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Abstract

Successful collaboration require interaction partners to monitor and predict each other’s be-

havior for establishing shared representations of beliefs, intentions, and goals. The ability to

share mutual beliefs and intentions does not only enable better and more efficient commu-

nication, but also serves long term satisfaction of interactors, bonding, trust and relationship

building. A transfer of this ability to artificial systems, such as autonomous robotic systems has

not been achieved so far and progress along these lines has been widely acknowledged as

key to more widespread acceptance of robotic systems in society. The development of robotic

systems for interaction with human partners has so far been driven by two approaches:

• Assessment: in the domain of cognitive neuroscience, researchers systematically assess

and validate robotic systems by studying social cognitive mechanisms in humans during

human-robot interaction (HRI). These studies help engineers to design robotic systems to

align better with human social traits and conventions. While this approach is scientifically

well grounded, most studies employ subjective and behavioral outcome measures that are

often not straightforwardly applicable in the design of new systems.

• Adaptation: In the domain of robotic engineering, researchers equip robots with user-

adaptive mechanisms, including human intention detection, user-modelling, and approaches

to handle co-adaptation in collaborative HRI. While this approach has developed fast, it is

challenged by the limited perceptual capabilities of robotic systems which hinders the in-

vestigation and development of more complex HRI.

As will be demonstrated in this thesis, passive brain-computer interfaces (BCI) constitute a

promising technology for addressing both real-time assessment and adaptation of autonomous

systems, such as robots during HRI. Passive BCIs propose the decoding of user mental states

from electro- or psychophysiological signals for augmenting human-machine interaction with

information beyond standard sensory input deployable by machines to adapt to their human

partner. Following this approach, we demonstrate that different mental states can be reliably

decoded non-invasively from electroencephalography (EEG) recordings of human participants

during interaction with real robotic systems. We focus here specifically on exploring the useful-

ness of error-related potentials (ErrPs), a neural response measurable in the EEG in response

to the human observation of self-committed errors or unexpected external events, and demon-

strate that these ErrPs can be used to assess and adapt robot’s behavior to converge to the

expectation of a human partner, this way facilitating and enhancing interaction performance.

The outcomes of this thesis result from three experimental HRI studies and one simulation-

based study involving different robotic systems and HRI scenarios and resolve in four main

contributions: Regarding assessment, (1) the first experimental study demonstrates the fea-

sibility to decode from the EEG of the human interaction partner, the intention to engage or

to get engaged with a humanoid robot via gaze contact with an average offline accuracy of
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80.4%. The results further demonstrate how differential human beliefs about the robot and

the social role participants believed to have in the interaction are reflected in significant EEG

modulations in response to human-robot gaze-contact, modulations that qualitatively resem-

bled those of an ErrP. (2) In the second experimental study we showed that ErrPs can also

be generated and decoded upon human observation of erroneous actions performed by a

real humanoid robot. Cross-comparison with a screen-based cursor feedback indicated qual-

itatively similar brain activity modulations which suggested a common underlying neuronal

origin. Quantitative comparisons showed however the ErrP effect strength to be dependent

on the type of stimulus eliciting them, with significantly lower decodeability in response to ac-

tions performed by a real robotic system (average offline accuracy of 69%) as compared to

screen-based stimuli (average offline accuracy of 91%). Regarding adaptation, (3) this thesis

demonstrate that such decoded ErrPs can be used to online adapt robot behavior towards

human expectations, which themselves could be volatile, such as the human adapting also

to the robot (human-robot co-adaptation). This is addressed in a closed-loop experimental

setup in which participants were asked to guess from the gazing behavior of a humanoid

robot its underlying goal/intention while the robot’s gaze behavior was adapted using online

decoded ErrPs (average online accuracy of 81.8%). This closed-loop setup resulted in con-

vergence of robot’s gaze behavior towards patterns facilitating the interaction (significantly

improved guessing performance) and thus an alignment of the robot’s behavior with the hu-

man interaction partner’s expectations. (4) This thesis further contributes with a computa-

tional model of human decision-making behavior and learning to explore, within the context

of the previous experimental study, the influence of varying human and experimental factors

on human-robot co-adaptation. The results of model-based simulations attributed a more im-

portant role to technical factors, specifically ErrP-decoders and methods for ErrP-based robot

adaptation, and a minor role to human factors. These findings indicate that the ErrP-based

human-robot co-adaptation approach is well generalizable across participants. Simulations

also demonstrated that state-space extensions are feasible and mainly accompanied by longer

co-adaptation convergence times, hence confirmed that the approach is well scalable to more

complex HRI.
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Zusammenfassung

Eine erfolgreiche Zusammenarbeit erfordert, dass die Interaktionspartner das Verhalten des

anderen beobachten und vorhersagen, um gemeinsame Darstellungen von Erwartungen, Ab-

sichten und Zielen zu etablieren. Die Fähigkeit, gegenseitige Erwartungen und Absichten zu

teilen, ermöglicht nicht nur eine bessere und effizientere Kommunikation, sondern dient auch

der langfristigen Zufriedenheit von Interaktionspartnern, Bindung, Vertrauen und Beziehungs-

aufbau. Eine Übertragung dieser Fähigkeit auf künstliche Systeme, wie beispielsweise au-

tonome Robotersysteme, ist bisher nicht erreicht worden, und Fortschritte in diese Richtung

werden allgemein als Schlüssel zu einer breiteren Akzeptanz von Robotersystemen in der Ge-

sellschaft anerkannt. Die Entwicklung von Robotersystemen für die Interaktion mit menschli-

chen Partnern wurde bisher traditionell durch zwei Ansätze vorangetrieben:

• Assessment: im Bereich der kognitiven Neurowissenschaften werden Robotersysteme sy-

stematisch bewertet und validiert, indem soziale kognitive Mechanismen beim Menschen

während der Mensch-Roboter-Interaktion (HRI) untersuchen werden. Diese Studien hel-

fen Ingenieuren, Robotersysteme zu entwerfen, die besser auf menschliche soziale Ei-

genschaften und Konventionen abgestimmt sind. Obwohl dieser Ansatz wissenschaftlich

fundiert ist, verwenden die meisten Studien subjektive und verhaltensbedingte Messungen,

die bei der Entwicklung neuer Systeme oft nicht einfach anwendbar sind.

• Adaptation: Im Bereich der Robotik werden Roboter mit benutzeradaptiven Mechanismen

ausgestattet, einschließlich der Erkennung menschlicher Absichten, der Benutzermodel-

lierung und Ansätze zur Handhabung von Koadaptation in der kollaborativen HRI. Obwohl

sich dieser Ansatz schnell entwickelt hat, ist er durch die begrenzten Wahrnehmungsfä-

higkeiten von Robotersystemen eingeschränkt, was die Untersuchung und Entwicklung

komplexerer HRI erschwert.

Wie in dieser Arbeit gezeigt wird, stellen passive Brain-Computer Interfaces (BCI) eine viel-

versprechende Technologie dar, um sowohl die Echtzeitbewertung als auch die Anpassung

autonomer Systeme, wie beispielsweise Roboter während der HRI, anzugehen. Passive BCIs

ermöglichen die Dekodierung von mentalen Zuständen der Benutzer, und bieten damit eine

Erweiterung der üblichen sensorischen Informationen, die Maschinen üblicherweise zur An-

passung an ihren menschlichen Partner zur Verfügung stehen. Nach diesem Ansatz zeigen

wir, dass verschiedene mentale Zustände aus den Aufzeichnungen der Elektroenzephalogra-

phie (EEG) von menschlichen Probanden während der Interaktion mit verschiedenen Robo-

tersystemen zuverlässig und nicht-invasiv dekodiert werden können. Wir konzentrieren uns

hier insbesondere auf die Untersuchung der Nützlichkeit von Error-Related Potentials (ErrPs),

einer neuronalen Reaktion, die im EEG als Reaktion auf die menschliche Beobachtung von

selbstverschuldeten Fehlern oder unerwarteten externen Ereignissen messbar ist. Wir zeigen,

dass diese ErrPs verwendet werden können, um das Verhalten des Roboters zu validieren und
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in Echtzeit hinsichtlich der Erwartungen des menschlichen Interaktionspartners anzupassen,

um somit die Interaktion zu erleichtern und zu verbessern.

Die Ergebnisse dieser Arbeit resultieren aus drei experimentellen HRI Studien am Menschen

und einer simulationsbasierten Studie mit verschiedenen Robotersystemen und HRI-Szenarien

und lösen sich in vier Hauptbeiträge auf: Bezüglich Assessment, (1) zeigt die erste experimen-

telle Studie die Machbarkeit, aus dem EEG des menschlichen Interaktionspartners, die Ab-

sicht einen Blickkontakt mit einem humanoiden Roboter herzustellen mit einer Offlinegenau-

igkeit von durchschnittlich 80.4% zu dekodieren. Die Ergebnisse zeigen weiter, wie sich un-

terschiedliche menschliche Erwartungen in Bezug auf den Roboter und die soziale Rolle, die

die Testperson in der Interaktion zu haben glaubt, in signifikanten EEG-Modulationen als Re-

aktion auf den Blickkontakt zwischen Mensch und Roboter widerspiegeln, Modulationen, die

qualitativ denen eines ErrPs ähneln. (2) In der zweiten experimentellen Studie zeigen wir, dass

ErrPs auch nach menschlicher Beobachtung von Fehlverhalten eines echten humanoiden Ro-

boters erzeugt und dekodiert werden können. Ein Quervergleich mit einem bildschirmbasier-

ten Cursor-Feedback zeigte qualitativ ähnliche Modulationen der Gehirnaktivität, die auf einen

gemeinsamen zugrunde liegenden neuronalen Ursprung hindeuteten. Quantitative Vergleiche

zeigten jedoch, dass die Stärke des ErrP-Effekts von der Art des Stimulus abhängt und mit

einer signifikant geringeren Dekodierbarkeit bei der menschlichen Beobachtung von realen

Roboteraktionen (durchschnittliche Offlinegenauigkeit von 69%) im Vergleich zu bildschirm-

basierten Stimuli (durchschnittliche Offlinegenauigkeit von 91%) einhergeht. Hinsichtlich Ad-

aptation, (3) zeigt diese Arbeit, dass solche dekodierten ErrPs verwendet werden können,

um das Roboterverhalten während der Interaktion an menschliche Erwartungen anzupassen.

Erwartungen, die ihrerseits variable sein könnten, z. B. durch die menschliche Anpassung an

den Roboter (Mensch-Roboter-Koadaption). Dies wird in einem closed-loop Versuchsaufbau

untersucht, in dem die Probanden gebeten wurden, aus dem Blickverhalten eines humanoiden

Roboters seine zugrunde liegende Intention abzuleiten, während das Blickverhalten des Ro-

boters mit Hilfe von online dekodierten ErrPs (durchschnittliche Onlinegenauigkeit von 81.8%)

angepasst wurde. Diese closed-loop Konfiguration führt zu einer Konvergenz des Blickverhal-

tens des Roboters welches die Interaktion erleichtert und damit eine effiziente Anpassung

des Roboters an die Erwartungen des Probanden erreicht wird. (4) Diese Arbeit trägt weiter-

hin mit einem Computermodell des menschlichen Entscheidungsverhaltens und Lernens bei,

um im Rahmen der vorherigen experimentellen Studie den Einfluss verschiedener mensch-

licher und experimenteller Faktoren auf die Mensch-Roboter-Koadaptation zu untersuchen.

Die Ergebnisse der modellbasierten Simulationen ergaben, dass technische Faktoren, insbe-

sondere hinsichtlich der ErrP-Dekoder und Verfahren zur fehlerbasierten Roboteranpassung,

eine wichtigere Rolle als menschlichen Faktoren spielen. Diese Ergebnisse deuten darauf hin,

dass der ErrP-basierte Mensch-Roboter-Koadaptionsansatz für alle Probanden gut generali-

sierbar ist. Simulationen zeigten auch, dass Zustands-Raum-Erweiterungen vor allem mit län-

geren Koadaptions-Konvergenzzeiten einhergehen, was darauf hindeutet, dass der Ansatz für

komplexere HRI Szenarien gut skalierbar ist.
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1. Introduction

1.1. Motivation

Successful social interaction and collaboration require interaction partners to monitor and pre-

dict each other’s behavior [1] for establishing shared representations of beliefs, intentions, and

goals [2]. The ability to share mutual beliefs and intentions does not only enable better and

more efficient communication between peers, but also serves long term satisfaction of interac-

tors, bonding, trust and relationship building [3]. Humans and animals with social capabilities

are excellent examples of organisms that have developed perceptual and cognitive mech-

anisms capable of realizing this process. A transfer of these mechanisms to autonomous

artificial systems, such as autonomous robotic systems has not been achieved so far. This is

due to the limited perceptual and cognitive capabilities of robotic systems [4] and to a limited

understanding of human social cognition [5]. Progress along this line of research is widely ac-

knowledged as the main path to more widespread acceptance and application of autonomous

robotic systems in society [6], since robotic systems, that were until now largely perceived as

sophisticated tools, may soon become entities which actively contribute to our society. Exam-

ples for such developments can be found in the domains of autonomous driving cars, dialogue

systems and chatbots, as well as collaborative robotic systems. These systems have in com-

mon a close interaction with humans and with this they exert a significant influence on their

human interaction partners. And while appropriate safety mechanisms constitute the most

critical factor in such systems, aspects considering the human acceptance of the technical

system as an interaction partner play as well an integral role. Questions that are frequently

raised in the context of the design of such systems are (see [4, 7]): How to foster the human’s

willingness to engage and persistently interact with the system? How to realize synergistic

and efficient interaction by exploiting both the human and machine’s individual capabilities?

How to establish long term trust and relationship building between humans and machines?

One increasingly important way to approach these questions in a quantitative and systematic

fashion is by exploiting direct measures of brain activity from the human interaction partner

that are modulated by that interaction [6]. As will be demonstrated in this thesis, closed-loop

brain-machine interfaces constitute a very promising technology for real-time assessment and

adaptation of autonomous machines to human’s expectations and preferences. Indeed, all

above mentioned research questions can to some extent be subsumed under the consider-

ation of how to align the machine’s decisions and behavior with human’s expectations and

subjective preferences. Because, if both expectations and preferences of the human interac-

tion partner are met, comfort, trust, role definition and relationship building may automatically

evolve towards human conventions. By addressing this central research question, this thesis
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contributes to the development of a technology that can ultimately bring humans and machines

closer together.

1.2. Problem definition

This thesis focuses on a specific subfield of HMI (human-machine interaction), namely col-

laborative HRI. Within this domain, further focus is put on HRI involving autonomous robotic

systems with some form of agency. Meant here are HRI scenarios in which both human and

robot are equally responsible and independent interaction partners, each with potentially dif-

ferent goals and / or attitudes towards solving a task or shaping the interaction. Examples are

collaborative assembly tasks in factory setups or social human-robot communication in elderly

care or service robotics.

Two main approaches towards improving robotic systems and interfaces in collaborative HRI

have been pursued so far: (1) offline assessment and validation of robotic systems and HRI,

and (2) online user-adaptive robotic systems and interfaces. Both approaches are subse-

quently introduced and current challenges and limitations are discussed.

1.2.1. Assessment: Offline validation of robotic systems and HRI
In the domain of cognitive neuroscience and experimental psychology, a typical approach to

improve HRI is to offline assess robotic systems in experimental studies involving human par-

ticipants. In experimental tasks different interaction settings, such as different robot appear-

ance and behavior, are typically presented to human participants. Settings and/or interactions

are rated/evaluated using different types of measures [8]: questionnaires, video recordings,

interviews; performance measures such as reaction time, error rates or time to complete the

task; behavioral measures such as eye tracking or motion tracking; electrophysiology and

neuroimaging measures (for an overview the reader is referred to [6]). These measures in-

form, for example, about which scenarios or experimental conditions are preferred by human

participants, and provide therefore guidelines to robot engineers. Examples are the work by

Weiss and colleagues, e.g. [9] in 2010 in which they employed an autonomous mobile robot

exploring the city, specifically public places in Munich. Among other aspects, they studied

the human’s (random passers-by) willingness to help the robot by pointing out directions to

navigate to an intended goal. The study was based on the observation through experimenters

and a customized questionnaire administered to passers-by after they engaged with the robot.

Another example is the work by Wykowska and colleagues in 2015 [10] in which they demon-

strated the sensitivity of human perception to behavioral characteristics related to perceived

intentionality of robots. Specifically, they investigated if participants were able to tell apart if

particular robot actions were pre-programmed, human-controlled, or modelled after human

behavior (see Figure 1(a)). Here, performance measures were employed, in particular partic-

ipants’ judgment and related response reaction times. While such approaches are based on

clear, scientifically grounded and testable hypotheses, the majority of research works still use

exclusively performance measures and/or self-assessment using standardized or customized
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questionnaires [11] since they are inexpensive to apply and easy to implement [6] (see for ex-

ample the “Godspeed Questionnaire Series” - Goodspeed [12], the “Robotic Social Attributes

Scale” - RoSAS [13], the “Usability, Social acceptance, User experience, and Societal impact

questionnaire” - USUS [14], or the “NASA Task Load Index” - NASA-TLX [15]). However, sub-

jective ratings usually disrupt natural interaction and are therefore typically administered at the

end of the experiment (see above mentioned example of Weiss and colleagues [9]). As such,

obtained results rarely inform about participants’ assessment immediate to a (particular) robot

action or behavior. This also accounts for performance measures, which are often reported

as average across multiple trials to yield conclusive results about the contrasted conditions

(repetitive execution of the same experimental condition to overcome trial-to-trial variations;

see above mentioned example of Wykowska and colleagues [10]). While performance mea-

sures are objective, questionnaire-based self-assessment ratings are subjective and thus can

be biased by participants’ individual interpretation. The need for more objective and imme-

diate measures for the assessment of robot behavior has been widely acknowledged, e.g.

in [16]. Along this line, Wiese and colleagues recently argued that the best way to “make

robots more social [would be a] systematic experimental approach based on behavioral and

physiological neuroscience methods such as motion/eye-tracking, electroencephalography,

or functional near-infrared spectroscopy embedded in interactive human-robot paradigms” [6]

(see Figure 1(b)). Approaches employing such objective neuro-cognitive measures have been

presented, although less frequently, for instance using EEG [17], or fMRI (functional magnetic

resonance imaging) [18, 19] (see Figure 1(c)). In summary, while offline assessment of HRI

is scientifically strongly grounded it is limited by being largely based on non-immediate, non-

objective measures. This hinders the smooth and swift application of that acquired knowledge

into the design of robots and is not suitable to application in more dynamic HRI.

1.2.2. Adaptation: Online user-adaptive robotic systems and interfaces
In the domain of robotics and engineering, a more common approach is to employ robotic

systems with mechanisms to automatically adapt (during interaction) to their human interac-

tion partners. These “user-adaptive systems consist of autonomous agents that are able to

use some manner of information on their user in order to adapt to them” [21]. It has long

been established that user-adaptive human-computer interfaces lead to significantly improved

acceptance as compared to non-adaptive ones [22]. In the domain of social robotics and HRI,

previous works have shown that robot adaptation significantly improves human’s perceived

robot trustworthiness [23]. One can distinguish here between three strands of research: (1)

adaptation of robots to users (e.g. [24, 25], for an overview the reader is referred to [26]), (2)

modeling of human adaptation to robots (e.g. [27] or [28]), and (3) human-robot co-adaptation

(or mutual adaptation, e.g. [29] and [30]). The first two strands consider only one-way adap-

tation of either the robot to the human or vice-versa. An example is the work by Kühnlenz

and colleagues in 2013 who employed an expressive robot head (see Figure 2(a), left) which

adapted facial expressions towards user’s emotional states (predicted from user’s facial ex-

pressions, see Figure 2(a), right). This automatic adaptation towards congruency of human-

robot emotional states increased the willingness of users towards helping the robot [31, 32].
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Figure 1 Assessment and validation of HRI: (a) Experimental setup and protocol testing the sensitivity of human perception to
robot actions which was pre-programmed, human-controlled, or modelled after human behavior. To contrast conditions,
performance measures were employed, e.g. the participants’ judgment and related response reaction times. [Reprinted from
Wykowska et al., 2015 [10]] (b) Example experimental set-up in which a human interacts with a humanoid robot iCub, while
behavioral, neural and physiological measures are taken to examine the human social cognition. [Reprinted from Wykowska et
al. 2016 [5]]. (c) Experimental study exploring and demonstrating differential neural responses to same actions performed by
entities with varying degree of humanness: a human (top left), an android (top middle), and a humanoid robot (top right)
[Reprinted from Ishiguro, 2015 [20], adapted from Saygin et al., 2011 [18]].

In many set-ups such one-way adaptation can be sufficient, and may, as demonstrated in the

former example, implicitly trigger beneficial user adaptations. However, explicit considerations

of both way adaptations are presumably particularly important to progress in the domain of

collaborative HRI where robot acceptance and trust play a critical role in overall task success.

For instance, a robot which solely adapts to human preferences may result in sub-optimal

task performance because the human partner may not be aware of the optimal policy. In con-

trast, a robot which insists on executing an optimal policy against the human’s preferences

may erode the human’s trust in the robot and as such lead to decreasing team performance

[33]. Even though research on human-robot co-adaptation being a reasonable approach in

collaborative HRI, there are only a few recent works by Nicolaidis and colleagues [29, 30, 34].

They proposed a probabilistic “bounded memory model” to describe and predict the human’s

adaptability in a simulated table-carrying task (see Figure 2(b)). This model is integrated with

the robot’s decision policy and allows the robot to adapt to the human partner in case the

human insists on his/her policy. Otherwise the robot would guide the human partner towards

the optimal policy. This led, in addition to improved task performance, also to higher satisfac-

tion levels in the tested participants. While these works clearly show the importance of robot

adaptation, progress along this line of research has proven challenging [4, 7]. A critical pre-

requisite for a system to be user-adaptive is to have sufficient and reliable information about

the user [22]. While in HCI (human-computer interaction) with constrained input modalities
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(computer mouse, keyboard) information about the user can relatively easily be inferred, the

latter is less straightforward in natural, unstructured and dynamically changing environments

[4]. State-of-the-art perceptual and reasoning capabilities of robotic systems are still limited

and often augmented with additional information/feedback channels (e.g. buttons for provid-

ing feedback to the robot, as discussed in [26]) or specifically tailored to controlled interaction

scenarios. This can as well be observed in the experimental setup of the table-carrying task

of Nicolaidis and colleagues [29], in which human decisions were restricted to two options

carried out by click-actions in the simulated environment (rotate table clock- or anticlockwise,

see Figure 2(b)). In summary, while robot adaptation has been proven highly effective up to

methods handling mutual adaptation in HRI, extensions to more realistic environments are

thwarted by limitations of robot perceptual and reasoning capabilities.

Figure 2 User-adaptive robotic systems and interfaces: (a) Experimental setup of a social interactive HRI task in which the
effect of the robot head EDDIE mirroring / adapting to human facial expressions was investigated. [Reprinted from Gonsior et
al. 2011 [31]] (b) Experimental setup of the simulated human-robot table-carrying task. Human participants could take
decisions out of two options (rotate table left or right). To realize co-adaptation, the robot’s actions were set to follow a decision
policy linked to the “bounded memory model” which in turn predicts the participant’s level of adaptability [Reprinted from
Nikolaidis et al. 2016 [29] and 2017 [34]].

1.3. Novel approaches: Passive BCI-based assessment and
adaptation of robotic systems and HRI

The approach of utilizing implicit measures from electro- or psychophysiological signals for

augmenting HRI (or HCI) is a relatively young sub-field of BCI research and commonly referred

as passive BCI. Passive BCIs aim for continuously providing information about the user’s

state (emotional responses, intentions, motivations) to the technical system - most of the

time without the user being aware of it. The basic concept is to employ BCIs as a modality
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for both understanding and augmenting a person’s experience in interaction with machines

[35, 36, 37, 38]. A series of neuronal correlates, potentially useful for such passive BCIs, have

been explored and reported so far (see further information in Chapter 3, Section 3.1.1). This

thesis focuses on neuronal correlates arising from error-/performance-monitoring processes in

the brain, implicated in decision making, learning and adaptation, conflict and error-handling,

both in collaborative as well as social interaction [39] (for further information, see Chapter 2,

Section 2.3).

Error-/performance monitoring processes are also implicated in interaction between humans

[40], and contribute to successful monitoring and prediction of other’s behavior for establishing

shared representations of goals and intentions to maintain or improve interaction performance

[3]. There is increasing evidence that humans behave in a similar manner when interacting or

collaborating with autonomous machines or robots [5]. Thus, in order to maintain or improve

interaction performance in HRI, humans are likely not just to monitor and judge their own

actions and decisions, but also those of the robots in order to predict future outcomes and be

able to adapt swiftly to and interact efficiently with the robot.

Error-/performance monitoring processes have been shown to be manifested as characteristic

signal deflections in the human EEG. These so-called ErrPs have been observed to be elicited

by self-inflicted errors, processing of conflicting stimuli, as well as negative feedback and

unexpected events (for further information, see Chapter 2, Section 2.4). While the study of

ErrPs has a longstanding history in cognitive neuroscience, ErrPs have only recently been

proposed as a valuable source of information about the human’s expectations and subjective

preferences towards robot behavior [41, 42, 43]. ErrPs are decodable from real time EEG

signals and have features that are similar across tasks (for further information, see Chapter

4, Section 4.1.1). This makes them a suitable and task-independent complement to existing

immediate and objective methods for validating and adapting HRI (or HMI/HCI in general). The

approach is illustrated in Figure 3: EEG signals are recorded from the human partner during

HRI; ErrPs are decoded upon occurrence of unexpected/erroneous robot actions observed

by the human. Information derived from decoded ErrPs are subsequently either used to label

robot actions for post-hoc validation, or utilized as feedback signal for online adaptation of

robot behavior.

Therefore, the approach allows for both offline validation (binary assessment of individual

events or robot actions) and online adaptation of robot behavior (feedback signal), and may

as such serve as valuable complement to both the cognitive science as well as the engineering

approach while simultaneously compensating for some of their drawbacks:

• Assessment: The approach goes in line with the proposition of Wiese and colleagues

in 2017 according to which systematic validation of HRI must include objective neuro-

cognitive measures [6]. Instead of using a variety of measures, the here proposed passive

BCI focuses on one particular neuro-cognitive measure (e.g. ErrPs) which informs about
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Figure 3 Passive BCI-based assessment and adaptation of HRI: In interaction with a robot, ErrPs decoded from the human
interaction partner’s EEG signals are used to assess/validate individual robot actions and/or to online adapt the robot’s behavior
during HRI.

human’s expectations and preferences. This facilitates data analysis and interpretation,

while preserving scientific grounding. Decoding ErrPs do not require participant’s attention

or awareness. Hence, there is no need to interrupt the interaction. Furthermore, ErrPs can

be real-time decoded in single-trial upon occurrence of events observed by the participant,

allowing as such for immediate binary assessment of individual robot actions.

• Adaptation: The feasibility to decode ErrPs in real-time, makes this approach useful also

for online adaptation of robot behavior (feedback signal). Information about the human’s

assessment of individual robot actions can be used as feedback for correction of erro-

neous robot behavior or adaptations in line with human expectation. Online decoded ErrPs

can furthermore serve as a complementary information channel in user-adaptive HRI to

support the inference of human intentions and goals.

1.4. Contributions

The outcomes of this thesis result from three experimental HRI studies and one simulation-

based study involving different robotic systems and HRI scenarios and resolve in four main

contributions, with two addressing the research field of assessment and two addressing the

research field of adaptation.
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Assessment:

Contribution 11: We conducted experimental study 1 to validate the feasibility of using direct

brain measures from human interaction partners for the assessment of HRI. In an initial pilot

study, we focused on the question as to what extent direct brain measures can be informative

with regard to the nature of gaze contact events with a real humanoid robot. In particular, we

were interested whether the intention to engage in interaction with a humanoid robot and the

type of social role the human partner took in the engagement process can be decoded from

modulations of oscillatory EEG activity. In a follow-up study with more participants, we per-

formed a complementary data analysis on effects of brain activity modulations under different

conditions of human-robot gaze-contact events. Resulting modulations were in line with the

characteristics of ErrPs and could be related to (mis-)matching beliefs of the human partner

about underlying goals of the robot. This gave rise to focusing on the effect of ErrPs in further

works. The outcomes of these studies were:

• (1a) Confirmation of feasibility to decode from modulations of oscillatory EEG activity (i)

the intention to engage in gaze-contact with a humanoid robot and (ii) the type of social

role the human partner assumed in the engagement process.

• (1b) Explorative analysis of brain activity modulations in response to human-robot gaze-

contact events suggesting involvement of performance monitoring processes in the en-

gagement process of the proposed HRI scenario.

Contribution 22: As a follow up to the initial studies, we conducted experimental study 2 ad-

dressing the feasibility of observing and decoding ErrPs in response to real robotic systems.

Most previous studies on ErrPs focused on simple symbolic screen-based stimuli; a system-

atic investigation of whether and to what extent ErrPs arise from human observation of incor-

rect actions performed by real robotic systems was lacking. To address this, we investigated

as to which extent the observability and decodability of ErrPs vary in response to human

observation of incorrect robot actions compared to those arising in response to a simplified

stimulus in procedurally identical experimental protocols. The outcomes of the study were:

• (2a) Confirmation of feasibility to observe and decode ErrPs in response to incorrect ac-

tions performed by a real humanoid robot.

1 This contribution was in part published as a conference paper at the IEEE International Conference on Humanoid
Robots in 2014 [44].

2 This contribution was in part published as a conference paper at the IEEE International Conference on Humanoid
Robots in 2016 [42] and as a journal article in the International Journal of Social Robotics in 2019 [45]. The
EEG dataset collected during this study is available for download via: https://github.com/stefan-ehrlich/
dataset-ErrP-HRI.

8

https://github.com/stefan-ehrlich/dataset-ErrP-HRI
https://github.com/stefan-ehrlich/dataset-ErrP-HRI


• (2b) Systematic cross-comparison of different stimuli (cursor, robot) revealed qualitatively

similar brain activity modulations, suggesting a common underlying process related to

error-/performance monitoring. Comparisons also revealed quantitative differences which

suggest ErrPs to be dependent on the type of stimulus eliciting them.

Adaptation:

Contribution 33: Experimental study 3 investigated as to which extent ErrP-based adaptations

of robot behavior are possible when human interaction partners also adapt or dynamically

change their expectations towards the robotic system. This is addressed in a closed-loop

experimental setup in which participants were asked to guess from the gazing behavior of a

real humanoid robot its underlying goal/intention while the robot’s gaze behavior was adapted

using online decoded ErrPs. This relaxation of interaction constraints - permitting mutual

adaptation - is particularly important in scenarios in which adaptations of the human to the

robot are expected or even necessary for successful interaction, such as in collaborative or

social interactive HRI. The outcomes of this study were:

• (3a) Demonstration of feasibility to successfully mediate co-adaptation via online decoded

ErrPs during HRI with a real humanoid robotic system.

• (3b) Demonstration of feasibility to utilize ErrPs as delayed reward signal for updating se-

quences of robot actions instead of single occurrences. This is an important prerequisite

for transferring ErrP-based robot adaptation to more complex HRI where robot actions are

likely to occur in rapid succession or being embedded in continuous behavior.

Contribution 44: Our previous case study on human-agent co-adaptation left open a number

of fundamental questions about the functionality of the approach in the context of varying

human and technical factors. To address these questions, we propose a computational model

describing participants’ decision-making and learning behavior in the previously introduced

HRI task and perform a series of model-based simulations to assess factors influencing co-

adaptation. The outcomes of this work were:

• (4a) A computational model to describe and predict human decision making and learning

within the context of experimental study 3. The proposed computational model allows the

simulation and thus planning of future empirical studies in a resource-saving manner and

thereby providing a means for accelerating progress along this line of research.

• (4b) Identification of the main technical and human factors influencing co-adaptation in

ErrP-based HRI by model-based simulations of ErrP-based human-robot interaction with

varying experimental conditions. The results provide guidelines for future technical im-

3 This contribution was published as a journal article in Journal of Neural Engineering in 2018 [46]. The EEG
dataset collected during this study is available for download via: https://github.com/stefan-ehrlich/
dataset-ErrP-coadaptation.

4 This contribution is in part covered in a conference paper, accepted for publication in the IEEE International
Conference on Systems, Man and Cybernetics in 2019 [47].
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provements of ErrP-decoders and alternative methods for ErrP-based robot adaptation and

furthermore confirm that extensions of the approach to more complex HRI are feasible.

Datasets: Besides research contributions, this work resulted in several EEG datasets which

were made publicly available via the following link: https://github.com/stefan-ehrlich.

Over the last years, these datasets were used for teaching purposes and provided the basis for

several student works in the study research questions complementary to those addressed in

this thesis. In a similar manner, the data may further serve the BCI community in the future.

1.5. Thesis outline

This dissertation consists of seven chapters.

Chapter 2 - Background and foundations. This chapter introduces research areas/topics

as well as important terminology relevant to this thesis. The review starts by providing a

background on the history and recent developments in the field of BCI and introduces EEG as

the neuro-recording method used in this work. Furthermore, the concept of error-/performance

monitoring and its manifest in the human EEG, ErrPs, are introduced.

Chapter 3 - Initial studies: EEG-based assessment of intention to engage in HRI. This

chapter presents the design and empirical results of experimental study 1 assessing the fea-

sibility of using human EEG activity to derive human intention to establish gaze contact with

a humanoid robot. The results showed decodable modulations of EEG oscillatory activity that

could be related to the different beliefs of the participant about the underlying goals of the

robot. A post-hoc analysis furthermore revealed characteristic modulations which resembled

those of ErrPs. Consequently, the following works focused on ErrPs as a unitary electrophys-

iological effect.

Chapter 4 - A feasibility study for validating robot actions using EEG-based error-

related potentials. This chapter presents the design and empirical results of experimen-

tal study 2 assessing the feasibility of using ErrPs to validate robot actions during HRI. The

results confirmed feasibility to observe and decode ErrPs arising upon observation of erro-

neous / unexpected robot behavior, but also pointed towards challenges and limitations of the

approach. This work served as a precursor to the subsequent study on ErrP-based mediation

of human-agent co-adaptation.

Chapter 5 - Human-agent co-adaptation using error-related potentials. This chapter

presents the development of a closed-loop BCI, and the design and empirical results of exper-

imental study 3 exploring the feasibility to mediate co-adaptation in human-agent interaction
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using ErrPs online decoded from a human interaction partner. The results confirmed feasibility

and demonstrated successful ErrP-based human-robot co-adaptation.

Chapter 6 - Computational modelling of ErrP-based human-agent co-adaptation. This

chapter presents the development of a computational model of human decision-making and

learning to explore, within the context of the experimental study 3, the influence of varying

human and experimental factors on human-robot co-adaptation. The results of model-based

simulations attributed a more important role to technical than to human factors, and further-

more confirmed scalability of the ErrP-based human-robot co-adaptation approach to more

complex HRI.

Chapter 7 - Conclusions and Outlook. This chapter provides a final overview of the con-

tributions of this thesis, summarized in concluding remarks. Furthermore, an outlook of the

future steps driving this line of research is provided.
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2. Background and foundations

This chapter summarizes background, foundations and terminology relevant to this thesis.

The survey starts with a general introduction to BCI in Section 2.1 and continues with an

introduction of EEG in relation to alternative neuro-recording methods in Section 2.2. This is

followed by a description of the neural basis of human performance monitoring in Section 2.3.

The main effect relevant to performance monitoring, observable in the human EEG, ErrPs,

are introduced in Section 2.4. The chapter ends with a summary in Section 2.5. The relevant

literature is presented in chronological order to provide the reader a notion of the historic

development of the covered fields up to the concepts and terminologies relevant to this thesis.

More specific literature is presented as related work in Chapters 3-6 and cross-referenced in

the respective sections of this chapter.

2.1. Brain-Computer Interfaces

A BCI, or brain-machine interface (BMI)1, is a system that establishes a direct communication

pathway between a brain and an external device. Traditionally a BCI is defined as a device

that “enables communication without movement, and must (1) rely on direct measures of brain

activity, (2) provide feedback to the user, (3) operate online, and (4) rely on intentional control”.

according to the definition of Wolpaw and colleagues (2002, [48]). A more recent definition ac-

cording to Brunner and colleagues in 2015 defines a BCI as “[...] a system that measures CNS

[(central nervous system)] activity and converts it into artificial output that replaces, restores,

enhances, supplements or improves natural CNS output and thereby changes the ongoing

interactions between the CNS and its external or internal environment” [49]. This is an exten-

sion to the traditional definition as it includes systems that do not rely on intentional control.

Furthermore, it extends the definition to any device that exploits signals reflecting CNS activ-

ity, and not focusing on brain activity exclusively. A BCI consists of three parts (see Figure

4): (i) a measurement device that acquires signals containing information about the user’s

CNS activity, (ii) a decoder that translates in real-time these acquired signals into computer

commands, and (iii) a device that executes these commands and provides feedback to the

user. This way, BCIs bypass the normal pathways of communication with the external world,

and as such provide users an additional and/or supplementary communication channel. One

distinguishes here between invasive (based on surgically implanted electrodes or microarray

recordings) and non-invasive (based on recording techniques that do not require implantation

such as EEG) BCIs. While the history of BCI dates back to the invention of the EEG by Hans

Berger in 1924 [50], the term “brain-computer interface” was only coined about 50 years later

with the development of the first EEG-based BCI by Jacques Vidal in 1973 which employed

VEP (visual evoked potential)s to estimate user’s gaze direction [51]. Ever since, research on

BCI has constantly gained momentum (for an overview the reader is referred to the following

1 Although BCIs and BMIs follow the same principle, historically it has been established to use the term BCI for
systems employing non-invasive and BMI for systems employing invasive neuro-recording methods.
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historical and more recent survey articles [48, 52, 53, 54, 55, 49, 56]); but research in BCI is

still relatively young with most works having been published throughout the last 15-20 years

[49]. Early works were almost exclusively focused on BCIs for communication and control [48].

These are BCIs with the purpose of establishing an alternative communication channel for pa-

tients with severe motor deficits, as in ALS (amyotrophic lateral sclerosis), CLIS (complete

locked-in-syndrome), or paralysis due to brainstem injury. EEG features were translated into

commands, for example to perform binary selections of simple “yes”/“no” responses, multi-

target selection for character spelling, over 2D cursor control, up to controlling wheelchairs,

robotic prostheses, and exoskeletons. Prominent examples are the works of Nicolelis and

colleagues [57, 58], as well as the work of Donoghue, Schwartz and colleagues [59, 60]. The

second field of application emerged from the “closed-loop” nature of BCI systems: note that

in BCI applications decoded mental commands are not only executed but also fed back to

the user visually or via other perceptual modalities (see Figure 4). Closing the loop allows

BCI users to monitor their own brain processes, which can trigger awareness, learning, recov-

ery or even enhancement of brain functionality (neuroplasticity). BCIs for neurorehabilitation

[53] have brought about novel treatment protocols for different neurological disorders, among

others, but most notably for post-stroke motor rehabilitation (for a recent overview, see [61]).

Prominent examples are works by Guan and colleagues [62] as well as the work by Daly and

colleagues [63]. As such, early works on BCI were mostly focused on clinical applications

for different patient populations. For healthy users on the other hand, contemporary neural

recording techniques were too imprecise to be useful as an alternative input modality for HMI

(e.g. non-invasive techniques such as EEG) or harmful and/or too expensive and therefore not

justifiable in terms of cost-benefit trade-off (e.g. surgically implanted recording techniques).

Along this line, a new class of non-invasive BCIs were proposed by Zander and colleagues

in 2011, so called passive BCIs [36] with the specific purpose to serve the healthy popula-

tion. These are BCIs which, in contrast to active BCIs, do not require voluntary or intentional

control by the user, but rather decode mental states without the user necessarily being aware

of it. The decoded information can be used to augment and as such enrich natural HMI with

an additional information channel. It can be used for example for attention lapse detection or

workload assessment during demanding or dangerous tasks, such as driving a car or oper-

ating heavy machinery [64]. Other examples are in the domain of gaming and entertainment

[65, 66], and in the context of social HRI, such as in [67]. A detailed overview of passive

BCIs for HRI is provided in Chapter 3, Section 3.1.1. For an overview of BCI applications

and common BCI paradigms the reader is referred to Table 1 and Table 2, respectively, and

furthermore pointed to a recent comprehensive survey by Abiri and colleagues [56].

2.2. Electroencephalography (EEG)

EEG was invented by Hans Berger in 1924 [50] and measures electrical fields generated

by populations of synchronously firing neurons. It has been established ever since as one

of the most widely used non-invasive technologies for monitoring brain activity and is cur-

rently used for diagnosis (e.g. epilepsy) and long-term monitoring (e.g. sleep monitoring) in
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Figure 4 Brain-computer interface architecture: Principle of a brain-computer interface including application scenarios
[Reprinted from Brunner et al., 2015 [49]].

Table 1 Overview of BCI applications

Purpose Target group Example applications

Communication
and control

paralyzed patients and patients
suffering from motor disorders

character spelling, cursor movement,
wheelchair control

Neuro-rehabilitation
treatment of attention deficit
hyperactivity disorder and motor
disorders in stroke

attention training embedded in
video games, robot guided
movement training

Passive augmentation
of HCI/HMI

healthy users gaming, e-learning, HRI

clinical contexts; for research in human cognitive neuroscience; for BCI applications allow-

ing paralyzed individuals rudimentary communication with their environment; and finally for

BCI-based neuro-rehabilitation of sensorimotor disorders (e.g. in stroke). While EEG pro-

vides exceptional temporal resolution, it is limited in spatial resolution. EEG signals have

furthermore a very low SNR (signal to noise ratio) and are often contaminated by non-brain

activity artifacts such as due to environmental noise, electrode movement, and muscular activ-

ity. Some of the more recently developed neuro-imaging/recording methods can compensate

for these drawbacks, such as fMRI, positron emission tomography (PET), fNIRS (functional

near infrared spectroscopy) or invasive technologies, such as intracortical EEG (ECoG), and

single- and multi-electrode recordings. From a BCI engineering point of view however, above-

mentioned alternatives pose other serious limitations: they are very expensive or difficult to

access, immobile / non-portable, and in part invasive which is accompanied by serious health

risks. EEG technology on the other hand is comparably inexpensive and comfortable, non-
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invasive, portable, and allows mobility of participants during experiments, therefore being still

the technology employed in most BCI research.

Measurement principle: When neurons fire, electrical pulses are sent along the axon con-

necting several neurons (Figure 5(a)). These electrical pulses result in extracellular electrical

fields that can - if strong enough - penetrate the layers of the cortex, cerebrospinal fluid, skull

and skin and be picked up with surface electrodes positioned outside the skull (Figure 5(b)).

Usually, the electrical field emerging of a single firing neuron is too weak to be measurable

outside the skull, but if many neurons fire synchronously the summation of individual electric

fields can generate electric dipoles strong enough to be picked up with surface electrodes. For

this effect to work, axons need to be spatially aligned in parallel and neurons need to fire in

synchrony, otherwise individual electrical fields may cancel out. This property of spatial paral-

lel alignment of axons is given in most parts of the cortex [68]. The electric dipole generated

has a scalp topographical distribution which can be derived from multichannel EEG recordings

(Figure 5(c)). EEG allows to measure a series of electrophysiological effects which are de-

scribed in detail below. These effects provide insight about different neuronal processes, such

as implicated in stimuli perception and evaluation, sensorimotor planning, attention processes

and decision making.

Figure 5 Measurement principle of EEG: (a) When neurons fire, electrical pulses are sent along the axon which creates an
electrical field. (b) For this field to be strong enough to be picked up with surface electrodes, axons need to be spatially aligned
in parallel and neurons need to fire in synchrony. (c) This generates an electrical dipole whose scalp topographical distribution
can be derived from multichannel EEG recordings [(a,c) Adapted from Mazaheri & Jensen, 2010 [69]; (b) Adapted from
Jackson & Bolger, 2014 [68]].

Slow cortical potentials: SCP (slow-cortical potential)s are low frequency negative or positive

potential shifts arising in response to motor preparation, planning and execution. Among the

most prominent is the Bereitschaftspotential (or readiness potential), which is a negative signal

deflection beginning 500-100 ms before self-initiated movement [70]. It has been shown that

users can learn to voluntarily regulate these potentials after training using immediate feedback

[71] which renders this effect suitable for BCIs for communication and control.

Oscillatory modulations: The frequency spectrum of EEG signals has been traditionally subdi-

vided into several bands, delta (1-4 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and
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gamma (> 30 Hz), and each of these bands have been associated with different physiologi-

cal and/or mental states [72]. Among the most prominent are SMR (sensorimotor rhythm)s,

which are oscillatory modulations in alpha- (also called mu-band) and beta-band over sen-

sorimotor areas [73]. SMRs have been associated with voluntary motor planning, motor im-

agery and motor execution and manifest as modulations of the EEG frequency spectrum, so

called ERS/ERD (event-related synchronization/desynchronization) [74]. As for SCP, users

can learn to voluntarily modulate these SMRs which is why this effect has been employed in

BCIs for communication and control [75]. Modulations of EEG oscillatory activity have also

been associated with different levels of attention (drowsiness-alertness), mental workload,

and task engagement [76] which is particularly relevant in the context of passive BCIs (see

Chapter 3, Section 3.1.1). Furthermore, modulations of EEG oscillatory activity have been

observed in response to observation of high-frequent repetitive stimuli, such as visual flick-

ering stimuli, but also auditory and tactile stimuli [77]. These so-called steady state evoked

potentials (SSEPs) manifest as sharp (low bandwidth) modulations of the EEG spectrum at

frequencies corresponding to those of the stimuli.

Event-related potentials: ERPs are voltage deflections in the EEG time-locked to events or

stimuli presented to participants and are assumed to arise from bursts (synchronization and

desynchronization) of neuronal activity in specific frequency bands [78]. ERPs are usually

reported as average waves across individual trials (single occurrence of stimulus presented to

the participant) to overcome trial-by-trial variations and the generally low SNR of EEG signals.

Averaging across individual trials of ERPs highlights specifically modulations that are phase-

locked with respect to onset of the event; non-phase locked components are as such cancelled

out. ERPs are composed of well-defined components (see Figure 6) which are positive and

negative deflections of the ERP at specific latencies. Usually, earlier components (< 100 ms)

are associated with lower-level perceptual processes, whereas later components (up to 700

ms) are associated with higher-level cognitive, evaluative processes [78]. ERP components

are termed according to their latency with regard to stimulus onset and peaking (e.g. P1

corresponding to a positive deflection at a latency of 100 ms post stimulus).

Table 2 Overview of common EEG-based BCI paradigms: Control schemes are divided into paradigms that allow for
asynchronous self-paced operation of the BCI (e.g. continuous cursor control) vs. paradigms that allow for synchronous
initiation of discrete commands at specific moments (e.g. selection of a target among several options). Further distinctions are
made with regard to active (voluntary control based on movement intentions), reactive (voluntary control based on differential
attention to external stimuli) and passive (passive measurement without requiring voluntary user actions) paradigms.

Paradigm Description Type neuronal effect

Event-related potentials
(ERP)

selective for variations in
presented stimuli

reactive+passive; dependent;
event-based

evoked + induced
activities

Steady-state evoked
potentials (SSEP)

selective for attended
oscillating targets

reactive, dependent,
continuous

evoked activities

Slow cortical potentials
(SCP)

low frequency signal fluctuations
due to movement preparation

active, independent,
continuous

induced activities

Sensorimotor rhythms
(SMR)

selective for voluntary motor planning,
imagery and execution

active, independent,
continous

spontaneous oscillatory
modulations
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Figure 6 Extraction of ERPs from EEG signals: (a) Stimuli (1... N) are presented during EEG recording (b) ERPs are computed
by segmenting EEG data following each stimulus (trial) and averaging across trials to obtain the averaged ERP waveform. ERP
components are termed according to their latency with regard to stimulus onset and peaking (e.g. P1 - positive deflection at a
latency of 100 ms post stimulus) [Reprinted from Luck et al., 2000 [78]].

2.3. Neural basis of error-/performance monitoring

Error-/performance monitoring2 subsumes neural mechanisms involved in goal-directed be-

havior, decision making, planning and execution of tasks but also in flexible adaptive behavior

and error handling [39]. Research on human and animal performance monitoring has a long

tradition and dates back to the work of Rabbitt in the 1960s who investigated behavioral ef-

fects of error correction in choice-response tasks [79]. The first physiological evidence for

performance monitoring in humans was reported by Bechtereva and Gretchin in the 1960s by

means of measurements with implanted depth electrodes [80].

All studies, from fMRI to EEG and those employing invasive electrophysiology recordings,

point towards several sub-regions in the medial frontal wall of the human brain as being in-

volved in performance monitoring (see Figure 7). This is suggested to happen through a

distributed network involving many other regions of the brain, but the electrophysiological

responses to performance monitoring problems have been most consistently recorded in the

anterior midcingulate cortex, which is part of the posterior MFC (medial frontal cortex) contain-

ing the pre-SMA (supplementary motor areas), also [39]. Several computational models for

human performance monitoring in the medial prefrontal cortex have been proposed so far, as

summarized in [81], and more recently in [82]. The majority of the proposed models employed

2 Referred to as “performance monitoring” for the remainder of this thesis
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a reinforcement learning-based computational framework, in particular temporal-difference

learning in actor-critic architectures [83]. A comprehensive overview of computational models

of error-/performance monitoring is provided in Chapter 6, Section 6.1.1.

Figure 7 Brain regions implicated in human performance monitoring: Subregions of the medial frontal wall involved in
performance monitoring; ACC (anterior cingulate cortex) and SMA [Reprinted from Ullsperger et al., 2014 [39]].

A multitude of experimental paradigms have been used to disentangle sub-functionalities of

performance monitoring. Generally, participants are led to commit errors in a certain context,

and can be given, or not, external feedback. One of the most prominent paradigms uses

the (speeded) CRT (choice reaction time task) in which stimuli are presented in a continuous

stream and participants are required to perform a binary decision on each stimulus (e.g. left

vs. right button) as fast as possible [84]. A simplified version is the Go/NoGo task : one of

the stimuli requires participants to make a motor response (go), whereas the other to withhold

a response (no-go). In some cases, the experiment design allows the participant to correct

post-error his/her initial response. Other paradigms, such as the Eriksen flanker task [85],

use interfering stimuli to cause an error: the target is flanked by non-target stimuli which

correspond either to the same directional response as the target (congruent flankers), to the

opposite response (incongruent flankers) or to neither (neutral flankers). Such paradigms are

used to assess the ability to suppress responses that are inappropriate in a particular context

and focus on the investigation of selective attention. Another paradigm using interfering stimuli

is the Stroop task [86]. Here, participants are presented color-printed color-words, with some

words being printed in a color not denoted by the name, in which case there is a higher

likelihood that participants commit an error when asked to name the color of the word. Another

category of experimental paradigms subsumes gambling tasks in which the outcome of the

choice is not estimable by the participant and after choice/response communicated temporally

delayed by external feedback. An example is the Iowa Gambling Task developed by Bechara
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and colleagues in 1994 [87] which is widely used in the study of cognition, emotions, and

executive functions.

Performance monitoring processes are also implicated in social cognition and processing of

affects [88]. Indeed, brain regions that have been associated with different aspects of social

cognition highly overlap with those active in performance, error and outcome monitoring. A

comprehensive meta-analysis by Amodio and Frith [40], addressing the perspective of under-

standing the role of the MFC in social cognition, proposed the separation of the MFC into three

functional divisions: (1) the control and monitoring of action (see Figure 8, posterior rostral

MFC), (2) tasks involving self-knowledge, and -reflection, person perception, and mentalizing

(see Figure 8, anterior rostral MFC), and (3) the monitoring of outcomes related to punishment

and reward (see Figure 8, orbital MFC). Amodio and Frith further proposed posterior rostral

MFC and orbital MFC functionalities to be complementary in the process of monitoring and

guiding behavior. They suggested the posterior rostral MFC as being involved in guiding be-

havior by monitoring the value of different possible actions and the orbital MFC being involved

in guiding behavior in terms of the value of possible outcomes. In other words, if action selec-

tion is irrelevant for the value of possible outcomes, posterior rostral MFC is not activated, but

anticipation of outcome value will be performed by orbital MFC, e.g. the anticipation of regret

associated with a decision, as demonstrated in [89]. The location of the anterior rostral region

of the MFC between the two regions (posterior rostral MFC and orbital MFC), suggests that it

has access to information about both actions and outcomes. Recent evidence suggests that

the more anterior regions of the MFC are involved in more complex social cognitive process-

ing, e.g. when performance monitoring involves more abstract representations of the value of

actions and outcomes [39].

2.4. Error-Related Potentials (ErrPs)

Research on performance monitoring was significantly boosted by the discovery of the ERP,

measurable non-invasively via EEG [90, 91, 92, 93]. Ever since, findings from ERP anal-

yses related to performance monitoring have been consistently supported by studies using

other neuro-recording methods such as fMRI [94]. The effects are commonly subsumed un-

der the term ErrP, but consist of several individual effects, also called ERP-components. The

most prominent component, termed ERN (error-related negativity) (or Ne), is a frontocentral

(typically observed at EEG recording channels FCz/Cz) negative potential deflection about

[50...100] ms post error response, being elicited for example in speeded CRTs. It is preceded

by a positive deflection, also frontocentrally, occurring about [-50...0] ms prior to the response

and another positive deflection around [100...250] ms post response (see Figure 9(a), left).

Another prominent component is the FRN (feedback-related negativity), characterized by a

stronger negative deflection occurring about 250 ms after the presentation of external nega-

tive, compared to positive, feedback. Finally, the N2 (or N200) component is time-locked to the

presentation of conflicting stimuli, for instance novel or mismatching stimuli [95], and precedes

the participant’s response. It is characterized by a stronger negative deflection around 300 ms
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Figure 8 Human performance monitoring in social cognition: A meta-analysis of brain areas in MFC implicated in social
cognition tasks involving self-knowledge, person perception, and mentalizing, activate areas in the anterior rostral MFC. By
contrast, activations from action-monitoring tasks occur in the posterior rostral region of the MFC, and tasks involving the
monitoring of outcomes occur in the orbital MFC [Reprinted from Amodio & Frith, 2006 [40]].

post incongruent, compared to congruent stimuli. It has been suggested to reflect the level

of conflict and to be strongly interrelated with the post-error response ERN [96]. In all three

cases (ERN, FRN, N2) modulations are spatially located over frontocentral areas (see Figure

9(b,c)). Moreover, all of these deflections manifest most prominently in theta band (5-7 Hz),

but it is still under debate whether from theta phase-locking and/or power modulations [97].

Owing to the similar topographical distributions, the ERN and FRN are understood to arise

from the same underlying processing system but under different circumstances [98]; func-

tional equivalence of ERN and N2 have also been suggested [99]. Source localization and

fMRI studies consistently pointed the origin to be in the medial PFC (prefrontal cortex), specif-

ically, in the ACC and the SMA [39]. These areas in turn have been implicated in conflict and

error coding, social cognition, and effortful control [82]. In summary, ErrPs are implicated in

the monitoring of internal and external events and arise from and as such encode deviations of

predictions about observable events, e.g. differences between actual and expected outcomes

[100, 101]. Besides the above-mentioned early components at latencies around 200 ms post

stimulus, ErrPs have also been associated with components at later latencies: a positive de-

flection around 300 ms (P3 or P300 component) and a negative deflection around 400 ms (N4

or N400 component) both over fronto-central and fronto-parietal recording sites, respectively

[102, 103, 104]. The N200 in conjunction with the P300 component is sometimes referred as

the N2-P3-complex [102, 103, 104, 105]. An additional late positive component (P600, around

600 ms post stimulus) has also been frequently reported in the context of error processing in
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CRTs [106] and the experience of syntactic and semantic anomalies in language comprehen-

sion [107, 108]. Further information about ErrPs is provided in the respective chapters of this

thesis: An overview of single-trial decoding of ErrPs from ongoing EEG signals is provided in

Chapter 4, Section 4.1.1; an overview of research works using ErrPs for adaptation of HMI is

provided in Chapter 5, Section 5.1.1.

Figure 9 Manifestation of error-related potentials in EEG and fMRI data: (a) event-related potentials (ERP) in response to
self-inflicted errors (ERN, response-locked), negative feedback (FRN, feedback-locked), or pre-response conflict (N2,
stimulus-locked) at EEG electrodes FCz and Cz. (b) corresponding topographies of difference waves from (a). (c) source
localizations of ERN, FRN, and N2 [Adapted from Ullsperger et al., 2014 [39]; original from Gruendler et al., 2011 [109]].

2.5. Summary

BCI research and related applications are still in its infancy. Despite the fascination this field

has sparked both on scientific communities and the broad public, the main body of research

has mainly been published during the last 20 years [49]. Early works were almost exclu-

sively focused on patient populations suffering from severely limited mobility and communi-
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cation abilities. More recent works investigated the usability for neuro-rehabilitation and also

proposed passive BCI-based applications for the healthy population. Therefore, early works

almost exclusively focused on motor related neuronal correlates, whereas recently, the BCI

community has gained increasing interest in neuronal correlates related to error-/performance

monitoring. The corresponding manifestation in the EEG, ErrPs, may constitute valuable infor-

mation about the user’s state during HMI and thus be a useful feedback signal to augment HCI

and HRI. While there are examples of both invasive and non-invasive BCIs, the main recording

technology is still EEG, which provides insight about neuronal processes in form of modula-

tions of oscillatory activity and modulations of time-locked responses to external events (e.g.

ERPs), the latter being particularly relevant in the context of error-/performance monitoring.

EEG is comparably inexpensive, non-invasive and thus risk-free, as well as portable and thus

more readily deployable in practical applications than alternative neuro-recording methods.
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3. Initial studies: EEG-based assessment of human
intention to engage in HRI

The current limited ability of humanoid robots to interpret social cues conveyed by humans

restricts fluency and naturalness in HRI. We propose a method to derive directly from the

brain activity of the human interaction partner two aspects of social engagement: (1) the

intention to initiate gaze-contact and (2) the distinction between the observer being initiator

or responder of an established gaze contact between human and robot. We propose these

measures to constitute valuable input to humanoid robots for deciding when (timing) and how

(social role) to engage in interaction with a human. We developed an interaction paradigm with

the humanoid robot iCub, and recorded the associated brain activity via EEG, in a pilot study

and a follow-up full study. The pilot study focused on the analysis and modeling of oscillatory

EEG activity and revealed biologically plausible brain activity patterns for both processes of

social engagement. By using SVM (support vector machine) classifiers with RBF (radial basis

function) kernel we showed that these patterns can be modeled with high within-participant

average accuracies of Acc(accuracy) = 80.4% for (1) and Acc = 77.0% for (2). The follow-up

study focused on the analysis of ERP time locked to the moment of gaze-contact between

human and robot. Results showed the ERP N200 and P350 components to have different

characteristics depending on which partner, the human (YI) or the robot (RI), initiated the

interaction. These findings demonstrate that processes of mismatch detection as well as the

evaluation of social context depend on the participant’s belief about its social role during the

gaze-contact event. The observed spatio-temporal activation patterns resembled those typical

for ErrPs which suggests the main effect to be related to performance monitoring processes.

3.1. Introduction

In everyday lives, humans are embedded in rich social environments. It is typical of humans

to seek social contact, which is intrinsically very rewarding [110, 111]. In this respect the

willingness or intention to be engaged is a crucial aspect of social interaction. Humans are

capable of expressing and detecting this intention by many subtle and mainly non-verbal social

cues, such as touch, gestures, and body posture. Gaze is one of the most important social

signals, as it is often involved in initiation of social contact and engagement [112].

Humanoid robots in contrast are to date still severely limited in this respect. It is perhaps

mostly due to the subtleties of these signals that make their interpretation based on infor-

mation obtained through visual, auditory and tactile sensors so challenging. This issue is

The work presented in this chapter was in part published as conference paper in November 2014: Ehrlich,
S., Wykowska, A., Ramirez-Amaro, K., & Cheng, G. (2014, November). When to engage in interaction—And
how? EEG-based enhancement of robot’s ability to sense social signals in HRI. In 2014 IEEE-RAS International
Conference on Humanoid Robots (pp. 1104-1109). IEEE. DOI: https://doi.org/10.1109/humanoids.2014.
7041506. Copyright permission see Appendix C.
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particularly thwarting the applicability of humanoid robots in areas where social interaction

with humans is crucial, such as in elderly- and healthcare, household robotics, and social

robotics in general [113, 114].

3.1.1. Related work on passive BCIs for HRI
Passive BCIs [35, 36, 37, 38] propose the utilization of implicit measures from electro- or

psychophysiological signals for augmenting HRI (or HCI) with information about the current

user’s state (emotional responses, intentions, motivations). A series of performance-relevant

variables with associated neuronal correlates, potentially useful for such passive BCIs, have

been explored and reported so far and culminated in three main strands: attention level /

task engagement [67, 115], mental workload [116, 117, 118], and affect [119, 120] (see [121]

for an overview on affective BCIs). These correlates are mostly based on characteristic os-

cillatory modulations of the EEG frequency spectrum or changes in hemodynamic activity

recorded via fNIRS. While most works presented so far were mainly focused on exploring

the principle usability of these neuronal correlates in offline (open-loop) experimental studies

(e.g. [119, 116, 122, 120, 118]), research works, employing passive BCIs in online closed-

loop experimental studies are less frequent. Most such works employing closed-loop BCIs

are in the field of gaming and entertainment as well as e-learning: For instance, Ewing and

colleagues [115] showed in 2016 that the level of game demand could be adapted based on

modulations of EEG frontal theta and parietal alpha power to maximize the player engage-

ment. Similarly, Szafir and Mutlu proposed in 2013 the “adaptive content review” technique,

which adapts the educational content presented to the students based on their attention-levels

measured via EEG and demonstrated improved student’s recall abilities by 29% as compared

to a controlled baseline [123]. Research works in the field of (social) HRI, using brain-activity

based adaptation of real robotic agents or machines are even more scarce. Szafir and Mutlu

presented in 2012 [67] a study in which a real humanoid robot appeared as a story narrator.

Based on EEG-based measures of attention / task engagement, the robot adapted its level

of gesticulation, mimics and gazing during storytelling, which in turn positively influenced the

level of details of the story participants were able to recall after the experiment. Strait and

Scheutz presented in 2014 a study [120] in which they showed fNIRS-based PFC hemody-

namic changes reflecting a person’s affect (e.g. aversion) towards a real humanoid robot.

The results of their study however were too variable at the individual level to be useful as a

real-time measure for adapting robot behavior.

In summary, while the concept of passive BCIs has been around for almost a decade, most

research works were so far focused on validating EEG- and fNIRS-based neural correlates

in open-loop experimental studies. Research works exploring their usability in closed-loop

setups using passive BCIs are rather scarce. Similarly, the exploitation of passive BCIs for

augmentation of HRI is widely acknowledged as a logical merge of BCI and HRI [36], but only

a few practical examples demonstrating the approach were so far presented.
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3.1.2. Aim of the work
This work explores the feasibility of estimating from ongoing EEG signals the participant’s

intention to engage in interaction with a real humanoid robot. This work shall serve as a

precursor to the development of a passive BCI facilitating HRI by providing the robotic system

additional information about when and how to engage in interaction with the human partner.

This research is thus focused on two basic aspects of social engagement (see Figure 10):

• The intention to initiate gaze-contact for entering into social engagement with others, in our

case the humanoid robot iCub. This measure is crucial for the natural and efficient onset of

interaction [112]. The ability to sense this measure would give a humanoid robot a means

of deciding whether and when to engage in social interaction with a human.

• The distinction between the observer being initiator or responder of the gaze contact. This

distinction is crucial for the pleasantness and shape of the further course of interaction

[124]. The ability to sense this measure would give a humanoid a means of estimating its

social role during the interaction and adapt its behavior according to the expectations of

the human interaction partner.

Figure 10 Two processes of social engagement: initiation of gaze-contact for onset of interaction (top) and distinction between
initiator versus follower when gaze-contact is established (bottom).

This chapter is organized as follows: The experimental paradigm and design is explained in

Section 3.2. The pilot study including experimental setup, data analysis, results and discus-

sion are detailed in Section 3.3. Experimental setup, data analysis, results and discussion of

the full study are detailed in Section 3.4. Section 3.5 summarizes the chapter.
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3.2. Methods: experimental study 1

3.2.1. Experimental paradigm
The purpose of this experiment was to elicit in human participants electrophysiological activity

related to two aspects of social engagement: the intention to initiate gaze-contact and the

distinction between the observer being initiator or responder of the gaze contact. In order

to evoke and capture these responses, our experiment made use of a belief manipulation

that intended to make participants believe that they were able to willfully influence the robot’s

behavior (provoking the robot to engage in social interaction with them). Once captured, the

respective EEG patterns can be identified and translated into predictive models ultimately

applicable in social HRI in line with the passive BCI approach. Note, that this experiment

was not a passive BCI approach, but a preliminary study to collect data with the purpose of

developing a passive BCI.

3.2.2. Experimental design
In the experiment, participants were asked to interact with a humanoid robot in form of gaze-

contact events (further referred as trial). Participants were seated in front of a humanoid robot

and asked to keep their gaze on the robot and were not requested to shift their gaze towards

or away from the robot (see Figure 13). Gaze shifts were performed by the robot, only, and

conducted under two experimental conditions. These conditions differed only with regard to

the instructions provided to the participants:

• “YOU INITIATE” interaction (condition YI): The participants were told that in this condition

their intention to initiate gaze-contact with an interaction partner would be decoded from

the EEG signals. They were also told that the decoding algorithm used worked in real-time

and influenced the robot’s behavior, depending on their willingness to engage in social

interaction with the robot. Whenever the beep tone occurred in the YI blocks participants

would be able to willfully influence the robot’s behavior (provoking the robot to look at them).

• “ROBOT INITIATES” interaction (condition RI): Participants were instructed that in this con-

dition the above-mentioned information would not be provided to the robot (connection was

turned off). The robot would be rather entering the social interaction on its own “intention”.

Participants were instructed to, upon the occurrence of the beep tone, wait for the robot to

gaze at them.

Unbeknownst to the participants no such an algorithm existed, hence both conditions were

technically identical; the gaze-contact always followed within a random time in between 5 to

8-s. With this belief-manipulation we aimed to evoke brain activity patterns specific for the

intention to engage in social interaction.

A single trial (see Figure 11) consisted of an initial 5-s rest period, followed by a 5 to 8-s task

period, in one of the two conditions “YOU INITIATE” (YI) / “ROBOT INITIATES” (RI), and then

by a 3-s long gaze-contact event. The trial ended with another 2-s resting period. Each trial
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has thus a duration of 15 to 18-s. The actions performed by the robot during each trial are

further detailed in the next section.

Figure 11 Engagement study trial structure: One trial consisted of an initial 5-s rest period, followed by a 5 to 8-s task period, in
one of the two conditions “YOU INITIATE” (YI) / “ROBOT INITIATES” (RI), and then by a 3-s long gaze-contact event. The trial
ended with another 2-s resting period. The trials were repeated 10 times per block.

Trials were arranged in 12 blocks of 10 trials each (10 gaze-contact events per block, see

Figure 12 depicting the block design, and Figure 11 depicting the structure of a single trial).

The two conditions (types of interaction with the robot) alternated randomly from block to block,

such that no more than 2 consecutive blocks would belong to the same condition. Participants

could self-pace the start of each new block: After pressing a specific key on a keyboard they

first received verbal instruction from the robot speech synthesis system about the type of

interaction in the next block (“The next block will be your turn!” for the YI condition; “The next

block will be my turn!” for the RI condition). After pressing another key, the next block started.

The total duration of the experiment was approximately 45 minutes.

Figure 12 Experimental design and protocol: One block consisted of 10 gaze-contact events (trials) in one of the two conditions
“YOU INITIATE” (YI) / “ROBOT INITIATES” (RI). Participants were informed verbally about the type of interaction prior to the
start of the next block.

3.2.3. Stimuli and apparatus
The experiment took place in a quiet room which was partitioned into two sections by means

of a movable wall. Experiments were conducted on the right side of the room, and the ex-
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perimenter sat and monitored the session from the left side. Participants sat in a comfortable

chair approximately 2 m away and facing the humanoid iCub (see Figure 13). iCub is a 53

degrees of freedom humanoid [125] which has an in-build control unit communicating with

an external workstation via a local network based on TCP/IP (Transmission Control Proto-

col/Internet Protocol). The robot was arranged to be standing behind a table with its torso

facing the participant; in the averted gaze state the robot was looking at a computer screen

to its left (realized with a neck angle of 42◦, see Figure 13, top). The robot performed one

action per trial, which consisted of two sequential head-movements: First, the robot turns its

head to 0◦ neck angle with an angular velocity of 50◦/s and furthermore lowers its gaze by

-5◦ in order to meet the gaze of the participant (parameters were calibrated prior to the start

of the experiment and kept identical for all participants, both in the pilot and the full study).

The robot keeps gazing at the participant for a 3-s period and subsequently moves its head

back to the initial position. For the robot control and thus the implementation of the experiment

protocol we used Yarp [126] and iCub [127] libraries. Furthermore, the robot was equipped

with a speech synthesis system by including the package iSpeak, which acquires sentences

over a Yarp port and lets the robot utter them. For the entire duration of the experiment, the

robot’s facial expressions were set to happy.

The workstation, besides controlling the robot, was further programmed to send, in specific

moments of the experiment protocol, event-triggers via LPT (line printer terminal) to the EEG

amplifier. These triggers appeared in the EEG data as event-codes facilitating later segmen-

tation of the data. EEG data was acquired and transferred via USB (universal serial bus) to a

separate PC (personal computer), where it was recorded. The EEG amplifier is battery-driven

and was located on a tray near the participant. Participants were given earplugs for minimiz-

ing auditory distractions. Speech and beep indications were played back via Logitech stereo

desktop speakers with an appropriate loudness. The participants were asked to sit still, but

comfortably during the experiment and try to move as little as possible.

3.3. Pilot study, data analysis, and results

3.3.1. Participants and data collection
Six healthy participants took part in the experiment. During EEG data inspection we no-

ticed large DC (direct current) drifts in participant s01 and therefore decided to remove this

dataset from further analysis. Thus, data from 5 participants were analyzed (age: 26.0±2.0,

all males). Educational background was predominantly in engineering and computer science

majors (4 out of 5 participants). Prior experience and familiarity with humanoid robots varied

widely among the participants and scored 3.6±1.9 on a scale of 1 “non-familiar” to 7 “famil-

iar”. All participants were informed about the experiment prior to its conduction, and agreed

to participate and having their data acquired by signing a consent form. Each participant was

paid an honorarium of 15 EUR.

EEG data was acquired with a Brain Products actiChamp amplifier equipped with 32 active
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Figure 13 Top: experimental setup with participant. Bottom: iCub attending computer screen (averted gaze) versus iCub
establishing gaze contact with participant.

EEG electrodes1 arranged according to the international 10-20 system [128]. All leads were

referenced to Cz and sampling rate was set to 500 Hz. The impedance levels of all leads were

kept below 10 kΩ.

The participants were first instructed (verbally and by means of written instruction) about the

experimental setup and handed a questionnaire about personal details. The participants were

further instructed to sit still during the experiment, keep their gaze on the robot and avoid

any unnecessary movements, such as head shifts. To test whether participants believed

the experiment instructions they were given another questionnaire after the experiment that

included questions e.g. about how well they thought the robot responded to their intention to

engage in gaze-contact.

3.3.2. Analysis and modeling of EEG oscillatory activity
Data preprocessing: Data was preprocessed with a commercial software, the Brain Products

Brain Vision Analyzer. Brain Vision Analyzer comes with a set of in-built signal processing

functions particularly relevant for EEG data preprocessing and visualization. The following

processing steps were carried out: (1) Re-referencing to CAR (common average reference) to

reduce common signal contamination due to external noise sources; afterwards the original

reference channel Cz was reconstructed from interpolations of neighboring channels. (2)

1 EEG channel labels: Fp1, Fz, F3, F7, FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8,
TP10, CP6, CP2, C4, T8, FT10, FC6, FC2, F4, F8, Fp2, Cz.
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Downsampling to 250 Hz to reduce processing time in all further steps. (3) Bandpass filtering2

using a Brain Vision Analyzer in-built Butterworth zero phase IIR (infinite impulse response)-

filter with a low cutoff around 0.5 Hz and a high cutoff around 70 Hz (12dB/octave), both to

remove slow DC drifts and high frequency noise. (4) Manual removal of signals recorded

between blocks and not containing relevant information. (5) The last steps had the purpose to

remove eye-movement related EEG artifacts from the data using ICA (independent component

analysis): The data was first transformed to the component-level using 512 steps Infomax

extended ICA. Then, components which were most probably associated with eye-blinks were

manually selected and removed. Finally, the data was back-transformed to channel-level using

inverse ICA. Afterwards, the data was exported for further analysis in MATLAB R©.

Data segmentation: According to the purpose of the experiment, we aimed at exploring and

modeling the electrophysiological patterns of two specific processes of social engagement

with a humanoid: (1) the intention to initiate gaze-contact and (2) the distinction between

gaze contact based on whether the human was the initiator or the responder of gaze contact.

For both analyses we extracted and compared different segments of the EEG data:

• Intention to initiate gaze-contact: Patterns associated with the intention to initiate gaze-

contact were sought by comparing EEG signals recorded during trials against signals

recorded during a baseline condition, when “gaze-intentions” were assumed to be absent.

The baseline signal was determined to correspond to the last 3-s of the resting period of

the RI condition. With this processing step we obtained 60 750-samples-long baseline

segments per channel and participant. Based on our experimental design we assumed to

find brain activity patterns for the intention to initiate gaze-contact directly after the beep

tone in those trials which were related to the YI condition. In order to avoid biases in the

data we decided to extract trial segments with the same duration as the baseline segments.

We assumed the patterns to be best developed some time after the beep and decided to

extract 3-s segments starting 2 s after the intention segments.

• Initiator versus responder gaze contact: For this analysis we contrasted the 3-s periods of

gaze contact of both conditions. Thereby we obtained 60 responder segments from the RI

condition and 60 initiator segments from the YI condition, both 750 samples long.

Feature extraction: Feature extraction was carried out identically for both above described

comparisons. As this study aimed at exploring modulations in EEG oscillatory activity, each

segment was filtered into five standard EEG frequency bands that have been associated with

different cognitive processes [72]: theta (4-7 Hz), low alpha (7-10 Hz), high alpha (10-13 Hz),

beta (14-30 Hz) and gamma (30-47 Hz), with 2nd order zero-phase Chebyshev IIR-bandpass

filters. In preliminary analyses we noticed distinct differences within the alpha band and there-

fore subdivided it into two separate sub-bands (low and high alpha). For each filtered segment

we then computed the log-variance as a measure of spectral power which is associated with

2 Due to the use of active electrodes, which reduce environmental artifacts, such as power line interference [129],
no additional notch-filter was employed for further temporal filtering.
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band-specific cortical activation in EEG [74]. For each segment/trial we thereby obtained one

value as a means of cortical activation in a specific frequency band and channel. The features

were then concatenated into one vector resulting in 160 features (32 channels x 5 frequency

bands). The trials were then labeled according to the above described comparisons.

Data modeling and classification: SVMs were employed to create models for pattern discrimi-

nation, and were implemented with the LIBSVM library by Chang and colleagues [130]. SVMs

were developed for solving binary classification problems and model an optimal hyperplane

for discriminating both classes. They are particularly powerful as they find the best tradeoff

between good generalization by simultaneously maximizing the performance and minimizing

the complexity of the model. Moreover, SVMs can be used with kernel functions that map

the features into high-dimensional space in which non-linearly separable data can be discrim-

inated by linear hyperplanes. We decided to employ a RBF kernel, which has been reported

as the most suitable kernel for SVM-based EEG-signal classification problems [131]. Further-

more, we performed an exhaustive search to find optimal values for the learning parameter

C and the kernel parameter γ. For SVM training we used all 160 features and evaluated the

models in two ways:

• 5-times-5-fold participant-individual CV (cross-validation) (CV): This analysis allowed us to

obtain an estimate of how well participant-specific classification models would perform in

classifying unseen data when being calibrated with different data of that same session and

participant. The data of one participant were partitioned into 5 folds, 4 folds were used for

training the SVM model and the remaining fold was used for testing. The folds were then

shuffled until each fold had once been used for testing. The whole procedure was repeated

5 times. The 5x5 results were averaged and reported as Acc according to Eq. (3.1). This

procedure was carried out for each participant individually.

• Leave-one-participant-out validation (L1O): This analysis allowed us to obtain an estimate

of how well a classification model would perform in classifying unseen data of one partic-

ipant when being calibrated with data of all remaining participants. The data of 4 partici-

pants were concatenated and used to train the SVM model. The data from the remaining

participant was used for testing. The procedure was repeated until the data from all indi-

vidual participants had once been used for testing. Identical to CV, the results are reported

as Acc according to Eq. (3.1).

Acc =
number of correctly predicted trials

total number testing trials
× 100% (3.1)

3.3.3. Results of electrophysiological modulations and single-trial
classification

Modulations of oscillatory activity: To facilitate data interpretation, the grand average over all

trials and participants was computed and visualized for all 160 features in topographic plots
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(see Figure 14). For the comparison intention versus baseline the strongest effect was a

decrease of anterior and posterior low alpha-power (see Figure 14(a)). In beta- and gamma-

band we could observe a hemispheric lateralization with increased anterior gamma-power

on the left side and decreased central beta-power (see Figure 14(b)). When comparing

gaze-contact initiator versus gaze-contact responder an effect on low alpha-power was not

observed, both conditions resulted in relatively similar alpha-activities. However, beta- and

gamma-band were even more strongly pronounced than in the previous comparison (see Fig-

ure 14(c)). Moreover, we observed power-decreases over left and right motor cortex (central)

in high alpha-band (see Figure 14(d)).

Figure 14 Results of modulations of oscillatory activity: Top - grand average (n = 5) topographical representation of
band-power differences (intention minus baseline), strongest effects: anterior and posterior low alpha-power decrease (a);
hemisphere lateralization for beta- and gamma-power (b). Bottom - grand average across all participants initiator minus
responder, strongest effects: pronounced left hemisphere beta- and gamma-power increase (c); high alpha-power decrease
over motor cortex (d). White markers indicate highest deviations between conditions.

Classification results: As reported in Table 3 a maximum individual classification accuracy

of Acc = 84.8% (s04) when predicting the intention to initiate gaze-contact was obtained

with the proposed approach. The CV-accuracy averaged across all participants was Acc =

80.4 ± 7.1% (AVG (average)±SD (standard deviation)). For the L1O validation a maximum

accuracy of Acc = 67.5% (s06) and an average accuracy of Acc = 64.2 ± 3.2% (AVG±SD)

across all participants was obtained.

Table 4 shows the results for predicting whether participants were initiating or following gaze-

contact with the robot. We obtained a maximum CV-accuracy of Acc = 84.3% (s05) and

on average Acc = 77.0 ± 5.2% (AVG±SD) across all participants. L1O validation yielded a

maximum accuracy of Acc = 71.7 (s04) and on average Acc = 61.0 ± 5.6% (AVG±SD). We

did not observe any tendency regarding optimal values for the parameters C and γ.

3.3.4. Discussion of electrophysiological and classification results
Despite the relatively small number of participants we observed plausible oscillatory modula-

tions in the EEG patterns. The increase of anterior and posterior alpha power in the condition

intention versus baseline could be related to increased alertness and levels of attention, an

effect which has been consistently reported in the literature, such as in [132]. The differences
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Table 3 Within-participant cross-validation (CV) and leave-one-participant out (L1O) classification accuracies for conditions
intention versus baseline.

CV L1O

participant ID Acc [%] C γ Acc [%] C γ

s02 83.8 100 0.001 65.0 0.1 0.005

s03 66.2 2 0.1 66.7 3 0.01

s04 84.8 3 0.01 58.3 0.001 2

s05 83.0 20 0.001 64.2 10 0.001

s06 84.0 10 0.005 67.5 0.001 0.005

AVG±SD 80.4±7.1 64.2±3.2

Table 4 Within-participant cross-validation (CV) and leave-one-participant out (L1O) classification accuracies for conditions
initiator versus responder.

CV L1O

participant ID Acc [%] C γ Acc [%] C γ

s02 76.3 100 0.001 60.8 1 0.5

s03 69.2 3 0.1 55.8 0.001 0.005

s04 80.7 10 0.005 71.7 20 0.005

s05 84.3 10 0.01 58.3 20 0.001

s06 74.5 2 0.05 58.3 2 0.05

AVG±SD 77.0±5.2 61.0±.6

in left hemispheric gamma band and central beta band power could be related to variations in

approach and withdrawal motivation, which has been associated with differential activations

of the medial prefrontal gyrus (MPF). For example, in 2005, Talati and colleagues [133] found

greater left MPF activations for approach and greater right MPF for withdrawal tendencies.

This would then suggest a pronounced approach motivation during the intention periods com-

pared to the baseline. The power decreases over left and right motor cortex in high alpha

band in the comparison initiator versus responder suggest increased engagement of motor

areas and could be related to pronounced motor preparation / planning during the initiator as

compared to the responder periods.

The offline classification accuracies obtained for participant-dependent models (within-participant
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validation) are high and consistently close to or above 75% in all but one participant (s03, with

comparably low classification accuracies in both comparisons). These results are promising in

that they are close to typical within-participant classification accuracies in the domain of EEG-

based BCIs, such as in SMR-based BCIs [134, 135]. Offline classification accuracies obtained

for participant-independent models (across-participant validation) are much lower which are

likely due to across participant variations in the observed patterns of oscillatory modulations.

This was expected, since participant-to-participant transfer is a typical challenge in the domain

of EEG decoding [136] with so far only moderate results.

Despite plausible patterns of oscillatory modulations and promising within-participant single-

trial classification results, the findings of this study are limited in that it remains unclear if and

to what extent the observed patterns can in fact be related to neuronal processes involved

in engagement and social role evaluation. To address this, a follow-up study with a larger

number of participants was conducted, and corresponding data analyzed in a complementary

way.

3.4. Full study, data analysis, and results

The same experimental setup (see Section 3.2) was employed in a follow-up study with a

larger number of participants including an extended EEG setup and additional measurement

modalities. The main purpose of the full study was to complement preliminary findings ob-

tained in the pilot study. Besides confirming previous findings on oscillatory modulations, we

also performed an investigation of ERP which was not feasible based on the pilot data due

to the low number of participants. For the sake of brevity, only results obtained for the latter

analysis are reported in the remainder of this chapter. We hypothesized to observe ERPs in

response to gaze-contact events with differential modulations when contrasting the conditions

RI and YI which would allow a complementary interpretation of the data in light with previous

findings.

3.4.1. Participants and data collection
Thirty-one healthy volunteers participated in this study. Due to technical problems, 6 of these

datasets were not complete and hence excluded from further analysis. Three of the remaining

datasets were heavily contaminated with artifacts and therefore also excluded. Furthermore,

7 of the remaining datasets were excluded since participants were doubtful about the exper-

iment belief manipulation. Thus, data from 15 participants were analyzed (age: 27.5±7.0; 5

females, 10 males; all had normal or corrected vision). Overall, prior experience and famil-

iarity with humanoid robots scored lower than in the pilot study with 2.3±1.6 on a scale of 1

“non-familiar” to 7 “familiar”. Participants provided full written informed consent in regard to

their participation, were offered full debriefing after one month, and were paid at the rate of 8

EUR / hour. The study was approved by the institutional ethics review board of the Technical

University of Munich (reference number 236/15s).
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EEG data was acquired with a Brain Products actiChamp amplifier equipped with 64 active

EEG electrodes3 arranged according to the international 10-20 system [128]. All leads were

referenced to Cz and the sampling rate was set to 500 Hz. The impedance levels of all leads

were kept below 10 kΩ. Other physiological measurements were also taken, including heart

rate, respiration and galvanic skin response. Participants were also fitted with the SMI Eye

Tracking Glasses by SensoMotoric Instruments, in order to record their gaze during the ex-

periment and to control for those trials in which participants were completely inattentive to the

robot. The glasses were wired to an adapted Samsung S5 mobile phone, which allowed the

data to be recorded onto a memory card using the iViewETG controller software installed on

the mobile device. Analysis and results based on gaze data and other physiological measure-

ments are not reported in this chapter.

The participants were first instructed (verbally and by means of written instruction) about the

experimental setup and handed a questionnaire about personal details. The participants were

further instructed to sit still during the experiment, keep their gaze on the robot and avoid

any unnecessary movements, such as head shifts. To test whether participants believed

the experiment instructions they were given another questionnaire after the experiment that

included questions e.g. about how well they thought the robot responded to their intention to

engage in gaze-contact.

3.4.2. Analysis of event-related potentials (ERP)
EEG data processing: All EEG data preprocessing was carried out in MATLAB R©, in part us-

ing functions provided by the EEGLAB toolbox [137]: (1) The data was first bandpass filtered

using an EEGLAB in-built function (pop_eegfiltnew) which employs a zero phase Hamming

windowed sinc FIR (finite impulse response) bandpass filter with cutoff frequencies of 1 Hz

and 40 Hz in order to remove slow DC drifts, high frequency and power-line noise4. (2) Next,

we identified and interpolated contaminated EEG channels using kurtosis with a threshold

of 5% and reconstructed the original reference channel Cz by interpolation from neighboring

channels. (4) Then, EEG signals were re-referenced to CAR to further reduce signal contam-

ination due to external noise sources. (4) For reducing processing time of subsequent steps,

the data was downsampled to 128 Hz. The last steps had the purpose to remove typical EEG

artifacts from the data (eye-blinks, horizontal eye-movement, muscular artifacts, and data in-

consistencies) using ICA: (5) The data was first decomposed using the ICA algorithm runica

provided by the EEGLAB toolbox [137]. (6) ICA components which could be associated with

above mentioned artifacts were subsequently removed using ADJUST, an EEGLAB plugin

performing automatic identification of artifact components [138]. This automatic cleaning pro-

cedure resulted in the removal of an average of 18 out of 64 components per participant. (7)

Afterwards the data were transformed back to channel-level using inverse ICA.

3 EEG channel labels: Fp1, Fz, F3, F7, FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8,
TP10, CP6, CP2, C4, T8, FT10, FC6, FC2, F4, F8, Fp2, AF7, AF3, AFz, F1, F5, FT7, FC3, FCz, C1, C5, TP7,
CP3, P1, P5, PO7, PO3, POz, PO4, PO8, P6, P2, CPz, CP4, TP8, C6, C2, FC4, FT8, F6, F2, AF4, AF8, Cz.

4 Due to the use of active electrodes, which reduce environmental artifacts, such as power line interference [129],
no additional notch-filter was employed for further temporal filtering.
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Data segmentation: After data pre-processing, data epochs ranging the period [-200...1200]

ms relative to the gaze contact events were extracted for each of the two conditions (YI and

RI). This period captured all relevant effects observed in the data. Each channel and trial were

furthermore baseline corrected by subtracting the average of period [-200...0] ms relative to

the gaze contact event from the time-course of the entire trial. Single-trial baseline correction

is a common procedure in the analysis of ERP to remove unwanted fluctuations of DC levels

between trials [139].

Computation of ERPs: Trials were afterwards averaged per condition (YI, RI) for each partici-

pant resulting in one average ERP activation pattern per participant and condition. Averaging

across trials ensures that resulting activation patterns reflect brain activity that is both time-

and phase-locked to the onset of the event/stimulus of interest. Individual average ERPs

were then tested for significant differences across participants over both spatial and temporal

dimensions (channels and sample time-points).

3.4.3. Results of ERP modulations
Results are depicted in Figure 15 and show the grand average ERP time-courses pooled over

central channels FCz/C1/CPz/C2/Cz time-locked to the gaze-contact event for each condition

(blue: RI “Robot Initiates”, red: YI “You Initiate”) and the difference grand average (black: YI

minus RI). The difference grand average is furthermore depicted in form of spatio-temporal

activation patterns across all channels and relevant time points above the plot. The ERP

shows a slight negative deflection around 250 ms which is more pronounced in the YI con-

dition compared to the RI condition. According to the latency and spatial distribution of the

effect, this finding can be related to the N200 component which is expected at latencies within

[180...325] ms over frontocentral channels [140]. Amplitude differences between conditions

pooled across central channels within period [180...325] ms were significant at the p < 0.05

level across participants (paired Wilcoxon signed rank test, n = 15). Furthermore, a stronger

positive reflection was observed around [300...600] ms which was also more pronounced in

the YI condition compared to the RI condition. Specifically, the YI condition shows stronger

activation after the main peak around 400 ms which is sustained until around 800 ms. Ampli-

tude differences between conditions pooled across central channels within period [300...600]

ms were significant at the p < 0.05 level across participants (paired Wilcoxon signed rank

test, n = 15).

3.4.4. Discussion of ERP modulations
The difference of observed ERPs between the two conditions are spatio-temporally similar

to difference waves of error-related potentials. The early negative deflection around 250 ms

together with the later positive deflection around 500 ms, both spatially distributed over fronto-

central channels resembled indeed the characteristic N2-P3 complex typical in ErrPs. In par-

ticular, the N200 component, implicated in mismatch detection [140], turned out significantly

more pronounced in the YI condition compared to the RI condition. This suggests that in

the YI condition participants seem to have experienced gaze-contact events as mismatch-
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Figure 15 Results of modulations of event-related potentials (ERP): Grand average ERP time-courses pooled over central
channels FCz/C1/CPz/C2 time-locked to the gaze-contact event for each condition (blue: RI “Robot Initiates”, red: YI “You
Initiate”) and the difference grand average (black: YI minus RI). The difference grand average is furthermore depicted as
topographic in form of spatio-temporal activation patterns across all channels and specific time points above the plot (Figure
style adopted from [141]). Results show significant deviations between conditions during the period in which the N200
component is expected ([180...325] ms) and marginally significant deviations during the period in which the P350 component is
expected ([300...600] ms). The bottom panel boxplots show the activity distribution across participants for each component
pooled across channels FCz/C1/CPz/C2 and the respective period. Asterisks (*) denote significant differences with p < 0.05

between conditions (paired Wilcoxon signed rank test, n = 15).

ing/conflicting stimuli compared to the RI condition. The later positive deflection around 500

ms can be related to the P350 component, expected at latencies of 300-600ms over central

channels. In fact, the findings of this study are in line with those observed in a study by Carrick

in 2007 who suggested the P350 component to be a neural correlate of contextual evaluation

of the social meaning of a gaze-contact event [142]. The qualitative resemblance between the

observed ERP modulations with the spatio-temporal characteristics of the ErrP bring about

the question as to what extent performance monitoring could have played a role in the exper-

imental paradigm: During the experiment, participants were asked to engage with the robot

during the YI condition by attempting to willfully control the robot to engage with them. In the

RI condition, participants were passively waiting for the robot to engage with them without

performing any particular task. The questionnaire results ensured that all participants whose
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data was analyzed in fact believed they could control the robot. Nonetheless, since the mental

task “influence the robot to engage with you” in the YI condition is quite abstract, it appears

reasonable to assume that not all participants were in fact performing this task reliably within

and across trials. For instance, participants could have tried to influence the robot, realized it

was not responding, tried again or gave up. This could have created the following confounding

scenarios:

Scenario A: Participant tries to influence the robot, and as a result expects the robot to re-

spond within a certain period of time:

• Outcome A1: robot does not respond as expected, leading to an ERP in response to a

non-occurring gaze contact event > expectation mismatch (error)

• Outcome A2: robot does respond as expected, leading to an ERP in response to an

occurring expected gaze-contact event > expectation match (non-error)

Scenario B: Participant does not try to influence the robot, and as a result expects the robot

not to respond:

• Outcome B1: robot does not respond as expected, leading to an ERP in response to an

expected non-occurring gaze-contact event > expectation match (non-error)

• Outcome B2: robot does unexpectedly respond, leading to an ERP in response to an

unexpected occurring gaze-contact event > expectation mismatch (error)

Which of the above situations occurred in a particular trial cannot be tracked back post-hoc

due to the experimental design. It depended on how participants performed the task which

was neither explicitly controlled nor measured in the experimental study. Following this al-

ternative interpretation, we assume that feedback error trials were more frequent in the YI

condition, since participants had expectations that could be violated, whereas in the RI condi-

tions participants had no particular expectations that could be violated. This would explain the

spatio-temporal resemblance between the observed difference wave (YI minus RI) and the

typical characteristics of ErrPs, in particular, the more negative N200 in the YI condition com-

pared to the RI condition. Further, we assume that condition YI would contain confounding

ERPs from class non-error and class error, depending on which of above situations occurred

in the respective trial. This confound - condition YI containing more mismatching gaze-contact

events than RI, but mixed with matching gaze-contact events - could be the reason for the rel-

ative weak effect strength observed in the data.
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3.5. Summary

These initial studies aimed at exploring the feasibilities of enhancing robot’s abilities to sense

when (timing) and how (social role) to engage in interaction with a human by means of EEG.

We developed an experimental paradigm to evoke and capture electrophysiological data (EEG

signals) associated with (1) the intention to initiate gaze-contact and (2) the distinction be-

tween initiator and responder role in established gaze-contact with the humanoid iCub. In

a pilot study we focused on the analysis and modeling of oscillatory EEG activity. Results

showed that intention to engage with the robot versus passively waiting for the robot to initiate

contact can be discriminated from the brain oscillatory activity.

Within participant offline CV accuracies reached an average of Acc = 80.4%. Also, dis-

criminative oscillatory activity was found during gaze-contact periods when participants were

initiating versus following the engagement process. Within participant offline CV accuracies

reached an average of Acc = 77.0%. Accuracies of participant-independent models were

furthermore above chance level, with across-participant average accuracies of Acc = 64.2%

and Acc = 61.0% for each of the analyzed conditions. In a follow-up study using the same

experimental paradigm we focused on the analysis of ERPs time locked to the moment of

gaze-contact between human and robot. Results showed different activation pattern for the

two conditions: when the human initiated (YI) and when the robot initiated (RI) the interaction.

Differences in activation occurred at latencies typical for the N200 and the P350 components,

and effects were significantly more pronounced in the YI rather than in the RI condition. These

findings indicated varying processing of expectation mismatch as well as differential evalua-

tion of social context depending on the participant’s belief about their social role during the a

gaze-contact event. The observed spatio-temporal activation patterns resembled those typi-

cal for ErrPs which suggested the involvement of performance monitoring processes. Indeed,

an alternative interpretation of the data, in perspective with the experimental paradigm used,

relates the main effect to error-/performance monitoring. This re-consideration of the experi-

mental paradigm gave rise to focusing on ErrPs in follow-up studies, and triggered the interest

in using ErrPs as a quantitative measure about participants’ belief and expectations towards

robot behavior in HRI.
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4. A feasibility study for validating robot actions using
EEG-based error-related potentials

Validating HRI can be a challenging task, especially in cases in which the robot designer is

interested in the assessment of individual robot actions within an ongoing interaction, without

interrupting the interaction for questions/surveys. In this chapter, we propose a method for

real-time quantitative assessment of robot actions and evaluate the usefulness as a comple-

ment to existing methods for validating HRI. The method is based on the decoding of ErrPs

from the EEG of a human partner during interaction with a robot. To demonstrate the us-

ability of the approach, we conducted a study investigating whether EEG-based ErrPs are

elicited in response to a real humanoid robot displaying incorrect actions in a simplistic HRI

task. Furthermore, we conducted a procedurally identical control experiment with computer

screen-based symbolic cursor action. The results of our study confirmed decodability of ErrPs

in response to incorrect robot actions with an average accuracy of Acc = 69.0± 7.9% across

11 participants. Cross-comparison of ErrPs between experimental tasks and control condi-

tions revealed high temporal and topographical similarity, but more distinct signals and, as a

result, better decodability with a mean accuracy of Acc = 90.6 ± 3.9%, in the control exper-

iment. This demonstrated that ErrPs can be sensitive to the stimulus eliciting them despite

procedurally identical protocols. This implies that re-using ErrP-decoders across experimental

tasks without re-calibration is accompanied by significant performance losses and therefore

not recommended. Overall, the outcomes of our study confirm feasibility of ErrP decoding

for human-robot validation, but also highlight challenges to overcome in order to enhance

usability of the proposed method.

4.1. Introduction

More than a decade of research on HRI [143] has been dedicated to the question of how

to make interaction with robots more intuitive and “natural" for the human user [144]. In this

regard, the assessment and validation of robot behavior during interaction with humans is cru-

cial for successfully directing technical improvements towards more widespread and effective

integration of robots in society. Validating robot behavior during HRI can be a challenging task,

particularly in the domain of humanoid and social robotics. Typical scenarios include collabo-

ration tasks in shared environments [145, 146] and game-based or dialogue social interaction

tasks [147, 67]. The human’s subjective experience of the robot’s behavior is usually assessed

The work presented in this chapter was in part published as conference paper in November 2016: Ehrlich, S.,
& Cheng, G. (2016, November). A neuro-based method for detecting context-dependent erroneous robot action.
In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (pp. 477-482). IEEE. DOI:
https://doi.org/10.1109/humanoids.2016.7803318. Copyright permission see Appendix C. Furthermore,
this work was published as a journal article in 2019: Ehrlich, S. K., & Cheng, G. (2018). A Feasibility Study for
Validating Robot Actions Using EEG-Based Error-Related Potentials. International Journal of Social Robotics,
11(2), 271-283. DOI: https://doi.org/10.1007/s12369-018-0501-8. Copyright permission see Appendix
C.
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with survey-based methods, such as questionnaires [148, 12, 149] or interviews [150]. The

quality of interaction is often additionally assessed with objective performance measures, such

as “time to complete the task", as in [145, 146]. To avoid interruption of the interaction flow,

these measures are often taken at the end of a task and as such constitute an average assess-

ment of the performed sequence of actions or events. However, the assessment of individual

robot actions may be beneficial or, in specific cases, even required to effectively pinpoint fac-

tors that have influenced the interaction. Here, we propose a method that addresses these

limitations by providing quantifiable information about the human partner’s immediate assess-

ment of individual robot actions. The proposed method is based on single-trial decoding of

ErrPs, time-locked to the occurrence and the human partner’s observation of individual robot

actions. In line with the contemporary understanding of performance monitoring and the effect

of ErrPs (see Chapter 2, Sections 2.3 and 2.4), we expect the occurrence of deviating brain

responses in case the human observes incorrect robot actions compared to the observation

of correct robot actions. Classifying these responses from the ongoing EEG signals allows for

implicit and real-time binary labeling of single robot actions immediate to their occurrence (see

Figure 16). In a collaborative assembly task, such an incorrect robot action may be the robot

providing the human a wrong object for the next step in the assembly. In a game-based or

dialogue interaction task, an incorrect robot action may be the robot performing a social cue,

such as gaze contact with the human partner, in an unexpected, contextually inappropriate

moment.

4.1.1. Related work on single-trial decoding of ErrPs for assessment of HMI
Decoding ErrPs from multichannel EEG signals is a binary classification task. The two classes

are commonly denoted as non-error (ERP in response to correct or matching events, or pos-

itive feedback) and error (ERP in response to erroneous or mismatching events, or negative

feedback). ErrP decoding refers to the prediction of the type of event (non-error, error) from

the ERP resulting from the human’s observation of that event. Over the last two decades, a

multitude of works repeatedly showed that ErrPs can be reliably decoded from EEG signals

with single trial classification accuracies around 70%–80% in a variety of experimental con-

texts [103]. Classifiers have furthermore been shown to be robust across recording sessions

with up to 600 days between sessions [151]. Due to large amounts of channels (usually 32-

64 channels) and sample time-points (approximately 1 s) that can be considered, the feature

space is high-dimensional. Most research works employed temporal features extracted from

sample time-points of individual channels, such as signal amplitude from a single channel at

specific latencies time-locked to the event [103]. A few works explored also other features,

such as frequency domain-based features [152, 153, 154, 42] or connectivity features [155].

In terms of classifiers used for binary discrimination, most works employ simple statistical

methods, such as Gaussian Mixture Models, LDA (linear discriminant analysis) classifiers,

or SVMs. Feature dimensionality reduction or regularization techniques are commonly used

to reduce the risk of overfitting and to obtain robust and widely applicable classifiers. Inte-

grated decoding approaches, such as those based on convolutional neural networks [156]

are currently still underrepresented. ErrPs are typically decoded in an event-based fashion,
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meaning, the signal processing and classification method is precisely synchronized with the

moment of event occurrence. As such information may not be available in more natural HMI,

several works explored the feasibility to decode ErrPs in a continuous, asynchronous fashion

[157, 158, 159, 104]. Overall, they confirmed feasibility for asynchronous decoding, however

with accuracies lower than for event-based classification (around 65%).

While ErrPs have been shown to be reliable across recording sessions [151], they can vary

in spatiotemporal shape across participants and experimental tasks. This fact forces the ex-

perimenter to (re-)calibrate ErrP-decoders for individual participants and experimental task,

a procedure which can be highly time- and resource consuming. Therefore, several works

proposed methods for reducing calibration time [160, 161, 162, 163, 164, 165] or transfer-

ring classifiers between tasks [141, 166, 167, 168]. Despite these efforts, ErrP decoding

still remains a tedious procedure with most research works proposing their own proprietary

methods tailored to specific task. Most previous studies on ErrPs used computer screen-

based interaction with perceptually simple symbolic stimuli with single-trial decoding perfor-

mance of 70%–80% [169, 102, 170, 141, 104]. Others have studied ErrPs in the context of

HRI [171, 172, 105, 173, 43, 174]. While some of the latter works reported high and thus

practically useful single-trial decoding performances of >75%, e.g. [171, 105, 43], others re-

ported lower performance: For instance, Welke and colleagues presented in 2017 a study in

which they investigated the feasibility of decoding ErrPs in response to participants watch-

ing videos of robots performing erroneous actions [174] and reported decoding performances

which where just slightly above chance-level. Similarly, Salazar-Gomez and colleagues re-

ported ErrP decoding performances of around 65% in response to the human observation of

erroneous actions performed by a real robot.

In summary, this indicates that the transfer of the ErrP decoding to real robotic system and

across different types of tasks is not straightforward and points towards the need for a sys-

tematic study of observability and decodability of ErrPs in the context of varying stimuli.

4.1.2. Aim of the work
The present study addresses the question of whether and to what extend the observability and

decodability of ErrPs are transferrable towards the assessment of real machines and robotic

systems. Thus, we examined the observability and decodability of EEG-based ErrPs in re-

sponse to a real humanoid robot displaying incorrect actions in a simplistic HRI task, where

robot actions either conform (congruent, correct action) or disconform (incongruent, wrong

action) to a selection the human partner made. Furthermore, we conducted a procedurally

identical control experiment with computer screen-based symbolic cursor action. With this

comparative experimental design, we address the following fundamental aspects with practi-

cal implications on the usability of deploying EEG-based ErrP decoding for validating robotic

systems and HRI:
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Figure 16 Conceptual illustration of using ErrPs for assessment of robotic systems and HRI: (a) During interaction with a robot,
a human observes the behaving robot. Meanwhile, the brain activity is recorded via EEG and responses to single robot actions
are captured and analyzed. (b) Brain responses (e.g. ErrPs) associated to the observation of incorrect robot action are
expected to deviate from those associated to the observation of correct actions. (c) Classifying these EEG responses allows
implicit real-time labeling of single robot actions immediate to their occurrence, usable for (d) post-hoc validation of the robot
behavior.

• Verification of the observability and decodability of EEG-based ErrPs in response to the

human observation of incorrect actions performed by a real humanoid robot.

• Demonstration of the extent as to which EEG signals and consequently the observability

and decodability of ErrPs, vary with the type of entity performing the action (cursor, robot),

despite procedurally identical experimental protocols and the use of the same decoding

method.

• Investigation of the feasibility of deploying ErrP-decoders across experimental tasks, such

as calibrating the decoder based on one task and applying it for decoding ErrPs based on

the other task.

By addressing the first aspect, we aim to confirm feasibility of detecting ErrPs in response to

human observation of incorrect robot actions. The second aspect concerns the understanding

of whether and to what extent the type of stimulus can affect the observability of ErrPs and if

this results in altered efficiency for decoding ErrPs in response to robot actions. By addressing

the third aspect, we test if it is possible to re-use ErrP-decoders across experimental tasks

without the need for re-calibration.

The remainder of this chapter is structured as follows: In Section 4.2, the experimental

paradigm (Section 4.2.1), design (Section 4.2.2) and implementation (Section 4.2.3) of the
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study as well as data analysis (Section 4.2.4) are presented. The corresponding results are

reported in Section 4.3 and interpreted and discussed in Section 4.4. Section 4.5 summarizes

the chapter.

4.2. Methods: experimental study 2 and data analysis

4.2.1. Experimental paradigm
Traditionally, the study of ErrPs was largely performed using CRTs and variants [92, 93]. To

allow for systematic comparisons with the current body of literature on ErrPs and draw from

a well-established paradigm, the experimental tasks were designed based on the principle of

a CRT task with identical protocols in both tasks (Figure 17): One out of three possible target

stimuli appeared on a computer screen and participants were requested to respond, with a

corresponding key press, as quickly and precisely as possible. Feedback to the participant

key press was one of two possible outcomes: congruent or incongruent response to the target

stimulus. The two experimental tasks differed only in the type of feedback presented to the

participant: In experimental task 1 (cursor scenario), a cursor, centrally placed on the com-

puter screen, would either move towards (i.e. congruent) or away (i.e. incongruent) from the

target stimulus (Figure 17(a)); in experimental task 2 (robot scenario), the head of a humanoid

robot would either turn towards (i.e. congruent) or away (i.e. incongruent) from the target stim-

ulus (Figure 17(b)). Robot head turns as the corresponding counterpart to the cursor actions

were chosen for having the robot performing actions which can be understood in the sense

of gaze cues [175]. As such, we realized an experimental setting with two tasks of identical

procedure, but with different connotation: while the cursor scenario follows traditional proto-

cols used in the study of ErrPs, the robot scenario deploys an embodied humanoid robotic

presence performing actions that can be useful in real-world HRI [176]. In both experimental

tasks, we expected to observe in the participant’s EEG ERPs with different characteristics

when evoked by congruent (semantically correct) versus incongruent (semantically incorrect)

feedback. By varying the type/form of the feedback only, our design allowed us to test whether

and how the observability and decodability of ErrPs evoked by simplistic symbolic feedback

(experimental task 1) can be transferred to a scenario involving the execution of actions by a

humanoid robot (experimental task 2) in a procedurally identical protocol.

4.2.2. Experimental design
4.2.2.1 Participants

Thirteen healthy participants took part in the experiment. The data of two participants were ex-

cluded from further analysis: participant s01 due to technical problems during the experiment,

and participant s12 due to having been on medication during the experiment. The remaining

11 participants were 6 males and 5 females with average age: 29.4±7.4 years. Prior expe-

rience and familiarity with humanoid robots scored 2.8±1.8 on a scale of 1 “unfamiliar" to 7

“familiar". All participants were equally instructed about the experiment protocol and provided

informed consent regarding participation in the experiment. Each participant was paid at a
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Figure 17 Illustration of the two experimental tasks; cursor task (left) and robot task (right). Upper panels: Participants were
requested to respond to one out of three possible target stimuli (left, right, up) appearing on the screen with corresponding
arrow key presses. In response, either a cursor (a) or the robot head (b) would move towards or away from the given target.
The yellow dashed arrows show the directions of possible cursor movements and robot head turns. Lower panels: experimental
setup showing a participant performing the cursor scenario (c) and the robot scenario (d).

rate of 8 EUR / hour. The study was approved by the institutional ethics review board of the

Technical University of Munich (reference number 236/15s).

4.2.2.2 Experimental protocol:

The experiment was divided into two recording sessions (one for each scenario) taking place

one after the other. About half of the participants (6 out of 11, see Supplementary Table

11, Appendix A) started with the cursor scenario (order: C/R) and the others with the robot

scenario (order: R/C). In total, 500 trials were collected per scenario; each scenario was

further divided into 10 blocks of 50 trials each; the duration of one block was approximately

2.5 min. Thus, the total duration of the experiment was approximately 60 min. After each

block, the participant would take a rest and decide when to continue with the next block in a

self-paced fashion. The participants were first instructed (verbally and by written instruction)

about the experimental setup including the recording modalities and handed a questionnaire

about personal details. Participants were informed about the approximate duration of the

experiment, but not about the specific number of trials per block. Participants were instructed

to react as quickly and precisely as possible to the appearing target stimuli.
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4.2.2.3 Trial structure:

Each trial (see Figure 18) started with a pause of random duration between 500-2000 ms in

order to avoid habituation to timing of appearance of the target stimuli. After the initial pause,

one out of three possible target stimuli appeared on the screen, followed by the participant’s

self-paced key press. Feedback was presented in form of a cursor movement (cursor sce-

nario) or a robot head turn (robot scenario) towards or away from the target stimulus. The

feedback ended after 130 ms: cursor reached target stimulus / robot head movement reached

end location. A second feedback was presented 200 ms afterwards in form of a colored frame

around the target stimulus (green frame = correct, red frame = incorrect). The framed tar-

get stimulus disappeared 300 ms later; this initiated the robot head turning back to the initial

location and the cursor re-appearing in the center of the screen 600 ms later.

Figure 18 Trial sequence with exemplary illustration of the cursor scenario (top panel, example for a congruent/correct trial) and
the robot scenario (middle panel, example for an incongruent/incorrect trial). (a) Trial start and break of random duration
between 500-2000 ms, (b) appearance of target stimulus, (c) participant response in form of arrow key press, start cursor/robot
head movement (d) end cursor/robot head movement (e) target border feedback presentation (correct: green; incorrect: red), (f)
disappearance target, disappearance cursor / start robot head turning back, (g) re-appearance cursor/ongoing robot head
turning back (h) re-appearance cursor, end of robot head turning back, updating average reaction time and error count.

4.2.3. Stimuli and apparatus
4.2.3.1 Experimental setting

The experiment took place in a quiet room which was partitioned into two sections by means

of a sight-proof wall. The experiment took place in the right side of the room and the partic-

ipant sat approximately 150 cm away and facing the computer screen / the humanoid robot.

Participant responses were registered with a computer keyboard located near the participant

(see Figure 17(c and d)). All but one participant (s07) performed the key presses with their

right hand. The experimenter was monitoring the session from the left side of the room.
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4.2.3.2 Stimuli

Stimuli were presented on a 24-inch flat screen LCD computer monitor with 60 Hz refresh

rate (see Figure 17). Participant responses were registered with the arrow keys of an ordi-

nary computer keyboard. The experiment was programmed with Python using the Psychopy

library [177] and executed on an Intel R© Core i5 CPU 750@2.67 GHz. The target stimuli were

realized as white squares of size 3x3 cm appearing in three possible locations on the com-

puter screen (left, right, or up). Per trial, one out of the three possible target stimuli appeared.

Participants were requested to respond with a corresponding arrow key (left target = left ar-

row key, right target = right arrow key, upper target = upper arrow key). Upon participant key

press, feedback was initiated in form of a cursor (cursor scenario) or a robot head movement

(robot scenario). False feedback events were introduced in a uniform random fashion after a

correct response by the participant (i.e. key press congruent with target location), and with

a pre-defined probability perr. These events are termed “machine-errors" for the rest of this

chapter. Machine-errors were manifested as cursor movement or robot head turns towards

the wrong direction / incongruent to the target stimulus location. The wrong direction was se-

lected in a uniform random fashion among the two remaining non-target directions. To avoid

habituation to the machine-error probability, half of the blocks were executed with a probability

of perr=20% and the other half with perr=50%. The order was pseudo-randomized such that

no more than two subsequent blocks would belong to the same error probability category. The

first block of each scenario was however always executed with perr=20% to avoid any confu-

sion in the beginning of each scenario. The cursor feedback was realized as a white square

of size 2x2 cm, initially located in the center of the screen (see Figure 17(a and c)). Upon

participant key press in response to the appearance of the target stimulus, the cursor would

start moving towards or away from the target with uniform speed until reaching the target po-

sition after 130 ms. In the robot scenario, the cursor was substituted with a NAO humanoid

robot located in a crouched posture in front of the computer screen such that the head position

matched the center of the screen (see Figure 17(b and d)). NAO is a 58 cm tall humanoid

robot with 21-25 degrees of freedom [178] which was controlled by the experiment program

via LAN (local area network) using the Python-based NAOqi library. In the initial head position

(Ψ = 0◦ (pitch), Θ = 0◦ (yaw)), the robot was gazing directly towards the participant. Upon

participant key press in response to the target stimulus, the robot head would turn towards or

away from the target (left: Ψ = 0◦, Θ = −40◦; right: Ψ = 0◦, Θ = +40◦, up: Ψ = −20◦,

Θ = 0◦) and reach the end position after 130 ms, keep the position for 500 ms and move back

to the initial head position. The average reaction time per block in ms was given in the left

upper corner of the screen, whilst the number of errors per block, with no distinction of errors

committed by the participant or the machine, were given in the right upper corner. This addi-

tional feedback was intended to keep participants’ engagement in the task by self-monitoring

their own performance throughout the experiment.
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4.2.3.3 EEG recording and data pre-processing

EEG data were acquired with a Brain Products actiChamp amplifier equipped with 32 active

EEG and EOG (electrooculogram) electrodes1 arranged according to the extended interna-

tional 10-20 system [128]. All leads were referenced to the average of TP9 and TP10 (average

mastoids referencing) and the sampling rate was set to 1000 Hz. The impedance levels of all

leads were kept below 10 kΩ. Three channels were used for capturing electrooculogram

(EOG1-3) signals in three locations of the participant’s face (forehead, left and right outer can-

thi) according to a method suggested by Schlögl and colleagues [179]. The EEG amplifier was

battery-driven and located on a tray near the participant. The data was transferred via USB to

a separate recording PC (Intel R© Core i5 CPU 750@2.67 GHz). The amplifier was connected

to the PC executing the experiment protocol via LPT over which event triggers were sent to

be stored synchronously with the EEG signals. All EEG data preprocessing was carried out

in MATLAB R©, in part using functions provided by the EEGLAB toolbox [137]. The subsequent

processing steps were applied to each dataset (11 participants x 2 sessions) separately in

the following order: First, the EEG and EOG signals were filtered with a zero phase Hamming

windowed sinc2 FIR band-pass filter with cutoff frequencies of 1 Hz and 20 Hz, to remove

high-frequency and power-line noise. EEG channels showing signs of contamination with arti-

facts were identified using kurtosis with a threshold of 5% and replaced by interpolations from

neighboring channels. EOG activity in the EEG signals (eye-blink and lateral eye movements)

was corrected using the method suggested by Schlögl et al. [179]. Finally, EEG signals were

re-referenced to CAR to further reduce signal contamination due to external noise sources.

4.2.3.4 Synchronization of stimuli onset with EEG recordings:

In order to ensure precise information about the moments of presentation of the feedback,

the robot head was equipped with a LED (light emitting diode) and a photodiode to record

the onset of head movements synchronously with the recording of the EEG signals. The

computer screen was also equipped with a separate photodiode to record the timing of the

cursor movement. None of the photodiode setups were directly visible and thus not distracting

to the participants. Ground truth timing of onset of both cursor and robot head movement was

obtained by analyzing the signals captured by the two photodiodes and introducing additional

event markers into the EEG recordings.

4.2.4. Data analysis
4.2.4.1 Analysis of behavioral data

Our experimental design featured identical protocols but different feedback signals in the two

scenarios. Therefore, we did not expect behavioral differences regarding RT (reaction time)

and number of errors committed by the participants (nErr) across scenarios. Behavioral data

1 Channel labels: FP1, FP2, F3, F4, F7, F8, FC1, FC2, FC5, FC6, C3, C4, T7, T8, CP5, CP6, P3, P4, P7, P8,
TP9, TP10, O1, O2, Fz, Cz, Pz, EOG1, EOG2, EOG3.

2 A sinc filter is a filter with impulse response being the sinc function; this results in an idealized filter with rectan-
gular frequency response and linear phase response.
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was analyzed to verify the absence of such behavioral differences. Several statistical tests

were done for that: we tested whether the distributions of mean reaction times (RT ) and

nErr differed across the two scenarios, and tested whether the distributions of RT and nErr

differed across first and second performed scenario, irrespective of scenario order (C/R or

R/C).

4.2.4.2 Analysis of event-related potentials and their stimulus-dependent variations

The data was segmented into epochs by extracting time intervals of [-500...1500] ms relative

to the presentation of the feedback (onset of cursor movement / robot head turning, t = 0ms).

These segments were further separated into three categories: (1) correct trials (non-error),

(2) false feedback trials (machine-error), (3) human error trials. Per participant and recording

session, we extracted on average approximately 325 non-error trials, 159 machine-error trials,

and 16 human error trials. Since human-errors were not the focus of our investigation, the cor-

responding epochs were discarded from further analyses. Analysis of the shape and timing of

the potentials in each scenario was carried out through (1) the computation of the time-locked

average potentials for the machine-error and non-error potentials in channel Cz, (2) through

the difference average (machine-error minus non-error averages) and (3) by computing the

coefficient of determination r2 [48]. Before averaging across trials, each channel and trial

was baseline corrected by subtracting the average amplitude of the period [-200...0] ms from

the entire signal epoch. Spatial ERP patterns were compared by computing the topographic

interpolation of the potentials at the time of the main peaks of the difference average. Finally,

we assessed the similarity of ERP time courses within the period [0...800] ms per participant

by computing the 2D correlation coefficients between the difference average of the cursor and

the robot scenario. Furthermore, we computed the 2D correlation coefficient between the

difference grand average within the period [0...800] ms of the cursor and the robot scenario

according to Eq. (4.1); with C and R being the difference average ERP of cursor C and robot

R data (machine-error minus non-error); with C and R being the means of all elements in C

and R; c being the spatial dimension (channel), and t being the temporal dimension (sample

time point).

r =

∑
c

∑
t

(Cct − C)(Rct −R)√∑
c

∑
t

(Cct − C)2
∑
c

∑
t

(Rct −R)2
(4.1)

4.2.4.3 Single-trial classification and analysis of impact of stimulus-dependent variations

Computation of participant-specific ErrP-decoders, to be used to classify EEG signals into

responses due to the observation of non-error or machine-error events, included the extraction

of relevant features from the EEG signals and the training of a classification model. The

49



testing/validation step included feature extraction and application of that classification model

on unseen data within and across session.

Feature extraction: In the context of single-trial classification of error-related potentials, dif-

ferent types of features have been used and reported in previous works. Temporal features

extracted from the time series [102, 171] have been used in most cases, being reported as

stable and reliable even across recording sessions [151]. Furthermore, we performed a fea-

ture cross-comparison in one of our earlier works [42] where we found temporal features being

superior over spectral features in the context of decoding ErrPs. Therefore, temporal features

were used in this work. For each trial and each channel, the signal amplitude was averaged

within 9 overlapping 100 ms-long windows3, relative to the occurrence of machine-error / non-

error events for each channel and concatenated into the single feature vector of length 243

(27 channels x 9 windows).

Classification: The classifier used in the analysis was a regularized version of the linear

discriminant analysis (rLDA) [180]. The rLDA classifier has been established as a robust

method to discriminate mental states based on EEG signals in the field of brain-computer

interfaces [181]. The LDA discriminant function is the hyperplane discriminating the feature

space corresponding to two classes: y(x) = sign(wTx + b), with x being the feature vec-

tor, w being the normal vector to the hyperplane (or weight vector), b the corresponding bias,

and y(x) ∈ {−1, 1} the classifier decision. The weight vector and bias were computed by

w = (µ̂2 − µ̂1)(Σ̃1 + Σ̃2)-1 and b = −wT (µ̂1 + µ̂2), with µ̂j being the class-wise sample

means, and Σ̃j being the class-wise regularized covariance matrices. Regularization aims

at minimizing the covariance estimation error by penalizing very small and large eigenvalues.

This leads to robust covariance estimates even for high dimensional feature spaces [181] as in

our case. The regularized covariance matrices were computed by Σ̃j = (1−λ)Σj +λνI, with

λ ∈ [0, 1] ⊂ R being the shrinkage parameter, ν the trace (sum of diagonal elements) of Σj

divided by the number of features, and I the identity matrix. The optimal shrinkage parameter

λ was determined automatically based on the given training data using an analytic method

proposed by Schäfer & Strimmer in 2005 [182].

Within-session validation: We validated the above described modeling approach within ses-

sion (cursor, robot) using a 10-times-10-fold CV scheme. Per session and participant, the

trials were randomly split in 10 folds, 9 folds were used for model calibration and the remain-

ing fold was used for testing. This procedure was repeated until all folds were once used for

testing. The entire procedure was furthermore repeated for 10 times. Each time and fold, the

number of trials per class of the calibration data was balanced by random pick and replace

(please note that the number of trials per class was initially unbalanced with ~65% non-error

and ~35% machine-error trials). This analysis provides an estimate of how well participant-

specific ErrP-decoders would perform in classifying unseen data when being calibrated with

different data of that same session. Individual classification results per time and fold were

3 Windows: [100...200] ms, [150...250] ms, [200...300] ms, [250...350] ms, [300...400] ms, [350...450] ms,
[400...500] ms, [450...550] ms, [500...600] ms.
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averaged and reported per session and participant as percentage of correctly classified trials

(overall accuracy, Acc = (TP + TN)/(TP + FP + FN + TN))4; percentage of correctly

classified machine-error trials (TPR (true positive rate), TPR = TP/(TP+FP )); percentage

of correctly classified non-error trials (TNR (true negative rate), TNR = TN/(TN + FN));

and in addition, as the AUC (area under curve) of the receiver operator curve (ROC) since this

measure can be more informative when reporting classification results based on data with

imbalanced number of observations per class.

Cross-session validation: Furthermore, we performed a cross-session validation for each par-

ticipant in two steps: calibration with the cursor data and testing on the robot data, calibration

with the robot data and testing on the cursor data. This analysis allowed us to obtain an

estimate of how well a participant-specific ErrP-decoder would perform in classifying data of

one session if it was calibrated with data of the other session. The number of trials per class

was balanced in the calibration data by random pick and replace. To increase the likelihood

that most of the trials were used for calibration at least once, this procedure was repeated

100 times. The weight vectors w and biases b of the resulting 100 individual rLDAs were

averaged to obtain a final rLDA. Testing was performed on the unbalanced data of the test

session. Results are reported identical to the within-session validation as Acc, TPR, TNR,

and AUC.

4.3. Results of behavioral data, ERPs, and single-trial
classification

4.3.1. Consistency of behavioral data
Participants’ individual data are summarized in Supplementary Tables 11 and 12. Mean reac-

tion times did not differ significantly between scenarios (RT cursor = 421 ± 75ms, RT robot =

403±43ms, AVG±SD, Wilcoxon’s signed-rank test, p = 0.123). Number of human-committed

errors did not differ significantly between scenarios (nErrcursor = 17±14, nErrrobot = 16±8,

AVG±SD, Wilcoxon’s signed-rank test, p = 0.916). Mean reaction times did not signifi-

cantly vary between the first and second performed scenario irrespective of type (RT first =

415±52ms, RT second = 410±71ms, AVG±SD, Wilcoxon’s signed-rank test, p = 0.240), sim-

ilarly with number of human-committed errors (nErrfirst = 13±10, nErrsecond = 19±13ms,

AVG±SD, Wilcoxon’s signed-rank test, p = 0.095). We conclude therefore that there is no ef-

fect of type of scenario or scenario order on reaction times and number of human-committed

errors.

4.3.2. Modulations of ERPs
The results of the analysis of ErrPs and stimulus-dependent signal variations are depicted

in Figure 19. The left and middle panels show the grand average ERPs for each category

4 True Positive (TP) = correctly classified machine-error trial, True Negative (TN) = correctly classified non-error
trial, False Positive (FP) = machine-error trial falsely classified as non-error trial, False Negative (FN) = non-error
trial falsely classified as machine-error trial.
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(blue: non-error, red: machine-error) and the difference average (dashed black: machine-

error minus non-error) for each scenario (left panel: cursor, middle panel: robot). In both sce-

narios, the shape of the difference grand averages were similar to those previously reported

[102, 103, 104] with regard to the timing and topographical distribution of the components

N200 and P300. The N400 component was not observable in our data. Instead, we observed

another late positive component with a latency of approximately 500 ms. This effect might be

related to the P600 component which has been reported in the context of error processing

as well as in response to syntactic and semantic anomalies [107, 108]. These findings indi-

cate that the observed effects originated from error-/performance monitoring processes. The

difference ERPs of the robot scenario were significantly less pronounced than those in the

cursor scenario in that the grand average time courses of the robot scenario were attenuated

in peak amplitudes and topologically less clearly distinguished than in the cursor scenario.

This is also reflected in the results of the analysis of the coefficient of determination r2 based

on channel Cz. In both scenarios, grand average r2-values were highest at similar time points

(cursor: r2
max = 0.14 at t = 261ms, robot: r2

max = 0.04 at t = 263ms). The similarity analysis

revealed a correlation coefficient of r = 0.70 between spatio-temporal difference grand aver-

ages of both scenarios. Computation of the 2D correlation coefficient between spatio-temporal

difference averages for each participant resulted in a median r = 0.48 and exclusively all par-

ticipants with a positive 2D correlation coefficient (participant-individual results are reported in

Supplementary Table 13, Appendix A). We conclude that the ErrPs observable in the two sce-

narios were qualitatively similar in terms of shape, timing, and topographical distribution. This

indicates that the observed effects originated from the same underlying neuronal process.

4.3.3. Single-trial classification results
The within-session single-trial classification results are depicted in Figure 20 (left panel) and

detailed in Supplementary Tables 14 and 15 (Appendix A). Across-participant average clas-

sification performance for the cursor scenario resulted in Acc = 90.6 ± 3.9% with TPR =

87.3 ± 4.3%, TNR = 92.2 ± 3.8% and AUC = 0.95 ± 0.03 (AVG±SD). For the data of the

robot scenario, we observed significantly reduced and more variant within-session classifica-

tion performance of Acc = 69.0 ± 7.9% with TPR = 66.1 ± 6.5%, TNR = 70.6 ± 9.1%,

and AUC = 0.73 ± 0.1 (AVG±SD). The reduced classification performance based on the

data of the robot scenario was consistent across participants (Acc = −21.6± 7.8%, TPR =

−21.2 ± 8.1%, TNR = −21.7 ± 8.2%, AUC = −0.21 ± 0.1, AVG±SD), however, with non-

significant correlation between classification results of each session (rAcc = 0.27, p = 0.41;

rAUC = 0.17, p = 0.61, Pearson’s correlation, n = 11). All participant-individual classifi-

cation accuracies were above the sample size adapted chance-level of Accchance = 53.6%

(p < 0.05) for binary classification according to [183].
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The cross-session single-trial classification results are depicted in Figure 20 (right upper and

lower panels) and detailed in Supplementary Tables 16 and 17 (Appendix A). For calibration

with the cursor data and testing with the robot data, across-participant average classification

performance resulted in Acc = 68.3 ± 6.1% with TPR = 34.9 ± 13.0%, TNR = 86.4 ±
10.8%, and AUC = 0.68 ± 0.11, AVG±SD (Figure 20, right upper panel). Cross-session

classification performance showed high correlation with participant-individual spatio-temporal

ERP similarity measures (rAcc = 0.80, p = 0.003; rAUC = 0.79, p = 0.003, Pearson’s

correlation, n = 11). Except for participant s10, classification accuracies were above chance-

level, however, with a systematic bias between TPR and TNR: across all participants, we

observed consistent low classification rates for class machine-error and high classification

rates for class non-error. This is most likely related to shifts in the distributions of features

favored by the rLDA classifier for separating the cursor data, causing the decision boundary

to favor one class over the other in the robot data.

For calibration with the robot data and testing with the cursor data, average classification

performance resulted in Acc = 73.1 ± 13.0% with TPR = 70.3 ± 24.8%, TNR = 74.7 ±
11.6%, and AUC = 0.78 ± 0.18, AVG±SD (Figure 20, right lower panel). No classification

bias was observed for the robot-to-cursor transfer, but a decrease of accuracy compared

to the within-cursor validation accuracies. This is most likely related to the rLDA favoring

features in the robot data which have less discriminative power in the cursor data. Cross-

session classification performance showed high correlation with participant-individual spatio-

temporal ERP similarity measures (rAcc = 0.57, p = 0.06; rAUC = 0.61, p = 0.05, Pearson’s

correlation, n = 11). In all but two participants (s08, s10), classification accuracies were close

to or above 70% with an AUC > 0.73 and no systematic bias between TPR and TNR. The

fact that s08 and s10 revealed also very low accuracies in the within-session validation of the

robot data may explain why their cross-session classification results turned out to be low as

well.
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4.4. Discussion of ERP modulations and single-trial classification
results

ErrPs are decodable in response to incorrect robot actions, but decoding performance is sen-

sitive to the stimulus:

The study confirmed feasibility of decoding ErrPs in response to the human observation of in-

correct robot action. We obtained a classification accuracy of average Accrobot = 69.0±7.9%

across 11 participants, which is comparable to results in response to robot actions obtained

by others [105, 173, 174]. For the cursor task, we obtained an average classification accuracy

of Acccursor = 90.6 ± 3.9% which is comparable or higher than previously reported single-

trial classification results based on ErrPs in response to screen-based stimuli [102, 103, 104].

From these results, we conclude that the observability and decodability of ErrPs is sensitive

to type of stimulus eliciting them, even in procedurally simplistic tasks. Besides the lower ac-

curacy in the robot task, we observed higher variations of decoding accuracy indicating that

participants seemed to have reacted more differently to the robot than to the cursor, e.g. s04,

s06, s07, s13 with Accrobot > 75% and s08, s09, s10 with Accrobot < 65%, and s10 close to

chance level (see Supplementary Table 15, Appendix A).

The observed quantitative variations of ErrPs and the respective differences of decoding per-

formance across experimental tasks denote an interesting outcome of our study. Since the

realization of both the cursor and robot actions were implemented to be as similar as possi-

ble (see Section 4.2.3), technical factors can be largely excluded. Beyond technical factors,

the observed differences may have resulted from an across-task specific perceptual jitter, e.g.

greater trial-by-trial latency variations of the observed ErrPs in response to the robot actions

as compared to the cursor actions. However, no evidence of such variations could be found

in a post-hoc analysis in which we attempted to rectify the phases of single-trial ErrPs without

notable success. Given these insights, it appears more likely that the observed variations

resulted from systematic differences in the perception and/or evaluation of the two types of

actions across participants. Whether and to what extent such perceptual or cognitive factors

affect the observability and decodability of ErrPs in HRI requires further attention in follow-up

studies and are discussed in more detail in the outlook of this thesis (see Chapter 7).

Despite the observed quantitative differences, the ErrPs extracted from the two scenarios were

qualitatively similar in terms of shape, timing, and topographical distribution. This indicated

that the observed effects originated from the same underlying neural process. Based on this

finding, we tested whether ErrP-decoders calibrated with the data of one task can be re-used

to classify responses based on the other task. The cross-session single-trial classification

analysis resulted in a classification bias for the cursor-to-robot transfer (high classification rate

for non-error and low classification rate for machine-error events) consistent across partici-

pants, and a significant drop in classification accuracy for the robot-to-cursor transfer com-

pared to the respective within-session results. Based on these results, we do not recommend
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a straightforward re-use of the ErrP-decoders across tasks without re-calibration.

Despite the observed variation between experimental tasks, our results demonstrated and

confirmed feasibility of decoding ErrPs in response to the observation of semantically incorrect

robot actions given that ErrP-decoders are calibrated based on data of the same task.

ErrPs can be used in more complex HRI scenarios:

We purposely designed a relatively simple HRI scenario to demonstrate principal feasibility

of decoding the human perception of semantically incorrect robot actions. Furthermore, the

chosen experimental paradigm allowed us to compare the ErrP responses in the robot task

to those obtained in response to a simplistic stimulus in a procedurally identical task. The

robot scenario in our study resembles most that of a real-world HRI task, in which the robot

designer is interested in validating the congruency of robot gaze cues with the human partner’s

expectations. In a follow-up study (see Chapter 5) we investigated to which extent the results

of the present study are transferable to such a more realistic HRI task. The results of the

study showed that ErrPs, online decoded from the human interaction partner, can be used to

both validate the congruency of robot gaze cues with the human partner’s expectations and

likewise, to successfully adapt the robot’s gaze behavior during interaction. Whether and to

what extent the outcomes of our present study scale to even more complex HRI scenarios

with different types of robot actions remains open for future work. In light of the findings we

can, however, state that the brain responses we observed in both experimental tasks were

related to error / performance monitoring due to their temporal and topographical similarity

with previously reported ErrPs in different experimental paradigms [102, 104]. This supports

the notion that the effects observed derive from a high-level “generic" neuronal process, that

is understood to be largely unrelated to the situational context or the associated stimulus

[98, 184].

Practicality in ErrP-based validation of HRI denotes challenges to overcome:

A few aspects render the method of ErrP decoding for robot validation laborious and im-

practical to be readily deployable: Firstly, the cumbersome, expensive, and sensitive EEG

setup, and secondly, the necessity for participant-specific (re-)calibration of the ErrP-decoder.

The need for inexpensive and easy-to-use EEG systems with sufficient signal quality has al-

ready been recognized by the BCI community [185]. Along this line of research, we made a

contribution in the form of the development of a simple, mobile, and comparably inexpensive

(~800USD) EEG system. Our device was initially deployed in a study investigating sensorimo-

tor rhythms in patients with CP (cerebral palsy) [186]; the usability for measuring and decoding

ErrPs has also been successfully validated in a follow-up comparative study (see Appendix

B). Participant-specific (re-)calibration is a generally recognized issue thwarting practicality of

brain-computer interfaces [136]. Non-stationarities and dissimilarities of EEG signals across

recording sessions and participants generally render (re-)calibration a necessity to assure suf-
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ficient functionality of BCIs. ErrPs have, however, been shown to be stable across recording

sessions within the same participant and experimental task up to 600 days [102, 151]. This

indicates that re-using ErrP-decoders without re-calibration is principally possible if partici-

pant and task remain the same across experimental sessions. With regard to participant-to-

participant transfer we recently investigated the feasibility for participant-independent ErrP-

decoders and demonstrated the effectiveness of supervised and unsupervised online adapta-

tion of such generalized ErrP-decoders [164, 165].

4.5. Summary

In this chapter we presented a neuronal-based method for quantitatively assessing in real-

time the human perception of robot actions during HRI. The method is based on the decoding

of ErrPs from EEG signals. The usability for the assessment of robot actions was tested by

comparing the ErrPs generated in response to incorrect robot actions with incorrect computer

screen-based cursor actions. The results confirmed the decodability of ErrPs upon observa-

tion of incorrect robot actions (average classification accuracy ofAcc = 69.0±7.9%), although

with a lower accuracy than upon observation of incorrect cursor actions (average classifica-

tion accuracy of Acc = 90.6 ± 3.9%). This demonstrated that ErrPs can be sensitive to the

stimulus eliciting them despite procedurally identical protocols. The qualitative similarity of

ErrPs generated in the two scenarios indicates nevertheless a common neuronal origin of the

signals. Overall, the study demonstrated that assessment of incorrect robot actions via ErrPs

is feasible, but the re-use of ErrP-decoders across experimental tasks was not supported.
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5. Human-agent co-adaptation using error-related
potentials

ErrPs decoded from the ongoing EEG of a human observer have been proposed as an intu-

itive feedback signal for improving HMI (e.g HCI or HRI). While the use of ErrPs as a teaching

signal for robot skill learning has been successfully demonstrated by recent studies by others,

so far, no efforts have been made towards HRI scenarios where mutual adaptations between

human and robot are expected or required. These are collaborative or social interactive sce-

narios without predefined dominancy of the human partner and where robots are perceived

as intentional agents. Here we explore whether ErrPs can be used as a feedback signal from

the human for mediating co-adaptation in HRI. We experimentally demonstrate ErrP-based

mediation of co-adaptation in a closed-loop HRI study where successful interaction depended

on co-adaptive convergence to a consensus between them. While participants adapted to

the robot by reflecting upon its behavior, the robot adapted its behavior based on ErrPs de-

coded online from the human partner’s ongoing EEG. ErrPs were decoded online in a single

trial with an average accuracy of Acc = 81.8 ± 8.0% across 13 participants, which was suf-

ficient for effective adaptation of robot behavior. Successful co-adaptation was demonstrated

by significant improvements in interaction efficacy and efficiency, and by the robot behavior

that emerged during co-adaptation. These results indicate the potential of ErrPs as a useful

feedback signal for mediating co-adaptation in HRI as demonstrated in a practical example.

5.1. Introduction

Recently, ErrPs have been proposed as a feedback signal from the human for guided adap-

tations of physical robotic systems [171, 172, 105, 42, 174, 173, 43]. The basic concept is

to harvest ErrP responses from a human observer upon recognition of erroneous or inappro-

priate robot actions in order to adapt or improve the robotic system post-hoc or on-the-fly.

This approach is particularly promising as a complementary method for adapting robotic sys-

tems and HRI, because: (1) ErrPs are naïve responses which require no mental effort from

the human observer. (2) ErrPs can be decoded in real-time, allowing for online adaptations

of the robotic device without interruption of ongoing interaction with the human partner. (3)

ErrPs are understood to be sensitive to violations of expectations [187, 188] and as such com-

prise an implicit and immediate feedback, informative (3a) for improving the robotic system to

better align with the observer’s expectation, and (3b) possibly informative with regard to the

observer’s overall assessment of the robotic system and/or the quality of interaction. The fol-

lowing section provides an overview of research works that made use of this principle. Here,

a distinction is made between the deployment of ErrP decoding as an additional modality for

The work presented in this chapter was published as a journal article in September 2018: Ehrlich, S. K., &
Cheng, G. (2018). Human-agent co-adaptation using error-related potentials. Journal of neural engineering,
15(6), 066014. DOI: http://dx.doi.org/10.1088/1741-2552/aae069. Copyright permission see Appendix
C.
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adaptation of BCI decoders (hybrid BCI approach) and the deployment of ErrP decoding as

single modality for adaptation of robotic systems and HRI.

5.1.1. Related work on ErrP-based adaptation in HMI
ErrP-based adaptation of hybrid BCIs:

Schalk and colleagues were among the first in 2000 to propose the use of ErrPs for online

improvements of BCIs. They demonstrated that ErrPs occur in response to the participant’s

observation of the BCI delivering wrong output, e.g. mismatching the participant’s intended

command the BCI was ought to execute [189]. Since then, several works have demonstrated

improvements in the information transfer rate of BCIs, via simultaneous ErrP decoding, both

in healthy as well as in patient populations. One can distinguish here between BCIs for target

selection (e.g. based on the P300 oddball paradigm or VEPs), and BCIs for continuous con-

trol (e.g. based on SCPs, SMRs, or attention-based paradigms). An overview of common BCI

paradigms is provided in Chapter 2, Table 2. While early works mainly focused on correcting

or reversing erroneous BCI output, later works used ErrP-based feedback to adapt BCI de-

coding models during operation. The simultaneous decoding of two or several modalities, for

instance, sensorimotor rhythms for BCI control and ErrPs for correcting output of such sen-

sorimotor decoding, has been termed hybrid BCIs (for an overview, the reader is referred to

[190]).

Parra and colleagues demonstrated in 2003 improved performance of 21% in participants

executing a binary forced choice visual discrimination task, when errors were automatically

corrected via online decoded ErrPs [191]. Blankertz and colleagues demonstrated in 2003 im-

proved information transfer rates when correcting decoding of motor intent from pre-movement

ERPs by means of post-movement ErrPs [192]. Similarly, in their work of 2005 and later,

Ferrez and Millán demonstrated improved information transfer rates in sensorimotor BCIs by

correcting erroneous BCI output using ErrPs [169, 102, 193, 194]. Schmidt and colleagues

demonstrated a multi-target selection BCI based on the P300 oddball paradigm and showed

that ErrPs could be used to detect wrong target selection, as such increasing spelling speed

on average by 49% across eleven participants [195]. A similar approach was presented by

Spueler and colleagues in 2012, in this study including patients with severe motor impair-

ment due to ALS [196]. In a recent work by Cruz and colleagues this approach was even

shown to work in a tetraplegic patient [197]. An integrated approach for EEG-driven posi-

tion control of a robot arm for neuroprosthetic and rehabilitation purposes was presented

by Bhattacharyya and colleagues in 2014 [198]. By employing three modalities (sensorimo-

tor rhythms for controlling, P300 for stopping, and ErrPs for correcting robot arm movements)

they showed efficient and precise robot arm control in five healthy participants. One of the first

works demonstrating ErrP-based online adaptation of BCI decoders was presented by Llera

and colleagues in 2011 [153]. Their BCI decoded covert attention based on lateralized alpha

activity for binary control in a forced choice task. ErrPs were shown to be useful to improve

the decoding model for covert attention during operation. Similarly, Spüler and colleagues
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showed in 2012 that also decoding models for code-modulated VEP based BCIs for char-

acter spelling can be online adapted using ErrPs [170]. With this integrated approach, they

yielded the highest information transfer rates achieved with non-invasive BCIs to date (144

bit/s). More recent work was presented by Mousavi and colleagues in 2017 [199]. Instead

of employing separate decoding models for sensorimotor rhythms and ErrPs, they proposed

an integrated model capturing both processes and showed significant improvement of classi-

fication accuracy across 10 participants. While the approach of using simultaneous decoding

of ErrPs for improving BCI performance is highly convincing, recent works in this area are

scarce. A reason for this may be that the improvements achieved by above mentioned works

do not entirely justify the increased complexity of hybrid BCI systems.

ErrP-based adaptation of robotic systems and HRI:

In 2008, Chavarriaga, Ferrez and Millán proposed that ErrPs may constitute a learning signal

to infer the participant’s intended strategy ([200], see also [151]). Their experimental protocol

comprised of a screen-based cursor that could move in discrete steps either towards or away

from a target (similar to the setup shown in Figure 21(a), left). By using online decoded

ErrPs generated whilst the participant monitored the cursor (feedback signal for reinforcement

learning), they showed that it is possible to learn a policy that effectively moves the cursor

towards the target. This same principle was demonstrated also in more complex scenarios.

For instance, Iturrate and colleagues used an experimental protocol with a simulated robotic

gripper displayed on a computer screen that could deliver objects into 5 locations [171]. Upon

wrong delivery of an object (mismatching the participant’s intended location), an ErrP could

be detected and used for reinforcement learning of the correct location. Similarly, Chavarriaga

and Foerster showed in 2010 that a pre-trained gesture recognition system based on hand

motion sensors could be improved using online decoded ErrPs [201, 202]. The first known

work employing online decoded ErrPs in an HRI scenario involving a real robotic system

(instead of virtual) was presented by Iturrate and colleagues in 2010 [171]. They used a

robotic manipulator (Katana 300) that could be moved horizontally in 5 pre-defined positions

(similar to the simulated gripper in [41]) and showed the presence of reliably decodable ErrPs

when movements did not correspond to those intended by the participants. This work was

extended in 2013 to include movements to occur in 2D (instead of 1D horizontal movements)

with a 5x5 grid world setup similar to the setup in Figure 21(a), middle ([203], see also [204]),

and to work also in a real robotic manipulator [105] (see Figure 21(a), right). In 2017 Salazar-

Gomez and colleagues [173] showed that a robot could learn a binary sorting task by means

of ErrPs online decoded from a human observer (see Figure 21(b)). The closeness of the

experimental setup to a real-world HRI made this work an outstanding example, despite the

principle not being novel. In a similar line, Kim and colleagues showed in 2017 [43] that a robot

could learn, based on online decoded ErrPs, to recognize and replicate human gestures (see

Figure 21(c)). In their work, they particularly emphasized the potential of ErrP-based HRI as

a set-up for “intrinsic interactive reinforcement learning of robot skills" without particular effort

required from the human interaction partner.
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Besides robotic systems, online decoded ErrPs have also been employed in car driving tasks

by Zhang and colleagues, for example, to infer the driver’s turning direction, both in a simulated

[205] and a real driving situation [206]. In a similar line, a recent work by Choi and colleagues

demonstrated successful decoding of ErrPs when the car moved differently from how the user

intended to drive [207].

Figure 21 ErrP-based adaptation of robotic systems and HRI: (a) ErrP-based learning of robot end-effector trajectories: (left)
screen-based cursor movement towards target, (middle) 2-dimensional reaching task in simulated robot environment, and
(right) 2-dimensional reaching task with real robotic system [Adapted from Iturrate et al., 2015 [105]]. (b) ErrP-based learning of
robot performing a binary sorting task: ErrPs, online decoded from a human observer are used as feedback to learn the correct
assignment of objects to corresponding boxes. [Reprinted from Salazar-Gomez et al., 2017 [173]]. (c) ErrP-based learning of
robot recognizing and replicating human gestures: ErrPs, online decoded from a human interaction partner are used as
feedback for robot learning of the correct assignment of three human gestures and the correct replication of these gestures
[Reprinted from Kim et al., 2017 [43]].

In summary, while above mentioned works showed promising results of this highly innovative

approach, they were primarily concentrated on using ErrPs as a teaching signal for robot skill

learning. A question that remained unexplored is whether this ErrP-based feedback signal

can also be useful in situations where both human and robot are required to adapt to each

other to converge to a consensus in the given joint task. That is, situations in which there is
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no explicit “right" behavior (policy) the robot is supposed to be taught, but the human partner

may as well adapt to the robot. By providing feedback, e.g. for reinforcement learning of

robot skills, the human participant represents a critic and as such the reward function for the

learning system. In all previous works, the reward function was either defined externally (by

task instructions) or by employing designs involving unambiguous tasks (single explicitly cor-

rect reward function). In HRI/HMI scenarios where machines appear as autonomous agents,

human interaction partners may also adapt to or entirely rely on the system. This may result

in reward functions being volatile and changing dynamically. How to formalize and deal with

such volatile reward functions denote a challenge implicating both technical, but also human

factors. Approaching this question is important regarding human interaction with systems that

have a form of intentional agency, such as HRI in the context of collaborative or social inter-

active scenarios. This contrasts to interaction scenarios in which robotic systems are used as

tools supposed to fulfill an explicit function (explicit “right" policy).

5.1.2. Aim of the work
The current study explored the usability of ErrPs as a feedback signal in the context of human-

agent co-adaptation. The approach used, schematically described in Figure 22, conceptually

assumes the interaction between two partners: (1) An intentional artificial agent with a policy

π determining its behavior based on a set of behavioral states S, actions A, and goals / inten-

tionsG. (2) A human partner, interacting with that agent based on a belief of the agent’s policy

π′. While the agent is provided feedback through online decoded ErrPs to gradually adapt its

policy π to the human’s belief π′, the human partner may gradually adapt his/her belief π′ to

the agent’s policy π by reflecting upon its behavior. As such, both systems (human and agent)

are adaptive, allowing for mutual adaptation with the aim to converge to a consensus in form

of an alignment of the human’s belief and the agent’s actual policy: πfinal ≈ π′final.

The conceptual approach (Figure 22) was implemented in form of a human-robot collaborative

guessing game where the human partner had to guess, from a humanoid robot’s gazing be-

havior, which of three available objects was selected by the robot. While the human’s task was

to learn to infer the robot’s intentions / goals by observing and interpreting its gazing behavior,

the robot’s task was to learn to convey its intentions / goals via gazing behavior to the human

partner; efficient interaction required their convergence to a consensus by co-adaptive learn-

ing of both parties. Crucially, the sole modality of information provided to the robot was ErrPs,

online decoded from the ongoing EEG of the human partner. This approach was explored in

a closed-loop experimental study and, as being demonstrated in the following sections, en-

abled such co-adaptive human-robot learning, indicated by significant improvements in HRI

performance. This extends previous accounts on ErrP-based adaptation of robotic systems

and HRI by addressing the following aspects:

• Demonstration of the usability of ErrPs for mediating co-adaptation in HRI. This relaxation

of interaction constraints - permitting mutual adaptation - is particularly important with re-

gard to HRI scenarios where the human partner does not have a predefined dominant role
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Figure 22 Conceptual approach: in interaction with an agent, the human holds a mental model (belief) of the agent’s policy π′

to predict its future behavior, which can be based on prior expectations π′init and is further adapted during interaction. ErrPs,
online decoded from neural activity of the human partner are provide as a critic for guided adaptation of the agent’s actual
model π. This creates a two-party co-adaptive system allowing both human and agent seeking consensus in form of an
alignment of the human’s belief and the agent’s actual policy: πfinal ≈ π′final.

(principal or teacher role). These are scenarios in which adaptations of the human to the

robot are expected or even necessary for successful interaction, such as in collaborative

or social interactive HRI.

• Previous works adapted the robot’s behavior using ErrP feedback based on single, ex-

plicitly erroneous robot actions [105, 173, 43]. In more complex robot behavior, however,

individual robot actions are more likely to occur in rapid succession and not to be tem-

porally well isolated, the latter being a prerequisite for reliable ErrP decoding. Here we

explore robot adaptation based on ErrPs arising from and reflecting the human’s interpre-

tation of the robot’s intention / goal, with the latter being inferred from a sequence of robot

actions instead of a single occurrence. Along this line, this work proposes and successfully

employs an ErrP-based episode update strategy with delayed reward for online adaptation

of the past sequence of robot actions.

This chapter is structured as follows: in the subsequent sections the experimental paradigm

(Section 5.2.1), design and tasks (Section 5.2.2) are described in detail, followed by a thor-

ough description of the implementation of the technical components of our approach (EEG-

based online decoding of ErrPs and corresponding adaptation of robot behavior) in Section

5.2.3. The main results of efficacy of online ErrP decoding and human-robot co-adaptation

are reported in Section 5.3, followed by a discussion of the results in Section 5.4. Section 5.5

summarizes the chapter.
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5.2. Methods: closed-loop BCI setup and experimental study 3

5.2.1. Experimental paradigm
The experimental paradigm is schematically described in Figure 23(a). Three objects were

located between the participant and the robot. The robot would select one among the three

objects (unknown to the participant) which denoted its covert intention / goal g and subse-

quently started executing a gaze pattern (action sequence) by turning its head (actions: A)

towards the objects and the participant (states: S). The participant’s task was to guess the

robot’s initially selected object from observing its gaze behavior: The participant may for in-

stance consider which object the robot fixated more often or for the longer duration. Eventually,

the robot would reveal the actual object it had initially selected, resulting in the participant ex-

periencing a match or mismatch with the object he/she believed the robot selected. In that

moment the participant’s ongoing EEG signals would change, reflecting the robot’s revelation

as an error- (mismatch) or non-error (match) response and used as a negative or positive

reward for adaptations of the robot’s gaze behavior policy π. Meanwhile, the participant may

update his/her prior belief π′ about the robot’s gaze behavior to improve guessing in subse-

quent games. We hypothesize that by feedback the ErrP to the robot this would iteratively

adapt its gazing behavior towards a pattern that facilitates the participant to correctly infer the

robot’s selected object. To what extend this convergence is driven by the human adapting

to the robot or the robot adapting to the human is deliberately kept flexible to investigate the

feasibility of ErrP-based mediation of co-adaptation as outlined above.

5.2.2. Experimental design
5.2.2.1 Participants

Eighteen healthy participants took part in the study. The data of the first two participants

were discarded due to technical problems during the experiment. The remaining sixteen par-

ticipants were 7 females and 9 males of average age: 29.2±5.0, and all right-handed. All

participants were informed about the tests before its conduction. They participated voluntarily

and gave written consent. Participants were paid an honorarium of 8 EUR/h for their par-

ticipation. The study was approved by the institutional ethics review board of the Technical

University of Munich (reference number 236/15s).
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5.2.2.2 Experimental tasks and protocol

An overview of the experimental tasks is provided in Table 5. Each experiment consisted of

two parts conducted in the following order: (1) open-loop calibration session (CALIB), (2) four

separate closed-loop co-adaptation sessions (CORL). In both parts, the participant was asked

to repeatedly play the guessing game together with the robot (for the remainder of this chap-

ter a single game is also called trial; for technical details about the trial structure the reader is

referred to Section 5.2.3.1 and Figure 23(c)). The first part of the experiment (CALIB) had the

purpose of collecting EEG data for calibrating participant-specific ErrP-decoders utilized after-

wards for online ErrP decoding during the co-adaptation sessions (CORL). During CALIB, the

robot’s gaze behavior policy was pre-programmed and not adapting; during CORL, the robot’s

gaze behavior policy was online adapted based on the ErrPs decoded from the participant’s

EEG signals while interacting with the robot. We opted for an experimental design integrating

calibration and online application in a single recording session per participant to avoid the pos-

sibility of day-to-day data variability. Furthermore, the number of trials for CALIB and CORL

were defined such as to keep the duration of the experiment around one hour maximum to

reduce and avoid concentration lapses resulting in data quality degradation.

Open-loop calibration session (CALIB): During this experimental task, the robot’s gaze pat-

terns followed a deterministic behavior in which the robot tended to look at the selected object

more often or remained gazing at it (for details about the technical implementation the reader

is referred to Section 5.2.3.2). With this gaze behavior, participants achieved high accuracies

in guessing the robot’s selected object (>95%). Participants performed in total 150 guessing

games (trials) during the calibration session in three blocks of 50 trials each, resulting in a

total duration of 20.4±6.7 minutes. Pilot experiments showed that participants could perform

50 trials in a row without reporting notable concentration drops. The breaks in between blocks

allowed the participants to relax and prepare for the next block. To control the number of

error events, false feedback was introduced with a probability of perr = 0.3. Usually, false

feedback rates are chosen around 20% [169, 103, 105]. Here, an increased false feedback

rate was used to obtain a higher number of error observations given the limited number of

150 trials. False feedback was realized as wrong robot feedback irrespective of whether the

participant guessed correctly. This resulted in approximately 35% error (mismatch) events

combining false feedback and participant guessing mistakes. The EEG data recorded during

the calibration session was afterwards used to build a participant-specific ErrP-decoder to be

employed subsequently for online ErrP decoding in the co-adaptation sessions. During CALIB,

participants indicated their guess by key press and received feedback about their correct and

wrong number of guesses displayed on a computer screen. Since the calibration session had

a comparably long duration and was rather monotonous (non-adaptive robot behavior), this

feedback was introduced as a means for self-monitoring to encourage participants to improve

and maintain their performance throughout the session.

Closed-loop co-adaptation sessions (CORL): After the calibration session, each participant

performed four separate online co-adaptation runs, each consisting of 50 trials, with an aver-
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age duration of approximately 6-8 minutes per run (corresponding to the duration of one block

during CALIB). We opted for the conduction of several independent runs per participant, as

co-adaptation may fail due to uncontrollable and random factors (e.g. stochastic sampling of

robot actions, self-paced participant response; further details are described in Section 5.2.3).

Furthermore, a single CORL was kept below 10 minutes to restrict participant frustration if

co-learning would turn out unsuccessful. In the beginning of each run the robot gaze behavior

policy was reinitialized such that gazing was uniformly random distributed among the three

objects and therefore allowed for no informed guesses of the selected object (chance-level

p = 1/3). In each trial, the participant’s ErrP response to the robot revealing its initially se-

lected object was decoded online from the ongoing EEG signals and utilized to update/adapt

the robot’s gazing behavior policy. In three of the four runs (CORL-I, CORL-II, CORL-IV),

the procedure was identical to the open-loop calibration session, in that participants indicated

their guess by key press. In CORL-III, participants were asked to observe the robot’s behavior

for a pre-defined time only, without communicating their guesses via key press. We introduced

this additional run to investigate whether explicit actions linked to the decisions (consolidated

belief) of the participant were required or whether covert beliefs/decisions (sole mental re-

flection without explicit actions) are sufficient for successful co-adaptation. This modification

was introduced to test the usability of the ErrP-based approach in a situation where no explicit

information from the participant is available as it is likely the case in more naturalistic HRI

scenarios. Unlike in CALIB, in CORL, no feedback on the number of correct guesses was

provided to the participants. This had no notable effect on the observability and decodability

of ErrPs (see Section 5.3.1, and Figure 24(b)).

Instructions: The participants were asked to guess the robot’s selected object by inferring

information from its gazing behavior. They were, however, not given any specific hints on

what to focus in particular. After the calibration session, the participants were furthermore

informed that during the online co-adaptation runs the robot’s gaze behavior may change as

it is subject to adaptations based on their ongoing brain activity. No further details about the

implementation of the experiment were provided.

5.2.3. Stimuli, apparatus, and closed-loop BCI
5.2.3.1 Systems overview

Figure 23(b) shows the experimental setup from the perspective of a participant sitting approx-

imately 150 cm in front of a humanoid robot. The robotic platform chosen for the experiment

was the humanoid robot NAO. NAO is a commercially available (SoftBank Robotics) 58 cm

tall humanoid robot with 21-25 degrees of freedom [178] that was controlled in this experi-

ment by a program running on an external PC connected to the robot via LAN. The only body

part of the robot used was the head with pitch- and yaw-movements. Three arbitrarily cho-

sen physical objects were located on top of cylindrical containers in fixed positions between

the participant and the robot (O1: a metal Buddha head - left, O2: an electric circuit board -

middle, O3: a metal brain keychains - right). The robot’s forehead was equipped with three

identical green LEDs geometrically aligned with the three objects and placed in a distance
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Table 5 Overview of the experimental tasks and corresponding purpose in the order of conduction, covering part 1 (open-loop
calibration session: CALIB), and part 2 (four separate closed-loop co-adaptation sessions: CORL-I,-II,-III, and -IV). The
duration of the entire experiment was approximately 1 h per participant, including breaks.

part short name short description and purpose duration

1
Open-loop
calibration
session

CALIB

Task: To guess the robot’s selected object, indicating guess via
key press. ntrials: 150 (3 blocks of 50 trials each)
Purpose: Collect EEG data for subsequent calibration of participant-
specific ErrP-decoders.
Robot gaze policy: pre-programmed and non-adaptive. Elicitation
of ErrPs with random occurrences of false-feedback events with a
probability of perr = 0.3.

15-25 min.

ErrP-decoder
calibration

Automatic calibration of participant-specific ErrP-decoder based on data
collected during CALIB.

5 min.

2
Closed-loop
co-adaptation
sessions

CORL-I

Task: To guess the robot’s selected object, indicating guess via
key press. ntrials: 50
Purpose: Online application of ErrP-decoder for mediating
human-robot co-adaptation.
Robot gaze policy: Initial uniformly random gaze behavior; updated
after each trial based on the classified outcome of the corresponding
online decoded ErrP.

6-8 min.

CORL-II Same as CORL-I with reinitialization of gaze policy. 6-8 min.

CORL-III

Task: To guess the robot’s selected object without overtly indicating
guesses via key press (compared to CORL-I,-II, and -IV). Robot
performed gaze behavior for a pre-defined fixed duration ntrials: 50
Purpose: Online application of ErrP-decoder for mediating human-
robot co-adaptation without explicit decisions from the human partner
(sole observation and mental reflection of the robot’s gaze
behavior).
Robot gaze policy: same as in CORL-I,-II, and -IV with
reinitialization of gaze policy.

6-8 min.

CORL-IV Same as CORL-I with reinitialization of gaze policy. 6-8 min.

of approximately 1.5 cm from each other (see Figure 23(b), bottom left corner). The LEDs

were controlled via a 4-channel digital analog converter (Phidget). We used the LEDs in the

experiment as the visual feedback to communicate the robot’s initially selected object to the

participant (Figure 23(a): “feedback”) with a fixed representation (O1: left LED, O2: middle

LED, O3: right LED). Subsequently, participants received an additional auditory feedback in

form of the robot speaking out the name of the chosen object (O1: “The head”, O2: “The

circuit”, O3: “The brain”). The robot’s choice was communicated in two ways for the following

reasons: LED-based feedback was introduced because of its saliency and perceptual simplic-

ity, expected to result in more distinct brain-responses as compared perceptually complex or

gradually unfolding stimuli which have been reported to result in attenuated ErrP responses

[159, 174, 45] (see Chapter 4). The subsequent additional robot speech feedback was in-

troduced to increase participant’s engagement in the experiment, as robot talking has been

reported to foster engagement in HRI [208]. The participants were instructed to particularly

attend the LED feedback. Behind the robot, a computer screen was located which served to

provide the participants with additional information about the number of correct (left, green)

versus incorrect (right, red) guesses during the calibration session (CALIB). During the co-

adaptation runs (CORL) this feedback was not provided. Participant responses (Figure 23(a):

“decision making”) were performed with the left hand and registered with the following keys

of an ordinary computer keyboard (O1: key “1”, O2: key “2”, O3: key “3”). The experiment

was realized in a single program using the Python-based NAOqi-library (robot control), the
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Phidgets-library (LED control), Psychopy library (keyboard and screen control) [177] and ex-

ecuted on an Intel R© Core i5 CPU 750@2.67 GHz. Furthermore, this program received input

from the ErrP-decoder during the co-adaptation runs which was executed on a different PC

via the TCP/IP-based labstreaminglayer protocol [209].

Trial (guessing game) structure: Figure 23(c) shows the structure of a single trial: (a) the trial

started with the robot gazing at the human, and performing a uniform random selection of

either one of the objects g ∈ G, as well as a uniform random selection of an initial gaze state

sinit ∈ S and (b) subsequently started alternately gazing in a fixed pace at the objects and

the participant based on the current policy π, starting from the initial state sinit. Meanwhile,

the participant’s task was to guess the robot’s choice from its gaze behavior and (c) indicate

the guess with a corresponding left-hand key press in a self-paced fashion. Upon key press

response, the robot stopped action execution and turned its head back at the participant. (d)

After a delay of half a second (for avoiding any superposition of event-related brain activity in

response to the preceding robot head movement), the robot announced the selected object

to the participant by lightning up the corresponding LED attached to its head. This stimulus

was delivered for one second, during which the ErrP response was decoded (the duration of

a typical ErrP is typically no longer than 600-800 ms [103]) and (e) afterwards, the additional

auditory robot speech feedback was provided to the participant. This trial structure applied

to CALIB and CORL-I, -II, and -IV. In CORL-III participants were not required to indicate their

guesses via key press responses (no explicit decision making), ending the robot’s action ex-

ecution phase, but only to observe the robot’s behavior. In CORL-III, the duration of robot

action execution was therefore fixed to 15 gaze transitions. This parameter was determined

empirically based on the average number of gaze transitions until participant decision during

the calibration sessions of a series of pilot experiments. Other than step (b) and (c), no other

parts of the trial were affected by the modifications in CORL-III.

5.2.3.2 Robot gaze policy and behavior

Intention / goal selection: The possible selections the robot can choose from defined the

agent’s set of goals / intentions G = {gO1, gO2, gO3}. The robot’s selection always followed a

uniform random choice among the three options.

Gaze policy: The robot’s internal gaze policy was realized as a discrete state-space model

with four states, Sπ = {sobjInt, sothObjx, sothObjy, shuman}, with sobjInt: gazing at selected

object; sothObjx, sothObjy: gazing at one of the other objects; and shuman: gazing at human.

An action is considered a transition from one gaze state to another or remaining in the current

gaze state, leading to 16 possible state-action pairs: Ai,j , i, j = Sπ. The policy π(ai,j |si) ∈
[0, 1] ⊂ R determined the gaze behavior described by the probability of taking action ai,j

in state si (gaze transition from state si to sj). The decision for the next action was always

performed by a weighted random selection among the four possible actions in the current

state (remain in current state or transit to one of the three other states). This way of realizing
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action selection implicitly introduced an exploration-exploitation behavior, an approach used

to foster successful policy convergence [210]. In our case, equiprobable distributions among

the set of actions to be selected from, drive exploratory behavior and divergent probabilities

drive exploitation behavior.

Action (gaze pattern) execution: The robot gaze behavior resulted from a fixed mapping be-

tween the covert policy-states Sπ and the overt action-execution states Sact with correspond-

ing pre-defined robot head angles, pitch Ψ and yaw Θ: Sact = {sO1, sO2, sO3, sH}, with sO1:

gazing at O1, ΨO1 = 25◦, ΘO1 = −20◦; sO2: gazing at O2, ΨO2 = 25◦, ΘO2 = 0◦; sO3:

gazing at O3, ΨO3 = 25◦, ΘO3 = 20◦; and sH : gazing at participant, ΨH = 0◦, ΘH = 0◦.

The mapping depended on the selected object and was realized as in Eq. (5.1), (5.2), and

(5.3). During action execution, the robot performed one action (state-transition) per 400 ms

(2.5 Hz); each gaze shift was executed with a fixed speed of 15% and 10% of the maximum

joint speed for pitch- and yaw-movements, respectively. These parameters were manually

tuned such that the frequency of gaze shifts was maximized while preserving smooth, non-

jerky gazing behavior and approximately conforming to human timing of head posture shifts

during conversation [211].

Sπ→act(gO1) = {sobjInt→O1, sothObjx→O2, sothObjy→O3, shuman→H} (5.1)

Sπ→act(gO2) = {sobjInt→O2, sothObjx→O3, sothObjy→O1, shuman→H} (5.2)

Sπ→act(gO3) = {sobjInt→O3, sothObjx→O1, sothObjy→O2, shuman→H} (5.3)

CALIB gaze policy: During the calibration session, the gaze policy was pre-programmed with

high probabilities for the following state-action pairs, such that the probabilities of all four pos-

sible actions in each state summed up to one: p(sobjInt|shuman) = 0.85, p(sobjInt|sothObjx) =

0.85, p(sobjInt|sothObjy) = 0.85, p(sObjInt|sObjInt) = 0.85 and low probabilities of p = 0.05

for all remaining state-action pairs. This resulted in gaze behavior in which the robot tended

to fixate the selected object or gaze at it more often.

CORL gaze policy initialization: At the beginning of each co-adaptation run, all state-action

pairs of the robot’s gaze policy were initialized with p(sj |si) = 0.25. This resulted in uniform

random gaze behavior which allowed no informed guesses about the selected object (chance-

level p = 1/3). As the co-adaptation runs proceeded, the gaze policy underwent one update

per trial based on the outcome of online decoded ErrPs. The procedures for ErrP decoding

and gaze policy update are described in detail in the following sections.
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5.2.3.3 Single-trial decoding of error-related potentials

EEG data recording: In all parts of the experiment, EEG and EOG data were acquired

with a Brain Products actiChamp amplifier equipped with 32 active EEG electrodes1 arranged

according to the international 10-20 system [128]. All leads were referenced to the average of

TP9 and TP10 (average mastoids referencing) and the sampling rate was set to 1024 Hz. The

impedance levels of all leads were kept below 10 kΩ. Three channels were used for capturing

electrooculogram (EOG1-3) signals in three locations of the participant’s face (forehead, left

and right outer canthi) according to a method suggested by Schlögl and colleagues [179].

The data was transferred via USB to a separate recording PC (Intel R© Core i5 CPU 750@2.67

GHz). Data recording, pre-processing, and ErrP decoding was performed using OpenViBe

[212] together with customized processing functions implemented in MATLAB R©.

Offline modeling of ErrP-decoder: For each participant, an individual ErrP-decoder was

trained based on the data collected during the calibration session, and using the following

automatic procedure (taking about 5 minutes): The data was first filtered with a causal first-

order Butterworth FIR bandpass filter with cutoff frequencies 0.5 and 20 Hz. Then, EOG ac-

tivity (horizontal and vertical) was reduced by using a regression method proposed by Schlögl

and colleagues [179]. The data was re-referenced to CAR and then segmented into data

epochs [0...1000] ms relative to the moment of presentation of LED feedback. Segments cor-

responding to trials in which the participant’s guess did not match the robot’s feedback were

labeled as error-events, without distinguishing between mismatches resulting from a human

incorrect guess or a robot false feedback; segments in which the guess matched the feedback

were labeled as non-error-events. All data segments were then normalized by subtracting

their individual means from each segment time series. Temporal features extracted from the

time series were used in this work for its proven higher performance relative to other types

of features [102, 171, 105, 42]. The arithmetic means of the signal amplitude in pre-defined

windows2 relative to the moment of feedback presentation was computed, such that all rele-

vant components of the ErrP event-related potential were covered, resulting in a total of 189

temporal features per epoch (27 channels x 7 windows). The features were then used to train

a regularized version of the linear discriminant analysis classifier (rLDA) [180] similar to the

classification approach used in the previous chapter (see Chapter 4, Section 4.2.4.3). The reg-

ularized covariance matrices were here computed by Σ̃j = (1−λ)Σj+λI, with λ ∈ [0, 1] ⊂ R
being the shrinkage parameter and I the identity matrix [182]. The optimal shrinkage param-

eter was determined using 10-times-10-fold CV based grid search for λ = [0, 1] in steps of

0.05. To avoid the classifier favoring one class over the other, for each time and fold, the

number of trials per class was balanced by random pick and replace (please note that the

number of trials per class was initially unbalanced with ~65% non-error and ~35% error trials).

The λ with the highest cumulative accuracy of non-error (TNR) and error (TPR) recognition

was selected and used to train the final rLDA classifier based on all trials of the calibration

1 EEG channel labels: FP1, FP2, F3, F4, F7, F8, FC1, FC2, FC5, FC6, C3, C4, T7, T8, CP5, CP6, P3, P4, P7,
P8, TP9, TP10, O1, O2, Fz, Cz, Pz, EOG1, EOG2, EOG3.

2 Windows: [150...250] ms, [200...300] ms, [250...350] ms, [300...400] ms, [350...450] ms, [400...500] ms,
[450...550] ms.
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data. Also, in this final step, the numbers of trials per class were balanced by random pick and

replace. To increase the likelihood that most of the calibration trials were used at least once,

this procedure was repeated 1000 times and the weights w and bias b of individual models

were averaged to obtain a single final rLDA classification model. The chance-level threshold

for this binary classification problem is 60.37% for both TNR and TPR, given the manually

balanced number of trials for decoder calibration3. Participants for which either TNR or TPR

did not exceed the above threshold were excluded from all further analyses.

Online ErrP decoding: The ErrP-decoder trained with the calibration data was then used to

decode ErrPs from the participant’s ongoing EEG during the co-adaptation runs. The signals

were continuously bandpass filtered using a causal first-order Butterworth FIR bandpass fil-

ter with cutoff frequencies 0.5 and 20 Hz (identical filter parameters as used during offline

modeling). EOG activity was continuously reduced by applying the EOG decorrelation ma-

trix obtained from the calibration data. Finally, the continuous signals were re-referenced to

CAR. Upon occurrence of a feedback event (robot communicating decision via flashing one

out of three LEDs), the respective data segment ([0...1000] ms time-locked to the event) was

processed in the same way as in offline modeling: (1) single-trial normalization, (2) temporal

features extraction, and (3) classification into non-error or error events using the rLDA classi-

fier trained on the calibration data.

5.2.3.4 ErrP-based agent policy adaptation

For the ErrP-based policy adaptation we decided to employ a learning paradigm based on

policy gradient methods, a subform of RL (reinforcement learning) [210]. Among others, the

main advantages of policy gradient methods compared to other RL methods, such as Q-

learning are as follows: first, policy gradient methods act on-policy directly which facilitates the

interpretation of policy adaptations in contrast to value function-based approaches. Second,

policy gradient learning has been proposed as the method of choice in RL for humanoid robots

as they can deal with complex learning tasks involving many degrees of freedom [213, 214].

Although not in the focus of this work, this property favors the generalizability and scalablity

of our approach to more complex robot behavior and interaction scenarios. The policy update

function is given in Eq. (5.4) which was executed at the end of each trial during the co-

adaptation runs, starting with the initial policy πinit with equal probabilities for all state-action

pairs p(sj |si) = 0.25. In short, for the computation of the parameters of the new policy πt+1,

3 inverse cumulative binomial distribution with number of trials nTrials = 150 ∗ perr and perr = 0.35; probability
of success psuccess = 0.5; confidence threshold p = 0.05
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to be employed in the next trial, the parameters of the old policy πt were merged in a weighted

fashion with the empirical distribution of the observed state-action pairs during the current

trial:

πt+1(aj |si) = πt(aj |si) + αR̃

n∑
t=1

aki,j (5.4)

with t being the count of the current trial, R̃ being the reward estimate derived from the ErrP-

decoder class decision, with negative reward R̃ = −1 for a classified error event and positive

reward R̃ = +1 for a classified non-error event, α being the learning rate, and
∑n

t=1 a
k
i,j

the occurrence count of action ai,j (transition from state si to sj) of the action sequence

k = (1, . . . , n) executed by the robot in the current trial, with n depending on the participant’s

self-paced decision. Truncation and normalization were performed after adding the policy

gradient αR̃
∑n

t=1 a
k
i,j to the parameters of the old policy πt: parameter updates of πt+1

which exceeded the range {0, 1} ∈ R were truncated to 0 and 1, respectively, and all actions

per state were then normalized to sum up to one. Based on pilot experiments, the learning

rate was empirically set to α = 0.1 such that convergence could be reached relatively fast

within a few policy updates. Fast convergence was preferred given the limited number of

50 trials per co-adaptation run. The rationale behind including the empirical distribution of

observed state-action pairs into the policy gradient was based on the assumption that more

prominent state-action pairs are likely to contribute more to the participant’s false or correct

guess compared to less prominent state-action pairs. State-action pairs which occurred and

hence were observed more often than others were as such more strongly reinforced (increase

or decrease of corresponding state-action probability depending on R̃) compared to state-

action pairs which occurred less prominently or never during the trial. This way, the policy

was updated to promote correct guessing or in other words, to fit to the participant’s belief by

quantitatively taking into account the characteristic of the gazing behavior the participant has

observed.

5.3. Data analysis and results

Three out of 16 participants did not meet the inclusion criterion defined in Section 5.2.3.3:

Offline decoder performance did not exceed the chance-level of 60.37% in either TNR, TPR

or both in participants s05, s10, and s13 (see Supplementary Table 18, Appendix A). The data

of these participants were therefore excluded from subsequent analyses. For the sake of full

disclosure of the obtained data, individual results of excluded participants are nevertheless

reported and discussed separately.
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5.3.1. Offline and online ErrP decoding performance
Figure 24(a) shows the grand average ERP time-courses recorded at the Cz, time-locked

to the onset of LED-feedback presentation by the robot. Also illustrated is their topograph-

ical distribution at specific time-points. The grand average difference (black line in Figure

24(a)) showed the typical N2-P3-complex which has been reported consistently in the con-

text of ErrPs [102, 103, 104, 105]. The negative deflection (N2-component, expected around

180-325 ms [140]) was mostly pronounced fronto-centrally around 300 ms post stimulus and

the positive deflection (P3-component, expected around 250-500 ms [215]) was mostly pro-

nounced fronto-centrally around 400ms. The coefficient of determination based on channel

Cz reached highest values of r2 = 0.09 for 288 ms and r2 = 0.11 for 394 ms averaged

across all participants (n = 13) which speaks in favor for a good overall separability of the

data. Figure 24(b) shows a comparison of the grand average difference ERPs over Cz across

calibration session (CALIB) and co-adaptation runs I, II, IV (CORL)4 with high temporal re-

semblance between the experimental conditions. These observations were reflected in the

single-trial classification performances (see Figure 24(c) and Supplementary Table 18, Ap-

pendix A). The average offline ErrP-decoder performance based on calibration data CV was

Acc = 80.2 ± 7.5%, with TNR = 81.2 ± 7.7% and TPR = 79.2 ± 7.5% (AVG±SD). ErrP

online decoding performances were comparably high in accuracy (see Figure 24(c) and Sup-

plementary Table 18, Appendix A) with Acc = 84.2 ± 7.4% for CORL-I, Acc = 77.1 ± 12.1%

for CORL-II, and Acc = 84.0 ± 10.6% for CORL-IV. The main difference observed in com-

parison to the offline CV results was a higher decoding performance for non-error events

(TNR = 86.5±11.7%, TNR = 82.5±18.3%, TNR = 90.4±5.8% for CORL-I, II, IV, respec-

tively) and a lower performance for error events (TPR = 75.3±12.0%, TPR = 70.4±15.4%,

TPR = 74.4 ± 17.0% for CORL-I, II, IV, respectively). This performance bias was signif-

icant across participants for all co-adaptation runs (p = 0.026, p = 0.023, p = 0.002, for

CORL-I, II, IV, respectively; paired Wilcoxon signed rank test, n = 13). Online decoding

accuracies were on average lower in CORL-II compared to CORL-I and CORL-IV. This was

consistent across participants as decoding accuracies differed significantly between CORL-I

and CORL-II, and between CORL-II and CORL-IV; no statistically significant difference was

found between CORL-I and CORL-IV (pI−II = 0.031, pII−IV = 0.046, pI−IV = 0.600; paired

Wilcoxon signed rank test, n = 13). Possible explanations are discussed in Section 5.4. The

theoretical chance-level for online ErrP decoding per CORL is 62.0%5 which was exceeded in

all but three cases: s06/CORL-IV, s11/CORL-II, s14/CORL-II (see Supplementary Table 18,

Appendix A).

Table 6 shows the overview of individual participant results. The separability of the ErrPs

are expressed in form of the maximum coefficient of determination across all channels r2
max,

separately for CALIB and the CORL data (all trials of CORL-I,-II, and –IV). The results show

comparably low values of r2
max ≈ 0.11 for the three participants in which offline decoding

4 Please note that no results are reported for CORL-III, since no participant key press responses (validation ground
truth) were captured during this part of the experiment.

5 inverse cumulative binomial distribution with number of trials nTrials = 50; probability of success psuccess =
0.5; confidence threshold p = 0.05.
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Table 6 Overview of individual results per participant in the order of columns from left to right: maximum coefficient of
determination r2 across all channels within period 150-550 ms for CALIB and CORL. Offline cross-validation ErrP-decoder
accuracies based on CALIB data. Average online ErrP-decoder accuracies during co-adaptation runs CORL-I,-II, and –IV.
Within-participant Pearson’s spatiotemporal correlation coefficients between average difference ERP time courses of all
channels (error minus non-error) of CALIB and CORL (average of all trials of I, II, IV) within period 150-550 ms.

r2
max

CALIB
r2
max

CORL
Acc CALIB
(offline CV)

Acc CORL
(online acc.)

corr2
(CALIB,CORL)

s03 0.20 0.31 69.3% 86.7% 0.67

s04 0.34 0.41 86.3% 91.3% 0.72

s06 0.36 0.20 82.0% 72.7% 0.74

s07 0.25 0.31 81.4% 82.7% 0.58

s08 0.43 0.48 85.7% 87.3% 0.87

s09 0.46 0.29 92.8% 86.7% 0.82

s11 0.17 0.09 68.9% 65.3% 0.29

s12 0.30 0.23 84.7% 90.0% 0.41

s14 0.39 0.27 88.7% 77.3% 0.72

s15 0.18 0.31 72.4% 85.3% 0.70

s16 0.17 0.31 73.3% 74.7% 0.49

s17 0.36 0.54 81.8% 88.0% 0.77

s18 0.39 0.24 78.9% 74.7% 0.53

AVG±SD 0.31±0.10 0.31±0.12 80.5±7.5% 81.8±8.0% 0.64±0.17

s05 0.12 0.12 50.5% 50.7% -0.02

s10 0.10 0.19 64.4% 28.7% 0.13

s13 0.11 0.13 50.2% 67.3% 0.12

performance did not exceed the chance-level threshold (s05, s10, s13), whereas all other par-

ticipants show higher r2
max values. This indicates, that calibration failed in these participants,

mainly due to their generally limited separability of ErrP responses (possible explanations

are discussed in Section 5.4). As expected, the overall ErrP-decoder offline CV accuracies

(Acc CALIB) and the online average decoding accuracies (Acc CORL) reflected the results

obtained from the analysis of the coefficient of determination, with high separability resulting

in higher decoding accuracies. Table 6 furthermore reports Pearson’s spatiotemporal corre-

lation coefficients between the average difference of ERP time courses of all channels (error

minus non-error) within the period 150-550 ms (period in which the temporal features were ex-
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tracted). The overall high correlation coefficients of average corr2 = 0.64 ± 0.17 (AVG±SD)

reflect high spatiotemporal resemblance and support the notion that the decoded ErrPs did

not notably differ between CALIB and CORL experimental sessions, despite the different ex-

perimental conditions.

5.3.2. Results of ErrP-based co-adaptation
To investigate the extent of co-adaptation between participant and robot, we analyzed the

development of two behavioral measures in conjunction with the development of the policies

during the co-adaptation runs: (1) Guessing performance - the development of the accuracy

of correct guesses. This measure was expected to increase if both participant and robot

converge to a consensus. (2) Gaze transitions until participant’s decision - number of gaze

transitions performed by the robot until the participant made a decision. This measure was

expected to decrease as participants and robot converge to a consensus. (3) Policy conver-

gence – the policy change of trial-by-trial updates. This measure was expected to decrease if

policies converge.

Efficacy - guessing performance: The participant has three objects to choose from and

therefore chance-level was p = 1/3. At the beginning of each co-adaptation run the robot’s

gaze policy was initialized with equal probabilities for all actions. This guaranteed a random

guess in the first trial of all co-adaptation runs. Hence, if during the co-adaption runs, the

participant’s guessing performance exceeded chance-level, the robot’s gaze policy must have

been updated such that it promoted the participants to guess correctly (e.g. the underlying

object was more readily inferrable by participants from the gaze pattern generated by this

policy); vice-versa, if guessing performance did not increase above chance-level during the

run, then updates in the robot’s gaze policy did not facilitate the participant’s task and/or

were misleading. To investigate whether the guessing performance depended on the ErrP-

decoder performance during online operation, we computed Pearson’s correlation coefficients

between the overall guessing performance (percentage of correct guesses within one run) and

the ErrP-decoder accuracy (percentage of correctly classified trials) across all participants for

each co-adaptation run separately. Overall guessing performance correlated positively with

the online decoding accuracies in all three co-adaptation runs with r = 0.71 (p = 0.006) for

CORL-I, r = 0.79 (p = 0.001) for CORL-II, and r = 0.47 (p = 0.1) for CORL-IV (Pearson’s

correlation, n = 13). These results indicate that improvements in guessing performance

depended on the ErrP-decoder performance during online operation, e.g. high ErrP-decoder

performance fostering high guessing performance. As a result, those participants for which

the ErrP-decoder calibration performance resulted in below chance-level accuracies (s05, s10,

s13), also showed no notable improvements in guessing performance (see Supplementary

Tables 18 and 19, Appendix A).
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To investigate improvements of guessing performance over the course of co-adaptation runs,

each run was partitioned into five segments of 10 trials each. Guessing performance was

computed as percentage of correct guesses in each segment6. Figure 25(a) shows across

participant distributions of guessing performance from the start (Trial: 1-10) until the end (Trial:

41-50) of each co-adaptation run. The results show an increase in median guessing perfor-

mance from initial chance-level up to 90% in CORL-I, 70% in CORL-II, and 80% in CORL-IV.

In all three runs, the majority of participants exceeded the threshold of the confidence interval

(70%) at some point during the run: In CORL-I and CORL-II, in the fourth segment, and in

CORL-IV already in the second segment. Despite the significant differences in ErrP decod-

ing performance (see 5.3.1), no significant differences of overall guessing performance were

observed between CORLs (pI−II = 0.528, pII−IV = 0.250, pI−IV = 0.104; paired Wilcoxon

signed rank test, n = 13). Assuming a co-adaptation run to be “successful” when guess-

ing performance ≥ 70% in three subsequent segments7, then successful co-adaptation was

achieved in 10 out of 13 participants in at least one out of the three runs. Two participants

achieved 3/3 successful runs (s09, s12); two participants achieved 2/3 successful runs (s03,

s15), six participants achieved 1/3 successful runs (s06, s07, s08, s14, s16, s18). An exem-

plary successful co-adaptation run (s09/CORL-I) is visualized in Figure 26. Individual results

are detailed in Supplementary Table 19, Appendix A.

Efficiency - gaze transitions until participant decision: The absolute number of gaze tran-

sitions turned out to vary widely among participants, even during the calibration session,

ranging between 10 to 50 transitions (corresponding to a duration of robot action execution be-

tween ~4-20 seconds per trial) with average 13.0±6.3 (CALIB), 15.7±7.0 (CORL-I), 15.0±6.9

(CORL-II), and 14.8±10.7 (CORL-IV). Therefore, the number of gaze transitions until partic-

ipant decision was analyzed by partitioning each co-adaptation run into five segments of 10

trials each (following the same procedure as in the analysis of guessing performance) and

counting the number of gaze transitions within each of these 10-trial segments relative to the

number of transitions occurring during the first 10-trial segment. The results are depicted in

Figure 25(b): in all three runs, the median number of gaze transitions decreased by 15-27%

relative to the first segment with across participant significant decreases in some segments

(p < 0.05, one-sample Wilcoxon signed rank test). In CORL-I the number of gaze transitions

decreased by 27.6% (median of percent reduction calculated across participants); in CORL-II

by 19.2% and in CORL-IV by 15.6%. This result illustrates that during the co-adaptation runs,

participants not only became more precise in guessing, but also on average faster in deciding

about the robot’s selected object. This suggests that the robot’s gaze behavior adapted in

a way that was generally easier and quicker to understand by the participants. The abso-

lute number of gaze transitions until participant decision is given in Supplementary Table 20,

Appendix A.

6 The 5% confidence threshold is exceeded if ≥ 7 out of 10 trials were correct, one-sided binomial test with chance
level p = 1/3

7 probability for exceeding by chance: p ≤ 7.6 ∗ 10−6, one-sided binomial test with chance level p = 1/3

79



Policy convergence: To quantify policy convergence, the difference between subsequent

policy iterations was computed for each participant and CORL individually. This was carried

out by determining the value of the state-action pair with the maximum difference between

subsequent policy iterations, termed as the policy change after trial t according to Eq. (5.5).

Following the same procedure as in the analyses of behavioral measures, policy convergence

was analyzed by partitioning each co-adaptation run into five segments of 10 trials each and

averaging ∆π within each of these 10-trial segments. The results are depicted in Figure

25(c): in all three runs, the median of ∆π across participants decreased steadily from the

first until the last segment from an initial median of ∆π ≈ 0.2 to a final median of ∆π ≈ 0.1.

This indicates that policies were on average converging relative to an increasing guessing

performance. The results further indicate that not all policies converged within 50 trials as

the median policy change was still ∆π ≈ 0.1 in the last segment of all three runs. These

findings are further discussed in Section 5.4. Policy convergence for an exemplary successful

co-adaptation run (s09/CORL-I) is visualized in Figure 26.

∆πt = max |πt−1 − πt| (5.5)

5.3.3. Emergence of gaze behavior
In addition to assessing the development of co-adaptation, we were also interested in the na-

ture of the gaze behavior which emerged during the co-adaptation runs. This analysis allowed

for a qualitative assessment of CORL-III in which participants were not requested to explicitly

indicate their guesses via key press responses in comparison with the other co-adaptation

runs. Since participants were not instructed to follow a particular strategy/policy, any gaze

behavior was considered acceptable and denoted as useful if it helped the participant to per-

form better and faster in guessing the robot’s selected object. Figure 27(a) shows an overview

of the learned policies for the 13 participants and all co-adaptation runs, including CORL-III.

Successful co-adaption was expected to be reflected in policy convergence towards the end of

the run. Therefore, the average of the policies of the last 10 trials (trial: 41-50) were depicted,

with thick red lines representing high probabilities and thin blue lines low probabilities. The

policies which emerged from successful co-adaptation runs are highlighted with a blue frame;

the guessing performances of the corresponding last 10 trials are furthermore depicted next

to the average policy. By qualitative visual inspection, we identified two different recurring poli-

cies which are furthermore termed “fixation” and “nodding” behavior (see Figure 27(b)). The

“fixation” policy led to gaze behavior in which the robot tended to fixate the selected object. Ex-

ample cases are s03/CORL-I, s07/CORL-II, s15/CORL-I. In the “nodding” policy the robot was

gazing alternatingly between the participant and the selected object in a nodding-type fashion.

Examples are s09/CORL-I, s12/CORL-II, s18/CORL-IV. Also, in CORL-III, the robot’s gaze be-

havior converged in a few cases to one of the two identified policies, e.g. “fixation” behavior in

s08 and s18, and “nodding” behavior in s16 (Figure 27(a)). These cases indicate that partici-

pants explicitly indicating their decision (as in CORL-I, -II, -IV) was not required for successful

co-adaptation, and suggests that the ErrP-based method presented here also worked based
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Figure 25 (a) Boxplot representation of guessing performance computed for consecutive segments of 10-trials, across
participants (n = 13). Different panels correspond to different co-adaptation runs. In all three runs, the median guessing
performance increased to 70-90%. The black dashed line indicates the threshold of the confidence interval of 70%. The
numbers on top of the boxplots represent the ratio of participants which exceeded the threshold of the confidence interval in the
corresponding segment. (b) Boxplot representation of gaze transitions until participant decision computed within consecutive
10-trial segments, relative to the number of transitions counted in the first segment (black dashed line). In all three
co-adaptation runs, the median number of transitions decreased by 15-27% with significant across participant deviations in
some segments (boxes marked with a black asterisk). (c) Boxplot representation of policy change computed within consecutive
10-trial segments. In all three co-adaptation runs, the median policy change decreased from ∆π ≈ 0.2 in the first segment to
∆π ≈ 0.1 in the last segment, indicating policy convergence relative to increasing guessing performance.

on covert beliefs/decisions without explicit actions linked to the decisions. Convergence to the

“fixation” behavior was expected, since it is very similar to the pre-programmed policy used

during the calibration task; participants likely could have used it as a proxy. The “nodding”

behavior was however unexpected, since it had not occurred before during the calibration

session and participants could therefore not use it as a proxy. Interestingly, the number of

cases associated with convergence to the “nodding” policy (7) were approximately on par with

those with convergence to the “fixation” policy (8). The “nodding” behavior may have emerged

from participants gradually finding it useful and in result having adapted to and positively re-

inforced it. This observation retrospectively confirms co-adaptation between participant and

robot, since if participants were instructed to teach the robot a specific behavior, different,

previously unexpected behavior was less likely to emerge.
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Figure 26 (a) The plots represent a smoothed representation (over 10 trials) of the development of guessing performance (blue
line) together with the rate change of policy updates ∆π (orange line). The black dashed line represents the threshold of
confidence (70%) for guessing performance. Single-trial participant guesses, corresponding ErrP-decoder classification
decisions and misclassifications are illustrated below the plots. (b) Shows the gaze behavior policies after different numbers of
iterations (after trial: 10, 20, 30, 40). (c) shows the final policy at the end of the co-adaptation run. The states of the gazing
policy are color-coded as follows: shuman (yellow), sobjInt (green), sothObjx, sothObjy (grey). State-transitions with high
probabilities are represented with thick red lines, low probabilities with thin blue lines. This particular example shows
convergence towards the “fixation” behavior around trial 30 and “nodding” behavior towards the end of the co-adaptation run
(see Section 5.3.3).

5.4. Discussion of closed-loop BCI setup and experimental results
on ErrP-based co-adaptation

ErrPs are a useful feedback signal for successful mediation of co-adaptation in HRI:

ErrPs, decoded from human participants’ brain activity in real-time during HRI, might be useful

in the future to adapt the behavior of artificial agents, such as robots, to better align with hu-

man expectations, needs and conventions. We understand our study as a logical extension of

previous works [105, 173, 43] which demonstrated the potential of using ErrPs as a teaching

signal for robot skill learning. Instead, our experimental paradigm featured a scenario in which

there was no explicit “optimal” or “correct” behavior the robot was required to adapt to, but

where mutual adaptation between human and robot was permitted; the “optimal” robot policy

had to be negotiated between both parties in a co-adaptive fashion. This introduced a consid-

erable level of uncertainty and complexity into the experimental setup as participants could not

follow a specific task or proxy. With this relaxation of constraints in the experimental setup, we

aimed at validating the usability of ErrPs as an implicit feedback signal to improve HRI where

adaptation is possible from both interaction partners. Despite the uncertainty and complexity

introduced, we observed significant improvements in interaction performance across partici-

pants over the course of individual co-adaptation runs, as indicated by behavioral measures

of efficacy and efficiency: The average percentage of correct guesses (efficacy) increased
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Figure 27 (a) Overview of gaze policies averaged across the last 10 trials for 13 participants and all co-adaptation runs.
Successful co-adaptation runs are highlighted with blue frames. The guessing performance during the corresponding last 10
trials is depicted next to the policies. (b) – Identified recurring policies: “fixation” behavior in which the robot tended to fixate the
selected object (examples: s03/CORL-I, s15/CORL-I, s08/CORL-III, s18/CORL-III); “nodding” behavior in which the robot
alternatingly gazed at the participant and the selected object in a nodding-type fashion (examples: s09/CORL-II, s16/CORL-III,
s18/CORL-IV).

from the initial chance-level (~33%) to 70-90% within 10-40 trials (corresponding to 1-4 min-

utes), median across participants. Additionally, the number of gaze transitions made by the

robot before the participant indicating his/her guess (efficiency), relative to the corresponding

number in the beginning of the co-adaptation run, decreased on average by 15-27% across

the different runs. Hence, adaption of the robot’s policy, based on the ErrPs collected from the

human interaction partner, was accompanied by a higher performant and more efficient inter-

action. Comparison of learned gaze policies between CORL-III (no explicit human decision)

and the other conditions CORL-I,-II,-IV (with explicit human decision) suggested furthermore

that the explicit action (key press response used as validation ground truth) linked to the par-

ticipant’s decision was not a pre-requisite for successful co-adaptation, but can be achieved

solely based on human’s covert belief confirmation/violation.

Online single-trial ErrP decoding performance is comparable to previous works:

Online single-trial ErrP decoding performance was on average Acc = 81.8±8.0% (AVG±SD)

across 13 participants which is comparable to previously reported ErrP classification perfor-

mances used for closed-loop adaptation of robotic systems: Iturrate and colleagues (2015) ob-
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tained online decoding accuracies around 74% across 12 participants using temporal features

combined with LDA classification [105]. Salazar-Gomez and colleagues (2017) obtained on-

line decoding accuracies around 65% across 4 participants using correlation-and covariance-

based features after spatial filtering using the xDAWN algorithm [216]. Based on post-hoc

offline analyses, they reported however the presence of a secondary ErrP for which they esti-

mated a theoretical online decoding performance around 80% [173]. The most recent work by

Kim and colleagues (2017) reported high online decoding performances of balanced accuracy

around 90% across 7 participants using temporal features after xDAWN spatial filtering and

classification using linear SVM. They explain their high performance being mainly a result of

their data augmentation approach based on decoding ErrPs in two separate time windows

(instead of just one) [43]. A limitation observed from the online single-trial classification re-

sults of the present study (Section 5.3.1) is a consistent and significant across participants

bias towards the non-error class. This classification bias has been reported consistently in

the context of ErrP decoding and was related to the design of calibration protocols with typ-

ically unbalanced number of samples per class [103]. As class-balancing was performed in

the present study, the systematic bias was likely related to the limited number of 150 samples

used for ErrP-decoder calibration. Although the use of a regularized LDA may have partially

counteracted this [182], the use of a priori information from other participants [160] or upsam-

pling the minority class, instead of downsampling the majority class may have helped improve

online decoding performance and are recommended modifications for future works.

ErrP-decoder calibration resulted in chance-level performance in three participants (s05, s10,

s13). These participants showed lower r2
max values compared to the remaining participants

(see Table 6), which points to a worse separability of their ErrP responses. A post-hoc vi-

sual inspection of the raw EEG data showed comparably strong artifact contamination in s10

(mainly noisy channels) and in s13 (mainly slow DC drifts); the data of s05 on the other hand

was largely unaffected by artifacts. This suggests that the low calibration performance in s10

and s13 was mainly due to the technical setup and could have been resolved by repeating

the experiment on a different day or by adding automatic artifact rejection to the modeling

procedure. Why calibration failed in s05 is currently unexplained; one possibility could be that

this participant had been insufficiently concentrated on or engaged in the task.

Across participants, ErrP online decoding performance was significantly lower in CORL-II than

in CORL-I and CORL-IV. This temporary drop in performance in CORL-II is unlikely related

to technical reasons, but rather to the participants’ concentration / task engagement level,

because it recovered toward the end of the experiment in CORL-IV. CORL-II was a direct

repetition of CORL-I, which might have had a negative effect on the participant’s motivation

and engagement. On the other hand, CORL-IV followed CORL-III; the intermediate variation

of the experimental protocol with CORL-III might have had a positive effect on the partici-

pant’s engagement during CORL-IV. Despite noticeable differences in the median guessing

performance (Figure 25(a)), the systematic drop in ErrP online decoding performance had no

significant effect on the guessing performance in CORL-II.
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ErrP-decoder performance plays an integral role in the success of co-adaptation:

The ErrP-decoder performance played an integral role in successful co-adaptation, as indi-

cated by positive correlations between overall guessing performance and ErrP-decoder per-

formance during online operation. Furthermore, on average, policies converged in relation

to increasing guessing performance (see Figure 25(a) and 25(c)) as indicated by a median

decrease of the policy change rate over the course of co-adaptation runs. This supports the

functionality of the policy adaptation approach here adopted. We observed, however, several

cases in which co-adaptation failed despite high ErrP-decoder performance (Acc > 75%).

These cases might be due to unknown human-related factors, such as variations in task

engagement, attention variations, or variations in interpretation of the experiment. From a

technical perspective, the policy adaptation approach used may have influenced the stability

of co-adaptation as well. In some of these failed cases there were temporary increases in

guessing performance followed by decreases (unlearning), indicating temporary, but unsta-

ble learning (exemplary cases are s14/CORL-IV, s17/CORL-II, see Supplementary Figures

40 and 41, Appendix A). The learning approach here adopted does not enforce convergence

to an optimal policy. This has the advantage that while converging to one policy, bifurcations

to other policies remain possible. This flexibility might be particularly important in the context

of co-adaptation as changes of the human strategy are likely and imaginable in the sense

that a policy which was previously preferred by the participant is neglected and replaced by

a different preferred policy. Exemplary cases supposedly showing such policy re-adaptations

are s08/CORL-IV, s09/CORL-II, and s14/CORL-I (see Supplementary Figures 42, 43, and 44,

Appendix A). These cases show initial convergence interrupted by periods of increased policy

changes and subsequent secondary convergence. On the other hand, this flexibility, in com-

bination with a learning rate parametrized to promote quick learning, may have encouraged

instabilities or quick unlearning, as the outcome of single trials interfered with the learning pro-

cess (e.g. sensibility to ErrP-decoder misclassifications). One possible way of stabilizing the

policy adaptions would be to use an adaptive learning rate based on the past rewards (ErrP-

decoder decisions), e.g. decreasing the learning rate in case of increasing number of past

non-error events. However, whether, and to what extent a systematic control of the learning

process is recommendable in the context of ErrP-based human-agent co-adaptation remains

an open question for future investigations. In our experiment the learning process was limited

to 50 iterations (trials), which turned out insufficient for drawing definite conclusions about the

co-adaptation process in the long run. Therefore, an entry point for follow-up studies is most

importantly the investigation of the dynamical effects of co-adaptation for longer periods or

during continuing interaction. Several of above considerations have been addressed in follow-

up research in form of model-based simulations of the integrated human-agent co-adaptive

system (see Chapter 6).
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Emergence of different gaze patterns qualitatively support successful co-adaptation:

The analysis of emergence of gaze policies revealed that in most successful co-adaptation

runs the robot’s gaze behavior converged to either one of two different policies: “fixation”

and “nodding” behavior. While the “fixation” behavior was expected as it closely resembles

the gaze behavior during the calibration session, the “nodding” behavior, in contrast, was not

expected. Although both behaviors are qualitatively different and may be interpreted as con-

veying different meanings, an alternative interpretation is that both are consistent in that the

target object is attended to more often than others. In that sense, it is likely that the type

of behavior to which the system converged to depended on whether the alternating transi-

tions between shuman and sobjInt or the transition sobjInt→objInt were sampled more often

in an early stage of the co-adaptation run. Either way of interpreting, the emergence of the

two types of behaviors supports the hypothesis of co-adaptation, since for the participants

both strategies seemed valid despite having had no explicit exposure to the “nodding” behav-

ior before the start of the co-adaptation runs. On that note, one may argue about why just

two different behaviors emerged from the interaction, given that the manifold of imaginable

and possibly valid strategies is much bigger (e.g. a slightly more complicated gaze pattern

or a consistent logical swap of the target object with one of the other objects). This obser-

vation may be related to constraints in human information processing and learning of more

complex statistical patterns but remains an open question for future investigations. Further

exploration of how robot behavioral policies, as in this case the robot’s gazing policy, develop

during such interaction will provide useful insights for improving the technical implementa-

tion of ErrP-based mediation of human-robot co-adaptation and may likewise provide insights

about human information processing and learning.

5.5. Summary

In this chapter, we experimentally demonstrated the usability of EEG-based ErrPs as a feed-

back signal for mediating co-adaptation in HRI. Our study featured a simplified HRI scenario in

which successful interaction depended on co-adaptive convergence to a consensus between

participant and robot. ErrPs were decoded online from participants’ ongoing EEG signals with

an average accuracy of Acc = 81.8 ± 8.0% and utilized for adaptations of the robot behav-

ior, while the participant adapted to the robot by reflecting upon its behavior. Adaptations

of the robot behavior were here implemented with an episode update strategy using ErrPs

as a delayed reward feedback signal for the past sequence of robot actions, instead of per-

forming adaptations on single occurrences of robot actions. This update strategy allows for

adaptation of more complex robot behavior, where individual robot actions are more likely to

occur in rapid succession and not to be temporally well isolated. Successful co-adaptation

was demonstrated in the majority of participants (10 out of 13) by significant improvements in

interaction efficacy and efficiency (more precise and faster interaction) and by plausible robot

behavioral policies that emerged during the interaction.
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6. Computational modelling of ErrP-based
human-agent co-adaptation

Both recent works by others and our previous study have demonstrated the potential of using

ErrPs online decoded from a human interaction partner for robot skill learning as well as the

feasibility to utilize ErrPs for mediation of co-adaptation in HRI. While these studies showed

empirical evidence of the utility of this approach, a systematic understanding of the dyadic

interacting system (human and robot) remained unexplored. The study here presented ad-

dresses this by proposing a computational model of the human counterpart and simulating the

integrated dyadic system including the robot. The basis of this approach is the empirical data

obtained in our previous study as well as the corresponding experimental setup (see Chapter

5). This allowed both the successful fit and validation of the proposed computational model.

A series of model-based simulations were furthermore conducted to systematically explore

open questions related to ErrP-based human-robot co-adaptation. The main findings point

to ways to improve co-adaptation: (1) by employing an alternative robot learning paradigm,

and (2) by enhancing ErrP-decoder performance, with non-error decoding rate playing the

more crucial role than error decoding rate. Furthermore, model-based simulations suggest

that extensions to more complex robot behavior are possible under the constraint of practical

timescales of successful convergence of co-adaptation. These, among other findings pre-

sented in this chapter, have practical implications for future steps along this line of research.

The proposed computational model may be reused furthermore for simulating future studies

prior to conductance and this way help to define testable hypothesis and suitable experimental

designs.

6.1. Introduction

Recent studies by others have demonstrated the usability of ErrPs online decoded from a

human participant’s ongoing EEG signals as a teaching signal for learning and adaptation of

robot behavior in HRI [105, 173, 43]. Following this line of research, our recent study ex-

tended this principle and showed evidence for the usability of ErrPs to mediate co-adaptation

in human-agent interaction (see Chapter 5). While the above works provided evidence sup-

porting this approach in the domain of HRI and HMI in general, they were largely focused

on the technical aspects of it (tailored to specific HRI tasks), and are limited in providing an

overarching understanding of the dyadic interacting system (human and machine). The in-

volvement of human participants, who vary in their way of perceiving, interpreting, and coping

with the overall task and robot stimulus makes the approach not straightforward to understand.

The work presented in this chapter is in part covered in a conference paper: Ehrlich, S. K., & Cheng, G. (2019,
October). A computational model of human decision making and learning for assessment of co-adaptation in
neuro-adaptive human-robot interaction. In 2019 IEEE International Conference on Systems, Man and Cybernet-
ics (SMC) (pp. 264-271). IEEE. DOI: https://doi.org/10.1109/SMC.2019.8913872. Copyright permission
see Appendix C.
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This may be a reason why the approach performed well in some participants and rather poorly

in others (see results reported in Chapter 5, Section 5.3).

6.1.1. Related work on modeling human decision-making, error processing,
and learning

While research on modeling human (and animal) decision-making has a longstanding history

in neuroscience, cognitive psychology, and game theory, it appears rather scarce in the do-

main of BCI, with a few works over the last decades, such as [217]. Also, in the domain of

HRI, modelling human behavior appears to be not yet common sense, although some recent

research works demonstrated the potential of improving HRI by including models emulating

human behavior (see [30] and [26] for an overview). At the intersection between HRI and BCI,

e.g. in the relatively new field of ErrP-mediated collaborative HRI, computational modeling

of human behavior appears to be yet entirely unexplored. Therefore, concepts and methods

presented here mainly draw from recent and historical works from the domain of cognitive

neuroscience.

The monitoring of information conflicts in the human (but also other animals’) brain has been

consistently associated with the ACC and projecting areas [218]. Over the last two decades

the ACC has been implicated with many processes, among others with conflict and error cod-

ing, task preparation and response selection, social cognition, pain and effortful control [82].

These processes are subsumed under the term “performance-monitoring” (see Chapter 2,

Section 2.3 for further details). A multitude of computational models have been proposed

over the last two decades, describing the neurophysiological and behavioral effects related to

performance monitoring (see [82] for an overview). Early seminal models were focused on a

relatively limited set of tasks and largely based on EEG and fMRI data. Prominent examples

are the conflict-monitoring model [219], the error likelihood model [220], the RL-ERN model

[93], and the volatility model [221]. More recent models aim at providing a unifying perspec-

tive on ACC function and related behavioral effects and describe a larger set of empirical

findings including data from lesion studies as well as single-cell recordings, both in humans

and animals (primates and rodents). Prominent examples are the PRO (predicted response

outcome) model [101], the reward value and prediction model (RVPM) [222], the hierarchical

reinforcement learning model (HRL) [223], and the hierarchical error representation model

(HER) [224]. In parallel to attempts for unification, ACC function and related behavioral ef-

fects have also been modelled and described in the context of effort control, i.e. allocation of

mental resources during difficult or effortful tasks in the absence of error, conflict, and choice

[225, 226]. Most of the proposed models employed a reinforcement learning-based computa-

tional framework, in particular, temporal-difference learning in actor-critic architectures. A few

models, however, utilized different frameworks, such as based on Bayesian inference [221]

and predictive coding [227]. Despite the considerable body of work presented so far and the

general agreement on the underlying computational framework no single unified model has

yet been proposed. The most promising candidate for laying out the basis of a unified account

is perhaps the PRO model [101]. In essence, it ascribes the ACC monitoring mechanisms for
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(un)predictable outcomes and their deviations from expectations. This provided a framework

for understanding a large set of empirical findings, recently also integrating effort control [228].

A direct application of the so far proposed models to our work was challenged by the fact that

they were largely instantiated to account for data based on experimental tasks and stimuli typi-

cal in the domain of neuroscience (e.g. CRTs, Stroop task, or gambling tasks). In contrast, our

experiment encompassed a comparably complex stimulus (robot gaze transitions) in a much

less constrained task setting: the stimulus unfolds in time at non-deterministic timescales

(robot action sequence is terminated with the self-paced decision of the participant). This lets

us to decide on developing a model tailored to our specific problem. An important prereq-

uisite for our proposed model was to allow flexible extensions to different HRI scenarios in

future work. The proposed model was mainly inspired by the PRO model, but also others, as

acknowledged below.

6.1.2. Aim of the work
The goal of the present work is to obtain insight into the process of ErrP-based human-agent

co-adaptation by describing the dyadic interacting system in form of an integrated model.

Here, we distinguish between human factors and technical factors as possible contributors to

(un-)successfull co-adaptation. Possible human factors are for instance learning/adaptation

style or risk-taking attitude; technical factors are for instance experiment design, ErrP decod-

ing performance, and the type of robot/agent learning paradigm. While human factors are nat-

urally hard to control, insights about technical factors in relation to varying human factors allow

the formulation of system design guidelines encouraging successful co-adaptation and in turn

enhanced human-agent interaction performance. This research is divided into four steps: (1)

proposition of a computational model of human decision-making and learning in the context of

ErrP-based human-agent co-adaptation, (2) fitting the model according to the empirical data

from our previous study (see Chapter 5), (3) embedding the model into an interaction environ-

ment with a simulated agent, and (4) performing a series of model-based simulations of the

integrated model to elucidate potential factors influencing co-adaptation. This model-based

approach contributes to a better understanding of ErrP-based human-agent co-adaptation in

two ways:

• By proposing a computational model for human decision-making and learning, validated in

the context of our example ErrP-based human-agent co-adaptation scenario. This model

shall provide a platform to be reused for the simulation of future studies and this way help

to define testable hypothesis and suitable experimental designs prior to conductance.

• By providing insight into ErrP-based human-agent co-adaptation in the context of our ex-

ample HRI scenario, both from a technical and human behavioral perspective. More specif-

ically, by employing the proposed computational model in model-based simulations to de-

rive estimates about the influence of across-individual varying human factors, recommen-

dations for future technical improvements for the design of ErrP-decoders and ErrP-based

robot adaptation, recommendations for the design of future studies, and an estimate as to

which extent the approach can be practically scaled to more complex HRI.
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This chapter is organized as follows: Section 6.2 introduces the proposed computational

model, together with the data fitting procedure in Section 6.2.3, its integration into the co-

learning environment 6.2.4, and the final model validation 6.2.5. Section 6.3 presents a series

of model-based simulations and results to elucidate factors influencing co-adaptation. Section

6.4 discusses the results and Section 6.5 summarizes the chapter.

6.2. Methods: Computational model of human decision-making
and learning

6.2.1. Experimental paradigm and empirical data
This section briefly recapitulates the experimental setup and technical implementation of our

previous study; for more detailed information, the reader is referred to Chapter 5. In the exper-

iment, participants had to perform a collaborative task together with a real humanoid robot1

(see Figure 28), which required co-adaptation from both sides (human and robot). The task

was designed as a repeated guessing game in which participants were asked to infer from the

robot’s gaze behavior which one out of three available objects it had selected (underlying goal

/ intention). A single guessing game (further referred to as trial) started with the robot secretly

deciding for one of the three objects and then proceed with alternatingly gazing at either of

three objects or the participant in a fixed pace (one gaze transition in 400 ms). Meanwhile

the participant would attempt to infer the correct object from observing the robot’s ongoing

gaze behavior and eventually take a decision for either of the three target objects. This means

that participants could continue observing the behaving robot until they were certain about

their decision. Subjects were asked to indicate their decision in a self-passed fashion via

keypress responses (these were only used as ground truth for validation). Afterwards, the

robot would communicate the true choice of object to the participant (feedback); time-locked

to the moment of feedback presentation, the participant’s EEG-based ERP would be classi-

fied online into non-error (match) or error (mismatch) and then administered to the robot for

adapting its current gaze policy. This way, the robot’s gaze behavior would gradually adapt

to participants’ expectations; likewise, participants may have adapted their expectations, for

instance learned / adopted a gaze pattern “suggested” by the robot. A measure for successful

co-adaptation was guessing performance, defined as the participant’s accuracy in correctly in-

ferring the robot’s chosen object from its gaze behavior. Sixteen healthy participants took part

in the experiment (age: 29.2±5.0, 7 females, 9 males). Each one performed first a calibration

session (CALIB) followed by four co-adaptation sessions (CORL-I-IV). The calibration session

consisted of 150 trials (guessing games) in which the robot gaze behavior followed a fixed

(e.g. non-adaptive) policy. Data collected during this session was used to derive participant-

specific ErrP-decoders. During the following four closed-loop co-adaptation sessions, each

consisting of 50 trials, the previously built ErrP-decoder was employed for online adaptation

1 The robotic platform chosen for the experiment was the humanoid robot NAO, which is a commercially available
(SoftBank Robotics) 58 cm tall robot with 21-25 degrees of freedom.
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of the robot’s gaze policy. In each co-adaptation session, the gaze policy was (re-)initialized

such that the robot would generate random gaze behavior in the first trial (starting without

prior knowledge).

Figure 28 Revisiting the experimental paradigm: Human participant and robot play a guessing game in which the robot covertly
selects one out of three objects. Subsequently the robot generates a gaze pattern based on which the participant had to guess
the secret object. The participant’s brain responses were measured (marked in green) and used as a feedback signal to adapt
the robot’s gaze policy π, while the participant may have likewise adapted expectations π′ about the robot’s gaze behavior.

6.2.2. Overview of proposed model
The proposed model consists of four modules (see Figure 29): (1) The perception and infer-

ence module is responsible for transferring observations of the agent’s actions into a belief

about the agent’s goal. (2) The decision-making module is responsible for turning the belief

into an explicit action stating the predicted agent’s goal. As long as no decision was made,
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the perception and inference module continues to observe the agent and further updates the

belief. (3) The outcome evaluation module receives the agent’s feedback and compares it with

the predicted agent’s goal, based on which it derives a trial outcome in form of a reward signal

and a measure of expectation violation. (4) The learning module updates the current knowl-

edge in the model based on the prediction error and the history of observed agent actions.

Figure 29 Model architecture: Overview of proposed architecture of the human computational model embedded in the
interaction process with the agent. Agent adaptation is performed based on feedback from the evaluation module of the human
computational model. Decoding and transmission of that feedback signal derived from online decoded ErrPs are simulated in
the BCI block.

6.2.2.1 Perception and inference

Pisauro et al. (2017) recently provided empirical evidence from a combined EEG-fMRI study

that humans accumulate evidence in favor of the different alternatives before committing to

a decision [229]. To model this evidence accumulation process, we used Bayesian inference

based on the formulation of Behrens et al. in 2007 for describing human behavioral data in a

perceptual decision-making task [221]. Bayesian inference prescribes a standard computation

resulting in a posterior belief p(gm|aki,j) that alternative gm is true given observation aki,j . Here,

gm is the alternative among the set of agent goals g = {gO1, gO2, gO3}, with M being the

number of possible goals (or target objects: M = 3). aki,j is the observed agent action from

gaze state si to sj in time step k. The agent can be in four possible gaze states; either

gazing at the human or any of the three target objects S = {sO1, sO2, sO3, sH}. Transitions

are possible from one gaze state to another or staying in the current state. As observations
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arrive sequentially over time, the posterior belief p(gm|a1:k
i,j ) can be updated recursively using

all observations a1:k
i,j = {a1

i,j , ..., a
k
i,j} up to time step k. Eq. (6.1) describes the computation

of the posterior belief after observation of the first agent action in the current trial t. Before

observing any agent action, the belief about the agent’s goal is uniform among alternatives,

hence the prior is initialized with p(gm) = 1
3 . The posterior belief is used as the new prior

upon observation of the next robot action according to Eq. (6.2). The likelihoods p(ai,j |gm)

are computed based on internal weights wt−1
i,j,m of the previous trial t − 1 using the softmax

function according to Eq. (6.3). These weights associate the set of observable actions ai,j
with the goal alternatives gm and as such describe the current knowledge of the model. Upon

start of the experiment, the weights are initialized uniformly among all possible actions and

goals with w0
i,j,m = 0 for all i, j,m.

p(gm|a1
i,j) =

p(a1
i,j |gm)p(gm)∑M

m=1 p(a
1
i,j |gm)p(gm)

(6.1)

p(gm|a1:k
i,j ) =

p(aki,j |gm)p(gm|a1:k−1
i,j )∑M

m=1 p(a
k
i,j |gm)p(gm|a1:k−1

i,j )
(6.2)

p(ai,j |gm) =
ew

t−1
i,j,m∑M

m=1 e
wt−1
i,j,m

(6.3)

6.2.2.2 Decision-making

The decision-making module is responsible for turning the current belief p(gm|aki,j) into an

explicit action stating the predicted agent’s goal ĝ. Here, we draw from the formulation of the

PRO-model by Alexander & Brown in 2011 in which decisions are initiated when the belief

exceeds a certain threshold (commonly called decision bound and referred to thereafter for

the remainder of this chapter) [101]. However, as mentioned initially, the PRO-model was

instantiated mainly based on CRTs, in which participants were asked to respond as quickly

as possible. In our case, participants could freely decide about when to respond; decision

time did not play an explicit role (e.g. was not rewarded or penalized) in the experiment. This

means that on the one hand participants could continue observing the agent even though they

were already certain about its goal in the hope of collecting more evidence supporting the

current belief (delayed response). On the other hand, participants could respond earlier even

though they were not certain about the agent’s goal, possibly because they lost confidence

that future observations would further consolidate the current belief (advanced uninformed

response). The latter case is expected in particular in the beginning of the co-adaptation run

when the agent behavior follows a random policy which by nature does not allow participants

to make informed decisions. Therefore, it is assumed that participant’s decisions did not only

depend on the belief, but also on the elapsed time spent on observing the agent. Therefore,
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the decision variable β(gm) was implemented as a function of the posterior belief and the time

step k. Both variables were linearly combined according to Eq. (6.4) and the influence of k

was scaled with a factor ε (further referred to as timeout parameter). This way the decision

variable captures the participant’s timeout-behavior, e.g. participants taking a decision despite

limited certainty (posterior belief is similar among options) after some time of observation.

Furthermore, decision time decreases relative to an increasing difference of the posterior

belief among options. A decision ĝ = argmaxi β(gm) is initiated whenever the maximum of

β(gm) is equal or greater than the decision bound Γ, otherwise, the next observation is awaited

and the decision postponed, according to Eq. (6.5). The decision bound is recomputed in

every trial t based on a Gaussian random process with two free model parameters µβ and σ2
β

according to Eq. (6.6).

β(gm) = p(gm|a1:k
i,j ) + εk (6.4)

ĝ =

argmaxm β(gm) if maxm β(gm) ≥ Γ

0 “await next action” otherwise
(6.5)

Γ ∼ N (µβ, σ
2
β) (6.6)

6.2.2.3 Outcome evaluation

The evaluation module is responsible for validating the outcome of the trial with regard to the

decision about the predicted agent’s goal ĝ and the feedback about the true agent’s goal g.

First, a binary outcome O is computed based on Eq. (6.7). Second, the prediction error δ

is computed according to Eq. (6.8) based on the expected outcome and the true outcome

(agent feedback). The expected outcome is the posterior belief of the chosen object at the

moment of which the decision was taken.

O =

1 if ĝ = g (non-error)

0 if ĝ 6= g (error)
(6.7)

δ = O − p(ĝ|a1:k
i,j ) =

0 ≤ δ ≤ +1 if ĝ = g

−1 ≤ δ ≤ 0 if ĝ 6= g
(6.8)

94



6.2.2.4 Learning

The learning module is responsible for updating the internal weights after the outcome of

the trial has been evaluated. The learning module was based on previous works describing

behavioral and neurophysiological responses in CRT and gambling tasks as a reinforcement

learning [210] process [101, 82], specifically on the formulation of Cohen and colleagues in

2007 which proposed a model describing human behavioral data in a gambling task [230].

In Eq. (6.9) the weights used in the current trial are updated for the next trial by adding the

probabilities of observed actions, weighted by the prediction error δ and scaled by the learning

rate λ. As participants may have reacted differently to erroneous versus correct guesses,

we introduced separate learning rates for success (λ(+)) and failure (λ(−)) outcome. The

gating parameter η(ĝ) is 1 for the chosen target and 0 for all non-chosen targets according

to Eq. (6.10). This way, the weights associated with the chosen target are either positively

or negatively reinforced depending on the outcome of the trial. The discount parameter γ

decreases the impact of past trials on the current update if chosen < 1. After updating,

the weights are finally turned into updated likelihoods according to Eq. (6.3) used by the

perception and inference module in the next trial.

wti,j,m =

γwt−1
i,j,m + η(ĝ)δλ(+) 1

n

∑n
k=1 a

1:k
i,j if O = 1

γwt−1
i,j,m + η(ĝ)δλ(−) 1

n

∑n
k=1 a

1:k
i,j if O = 0

(6.9)

η(gm) =

1 for gm = ĝ

0 otherwise
(6.10)

6.2.3. Parameter fitting
The computational model consists of 8 parameters (γ, λ(+), λ(−), µβ , σ2

β , ε, TNR, TPR; see

overview of parameters in Table 7). ErrP-decoder true-negative and true-positive rates (TNR,

TPR) were determined based on the online decoding performance during the experimental

study2. The remaining four model parameters (λ(+), λ(−), µβ , σ2
β) were fit to the behavioral

data of each participant individually. The original experiment data consisted of 16 participants

out of which the data of one participant (s06) had to be removed due to incomplete marker

information. Model fitting was performed in a sequential two step procedure: (1) Success and

failure learning rates were first fitted using an optimization procedure, and (2) the decision

bound parameters were retrieved by fitting a Gaussian process to the distribution of β(ĝ)

across trials. Finally, the timeout parameter ε turned out to only affect how well the model

describes the experimental data in terms of decision times (number of observed agent actions

until participant decision). Since decision times were not in the focus of our investigation, the

2 In accordance to the definition in the Chapters 4 and 5, non-error (match) events were defined as the negative
class, whereas error (mismatch) events were defined as the positive class

95



Table 7 Overview of model parameters: participant-specific learning rates and decision bound are estimated via the fitting
procedure (fit); participant-specific ErrP-decoder rates are taken directly from the data obtained during the experimental study
(exp). Timeout and discount factor were empirically set and fixed across participants.

Parameter Value Description Equation

ε 0.02 timeout scaling factor Eq. (6.4)

γ 1.0 discount factor Eq. (6.9)

TNR exp non-error decoding rate Eq. (6.16)

TPR exp error decoding rate Eq. (6.16)

λ(+) fit Success learning rate Eq. (6.9)

λ(−) fit Failure learning rate Eq. (6.9)

µβ fit mean decision bound Eq. (6.6)

σ2
β fit variance decision bound Eq. (6.6)

timeout parameter was empirically set to ε = 0.02 during model validation described in Section

6.2.5. This resulted in a good match of simulated and real decision times for all participants.

6.2.3.1 Fitting success-failure learning rates

The computational model was presented the actions performed by the robot in the actual ex-

perimental sessions, starting with the calibration session and continuing with the co-adaptation

runs CORL-I, CORL-II, and CORL-IV3. The model started with zero knowledge and contin-

ued learning across the entire experiment. The model’s simulated decisions were compared

to the participant’s real decisions on a single-trial level. The cost function to be minimized

is depicted in Eq. (6.11) and computes the RMSE (root mean squared error) between the

simulated O1:t
SIM and the actual participant’s trial outcomes O1:t

DATA across all trials T (see Eq.

(6.7)). Outcomes of individual trials were first smoothed with a 10-trial kernel before being ad-

ministered to Eq. (6.11), a procedure often used to examine correspondence between model

predictions and behavioral data [231, 232, 233, 230]. The cost function was computed sepa-

rately for the calibration (150 trials) and the three co-adaptation sessions (each 50 trials) and

subsequently averaged to obtain a single measure of goodness of fit Ftotal across the entire

experimental session according to Eq. (6.12). Optimization of success and failure learning

rates were performed in a sequential two-step procedure based on Eq. (6.13): (1) by local-

ization of the global minimum using a 2D grid search across the values λ(+) = {0, 0.2, ..., 3}
and λ(−) = {0, 0.2, ..., 1}, and (2) by fine-grained optimization using the nonlinear, uncon-

3 In CORL-III a different protocol was employed which did not capture ground truth information about participant’s
decisions; therefore it was excluded from this research.
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strained Nelder-Mead simplex method [234] starting with initial values based on the previous

grid search4.

F =

√√√√ 1

T

T∑
t=1

(O
1:t
SIM −O

1:t
DATA)2; T = number of trials (6.11)

Ftotal =
1

4
(FCALIB + FCORL−I + FCORL−II + FCORL−IV ) (6.12)

minλ(+),λ(−)(Ftotal) (6.13)

6.2.3.2 Fitting decision bound

The discrete probability distributions of the decision bound across trials were approximately

normal distributed in all participants5. Therefore, the variations of the decision bound were as-

sumed to result from a Gaussian random process reflecting the participant’s uncertainty about

the underlying belief. Based on this, the decision bound of each participant was modelled in-

dividually via a Gaussian random process according to Eq. (6.14), whereby x is the discrete

probability distribution of the decision bound (described by µβ and σ2
β) based on trials in which

the model’s decision matched the decision of the participant (ĝSIM = ĝDATA) according to

Eq. (6.15).

f(x|µβ, σ2
β) =

1

σβ
√

2π
e
−(x−µβ)

2
/

2σ2
β (6.14)

x = β(ĝ)1:t for all ĝtSIM = ĝtDATA (6.15)

6.2.3.3 Fitting results

Exemplary results of the fitting procedure for six participants can be visually inspected in Fig-

ure 30 (for all participants, see Supplementary Figure 45, Appendix A); numerical results are

provided in Table 8. Figure 30 shows that the simulated learning curves match well those of

4 Note, that this procedure assumes stationary learning rates for each participant, since optimization is performed
across the entire experiment, including the calibration and co-adaptation sessions. Although, it is likely that
participants changed/adapted their learning rates throughout the experiment, in particular, during the transition
from calibration to co-adaptation, this assumption was made because of the overall limited amount of data and
to constrain the complexity of the model.

5 This was observed by visual inspection of the decision bound histograms for each participant individually. Since
no obvious deviations from normal distributions were observed, no further quantitative tests were performed.
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the experimental data with almost perfect fit in some participants (e.g. s03, s10) and moderate

fit in other participants (e.g. s04, s11). Table 8 provides details about the overall goodness of

fit (Ftotal), the goodness of fit for each experimental session (FCALIB , FCORL−I−IV ), and the

percentage of correctly predicted participant responses. Furthermore, the optimized values for

the free model parameters (λ(+), λ(−), µβ , σ2
β) are provided. Overall, simulations match well

the experimental data with an average across participants goodness of fit of F = 0.19± 0.04

(AVG±SD). This translates to an average percentage of correct predictions of participant de-

cisions of PRED = 70.4 ± 11.1% (AVG±SD), with 12 out of 15 participants resulting in

PRED ≥ 65%. The results suggest that the model captured relevant behavioral effects

observed in the human data.

Figure 30 Exemplary qualitative results of goodness of fit for six participants: Each panel depicts individual results of simulated
(orange) and real (blue) guessing performance per participant for CALIB, CORL-I, CORL-II, and CORL-IV (smoothed with a
10-trials kernel for each part of the experiment separately). Overall, the results show a good match between simulation and
ground truth, indicating that the model captured relevant behavioral effects observed in the human data.

6.2.4. Integration of the human computational model into the co-learning
environment

After fitting the free parameters of the computational model based on the experimental data,

the model is ready to be integrated into the co-learning environment (see Figure 29) including

the adaptive robotic agent, and the BCI (ErrP-decoder) providing implicit human feedback to

the agent. Algorithm 1 below describes the perception and inference, decision-making, out-

come evaluation, and learning procedure of the human participant. Algorithm 2 describes the

action generation and learning procedure of the robotic agent. The simulation of the ErrP-

decoder interfacing human and agent is described in Eq. (6.16). The function computes a

reward estimate R̃ for agent policy updating (see Algorithm 2) based on the true outcome of

the trial and a comparison of a uniform random number U(0, 100) with the participant’s indi-

vidual ErrP-decoder rates. As such, the function emulates the derivation of a reward from an

imprecise ErrP-decoder decision scaled with the experimental parameters TNR and TPR.

98



Table 8 Optimized free model parameters (λ(+), λ(−), µβ , σ2
β ), experimentally determined online ErrP-decoder performance

(TNR, TPR [%]) and resulting goodness of fit F , expressed as RMSE according to Eq. (6.11) and as percentage of correct
predictions of participant decisions (PRED [%]).

ID λ(+) λ(−) µβ σ2
β TNR TPR FCALIB FCORL−I FCORL−II FCORL−IV Ftotal PRED

Model Parameters Fitting Results

s03 1.46 0.27 1.27 0.24 92.10 69.03 0.12 0.06 0.26 0.00 0.11 87.00

s04 0.00 0.20 0.53 0.08 96.80 86.40 0.29 0.20 0.29 0.33 0.28 44.00

s05 2.40 0.80 1.04 0.21 62.83 42.17 0.13 0.35 0.24 0.25 0.24 66.00

s07 2.20 1.00 0.87 0.24 83.17 81.87 0.19 0.16 0.24 0.18 0.19 56.33

s08 2.59 0.83 1.07 0.19 95.53 71.07 0.12 0.17 0.31 0.24 0.21 77.33

s09 2.60 0.40 1.18 0.19 90.10 77.03 0.16 0.09 0.08 0.17 0.13 84.67

s10 0.20 0.16 0.68 0.14 100.00 0.97 0.14 0.12 0.19 0.18 0.16 72.00

s11 2.40 0.40 1.11 0.23 76.53 56.57 0.23 0.19 0.24 0.17 0.21 60.67

s12 2.81 0.33 1.32 0.33 95.00 71.57 0.16 0.29 0.23 0.18 0.22 74.67

s13 2.63 0.43 1.16 0.19 71.73 63.90 0.15 0.20 0.28 0.22 0.21 69.33

s14 0.69 0.33 1.03 0.22 90.63 66.00 0.16 0.10 0.21 0.27 0.19 73.67

s15 1.00 0.40 1.01 0.23 90.53 68.17 0.17 0.00 0.32 0.05 0.14 82.00

s16 2.00 0.20 1.16 0.34 58.37 81.47 0.24 0.15 0.15 0.06 0.15 73.00

s17 2.60 0.40 1.12 0.19 84.30 89.43 0.12 0.22 0.22 0.14 0.18 68.67

s18 1.40 0.80 0.98 0.22 89.00 65.17 0.12 0.17 0.39 0.08 0.19 67.00

AVG 1.80 0.46 1.04 0.20 85.1 66.1 0.17 0.17 0.24 0.17 0.19 70.4

±SD 0.94 0.26 0.22 0.05 12.5 21.6 0.05 0.09 0.07 0.09 0.04 11.1

R̃ =

+1 if (O = 1)&(U(0, 100) ≤ TNR); else − 1

−1 if (O = 0)&(U(0, 100) ≤ TPR); else + 1
(6.16)

6.2.5. Model validation
The fitting results demonstrated that the model is capable of sufficiently capturing behavioral

effects observed in the human data. However, whether and to what extent the model can be

employed for large-scale simulations of the co-learning system require additional validation

of the integrated model including the simulated agent and the simulated BCI interface. As

such, the following sections assess the validity of the computational model in the context of

three questions: (1) do large-scale simulations result in outcomes which are consistent with

the empirical data observed in the experimental study? (2) does the model account also for /

explain neurophysiological effects despite not having been explicitly used for model fitting? (3)

Is the model complexity justified or can the model be simplified, e.g. by reducing the number

of free parameters?
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Algorithm 1: HUMAN perception and inference, decision-making, outcome evaluation,
and learning algorithm

Initialize weights w0
i,j,m = 0 for all i, j,m

for t← 1 to T do
Initialize prior belief: p(gm) = 1

M
Initialize observed action count: k = 0
Initialize observed action history: Ai,j = 0 for all i, j
Compute likelihoods based on weights: wt−1

i,j,m [Eq. (6.3)]
Compute decision bound: Γ ∼ N (µβ, σ

2
β) [Eq. 6.6]

while β(gm) < Γ (“await next action”) do
k ← 1
Observe agent action ak

Update posterior belief based on prior and likelihood of action ak [Eq. (6.2)]
Update decision variable β(gm) [Eq. (6.4)]
Update prior belief: p(gm|a1:k

i,j )← p(gm|a1:k−1
i,j ) [Eq. (6.1) and (6.2)]

Update observed action history: aki,j ← 1

end
Take decision ĝ [Eq. (6.5)]
Observe agent feedback g
Evaluate outcome O [Eq. (6.7)]
Compute prediction error δ [Eq. (6.8)]
Update weights wti,j,m ← wt−1

i,j,m [Eq. (6.9)]
end

Algorithm 2: AGENT action generation and learning algorithm

Initialize policy: π = 1
4 for all s, a

for t← 1 to T do
Initialize action count: k = 0
Choose initial gaze state si with s = U{sO1, sO2, sO3, sH}
Choose goal g with g = U{gO1, gO2, gO3}
Initialize gaze transition history: ai,j = 0 for all i, j
while ĝ = 0 (“participant wait”) do

k ← 1
Choose action aj from state si using π(g)
Execute action aj (perform gaze shift), observe next gaze state sj
Update gaze transition history: aki,j ← 1
si ← sj

end
Present feedback g to participant
Observe reward R̃ from ErrP-decoder
Update policy: π ← π + R̃α

∑
k a

1:k
i,j

Truncate policy: π ← clamp(π)1
0 for all s, a

Normalize policy: π ← π∑
s π

end
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6.2.5.1 Comparison of large-scale simulation with experimental data

This section validates the model by comparing simulated data with the experimental data. To

have equal conditions for the comparison, the original experimental protocol was simulated

with a large number of individual experiments. The simulation was focused on the calibration-

session (CALIB) and subsequent first co-adaptation run (CORL-I) only, as these made up

the most critical parts of the original experiment. The comparison between simulated and

real experimental data was performed on the “study-level”, e.g. a single simulated study

comprised all 15 participants and reported measures of co-adaptation performance averaged

across participants. Four measures of co-adaptation performance were compared:

• guessing performance: mean percentage of guessing performance in 50 trials of CORL

averaged across participants.

• success-rate: percentage of successful6 co-adaptation runs across participants.

• abs. decision time: mean absolute number of gaze transitions until participant decision in

50 trials of CORL averaged across participants.

• rel. decision time: mean percentage change of number of gaze transitions until participant

decision relative to the first 10 trials in 50 trials of CORL averaged across participants.

In total 500 studies were simulated; distributions of the above measures were then compared

to the empirical measures from the original study. The underlying proposition of this compari-

son is as follows: the model reflects well the experimental data (and can be trusted at the level

of large-scale simulations) if the empirical measures lie within the single standard deviation of

the simulated measures.

Results are depicted in Figure 31(a) and show the empirical performance measures (dashed

green line) superimposed on the distributions of simulated measures. Sufficient consistency

between simulated and real data can be observed for success-rate, abs. and rel. decision

time. Simulated average guessing performance turned out to be consistently higher than the

empirical average guessing performance (see Figure 31(a), upper-left panel). This discrep-

ancy could be due to the fact that the model could not be fitted equally well to all partici-

pants. Fitting results turned out rather low in a few participants (see Table 8). A comparison

was therefore performed based only on participants for which the model could be well fitted,

specifically, for participants whose decisions the model could predict with PRED > 65% (this

excluded three out of 15 participants: s04, s07, and s11). Results, depicted in Figure 31(b)

show that now empirical measures (dashed green lines) are well within the single standard

deviation of the simulated data (dashed black lines) for all four measures. This consistency be-

tween the empirical and simulated data corroborates the above hypothesis that the observed

discrepancy was essentially due to the cases for which no good fit could be found. However,

6 Definition according to the analysis of experimental data (see Chapter 5, Section 5.3.2): A co-adaptation run con-
sisting of 50 trials was denoted successful if guessing performance was ≥ 70% in three subsequent segments
of 10 trials, p < 7.6 ∗ 10−6, one-sided binomial test with pchance = 1/3.
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they also show the limitations of the model, since the latter can only account for a subset (ap-

proximately 80%) of the participants. Nonetheless, the consistency observed validates using

the model for large-scale simulations, as long as these are based and constrained to this sub-

set of participants. All further investigations and simulations therefore excluded participants

s04, s07, and s11 from the analyses.

6.2.5.2 Relationship between model prediction error and neurophysiological characteristics

of error-related potentials

So far, the computational model has been considered only in the context of behavioral data,

as reflected in per trial participant decisions, corresponding outcomes, and decision time.

This section will investigate the question of whether the computational model predicts the

neurophysiological effects of ErrPs, as reflected in the participant’s EEG signals during the

experiment. The purpose of this analysis is to provide further evidence supporting the valid-

ity of the proposed computational model in the given experimental paradigm. Prior research

[93, 101, 230] suggested that the ErrP reflects the prediction error in reinforcement learning-

based models of the PFC. Following this proposition, the present analysis is based on the

hypothesis that the model prediction error δ (see Eq. (6.8)) correlates with specific compo-

nents of the ErrP on a single trial basis. The analysis was performed on the data of each

participant individually by computing Spearman’s rank correlation coefficients between the

single-trial ERP and δ over all trials. δ can take on positive and negative values for correct and

incorrect outcomes, respectively (see Eq. (6.8)). The absolute prediction error (abs(δ)) can

be understood as expressing the level of discrepancy between expectation and outcome irre-

spective of correct or incorrect outcome and was therefore used for this analysis. Correlation

coefficients were computed for all EEG channels ch and sample time-points ts individually

(see Eq. (6.17)) for each participant individually and across all trials including CALIB, CORL-I,

CORL-II, and CORL-IV (300 trials per participant). Computation of the grand average across

participants (n = 12) was performed by averaging correlation coefficients of individual partici-

pants for each ch and ts. Grand average results of spatio-temporal distribution of correlation

coefficients are depicted in topographic plots in Figure 32. Overall, the results show significant

negative correlations during times in which the N200 component is expected (Figure 32(a-i))

and significant positive correlations during times in which the P300 component is expected

(Figure 32(a-ii)) (one-sample Wilcoxon signed rank test, p < 0.05, FDR (false discovery rate)-

corrected, n = 12). In both cases, the spatial patterns are fronto-centrally focused. This

means, larger absolute prediction errors are reflected in more negative N200 and more pos-

itive P300 deflections. In addition, a late posterior negative correlation was observed around

800ms (Figure 32(a-iii)). The origin of this effect is currently unexplained. The mid and bot-

tom row of Figure 32(b-c) show the condition-wise correlation coefficients for non-error and

error trials, respectively. Around N200 latencies, negative (but insignificant) correlation is

again observed for error trials (Figure 32(c-iv)), whereas non-error trials show a weaker pos-

itive correlation around the latencies of N200. The P300 effect does only become present in

the condition-wise analysis with a weak positive correlation in the non-error condition. The
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Figure 31 Large-scale simulation of original experimental protocol: Distributions of performance measures (guessing
performance, success-rate, abs. and rel. decision time) across 500 simulated studies including all participants (a) and a subset
of participants whose decisions the model could predict with PRED > 65% (b). Results show that empirical measures of the
original study (green dashed lines) are well within the single standard deviation of the simulated data (black dashed lines) for all
four measures when considering the subset of participants compared to considering all participants.
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results demonstrate that, across the subset of tested participants (n = 12), the model predic-

tion error reflects the neurophysiological characteristics of ErrPs. Given that this relationship

was not explicitly introduced into the proposed computational model, this finding provides not

only strong evidence for its validity, but also for its biological plausibility (participant-specific

spatio-temporal distribution of correlation coefficients are depicted as topographic plots in

Supplementary Figure 46, Appendix A).

ρ = corr(ERP 1:t
ch,ts, abs(δ

1:t)) (6.17)

Figure 32 Single-trial spatiotemporal correlation coefficients between absolute model prediction error and ERP: (a) Upper row
shows correlation coefficients across all trials. Significant negative correlations are observed during N200 latencies (i),
significant positive correlations are observed during P300 latencies (ii) and a late negative correlation are observed around
800ms (iii). The mid (b) and bottom (c) rows show condition-wise correlation coefficients for non-error and error-trials,
respectively. Also here, error-trials show negative correlations during N200 latencies (iv). White markers show significant
channels at corresponding time-points (one-sample Wilcoxon signed rank test, p < 0.05, FDR-corrected, n = 12).

6.2.5.3 Assessment of model complexity

An important consideration in computational modeling is the assessment of the potential to

simplify the model. A slim model with few parameters not just facilitates the fitting procedure,

but also benefits its flexible use in future works. One way to identify if the model can be simpli-

fied is to assess dependencies between free model parameters. Strong dependencies would

indicate that parameters share information and may be combined into a single parameter.

Table 9 shows Spearman’s cross-correlation coefficients between model parameters across

the subset of participants (n = 12). Two pairs of parameters show significant positive cor-

relations: success learning rate and mean decision bound, as well as mean decision bound

and error decoding rate during online operation (TPR). A tentative explanation for the former

dependency could be that participants with higher mean decision bounds were more certain

when making decisions because they collected on average more evidence. In turn, successful

outcomes matching highly certain beliefs could have resulted in quicker learning compared to

successful outcomes matching uncertain beliefs, hence modulating success learning rates to

be higher. A tentative explanation for the latter relationship could be as follows: If we assume
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that the later a decision is made (higher mean decision bound) the more certain participants

were of their decision, then, in case expectations are not met, the mismatch will be larger

and will correspondingly elicit a more distinct and easier to decode ErrPs. Vice-versa, earlier

decisions (with participants having had less certainty about the expected outcome), should

elicit less distinct, and therefore more challenging to decode, ErrPs. Interestingly, success

and failure learning rates are not significantly correlated. This supports the initial assumption

of the necessity of including separate learning rates for both, success and failure outcomes.

Overall, the results indicate that the model can be simplified since free model parameters

share information.

Table 9 Spearman’s cross-correlation between free model parameters computed for the subset of participants (n = 12).
Asterisks (*) denote significance level at and p < 0.05.

n = 12 λ(+) λ(−) µβ σ2
β TNR TPR

λ(+) x .30 .73* -.05 -.26 .46

λ(−) x -.21 -.31 -.24 -.14

µβ x .41 -.11 .62*

σ2
β x -.13 .31

TNR x -.14

TPR x

6.2.5.4 Overview of model validation results

This section investigated the validity of the proposed human computational model covering

three separate aspects. Part one assessed as to which extent model-based large-scale sim-

ulations are consistent with the experimental data. Results revealed a discrepancy between

simulation and real data. This discrepancy could be resolved by removing three out of 15

participants whose experimental data could not be well described by the model during the

fitting procedure (see Section 6.2.3). While this result pointed out that the model is suitable for

large-scale simulations, it also showed that it is limited to trustworthy description of approxi-

mately 80% of the participants recruited for the study. This finding will be further discussed

in Section 6.4. Part two supported further the model by showing significant correlations be-

tween the model prediction error and the amplitude of relevant components of the ErrP. This

finding underscores the biological plausibility of the model, in that it reflects neurophysiolog-

ical effects, even though these data not having been explicitly included into the model fitting

procedure. Part three assessed dependencies between model parameters and revealed sig-

nificant relationships between some parameters. This yielded suggestions on how the model

can be simplified which is further discussed in Section 6.4.
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6.3. Model-based simulations and results

The following sections describe simulation-based experiments investigating the impact of vari-

ous factors of the integrated human-agent system on the overall performance of co-adaptation.

All simulations were conducted based on the premise that model parameters are station-

ary (do not change throughout experiments) and independent of varying experimental condi-

tions (are not modulated by and can be transferred across varying experimental conditions)7.

Among factors potentially contributing to and influencing co-adaptation, the following were in-

vestigated: (1) experimental protocol, (2) ErrP-decoder performance, (3) human factors as

described by free model parameters, (4) the agent learning paradigm, and (5) state-space

dimensionality in which human and agent operate.

The following measures were defined to quantify co-adaptation performance and to compare

different simulated conditions.

• guessing performance: mean percentage of guessing performance in 50 trials of CORL

averaged across participants.

• segment-wise guessing performance: percentage of correct trial outcomes in a segment

of 10 trials.

• success-rate: percentage of successful8 co-adaptation runs across participants.

• convergence horizon: number of iterations at which a policy is considered to have con-

verged. The convergence is quantified based on the policy change rate ∆π = max(|πt−1−
πt|); the horizon is reached once the policy change rate falls below a pre-defined threshold

(∆π < 1e− 4).

All simulations were performed by running large sets of individual experiments on single par-

ticipant level, e.g. in each experiment the model parameters (λ(+), λ(−), µβ , σ2
β , TNR, TPR)

were fixed to one specific participant. To capture robust statistics, all simulations comprised

50 experiments per participant and condition, e.g. 50 simulated studies. This resulted in 600

experiments (12 participants x 50) per condition, if not stated otherwise.

6.3.1. Simulation I: Variations of the experimental protocol
The original experimental study started with 150 trials of calibration with a fixed and non-

adaptive agent policy, followed by four separate closed-loop co-adaptation runs in which the

agent policy was adapted based on online decoded ErrPs (each comprising 50 trials). These

7 Please note, that some parameters are likely dependent on varying experimental conditions, such as learning
rates, which can be assumed to be influenced by ErrP-decoder performances. This consideration is left for future
work and involves further empirical studies in conjunction with revisions of the model (see Section 6.4 for details).
At the current stage of research, the presented simulation-based approach is the most practical means to obtain
insight into how to optimize the overall system.

8 Definition according to the analysis of experimental data (see Chapter 5, Section 5.3.2): A co-adaptation run con-
sisting of 50 trials was denoted successful if guessing performance was ≥ 70% in three subsequent segments
of 10 trials, p < 7.6 ∗ 10−6, one-sided binomial test with pchance = 1/3.
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design choices were a reasonable trade-off between the total experiment duration (< 1h)

and a sufficient number of trials (see Chapter 5, Section 5.2.2). At the time of experiment

design and conductance, it was unclear if the design choices were in favor of successful co-

adaptation. In order to elucidate the role of these design choices, this section investigates

co-adaptation performance in the context of varying experimental protocols and addresses

two separate questions: (1) The amount of iterations per CORL were fixed to 50 trials in the

original study and experimental results suggested that the number of iterations were insuffi-

cient for policy convergence (see Chapter 5, Section 5.3.2). Model-based simulations allow

prolonging the CORLs and as such to obtain insight into long-term dynamics of co-adaptation

and the expected number of iterations for policy convergence. (2) Furthermore, the original

experiment required a calibration session which was nearly identical to the subsequent co-

adaptation runs. While this was required to obtain participant-independent ErrP-decoders,

it remained unclear if and to what extent the calibration session influenced subsequent co-

adaptation in terms of participant priming. The second question thus explores the extent to

which the calibration session influenced performance in subsequent co-adaptation. Therefore,

simulations were performed by comparing guessing performance and success-rate under two

conditions, both in the context of prolonged co-adaptation (500 trials per experiment): (a)

with preceding calibration session (as in the experimental study), and (b) without preceding

calibration session. The latter condition simulates the situation of participants starting to co-

adapt with the agent without having been exposed, and therefore primed by the preceding

calibration session involving a non-adaptive agent. In both conditions, participant-individual

measures of online ErrP-decoder performance (TNR and TPR) from the original experiment

were used.

Results are depicted in Figure 33 and show the development of average guessing perfor-

mance (Figure 33(a)), absolute decision time (Figure 33(b)), and policy change rate ∆π (Fig-

ure 33(c)), over the course of 500 trials. Regarding the first question, the results show that

the system does not converge within the first 50 trials. The average learning curve suggests

convergence to be rather expected around trial 150 which translates to an experiment time of

approximately 18-24 min9. The results of this simulation suggest that convergence would have

been more likely if participants had been given more time during the co-adaptation runs in the

original study (e.g. ≥ 150 trials). An important observation from this simulation is that guess-

ing performance does not approach optimal values in the long run, but on average around

90%. This observation is consistent with the average of long-term policy change rate which

approaches approximately ∆π ≈ 0.1. This indicates that the system did not converge within

500 trials in a certain amount of simulated experiments. Regarding the second question, the

results indicate that the preceding calibration-session has a positive effect on co-adaptation

performance in terms of the steepness of the learning curve, particularly during the first 150

trials (see gray-shaded marked significantly different segments in Figure 33, Wilcoxon paired

signed rank test, p < 0.05, FDR-corrected). This observation is in line with the original hypoth-

esis in that co-adaptation performance is expected to be better if participants start with a prior

9 Approximation based on the average duration of a single CORL in the experimental study, see Chapter 5, Table
5.
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acquired during the calibration session. Nevertheless, in the long run (after approximately

trial 150), both average learning curves become indistinguishable, indicating that the system

converges successfully and within the same timescale also when participants start without

any prior. This finding suggests that the calibration-session is not required for successful

co-adaptation.

Figure 33 Long-term dynamics of co-adaptation and influence of CALIB on CORL: (a) average guessing performance, (b)
absolute decision time, (c) policy change-rate ∆π over the course of 500 trials. Shaded areas represent the single standard
deviation of the mean across 50 simulated studies. Results indicate the system converges around trial 150 (after approximately
20-30 min). Gray shaded areas indicate significant differences between co-adaptation runs which were preceded by calibration
sessions and those which were not (Wilcoxon paired signed rank test, p < 0.05, FDR-corrected). Significant differences are
evident during the first 150 trials in which preceding CALIB has a positive effect on co-adaptation performance.

6.3.2. Simulation II: Impact of ErrP-decoder performance
This section addresses the question of how ErrP-decoder performance influences co-adaptation

performance. Higher ErrP-decoder performances are naturally assumed to yield better co-

adaptation performance as the amount of false feedback provided to the robotic agent is re-

duced. This relationship was also observed in the results of the empirical study (see Chapter

5, Section 5.3.2). What remained unclear is to what extent hypothetical improvements of

ErrP-decoder performance would benefit co-adaptation performance. Furthermore, the lower

boundary of ErrP-decoder performance that would still lead to acceptable co-adaptation per-

formance is currently unknown. As in the previous simulation (see Section 6.3.1), the analysis

was performed by simulating 600 individual experiments (12 participants x 50 studies) per

condition, each starting with 150 trials of CALIB, followed by 50 trials of CORL. Each condi-

tion was determined by predefined ErrP-decoder true-negative and true-positive rates (TNR,

TPR) which were fixed across participants (no other free model parameters were modified).
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Guessing performance and success-rate were computed across all experiments per condi-

tion and compared against baseline measures. Baseline measures were obtained during the

large-scale simulation (see Section 6.2.5.1) and are based on participant’s individual online

ErrP decoding performance (see Table 8).

Results are depicted in Figure 34 and indicate an approximately linear relationship between

ErrP-decoder performance and co-adaptation performance measures. The results suggest

that even a non-functioning ErrP-decoder (TNR = TPR = 50%) results in an average guess-

ing performance of ∼ 48% and an average success-rate of ∼ 16%. Optimal ErrP-decoder

performance (TNR = TPR = 100%) on the other hand, results in an average guessing

performance of ∼ 78% and a success-rate of ∼ 77%. According to the simulation, an overall

improvement of approximately 10% in ErrP-decoder performance results in an approximate

∼ 5% improvement of guessing performance and an approximate of ∼ 10% improvement of

success-rate. As hypothesized, the results reflect that ErrP-decoder performance plays a crit-

ical role, but also suggest that it is not the only factor affecting co-adaptation. Some level of

co-adaptation can even be achieved with a non-functioning ErrP-decoder (possibly compen-

sated by the human counterpart) and, more importantly, optimal ErrP decoding performance

did not straightforwardly result in optimal co-adaptation performance. Further results (see

Figure 34(b)) indicate that variations of co-adaptation performance are mainly driven by varia-

tions of TNR (non-error decoding rate). Variations of TPR (error decoding rate) on the other

hand, have a negligible effect on co-adaptation performance. In this regard, misclassifications

of error trials seem to have a weaker effect on the overall co-learning system (human and

agent) than misclassifications of non-error trials. This finding is further discussed in Section

6.4. In summary this implies that efforts to improve ErrP-decoder performance, in particular,

non-error decoding rates, are generally worthwhile but not the only technical factor influencing

co-adaptation performance in the given scenario.

6.3.3. Simulation III: Impact of human factors
Besides ErrP-decoder performance human factors are likely to also influence co-adaptation

performance. We hypothesize that specific decision-making and adaptation styles of par-

ticipants, described by success- and failure learning rates and decision bound parameters,

may encourage or hinder fast co-adaptation. In order to disentangle these factors, large-

scale simulations were performed under two conditions: (1) with participant-specific online

ErrP-decoder performance based on results from the original experiment, and (2) with online

ErrP-decoder performance fixed to the average across participants of TNR = 85.1% and

TPR = 63.8%. By fixing ErrP-decoder performance across participants in the second condi-

tion, variations of co-adaptation performance due to human factors only, can be isolated.

Results are depicted in Figure 35 and show the distribution of average guessing performance

across different success- and failure learning rates (left panels), means and variances of deci-

sion bound (middle panels), and ErrP-decoder performances (right panel). The results of the

first condition (Figure 35(a)) show an approximately linear relationship between ErrP-decoder
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Figure 34 Simulated impact of ErrP-decoder performance: overall guessing performance (orange lines) and success-rate (blue
lines) for fixed ErrP-decoder performance across participants with (a) balanced non-error and error decoding performance
(TNR = TPR), (b) fixed TNR and varying TPR (upper panels), and fixed TPR and varying TNR (lower panels). Error
bars represent the single standard deviation of the mean across 50 studies. Results indicate an approximately linear
relationship between ErrP-decoder performance and co-adaptation performance measures. Variations of co-adaptation
performance seem to be mainly driven by TNR; variations of TPR have a negligible effect on co-adaptation performance.
Average baseline measures (computed based on individual participant’s TNR and TPR) are depicted as dashed lines.

110



performance and average guessing performance in line with the observations of the previous

simulation (see Section 6.3.2). Human factors on the other hand, do not seem to be in an ob-

vious functional relationship with guessing performance. The results of the second condition

(Figure 35(b)) show that with fixed ErrP-decoder performance, variations of average guessing

performance across participants diminish drastically. Nevertheless, some dependency be-

tween variations of model parameters and co-adaptation performance can be observed: In

particular, lower performance (approximately 60% versus 75%) can be observed for high val-

ues of success-learning rate, low values of failure-learning rates, together with high values for

mean and variance of decision bound result. While this indicates that human factors do have

an influence on co-adaptation performance as initially hypothesized, this influence seems

to play a minor role in comparison to the impact observed from variations of ErrP-decoder

performance. This finding suggests feasibility of generalizing the ErrP-based co-adaptation

approach across participants with varying decision-making and learning behavior.

Figure 35 Human factors: Distributions of average guessing performance across variations of free model parameters with dots
representing individual participants (n = 12). (a) Average guessing performance including participant-specific online
ErrP-decoder performance and (b) average guessing performance with average (or expected) online ErrP-decoder
performance fixed across participants. Results indicate a major role of ErrP-decoder performance and a minor role of human
factors in co-adaptation performance in the given experimental context.

6.3.4. Simulation IV: Impact of agent learning paradigm
Besides human factors and ErrP decoding performance, the agent learning paradigm and

corresponding parametrization has likely also an effect on co-adaptation performance. In
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the original experiment, a policy gradient based update strategy with a fixed learning rate of

α = 0.1 was chosen (see Chapter 5, Section 5.2.3.4). The method was employed because it

was reported to be capable of dealing with complex learning tasks involving many degrees of

freedom [213, 214]; the learning rate was empirically adjusted in pilot experiments prior to the

conductance of the experimental study. It remained unclear if the learning rate was chosen

appropriately given the variability across participants. Large variations in results across partic-

ipants in the experimental study suggested that an adaptation of the learning rate to individual

participants could have a beneficial effect on co-adaptation performance. Furthermore, it re-

mained unclear if policy gradient based learning constitutes the best suitable method given the

particularities of this co-learning task. These are, in particular: a noisy reward signal (due to

imprecise ErrP decoding) and a non-stationary reward function (reward function, implicitly pro-

vided by the participants, may undergo changes when participants revise their learning and/or

decision strategy). The most competitive alternative to the policy gradient based method is

possibly Q-learning, which was introduced by Watkins in 1989 [235]. Q-learning is one of the

most widely used and studied methods in reinforcement learning [210] and therefore a suit-

able choice for systematic comparison. Instead of on-policy adaptation as in policy gradient

based methods, in Q-learning, the so-called Q-function (or Q-table) is updated which repre-

sents the “quality” of an action taken in a specific state. The policy can be obtained at any

time from the Q-table by using the softmax function. For realizing the Q-learning based agent,

the original agent action generation and learning algorithm (see Algorithm 2) was replaced

with Algorithm 3. The major differences between the two algorithms are: (1) in Q-learning, a

Q-table is updated based on obtained reward, instead of the policy π (as in the policy gradient

based method); the policy is computed from the Q-table using the softmax function with a tem-

perature parameter of τQL = 0.1. (2) The Q-table is updated after each action executed by the

agent; as long as the participant does not respond with a decision, the Q-table is updated with

a reward of R̃ = 0. In contrast, in the policy gradient based method, π is updated only after

each trial. (3) Future rewards are marginally discounted with the parameter γQL = 0.99. In

the policy gradient based method, updates were not discounted. The discount parameter γQL
was empirically adjusted during pilot simulations by qualitatively comparing different discount

parameters (γQL = {0.7, 0.8, 0.9, 0.99, 1.0}). The chosen marginal discount of γQL = 0.99 re-

sulted in the best performance in terms of quick and stable policy convergence. The softmax

temperature τQL was chosen according to recommendations given by [210]. The learning

rate αQL was not fixed and variations investigated during the simulation-based experiments:

Performance measures of simulated co-adaptation experiments were analyzed for different

learning rates, for both methods. As in the previous experiments (Sections 6.3.1, 6.3.2, and

6.3.3), 50 individual experimental runs including CALIB (150 trials) and the first CORL (50

trials) were simulated per participant and condition. To realize identical starting conditions

for both learning methods, the computational model was first trained during CALIB and then

administered to separate CORLs, one employing the policy gradient based (Algorithm 2) and

the other the Q-learning based agent (Algorithm 3).
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Algorithm 3: AGENT action generation and learning algorithm (Q-learning)
Initialize Q-table with Q(s, a) = 0 for all s, a
for t← 1 to T do

Choose initial gaze state si with s = U{sO1, sO2, sO3, sH}
Choose goal g with g = U{gO1, gO2, gO3}
Compute policy π from Q-table: π = e

Q/τQL∑
a e

Q/τQL

while ĝ = 0 (“participant wait”) do
Choose action aj from state si using π(g)
Execute action aj (perform gaze shift), observe next gaze state sj
Update Q-table with reward R̃ = 0:
Q(si, aj)← Q(si, aj) + αQL(R̃+ γQL maxaQ(sj)−Q(si, aj))
si ← sj

end
Present feedback g to participant
Observe reward R̃ from ErrP-decoder
Update Q-table: Q(si, aj)← Q(si, aj) + αQL(R̃+ γQL maxaQ(sj)−Q(si, aj))

end

Results are depicted in Figure 36, with left panels for the policy gradient based method (Algo-

rithm 2) and right panels for the Q-learning method (Algorithm 3). Subject average results for

the policy gradient based method (Figure 36(a), upper panel) indicate a clear peak for aver-

age guessing performance and success-rate at a learning rate of αPG = 0.05. This suggests

that the original choice of learning rate was close to the optimum, however, a slightly lower

learning rate would have led to overall better co-adaptation performance in the experimental

study. Variations of the learning rate in the Q-learning method (Figure 36(b), upper panel)

on the other hand, do not exhibit a clear optimum, but rather a range (0.3 ≥ αQL ≥ 0.7) in

which co-adaptation performance turned out superior to the policy gradient based method.

The lower panels of Figure 36 show participant-individual results of average guessing perfor-

mance across different learning rates. Results indicate higher performance and less variability

across participants for Q-learning as compared to policy gradient based learning. Subjects

exhibiting weak performance with the policy gradient based method exhibit at least decent

performance with the Q-learning method (e.g. participants s06, s10, s16). This observation is

further supported by Spearman’s rank correlation coefficients between participant-individual

optimal learning rates and computational model parameters for each learning method and

co-adaptation performance measure (see Table 10). Overall, results show lower correlation

coefficients for the Q-learning method compared to the policy gradient based method. These

findings indicate that Q-learning does not only outperform the policy-gradient based method,

but is also less dependent on varying parameters of the computational model which suggest

greater independency of variations across participants. Importantly, this seems to also ac-

count for variations of ErrP-decoder performance, where Q-learning appears to be the more

robust method. To complement these findings, a long-term simulation was performed for pro-

longed co-adaptation with 500 trials. For a fair comparison of both methods, each method’s

optimal learning rate across participants was chosen (αPG = 0.05 and αQL = 0.5). Results

are depicted in Figure 37 and show that Q-learning significantly outperforms policy gradi-
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Table 10 Spearman’s rank correlation coefficients between participant individual optimal agent learning rate α and free model
parameters (λ(+), λ(−), µβ , σ2

β , TNR, TPR) for policy-gradient based and Q-learning separately. Asterisks (*) denote
significance level at p < 0.05.

PG-learning λ(+) λ(−) µβ σ2
β TNR TPR

guess.-perf. -.27 -.30 -.26 -.15 .68* .05

success-rate -.40 -.46 -.35 .22 .22 -.18

Q-learning λ(+) λ(−) µβ σ2
β TNR TPR

guess.-perf. .06 .02 .29 -.02 .00 .11

success-rate -.33 -.37 -.07 .14 -.10 -.19

ent based learning from the first segment (trials 1-10) onwards, both in converging faster to

higher average guessing performance as well as lower absolute decision times (Figure 37(a)).

Further support for Q-learning resulting in more robust convergence is provided by the com-

parison of the median convergence horizon tconv ≈ 250 for policy gradient based learning and

tconv ≈ 20 for Q-learning (Figure 37(b)).

Figure 36 Comparison of alternative agent learning paradigms for different learning rates: Average guessing performance and
success-rates for different learning rates comparing policy gradient based learning (a) and Q-learning (b). Across participants
average results (upper panels) show superior co-adaptation performance for Q-learning, as compared to policy gradient based
method across a range of learning rates. Subject-individual results (lower panels) show superior and less variant co-adaptation
performance across participant. Dots represent participant-specific optimal learning rates; dashed lines show across
participants optimal learning rate for each method.

6.3.5. Simulation V: Assessment of generalizability and scalability
Finally, we investigated if the ErrP-based co-adaptation ErrP-based co-adaptation approach

can be generalized and scaled to higher dimensional state-spaces. This has practical impli-

cations as it gives insight on if and how the approach can be transferred to different, more
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Figure 37 Comparison of long-term dynamics of alternative agent learning paradigms: (a) guessing performance, decision time
(number of agent actions until decision), and policy change-rate ∆π of subsequent policy updates over the course of 500 trials.
Shaded areas represent the single standard deviation of the mean across 50 simulated studies. Results indicate clear
superiority of Q-learning over policy gradient based learning in terms of faster convergence to higher guessing performance
and lower decision time. Gray shaded areas indicate significant differences between methods (Wilcoxon paired signed rank
test, p < 0.05, FDR-corrected). Significant differences in favor for Q-learning are evident from the first segment onwards (trial
1-10). (b) Distribution of convergence horizon of individual experimental runs (n = 600, 12 participants x 50 studies).

complex HRI scenarios. In the experimental study, the state-space was deliberately kept rel-

atively small to demonstrate principal feasibility of the approach. The agent behavioral policy

comprised four gaze states, four possible gaze transitions (actions) per state, and three pos-

sible goals/intentions. For simplification, the state-action space was furthermore remapped

depending on varying goals/intentions, which resulted in a policy with 16 degrees-of-freedom

(4 states x 4 actions). This section addresses simulated extensions of the state-action-goal-

space and investigates resulting performance measures of co-adaptation, in particular, pol-

icy convergence and guessing performance. As the previous section pointed out better per-

formance of Q-learning compared to policy gradient based learning (see Section 6.3.4), all

subsequent simulations were exclusively performed with the Q-learning approach. For gen-

eralization, the agent’s Q-learning function was extended with the goal-dimension10 (see Eq.

(6.18)) and replaced the Q-learning function in Algorithm 3. To account for the most conserva-

tive test cases, the number of actions were always identical to the number of states (the set of

possible actions in a given state always comprised transitions to all other states including stay-

ing in the current state). The dimensionality of the human computational model weights wi,j,m
was initialized corresponding to the dimensionality of the agent’s state-action-goal space (see

Algorithm 1), as if “knowing” the agent’s behavioral degrees-of-freedom from the beginning11.

Subsequently, a varying number of states, actions, and goals were simulated. Starting with a

10Although, goals may be treated as just an extension of the state-space, it was introduced as another dimension
in the Q-table for the sake of transparency and comprehensibility.

11Flexible adaptations of wi,j,m upon observation of new states, actions, and goals during co-adaptation are pro-
grammatically feasible and would more realistically simulate a human participant without prior knowledge about
the agent’s degrees-of-freedom. However, such an alternative implementation would not affect the simulation
results presented here.
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tangible example, the original guessing game from the experimental study was extended from

initially 3 goals with 4 gaze states to 5 goals with 6 gaze states, and finally, to 10 goals with 11

gaze states. For the sake of generalization, these simulations only comprised co-adaptation

experiments without preceding calibration. This ensured that both human and agent start

without prior knowledge into co-adaptation, which was found to be the more conservative test

case (see Section 6.3.1). As in all previous analyses, average performance measures across

600 experiments per condition are reported (12 participants, 50 studies).

Results are depicted in Figure 38(a-b): As expected, with increasing number of goals, the

learning curves become flatter and policies converge on average later. However, as can be

seen in Figure 38(a), average guessing performance exceeds the 95% confidence interval

of chance-level performance12 in all three test cases at some point, e.g. around trial 25 for

3 goals, around trial 40 for 5 goals, and around trial 140 for 10 goals. Figure 38(c) shows

the results for an extended simulation with jointly varying state-action- (number of states =

2, 4, 6, 8, 10, 15, 20, 50) and goal-dimensions (M = 2, 3, 5, 7, 10, 15, 20). This spans a range of

state-space dimensionality from 8 (2 states, 2 actions, 2 goals) to 50.000 (50 states, 50 ac-

tions, 20 goals)13. The simulation results show that the convergence horizon tconv increases

logarithmically in relation to increases of the state-space dimensionality (Figure 38(c-left))

from < 50 trials for small state-spaces up to around 400 trials for the highest tested state-

space dimensionality. Similarly, the guessing performance necessary to exceed on average

the 95% confidence interval of chance-level (Figure 38(c-left)) ranges from < 50 trials for

small up to > 500 trials for large state-spaces. The reason for guessing performance to

reach low performance in the case of small state-spaces in conjunction with high number

of goals is that a certain number of goals require a certain state-space dimensionality to be

unambiguously de-/encodable. It is therefore logical that the computational model did not

perform well in these test cases. The analysis further illustrates that state-space extensions

only affect the convergence horizon in that successful co-adaptation takes up an impractically

long time. The basic principle of the ErrP-based co-adaptation approach, appears to re-

main in turn unaffected by increases of the agent’s behavioral complexity. In order to identify

state-space extensions which can be considered practically acceptable (within practically ac-

ceptable timescales), we assume guessing performance should exceed the 95% confidence

interval of chance-level within the first 150 trials, which corresponds to approximately 18-24

minutes of co-adaptation14. State-action-goal combinations which conform to this constraint

12inverse binomial test for 10 subsequent trials given the corresponding number of options/goals
13Because of the high number of conditions, computation time was here increased excessively. Therefore, this

analysis only comprised 120 experiments per condition (12 participants, 10 studies), instead of 500 as in pre-
vious simulations. Repeated computations confirmed that results were replicable despite the lower number of
experiments per condition; the observed variations across repeated computations do not affect the main conclu-
sions drawn from this analysis.

14Approximation based on the average duration of a single CORL in the experimental study, see Chapter 5, Table
5.
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are depicted within the red dashed frames in Figure 38(c). Based on this constraint, simulation

results suggest that extensions of up to 12500 degrees-of-freedom (e.g. 50 states, 50 actions,

and 5 goals) are practically acceptable.

Q(si, gm, aj)← Q(si, gm, aj) + αqL(R̃+ γqL max
a

Q(sj , gm)−Q(si, gm, aj)) (6.18)

Figure 38 Scalability for extended state-action-goal space dimensionality: (a) Guessing performance, decision time and policy
change rate and (b) distribution of convergence horizon over the course of 500 trials for varying number of goals M with fixed
state-action-space (4 states, 4 actions per state). (c) Convergence horizon (left) and average guessing performance exceeding
95% confidence interval of chance-level for joint variations of state-space and number of goals. Red dashed frames encompass
state-action-goal state extensions for which average guessing performance exceeds 95% confidence interval of chance-level
within the first 150 trials.

6.3.6. Overview of simulation results
The set of simulations of co-adaptation experiments, performed using the human computa-

tional model previously fitted based on the experimental data provided a clearer picture of the

impact different factors can have on the performance of the co-adaptation system. As a re-

sult, recommendations for overall improvement of performance could furthermore be derived

from this knowledge: (1) Simulations showed that the convergence horizon is about threefold
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higher than initially assumed. They suggested that robust convergence under the given cir-

cumstances requires about 150 policy iterations (trials). In addition to this, results indicated

that, although calibration has a positive effect on the performance in subsequent co-adaptation

sessions, it is not required for successful co-adaptation in the long run (see Section 6.3.1). (2)

Simulations showed that from all participant-specific parameters of the human computational

model, co-adaptation performance mainly depended on ErrP decoding rates (see Section

6.3.2). More specifically, the precision of non-error decoding (TNR) turned out to be more

critical than the precision of error decoding (TPR). Variations of the other model parameters

(learning rates and decision bound) turned out to have a negligible effect on co-adaptation

performance (see Section 6.3.3). (3) Simulations suggested that the initially chosen agent

learning method (policy gradient based method) is rather sensitive to variations across partic-

ipants including ErrP-decoder performance. The alternative Q-learning method, tested here

for comparison, unequivocally outperformed policy gradient based learning, both in terms of

faster convergence to higher co-adaptation performance, as well as less dependence on par-

ticipant variations (see Section 6.3.4). (4) Simulations with more complex state-action-goal

spaces suggested that extensions to more than 12.5K degrees-of-freedom are practically ac-

ceptable (see Section 6.3.5). These findings are further discussed in detail in the following

sections.

6.4. Discussion on the proposed computational model and
simulation results

The overarching goal of the research presented in this chapter was to provide a better under-

standing of ErrP-based co-adaptation in human-agent interaction with the purpose to derive

guiding principles for further work. Whilst the outcomes of the experimental study presented

in Chapter 5 support the functionality and utility of the approach in HRI, a better fundamen-

tal understanding of the dyadic interacting human-agent system remained unexplored. The

approach chosen to address this gap was (1) to develop a computational model of human

decision-making behavior suitable for the given experimental setup, (2) to fit the model using

the empirical data of the experimental study, (3) to integrate the model into the co-learning en-

vironment with a simulated agent, and (4) to perform large-scale simulations of co-adaptation

experiments with different simulated experimental conditions. As such, this model-based ap-

proach allowed to investigate, in an efficient manner, the impact different experimental factors

can have on the performance of the system studied. The simulation results obtained have

important implications for the research on ErrP-based human-agent interactions and provide

useful recommendations for future work.

Guidelines for the design of future studies:

An important first observation concerned the design chosen for the experimental study (see

Chapter 5). Simulation-based results indicated that the timescale for successful convergence
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of co-adaptation is approximately threefold higher than in the original study. This may partly

explain why a significant amount of co-adaptation runs turned out unsuccessful and suggested

that overall, the experimental results would have benefited from allowing longer co-adaptation.

Follow up studies in line with this research should consider this finding in the experimental

design. In particular, it is recommended to carefully estimate the approximate convergence

horizon based on simulations prior to defining the experiment design. Although informed

simulations prior to a new study may not be possible due to lack of empirical data, employing

a simplified human computational model, e.g based on the one presented in this chapter, may

be sufficient for an approximation of the co-adaptation convergence horizon.

Co-adaptation is mainly determined by ErrP-decoder performance and less by varying human

factors:

The second finding concerned possible factors influencing co-adaptation, both human-related

as well as technical factors. The simulation-based results suggested the main factor for suc-

cessful co-adaptation to be the ErrP-decoder performance. This observation is consistent

with the significant correlation between the overall guessing performance and the online ErrP-

decoder performance observed empirically and reported in Chapter 5 (see Section 5.3.2).

The likewise negligible influence of human factors (learning rates and decision bound) on suc-

cessful co-adaptation was rather unexpected. Human factors were assumed to account for

and help explain cases in which participants performed poorly in co-adaptation despite high

ErrP-decoder performance (see Chapter 5, Section 5.4). Since the simulations did not pro-

vide evidence for such a relationship, a likely remaining explanation is that co-learning may

have taken unfortunate courses in some participants due to the probabilistic nature of the

agent’s action generation and learning algorithm (Algorithm 2). Importantly, the negligible ef-

fect of human factors on co-adaptation performance suggests the possibility of generalizing

the ErrP-based co-adaptation approach across participants, despite the variations in decision-

making behavior and learning. As a result, generalization across participants is likely to be

fostered by finding ways to reduce variations in ErrP decoding performance across partici-

pants, as this would contribute to improve overall predictability of the co-learning system. This

could be achieved, for instance, by simplifying the calibration protocol, e.g. by employing the

cursor task presented in Chapter 4 (see Section 4.2.2). Simplifications may reduce variations

of task interpretation and as such result in more coherent ErrP responses across participants.

The decoding method itself may also contribute to reduce variations across participants. One

promising approach which resulted in high decoding performances around 90% across seven

participants was presented recently by Kim and colleagues [43]. Simulation-based results

further suggested that investing effort into improving ErrP-decoder performance, in particular,

the precision of non-error decoding, is worthwhile. In the given interaction scenario, non-error

decoding rates play the more crucial role than error decoding rates. This rather surprising

observation could be related to participants’ learning style: participants seem to have put

more emphasis on success than failure trials in the process of learning the agent’s behav-

ior (suggested by higher success- than failure learning rates, see Table 8). In practice this
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suggests that co-adaptation performance can be improved by biasing ErrP-decoders towards

emphasizing TNR at the cost reducing TPR. A similar observation was reported by Llera

and colleagues in 2011 [153], although in a complementary perspective. In their work, they

explored the usability of ErrPs for online adaptation of a BCI classifier for a binary choice

task. Their results indicated a more negative effect on the adaptation process resulting from

incorrect decoding of ErrPs in response to the BCI output matching participants’ intentions

and practically no influence resulting from incorrect decoding of ErrPs in response to the BCI

output mismatching participants’ intentions. This supports both our results and post-hoc those

reported by Llera and colleagues. Whether and to what extent this observation can be gener-

alized across further interaction scenarios is subject to future research.

Alternative agent learning methods can significantly improve co-adaptation performance:

The most promising finding concerning possible technical modifications in favor of improved

co-adaptation performance resulted from the comparison between the original policy gradient

based learning with an alternative Q-learning based agent algorithms. Simulation results

demonstrated Q-learning to outperform policy gradient based learning, both in terms of faster

convergence to higher co-adaptation performance, as well as improved robustness against

variations across participants (including ErrP-decoder variations). The reason for this may be

twofold: (1) Q-learning enforces optimality by maximizing reward in the long run; the policy

gradient based method on the other hand, does not take into consideration expected future

rewards and updates the policy only based on information from the current iteration (trial).

(2) The Q-learning algorithm (Algorithm 3) was implemented such that Q-table updates were

carried out after each agent action (Section 6.3.4). Although this update was performed with a

reward of R̃ = 0 as long as no decision was taken by the participant, this nevertheless had an

effect because of the reward discounting property of Q-learning. This resulted in the algorithm

to not just optimize for rewards based on trial outcomes, but also to minimize the number

of actions needed to complete the trial (e.g. minimizing participant decision time). What

remained unexplored is the capability of both algorithms to follow possible sudden changes

in participant’s decision-making and learning strategy. For instance, it appears conceivable

that participants may at some point decide to reject assumptions built during previous trials

and switch to new or alternative assumptions. While policy gradient based learning may be

capable of following such changes flexibly as it is not explicitly concerned with future reward,

Q-learning on the other hand, may not be as flexible as it enforces optimality by maximizing

future reward. Although the latter leads to better co-adaptation performance in the long run,

the former method may more flexibly align with participants’ preferences. The investigation of

this question is left open for future research.

ErrP-based co-adaptation can be transferred to more complex HRI scenarios:

The finding obtained in the last simulation provided important insight into the transferability

of the ErrP-based co-adaptation approach to other, more complex, HRI scenarios. Here,
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co-adaptation performance was investigated in the context of simulated extensions of the

state-action-goal-space. Results suggested that extensions up to 12.5K degrees-of-freedom,

subsuming behavioral states, actions, and goals are practically acceptable within reasonable

timescales of co-adaptation convergence. It is worth noting that acceptable timescales re-

quired for convergence are strongly dependent on the interaction scenario: the simulation

results here presented (see Figure 38) shall inform future research about estimates of conver-

gence horizon given a predefined state-action-goal-space, or vice-versa, about how to modify

the state-action-goal-space to conform to a practically acceptable convergence horizon. The

findings from this simulation are limited by the fact that the general framework in which these

state-space extensions were investigated were based on the repeated guessing game used

in the experimental study (see Chapter 5, Section 5.2.1). This constrains the transferability

of results in the following ways: The model-based approach including all simulations here

presented assume (1) the agent’s behavior consisting of sequences of discrete actions which

(2) encode the agent’s underlying goals or intentions. (3) These goals / intentions are un-

ambiguously disclosed to the human interaction partner at some point, e.g. explicitly through

feedback or implicitly through a confirmative action concluding the action sequence. (4) The

human interaction partner is intrinsically motivated to infer the agent’s goals/intentions to adapt

his/her future actions or behavioral strategy, e.g. to optimize interaction performance or sub-

jective interaction preferences. To conform to the above constraints, it is recommended to

structure future alternative interaction scenarios as game-like protocols. While this may at

first seem a limiting factor for generalization to a wider range of HRI scenarios, it is worth

noting that many situations arising in natural human-human interaction can be simplified to

and formalized as games (the formal framework is provided by a large body of research on

(non-)cooperative game theory [236, 237]). Such game-like formalization could, for instance,

be applied to human-robot collaborative assembly or sorting tasks in which both interaction

partners have to find agreements about assignment of subtasks to succeed in achieving a

common goal. This approach has already been formally proposed, for instance in [238] and

practically applied, for instance in [239].

Limitations and future work:

While the human computational model here proposed successfully captured behavioral effects

in the given experimental scenario, a number of aspects may limit its applicability to alterna-

tive interaction scenarios: (1) The proposed computational model turned out to be limited to

describing approximately 80% of the participants recruited for the study. The model fit turned

out rather poor for three participants which let us to exclude them from the simulation. The

reasons for this are likely related to factors specific to these participants which were not suffi-

ciently captured by the model. As these factors could be related to temporary aspects, such

as the participants’ attention level or task interpretation, suggestions for model improvements

require further research. (2) The perception and inference module of the proposed computa-

tional model determines beliefs based on event statistics (occurrence probabilities) and does

not explicitly take into consideration the order of event occurrences. While this seemed to be
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no limitation in the context of the given experimental paradigm, it may have an effect in the

context of interaction scenarios where the order of events plasy a more critical role. In such

cases, the Bayesian approach in the inference module could be replaced by an approach

based on Hidden Markov Models. (3) The current realization of the computational model as-

sumes stationary model parameters, e.g. learning rates and decision bound do not change

over the course of the experiment. While this was necessary to keep the model simple, it is

conceivable that these parameters actually varied throughout the experiment, e.g. depending

on the participant’s attention level. This could be a reason why the model parameters could

not be well fitted to three out of 15 participants. A future revision of the model should therefore

include a careful analysis of the stationarity of model parameters. This investigation should

also account for stationarity in the context of varying experimental conditions. (4) The assess-

ment of model complexity suggested that simplifications are possible, such as by integrating

success learning rate and mean decision bound as these parameters turned out to be signifi-

cantly correlated across participants. This could be implemented by deriving (or adapting) the

current success learning rate λ(+),t from the decision bound of the current (µtβ) and/or pre-

vious trials (µ1:t−1
β ). Further simplifications could be applied to the perception and inference

module, e.g. computing the belief directly from the model weights wi,j,m (without employing

Bayesian updating). This would reduce the number of necessary computations and slim down

the model to be more easily employed in new scenarios.

6.5. Summary

This chapter proposed a computational model for human decision-making and learning in the

context of ErrP-based mediation of human-agent co-adaptation. The model was fitted to em-

pirical data obtained in our previous study (Chapter 5) on single-participant level and validated

by comparing large-scale model-based simulations with empirical results. The proposed com-

putational model enables the prediction of human decision-making and learning in the context

of ErrP-based human-agent co-adaptation in the given HRI scenario. As such, it allows for

simulation of future empirical studies, and thereby provides a means for accelerating progress

along this line of research in a resource-saving manner. This was here demonstrated by em-

ploying the model in the systematic study of factors influencing co-adaptation performance by

means of the simulation of experimental sessions for different conditions. The main results

suggested that co-adaptation can be significantly improved and stabilized across participants

by (1) employing an alternative agent learning paradigm (Q-learning) and (2) by improving

ErrP-decoder performance. Our findings suggested a more critical role of non-error decoding

rate than error decoding rate in the co-adaptation process; an observation which was found

consistent with previous research by others. This means that, in practice, interaction per-

formance will benefit, in particular, from improving the non-error decoding rates. Moreover,

model-based simulations further indicated that extensions to more complex agent behavior

are feasible. Critically, simulation results suggested that extensions to larger state-spaces in
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which human and agent operate affect only convergence timescales, but not the principal func-

tionality of ErrP-based co-adaptation approach. Within the constraints of practical timescales

(< 30 min), extensions of up to 12.5K degrees-of-freedom were shown feasible.
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7. Conclusions and Outlook

Summary and conclusions

The development of human-centered robotic systems whose behavior is comfortable and ac-

ceptable to humans is a multidisciplinary endeavor, demanding knowledge from artificial intel-

ligence systems, robotics, design, experimental psychology, cognitive and social sciences.

The development of robotic systems for interaction with human partners has so far been

driven by two approaches: offline assessment (experimental psychology approach) and on-

line adaptation (robotics engineering approach). The two approaches have limitations, that

are addressed in this thesis by drawing upon the concept of passive BCI, specifically, upon

the passive decoding of ErrPs in response to the human partner’s observation of robot be-

havior during HRI. Following this approach, we demonstrated that ErrPs can be reliably de-

coded from non-invasive EEG recordings of human participants during interaction with differ-

ent robotic systems in a variety of HRI scenarios, and be employed to offline assess or online

adapt robot’s behavior according to the expectation of the human interaction partner, this way

facilitating and enhancing interaction performance.

Human-robot interaction involves neuronal mechanisms of performance
monitoring
The ErrP, and specifically the N200 component [140, 39], has been described to originate from

a “generic mismatch detector” in the brain [98]. More specifically, previous works converged

towards describing ErrPs in the context of performance monitoring as a response generi-

cally informative about mismatches of expectations formed by internal models for predicting

external events and outcomes [101]. In this thesis, ErrPs were observed for all experimen-

tal studies performed, studies featuring different interaction tasks and different stimuli, from

screen-based stimuli to real humanoid robotic systems. This suggests that in all cases per-

forming the task involved the generation of a belief towards the robot, and of associated ErrPs

when those beliefs are not confirmed. Previous research proposed a link between human

performance monitoring and higher cognition involved in social interaction, mentalizing, and

self- and other-referencing [39]. More specifically, there is increasing evidence supporting

human performance monitoring as a central process involved in a variety of tasks from rudi-

mentary sensorimotor learning (monitoring of own behavior) up to social cognition (monitoring

and evaluating the internal states of others) [40]. The results here presented support this no-

tion, in that neuronal correlates of performance monitoring mechanisms were observed for a

range of tasks, from a task requiring the monitoring of simple stimulus-outcome congruency

(Chapter 4) up to a scenario requiring inference of covert intentions/goals from overt behavior

(Chapter 5), as well as a scenario which employed manipulation of participants’ belief about

the robot’s internal workings (Chapter 3). In particular, the latter study showed ERP modula-

tions in the EEG showing a decrease at a latency of 200-ms and a peak at 350-ms, both over
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fronto-central recording sites. The resemblance between these spatio-temporal patterns and

that of ErrPs suggests that performance monitoring mechanisms are involved in the engage-

ment task (contribution 1b, Chapter 1, Section 1.4).

In addition, model-based simulations confirmed a relationship between the electrophysiolog-

ical characteristics of the ErrP collected during the empirical study (Chapter 5) and the pre-

diction error employed by the computational model during simulation of the human partici-

pant (Chapter 6). Thus, in conjunction with previous works, our empirical (Chapters 3-5) and

simulation-based findings (Chapter 6) support the ErrP as an informative, reliable, and well

decodable (in single-trial) neuro-cognitive measure of expectation mismatch across a wide

spectrum of scenarios. In conclusion, these findings point toward the need of more prominent

exploitation of the ErrP in future empirical HRI studies involving neuro-cognitive measures.

ErrPs for offline assessment of robot behavior and HRI
The first two studies (Chapter 3 and 4) demonstrated the feasibility to decode from the EEG

of the human interaction partner useful information for the assessment of robot behavior and

HRI. In the first study (Chapter 3), a person’s intention to engage or to get engaged with the

robot via gaze contact was shown to be decodable offline from the EEG of the human inter-

action partner with an offline accuracy of average 80.4% across 5 participants (contribution

1a, see Section 1.4). The results further demonstrated how differential human beliefs about

the robot and the social role participants believed to have in the interaction are reflected in

significant modulations of the ERP upon human-robot gaze-contact, modulations that quali-

tatively resembled those of an ErrP (contribution 1b, see Section 1.4). This finding let us to

focus on ErrPs and performance monitoring as the central neurophysiological mechanism in

the subsequent study (Chapter 4). Here, we demonstrated that ErrPs in response to the hu-

man observation of robot behavior are informative with regard to the correctness of performed

robot actions and can be decoded in a binary fashion with an offline accuracy of average 69%

across 11 participants (contribution 2a, Chapter 1, Section 1.4). The discrepancy observed in

cross-comparing (contribution 2b, Chapter 1, Section 1.4) the decoding performance of ErrPs

in response to robot actions as compared to procedurally equivalent screen-based cursor ac-

tions (offline accuracies of 91% across 11 participants) were a surprising result, but consistent

with the observations reported by others, such as in [174]. In conclusion, the experimental

results of this thesis demonstrate the feasibility of assessing robot behavior on a single-trial

level (assessment of individual robot actions) by means of EEG-based measures, in partic-

ular, ErrPs. The findings on between stimuli differences of ErrP observability point towards

the demand for further thorough investigation of the factors influencing/modulating ErrPs, to

further consolidate implications towards their usability for assessment of robot behavior and

HRI (see Outlook below).

ErrPs for online adaptation of robot behavior and HRI
Beyond the observability and decodability of ErrPs in the context of HRI, the thesis showed

that such decoded ErrPs can be used to online adapt robot behavior towards human expecta-
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tions, which themselves could be volatile, e.g. human adapting also to the robot (human-robot

co-adaptation). Specifically, we addressed this in a closed-loop experimental setup in which

participants were asked to guess from the gazing behavior of a humanoid robot which of

three objects it had selected (Chapter 5). The robot’s behavioral policy started with zero prior

knowledge and was updated only based on online decoded ErrPs from the human interaction

partner. This had an online accuracy of 81.8% across 13 participants and, crucially, while

the robot’s policy was updated, the human partner could as well change/adapt expectations

towards the robot. Even though human-robot co-adaptation varied across participants, co-

adaptation was successful for the majority of them (10 out of 13 participants), with most robot

behavioral policies converging towards plausible policies (contribution 3a, Chapter 1, Section

1.4). The experimental study demonstrated furthermore that relatively complex robot behavior

consisting of sequences of actions can be updated based on delayed feedback derived from

online decoded ErrPs (after human observation of the action sequence), an important aspect

in view of the development of more naturalistic HRI systems (contribution 3b, Chapter 1, Sec-

tion 1.4). The results of this study provided first empirical evidence for the usefulness of ErrPs

as a feedback signal to mediate human-robot co-adaptation.

Technical, rather than human factors, influence ErrP-based co-adaptation in
HRI: guidelines for future studies and systems development
Beyond the empirical findings of the human participant study (Chapter 5), we proposed a

computational model of human decision making and learning (Chapter 6). This model (contri-

bution 4a, Chapter 1, Section 1.4) was subsequently employed in model-based simulations to

explore the influence of potential human and technical factors on success of human-robot co-

adaptation (contribution 4b, Chapter 1, Section 1.4): Overall, the simulation results attributed

a more important role to technical factors and a minor role to human factors. This finding

supports the generalization of the experimental setup across participants as long as accom-

panied by technical improvements. In particular, simulation results attributed different impor-

tance to ErrP-decoder true-positive and true-negative rates, with successful co-adaptation

being mainly driven by non-error rather than error decoding rates. This finding suggests that

future similar experimental studies may benefit from the use of biased ErrP-decoders.

The simulations further enabled the cross-comparison of different robot learning paradigms

and demonstrated Q-learning to significantly outperform the algorithm used in the empirical

study. Hence, while the empirical study (Chapter 5) showed convergence to be possible with

a policy gradient based algorithm, according to simulations, the results of our study would

have significantly benefited from using Q-learning algorithm instead (Chapter 6). Simulations

also confirmed that extensions to larger state-spaces are feasible and mainly accompanied

by longer convergence times. This proved, on a theoretical level, that ErrP-based human-

robot co-adaptation can be extended to more complex HRI. Overall the findings of the model-

based simulations demonstrated the ErrP-based co-adaptation to be a promising approach

in HRI research and may enable not only the development of a new type of user-adaptive
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artificial systems, but likewise provide an alternative means to study the neurophysiological

mechanisms of human social cognition in relation to performance monitoring (see Outlook

below).

Outlook

Considering the work developed in this thesis, general topics for future research concern-

ing both, the utilization of ErrPs for assessment and adaptation of robotic systems, include:

(1) novel decoding methods for overall improvement of ErrP decoding rates and reduction

of variability across participants, (2) novel methods for reduction of calibration time towards

zero-calibration, universally applicable “plug-and-play" ErrP-decoders (across participants and

tasks), (3) novel methods for asynchronous decoding of ErrPs, making ErrP decoding useful

in scenarios where no precise information about the timing of events is available (4) novel ap-

proaches to practical and wide-spread accessible EEG technology allowing for easy handling

and reliable measurement and ErrP decoding outside the laboratory.

Over the last years, a relevant side-topic of the author’s research included the development

of functional prototypes of ease-of-use, inexpensive, and unobtrusive EEG systems. The

prototypes and their relevance for enhanced practicality in measurement and decoding of

ErrPs are reported in Appendix B.

Assessment: Identification of factors influencing observability and
decodability of ErrPs in HRI
One important aspect requiring further clarification concerns the investigation of possible fac-

tors influencing ErrPs obtained in response to robot behavior. We propose a series of human

participant studies targeting the following dimensions:

• ErrPs seem to be modulated by the degree of event characteristic of observed stimuli ,

e.g. more distinct in response to event-based stimuli which are temporally well isolated ver-

sus gradually unfolding stimuli embedded in continuous trajectories [159]. The first dimen-

sion, thus, concerns the investigation of ErrPs in response to stimuli with varying levels of

event-characteristic. On the experimental level, we plan to realize this by varying the speed

(or torque) of certain robot actions, e.g. robot head movements in a joint attention task,

robot manipulator reaching actions in a collaborative assembly task, or changes in robot

facial expressions in a social interactive task. We hypothesize the strength of the ErrP to

be correlated negatively with the duration of events (duration of execution of incremental

robot actions).

• While it has been shown feasible to detect ErrPs in response to unexpected robot actions,

it remained so far unexplored if ErrPs can be observed also in response to failed occur-

rence of expected stimuli . Being able to decode ErrPs in the latter case is particularly

important in the domain of collaborative HRI, e.g. to cover situations where the human
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partner expects the robot to take an action it fails to execute. The second dimension, thus,

concerns the investigation of ErrPs in response to non-occurring expected stimuli. On the

experimental level, we plan to realize this in a human-robot collaborative sorting task in

which the robot fails in some situations to sort specific objects it has been assigned to or

does so only after an interval of time unknown to the participant. We hypothesize that ErrPs

can be observed in response to non-occurrence of expected events, however with signif-

icantly lower effect strength compared to ErrPs in response to occurrence of unexpected

events. The effect strength likely depends on the participant’s precision of time-estimation

as to when to expect the event, a variable which certainly varies within and across partici-

pants due to fluctuating levels of attention.

• A challenging dimension to investigate concerns the extent as to which ErrPs are influ-

enced by human’s prior expectations towards the robotic system [240]. Robots with

human-like appearance, such as androids, can raise expectations of human-like behavior

and capabilities; violations of these expectations due to slight deviations from human-like

characteristics can cause odd feelings in human observers (known as the uncanny valley

effect [241]). The degree of expectation violation naturally depends on the level of expec-

tation prior to the observed violation. Therefore, a robotic system which does not raise

strong human expectations may result in less distinct ErrPs. On the experimental level,

we plan to evaluate this by varying levels of human likeness of a simulated robotic agent

executing the same or similar actions (as in [18] or [19]). Alternatively, one could use belief-

manipulations (as in Chapter 3), and this way manipulate expectations about the robot’s

goals / intentions underlying a particular behavior. Modulations of ErrPs could be derived

from analyses of correlations with subjective ratings of participants’ individual beliefs and

expectations towards the robotic system.

• Besides the appearance and characteristics of the robotic system, the human’s perceived

importance of robot actions is likely to be another factor influencing ErrPs. The degree

of importance of robot actions to the human interaction partner’s individual and/or team

success likely modulates how closely he/she would monitor the robot’s behavior. This in

turn likely affects the observability and decodeablity of ErrPs. On the experimental level, we

plan to address this by manipulating the significance of robot actions for the human partner

by varying rewards given for joint or individual task success. This requires an experimental

HRI scenario, e.g. a human-robot assembly task, in which task success does not rely on

collaboration, but collaboration is gradually encouraged by providing varying levels of joint

reward. We hypothesize the strength of the ErrP to vary strongly on the single-trial level for

robot actions with low importance for the human partner (e.g. high during phases in which

the participant evaluates the importance of robot actions). Vice versa, we expect ErrPs to

be more consistent on single-trial level if robot actions are consistently important for the

participants’ individual or team success.
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Adaptation: Towards formalization of ErrP-based co-adaptation in
collaborative human-agent interaction
In the co-adaptation study presented in Chapter 5 adaptation of agent behavior was based

on (mis-)matching beliefs of the human participant about the agent’s goals. Essentially, this

resulted in the agent’s behavior converging towards participants’ expectation about its behav-

ior and goals, while these expectations may as well dynamically change (adapt to the agent)

throughout the experiment. The experimental data demonstrated that this approach resulted

in successful co-adaptation in the majority of cases. However, the entanglement of both the

agent policy and participant’s expectations do not allow further post-hoc analyses about how

this co-adaptation was achieved (e.g. who adapted in which phases to whom and when did

the implicit agreement occur).

We propose therefore a theoretical extension of our approach to cover above considerations.

Here, we draw upon the concept of “ToM (theory of mind)” according to Premack and Woodruff

(1978) [242] which describes a mental process going beyond the ability to mentalize about the

internal states, intentions, and goals of others. In particular, ToM proposes that in the context

of cooperative or competitive interaction, the ability of mentalizing must be extended to include

recursive representations of reciprocal beliefs (others’ belief about our intentions; their model

about our belief about their intentions, etc; see Figure 39(b)). The proposed framework is illus-

trated in 39(a) and describes a reciprocal interaction between two partners, e.g. a human (H)

and an agent (R). Both partners operate based their own policy (πH and πR) describing their

behavior in the respective interaction scenario (first order: “my belief of my policy"). Further-

more, both partners maintain an estimate of the other’s policy (π′H and π′A) which is inferred by

observing the other’s behavior (second order: “my belief of your policy"). Lastly, both partners

maintain an estimate (π′′H and π′′R) of the other’s estimate of their own policy (third order: “my

belief of your belief of my policy"). Crucially, the third order inference of the agent’s estimate

π′′R of the humans estimate of the agent’s policy is inferred from online decoded ErrPs during

human inference π′R of the agent’s policy. Adaptations of own policies involve policy estimates

of second and third order inference: πnewH = f(πoldH , π′R, π
′′
H) and πnewR = f(πoldR , π′H , π

′′
R).

To address this on the experimental level, we propose to start with a simplified testbed with

a constrained state-space and ground truth access to all actions performed by both human

and agent. This allows for reciprocal policy inference within reasonable time constraints and

ensures policies are of limited complexity to facilitate data analysis and interpretation. In 2008

and 2010, Yoshida and colleagues proposed an experimental setup which constitutes a suit-

able testbed for our case [243, 244]. They used a variant of Stag Hunt (see Figure 39(c)), a

game originally described by Jean-Jacques Rousseau (see also [245]). Here, two players go

on a hunt and can choose between hunting a stag or a hare. Crucially, hunting the stag (high

payoff) requires cooperation between the players, whereas hunting the hare (low payoff) can

be performed individually. This creates a “trust dilemma" (conflict between safety and social

cooperation) forcing both partners to infer the other’s policy (intention to cooperate) to obtain

high payoff in the long run. Yoshida and colleagues used this setup to model ToM based on

behavioral data of human participants [243] as well as for the study of neural processes in-
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volved in mentalizing using fMRI [244]. As a preliminary step towards validating the testbed for

our research goals, we performed a pilot EEG study with five participants. Here, participants

played the game with a computer agent which followed a simple deterministic decision policy.

The goal of the pilot was to validate if defective agent behavior (actions deviating from the

policy) would result in observable ErrPs. Indeed, the ErrP-characteristic N2-P3 complex was

visible in the majority of participants (see examples of two participants in Figure 39(d)). Based

on these results, we consider the testbed as a suitable experimental setup to validate the pro-

posed theoretical extension of ErrP-based human-agent co-adaptation. Upon validation, we

plan to address the following aspects in follow-up empirical studies:

• Investigation on how to perform policy updates based on functional combination of first,

second and third order policies. To approach this, we will start by collecting human-human

interaction data in the same testbed and modelling the behavioral data based on the ap-

proach of [243]. This will provide insight on how this functional combination is performed in

human participants allowing for the derivation of a computational account implementable

in the agent framework.

• Investigation of co-adaptation by joint study of human and agent policy adaptations. Here,

we plan to manipulate the agent’s level of adaptiveness from low (e.g. enforcing opti-

mal team behavior on the human) to high adaptiveness (e.g. following human subjective

preferences). The analysis of joint task performance in relation to low versus high agent

adaptiveness allows then the quantification of how much the human participant adapted to

the agent.

• Validation of the extended ErrP-based human-agent co-adaptation approach in the context

of agents with limited perceptual abilities, e.g. unable to infer reliable estimates π′H of the

human interaction partner’s policy. This simulates the case of a major limitation in real-

world HRI, where often reliable modeling of the human partner is infeasible due to limited

or noisy robot perception. The goal of this investigation is to validate if comparable co-

adaptation performance can be realized when agents update their policy without a policy

estimate of the human partner: πnewR = f(πoldR , π′′R). This would significantly facilitate

co-adaptation in real-world HRI, by circumventing the need for robot inference of human

policies.
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Figure 39 Formalization of ErrP-based co-adaptation: (a) Extended framework for human-agent co-adaptation using
error-related potentials. Both interaction partners operate based their own policies (first order: πH and πR), estimates of the
other’s policy (second order: π′H and π′A), as well an estimate of other’s estimate of their own policy (third order: π′′H and π′′A).
Agent third order inference is performed by inferring from online decoded ErrPs. (b) First-, second-, and third-order inference of
mentalizing about the internal states, intentions, and goals of others. (c) Variant of Stag Hunt, a famous game originally
described by Jean-Jacques Rousseau as a suitable testbed for the extended framework for human-agent co-adaptation using
error-related potentials. Players p1 and p2 can choose between collaboratively hunting a moving stag (big grey square) or
individually hunt static hares (small grey squares) [B and C, reprinted from Yoshida et al. 2008 and 2010 [243, 244]]. (d)
Average time-courses of event-related potentials in response to non-defective (blue) and defective (red) agent moves in two
participants. Black line shows the difference wave (defect minus non-defect) with the characteristic N2-P3 complex, also visible
in the topographic representation at specific time-points.

131



Bibliography

[1] Chris D Frith and Uta Frith. How we predict what other people are going to do. Brain

Research, 1079(1):36–46, 2006.

[2] Michael Tomasello, Malinda Carpenter, Josep Call, Tanya Behne, and Henrike Moll.

Understanding and sharing intentions: The origins of cultural cognition. Behavioral and

Brain Sciences, 28(5):675–691, 2005.

[3] Michael Tomasello and Malinda Carpenter. Shared intentionality. Developmental Sci-

ence, 10(1):121–125, 2007.

[4] Bradley Hayes and Brian Scassellati. Challenges in shared-environment human-robot

collaboration. Learning, 8(9), 2013.

[5] Agnieszka Wykowska, Thierry Chaminade, and Gordon Cheng. Embodied artificial

agents for understanding human social cognition. Philosophical Transactions of the

Royal Society B: Biological Sciences, 371(1693):20150375, 2016.

[6] Eva Wiese, Giorgio Metta, and Agnieszka Wykowska. Robots as intentional agents:

using neuroscientific methods to make robots appear more social. Frontiers in Psychol-

ogy, 8:1663, 2017.

[7] Thomas B Sheridan. Human–robot interaction: status and challenges. Human Factors,

58(4):525–532, 2016.

[8] Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz, Alan

Schultz, and Michael Goodrich. Common metrics for human-robot interaction. In Pro-

ceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction,

pages 33–40. ACM, 2006.

[9] Astrid Weiss, Judith Igelsböck, Manfred Tscheligi, Andrea Bauer, Kolja Kühnlenz, Dirk

Wollherr, and Martin Buss. Robots asking for directions: the willingness of passers-by

to support robots. In Proceedings of the 5th ACM/IEEE International Conference on

Human-Robot Interaction, pages 23–30. IEEE Press, 2010.

[10] Agnieszka Wykowska, Jasmin Kajopoulos, Miguel Obando-Leitón, Sushil Singh

Chauhan, John-John Cabibihan, and Gordon Cheng. Humans are well tuned to de-

tecting agents among non-agents: examining the sensitivity of human perception to be-

havioral characteristics of intentional systems. International Journal of Social Robotics,

7(5):767–781, 2015.

132



[11] Cindy L Bethel and Robin R Murphy. Review of human studies methods in HRI and

recommendations. International Journal of Social Robotics, 2(4):347–359, 2010.
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Appendix A: Supplementary material

Supplementary material for chapter 4

Table 11 CURSOR behavioral data: scenario order (C=cursor; R=robot), mean reaction times (RT ), and number of human
committed errors (nErr).

s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s13 AVG±SD

scen. order R/C C/R R/C C/R R/C C/R R/C C/R R/C C/R C/R

RT [ms] 425.9 408.6 340.9 421.5 358.4 516.0 356.7 391.9 599.0 396.6 418.1 421.2±75.4

nErr 16 12 15 10 20 4 48 36 3 17 2 16.6±14.1

Table 12 ROBOT behavioral data: scenario order (C=cursor; R=robot), mean reaction times (RT ), and number of human
committed errors (nErr).

s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s13 AVG±SD

scen. order R/C C/R R/C C/R R/C C/R R/C C/R R/C C/R C/R

RT [ms] 396.3 390.7 355.4 397.4 359.7 452.3 389.0 379.2 508.5 394.6 411.2 403.1±43.4

nErr 20 11 4 14 8 12 18 33 14 28 13 15.9±8.5

Table 13 Spatio-temporal 2D correlation coefficient between difference average ERP of CURSOR and ROBOT scenario.

s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s13 AVG±SD

r 0.53 0.48 0.84 0.15 0.54 0.42 0.16 0.24 0.13 0.63 0.55 0.42±0.22

Table 14 CURSOR within-session cross-validation results: Overall accuracy (Acc), true-positive rate / machine-error
recognition rate (TPR), true negative rate / non-error recognition rate (TNR), and area under receiver operator curve (AUC).

s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s13 AVG±SD

Acc [%] 85.9 88.6 96.3 86.5 88.3 96.1 87.1 94.4 93.6 88.5 90.8 90.6±3.9

TPR [%] 82.0 84.1 91.2 84.4 84.1 94.3 83.9 91.6 92.8 85.1 86.7 87.3±4.3

TNR [%] 87.8 91.1 99.1 87.7 90.4 97.0 88.9 96.0 94.0 90.1 92.5 92.2±3.8

AUC 0.91 0.94 0.98 0.91 0.92 0.99 0.91 0.98 0.98 0.93 0.94 0.95±0.03
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Table 15 ROBOT within-session cross-validation results: Overall accuracy (Acc), true-positive rate / machine-error recognition
rate (TPR), true negative rate / non-error recognition rate (TNR), and area under receiver operator curve (AUC).

s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s13 AVG±SD

Acc [%] 65.9 69.8 80.2 67.0 77.3 76.9 60.2 64.3 54.5 67.1 75.6 69.0±7.9

TPR [%] 61.8 70.3 72.3 64.6 72.6 72.6 61.0 59.9 53.3 67.4 71.5 66.1±6.5

TNR [%] 67.9 69.5 85.0 68.3 80.1 79.0 59.7 66.7 55.0 66.9 78.0 70.6±9.1

AUC 0.68 0.75 0.88 0.72 0.82 0.83 0.64 0.66 0.56 0.70 0.82 0.73±0.10

Table 16 Cross-session validation results. Classification model trained with CURSOR data and tested on ROBOT data: Overall
accuracy (Acc), true-positive rate / machine-error recognition rate (TPR), true negative rate / non-error recognition rate
(TNR), and area under receiver operator curve (AUC).

s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s13 AVG±SD

Acc [%] 72.7 72.8 76.0 60.9 71.7 72.3 56.0 69.0 62.8 67.4 69.4 68.3±6.1

TPR [%] 34.2 45.4 37.8 54.1 43.0 15.2 29.1 42.1 11.6 43.6 28.2 34.9±13.0

TNR [%] 91.1 87.9 99.4 64.6 89.2 99.7 72.3 83.5 88.8 80.1 93.8 86.4±10.8

AUC 0.67 0.71 0.88 0.62 0.76 0.79 0.57 0.65 0.50 0.64 0.71 0.68±0.11

Table 17 Cross-session validation results.Classification model trained with ROBOT data and tested on CURSOR data: Overall
accuracy (Acc), true-positive rate / machine-error recognition rate (TPR), true negative rate / non-error recognition rate
(TNR), and area under receiver operator curve (AUC).

s02 s03 s04 s05 s06 s07 s08 s09 s10 s11 s13 AVG±SD

Acc [%] 71.3 76.0 87.6 70.6 84.4 83.7 60.8 84.7 42.9 69.8 72.1 73.1±13.0

TPR [%] 64.7 84.5 97.1 63.5 75.9 95.7 19.5 89.5 36.9 58.4 87.6 70.3±24.8

TNR [%] 74.4 71.3 82.5 74.8 88.7 77.7 84.4 82.1 45.9 75.1 65.2 74.7±11.6

AUC 0.76 0.85 0.98 0.76 0.85 0.95 0.50 0.92 0.39 0.73 0.85 0.78±0.18
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Supplementary material for chapter 5

Table 18 Offline (CALIB) cross-validation accuracies [%] including selected regularization parameter λ and online classification
accuracies [%] during co-adaptation runs (CORL-I, CORL-II, and CORL-IV). Please note, no results are reported for CO-RL-III,
since no ground truth data was recorded during this part of the experiment. Successful co-adaptation runs are marked in blue.
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CALIB CORL-I CORL-II CORL-IV

s03 0.95 68.8 70.1 69.3 91.7 50.0 90.0 93.1 57.1 78.0 91.5 100.0 92.0

s04 0.95 86.3 86.2 86.3 100.0 83.3 92.0 95.2 82.8 88.0 95.2 93.1 94.0

s06 1.00 83.0 80.0 82.0 85.7 72.2 76.0 80.0 93.3 84.0 80.0 43.3 58.0

s07 0.85 82.8 79.9 81.4 75.0 84.2 82.0 80.7 79.0 80.0 93.8 82.4 86.0

s08 0.95 87.7 81.5 85.7 97.4 58.3 88.0 92.6 73.9 84.0 96.6 81.0 90.0

s09 0.95 93.5 91.4 92.8 89.5 83.3 88.0 88.9 78.6 86.0 91.9 69.2 86.0

s11 0.70 70.4 66.3 68.9 79.0 71.0 74.0 71.4 44.8 56.0 79.2 53.9 66.0

s12 0.95 85.3 83.8 84.7 96.8 79.0 90.0 95.2 50.0 88.0 93.0 85.7 92.0

s14 0.75 89.5 87.5 88.7 95.5 83.3 94.0 80.0 55.6 58.0 96.4 59.1 80.0

s15 0.95 72.6 71.9 72.4 90.5 75.0 88.0 85.7 72.4 78.0 95.4 57.1 90.0

s16 0.95 73.9 72.0 73.3 60.9 81.5 72.0 26.7 82.9 66.0 87.5 80.0 86.0

s17 0.90 81.3 82.7 81.8 71.4 93.1 84.0 94.4 85.7 92.0 87.1 89.5 88.0

s18 0.95 80.5 76.3 78.9 90.9 64.3 76.0 88.9 58.5 64.0 87.2 72.7 84.0

AVG 80.2 79.2 80.5 86.5 75.3 84.2 82.5 70.4 77.1 90.4 74.4 84.0

±SD ±7.7 ±7.5 ±7.5 ±11.7 ±12.0 ±7.4 ±18.3 ±15.4 ±12.1 ±5.8 ±17.0 ±10.6

s05 1.00 50.0 51.8 50.5 63.0 56.5 60.0 68.4 35.5 48.0 57.1 34.5 44.0

s10 1.00 83.4 30.7 64.4 100.0 2.9 32.0 100.0 0.0 28.0 100.0 0.0 26.0

s13 0.95 51.1 48.9 50.2 85.7 55.2 68.0 61.1 68.8 66.0 68.4 67.7 68.0
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Table 19 Average guessing performance [%] within five segments of 10 trials each for each co-adaptation run (CORL-I,
CORL-II, and CORL-IV). Please note, no results are reported for CO-RL-III, since no ground truth information was recorded
during this part of the experiment. Successful co-adaptation runs are marked in blue.
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CORL-I CORL-II CORL-IV

s03 80 100 100 100 100 96 60 50 20 70 90 58 90 90 90 100 100 94

s04 10 40 50 70 90 52 40 20 50 60 40 42 30 40 20 60 60 42

s06 20 40 10 30 40 28 40 60 80 80 90 70 60 50 40 50 0 40

s07 10 20 40 30 20 24 40 70 70 70 60 62 40 10 60 20 30 32

s08 50 80 80 90 80 76 10 60 80 70 50 54 30 50 30 80 100 58

s09 30 70 90 90 100 76 50 40 70 70 100 72 30 80 100 80 80 74

s11 20 30 70 40 30 38 40 10 30 70 60 42 40 50 60 60 30 48

s12 60 70 70 90 20 62 60 60 100 100 100 84 70 80 80 100 100 86

s14 60 100 100 100 80 88 40 0 0 0 10 10 30 40 100 80 30 56

s15 40 100 90 100 90 84 30 0 30 50 100 42 70 70 90 100 100 86

s16 10 30 50 90 50 46 20 10 30 30 60 30 50 80 80 90 100 80

s17 10 20 40 50 90 42 60 90 100 40 70 72 30 80 60 60 80 62

s18 10 50 40 60 60 44 20 0 30 0 40 18 40 80 80 90 100 78

MEDIAN 20 50 70 90 80 52 40 40 50 70 60 54 40 70 80 80 80 62

s05 60 40 70 30 70 54 40 20 60 30 40 38 40 50 50 40 30 42

s10 10 30 20 50 40 30 40 10 10 20 60 28 50 0 20 20 40 26

s13 70 40 20 50 30 42 50 50 20 50 10 36 20 40 90 10 30 38
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Table 20 Average number of robot gaze transitions until participant decision (decision time). Successful co-adaptation runs are
marked in blue.
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CORL-I CORL-II CORL-IV

s03 25 25 26 23 14 23 20 21 26 21 21 22 20 15 10 6 6 12

s04 9 13 11 10 10 11 11 9 8 8 8 9 11 11 12 12 16 12

s06 22 21 40 37 41 32 29 51 26 28 25 31 46 38 56 59 39 48

s07 9 8 6 4 7 7 11 7 4 4 3 6 4 3 4 4 4 4

s08 15 11 11 19 18 15 17 11 9 8 9 11 12 12 12 11 10 11

s09 19 17 14 13 12 15 16 11 17 8 8 12 16 9 8 6 7 9

s11 17 8 10 12 11 12 10 9 11 10 11 10 10 9 10 14 9 11

s12 22 16 17 18 16 18 23 14 11 8 8 13 12 13 12 9 10 11

s14 16 14 10 9 11 12 22 15 19 16 17 18 21 21 14 18 19 19

s15 23 13 12 9 6 12 20 13 27 17 7 17 8 8 7 6 6 7

s16 41 20 16 21 26 25 28 33 16 19 17 23 35 26 8 8 13 18

s17 17 11 13 13 12 13 12 11 15 15 11 13 15 17 18 13 15 15

s18 13 11 9 9 13 11 12 15 15 11 10 13 17 19 18 13 12 16

MEDIAN 17 13 12 13 12 13 17 13 15 11 10 13 15 13 12 11 10 12

s05 11 10 12 11 10 11 13 12 15 18 15 14 12 14 19 14 16 15

s10 8 6 6 7 6 7 8 6 7 6 9 7 11 10 11 9 11 10

s13 18 22 23 23 23 22 19 13 13 17 21 16 22 20 18 20 22 20
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Supplementary material for chapter 6
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Figure 46 Single-trial spatio-temporal correlation coefficients between absolute model prediction error and ERPs.
Supplementing Figure 31 with results for each participant individually.
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Appendix B: Ease-of-use EEG technology for
practical ErrP decoding

Introduction

Ever since the invention by Hans Berger in 1926 [50], EEG has been established as one of

the main technologies for monitoring brain activity. EEG is currently used for diagnosis (e.g.

epilepsy) and long-term monitoring (e.g. sleep monitoring) in clinical contexts; for research in

human cognitive neuroscience; for BCI applications allowing paralyzed individuals rudimen-

tary communication with their environment; and finally, for BCI-based neuro-rehabilitation of

sensorimotor deficits (e.g. stroke). It is widely acknowledged that especially BCI applications

could bring most benefit to the patients if they were applicable in the patient’s homes [49, 246].

Despite technological advances during the last decades, EEG technology is, however, still

rarely used outside the research laboratories and clinical contexts [247]. More recently de-

veloped alternative technologies for monitoring brain activity do not provide a solution to this

quest: fMRI and positron emission tomography (PET) are very expensive, non-portable and

require patients to remain still/immobile during data acquisition. fNIRS is comparably expen-

sive and causes limited wearing comfort (tight mounting of sensors). Invasive technologies,

such as intracortical EEG (ECoG), and single- and multi-electrode recordings require surgical

implantation and as such are accompanied by corresponding health risks. EEG technology on

the other hand is comparably inexpensive and comfortable, non-invasive, portable, and allow-

ing for patient mobility. Therefore, we believe that near future home-use applications involving

neuro-recording will likely remain EEG-based. Despite the advantages of EEG technology,

there are still several limitations which render the technology impractical for straightforward

home-use:

• Handling EEG technology requires professional training, excluding untrained personnel

such as nurses, care givers, and users / patients themselves.

• EEG equipment has obtrusive looks which can raise distrust or embarrassment in users /

patients.

• EEG signal acquisition is very sensitive to external interference and artifacts resulting in

limited data quality especially when recording in uncontrolled environments (outside the

laboratory and clinical contexts).

• EEG equipment is still relatively expensive ranging within prices of 5-100K EUR

The work presented in this chapter was published in part as a conference paper in November 2017: Ehrlich, S.,
Alves-Pinto, A., Lampe, R., & Cheng, G. (2017). A simple and practical sensorimotor EEG device for recording
in patients with special needs. In Neurotechnix2017, CogNeuroEng 2017, Symposium on Cognitive Neural
Engineering. DOI: https://doi.org/10.5220/0006559100730079. Copyright permission see Appendix C.
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Along this line, Mihajlovic and colleagues asked an essential question in the title of their 2015

survey paper: "Wearable, Wireless EEG Solutions in daily life applications: What are we

missing?" [247]. From their survey, they concluded that future development of EEG-based

neuro-technology would benefit from:

• application-driven design with limited functionality tailored to the target application.

• end-user driven development involving end-users, e.g. patients, as early as possible in the

development process.

• standardization and sharing of EEG data allowing for benchmarking and facilitating the

development of novel processing and decoding methods on larger datasets.

• development of novel methods to handle EEG artifacts to enhance data quality of record-

ings in uncontrolled environments.

Figure 47 Overview of (in part commercially available) ease-of-use EEG systems: Ease-of-use EEG devices spanning from
research-grade systems at the left delivering near clinical-grade data quality for BCI research and applications to
consumer-grade systems on the right with limited data quality designed for entertainment, gaming, and neurofeedback
applications. Please note, our adapted device (ICS-Headset) being located somewhat in the middle between research-grade
and consumer-grade devices.

In recent years, several companies and institutions have contributed with such ease-of-use,

application-specific EEG systems which in part are already commercially available. Some

examples are illustrated in Figure 47, spanning from research-grade systems at the left deliv-

ering near clinical-grade data quality designed for BCI research and applications to consumer-

grade systems on the right with limited data quality designed for entertainment, gaming, and

neurofeedback applications. When looking at the range of commercially available EEG sys-

tems an evident gap between these two categories can be observed: What is missing are

EEG systems which provide easy handling and unobtrusive design while still guaranteeing

near research-grade data quality.
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The prototypes developed at the Chair for Cognitive Systems (TUM) during the last years

make a contribution in line with this missing type of EEG systems. An initial functional pro-

totype was developed early 2016 for the recording of sensorimotor rhythms in adolescents

and adults diagnosed with CP. An improved follow-up functional prototype was developed

later in 2016 and employed in experimental studies with healthy participants. Both functional

prototypes were validated with regard to their usability for measuring sensorimotor rhythms;

the follow-up functional prototype was furthermore validated with regard to its usability for the

measurement and decoding of ErrPs. This chapter presents the technical realization of these

prototypes and their functional validation in experimental studies.

An unobtrusive, ease-of-use EEG prototype: The ICS-Headset

The development of the initial prototype was motivated by the special requirements of a study

of sensorimotor disabilities in patients with motor disorders planned by collaborators from the

TUM medical faculty. Envisaged, in particular, were adults and adolescents with a diagnosis of

CP, a medical condition characterized by motor deficits caused by damage to the developing

brain pre-, peri- or post-natal. The main hypothesis was that sensorimotor rhythms observable

in patients’ EEG would undergo long-term changes during a 6-weeks training of hand-motor

coordination (in form of piano training). Sensorimotor rhythms are characterized by ERS/ERD

of the brain mu- and beta rhythm and constitute a neuronal correlate of motor action [248].

ERS/ERD was here measured during the execution of a hand motor task adapted from the

SRTT (serial reaction time task) [249].

The envisaged patient group present impaired muscular imbalance and increased muscular

tonus. Deficits are not progressive but persist throughout the patients’ life. The degree of

impairment varies depending on the brain areas affected and motor limitations are often ac-

companied by learning difficulties, attention problems, perceptual impairments, speaking dif-

ficulties and/or epilepsy. The multi-symptomatology in CP makes it a challenging condition to

research and demands a multidisciplinary approach when investigating possible rehabilitation

strategies. From the lifelong medical follow-up of patients it becomes clear that, whilst primary

medical care provides vital treatment, patients need for inclusion is likely to benefit strongly

also from the collaboration between medical expertise, neuroscience and advances in neu-

rotechnology. The following technical requirements were defined to both address functional

specifications in line with the objectives of the planned study as well as design specifications

that conform to the special needs of above described patient group.
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Technical requirements
Technical adaptations were performed in a commercially available EEG system to conform to

the following requirements:

• unobtrusive visual appearance that is not immediately associated with a clinical examina-

tion device.

• short preparation time: < 5 minutes.

• comfortable wearing for up to 30 minutes.

• easily adapted to different head sizes (from children to adults).

• electrodes positioning according to the 10-20 system [128] and covering the majority of

sensorimotor areas.

• resistance to hygienic treatment.

• positive reception/good acceptance of the device by the participants.

Figure 48 EEG prototypes developed at the Chair for Cognitive System (TUM): History of development of our adapted EEG
device (ICS-headset). 13 semi-dry EEG channels covering sensorimotor areas are embedded into the elastic sheet between
the earpieces. Note the optional electrooculogram (EOG) channel attached to the cheek or forehead for capturing vertical or
horizontal eye movements. (a) Design prototype; (b) initial functional prototype used in a study with adolescents and adults
diagnosed with CP, published in [186]; (c) patients wearing our EEG device while performing the SRTT in the first data
collection session of [186]; (d) follow-up functional prototype; (e) Electrodes positioning of our adapted EEG device according to
the international 10-20 system [128].

Design concept and technical realization
Standard EEG recording equipment for scientific and medical purposes usually consist of a

cap of flexible fabric with electrode placeholders, an amplifier connected to the electrodes via

cables, and a computer connected to the amplifier recording and storing the data (e.g. Brain

Products actiChamp system). The cap setup allows for flexible and precise positioning of the

electrodes and is comfortable to wear. However, despite the high data precision achieved with
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these systems, some technical aspects make them non-optimal for recordings in the given

clinical populations. Most such systems use gel-based electrodes which require long setup

times, exceeding the patient’s endurance, and are as such not usable. Alternative systems

use dry electrodes (e.g. Guger Technologies g R©.Nautilus system) which significantly reduce

preparation time. However, dry electrodes require firm contact pressure of the electrode on the

scalp to yield good conductivity and as such reduce wearing comfort. Moreover, dry electrodes

are more susceptible to noise and measurement artifacts than gel-based electrodes. At last,

the chin strap for closing and tightening the cap can cause feelings of suffocation and might not

be tolerated by some patients. Also, the chinstrap makes signal acquisition prone to artifacts

resulting from head and face movements as well as talking. Patients with CP, especially

adolescents, are unlikely to sit still for long time. Some systems do not make use of a cap

setup, but rather a frame or flexible headband design, such as the QUASAR HMS, or the

Emotiv Systems’ EPOC. These systems however were also inadequate for the envisaged

group, partially because of their obtrusive appearance, partially because of limited flexibility

for electrode positioning. None of the commercially available systems fulfilled all requirements

which motivated the need for a customized design.

As a compromise between flexible cap and stiff frame setup which does not require a chin

strap we decided for a design mimicking headphones (see Figure 48). Headphones have

natural unobtrusive appearance as people are familiar with using them for music listening.

Furthermore, headphones apply contact pressure around the ears which has proven comfort-

able to wear and allow for tight sit. In addition, the headphones allow the recording electrodes

to be embedded within their headband and consequently to be naturally positioned over motor

areas, necessary to assess sensorimotor-related brain activity. As for sensors and electron-

ics we decided to re-use a worn-off Emotiv EPOC device. Despite the original purpose of

the Emotiv EPOC for gaming and entertainment, there have been numerous scientific papers

making use of the system. The system has been validated with regard to the use for scientific

purposes, such as in [185] and [250]. These works demonstrated that despite lower signal

quality, the system delivers usable data in a wide spectrum of applications. The Emotiv EPOC

sensor technology makes use of a semi-dry solution, namely felt pads soaked with saline so-

lution establishing conductivity between the proband’s scalp and the gold-coated electrodes.

The electrodes require a certain contact pressure but the soft felt pads allow for comfortable

wearing. The Emotiv EPOC headset is a one-size for all frame with a fixed positioning of the

electrodes. Its original layout has mainly channels over the pre-frontal areas.

We freed sensors and electronics from the original plastic frame and included the raw modules

into our headphones setup. A flexible two-layer sheet made of washable fabric was mounted

in between the left and right earpiece, which are held together by two curved metal bars.

The two-layer sheet embeds and hides 13 (of original 14) EEG electrodes and the connecting

cables to the electronics. One channel was spared for capturing vertical eye-movement via

EOG signals (see Figure 48). This allows for either online or post-hoc eye-movement arti-

fact reduction. The right earpiece was used as the housing for electronics, leaving enough
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space to fill it with rubber foam for sustaining sound insulation and ensuring no contact of the

proband’s ear with the electronics. The electronics communicates wirelessly with a transceiver

connected via USB to a recording computer. The original reference channels were replaced

by longer cables connectable to the proband’s left and right mastoids via ECG (electrocar-

diogram) patches. Miscellaneous parts to assemble the whole system were 3D-printed. The

Emotiv EPOC hardware is compatible with open source recording software, such as the Open-

Vibe framework [212]. This allows for convenient access to raw signals and high flexibility in

experiment design and implementation. Proband preparation takes < 5 minutes; after initial

preparation, electrode impedances stay stable for at least 30 minutes. A simple mechanism

allows for quick (< 5 minutes) adaptation of the headset to different headsizes (approx. 52-58

cm in diameter). For hygienic reasons, felt pads can be replaced and the electrode sheet as

well as the earpieces be sanitized. More information is provided in Table 21.

Usability for measurement of sensorimotor rhythms
The usability of the initial functional prototype (see Figure 48(b)) for measuring sensorimotor-

related EEG activity was validated in several experimental tasks including executed and imag-

ined hand/finger-movements. For a systematic assessment of data quality, all experiments

were conducted twice: (1) with a research grade EEG system and (2) with our adapted device

(ICS-headset, initial prototoype). Data was collected from one healthy participant performing

the SRTT in two separate sessions. In the experiment, the participant was presented 1 out

of 4 possible targets on a computer screen and had to respond with a corresponding right

hand key press. In total 40 trials were collected per data set with an inter-trial pause of 10 s.

Each trial consisted of the visual cue presentation and the subsequent participant response.

The first session was recorded using a Brain Products actiChamp 32-channel gel-based ac-

tive electrodes setup with 500 Hz sampling rate. All leads were referenced to the average of

left and right mastoid and impedances were kept ≤5kΩ. The second session took place on

a different day and was recorded using our adapted EEG device with 128 Hz sampling rate.

Also here, all leads were referenced to the average of the left and right mastoid; electrode

connectivity was tested using the Emotiv System’s TestBench
TM

software. Sensors were ad-

justed until connectivity reached the “green” level (corresponds to an impedance of ≤220kΩ

according to a test performed by Badcock and colleagues in 2015 [251]. All data processing

was carried out in MATLAB R©, in part using functions provided by the EEGLAB toolbox [137].

First, the data from the actiChamp device was downsampled to 128 Hz to make it comparable

to the data collected with the adapted device. Then, each dataset was highpass filtered using

a zero phase Hamming Windowed sinc FIR filter with cutoff frequency of 0.5 Hz. The data

was then segmented into epochs, time-locked to the moment of key press. No epochs were

rejected for further analyses.
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Table 21 Facts and figures of the ICS-headset. Some figures (*) were taken from the Emotiv System’s EPOC+ specification,
see https://emotiv.com/store/compare/

Sensors and channels

Number of channels 18 (13 EEG, 1 EOG, 2 Reference
+ 2 axis gyrometer)

Sensor technology* Semi-dry saline soaked felt pads

EEG channel labels (10-20 sys-
tem)

FCz, Cz, CPz, FC3, C1, C3, C5,
CP3, CP5, C2, C4, C6, CP4,
EOG, REF1, REF2

Electronics and signal acquisition

Sampling rate* 2048 Hz internal, filtered and
downsampled to 256 Hz

Frequency response* 0.16 - 43 Hz

Resolution* 14 bit per channel (0.51 µV)

Wireless data transmission* Emotiv System’s proprietary
2.4GHz wireless (custom USB
receiver)

Usability

Internal battery power* Li-poly battery, 680 mAh, > 12
hours

Maximum distance to wireless
transceiver

up to 10 meters, 1 meter recom-
mended to avoid data packet loss

Stability of electrode conductivity tested up to 30 minutes without
re-applying saline solution

Proband preparation time approx. 5 minutes

Applicability with respect to head
size

approx. 52-58cm diameter

Adjustment to different head sizes < 5 minutes

Price per device in total approx. US$799 (Emotiv
EPOC US$ 699 + <US$100 mis-
cellaneous)

Costs for spare parts per data
recording / proband

approx. US$1 (3 single use ECG
patches, 13 felt pads)
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ERS/ERD was computed from the mu-bandpass and beta-bandpass filtered signals according

to Pfurtscheller’s method [248]. The upper panels of Figure 49 show the average ERS/ERD

time-courses of channel C3 comparing both recording sessions. Furthermore, we performed a

time-frequency analysis of channel C3 using the wavelet-based ERSP (event-related spectral

perturbation) technique [252], see Figure 49, lower panels. For ERSP computation we used

the epoch [-3...3] s with respect to key press. Wavelet parametrization was set to 3 cycles for

the lowest frequency (2 Hz) expanding gradually towards half of the number of cycles for the

highest frequency (30 Hz). As a result, we observe clear mu-power suppression and traces

of beta-power suppression in both datasets. There are two main differences between the

two datasets: (1) Motor preparation related ERD onset with respect to the movement onset

appeared earlier in the first dataset compared to the second data set. (2) The recovery time

(event-related synchronization after motor execution) is longer in the second data set (around

1500 ms) compared to the first data set (around 1000 ms). Whether or not these variations

resulted from the different measurement setups or the daily constitution of the participant

cannot be stated with certainty. In any case, the reduction in mu power derived from signals

collected over motor areas that is expected to occur during preparation of movement is visible

in both data sets. This observation, together with the practical advantages of the new EEG

system described above, validates and supports the use of the new adapted EEG system to

assess changes in mu-power ERS/ERD over motor areas. The results are reported in further

detail in [253].

Figure 49 Motor related ERD acquired with research-grade versus ease-of-use recording hardware: Top panels: Analysis of
mu- and beta-power ERD in channel C3 according to [248]. Bottom panels: Time-frequency representation of channel C3
time-locked to the participant’s key press using the wavelet-based ERSP technique.

The same adapted SRTT was then employed to assess, with the adapted device, hand motor-

related ERD in 13 adolescents and adults with and without a diagnosis of CP. Measurements

were performed in a normal office at the day rehabilitation centers attended by the patients.

Data analysis revealed visibility of effects of motor-related ERD in most patients. Consistent
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changes of these effects across recording sessions which could be related to improvements

of hand-motor coordination were however not found. More detailed results are reported in

[186].

A short questionnaire has been delivered to some of the participants after the EEG recordings

to collect the first impressions on the device. Most patients reported the device to be comfort-

able (5 out of 5 persons), not heavy (3 out of 5) and not looking harmful or dangerous (5 out

of 5). None felt bothered by the system, but some were nevertheless aware of it during the

recordings (2 out of 5). Researchers on the other hand were very pleased with the easy way

the system can be set up and with the short preparation time required, an aspect that they

found very helpful when testing all the patients, not only the younger ones.

Usability for measurement and decoding of ErrPs
In order to assess the usability of our adapted EEG device for the measurement and decoding

of ErrPs, we compare the observability of ErrPs in two separate datasets. In both datasets,

participants performed the same experimental task, but signals were acquired with different

recording setups. Subjects were asked to perform an adapted version of the cursor task

(see Chapter 4, [45]). Adaptations to the experimental protocol were as follows: feedback in

form of cursor-movement was delayed by 500 ms, time locked to the participants’ key press

response. This adaptation was introduced to temporally disentangle residual motor-related

effects due to the key press action from effects related to feedback processing. Furthermore,

the experiment time was reduced to 150 trials per participant with an average of 53 error-trials

and 97 non-error trials (error-probability of perr = 35%). Dataset ACTICHAMP1 consists of 18

participants (age: 28.9±4.7, 9 females, 9 males) in total; EEG signals were acquired with a

research-grade EEG system (Brain Products actiChamp amplifier with 32-channel gel-based

electrodes). Dataset ICS-HEADSET2 consists of 13 participants (age: 29.8±5.0, 4 females,

9 males)3; EEG signals were acquired with the follow-up prototype of the ICS headset (see

Figure 48(d)). Further information about the recording setups of both datasets are listed in

Table 22.

In terms of data pre-processing, both dataset were treated identical whenever possible. All

EEG data preprocessing was carried out in MATLAB R©, in part using functions provided by

the EEGLAB toolbox [137]: In order to remove high frequency and power-line noise, we first

filtered the signals of the EEG and EOG channels using a zero phase Hamming windowed

sinc FIR band-pass filter with cutoff frequencies of 1 Hz and 20 Hz. Next, we identified and

interpolated contaminated EEG channels using kurtosis with a threshold of 5%. EOG activity

1 Available for download here: https://github.com/stefan-ehrlich/dataset-errp-coadaptation/tree/
master/data_cursor

2 Available for download here: https://github.com/stefan-ehrlich/dataset-ICS-EEG-headset/tree/
master/data_cursor

3 Both datasets were acquired with a different set of participants during different time periods. Although some
participants might have taken part in both data collection sessions, no particular care was taken to balance the
datasets or identify common participants as this was not expected to affect the results and overall conclusions
reported here.

177

https://github.com/stefan-ehrlich/dataset-errp-coadaptation/tree/master/data_cursor
https://github.com/stefan-ehrlich/dataset-errp-coadaptation/tree/master/data_cursor
https://github.com/stefan-ehrlich/dataset-ICS-EEG-headset/tree/master/data_cursor
https://github.com/stefan-ehrlich/dataset-ICS-EEG-headset/tree/master/data_cursor


Table 22 Overview and comparison of ACTICHAMP and ICS-HEADSET dataset.

Dataset ACTICHAMP ICS-HEADSET

EEG hardware
Brain Products
actiChamp system

Emotiv EPOC+
customized headset

Electrodes 32 active gel-based 14 passive semi-dry

EEG channels

27 channels (FP1, FP2, F3,
F4, F7, F8, FC1, FC2, FC5,
FC6, C3, C4, T7, T8, CP5,
CP6, P3, P4, P7, P8, TP9,
TP10, O1, O2, Fz, Cz, Pz)

13 channels (FCz, Cz, CPz,
FC3, C1, C3, C5, CP3,
CP5,C2, C4, C6, CP4)

EOG channels
3 channels, gel-based (forehead,
left and right outer canthi)

1 channel, ECG patch
(right outer canthi)

Referencing
TP9 + TP10, gel-based
(average mastoids)

TP9 + TP10, ECG patches
(average mastoids)

Data transmission cable-based (USB) wireless data transmission

Sampling rate 1024 Hz 256 Hz

Impedance level ≤ 10kΩ ≤ 220kΩ

in the EEG signals (eye-blink and lateral eye movements) was corrected using a method

suggested by Schlögl and colleagues [179]4. Afterwards, EEG signals were re-referenced

to CAR to further reduce signal contamination due to external noise sources. The data was

further segmented into data epochs [-500...1000] ms for non-error- and error-events time-

locked to the moment of feedback presentation (cursor-movement).

Figure 50 shows a comparison of the ERP time-courses over fronto-central channels time-

locked to the onset of feedback presentation for each class of events (blue: non-error, red:

error) and the difference grand average (black: error minus non-error), including the topo-

graphic representation of the difference grand average at relevant time points. Furthermore,

between class discriminative power is depicted as r2-values. In both datasets, the difference

grand average shows the ErrP-characteristic N2-P3 complex; spatio-temporal shapes highly

resemble between dataset. The ERP amplitudes (effect strength) as well as the peak r2-

values are lower in dataset ICS-HEADSET compared to dataset ACTICHAMP. This result was

expected due to lower signal quality delivered by the Emotiv EPOC+ hardware. In terms of

the temporal shape of the ErrP difference wave, we observed a latency shift of approx. 100

ms in the ICS-HEADSET compared to the ACTICHAMP dataset. The N200 component ap-

peared around 350 ms (instead of around 250 ms) and the P300 component around 450 ms

(instead of around 350 ms) time locked to the feedback. This latency shift is likely related to

the delay caused by wireless data transmission of the ICS-headset. Delays due of around

40±20ms were also found in another study comparing the wireless MUSE EEG headset with

4 Here, for dataset ACTICHAMP 3 EOG channels; for dataset ICS-HEADSET 1 EOG channel was used.
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the actiChamp EEG system [254]. Despite these variations, the results confirmed feasibility

to successfully observe ErrPs using the ICS-headset.

Figure 50 Grand average ERP time-courses over fronto-central channels time-locked to the onset of feedback presentation for
each class of events (blue: non-error, red: error) and the difference grand average (black: error minus non-error). The
r2-values for between non-error and machine-error are depicted below the plot, with brighter colors indicating higher values.
The difference grand average is furthermore depicted as topographic plots at specific time points above the plot. (a) Results
obtained from dataset ACTICHAMP (n = 18) and (b) results obtained from dataset ICS-HEADSET (n = 13). (Figure style
adopted from [141]).

In addition, we compared the single-trial decodability of observed ErrPs using within-participant

CV. Here, we followed the procedure of our previous work (see Chapter 5, [46]). First, tem-

poral features were extracted as the arithmetic mean of the signal amplitude in pre-defined

windows relative to the moment of feedback presentation. Due to the observed latency shift

caused by the wireless data transmission of the ICS-headset we decided to extend the time

windows5 to capture also later effects. This resulted in a total of 378 temporal features per

epoch (27 channels x 14 windows) for dataset ACTICHAMP and a total of 182 temporal fea-

tures per epoch (13 channels x 14 windows) for dataset ICS-HEADSET. The features were

then used to train a regularized version of the LDA classifier [180] (identical to the method de-

scribed in Chapter 5, Section 5.2.3.3). Table 22 shows individual participant results for dataset

ACTICHAMP with an average cross-validation accuracy of 82.9 ± 7.1% across 18 partici-

pants. These results are in line with the expected decoding performance of 75-85% reported

by others and our earlier studies. Table 23 shows individual participant results for dataset

ICS-HEADSET with an average cross-validation accuracy of 70.8± 10.6%. As expected, the

results are lower, but significantly above chance-level6 in the majority of participants (10 out of

13). Interestingly, a few participants show accuracies close to or above 80% (e.g. s01b, s09b,

5 windows: [150...250] ms, [200...300] ms, [250...350] ms, [300...400 ms, [350...450] ms, [400...500] ms,
[450...550] ms, [500...600] ms, [550...650] ms, [600...700] ms, [650...750] ms, [700...800] ms, [750...850] ms,
[800-900] ms.

6 Accchance = 60.37% based on inverse cumulative binomial distribution with number of trials nTrials = 150 ∗
perr and perr = 0.35; probability of success psuccess = 0.5; confidence threshold p = 0.05
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s11b, s13b) comparable to accuracies obtained with the actiChamp system. The comparably

high between participant standard-deviation is currently unexplained and will be investigated

in future works. Possible reasons could be related to variations in the headset placement dur-

ing the experiment, or variation of participants’ head-size or hair-density. Nonetheless, these

results confirm successful decoding of ErrPs using the ICS-headset.

Table 23 Results of ErrP decoding rates (CV accuracies in [%]) for the ACTICHAMP dataset (32 active gel-based channels
using Brain Products actiChamp amplifier).

s01a s02a s03a s04a s05a s06a s07a s08a s09a s10a

Acc 71.7 86.7 89.1 79.4 75.0 79.2 84.0 92.1 86.4 89.8

λ 0.95 0.6 0.95 0.75 0.95 0.95 0.95 0.95 0.85 0.95

s11a s12a s13a s14a s15a s16a s17a s18a AVG±SD

Acc 88.3 78.7 73.6 92.2 81.7 69.9 85.0 89.7 82.9±7.1

λ 0.55 0.95 0.95 0.95 1.0 0.95 0.95 0.95

Table 24 Results of ErrP decoding rates (CV accuracies in [%]) for the ICS-HEADSET dataset (data acquisition with 16 passive
semi-dry channels ICS headset, 2. prototype).

s01b s02b s03b s04b s05b s06b s07b s08b s09b s10b

Acc 78.7 68.7 55.9 71.0 51.9 58.6 67.1 76.1 79.0 72.9

λ 0.85 0.95 0.65 0.65 0.15 1.0 0.4 0.9 0.85 0.95

s11b s12b s13b AVG±SD

Acc 82.7 69.6 88.3 70.8±10.6

λ 0.85 0.8 0.6

Summary

This chapter described the development and validation of an ease-of-use, unobtrusive EEG

device (ICS-headset). The device was originally developed having in mind the investiga-

tion of motor-related sensorimotor rhythms in patients with CP. To address the needs and

requirements of this target group, our device features short preparation times (5 minutes),

comfortable wearing up to 30 minutes, unobtrusive looks in the design of headphones for mu-

sic listening, and electrodes placed over sensorimotor areas. Experimenters reported smooth

data collection and overall acceptance of the system among patients. The changes in motor-

related ERD over time during executed and imagined movement meet the observations de-

scribed in the literature, this way supporting the functionality of our adapted EEG device for the

assessment of sensorimotor-related measures of brain activity. Most pertinent to this thesis

is that the device also proved useful for the measurement and decoding of ErrPs. Decoding

accuracies obtained with the ICS-headset reached Acc = 70.8±10.6% on average across 13

180



participants with above chance-level accuracies in 10 out of 13 participants. Overall, this con-

firms usability of the ICS-headset for both capturing sensorimotor rhythms and error-related

potentials. As such, the device could be a useful trade-off against research-grade EEG sys-

tems when targeting applications where practicality is favored over signal quality and decoding

performance.
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+1-978-646-2777.
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