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Abstract

In this thesis, we investigate unsteady fluid-structure interaction (FSI) problems. We prove
a new improved regularity result for the linear hyperbolic wave equation. Under the assump-
tion that this result can be adapted to the Lamé system, we show that a linear FSI problem
attains a unique solution under weaker assumptions on the geometry of the domain than in
previous works. This is also the basis for a local-in-time existence and regularity result for
a nonlinear, unsteady FSI problem that couples the Navier-Stokes equations with the Lamé
system. Furthermore, we examine shape optimization for unsteady FSI. Since the concept
of domain transformations is well-established in the monolithic FSI context due to the ne-
cessity of representing the coupled system in a uniform framework, we apply the method of
mappings. We develop a general framework for deriving continuity and differentiability for
the solution of nonlinear, unsteady, parameter-dependent partial differential equations and
apply it to show differentiability of the states of the unsteady FSI problem with respect to
domain variations. In order to show the viability of our approach for shape optimization of
unsteady FSI, we further do numerical simulations.

Zusammenfassung

Diese Arbeit befasst sich mit instationdren Fluid-Struktur Interaktionsproblemen. Wir be-
weisen eine neue verbesserte Regularitétsabschitzung fiir die Normalenableitung der Lésung
der linearen, hyperbolischen Wellengleichung. Unter der Annahme, dass diese Regulartiit-
saussage auf das Lamé-System {ibertragen werden kann, zeigen wir die Existenz und Ein-
deutigkeit von Losungen fiir ein lineares FSI Problem unter weniger restriktiven Vorausset-
zungen an die Geometrie des Gebietes als in bisher verfiigharen Resultaten. Ausgehend davon
lasst sich auch zeitlokale Existenz und Eindeutigkeit von Losungen fiir ein nichtlineares, in-
stationéres FSI Problem, das die Navier-Stokes Gleichungen und das Lamé System koppelt,
herleiten. Desweiteren wird Formoptimierung fiir instationdre FSI mit Hilfe der sogenan-
nten "method of mappings" betrachtet. Dieser Ansatz arbeitet, dhnlich wie die Herleitung
der monolithischen Darstellung des FSI Modells, mit Gebietstransformationen. Es wird ein
allgemeines Konzept entwickelt, mit dem sich Stetigkeits- und Differenzierbarkeitsaussagen
fiir die Losungen von nichtlinearen, instationéren und parameterabhéngigen Differentialgle-
ichungen herleiten lassen. Wir wenden dieses an, um Differenzierbarkeit der Zusténde des
instationdren FSI Problems beziiglich Gebietsvariationen zu zeigen. Numerische Simulatio-
nen demonstrieren die Praktikabilitdt des Formoptimierungsansatzes fiir instationare FSI.
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natural numbers (without 0)
natural numbers with 0

real numbers
complex numbers
dimension d € N
empty set

identity matrix I € R#x4

time interval I = (0,7), T > 0

domain/ subset of R?, fluid part of domain €, solid part
of domain 2

boundary of domain (2

interface between fluid and solid part of domain, one re-
quires that Q =QrUQ,UT;, QrNQ =0, QrNQ =T
outer, exterior boundary part of Qf (Q), I'r = 0Qf \ T,
(Ps = aQs \ Fi)

part of I'y (I's), where Dirichlet boundary conditions are
imposed

part of I's (I'y), where Neumann boundary conditions are
imposed

superscript indicating that we are in the physical
framework

superscript indicating that we are in the ALE framework

superscript that indicates that we are in the framework
for shape optimization with the method of mappings
approach

coordinates on
coordinates on
coordinates on €
coordinates on
time coordinates

indicates that the quantity is defined on the fluid part of
the domain
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indicates that the quantity is defined on the solid part of
the domain

indicates that the discretized version of the quantity is
considered

space-time cylinder 2, x (0, T"), except for physical domain
where it is defined as QT 1= (J,e; Qu(t) x {t}

space-time cylinder I', x (0, T'), except for physical domain
where it is defined as X7 := (J,; S (t) x {t}

velocity

pressure

displacement

divergence, differential operator defined by div(v) =
2?21 0O¢,v; for a vector valued quantity v :  — R? and
by div(A) = (Zle O¢,Aj;i); for a matrix valued quantity
A : Q — R¥4 (analogue definition on €, Q, Q)

gradient, differential operator defined by Vp = (0¢,p); for
a scalar valued quantity p : Q — R and by Vv = (0¢,v;)i,;
for a vector valued quantity v : Q — R? (analogue defi-
nition on €2, 2, Q)

Jacobian, differential operator defined by Dv =
(Og;vi)ig = Vv for a vector valued quantity v :  — R%,
(analogue definition on €2, 2, Q)

aa1+"'+o‘d

differential operator of order a € N& D® = 9671 5g%
1 ¥5d

o =14+ aq

differential operator defined by e(v) = 3(Dv + Dv'),
(analogue definition on 2, €, )

fluid stress tensor, differential operator deﬁnefi by
of(v,p) = 2ve(v) — pl, (analogue definition on £, €2, )

solid stress tensor, differential operator

outer unit normal vector

ALE transformation, maps Q, x (0,7) — QT

inverse of x

transformation fo~r shage optimization with method of
mappings, maps Q, — €, cf., Section

control for shape optimization with method of mappings,
cf., Section

deformation gradient f‘x = Dyx

inverse deformation gradient ﬁ'r = f;l

determinant of deformation gradient .J, = det(f‘x)



Pr vy ,vo
St

transformed fluid stress tensor o, (V¢,pr) o X

appropriate definition to obtain an analogy to the fluid
equations, &, := jxilfxE&y(v“vs)f‘i
space that contains all ¢ such that ¢ : 2 — R is infinitely

differentiable on 2 and has compact support in €2
space of distributions, dual space of D(R?)

space of tempered distributions, subset of D’(R%)
Schwartz space

Banach space of equivalence classes of measurable, p-
integrable (p € [1,00)) or essentially bounded (p = o0)
functions on 2

Fourier transform of integrable function v : R — C
space of m-times differentiable functions on 2, endowed
with the norm HUHCm@) = 2 jaj<m MaXeeq [D0(E)]
cf., Section [2.2.1
cf., Section [2.2.2
cf., Section [2.2.3

cf., Section [2.2.3

complex interpolation of two Hilbert spaces X, Y such
that X C Y and X dense in Y, 6 € [0, 1] with continuous
injection, cf., [90, p. 10, Def. 2.1]

C5o (@) = D(Q)

L3((0,T),X) = H°((0,7T), X)
surface measure on 0}
(H2+€’1+§(Q?))d, cf., Section [2.2.4
subset of Er, cf., Section |2.2.4
(H%2(QT))?, cf., Section [2.2.4
L2((0,T), HY(Qp)) N H2((0,T), H'(€)), cf., Section

H™3((0,T), L2(S2)%), cf., Section [2.2.4
H2tbata(5T), of., Section [2.2.4
(H%+£’i+§(2?))d, cf., Section [2.2.4
{pe L2QF) : Vpe H'3(@Q)).plyy € HEH173(2T)),
cf., Section

subset of Pr, cf., Section

HY((0,T), H'*(Qp)) N H2F2((0,T), L2(Qf)), cf., Sec-

tion IT_HI
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HY((0,7), H'*(Q)%) 0 H2+5((0,T), LA(24)%), cf., Sec-
tion

HY((0,7), H'*(Qp)™0) 0 H3*2((0,T), L3(Q)™Y), cf,
Section

C([0, T], Hi+3(Q,)4)NC([0, T], Hi5(Q4)%), cf., Section

set of first order operators tangential to boundary, cf.
(12.15))

arbitrary first order operator, B = ), b;(§)0, for b; €
C>(Q)?

extension operator in time, cf., Section [2.5

extension operator in space, cf., Proof of Lemma
restriction operator in time, cf., Section

Leray projector, cf., Section [3.3.2
identity L2(Q)¢ — L?(Q2f)4, cf., Section [3.3.2

regularization term in optimization problem, cf., Section

set of admissible domains, cf., Section
set of admissible transformations, cf. Section |2.7]
{a, : R - R? : id, + G, € ’Tad}, cf. Sections

system of local maps and partition of unity, cf., Section

space of continuous, piecewise polynomial functions up to
degree k on the triangulation Ty

E

L#(Q) inner product of functions, cf., Section
L¥(
%(

I') inner product of functions, cf., Section

~

Q") inner product of functions, cf., Section

L2(XT) inner product of functions, cf., Section

triangulation

subspace of P¥(7,)™, contains functions that have value
0 on the boundary of Uy 7. K
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1. Introduction

Fluid-structure interaction (FSI) is a particularly important subclass of multi-physics prob-
lems that arise frequently in applications such as wind turbines, bridges, naval architecture
or biomedical applications, cf., e.g., [21], 11, B3} [42] 45} [46, 69, [70, (76, 127]. We focus on appli-
cations with incompressible flow and consider fluid modeled by the unsteady incompressible
Navier-Stokes equations. These equations are formulated in the Eulerian framework, i.e.,
on the time-dependent physical domain Q(t) C R? for t € I := (0,T), T > 0. We divide
the fluid boundary 09 (t) = I';p(t) UT n(t) into two disjoint parts, on which Dirichlet
(on T'yp(t)) or Neumann (on I'sx(t)) boundary conditions are imposed. The corresponding
space-time cylinders shall be denoted by

QF = JQr0) x {1}, Sfp:=JTsn() x {t}, fy:=JTsn () x {t}.

tel tel tel

The differential equations are given by

prOes + (Vy - Vi)V — divk(04x(Vs, D)) = psfy - on QF,
divy(vf) =0 on Q?,

\vff = ‘v’fD on E?Da

orx(Vy,Pp)iay =g; on Ty,

with the initial condition
Vy(,0) = Voy on 24(0),
where V¢ denotes the fluid velocity, ps the pressure and ny the outer unit normal vector. }'f,

V¢p, & and Vo are right-hand side, boundary and intitial terms. The fluid stress tensor is
defined by

opx(V5,D5) = ppvp(Du¥ry + Dyvs ") — gl

with unit matrix I € R%*9 and Jacobian D,(-) := (Ox;(+)i)ij- The parameters py and vy
denote the fluid density and viscosity, respectively. The structure equations, however, are
formulated in the Lagrangian framework, i.e., on a fixed reference domain Q, with disjoint
Dirichlet and Neumann boundary parts st and fsN such that 895 = st U fsN. The
physical domain €,(t) for any t € I is obtained by the transformation X(-,t) : Q, — Q. (1),
Xs(y,t) =y + Ws(y, t), where the deformation Wy solves the hyperbolic equations

PsOtWs — divy(f‘xsE&y(VAvs)) = pSAfS on QZ = Qs x I,

W, =W,p on N1, :=T,pxI,
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Fy.Ysy(Wo)hs =g, on 3L, =T,y x I,
ws(-,0) = Wos on QS,

Ows(-,0) = w1 on QS,

and we define f‘xs := Dyx. Here, ps denotes the structure density and Afs, WspD, 8s, Wos and
w1 denote right hand side, boundary and intial terms.

e For a linear elastic material the stress tensor Xy (W;) is given by
Ssy(Ws) 1= F (s (DyWs + Dy ) + Astr(Dy Wi )I),

where the so-called Lamé coefficients A\s and ug are chosen such that us > 0 and
As + ps > 0.

e For the nonlinear Saint Venant Kirchhoff type material the stress tensor ¥, (W) is
given by

Say(We) 1= Astr(Ey )T + 2u:Ey.,

The first challenge for considering the coupled problem arises from the fact that the above
canonical models for the fluid and structure equations are formulated in different frameworks.

For FSI simulations, partitioned as well as monolithic approaches have been proposed.
Partitioned methods solve the corresponding models seperately and typically apply fixed
point iterations to the coupling interface conditions, which can, e.g., be accelerated by Quasi-
Newton [30} [77]. Monolithic approaches [32, 36l [43], [44] 50, 60, 129], such as arbitrary
Lagrangian-Eulerian (ALE) [32] 36, [60] and fully Eulerian methods [36] 43| [44], 129, [130],
use the same reference frame for fluid and solid. While fully Eulerian approaches use the
spatial reference frame, the ALE framework is obtained by introducing an arbitrary but
fixed reference domain ¢ such that the fluid and solid reference domains are disjoint, i.e.,

Q. NQ 5 = 0, and share the same boundary at the interface I =0,nN0 f- Moreover, an
extension x(t) : Qs — Q of the solid transformation X(t) to the whole reference domain
Q:=Q,U Qf UT; is introduced for any t € I. It can, e.g., be obtained by choosing a fully
Lagrangian setting or an harmonic or biharmonic extension of the solid displacement to the
fluid reference domain. Transformation of the fluid equations with the help of x to the fixed
reference domain {2 ¢ and coupling the fluid and structure equations across the interface I;



yields the system of equations

(pg0cvy + (V- Vi)V = dive(o7x(V5. 7)) 0 X = psly on Qp x I,
divy(Vg)ox =0 on Qp x 1,
VioX =Vsp onffDxI,
(0p(¥ypp)ip)ox =& onTyy <1,
7 oR(,0)=Tor onfly, (1.1)
psOgWs — divy (Fy, Xsy(Ws)) = psfs  on €5 x 1,
Ws = Wgp on f‘sDxI,
Fy. Yy (Wo)hy =g, on Doy x 1,
ws(+,0) = wps on Q.,
dew,(-,0) =Wy on
with additional coupling conditions
OWs =Vyox on I x 1,
—(ox(Vp,Bp)Rp) 0 X = Fy, By (We)hs on T x I

Here, }'f = fo ox and g, Vyp, as well as, voy are defined analogously. Introducing vy =

. A A . A A S A A > —1 - =~ N
VioX,DfF =DfoX, Of =0x(Vy,Pf)OX, Os i= Jy FXES»Y(WS)FI’ where F := Dyx and

Jy = det(Fy), as well as, v, = Oy Wy, yields the equivalent formulation

jxpfat‘}f + jxpf((l‘q;({’f —0kx)) - vy)‘A’f

—divy(Jy 6 F

PsOVs — divy(jx&sf;—r) = pSAfS
psOWs — psvs =0

W5 = Wsp

JxGsFy i, = g,

W(+,0) = Wos

Vs(+,0) = Wy

on Qf x 1,
on Qf x 1,
on ffD x I,
on ffN x I,
on Qf,

on Qs x I,
on € x 1,
on st x 1,
on fsN x I,
on €,

on €
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with additional coupling conditions

—Jyo i Fy iy = Jyo,F
where the transformed fluid stress tensor is given by
61 = ppvp(DyViF + F T Dy} ) — pyl.

In the following, for the sake of convencience, we will omit the f, s-indices for the functions
Vi, Vs, Ws and py. Furthermore, we will denote coordinates on the physical domain Q by
x and on the reference domain € by y and the subscripts of the nabla-operators indicate on
which variables they act on.

Remark 1.1. That the system (1.2)) coincides with the system (1.1f), that is also the basis
for the considerations in [I13], can be motivated with the following considerations. It holds

[ By = [ (A Dy = [ L Ty,
AQy AQy 0

A

With Nanson’s formula we obtain

/ jxf‘;Tﬁfdsy = / nydsy,
YT, OAQ (1)

where AQf(t) = x(AQy, 1) and dAQ(t) = x(DAQy,t). The latter term is equal to

/ nyds, = / div,Idx = 0.
8AQf(t) AQf(t)

Thus,

/ divy (JF3 ")dy = 0.
AQy

Since the test volume AQ ¢ is chosen arbitrarily, we have Piola’s identity

~

divy(JxF3 ) = 0.
Therefore, we have
divy (Jyor;Fy " Z By, (Jx 0 p (B ))ji = > 0y, (Jx(64)j(Fx i)
ik

= Z By, (Jx (B3 ki) (G )k + Oy, (7)) I (F N
i,k



implying that

divy (S 6 5 ") =3 0y, ((64)0) I (Fy i

In addition, it holds that

(dive(@7); = > O (67)jn = D Ou, (60X ™) = D (0. (6)s0) o X O X7 !
k k

i,k

= " (0y,(65)jk) o X (F ik o X Zaz )(Fx e ox "
ik

This shows that o R
divy(Jx6(Fy ") = Jy(divk(e)) o x.

Due to its nonlinearity FSI problems are a challenging problem. It can be simplified by
reduction of the introduced system to a model that is linear or steady or has a stationary
interface. Thus, we obtain an hierarchy of increasing difficulties, ranging from steady, e.g.,
[51L [132], to unsteady, e.g., [17, 27, 28 B34, 38, [72, [83), 84], 85, 113], from stationary, e.g.,
[0 B4, 38, 84, [85], to moving interfaces, e.g., [17, 27, 28, [72], 83, 113], and from linear, e.g.,
[34, 38, 132], to nonlinear models, e.g., [9, 17, 27, 28| 511, [72, [83], 84], 85, 113]. We first focus
on an unsteady, linear model with stationary interface. Since the interface is stationary (and
we assume the outer fluid boundary to be fixed) there is no distinction between Q(t) and
Q) for t € I. For that reason and for the sake of clarity we omit the superscripts. From
an applicational point of view, the model corresponds to a physical situation in which the
displacement of the solid is one order of magnitude smaller than its velocity, i.e., the solid
oscillates rapidly with small amplitude [9]. From an analytical point of view, it can be seen as
the foundation for the analysis of a more difficult setting. In [I13] an existence and regularity
result for the system with stationary interface

Ov—vAv+Vp=f in QJ:C,
div(v) =g =div(g) in Q?,
v(-,0) =vo in Qy,
v=vp on Xk,
v=0w onX’, (1.3)
or(v,p)n; = os(w)ny +h on X7,
Ouw — div(os(w)) =0 in QT
w(,0)=0 in Q,,
ow(-,0) =wy in Q,
w=0 onXl
is used for the derivation of a local-in-time existence and regularity result for the unsteady,

non-linear model with moving interface that couples the Navier-Stokes equations with linear
elasticity, the ALE reformulation of which corresponds to system (1.3 if the nonhomo-
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geneities h, f, g are chosen such that they collect the appearing non-linear terms. We denote
the exterior fluid boundary by I'y = 024 \I'; and the exterior solid boundary by I'y = 0Q,\T';.
The corresponding space-time cylincers are denoted by Eg and E;‘C, respectively. In the con-
sidered case we have I'yp = I'y and I'sp = I's. For the sake of simplicity we set py = ps =1
and omit the subscript of v¢. The fluid stress tensor is given by

0s(v,p) = 2we(v) - I,
where Dv denotes the Jacobian of v and
e(v) = %(Dv (D)),
The solid stress tensor is defined by
os(w) = Mre(w)I + 2ue(w),

where the Lamé constants A, y are chosen such that g > 0 and A + g > 0. In addition, vy,
w1 denote appropriate initial conditions on the fluid velocity and the time-derivative of the
solid displacement.

One of the main difficulties that arise in the analysis of FSI problems is the a-priori
mismatch between the regularity of the solutions of the Navier-Stokes equations and the
elasticity equations. Possibilities to circumvent this issue are adding a structural damping
term that regularizes the hyperbolic dynamics [72], using a finite dimensional approximation
for the elasticity [1I7], or to consider smooth data which yields local-in-time existence of
smooth solutions but leads to a loss of regularity, e.g., the regularity of the initial velocity
needs to be in H 5(Qf)d while it is only proven that the regularity of the velocity is in
L2((0,7), H3(Q2)%), cf. [27,28]. These results were improved by [83] but still imply a slight
loss of regularity. Another approach is given by establishing improved or hidden regularity
results for the normal derivative of the hyperbolic solution [86] which allow to show existence
and regularity results without additional damping terms [9] 84] [85], [1T3]. The way, how these
hidden regularity results are established in [I13] requires a restriction on the geometry of the
domain. Particularly, the interface between the solid and fluid region needs to be flat which
also requires periodicity in order to handle the problem analytically on a bounded domain.
In this thesis, we show that the same hidden regularity results can be obtained for the wave
equation without additional requirements on the domain.

As already mentioned before, from the existence and regularity result for the unsteady,
linear setting with stationary interface it is straightforward to derive local-in-time existence
and regularity results for the unsteady Navier-Stokes-Lamé system with moving interface
following the argumentation of [I13], cf. Section . In the fully Lagrangian setting, this



system reads as follows:
D)
divy (V) = G(¥) = divy(§(V)) in QF,
v(,0) =vy in Qf,
V on 37T,

ST
on X ,

OV — vV + Vyp = F(¥,p) in QF,
)

vV=v
\A/ == at
ory(V.p)ng = osy(W)ny (3, ) on 37,
D W — dlv(asy( w)) =0 in Q7F,
w(-,0) =
oew(-,0) =wy in €,

w=0 onXl.

)

€>

in Q,

Here, the fluid and solid stress tensors oy, and o5, are given by
ory(V,p) :=2ve, (V) —pI,  and 0,y (W) = Atre, (W)I + 2ue, (W),

where €,(-) := (D, - +(Dy-)") and A, p are Lamé coefficients that are chosen such that
p>0and A+ p > 0. Dy(-) denotes the Jacobian. In the fully Lagrangian setting, the
transformation is given by

t
X(0la, 0 Q). vyt [ Vo

for any t € (0,7) and its inverse Y(-,t) := (x(-,t))™!, which exists if T > 0 is sufficiently
small and the initial data are smooth enough, cf. [II3]. Consequently, the right hand side
terms are given by:

5.6 d d 2
F(v,p) :VZ 'I‘kox8 v—i—yza OX8 ) o Xaylayk
H(¥,p) = —y(DyoﬁT + ﬁ}(pyo)T)cof(fx)ﬁf + plcof (Fy )iy
+v(Dyv + (Dy‘A’)T)ﬁf — plny,
G(V) = divyv — det(Jx)Dyv : By = Dyv : (I — det(Jx)F),

where f‘x = Dyx = (Vyx)" is the Jacobian of x and Fy = f‘;l its inverse. Furthermore,
let g be defined by g(v) := (I — det(f‘x)f‘r)f/ such that divy(g(v)) = G(¥) due to Piola’s
identity.

Shape optimization can be analyzed with different, yet closely related, techniques. On
the one hand, shape calculus [31} 57, 58, 64, 104} 111} 112, 122] can be used to investigate
functionals J(2) depending on the domain 2. The Eulerian derivative d.J(€, V) admits a
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representation by the Hadamard-Zolésio shape gradient, a distribution that is supported on
the design boundary and only acts on the normal boundary variation V. ny. If a state
equation is involved, the Eulerian derivative depends on the shape derivative of the state and
can be expressed using an adjoint state. An alternative approach is the method of mappings
[13] 20, [65] 78, 79, [89] 105, [120], also called perturbation of identity, which parametrizes
the shape by a bi-Lipschitz homeomorphism 7 : R — R% via () = ‘7'(@), where Q C R? is
a nominal domain (or shape reference domain). Optimization can be performed based on
the function J : ¥ — J(7(Q)). An underlying state equation is then transformed to Q and
derivatives of J can be obtained via sensitivities or adjoints. The Hadamard-Zolésio calculus
can be derived from this approach essentially by an integration by parts. The method of
mappings directly yields an optimal control setting in Banach spaces. Moreover, it fits well
in the theoretical setting of the FSI model that was introduced above since it also employs
the idea of domain transformations.

Optimal shape design problems for FSI have mainly been tackled by applied, engineering
approaches, see, e.g., [14, 62] [63] 68, [96], 97, 98| 99, 100, 119]. For developing a theoretical
foundation continuity and differentiability of the state with respect to domain variations are
studied, cf. Chapter [l So far, in all conscience, differentiability results have only been
available for steady FSI models [106] [132].

Throughout the thesis the superscripts over the functions correspond to the superscripts of
the domains on which they are defined. Furthermore, the spatial coordinates on the physical
domain € are denoted by x, on €, Q by v, z, respectively. If a result is valid for a general
domain or if it is clear in the context the notation € is used and the coordinates are denoted
by €.

In Chapter [2]the main definitions and concepts are collected, that are then used in Chapter
to derive existence and regularity results for a linear and a nonlinear unsteady FSI system
and in Chapter [4 to derive differentiability results of the states of an unsteady nonlinear FSI
system with respect to domain variations. Chapter [5]is devoted to the numerical realization
of shape optimization for unsteady FSI.



2. Preliminaries

In this chapter, the basic definitions, tools and concepts are presented. We start with a short
introduction to the function spaces and a collection of useful results (Section that will
be used in the theoretical analysis of the FSI system (Section . Furthermore, the method
of successive approximations (Section which is the foundation for the considerations in
Section the concept of extension by continuity (Section and the method of mappings
(Section are introduced. The main contributions are the extension of well-known results
on 2 to I' = 9 under some assumptions on ) in Section [2.2] as well as, the framework
for deriving differentiability results in Section [2.4] Parts of this chapter have already been

published [59], including Sections and to a great extend.

2.1. Geometric Topology

Let n be the outer unit normal vector of €2 on I'. Then, the following holds.

Lemma 2.1. Let  be a bounded, smooth domain with boundary T" of class C*°. Then,
there exists 6 > 0 such that for every ¢ € Bs(I') N Q, there exist unique o > 0 and & € T
such that £ = &p — an(ép).

Proof. This holds true due to the tubular neighborhood theorem, cf., e.g., [65, p.109, Thm.
5.1]. O

Definition 2.2. We say that a function b € C>(Q2)? is constant along normal directions in
a neighborhood (or locally) around T if there exists § > 0 such that for every £ € Bs(I') N {2,
there exist unique o > 0 and & € T such that £ = & — an(ér) and b(§) = b(&p).

Corollary 2.3. For every br € C®(T')?, there exits b € C>®(Q)¢ such that b|p = br and b
is constant along normal directions in a small neighborhood around I'.

Proof. Let v(a) € C>(]0,9]) with v(a) = 1 for a € [0, %] and the support of v is com-
pactly contained in [0,62). By Lemma and [88, p.257, Prop. 10.20], there exists
a smooth retraction r : Bs(I') — I, £ — &p. Then the assertion follows by choosing

b(€) = br(r(€))y(lIr(§) — £l1F.) if € € Bs(I) N and 0 on O\ Bs(T). H

Corollary 2.4. There exists h € C*(Q)¢ such that for all b € C*(Q)¢ withb-n=0on T
and b being constant along normal directions in a small neighborhood around I', there holds

h’r =1,
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h is constant along normal directions locally around T,
Vh; - h =0,
Vb;-h =0,

for all I € {1,...,d} in a small neighborhood around T

Proof. By Corollary we obtain h such that h|r = n and h is constant along normal
directions in a small neighborhood around T, i.e., there exists § > 0 such that for every
¢ € Bs(T') N Q there exist a € [0,6) and &p € T such that € = & — an(ér) and h(€) = n(&r)
for all £ € J := {&r — tn(ér)| t € [0,6)}. Now, for € € Bs(T) N Q,

Vh(¢)"h(§) = —0h(ér — tn(6r))i—a = —9m(ér)|e=a = 0.

Since b is constant along normal directions in a small neighborhood around I, there exists
0 < € < 0 such that b(¢r —tn(&r)) = b(ér —th(&r)) = b(&r) for all ¢ € (0,¢). The derivative
wrt. ¢t at ¢ = a therefore yields Vb;(£)-h(§) = 0forall{ € B(I')NQand ! € {1,...,d}. Since
Vb;-h € C®(Q) and Vh; - h € C*(Q) it holds that Vb;(¢) - h(¢) = 0 and Vhy(§) - h(¢) =0
for all £ € B.(T") N Q. O

2.2. Function Spaces

Let Q ¢ R%, d € N be a bounded open domain with boundary I' = 9 of class C*. In the
following, useful properties are collected and proved. The presentation is mainly based on
Lions and Magenes [90, [91].

Let s € R. The Hilbert space H*(R?) is defined by

H*(RY) = {v € S'(RY) : [[v]lgsgay < o0},

with norm
0 s ey := (1 + [€17)2 Z0(E) || L2 (ay

where .Zv denotes the Fourier transform of v and S'(R?) denotes the space of tempered
distributions.

2.2.1. On the Space H*(I")

The definition of the fractional order Sobolev spaces H*(I"), s € R is based on the definition
of H*(R%), cf. [90, pp. 34-35]. Under the standing assumptions on Q a system {0}, ¢, a;}
can be found, which consists of

e a finite family {O;, j € {1,...,N}} of open, bounded sets that covers I'.

e a finite family {¢;, j € {1,...,N}} of infinitely differentiable functions
@; : Oj = B1(0) ={yeR? : y<1},

that

10
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— locally flatten the boundary, i.e.,
p;(TN0O;) = Bi(0)N{ya =0} CRY " :={(y,0) : y eR"},

and (pj(Q N O]) = B1(0) N {yq > 0}.
— have an infinitely differentiable inverse ij_l.

— fulfill a compatibility condition for all ¢, j such that O;NO; # () which requires that
there exists an infinitely times differentiable homeomorphism J;; of ¢;(O; N Oj)
with positive jacobian such that ¢;(&) = J;;(¢:(§)) for all £ € O; N O;.

{Oj, ¢} is the system of local maps.

e a partition of unity {«;}, where a; € C*°(I") is non-negative, has compact support on
O; NI and adds up to 1, i.e. Zjvzl aj=1onT.

The main definitions and properties are collected in the following.

e For s € R, let H*(I") be defined by
H(T) :={u : ¢j(aju) € HSRY),j € {1,...,N}},

with norm

N

* 1

Jull sy = (3 5 )y, )
j=1

(aju)(e; () ity € Bi(0)nRy,

0 if y € RGN\ By (0).

This definition depends on the choice of {O;, ¢;, a;}, however, it can be verified that
all norms are equivalent.

where ¢} (aju)(y’) :=

o C>®(I") is dense in H*(I") for s > 0.

2.2.2. On the Space H*(Q2), s >0

Let s > 0. Then, the Hilbert space H*({2) is defined as an interpolation space of integer-

valued Sobolev spaces
H*(Q) = [H™ (), H ()]s,

where m € Nand 6 € (0,1) are such that s = (1—60)m [90, Ch. 1, Sec. 9] and H°(Q) = L%(Q).
The norm || - || s(q) is defined by [90, p. 10, Def. 2.1]. Under the standing assumptions on
Q2 all definitions of H*(2) with respect to different choices of § and m are equivalent and it
can be shown that

o H*(Q) ={u : u=rqu,ve H*(R?)} can be endowed with the equivalent norm
lull sy = llulls = inf{[[v]| gogay = v € H(RY), u=rauv},

where rq denotes the restriction on 2.

11
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e D(Q) is dense in H*(Q).

[HSI (Q), H*52 (Q>]9 _ H(1—0)51+952 (Q)
and there exists a constant C' > 0 that generally depends on €2 such that

—0 0
[ull gra-0ys1-4052 ) < Cllullzet @ l1ull s (@)

for all u € H**(Q2), 0 < s3 < s1 and 6 € (0, 1).
e if s> 2 +m, m e Ny it holds that
H*(Q) C C™(Q)
with continuous injection.

e If the standing assumptions on 2 are fulfilled, the following trace inequal}ty holds
true [90, p.41, Thm. 9.4]. Let s > 3 and u € H*(Q). Then, u € H* 2(I') and
HUHH“"*%(F) < COllull s (), where C' depends on (2.

Furthermore, the following result corresponds to [54, Prop. B.1 (i)]. Even though this lemma
will only be used for fractional order Sobolev spaces with positiv order, it is stated in the
general setting, which allows for fractional Sobolev spaces with negativ order. A introduction
to these spaces can be found in [90, Ch. 1, Sec. 12].

Lemma 2.5. Let the standing assumptions on Q C R? be fulfilled, A, 1, w € R. Additionally,
let f € HM#(Q) and g € HM“(Q). Then, there exists C' > 0 such that

1 f9ller ) < Cllf a9l marte )
Lifputw+r>% 1>0 w>0,and 2\ > —p — w,
2.0t pt+w+A> %, ©w>0,w>0,and 2\ > —pu — w.
From the definition of the Sobolev spaces on the boundary I it is straightforward to deduce
the following Lemma.

Lemma 2.6. Let the standing assumptions on Q C R? with boundary T' of class C™ be
fulfilled, A, 4,w € R. Additionally, let f € HM*#(T) and g € H*“(T). Then, there exists
C > 0 such that

HfQHHA(F) < CHf”H’\ﬂt(F)||g||H>\+W(F)a
1.ifut+tw+A> %,,u>0,w>0, and 2\ > —p — w,

2. or,u+w+)\>%,,u20,w20, and 2\ > —pu — w.

Proof. Let the extended system {0}, ¢;, o, @j, ;} be given, which is chosen such that:

12
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e the family {O;, j € {1,...,N}} is chosen such that there exists {O;, j € {1,...,N}}
that covers I' with O; compactly contained in O; for all j € {1,...,N}.

e the partition of unity {a;} is chosen such that a; € C°°(I') has compact support

on O; NT. Additionally, we choose {1;, j € {1,...,N}} such that ¢; € C>(I) has
compact support on O; NI, 1;(§) > 0, and is identical to one on an open neighborhood
around O; NT.

The existence of such a system is ensured by the following considerations. Let {@Z, Vi, T €
{1,..., N}} be a system of local maps of I'. Hence, for every § € I' there exists ¢ > 0 and
i¢ € {1,..., N} such that B (€) is compactly contained in O;,. Since the system of local

maps exists, ' is compact and there exists a finite subcover {(’)J, j €{L,..., N}, where
N € N and (’) = B, (&) for & € T'. Furthermore, let ¢; := Pic,» O; = (’) 6 and {oj} be

the partition of unity constructed on the finite subcover {(’)j, j€{1,...,N}}. In addition,
{¢j, 5 €{1,...,N}} is chosen such that it fulfills the requirements.

For j € {1,...,N}, choose D; C R;l,_l such that supp(a;) C D; C @;(I'N @j) and D; is
a domain with a smooth boundary of class C*°. Then, due to [90, p.60, Thm. 11.4], there
exists C' > 0 such that

1
1£gll >y Z 503 £9) 7 1))

1
Jj= N 1
< O I N (39) 2 5, ))F-
=1

Now, since either 1 or 2 is fulfilled, we can apply Lemma [2.5] in order to obtain

* 1
£ gl grry < Z 15 (3 D g, 195 WD Eprsea )2

In order to estimate the second factor, we see that with
K:={ke{l,...,N} such that O; N O # 0}
and ¥ € C*°(I") with compact support on O; NI', we have
125 COM pom et

< CH ZSOJ ak\IJ)HHm Rd h = C” Z ak\p OSOk OSDkOQOJ HHm(Rd 1
kel kel

2.1
_CHZ Oék\I/ O(pk @) ]kHHm]RdI <CZH Oék\I/ OgOk HHm(Rd 1) ( )
kel kel
=C Z o5 ( O‘k\y)HHm ]Rd 1y
kel

13
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where we used that || - oJj|| ym ®E1) S Cll - Ml gym (RO for the infinitely differentiable home-
Y’ Yy’

omorphism Jj;. Hence,
H(Pj (¢Jg)||HA+w ) < CHg’|H>\+w(F)

and, therefore,
1f9ller oy < ClFllEavny |9l mrse -

2.2.3. On the Spaces H*((0,7),H"(2)) and H*"(Q2 x (0,7))

Let s,r € [0,00), 6 € (0,1), X, X,Y,Y, Z be Hilbert spaces,  be a bounded open subset
of R? d € N, with smooth boundary 0Q = T of class C*. For T > 0, Q7 := Q x (0,T)
and T :=T x (0,T) denote space-time cylinders. The analysis is carried out in fractional
order Sobolev spaces H*((0,T), H"(2)) and in anisotropic Sobolev spaces H™*(QT). The
vector-valued versions are denoted by H*((0,T), H"(Q)¢) and (H™*(Q™))?. For more details
on these spaces the reader is referred to [90, Ch. 1, Sec. 9|, [91, Ch. 4, Sec. 2| and [53, Sec.
2].

H*((0,7),X)
The fractional order Sobolev spaces H*((0,7T), X) can be endowed with the norm

1
17 (Q,T),X)Qa (2.2)

where m, o are chosen such that s = m + o, m € Ny and for 0 < ¢ < 1 the semi-norm

‘C7(071 )7X iIlaj b’
C’( ) )7 |1 |f20' ] S t

Remark 2.7. This norm is equivalent to the norm introduced in [90, p.10, Def. 2.1], which is
equivalent to the complex interpolation norm due to [90, p. 92, Thm. 14.1 and p. 23, Remark
3.6]. In the Hilbert space setting, complex and real interpolation norms are equivalent due to
[26, Thm. 3.3 and Rem. 3.6]. [8 (3.4), (3.5) and (3.7)] concludes the argumentation. More
details, e.g., the definition of =’ can be found in [7, Sec. 5|. For the equivalence of Besov
and Sobolev-Slobodeckij spaces for o € (0, 1), the reader is also refered to [121, Prop. 2|, for
the interpolation of Besov spaces to [121 Proof of Thm. 30| and the references therin, [24,

p. 194, Theo. 3.4.2].

| s o,m),x) = (Il - HHm (o1),x) T 10"

The theoretical analysis requires knowledge about the T-dependency of appearing con-
stants since fixed point type arguments are used for small time horizons. Hence, the choice
of the norm on the spaces H*((0,7), X) is crucial. More precisely, for —oo < T1 < Ty < 00

14



2.2. Function Spaces

and Ty > T, the spaces H*((11,T), X) and the subspaces

{u e H(T1, T»), X)} if s €[0,3),

Yy my =4 {ve H((T1,T2), X) : u(Ty) =0} if s € (3,1],

{ue H((T1,T2), X) : u(Ty) =0, G € Y(S'T;}Tz)} ifs>1, s+3¢N,

are endowed with a norm || - || s (1, 73),x) such that

P1

P2

P3

P4

P5

P6

for all s > 1 such that s + 1 ¢ N,

1
[l - HHS((Tl,Tg),X) =(- H%%(TI,TZ)J() + (|0 (')‘|?¥S*1((T1,T2),X))2'

and || - || o1y, 1), x) = | - llz2((7y 1), %) where || - [|2(¢7y 1), x) denotes the standard
L?((T1,Ty), X )-norm.

for all s > 0 such that s + % ¢ N, there exist constants car, Car > 0 depending on
AT =Ty — T3 such that

ear | s ) x) < - s m),x) < Carl - Tasr m),x)-

for all s > 0 such that s + % ¢ N, the extension operator Ext defined by

u(t) ifte (0,7),

Ext(u)(t) := {0 ift e (T'—1Ty,0),

is continuous as a mapping Y(f),T) — Y(“”T_Tf’T) with a continuity constant that does not
depend on T'.

for all s > 0 such that s + 5 ¢ N, we have

lull s 0.0),x) < Cllullzs(r—1;,1),%)

for all w € H*((T' — T, T), X) such that u|(p_7, ¢y = 0 with a constant C' independent
of T

for all s > 0 such that s + % ¢ N, the restriction operator R defined by

is continuous as a mapping H*((0,7), X) — H*((0,7"), X) with a continuity constant
that does not depend on T

for s € [0,1) \ {3} and € > 0 such that s+ € € (0,1] \ {3}, we have

1wl s 0,1),x) < CT||ull frs+e(o,),x)

for all u € Y(f) ) with a constant C' that does not depend on T.

15
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P7 for s € [0,1] \ {3}, real, separable Hilbert spaces X1, X» and a linear operator K that
is continuous as a mapping from X; to Xo, we have

I ()Ml &2 ((0,7), %) < Cllull s (0,1),x1)
for all w € H*((0,T), X1) with a constant C' that does not depend on T

P8 for all s > 0 such that s—i—%gﬁN, T < Ts,

HUHHS((Tl,Tz),X) = H@HHS((O,TrTl),X),

for all uw € H*((Th,132), X), where 4(t) := u(t + 1) for (a.e.) t € (0,75 —171).

Lemma 2.8. Let X be a separable Hilbert space, —oo < T < Ts < co. There exists a norm
H . ”HS((T1,T2),X) on HS((Tl, Tg), X) that fulfills -

Proof. cf. Section[A.] m

Let X,Y and :52' .Y, respectively, be continuously embedded in a Hausdorff topological vector
space V and V, respectively. For sg,s1 € [0,00), sop > s1, by [8, (3.5)—(3.7), Thm. 3.1, Cor.
4.3, |26l Rem. 3.6], and [16, Thm. 3.4.1], there holds

[H50(<07T)7X)7 HSI((OvT)v Y)]Q = H(179)30+931((07T)7 [Xv Y]9)

and by the interpolation inequality we know

- laorosom oy i) < €l I comsoll 1m0y (2.3)

for a constant C' that might depend on T, cf., e.g., [90, p.19, Prop. 2.3|. Let, in addition,
0 e (0, 1) and g, 51 € [0,00), 59> 51. If

A€ LIH™((0,T),X), H*((0,T), X)) N LH*((0,T),Y), H**((0,T),Y)),
then, A € L(HI-D50H051((0,T),[X,Y]g), HI=D50+051((0,T),[X,Y]g)) and
1Al (U000 (0. (XY ) HO =054 (1) 5710
<C|A|IL;

E(HGO (0,17),X),H%0((0 HAHE (H51((0,T),Y),H?1((0,T),Y))’

for a constant C' that might depend on T', cf., e.g., [25] p.115, 4.].

Lemma 2.9. (|59, Lem. 2|) Let X,Y,Z be real, separable Hilbert spaces and m be a
bounded bilinear mapping from X x Y into Z. Furthermore, let f € H*1((0,7),X) and
g€ H*?((0,T),Y) with s1,s2 > 0. Then the following holds.

1. If % <8$1<1,0<s< %, then m(f, g) belongs to H*2((0,T), Z) and

||m(f>g)HHS2((O,T), Z) < CSl,Sz(HfHHSl (0,7),x) Tt (0 )||X)||g||HS2((O,T),Y)>

for all 0 < T < T, where Cs, 4, is independent of T'.

16
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2. If 2 < s1 < sp <1, then m(f, g) belongs to H*'((0,T), Z) and

lm(f, Do 0/r),2) < Corsa (I lmor 0,10, + 1O x)Ugll o2 0,7),v) + 119 (0)]y),

for all 0 <T < Ty, where Cs, s, is independent of T'.

Proof. We prove 2., 1. follows with similar arguments. Let fo € H'((—o0,00), X) and
go € H'((—00,00),Y) be such that f3(0) = f(0), go(0) = g(0) and for —0o < a < b < o0,

| foll 11 ((a0),x) < Coll f(0)]|x,
90l &1 ((a,5),y) < Collg(0)]ly,

with a constant Cj independent of (b — a) (extension to H!'((0,00),X) and mirroring at
t =0). Let C' and Cr, denote generic constants (CTf is used if the constant might depend
on T). Using property of the norm and [I13] Lem. A.1] yields

Im(f, Dl a1 (@ar1p),2) < Ol fllE1 (@00075), )19 B2 (010475) ) (2.4)

(use equivalence of norms with Ty-dependent constants). Now,

Im(f, ) a1 0,1),2) < (Im(f, 9) — m(fo, go) | 1 (0,1),2) + M fo, g0) | zr1 (0,1),2))-

Due to Property of the norm and [I13, Lem. A.1],

Im(fos 9o) |71 (0,7),2) < Cllm(fo, go)ll 1 (0,75),2) < Cry 1 foll 71 (0,75), ) | 90 52 (0,75, v)
< 7, [ £(0)[[ x][g(0)[y-

Furthermore,

Im(f,9) —m(fo, 90)lg=1 ((0.1),2) < lm(f — fo, 9 — g0)ll =1 ((0,7),2)
+[lm(f = fo, 90) | zs1 ((0,7),2) + Im(fo, 9 — g0)|l 51 ((0,7),2)-

We know that (f — fo)|t=0 = 0. Due to properties and of the norm and with ({2.4]),

lm(f = fo,9 = 90) | &1 (0,1, 2)

= |Ext(m(f — fo, 9 — 90))|lzrs1 ((0,1),2)

< C|[Ext(m(f — fo, 9 — 90)) |l =1 (v-1,.1),2)

< Clm(Ext(f — fo), Ext(g9 — g0) |l =1 (7—1,1).2)

< Oy [[Ext(f — fo)llmsr ((r—my. 1)) | Ext(g — g0) | o2 (v~ 7))

< Crellf = follasio,m),x) 19 = goll s20,7),v)

< Cry ([ fla=10,1).x) + 1ol zr1 (0,1),3)) N9l 32 (0,7, v) + (|0 E52 ((0.7). 7))
< Oy (I 0.1y, 3) + L foll a2 o, ),x) ) U9l o2 0,7y, vy + 90l 52 (0,77), 7))
< Cry ([ fla=10.1).x) + ol o.1),x)) (N9l o2 (0.1),v) + 90l 52 0,75), 7))
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< Cry (1 f 151 (0,1, %) + 1O x) (Ul gll 2752 (0,7),v) + 19(0)[[y)-
We now estimate m(f — fo, go) using the norm properties

[m(f = fo, 90)ll zr=1 (0,1, 2) = IIExt(m(f — fo, 90) | zrs1((0.1),2)
= ||m(Ext(f — fo), 90) | =1 (0,1, 2)
< Cllm(Ext(f — fo), 90)la=1 (7-1;,1),2)
< Oy [|[Ext(f — fo)llg= (r—1;. 1), 3) 190 | 252 (715 1) ¥)
< Oryllf = follasr 0.1, x) 190l 52 ((— 5 77),v)
< O, (1 |1 (0.1),3) + 1FO)1x)[1g(0)]]y-

Since m(fo, g — go) can be estimated in the same way, this concludes the proof of 2. O

Lemma 2.10. ([59, Lem. 3|) Let X be a real, separable Hilbert space and a € [0,1) \ {3}.
Furthermore, let 5 > 0 be such that o+ 3 € (%, 1], ¢ € X and g € H**A((0,T), X) be such
that g(0) = ¢. Then, there exists a constant C' independent of 7" such that

91l e ((0,7),5) < C(TPNlgll gats 0.1y x) + llellx)-

Proof. Let C denote a generic constant independent of T', where 0 < T" < T;. There exists
he Hl((O,Tf),X) such that h(0) = c and HhHHl((O,Tf),X) < Clle||lx e.g., h(t) := CT;I(Tf—t)
for t € (0,T%). Set g =g — h.

Properties the definition of h and [P6] yield
gl e 0,7),x) < gl ((0,7).%) + 1Pl Ho((0/7),%) < NGl EH2 (0,7, %) + ClIP N (0,77, 30)
< |gll s o.1),5) + Clielx < CTP|§ll grass(omy.x) + Cllellx
< C(TBHQHHO‘+5((O,T),X) + llellx)-

Lemma 2.11. (|59, Lem. 4]|) Let X be a real, separable Hilbert space and s > 0. Let
c€ X and g(t) = c for a.e. t € (0,7). Then, g € H*((0,7), X ) and there exists a constant
C independent of T" such that ||g|| zs(0,1),x) < Cllel x-

Proof. Let Ty > T and C denote a generic constant independent of T'. For s > 1 we have,
due to [P and d:g = 0,

1
91l & (0,1),x) = llgllz2¢0,7),x) < T2 |lcllx < Clleflx. (2.5)
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For s € [0,1), Lemma and ([2.5)) yield

gl a5 0.7),x) < CT gl 0.m).x) + llellx) < Cllellx-

The following Lemma is a helpful tool.

Lemma 2.12. (|59, Lem. 9]) Let "> 0, k € N, k > 2, X, X;,Y,W,,, Z be real, separable
Hilbert spaces, 1 < j <k, 2<n <k-—1,s € [0,1\{3}, si € (5,1] for 2 < i < k and
0 <s<minjsj. Let mi : Xy x Wo — X, my : Xy x Wigqy — Wy for 2 <1 < k—2and
mp_1 : Xg—1 X X — Wi_1 be continuous bilinear forms, m : Xk X; — X be defined by
m(x1,...,x5) = mi(x1,ma(xe,...)) and T; : Y X Z — Sj, where S = H%((0,T),X;) is
endowed with the norm

o [+ lls; = I ez 0.y, if 85 € [0, 3),

1.
o - lls; = Wi oy xp) 1+ OIF))Z if 55 € (3,1],

and S := H*((0,T), X) be endowed with the analogously defined norm || - ||s. Furthermore,
let 7:Y x Z — S be defined by

T(y,2) = m(Ti(y, 2), -, Te(y, 2))-

1. Let M; >0,Y CY and Z C Z be such that 175 (y, 2)lls; < Mj for all (y,z) € Y x Z,
1 < j < k. Then, there exists a con§tant~C’ > 0 that is independent of T" such that
|7 (y,2)|ls < CILjM; for all (y,2) €Y x Z.

2. Let in addition to 1. 7; : Y x Z — S; be Lipschitz continuous on Y x Z for all 1 <
j <k, ie., there exist Mj1, Mj2 > 0 such that [|T;(ye, 22) — T;(y1, 21)|ls; < M.
yilly + Mjallza — 21|z for arbitrary yi,y2 € Y and 21,22 € Z. Then, ||T (y2,22) —
T (1, 20 me 0,1y, x) < C(max; (Mo M) |ly2 — yilly + max;; (Mo M) || 22 —
z1||z) with a constant C' > 0 that is independent of 7.

3. Let (y1,21) be an element of the relative interior of Y x Z and T; - Y x 7 — S; be
Fréchet differentiable in (y1,2;) for all 1 < j < k. Then, 7 : Y x Z — S is Fréchet
differentiable in (yi, 21).

Proof. By recursively applying Lemmas [2.5)and 2.9)it can be verified that m : I1;S; —
H?*((0,T),X) is a continuous multilinear form that fulfills

[m(x1, - ) s 0,m),x) < CHjllglls;,

where C' is a constant independent of T". Assertion 1 follow immediately if one directly
uses the continuity properties of m in order to estimate the norms at the initial value
t = 0. Further, for y1,ys € Y 21,22 € Z we have

m(Ti(y2, 22), - - s Ti(y2, 22)) — m(Ti(yr, 21)s - -+, Te(y1, 21))

19
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= m((T1(y2, 22) — T1(y1,21)), T2(y2, 22), T3(y2, 22) - - -, Te(y2, 22))
+m(Ti(y1, 21), (T2(y2, 22) — T2(y1, 21)), Ts(y2, 22); - - -, Te(y2, 22))
+ e+ m(,Tl(yh Zl)v cee 777€—1(y17 Zl)a (E(y% 22) - E(yla Zl)))a

which implies
Im(Ti(y2, 22), - - -, Te(y2, 22)) — m(Ti(y1, 21), - - Te(yr, 21))lls

k
<O ((Mne 1 Ty, 20)l15,) @asj | T (w2, 22) s )1 T (w2, 22) = T3 (wa, 21) I, )
7j=1

IN

C(m axx(M;j 110,25 Mp)[|y2 — y1lly + m?X(szHn#jMn)HZz - z1llz)

for a generic constant C' independent of T" and therefore assertion 2. Since a continuous
multilinear form is infinitely differentiable 3 follows with the chain rule.

O]

Lemma 2.13. (|59, Lem. 10]) Let 7> 0, k € N, X1,X2,Xj,1,Xj,2,Y,Z be real, separable
Hilbert spaces, 1 < j < k, s1 € [0,1]\ {3}, s € (3,1] for 2 < i < k. Let m be a k-
linear form that is recursively constructed via blhnear forms as in Lemma [2.12] such that
m: >< i1 X1 — Xqpand m: X _1 G+, — Xo are continuous for all 1 <1 < k, where dj
denotes the Kronecker delta. Let 0 < s < min; s; and

Sj = Hl((O, T), Xj71) N H1+Sj ((0, T), ng)
be endowed with the norm

1,
o - llsy = U B oy, om0y, 1 - O ) i 55 € 0, 3).

1,
o 105y = U B oy, s, I O, + 10O )% i 55 € (3,10

and S := H'((0,T),X;) N H***((0,T), X2) be endowed with the analogously defined norm
|| - ||ls. Further,let 7; : Y x Z — S; and T : Y x Z — S be defined by

T(y,2) = m(Ti(y, 2),-- -, Te(y, 2))-
Then,

1. Let M; >0,Y CY and Z C Z be such that IT5(y, 2)lls; < Mj for all (y,2) € Y x Z,
1 < j < k. Then, there exists a constant C' > 0 that is independent of T" such that
|7 (y,2)|ls < CILjM; for all (y,2) €Y x Z.

2. Let in addition to 1. 7; : ¥ x Z — S; be Lipschitz continuous on Y x Z for all
1< j <k, ie., there exist M1, M;2 > 0 such that

175 (y2, 22) — Tj(y1, 21)lls; < Mjally2 — wlly + Mjzllze — 21z
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for arbitrary y1,y2 € Y and 21,22 € Z. Then,

HT(y27 2’2) - T(yl, Z1)HS
< C(mjf.%X(Mj,IHn;«éjMn)HZJZ —yilly + mf»X(Mj,zﬂnyéjMn)Hm — z1llz)

with a constant C' > 0 that is independent of T

3. Let (y1,21) be an element of the relative interior of Y x Z and T; :~17 X 7 — S; be
Fréchet differentiable in (y;,21) for all 1 < j < k. Then, T : Y x Z — S is Fréchet
differentiable in (y1, 21).

Proof. We recursively apply Lemma [2.9] in order to get continuity of

k
m: X S; — L*((0,T), X1),

j=1
k
dem: X S; — L*((0,T),X1), as well as,
j=1
k
Oem: X S; — H*((0,T), X2),
j=1
and use that
oem(zy,...,zr) = m(Orx1,z2,...,x5) + m(x1, 0t x2,...,x) + -+ +m(z1, T2,...,0 Tk).
It holds
lm(@1, . )l 2 o,m).x0) < Cllanllzaqor x|zl

[m(z1,. .. Oz @)l L2(0),x1) < ClOe 2l L2 0,1y, x,.0) Wiz il g,
where S; := H'((0,T), X;1) is endowed with the norm
1
11, += (- I oy, + I - O, )%
for 1 < j < k. Furthermore, there holds
Im(z, .., Oy, ) ms(0,m),x2) < CllOem;ll g Wi llwill g,

where S; := H®((0,T), X, 2) is endowed with the norm

o I-llg, = I oo oy e, 1F 55 € 10,).
1,
o 1-lls, = U s oy, oy + 1 - (O)1%,0)%, i 55 € (3.1
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In order to show the boundedness in the norm || - ||s the initial values have to be bounded
appropriately. However, this is ensured by the continuity properties of the multilinear form

m. Moreover, property of the norm is used. The assertions now follow directly as in
Lemma [2.12) 0

H>"(Q2 x (0,T))
For r, s > 0, the spaces H™*(Q") are defined by
H™(Q") = L*((0,T), H'(Q)) N H*((0,T), L*(%))

and endowed with the norm

M\»—‘

- Nars@ry = (- 20y, + 1 W oy, 22 0))

For 0 <+ <r, s = s(r —7')/r, the inequality

- ez (0,09, 17 0y < ClI - s @)
holds true for a constant C' > 0 that might depend on T, cf. [53], (2.9)] or [54, (2.7)], which
implies
1 N era-os (0.7, 710 () < ClI - lms (@)

for § € (0,1). Trace theorems for the Sobolev-type spaces H"*(QT) imply
I- ’ZZ”HTCS’(E’{) <C|- HH’“’S(QT)v

where C' > 0 is dependent on T, r > %, s>0,7=r— % and s’ = (r — %)f, cf. [91, Ch. 4,
Thm. 2.1], [54, Prop. 2.2] or [39, Thm. 3].

2.2.4. Setting for the Theoretical Analysis of the FSI Problem

For ¢ € (%, 1) the analysis of the FSI problem is conducted on the function spaces

Er = L2((0,T), H*(Q )d) N H1+%((O,T),L2(Qf)d) _ (H2+Z,1+§(Q}“))d’
Fy = L2((0,T), HY(Qp)%) N HE ((0,T), 2(2)%) = (B 5(QT))¢,

Gy = L2((0,T), H'(Q)) 0 H3((0,T), H (),

Gy = H'T5((0,T), L*(2f)?),

Hr := L*((0,T), H=*/(T:)) N H1+5((0,T), LX(Ty)) = H2+0t5(sT),

Hy = L*((0,T), H3 M (Ty)) 0 HiY3((0,T), LA(T)?) = (240t 5(x]))?,
N7 = H'((0,7), H>* (T, UT)%) N HT5((0,T), LA(T, UTy)Y),
Pri={pe L*Qf) : Vpe H"3(Q), plyr € H2*i+2(sT)},

wk\
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2.2. Function Spaces

Sp = H'((0,T), H'*!(Q)) N HET5((0,T), L3(2y)),

Sy = H'((0,T), H(Q)) N H*5((0,T), L2(y)"),

Sy = H'((0,7), H¥ (@)™ 0 H2 2 ((0,), L2(2) ™),
W = C([0,T], H%%(Qs)d) nch([o,T], H%%(Qs)d),

VO = H1+£(Qf)d,
W, = H%-ﬁ-é-ﬁ-ﬁ(Qs)d‘

For vg € Vy and My > 0, we define the metric spaces

Er Moy = {Vv E€Er : v(-,0) =vo, [[V]g; < Mo},

Protove =A{p € Pr : |[Vpller < Mo, [Iplsrll 34011t ory < Mo, (2.6)

=)

plrxfoy = 2ve(vo)ny - ny|r, }.
Moreover, let

2
£

I ez == (I 12 ) +1I- ||?{1((0,T),H5(Qf)d)) +1- HH?((O,T),H?(Qf)d)

(R QT

2 2
It o 1V Nt o

. 2 . 2 l
* ||H%+%<<0,T>,H1(ﬂf>d> +” ”H%%((o,T),Hl“(ﬂf)d))2’
as well as,
. — (|- 112 . 2 . 2 L
Il o= Ty o2y v om0z T Ollinseag 410 Olizzay)*,

(2.7)

and do an analogous definition for the spaces Sy and S;. Due to trace theorems and inter-
polation theorems the modified norms on Er and S, St, S, are equivalent to the standard
norms on these function spaces. However, the appearing equivalence constant might depend
on 1" without further knowledge about this dependency. Since the dependency of the appear-
ing constants on T is a key point in the theoretical analysis it is therefore necessary to work
with the modified norms defined above. The other function spaces are endowed with the

canonical choice for the norm, i.e., e.g., || - |lp, = || - H(He,%(QT))d' Furthermore, the following
!

results is useful.

Lemma 2.14. (J59, Lem. 11]) 1. Let f,§ € Sp. Then, f§ € St and

Ifalls, < Cllfls a5,

with a constant C that is independent of 7.
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2. Let f e Sp. If f > w > 0 holds a.e. on Q? with a constant w > 0 then ffl € Sp and

17 g, < CA+1F1l5,) 71l

for a constant C' that is independent of T'.

Proof. 1. The bilinear form m(ml, x9) 1= x1 -T2 is by Lemmaﬂ continuous as a mapping
L2(Qy) x H'(Qy) = L*(Qf) and as a mapplng HY&W(Qp) x HY(Qp) — HY(Qy).
Therefore, Lemma [2.13|implies || f§]| 5 < C £l STH gllg, for a constant C' that is inde-
pendent of 7. Here, we recall that the norm on Sy is defined by .

2. By [113| Lem. A.7| we know that

17 0,0y 140

< O+ Wl + 176 Osea Mo mseay
10 f 1HL2 ((0,1),H*£(Q2 )

<C(1+ ||f||H1((o,T),H1+é(Qf)) +I7( 0)||H1+Z(Qf))4||f||H1((07T)7H1+2(Qf))-

for a constant C' independent of T'. The proof of this Lemma also shows that

10 ey < COHIFCO) s IFC O grseqa, -

Let C now denote a generic constant independent of T'.
In order to bound ||d; f~1(-, O>”L2(Qf)7 we consider G € C*°(R) such that G(0) = 0 and

G(x) = 27! for all z > w. Then,
|0 f_l(',o)\|i2(gf) =18 G()(, )||L2 @, = IIG'(f HE 00 f(, )”LQ(Qf
~ [ (© (D@00 (@0 iz
Qy

< sup [G'(F)Z 0)10: F(-,0) 72,y < CllO:F(-,

O2sa,y
ZEQf

These estimates imply

||f_1||H1((o,T),H1+Z(Qf)
< CO+ Il oy.m+e@py + 1FC O green) 1l o). mee@y)
<C@+ HfHHl((O,T),HlJFZ(Qf)) + ”f(‘aO)HH1+4(flf))5'
Now,
HJE71HL2((0,T),L2(QJ¢)) < CHJFAHLQ((U,T),H“’Z(QH)

for a constant independent of 7" and it remains to estimate || f_IHH%*%((o T).L2())
) ) f
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We obtain with Lemma [2.9] 2.

— _ 2
Hat HH2+2( OT) Lz(Q ) Hf tf”

< CUIFllan oy, mr+e@y) + 17720 e, y)
< (o fll 4

H2+2( (0,7),L2(2))

e om ) 10760l
CUF Mg o, HI(9)) Jr||f ¢ )”Hl“(flf))2
x (10 f]] ad+ (o m)12(@, ) F( 0 2a))
C(l—i—HfHH1 ((0,1), H1+Z(Qf))+||f('7 )”H1+Z(Qf))10
< (171 5 [+ 10070l )

H2+2(0T) L2(Qy

Combining the estimates implies the assertion.

2.3. Method of Successive Approximations

The method of successive approximations is a well known approach for establishing existence
and uniqueness results for nonlinear equations

where y € Y and Y is a Banach space. We write this in the form By = F(y), where
F(y) := By — A(y) and B is a linear operator such that the system By = f has a unique
solution y = S f, where S € L(W,Y) and W is a Banach space. Existence and uniqueness of
solutions is now studied via the fixed point equation

y = SF(y). (2.8)

Unique solvability of (2.8) on a closed subset Y C Y is ensured if y — SF(y) mapsj/ into
itself and is a contraction on Y. This is the case if, e.g., [|S||;wy) < Ls and if F: Y — W
is Lipschitz continuous with a constant Lr < %

2.4. Framework for Continuity and Differentiability Results
The considerations of Section can be extended to parameter-dependent equations
Aly,z) =0

with parameter or control z in a Banach space Z. Let B be chosen as in Section and
S € LI(W,Y) be the solution operator of By = f. As before, we consider solutions of the
fixed point equation

y=SF(y,z2), (2.9)
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where F(y, z) := By — A(y, 2).

Theorem 2.15. (|59, Thm. 1]) Let W, W, Y, Z be Banach spaces, W continuously embedded
in W, S € L(W,Y), and Lg > 0 a constant such that 1Sflly < Lsl|fllw for all f € W,
Let Z C Z be open, Y C Y be closed and F : Y x Z — W be an operator. Let there exist
constants Lr € (0 ) and C' > 0 such that, for all y,y1,y2 € Y, 2, 21, 22 € Z, there hold

| F (y2, 22) — F(y1, 20)llw < Lrly2 — yilly + Cllz2 — 21|z, (2.10)
SF(y,z) €Y. (2.11)

Then, for all z € Z, the system (2.9) has a unique solution y(z) and z — y(z) is Lipschitz
continuous on Z:

CLg
[y(22) —y(z)lly < ﬁ”zz —zllz Va,meZ (2.12)

In addition, let y(z) lie in the relative interior of Y and denote by Y. the linear subspace
parallel to the affine hull aff(Y). Assume that F is Fréchet differentiable at (y(z), z), where
(y, z)-variations are taken in Y7, x Z.

Then y(-) is Fréchet differentiable at z. The derivative is given by y'(z)(h) = dpy(z), where
h e Z and d,y(z) € Y1, C Y solves the formally linearized equation

ny(2) = S6F (y(2), 2) (Ony(2), h), (2.13)

where 0F (y(2), 2)(0py(2), h) = Fy(y(2), 2)0ny(2) + F=(y(2), 2)h.

Proof. For any fixed z € Z, ED implies the Lipschitz continuity of the mapping F(-, 2) :
Yy — W. Using El @, and the properties of F, L and Lg shows that the map
yeY — SF(y,z) € Y is a well-defined contraction. The existence of a unique solution
y(z) € Y is thus ensured by the method of successive approximations. Now ([2.12)) follows from

ly(22) = y(21)lly = [[S(F(y(z2), 22) = F(y(=1), 21))lly < Ls||F(y(z2), Zz) J'"(y(zl) 21)|lw

and (210).

For showing differentiability, we fix z € Z and assume that F is differentiable at (y(z), z) in
the way stated in the theorem. Let h € Z be arbitrarily fixed. Since y(z) is a relative interior
point of Y, we obtain from ([2.10)) that, for all di,ds € Y7, there holds:

16F (y(2), 2)(d2, h) = 6F (y(2), 2)(d, h)lw = || Fy(y(2), 2)(d2 — du)llw < LFlldz — dll!(Y~ )
2.1

Thus, since Lr < L%g, the method of successive approximations applied to the fixed point

equation 6,y(2) = S0F(y(2), 2)(6ny(2), h) posed in Y7, see ([2.13), yields a unique solution
6ny(2) € Y, C Y which by linearity of (2-13) depends linearly on h. Let |||z be sufficiently
small. Then z+h € Z and, as h — 0,

[F(y(z+h),z+h) = Fly(2),2) = 0F (y(2), 2) (6ny(2), h) lw
< [16F(y(2), 2)(y(z + h) —y(2), h) = 6.F (y(2), 2)(0ny(2), h) lw
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+o(lly(z+h) —y(2)lly +[hll2)
< Lrlly(z + h) = y(2) = ony(2)lly + o([[hl]2),

where (2.14) is used. Now

Tlly(z +h) —y(z) = dny(2)lly

= [1SF(y(z + h), 2+ h) = SF(y(2), 2) = S6F(y(2), 2)ny(2)lly

< Lsl|F(y(z + h), 2+ h) = F(y(2), 2) = 0F (y(2), 2)0ny(2) | w

< LsLrlly(z+h) = y(2) = dny(2)(2)lly + Lso([[hllz)  (|[hllz — 0).

Therefore,
Ls
ly(z + 1) = y(2) = ony(2)lly < -—F—F—o(llhllz) = o(l[hllz) ([[rllz = 0),
1—LsLr
which proves the Fréchet differentiability of z — y(z) at z with y/(2)h = dpy(2). O

2.5. Extension by Continuity

One technique, that is a common tool, cf., e.g., [80], is extension by continuity that takes
advantage of the fact, that under some additional assumptions linear operators inherit con-
tinuity properties on a dense subset.

Let Z,Y be Banach spaces and S be a linear operator that is continuous as a mapping
Z =Y. Let ZC Z and Y CY with continous injection and Z C Z be a dense subset of Z.
Additionally, assume that there exists C' > 0 such that

1Sy <Clzllz Vze Z
Then, we know that there exists a unique continuous linear operator S : 7 — Y such that
1Sy < Cllzll;, Vze€ Z,

and S’(z)~: S(z) for all z € Z. Since Z is dense in Z, for every z € Z, there exists a sequence
{zn} C Z and ||z — zy||; — 0 for n — oo. This implies ||z — 2,z — 0 for n — co and due

to the continuity of S, we additionally know that
15() = 8(zn)lly = 15(2) = S(za)lly — 0
for n — oo. Thus, since

15(2) = S()lly < 15(2) = S(za)ly + 15 (z0) = S(2)lly
< 18(2) = S(zn)lly + Cliza — 2|z
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for all n € N, we have that 5(z) = S(z) in Y and therefore,

1S(2)|ly < Cllzllz, V2 € Z.

2.6. First Order Differential Operators

First order differential operators that are tangential to the boundary are one of the key tools
to derive improved regularity results for hyperbolic equations in [86]. In this section, some
properties of these operators are proven. Let Q C R%, d € N be a bounded open domain with
boundary I' = 92 of class C*°. We define

d
#:={B=) bidg, :bcC®(@)? b-n=0onT, and
=1

b is constant along normal directions locally around I'}.
(2.15)

Let m € Ng. The operators B € & are well-defined as mappings from H™1(Q) — H™(Q).
Using the system of local maps {Oj, ¢j,a;}, B € % can also be represented as an operator
from H™TY(T) — H™(T) with

N d d—1
Be =3 a;y biy O(pi)idy(®op;!) 0w, (2.16)
7j=1 1=1 k=1

for ® € H™(T'). The following lemmas provide some helpful properties.

Lemma 2.16. Let w € C*(Q) and B € %. Then, B(w|r) = (Bw)|r.

Proof. Let £ € I" and {Oj, ¢j, a;} be the system of local maps of I'. It holds that

N d
Buw(€) = (D ;> bidgw) o' 09)(€)
=1 =1
j\f d d
=Y b > g (wow;)opok(9)k)(€)-
j=1  i=1 k=1

Since (pj)q is constantly zero on I' and the gradient is perpendicular on the level sets, there
exists ¢ € R such that Og, (¢j)q = eny, for all k € {1,...,d}, where n denotes the outer unit

normal vector. Hence, Z?:l b;0¢, (¢j)a = 0 and

Buw(¢) = (Z o Z b; Y Oy (wo ;) o ;e (95)k)(6).

28



2.6. First Order Differential Operators

Lemma 2.17. Let d = 3, m € Ny and Q C R? be a bounded, open domain with boundary
T of class C*®°. Let ® € H™TY(T') and B € #. Then, there exists C' > 0 such that

|1B®|| grm(ry < Cl| || gm+1(r)-

Proof. Let {Oj, p;,a;} be the system of local maps of I'. With (2.16)) and (2.1)) we obtain

N
1
1By = (O 163 (@ BN 1))
J=1
N d d-1 L
< OO 3 @5 (asbide, (2a)w)y (2 © 05 s
j=1 i=1k=1
N d-1 )
< OO D165 (@3)0y (@ 0 97 Dl )
7J=1k=1

where C' is a generic constant. Moreover,
@5 () (@ 0 i h) = By 05 (@) — Dy (5 ()5 (P).

Hence, with (2.1) and a generic constant C,

N d—-1
* 1
Bl srmry < CQ Y (18,05 (a;@ )IIHm(Rd 1+ 18y (95 ()5 (@ )HQde Nk
7=1 k=1
N d—1 1
< O > (102305 o1y + 195 (@50 1))
j=1k=1 % v
Y 1
j=1

O]

Lemma 2.18. Let d = 3, m € Ny and Q C R? a bounded, open domain with boundary I'
of class C*°. Let ® € H™(T') such that B® € H™(T) for all B € #. Then, ® € H™ ()
and there exists a set of finitely many first-order operators B C % such that

@l grmtrry < C[| @ grmry + sup [|BL|| g ry)
BeB
for a constant C' > 0.
Proof. Let the system {Oj, ¢, a;} be given. We know that C>°(I") is dense in H™(I") for

m € Ny and therefore consider ® € C*°(I") and then extend by continuity, see Section
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We have
N
[0y = (3 195052 i gty (217)
Furthermore,
d—1
15 @39 s g1y = 10350 gy + 3 1005 i® g sy (219)

d—1
and, on B1(0) N Ry,

d
By @5 (0;®) = By (@) 0 071) = > (D, (0;®)) 0 971Dy (95 im
m=1

d

((Z k) ®) + 05 (Y bjkme, ®)),
m=1

m=1

where ajkm = 8§m0zj8y;€ (@;1)711 SR and bj,k,m = ay;c (90;1)m °@j.

Since (¢;)q is constant on I' and the gradient is perpendicular on the level sets, there exists
¢ € R such that 0, (¢j)d = cny, for all m € {1,2,3}, where n denotes the outer unit normal
vector. Thus, on B1(0) N Rg‘f,_l, we have

0= (Vy¢;(@i)ka = 9y (¥](¢j))d
d d
=3 0e,.(¢)a0 95 0y (97 m = c@3 (D bjkmnm).
m=1 m=1

since (¢;)q4 = 0. By the choice of a; and ¢; we know that a; ;. ,, € C*°(T') and by g mm € C*°(T).
Due to Corollary , there exists a C*°(f2)-extension bj s, of bjy,, such that bjj ,, is
constant along normal directions locally around I' and let

d
= = ZB a&m’ k€{172}’ ]6{17’N}}
It holds
d
18y, 235 g ey S 125D i) @)l ot
m=1 . (2.19)
A CACTOY bj km e )l prm et
m=1
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With (2.1) we obtain

H(’O] Zaﬂkm ||Hm(]Rd 1y < CZ ”kaz Qg Zajkm ||Hm(Rd b

’“G’C m=1 (2.20)

< Zaakm )@y < ClI®@| gm(r)

m=1

where the last inequality holds due to the fact that (3¢ et @jkm) € C(I"). Additionally,
we have

d
125 (453 Dt @l < SR B sy, (2.21)

m=1

Combination of (2.17)), (2.18), (2.19), (2.20)) and (2.21) yields

||| grmt1(ry < C([| @ grm(ry + sup [| BR[| gm ry)-
BeB

Corollary 2.19. Let d = 3, m € Ny, Q2 be an open, bounded domain with boundary I' of
class C*°. Let v € L*((0,T), H™(T)) and Bv € L*((0,T), H™(T')) for all B € 4. Then,
v € L2((0,T), H™"(T')) and there exists a set of finitely many first-order operators B C %
such that

vl 20,1, 51 )y < CUVl L2((0,7),10m (1)) + sup | Bvl| L2 ((0,7), 1 (1)))-
S

Proof. Follows from Lemma [2.18] O

2.7. Method of Mappings

A detailed and general discussion of the method of mappings can, e.g., be found in |20} [4T],
105]. Here, a short comprehensive motivation of the method is given. We start at observing
that a general, abstract and intuitive formulation for shape optimization problems is given
by

min j({2),
QEOad

where @ad denotes an appropriate set of admissible domains and j : @ad — R a shape
functional [31, Def. 4.3.1].
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Remark 2.20. In the case of PDE constrained optimization j(Q) usually denotes a reduced
cost functional defined by 7(2) = J(y,(2), where

A

J:A{@,Q):5eY(Q),02e O} - R

and ¢ denotes the solution of a partial differential equation given by E (7, Q) = 0 with

N

E:{5,0):9eY(Q),Q¢e 0w} —{2:2€2(0),Q e Ou).

Here, Y (Q) and Z(€2) denote Banach spaces.

One of the main challenges in considering this optimization problem addresses the topo-
logical structure , more precisely, the definition of an appropriate metric on Ouq. Besides
the consideration of characteristic functions (which motivates, e.g., phase field approaches,
cf., e.g., [A7, 48]) or distance functions [31], Oaq can be endowed with a metric that is de-
fined via transformations [102, B31]. Similarly to the FSI problem the Lagrangian or Eulerian
perspective can be chosen to work with transformations. The latter leads to the notion of
shape derivatives, cf., e.g., [1l 31l [122], and to level set methods, cf., e.g., |1, 22, 23| 110].
The Lagrangian perspective is known as method of mappings or perturbation of the identity
[20, T05]. The main idea is the introduction of a reference domain € and the choice

@ad = {%(Q) ©TE 7~dad}

as the set of shapes that can be obtained by transforming a nominal or shape reference
domain Q with 7 € T4 C T(), where 7(Q) denotes the Banach space of bicontinuous
transformation of (. This allows for a reformulation of the shape optimization problem in
an optimal control setting defined on  with control ¥ € T wa which is given by

min j(7),
TE€T ad

where j(7) := j(#(Q)) for all # € T 44. In order for the optimization problem to be equivalend
to the original problem we have to ensure a one-to-one correspondance between transforma-
tions and shapes.

Remark 2.21. Any bi-Lipschitz transformation ¢ that just transforms the interior of { can
be added to 7 and it holds #(Q) = (¥4 7¢)(Q). The reformulation of the shape optimization
problem has to take care of these kernel spaces, which motivates the consideration of shape
optimization problems on appropriate linear subspaces or manifolds.

Remark 2.22. In the case of PDE constrained optimization, it holds
(7)== 35, 7(Q) = J (5, 7(),

where § solves E(g, 7(€)) = 0. Under the assumption that 7 is smooth enough such that for
g € Y(7(Q)) it holds t}}at goT €Y (Q) for all T € T4q and such that for 7 € V() it holds
that o771 € Y(#71(Q)) for all ¥ € T 44, we have

J(,7(Q)) = J(j o 7,9)
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and R . R 3

E(5,7(Q) = E(goT,9),
which yields an reformulation of the shape optimization problem on the reference domain Q.
The assumption is fulfilled, if Y(Q) = {go7:y € Y(7(Q))} and the mapping

JEYHFQ) = §=joreY(Q)

is a homeomorphism for all 7 € T 2a- In that case, there are two possibilities to compute
the gradient of the reduced cost functional. For the iterate 7 one either solves the with
7 transformed state and adjoint equations on €2 or one solves the untransformed state and

adjoint equations on the transformed domain 7(€2).

It is convenient to define u, := 7 — id, to ensure that 0 is admissible in the optimization
process, as well as, )
Uy :={0, :R* = R? . id, + 1, € Tagl,

and optimize over u, € fJad instead of 7 € '7'ad. Thus, we arrive at the optimization problem

min j(ur),
ur€Ugyq

where j(1;) := j(id, + @;).
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3. Fluid-Structure Interaction

This chapter collects theoretical results for FSI problems under simplifying assumptions. In
Section it is shown for an unsteady, linear FSI model that the adjoint equation has the
same structure as the forward model but reverses the temporal flow of information. A new
improved regularity result for linear hyperbolic equations is derived in Section [3.2] which is
the basis for a regularity result for an unsteady, linear FSI problem (Section . These
considerations are the foundation for a local-in-time regularity result for an unsteady, non-
linear FSI problem in Section The main contribution is the new improved regulartiy
results for linear hyperbolic equations in Section [3:2]

3.1. Adjoint Considerations for a Linear Unsteady FSI
Problem with Stationary Interface

For computing the gradients in optimal control settings, the adjoint equations have to be
solved. Especially in cases, where no automatic differentiation can be applied, it is crucial to
derive an explicit formula for the adjoint equations. Even though the FSI model is modified
for performing shape optimization, the adjoint equations to the unmodified model can be
used to drive the optimization (Section , basically when every iteration is performed on
the current ALE reference domain instead of the nominal domain, cf. [20, Sec. 2.2.2].

We consider the adjoint of a linear version of the fluid-structure interaction model .
More precisely, we consider Stokes flow for the fluid and linear elasticity for the solid equation.
Additionally, we restrict ourselves to the case with a stationary interface I; and homogeneous

Dirichlet boundary conditions, i.e., Q@ = Q(t) = Q and 9Q(t) = T'yp UTp for any t € I.
This also implies that x = idy, jx =1 and F = I. The resulting fluid-structure interaction
problem (for the sake of clarity without superscripts) reads as follows

prov —div(oy) = psfy  in Qp x I,
div(v) =0 in Qf x I,
v=0 onlyxI,
v(-,0) =vo in Qy,
psOrv —div(os) = psfs  in Qg X 1, (3.1)
ps(Ow —v) =0 in Qg x I,
w=0 onlj,xI,
w(-,0) =wp in Qq,

v(-,0) =vp in Q,
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3. Fluid-Structure Interaction

with the additional coupling conditions

ow=v onl;xI,

—omy=osng onl; xI,

where oy = py(Dv + Dv') —pI, pp = psvy, o5 = ps(Dw + Dw') + Astr(Dw)I and, for
the sake of convenience, we introduced vg defined by vo\Qf = vos and volo, = wi. For
compatibility reasons there holds wo|p, = 0. This corresponds to the setting considered in
[34].

We are interested in the adjoint equations and therefore do calculations on a formal level
in order to derive a formulation for the adjoint system. In particular, we do not analyze
the regularity of solutions but only assume that all functions are smooth enough such that
the appearing terms and operations are well-defined. For the analysis of we refer to
[34, 135, [38]. Since we consider a linear unsteady partial differential equation, we aim for
a weak formulation for which the adjoint attains the same structure as the forward model
but reverses the temporal flow of information. In [38], it is shown that an unsophisticated
straightforward weak formulation does not have the desired property, basically due to the
term Oyw — v = 0. As a remedy, it is proposed to work with Voyw — Vv = 0 instead. In
the following, we apply ideas from [34] to reformulate the weak formulation and obtain an
analogous result.

Since Oyw = v on € it follows that w(-,t) = wo + fg v(s)ds on Q.

Let W(v)(-,t) = wo + fot v(-,s)ds, then the problem reads as follows:

p;0v — ppdiv(Dv + Dv') + Vp = pef;  in Q?,

div(v) =0 in QJ:C,

v=0 onX%,

psOv — p1sdiv(DW (v) + DW(v) ") = A V(div(W(v))) = psfs  in QT
v=0 onXxT,

v(-,0)=w; in
with the additional coupling condition
pns — pp(Dv + Dv )y = ps(DW(v) + DW(v) N ng + Aediv(W(v))ns  on X7

One can check that this formulation is equivalent to the previous one since ps(;W (v)—v) = 0
on QT W(v) = 0 on XI' and W(v)(-,0) = wy are satisfied by the definition of W(v) as
well as ;W (v) = v on X7 is satisfied if we require v € H}(Q) for almost all ¢ € I, which
implies uniqueness of the trace.

The following notation is used:

o ()0 = Jopqdf for all p,q € L*(Q), (v,u)q := [, v -udf for all v,u € L*(Q)? and
(A,B)g = [, A : Bd¢ for all A, B € L*(Q)4*4.

e (v,u)r = [pv-udS(¢) for all v,u € L?(Q)?, where dS(€) denotes the surface measure
on I
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hd ((p, Q))QT = foT(p('v t)’ Q('v t))th for all Dp,q € LQ((Ov T)’ L2(Q)),
(v,u)gr := fOT(V(-,t), u(-,t))qdt for all v,u € L2((0,T), L?(2)%) and
(A, B)gr == [ (A, B)qdt for all A, B € L*((0,T), L*(Q)?*%).

(Dv+Dv'",Dz + DZT)Qf,
(Dv + Dv', Dz + Dz")q, + \s(div(v),div(z))q,, for v,z € H}(Q)4.

e af(v,z) =4
as(v,z) = %

The corresponding weak formulation reads as follows:

0V, 9" ) gr — py(div(Dv + Dv'), Y )or

+ (Vo ¥ )gr — (orfr, %7 )gr + ps(8ev, ")) gr

= ((psfs, ¥"))qr — (div(v), ¥P))gr + (v(-0) = vo,9°(-,0))e

— ps(div(DW(v) + DW(v) "), 4") gr — As(V(div(W(v))), ")) gr = 0.

Integration by parts yields the formulas
af(V,Z) = puf Z/Q (Okvjakzj + 8ijajZk)df
gk 7
= —Uf Z/ (8k6ijZj + ajaijZk)df + uy Z/ (aijZjIlf’k + 8ijanf7i)dS(f)
PRAL r 09y
= —uf Z/ (akaijZj + ajaijZk>d§ + w1y Z/ (8ijZjnf’k + 8ijanf7i)dS(§)
k7S gk I

= —py(div(Dv + Dv'), z)o, + pp((Dv + Dv')ny,z)r,,

(Vp,2)q, = —(p,div(z))q, + (pnyf,2)aq, = —(p,div(z))a, + (pnf,2)r;,

and
as(v,z) = %(Dv +Dv',Dz+ Dz")q, + ) Z/ 0,V ;O zpdx
— JQ
Jk s
= %(DV + DVT’ Dz + DZT)QS — s Z/ ﬁkajvjzkdx + A Z/ 8jvjzkns,kd5(x)
— JQ, — Jon
Jik 700 Jik s

- %(Dv +Dv',Dz+ Dz')g, — A Z/ Ok0jvjzrdx + As Z/ 03§25 115 (x)
gk Ss gk T

_ %(Dv +Dv',Dz+ Dz g, — AJ(V(div(v)), z)q, + As((div(v))n, z)r,

= —us(div(Dv + Dv '), z)q, + ps((Dv + Dv ' )ny, 2)r,
— X(V(div(v)),z)a, + As((div(v))ns, z)r, .
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Thus, the weak formulation can be reformulated as
T
PO gy + [ a9 )= (0.9 %"y
T
(0 ¥gr + [ ad(W). )= (v, 07y
— (prtr 4 )qr — (st ¥ ) gr + (v(,0) = vo,9°(-, 0))a
T
- / (1 (Vv + Vv g —pny + pus(VW(v) + VW (v) ")n,
0
+ As(V - W(v))ng, ¢")r,dt =0,
which can be simplified by using the interface condition:

T
PO gy + [ artv )= (0.5 0"

T
#0008 gr + [ (W)t = (7,07
= (st ¥ ) gr — (s ")) gr + (v(:,0) = vo,9°(-, 0))a = 0.
Linearization of this equation yields an operator A, which is defined by

T
<A(Tlv> 77p)> (¢U7 ¢p)> = pf((atnv¢ ,va))Q? + /O af(nva ¢U)dt - ((npa V- 'lnbv))Q?

T t
00" g+ [ ol [ 0 Cs)ds w )t (T w0 gy
+ (nv(VO)a'l:bU("O))Q-

The term which destroys the symmetry of the operator is given by as. Closer consideration
of this term yields (under the assumption that we are on spaces where Fubini’s theorem is
valid) yields:

[ ool ey, e = /T%(/t (., $)ds, (- )t
:/OT Otas(nv( ), 9" (-, t))dsdt = //a $¥(-,t))dtds

:/OTaS / e dt)ds-/ as(n'(-,s), OT Slbv(.’T—t)alt)ds

:/OT T —5s) /w” T — t)dt)ds

IIltI'OdllCiIlg ﬁv(g?t) = 77”(57 T — t)7 ﬁp(é?t) = Up(fa T— t)a Ev(gv t) = 17[;7)(57 T— t)7
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PP (€ t) = YP(E,T — t) yields

[Mf (mwmq/%/w )ds, 71

We have dyap¥(-,t) = —0s3p" (-,s) for s = T — t and the following equation holds true:
T
(.00 g = [ (0.0 000" ()t
T
= /0 (ﬁU(W T —1), _aSEU(W T - t))Qfdt
0 Y T —
—— [ (9 -0 Sayds = — [ (09,057 (5))oyds
T 0
T
= _/0 (ﬁU(Wt)aatEv('vt))Qfdt: _((ﬁv7atav))Q?'
This is the reason why partial integration yields
T
(@ 9"y = [ outn" %) e (" Dy
= (nv('a T)7 szv(" T))Qf - (nv(.7 0)7 wv('v 0))Qf + ((ﬁv7 atav))Q}"
Analogoulsy,
T
e R A U e
=, T), 9" T))a, — (M"(,0),9°(-,0))a, + (7", 03 )r-

Combining these results, rewriting the terms in v, 7P, ", ¢" and using that

—v

¢, 1), 4" T))a= M"(0),% (,0))q yields:
T
<A(nvv np)v (d’v? ¢p)> = pf((atavvﬁv))QT + /0 af(Evaﬁv)dt - ((V : Wﬁﬁp))Q;—f

T 050" TN gr + / s / B (. s)ds. 1)t~ (0. V -7 )gr
B 0,7, 0)) = (A", T, (7", 7).

Thus, the adjoint has the same structure as the forward model, but reverses the temporal
flow of information.
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3.2. Improved Regularity Result for Linear Hyperbolic
Equations

In order to motivate improved regularity results for the Lamé system, we first consider the
classical hyperbolic system

dww — Aw = f in QF,
w=G onXTl,

w(-,0) =wy in Qj,
Ow(-,0) = wy in s,

and derive improved regularity results for this system.

3.2.1. Available Existence and Regularity Results

The theory is built on the following existence and regularity result, that already contains
an improved regularity result for the normal derivative on the boundary. Defining lifting
operators as in [I13] and using [86, Rem. 2.2, Thm. 2.2, Rem. 2.10| yields in an analogous
way to [I13, p. 560, Thm. 3.2]. For the time-independency of the constants compare also
Theorem [3.12

Theorem 3.1. 1. Let f € L'((0,T), L?()), G € HY(ZT), wo € H'(€2) and
w1 € L?(£)) be such that
Gli=0 = wolr, .

Then the solution w of system (3.2]) satisfies
w e C([0,T], H'(24)) N ([0, T], LA(2))

and
Vw-n, € LX(3T) = L2((0,T), L*(Ty)).

In addition,

lwlle o, vt @u)net (o, 220 + Vw0l 257

< C(Ifller 0,1y, 20y + lwoll iy + llwill 2o,y + 1Gllg sT)),s
where the constant C' is independent of T

2. Let f € LY((0,T), H'(Q)), 0:f € L*((0,T), L*>(Q)), G € H*(XT), wo € H?(Q,) and
w1 € H'(£2) be such that

Gli=o = wo|r,, 0:Gli=o = wi]r,.
Then the solution w of system (3.2]) satisfies

w e C([0,T), H*()) N CY([0,T], H*(Q)) N C%([0, T], L*(Q))
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and
Vw-n, € HY(XT) = L2((0,7), HY(T',)) N HY((0,T), L*(T)).

Furthermore,

lwlle (o, 22(Q0))ne (0,70, H (2))ne2(0.7),22()) T+ |V - sl g sy
< C(fllr o),z (00)) + 110 f L1 0.1),22(024))
+ lwoll 20, + llwill gy + Gl g2 (21))s

where the constant C' is independent of T

. Let f € LY((0,T), H?(Qs)), O f € LY((0,T), H* (%)), Owf € L1((0,T), L*(Qs)),
G e H3(XT), wo € H3(Q) and wy € H?() be such that

Gli=o = wolr,, *Gl=o = wilr,, OuGli=0 = (Awo + f(-,0))|r,-
Then the solution w of system ([3.2)) satisfies
w e C([0,T), () 1 C1(0, 7], HA(2,)) 1 CX([0, T, H'(2))

and
Vw-ng € H*(XT) = L2((0,T), HX(I's)) N H*((0,T), L*(T)).

Moreover,
lwlle(o,r), 53 (Q)net (0,17, B2(Qe))nez(o,7), 5 () + VW - | g2 sy

< CUI o), m200)) + 10 f L1 (0,7), 51 (20)) + 19 fll 1 (0,7),22(20))
+ [lwoll g3 ) + lwillg2ey) + 1F ¢ 0 @) + Gl a3xTy),

where the constant C' is independent of T'.

3.2.2. Local-in-Time Results

[59, Assumption 1].

Applying the above results directly in the FSI setting results in a loss of information due
to the anisotropic regularity of the solution of the fluid equations in space and time, cf.
Using a fixed point argument on the coupling conditions motivates to
work with boundary conditions G € L?((0,T), H™*(I's)) N H"((0,T), H*(Ty)), r € {1,2}.
The starting point for our considerations is a technique of [86] which allows to consider a
modified linear hyperbolic equation, where the regularity of the boundary term is compatible
to the regularity results in Theorem without losing information as it is the case when we
embed the space with higher regularity into a space with lower regularity. More precisely, we
consider a first order operator B € % that is tangential to the boundary in order to obtain
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the system

Ow(Bw) — A(Bw) = (BA — AB)w + Bf in QT
Bw =BG on X7,

Bw(-,0) = Bwy in Q,

O¢Bw(-,0) = Bw; in Q.

Now, BG € L?((0,T),H"(Ts)) N H"((0,T), L?>(T's)). However, the regularity of the right
hand side of the hyperbolic equation, more precisely the term (BA — AB)w prevents us
from directly applying Theorem since (BA — AB) is, in general, a differential operator
of order two. Thus, no bootstrapping argument can be used except for geometries where
(BA — AB) is a differential operator of order strictly less than two, which is, e.g., the case if
YT is flat as in [I13]. In that special case it holds that BA — AB = 0 and Theorem can
directly be applied. From the regularity of Bw we can then improve the estimates on the
regularity of the normal derivative of w on the boundary, c¢f. Corollary 2.19] The following
interchangeability property is useful.

Lemma 3.2. Let d € {2,3}, Q, be a domain with smooth boundary I's, B = >, b;(§)0g,
be a time-independent first order operator with smooth coefficients b;(&) such that

d
Zbi(f)(ns)i@) =0 on I},
i=1
and
Vb;-ny; =0 on T},
for all ¢ € {1,...,d}, where ns denotes the outer normal unit vector of 25 on I's. Then,

B(V® -n,) =VB® -n, +V® - (Bn,)

on I'y and for any smooth .

Proof. Follows from the following two identities:

VB®-n, = V() bide,®)n, = > (b;d,0c,B(ny); + J,bide, (n,);)
i i,j
=Y _bid, 0, ®(ny);,
2

B(V® - n,) = Z(biaﬁja&@(HS)j + bidg; ©0g, (n5) )

2Y)
= bi0,0,®(n,); + VO - (Bny).
.3
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The main idea to extend these considerations to smooth domains is inspired by techniques
in [I13]. We consider local-in-time solutions and use the fact that the constants of the
estimates for right hand side terms that depend on w show well-behaved T-dependencies.
Therefore, choosing T" sufficiently small allows us to eliminate these terms. Then, globaliza-
tion strategies as in [I13] can be applied.

Lemma 3.3. Let T* > 0,
G e L*((0,T%), H*(Ts)) N H'((0,77), H' (L)),
f € L2(0,T%), HY(Qy)), wo € H*(Qs) and wy € H(s) be such that
Gli=0 = wolr,-

Then, there exists 7' € (0,7*] such that for all T € (0,7 the solution w of system (3.2)
satisfies
Vw-n, € L*((0,T), H'(T's))

and
1
Vw0l 2oy, ra) < CT2 L2 0m), 50 00) + G200, 520 )0 (01), ()
+ [Jwoll 2,y + w1l ar(0y))s

with a constant C independent of T

Proof. We first assume the data to be smooth, i.e.,
wo, w1 € C*°(Q) and f, G € C®(Q x [0,T]),

and use extension by continuity, see Section to conclude the argumentation.
By Theorem [3.1]1 we know that

lwlle(o,m,mr (u))net (0.77,22(20)) + IVw - 1| 257 (3.3)

< CUflrom),c2@0)) + lwoll e,y + lwillz2y) + Gl a1 sry),

with a constant C' independent of T'. Let Cp € (0, 00) be chosen such that

BCBc, ={Be% :B= Zbia&-, st. b-ng=0o0nT}, 1S<u1<)d”biHC°°(§5) < Cp and

b is constant along normal directions locally around I's},

where B is the set of finitely many first-order operators defined in Corollary [2.19] Due to
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Corollary there exists h € C>(Q;, R?) such that for all B € Be,, there holds

h|r, = nj,

h is constant along normal directions locally around Iy,
Vh;-h =0,

Vb;-h =0,

in a small neighborhood of I'; for all [ € {1,...,d}. Consider the system

Ou(Bw) — A(Bw) = (BA — AB)w + Bf in QT
Bw =BG on X7,

Bw(-,0) = Bwy in €,

OtBw(-,0) = Bw; in Q.

(3.4)

Standard estimates, Lemma and || Bf| 1 (0,1),02(04)) < T3 IBfllL2(0,1),L2(024)) Yield

1
IBfllzro,r),2(00)) < CT 2 fll2(0,1), 11 (20))5
| Bwoll g1 (0,) < Cllwoll g2y,
| Bwi|z2(0,) < Cllwi|lg1(a,),

|BG| sty < CGl L2 (0,1, 52(00)nH (0,1, H(Ts))»
with constants C' that depend on Cp but not on 7. We have

(BA — AB)w = Z b; ¢, O¢, Og,w — Z 8&3&(2 b0 w)

1,J i J

= -9 Z 8€ibj8§j8§iw - Z a{ia&bjagjw'

1,5 1]
We aim at proving the following estimate

[(BA — AB)wl|1((0,7),22(02.))

1 ~
< Cllwl o), 11000 + CT? sup || Bwllp2(o/r),m1 (0.))s
BGBCB

for a constant C' independent of T" where we use that
~ l ~
| Bwllpro,7),m1 (2,)) < T2l Bwl 220,751 (2,))-
It holds that

1~ 96,0, b;0,wl 11 0,1),220.)) < Cllwll Lo, 11 (00

1]

for a constant C' independent of T'.
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3.2. Improved Regularity Result for Linear Hyperbolic Equations

However, for the first term of (3.5) we have ), 0¢,b;0¢; ¢ Bcy. The idea is to split the
operator J¢, on w into a normal and tangential part. Therefore, we define

fli = (h . ei)h, bl =€e; — hi,
where e; denotes the ith unit vector. We obtain

D 0e10c, 0w =Y 9 b0, ()0, w) + > 0,0, ((bi) kO, w). (3.8)

.3 .5,k 1,5,k

By definition of b; we have b; - h|r, = 0 and due to (3.4) we know that (b;); are constant
along normal directions in a small neighborhood around I's for all k € {1,...,d}. Therefore,
> k(bi)r0¢, € Bcy and the second term of the right hand side of (3.8)) can be estimated

1D 0e:b;de, (0o, w)l| 1 (0.1),12(20)) < ZCBH% > (bi)de, )l 11 (01),22(00))
7.7 k ,] k

1 ~
< CT>2 ~sup HBw”LQ((O,T),Hl(QS))' (39)
BEBCB

The first summand of the right hand side of (3.8) splits into

> 0,10, (h)kdg,w) = 9, bj(hi)xde, 0w + Y e, bj0e, (hi)pdg,w.  (3.10)
4,5,k 4,5,k 4,5,k

The second summand of the right hand side of (3.10]) is easy to handle and we obtain

| Za&b B¢, (h)k0e, w1 (0.1).12(90)) < Cllwlli(0.1). 11 (0))- (3.11)
7-]7
The first term of the right hand side of (3.10|) reads as
> 0, b;(h)0e, 0w = _ de,bhihygde, g, w.

1,5,k 1,5,k

By (3.4)), >, 0¢,bjhihy, = (Vb;-h)hy, is 0 in a small neighborhood around I';. Consequently,

v i O bjhihg0g; € Bp, for v = m and
Hza& kasjafkaLl ((0,T),L2(R))
5,k
< Z Hzafk 9¢,bj(hi)) 0, wl L1 ((0,7).22(0)) + 1108, ( Zaé (h:) k¢, w) | 11 0,7), 22(02)))
,J
< C(Hw||L1((o,T),H1(Q)) + T3 sup || Bwl|r2o,1),m1(90.)))- (3.12)
BeBcg

B3). 7). G3), G9), B10), B1I) and B12) yield estimate (B:6). Due to Theorem [B}1
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3. Fluid-Structure Interaction

there exists a constant C' > 0 such that

| Bwlle(jo,m,51 (.))nct (j0,77,22(02)) T IV Bw - ng| 251y
< CUf o), Hr(020)) + HwOHHz(Q + [will g,y + 1Gll 20,1, 520 ))nE (0,1, 5 (TS))

+ [[wll L1 0., 51 (2 ))+T2 sup || Bw| 207,11 (60.)))-
BEBCB

Using that B € Bc,, yields
sup || Bwllc(o,r),m1(0,)) T sup [[VBw - ngl|p2(sr)
Cp BEBCB
<2C(Iflzr 0.1, (92)) T llwoll 2y + lwill g (ay) (313)
+ Gl L2 (0,7), 120 )" E (0,7), 1Y (1)) T 1wl L1 (0,1, 51 (24)) '
l ~
+ T2 sup ||Bwlr2o0,r),m51(0.)))-
BGBCB

To apply Corollary we need an estimate for ||B(Vw - ny)|p2(zry. By Lemma we
know that

[1B(Vw - ns)|| 251y < IVBw -0 257y + [[Vw - Bng||2s1). (3.14)

The first summand can be bounded with (3.13]). The second term can be written as
Vuw - an == Z %w Z bjagj (ns)i = ZAbia&w

where b; := 3. b;d¢ h;. We split b := (by,...,by) in a normal part by, := (b-h)h and a
tangential part b, := b — b, with |[b, oo @, rey < aCp and ||thC°<>(Q rd) < BCB, where
the constants « := d2||h||3oo — and 8 :=d(1 + dHh||2 )||h||coo do not depend on B.

Therefore, B := > 5_1(13)2-8& € B¢, and there exists a Constant C independent of 7" and
B such that
|[Vw - Bog||p2zry < [|[Vw 'i)n”m(st) + /B”BwHL?(ZST)

< C([|[Vw - ngl|p2(gry + sup HB’U}HB(st))
BGBCB

C(IVw - ngllp2sry + sup [|Bwllzzo.r),m(0.))):
BEBCB

where we use the trace inequality in space. Combining this result with (3.3)), (3.13) and
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3.2. Improved Regularity Result for Linear Hyperbolic Equations

(3.14)) yields a constant C' independent of 7" such that

sup || Bwlleo,r, a0 + sup [[B(Vw - )| p2sr)

BeBcg BeBepy
< Ol Al o). @) + l[woll 20, + llwillm e, (3.15)
+ Gl 2 (0.1, 12 (0 )y (0,7 HL(T ) '
+ sup |[Bwlr2(0/1),m1 @.)))-
BEBCB
We have
~ 1 H
sup || Buwl|zom),m1 (. < CT2 sup [|Bwlleory.a@.)): (3.16)
BEBCB BEBCB

which implies for T" > 0 sufficiently small

sup || B(Vw - ny)|[r2sr) < O fllro,r), 51 00) + [lwoll m2(0.)

BEBC’B
+ [lwill g1y + Gl L2 0,7), 52 (0o )nE ((0,7), 5 (Ts)))-
(3.3) and Corollary and using extension by continuity yields the assertion. O

Likewise we can show the following lemma.

Lemma 3.4. Let T* > 0,
G € L*((0,T%), H*(Ts)) N H?((0,T*), H'(Ts)),
f e L2((0,T%), HX(Qy)) N HY((0,T), H'()), wo € H3(Q) and w; € H2(€2,) be such that
Gli=o = wo|r,, 0:Gli=0 = wilr,-

Then, there exists 7' € (0,7*] such that for all T € (0,7 the solution w of system (3.2)
satisfies
Vuw -ng € L*((0,T), H*(Ts)) N H'((0,T), H'(Ts)).

Vw - ngl| £2(0,7), 120, ))nH ((0,7), H(T,))
1
< C(T2 fll L2 o,m), H2 (00 ) H (0,1, H (2,)) + Gl L2((0,7), H3 (0 )82 ((0,7), H (1))

+ llwoll g () + lwill g2(0,))s

with a constant C independent of T'.

Proof. This is obtained with the same arguments as in Lemma([3.3] but on the basis of Lemma
[3.112 instead of B.111. O
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3. Fluid-Structure Interaction

3.2.3. Global-in-Time Results

Since the local-in-time improved regularity results are shown for linear operators, a global-
ization is straightforward using ideas of [107, Prop. 2.7].

Lemma 3.5. Let 7T* >0 and 0 < T < T,
G € L*((0,7%), H*(Ts)) N H'((0,T%), H'(T)),
f e L?((0,T*), H (), wo € H?(Q) and wy; € H () be such that
Gli=o = wo|r,.
Then, the solution w of system satisfies
Vw - n, € L*((0,T), H'(Ty))

and

1
[Vw - HSHLQ((O,T),Hl(FS)) < C(T: HfHLQ((O,T),Hl(QS)) + HGHLQ((O,T),HQ(FS))HHl((O,T),Hl(l“s))
+ [[woll a2,y + w1l ()5

with a constant C' independent of T

Proof. Let the data f, G, wy and w; be smooth and conclude the argumentation with
extension by continuity. Combination of (3.15) and (3.16) yields a constant C' independent
of T such that

sup || Bwlle(jo,r),m(.)) + sup  [[B(Vw - ng)|lp2smy
BEBCB BGBCB

< CUIf o), 590 + lwoll g2y + [will gray) (317
Gl L2 0,1), 2 (0 ) E ((0,7), H(Ty)) '

l -~
+T2 sup ||Bwllcqor),m (@.))
BEBCB

for all T € (0,7%]. Let 0 < Ty < T < T3, then,

sup [|Bwllcqom),m.) = sup  [[Bwllem m),m1 90)s
S Cp BEBC‘B

sup || Bwl|r2(0,m),m51 Q) < Sup | Bwlz2¢om),m5100)) + Sup |Bwll 2y 1), 11 (0,))5
Be Cp Be Ccp BEBC’B

1
sup || Bwl| 21y, m),m51(00)) < (T2 —T0)2 sup  |[Bwlle(my,m),m(02,))>
Be Cp BEBCB

(3.18)

if SUPpeBe, |Bwlle (o), 01 (20)) < 00 Let T > 0 be chosen such that CcT? < Then,

1
3
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3.2. Improved Regularity Result for Linear Hyperbolic Equations

(3.17)) implies

sup || Bwlle(o,r),m1(0.)) + sup  [[B(Vw - ng)|lp2zmy
BGBCB BEBCB

S 2C(||f”L1((O7T)7H1(QS)) + HwOHHz(QS) (319)
+ HU}lHHl(QS) + ||G|’L2((07T)7H2(Fs))mHl((O,T),Hl(FS)))

for all T € (0,T]. Choose T =T and AT = min(T +T,T*). Then, for T € (T,T + AT,

(3.17) and (3.18)) imply

zllli‘p ||Bw||C([T7T]7H1(QS)))+ sup || B(Vw - ng)| r2(s1)
C

B BEBCB
< CUIfllr o), mr(920)) + lwoll g2y + Wil mr(ay)
+ |Gl 20,1, 52(T s ))nH (0,1, H (T's))

/\l ~ ~ ~
+ 12 sup || Bwlleqo gy 10, + (T =1)2 sup [[Bwlleqz oy ma,y)-
BGBCB BEBCB

[SIES

Since CT> < %, and T—T < T for T € (T,T + AT, there exists a constant C' > 0

independent of T' such that

sup || Bwlle(o,r),m1.)) + sup  [[B(Vw - ng)llp2zmy
BGBCB BGBCB

< CUIf o), mr 0 + lwoll g2y + lwill 710,

/\l ~
+ Gl 2 (o,r), 120 )nm (07,11 (0y)) + T2 sup (|Bwlleo 71 110y
BEBCB

for T € (T, T + AT). Due to (3.19) there exists a constant C' > 0 independent of T' such that

sup || Bw||¢(o,m,m1(Qy)) T sup [B(Vw - 1) || 2z

€bcg Be cp
< C([[fllrom),mr(00)) + lwoll g2,y + llwill g ay)

+ |G 20,1, 52(T ) (0,1), HL(TS)))

for T € (0, T+ AT]. Replacing T with T+ AT and recursively applying this argumentation,
(3.3), Corollary and extension by continuity yield the result. O

With the same arguments we obtain the globalized version of Lemma [3.4]
Lemma 3.6. Let 7* >0 and 0 < T < T™,
G € L*((0,T%), H*(T's)) N H*((0,T%), H'(Ts)),
f e L?((0,T*), H*(2)) N HY((0,T), H (%)), wo € H3(5) and w1 € H?(€) be such that

G’t:O = wO‘FS, 8tG’t:O = wl‘Fs-
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3. Fluid-Structure Interaction

Then, the solution w of system (3.2)) satisfies
Vw-n, € L*((0,T), H*(Ty)) N H'((0,T), H(T)).
Furthermore,

IVw - ng | 22 ((0,1), 52(T ) H ((0,7), 51 (T,))
<O(T: £l z2¢0,7), 5200 )nE (0,1, 5 (920)) + Gl L2 ((0,), 53 (0o )2 (0,7), HL(Ty))
+ [Jwoll a3 () + w1l a2(0,))s
with a constant C independent of T
Let, for the sake of convenience, f = 0 and consider the system
Opw — Aw =0 in QZ,
w=G on EZ,

w(-,0) =wp in Q,
Ow(,0) =w; in Qg,

(3.20)

The argumentation for obtaining an estimate that is compatible to the fluid equations is
motivated by [113] and presented in a slightly modified manner.

Lemma 3.7. Let T* > 0and 0 < T < T*, £ € (3,1),
G € LX(0.7%), H2 (L) N HE(0,7%), H'()),
wo € H%H(QS) and wy € H%”(QS) be such that
Gli=0 = wolr.-
Then, the solution w of system satisfies
Vw - n, € L2((0,T), H=*4(T,)) N H3((0,T), H\(T.)),
and

[Vw - ng]
< (Gl

L2((0,1),H 24T )NH ™2 ((0,T), HL(Ts))

+ [woll + [l

L2((0,T), H3 4T )N H3H4((0,T), HL(T's)) H3+(Qy) H%“(Qs))’

where the constant C' might depend on 7.

Proof. Interpolation of Lemmas and with 6 = % — { yields

[V - n|
< c(llall

L2((0,T), Hz“(r ))me" ((0,T),H(Ts))

+ [Jwoll + i

L2((0,T), H3 (T )N H3H4((0,T), H(T's)) H3+Qy) H%”(QS))’
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with a constant C' > 0 independent of T". The equivalence constants between the interpolation
norms || - || and the norms || - || on the time interval (0,7) might depend on 7' O

Lemma 3.8. Let T* > 0and 0 < T < T*, £ € (3,1),
G e H'((0,7%), H* () n Ht((0,T%), H'(T,)),
wo € H3T(Q,) and wy € H3(Q,) be such that
Gli=o = wo|r,, 0O:Glt=0 = wi|r,.

Then, the solution w of system (3.20)) satisfies

Vuw - n, € HY((0,T), Hz(T,)) n H2((0,T), HY(T,)),

and
IV nSHHI ((0.1), HZ (T ))NH" "2 ((0,T),H (T's))
S CUGH g oy st e rapnmdeomymy T 0ol ggee gy T ol g )
where the constant C' might depend of T'.
Proof. Lemma, [3.7] yields
IV 0l o o, b e apont-tom,man (3.21)
— C(HGHL2((0,T),H%+Z(Fs))QH%+£((O,T),H1(FS)) + HwOHH%vLZ(QS) + ||w1||H%+Z(QS))
Jrw is a solution of the system
att(ﬁtw) — A(@tw) = O in QZ,
(9tw = atG on Zz, (3 22)
Ow(-,0) =wy in O, .
at(Btw)(,O) == AU)O in QS.
Lemma applied to system (3.22)) yields
1969 0all .y 344w =3 oy sy
+ ||w1||H%+z(Q + ||Aw0||H +(q, )) (3.23)
< (Gl

HL((0,T),H3 (T3 ))NH3+((0,7),H(T's))
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Combination of (3.21]) and (3.23) yields the assertion.

Lemma 3.9. Let 7* > 0and 0 < T < T*, (€ (3,1), B € (0,1 —0),
G € HY((0,77), H= (L)) N HZH5((0,17), H(I')),
wop € H%Jr“ﬂ((ls) and w; € H%+E+ﬁ(§28) be such that
Gli=o = wo|r,.
Then, the solution w of system (3.20]) satisfies
Vuw-n, € HP((0,T), H3 T (T,)) n H35((0,T), H\(T,)),
and

IVw - nlf,
< c(llall

T>,H%“(Fs>>mH“%”((O,T),Hl(r )

where the constant C' might depend on T
Proof. Is obtained by interpolation of Lemmas and with 0§ =1 — §.

Lemma 3.10. Let 7* >0and 0 < T <T* ¢ € (%, 1),
G e Hits(xT"),
wo € H%Jr%(Q ) and w; € Hit g(Qs) be such that
Gli=o = wolr,, O:Glt=0 = wi|r,.

Then, the solution w of system (|3.20]) satisfies

7

w e C(0,T], HiT5(,)) N CY([0,T), Hi+5(Qy)), Vw-n, € Hi*3(2]),

s

and

+ [ Vw -

”wHC([o,T},H%*%( au)net(o,7),m i+ (9.))

< C(IG] g4 ggr, + 00l

3,0
3 (=)

y ol g );

21‘*‘7 3+5 3 (Q5)

where the constant C' might depend on T

Proof. The assertion is obtained by interpolation of Theorem [3.1]2 and [3.1]3 with
g=5_1
172
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Theorem 3.11. Let T >0, £ € (3,1), B € (0,1 —¢),

G € HP((0,T), H3 (L)) N H345((0,T), H'(Ty)) N Hi3((0,T), L*(Ty)),

wo € H%Jr“ﬁ(ﬂs) and w; € H%M‘FB(QS) be such that
Gli=0 = wolr,, Gli=0 = wi]r,.
Then, the solution w of system ([3.20)) satisfies

T3(0)),

w e C([0,T), Hi3(0,)) N CY([0,T), H
Hi*3((0,T), LA(T,)),

Vuw-n, € H?((0,T), H2T(T))

and
3

Il C([0.T),HH 2 (2,))nC ([0,T],H 12 (2,))
< C(lGl

+Vuw: nSH B((0,T),HE (T )NHIE ((0,1),L

H((0,7),1 3D+ (0,1), 1L (1)) B E 8 ((0,7),L2(1))
ol geeen gy 101l 1cra )
where the constant C' might depend on T
Proof. Combining Lemmas [3.9] and yields the assertion using the fact that
%—i—g > %—i—f—i—ﬁforﬁe (0,1 —¢) and

11 3

[H'((0,T), HF (L)), Hi*32((0,T), L3(T))g = H *5((0,T), Hi*2(T,))

forez%.

Theorem 3.12. Let T >0, £ € (3,1), B € (0,1 —¢),

G e HP((0,T), H> (L)) N H2+8((0,T), HN(Ts)) N Hi*5((0,T), L*(Ty)),

wy € H%H*ﬁ(ﬂs) and wy € H%Jr”ﬁ((ls) be such that
Gli=o = wolr,,  :Gle=0 = wr]r..
Then, the solution w of system (|3.20]) satisfies
w e C([0. 7], H*2(Q:)) N CH([0, 7], H+3(Q)),
V- n, € H((0,T), Hz (L)) N Hi*3((0,T), L*(T)),
and

[[o]]

ls
ls

C([O’T]’HZerZ( Qs))NC([0,T7], H?ﬁz( +||Vw HSH (0

1 3.7
7’)7I_I§+2(FS))|"|I{ZI+§ ((07T)’L

L2(Ts))

2(T's)

93



3. Fluid-Structure Interaction

< CUGH s 0,1y, 3+ ey b 08 (01,101 ()i 6 (0,1, 22(0.)

+ HUJOHH%HW(QS) + leHH%+”5(QS))’

where the constant C' is independent of 7.

Proof. Due to |90} p.41, Thm. 9.4] and Remark there exists a continuous lifting operator
H2HHB(Q,) x HaHH8(Q,) — H2 AT, x (0, 00)),
(wo,wl) = G(] such that Go(',O)‘[‘S = wop, 8tG0('70)’F5 = wi, i.e.,

|Gol + Jwal (3.24)

C([lwoll

<
H%”*ﬁ(st(O,oo)) — H%+[+B(QS) H%+Z+B(QS))

for a constant C' independent of T'; where || denotes the Sobolev-Slobodeckij

H3HH8 (D, x(0,00))
norm, see (2.2). Consider the systems

8tt1D —Aw =0 in QZ,

=Gy onXl,

3.25

UNJ(,O) = wy in Qs, ( )
Ow(-,0) =w; in Q,

and

Oeth — A =0 in QF,

=G—-Gy onXl, (3.26)

w(-,0) =0 in €, '

0t11)(,0) = 0 in Qs~

Due to the linearity of the hyperbolic equations,

=w + w. Consider the system (|3.26]).
We know that (G — Go)(+,0) =0 and 0x(G — Go)( 0) =

0. Furthermore, for Ty > T,

[H3HE5((0,Ty), LA(TL)), L2((0.Ty), HEY (D)) 4., = HP((0,Ty), H3H(T,),

3+0+8

[H2HE8((0,Ty), LA(T4)), L2((0,Ty), H Y8 (0,)] o = H2+48((0,Ty), HY(T,))

3te+p

(3.27)

and hence with Remark , (3.27) and (3.24)

I 0” B((0,T),H 3+ (T ))NH 38 ((0,7), H (T's))NH 15 ((0,7),12(T's))

< CliGoll s, 0,T4), HE (D )NH 2P ((0,74), HY (D )N H 5+ 2 ((0,T4),L2(Ts))

< C|GU|H§+€+ﬁ(F5X(O,Tf)) - C|GO|H%”+‘3(FSX(0W))
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Cwol gm0t pecns ) (325)

with a generic constant C' independent of T'. Therefore, and ([3.28) yield
[Ext(G — Go)|

HE((T=Ty,T),H3 Y (T,))NH 2B (7T T), HY (D)) H A+ 2 (7T} T),L2(T,))
< (|G|l

HB((0.1),H 3 (L) 32 ((0.0),HY (TL)NH T8 ((0.7).L2(T)) 529
+ HWOHH%-MH;(QS) + lenH%-&-H—ﬁ(Qs))

for a constant C' independent of T'. In addition, Ext(w) solves

O Ext(w) — AExt(w) =0 in Q(T T
Ext(d) = Ext (G—Go) on 2 1)
Ext(w)(-, T —Tf) =0 in Q,

O Ext(w)(-, T —T¢) =0 in Q.

Therefore, with Theorem and (3.29) we obtain

el c(o.1), HI+5 (Qu)net(0,7], 732 (9.)) +va'nsHH (©
< [[Ext(@)]

)

(0.1), 12 )T E((0,1).2(T,))

r\

C(IT—T;, T, HI+ 5 (2.)nc (0,7],HITE (Q.))
+ I VExt(w) - nSHHﬁ((T Ty 1), HE (T ))NHITE (T—T;.T),L2(Ts)) (3.30)
< ONEX(G = Goll s oy oy s+ ey 300 (2 )10 () E S (2T ).22(00)
<c(la]

HB((0,T),H3 (D)) nH 2 H+8 (0,1, HY (D) NH T2 ((0,T),L2(T,))
+ HwOHH§+é+6(QS) + leuH%+z+ﬁ(Qs))7
where the generic constant C' is independent of T'. The solution of the system

8tt’ll_)—A’lI]:0 anOTf

w=Gy on E(O Tf)
’LI}(,O) = Wo in Qs,
Ow(-,0) =wy in g,
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3. Fluid-Structure Interaction

fulfills R(w) = w, which is the solution of (3.25)), and thus Theorem and (3.28)) yield

+ [V - n

I ~|| c([o,1], Hit5 2 (Qs ))ﬁCl([O,T],H%Jr%(Q HA((0,T), H?“(FS))mHﬁ?((o T),L2(Ts))

Ul o.m m3+5 @upncr oz i+ )

VD nsll s o.m b+ d b 0y 22y

C(]|Goll 3 1 7. ¢

HA((0,Ty),HE T )NH 242 ((0,Ty), HYT)NH T2 ((0,Ty),L2(Ts))

(3.31)

+ HwOHH%uH&( + HwIHH%+£+,@(Q )),

< O(flwoll 3 §+£+/3( + ||w1||H7+e+/3(Q ))

where the generic constant C' depends on Ty but is independent of T'. The assertion follows

from (3.30) and (3.31]) since w = w + w. O

3.3. Existence and Regularity for Unsteady Stokes-Lamé
System with Stationary Interface

In this section, the linear unsteady FSI problem (1.3)) is considered, which is given by

ov—vAv+Vp=1f in Q?,
div(v) = g =div(g) in Q?,
v(-,0) =vp in Qy,
vVv=vp on Z;‘cp,
v=0w onX’,
of(v,p)ny = os(w)ny +h on I
duw — div(os(w)) =0 in QT
w(,0) =0 in Q,,
Ow(-,0) =wy in Qj,

w=0 onXl.

We require that the bounded domain Q2 = Q;UQ,UT; C R?, d = 3 is such that
e ['; denotes the interface between {15 and Qy, i.e. Ti=Q:n ﬁf.

e the solid domain €2 is a domain with boundary 0€2, of class C* such that 9Q, = I'; UL,
where I'y denotes the outer boundary solid boundary and I'; N Ty = .

e the fluid domain €2y is a Lipschitz domain with boundary 00y =T UTy, where I'y
denotes the outer boundary fluid boundary and I'; N Ty = 0.
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3.3. Existence and Regularity for Unsteady Stokes-Lamé System with Stationary Interface

3.3.1. Lamé System

Improved regularity results for hyperbolic equations play an important role in the existence
and regularity theory for FSI problems in order to overcome the a-priori mismatch between
the regularity of parabolic and hyperbolic equations. The improved regularity result in
Section [3.2] was derived with the purpose of motivating existence and regularity of solutions
of the Lamé system. We assume that the results can be adapted to the Lamé system.

Assumption 3.13. Let T >0, ¢ € (%, 1), € (0,1—2),
n € HP((0,7), H2H (D) 0 HE+H48((0, 1), H'(I,) N Hi*2((0,T), LA(Ty))°,
wo € HaT48(Q,)? and wy € H2+5(Q,)? be such that
Nlt=0 = Wolr,, ONlt=0 = Wi|r,.

Then, the solution w of system

0 inQf,
w=mn on Zz,

) =wp in Q,
ow(-,0) =wy in Q,

satisfies w € W and
ou(w)ng € HO((0,T), H= (L)) 0 Hi*3((0,T), L*(T.)%).
Furthermore,

[wWliwy =+ llos(w)

< O(fwl

Bl 0. 3 om0, 220
H%+Z+ﬁ(95)d + ||W0||H%+e+ﬂ(ﬂs)d

+ [Imll 2)

HB((0,1),H3 (D)) anH 28 ((0,T), HL(D,))InH 3 T2 ((0,T),L2(T',))

where the constant C' is independent of T

Remark 3.14. The theorem is analogous to Theorem [12, Sec. 2 Thm. 1, Sec. 2
Prop.1, Comments 2.5] and [I13] Sec. 3 Thm. 3.2 indicate that the Lemmas and
Theorem also hold true for the Lamé system. Also the Lemmas in Section hold true
for vector valued functions, however, a complete argumentation is beyond the scope of this
work.
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3. Fluid-Structure Interaction

3.3.2. Stokes Equations

As parabolic system the Stokes equations are considered. Thus, we need to consider the
system
ov—vAv+Vp=f in Q?,
div(v) = g =div(g) in Q?,
v(-,0) =vo in Qy, (3.32)
v=0 onX%,
or(v,p)nf=h on X!
We give a proof in a slightly modified setting compared to [I13], Sec. 4]. The basis for the

theoretical analysis of that system is [54, Thm. 7.5]. The Dirichlet boundary term is kept in
this theorem since it appears in (3.34)).

Theorem 3.15. Let d € {2,3}, Qf C R? be a domain with smooth boundary such that
8Qf = Ff UT; and ff ﬁfi =0. Let £ € (%,1), f e Fr, h € Hp, vg € HH_K(Qf)d and
Vp € (H%Jr[’%*%(E?))d. Let the compatibility conditions

div(vg) =0 in Qy,
VO(') :VD('at) on Ffa
h(-,0)=0 onTYy,

2ve(vo)ny -7 =0 onTy,
for any unit vector 7 tangential to I'; be fulfilled. Then, the solution to system
ov—vAv+Vp=f in Q?,
div(v) =0 in Q?,
v(-,0) =vo in Qy,
v=vp on Xk,

or(v,p)ny =h on X}

satisfies
||V||(H2+Z,1+%(Q’}‘))d + ”va(Hl,%(Q}‘))d + ”pHHl-&-l,%(Q’}‘)
< C(Elley + Mallaty + IVollsecape + V00 g0 oy
Proof. c.f [64, Def. 7.2, Thm. 7.5]|. O

This theorem allows us to directly handle all inhomogeneities except for the nonhomoge-
neous divergence condition. Therefore, we split the linear system (3.32)) in two subsystems
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3.3. Existence and Regularity for Unsteady Stokes-Lamé System with Stationary Interface

such that (v,p) = (v,p) + (v, p), where (v, p) solves
OV —VvAV+Vp=F inQ7,
div(v) =0 in Q7,
Vv(-,0) =vo in Qy,
v=0 on E?,
o;(v,p)ng=h on X7,
and (v, ) solves
B — VAV + V=0 inQF,
div(v) = g =div(g) in Q?
¥(,0)=0 inQy, (3.33)
v=0 on ET,

of(v,p)ny =0 on T

The first system can directly be treated with Theorem |3.15]

As already pointed out in [I13] the main difficulty is the derivation of an similiar estimate
for the case of a non-homogeneous divergence condition as it appears in system (3.33)). The
statements are slightly modified compared to [113] and included for the sake of completeness.

Leray Projector
The Leray projector P is defined as the orthogonal projector form L?(2 f)d to
Vlgf(Qf)d ={veL*Qp)? : div(v)=0in Qf, v-n; =0on I}
It can be precisely defined as
P L2(Qf)d — Vlgf(Qf)d, viev—V((+mn),
cf. [113], Sec. 4.1]. Here, ¢ is the solution to the elliptic equation
A¢=div(v)in Qf, (=0onTy, (¢(=0onT;.

Since divv € H~1(Q #) we know due to standard regularity theory for elliptic equations that
¢ € H'(Qy). Moreover, 7 is the solution to the elliptic equation

Ar=0in Qy, Vm-ny=(v—-V()-nyonly, 7m=0onT;

Due to (v — V() € L?(Qf)? and div(v — V() = 0 it follows that (v — V() -ny € Hfé(l“f),
and the solution theory for elliptic equations gives m € H'(Q 7). Now, there holds

div(Pv) =div(v) —A(—Anr=0in Qf, Pv-ny=0onTYy,
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and
v —Pv e VH} Q)"
={ve L’ (Qp)? : Fve HY Q) st. Vo=vin Qf, v=0onT;}.
For v; € Vrof Q)% and vo € VH%Z_(Qf)d there exists v € H1(Qy) such that Vg = vo in Oy

and v9 = 0 on I'; and due to the divergence theorem, there holds

(V1,V2)L2(Qf)d = / V- Vzdf = A\ V’Ugdg = diV(Ung)df — UgdiVVldf
Qf Qf Qy Qf

= / voVvy - nyds —/ vodivvidé = 0.
F-L'UFf Qf

The above considerations imply that
L2(Qp)" = Vi, (2)* © VHy, ()"

Regularity Results for the Stokes Equations with Nonhomogeneous Divergence
Condition
Consider the system (3.33)). Using the Leray projector P and the relation v = Pv+V((+)
with the parametrized solutions
AC(',t) = g("t) = le(g(,t)) in va C('vt) =0on Ff? C("t) =0on I},
and
A7n(,t) =01in Qf, Vr(,t)-ny=-V((-,t)-nfonly, 7(,t)=0o0nT}y,
the system (3.33)) can be reformulated as
PV — VAPV + Vp=vVg— Vor — Vo( in Q7,
div(P¥) =0 in QF,
Pv(-,0) =0 in Qy, (3.34)
Pv =—-V,r on XL,
of(Pv,p)ng = —2ve(V(C+m))ny; on %7,
where Vom-ny =0 and Vo7 -7 = Vr -7 for all 7 that are tangential to the boundary. The
corresponding condition on E? is motivated by the fact that Pv-ny = v-ny—V({+m)-ny = 0,

\7|pf = 0 and (|pf = 0 for which reason V({ -7 = 0 for all T tangential to the boundary.
Furthermore, we have the relation

(Z —P)v(-,t) =V((-,t) + Vr(-,t), forallte (0,7).

System (3.34)) can be handled with Theorem if an estimate for V.7 is established. For
estimating (Z — P) we have to bound V({ and V7.
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3.3. Existence and Regularity for Unsteady Stokes-Lamé System with Stationary Interface

This is done in the following collection of lemmas.

Lemma 3.16. If g € H'*2((0,T), L2()?) and g € L2((0,T), H'**(€;)), then

ICHl 20,1y, 3 +¢ ) < CllgllLz o), 1+,

and

19| < Clgllar-

HY™ 5 ((0,1),H(©)))

In particular,

IVC-ngll 310 z;+g(ET) Cllgllzzo.r),mr+e@p) + llgllar)-

Proof. cf. [I13 Lem. 4.1]. O

Lemma 3.17. Let g € H2((0,T), L*(Q)%) n H'((0,T), H(2)?) and g|2? = 0. Then,

IVC-ngl 2 <Clglar-

HEME(0,7),H7 2 (1)

Proof. We consider the system

AC("t) = div (g(‘vt» in Qf7

((~t)=0 onT,;UTy (3.35)

for a.e. t € (0,T). Testing the first equation of (3.35)) with functions ¢ such that ¢|p, =0
yields, since we ar