼shiller/data/ ie_data.xls
55. FSPXE 1959:01–2015:10 m 1 1 S&P’s Composite Common Stock: Price-Earnings Ratio, delay of 0

months, http://www.econ.yale.edu/∼shiller/ data/ie_data.xls

Foreign exchange rates
No. Series ID Time Span Freq. Type Trans. Series Description
56. EXSZUS 1959:01–2015:10 m 1 5 Switzerland / US Foreign Exchange Rate, Swiss Francs to One USD,

NSA, delay of 0 months, fred/EXSZUS
(https://fred.stlouisfed.org/series/EXSZUS)

57. EXJPUS 1959:01–2015:10 m 1 5 Japan / US Foreign Exchange Rate, Japanese Yen to One USD, NSA,
delay of 0 months, fred/EXJPUS
(https://fred.stlouisfed.org/series/EXJPUS)

58. EXUSUK 1959:01–2015:10 m 1 5 US / UK Foreign Exchange Rate, USDs to One British Pound, NSA,
delay of 0 months, fred/EXUSUK
(https://fred.stlouisfed.org/series/EXUSUK)
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Foreign exchange rates
No. Series ID Time Span Freq. Type Trans. Series Description
59. EXCAUS 1959:01–2015:10 m 1 5 Canada / US Foreign Exchange Rate, Canadian Dollars to One USD,

NSA, delay of 0 months, fred/EXCAUS
(https://fred.stlouisfed.org/series/EXCAUS)

Interest rates
No. Series ID Time Span Freq. Type Trans. Series Description
60. TB3MS 1959:01–2015:10 m 1 1 3-Month Treasury Bill: Secondary Market Rate, percent, NSA, delay

of 0 months, fred/TB3MS
(https://fred.stlouisfed.org/series/TB3MS)

61. TB6MS 1959:01–2015:10 m 1 1 6-Month Treasury Bill: Secondary Market Rate, percent, NSA, delay
of 0 months, fred/TB6MS
(https://fred.stlouisfed.org/series/TB6MS)

62. GS1 1959:01–2015:10 m 1 1 1-Year Treasury Constant Maturity Rate, percent, NSA, delay of 0
months, fred/GS1 (https://fred.stlouisfed.org/series/GS1)

63. GS5 1959:01–2015:10 m 1 1 5-Year Treasury Constant Maturity Rate, percent, NSA, delay of 0
months, fred/GS5 (https://fred.stlouisfed.org/series/GS5)

64. GS10 1959:01–2015:10 m 1 1 10-Year Treasury Constant Maturity Rate, percent, NSA, delay of 0
months, fred/GS10 (https://fred.stlouisfed.org/series/GS10)

65. AAA 1959:01–2015:10 m 1 1 Moody’s Seasoned Aaa Corporate Bond Yield, percent, NSA, delay
of 0 months, fred/AAA (https://fred.stlouisfed.org/series/AAA)

66. BAA 1959:01–2015:10 m 1 1 Moody’s Seasoned Baa Corporate Bond Yield, percent, NSA, delay
of 0 months, fred/BAA (https://fred.stlouisfed.org/series/BAA)

67. TB3SMFFM 1959:01–2015:10 m 1 1 3-Month Treasury Bill Minus Federal Funds Rate, percent, NSA,
delay of 0 months, fred/TB3SMFFM
(https://fred.stlouisfed.org/series/TB3SMFFM)

68. TB6SMFFM 1959:01–2015:10 m 1 1 6-Month Treasury Bill Minus Federal Funds Rate, percent, NSA,
delay of 0 months, fred/TB6SMFFM
(https://fred.stlouisfed.org/series/TB6SMFFM)

69. T1YFFM 1959:01–2015:10 m 1 1 1-Year Treasury Constant Maturity Minus Federal Funds Rate,
percent, NSA, delay of 0 months, fred/T1YFFM
(https://fred.stlouisfed.org/series/T1YFFM)

70. T5YFFM 1959:01–2015:10 m 1 1 5-Year Treasury Constant Maturity Minus Federal Funds Rate,
percent, NSA, delay of 0 months, fred/T5YFFM
(https://fred.stlouisfed.org/series/T5YFFM)

71. T10YFFM 1959:01–2015:10 m 1 1 10-Year Treasury Constant Maturity Minus Federal Funds Rate,
percent, NSA, delay of 0 months, fred/T10YFFM
(https://fred.stlouisfed.org/series/T10YFFM)

72. AAAFFM 1959:01–2015:10 m 1 1 Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate,
percent, NSA, delay of 0 months, fred/AAAFFM
(https://fred.stlouisfed.org/series/AAAFFM)

73. BAAFFM 1959:01–2015:10 m 1 1 Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate,
percent, NSA, delay of 0 months, fred/BAAFFM
(https://fred.stlouisfed.org/series/BAAFFM)

Money and credit quantity aggregates
No. Series ID Time Span Freq. Type Trans. Series Description
74. M1SL 1959:01–2015:10 m 1 5 M1 Money Stock, billions of USD, SA, delay of 0 months,

fred/M1SL (https://fred.stlouisfed.org/series/M1SL)
75. M2SL 1959:01–2015:10 m 1 5 M2 Money Stock, billions of USD, SA, delay of 0 months,

fred/M2SL (https://fred.stlouisfed.org/series/M2SL)
76. TOTRESNS 1959:01–2015:10 m 1 5 Total Reserves of Depository Institutions, billions of USD, NSA,

delay of 0 months, fred/TOTRESNS
(https://fred.stlouisfed.org/series/TOTRESNS)

77. BUSLOANS 1959:01–2015:10 m 1 5 Commercial and Industrial Loans, All Commercial Banks, billions
of USD, SA, delay of 0 months, fred/BUSLOANS
(https://fred.stlouisfed.org/series/BUSLOANS)

78. NONREVSL 1959:01–2015:10 m 1 5 Total Nonrevolving Credit Owned and Securitized, Outstanding,
billions of USD, SA, delay of 0 months, fred/NONREVSL
(https://fred.stlouisfed.org/series/NONREVSL)

Price indices
No. Series ID Time Span Freq. Type Trans. Series Description
79. NAPMPRI 1959:01–2015:10 m 1 1 ISM Manufacturing: Prices Index, Index, NSA, delay of 0

months, fred/NAPMPRI
(https://fred.stlouisfed.org/series/NAPMPRI)

80. PPIFGS* 1959:01–2015:10 m 1 5 Producer Price Index by Commodity for Finished Goods,
Index 1982=100, SA, delay of 0 months, fred/PPIFGS
(https://fred.stlouisfed.org/series/PPIFGS)

81.[3] PPIFCG* 1959:01–2015:10 m 1 5 Producer Price Index by Commodity for Finished Consumer
Goods, Index 1982=100, SA, delay of 0 months, fred/PPIFCG
(https://fred.stlouisfed.org/series/PPIFCG)

82. PPIITM* 1959:01–2015:10 m 1 5 Producer Price Index by Commodity Intermediate Materials:
Supplies and Components, Index 1982=100, SA, delay of 0
months, fred/PPIITM
(https://fred.stlouisfed.org/series/PPIITM)
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Price indices
No. Series ID Time Span Freq. Type Trans. Series Description
83.[9] PPICRM* 1959:01–2015:10 m 1 5 Producer Price Index by Commodity for Crude Materials for

Further Processing, Index 1982=100, SA, delay of 0 months,
fred/PPICRM (https://fred.stlouisfed.org/series/PPICRM)

84. CPIAUCSL* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers: All Items,
Index 1982–1984=100, SA, delay of 0 months,
fred/CPIAUCSL
(https://fred.stlouisfed.org/series/CPIAUCSL)

85. CPIAPPSL* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers: Apparel,
Index 1982–1984=100, SA, delay of 0 months,
fred/CPIAPPSL
(https://fred.stlouisfed.org/series/CPIAPPSL)

86. CPITRNSL* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers:
Transportation, Index 1982–1984=100, SA, delay of 0 months,
fred/CPITRNSL
(https://fred.stlouisfed.org/series/CPITRNSL)

87. CPIMEDSL* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers: Medical
Care, Index 1982–1984=100, SA, delay of 0 months,
fred/CPIMEDSL
(https://fred.stlouisfed.org/series/CPIMEDSL)

88. CUSR0000SAC* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers:
Commodities, Index 1982–1984=100, SA, delay of 0 months,
fred/CUSR0000SAC
(https://fred.stlouisfed.org/series/CUSR0000SAC)

89. CUSR0000SAD* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers: Durables,
Index 1982–1984=100, SA, delay of 0 months,
fred/CUSR0000SAD
(https://fred.stlouisfed.org/series/CUSR0000SAD)

90. CUSR0000SAS* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers: Services,
Index 1982–1984=100, SA, delay of 0 months,
fred/CUSR0000SAS
(https://fred.stlouisfed.org/series/CUSR0000SAS)

91.[2] CPILFESL* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers: All Items
Less Food and Energy, Index 1982–1984=100, SA, delay of 0
months, fred/CPILFESL
(https://fred.stlouisfed.org/series/CPILFESL)

92. CUSR0000SA0L2* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers: All items
less shelter, Index 1982–1984=100, SA, delay of 0 months,
fred/CUSR0000SA0L2
(https://fred.stlouisfed.org/series/CUSR0000SA0L2)

93. CUSR0000SA0L5* 1959:01–2015:10 m 1 5 Consumer Price Index for All Urban Consumers: All items
less medical care, Index 1982–1984=100, SA, delay of 0
months, fred/CUSR0000SA0L5
(https://fred.stlouisfed.org/series/CUSR0000SA0L5)

Average hourly earnings
No. Series ID Time Span Freq. Type Trans. Series Description
94. CES2000000008* 1959:01–2015:10 m 1 5 Average Hourly Earnings of Production and Nonsupervisory

Employees: Construction, USD per Hour, SA, delay of 0
months, fred/CES2000000008
(https://fred.stlouisfed.org/series/CES2000000008)

95. CES3000000008* 1959:01–2015:10 m 1 5 Average Hourly Earnings of Production and Nonsupervisory
Employees: Manufacturing, USD per Hour, SA, delay of 0
months, fred/CES3000000008
(https://fred.stlouisfed.org/series/CES3000000008)

Miscellaneous
No. Series ID Time Span Freq. Type Trans. Series Description
96. MEI 1959:01–2015:10 m 1 1 Composite Leading Indicators, Amplitude Adjusted, delay of 0

months, http://stats.oecd.org/Index.aspx? DataSetCode=MEI_CLI

Mixed-frequency time series
No. Series ID Time Span Freq. Type Trans. Series Description
97. EXGEUS 1971:01–2001:12 m 1 5 Germany / US Foreign Exchange Rate, German Deutsche

Marks to One USD, NSA, delay of 0 months, fred/EXGEUS
(https://fred.stlouisfed.org/series/EXGEUS)

98. EXFRUS 1971:01–2001:12 m 1 5 France / US Foreign Exchange Rate, French Francs to One
USD, NSA, delay of 0 months, fred/EXFRUS
(https://fred.stlouisfed.org/series/EXFRUS)

99. EXITUS 1971:01–2001:12 m 1 5 Italy / US Foreign Exchange Rate, Italian Lire to One USD,
NSA, delay of 0 months, fred/EXITUS
(https://fred.stlouisfed.org/series/EXITUS)

100. EXUSEU 1999:01–2015:10 m 1 5 US / Euro Foreign Exchange Rate, USDs to One Euro, NSA,
delay of 0 months, fred/EXUSEU
(https://fred.stlouisfed.org/series/EXUSEU)

101. GDP 1959:01–2015:10 q 2 5 Gross Domestic Product, billions of USD, SA annual rate,
delay of 0 months, fred/GDP
(https://fred.stlouisfed.org/series/GDP)
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https://fred.stlouisfed.org/series/CPIAUCSL
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Mixed-frequency time series
No. Series ID Time Span Freq. Type Trans. Series Description
102. W068RCQ027SBEA 1960:01–2015:10 q 2 5 Government Total Expenditures, billions of USD, SA annual

rate, delay of 0 months, fred/W068RCQ027SBEA
(https://fred.stlouisfed.org/series/W068RCQ027SBEA)

103. IMPGSC1 1959:01–2015:10 q 2 5 Real Imports of Goods and Services, billions of Chained
2009 USD, SA annual rate, delay of 0 months,
fred/IMPGSC1
(https://fred.stlouisfed.org/series/IMPGSC1)

104. EXPGSC1 1959:01–2015:10 q 2 5 Real Exports of Goods and Services, billions of Chained 2009
USD, SA annual rate, delay of 0 months, fred/EXPGSC1
(https://fred.stlouisfed.org/series/EXPGSC1)

105. WALCL 2002:12–2015:10 m 1 5 All Federal Reserve Banks - Total Assets, Eliminations from
Consolidation, millions of USD, NSA, delay of 0 months,
fred/WALCL (https://fred.stlouisfed.org/series/WALCL)

106. MBST 2002:12–2015:10 m 1 5 Mortgage-backed securities held by the Federal Reserve: All
Maturities, millions of USD, NSA, delay of 0 months,
fred/MBST (https://fred.stlouisfed.org/series/MBST)

107. TREAST 2002:12–2015:10 m 1 5 US Treasury securities held by the Federal Reserve: All
Maturities, millions of USD, NSA, delay of 0 months,
fred/TREAST (https://fred.stlouisfed.org/series/TREAST)

108. WRESBAL 1984:01–2015:10 m 1 5 Reserve Balances with Federal Reserve Banks, billions of
USD, NSA, delay of 0 months, fred/WRESBAL
(https://fred.stlouisfed.org/series/WRESBAL)

Observed variables Yt
No. Series ID Time Span Freq. Type Trans. Series Description
109. CURRCIR 1959:01–2015:10 m 1 5 Currency in Circulation, billions of USD, NSA, delay of 0 months,

fred/CURRCIR (https://fred.stlouisfed.org/series/CURRCIR)
110. AMBSL 1959:01–2015:10 m 1 5 St. Louis Adjusted Monetary Base, billions of USD, SA, delay of 0

months, fred/AMBSL (https://fred.stlouisfed.org/series/AMBSL)
111. FEDFUNDS 1959:01–2015:10 m 1 1 Effective Federal Funds Rate, percent, NSA, delay of 0 months,

fred/FEDFUNDS (https://fred.stlouisfed.org/series/FEDFUNDS)

https://fred.stlouisfed.org/series/W068RCQ027SBEA
https://fred.stlouisfed.org/series/IMPGSC1
https://fred.stlouisfed.org/series/EXPGSC1
https://fred.stlouisfed.org/series/WALCL
https://fred.stlouisfed.org/series/MBST
https://fred.stlouisfed.org/series/TREAST
https://fred.stlouisfed.org/series/WRESBAL
https://fred.stlouisfed.org/series/CURRCIR
https://fred.stlouisfed.org/series/AMBSL
https://fred.stlouisfed.org/series/FEDFUNDS
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Appendix D. Impulse Response Functions

Figure A1. IRFs (black lines) of standardized time series in Appendix C arising from an increase in
FEDFUNDS by 0.25%. Light gray areas show the 68%-confidence intervals (i.e., 1-σ interval), dark gray
areas display the 90%-confidence intervals. All intervals are based on 10,000 non-parametric bootstrap
simulations of the transition equation, where the estimated loadings matrix is kept fixed.
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Figure A2. IRFs (black lines) of standardized time series in Appendix C arising from an increase in
FEDFUNDS by 0.25%. Light gray areas show the 68%-confidence intervals (i.e., 1-σ interval), dark gray
areas display the 90%-confidence intervals. All intervals are based on 10,000 non-parametric bootstrap
simulations of the transition equation, where the estimated loadings matrix is kept fixed.
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Figure A3. IRFs (black lines) of standardized time series in Appendix C arising from an increase in
FEDFUNDS by 0.25%. Light gray areas show the 68%-confidence intervals (i.e., 1-σ interval), dark gray
areas display the 90%-confidence intervals. All intervals are based on 10,000 non-parametric bootstrap
simulations of the transition equation, where the estimated loadings matrix is kept fixed.
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Figure A4. IRFs (black lines) of standardized time series in Appendix C arising from an increase in
FEDFUNDS by 0.25%. Light gray areas show the 68%-confidence intervals (i.e., 1-σ interval), dark gray
areas display the 90%-confidence intervals. All intervals are based on 10,000 non-parametric bootstrap
simulations of the transition equation, where the estimated loadings matrix is kept fixed.
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Figure A5. IRFs (black lines) of standardized time series in Appendix C arising from an increase in
FEDFUNDS by 0.25%. Light gray areas show the 68%-confidence intervals (i.e., 1-σ interval), dark gray
areas display the 90%-confidence intervals. All intervals are based on 10,000 non-parametric bootstrap
simulations of the transition equation, where the estimated loadings matrix is kept fixed.
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Appendix E. Forecast Error Variance Decomposition

Figure A6. Contributions of CURRCIR (black area), AMBSL (dark gray area) and FEDFUNDS
(light gray area) to the forecast error variance of the standardized variables in Appendix C over
the next 48 months.
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Figure A7. Contributions of CURRCIR (black area), AMBSL (dark gray area) and FEDFUNDS
(light gray area) to the forecast error variance of the standardized variables in Appendix C over
the next 48 months.
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Figure A8. Contributions of CURRCIR (black area), AMBSL (dark gray area) and FEDFUNDS
(light gray area) to the forecast error variance of the standardized variables in Appendix C over
the next 48 months.
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Figure A9. Contributions of CURRCIR (black area), AMBSL (dark gray area) and FEDFUNDS
(light gray area) to the forecast error variance of the standardized variables in Appendix C over
the next 48 months.
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Figure A10. Contributions of CURRCIR (black area), AMBSL (dark gray area) and FEDFUNDS
(light gray area) to the forecast error variance of the standardized variables in Appendix C over the
next 48 months.
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