
©2019 IFIP. Personal use of this material is permitted. Permission from IFIP must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

On The Impact of the Network Hypervisor
on Virtual Network Performance

Andreas Blenk1,2 Arsany Basta1 Wolfgang Kellerer1 Stefan Schmid2
1 Technical University of Munich, Germany

2 Faculty of Computer Science, University of Vienna, Austria

Abstract—Virtualization and multi-tenancy are attractive
paradigms to improve the utilization of computing infrastructures
and hence to reduce costs. In order to provide a high degree of
resource sharing without sacrificing predictable cloud application
performance, strict performance isolation needs to be ensured.
This is non-trivial and requires models which account for
all components where applications may interfere: similarly to
security, the predictability of cloud application performance can
only be as good as the least predictable component in the model.

This paper identifies a new source of potential performance in-
terference that has been overlooked so far: the network hypervisor
— a critical component in any multi-tenant network. We present
a first measurement study of the performance implications of
the network hypervisor in Software-Defined Networks (SDNs).
For the purpose of our study, we developed a new open-source
benchmarking tool for OpenFlow control and data planes.

We show that cloud application performance may appear
unpredictable if the network hypervisor is not accounted for:
the performance does not only depend on the specific hypervisor
implementation and workload (e.g., OpenFlow message types),
but also on the number of tenants and the size of the network.
Hence, our results suggest that hypervisors should be included in
our performance models, and their performance benchmarked
and compared similarly to other crucial software components
such as the SDN controller.

Index Terms—Network Virtualization; Software-Defined Net-
working; Network Measurements

I. INTRODUCTION

Virtualization enables a high degree of resource sharing and
hence reduces costs. However, it also introduces a challenge
of providing a predictable application performance. Only re-
cently, measurement studies have demonstrated that in order
to provide a predictable cloud application performance, it is
also important to account for the potential interference on the
network [1]: applications such as batch processing, streaming,
and scale-out databases, generate a significant amount of
network traffic and a considerable fraction of their run time is
due to network activity.

Network virtualization promises a solution by offering a
unified abstraction and resource isolation across servers and
their interconnecting communication networks. Over the last
years, several virtual network abstractions such as virtual
clusters [2], have been proposed and used in many systems,
e.g., [2], [3], [4].

At the heart of any network virtualized architecture, lies a
network hypervisor which multiplexes different tenants across
the shared substrate network. The network hypervisor is re-
sponsible for network abstraction and control plane translation.

Software-Defined Networks (SDNs) provide a particularly
interesting framework for network virtualization [5], [6]: a
virtual SDN (vSDN) network offers great management flexi-
bilities to its tenant. Network hypervisors expose a northbound
OpenFlow API which allows tenants to “bring” their own
controller. As such, tenants can target the controller platform
that better matches their application, using OpenFlow API that
is “in most cases” a unified interface for SDN control.

Interestingly, not much is known today about the per-
formance impact of the network hypervisor itself. This is
problematic as, in order to ensure a predictable performance,
models are required which account for all involved resources
where applications may interfere. Put differently, the perfor-
mance predictability of a given cloud application can only
be as good as its least predictable component. Cloud appli-
cations based on models which ignore certain components
(such as the network hypervisor) entirely, may perform in
unexpected ways. This paper makes a case for including
the network hypervisor in our cloud application performance
models. We first present a simple web browing case study
which demonstrates the potential performance impact of the
SDN hypervisor. It motivates us to subsequently conduct an
explorative measurement study.

We find that the network hypervisor can influence per-
formance in several ways: for example, we show that both
control latency overhead introduced by the network hypervisor
as well as its variability depend on the specific hypervisor
technology. We also show that the performance depends on
the workload, and more specifically, the OpenFlow message
types. Another interesting finding regards the effects tenants
have on each other. In particular, we identify a novel and
subtle source of interdependancy among tenants, which can
harm predictability: we expose additional delays induced by
multi-tenancy, which depend on the number of tenants. We
also investigate the impact of the network size, i.e., number
of switches, on the hypervisor performance.

For the purpose of this study and in order to investigate
the above questions, we developed a novel benchmarking
tool, called perfbench. The tool is built specifically to support
experiments in a multi-tenant virtual environment. It is built
on top of the libfluid C++ library [7]. In contrast to our initial
publication of perfbench [8], this paper presents a detailed
description of the tool.

The remainder of this paper is organized as follows. In
order to verify our hypothesis that the network hypervisor



influences performance, we discuss a simple web surfing use
case in Section II. Section III introduces our methodology and
Section IV discusses our measurement results. After reviewing
related work in Section V, we summarize our contributions and
outline future work in Section VI.

II. A SIMPLE CASE STUDY

To test our hypothesis about the performance impact of the
network hypervisor, we consider a case study: web surfing.
While the case study is admittedly simplistic, it will motivate
the subsequent explorative measurement study.

Conventionally in OpenFlow, a flow setup invokes
an OFPT_PACKET_IN, containing the new packet,
from the switch to controller. The controller responds
with an OFPT_FLOW_MOD, i.e., the flow rule, and an
OFPT_PACKET_OUT, containing the new packet, back to
the switch. In virtual SDN networks (vSDNs), see Fig. 1, a
hypervisor is used to translate the OpenFlow control messages
from/to the controller used by the tenants to manage their
slices. This translation can include several fields, e.g., switch
Datapath ID (DPID) and port numbers.

For this experiment, we use the FlowVisor [9] network hy-
pervisor and Open vSwitch (OvS) running OpenFlow version
1.0. The hypervisor connects to an SDN controller based on
Ryu: it serves as the controller of the virtual SDN network.
On the data plane, the OvS switch connects on one port to an
Apache HTTP web server, hosting a web page which consists
of 100 image file queries, and on another port, to a web client.
The client requests the web page periodically, each time from
a different source port, triggering a new flow setup upon every
web page load event.

We evaluate two scenarios. In the first scenario, the web
page load latency is measured when the hypervisor computing
resources (in terms of CPU) are less loaded, i.e., less than 50%.
In the second scenario, the measurement is performed when
the hypervisor CPU is highly loaded, i.e., operating at 90% -
100% utilization, by running a background control application.

Fig. 2 shows the impact of the hypervisor performance on
the virtual network performance for a new flow setup. In case
the CPU resources of the hypervisor are highly loaded, the
web page load latencies for users of the virtual SDN network
increase from an average of 5ms up to 70ms. This implies that
the hypervisor may become a bottleneck for the control plane,
and consequently also for the data plane: the performance of
the control plane can have a significant impact on the network
performance [10].

III. THE PERFBENCH BENCHMARK AND METHODOLOGY

Our use case motivates us to conduct a more systematic
study of the network hypervisor performance, and develop
benchmarks accordingly. In general, there exists a wide spec-
trum of workloads to be supported on the hypervisor. For
example, in a data center, typical traffic loads [11], [12] can
vary significantly in the number of network flows, from a few
thousand to tens of thousands of flows: e.g., 2k to 10k flows

Switch
vSDN-n 

Host

Switch Switch

(1)PACKET_IN

control message
translation

(6) t ranslate

Physical SDN NetworkvSDN Hosts

vSDN-1

SDN
Network

Hypervisor

(3)PACKET_IN

(2) t ranslate
PACKET_IN

(7)FLOW_MOD

(5)PACKET_OUT

vSDN-1
Cont roller

vSDN-n
Cont roller

vSDN-1
Host

vSDN-n
Host

FLOW_MOD
PACKET_OUT

(4)FLOW_MOD

(8)PACKET_OUT

(7)FLOW_MOD (7)FLOW_MOD

virtual SDN (vSDN)
Controllers

Fig. 1: SDN network hypervisor concept.

0

20

40

60

80
HV CPU less loaded HV CPU high load

2w
eb

 p
ag

e
 lo

ad
la

te
nc

y 
(m

s)
web page load events

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 2: Impact of the network hypervisor performance on the
performance of virtual networks.

were reported at EC2 and Azure [13]. They scale with the
number of tenants running on top of the hypervisor.

For the purpose of our study, we developed a novel
benchmarking tool called perfbench for OpenFlow-based SDN
networks: perfbench supports high and stable message rates,
allowing us to study the performance under different rates.
This section gives an overview of the perfbench tool, and puts
it into perspective with respect to existing tools, focusing on
our particular use case: multi-tenant virtual SDN networks.
The perfbench framework is available open source 1.

A. High Throughput Measurement Tool

The perfbench tool is tailored toward high throughput
performance benchmarks for OpenFlow-based SDN networks:
it emulates high OpenFlow (OF) message rates, and can be
used to conduct measurements for both multi-tenant as well
as non-virtual SDN networks. It builds on top of the libfluid
C++ library [7], which provides the basic implementation and
interfaces for OF messages. As libfluid supports OF versions
1.0 and 1.3, perfbench can benchmark OF networks with these
versions. Fig. 3 gives a conceptual view of perfbench’s design
and how it operates in multi-tenant SDN networks.

The perfbench tool consists of two parts, as illustrated in
Fig. 3: a control plane part (perfbenchCP) and a data plane
part (perfbenchDP). In this paper, we will employ perfbench
in both modes:

1“perfbench”. online at: https://github.com/tum-lkn/perfbench



perfbenchCP: The control plane part perfbenchCP runs the
processes that emulate the tenant SDN controllers. To guaran-
tee isolation between the controllers, we run each controller in
its own thread and connect it (via a unique TCP socket) to the
measured entity, i.e., either a hypervisor or an SDN switch.

For each controller process, a message rate of OF messages
can be generated by specifying two parameters: sending inter-
val (inter-arrival time) and burst size. The sending interval in
ms can be specified beforehand and its resolution ranges from
1ms to 1 s. For instance, an interval of 1 s emulates bursts on
a per-second basis, whose effect, however, is not investigated
in this work. Throughout this paper, we will employ the
minimum possible sending interval, i.e., 1ms. The burst size
determines the number of OF messages sent at each send
interval. Hence, the combination of send interval and burst
size determines the generated OF message rate (per second).

perfbenchDP: The data plane part perfbenchDP emulates
the data plane. perfbenchDP has two modes of operation.
It can be connected to existing OF switches directly, i.e.,
providing a data plane port or interface to the OF switch.
This serves the purpose of measuring OF control messages
that contain a payload, e.g., to receive UDP packets from the
OF switch that were sent via OFPT_PACKET_OUT messages.
Alternatively, perfbenchDP can also emulate OF switches:
in this mode, it connects directly to the control plane of
either an SDN controller or a hypervisor, e.g.,to generate
OFPT_PACKET_IN messages. In case of OF switch emula-
tion, several perfbenchDP switches can be instantiated, each in
its own thread to guarantee isolation in the data plane as well.
The OF message generation in the emulated switch follows
the same procedure as in the controller process.

A scheduler runs on top of the controller process(es) and
emulated switch(es), which determines the OF message rate
distribution over the duration (specified in seconds) of a
measurement run. perfbench implements three inter-arrival
time message distributions that can be used by the scheduler:
uniform, exponential, or weibull. Alternatively, a user can give
a pre-defined scheduling of messages via an input file. Hence,
a user can generate any kind of control plane traffic in terms
of the inter-arrival times and the burst size of sent messages,
e.g., based on real network traces.

B. Comparison to Existing Tools

Tab. I provides a comparison of perfbench to existing tools
with focus on the supported features.

Existing benchmark tools for OF networks can be classified
into two types, namely switch and controller benchmarks.
Switch benchmark tools emulate controllers and test the
performance of switches, while controller benchmark tools
emulate switches to measure the performance of controllers.

Only perfbench and hvbench [17] are designed to measure
the performance in virtual SDN networks, i.e., supporting the
emulation of multiple tenant controllers and the interaction
with an SDN network hypervisor. hvbench is based on the
libfluid C++ library, and provides several OF message types
for both OF versions 1.0 and 1.3. In contrast to perfbench,

Network
Hypervisor

CP

CP

DP

DP

CP

perfbenchCP

perfbenchDP

Switch

TCP

Hypervisor Logic

Switch
Logic

TCP

TCP TCP

CP

TCP

CP

C-1 C-n

D-1 D-n

TCP

TCP TCP

Controller to hypervisor
connections

Hypervisor to
switch connections

Switch data plane
connection

Fig. 3: Perfbench conceptual view and architecture.

Hypervisorperfbench

CP

DP connection

CP

Hyper-
visor

D-1 TCP
D-n TCP

C-1 TCP
C-n TCP

TCP

TCP

TCP SwitchTCP

Fig. 4: Network hypervisor benchmarking and measurement
setup. Data plane processes: D-1 to D-n. Control plane pro-
cesses: C-1 to C-n.

hvbench has not been designed to be used in a non-virtual
SDN environment. Additionally, hvbench can only generate
OF control traffic with an exponential distribution.

OFTest [14] is a switch benchmark tool that supports
OF version 1.0 only and provides performance test for OF
switches, i.e., the control as well as data planes of switches.
Besides OFTest, perfbench is the only tool that can benchmark
both control plane and data plane. Compared to perfbench,
OFTest provides a much lower throughput of OF messages
(only rates up to 1000 messages per second), due to its
implementation in Python. It was one of our main motivations
to implement a high performance benchmarking tool that is
able to generate stress loads.

Another switch benchmark tool is OFLOPS [16], which fo-
cuses on evaluating switch capabilities from different vendors.
Example performance metrics considered by OFLOPS are flow
table update rate and flow insertion latency. Although these are
important metrics for non-virtual OF networks, they cannot
directly evaluate the performance of network hypervisors.
Hence, there is a need for a tool that targets performance



TABLE I: Feature comparison with existing OF benchmarking tools. 3 indicates whether a tool supports a given feature.
Multi-tenant: can interact with hypervisors. CB: controller benchmark. SB: switch benchmark. OF traffic generation rate: OF
message sending behavior (best-effort, distribution).

Tool Multi-tenant CB SB OF traffic generation rate
OFTest [14] 3 best-effort
OFCProbe [15] 3 best-effort, distribution: pre-defined (Normal, ChiSquared, Exp., Poisson)
CBench [10] 3 best-effort
OFLOPS [16] 3 best-effort: traces
hvbench [17] 3 distribution: pre-defined (Exp.)
OFBench [18] 3 constant rate, e.g., 64 Kilo bit to 1 Giga bit per second
perfbench 3 3 3 pre-defined distribution: pre-defined (Uniform, Exp., Weibull) and custom

metrics of hypervisors, i.e., control plane processing latency,
CPU utilization and multi-tenant context switching.

The other type of OF benchmark tools are controller
benchmarks which include CBench [10], OFCProbe [15], and
OFBench [18]. CBench is written in C++ and supports OF
version 1.0, while OFCProbe is written in Java and supports
OF versions 1.0 as well as 1.3. Both tools emulate multiple
OF switches and evaluate the performance of controllers in
terms of control plane throughput and latency. OFCProbe
can generate different OF control message types with several
distributions. CBench, however, can only generate control
messages in a sequential manner, i.e., after sending a message
request, it waits for a message reply in order to send the
next request. This send behavior does not entirely map the
traffic behavior in multi-tenant SDN networks. OFBench [18]
is designed to reveal performance details of switches, like
buffer size, or the time a packet takes through the pipeline.

With respect to traffic generation, perfbench generates OF
message rates on a per-second basis, with flexibly definable
sending intervals and burst sizes, in contrast to most available
tools that generate OF messages in a best-effort manner or
pre-defined distributions only.

C. Perfbench Tool Features

The perfbench tool supports synchronous OF messages,
i.e., requests expecting a reply (e.g., OFPC_PORT_STATS,
OFPT_ECHO_REQUEST, OFPT_FEATURES_REQUEST),
and asynchronous OF messages (e.g., OFPT_PACKET_IN,
OFPT_PACKET_OUT, OFPT_FLOW_MOD). For synchronous
messages, the control latency is measured as the time it takes
from issuing the request until receiving the reply.

For asynchronous messages, the latency calculation is dif-
ferent: For PACKET_IN, there are two modes. In case of
using an existing OF switch, perfbenchDP sends UDP data
packets for each tenant via its data plane connection. The
latency is then calculated as the time it takes from issuing
the UDP data packet until the OFPT_PACKET_IN is re-
ceived at perfbenchCP. In case of emulating OF switches,
perfbenchDP generates the OFPT_PACKET_IN messages and
the latency is calculated as the time difference between when
an OFPT_PACKET_IN is sent by perfbenchDP until it is
received by perfbenchCP.
PACKET_OUT has two modes as well. First, perfbenchCP

sends an OFPT_PACKET_OUT containing a UDP packet.
When using an existing OF switch, after having received the

OFPT_PACKET_OUT, the switch forwards the encapsulated
packet on the DP to perfbenchDP. Here, we measure the
time it takes from sending the OFPT_PACKET_OUT until
receiving the UDP data packet at perfbenchDP. Second,
without an existing OF switch, perfbenchDP receives the
OFPT_PACKET_OUT, which marks the measurement time.

For OFPT_FLOW_MOD, the latency is calculated for
each tenant as the time difference between when a
OFPT_FLOW_MOD is sent by perfbenchCP until it is received
by perfbenchDP.

In addition, perfbench can set the TCP_NODELAY flag for a
specific TCP connection. In particular, setting TCP_NODELAY
disables NAGLE’s algorithm: NAGLE aggregates more data to
reduce the packet overhead per TCP packet. However, while
NAGLE’s algorithm improves network performance, as we will
see, the aggregation of packet content can lead to higher
latency per packet: we argue that this is particularly undesired
in vSDNs in latency critical use cases. To the best of our
knowledge, this feature has not been investigated so far by
any existing SDN performance measurement study.

D. Measurement Setup and Test Cases

We will use perfbench to explore the performance implica-
tions of the network hypervisor. Fig. 4 shows the measurement
setup we will use throughout this paper. Three PCs are used
to investigate the hypervisor performance benchmarks in this
paper. The left PC runs perfbenchCP and perfbenchDP, the
middle PC runs the SDN hypervisor, and the right PC runs
an Open vSwitch (OvS) [19] instance, in cases where perf-
benchDP does not emulate the data plane part. perfbenchCP
is connected to the hypervisor PC, and the hypervisor PC is
connected to the OvS PC. The perfbenchDP is connected via
a dedicated line to the data plane part of the OvS PC.

The 3 PCs feature 16 GB RAM and 4 physical CPU cores
(8 with Hyperthreading): Intel(R) Core(TM) i7-4790 CPU @
3.60GHz. All PCs run Ubuntu 14.04.5 LTS with the kernel
3.19.0-26-generic x86 64.

We examine two state-of-the-art SDN hypervisor im-
plementations, namely FlowVisor (FV) [9] and OpenVir-
teX (OVX) [20]. We use the code from their latest GIT
branch (FV:1.4-MAINT and OVX:master). We configure perf-
bench according to the hypervisors’ specifics. When used with
OVX, perfbenchDP uses artificial unique MAC addresses per
tenant: a pre-requisite for the operation of OVX. For FV, such
a setting is not necessary.



TABLE II: Measurement configurations.

Hypervisor OF Message Type Tenants Switch emulation Message Rate TCP_NODELAY
FV/OVX OFPT_PACKET_IN 1 No 10k,20k,30k,40k, 50k 0
FV/OVX OFPT_FLOW_MOD 1 Yes 1k-30k 0/1
FV OFPT_FLOW_MOD 5:20 Yes 100 per tenant 1
OVX OFPT_FLOW_MOD 25:100 Yes 100 per tenant 1
FV OFPT_PACKET_IN 1 Yes (5:20) 100 per switch 1
OVX OFPT_PACKET_IN 1 Yes (25:100) 100 per switch 1

10000 20000 30000 40000 50000
OpenFlow [msg/s]

100

101

102

La
te
nc
y
[m

s]

OVS
FlowVisor
OVX

Fig. 5: Hypervisor overhead, OFPT_PACKET_IN, 10K - 50K.

Table II provides an overview of all conducted measure-
ments. Single-tenant as well as multi-tenant measurements are
conducted for a range of rates and TCP_NODELAY settings.
Every setup is repeated at least 10 times for a duration
of at least 30 seconds. Being interested in the steady-state
performance, we omit the first and last 10 seconds from the
data analysis.

The SDN hypervisor performance is evaluated in terms
of control plane latency and CPU utilization, and com-
pared against different message rates as well as number of
tenants and switches. Further resources such as memory,
which can also impact the overall performance, are out-
of-scope of this study, as we always ensured that enough
memory is available. Note, however, that a deeper analy-
sis of memory usage is an interesting measurement aspect
for future work. We measure four fundamental message
types: We consider (1) asynchronous OFPT_PACKET_IN ,
(2) asynchronous OFPT_PACKET_OUT and (3) asynchronous
OFPT_FLOW_MOD messages, whose performance is most
relevant in OF-based SDN networks, e.g., to ensure short flow
setup times. In terms of synchronous messages, we consider
(4) OFPC_PORT_STATS: these are used by SDN applications
to collect port statistics, e.g., for load balancing or congestion-
aware routing.

IV. PERFORMANCE IMPACT

In order to better understand the performance impact of the
network hypervisor, we conducted a number of experiments;
we report on the most important empirical insights.
How much overhead do network hypervisors add to the
performance? We first investigate the performance over-
head induced by the indirection via the hypervisor, see

Fig. 5. The evaluation considers a showcase setting where
OFPT_PACKET_IN messages arrive at rates from 10k to 50k
messages per second. approaching the maximum rate at which
the hypervisors can process this OpenFlow (OF) message
type on the used computing platform. The performance is
considered in terms of the control plane latency.

Due to the addition of extra intermediate network process-
ing, a significant control latency overhead can be observed
for both FlowVisor (FV) and OpenVirteX (OVX) for 10k
messages: FV results in an average latency of 1ms, compared
to 0.3ms in a switch-only scenario; with 5ms OVX adds even
more latency. Note that the switch-only scenario results in sub-
millisecond control latency for all following experiments.

While the latency is relatively increased by an order of
magnitude, in absolute terms, the latency may still seem
small. However, especially in latency-critical environments,
such latency values may already be unacceptable, or at least
introduce unacceptable uncertainties. Low latency communi-
cation is a primary metric for building data center and rack-
scale networks [21], [22]. Human-computer interaction and
haptic applications similarly show that people react to small
differences in the delay of operations where milliseconds are
critical. Indeed, according to [23], even slightly higher web
page load times can significantly reduce visits from users and
directly impact revenue.
How does the tenant’s controller impact the hypervisor
performance? We next investigate the impact of the tenant’s
controller behavior by enabling the TCP_NODELAY setting on
the controller’s operating system. This means that the tenant’s
controller sends the control messages to the hypervisor as
soon as they are ready, thus avoiding possible aggregation
of OF messages in TCP packets. The performance of both
hypervisors is evaluated with OFPT_FLOW_MOD messages,
using TCP_NODELAY = 0 and 1 at the tenant’s controller, as
shown in Fig. 6. The measurement is carried out at message
rates between 1k and 30k per second. Note that, for OVX
we had to disable a flow table lookup inside OVX’s code2.
This part of the code holds a copy of the virtual switch
flow table; however, it was diminishing the performance of
OFPT_FLOW_MOD messages.

For both hypervisors, Fig. 6 shows that for small rates,
from 1k up to 15k, the control latency is affected by the
TCP aggregation algorithm that the tenant’s controller uses.
TCP_NODELAY = 0 shows higher control latency compared to
TCP_NODELAY = 1, which is induced by the waiting time at
the controller, to aggregate OFPT_FLOW_MOD messages into

2See openvirtex/elements/datapath/OVXFlowTable.java.



1 2 3 4 5 10 15 20 25 30

OpenFlow [1×103 msg/s]

0

5

10

15

20

25

30
La

te
nc
y
[m

s]

TCP Impact HV Impact

TCP_NO_DELAY = 0
TCP_NO_DELAY = 1

(a) FV, single tenant, TCP_NODELAY, OFPT_FLOW_MOD.

1 2 3 4 5 10 15 20 25 30

OpenFlow [1×103 msg/s]

0

5

10

15

20

25

30

La
te
nc
y
[m

s]

TCP Impact HV Impact

TCP_NO_DELAY = 0
TCP_NO_DELAY = 1

(b) OVX, single tenant, TCP_NODELAY, OFPT_FLOW_MOD.

Fig. 6: Impact of the TCP_NODELAY settings on the control plane latency of OFPT_FLOW_MOD messages for 1-30k message
rates for FV and OVX.

TABLE III: Hypervisor control plane message throughputs
(maximum OpenFlow message rate per second) at a single
tenant with a single switch.

OF Message Type FV OVX
OFPT_PACKET_IN 58,170 ± 123 51,941 ± 579
OFPT_PACKET_OUT 57,980 ± 247 51,899 ± 301
OFPT_FLOW_MOD 39,975 ± 138 31,936 ± 402
OFPC_PORT_STATS 7,993 ± 22 199,937 ± 34

TCP packets. This can be easily mistaken as a performance
problem of the hypervisor in SLAs. At higher rates, from 20k
up to 30k, the control latency is influenced by the hypervisor
processing overhead regardless of the TCP configuration of the
tenant’s controller. We could observe that the tenant’s behavior
can also impact the control performance, depending on the
generated control rates.
How does the control plane throughput depend on the
specific network hypervisor? In this experiment, we in-
vestigate the control plane throughput (maximum rate per
second) of two network hypervisors; FV and OVX. For this
purpose, a single tenant (perfbenchCP) and a single switch
(OvS) are used in order to avoid any cross effects to the
experiment. perfbench is scheduled to increase the generated
OF message rate: until losses start, hypervisor CPU overloads
or control latency drastically bloats. Reaching any of these
conditions, determines the maximum OF message throughput
of the network hypervisor.

Table III shows that FV can provide a higher throughput
for asynchronous OFPT_PACKET_IN, OFPT_PACKET_OUT
and OFPT_FLOW_MOD messages, e.g., FV can support ∼7k
OFPT_PACKET_IN messages per second more than OVX.
This can be explained by the data message translation process:
OVX includes data plane packet header re-writing from a given
virtual IP address, specified for each tenant, to a physical
IP address used in the network. This is done in addition to
control message translation. Note that for both hypervisors,
the supported rate of OFPT_FLOW_MOD messages is lower
than the received OFPT_PACKET_IN rate, which sets the

upper bound for the flow setup (new connections) rate. For
example, even though FV can support a rate of up to ∼58k
packetin messages, it can only respond with a maximum of
∼40k flowmod messages per second, which means it can
only setup new connections at a rate of 40k per second.

However, for synchronous OFPC_PORT_STATS messages,
OVX shows much higher throughput (∼200k messages per
second) compared to FV (only ∼8k messages per second).
Since FV transparently forwards all messages to the switch, the
switch becomes the bottleneck for port stats throughput. OVX
uses a different implementation for synchronous messages: it
does not forward the port stats to the switches, but rather
pulls it from the switch, given a pre-configured number of
times per second. The default pulling rate of OVX is 1
OFPC_PORT_STATS message per second. OVX replies on
behalf of the switch to all other requests (using the same
port statistics) , and hence, increases throughput in receiving
OFPC_PORT_STATS messages. However, all tenants are lim-
ited by the OFPC_PORT_STATS pulling rate set by OVX. In
fact, the “factual” OFPC_PORT_STATS throughput of OVX
is equal to its statistics pulling rate.

How does the control latency and the hypervisor’s CPU
utilization depend on the number of tenants? Having
identified several important performance factors of the network
hypervisor in a single tenant scenario with different OpenFlow
message types, we now move on to study how the vSDN
performance depends on the number of deployed tenants:
ideally, the performance provided for a single virtual network
should scale (transparently) to multiple tenants.

In order to study this question for the multi-tenant evalua-
tion, we use OFPT_FLOW_MOD messages to check the case of
multiple tenants’ controllers (perfbenchCP) setting rules on the
same network switch (perfbenchDP). We increase the number
of tenants deployed on the hypervisor. Each tenant generates
100 OFPT_FLOW_MOD messages per second. In order to
quantify the overhead of having multiple tenants, we compare
the performance of the multi-tenant scenario to a single-tenant
one, generating the cumulative rate of all deployed tenants:



1 5 1 10 1 15 1 20
Tenants [#]

0

10

20

La
te
nc
y
[m

s] Single Tenant
Multi Tenants

0.5 0.5 1 1 1.5 1.5 2 2
OpenFlow [1×103 msg/s]

(a) Control latency

1 5 1 10 1 15 1 20
Tenants [#]

0
50

100
150
200
250
300

C
P
U

[%
]

Single Tenant
Multi Tenants

0.5 0.5 1 1 1.5 1.5 2 2
OpenFlow [1×103 msg/s]

(b) CPU utilization

0 10 20 30 40
Latency [ms]

0.0

0.5

1.0

P
(X
≤

x)

5 Tenants
20 Tenants

(c) Latency distribution

Fig. 7: FV performance, OFPT_FLOW_MOD, multi-tenants (5:20) vs. single tenant (baseline).

1 25 1 50 1 75 1 100
Tenants [#]

101

103

La
te
nc
y
[m

s] Single Tenant
Multi Tenants

2.5 2.5 5 5 7.5 7.5 10 10
OpenFlow [1×103 msg/s]

(a) Control latency (Note the logarithmic scale
of the y-axis.)

1 25 1 50 1 75 1 100
Tenants [#]

0
100
200
300
400

C
P
U

[%
]

Single Tenant
Multi Tenants

2.5 2.5 5 5 7.5 7.5 10 10
OpenFlow [1×103 msg/s]

(b) CPU utilization

0 10 20 30 40
Latency [ms]

0.0

0.5

1.0

P
(X
≤

x)

25 Tenants
75 Tenants

(c) Latency distribution

Fig. 8: OVX performance, OFPT_FLOW_MOD , multi-tenants (25:100) vs. single tenant (baseline).

that is, we compare 5 tenants (each generating 100 messages
per second) to a single tenant (generating 500 messages per
second). This means also that with the number of tenants,
also the workload on the hypervisor increases in terms of
OpenFlow messages. We also provide an evaluation for the
CPU consumption of the hypervisor in the presence of multiple
tenants compared to a single tenant.

The impact of increasing the number of tenants (and the
workload) on FV is shown in Fig. 7. We see that for FV,
increasing the number of tenants results in higher control
latency compared to the latency of a single tenant generating
the same rate. For example, with 10 tenants and a total rate
of 1k, the control latency increases to 3ms compared to
1ms for a single tenant generating 1k, as shown in Fig. 7a.
Fig. 7b shows the CPU consumption of FV, which differs from
the single tenant case starting from 15 tenants. This is due
to the extra work (in terms of context switching, IO event
handling, slice retrieval and verification) incurred by FV to
handle the OFPT_FLOW_MOD messages from the different
tenants. Note that due to load constraints, we cannot deploy
more than 20 tenants with FV: to provide isolation between
the tenants, FV implements a protection method that replicates
the OFPT_FLOW_MOD message of one tenant to all other
tenants, using a “forward to controller” action; however, this
mechanism puts high loads on the control channel between
FV and the switch, as well as on the CPU.

OVX shows similar effects when increasing the number of

tenants, as seen in Fig. 8. We can deploy up to 100 tenants
on OVX. We observe, in Fig. 8a, a significant increase in the
control latency when using multiple tenants: e.g., with 100
tenants and 10k OFPT_FLOW_MOD rate, the median control
latency increases to 10ms, much more than in a single tenant
scenario (generating a 10k rate). The CPU consumption of
OVX also shows a drastic increase, e.g., an average of 230%
with 100 tenants compared to 100% with a single tenant which
is over a five-fold increase, as shown in Fig. 8b. Note that
OVX is multi-threaded, hence can utilize more than 1 CPU
core, compared to FV which is only single threaded.

The latency distribution of each tenant is shown in Fig. 7c
for 5 and 20 tenants deployed on FV, and Fig. 8c for 25 and
75 tenants on OVX, using one run (of 30 seconds). For the
maximum number of tenants for both hypervisors, there is
a gap of around 3 to 5ms in the mean latency between the
worst and best case tenant. This means that the maximum
observed latency can define the control latency guarantees that
are provided by the hypervisor.

How does the control latency and the hypervisor’s CPU
utilization depend on the network size? Having observed
the impact of increasing the number of tenants on the control
performance of the hypervisors, next we investigate the impact
of scaling the underlying network topology, i.e., number
of switches, on the performance: intuitively, the hypervisor
performance should scale with the number of switches (switch
connections) in the same manner as it scales with the number



of tenants (controller connections). For this purpose, we use
OFPT_PACKET_IN messages originating from the switches
(perfbenchDP) towards a tenant’s controller (perfbenchCP.)
that represent new flows arriving on different switches of the
network. We increase the number of switches the same way as
the number of tenants as in the previous experiment: 5:20 for
FV and 25:100 switches for OVX. Each switch generates 100
OFPT_PACKET_IN messages per second (thus increasing the
workload with the number of switches). We also compare the
performance of the multi-switches scenario to a single switch
scenario generating the cumulative rate of all switches.

The performance of FV and OVX with respect to varying
the number of switches and the workload are shown in Fig. 9
and Fig. 10, respectively. Surprisingly for FV, the mean control
latency and mean CPU consumption are not impacted as much
by increasing the number of switches as one might expect,
e.g., with 20 switches, the mean control latency increases with
800µsec while the CPU utilization shows no clear overhead
due to processing multiple switches compared to a single
switch generating the same total OFPT_PACKET_IN rate.
OVX leads to similar observations for the control latency
performance for 25 and 50 switches. Note, however, the
increasing latency variety in case of multiple switches. The
reason here is that perfbench sends all messages with a
minimum inter-arrival time equally distributed for one switch,
whereas it accumulates all messages to be sent in case of
multiple switches. Hence, more messages arrive at the hyper-
visor at the same time, leading to less CPU sleeps but more
messages that need to be processed at the same time. For 75
and 100 switches, we can observe an additional latency of
up to 5%. However, with multi-threaded CPU, OVX shows
significant increase in the CPU utilization that scales with
the number of switches, e.g., at 100 switches, a mean CPU
of 395% compared to 44% CPU utilization with a single
switch generating the same rate. This means that OVX exploits
the multi-threading feature in order to support more switch
connections and to guarantee the same latency performance.

In general, we can observe that both hypervisors’ perfor-
mance are not impacted by increasing the number of switches
in the same manner as increasing the number of tenants. This
suggests that handling the abstraction of more slices (slice
verification and context switching) has a significantly higher
impact than handling the switch abstractions.

V. RELATED WORK

The overheads and sources of unpredictable performance
in cloud applications have been studied intensively over the
last years. Many network virtualization architectures and pro-
totypes have been proposed, leveraging admission control
and bandwidth reservations and enabling tenants to specify
absolute guarantees [2], [24], [25].

Also performance and measurement aspects of OF have
been studied before in the literature. For example, Kuźniar et
al. [26] report on the performance characteristics of flow table
updates in different hardware OF switches, and highlight dif-
ferences between the OF specification and its implementations,

1 5 1 10 1 15 1 20

Switches [#]

0.5

1.0

1.5

L
at
en
cy

[m
s]

Single Switch
Multi Switches

0.5 0.5 1 1 1.5 1.5 2 2
OpenFlow [1×103 msg/s]

(a) Control latency

1 5 1 10 1 15 1 20

Switches [#]

0
10
20
30
40
50
60
70
80

C
P
U

[%
]

Single Switch
Multi Switches

0.5 0.5 1 1 1.5 1.5 2 2
OpenFlow [1×103 msg/s]

(b) CPU utilization

Fig. 9: FV performance, OFPT_PACKET_IN, multi-switches
(5:20) vs. single switch (baseline).

1 25 1 50 1 75 1 100

Switches [#]

0

10

20

30

L
at
en
cy

[m
s]

Single Switch
Multi Switches

2.5 2.5 5 5 7.5 7.5 10 10
OpenFlow [1×103 msg/s]

(a) Control latency

1 25 1 50 1 75 1 100

Switches [#]

0

100

200

300

400

500

600

C
P
U

[%
]

Single Switch
Multi Switches

2.52.5 5 5 7.57.5 10 10
OpenFlow [1×103 msg/s]

(b) CPU utilization

Fig. 10: OVX performance, OFPT_PACKET_IN, multi-
switches (25:100) vs. single switch (baseline).

which may threaten correctness or even network security.
Researchers have also considered the suitability of OF as a
traffic measurement tool [27] (see [28] for a survey on the
topic), and found that the quality of actual measured data can
be questionable. Also other authors observed inconsistencies
between bandwidth measurements results and a packet-based
ground truth [29]. OF monitoring systems are implemented
similarly to NetFlow, and accordingly, problems regarding
insufficient timestamp resolution [30], [31], and device arti-
facts [32] also apply. Whereas an initial study investigated the
impact of topology abstractions [33], the network hypervisor
and especially its performance and possible overheads have
received little attention in general so far.

VI. CONCLUSIONS AND DISCUSSION

Our empirical results suggest that in order to understand
cloud application performance and make executions more
predictable, we need to account for the network hypervisor
in our models. In particular, our initial experiments show
that the supported number of tenants per network hypervisor
instance varies drastically depending on the hypervisor arte-
fact. Different hypervisors show different performance: not
only because of different implementations, but also because
of different design choices (e.g., forward everything to the
network, such as in FV, vs. take over some replies, such as
in OVX). We could also observe that in multi-tenant vSDNs,
the performance impact differs depending on the number of



controllers resp. tenants and the network size resp. number of
switches per tenant.

We understand that our work is a first step, and there
are several dependencies and parameters that require further
investigation. For instance, measuring the performance of
distributed hypervisor platforms is an important next step
due to scalability reasons. Other next steps would include
measuring the impact of unbalanced and dynamic workload
distributions, as well as the study of mixtures of OpenFlow
message types. In general, we hope that our results as well
as the identified performance criteria can help researchers
develop more refined performance models for multi-tenant
SDNs, eventually leading to the design of more performant
and predictable virtual networks. These findings may also help
improving the choices for network hypervisors which better
suit the tenant applications.

ACKNOWLEDGMENT

This work has been performed in part in the framework of
the CELTIC EUREKA project SENDATE-PLANETS (Project
ID C2015/3-1) funded by the German BMBF (Project ID
16KIS0473), and in part in the framework of the EU project
FlexNets funded by the European Research Council under
the European Union’s Horizon 2020 research and innovation
program (grant agreement No 647158 - FlexNets), and in
part in the DFG ModaNet Project (grant No KE 1863/8-1).
This work reflects only the authors’ view and the funding
agency is not responsible for any use that may be made of
the information it contains.

REFERENCES

[1] J. C. Mogul and L. Popa, “What we talk about when we talk about
cloud network performance,” ACM SIGCOMM CCR, vol. 42, no. 5, pp.
44–48, 2012.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM CCR, vol. 41,
no. 4. ACM, 2011, pp. 242–253.

[3] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: incorporating time-varying network reservations in data
centers,” vol. 42, no. 4. ACM, 2012, pp. 199–210.

[4] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for multi-tenant datacenters,” in Proc. of
IEEE INFOCOM. IEEE, 2016, pp. 1–9.

[5] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, 2013.

[6] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” ACM Queue,
vol. 11, no. 12, p. 20, 2013.

[7] libfluid. [Online]. Available:
http://opennetworkingfoundation.github.io/libfluid/

[8] A. Blenk, A. Basta, L. Henkel, J. Zerwas, W. Kellerer, and S. Schmid,
“perfbench: A tool for predictability analysis in multi-tenant software-
defined networks,” in Proc. ACM SIGCOMM 2018 Conference on
Posters and Demos, New York, NY, USA, 2018, pp. 66–68.

[9] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, pp. 1–13, 2009.

[10] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood, “On controller performance in software-defined networks,” in 2nd
USENIX Workshop Hot-ICE. USENIX, 2012, pp. 1–6.

[11] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. of ACM IMC. ACM, 2010, pp.
267–280.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in ACM SIGCOMM CCR, vol. 39, no. 4. ACM,
2009, pp. 51–62.

[13] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and T. Ristenpart,
“Next stop, the cloud: Understanding modern web service deployment
in ec2 and azure,” in Proc. of ACM IMC. ACM, 2013, pp. 177–190.

[14] “OFTest—Validating OpenFlow Switches.” [Online]. Available:
http://www.projectfloodlight.org/oftest/

[15] “Measuring EC2 system performance,” http://goo.gl/V5zhEd.
[16] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “Oflops:

An open framework for openflow switch evaluation,” in Proc. of PAM.
Springer, 2012, pp. 85–95.

[17] C. Sieber, A. Blenk, A. Basta, and W. Kellerer, “hvbench: An open and
scalable sdn network hypervisor benchmark,” in Proc. of IEEE NetSoft.
IEEE, 2016, pp. 403–406.

[18] Y. Lin, Y. Lai, C. Wang, and Y. Lai, “Ofbench: Performance test suite
on openflow switches,” IEEE Systems Journal, vol. 12, no. 3, pp. 2949–
2959, Sep. 2018.

[19] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” in ACM Workshop
on Hot Topics in Networks (HotNets-VIII), 2009.

[20] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “Openvirtex: Make your virtual sdns pro-
grammable,” in Proc. of the workshop on hot topics in software defined
networking (HotSDN). ACM, 2014, pp. 25–30.

[21] P. L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail
latency in cloud data stores via adaptive replica selection.” in Proc. of
USENIX NSDI, 2015, pp. 513–527.

[22] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: trading a little bandwidth for ultra-low latency
in the data center,” in Proc. of USENIX NSDI, 2012, pp. 19–19.

[23] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low latency via redundancy,” in Proc. of ACM CoNEXT.
ACM, 2013, pp. 283–294.

[24] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet: A data center network virtualization architecture
with bandwidth guarantees,” in Proc. ACM CoNEXT, 2010.

[25] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks,” in Proc. of WIOV, 2011.

[26] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about
sdn flow tables,” in Proc. of PAM. Springer, 2015, pp. 347–359.

[27] L. Hendriks, R. d. O. Schmidt, R. Sadre, J. A. Bezerra, and A. Pras,
“Assessing the quality of flow measurements from openflow devices,”
2016.

[28] A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software defined
network traffic measurement: Current trends and challenges,” IEEE Instr.
& Meas. Mag., vol. 18, no. 2, pp. 42–50, 2015.

[29] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in Proc.
of IEEE NOMS. IEEE, 2014, pp. 1–8.

[30] J. Kögel, “One-way delay measurement based on flow data: Quantifi-
cation and compensation of errors by exporter profiling,” in Proc. of
ICOIN. IEEE, 2011, pp. 25–30.

[31] B. Trammell, B. Tellenbach, D. Schatzmann, and M. Burkhart, “Peeling
away timing error in netflow data,” in Proc. of PAM. Springer, 2011,
pp. 194–203.

[32] Í. Cunha, F. Silveira, R. Oliveira, R. Teixeira, and C. Diot, “Uncovering
artifacts of flow measurement tools,” in Proc. of PAM, 2009, pp. 187–
196.

[33] N. Deric, A. Varasteh, A. Basta, A. Blenk, and W. Kellerer, “SDN
hypervisors: How much does topology abstraction matter?” in Proc. of
CNSM, 2018, pp. 328–332.


