Technische Universitat Minchen

Fakultat fur Mathematik
Lehrstuhl fur Geometrie und Visualisierung

Domain Parallel Machines
An Abstraction of GPU Shader Programming and Applications in Mathematics

Aaron Montag

Vollstandiger Abdruck der von der Fakultat fiur Mathematik der Technischen Universitat
Minchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Peter Gritzmann
Prufer der Dissertation: 1. Prof. Dr. Dr. Jurgen Richter-Gebert
2. Prof. Dr. Christian Mercat

3. Prof. Dr. Dr. h.c. Gert-Martin Greuel

Die Dissertation wurde am 1610.2019 bei der Technischen Universitat Minchen einge-
reicht und durch die Fakultat fur Mathematik am 26.03.2020 angenommen.

Abstract

In this thesis, a computational model is introduced and studied, which abstracts and
idealizes computers with access to fragment shaders. A variety of algorithms naturally
applicable on this model is presented. The presented work shows that while the set
of functions computable by this model remains the same, the running times can be
drastically reduced through parallelization compared to conventional models. Some of
the algorithms designed for the model can be approximated using fragment shaders.
A criterion for this approximability is derived. The practical part describes how com-
plex fragment shader programs can be generated automatically from a description in a
high-level language. A raycaster for algebraic surfaces and a tool for conformal image
deformation are presented as mathematical applications of this conversion process.

Zusammenfassung

In dieser Arbeit wird ein Rechenmodell, das Computer mit Zugriff zu Fragment Shader
abstrahiert und idealisiert, eingefiihrt und untersucht. Es wird eine Reihe von Algorith-
men vorgestellt, die auf diesem Modell auf eine naturliche Weise angewendet werden
konnen. In der Arbeit wird gezeigt, dass zwar der Umfang der durch dieses Modell
berechenbare Funktionen gleich bleibt, die Laufzeiten aber durch Parallelisierung im
Vergleich zu herkommlichen Modellen drastisch verkirzt werden konnen. Einige der
fur das Modell entworfenen Algorithmen lassen sich mithilfe von Fragment Shadern
approximieren. Ein Kriterium fur diese Approximierbarkeit wird in der vorliegenden
Arbeit hergeleitet. Als praktischer Teil wird beschrieben, wie sich komplexe, in einer
Hochsprache beschriebene, Fragment Shader Programme automatisiert generiert wer-
den konnen. Als mathematikdidaktische Anwendung dieses Umwandlungsprozesses
werden ein Raycaster fur algebraische Flachen und ein Werkzeug zur konformen Bild-
deformierung vorgestellt.

Acknowledgment

Ich mochte mich bedanken bei

der Technischen Universitat Munchen, der Landesregierung, die mich wahrend mei-
ner Promotion unterstutzt haben. Diesen Institutionen verdanke ich das Ver-
trauen und Privileg, finanziell unabhangig promovieren zu konnen. Das univer-
sitare Umfeld war fur das Entstehen dieser Arbeit unabdingbar. Einen Dank der
Gesellschaft, die Herausbildung solcher Institutionen ermoglicht und unterstitzt.

Felix Woitzel, aus dessen Idee der grafikkartengestitzten Feedbackschleifen die Grund-
lagen fur diese Dissertation gekeimt sind.

Jurgen, furdie zahlreichen Inspirationen und Unterstitzungen, die weit Uber den Inhalt
der Dissertation hinaus gehen.

Meinen Kollegenkreis des Lehrstuhls, Abishek, Ben, Benno, Bernhard, Carsten, Diane,
Fabian, Hermann, Jutta, Katharina, Lena, Martin, Michael, Uli, Stefan, Tim, Vanessa,
Zi, fur das angenehme, herzliche Arbeitsumfeld, Diskussionen und gemeinsame
Mahlzeiten. Danke fur die Unmenge an klasse Aktionen mit Euch.

Lena, fur das Korrekturlesen weiter Teile dieser Arbeit und zahlreiche Verbesserungs-
vorschlage. AuRerdem war es schon, mit dir ein Buro zu teilen!

Christian Mercat, Jurgen Richter-Gebert and Gert-Martin Greuel for going through all
the details of this thesis. In particular, thank you, Christian, for sending me a list
of typos and making this thesis better.

Meinen Eltern und meinen Lehrern und Lehrerinnen, die mich dorthin gebracht haben,
wo ich jetzt bin.

Jelena, fur ihre fortdauernde Unterstutzung. Hvala ti na Citanju mog rada. Hvala ti i
za korekture i pametne savjete. Kad mi je bilo tesko, hrabrila si me i bila moj
oslonac. UljepSala si mi period pisanja doktorata, i na tomu sam ti zahvalan!

Contents

Introduction

11. Main results and contributions L
1.2. Overview of the individual chapters
13. Applets . . .
1.4. Terminology and notation,

Foundations: Domain-Parallel-Machines (DPMs)

. Two equivalent definitions for DPMs

21. DPMs as extended finite-dimensional BSS machines
211, Finite dimensional DPMs
212. Computationsofa DPM

2.2. Programming DPMs
2.21. Step 1: Rename variables and encode tuples.
2.2.2. Step 2: Allow for concatenated computation nodes.
2.2.3. Step 3: Transfer the “flowchart” of a DPM into goto-code.
2.2.4. Step 4: Use expressions containing intermediate values
2.2.5. Step 5: Use advanced control structures
2.2.6. Step 6: An operation for point-wise parallel programs

Mathematical algorithms suitable for DPMs

31. Fastdiscrete Fourier transformation

3.2. (Possible infinite) cellularautomata

3.3. Subset Sum problem inlineartime

3.4. Generation of objects with self-similarity
3.41. lterated Function Systems
3.4.2. Interactive realizationonthe GPU
3.4.3. Kleinian groups

g B~ > W A

Contents

3.5. lteratingfunctions. Ll
3.51. lIterating functions on BSS machines Ll
3.5.2. lterating functions on DPMs in sublinear time 47

DPMs as models for real-world systems 49

41. DPMs with finite domains D as parallel computers 49

4.2. Asingle-threaded computer with accesstoaGPU 50

4.3. Optical phenomena for parallel computation 51
4.31. Computing by copying onto transparencies 52
43.2. Analogfeedback loops 54

First steps in computability and complexity theory of DPMs 59

51. Relations of DPMs to other computational models 59
511. Simulation and acceleration of BSS machines and Turing ma-

chines through DPMs, ... 60
51.2. Acceleration of finite-dimensional BSS machines through DPMs . 60
51.3. Simulation of DPMs through uniform BSS machines 62

52. Domainsand complexity, 66

5.21. Iterating complex squaring with a DPM with real domain 68
Implementation: Pixel shaders as special DPMs 75

Approximating DPM algorithms on a GPU 77

61. Multi-linear interpolation 79

6.2. Discretization of continuous domains 82

6.3. A convergence theorem for approximating DPMs 84

Programming GPUs 97

71, Introduction 97
714. Technical background 98
71.2. The gap in programming concepts between CPU and GPU 99
71.3. Our objectives for a high-level language with GPU support 101
714, Relatedwork 102

72. Concept 103
7.22. Detection of parts for parallelization and splitting the code 104
722, Typedetection 106
72.3. Transcompilation 111

7.2.4. lazystorageofdata 112

Contents

73. Example implementation: CindyGL 13

731, Usage of CindyGL 113

7.3.2. Implicit curves and sets of locus within dynamic geometry software 115

7.3.3. Feedback loops and GPGPU applications in CindyGL 118

73.4. Educationalvalue 119

IIl. Application: DPMs for Visualizations 121

8. Visualizations of implicit surfaces 123

81. Square-free polynomials 128

8.2. Extracting roots of a univariate square-free polynomial 129

8.21. Termination 132

8.2.2. Recursivetreetraversal 134

8.3. Interpolation of a function to Bernstein coefficients 137

8.31. Enhancing the numeric stability of the interpolation 140

8.4. Monte-Carlo path tracing of surfaces 148

8.5. Analytic landscapes 150
8.51. Comparison with photographs of old plaster models of complex

functions 152

9. Deformation of images 155

91. Holomorphic functions 158

9.2. TheDrosteeffect 163

9.3. Spherical image processing 166

9.31. Spherical images as functions on the Riemann sphere 167

9.3.2. Pulling back analytic functions 168

9.3.3. Thespherical Drosteeffect 169

10. Conclusion and outlook 171

Chapter 1.

Introduction

Most modern computers have access to massively parallel computational units like
a GPU (Graphics Processing Unit). In recent history, designing programs that utilize
the GPU became an important task because GPUs drastically accelerate a wide set of
algorithms. The number of possible new applications raises exorbitantly. For instance,
ray-tracing algorithms visualize scenes in video games in real-time. However, there are
also several non-visual applications for GPUs: General-purpose computing on graphics
processing units (GPGPU) is, among others, often found in linear algebra, signal and
image processing, physical simulations, and machine learning (Owens et al., 2007; Singh
and Reddy, 2014).

For engineers in the field of GPU programming, the focus is set on the design of effi-
cient algorithms for a given problem. A major point of view of this thesis is rather that
of a theorist studying the limits of a general computational model in which certain mas-
sive parallelism inspired by GPU shader programs is possible. A precise mathematical
definition of the studied computer is essential in order to make general statements
about the possible computations. Moreover, this definition should be on a suitable
level of abstraction for the studied context. Suitable abstractions can be helpful to
focus on the essential mechanisms.

Shader programming is often perceived as a low-level technical process, including
many detail in a way that the understanding of the overall picture gets lost. An attempt
to transfer existing shader programs into a formal description would, therefore, yield
a model of a wrong level of abstraction. This discrepancy is also present in other con-
texts as, for example, in the field of numerical analysis, where an exact specification of
a physical computer would be too elaborate. Several constraints, such as the necessity
of replacing real numbers by floating-point numbers, are often neglected in the first
step of designing a numerical algorithm. Historically, a prominent formal description of
a computer is given by Turing machines. However, Turing machines are an unsatisfac-

Chapter 1. Introduction

tory basis for many numerical algorithms. For instance, consider the Newton-Raphson
method which iteratively searches for roots of a function by operating on real or com-
plex numbers. A Turing machine can only store objects encoded as a finite string over
a finite alphabet such as integers or rational numbers. In this context, other computa-
tional models are more suitable. Blum, Shub, and Smale (1989) gave a possible defini-
tion for algorithms in numerical analysis by introducing a model for computations over
real numbers. Instances of their model will be referred to as (uniform) BSS machines.
With a precise definition of their computational model valuable insights into their capa-
bilities and limitations are gained. For instance, it is shown that no algorithm exists in
their model of real computation that can decide whether a given complex number be-
longs to the famous Mandelbrot set or not. In addition, they reduced questions about
complexity classes of their model to questions about algebraic geometry.

Similar to the approach of Blum et al. (1989) for numerical analysis, an abstract and
idealized formalization for algorithms that utilize shaders of the GPU (or comparable
parallel units) is introduced in the following work. We require of the model to be both a
precise and a suitable abstraction for the context of several algorithms designed for a
particular class of computers having access to massively parallel computational units.
Using this model, we want to explore the possibilities of such machines.

BSS machines overcame one discontinuity in the model of classical computation: On
Turing machines and today’s physical computers, all stored values are finitely encoded
making them discrete. Blum et al. (1989) introduced a computational model that allows
saving values of an arbitrary ring, such as R, in its variables. In general, the states
of the computer are no longer finitely representable. If a ring, such as R, is used,
then continuity in the values of the stored numbers is yielded. However, variables and
parallel processors remained discrete. Only a finite number of variables can be stored
at the same time. BSS machines allow continuity in the values. We want to achieve
continuity both in the values and their storage location.

Therefore the computational possibilities under the assumption of no discretization
between variables and parallel processors shall be studied. Technology itself provides
motivation for this by observing how the GPU fragment shader generates images. Let
us pretend that these images are not composed of discrete pixels. Instead, the GPU
could compute the image at every continuous coordinate simultaneously. One of the
central question of this thesis is: Which possibilities would open up having a computer
that can store such generated infinitely-fine “textures” and use them for consecutive
computations? We will call such machines Domain Parallel Machines (DPMs).

11. Main results and contributions

1.1. Main results and contributions

The first part of this work is on foundations of DPMs.

DPMs can, aside from their abstract definition, be considered as an abstraction of
computers with access to fragment shader code (Chapter 2). However, this theoreti-
cal model appears also in physical systems such as idealized video-feedback loops
(Chapter 4). Under certain continuity conditions, the computation of a DPM can be
approximated by a physical computer with access to the fragment shader on the GPU.
The DPM computation can be considered as a limit of taking higher and higher resolu-
tions for parallelized fragment shader programs (Chapter 6). Developing an algorithm
in our model is more appropriate for (spatial) parallel mathematical procedures. Many
of these algorithms can be approximated on fragment shaders by dropping the conti-
nuity in value and space through discretization and resampling. These approximations
give often rise to suitable and efficient algorithms that can be executed on physical
GPUs (Chapter 3).

It turns out that the computational power of DPMs remains the same as the com-
putational power of BSS machines, in the sense that the induced classes of decidable
problems of both models are equal. However, many problems can be solved faster by
DPMs than by any BSS machine (Chapter 5). In particular, for any finite-dimensional
BSS machine computing a function in running time ©(t(n)) there exists a DPM that
simulates the same computation in ©(logt(n)).

The second part is on implementation of a system that eases the programming of
GPU programs by abstraction in a high-level language. It relies on a transcompilation
system of a high-level programming language in a low-level programming language of
the GPU. The challenges lie in type inference (Chapter 7).

The third part is on applications of our implementation. The applications, which
could be developed without almost no technical hurdles due to the transcompilation-
implementation, include a raycaster and a path tracer for implicitly defined surfaces
(Chapter 8), a real-time visualization program of analytic landscapes (Section 8.5) and
a program to deform images given mathematical formula (Chapter 9). In particular,
a tool for deforming spherical footage and applying spherical Droste effects on it in
real-time has been developed (Section 9.3). These implementations require non-trivial
mathematical and numerical foundations. However, the applications presented in this
thesis turned out to be widely used in mathematics communication and have a non-
negligible impact. IMAGINARY and the New York Times have published the raycaster for
algebraic surfaces at Valentine's Day. The shape of a heart has been rendered as an
algebraic surface on their websites (and IMAGINARY plans to use the program in several

Chapter 1. Introduction

further installations). Ponce Campuzano (2019) has used the application to visualize
algebraic surfaces in his interactive electronic book Complex Analysis — A Visual and
Interactive Introduction. The deformation program to generate spherical Droste effects
in real-time has been presented by the mathematics communicator Matt Parker on
stage several times to a broad audience.

1.2. Overview of the individual chapters

In Chapter 2, we will first give two equivalent definitions of DPMs. One is an adaption
of the BSS-model. The other one corresponds to a grammar of pseudo-code similar
to GPU shader programs. However, the pseudo-codes idealize GPUs in the sense that
the pixels are abstracted away. We use this previously developed pseudo-code model
in Chapter 3 to describe several given mathematical algorithms in a natural way. This
shows the computational strength of the DPM model. In Chapter 4, several examples
are presented where the DPM model has (approximating) realizations in physical-world.
First steps in runtime complexity of DPMs and relations to other computational models
are investigated in Chapter 5.

In Chapter 6, conditions are derived under which GPUs can approximate DPMs. In
Chapter 7, a simplified scheme for GPU shader programming is developed, which has
been realized through CindyGL. This scheme leverages the creation for WebGL applica-
tions within the context of a dynamical geometry software. Finally, in Chapter 8, appli-
cations of this framework in the visualization of mathematics are presented. A method
to render implicit surfaces (algebraic and non-algebraic) by raycasting with a practical
realization is introduced. A slight adaption results in a path tracing algorithms for im-
plicit surfaces using a Monte Carlo integration. The methods provide the possibility to
render analytic landscapes of complex functions almost for free. Another important
application of the framework is studied in Chapter 9, namely deformation of images,
also possible in a conformal way. This can be used to render generalized Droste-effects.
In Section 9.3, the same schemes are applied to spherical footage, as a contribution to
communication of mathematics.

1.3. Applets

Besides theory, several applets are part of this thesis. In the text, they are indicated
via the symbol > and a number. That means, the applet is found on the companion
storage device under that given number. Alternatively, all the applets can be down-
loaded from https://aaron.montag.info/dissertation/applets.zip. Asa

1.4. Terminology and notation

heuristic evidence that this archive has not been modified after the publication, the
SHA-256 hash of this zipped-archive at time of submission is
4b18569e€14c19986184fag9ffc24fra3zesddi16e8faf36204abs2bs58e97b5217.

Due to browser security, several of these applets only work if they are hosted on a
webserver. Currently the applets work best with Firefox or Chrome.

In the PDF-version of the thesis, the numbers are clickable, and an online version of
the applets can be viewed immediately. Furthermore, any applet with number k € N
can also be opened online following the address

https://aaron.montag.info/dissertation/k.

All these applets were created by the author himself. However, they rely on the
frameworks CindyJS (von Gagern, Kortenkamp, Kranich, Montag, Richter-Gebert, Strobel,
and Wilson, 2019) and CindyGL (Montag and Richter-Gebert, 2016), which are available
under the Apache 2 license.

1.4. Terminology and notation

We do notinclude o to the natural numbers, i.e. N =1{1,2,3,4, ...} and write No = Nu{o}.
Often it is convenient to use the set of the first n integers. For n € Ng we set

%) ifn=0
[n]:= ,
{1,2,...,n} ifn=1
and
%) ifn=0
[nlo = .
{0,1,...,n=1} ifn>1.

We write R for an arbitrary ring. In most cases, R can be thought of as R. In this work,
several functions with fixed domain and co-domain are considered. With

RP=(D—>R)={f:D—>R=XR
deD

we denote the space of all functions from the domain D to R. If R is a field, then RP
becomes an R-vector space.

With C* = C \ {0} we denote the multiplicative group of C and with C = C u {e0} the
extended complex numbers are indicated that can also be considered as the Riemann
sphere.

Part I.

Foundations:
Domain-Parallel-Machines (DPMs)

Chapter 2.

Two equivalent definitions for DPMs

We give two, at the first glance, very different definitions of computational models,
which extend existing models. After closer inspection, it will turn out, that both models
are only different representations of a common concept. The exact definition of both
computational models are lengthy, but we will shortly paraphrase them here:

Model 1 is an idealization of a classical programmable computer, that can, aside from
standard computations, run a constant-time-program on a (possibly uncount-
able) domain of data points in parallel simultaneously. With constant-time,
we mean that the running time of the program has an upper bound that is
independent of the particular data point that the program has as input. It ide-
alizes typical computers with the GPU corresponding to the parallel unit. Our
model is an idealization in the sense that it can store numbers in arbitrary
precision and the parallel unit has an infinite number of parallel processors.
The parallel operation in our model can be considered as an idealization of
the fragment shader of the GPU in the sense that it can describe and run
calculations on an infinitely fine-grained sampled resolution.

Model 2 is a finite-dimensional machine having functions as primitive data types. The
model is obtained using the definition of a finite-dimensional BSS machine
(Blum et al, 2012) and replacing its registers, which in the BSS model can
only save real numbers, with registers, that optionally can also store entire
functions. Thus, massive point-wise operations are allowed.

We will call representatives of both models Domain-Parallel-Machines (DPM).

Both models can compute elementary operations and comparisons of real numbers.
In fact, as we will show in Section 5.1, the computational power (as far as the input
can be translated) is equivalent to the computational power of conventional BSS ma-
chines. However, the computational time often can be drastically reduced with DPMs.

Chapter 2. Two equivalent definitions for DPMs

Note that for both BSS machines and DPMs the term computational time actually ex-
presses numbers yielded as a result of a formal definition, which, however, aims to give
a reasonable asymptotic statement of the real running time of the (imaged) physical
realization.

2.1. DPMs as extended finite-dimensional BSS machines

Now, let us start with the definition of the DPM as a finite-dimensional machine hav-
ing functions as primitive data types (which corresponds to Model 2 of the previous
section). Heuristically, a DPM has the following properties:

- A DPM performs operations over a specified mathematical ring R, such as R or C.

- A DPM has access to a finite number of possible infinite domains D. D is the set
of all such domains.

- A DPM has access to a finite set of registers, that store constants in R or functions
f:D — Rforsome D e D. For example, a DPM with the domain D = [0,1]?> € D
might access an idealized infinitely fine sampled square-shaped texture.

- A DPM can compute and store a function f : D — R on one of its registers if
there is a constant-running time program that can compute f(d) for each data
point d € D. Possibly, there are infinitely many data points in D. We assume that
all these operations run in parallel for every d € D and hence say that the entire
operation to compute f : D — R also has fixed cost in running time. As we assume
that the DPM instantaneously stores all values when a new function f : D — R
is defined, accessing f(d) in consecutive operations for a d € D is counted as a
constant-time operation. (Unlike a “real evaluation” on a classical computational
model that might take more time depending on the construction of f). In order
to emphasize this behaviour we will use the notation f[d] instead of f(d) in code.

- Similar to a Turing machine, a DPM has a finite directed graph that, together with
the data stored in the registers, determines the current state. The currently active
node determines which operation the DPM applies on its registers. All nodes
except the termination nodes have at least one next node which corresponds to
the “flowchart” that the DPM is following.

In the definition of a DPM, sometimes we want to use functions to a ring and plain ring
elements interchangeable. In order to to so, we will introduce a simplifying notation.

10

2.1. DPMs as extended finite-dimensional BSS machines

Notation 1. Let R be a ring. With = := R®, we denote the one-point space. We write
x = {Xo}. Functions from = to R take a single R-value at xo and thus can be identified
with R. More formally, the isomorphy R =~ {f : + — R} = R* holds via the isomorphism
R* — R,f — f(xo). By a slight abuse of notation, we can consider “zero-ary” functions
f % — Ras constants in R and vice-versa.

2.14. Finite dimensional DPMs

The following definitions can be considered as an expanded adoption of the definition
of a finite-dimensional BSS machine from Blum et al. (2012):

Definition 2 (finite-dimensional DPM). Let R be a ring (or a field) and
D {D|Dc RFforsome ke N}

finite with * € D. An R-DPM M over the domains D is an abstract machine that contains:

- Afinite collection hy, ..., hy of registers, which store values in R or functions from
some D € D to R. By Notation 1and = € D, we can consider every h; with i € [n]
as a function from D; € D to R. Every register has a fixed domain.

The space
Sy = X Af:D; —» R | f function}
ieln]
denotes the state space of M and Sy is associated to M. (h4, ..., hp) € Sy and Sy
is a module over R (and a vector space if R is a field).

- The machine has two further R-modules (or vector spaces) which both are sub-
spaces of Sy, namely the input space Zy, and the output space Oyp.

- A finite directed graph G = (V, E) with for special node types: input, computation,
branch and output:

- The unique input node has no ingoing edge and a single outgoing edge. As-
sociated with it is an embedding | : Zy; — Sp.

- Each output node n has no outgoing edge and a projection Oy : Sy — Op.

- A branch node has exactly two outgoing edges. Attached to every branching
node n is an index in € [n] such that h; e R (i.e. Dj, = x). There is one edge
associated with h; > o to the node ; and a second edge associated with
hin < 010 By, If Ris not ordered, then these conditions are to be replaced
with hj, =0 and h; # o.

M

Chapter 2. Two equivalent definitions for DPMs

- Every computation node n has exactly one outgoing edge to the node (3.
With each computation node n a map g, : Sy — Su out of constant,
project, copy, add, subtract, multiply, ifelse, and compose is as-
sociated, which are going to be defined in Definition 4. If R is a field, then
the map divide is allowed for computation nodes. All these operators are
essentially finitely parametrized.

In order to define the different possible operations gy : Sy — Sy for a computation
node m, we will introduce the following notation to denote the replacement of a single
component of a tuple.

Notation 3 (Replacing components of a tuple). Let h = (h4,..., hp) be a n-tuple, then
h[;« gl denotes the n-tuple that is obtained from h with the i-th component replaced
with g, i.e.

g ifk=i

h, otherwise.

(h[,'<— Q])/q = {

This notation of a replacement in one component will be used to define the different
possibilities for a map g, : Sy — Sy of a computation node n. Each map gy : Sy — Sy
will modify only a single register of the state space.

Definition 4 (The different operations of a DPM). Let i, j, k, [€ [n], @ € Rand m e [dim Dj].
Let mm : Dp — R denote the projection on the m-th component of Dy. The following
maps Sy — Sy, which modify the k-th entry in the state space, are only defined and
applicable if D; = Dj = D; = Dp:

SM g SM,/’I — h[;?<— (a : Dfe — R,X'—> Oé)]
SM — SM,h — h[,?<— (’ﬂ'm : D}? — R)]
S/VI — SM,/’) — h[l?(_ h’]

constant(e, R) :
: S — Su, h — hl— h;+hj]

project(m,k)
copy(i, k)
add(i, j, k)
subtract(i,j, k)
multiply(i,j, k)

SM — SM,h — h[fe‘_ /’),‘ = h]]
SM — SM,h — h[f?(; /’),’ . hj]

In the case of R being a field, there is an additional operator

divide(i,j, f?) . SM — SM,h = h[l?<_ h,/hj]

In order to avoid undefined behavior, div is defined to evaluate to zero at the corre-
sponding points where the denominator would become zero.

12

2.1. DPMs as extended finite-dimensional BSS machines

If the domain Dy, is non-trivial, a will be considered as a constant function and the
operators + -, - and / will be interpreted point-wise.

For more complex computations on a non-trivial domain, often the computation
of conditional values in parallel is required. Therefore, we also allow the following
operator:

ifelse(l, i,j, k) : S/Vl — SM,h — h[f?(_ If(hl = O,h,‘, hj)]

where
hi(x) ifh(x) =0

b= 0.hi by): D = R~ {h,-<x> th(d<o
In the case if R is not ordered, then = and < have to be replaced by = and #. The appli-
cation of ifelse(l,i,j, k) differs from the branching nodes in two different ways: Firstly,
it can run in parallel on an entire, possible non-trivial, domain D € D and secondly, the
values of h; can only affect the values of hy stored in the registers. But the values of
h, have no (direct) influence on the currently active node.

A further important possible type of gn : Sy — Su is the composition (which later

will be interpreted as reading from the storage at a given location):

compose({i1,...,ijLj,R) : Sy — Sy, h = hl< hjo (hi,.. .,h,»l)],

where
hjo(hh' .,h,'[)ZD,'1><'--><DI-[—>R,
(X1 . Xl) N hj(h,'1(X1), .. .,h,‘l(Xl)) if (/’l,'j(Xq), Ce, h,‘[(Xl)) € Dj‘
o] otherwise

This operator requires that D, < D;, x --- x D; . Again, if the value of (h;,, ..., h;), which
in general is a value in R lies outside of the domain D;, compose will evaluate to zero
at these points.

The operation compose can be used both for composition of functions and evalu-
ation: The composition f o a with a : + — R corresponds to the evaluation f(a). Later
in pseudo-code, we will use the notation f[a] to clarify that this does not trigger a real
evaluation, but is to be interpreted as reading the value of the register f at the “index”
a. This operator, together with the assumption that it also has a constant running time,
gives a lot of additional strength to the model.

13

Chapter 2. Two equivalent definitions for DPMs

Remark 5 (Relation to finite-dimensional BSS). If D = {x}, then only constants can be
stored and the preceding definitions of a DPM coincide with the definition of a finite-
dimensional BSS machine over R (Blum et al., 1989), where computation nodes n attach
either polynomials or (in the case if R is a field) rational maps gn : Sy — S

Proof. Inthe case D = {x}, for any node n the operation g, = compose is not applicable.
Any node nwith gy = 1felse can be replaced by three nodes, where one node does the
branching based on a single value and the other two nodes perform the computation
for each of the branches. Every remaining operation is polynomial (or rational if R is a
field). Furthermore, every polynomial (or rational) map can be built from a sequence
of elementary operations. In this case, without loss of generality, one can associate
with every computation node n a polynomial (or rational) map gy : Sy — Su and this
definition coincides with the definition of a finite-dimensional machine over R. O

Remark 6 (finite dimensional vs uniform). Blum et al. (1989) extend their finite-di-
mensional model to a uniform model. This uniform model has an infinite number
of registers and there is a “fifth node” which allows to read from a register with an
index computed at running time. This formalization enables algorithms which solve
problems with inputs of arbitrarily large size and the model becomes universal, i.e.
there Is a universal BSS machine that can simulate any other uniform BSS machine
that is specified through its input.

We will avoid introducing such a uniform model for DPMs because once there is a
register with domain D € D such that N < D, random access is already possible in our
“finite-dimensional” DPMs, which have a fixed number of available registers. Algorithms
ona DPM could use aregister N — R as an input. However, our model is not universal in
the sense that there is a DPM machine that could simulate any other DPM machine. In
order to do so, a uniform DPM model must be allowed to define the types of its registers
at running time. Since we do not need this ability in this work, and this would make
DPMs even more powerful abstract concept, rather far away from physical realizations,
we omit such a construction here.

Furthermore, with our current “finite-dimensional” definition of a DPM, we can control
the power of a DPM by specifying the set of allowed domains D.

2.1.2. Computations of a DPM

So far, we have given an abstract definition of a DPM, which heuristically corresponds to
the “program-code” of a given DPM (Later in Section 2.2 we will show how to translate
DPMs into program-code and vice-versa). Now, we are going to explain how a DPM
performs the computation. For that, we first define a computing endomorphism, which

14

2.1. DPMs as extended finite-dimensional BSS machines

describes a single step of the computation of a DPM. Then we will define the (partial)
input-output map of a DPM for those inputs where the DPM “halts”. These definitions
almost coincide with the definitions from Blum et al. (2012).

Definition 7 (computing endomorphism). We associate M with a natural computing
endomorphism H. It describes a single step of the computation of a DPM with the
nodes V:

H:VxS8y—VxSy

V can be decomposed as follows:
V={noluCuBuUT

where mo Is the unique starting node, C are the computation nodes, B are the branch
nodes and T are the output nodes. We will define a computing endomorphism H for
each of the types of nodes separately.

The starting node does not modify the registers h € Sy and the DPM proceeds with
the unique next node By,:

H(no, h) := (Bne, h)

Any computation nodes n € C has also an unique next node (8, and an associated
computation gy : Sy — Sy. We set

H(n, h) = (ﬁn: gn(h)) forneC

Any branching node n € B does not modify the registers. However, based on the value
of h,-77 either node [3,*7 or By, is “visited” next. If R is ordered then we set

- h) ifh. >0
H(n, h) := (ﬁn) S forme B.
(5;7, h) if h, <0

If there is no order on R, then

‘h) ifh =0
H(n, h) := (577) I & forme B.
By, h) ifhj #0

In our applications, H is not necessarily defined for the output nodes n € 7. However,
to make H:V x Sy — V x Sy defined everywhere, we set

H(n,h):=(n,h) forne T

15

Chapter 2. Two equivalent definitions for DPMs

Iterating the endomorphism H indeed corresponds to running code step-by-step on
the machine.
We will now define a computation path and an input-output map of a DPM.

Definition 8 (state trajectory, computation path, input-output map, halting set, halting
time). Let the input x € Z be given. It induces an initial point z° = (no, I(x)) € V x Sy
and the iteration of the computing endomorphism H on z° generates a sequence

This sequence corresponds to the computation of the machine given the input x € Zy.
let my : V x Sy — Vand wrg, : V x Sy — Sy be the projections on the nodes and
the states (i.e. the register values). From that we define the sequences n* = m(zF) and
xk = g, (2F). The later sequence in Sy

X = 1(x),x" = mg, (HU(X), n0)), X* = 7s,, (H*(1(x), m0)) . ..

is called the state trajectory of x and the first sequence in V

n° = no,n" = my(H(I(x), no)), m* = m/(H2(I(x), mo)) . ..

is called the traversed computation path ~yy.

The computation path might or might not eventually reach an output node. If it
does not reach an output node, we say that M does not halt. Otherwise, there must be
a minimal T such that " is an output node. We define such a T as the halting time
Ti(x). The halting set Qu < Zy of M is the set of all input values x € Z), that induce a
computation path eventually ending in an output node.

The input-output map ¢y : Zy — Oy is a partial map defined on Qpy via

dux) = OnTM(X)(XTM(X)),

where the sequences xR and nk are induced as above. In words, we first apply the input
map | : Zyy — Sy to compute the initial registers and we think of the unique starting
node mo as active. We apply the computing endomorphism H : V x Sy — V x Sy
Iteratively and obtain new active nodes and values for the registers. Eventually, we will
reach an output node n. There we apply the corresponding output map Oy : Sy — Oy
on the current state registers and obtain the value for ¢y (x).

This is the formal definition of Model 2 introduced in the beginning of this Chapter.
In the next section we will show that this Model is equivalent to Model 1, and several
examples of DPMs will follow.

16

2.2. Programming DPMs

2.2. Programming DPMs

In this section, we show how a DPM can be “programmed” in pseudo-code. The first
purpose of this section is to set the basics of describing DPMs in a more accessible
way that is similar to programming in existing high-level languages. With this, we set-
tle an equivalent description of concrete DPMs, which lets us easily express various
applications of DPMs.

The second purpose of this section is to emphasize the proximity of the previously
defined abstract model with real existing hardware. In particular, DPMs can be consid-
ered as an idealization and generalization of GPU fragment shader programs. Several
of the algorithms, which follow in this text, and are designed for the theoretical DPM-
model, can be transferred to real hardware. The pseudo-code representation we are
going to develop is close to existing programming paradigms. However, our theoreti-
cal consideration of an idealized model might lead to different thinking processes. It
can help to invent algorithms that are usable in reality and are beyond the toolbox of
commonly employed programming techniques.

In the following, we describe several steps how the description of a DPM can be
changed, at the preservation of its calculated function and changing its running time
at most up to a constant factor. To achieve this, we are allowed to combine a fixed finite
number of operations into a single operation that is counted as a single step in the
runtime. In addition, we demand that the computing power does not increase with the
introduction of new concepts. Each step can be considered as a small Lemma stating
that the presented representation of DPMs is equivalent to the previous representation.
By equivalent, we mean that every “program” of one representation can be converted
in another program of the other representation and vice versa such that the running
time differs only by a constant (which might depend on the program, but not on the
input). All in all, we will get an equivalent description to DPMs that will allow us to
program DPMs easily and without loss of precision in readable pseudocode.

2.21. Step 1: Rename variables and encode tuples.

First, the names h4, ..., hy of the program registers, which we are going to interpret
as variables, can be replaced by arbitrary names like a, b, n, var, counter etc. Names
like f or g might denote functions, which are in our context registers hy : D — R with
non-trivial domains D, # .

Second, several variables/functions a4, ay, . ..,a : D — R of the same domain D € D
can be combined to a single variable/function a = (ay,ay,...,a;) : D — RR. Technically,
this is a renaming process. The entries of these encoded tuples can still be accessed

17

Chapter 2. Two equivalent definitions for DPMs

and we set a; = a;.

Even more, when specifying a DPM over the ring R = R, a complex number z e C can
be interpreted as a pair z = (z1,2») € R?> (more precisely, as a function = — R?) and can
be stored by any DPM over R having at least two registers.

The description of the comp-operator often becomes simpler after combining several
variables into one tuple: In Definition 4 comp({is, . . ., i},j, k) computes the function

(X—|, o ,X[) — h}'(hi1(X1),. . "hil(Xl>)

for h,-j D =R and saves it to the register hy,. With a notation that allows for tuples,
comp can be considered as an operator that computes f o g where g represents the
complicated function (g4,...,9n) = (h,~1,...,h,~[) :Dj, x - x D — Rl and f is another
function with a possible multi-dimensional co-domain. If g has the domain %, g can be
considered as a tuple of constants and we will write f[g] instead, since the composition
f ogis more like an evaluation of the function f at the point g.

2.2.2. Step 2: Allow for concatenated computation nodes.

If a and b are computation nodes with B4 = b, then they can be merged to a single
computation node provided that there is no third node c € V\{a} with B¢ = b: The nodes
a and b can be replaced by a computation node d, with B4 := Bp, that computes the
composed function g4 = gp © ga : Sy — Sm, where gq, gp : Sy — Su are the functions
that are associated with aand b. g, is possibly not listed in Definition 4. However, if one
allows finite compositions of functions associated with the computation nodes, one
obtains an equivalent concept that allows for more compact representations. After the
replacement, all edges that lead to a within the computation graph have to be replaced
by edges that lead to d.

Using the composition of such functions as computation nodes can be, in particular,
used to recompute the value of entire tuples that were introduced in Step 1 within a
single computation step.

2.2.3. Step 3: Transfer the “flowchart” of a DPM into goto-code.

Without loss of generality, for a given DPM with associated graph G = (V,E) we can
assume that:

(1) V={notufr... N}

(2) mo € V is the unique starting node with no ingoing edges and its next node By, is 1.

18

2.2. Programming DPMs

(3) Every computation node n € V, either has B, = n +1 and g modifies a single
variable/tuple; or gn = id : Sy — Sy

Requirement (1) is achieved by renaming the nodes. Property (2) again, can be obtained
by reordering the nodes and replacing all edges that lead to no by edges that lead to
1, which does not change the computed function, because by definition no does not
change the registers. In order to transfer a DPM into a machine that fulfills (3), possibly
additional intermediate computation nodes that do not modify the registers, but only
perform a “jump” to another node, have to be introduced.

These assumptions on the graph G = (V, E) of the DPM give rise to a natural way to
represent a DPM as pseudo-code (and vice-versa): Each node n e V' \ {no} corresponds
to the n-th line of the pseudo-code. Since By, = 1, the interpretation starts with the
first line. Every line contains one of the following operations:

- goto k for some line number ke {1,...,N}.

- a < (operation) for some variable (or tuple) a and {operation) corresponds to
a single (component-wise) operation of Definition 4 and, depending on the op-
erator, applied on some other variables (tuples). This line is only allowed if the
occurring variables (or tuples) exist and have a type out of D — R® some D € D,
k € N which makes the assignment well-defined.

- if(a > 0) goto k else goto m for some variable a: + — R and line numbers k and
m.

- Return a for some variable/tuple a.

goto k corresponds to the computaion nodes 7 that have g, = id : Sy — Sy and
Bn = k.

If the n-th line of the code is a < {operation), then the line represents the com-
putation node n and {operation) encodes the map gn : Sy — Sm, which will change
the register a. After executing this line, the DPM continues the computation from the
unique next node B, = n +1, which corresponds to the execution of the next line. If
it is not clear from the context, the type of the variable v has to be specified the first
time it appears, i.e. the domain D € D and (if a is a tuple) a number k € N such that
a:D— RF

Aline if(a > 0) goto k else goto m corresponds to a branch node that tests on a and
has ﬁ:,*, = kand B, = m. The else-branch can be omitted ifﬁ,‘7 =n+1.

Return a corresponds to the output map O : Sy — Oy for some node n, which is a
projection of a specified set of components of Oy.

19

Chapter 2. Two equivalent definitions for DPMs

The input map will be specified by a set of variables that will be set in the beginning.
All other variables in the register will be initialized to zero, which corresponds to the
embedding | : Zyy — Sp.

As a short example for a DPM-goto-program over the ring R, consider Algorithm 1,
which computes the polynomial p(z) = Yp_, zR In order to distinguish functions R — R
from constants = — R we used bold letters for functions.

Algorithm 1: A DPM-goto-program over R with D = {x, R} that computes the poly-

nomial p(2) = Yh-, ZF everywhere
Input: n € N (Note: This will initiate a register n : * — R)
Output: The R — R-function z — Yp_, 2f

12— T :R—>R

p—0:R—-R

one « 1

ZR—1:R—>R

p<—p+zk

zk — zRk -z

n <« n-one

8 if n > o then goto 5

9 return p

(<) B¢, &~ w N

~N

2.2.4. Step 4: Use expressions containing intermediate values

Registers are often needed to compute intermediate values, and these registers are
not used at any other places. To reduce the number of statements and increase the
readability, we allow composed expressions. Auxiliary variables have to be introduced
for translating these composed expressions to a representation of Step 3. We can still
count the number of evaluated lines as the running time. This does not change the
asymptotic running time because only a finite number of elementary-operations are
merged into a single operation.

Formally, we allow the following grammar for such a program that has to (at least)
fulfill the rule (programy:

(nonzero-digity == 11213 14l516171819
{fixed-integer) == 0 | {(nonzero-digit) | {nonzero-digit)fixed-integer)

{varname) == {string) | <varname><ﬁxed_,~meger>

20

2.2. Programming DPMs

{list-of-expr)y == {expry | {expry(list-of-expr)

(expr) == {varname)
| ((list-of-expr))

| (expr) + (expr)

| {expr)y - {expr)

| Cexpr) - (expr)

| (expr) [{expr)

| {expr) o {expr)

| « for some a € RR
| 7r<ﬁxed—integer>(<e)<pr>)

| (expry[{expr)]

| if {expr) = o then (expr) else (expr)

(statement) = goto {fixed-integer)

| (statement)
(statement) (two statements separated by a new line)
{varname) « {expr) (if register: parallel assignment)

|
| if(¢expr) = 0) goto (fixed-integer)

| if(¢expry = 0) goto (fixed-integer) else goto (fixed-integer)
| Return {(expr)

{program) = {statement)

However, not every string build by the rule (program) is a valid program. Also here,
the variables must exist and the types of the expressions must match.
2.2.5. Step 5: Use advanced control structures

Using goto k and the conditional jump if({expr) = 0) goto k, more advanced control
structures can be modeled. For instance, the code fragment

while (condition) do
t {loop-body)

can be considered as “syntactic sugar” for the fragment

A if not {condition) then goto B
{loop-body)
goto A

B

21

Chapter 2. Two equivalent definitions for DPMs

More advanced control structures such as do...while, if...else..., for and repeat, etc.
and their equivalence programs containing only goto and if((expr) > 0) goto k are
presented in many standard lectures on theoretical computer science, for instance in
Erk and Priese (2008). The command goto can be entirely avoided if these advanced
control structures are used instead. Formally, we can include these control structure
in the rules for (statement).

2.2.6. Step 6: An operation for point-wise parallel programs

To make the programming of the “parallel-part” of DPMs easier, we add here a program-
ming paradigm, which allows for a description of (composed) point-wise operations as
a small program, which will be evaluated in parallel. For that we introduce the following
additional rule for {(statement) in our syntax:

(statement) = ...
| compute {variable)[{runningvar)] everywhere as {parallel-statement)

where
{runningvar) == {varname) | ({list-of-varnames))
{list-of-varnames) := {varname) | {varname)list-of-varnames)

{parallel-statement) == Return {expr)

| (parallel-statement) (two parallel statements
{parallel-statement) separated by a new line)
| (varname) « {expr) (only for registers — RF)

| if (expr) = o then
{parallel-statement)

| if (expr) = o then
{parallel-statement)
else
{parallel-statement)

| repeat {fixed-integer) times
{parallel-statement)

For a registerv:D — RR D = R" the statement

compute v[xq, ..., xn] : D — RF everywhere as
| {parallel-statement)

22

2.2. Programming DPMs

means that the return value of {parallel-statement), which might depend on the
values of the local “running variables” x,...,Xpn, is point-wise computed at once and
the result is stored to the register v : D — R such that v[x4,...,xn] has the value of
{parallel-statement), which might contain (x4,...,Xn) € D as running variable.

{parallel-statement) allows less powerful expressions than {(statement), because
{parallel-statement) is not allowed to have conditional jumps or “intelligent loops”. Fur-
thermore, all assignments a < {expr) are only allowed to have atom variables/tuples
(+ — RR) on the left side instead of functions. The variables that are assigned inside
a {parallel-statement) are not allowed to occur at any other position of the program
outside of the current compute-everywhere-block.

The running time of the entire statement will be counted as constant.

We will shortly explain how

compute v[xy,. .., xn] : D — RF everywhere as
| (parallel-statement)

can be transferred to an equivalent code that does not need this statement, and we
obtain a form equivalent to the representation in Step 5.

1. For every ke [n]aline
X < Tp, : D—R
will be introduced. The “running variables” will be interpreted as a parallel array.

2. All repeat-loops are unrolled. The body of the repeat-loop is replicated a con-
stant number of times. The asymptotic number of operations remains the same
because the number of repetitions is a fixed number in the code.

3. Every “parallel variable” b, that is defined within {parallel-statement), is by def-
inition b : * — RR. Without the compute-everywhere statement, we need a
register that stores possibly different values for b based on different values of
(X4,...,Xn) = x. For that we introduce a registerb : D — RR and for any expression
expr we use ¢(expr) to denote the transformed expression where every parallel
variable b has been replaced by b.

4. For every if-block k we provide two masks: ifmasky, elsemasky, : D — {0,1} = R
that evaluate to 1 only for points making the corresponding branch active. To
make the still following transformation rules simpler, we say that all the code is
contained in a general if-block with number 0 and we execute

ifmaskg <~ 1:D — R

elsemaskg <~ 0:D — R

23

Chapter 2. Two equivalent definitions for DPMs

in the beginning.

For every if-block (which we will number by some k € N>4) and associated condi-
tion ¢, > 0, that is contained in the if/else-branch of the “parent”-if-block with
number p, we compute

ifmask, « [if/else]maskp, - if(¢(cy) .0,1)

=0
elsemasky, < [if/elselmaskp - if(¢(cy) = 0
instead of the declaration of the k-th if-block.

5. Every assignment
a < expr
is contained within the if/else-branch of a block [. By definition a : = — RR. We
will instead perform a computation on the register @ : D — R®. The assignment is
replaced with
a — if([if/else]lmask, ¢(expr), a).

The replacement of the assignment will leave the register @ : D — R* unchanged
at those places where the current branch of block [is not active and recompute
term at all other places.

6. In order to handle the returning of values, a helping variable running : D —
{0,1} = R, indicating whether a value has not been returned yet for the given
data-point x € D. running is initialized with

running < 1:D — R

Now any parallel statement
Return expr,

contained in the if/else block [, will be replaced with

v — if(running - [if/elseImask,, ¢p(expr),v)

running < if(running - [if/else]mask;, 0, running)

As an example using the compute-everywhere-statement, an algorithm that com-
putes the characteristic function of a disk with radius r is presented in Algorithm 2. Us-
ing the translation-rules from above, the same algorithm is translated to Algorithm 3, a
representation of Step 5. In the future, we will keep using the shorter representations
as in Algorithm 2.

We will consider the representation that we obtained in Step 6 as Model 1 that has
been introduced at the beginning of this Chapter. Since all the steps describe mutually
equivalent models, Model 1 and Model 2 express the same computational concept.

24

2.2. Programming DPMs

Algorithm 2: Computation of a disk for a DPM over R? (high-level)

1

2

3
4
5
6

~

Input: re R
Output: The characteristic function x : R? — {0, 1} of a centered disk with radius
r
compute x[x y],x : R? — R everywhere as
Ve X-X+Y-y—r-r
if v> o then
‘ return o
else
t return 1

return x

Algorithm 3: Low-level translation of Algorithm 2

[<2 BN ¢,] s~ w N

~

10

1"

12

Input: reR

Output: The characteristic function x : R> — {0,1} of a centered disk with radius
r

X—m :R2->R

y—m:R> >R

ifmaskg « 1:R? - R

elseifmaskg «— 0:R?2 > R

running < 1:R? - R

v — if(ifmasko, X -x+y-y-r-r,v)

ifmask; < ifmaskg - if(v > 0,1,0) : R? - R

elsemask, « ifmaskg - if(v > 0,0,1) : R? - R

x < if(running - ifmask, 0, x)

running < if(running - ifmask4, 0, running)

x < if(running - elsemasky, 1, %)

running < if(running - elsemask,, 0, running)

25

Chapter 3.

Mathematical algorithms suitable for
DPMs

In this chapter, we undertake the first steps towards estimating the computational
strength of DPMs.

We will give several examples of mathematical algorithms that can run on a DPM
machine and utilize benefits in this model over classical ones. The examples will differ
in the domains the DPM needs to access: The first example utilizes only finite domains.
The second one requires an infinite but discrete domain. The last utilize infinite and
continuous domains.

If we restrict D to contain finite domains only, then there is a straight-forward trans-
lation of the machine into a program for a conventional computer (aside from the
possibility of real arithmetic): Registers with a finite set as domain can be considered
as arrays. for-loops can replace every compute-everywhere-as-loops. Furthermore,
these compute-everywhere-as loops over a finite domain are natural candidates for
parallelization on many different architectures.

If the domains become infinite, then the programs can still be computed on a con-
ventional computer, as we shall see in Section 5.1. In some cases, however, at the cost
of an exponential increasing running time. If the domains are continuous, then the
results might be approximated by shader code as described in Chapter 6.

In this chapter, we will sometimes use the term computable and consider running
times. Here, with computable, we do not mean Turing-computable in the classical
sense, but we mean that there is a finite-dimensional BSS machine over the given
ring that computes the specified problem. According to that, the running time coin-
cides with the asymptotic number of required arithmetic operations over that ring. If a
function f is O(1)-computable, we mean that the evaluation of f takes constant time on
a finite-dimensional BSS machine. Therefore, if f is O(1) computable it is also possible

27

Chapter 3. Mathematical algorithms suitable for DPMs

to compute f on a DPM in parallel. These times for computation might differ from the
computational time of Turing machines because for them, for instance, reading and
writing n € Z takes Q(log In|) operations (due to the representation over a finite alpha-
bet such as the binary representation). A BSS machine over the ring Z, however, always
needs constant time to process an integer.

3.4. Fast discrete Fourier transformation

We will first start with an example for a DPM machine that has only finite domains in
D: A modification of the Cooley Tukey algorithm (Cooley and Tukey, 1965) to compute
the discrete Fourier transform (DFT) in ©(log n) steps on a DPM.

Let x e CN a vector of complex numbers. For simplicity, we assume that N is a power
of two and that the indexation of vectors starts with 0. The DFT of x is defined as the
vector X e CN defined as

N-1 ,
Xe= Y xpe K (31)

n=0

where kis ranging from o to N - 1. We will write X = DFTy(x). The naive computation of
the vector X e C" given x e C" by evaluating Equation (3.1) component-wise would take
©(n?) operations. The algorithm of Cooley and Tukey (1965) brings the computation
down to ©(nlogn) operations on a BSS machine. We will modify this algorithm to
obtain an algorithm suitable for a DPM over D = {x,[N]o} that requires only ©(logn)
DPM operations.

We assume that N > 1 (In the trivial case N = 1 we have X = x). As a power of two,
then N is even and we can use a formula from Cooley and Tukey (1965) to split the
summation formula for X, in the summands with even and with odd indices, and it will
turn out, that X, can be composed by using the DFTs of the even- and odd-indexed
parts of x.

N/21 _ﬂmk —27rif€ N/2-1 _ﬂmk _27rfk
Xp = 2 Xome NI2 +e N Z Xom+1€ NP2 = Epve” N0, (32)
m=0 m=0
DFTy,(even-indexed part of x);, DFTy,,(odd-indexed part of x),,

This formula can be nicely used to compute the Discrete Fourier Transformation recur-
sively. Inspired by the classical recursive approach, we will transfer this formula into
an algorithm for a DPM over the ring C and the domains D = {x, [N]o} that needs only
O(logn) steps.

28

3.1. Fast discrete Fourier transformation

Let us specify that, after s steps, a register X : [N]o — C stores % Fourier transferred
vectors of certain sub-vectors of length 2° of x € C". In order to derive the algorithm
mathematically, we will write X° for the value of X after s steps.

In the beginning (s = 0) the sub-vectors are interpreted of length 1 = 2° and therefore
the DFT of each of them will be the same and X° = x.

In the later steps, the o := % sub-vectors of x will not lie consecutively after each
other but lie interlaced such that the first o entries of x and X° contain the first com-
ponent of each of the ¢ vectors and the next ¢ entries contain the second component
and so on. The distance between the components of one subvector within x and X° will
be always o.

Let us specify this mathematically. The k-th component (indexation of a vector starts
with 0) of the §-th vector will correspond to the index o - k + 6 and we demand the
following formula to be invariant for every ¢ € [c]o:

(X3-vs)kelos]o = DFTas ((Xo~fe+6)ke[25]o> (3.3)

Instepswitho = % where the DFTs of the ¢ subvectors of x are computed and stored

in X°, Equation (3.1) and Equation (3.2) can be transfered to the following equation:

251 .
_ami
X5 kes = Z Xg.n+6€ 2 e (3.4)
n=0
2° /21 i i 2° /21 i
= Z XO'A2m+5e_mm +e—2Tk Z Xg.(2m+1)+5e_mmk (3.5)
m=0 m=0
_a _2mi
=Ep+e No" 0. (3.6)

where E, and Oy, are the k-th components of the “even”/“odd” indexed paths of the DFTs
H i S—1 S—1

of the su.bvector (Xg-k+6)ke[25], Which are already stored in X°"',) sand X>°0 . < from

the previous step. Alltogeter we obtain

o R

s _ 51 -2 Rys—1
XO'"?+5 B XU.(Q.I?)+6 +e N Xg.(Q.fg+1)+§ ' (37)

which will be used in Algorithm 4.

If complex numbers are approximated with two real numbers, this algorithm can be
naturally converted to shader-code of the GPU using a texture that has only one pixel
in one direction. An implementation in CindyScript using colorplot is given in Applet
>1. Itis also possible to extend this algorithm to more dimensions (an implementation

29

https://aaron.montag.info/dissertation/1

Chapter 3. Mathematical algorithms suitable for DPMs

Algorithm 4: The FFT for DPMs over C and D = {x, D}, where D = [N]o and N is a
power of 2
Input: A functionx: D — C
Output: The (discrete) Fourier transformation X : D — C of x
1 X<x// The DFT of a 1-vector is the vector
oY // distance between elements of vector
3 while 0 > 1do
4 | compute X[l],X : D — C everywhere as
5
6

N

6 — mod (o) // shift
k< 0 // local index within recursion
Ep < Xlo-(2-R)+6]

8 Op «— Xlo - (2-R+1)+4]
~ —2'7r~i'k ~

9 return £, +e Nie = . Oy

10 | 05

1 return X

for two-dimensions can be found in Applet t>2), which opens the door for many real-
world applications where fast image processing is required. For instance, the auto-
correlation of an image, that means the image folded with itself, can be efficiently
computed using the fast DFT. The auto-correlation gives powerful information that can
be used to determine the periodicity of a periodic image.

3.2. (Possible infinite) cellular automata

Scholz (2014) gives a picturesque overview and description of the wide range of appli-
cations of two-dimensional cellular automata. Starting from the famous Game of Life,
he shows, how cellular automata on a pixel-based grid can be used to build models of
forest fires, traffic simulations, the predator-pray model (that locally approximates the
Lotka-Volterra equation), the Lattice Gas model (which has the Navier Stokes equation
as limit) and approximations to reaction-diffusion equations.

DPMs can simulate several cellular automata “naturally”. Unlike conventional com-
puters, also cellular automata on an infinite domain can be reproduced on DPMs.

First, we will start with the formal definition of a cellular automaton. Definition 9 up
to Definition 12 are from Hadeler and Muller (2017).

Definition 9. Consider a finitely generated group G with a finite set of generators o < G.

30

https://aaron.montag.info/dissertation/2

3.2. (Possible infinite) cellular automata

The Cayley graph T = T(G, o) has the elements of G as vertices and two vertices a,b € G
are connected iff there is a generator s € ¢ such that a = bs or b = as. The neutral
element e € G is called the origin of the Cayley graph. The vertices of I are called the
cells of the grid.

For instance, the abelian group G = Z? can be generated through the generators
o =1{(0,1),(1,0)}. These generators will lead to a Cayley graph that looks like an infinite
2-dimensional grid. On the computer, it is possible to represent this Cayley graph. How-
ever, it is impossible to attach arbitrary (finite) data to each vertex of this infinite Cayley
graph. For these purposes, often the graph G = Zj x Zmy for some n,m,e N, a product of
cyclic groups, is considered. If we use the same generators o = {(0,1), (1,0)}, the Cayley
graph becomes a finite grid identified with itself in both directions; The Cayley graph
is a subset of the topological torus. The Cayley graph of G = Z, x Zp is often used on
the computer because it is finite.

A cellular automaton assigns states to each cell/vertex of I'. The states of the cells
are iteratively computed according to a local rule. The rule defines the new state of
a cell depending on its neighborhood. The definition of such neighborhoods follows
here:

Definition 10. Let G be a finitely generated group and I = I'(G, o) a Cayley graph. Let
Do be a neighborhood of e (i.e,, any finite set of vertices of I'). The neighborhood of a
point g € I is given by

Dg = gDo

As an example, the Moore neighborhood in G = Zp x Zm for some n,m,e N u {oo}
is defined as D = {-1,0,1} x {-1,0,1}. The von Neumann neighborhood is defined as
D = {(1,0),(0,1),(=1,0),(0,-1),(0,0)} (Hadeler and Miiller, 2017).

In the following definition, states are assigned to each cell of a Cayley graph:

Definition 11. Let I'(G, o) be a Cayley graph. We define functions on " with values in
a finite set £ which we call the set of elementary or local states, or the “alphabet”. A
function

u:'—-E

is called a (global) state. The set E" = {u: [— E} is the state space. If g is a vertex (cell)
then u(g) € E is called the state of the cell.

Now we have all definitions to define a cellular automaton.

Definition 12. Let G be a finitely generated group, I' = (G, o) a Cayley graph. Let Do be
a finite subset of I, called the neighborhood of the unit element e € G and E a finite

31

Chapter 3. Mathematical algorithms suitable for DPMs

set of local states. The function fo : EP° — E describes the local rules of the cellular
automaton. We define
fELSE, ueflu)

with
f(uXg) = folluo g)lp,) forger.

The tuple (T, Do, E, fo) is called a cellular automaton.

lterating such a local determined f : EF — ET simulates a cellular automaton. Cellular
automata on finite groups can be easily simulated on a conventional computer: f can be
computed pointwise on each of the finite number of cells. However, simulating cellular
automatons on an infinite grid, in general, needs either some boundary conditions or
periodicity. For instance, one can demand that the global state of a cellular automaton
in the beginning has finite support. More precisely, one can demand that almost all
cells are in a resting state r e E, i.e fo(uo) = r whenever ug € Do fylfills uo(g) = r for all
g € Do. If almost all cells are in a resting state, then also in consecutive steps, almost
all cells will remain in such resting states (Hadeler and Miller, 2017). This restriction
gives rise to a representation on a conventional computer.

Using a DPM makes it is also possible to simulate more general cellular automata on
an infinite domain. However, there are still some restrictions on the finitely generated
group G: It has to be euclidean embeddable, which we define here:

Definition 13. Consider a finitely generated group G with a finite set of generators o =
{s1,...,5p} = G. We call G euclidean embeddable if there is a D = R" for some n € N,
an injective function ¢ : G — D, and transformations T, ..., T, : D — D such that every
Tj:D— Danditsinverse T;': D — D are O(1)-computable and

us;j - g) = Ti(ug))

The transformations induced by the generators give rise to a geometric interpretation
of the embedding ¢ : G — D < R” and determine ¢ up to the value «(e). Many groups
are euclidean embedded once they have a geometric correspondence. For instance, a
group G acting on a hyperbolic, euclidean or elliptic space X such that G acts freely on
one orbit Gx for some x € X is euclidean embeddedable if the action is O(1)-computable.
Since every such space X can be embedded into some R", such an injection ¢: G — R"
is induced by taking the corresponding points of the orbit Gx embedded into the R".

Since G is finitely generated over the generators o = {s4, ..., Sy}, every group element
g € G can be written as a finite product via elements of 0. Letg = s; - --- -5, Then

32

3.2. (Possible infinite) cellular automata

A minimal D can be always choosen by setting D = +(G). G induces a transitive group
action on ¢(G) via the transformations T; for each generator s;. +(G) can be considered
as the orbit of «(e) under G.

For instance, the group Z? with the generators s, = (0,1) and s, = (1,0) is embeddable
in D = R? by using the identity id : Z? — Z? < R? as ¢ and defining the transformations
as shifts: T4(x,y) := (x +1,y), Ta(x,y) = (x,y +1).

Unfortunately, we cannot expect that every finitely generated group is euclidean em-
beddable in our sense: Suppose it was, then we could also solve the word problem
for any finitely generated group. The word problem in a group G with a finite set of
generators o G is the problem of deciding whether a word w over ¢ represents the
identity in G (Epstein, 1992).

Proposition 14. There are finitely generated groups G that are not euclidean embed-
dable.

Proof. Suppose every group G was euclidean embeddable. Given a word w = w;, ... w;
that represents the group elementg =s; ----- sj e € G we can compute

)ule)

[

Ug) = us;, -----sp€) = (T 00T,

and check whether «(g) = v(e). Since . : G — D is injective by definition this check is
equivalent to the check whether g = e and the word problem could be solved. However,
Novikov (1954) showed that the word problem can not be decided for every finitely
generated group G. O

We want to simulate cellular automata on DPMs. Cellular automata, in general, need
an infinite amount of space.

Proposition 15. Let G be euclidean embedabble with ¢ = {sq,...,s,} = G as set of
generators and Cayley graph I and let (I, Do, E, fo) be a cellular automaton. Let D =
t(G) = T. Then the cellular automaton (I, Do, E, fo) can be simulated on a DPM having
access to the domain D.

Proof. Foreveryd e Do exists a representationd =s;. -- - -Sj, and hence also computable
transformations t =T o---o T;. Then ty(c(e)) = u(d) and for every g € G also t4(u(g)) =
(dg). Then the iteration of the cellular automaton can be simulated as in Algorithm 5
on a D-DPM. Each step in the for-loop computes one iteration of f : £l — ET. O

33

Chapter 3. Mathematical algorithms suitable for DPMs

Algorithm 5: Simulating a cellular automaton on a DPM on D
Input: The initial states u : I =~ D — E, the number of iterations n e N
Output: The state u: I =~ D — E after n iterations

1 fori=1tondo

2 L compute u[x],u: D — E everywhere as

3 t return fo(u(tg,(x), ..., u(ty, (x))) where Do = {d,...,dm}

4 return u

3.3. Subset Sum problem in linear time

Given a set X4,...,xn € R and a number a € R, the Subset Sum problem (sometimes
also refereed to as the Knapsack Problem) is the decision problem of checking whether
there is a set S < [n] with >ics X = a.

The problem, considered over the ring Z, where integers are encoded through their
binary representation, is proven to be NP-complete for classical Turing machines. For
general rings R, the Subset Sum problem can be decided by BSS machines. Blum et al.
(2012) showed that if branching is done on equality checks only, then it is an intrinsic
property of the problem to require at least exponential running time on any BSS ma-
chine. However, it is an open question, whether for ordered rings and branching on <,
there is a BSS machine deciding the Subset Sum problem faster.

On a DPM, parallelism can be utilized. This enables to decide the Subset Sum prob-
lem in linear time on this architecture without using any order structure of R:

Algorithm 6: Solving the Subset Sum problem on a DPM over the ring R with

domain R in linear time
Input: ne N, x4q,...,xn e R, aeR

Output: 1 or o if there is a set S < [n] with };csxj = a
1 compute o[x], o : R — {0,1} = R everywhere as
2 L if x = 0 then return 1 else return o

3 fork=1tondo
4 L compute o : R — {0,1} = R everywhere as

5 t return max(o[x], olx - x;])

6 return o[a]

By induction, we see that, after k iterations, the register ¢ in Algorithm 6 stores the
characteristic function of {3;cs x; | S = [R]}. Therefore, Line 6 returns the answer of the
decision problem, namely a € {35 % | S < [n]}.

34

3.4. Generation of objects with self-similarity

Definition 16 (NP, PDPM(Z)). Let NP be the class of all decision problems that are non-
deterministic polynomial for a Turing machine (NP in the classical complexity theory).

Furthermore, let PDPM(Z) be the class of all decision problems that can be solved
by a DPM M over the ring Z and the domains D = { Z} in polynomial time. More
specifically, M should read only one register input : Z — {-1 =~ 0, 0,1} as input such that
n = max{|kl | input[R] # o} e N exists (This corresponds to the finite input of a Turing
machine) and the running time of M should be polynomial in n.

Lemma 17.
NP c PDPN\(Z)

Proof. Since Subset Sum is NP-complete in the classical theory, every problem of NP
can be reduced to Subset Sum in polynomial time. A DPM with Z € D can simulate a
Turing machine on this domain in the same asymptotic time. Therefore, the reductions
to the Subset Sum problem can be done on a DPM as well in polynomial time. The
numbers on the Turing Machines are wlog. encoded in their binary representation.
Encoding them into elements of Z is possible in linear time in their length, which again
is limited by the elapsed polynomial running time. Since, Z € D, the DPM then can
solve the obtained instance of the Subset Sum problem using Algorithm 6 in linear
time and an answer for the original problem is obtained in polynomial time. O

3.4. Generation of objects with self-similarity

DPMs offer a suitable formalism for the description of algorithms that iteratively gener-
ate mathematical objects with self-similarities. Famous representatives of such objects
are fractals or periodic patterns. An approximation by physical computers for IFSs and
Kleinian groups has already been presented in Montag (2014). It is new to transfer these
concepts to DPMs.

3.44. Iterated Function Systems

The following definition of an IFS and its limit set is paraphrased from Barnsley (1988).
These definitions lay the mathematical foundations for IFS for complete metric space
(X, d). For us, the case X = R with the norm-induced metric is of interest. In this setting,
a DPM with domains D = { X = R"} can generate the limit sets of the IFS.

Definition 18 (hyperbolic iterated function system). A finite set of transformations ws,
.., Wn : X — X generates a hyperbolic iterated function system (IFS) on the complete
metric space (X, d) if for every i € [n] the function w; : X — X is a contraction.

35

Chapter 3. Mathematical algorithms suitable for DPMs

An IFS acts on the space (H(X), h), which we are going to define here:

Definition 19 (The metric space (#H(X), h)). Let (X, d) be a metric space.
H(X):={Cc X | C# & compact}

denotes the set of all nonempty compact sets in X. H(X) can be equipped with the
Hausdorff-metric h(A,B) := inflee Rso :Ac B+eABc A+efwhereA+e:={xe X | 3Jae
A d(x,a) < el

Now we define the action of the IFS on the space of compact sets with Hausdorff
metric.

Definition 20 (Hutchinson operator). For a given hyperbolic IFS with transformations
W1, ... Wp, the so-called Hutchinson operator is defined as:

This action turns to be out to be a contraction and we can apply Banach fixed-point
theorem.

Theorem 21 (unique limit set of an IFS, from Barnsley (1988)). An IFS defined over a
complete metric space (X, d) induces a unique fixed-point A € H(C) of W and for every
C € H(X) the convergence

lim W(C) = A

n—aoo
with respect to the Hausdorff Metric h holds. We call A the limit set of the IFS.
Proof. We need two elementary ingredients that are proved in (Barnsley, 1988):

- Since all the functions wj, : X — X are contractions, also W : H(X) — H(X) is a
contraction.

- The completeness of (X, d) carries over to (#(X), h).

The theorem then follows immediately by applying the Banach fixed-point theorem for
the contractive map W : H(X) — H(X). O

In particular, any IFS on the Banach space R has an unique fixed point.

36

3.4. Generation of objects with self-similarity

Example 22 (The Sierpinski triangle). On X = R?, consider the hyperbolic IFS with
Wq X > 2X Wy 1 X — 2x+(1,0) and w3 1 x — 2Ix+ (3, ?). Then the Sierpinski triangle is
a fixed point of the induced Hutchinson operator W, because

W(&FW1(&)UW2(&)UW3(&)=(& Yo Ao & mﬁa

From Theorem 21 follows that the Sierpinski triangle is the unique fixed set for the
defined hyperbolic IFS. Also, iterating the Hutchinson operator W on any nonempty
compact set C < R? gives rise to an arbitrary good approximation of the Sierpinski
triangle.

Let an IFS over X = R and bijective affine transformations wq : X — X, ..., wp : X — X
be given. It is straightforward to translate this machinery of Theorem 21 to a DPM
with the domains D = {x, X} that performs the iterative applications of the Hutchinson
operator. Any set C € H(X) can be characterized by its characteristic function xc € {o, 4
defined through

1 ifceC
xc(c) = , :
o ifc¢cC

The Hutchinson operator W : H(X) — H(X) with W(C) = |J, w;(C) can be translated to
W - {o,1Y" = {o,1 by setting

(W60) (p) := maxix(wi"p)}

ie[n]

This definition fulfills

Wixc) = Irg[%dxc ow; '} = ,@ﬁﬁ{xvv«-(c)} = XU, wi(0) = Xw(c)

Hence W mimics the set operations of the Hutchinson operator on the level of char-
acteristic functions. The DPM in Algorithm 7 iterates W on its given input.

The IFS-theory is not restricted to sets. Barnsley (2006) extends the theory to mea-
sures and pictures. DPMs can also be used to compute the sequence of iteratively
deformed measures (provided the measures have density functions; The registers of
a DPM can store these density functions) and pictures (which also can be encoded in
registers). In the second case, a single image with compact support is kept as “seed”
and the orbit of the IFS acting on the picture is rendered. With this, even simple IFS,
which for instance contain a single contractive transformation and thus has only a

37

Chapter 3. Mathematical algorithms suitable for DPMs

Algorithm 7: Approximating the limit set of a hyperbolic IFS on a DPM over X

Input: The characteristic function x : X — {0,1} of a non-empty compact set

C < X, the number of iterations m e N and a hyperbolic IFS on X through
the inverse functions wy", ..., wy,'

Output: The characteristic function of W™(C), which approximates the limit set
A = limm_o WM(C) for big m where W : H(X) — H(X) is the Hutchinson
operator for the IFS wy, ..., wy

1 forj=1tomdo

2 compute x[x],x : X — {0,1} everywhere as
3 V<0

4 fori=1tondo

5 t if x[wlﬂx] =1then v« 1

6 return v

7 return x

single point as the limit set, reveal more information such as a visible spiral (see for
instance the second image of Figure 3.1d).

The requirements for the transformations to be contractions can also be dropped.
Then there is no general mathematical justification for convergence anymore. However,
this enables the visualization of wallpaper groups. Furthermore, on a compact set, after
a finite number of iterations, a static image is generated.

A scheme for IFS that act on images can be described with Algorithm 8. Images are
specified as functions x : R> — R%. The first three components of o(x) indicate the red,
green, and blue-component of each image point x. The fourth component is used to
specify the support of the image. Only on those spots x € R? where is o,(x) > 0 the
Image has some visible interpretation. At spots outside of the support, o, attains o,
and the color is of no importance. This component can be interpreted as alpha-value
for transparency. Given a set of arbitrary transformations, the orbit picture after a given
number of iterations can be computed.

If the pictures are transferred such that some of them overlap at a spot, which image
Isto be “putin the front”? If the supports of the images transformed within Algorithm 8
overlap, the behavior of the algorithm depends on the given order of the transforma-
tions. By multiplying the fourth component of the colors obtained in Line 6 by a factor
between 0 and 1, a more precise order can be specified. In the given Algorithm 8, it is
only ensured that the seed picture o where ¢, attains 1is always in front.

38

3.4. Generation of objects with self-similarity

Algorithm 8: Generation of orbit-images for generalized IFS on a DPM over R?
Input: A seed-image o : R? — [0, 1]%, the number of iterations me N and a
generic IFS on X through the inverse functions wy', ..., wy,'
Output: The orbit picture after m iterations
1 X< 0O
2 forj=1tomdo

3 compute x[x], x : R?> — [0, 1]* everywhere as
4 b — o(x)

5 fori=1tondo

6 0 — x[w;'x]

7 if 0,(x) > b,(x) then b «— o

8 return b

9 return x

3.4.2. Interactive realization on the GPU

If the registers of Algorithm 8 are replaced through textures of finite size, the algorithm
can be efficiently approximated on a computer with GPU. A visually pleasing effect is
obtained, if the approximated images x are displayed in each intermediate step. Then
by a growing process it can be observed, how the patterns and fractals are built up. In
Applet >3, the loop in Line 2 of Algorithm 8 is not bounded and the transformations
and the seed image o can be modified in real time. Also, new transformations can be
added. This gives a certain level of interactivity in constructing wallpaper groups and
hyperbolic IFS.

It can be observed, how recently added strokes, which are drawn to the seed image o,
will be propagated through the entire system. In the example series of Figure 3.1, some
very simple strokes have been drawn by the user to specify the seed-image. Upon
that, the transformations are added one by one as semi-group generators. After each
transformation is added, it takes some small number of the rendering stepsin Line 3 of
Algorithm 8 until the image on the compact screen becomes constant. This enhances
the understanding of the mathematics of patterns.

For instance, in Figure 31a, a pattern with crystallographic group p1(We use the nam-
ing convention of 1UC) is generated by first drawing a small L-shape and then subse-
quently adding four semi-group generators, namely two linear independent transla-
tions and their inverse translations. The user can observe how the wallpaper pattern
grows once the translations are added. Furthermore, it can immediately be seen that a

39

https://aaron.montag.info/dissertation/3

Chapter 3. Mathematical algorithms suitable for DPMs

set of four arbitrary chosen translations would generate a chaotic picture; The orbit of
a single point would become dense. Therefore also snapping points have been intro-
duced in Applet >3, which ease the specification of relations between the semi-group
generators.

In Figure 31b and Figure 3¢, the groups p3 and cm were generated. For all these
Euclidean transformations the alpha-value of the transformed images has been slightly
reduced, which damps the propagation of artifacts that occur due to the discretization
of the registers.

In Figures 31d and 3.e, affine contractive mapping were set to render the orbit of
simple seed images through a hyperbolic IFS. This rendering technique reveals more
information than only showing the limit set, which would, for instance, contain just a
single point after a single contraction has been added.

Figure 31f shows a rendering where Euclidean and contractive transformations have
been combined. The first added transformation is a reflection. The second one is a
translation, which is orthogonal to the axis of reflection (otherwise the similarity would
spread into two directions as in the third image of Figure 3:1c). The third transformation
is a contraction by factor 7 and center on the reflection axis. Slight deviations of these
transformations would produce chaos, i.e, the orbit of a single point would become
dense in an uncontrolled environment.

3.4.3. Kleinian groups

The DPM algorithms that have been introduced made use of only one register with a
“parallel domain” so far. The following algorithm utilizes a register that contains a stack
of several continuous parallel domains.

A Kleinian group T is a discrete group of Mobius transformations. Its limit set A(T")
C is the set of all occurring accumulation points (Maskit, 2012).

In Montag (2014), we have shown that if the language of geodesics in I is regular and
N) # &, then the limit set A(I") can be approximated in Hausdorff convergence as
follows:

Theorem 23. (from Montag (2014)) Let T be a Kleinian group with A(F) # &, let C <
C \ A(I') be non-empty compact and let ¥ be a set of semi-group generators that is
closed under inversion. Furthermore, suppose that there is a DFA A = (Q, %, 6,qo, F)’
accepting the language L(A) = {w € £* | w geodesic in T}R =T .

Tie, Ais a deterministic finite automaton over the finite alphabet £. A has a finite set Q of states, the
transition function § : Q x ¥ — Q, the starting state go € Q and the finite set F < Q of accepting states.

40

https://aaron.montag.info/dissertation/3

3.4. Generation of objects with self-similarity

LLLLL
LeertLLee LLLL

) Four semi-group generators are added one by one to generate the group p1.

b) The group p3 is generated through a three fold rotation and a translation.

) A two-generator hyperbolic IFS that renders a tree with trunk and branches.

(f) A combination of a carefully chosen reflection, translatation and contraction.

Figure 3.1.: Sequences of screenshots from Applet 3. The left-most always contains
the seed picture only. Then iteratively transformations are added and the
orbit of the images through the generated semi-group is displayed.

https://aaron.montag.info/dissertation/3

Chapter 3. Mathematical algorithms suitable for DPMs

Figure 3.2.: Screenshot of Applet 4. The colors indicate the state-coordinate of the

register.
n . pay . . .
Then the sequence (Wq C) qeneN of compact sets in C which is recursively defined

as

C ifg-=

wac = 79~ 0 wiic= | owie
g ifa#4do oey, peQ:
5(p,o)=q

fulfills

H Ne -
lim [Jwgc=A@).
geF

with respect to the Hausdorff-metric.

Theorem 23 can be translated to the DPM Algorithm 9. This DPM computes a sequence
of sets that converge in Hausdorff-metric to the limit set of a Kleinian group. By defi-
nition of a DPM, the domains have to be subspaces of some R". Here we omitted the
technical detail of splitting the parallel domain € into the domains R2 and the single
point =.

A drawback of Theorem 23 and Algorithm 9 is that some knowledge of A() is re-
quired in advance in order to choose a compact starting set C < C \ A(T'). Furthermore,
this algorithm turns out not to be very stable to perturbations. However, in (Montag,
2014), we have shown that both these issues can be solved if instead of transforming
sets, measures can be transformed. This in turn gives rise to a very similar DPM where
the registers store density functions instead of characteristic functions. Applet >4 is
a CindyGL based implementation of this variant of the algorithm (Screenshot in Fig-
ure 3.2). It renders the limit set of a free group of Mobius transformations chosen by
“grandma’s recipe” from (Mumford et al., 2002).

42

https://aaron.montag.info/dissertation/4
https://aaron.montag.info/dissertation/4

3.4. Generation of objects with self-similarity

Algorithm 9: A DPM approximating the limit set of a Kleinian group

N

o v &

~

10

1"

12

13

14

15

Input: The characteristic function x¢ : € — {0, 1} of a non-empty compact set

C < C\ A(I), the number of iterations m € N, a Kleinian group I with the

semi-group generators o4,...op and a DFA
A=(Q=1{qo,...,qn-1} X, 8,qo, F) accepting the language
L(A) ={w e =* | wgeodesicin R ~T.
Output: The characteristic function of (J,er Wg'C approximating the limit set
NI) = limm—o Uger Wg'C, with W as in Theorem 23.
compute @[k, x], ¢ : [Nlo x C — {0,1} everywhere as
if R =0 then return x [x]
else returno // ¢|{,?}X@ is characteristic function of ngC.

forj=1tomdo
compute @[k, x], ¢ : [Nlo x C — {0, 1} everywhere as
V<0
forall o € ¥, q; € Qwith 6(q;,0) = g5, do
| if ¢ll,o7x] = 1then v 1
return v
i // now, d)l{k}X@ stores characteristic function of W{MC.

compute result[x], result : C — {0, 1} everywhere as

V<O
fork=0toN-1do
tifcp[k,x]:ﬂhen V1

return v

return result // characteristic function of (J,eeWG'C

43

Chapter 3. Mathematical algorithms suitable for DPMs

3.5. Iterating functions

The algorithm that we are going to develop will be both a useful instrument and as
well the foundation for a proof of the fact, that DPMs are inherently faster than BSS.

Given a function f : D — D and a value xg € D, let us iteratively define the sequence
(X)n € Ng by xp+1 = f(xn). We assume that f : D — D, given x € D is computable at unit
time on a BSS, i.e. f is O(1)-computable. In this section we study, how the value x, can
be computed efficently.

3.541. Iterating functions on BSS machines

First, let us study this problem on conventional computers where we count each ring-
operation as a unit-cost step. This corresponds to a computation on a BSS machine.

If one wants to compute the value of x,, one can do this in ©(n) operations by cal-
culating the sequence xgo, X1 = f(Xo), ...xn = f(xn-1) Step by step. Can it be done faster?
Or are there only special cases when it is possible to compute the n-th in o(n) steps,
i.e. asymptotically faster than ©(n).

Case 1: D is finite

If D is finite, then during the iteration of f : D — D, eventually there must be a cycle, i.e.
two values k < [such that x, = x; (wlog. let k and [be minimal in having this property).
By induction follows that Xp., = X+, for every n € No. Let p = [- k. Again by induction
over n follows that for every n,r € No one has Xg.p.p+r = Xg+p Thus it suffices to pre-
compute only the values xi ... Xg.pq, Decause every index n > k +p can be written in
the form n = k+[-p+rwith r<pandthus Xn = Xg.(.pser = Xgsp, Which is pre-computed.
The asymptotic speed of computing x, essentially depends on the speed of computing
the modulus n mod p, which however can be done in ©(logn) < o(n):

Proposition 24. There is a BSS machine over R that computes the fractional part
f:Rso —[0,1), x—x-1[X|

in ©(log(x)).

Proof. Use Algorithm 10.

Both while loops have exactly [log, x| iterations and therefore the entire running
time is in ©(log(|x])) = ©(log(x)). The first while loop computes k = 2[9%] to be the
smallest power of two greater than x. In the further steps of the algorithm, k will always
remain an integral power of two. The variable x is only modified in Line 5. Therefore,

L4

3.5. lterating functions

Algorithm 10: Computation of the fractional part on a BSS machine over R in
O(logx)
Input: x € R>o
Output: the fractional part x — x - |x] € [0,1)
1 k<1
2 while k < x do
3 | keke2

4 while x>1do

5 | Rk
6 if kR < xthen
7 tx<—x—l?

8 return x

the fractional part of the variable x always remains the same. Before executing Line 5,
we will always have k = x, because we subtract the powers of two in decreasing order
from x. The powers of two that are subtracted correspond to the ones in the binary
composition of |x|. During the second while-loop, every power of two will be subtracted
from x. O

Corollary 25. The modulus mod :N x N — N, (n,p) — n mod p can be computed in
O(log n):

Proof. Compute

n mod p=p(%—[gj).
Algorithm 10 can compute g—[gj in e(log(g)) = O(logn). All other arithmetic operations
have unit cost on a DPM over R. d

Case 2: D is infinite

If D becomes infinite, it is only possible in some cases to compute x, efficiently on a
computer that can do fast-arithmetic over D. One example is exponentiation: If D = R
and f(x) = a - x, then x, = a"xo. Using fast-exponentation for a”, the value x, = a"xo
can be computed through ©(log(n)) arithmetic operations. This example of a linear
f: R — R can be also generalized to the k-dimensional case when f : RF — RF is a
linear map. Each linear map can be represented by a matrix A € RF*®, such that f(x) =
Ax. The general solution is xp = Axo. The matrix A" can be computed in ©(k3 logn)
arithmetic operations using fast exponentation then the matrix-vector product A'xq

45

Chapter 3. Mathematical algorithms suitable for DPMs

can be computed in ©(k?). Since kis constant in the given problem, the total asymptotic
running time is ©(logn).

One prominent example of this class of linear iteration in a finite-dimensional space
is the computation of the Fibonacci numbers. The Fibonacci-numbers are defined as
Fo =0, F; = 1and Fpeq = Fpn + Foeq. If we define xpn = (Fn, Fn+q) € Z2 and f : Z? — 72
as f(xn) = f(Fn, Fn+1) = (Fper, Fn + Fne1) = Xp+q then fis linear and can be represented
through the following matrix product

Thus,

n
B B n ~ 0 1 1
f=(1 o)xa=(1 0)f)=(1 o) (1 1) (O>
If fast exponentation by squaring is used, then the n-th Fibonacci number can be com-
puted with O(log n) arithmetic operations over Z.

However, there are O(1)-computable functions f : D — D, for which there is no al-
gorithm (on a BSS machine and hence as well for a Turing machine) to compute xp
in sublinear time. For instance, the “most simple” non-constant, non-linear function
f:R —R:x+— x2. As we shall see in the following Lemma, it is impossible to compute
Xn = f1(x) = x2" in o(n) arithmetic operations on a BSS machine:

Lemma 26. There is no finite-dimensional BSS machine that can compute pn(x) = x2" in
sublinear time in n.

Proof. Assume that there was a finite-dimensional BSS machine that computes pn(x)
in o(n). Choose an xo € R such that a neighborhood of xo has the same state trajectory.
This is possible:

Since we assume that the running time is bounded, there is only a finite number of
different state trajectories, and the domains with the same state trajectory are semial-
gebraic sets (Blum et al,, 2012). The semialgebraic subsets of R are the finite unions of
intervals. All domains of the same state trajectory form a partition of R, so there must
be at least one state-trajectory having a non-empty interior.

Within this neighborhood of xo, no branching occurs and every register (locally)
stores a rational function in x. Let us consider the degree degr = max{degp, deg g}
for rational functions r(x) = %. If two rational functions are added, subtracted, multi-
plied or divided, the degree of the result is bounded by the sum of the degree of the
original rational functions. Thus, in the best case, the maximal local degree of all the
register can double in one step on a BSS machine. Therefore, the maximum possible

46

3.5. lterating functions

degree after o(n) operations is 20(”), which, for sufficiently large n, will be smaller than
2" the degree of x2". None of the registers could store the desired output. O

Remark 27. The previous result holds also for uniform BSS machines, because the
length of the input is fixed (Blum et al,, 2012). Also it can be extended to hold for the
parallel BSS modell introduced by Blum et al. (2012).

3.5.2. Iterating functions on DPMs in sublinear time

Now let us apply DPMs over the domain D to solve this problem of computing the
element x, of the sequence generated by iterating an O(1)-computable function f :
D — D. It turns out, that such a DPM can always compute the iterate x, in time O(log n).
First we demonstrate an algorithm that computes fzk(xo) = X,r in O(R):

Algorithm 11: Fast Iterated Function of f on DPMs over a domain D
Input: xe D,neN,f:D—D
Output: The value fzn(x) in O(n)
1 g« f:D—D// Either by computation or by input
2 repeat n times
3 | gegog
4 return g[x]

Instead of the step g < go g in Line 3, we also could have written
compute gl[x],g : D — D everywhere as return g[g[x]].

After k steps of the repeat-loop, each with cost O(1), the register labeled with g stores
the function f2k. Since the evaluation in Line 3 by definition takes only constant time,
£2"(x) can be computed in O(n).

Algorithm 11 could be considered as an other variant of the pointer jumping tech-
nique, which is the basis for several parallel algorithms that operate on pointer struc-
tures (Casanova et al,, 2008). The novelity of our algorithm used in this context is, that
the space is possibly non-discrete. It can be used, for instance, to iterate Newtons
method faster or to visualize the Julia set very efficiently (An approximation on the
GPU will be presented in Example 56).

To compute x, with n not being a power of two, we can also provide a DPM-algorithm
to compute x, in O(log n), which is inspired by the fast exponentiation algorithm. Our
formal definition of a DPM does not support a straightforward recursion?, so we will

2However, a call-stack could be implemented provided there is a domain D e D with N < D

47

Chapter 3. Mathematical algorithms suitable for DPMs

provide an implementation that has been designed by considering the binary decom-
position of n. Using a variable k, which will be initialized as 21'°%(M)] the greatest power
of 2 less or equal to n, we use it to extract the binary decomposition n from the high-
est to the lowest bit. For each digit we double the number of the applications of the
currently built function g. Whenever a bit is 1, we apply f one time more to the built g.
Algorithm 12: Fast Iterated Function of f on DPMs over a domain D

Input: xe D,neN,f:D—D

Output: The value f(x) in O(logn)
1 R<«1
2 while k < ndo // compute k= 2l'08"]
3 | keke2
4 g<—id:D—D
s while k > 1do
/* Go to the lower digit of the binary representation =x/
6 g«<gog
7 if k< nthen// The corresponding bit is 1

8 g« gof
9 n<n-R
10 ¥/?<—f€/2

1 return g[x]

Altogether, this algorithm will require O(log n) DPM operations.
If we apply this algorithm to f(x) = x>, we immediately see that DPMs provided with
domains large enough, are essentially faster than BSS machines.

Corollary 28. There are problems that a DPM-machine with R € D can solve faster than
any BSS machine.

Proof. Consider the problem to compute the map pn(x) = X2 According to Lemma 26,
any BSS machine needs at least linear time in n to compute pn(x). A DPM machine
implementing Algorithm 12 and iterating the map f : R — R,x — x?, requires only
O(logn) steps to compute f"(x) = pn(x) and therefore is asymptotically faster than any
BSS machine. 0

Algorithm 12 has many further applications, for instance the Newton Method can
be evaluated even faster. Any finite-dimensional BSS machine can be exponentially
accelerated on a DPM with the statespace of the BSS as domain and the computing
homomorphism of the BSS as iterated function (more details follow in Section 51).

48

Chapter 4.

DPMs as models for real-world
systems

In general, a DPM can be considered as a single-threaded computer that can command
an “army of arithmetic units”. A DPM has access to a possibly infinite number of agents
that can execute the same instruction given by the single-threaded central machine.
The performed tasks are not real Turing-complete programs but an a-priory fixed num-
ber of atomic operations. The agents can operate on different data elements. (SIMD)

In this sense, considering DPMs as a large collection of parallel processors (MIMD) is
wrong, because the agents are not able to perform their computations based on their
program flow/instruction stream.

In this chapter, we will introduce several real-world “computers” that can be modeled
via our mathematical DPM model.

41. DPMs with finite domains D as parallel computers

In our definitions, there are very simple parameters to regulate the strength of DPMs:
The allowed domains D and the ring R. Let us assume that D contains finite domains
only and R can be meaningfully represented on a conventional computer (possible at
the cost of approximation of real arithmetic through floating point arithmetic). In this
case, the DPM can be computed on a conventional computer and it is straight-forward
to accelerate it by (finite) parallelization.

Every register, that has now a finite set as domain, can be stored on the computer as
an array. The compute-everywhere-as loops, to compute the contents of such registers,
are natural candidates for a parallelization on many different architectures because
the program that is evaluated on them is the same for each data point and there is no
communication between the different threads. Herlihy and Shavit (2011) use the term

49

Chapter 4. DPMs as models for real-world systems

“embarrassingly parallel” for such expressions.

Such DPMs with finite domains can be considered as instances of the PRAM (Paral-
lel Random Access Machine) model (Casanova et al, 2008). The PRAM model has a
shared central memory that can be accessed by various parallel units (PU), which exe-
cute synchronously the same algorithm. More precisely, such DPMs almost reflect the
PRAM model with CREW (Concurrent Read Exclusive Write): During a given step of an
algorithm, arbitrarily many PUs can read the value of a cell simultaneously while at
most one PU can write a value to a cell. The PRAM model is built as well on various
simplifying assumptions: As it is the case with DPMs, the cost of data communication
is ignored, and any memory location can be accessed in unit time. However, its algo-
rithms are closer to a physical realization, and the runtime complexity of algorithms
in the PRAM gives a vague approximation of the asymptotic running time of real-world
parallel computers.

Let p the number of available parallel processors. If p > max{ID| | D € D}, then
all parallel computations can be made concurrently. The running time of the DPM
coincides with the running time of the PRAM.

4.2. A single-threaded computer with access to a GPU

Our DPM model also reflects a computer that has access to the fragment shader based
GPU architecture. In Part Il of the work we will extensively discuss how certain DPMs
with two-dimensional domains can be realized through programs utilizing the fragment
shader of the GPU. So we will give only a short overview here.

Shaders can be described as little programs which the GPU can execute massively
in parallel. The program is the same for each data point and, in general, these shader
programs are not Turing complete. A register with a two-dimensional domain on a DPM
can be considered as the idealization of a texture that is stored on the GPU'. A DPM
computation that assigns values to such a register corresponds to the computation of
a fragment shader. The operations and branching of a DPM correspond to the current
program state of the CPU.

The programmable shaders of a GPU are not limited for the graphics output of a
computer. Programmable shaders can be used for general-purpose computations on
the GPU (GPGPU). A shader can be used when the execution of the same program at an
independent set of data points is required. Often numerical simulations can be built
on such a computational scheme.

"Technically, four such R-valued registers give rise to an RGBA-Texture where each channel of red, green,
blue and alpha is represented via one register.

50

4.3. Optical phenomena for parallel computation

DPMs idealize GPUs in three decisive points:

- As the computations on a fragment shader on the GPU run in parallel, and we
counted a DPM operation that modifies a register with a non-trivial domain as a
single step, the running time of our DPM model corresponds to the running time
of an idealized GPU that has a possible infinitely large number of parallel units.

- ADPM can be very powerfulifitis specified to allow computations on the domains
such as R or R? instead on a finite set of pixels. DPMs assume that the size
of an image can be arbitrary and that the textures are infinitely fine sampled.
However, this idealization reflects attempts to use higher resolutions and can be
considered as a continuous limit of these endeavors.

- DPMs enable real computations instead of floating point computations. DPMs
are more like mathematical machines. However, when numerical algorithms are
developed often thinking of an idealized model is the first step before transferring
an algorithm to a physical computer.

However, studying DPMs in this context still can be justified. To understand possible
applications of GPUs, DPMs provide not only tools but also an alternative way of think-
ing. The technical obstacles are abstracted away, and in the first phase of designing an
algorithm that is suitable for a GPU, this can be helpful. An ideal algorithm on an ideal
machine gives rise to an approximation algorithm on physical devices.

A philosophy of the same kind is applied to study, for instance, a numerical algorithm
such as Newton's method. In the first step consists of the assumption that all the
computations are precise. A theory of the speed of convergence in mathematical rigor
is developed based on the assumption of real arithmetic. In a later step, the method is
implemented on a machine with floating-point arithmetic. Tools such as the condition
number will estimate the deviation from the idealized algorithm and the implemented
algorithm.

4.3. Optical phenomena for parallel computation

Can optical phenomena be utilized to perform parallel computations? A single patch
of an image could represent a single thread and local properties, for instance, having
photons or ink in place or some local chemical state, could encode data associated
to that thread. In this section, we will give two examples of “optical computers” and
model their computation through DPMs.

51

Chapter 4. DPMs as models for real-world systems

A strength of the DPMs comes from the ability to perform computations on an in-
finitely fine resolution. Can this a concept transferred to the physical real-world? There
are physical limitations in optical computing such as the Lateral resolution or the infor-
mation density making too close objects indistinguishable (Aaronson, 2005). However,
physical models can approximate DPM algorithms and might be useful in the commu-
nication of mathematics, with the same justification as “images” of fractals, having a
limited resolution and therefore different from a mathematical fractal, serve their pur-
pose in the communication of mathematics. In education and communication, showing
the idea of a concept is often more valuable than the demonstration of a technically
precise, but non-observable, instance.

In the following we give two examples of such “optical computers” that can be used
in education and entertainment (“edutainment”). Mathematical ideas can be demon-
strated by using these “optical computers”.

4.3.1. Computing by copying onto transparencies

Head (2009) solves the NP-complete boolean satisfiability problem (SAT) problem in
linear time by copying? onto transparent plastic sheets (Of course, the copying machine
and the sheets are mathematically idealized). In the following, we want to establish a
DPM that performs equivalent operations.

The only operations that are used are copying on transparencies, aligning and over-
laying the produced sheets on the photocopier, using negative photocopies and mask-
ing some areas of a transparent plastic sheet before copying. A black opaque box
printed on a transparency indicates the truth value True and a transparent area indi-
cates the truth value False. The logical operation OR can be “implemented” by overlay-
ing and copying several transparencies with such boxes. Negation can be modeled by
producing negative xerorx copies on transparent plastic sheets. With negation and the
logical OR, de Morgan’s laws allow for the evaluation of arbitrary boolean formula. If
these operations are applied to transparent plastic sheets with several transparent or
opaque boxes, the operations can be considered to be carried out in in parallel.

Given n variables, Head (2009) first generates a truth-table containing 2" rows by
making n copies. (Here a physical limitation is that a very high resolution of the copying
machine is required if n is large.). The truth table and its negative is then duplicated
linearly often in the length of the SAT expression. By overlaying these transparencies
according to the formula, the values of each of the clauses for each row of the truth
table can be evaluated. If the values of each of the clauses for each row are negated

2also known as xeroxing.

52

4.3. Optical phenomena for parallel computation

Algorithm 13: A DPM implementation of “Parallel computing by xeroxing on trans-
parencies” (Head, 2009) solving SAT in polynomial time
Input: A Boolean formula ¥ with n variables, m clauses each containing k
clauses
Output: 1iff ¥ is satisfiable. Otherwise 0
// Generate the nx2" truth table containing 2" rows.
table<—o0:[2-nl x[2"] - F, // © is True, 1 is False
2 fork=0tondo

N

// duplicate the entire generated table below with one
masked column
3 compute table[x, y], table: [2- n] x [2""] — F, everywhere as
4 if y < 2F then
5 ‘ return table[x, y]
6 if x = k then
‘ return1// mask one column
8 else
9 t return table[x,y - 2" // aligned copy
// generate a table with negated values right of the truth
table
10 compute table[x,y] table : [2 - n] x [2"] — F, everywhere as
7 if x < nthen
12 ‘ return table[x, y]
13 else

1% t return 1-table[x - n,y]

// The evaluation of ¢ for each row of the truth table
15 evaluations «— 1:[2"] - F, // o is False, 1 is True
16 for each clause c in 1 do
17 cval <1:[2"1 - R// o is True, 1 is False
18 for each literal [(l = xm or | = =Xm-n) in c do
// overlay cval with column m of the truth table
19 compute cvally], cval : [2"] — F, everywhere as
20 t return cvally] - table[m, y]

21 compute evaluations|y], evaluations : [2"] — F, everywhere as
2 t return evaluations[y] - (1 - cvally])

// is there any row of evaluations containing only True (1)?
23 result < evaluations
24, for k=0tondo
25 compute result[y], result : [2"] — F, everywhere as
26 return 1- (1 - resultly]) - (1 - resultly + 2k]) >3
L // =1 < resultly] = 1 v resultly + 2k] = 1

27 return result[o];

Chapter 4. DPMs as models for real-world systems

again and printed on transparencies, the evaluation of the entire formula can be done
again by aligning these transparencies. If a row remains transparent (this corresponds
to each clause having the Boolean value True), this row in the truth table satisfies the
formula.

All the used operations can be modeled via DPM operations over the domain R2.
Transparency (False) can be encoded as 1 and absorbing material (True) as o. This un-
usual assignment carries the OR operation by overlaying the transparent plastic sheets
over to multiplication on DPMs. Each produced transparency can be considered as a
register on the DPM. The process of photocopying corresponds to the re-evaluation of
a register. Offsetting a sheet on the copier corresponds to accessing a register at an off-
set coordinate. If several slides are aligned on top of each other, this can be modeled
through accessing other registers at a shifted position and multiplying the results.

We give in Algorithm 13 a translation for a DPM of Head (2009)’s Algorithm designed
for photocopiers. For simplicity, we do not use idealized sheets, which could be mod-
eled as with D = [0,w] x [0, h], as a domain and boxes of a tiny precomputed size to
encode the values of Boolean variables. Instead, we will use the domains that are finite
subsets of Z x Z which makes it easier to access a box at a given coordinate. However,
a more close translation of the Algorithm would be possible on a DPM. Furthermore,
we will use pseudo-code for reading and interpreting the Boolean formula and avoid
the technical process of encoding the Boolean formula (Nethertheless, we could read
and store the formula, for instance, in a register having a subset of Z x Z as domain).

The DPM algorithm only used offsets (positioning the sheets), 1f (masking and copy-
ing more sheets next to each other), and the operations - (overlaying two transparent
sheets) and negation (inversion, which is assumed to be supported by the copier). The
asymptotic running time of the DPM is equivalent to the asymptotic number of opera-
tions that a user and a copying machine has to perform. A constant time for each copy
operation is assumed.

4.3.2. Analog feedback loops

An impressive “optical computer” can be built by pointing a camera at a screen that
displays the image that the camera records. After some time, this system will render a
tunnel: An image is rendered that shows a screen that displays a screen that displays
a screen, and so on. We will call this system a video feedback loop.

Let us assume for the time being that both the screen and the camera have infinite
resolution and that we can further put some objects such as mirrors, lenses between
the camera and the screen that precisely perform some mathematical deformations.
Several DPM algorithms over a rectangular subdomain of R? =~ C can be simulated

54

4.3. Optical phenomena for parallel computation

analogously with such a feedback loop. More precisely, consider programs of the form
of Algorithm 14:
Algorithm 14: A DPM scheme representing analog feedback loops for an 0O(1)-
computable function f
Input: An initial image &
Output: A sequence of images generated by the feedback loop
1 while true do
compute £[x], € : R? — [0, 113 everywhere as

t return f(x, €)
display ¢

N

w

&~

If f can be realized optically through a physical setting, then a video feedback loop
can compute the program. An example would be to construct an f that creates the
overlay of three versions of £ that each is scaled to half its size. For instance

f(x,€) = €lox + 32™] + ¢lox + e32™] + ¢lox + €32™] x e C.

In theory, such a system can be realized by semi-transparent mirrors or by replacing
the screen with three idealized beamers that project the captured image three times
partially overlayed and scaled to half its size. The described system models an iterated
function system and obtain images of the Sierpinski triangle as limit. Note that the
scheme of Algorithm 14 can be very powerful depending on the chosen f. For instance,
the fast-iteration algorithm presented in Algorithm 11 or the simulation of a cellular
automaton as in Algorithm 5 can be considered as instances of this scheme.

Realization of analog feedback loops

We have built up a similar system for a demonstration at the Open Doors Day at Tech-
nical University of Munich in 20163. The primary purpose of this project was the com-
munication of mathematics in a playful way.

In order to simulate the results of using physical obstacles such as systems of mir-
rors, lenses etc. between the camera and the screen, one could simply describe the
induced optical effects through mathematical transformations. These transformations
can be computed on the GPU using CindyGL before displaying the recorded image on
the screen (for details on CindyGL see Chapter 7).

3The programs and a demonstration video in Applet t>5. In order to run these examples, a webcam
that points to the screen is required. This can be the combination of an external screen and an
internal webcam, or a USB-connected camera or a smartphone as a webcam together with an app like
DroidCam. Good results are obtained if all automatic camera adjustments are disabled. On Linux, this
can be done with guvcview.

55

https://aaron.montag.info/dissertation/5

Chapter 4. DPMs as models for real-world systems

-

]

‘- -
o
(.2

%

i

P ' "a' ,'- l‘,
i "ﬁfﬁi

]
R 9
9

P
o

X

=~ gy

Figure 41.: IFS-Fractals rendered through a camera that points to a screen that multiple
overlaid copies of the recorded image: (a) A two-generator IFS, (b) Sierpin-
ski's triangle obtained by compositing three copies by itself, (c) Barnsleys
farn generated through 4 deformed overlays recordings.

Recording a physical screen induces a perspective deformation. Instead of setting
up a fine-adjusted physical system that would simulate various feedback loops, we ini-
tialized a non-calibrated system by showing four points on the screen and measured
the recorded image of those four points. These four pairs of points define a unique
projective transformation that has been used for a geometric calibration: Before dis-
playing the recorded image on the screen, the inverse projection can be applied on the
GPU.

This procedure resulted in the advantage that switching between several optical feed-
back loops could be done very fast and visitors could step between the camera and the
screen and therefore interact with the entire system. Several IFS have been realized,
such as spirals, the Sierpinski triangle and the Barnsley farn (see Figure 41).

Also, the Julia set could be realized by computing f(z) = z? (see Figure 4.2a).

An elegance of using a screen that displays at position z the color of the recorded
position at z2 (z € C. de Smit et al. (2012) coined the term the “quadratic camera”) is
that this system is relatively prone to errors and does not require many adjustments
in the relative position of screen and camera. No “geometric calibration” as described
about is required to obtain meaningful images in such a feedback loop.

Let us assume that the camera “sees” at position z € C the pixel with coordinate

diz)=az+b

of the screen, where a,b € C,a # 0. This corresponds to a similarity transformation.
We set c:= a- b. The entire system can be described by a function that describes from

56

4.3. Optical phenomena for parallel computation

Figure 4.2.: Fractals rendered through a camera that points to a screen that shows a
conformal deformation of the recorded image: (a) The Julia via a “quadratic
camera”, (b) Newton fractals (with hand) via the deformation of a single New-
ton step on a polynomial with three roots. The roots have been highlighted
by overlaying a red, green and blue circle at its position.

which position of the screen the color of a “pixel” with coordinate z € C is obtained. In
this case the function can be described as follows:

do(z— 7%)=(z— az® +b)
=(Z'—>é)o(z.—>22+ab)o(2n—>az)=¢_1o(szz+C)o¢.

The feedback loop therefore is conjugated to the quadratic Julia map z — z? + c via the
homeomorphism ¢(2) = az.

As an example of an outstanding application of this kind, the system can also real-
ize Newton's iteration. For this context the aforementioned “projective calibration” is
essential. Let p : C — C be a polynomial with derivative p’. If we set f(z, &) = £[z - 5,((22))]
in Algorithm 14, then a step of iteration of the analog feedback loop corresponds a
parallel (backward) Newton iteration on the entire screen. After some time, all points
in the basin of attraction of the same root of the polynomial will be displayed with
the same color. If the roots are colored artificially (for instance by putting physically
colored objects in front of them at the corresponding position at the screen) then the
entire basin will get this color after some time. The Newton fractal can be rendered
through an analog feedback loop.

Also, the cellular automaton of the Game of Life has been modeled through an analog
feedback loop.

After the Open Doors Day, the concept has been demonstrated to several school
classes. It turned out to be a good start to point the camera to an image that is already

57

Chapter 4. DPMs as models for real-world systems

familiar to the audience, for instance, the audience itself. The live deformation that
is applied to the recorded image then immediately becomes clear. The moment the
camera is pointed at the screen and the feedback loop is enabled, the audience is cog-
nitively challenged. This might be a good time to explain the underlying mathematical
structures.

58

Chapter 5.

First steps in computability and
complexity theory of DPMs

In the first part of this Chapter, we will show what can be principally computed on
a DPM. We will compare DPMs with other computational models in terms of the set
of their computable functions. It will turn out, that the set of computable functions
of DPMs equals to the set of computable functions of uniform BSS machines (Blum
et al,, 2012), provided that representatives of one model can understand the input and
output of the other model. However, the running times might be enhanced with DPMs
compared to BSS machines. The limits of DPMs thus are to be found in their run-time-
complexity. In the second part of this Chapter, we take the first steps in investigating
how the available domains of a DPM affect the running time.

5.. Relations of DPMs to other computational models

Since the computational models have their own, often very elaborate, definition that
tends to appear differently in different sources, we will avoid reformulating one partic-
ular definition and omit endeavors to formulate lengthy technical proofs reflecting one
exact, but arbitrarily chosen, definition. Specific models of computations have certain
computational capabilities that are independent of their precise definition and specify
algorithms in clearly readable pseudo-code.

We believe that this approach provides a distraction-free understanding of the state-
ments and will not cause any confusions. We assume that the reader of this Section
is familiar with basic concepts of Turing machines (Hopcroft, 2008) and uniform BSS
machines (Blum et al,, 2012). The computational ability of the latter can be thought of
as a conventional computer performing computations over arbitrary rings.

59

Chapter 5. First steps in computability and complexity theory of DPMs

5.1.4. Simulation and acceleration of BSS machines and Turing machines
through DPMs

In this section, we present a DPM that can simulate every uniform BSS machine.

We will give an informal description of uniform BSS machines. For an exact (but much
more extensive) definition, we refer to (Blum et al,, 2012). For a given ring R, a uniform
BSS machine can store elements of R on a bi-infinite tape. During the “execution” of
the BSS machine, this tape will store only finite (but unbounded) sequences of R. At
all the other positions, the tape will store 0 € R. BSS machines can be considered
as a generalization of Turing machines. If R is chosen as Zj,, then the definition of a
uniform BSS machine is equivalent to the definition of a Turing Machine (Blum et al.,
2012). Thus, if we show that any BSS machine can be simulated with a DPM, we have
also shown that we can simulate Turing Machines with DPMs.

Similar to a DPM, the program flow of a uniform BSS machine is described as a finite
connected directed graph consisting of input, branch, computation, output and shift
nodes. All nodes n, except the output and branch nodes, have a unique next node (3y.
The branch nodes have two next nodes [3,*7 and Gy, out of which during the computation
one is chosen as next node based on an associated R-entry on the tape.

An inclusion map from the space of all finite R sequences to the tape is associated
with the input node. After initialization of the machine, the tape is filled with the inclu-
sion map applied to the input. The output nodes have maps associated that take finite
subsequences of the tape.

The computation nodes alter one R-entry on the tape with a fixed position through
a polynomial function that has other R-entries with fixed position as input. If Ris a
field, this function can also be rational. The shift nodes either shift the entire tape to
the left or to the right. They change the positions of all entries simultaneously.

The computation of a BSS machine can be simulated though a DPM over the domains
D = {%,Z} as in Algorithm 15; The DPMs simulates “tape” as a function 7 : Z — R. For
simplicity, the simulating DPM reads a function xp : Z — R representing the tape after
processing input and outputs a function 7 : Z — R describing the tape upon the
termination of the BSS machine.

5..2. Acceleration of finite-dimensional BSS machines through DPMs

We want to show that every finite-dimensional BSS machine over R can be accelerated
using a DPM with a sufficiently large parallel domain over the same ring R.

A finite-dimensional BSS machine can be considered as a uniform BSS machine with-
out shift nodes. Instead of a bi-infinite tape, it will have only a finite-dimensional state

60

5.1. Relations of DPMs to other computational models

Algorithm 15: A DPM with D = {«, Z} over the ring Z x R that simulates every BSS
machine over the ring R
Input: A specification of a BSS machine M over the ring R according to (Blum
et al, 2012), the tape-state xo : Z — R of the BSS machine after reading
finite-length input
Output: The tape state at termination of M with the given.
T« Xo // Copy the input to the tape 7:Z—R
M« Bn, // The unique node after the input node

-

N

3 while n is not an output node do
4 | if misabranch node based on 7[iy] then
5 if 7lin] =(>)othen // if R is ordered, then > is used.
6 | n— B
7 else
: By
9 else
10 if n computes tlal < g(7lxq],. .., Tlxn]) with g : R" — R polynomial (or
rational if R is a field) then
1 compute 7[x], 7 : Z — R everywhere as
12 if x = a then return g(t[xq], ..., 7[xn])
13 L else return 7[x]
11 else if n is a shift node then
15 compute 7[x], 7 : Z — R everywhere as
16 if n shifts T left then return 7[x + 1]
17 L else if n shifts T right then return 7[x - 1]
18 | N Bn
19 return T

61

Chapter 5. First steps in computability and complexity theory of DPMs

space R, We call such a machine a k-dimensional BSS machine. According to Blum et al.
(2012), for every uniform uniform BSS machine with fixed size of input and bounded run-
ning time, there exists a finite-dimensional BSS machine computing the same function
with the same time effort as the uniform BSS machine. Alternatively, finite-dimensional
BSS machines can be regarded as DPMs with access only to the trivial domain %, as we
have already proven in Remark 5.

The following Lemma shows a straightforward method for exponentially accelerating
these machines by utilizing the fast-iteration approach of Algorithm 11.

Lemma 29. If M is a k-dimensional BSS machine over R with m nodes, |R| > m, state
space R and running time ©(t(n)) for a finite-dimensional input containing a number
n e N, then there is a R-DPM with D = {x,[m] x RR} that can simulate M in O(log t(n)).

Proof. Without loss of generality, let R be a ring that contains [m] = {1,..., m} as subset.
If R does not contain [m] as subset, then because of |[R| > m an inclusion [m] — R can
be considered to identify elements of R with the corresponding numbers.

We modify the k-dimensional BSS machine in such a way that any node is indexed
through an integer of [m] and 1 is the starting node.

The modified BSS machine has an associated computing endomorphism

H:[m] x RF — [m] x RF,
similar to the one we defined in Definition 7.

H(n, x) = (By(x), gn(x))

means that Bp(x) € [m] is the next node and gn(x) € RF the register value after one
computational step of a running BSS in the state n e [n] and the value x € R stored in
its registers. For every termination node 7 € 7 = [m] and x € Rf we set H(r,x) = (1,X)
as a fixed point.

The function H is computable on a DPM in parallel. We define M as the DPM that
implements fast-iteration approach of Algorithm 11 for the map H : [m] x RR — [m] x RR.

Let xo € R¥ be the state of the registers after reading the input. Using Algorithm 11, we
can compute in [< [log, t(n)] computational steps of M the iterates H, H2, H%,...until
H(zl)(no,xo) = (T, Xeng) for some termination node 7 € 7. We set M to output the value
based on xgpq € RR. Then M simulates the BSS machine in O(logt(n)) and produces the
same output. O

54.3. Simulation of DPMs through uniform BSS machines

The reverse statement of the previous Section is valid as well, and we will outline a
proof here. This implies the equality of the computational strengths of DPMs and BSS.

62

5.1. Relations of DPMs to other computational models

We will also show that computational strength does not increase with the use of DPMs
compared to uniform BSS machines.

For a comparison of the computational strength, it is crucial that a machine of one
model can understand the input and output of the machine to be simulated of the
other model. A DPM can read entire functions as input, whereas an universal BSS ma-
chine can take only a vector of ring elements of finite length as input. Moreover, the
output of a DPM can be an entire function, whereas a BSS machine can produce only a
finite-length vector of ring elements as output.

This restriction to finite input and output limits BSS machines compared to DPMs.
However, providing the BSS-machine with an oracle that allows for reading the input of
the DPM at an arbitrary coordinate avoids this technical hurdle. There is a BSS machine
that can simulate any DPM over the same ring, provided the BSS-machine has access
to such an oracle. The BSS machine does not produce the same output as the DPM
machine, which might be an entire function. Instead, the BSS machine computes the
output of the DPM point-wise. i.e., the BSS machine takes a register and a coordinate as
input and will calculate the value of the register of the DPM at the given coordinate after
the DPM has terminated with the given input. With this, a BSS can compute essentially
the same as a DPM. If the DPMs are restricted to vectors of finite length as inputs and
outputs, then a BSS avoiding the oracle simulates the same behavior as the DPM by
successively calculating the entire output and reading the input directly.

In Algorithm 16, a simulating BSS machine is presented in pseudo-code, because a
technical formalization close to the exact definition would go beyond the scope of this
thesis™. We silently assumed that R is ordered. If Ris not ordered, then all the branching
conditions < and > have to be replaced by = and # respectively.

Algorithm 16 simulates the program flow of the DPM M. All potentially occurring
types of nodes (input, output, branch and computation) are taken into consideration.
The algorithm terminates if and only if M terminates.

The stack data structure of cstack and its operations are to be understood as in
Cormen et al. (2009). It contains a history of evaluated commands. These commands
are the representations of the operations of Definition 4 through a finite number of
ring elements.

The function 4 is crucial for this algorithm. Given the current history of performed
computations, the register id, and coordinate, it computes the value of the register at
the specified coordinate. The recursive function 1 terminates because the finite size

"In principle, it should be possible to transform the pseudo code into the exact specification of a BSS
machine, just as it is also possible to specify Turing machines with high-level pseudo-code (Hopcroft,
2008).

63

Chapter 5. First steps in computability and complexity theory of DPMs

Algorithm 16: A BSS machine that simulates every DPM

N

w

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28

o4

Input: A specification of a DPM M according to Definitions 2 and 4, an oracle

I(xo) : UQ:1(I?, Dr) — R, which indicates the states of the DPM after the
input Xo € Iy has been given and the coordinate (k, c), where ke {1,...,n}
and c € Dy, specifying the output.

Output: The value hy(c) = pu(xo)(k, c), the output of M at position (k, ¢) given the

input Xo.

M« Bn, // The unique node after the input node
initialize cstack as an empty stack
while n is not an output node do

if mis a branch node then
v < yY(cstack,in, =) // 9 returns the value hi, €R (Line 11)
if v>othen n <3, else n @G,
lse if n is a computation node then
cstack.push(finite representation of g,) // as in Definition 4
Mm < By // the unique next node of 7

1)

return ¢(cstack,k,c) // the value hy(c)
Function v(cstack, k, x)

Input: The history cstack of previously performed computations, the index k
of a register, the coordinate x within the given register.
Output: The value hy(x) after the computations specified in cstack
if cstack.empty() then // No commands have been evaluated
return I(xo)(k,x) // read from the input oracle
else
lastop « cstack.top()
cstack.pop() // remove last operation from cstack
if lastop is of kind hj, «— a with a € R then
\ return o
else if lastop is of kind hy, < mm then
‘ compute mm(x) directly and return result
else if lastop is of kind h, < h; © h; with © € {+ - - =} then
‘ return 2p(cstack, i, x) ® (cstack, j, x)
else if lastop is of kind hy, — if(h; > o, h;, h;) then
if y(cstack, [,x) > o then return vy(cstack,i,x) else return
(cstack, j, x)
else if lastop is of kind hy, < h;o(h;,...,h;) then
‘ return y(cstack, j, ((cstack, iy, x), . . ., (cstack, i, x)));
else // h, has not been modified by lastop
t return 2(cstack, k, x)

5.1. Relations of DPMs to other computational models

of cstack decreases in Line 16 before every potential recursive call. Induction on the
size of cstack yields that (cstack, h, k) indeed returns the value hy(x), where hy, is the
k-th register of the DPM that has previously executed all the commands in cstack.

Let T(R) be the maximum number of operations required by the BSS machine imple-
menting Algorithm 16 to simulate k steps of any DPM accessing domains of dimension
< d. Simulating k steps could be considered as simulating k iterations of the loop in
Line 3. All operations aside potential recursive calls of 4 within this loop require a
constant number of operations. The major contributions to T(k) origin from calling .
The number of recursive self-calls within 1 is bounded and the running time of calling
1 with cstack of length k is less than T(R). In every case the number of self-calls is a
constant number, only in Line 26 it is bounded by the maximal occurring dimension +1.
Thus, up to some constant terms § > 0 and Cy4 > 0, we yield

T(R+1) < C4T(R) + 3§,

which results in T(R) = O(Cf,). In other words, the running time increases in worst case
“only” exponentially when simulating a DPM through a BSS machine. This gives rise to
the following lower bound on running times on DPMs:

Lemma 30. For any d € N it exists a C4 € Rsq such that the running time of any problem
requiring at least 2 (t(n)) operations on a BSS machine requires at least Q (long t(n))
operations on a DPM that has access to domains of dimension < d.

Proof. We choose C4 according to our previous observation. Suppose there was a DPM
with domains with dimensions < d that solves the given problemin o (logcd t(n)). Then
Algorithm 16 could be used to solve the problem using

) (C(ljogcd t(n)) . (tm)logcd Cd> - o (t(n))

operations on a BSS machine by simulating the DPM. This contradicts the lower bound
of the running time of the given problem on a BSS machine. O

Corollary 31. There are decidable problems that are not solvable in polynomial time on
a DPM.

Proof. Take a decidable problem that requires at least doubly exponential time. For
instance, any decision procedure for Presburger arithmetic requires at least doubly
exponential time (Fischer et al,, 1974) in the length of its input. According to Lemma 30,
deciding this problem on a DPM requires at least exponential running time. O

65

Chapter 5. First steps in computability and complexity theory of DPMs

5.2. Domains and complexity

We have seen that any DPM over the ring R with an arbitrary domain can be simulated
on a BSS machine over the ring R, which then can be simulated on a DPM with access
to a domain containing Z. Thus, the set of computable functions is independent of the
allowed set of domains provided that Z < D € D of the DPMs. However, the complexity
of problems, in terms of running time, might change if the allowed domains change.

Here we take first steps in investigating how the available domains of a DPM affect
the runningtime. In the definition of the DPM, we did not fix the ring R and the set of the
allowed domains. In this part, we assume that R = R. First we specify, the complexity
classes of functions that can be computed on a DPM over R with a given domain. Note
that it is sufficient to specify only the “largest” domain in D, because this larger domain
can be used to perform computations on smaller domains as well.

Definition 32. Let D = R" for some n € N. We specify

Popm(p) = [f:NxA— B|fis afunction with A = R? B = R! for some k, [e N
that can be computed in polynomial time in one
input parameter n by a R-DPM with the
domains D = {x, D}}.

Oberservation 33. Increasing the size of the available domains does not increase the
asymptotic running time of a problem, because computations on a domain can be
always simulated by performing these operations on a bigger domain. Therefore we
yield:

Popm(x) € Popmr) S Popmre) S - -

An interesting question is whether these subsets are proper.

Afunctionf:NxR — R, that we have already studied in terms of runtime complexity,
is the map pn(x) = x2". Using the degree, we could argue in Lemma 26 that any finite-
dimensional BSS machine over R needs at least linear time to compute this map, while
a DPM machine implementing Algorithm 12 iteratingthe map f : R — R, x — X2, requires
only O(logn) time. As we have argued in Remark 5, finite-dimensional BSS coincide with
DPMs with D = {«}. If we apply these results to the map REALITSQUARE : N x R — R
defined as

2n
REALITSQUARER(X) := pon(X) = X2
we obtain the following corrollary, that states that the first inclusion in Oberservation 33
is proper:

66

5.2. Domains and complexity

Lemma 34.

Popm(x) & Popmr)

Proof. We have REALITSQUARE € Pppy), because REALITSQUARER(X) = pon(x) can be
computed in O(log2") = O(n) on a DPM over the domain R using Algorithm 11 for the
map f : R — R,x — x2. However, computing REALITSQUARE, = p,n on a DPM over the
domains D = {#} or a finite-dimensional BSS machine requires at least exponential
time in n according to Lemma 26, hence REALITSQUARE ¢ Pppy(,)- O

What about the other inclusions in the chain of Oberservation 337

Conjecture 35. For every n € N, the inclusion

Popmrn) & Popmrn):

is proper, i.e, there is a problem that essentially requires n + 1 instead of n dimensions
of the parallel domain on a DPM to be “solved” efficiently.

Unfortunately we can not solve this conjecture, however let us do some considera-
tions.

Let us begin to study the problem for n = 1, i.e. which of Popm@m) & Popm(r2) OF
Popmr) = Popm(rz) Nolds? A strategy to prove Pppoy) & Pppy(re) IS to find a problem
that can be solved in polynomial time on a DPM with R? € D, but cannot be solved in
polynomial time on a DPM with access to the domains D = {*,R}. Candidates are itera-
tions that essentially require a two-dimensional domain to be carried out efficiently.

As a candidate, let us consider the problem of computing iterates of the first non-
trivial or linear map over C ~ R?, the complex squaring function z — z2. The function
decoding its 2/-th iterate is the following.

COMPLEXITSQUARE: N x C —- C

n
(n,z) — 7

Via the identification C ~ R?, (x,y) — x +i -y, the function COMPLEXITSQUARE, can be
computed on a DPM over the domains D = {x R?} by iterating the complex squaring
function C — C,z — 2% in O(n) using Algorithm 11. Thus,

COMPLEXITSQUARE € PDPM(R2)'

Is COMPLEXITSQUARE a candidate to seperate Pppyg) from Pppyg2)?

67

Chapter 5. First steps in computability and complexity theory of DPMs

Question 36. Does
COMPLEXITSQUARE € Pppy)

hold? l.e, is there an algorithm for DPMs that uses the domains D = {x, R} that takes
neN, xyeRasinput and computes the values Re((x + iy)22) and Im((x + iy)22) in
polynomial time in n?

If the answer to Question 36 is No, then Popm@®) & Popm(r?) is proper and Conjec-
ture 35 holds for n = 1. If the answer is Yes, there is an interesting algorithm that solves
the given problem fast, but still does not answer Conjecture 35.

Unfortunately, it will turn out that the answer is Yes (see the following section). Con-
sequently, an algorithm for computing COMPLEXITSQUARE on a DPM over the domains
D = {%,R} is constructed.

5.2.1. Iterating complex squaring with a DPM with real domain

The aim is to iterate the complex squaring function C — C, z — 7% on a DPM with the
domains D = {x, R} efficiently. More specifically, from the real and imaginary part of z,
the real and imaginary part of 222n is to be computed in polynomial time with a DPM
that has only access to the domains D = {x, R}.

The core idea of the presented algorithm is that complex multiplication can be car-
ried over to essential one-dimensional problems that are independent from each other:
Let 71,7z, € C \ {0}, then

71 71
7475 = . . 7|z
1o (lZ‘Il |Z1|) M
—_—

) 4 a computation on R>o ¢ C

a computationon S' < C
Both multiplications take place on an one-dimensional R-manifold. With ' = C we
denote all complex numbers with the norm 1. Using the commutivity of multiplication,
this idea can be adopted to the following approach for ze C \ {o}:

2n Z 22” 2(7
COMPLEXITSQUAREp(2) = 227 = <> - |z]2
|Z| N~——

a computation on R>o c C
a computationon S' < C

One problem is that the value |z| = |x + iyl = 1/x2 +y? cannot be computed on a
DPM since we did not include 4/ : R0 — Rx¢ in the set of the allowed functions.
However, for this special problem, we can use a trick to avoid this computation: Instead
of squaring z iteratively (2" times), we will square z? iteratively (2" -1 times) and use

68

5.2. Domains and complexity

Figure 51.: Image of the chosen stereographic projection in R? ~ C.

the fact that the norm |22] = |z|%2 = |(x + i - y)|? = x? + y? is computable. In particular, we
compute each of the terms of

n n_
2 22 1

COMPLEXITSQUARER(Z) = 22 = (%)

211

2 2 n
V4 27
= 72 . |22|2
| 22| N
P a computation on Rzo < C

a computation on S"' = C

The real scalar |22|22n_1 = (x? +y2)22n_1 can be computed by iteratingthe map f : R —
R, Xx — x?. A DPM over the domains D = {x, R} using Algorithm 12 can yield the desired
value £2"(1221) in 0(log2" - 1) = 0(n) steps.

Let us tackle the problem to compute iterated squares restricted to S efficiently on
a DPM over the domains D = {x,R}. We will map S to the real line via a “suitable-
choosen” stereographic projection. The complex number 1 € C?> n S' is a fixed point

of the squaring operation. This fixed point is a suitable center for the stereographic
projection onto iR ~ R.

Definition 37. Let R = R u {o0}. We define the stereographic projection with center 1 as
follows (compare Figure 51):

, oo ifx+iy=1
X+iy—
7 Otherwise

69

Chapter 5. First steps in computability and complexity theory of DPMs

o:S" — R is bijective and has the following inverse:

o RS

1 ifr=o0
"7 Eien ifreR

1+r2

Furthermore, let N = 22"~" and sqgi: ST — S x+iy — (x2 —y?) +i(2xy) describing the
complex square function z — z? restricted to S".

We want to compute sqg1 efficiently on a R-DPM and want to reduce the number of
used real parameters. Let us define sqz = 0 0sqs oo " as the complex square function
pulled back through the stereographic projection to R and one expectional point. We
can use this conjugated function to compute sqg1 as follows:

N:

sqei = (07 osqgo0) =0 osqf o

How can we compute sq%3 ‘R — R efficiently?

Evaluation of sqg = 0 o sqsi o o1 gives the following scheme for computation: If
r e {00, 0}, then qu(r) = o0, which corresponds to the fact that 12 = (-1)? = 1. Otherwise,
if re R\ {o}, then

=) = (r2‘1)2"4r2+-4f(f2-1) P
sqp(r) = o(sqsi(o (r)))—a< T j e)_ -

We cannot include oo into the domain of a DPM. So we define

S R —R

r’-1 -
P ifr#o0
0 ifr=0

as a real-part-version of sqp : R — R. Its iterations are efficiently computable in
parallel on a DPM with domain R. At the same time, we can keep track of the points
that eventually became oo during the iteration of sqg. In Algorithm 17, those points
r € R that eventually attain the fixed-point o of sgg will be marked by ISREAL[r] = ©.

Now, we are ready to formulate the algorithm that computes COMPLEXITSQUARER(Z) on
entire R? on a DPM over the domains D = {x,R} in polynomial time (see Algorithm 18).
Therefore, COMPLEXITSQUARE € PDPM(R) and the answer to Question 36 is Yes. The iter-
ated squaring-functions contains a structure that has been exploited.

Iterating a more complicated function on C such as z — z2+c with c e C* is perhaps a
better candidate to separate PopmR) from Pppm(r2)? Let COMPLEXITIULIA - N x CxC—-C

70

5.2. Domains and complexity

be the problem to compute the iterated map

COMPLEXITJULIAR(Z, €) = (5 — &2+ c)2n (2)

Again, COMPLEXITJULIAR(Z, €) can be computed on a DPM with D = {x, R?} in O(n) using
Algorithm 11, thus COMPLEXITSQUARE € Popm(R2):

Question 38. Does
COMPLEXITJULIA € Ppoyr)

hold? If the answer is No, then Popm®) & Popm(r2) is proper.

A vague intuition to trust in an inherent difficulty in iterating z — z? + ¢ comes from
the fact that exist ¢ € C for which the limit-set has non-integral Hausdorff dimension.
Having a non-integral Hausdorff dimension is the essential ingredient in the proof that
the limit set for such ¢ € C cannot be decided by BSS machines Blum et al. (2012).

No proof of this property could be found. However, no evidence of Pppyw) = Pppu(rz2)
could be found. The question whether the inclusion Popm®) = Popm(z2) is proper is
still to be studied. Another interesting question could be whether

If this implication would hold, then the entire tower of complexity classes would
become stationary if two of classes turn out to be equal.

71

Chapter 5. First steps in computability and complexity theory of DPMs

Algorithm 17: Fast iterative squaring of complex numbers on S' with a DPM over

R and D = {, R}

2

s~ W

10

=Y
py

13
14

15
16
17
18

19

20

Input:

(x,y)eS'andneN

n
Output: The real and imaginary part of (x + iy)22 “1in 0(n)
1 compute sqglr], sqgr : R — R everywhere as
t if r = 0 then return o else return rz—f

compute ISREAL[r], ISREAL : R — {0, 1} everywhere as
L if r = 0 then return o else return 1

g < SORr
repeat n times

// g

compute ISREAL[r], ISREAL : R — {0, 1} everywhere as
t if ISREAL[r] A 1SREAL[g[glsqr[r]]]] then return 1 else return o

g<—gogosqr

// After k iterations, g stores the function squ -

3

now stores the function sgf

if x =1then
‘ return (1,0) // Then y=0 and (x+iy)N =1

else

re5// r=olxy)
if ISREAL[r] then

// return o7'(sqf(r))
r—glrl

r’—1
1412
2r
y <~ 1+r2

return(x, y)

X «—

else

// The fixed-point o occured while iterating sqgm
// We return o (o) =1
return (1,0)

72

5.2. Domains and complexity

Algorithm 18: An algorithm computing COMPLEXITSQUARE in O(n) on a DPM over
the domains D = {, R}
Input: (x,y) € R? that encode the complex numberz=x+iyand ne N
Output: The real and imaginary part ofzfn
1 Qe x2+y?
2 if a = 0then
3 L return (0,0) // o -0

2

4 X—x2-y
5 Y« 2xy
// %+iy=7> and |Z%| =«

n_
22

6 phase < compute (% + i%) " according to Algorithm 17

n_
7 horm <« compute o2 according to Algorithm 12

8 return (phase, - norm, phase, - norm)

73

Part Il.

Implementation: Pixel shaders as
special DPMs

75

Chapter 6.

Approximating DPM algorithms on a
GPU

As described in Section 4.2, a DPM with D = {,D}, and D < R? bounded, can be con-
sidered as an idealized computer with the ability to run GPU shader programs. In fact,
using only a bounded domain D — R? poses no theoretical restriction compared to a
DPM with D = {x,R?}. Any DPM algorithm requiring D = {*,IR?}, i.e. utilizing the entire
domain R?, can be reduced to an equivalent DPM with D = {x,[-1,1]?}, using only a
domain with a bounded extent. Instead of storing a function f : R> — R, two functions
g1, 92 : [-1,1]?> — R could be stored, where g4 := fl[_m]g stores the local part of f and

0y y) = | T i) T ey? #0
2N, -
0 otherwise

stores the remote part of f. The original f : R> — R can be reconstructed from g4, 9> :
[-1,1]> — R via rational functions and branching:

g1(x,y) if x2+y? <1
fxy) = .y .
9252, xzyz) - Otherwise

These assignments can be computed in any involved {parallel-statement). So, without
loss of generality, we can assume that D = {x,[-1,1]°}.

If D = {, D} with bounded D = R?, registers on the DPM storing a function h: D — RR
will correspond to textures stored on the GPU. Any compute everywhere-statement can
be translated into a shader program. The simplicity of {parallel-statement) suits us at
this point, as shader programs are generally not Turing complete. The running time
of the execution of every (parallel-statement) does not depend on the value of the
coordinates.

77

Chapter 6. Approximating DPM algorithms on a GPU

However, DPMs idealize computers equipped with GPUs in the following ways. GPUs
have

Floating-point arithmetic. A computer and a GPU cannot represent arbitrary real num-

bers. However, floating-point arithmetic can be used to approximate the real
arithmetic of a DPM.

Textures. Technically, a two-dimensional texture consists of a finite number of pixels

that are aligned in a rectangular shape. Each pixel stores four values: red, green,
blue, and alpha. It is most common to store each of these values as an 8-bit inte-
ger between 0 and 255. However, modern GPUs also support 32-bit floating-point
values for each of the values, which is sufficient for most of our purposes. We
want to encode functions f : D — R with bounded D = R? of our idealized model
as floating-point textures. This is not possible without a loss of information. The
process of function encoding has two steps:

Rasterization in the domain. We approximate a function f : D — R by a finitely
sampled function f : D — Rwhere D¢ = eZ2~D and f = f|pe. Values f(x) with
X ¢ D are estimated by resampling f. Smaller values of € > 0 correspond
to higher resolutions. Not every DPM algorithm can be approximated with
textures of a sufficiently high resolution, but several algorithms can. We will
discuss this issue in the following section Section 6.2.

Use floating-point values in the co-domain. Instead of storing real numbers for
each pixel, floating-point values that approximate the real numbers are used.

Only finite parallelism A GPU can run only a finite number of computations concur-

78

rently. In the DPM model, we assumed the possibility of infinite parallelism. After
rasterization, parallelism is only required for finite domains D¢; It suffices to run
one thread for each data point of the textures. Therefore only a finite number of
concurrent computations is required. The time needed by the computer with the
GPU depends on the number of available parallel units. Unless the number of
the execution units is not higher than the number of pixels of the used textures,
the running time depends on the number of the execution units as well. We will
assume that the ratio of the maximal number of pixels and the number of execu-
tion units is sufficiently small (both are constant numbers). Running a compute
everywhere statement then can be considered as a constant time operation. If
further time delays in memory access and communication between CPU and GPU
are ignored, then the asymptotic running time of the DPM vaguely reflects the
time of a real computer with a GPU that has a sufficient number of parallel units.

6.1. Multi-linear interpolation

We will analyze the approximation through resampling/interpolation in the rest of
this chapter. Then in Chapter 7, we will demonstrate a concept, how such programs
utilizing the shader based technology of the GPU can be created via scripting. This
concept makes it possible to realize a subset of DPM algorithms on the GPU very quickly.
We have created a sample implementation CindyGL, which will also be demonstrated
in Section 7.3. In the last part of the thesis (Part I11), we will utilize CindyGL to obtain
several applets that run on the GPU from various DPM algorithms.

6.1. Multi-linear interpolation

In this section, we will introduce multilinear interpolation of an arbitrary dimension
from a functional point of view. In the two-dimensional case, the bilinear interpolation
is built in within standard shader models for GPUs.

We will prove the property that Lipschitz continuity on the samples is carried over to
the resampled function on the entire domain. These properties are needed in proofs of
the following section. No other occurrences in the literature of a proof of the preserva-
tion of Lipschitz continuity through multilinear interpolation are known to the author,
so we give an exact definition and proof here.

Definition 40. Let f : Z® — R be a discrete function. In the following, we define a
multilinear resampling operator ay, : (ZF — R) — (RF — R) recursively.

For k =1, we define o : (Z > R) - (R — R) through its evaluation at f : Z — R and
x € R as follows, where x = |x| + fract(x):

A

aq(F)(x) = ar(F)(|x] + fract(x)) = (1 - fract(x)) - f(|x|) + fract(x) - f(|x] + 1)

For k> 1, we define ay, : (Zf — R) — (R® — R) recursively. Given f : ZF — R, % e RF"
and x € R we set:

ak(]?)(;(, X) = a1(fy<)(X)

where f; - 7 — R is obtained by resampling each of the “slices” f o is : ZFT — R
with is : ZF1 — ZR x — (x,s) recursively:

f;(S) = Ol;?_q(f o is)(X).

By induction on R, it can be directly seen that

~ ~

- a(f) extends the domain of f, i.e. ag(f)l 4 = f

79

Chapter 6. Approximating DPM algorithms on a GPU

- The values of a,?(f‘) remain in the same range as the values of f. In particular,

llatePlleo = [1flloo-
- The operator ay, is linear, i.e. ap(Mf + 1g) = Aap(f) + pay(g).

We will now prove through evaluation that Lipschitz-continuity of f : Zf — R is
carried over to ak(f) ‘RF > R and give a bound on the Lipschitz-constant: Lip(a,?(f))
can be bounded by Lip(f) up to a factor depending on the dimension k.

Lemma 41. Let f : Zk — R be Lipschitz. Then also ay(f) : RF — R is Lipschitz. Further-
more,

Lipmax(o‘fe(f)) = Lipmax(f)r
where Lipyax(g) denotes the corresponing Lipschitz-constants with respect to the maxi-
mum-norm of a function g : D — R, i.e. |g(x) = g(y)| < Lipmax(@)lIX = Vllmax for any
x,yeDbc R,

Proof. Since ag(f)l 4 =, clearly Lippax(otr(f)) = Lipmax(f). We will prove the property
Lipmax(@r(F) < Lipmax(f) by induction over k.
Fork=1andf:Z—Randx <y < |x] +1, we have

A

lor (F)(X) = e (F)(y)] = [(Ffract(x) ~ fract(y)) - (F(|x| + 1) = F(xD| < [x = y] - Lipmax(F)

For x < |x] +1 < |y] <y, we have

~

|1 (F)(x) = e (F)(y))|
< laa (P00 = F(x] + DI+ F(x] + 1) = FUy DI+ ey = ea ()]
< Lipmax(F) - [x = (1x] + 1) + Lipmax(F) - [1X] + 1= [y]] * Lipmax(F) - ILy] = I
< L'Dmax(f) x =yl

For arbitrary x,y € R either x = y or by possible swap of x and y, the same relation can
be reduced to the two cases above.
Now let k >1,f:Zk > R and X,y € R and x,y € R. Then

~

| (F)E, %) = (G, = |ea(F)(x) = er(Fp)(y))
< ()00 = o ()0 + o (7)) =)y
< lon(fx =)01 +)00 -)| (62)
The first summand of Equation (6.1) can be bounded by using the induction hypothesis
for k-1 and the fact that f ois is Lipschitz-continious: With this we can bound [|fz ~f7lloo:
(=) = lotna(F 0 15)%) = e 2 i)
< [I% = Flimax - Lipmax(F o is) < [IX = llmax - Lipmax(F)

80

6.1. Multi-linear interpolation

In order to bound the second summand of Equation (6:1), we prove forf;, :Z — R that
Lipmax(fy) < Lipmax(f):

F(51) = F5(52)] = late—q(F 0 i,)(7) = apes (F 0 i5,)F)] = lotgo(f 0is, = f 0 i5,)(F)]

< H]?O iS1 _JACO iSz”oo < Lipmax(]?)|51 —Sy|.

A

With the base case k = 1, it follows that Jou(f)(x) = e (F)(y)| < Lipmax(F)Ix - yI.
Alltogether, Equation (6.1) can be simplified to

0PI, %)~ T < G - F)00l len(Fy)00 -)
< Ifx _ff/HOO + Lipmax(DIX = Y| < Lipmax(F) (1% = Fllmax *+ [x = y)
< Lipmax(f)”()?,x)—()7,)/)||max,

which finishes the proof of Lipmax(@p(f)) = Lipmax(f). Due the equivalence of norms
in finite-dimensional spaces, this also implies that ak(f) Is Lipschitz in the classical
(2-norm) sense with a Lipschitz-constant that equals to the Lipschitz-constant of f up
to a factor depending on the dimension. O

We also want to resample functions f : D — R" where D¢ := ¢ZF ~ D for D < R¥.

Definition 42. For a sampling interval € > 0, we want to define a multilinear resampling
operator of, : (eZk — R) — (R* — R). We utilize that f¢ : eZ® — R can be rescaled to
fe o (x> g-x) : ZF — R and reuse Definition 40 to define o, : (¢Z* — R) — (R* — R)
as follows:
A ()00 = alfe o (x > € - X2

Let D < RF be arbitrary and D¢ := eZR A D. We further define a resampling operator

O‘E,D - (DfF - R) - (D — R) via
af o) = a5,

where f : €Zf — R extends f : D¢ — R. An exact definition of how to extend the domain
is not of importance for the succeeding proofs. A suitable extension that preserves
Lipschitz continuity (adapted from McShane (1934)) is setting

fx) =)QJE{f(V) + Lipmax(DlIx = vlimax} for any x € eZ®.

Then clearly flpe = f and Lipmay(F) = Lipmax(F)-
In the future, we will leave out the indices for the resampling operator and simply
write a : (Df — R) — (D — R), since the used function is deducible from the domains.

For this extended definition, the preservation of Lipschitz continuity still holds:

81

Chapter 6. Approximating DPM algorithms on a GPU

Corollary 43. Let f : D¢ — R be Lipschitz. Then also of 5(f) : D — R is Lipschitz and
from Lemma 41, we can immediately deduce that
. ~ . - . - 1
Lipmax(atk, p()) = LiPmax(@f(F)) = Lipmax(ag(f o (x — ex)) o (x = —x))
1

= g : I—ipmax(]?o (X = 5X)) =

& Lipmax(F) = Lipmax®) = Libmax()

M| =

6.2. Discretization of continuous domains

Let us assume a DPM M over the ring R with arbitrary domains is given. In this section,
we want to define the concept of an approximating DPM M€, which no longer requires
continuous domains. M& will store only sampled functions with sampling interval e > 0
in its registers. e is a parameter that controls the coarseness of the approximation.
Afterwards, we are going to discuss when and how the computation of the original DPM
M can be approximated through a sequence of DPMs (M%), for limp—o €n — O.

Let us first start with the definitions for function sampling and resampling.

Definition 44 (sampling interval, sample points, sampled function, resampling operator).
Let f : D — R with D < RF be a function. For a sampling interval € > 0 we define the
sample points as D¢ := €Z® ~ D and call the discrete map f = flpe the sampled function.
Furthermore, we call the map a: (Df — R) — (D — R) from Definition 42 a resampling
operator.

The Bilinear interpolation is a prominent example of such a resampling operator in
2D. This interpolation method is built in within common shader models for GPUs.
Now we are ready to define the concept of an approximating DPM.

Definition 45 (approximating DPM). Let M be a DPM over the domains D = {Ds,. .., Dn}
over the ring R with D; = R®. For € > 0, we call a machine M¢ with domains D =
{D%,...,D} an e-approximating DPM with resampling functions «; : (Dl.e —R) - (D; —
R) of M if

- The registers of M€ store discrete functions.
- The state space of M€ is

Sp = XAf : Df — R | f discrete function}.

ieln]

- ME® has the same input space Zy; and output space Oy as M.

82

6.2. Discretization of continuous domains

- M€ has the same directed graph as M for its program flow. The associated com-
putation maps are however adopted to the corresponding discrete functions:

- The unique input node of M® has the input map /¢ : Zyy — Sy, of M&, which
is the sampled version of the input map | : Zyy — Sy of M, i.e. [¢ = IleA'

- Each output node n of M with output map O : Syy — Oy induces an output
node n® with the output map 07 = Opoa : Sf — Oy where a : Sf — Sy
is the composition of all resampling functions «; applied to each of the
components of S

- The branch nodes of M are directly transferred to branch nodes of M&.

Each computation node n of M has an associated computation node n and
a map gn : Sy — Sy out of constant, project, copy, add, subtract,
multiply, divide, ifelse, and compose. If the computation node n of
M was different from compose, then the corresponding node n’ of M€ gets
assigned almost the same map g,y : Spy — Sy, which is only restricted to a
potential smaller sampled domain. As in Definition 4, each of these maps is
performed pointwise.

The map compose : Sy — Sy, which can be used by M, has been defined in
Definition 4 as

compose({i,...,i}}j,R) : Sy — Su,h = hlh, < h;o(h;,..., h;)],
where
hjo(/’),'1,...,/’1,'l)IDi1 TR Dil — R,
b o) o hithi, (), hi () if(hiq(x?)r--"hil(xl»eDj.
0 otherwise

The compose-operator should not be directly transferred to M€, because the
domains Df potentially got substantially smaller and most accessed values
might not coincide with a sampled point. Instead of compose, the map

resample,({ir,...,ij}j, k) : Sy — Shy,
h — hlhy, < aj(hj) o(hi,.. -,h,'[)]
is used in M€ for the resampling operator Qj: (Dj'.S - R) - (Dj — R). This

avoids accesses on non-defined parts of the register hj : Df — R; instead

the values are obtained by from a resampled function aj(h]-) :Dj—R

The evaluation of an approximating DPM and the input-output map ¢%, : Zy — Opy is
defined in the same manner as it has been done for common DPMs (see Definition 8).

83

Chapter 6. Approximating DPM algorithms on a GPU

6.3. A convergence theorem for approximating DPMs

It is easy to see whenever there are no nodes n with g, = compose in the program-flow
of a DPM M (which means that even single values are not extracted from a register),
then any approximating DPM performs the same computation as M; the component-
wise operations are only performed on a smaller set. The output, if it is a function, is
just re-sampled.

What about DPM that have nodes computing g, = compose? Note that nodes of this
kind are also needed if a value is just read from a non-trivial register at a given position
(The model was defined in a way that the value f[x] forx : + - Rand f : R — R is
computed via f o x). Does

gleo 5 (%) = pm(x)

for every DPM M and x € Qu hold? Can we approximate every DPM operating on po-
tential continuous domains arbitrary well through an approximating DPM that perform
computations on discrete domains if we chose the sampling width € only sufficiently
small?

The answer is in general negative, as the following example shows. This section aims
to extract reasons that in many cases forbid the convergence of approximating DPMs to
the original DPM. Later in Theorem 54, we will show that the absence of these reasons
is already sufficient to obtain convergence.

Example 46. The following DPM M with D = {x, R} does not fulfill
ey
s“—r>no df(x) = om(x)

for every x € Qu, If M® uses linear interpolation for resampling:

Input: xe R

Output: 1if x? = 2, otherwise 0
1 compute f[x],f : R — R everywhere as
2 L return x?

3 if flx] =2 then return 1 else returno

Let M be an approximating DPM over the domain D = {x,€Z} that uses linear inter-
polation for resampling. Clearly, we have f[x] = x? after execution of Line 2 and finally
obtain ¢u(v/2) = 1. However, for a sequence en — 0 with g, € Q, we yield ¢}7(v/2) = 0
for every ey > 0 because all stored sampling points will attain rational values. The value
fl+/2] will be approximated through a(f€)(1/2), i.e. through interpolation between two

84

6.3. A convergence theorem for approximating DPMs

samples (a,a?), (b, b?) e Q% with a < 4/2 < b. With X = ‘bﬁ_;a e (0,1) we yield:

alf)v2) = (1-Na? e ab? = (1- Y220} 2 Y2202 g) - ab,
b-a b-a
which for a, b € Qs¢ is irrational and, in particular, a(fe7)(v/2) # 2. Thus M&n will always
traverse the else-branch for any input. In general, the convergence limg_o qbﬁ/](x) =
ém(x) can not hold for every x € Q.

Here one might suspect that the reason for the non-converge was the fact that the
branching for f[x] = 2 works only for x = 4/2 and not for any neighborhood in the state
space of M. The concept of a stable computation path should prevent such cases.

Definition 47 (stable computation path). For a DPM M with halting-set Q we say that
the input x € Qu induces a stable computation path, if sufficiently small perturbations
in the state trajectory x°,x",...,x" € Sy in those entries that are influenced by resam-
pled values lead to the same computation path n°,n',...,n" € V of x (see Definition 8),
i.e. there exists € > 0 such that for every k € [T - 1] the computation endomorphism
H:V xSy — V xSy fulfills m,/(H(nk %R)) = nk*1 for every Xk € Sy such that [|XF x| < €
and xf = XF for all registers that are not influenced by resampling. This is equivalent
to the following statement: “Sharp branching conditions are avoided on unsafe values
during the computation”.

However, alone the property of x to have a stable computation path does not suffice
to yield convergence through approximating DPMs: Even if the computational path for
every x € Qy is the same, then still the convergence limg_o ¢5,(x) = ¢u(x) might not
hold as it can be seen in the following example where the branching of the program
flow has been shifted to the register-inherent branching within a computation node:

Example 48. The following example has the same computational path for every input:
Input: xe R
Output: 1if x2 = 2, otherwise 0

1 compute f[x],f : R — R everywhere as

2 L return x?

3 compute x[x], x : R — R everywhere as
4 L if x =2 then return1 else return o

5 return x[f[x]]

With the same argumentation as in Example 46, the given DPM can not be approxi-
mated with a linear resampling function:

Mp(v2)=1# 0= Mé(\@) foreeQ

85

Chapter 6. Approximating DPM algorithms on a GPU

So, aside having a stable computation path, also the data-parallel if-else functions
should be smooth. Arestricted set of branching functions are the max and min-functions,
which are a safe alternative to define continuous function piece-wise:

Definition 49. We say that a DPM M shows soft parallel branching, if every occurring
node computing ifelse(li,j,k) : Sy — Su, i.e. the command hj, « if(h; > o,h,,hj),
decodes either the component-wise max or min-function of two-registers. In other
words, we demand that any node of M computing ifelse(l, i j, k) fulfills at running
time either h; = h; - h; or hy = h; - h;.

We will see in Theorem 54, that soft parallel branching and a stable computation
path already implies convergence of approximating DPMs provided that only compact
domains are used.

In the process of proving the convergence, a difficulty arises from the compose op-
erator. The pointwise convergence of two sequences of functions does not imply even
point-wise convergence of the composition of the sequences, even if all involved func-
tions are continuous. Already the simpler problem of plugging a converging sequence
(Xn)nen in a converging family of continuous functions f, : R — R with a pointwise
continuous limit f(x) = limp_o fn(x) does not imply limy_o fr(xn) = f(x). Consider
for instance the sequence of continuous functions f,(x) := max{o,1 - Inx - 1[}, a flat
line with a peak of height 1 at position 1. For every x € R, it can be proved that
limp—o fn(x) = 0 = f(x) (the peak moves past all points x > 0). However, for x, = 1 we
have

nleoof”(X”) =1+ 0-=f(0) = f(nleooX”)

Nevertheless, for uniform convergence instead of pointwise convergence, we have
the following property:

Lemma 50. Let f : D — R be a sequence of functions converging uniformly to a
continuous function f : D — R. Furthermore let a converging sequence x5 — X in D
be given. Then

tim_falen) = 100

Proof. limn_e|fn(n)=f(x)] < limp_oolfn(n)=f)|+ limn— oo [f(xn)=f(X)| = 0+0. The first
convergence holds due to the uniform convergence of f, — f and the second follows
from the continuity of f. O

A direct proof of uniform convergence of a sequence of functions is often more dif-
ficult than a proof of pointwise convergence. The following Lemma gives a criterion
when pointwise convergence can be upgraded to uniform convergence:

86

6.3. A convergence theorem for approximating DPMs

Lemma 51. Let D = RF be compact and S < D dense. A sequence (fy : D — R)%, of
L-Lipschitz functions converges uniformly to a continuous f : D — R if fnls converges
pointwise to f|s.

Proof. Clearly, all the Lipschitz functions f, are continuous. We will show that the se-
quence (fn)i%o is Cauchy in the complete space C(D,R).

lete > 0. We set § = 36T The family {Bs(s) | s € S} covers D and due to the com-
pactness of D there is a finite subcover Bg(s1), ..., Bs(sy) of D with s,...,sy € S. Since
limn—o fn(Sk) = f(sp) for every k e [N], there is a n € N such that

|fn(5}?) —fm(5k>| <

for every m > n and k e [N].

WM™

For any x € D, there is some k € [N] with x € Bs(sj,) and we yield for m > n
|fn(X) _fm(X)| < |fn(X) _fn(sf?)‘ + |fn(5fe) _fm(sfg)| + |fm(5fg) _fm(X)| < Lo+ g +1d=¢.

Let f € C(D, R) be the limit of the Cauchy sequence (f,)?%2,. The pointwise convergence
of fnls to fls implies fls = fls. Since S is dense in D, the continuous functions f and f
coincide. O

The restriction on a compact D is not a big problem for us because we are aiming to
use rasterization in order to use textures of limited extent. Lemma 51 invites to prove
pointwise convergence.

A notion of pointwise convergence of sampled functions is useful. To make pointwise
convergence for the well-defined discrete functions we need to ensure that the once
added sampling points remain existent for the further refinements.

Definition 52 (refining, point wise convergence of refining sequence). We call a se-
guence of discrete sampled functions f, : Dy — R refining if Dy > Dy for m > n and
Unen Dn is dense in D, i.e. for every € > 0 there is a n € N such that D < Dp + Be.

A canonical example for a refining sequence is given with the domains D, = 2%2’? nD
and the sequence of discrete functions f, : Dy — R.

For a refining sequence, we say that the sequence of discrete functions f, : Dh — R
converges pointwise to a function f : D — R when for every m € N and x € Dy, the
sequence (fn(x)),,, converges to f(x).

Under certain conditions, pointwise convergence of a refining sequence of discrete
functions can be upgraded to uniform convergence of the resampled functions.

Lemma 53. Let D = RR be compact with D = IntD (equivalently, D is the closure of a
bounded open setin R®). Let (fy : Dp — R)%2, with D = dnZR A D be a refining sequence

87

Chapter 6. Approximating DPM algorithms on a GPU

of sampled L-Lipschitz functions that converges pointwise to a continuous function
f: D — R. Then for the sequence of resampling functions ap : (Dnp — R) — (D — R),
the sequence of resampled functions (an(fn))72, converges uniformly to f on D.

Proof. Accordingto Corollary 43, for every n e [N], an(f) has the same Lipschitz-constant
C - L for some fixed C € R and for every s € D, we have an(fn)(s) = fn(s). Therefore, on
the set S = (72, Dn, the (C- L)-Lipschitz sequence (an(fn))%, converges pointwise to f.
The set S~ IntD is dense in the open set IntD = R*. Thus S is also dense in D = IntD.
By Lemma 51, (an(fn))i2q converges uniformly to f. O

With these properties in mind, we can formulate and prove the following Theorem
that gives us a criterion when a DPM can be approximated through a sequence of
sampling DPMs.

Theorem 54. Let M be a DPM with compact domains only and x € Qu a Lipschitz in-
put that induces a stable computation path, shows soft parallel branching and avoids
division by zero.

Furthermore, let (en)i%o be a refining sequence with associated sequence of the ap-
proximating DPMs ME&n with arbitray resampling functions a.

Then

- for sufficiently small gy, the computational path of Mén eventually coincides with
the computational path of M.

- the state trajectory x°,x",...,x" of M then can be uniformly approximated with
X Xg .. ,xln, i.e. forany k e [Tlu{o} the sequence of functions a(ngn) converges

uniformly to xk with n — .
- In particular, 57 (x) : Oy — R converges uniformly to ¢u(x).

In order to prove Theorem 54, we need another rather technical Lemma that can
be used to show that such a DPM with compact domains stores during its execution
Lipschitz functions with bounded Lipschitz constants only.

Lemma 55 (preservation of Lipschitz continuity). Let f,g : D — Rand r: D — D, be
Lipschitzand D < R", D < R™.

Then f +g,f - g, max(f,g), min(f,g) : D - R, and f o r : D — R, are Lipschitz.

If we assume that |f(x)| and |g(x)| are bounded, then f - g : D — R is Lipschitz. If we
further assume that |g(x)| is bounded from below, then also g :D — R s Lipschitz.

In particular, the Lipschitz-constants can be bounded as follows:

(a) Lip(f +g) < Lip(f) + Lip(g) and Lip(f - g) < Lip(f) + Lip(g).

88

6.3. A convergence theorem for approximating DPMs

(b) Lip(min(f, g)) < max{Lip(f), Lip(g)} and Lip(max(f, g)) < max{Lip(f), Lip(g)}.

(c) Lip(f or) < Lip(f) - Lip(r).

(d) Lip(f-g) < F-Lip(g) + G- Lip(f) if [f(x)] < F and |g(x)| < G.

(e) L|p() < M if f(X)] < Fand o < G < |g(x)| < G for every x € D.

Proof. (a) |(f £ g)x) = (f + g)(y)| < [f(x) = f(y)] + |g(x) - gly)| < (Lip(f) + Lip(g))lIx - yI|.

(b) It suffices to show Lip(max(f, g)) < max{Lip(f), Lip(g)}, because together with
min(f, g) = -max(-f, -g)

and
Lip(=h) = Lip(h)

we yield from that

Lip(min(f, g)) = Lip(-max(-f, -g)) < max{Lip(f), Lip(g)}.

If both f(x) > g(x) and f(y) = g(y) (or f(x) < g(x) and f(y) < g(y)), the term
Imax(f, g)(x) — max(f, g)(y)| is equal to |f(x) - f(y)| (or |g(x) = g(y)|) and thus can
be bounded by max{Lip(f), Lip(g)}||x - y||. Otherwise, let without loss of general-
ity, f(x) > g(x) and f(y) < g(y). With a trick of McShane (1934), we extend f,g: D — R
to f,g : R" — R with preservation of the Lipschitz constants via f(x) = infyeplf(y) +
Lip(f)lIx - ylI} and g(x) = inf,eplgly) + Lip(g)lx - y|I1. We have (f - g)(x) > o and
(f - g)(y) < 0. Then by the intermediate value theorem, there exists a z e [x,y] = R"
with (f - §)(2) = 0, i.e. f(z) = G(z). Then we yield,

[max(f, g)(x) - max(f, 9)(y)| = [f() - gy)| = [f(x) - F(2)| +13(2) + (y)|
< Lip(flx =zl + Lip(@)llz - x| < max{Lip(f), Lip(g)}l|x - y/l-

() |(f o)) = (f o r)y)| = |f(r(x)) = f(r(y))| < Lip(A)Ir(x) = r(y)|| < Lip(f)Lip(r)||x - /.

(d) 1(fa)x)-(fg)(y)| < IF)g)-F(x)g)+IfF)g(y)-f(y)g(y)| < Flgix)-g(y)|+Glf(x)-f(y)| <
(F-Li ()+G Lip(f)lIx = yl.

F.
F)- £ If0)g(y)-fg()[+[f()g)-f(y)g)l _ FLip(g)-GLip(f) i, _

Now we have all the ingredients to prove Theorem 54:

89

Chapter 6. Approximating DPM algorithms on a GPU

Proof of Theorem 54. By induction over k, we show that any k € {0,1, ..., T} fulfills the
following Induction Hypothesis:

(a) The traversed computation path (néﬂﬁo of M&n eventually coincides with the com-
putation path (nl)ﬁo of M, given the input x, i.e. there exits n, € N such that for any

n = ny, we have (n.,)f = (k..

(b) The sequence (xfgn € S,@,”)?,O:nk of state trajectories consists of Lj-Lipschitz functions
for some fixed Ly € R.

(c) For each register h : D — R stored in xf € Sy, which is approximated through
hé : D& — R in M&n, the sequence (h’;n)n:nk converges pointwise to h.

(d) alx)3y, converges uniformly to x* with n — o,

x§n is composed of a finite number of registers. Hence, (d) always follows from (b)

and (c) through the application of Lemma 53. So, we will show (a), (b), (c) only.

Base case k= 0: (a) holds already for np = 0 since n° = ng is the starting node. (b)
and (c) hold since the input x € Qy is assumed to be Lipschitz and the input map
[¥n - Iy — Sy does nothing then sampling the input end embedding it into Sf/'.

Induction step k> 0: Let k € [T]. We assume that the Induction Hypothesis above is
fulfilled for k-1. By (a), n™" = n&~" for any n = ny. (d) gives us uniform conver-
gence of a(x) to x*. Branching is made on a pointwise evaluation of a(x) and
by assumption the computation path is stable, thus nf;?n = WV(HEH(nEH‘“,a(X’gn)) =
Ty (H(n*, a(xE)) = n* will hold for a sufficiently large n, > nj_,. (a) is proved for

k. We are still missing proofs for (b) and (c).

In step Rk, only one register h is modified by a map G- It suffices to show (b)
and (c) for the registers hen : De» — R. i.e,, we want to show that (b) (h®")p=p, 00
consists of Lipschitz functions with bounded Lipschitz-constant and (c) that for
everysesS:= Uf,ink D#n the convergence limp_ o h&(s) = h(s) holds.

There are several different cases for G-

g, is constant or project: Let the “‘command” be h < a or h m(x). Then
the sampling points of h®" can be computed directly and h&" coincides with
h on Dén. Clearly, every such h®" is constant or 1-Lipschitz.

9y is copy: Let the command be h < g. On the approximating DPM h§ < g5 is
computed. By induction, the properties (b) and (c) for k are obtained from
(b) and (c) for k-1.

90

6.3. A convergence theorem for approximating DPMs

9y is add, subtract, multiply, divide or ifelse: Let us assume that the
register h®" : Dy, — R is recomputed in step k based on the registers fén :
Dn — R and g°" : D, — R.

If the command is to compute h «— f® g with ® € {+,— -, /} or h < op(f, g)
with op € {min, max}, then for a fixed sample points e S = U,?ink Dy, the
convergences

lim hén(s) = lim
n—aoo n—oo

(fen(s) © g=1(s))
= lim fe(s)© lim g=(s) = f(s) @ g(s) = h(s)

n—aoo

or, equivalently,

lim hen(s) = Lim op (fen(s), g*"(s))

=op (nlgmoofa”(S), Lim ga”(S)) = 0p ((s),9(s)) = h(s)

n—oo

hold due to the continuity + -, -, /, min and max and Induction Hypothesis (c).

The family (hs”)nw:,f,k will have a shared Lipschitz constant due to the applica-
tion of Lemma 55. Note that the functions fé" and g®" are bounded because
of the uniform convergence of a(fé") to f and a(g®") to g, which both are
continuous functions on a compact domain. In case of the division h « i,
also |a(g®")| will eventually be bounded from below due to the avoidance

of the division by zero.

9 is composite: Let the command be h < fo(gq,...,g;). On the approximat-
ing DPMs Mé", we compute the values a(f*") o (g5",...,g{") on the sample
points DJE” only. First, we want to show (c), i.e. pointwise convergence on
the sample points. Let s € D‘;m be a sampling point. For n > m we define
yi = (g5"(s),...,g;"(s)). By Induction Hypothesis (c), there is a limit point
yS e Rl with

1im v =(gi(s), ..., g((s)) = y°

Also by Induction Hypothesis (d), the resampled functions a(fé") converge

uniformly to f. Thus we can apply Lemma 50: We yield the following point-

wise convergence on sample points:

n“-»moo her (S> - n“—»moo (cx(Sn) © (g%?n, o "gfn >) (S) - n“—»moo a(En)(y?7>

X

Chapter 6. Approximating DPM algorithms on a GPU

Why does (b) hold? The families (fE”)?,O:nk and (g5", .. .,gf”)ﬁ%nk have a bounded
Lipschitz constants by Induction Hypothesis (b). According to the Corol-
lary 43, (a(f®")72,, has a bounded Lipschitz constant and thus Lemma 55
gives a common Lipschitz constant for the family

(hE”)%o:n,? = (alf*") o (g5", . .. ,gf”))ﬁnk,
With this all cases for computations g, are covered, and the induction is finished.
]

Let us give an example of an application of Theorem 54.

Example 56. (fast approximations of the filled-in Julia set) Letf : C — C be a continuous
complex function with a bailout radius R, i.e. |z| > R implies |[f(z)| > |z|. For instance, for
the Julia-map f(2) = 22 + ¢, the value R = 1 + /% +|c| is a valid bailout radius, because
for |z| > R we have

f2) -1z = 122 + ¢ - 2] = |2 - I2] - |

:<lzl—<;+ l+c|>)-(|z|—<;—\/ﬁ))>0'

Every z € C with [fM(z)| > R for some m e N fulfills limp_|f"(2)| = o, because if
the sequence |f”(z)|(neN) was bounded by some R > R, then there would be some
accumulation point a = lim,_, ., f™*(z) in the compact disc {z€ C | R < |z| < R}. This
would contradict the bailout property of f, because

a| < |f(a)| = If(lemoof”k(Z))l = Ik[moof”k+“(2)l < \lemoof”k+1(z)| = |a|

According to that, the set of all points with limp_s f"(2) # oo consists of those points
with an orbit staying within the bailout radius. This set is called the filled-in julia set.
Thus f~M(Dg(0)) where Dg(0) = {z € C | |z| < R} for large m approximates the filled-in
Julia set. In fact, the sequence f"™M(Dg(0)) converges with respect to the Hausdorff-
Metric to the filled-in Julia set (Montag, 2014).

We want to compute the set f2"(Ds(0)) efficiently through an on the GPU approx-
imable DPM over the domains D = {x, [R, R12} with R > R. The set f2"(D(0, R)) contains
all points z € C whose iteratives z, f(z), f?(2), f3(2), ..., f‘zn(z) never leave the bailout-
radius R.

In order to compute f2"(D(0, R)), it suffices to study the modified function
f:[-RR1> — [-R,RP
z — clamp(f(2)),

92

6.3. A convergence theorem for approximating DPMs

where

clamp: C — [-R,RI?
x + iy — min(R, max(=R, x)) + i min(R, max(-R, y)).

We identify [-R, R]? with the corresponding rectangular domain in C. The functions f
and f coincide on the domain f7'([-R, R]?) n [-R, R]?> and we have the bailout property
z ¢ Dg(0) = g(2) ¢ Dg(0) for both g € {f,f}. It is equivalent to g(z) € Dg(0) = z € Dg(0)
and g7'Dr(0) = Dgr(0). By iteratively applying g™ on both sides of g7'Dr(0) = Dg(0) we
yield the chain,

[—IN?, ,‘N?]2 - DR(O) o g_1DR(O) o g_zDR(O) i S

From this follows
2" Dg(0) = 72" Dgl0).

The z € C contained in 2" (Dg(0)) are those z e [-R, RI? that have f2"(z) € Dr(0). The
iterates of f : [-R, R]2 — [-R, R]? can be computed with the idea of Algorithm 11. We yield
Algorithm 19 that computes R2-|f2" (2)|2 for every z € [-R, RI2. This value is non-negative
iff ze 2" Dg(0) = F2" Dg(0).

Algorithm 19: An approximable DPM with D = {x,[-R, R]2} iterating exponential
steps of the Julia map f(z) =22 + ¢

Input: an integer n € N, a parameter ¢ € C and a bailout radius R € R_z such

that |z| > R = If(2)] > |z
Output: A continous function x : [-R, R]> — R with
x(2) > 0 = f2'(z) € D(R,0) < z € f2"(D(R, 0))

1 Function clamp (x)
L return min(R, max(-R, x))

N

compute g[x,y], g : [-R, RI? — R2 everywhere as
4 | z—(x+i-y)P+c
return (clamp(Re(2)), clamp(Im(2))) // now g =f

w

(S5}

repeat n times

[«)]

tg<—gog // after k iterations, g=f2k

~

compute x[x, y], g : [-R, RI> — R everywhere as
| return B2~ |lglx,)|

o @

10 return xx

93

Chapter 6. Approximating DPM algorithms on a GPU

(a) The sequence of the images x for n € {o,...,8} visualizing the dynamic of f2". Internally,
textures of size 4096 x 4096 were used for the computation of the images.

(b) Approximations for n = 8 using shader programs with increasing internal texture sizes: 16 x
16, 32 x 32, 64 x 64, 128 x 128, 256 x 256, 512 x 512, 1024 x 1024, 2048 x 2048 and 4096 x

4096. According to Theorem 54, the corresponding infinite sequence of images converges
uniformly to the ideal limit image.

Figure 6.1.: Approximations of x(z) = R2 - [|f2"(2)|]2 with f(z) = 22~ 076 + i - 0.07 according
to Algorithm 19. Non-positive values of x are colored in white and positive
values are colored in gray. The higher the value, the darker the color.

94

6.3. A convergence theorem for approximating DPMs

Theorem 54 can be applied for Algorithm 19. Thus, for a fixed input n e Nand c e
C, a sequence of realizable approximating DPM using rasterized images produces a
sequence of outputs converging uniformly to the idealized output.

Applet 6 contains a fragment shader based implementation of Algorithm 19. In-
ternally, textures of finite resolution store the intermediate data and data points are
accessed via bi-linear interpolation. Screenshots of the first steps of its iteration are
displayed within Figure 61a. The computation of]‘zr7 requires O(n) parallel operations
and thus is exponentially faster than the conventional approach where the iterates of
the Julia-map are computed for each pixel independently.

However, for precision reasons, a sufficiently high resolution is essential for these
computations. According to Theorem 54, uniform convergence for fixed input to the
output function of the idealized program can be achieved by iteratively doubling the
internal resolution. This relationship is depicted in Figure 61b. Observe the artefacts
outside of the filled in Julia sets in lower resolutions. These artefacts arise from inter-
polating coordinates out of the non-convex set C\ D(R, 0) to a coordinate in D(R, 0). The
artefacts vanish by choosing higher resolutions because then the corresponding val-
ues in general lie closer to each other and thus the convex combination of the values
stays more likely within the domain C \ D(R, 0).

95

https://aaron.montag.info/dissertation/6

Chapter 7.

Programming GPUs

In this chapter it will be discussed how GPUs can be programmed in a similar way as a
DPM. It relies on the work published by Montag and Richter-Gebert (2018).

Here we present a concept to embed shader programming seamlessly within a high-
level (scripting) programming environment. The high-level programming environment
should reflect a programmable DPM as presented in Section 2.2. Code that modi-
fies registers with trivial domain only, can be computed straightforwardly on the CPU.
What should happen with compute everywhere-statements? These parts of the high-
level programming language are translated into shader programming language for the
GPU. With the use of only one programming language, the development of complex
(mathematical) visualizations and fast-prototyping of general-purpose computations
on graphics processing units (GPGPU) applications is eased. We address the challenge
of the automatic translation of a high-level programming language to a shader lan-
guage of the GPU.

The presented approach can be used in mathematical visualization software, such as
dynamic geometry software, and we have implemented a sample system. We have built
a sample implementation for the dynamic geometry software CindyJS. This enables an
interplay with geometry and GPU computations.

To maintain platform independence and the possibility to use our technology on
modern devices, we focus on a realization through WebGL.

74. Introduction
Graphics processing units (GPUs) open up many new possibilities. However, exten-
sive programming expertise and additional development effort are required to program

them. In the first part of this chapter, we propose a concept to overcome this hurdle by
seamlessly embedding shader programming language for the GPU within a high-level

97

Chapter 7. Programming GPUs

(scripting) programming language for rapid software prototyping. The concept includes
the formal process of a symbolic transcompilation from a high-level language to a GPU
shading language.

Richter-Gebert and Kortenkamp (2010) demonstrated that dynamic geometry soft-
ware systems (DGS) equipped with a programming environment could be used advan-
tageously for many mathematical scenarios. In the second part of this chapter, we
will show how such an environment can be extended to utilize the GPU by the formal
methods developed in the first part of the project. It provides the mathematician with
a relatively easy-to-use tool for the following tasks, among many others: finding cer-
tain mathematical conjectures experimentally, the rapid prototyping of mathematical
algorithms in parallel, building several visualizations of, for example, algebraic surfaces,
fractals, fluid simulations and particle simulation within the framework of a classical
DGS. This method is available inside the browser and on modern devices such as tablets
and mobile phones. Additionally, the field of mathematics education can greatly ben-
efit from the seamless integration of GPU programming into DGS.

714. Technical background

Computations on modern devices can, in general, be executed either on the CPU (cen-
tral processing unit) or GPU (graphics processing unit). While CPUs were designed for
sequential general-purpose computations, GPUs were initially invented to accelerate
the graphics output of the computer. In order to obtain a high degree of flexibility in de-
signing the graphical operations, programmable shader units were introduced within
the GPU rendering pipeline.

Shaders can be considered as little programs which the GPU can execute massively
in parallel. According to Owens et al. (2007), a typical GPU rendering pipeline consists
of a vertex and fragment shader (among possibly other shaders). Conventionally, the
vertex shader performs operations on the vertices of a three-dimensional mesh, while
the fragment shader - sometimes also called as pixel shader — computes the color for
every single pixel. Soon, it was discovered that these programmable shaders open the
door for general-purpose computations on the GPU (GPGPU), that were conventionally
performed on the CPU. In addition to the generation of images, a shader can also be
used whenever the execution of the same program at an independent set of data points
is required. Often numerical simulations can be built on such a computational scheme.

With this approach, the gap between CPU and GPU, with regard to the technical ca-
pabilities, gradually starts closing and a comprehensive set of traditional CPU-targeted
tasks can be executed on the GPU.

For many visualizations and scientific computations, the use of parallel architectures

98

71. Introduction

(such as the GPU) is essential, because nowadays parallel architectures outperform the
computational power of a single-threaded CPU by several magnitudes. In the future,
one might expect that these differences will become even more crucial because the
scale of single-threaded computations is stagnating due to power density issues (Sut-
ter, 2005), whereas the parallel architecture of GPUs can still benefit from exponential
growth in its number of cores, Nickolls and Dally (2010).

A more modern approach for GPGPU programming is to use NVIDIA CUDA C (Nvidia,
2017) or OpenCL C/C++ (Munshi et al, 2011) instead of graphics shaders. CUDA is a
framework provided by NVIDIA that bypasses the use of standard shaders to enable
general-purpose parallel computation on the GPU by directly accessing the GPU. How-
ever, it is limited to NVIDIA hardware, and CUDA is not available on browsers. The
Khronos Group introduced OpenCL as an alternative that targets a broader range of
hardware for GPGPU computation.

Both of the techniques provide programmable kernels that run close to the hardware
for the computations. Nevertheless, CUDA and OpenCL are not available on every plat-
form. In particular, these techniques are not available within browsers. The endeavors
to make OpenCL available on the browser through WebCL have declined: for instance,
Mozilla (announced by Vukicevic (2014)) decided not to implement WebCL in favor of
WebGL compute shaders.

This chapter is limited to shader-based approaches, although many results could
be easily transferred for target architectures such as CUDA or OpenGL. The motivation
for our particular focus on the shader-based approach is WebGL (Marrin, 2011), which
can run shaders on recent web browsers without additional plugins and has extensive
cross-platform compatibility. WebGL, in particular, can be used for demonstration pur-
poses within a webpage and it is suitable for many modern devices as a target platform
(Evans et al., 2014).

71.2. The gap in programming concepts between CPU and GPU

Even tough tasks that were initially done on the CPU can now be accelerated on the
GPU, there is still a significant gap in programming concepts between CPU and GPU.
This clear distinction may be desired if the aim is to create most-efficient software
that exploits the maximum possible computational power tailored for the available
hardware architecture. The standard application programming interfaces (APIs) such
as OpenGL, DirectX (and also OpenCL C/C++ and CUDA C), are made for programmers
who want to make very conscious hardware decisions. However, if a programmer wants
to benefit from the advantages of the GPU within an abstract scripting language (for
instance for rapid software prototyping), then the development efforts should also be

99

Chapter 7. Programming GPUs

minimized. For scientific computing, the time-saving advantages of the GPUs are often
not used because the gain in performance time often does not justify the additional
development effort and time (Klockner et al., 2012).

In our opinion, there are several difficulties in integrating shader programs (and also
kernels for CUDA or OpenCL) within other programs that keep programmers from using
the GPU:

Separation. The shaders are separated from the main program. In many APIs, a shader
program has to be provided through an external file or a string containing the
shader source, and thereon the source is compiled with a special compiler for
the GPU. This separation in code increases the complexity of a program.

Lines of code. A lot of technical boilerplate code (i.e. code that is duplicated verbatim
for various applications with only slight modifications) has to be written to create
even simple applications.

Own language. Shaders are written in a programming language that has been designed
for graphics purposes and will be compiled for the shaders for the GPU. Even
to map other non-graphical computations to the GPU, the programmer has to
become acquainted with this programming language. Furthermore, there is a
semantic discrepancy when shaders that are written in a compiled language are
used within a scripting language. A scripting language is, in contrast, designed to
be interpreted at running time.

Platform-dependence. The use of shaders poses a limitation in the number of plat-
forms on which the program will run. This often demands additional program-
ming to make the software run on a sufficiently large set of different hardware.

Standardized APIs like OpenGL have overcome the last limitation. With OpenGL,
shader code can be compiled for GPUs of different vendors. Often, these shaders are
compiled at run-time on a target machine. WebGL (Marrin, 2011) utilizes this mecha-
nism to use OpenGL within different browsers.

To our knowledge, for most scripting languages, there are only APIs available that
require the programmer to write the shader programs in a particular low-level lan-
guage that has been designed for the GPU. (For example, if OpenGL is accessed within
JavaScript through WebGL, the programmer still has to provide shader codes written in
the OpenGL Shading Language (GLSL)).

100

71. Introduction

71.3. Our objectives for a high-level language with GPU support

The project aims to develop a concept that makes it easier to embed GPU shaders in an-
other high-level programming language (referred to as host language in the following).
Our main aims are:

Smooth integration. The code for the GPU shaders should be smoothly integrated
within the host language with only a minimum of additional language constructs.
Ideally, the programmer should not need to indicate (or even be aware of) whether
he or she wants to use the graphics card. In particular, the programmer, who does
not program close to the shader, does not have to indicate the splitting point be-
tween CPU and GPU code. With this approach, a large class of user-defined func-
tions should be usable both on CPU and GPU, and the amount of written code
would be drastically reduced.

Efficiency. At the same time, the performance at running time should remain compa-
rable with applications that traditionally use graphics shaders.

Portability & Stability. Ideally, the programs should run on many platforms. For a vi-
sualization framework with a broad outreach, we propose using WebGL.

Versatile applications. Our concept is intended to provide a tool for both real-time
rendering of images and basic GPGPU programming.

Compilation of untyped language. The scripting language will be transcompiled to a
shader language at running time. (The shader language can then be compiled to
the vendor-specific binary code for the CPU.) As the host language is assumed
to be a dynamically typed scripting language, the programmer should not decide
upon GPU-specific types to be chosen. In our approach, the types are inferred
automatically. The types should be as weak as possible in order to make the
program run fast. In fact, this requirement poses strong formal constraints on the
software architecture of the transpiler. Major parts of this chapter are dedicated
to this issue.

Mathematically-oriented user. The language should fit the requirements of a mathe-
matically-oriented user. For example, variables for numbers should be able to
store complex-valued numbers, if needed. Vectors of arbitrary length, basic linear
algebra operations for matrices and vectors should be part of the language as
well.

101

Chapter 7. Programming GPUs

In Section 71.4, we present an overview of related work, then in Section 7.2, we in-
troduce the primary process of the transcompilation. In Section 7.3, we provide a brief
outline of our sample implementation CindyGL and a set of examples. CindyGL is a
JavaScript-based implementation of the concepts introduced in this paper. CindyGL
can transcompile the scripting language CindyScript to GLSL and thus can be used to
create widely portable visualizations and GPGPU programs that can be run within the
browser.

72.4. Related work

In dynamic geometry software, often an expression is evaluated for many data points.
An aim addressed by approach is the challenge to render images, where each pixel on
the screen gets assigned a color by a given function. Liste (2014) suggests a technique to
render curves in Geogebra via a so-called “sweeping-line” approach on the CPU, which
turns out to be very slow even on recent hardware. Also the dynamic geometry software
Cinderella2 includes a colorplot-command to produce similar plots (Richter-Gebert
and Kortenkamp, 2012). However, all these approaches are very slow due to computa-
tions on the CPU, and complex images cannot be rendered in real-time. To our best
knowledge, no dynamic geometry software can utilize the GPU for such tasks that would
require a seamless embedding of GPU programming within a high-level environment.
However, some (non-DGS) projects aim for seamless integration of CUDA or OpenCL
within another scripting programming language. Copperhead (Catanzaro et al., 2011)
is probably the most remarkable related project. Copperhead can translate a subset
of the scripting language Python to CUDA at running time. The types are modeled in
a minimal Hindley-Milner type system and inferred for the GPU. Hence Copperhead
enables GPGPU programming within a high-level host language, without requiring the
programmer to provide separate code in a low-level language designed for the GPU.
Another approach in integrating GPU accelerated code in another programming lan-
guage is the introduction of a new datatype for (large) arrays that is permanently stored
on the GPU. For example, Accelerator for C# (Tarditi et al., 2006) implements a new par-
allel array datatype which one can use for element-wise operations, reductions,
affine transformations and linear algebra on the GPU. In a similar spirit, in MATLAB,
gpuArray objects were introduced with release R2010b. The gpuArray objects rep-
resent matrices that are stored on the GPU, and several operators are overloaded for
objects of the gpuArray class. For a more extensive description on GPU programming
in MATLAB, we refer to Reese and Zaranek (2012). Furthermore, a subset of MATLAB
code can be executed on the GPU through the arrayfun function if it is applied to a
gpuArray. However, the function within arrayfun cannot access variables from the

102

7.2. Concept

workspace. Matlab utilizes CUDA for its GPU computations. In addition, Klockner et al.
(2012) introduce a class named gpuarray in PyCUDA that supports abstractions for
many component-wise operations. More complicated functions require the program-
ming of kernels in CUDA C.

Nevertheless, a substantial difference compared to our project is that CUDA is used
to access the GPU. In contrast, we use WebGL and focus more on the mathematically-
oriented user. Because of our choice of WebGL, running GPGPU code might be slower
than approaches that are based on the CUDA architecture, which has been designed
for the GPGPU purpose, but we win in terms of compatibility on every machine that
provides a browser with WebGL support and can use a pipeline that has been designed
for real-time visualizations.

7.2. Concept

Before going into the details of the symbolic process of type inference, we will de-
scribe the general setup that clarifies the roles between author, scripting language,
interpreter/compiler, GPU and CPU usage.

We recommend generating the GPU code at run-time, as has been introduced by
Klockner et al. (2012). The generation of GPU code at run-time increases the portability
of the software, and the scheme goes hand in hand with the design idea of a typical
scripting language. Furthermore, this provides the possibility for the self-adaption of
a program according to the given input data.

The aim is to enable efficient GPU computations without posing difficulties in the
development. Therefore most of the preparation for running binary code on the GPU
will be done on the machine of the user. Since the results of the GPU compilation
will be cached, the penalties in running time will mostly only occur during the first
execution of code that is suitable for parallelization.

We propose the following concept, which is illustrated in Fig.71: The author of the
content will directly program his or her idea through a single scripting language, regard-
less whether he or she is aiming for a GPU or CPU computation. When the end user
executes the scripting code, the interpreter will parse the scripting code by standard
techniques as described by Levine (2009) to obtain an abstract syntax tree (referred
to as AST in the following). Instead of instantaneously executing the entire AST, the
interpreter computes a split of the AST such that those parts that are suitable for par-
allelization are separated from those parts that are more appropriate for execution on
the CPU. On its first execution, the interpreter compiles the code suitable for the GPU
to a shading language of the GPU and then uses the host's GPU compiler to compile

103

Chapter 7. Programming GPUs

Human developer Machine of the end-user

Idea » Script code N
P » o » Run on CPU
for CPU

Program

Parse

Bl

Nodes no
- for GPU
Script code Abstract 7

syntax tree

— v
Distribute/ = v y (re)compile}rl GPU binary
it nodes
upload to @ (suitable for parallelization?)
Upload

website
and run
on GPU

(continue with consecutive nodes)

Figure 71.: Our proposed scheme, which extends the concept from Klockner et al. (2012),
for a seamless embedding of shader code within the environment of a script-
ing language. For simplicity, data transfers between GPU and CPU are omitted
in this figure.

this shading code to GPU binary. For the subsequent calls of the same code, the com-
pilation is skipped. Only if the types of the contained variables have changed because
of different parameters (e.g. if a real-valued variable becomes complex valued) a re-
compilation is enforced. The GPU binary is uploaded to the GPU and executed on the
GPU.

More details about the splitting, type detection, and transcompilation follow in Sec-
tions 7.21, 7.2.2 and 7.2.3, respectively. The lazy synchronization of data between GPU
and CPU will be addressed in Section 7.2.4.

7.2.1. Detection of parts for parallelization and splitting the code

We assume that the host scripting language has a set of specific operations that are
suitable for parallel computations on the GPU without any modifications. These can
be instructions that belong to the single instruction, multiple data (SIMD) class, i.e.,
very similar instructions that are to be executed on a large set of data points. In our
abstract definition of a DPM this corresponds to the compute everywhere-statement.
Also, the map operator of a functional language (if it is applied to a function without
side effects and a sufficiently large array) corresponds to this scheme. The map operator
applies a given function to each element of an array and returns the results as an array

104

7.2. Concept

of the same dimensions. Another operation, which was implemented in our sample
realization CindyGL, is the semantically similar colorplot command. The command
generates a texture, i.e. a large 2-dimensional array of pixels, where the color of each
pixel is computed by a given function taking the pixel coordinate as an input.

Within this function, user-defined functions should also be callable. However, it can
not be expected that a transcompilation can work for all functions. For instance, the
GLSL shading language 1.0 (Simpson and Kessenich, 2009) does not allow any recursion.

An alternative language construct thatis also suitable for our conceptis the introduc-
tion of a special array type that is permanently stored on the GPU. This is familiar from
the parallel array in Accelerator for C# (Tarditi et al,, 2006), gpuarray in PyCUDA (Klock-
ner et al, 2012), and gpuArray in Matlab (Reese and Zaranek, 2012). The point-wise
operations on this array are suitable for parallelization.

All these constructs have at least one running variable that takes a different value
for each call of the function. Within map, a function is applied to this variable, or
the pixel coordinate within colorplot becomes the running variable. Those terms
that are invariant on the running variables should be computed only once instead
of being massively parallelized. To determine them, we build a directed dependency
graph G = (V, E) that contains all variables and all expressions that appear within the
function as nodes. Without loss of generality, we assume that there is only one running
variable. Otherwise, we can assume the running variables are stored together in a
single array. Let vo denote the running variable. There is a directed edge (a,b) € E
iff the variable/term a depends on b. This might be because a is a variable and is
assigned to b or a is an expression that contains b and hence its value is dependent
on b (i.e, b is a child of a in the AST). Furthermore, all variables that are modified
within a conditional loop are dependent on the condition of the loop (e.g., the boolean
variable within an if-clause, or the number of repetitions of a loop).

Now a set D < V of terms that depend on the running variable is computed: D
V contains precisely those nodes that can be reached in G from vo € V and can be
determined by a depth-first search in G. The node r € V corresponding to the result
term either is contained in D or is not contained in D. If r ¢ D, then the computation is
independent on the running variable and thus always takes the same value and can be
computed once on the CPU. If r € D, all terms in D will be marked for a transcompilation
to the GPU.

All nodes in v e V' \ D that have an immediate successor in D (i.e., there isan a e D
such that (v, a) € E) will be marked as uniform variables and form a set U.

Let £ = D u U denote the set of relevant expressions. The following transformations
will be only applied to £. The values of the terms in U will be computed once on the

105

Chapter 7. Programming GPUs

[#| «——# =Vo

sin(|#|-seconds()) «— |#|-seconds()

pu -«
1/2*sin(|#|-seconds())
«—

seconds()

A/
1/2+1/2*sin(|#|-seconds()) .
\ 1/2 /
-

2

1/2 ‘////1
1\2

Figure 7.2.: Dependency graph G for expression 1/2+1/2xsin(|#]|-seconds()).
Nodes in D are highlighted in orange, nodes in U are highlighted in blue.

CPU and used as input parameter for the GPU program.
This enables us to obtain an almost optimal split of code in CPU and GPU computa-
tions.

Example 57. Consider the expression 1/2+1/2xsin(|#|-seconds()) ™. Let # be the
running variable vo. The expression generates a dependency graph G shown in Fig. 7.2.
The three terms seconds(), and twice 1/2 are the uniform expressions U, i.e. they
are independent from vo = # and are computed once on the CPU because they attain
their value independently from vo.

7.2.2. Type detection

A scripting language usually does not have a static type system. A variable can store
any object; a function can return various values of different types. This noncommittal
typing makes the fast-prototyping programming process easy, but the programs will be
less efficient due to run-time type checking. However, for the transcompilation to the
GPU variables, terms, arguments and return values of functions should take a static
type, since the shader languages, trimmed for efficiency, only support static types.

We impose the following three requirements on the type system:

No type annotations in the host language. The programmer should not have to give
type annotations. Omitting the type annotations is essential so that the GPU
codes fit seamlessly into the scripting code of the host language. Possible up-
casting of types should be done automatically.

No polymorphic types. Because of the restrictions of the shading languages, which
should run as efficiently as possible, only monotypes should be allowed. That

"This is an expression to generate the colorplot of a centered sinusoidal wave, see Example 62.

106

7.2. Concept

means that a general type signature should not be inferred for any user-defined
function. Instead, whenever a user-defined function is used, a single signature
of monotypes is determined. Functions will be monomorphized.

Minimal typing. The types should be as weak as possible in order to make the program
run fast. For example, if the transcompiler can prove that a variable remains to
be an integer, then the integer data type on the GPU should be used instead of a
floating point number or a complex number.

Thus, the transcompiler has to automatically assign static types to the variables and
terms of a dynamically typed language. As is the case for Copperhead, this requires
well-typed programs. A counter-example of a well-typed program is if(booleanexp,
12, [@]),which returns 12 if booleanexp is True and [@] otherwise. This program
will cause an error during the transcompilation since the types of the if and else branch
cannot be unified to a single type.

We define the set of all types T recursively:

- 1, T,boolean, int, real, complexe T
- VreT\{L, T}LVneN:list(h,7)eT

1 will correspond to the unset type and T to the error type, which will be used if no
type could be determined. All other types can be modeled in a shader language. For
instance, the type list(s, list(z, real)) corresponds to a 4 x 4 matrix and can be modeled
in GLSL through the matgs type. Matrices of higher dimensions can be modeled with
corresponding structs in GLSL. For dynamic geometry software, it is also suitable to
add types such as point, line, and circle.

Furthermore, we equip T with a reflexive, antisymmetric, and transitive subtype rela-
tion = to make (T, =) a lattice, which is recursively generated as follows:

Vrel:leTeET
- boolean = int = real = complex
- VYo, reT\{L, TL,VvneN:o = 1= list(n, o) = list(n, 7)

A subtype relation ¢ = 7 means that every value that can be represented by type
o can also be represented by a type 7. Furthermore, each relation ¢ = 7 implies that
there is an injective inclusion function from the set of values in ¢ to the set of values
in 7. With o L 7 we denote the least-upper-bound of ¢ and 7.

107

Chapter 7. Programming GPUs

Example 58. Typical valuesfor u: T x T — T are:

intureal = real
1L ucomplex = complex
list(5, complex) u list(5, real) = list(s, complex)

list(2, real) u list(3, real) = T
Proposition 59. Li: T x T — T is computable.

Proof. o LT for o, 7 e T can be computed recursively. We can handle the cases {c, 7} n
(LT} # gviaocu L =0, 0u T =T (and the symmetric equations). If {o,7} <
{boolean, int, real, complex}then owuT isthe maximum of o and 7 in the sequence
boolean = int = real = complex. In all other cases, o or 7 is a list. Wlog. let

o = list(n, o) for some type a € T. The term list(n, &) L T can be recursively evaluated
as follows

listth,a b B) if 7 = list(n,B)

T otherwise

list(h,) L T = {

The recursion terminates because a and 8 contain fewer list terms than o and 7.
]

A variable that takes values of both type ¢ and 7 should be of type p := o L 7. Then
o,7 = wand w is minimal in this property.

Our primary aim is to determine the type of all variables and terms in £. That is chal-
lenging because the program poses several, possibly circular, dependencies between
the types of terms. First, we will model collections of types through product lattices.
Then we will elaborate on how to model the dependencies between the different vari-
ables and terms as a mathematical condition on the product lattice. In the last step,
we will show how a tailored fixed-point algorithm can be used to compute a minimal
typing that fulfills the required conditions.

For any n € N, T" becomes a lattice by defining the product order (o4,...,0n) =
(11,...,mn) iff o; = 7 for every i € {1,..., n}. It can be easily seen that the height of the
lattice T, and therefore the height of the lattice 7", is finite. In particular they fulfill
the ascending chain condition (ACC), i.e. every increasing chain eventually becomes
stationary.

A function fun of arity n (i.e. fun takes n arguments) can have multiple signatures.
In the transcompilation of fun, it is suitable to choose the implementation of fun that

108

7.2. Concept

has a signature as weak as possible, but as strong as necessary. Therefore, for every
n-adic function fun, we equip the transcompiler with a function

MINSIGNf, i T" —> T x T

that, applied to the types of the provided arguments, returns a signature, which we
consider as a tuple of argument types and a return type. If

MINSIGNf, (T4, ..., Tn) = (e, . ..,), B)

we demand (7, ...,) E (as,...,apn) and (as, ..., ap) — B is the minimal signature of
an available applicable GPU implementation of fun for arguments of type (7,...,),
i.e. there is an implementation of fun that takes arguments of types (a, ..., an) and
returns a value of type 8. By minimal, we mean that there is no other implementation
with a signature (a%,...,a}) — B* such that (4,...,mn) € (af,...,a}) = (a4,...,an).
The map 7 — M|NS|GNfun(T)2 is monotone.

Example 60. Typical values for MINSIGN for the addition function + and the square root
4/- can be

((int,int), int)

((complex, complex), complex)

MINSIGN+(1nt, int)

MINSIGN+(complex, int)

MINSIGN\[(int) ((real), complex)

For the first two values we assume that GPU implementations for + for the data types
int, real, and complex exist. This is mathematically motivated by the different do-
mains for the functions +:Z xZ — 7Z, +: C x C — C and 4/ : R — C. Whenever those
functions are applied to values of a domain that can be embedded within another do-
main (i.e. Z — R), then the generalized function on a wider domain can be used. This
means that the evaluation of + on two different arguments, the implementation for the
lowest type that is a super-type of both its arguments should be chosen. If one of the
two arguments is a real subtype of the other, it will automatically be upcasted before
the evaluation.

The third example describes the (complex) square root. It is reasonable to provide an
implementation that computes the complex square root of real numbers. If one wants
to calculate the square root of an int, then it is suitable to choose the same function.
It would also be possible to introduce additional datatypes for positive numbers, which
can be used to ensure that the square root remains real.

Now, our aim is to compute a minimal type assignment [€ T¢ that assigns every
relevant expression in £ (€ is defined in Section 7.21 as the union of the dependent

109

Chapter 7. Programming GPUs

term/variables and the uniform variables) to a type of T such that the assigned types
are compatible to the program in the following sense:

- [s=yiftisavariable and there is an assignment t := s for a term s.

. MINSIGNfun(ra1, ...,Ta,)2 € Tt if tis aterm that consists of the function fun ap-
plied to the arguments a4, ..., ap, i.e. t = fun(a., ..., an).

- To & Iy, Where vo is the running variable and 7o its type (i.e. int for scenarios
if map is applied to an integer list and list(2, real) if vp is a pixel coordinate).

- Ty S Iyifue U, ie uisauniformexpression (thisincludes constant expressions),
u will be computed by the CPU, and is of type 7.

Whenever a user-defined function with some arguments is called, then a “virtual as-
signment” for each of the argument variables is added, in order to make it possible
to compute specific types of the arguments and establish a type assignment that also
involves user-defined functions.

To compute a minimal compatible type assignment I e T¢, we will utilize the Kleene
fixed-point theorem (Stoltenberg-Hansen et al, 1994): Let L € T (ie. L= (L,..., 1) -
no type is set yet), then we can iteratively apply a monotone function F: T — T¢ on
L. Since T¢ fulfills the ACC, the ascending chain

lecFL)eFFRL) e ...

eventually becomes stationary at a fixed point of F and according to the Kleene fixed-
point theorem, this stationary fixed point is the unique minimal fixed point of F.

In order to compute a minimal [€ T¢ that fulfills the compatibility requirements
listed above, we choose the following monotone F : T¢ — T¢:

Mo L2, Ts, if t is a variable and
there are the assignments t:=s4,...,t:=5p
F(M)t = 4 MINSIGNgn(Tay, -, Ta,)2 ift=fun(ay,...,an)
Mt U To if t = vg is the iteration variable
MU Ty if t=uis a uniform variable/term

The function F is component-wise monotone and hence also monotone in the prod-
uct lattice. The component-wise monotonicity follows either by using the least upper
bound of the input parameter or by the monotonicity of MINSIGN.

Any fixed point of F fulfills the compatibility requirements listed above for I'. Hence,
we can compute a minimal type assisnment I e T¢ that fulfills the compatibility re-
quirements by iteratively applying F to L until it becomes stationary and we take this

10

7.2. Concept

fixed point of F as I'. This corresponds to a start with unset types and updating the
types to the lowest suitable type whenever there is a place where the currently set
types are not sufficiently expressible.

Example 61. Consider the example code

a = -2;
sqrt(a);
b + 1;

It contains the terms £ = {a,-2,b,sqrt(a),b+1,1}. Using the presented fixed-point
algorithm, we will determine the types of all the terms. We will start with a type assign-
ment L e T¢ and iteratively apply F, which uses MINSIGN from Example 60:

L FL) FAL) F3(L) F4(L) F5(L) Fo(L) F7(L)
a|l L int int int int complex complex
b| 1L L 1 1 complex complex complex complex

sqrt(a) | L L 1 complex complex complex complex complex
b+r1 | L L 1 1 1 complex complex complex

-2 | L int int int int int int int

1|1 int int int int int int int

Since FO(L) = F7(L), this value gives a valid and minimal typing for the code.

7.2.3. Transcompilation

Once a typing I € T¢ is computed, the transcompilation to GPU shader code is straight-
forward. If the program was not well typed, i.e. there is an expressionte & with 'y = T,
then the computations will be evaluated on the CPU. Otherwise (and we hope in most
cases), we apply the following scheme:

An expression t = fun(as,...,an) € D can be converted to shader code by carrying
out the following three steps:

(1) First, translate the arguments a, . .., an recursively to shader code.

(2) Then up-cast each of the translated arguments a;, that has type I'q,, to the type

(MINSIGNfun(I—a1, . .,Fan)1)

i

employing the subtype-embedding function. Note that by definition (Ig,, ..., q,) E
MINSIGNfun(rm, . Fan)1.

m

Chapter 7. Programming GPUs

(3) Lastly, embed the implementation in the shader language of fun that corresponds
to the signature MINSIGNfun(l_Ch, ...,Tg,) into the header of the generated shader
code (provided it has not already been done) and return the application of this func-
tion to the up-casted translated arguments as translated shader code for fun(as, . . ., an).

For each uniform variable/term, a new unique variable name will be generated and
used in the program.

After this translation to shader code, the driver-dependent GPU compiler will be used
to compile and link the generated shader code.

According to Marrin (2011), WebGL 1.0 allows only a fixed number of loop repetitions
and fixed-length arrays. However, often the number of loop repetitions or the length
of a list is based on input parameters. In this case of a changing number of repetitions,
a re-compilation becomes necessary after the corresponding variables have changed
their value. If the constant values are encoded as separate types, this re-compilation
can be enforced without significant effort. A change of these constants would corre-
spond to a type change, and, according to our scheme introduced in Section 7.2, this
would trigger a re-compilation.

7.2.4. Lazy storage of data

A suitable way to store the outcomes of shader programs is to write to textures. Reading
this data is possible by texture lookups. According to Gregg and Hazelwood (2011), the
memory transfer between CPU and GPU has severe effects on the running time of an
application and thus has to be minimized. Therefore, we store GPU-generated data
exclusively on the GPU as long as necessary, and the data is only visible for shader
programs that run on the GPU. Only if there are read accesses by the part of the code
that runs on the CPU, data will be transferred.

Within a single shader program, the preference is often to write data to a target
(texture) that is also used for reading. That is problematic for many GPU-APIs. For
instance, the WebGL API specifies that the occurrence of operations that both write to
and read from the same texture, creating a feedback loop, will generate an error, see
(Marrin, 2011, 6.26). For these feedback loops, a ping-pong approach can be used: If
both read and write accesses on a texture object are detected, the texture will be stored
twice: one texture for reading and another target texture for writing. After the execution
of a shading program that writes to the corresponding texture, the two textures will be
swapped. For following reading accesses, data will be read from the generated texture.

12

7.3. Example implementation: CindyGL

7.3. Example implementation: CindyGL

In (Montag and Richter-Gebert, 2016), we demonstrated an implementation of our pro-
posed concepts. We developed a plug-in called CindyGL for CindyjS. Cindy)S (von
Gagern, Kortenkamp, Richter-Gebert, and Strobel, 2016) aims to be an open source web-
compatible porting of the dynamic geometry software Cinderella (Richter-Gebert and
Kortenkamp, 2000) 2. CindyGL can translate the Cinderella inherent untyped scripting
language CindyScript to GLSL and it enables a smooth integration of dynamic geometry,
CPU, and GPU programming.

As Cindy/S runs in a web environment, CindyGL can utilize WebGL to execute the com-
piled GLSL-Code on the GPU. This capability leads to easy portability because WebGL-
capable browsers are widespread. By September 2019, almost all3 of the browsers used
on desktops, smartphones and tablets supported WebGL 1. Visualizations that use
CindyGL can be quickly distributed because no additional software usually has to be
installed to access WebGlL-based contents. Also, the visualizations will be comfortably
accessible on new devices that provide a WebGL-capable browser. If no acceleration is
available through the GPU, as a fallback solution, the smooth language integration can
be utilized to execute all the code on the CPU.

The comparable simplicity to program GPU accelerated applications through CindyGL
has led to several implementations. Examples of visualizations that have been gener-
ated through CindyGL can be found online* and tested on almost every browser. In
the following sections, we will present a short introduction to CindyGLS and briefly
demonstrate some CindyGL-applications.

7.34. Usage of CindyGL

CindyGL implements a command called colorplot. The colorplot command as-
signs a color to each pixel of the screen or a given area according to a given function.
The given function is usually dependent on the pixel coordinate #. # is a 2-component
vector. Alternatively, if another free variable is detected, it can also become the running
variable. If both the variables x and y are free, then colorplot will interpret x and y
as the coordinates of a pixel. If the free variable z is used, then the coordinate will be
interpreted as a complex number with z = x+1*y.

Ifthe function within the colorplot statement attains real numbers as values, then

2The entire project is open source and available at https://github.com/CindyJS/CindyJS
3According to https://webglstats.com/, 98% in September 2019

“For example, in our web-gallery https://cindyjs.org/gallery/cindygl/

5A more elaborate tutorial is available online at https://cindyjs.org/docs/cindygltutorial/

M3

https://github.com/CindyJS/CindyJS
https://webglstats.com/
https://cindyjs.org/gallery/cindygl/
https://cindyjs.org/docs/cindygltutorial/

Chapter 7. Programming GPUs

©» (XIS

Figure 7.3.: (a) Circular sinusoidal wave generated by the colorplot command. (b), (c),
(d): Vlsuallzatlons of the elliptic curve y? = x3 - x + 3 as zero set off(x y) =
x3=x+ 3 -y? (b) colorplot(f(P)) making the values of f(P) e [0,1]
dlstmgwshable as grayscale value (values outside the range are either black
or white), (c) colorplot(exp(-10*|f(P)|)) highlighting the zero set
and (d) by an approach that detects points close to the curve based on the
intermediate value theorem.

its color will be interpreted as a grayscale value where 0 is black, and 1 is white. If the
result is a three-component vector, then the vector will be interpreted as an RGB value.
If there is also a fourth component, the value of this component will be interpreted as
an alpha value (transparency).

Example 62. The following CindyScript code is an example to render a circular sinu-
soidal wave through a colorplot:

colorplot(// assigns to each pixel with coordinate # a color
1/2+1/2*sin(|#|-seconds()) // an animated centered sinusidial wave
); // seconds() is the current time in seconds.

Once CindyJS executes the code, a circular wave as in Fig. 7.3a becomes visible. By
executing the code many times within a second, an animation is created (see Applet
>7). Since the computation is accelerated on the GPU, real-time rendering is possible
on almost every modern device.

CindyGL, as an implementation of the concepts described in Section 7.2, compiles the
suitable parts of the code which is passed to colorplot to GLSL and then to WebGL-
binary the first time the command is called on a given expression. For consecutive calls,
the compiled program is re-used as long as the occurring types have not changed. If
the types have changed in the meantime, a recompilation is forced.

In the following sections, we will present a selection of various use case scenarios
of CindyGL.

14

https://aaron.montag.info/dissertation/7

7.3. Example implementation: CindyGL

7.3.2. Implicit curves and sets of locus within dynamic geometry software

We assume that we are in the Euclidean plane and f : R? — R is a smooth function.
Instead of a plot of f, often the variety V(f) = f7'({o}) is of special interest. In this
section, we assume that the gradient of f does not vanish on V(f), which makes V(f)
(locally) a curve by the implicit function theorem. The colorplot command gives
a very simple pipeline to visualize these curves. It is still very efficient compared to
conventional approaches (for no known parametrizations) because the GPU performs
the computations in parallel.

An example of implicit curves are elliptic curves. They can be defined by the equation

y2=x3+ax+b

where a and b are real numbers such that A = —16(4a3 + 27b2%) +# o.
We define an implicit f as follows

F(P) := (
X = P.x; y = P.y;
x*3 + a*x + b - y*2 // last line: return value

);

Itis clear that f(P) = 0iff Pisin the elliptic curve. The evaluation of colorplot(f(P))
renders an image as in Fig. 7.3b (P is a free variable and therefore will be detected as
a varying pixel coordinate). The elliptic curve is located where black just becomes
gray. How can we visualize the points P in the plane such that f(P) becomes zero more
apparently? In general, running a test to determine whether f(P) becomes zero for a
finite set of pixel coordinates P obtained by rasterization is problematic because of
numeric issues and the fact that it is improbable that P will hit a zero of f, even if the
corresponding (rectangular) pixel contains zeros of f because if f is a non-constant
algebraic function, the zero set has Lebesgue measure o. Liste (2014), who utilizes
the “sweeping-line” GeoGebra on the CPU, suggests a rendering approach, which can
be modeled in CindyGL via the command colorplot(exp(-10+|f(P)|)) (see Fig.
7.3¢). All of Liste’s applications can be easily transferred to the modern GPU-based
colorplot via CindyGL and work in real-time on this architecture.

A straightforward approach to determine a subset of pixels that contain a part of the
implicit curve is the evaluation of the values of f at each corner of every pixel. If these
values can be separated by zero, then according to the intermediate value theorem,
the curve must “enter” the pixel, and the pixel can be marked as one that contains the
curve. This approach can be implemented in CindyGL via

15

Chapter 7. Programming GPUs

Figure 7.4.: (red) Loci computed on the GPU via the colorplot command: (a) All points
P such that % =2 (b) The conchoid of Nicomedes, i.e. the set of all points
P that are obtained by moving M in the construction. The second branch of
the conchoid can be reached if M is moved through infinity (c) Watt's curve,
which describes the set of all points E such that E is the midpoint of C and D,

which are two points on distinct circles and have a constant distance |C-D].

tinysquare = [[-1,-2]1,[-1,21,[1,-11,[12,12]11/100; // the corners of a pixel
colorplot(
// evaluate f at the corners of pixel with center P
values = apply(tinysquare, delta, f(P+delta));
if(min(values) <= 0 § o <= max(values),
[1,0,0,1], // the signs swap => plot red with full alpha
[0,0,0,0] // all signs are same => plot nothing (transparent)
)i
);

If the gradient of f does not vanish at V(f) (for the elliptic curves this is guaranteed
by A # 0) and if the curve has a sufficiently low curvature, then all pixels containing a
substantial part of the curve are detected by this method, and a meaningful image can
be acquired. Replacing tinysquare with a bigger n-gon, provides a straightforward
approach to render the curve less precise, but bolder (see Fig. 7.3d).

These implicit curves are of particular interest in dynamic geometry software if they
describe the locus of points by geometric terms. As Botana and Abanades (2014) point
out, the computation of loci can be a tool for computer-aided discovery of mathemat-
ical properties. Holzl (2001) argues that visually accurate sets of locus even without a
direct proof can do excellent service in finding evidence: A proof of a hardly doubted

116

7.3. Example implementation: CindyGL

property made visible through a locus set can be postponed until a suitable context
has been found where it can be embedded.

As a very simple example, given two distinct points A and B in the Euclidean plane
and a ratio r € R>p, a user of DGS could be interested in the set of all points P such
that the ratio 124l takes the value r. The set of those points can be visualized by the

[P-B]
approach above by exchanging f with
f(P) := |P-Al/|P-B|-r;

The rendered curve, which is the zero set of f, are all the points fulfilling “Z:é‘ = r (Fig.

7.4a shows an image for r = 2). When rendering this curve, it instantly becomes visible
that those lines of an equal ratio of distances are circles, or if r = 1, the perpendicular
bisector (line) of A and B. Certainly, this observation of an image does not give a formal
proof. However, when this property is needed, it calls to find a proof of such properties.

A more complex locus is the conchoid of Nicomedes. Let a be a line, and C be a
point. Furthermore, let Co be a circle with its center M on a and a fixed radius. The
conchoid is the set of all points P, that can be obtained as the intersection of Co and
the line connecting M and C if M is moved along a. This condition can also be written
as an implicit formula for the point P by building a backward construction of M based
on a point P. The point M can be constructed as the intersection of a and the line
connecting C and P. P is contained in one of the two branches of the conchoid if P
lies on a circle with M as the midpoint and the radius Co. The geometric construction
and the check give rise to the following definition of f, that in a sense reverses the
construction sequence:
f(P) := (

1 = join(C, P); // the line connecting C and P

M = meet(l, a); // the intersection of 1 and a

|P.xy-M.xy|-Ce.radius // return value; =0 <= P is in the locus

);
The zero set of f, which is the locus set of the conchoid, can be rendered by the ap-
proach above (omitting potential singular points). The results can be seen in Fig. 7.4b
orin Applet 8. If the geometric construction, which is built within the DGS, is modified,
then the GPU computes the new locus in real-time. Note that also types for geometric
primitives, such as points and lines, and basic geometric operations have been imple-
mented as a data-type in CindyGL. This enables the transcompilation of such functions
f to GPU code and thus enables a stronger interplay of dynamic geometry software and
GPU computations.

We were also able to compute the locus of Watt's curve on the GPU (see Fig. 7.4C
and Applet t>9) utilizing a similar geometric “backward construction”. The construction

M7

https://aaron.montag.info/dissertation/8
https://aaron.montag.info/dissertation/9

Chapter 7. Programming GPUs

involves the intersection of circles and the reflections around a point, which again
has been transcompiled to the GPU by our approach and the images of the locus are
rendered in real-time. The generalization and mechanical application of this technique
of using a backward construction to yield an implicit formula could lead to further
research.

7.3.3. Feedback loops and GPGPU applications in CindyGL

A strength of colorplot is the ability to plot to a texture besides drawing on the
screen. This rendered texture can be read in consecutive calls of colorplot with the
imagergb command. The possibility to read and write texture data enables the cre-
ation of feedback loops on the GPU and opens the door for many GPGPU computations.

If a user reads and writes to the same texture with some deformations in between,
a video feedback loop can be simulated by pointing a camera at a screen that displays
the image that the camera records. This technique presents an interesting approach
to rendering fractals:

Example 63. Fractals that utilize an escape time algorithm can be rendered through a
feedback loop system via colorplot. For instance, the filled Julia set for a function
z— 7z?+c can be approximated by running the following CindyScript source code several
times (see Applet >10):

colorplot("julia", // plot to texture "julia":
if(lzl<2, // if |z] <2, take the color from texture
imagergb("julia", z"2+c) // "julia" at position z%>+c
+ (0.01, 0.02, 0.03), // and make it slightly brighter
(0, 0, 0) // otherwise: display black.
)
)i

The color of a pixel becomes brighter if it takes more iterations to leave the escape
radius 2 from the coordinate of the pixel. After about 50 iterations the fractal in Fig.7.5a
can be seen.

The use of CindyGL is not limited to graphical visualizations. Computationally de-
manding numerical schemes are often good candidates for the GPU as well. Data can
be stored on textures, and parallelized computations on the data can be triggered by
executing a colorplot that reads from these textures via imagergh. As an exam-
ple for GPGPU programming, we used CindyGL to simulate the interactions of n bodies
(see Fig. 7.5b or Applet >11). The maximum number of simulated particles that allows

118

https://aaron.montag.info/dissertation/10
https://aaron.montag.info/dissertation/11

7.3. Example implementation: CindyGL

Figure 7.5.: (@) The Julia set generated through a feedback loop approach (b) Numeric
simulation of the n-body problem with 500 particles with positive unit
charge and 500 with negative unit charge. All the n? = 10° interactions
(Lennard-Jones potential) are computed and provide a real-time simulation.
(c) Numeric simulation of the Navier-Stokes equations

a real-time visualization increased drastically compared with a corresponding CPU im-
plementation. We also simulated the behavior of a fluid by approximating the solution
of the Navier-Stokes equations on a GPU (see Fig. 7.5c or Applet i>12). The total number
of lines of code required to implement this simulation applet with CindyGL dropped to
about one fourth as compared to an equivalent plain WebGL implementation.

7.3.4. Educational value

Kaneko (2017) argues that the dynamic geometry software on personal computers is
often not used in classrooms because of the technical obstacles. However, providing
the teaching content on modern touch devices such as iPads and tablets can overcome
this obstacle. Aside from PCs, both CindyJS and CindyGL are suitable for these modern
devices because they only depend on a portable plugin-less web technology. Kaneko
showed that using this technology has a positive influence on learning.

So, for the teachers, the use of CindyGL provides a suitable technique to provide
GPU-accelerated content. Using CindyGL, the instructors can distribute the interactive
content by sharing a single HTML file.

For the students, the task to generate visualization with this framework can be very
fruitful as well. Different learning content from mathematics, computer science, physics
and other fields can be connected in such tasks. Because of the seamless integration
of GPU code in a familiar scripting environment of a DGS, the creation process does not

119

https://aaron.montag.info/dissertation/12

Chapter 7. Programming GPUs

Figure 7.6.: CindyGL rendered visualizations of the function f : C — C,z — = (a)

Phase portrait of f, (b) truncated Taylor expansion of f at zo = 3, (c) stereo-
graphic projection of f on the Riemann sphere.

require of users to know or learn another programming language. CindyGL eases the
programming of shaders. Non-experts can use it to visualize mathematical concepts
without having to learn about shader programming.

Advanced tasks were assigned to two university students as part of their bachelor’s
theses, with CindyGL provided as a tool. Both students started experimenting with
CindyGL, drew their mathematical conclusions, and, furthermore, created interactive
GPU-based teaching material without previous knowledge of shader programming. In
his bachelor thesis, Konnerth (2017) simulated several concepts of complex analysis
with phase portraits of partial sums of the Taylor series (see Fig. 7.6b) and a raycasted
Riemann-sphere (see Fig. 7.6¢) using CindyGL. In another bachelor’s thesis, the rolling
shutter effect was simulated on the GPU, based on CindyGL.

A seminar aiming for GPU-based mathematical visualizations for a group of mixed
Bachelor- and Master-students in Mathematics without previous experience in graph-
ics card programming has been conducted as well. After two sessions of 90 minutes
of introduction into Cindy/S and CindyGL, the students were able to develop within
the consecutive six sessions several elaborate visualizations that used these tools. A
raycaster for three-dimensional Apollonian fractals, an illumination simulation, a fluid
simulation, a visualization tool for hyperbolic geometry, and a volumetric renderer that
has been used to visualize a variant of Conway's Game of Life and a Runge-Kutta based
three-dimensional simulation of the reaction-diffusion equation have been developed.
The interactive widgets developed by the participants are available online®.

®https://geo.ma.tum.de/en/teaching/visualization-gpu.html

120

https://geo.ma.tum.de/en/teaching/visualization-gpu.html

Part Ill.

Application: DPMs for Visualizations

121

Chapter 8.

Visualizations of implicit surfaces

Although mathematics is a discipline in which it is desirable to achieve results by formal
deductions, the illustration of mathematical objects is also beneficial. The resulting
visualizations often help in understanding and serves for better understanding. Typical
illustrations can be images, animations, or shapes in three-dimensional space. Some
visualizations originating from mathematics may also have a special aesthetic value.
For instance, algebraic surfaces from the field of algebraic geometry are challenging to
visualize. In this chapter, we will put a particular focus on zero sets of real polynomials
in three variables.

In the second half of the 19th and early 20th centuries, a culture of mathematical
model building emerged, that included the creation of algebraic surfaces out of plaster.
Alexander von Brill and Felix Klein conducted several seminars at the Royal Technical
University in Munich on the construction of mathematical models (Fischer, 2017). Many
of the models sold by the Brill-Verlag, which was later taken over by Martin Schilling,
are replicas of the models that have been originally created in Munich (Schilling, 1903).

Many of these models and replicas still can be found in various mathematical in-
stitutes. In 1985, Gerd Fischer produced an aesthetic photographic collection of sev-
eral of these models (Fischer, 2017) and gave me kind permission to use some of his
photographs of the old models of algebraic surfaces in this work. These photos are
depicted in Figure 81. Can we create images that resemble these photographs in real
time directly on the computer?

During the development of CindyGL, it was helpful to have some several benchmark
projects that utilized the framework in a non-trivial way. One mathematical demand-
ing benchmark project was the implementation of a raycaster for algebraic surfaces.
Three-dimensional mathematical models of algebraic surfaces should be depicted on
a two-dimensional screen. CindyGL is aimed to be a powerful, user-friendly tool that
makes it possible to implement a real-time renderer for a broad set of implicitly defined

123

Chapter 8. Visualizations of implicit surfaces

Figure 81.: Plaster models of algebraic surfaces: (a) Clebsch diagonal surface, (b) Kum-
mer surface and (c) Parabolic ring cyclide. The photographs were kindly pro-
vided by Gerd Fischer.

functions. This benchmark tested the possibility for interactive real-time raycasting
and the ability to express and trans-compile a system that involves multiple numerical
algorithms and user-defined mathematical formulas. The numerical algorithms were
supposed to be specified in a high-level programming language. Later it will turn out
that the presented raycaster can be easily converted into a path tracer (Section 8.4).

A further motivation was that this project would give rise to a web-capable raycaster
that is based on JavaScript and WebGL. The software SURFER of Stussak (2009) was
a strong source of inspiration. Even though SURFER also utilizes GPU shaders, it is
based on Java. Currently, Java-based applets are not supported in several major modern
browsers anymore’. Another source of inspiration has been the raycaster of Reimers
and Seland (2008), which uses the Bernstein basis for better numeric stability.

The CindyGL based raycaster was made available online?. Since it accesses WebGL
and JavaScript only, the raycaster is supported even on high-end mobile devices with-
out the installation of any plugins or additional software. Such an easily available
tool for rendering of algebraic surfaces could be used for mathematics communica-
tion. IMAGINARY has used this raycaster to render mathematical love greetings from
algebraic equations specifying heart shapes. Through this way, the New York Times
also featured the developed raycaster for the Valentine's Day 20193.

TFor instance not in Chrome and Firefox https://www. java.com/en/download/faq/chrome.xml,

https://java.com/en/download/faq/firefox_java.xml
>The raycaster is available online at https://cindyjs.org/gallery/main/Raytracer/
Shttps://www.nytimes.com/2019/02/14/science/math-algorithm-valentine.html and

https://love.imaginary.org/

124

https://www.java.com/en/download/faq/chrome.xml
https://java.com/en/download/faq/firefox_java.xml
https://cindyjs.org/gallery/main/Raytracer/
https://www.nytimes.com/2019/02/14/science/math-algorithm-valentine.html
https://love.imaginary.org/

In the development process of the raycaster, the following opposing objectives had
to be weighed out:

Mathematical accuracy The rendered surfaces should be as accurate as possible. How-
ever, in general, this is a severe problem and no existing real-time algorithm that
correctly renders every surface is known to the author. Both the raycasters for
algebraic surfaces of Reimers and Seland (2008) and Stussak (2009) have some
problems rendering (exotic) surfaces of a higher degree close to singularities.

Real-time The surfaces should be render-able in real-time on GPU shaders. This means
that an approach that relies on Grobner base computations during its render pro-
cess is likely not to work due to the double exponential running time. The choice
of a suitable robust algorithm to compute the roots of a real-valued polynomial
is crucial in this aspect.

GPU suitable Approaches that require a lot of code jumps are less suitable for the GPU
than approaches that have a more predictable and well-parallelizable program-
flow.

Web suitable For portability, WebGL should be the rendering backend. However, We-
bGL currently supports only single precision floats (32-bit) whereas desktop ap-
plications such as SURFER utilize double float precision (64-bit).

Compilation time After a user of the raycaster enters a formula, not much time should
last until the shader-code is trans-compiled. Due to the unrolling of parallelized
loops, the code complexity is dependent on the desired degree and precision. The
major part is not induced by the trans-compilation of CindyGL. The compilation
of the GLSL code generated by CindyGL through the vendors graphic card driver
takes up most of the time. Within the WebGL API, complexity reduction of the
program seems to be the only possibility to influence this compilation time.

Several experiments of different approaches and algorithms were tried out to find a
trade-off. The best approach found through these experiments and considerations is
presented here.

In the following, let F: R3 — R be algebraic and irreducible. The aim is to visualize
the surface V(F) = F'({o}) by raycasting.

Mathematically, the process of raycasting can be described as follows: For each pixel
p of a rasterization screen, there is a ray (an affine linear function) :R — R3 that
passes through the pixel on an imaged projection plane and possibly “hits” the surface
V(F) at some coordinate sp € R3 (possible within a predefined clipping space such a

125

Chapter 8. Visualizations of implicit surfaces

filled sphere or cube). The pixel p can be colored according to sp. To obtain good
Hﬁigg;“ can be taken into consideration; the
shading can be done based on the scalar product of a light direction and the normal
of the surface. An important observation is that the function fp = Forp : R - R
is a polynomial and the degree of fp is bounded by the degree of F. A root t of fp
corresponds to the root rp(t) of F. Hence, the problem of raycasting algebraic surfaces
can essentially be reduced to the problem of locating the real roots of a univariate
polynomial for each pixel. This scheme is suitable for massively parallel computations
on the GPU.

In pseudo-code a generic raycasting-scheme looks as follows:

visualizations, the normalized gradient

Algorithm 20: Gerneral scheme to visualize the surface F(x,y,z) = o through
raycasting
Input: An algebraic function F: R3 - R
Output: A two dimensional visualization of V(F) = F{o}
1 Compute dF : R3 — R3 through symbolic computation on the CPU
while program is running do

N

3 Consider user inputs to specify the zoom/rotation/position of the viewer

4 compute x[pl, x : PIXELSPACE — COLORSPACE everywhere as

5 Consider ray rp that lies behind the pixel p

6 (a,b) < an interval such that [rp(a), rp(b)] = R3 corresponds to the
intersection of rp and the clipping area.

7 t « FIRSTROOT(F o rp, a, b), the smallest root in (a, b) of the polynomial
fo=Forp

8 return a color for the intersection point rp(t) based on dF(rp(t))

9 Display image x

One very simple implementation of this scheme in CindyGL without clipping space
is given in the following example:

Example 64. A simple example is the function F(x, y, z) = x?+y?+z2=1with V(F) = {(x,y, x) €
R3 | x2 +y? + 7% = 1} = S2. For simplicity, we assume that a pixel p with coordinates (x, y)
is associated with the ray rp(t) = (x,y,t) and we are looking in positive t-direction. We
yield the quadratic polynomial fp(t) = F o rp(t) = t2 + (x*> + y? = 1), having the real roots
T/ +y2-1if x* +y? =1 > 0. Let sp be the first intersection of the ray rp. It exists

if X2 +y? -1 = 0 and has the value sp = rp(=/x? +y2 -1) = (x,y,~+/X2 +y2 = 1). Since

sp € 5%, we obtain the normal éii";' = sp for free. This yields the following CindyScript
p

code that renders the sphere:

lightdir = [.3,.4,-1]; lightcolor = [1,.8,.6]; background = [.7,.7,.7];

126

Figure 8.2.: Algebraic surfaces raycasted via the colorplot command: (a) the sphere
(b) Barth Sextic and (c) EndraRB Octic.

colorplot(
if(1-x"2-y"2>=0,
s = (x,y,-Isqrt(1-x"2-y*2)|); // intersection with the sphere
(s*lightdir) = lightcolor, // shading based on normal s
background

)
);

CindyGL can trans-compile the code within the colorplot command to GPU shader
code, and an image (see Fig. 8.2a) of the sphere is rendered on the GPU.

For general algebraic surfaces of higher degree, appealing visualizations can be ren-
dered in real-time (see Figs. 8.2b and 8.2c for examples). For each ray rp, we can evalu-
ate degF +1values of F along the ray rp and obtain the polynomial fp by interpolation
(this avoids the need of symbolic computations), of which the roots have to be deter-
mined. However, for higher degrees, the roots of the functions f, have to be found
using a numerical method. So the main difficulty can be reduced to a suitable and as
safe as possible method for approximating real-roots of real polynomials.

Several CindyGl-based experiments for different numeric implementation for FIRST-
RooT have been run and compared: There is an implementation of Aberth-Ehrlich
method (compare Applet >13), another implementation that iteratively applies Rolle’s
theorem and bisection method on fp and its derivatives (see Applet t>14), and an im-
plementation that utilizes Descartes’s rule of signs in Bernstein basis (compare Applet
>>15). The last method turned out to meet the requirements that have been introduced
at the beginning of the chapter the most. It runs stable for a large set of ‘tame” alge-

127

https://aaron.montag.info/dissertation/13
https://aaron.montag.info/dissertation/14
https://aaron.montag.info/dissertation/15

Chapter 8. Visualizations of implicit surfaces

braic surfaces, is very efficient and still has a comparable little compilation time. Thus,
in the following, we will present our implementation of this algorithm.

In short, Descartes’s rule of signs is used to isolate the real roots of the univariate
polynomials fp. We represent the polynomials fp in the Bernstein basis to enhance the
numeric stability. Furthermore, the Bernstein basis reduces the code-complexity of the
implementation and thus its compilation time because the number of sign variations
needed to apply Descartes’s rule corresponds to the number of sign variations of the
coefficients in Bernstein basis with respect to the investigated interval (Sagraloff and
Mehlhorn, 2016). Once the real roots are isolated, the bisection method is used to
approximate the points where rp intersects the surface.

8.1. Square-free polynomials

A polynomial over R (or C) is square-free if it does not contain a multiple complex root.

It turned out that the assumption that the input fp is square-free over R dramatically
enhances the performance of the FIRSTROOT. If the computations were performed on
a well-representable field such as Q instead of R, then instead taking the roots of
fp, the roots of its square-free part fp = gc#ppm could be taken (Heintz et al., 1991).
However, in the definition of several interesting algebraic surfaces such as the Barth
Sextic, irrational numbers occur, thus restricting the used field to Q is not suitable here,
and real numbers are approximated through floating-point numbers. In this case, any
gcd implementation turns out to be non-suitable because the problem of computing
the roots and the square-free polynomial is numerically ill-posed and multiple roots

would split into clusters (Kobel, 2015).

The property of a polynomial to be square-free (over R or C) is equivalent to its dis-
criminant Disc(fp) to be zero. If we assume that the ray map (p, t) — rp(t) is affine-linear,
the coefficients of f = Forp are polynomial in the coordinates of p, then Disc(fp), which
is a multiple of the resultant Res(fp, fp), is polynomial in p. Thus, in the general case (if
F is not constructed with “evil” intentions, meaning if F has constant discriminant o),
the set of points p, such that fp is not square-free over R is a subset of the zero-set of a
non-vanishing polynomial and has Lebesgue measure zero. Most rasterized pixels will
induce a square-free fp. In the following, we will ignore this problem, however, some
rendering artefacts occur for evil-chosen F (comp. Figure 8.3a). Similar issues also oc-
cur for the software SURFER (comp. Figure 8.3b). Some techniques, such as image-post
processing or using supersampling could help to reduce the issue.

128

8.2. Extracting roots of a univariate square-free polynomial

Figure 8.3.: Render errors of the surface (y? +x? -1) - (y? + (x=1)? = 4) = 0 due to double-
roots: (a) An image rendered with Applet 16, (b) A rendering produced with
the software SURFER

8.2. Extracting roots of a univariate square-free polynomial

Many of the following results are taken from Spencer (1994), Sagraloff and Mehlhorn
(2016) and Eigenwillig (2008).

Assume that P € R[X] is a square-free real polynomial. Our aim is to isolate the real
roots of P in a given interval | = (l,u) = R. That means, for each root x, € ([, u) we want
to find an interval I, = (ay,, by) = I such that x;, is the only root contained in /5. Since
we assumed P to be square-free, we know that this root induces a sign-switch within
I, and P(ay,) - P(by,) < 0. After isolation of the roots in I, classical bisection method can
be used on the intervals I, to find an approximate solution to each root x;, with linear
convergence.

How can we determine whether a given interval contains precisely one root?

Descartes’ Rule of Sign gives one answer for the interval (0, o). If we define
var(vp, . .., vp) to be the number of sign variations in a sequence vo, ..., vp € R (where
zero-entries are skipped), then there is a relation of the sign variations of the coeffi-
cients of a polynomial and the number of its positive roots:

Theorem 65 (Descartes’ Rule of Sign). Let P(x) = Z,f’:opixi with exactly kR positive roots,
counted by multiplicity. Furthermore, let v = var(po, . .., pn) the number of sign varia-
tions in the coefficients of P. Thenv > kand v =k mod 2.

We will not restate a proof here. A complete proof can be found in (Eigenwillig, 2008,
Theorem 2.2). The number of sign variations is easy to compute.

129

https://aaron.montag.info/dissertation/16

Chapter 8. Visualizations of implicit surfaces

We will mainly utilize two important intermediate consequences of Descartes’ Rule
of Sign:

- If v = 0, there are no positive roots at all (since k < v = 0).
- If v =1, there is exactly one positive root (k < v = 1 has the same parity as v).

How can we use this result to obtain information about the number of roots of a
polynomial in an interval | = (a,b)? The trick is to apply the Mdbius transformation
X — % that maps the interval (g, b) to the interval (0, o). Its inverse is x — bx":f’.
More precisely, we will define the number v/(P) := var(po, . . ., Pn) as the number of sign
variations of the (formal) polynomial P(x) = (x+1)"P(b)f:f). The term (x+1)" cancels all the
denominators of the rational terms in P(be++1a) and makes P a degree n polynomial. Every
root of P in the interval (g, b) corresponds to a positive root of the polynomial P and
vice-versa. Hence, we can achieve a Descartes-like statement for the number of roots in
(a, b) by counting the sign variations of the coefficients of P. Also the multiplicity of the
roots would be transferred (Eigenwillig, 2008), but since we are aiming for square-free
polynomials, we will not show it here.

How can we obtain the coefficients of P if the polynomial P is given? It would require
a certain computational effort to obtain po, ..., pn from the coefficients p4,...,pn. This
makes it difficult to obtain a term for v,(P) that is efficiently computatble on the GPU.
However, it will turn out, if we represent P in the Bernstein basis, instead of the mono-
mial basis {x°, ..., x"}, then the transformation to P becomes simple. Let us first define

the Bernstein-basis for an interval I = (a, b):

Definition 66. The i-th Bernstein polynomial of degree n for the interval | = (a,b) is

defined as follows: ()A() .
n _(n\(x=a)(b-x)""
BI [a; b](X) - <I> (b_a)n

with i e {o,..., n} (graphs can be seen in Figure 8.4a)

It can be shown that the n +1 Bernstein polynomials of degree n are linear indepen-
dent and thus they form a basis of the n + 1-dimensional vector space of univariate
polynomials with bounded degree n, which we will from now on call M.

Let us represent our polynomial P € My in the Bernstein basis, i.e. P = XL 1b;B['[a, bl.
The graph of P can be considered as the Bézier curve with the nodes (a + £(b - a), b))
(comp. Figure 8.4b).

With ¢, : M, — M, we denote the (formal) re-parametrization map that is defined as

B(PXO = e+ 1P (210).

130

8.2. Extracting roots of a univariate square-free polynomial

P=3> b:B0,1] (2, b4)
\ = ' o
\ =017 / N (5 b5)

Figure 8.4.: (a) the Bernstein polynomials on the interval [0, 1], (b) The graph of a polyno-
mial in Bernstein form can be seen as a Bézier curve to the control polygon.

¢ : Ny — My is well-defined: The term (t + 1)" cancels the denominators of the
rational terms in P(bgf), l.e. ¢ can be considered as a formal transformation of a
degree n polynomial to another polynomial of maximal degree n. Furthermore, ¢, :
My — My turns out to be linear: The required properties ¢;(AP) = A¢;(P) and ¢;,(P+ Q) =
#;(P)+ ¢,(Q) can be easily checked by noting that the evaluation of the polynomials on
each side of the equations respectively gives rise to the same evaluated values. Since
its values at a finite number of sampling points uniquely determine a polynomial in
My, this already proves both equations required for linearity.

We aim to compute the coefficients in the monomial basis of the re-parameter-
ization polynomial P = ¢,(P). With the linearity of ¢, in mind, we can compute the
p-= qb,(Zf’:Ob,-B,”[a, b]) by transferring the basis elements B!'la, bl. The transformation of
a Bernstein polynomial gives a nice result:

#1(81a, b](D) = (¢ + 1)"80[a, b] <btt++1a> i (7) (tb—(lfg)i(l;):7 ayi <ri7>ti

Thus P = ¢(0 b;BMa,b]) = =1 _b;¢y(BMa,b]) = 1 _b;(Nt and finally p; = b;(7).
Since the binomial coefficients are positive, the number of sign variation is the same for
the coefficients of a polynomial in Bernstein basis for an interval | and the coefficients
from the ¢,-transferred polynomial in standard basis. Altogether we have accomplished
the following variant of Descartes’ Rule in Bernstein form:

131

Chapter 8. Visualizations of implicit surfaces

Lemma 67. Let P(x) = ¥ b;B[a, bl(x) be a square-free polynomial in Bernstein-form
that has krootsin | = (a, b). Let v, = var(bo, ..., bn) denote the number of sign variations
of the Bernstein-coefficients of P. Then vi = kand vy =k mod 2.

The number v, can also be considered as the number of the intersections of the
control polygon of P with the zero-line (For instance, in Figure 8.4b Vion) = 4 holds).
Lemma 67 gives rise to the following function that can be used to compute an approx-
imation of the first root of a polynomial in a given interval.

Function 21: FIRSTROOT(P, a, b)
Input: A square-free polynomial Pe R[X], a,b e R, a < b, € € Rsg
Output: An g-approximation of the first root of P in (a, b)
1 obtain Bernstein-coefficients (bo, . . ., bn) of P for the interval I = (g, b)
compute v;, the number of sign variations of (bo, ..., bn)

N

3 if vy = 0 then

4 return oo

5 else if v; = 1then

6 X < run bisection method on (a, b) to approximate root of P up to €
7 return x

8 else

o | meab

10 if P(m) = 0 then

1 \ return min(FIRSTROOT(P, a, m), m)

12 else

13 | return min(FIRSTROOT(P, a, m), FIRSTROOT(P, m, b))

It is clear, if Algorithm 21 terminates, then the result is correct by Lemma 67.

However, there are two questions to answer. The first question is, how it can be
ensured that the algorithm terminates. The second question is, how can it be imple-
mented on a DPM or a GPU, which both do not support recursion in their specification.

8.21. Termination

The answer to termination of Algorithm 21 lies in the “one-circle theorem” and the
“two-circle theorem” (compare Figure 8.5).

Letzy,...,zn € Cbe the roots of Pand let o = min; i (14 12 -2;1 @ number indicating
the minimum distance between every pair of roots of P. Since P is square free, ¢ > 0
and furthermore, ¢ can be bounded from above by the discriminant and the leading
coefficient of P. Here we will show that o multiplied by a constant gives a (generous)

132

8.2. Extracting roots of a univariate square-free polynomial

o

Figure 8.5.: (a) one-circle theorem: No roots within the complex circle imply Vig,p) = ©-
(b) two-circle theorem: If there is exactly one (necessarily real) root within
the union of the indicated two circles then Vigp) = -

lower bound of the size of the intervals that are considered in the recursion in Algo-
rithm 21: Every interval | of length less than /30, either has v; = 0 or v; = 1. Thus the
depth of recursion is bounded and the Algorithm 21 terminates.

The v, of Lemma 67 gives an upper bound of the number of occurring roots. Luckily, in
two clearly defined cases, the upper bound becomes tight. We will obtain a statement
by bounding the value v, from above by the number of roots appearing in the (complex)
environment of I. The following two statements are special cases of the partial converse
of Descartes’ Rule by Obreshkoff (Obreshkov, 1952). These special cases are extracted
from Eigenwillig (2008).

Theorem 68 (“one-circle theorem”). Let | = (a,b) be an interval and D; C the open

disc with center a;b and radius “%C". If a polynomial P has no root in D;, then v, = 0.

Proof. A straightforward proof can be obtained if P is transferred via ¢,. The number
of variations v, corresponds to the number of sign variations of P = ¢;(P) in monomial-
basis. The Mobius-transformation ¢, maps the open disc D, to the right half-plane
R ={ze C | Re(z) > 0}. The one-circle theorem translates into the statement that P has
no sign-variation in its monomial basis if there is no root in R.

So let P e R[x] be a polynomial with no roots in R. Every root of P thus either is a non-
positive real number or a pair of complex conjugate roots with a non-positive real part.
Therefore P(z) can be written as the product of the leading-coefficent p, # 0 and terms
of the form (z-r) with r e R<o and terms of the form (z - ¢)(z- €) = (22 - 2 Re(€)z + £€)
for € e C\ R and Re(¢) < 0. All the summands in each of these factors (z - ¢) and

133

Chapter 8. Visualizations of implicit surfaces

(22 - 2Re(€)z + ££€) are non-negative, therefore they do not cause a sign switch in their
product. Hence all coefficients of P have either the sign of pn # 0 or are zero. The
number of sign variations carries over to the Bernstein form and thus v, = 0. O

If an interval I = R contains a real root then v, is odd by Lemma 67. To show that
Algorithm 21 terminates, we still need to show that for a sufficiently small interval |
containing one root, also v, = 1 holds. The so-called “two-circle theorem” can yield this
property:

Theorem 69 (“two-circle theorem”). Let | = (a,b) be an interval and let T, and T, be
the two equilateral triangles in C having | as one side. Let D be the union of the two
open discs which have the circumcircle of T, and T, respectively as their boundary. If a
polynomial has exactly one root in D, then v, = 1.

The proof for the “two-circle theorem” is essentially similar to the proof of the one-
circle theorem. The set D, which is the union of two open discs tangent to a and b is
mapped via ¢, to the union of half-planes with 0 on its boundary. Mobius-transforma-
tions preserve angles and the circles of the theorem intersect the real-line at angle
%. Thus the angle of the two half-planes that together form ¢,(D) intersecting the real
axis at 0 is also % If there is exactly one root in ¢;(D), it must be real, and it will cause
one sign variation in the coefficients of ¢,(P) if ¢;(P) has degree 1. By induction on the
degree of ¢,(P) it can be shown that any root outside of ¢,(D) does not induce a sign-
flip. Each factor for a non-positive real root or a pair of complex roots outside of ¢;(D)
does not contribute to a sign variation. This check is technical (though elementary)
and is omitted here. A complete proof can be found in Eigenwillig (2008).

From the two theorems above we can conclude that Algorithm 21 terminates for
square-free polynomials: Once |b - al < 4/30, the maximal number of roots in the
one-circle shape or two-circle shape above the interval (a, b) is 1 and thus either v, = o
or v, = 1 and the recursion breaks. Furthermore any value k such that (L;l) <4/30isan
upper bound of the maximum depth of the recursion. Furthermore, only in the proxim-
ity of one of the n roots the recursion does not stop earlier. This bounds the number
of investigated intervals of Algorithm 21 to O(n log “7‘[).

8.2.2. Recursive tree traversal

Algorithm 21 is a recursive scheme to isolate and find roots.

The problem is that recursions, in general, cannot be implemented directly on GPU
shader code. The closest constructs that we are allowed to use in this context are loops.
Moreover, it is not possible to build a stack or queue to mimic the recursion.

134

8.2. Extracting roots of a univariate square-free polynomial

1 1
PN RN
2 3
/N /N / \ / \
4 5 6 7
/NN /NN J\/J\ J\/J\
8 9 10 .11 12 13 14 15 10—=>11 12—=>13 14—=>15

Figure 8.6.: Indexing binary trees such that node n has the two children 2n and 2n + 1
(a) Enumeration of intervals, (b) The functions GODEEPER and GONEXT that
determine the order of traversed nodes for a DFS on a (truncated) binary
tree.

Because the test P(a+b) = 0 in Line 10 of Algorithm 21 almost never holds, we will
ignore it for reasons of clarity and comprehensibility. Without this case, Algorithm 21
traverses a binary tree where each node either has zero or two children. Traversing a
binary problem without recursion or the implementation of a call-stack can be handled
by introducing unique identifiers for each node of the tree. These identifiers were
inspired by an indexing scheme that Cormen et al. (2009) used for indexing an in-place
HEAP data-structure. The node representing the starting interval ([, u) gets the identifier
1, its children, representing the intervals ([, l*“) and (,U) obtain the identifiers 2 and
3. More generally, a node with identifier n that represents the interval (a, b) has the
children2n and 2n+1that represent the intervals (aq, C’;b) and (a;b, b) respectively (comp.
Figure 8.6a). This gives rise to an injective assignment of identifiers to the nodes: The
identifier n of a node is unique since the parity of n indicates whether the node is
the right or left child of its (by induction unique) parent with identifier [gj. The binary
representation of n read from the highest bit to the lowest gives the exact position of
the node n in the binary tree: If the leading 1 is ignored, then each o or 1 corresponds
to a left or right turn in the path from the root to the node.

Instead of performing a recursion, where usually a call stack is built up, we use an
iterative approach where only the identifier n of the currently traversed node is stored.

Based on n and flp2(n) = 2l°%M] n rounded down to the next power of 2, the
corresponding interval can be computed via

n - flp2(n) .
flp2(n) '

This formula follows from induction on |log, n|.

n —flp2(n) + 1

(a,b)=(l+(u-1) flp2(n)

)).

135

Chapter 8. Visualizations of implicit surfaces

Now, let us perform the DFS on a binary tree with indexed nodes without using recur-
sion. Every node n either has two children or is a leaf and does not have any children.
This corresponds to the recursion in Algorithm 21: Either both children are visited, or
the recursion does not go deeper. Depending on the case, the next node either will be
GODEEPER(n) or GONEXT(n) (comp. Figure 8.6b).

In the first case, if the recursion goes more in-depth, the left child is visited first, and
we yield GODEEPER(n) =2 - n.

If we do not go deeper during the DFS, i.e,, the recursion stops, then we distinguish
two cases to determine the next node to be traversed. If n is even, then the currently
visited node was a left child of a parent. Thus the right child of the same parent, which
has index 2| 5| +1 = n+1 will be traversed next. If n is odd, then the current node is
a right child. Determining the next node is more difficult, so we reduce the problem if
we recursively take the next breaking node from its parent with identifier 5| = 252 So
for n > 1 we yield the following recursive rule for the next node after a return:

n+1 if n>11is even
GONExT(n) = ¢ GONExT(Z?) if n > 1is odd (81)
1 ifn=1

We forced termination of the recursion by further defining GONExT(1) = 1. Without the
special treatment for the case n = 1, the recursion of GoNexT(n) would end in a 0-1
circle for every n of the form 2R —1.In this case, the DFS should end. Then the recursion
terminates in all cases and its value can be resolved to a non-recursive expression, for
which we need another binary helping function. Let

ttz(n) = min{% | 2R with k e Ng divides n} e N

the number that is obtained from n if all trailing zeros are truncated from its binary
representation. ttz(n) = n holds for odd n and ttz(n) = ttz(§) holds for even n. If
bitwise arithmetic operations on integers are available* then ttz(n) on integers can
be efficiently computed through them: ttz(n) = n/(n & -n) where & is the bitwise
and-operator (Warren, 2013).

The recursion in Equation (8:1) resolves to the simple expression

GONExT(n) = ttz(n +1).

Again, induction on |log, n| proves the equality: If n = 1, then ttz(n + 1) = 1 = GONEexT(n).
Let n > 1. If nis even, then n+1is odd and ttz(n +1) = n +1 = GONEXT(n). If n is odd, then
ttz(n +1) = ttz(5) = ttz(" +1), and by induction, ttz("" + 1) = GONEXT("S) = GONEXT(n).

“which is the case for WebGL 2 through OpenGL ES 3.0

136

8.3. Interpolation of a function to Bernstein coefficients

These two computable helping functions GODEEPER and GONEXT give rise to the fol-
lowing non-recursive function that is equivalent to Algorithm 21:

Algorithm 22: FirstRootNonRecursive(P, [, u)
Input: A square-free polynomial Pe R[X], Lue R, [< u, € € Rso
Output: An g-approximation of the first root of P in ([, u)

1N <1

2 X« O

3 do

4 s (_2[log2 n|

5 a«—l+@u-D%
6 | bel+(u-)n=sa

7 obtain Bernstein-coefficients (bo, . .., bn) of P for the interval I = (g, b)

8 compute v;, the number of sign variations of (bo, ..., bn)

9 if v = 0 then

10 n < GoNext(n) // For integers, this is equal to
(n+1)/((n+1) & -(n+1)) where & is the bit-wise AND.

7 else if v; = 1 then

12 X < run hisection method on (a, b) to approximate root of P up to €
13 return x

1% else

15 | n < GODEEPER(n) =2+ n

16 while n # 1
17 return x

On particular older shader models, also this do-while loop is not valid. If it suffices
to render pixels with an upper bound on o, then the do-while-loop can be replaced
with a loop with a fixed number of iterations. The number of iterations is a constant
times n log £,

8.3. Interpolation of a function to Bernstein coefficients

In Line 7 of Algorithm 22, the representation in Bernstein form of fp = Forp on a given
interval (a, b) is required. Given (a, b) and rp, how can this representation be obtained
from the trivariate polynomial F?

One approach would be to determine for the ray rp the polynomial Forp in monomial
basis. Then a further transformation could yield the Bernstein form for Forp on each of
the intervals. A pure symbolic approach would not be suitable for GPU computations,

137

Chapter 8. Visualizations of implicit surfaces

Figure 8.7.: The Bernstein-coefficients b = Ay™y of fF(,O"B) on the interval | = (0,1) can

be obtained through interpolation at the values y;, = fp(,o"ﬁ)(xk) for a fixed
set of interpolation nodes x: (a) Equidistant nodes x, (b) A better choice for
x and local interpolation are the expanded Chebyshev nodes for a slightly
expanded interval such that b coincides with y at the boundary. Using bg =
Yo and b, = yn reduces the numeric noise and ensures the correctness of
Via,g) mod 2.

and a numeric conversion from monomial basis to Bernstein basis is ill-conditioned
(Farouki, 1991).

Another computational simpler approach is to use polynomial interpolation to ob-
tain a representation in Bernstein-basis. Let us suppose we are interested in the Bern-
stein coefficients of fp = Forp : R — R in the interval (o, 8). We will study

f;(;a’ﬁ) =Forpo(\—a+XB-a)).

The Bernstein coefficients off[go"ﬁ) for the interval [0, 1] coincide with the Bernstein
coefficients of fp in the interval (o,). So, we are interested in the [0,1]-Bernstein
coefficients offéo"ﬁ). The function f[go"ﬁ) is a polynomial of degree n (the degree of F).
Therefore interpolation at n + 1 points uniquely determines the polynomialféa'ﬁ). Let
us fix a vector of interpolation nodes (xo, ..., Xn) € R", xo < X1 < -+ < xp (the values x;,
are not necessarily strictly contained in [0, 1]). We compute the values yj, = f}ﬂ'ﬁ)(xk). As
we shall see in the following, the [0, 1]-Bernstein coefficients off,ga'ﬁ) depend linearly
on the evaluated values y. The inverse Bernstein-Vandermonde matrix, which we are
going to define, describes the linear map that can be used to obtain the [0, 1]-Bernstein
coefficients.

With Ay € R"*" we denote the Bernstein-Vandermonde matrix for the interval [0, 1],

138

8.3. Interpolation of a function to Bernstein coefficients

degree n and the interpolation nodes x, i.e.

(0)1=x)" (Dxo(1=x0)" ... ()x§

(@) =x)" (Dx(=-x)" . (DK
Ax = . .

(@) a=xn)" (Dxn(r=x)" ... (X7

The Bernstein-Vandermonde matrix Ay fulfills Axb = y with

Vi = Zp_obrBhlo,1](x;) = féa'b)(x,)

where bg, ... by are the Bernstein coefficients offlga'b) for the interval [0, 1]. Ay is regular
if all nodes in x are distinct (Marco et al,, 2007), and thus b = Al"y.

Let us rewrite this interpolation off[()a'b) in [0,1]: The interpolation nodes of fp for an
arbitrary interval (e, 8) can be computed through %, = o + x,(8 - @) and ¥, = fp(Xg). The
Bernstein-coefficients b of fp in the interval (o, B) can then be computed by b= ALY

Since Ay is independent from the used ray and interval, it suffices to compute A}’
once on the CPU in high precision. This matrix then can be used multiple times (for
each ray and even optionally for each recursion node) within Algorithm 22, which will
be parallelized on the GPU, to obtain the Bernstein-coefficients.

We will distinguish two different implementations for Line 7 of Algorithm 22 that
directly or indirectly use the Bernstein-Vandermonde matrix. However, as we will see
those two implementations differ in their compilation time and their numeric stability:

Repeated local interpolation For each interval [, b], the Bernstein coefficients of f in
this interval are obtained through interpolation off[(,a'b) in the interval [0, 1].

A single global interpolation de Casteljau (1963)'s algorithm is a numeric stable scheme
to subdivide Bézier curves or polynomials in Bernstein form. Given a polynomial
in Bernstein form, it can be used to compute Bernstein coefficients on a subin-
terval. Only once for the interval [[,u] (which indicates where rp intersects the
clipping sphere), the Bernstein coefficients are obtained through interpolation of
f[()['“). For each of the sub-intervals [a, b] < [[,u], De Casteljau’s algorithm can be
used (twice) to extract the Bernstein-coefficients of the sub-intervals from the
Bernstein coefficients of the global interval [[, u]. A recursive subdivision scheme
with De Casteljau’s algorithm that spilts the Bernstein coefficients in each recur-
sive step of FINDROOT can not be implemented without a call-stack of a flexible
size.

139

Chapter 8. Visualizations of implicit surfaces

The first approach requires more evaluations of F. After that, each computations of
both approaches requires O(n?) operations. Over real numbers, those algorithms are
mathematically equivalent. However their numeric properties differ.

In the next section, we use Applet >16 to run numeric experiments to compare these
approaches. We will also study some further adjustments, such as the choice of the
interpolation nodes x. Moreover, the alternatives to the interpolation that avoid the
need of using the inverse Bernstein-Vandermonde matrix in the computation of y =
A'b are studied as well.

8.31. Enhancing the numeric stability of the interpolation

Currently, CindyGL trans-compiles the described algorithm successfully to GLSL shading
language 1.0, which provides 32-bit floats as the highest possible precision (Simpson
and Kessenich, 2009). This comparable low accuracy makes some numeric considera-
tions necessary to allow for rendering surfaces of higher degree.

A good set of benchmark examples of variable degree are generalizations of Chmutov
surfaces. Let Ty is the nth Chebyshev polynomial of the first kind and let

Cn(x,¥,2) = Tp(X) + Tp(y) + Th(z) +1.

Cn(x,y,2z) is a tri-variate polynomial of degree n. The zero sets of Cn(x, y, z) with arbitrary
n € 2N give rise to algebraic surfaces that are rich in detail and can be used to test
the numeric behavior of the visualization of high-degree surfaces (comp. Figures 8.8
and 8:10). These surfaces for n < 10 are rendered well for any of the presented ap-
proaches. Under the provided precision of 32-bit floats, none of the variations of the
presented real-time approach can render the surfaces Cp(x,y,z) = 0 for n > 20 in a sat-
isfactory manner. Values of n between 10 and 20 give form test-examples to fine-tune
the numeric stability.

Some approaches show artifacts after zooming far away (equivalently increasing the
size of the clipping sphere). An example is the comparable low-degree Taubin’s heart
surface defined by (x® + 2y2 + 72 = 1)3 - X223 — £?73 = 0 (see first column of Figures 8.8
and 810). A well chosen numeric method should not expose this behavior. So the
example of this zoomed far away surface has been added to the set of benchmark
examples as well.

All these experiments were carried out with Applet >16, where several interpolation
parameters can be adjusted.

140

https://aaron.montag.info/dissertation/16
https://aaron.montag.info/dissertation/16

8.3. Interpolation of a function to Bernstein coefficients

Starting point: Equidistant nodes and interpolation by computing a matrix-vector
product

In Figures 8.8a to 8.8d, the Bernstein-coefficients for each sub-interval (a, b) in Algo-
rithm 22 have been obtained through local interpolation and a naive interpolation-
approach b = Aly. The matrix A;" is computed once in high precision on the CPU. The
compilation time of the matrix-vector product in b = A"y is low and the efficiency at
running-time is high, since the evaluation is accelerated through the usage of built-in
operations.

In Figure 8.8a, equidistant nodes for (0, 1) (excluding 0 and 1) have been used. The
visual results are far from satisfactory.

Chebyshev nodes

The results, in particular for Cio, can be enhanced if instead of equidistant nodes,
Chebyshev nodes in the same interval (0, 1) are used for interpolation (compare Fig-
ure 8.8a vs Figure 8.8b). For a given n, the Chebyshev nodes over the interval (-1, 1) are
defined as the roots of the Chebyshev polynomials Ty, i.e. the values x;, = cos(m2k:1)
for k € {0,1,...,n}. For other intervals, the nodes have to be rescaled accordingly.
In a certain sense, these nodes are the best choice for interpolation nodes (Mason

and Handscomb, 2002; Stewart, 1996): The Chebyshev nodes (x)gzo minimize the term

SUPye(-11) ’Hg:o(x—xk)‘ to 27". The term sup, (4, ‘Hﬁzo(x—xk)‘ plays a crucial role
in bounding the error for node-based interpolation. If P, is a degree n interpolating
polynomial of f in (-1,1) passing through the nodes (xx, f(x;)), then for every x € (-1, 1)
there is some ¢ e (—1,1) such that

Fir(g) 2

(n+1) s

f(x) = Pn(x) =

(X = Xp).

If the values x, are set to the Chebyshev nodes the error of the interpolating polynomial
within (-1,1) can be bound as follows:

SUPge(-1,) f(nﬂ)(g)‘

2M(n +1)!

If(x) = Pn(x)| <

For other intervals (a, b), the values x;, have to be rescaled accordingly and the error
bound within the interval (a, b) becomes:

SUP¢e(a,b)
Py < '
d 20(n +1)!

fmﬂka\(b-a>mj

5 (8.2)

f(x) -

Perturbations in the values y;, have a small impact on the interpolating polynomial.

1

Chapter 8. Visualizations of implicit surfaces

(d) far-expanded Chebyshev nodes including o and 1. The degree of the adaptive interpolation polynomials is truncated to 7.

’

Figure 8.8.: In different columns: Renderings of a far zoomed out Taubin’s heart surface of degree 6 and the surfaces
Tn(x) + Tn(y) + Th(2) + 1= 0 for n € {10, 12, 14, 16,18, 20}. All algorithms interpolate locally in order to compute v; in
FIRSTROOT.

142

8.3. Interpolation of a function to Bernstein coefficients

Expanding the Chebyshev nodes

A trick that solves the noise problem occurring in the far zoomed out structure in Fig-
ures 8.8a and 8.8b, isto include 0 and 1into the set of interpolation nodes. For instance,
the previously defined nodes could be stretched, i.e., the interpolation is performed for
a wider interval. Instead of choosing the Chebyshev for the interval (o, 1), the Cheby-
shev nodes for a slightly bigger interval (0 - 8,1+ §) such that o and 1 are contained
in x can be chosen (as in Figure 8.7b). We will call these nodes expanded Chebyshev
nodes. If xp, = 0 and xg, = 1, then the koth and kqith columns in the matrix Ax will
become unit vectors and consequently the corresponding rows in A" will become unit
vectors. The appearance of those unit vectors corresponds to the fact that the Bezier-
curve always traverses the first and last node of its control polygon. Including 0 and 1
to the base nodes thus guarantees (up to evaluation of F) the correctness of bg = fF’,(o)
and by = fl’)(1), which then implies that v; mod 2 will be computed correctly. In par-
ticular, the two base-cases v; = 0 and v, = 1 in Algorithm 22 will not be interchanged.
The visual difference becomes apparent in the first image (out-zoomed Taubin’s heart)
of Figure 8.8c vs. Figure 8.8b, where we used both polynomials of degree 6; We only
choose the 7 Chebyshev interpolation nodes for slightly different intervals.

Truncating the degree of interpolation and non-algebraic surfaces

A further strategy is to restrict the degree of the polynomials to a fixed degree and
to use fewer interpolation nodes than required. That increases the efficiency and dra-
matically reduces the compilation time for high-degree surfaces (during the compila-
tion, the loops are unrolled; thus the compilation time grows quadratically in n) and
furthermore, it prevents numeric noise for high-degree surfaces. The used Bernstein-
coefficients then do not correspond to the polynomial fp in a given interval anymore.
Instead, these Bernstein-coefficients correspond to an adaptive interpolation of lower
degree. This strategy is inspired by Boyd (2013), who uses adaptive Chebyshev inter-
polation to find roots of univariate equations. We rendered the high-degree images
in Figure 8.8c by bounding the degree of the polynomial for interpolation by 7, i.e, 8
interpolation nodes have been chosen. With adaptive interpolation of comparable low
degree, it is possible to visualize surfaces of drastically higher-degree, though there is
no general mathematical justification that some spots might be omitted while render-
ing. For instance, one could construct unfortunate F that mimics another F that is only
equal at the interpolation points.

Nevertheless, for common algebraic surfaces that do not show too many fine struc-
tures, the results are still good, and this approach makes it possible to render a wide

143

Chapter 8. Visualizations of implicit surfaces

Figure 8.9.: Renderings of surfaces of high-degree. Polynomials of degree 7 were
used for adaptive approximations in order to approximate the roots.
The local interpolation was performed on expanded Chebyshev nodes
in (0 - 4,17 + §) such that o and 1 are interpolation nodes. (a)
degree 80: a “cube” x8% + y80 + 80 _ 9 = o (b) The gyroid
cos(x)sin(y) + cos(y)sin(z) + cos(z)sin(x) = o as an example of a non-
algebraic surface, (c) degree 28: <T3(§)2 vy a2+ %)2—4(5(%)2 +y2)))

(T2 y2 2 22+ 72 - (T (BP +2) = 0

class of simple surfaces such as cubes up to degree 100 without visible errors. In Fig-
ure 8.9a and Figure 8.9c surfaces of degree 80 and 28 have been well visualized through
the same approach that uses only 8 expanded Chebyshev nodes and adaptive interpo-
lation of degree 7. And also some non-algebraic surfaces such the Gyroid can be ren-
dered with this approach surprisingly well (comp. Figure 8.9b). A heuristic explanation
for that behaviour is that the (expanded) Chebyshev nodes give rise to a very accu-
rate approximation. Let P, the degree n interpolation polynomial that corresponds to
the computed Bernstein coefficients in interval (a, b). According to Equation (8.2), the
approximation error of P, can be bound by

|fp(X)_Pn’ <

SUP¢e(i,u) ‘fp()nﬂ)(f)‘ (b - a)”” 5
20(n +1)! 2

where % = cos(ﬁ) is required in this formula because of the expanded nodes. For

n = 7, each subdivision step, which halves the size of the investigated interval, scales
down the error by a further factor (%)8 = 2;—6. The approximation error depends on
the (n +1)th derivative of fp, which can be bound on the compact clipping space if F
is analytic. The smoother F, the better the bound. No evidence has been found of the
termination of the algorithm that uses only approximations. Aborting the recursion

144

8.3. Interpolation of a function to Bernstein coefficients

on small intervals is helpful and helps the visualization. Furthermore, wrong decisions

are made if v b vf and v (ab) € {0,1}. Using extended Chebyshev nodes, i.e.

including the boundanes to the interpolation points guarantees that v = pr
mod 2 and the two base-cases for 0 and 1 are not interchanged. Other errors for
instance overlooking three close roots of fp as one root of Py, might occur.

However, accurate real-time renderings for the surface Cp(x,y,z) = o for n > 18 still
remain a challenge. An experiment using even further expanded Chebyshev nodes
induced more stability, though for n = 20 some flickering rendering errors still occur
(Figure 8.8d). Here, the nodes

d)

X9 = {-0.3827,-0.2483, 0, 0.3244, 0.6756, 1, 1.2483, 1.3827}

were used instead of
x©) = {0,0.0761,0.2168, 0.4005, 0.5995, 0.7832, 0.9239, 1},

and the visual results improved (Figure 8.8c). At first glance, this enhancement seems
counter-intuitive, because the nodes x©) should give rise to a better interpolation
within the “decision-making interval” [0,1] than X9 At this point, the reason for er-
rors seems to lie in an inexact evaluation of f, and F. The strategy to draw conclusions
from evaluations of fp at points that are very close to each other is problematic.

Exploration of variants using global interpolation and de Casteljaus’ algorithm for
refinement

A strategy to circumvent the aforementioned source of numeric errors would be to avoid
interpolation on narrow intervals and use de Casteljau (1963)’s algorithm to obtain the
Bernstein coefficients for subintervals in Algorithm 21.

In Figures 810a and 8.10b, the [0, 1]-Bernstein-coefficients for fg'“) are calculated
only once per pixel. Then the Bernstein-coefficients of subintervals are obtained nu-
merically stable by using de Casteljau’s algorithm. Compared to non-truncating local
approaches (Figures 8.8a and 8.8b), the results for high-degree surfaces are enhanced,
but some numeric noise also arises in surfaces of lower degree.

Increasing the numeric stability of interpolation

In general, the Bernstein-Vandermonde matrix Ay is ill-conditioned and utilizing its in-
verse might be a reason for numeric flaws (Marco et al,, 2007). Numeric enhancements
can be crucial, because we are aiming to produce an implementation for WebGL where
only single precision floats (32-bit) are supported.

145

Chapter 8. Visualizations of implicit surfaces

(a) Equidistant nodes. The initial Bernstein coefficients are obtained through b = A

(d) Chebyshev nodes, enhanced interpolation. The initial Bernstein coefficients are obtained by algorithm of Marco et al. (2007).

Figure 8.10.: Same surfaces as in Figure 8.8. Global interpolation gives Bernstein-coefficients once for each ray. Subdividing

these Bernstein-coefficients via De Casteljau
sub-interval.

’

s Algorithm gives the Bernstein-coefficients for each investigated

146

8.3. Interpolation of a function to Bernstein coefficients

A more numerically stable algorithm for interpolation into the Bernstein-form of the
same asymptotic speed is given by Marco et al. (2007). This algorithm can replace the
computation of A" and the matrix-vector product b = A"y in this context. Based on
Neville elimination, a bidiagonal decomposition of the Bernstein-Vandermonde matrix
Ayx is computed once on the CPU, which then can be used in O(n?) to interpolate the
polynomial fff’“). As a drawback, the algorithm of Marco et al. (2007) requires that the
interpolation nodes x are strictly contained within (0,1). In Applet 16, the algorithm
enhances the approaches with global interpolation and subdivision, albeit for n > 16
significant render errors are still visible (compare Figures 8:10c and 8:10d).

If Marco et al. (2007)’s algorithm is applied to the local approaches in Applet >16 it
gives no visible improvements. An explanation for that is that only low-degree inter-
polation renders there well for local interpolation without errors. These low-degree
interpolations are stable enough for the naive approach utilizing A}". The bottleneck
lies rather in the inaccuracy of low-degree interpolation than in inaccurate interpola-
tion. The enhanced interpolation algorithm cannot be applied to visual better variants
of the local variants that rely on the inclusion of the points 0 and 1, and so its possible
benefits of higher-degree surfaces cannot be used.

Conclusion

For real-time visualization, the approach that uses adaptive polynomials of bounded
or truncated degree that are obtained through local interpolation on expanded Cheby-
shev nodes turned out to be the most suitable variant (compare Figures 8.8c and 8.8d).
By bounding the degree of the polynomials the problems due to numerically weak al-
gorithms do not show up. The lower code complexity reduced the compilation times
drastically. The truncation allows for the visualization of several algebraic surfaces
of high-degree and smooth non-algebraic implicit surfaces. This approach has been
chosen for the final Applet >15.

147

https://aaron.montag.info/dissertation/16
https://aaron.montag.info/dissertation/16
https://aaron.montag.info/dissertation/15

Chapter 8. Visualizations of implicit surfaces

8.4. Monte-Carlo path tracing of surfaces

In the introduction of this chapter, we have posed the question of whether it is possible
to generate images as Gerd Fischers photographs of the old models on the computer?
His photographs (Figure 8:1) show visually pleasing effects due to the indirect illumi-
nations. A surface patch might appear brighter because it reflects light from another
illuminated part of the surface. Can we simulate such a behavior? Instead of tracing
a single ray for each pixel (raycasting), we need to trace further back where the light
comes from (path tracing).

In the preceding sections of this chapter, we focused on raycasting. For each pixel, on
the screen, a single intersection of the ray “behind its pixel” with the surface has been
computed. We have developed an efficient procedure to intersect rays with surfaces. It
turns out that this procedure is also the crucial component in a path tracer. So we have
developed a path tracer that utilizes the previously developed surface-ray intersection
procedure in Applet >17. All photographs depicted in Figure 81 have been rendered
as Monte-Carlo simulation in Figure 811a by using Applet >17. One can observe how
indirect light spreads through the depicted virtual sculptures.

The solution of the rendering equation (Kajiya, 1986) has been approximated by
Monte-Carlo path tracing. We are tracing back the path of light starting from the viewer.
Imagined photons are simulated backward iteratively up to a certain depth or until a
light source is reached. The obtained brightness values are added successively. We
assumed perfectly diffuse surfaces with Lambertian reflectance, i.e., surfaces scatter
illumination equally in all directions, and that intensity of radiation obeys Lambert's
cosine law (Pharr et al,, 2016). The user has to wait some time until the noise in the
Monte Carlo rendered scene becomes invisible. It is new to apply this procedure in the
browser to render algebraic surfaces of high degree. The implementation only uses
backward tracing and produces pleasing images in a fraction of a second. However, to
obtain a smooth real-time path tracer for more complex surfaces, techniques such as
next event estimation would be needed to be implemented.

In addition to the diffuse surfaces, in the used path tracing algorithm, it was not much
effort to model one side of the algebraic surfaces as being built out of a transparent
material. In Applet >17, the user can switch the material to glass. At the surface (and
a part of the boundary of the clipping sphere), incident light is partly reflected and
partly refracted. The refraction of light follows Snell’s law. In physical-based rendering,
the fraction of reflected and partly refracted light should follow the Fresnel equations,
however here the faster approximation of Schlick (1994) has been implemented. One
can observe how caustics on the floor became visible in Figure 811c.

148

https://aaron.montag.info/dissertation/17
https://aaron.montag.info/dissertation/17
https://aaron.montag.info/dissertation/17

8.4. Monte-Carlo path tracing of surfaces

(a) Monte-carlo simulations of surfaces with Lambertian reflectance: the Clebsch diagonal sur-
face, the Kummer surface and the Parabolic ring cyclide. These are computer-generated
versions of the images from Figure 8.1.

(b) Monte-carlo simulations of surfaces with Lambertian reflectance: Vis a Vis (22 + 23 + y? + y“ +
x3 - x* = 0), a variant of the Gyroid (cos(x) sin(y) + cos(y) sin(z) + cos(z) sin(x) + 5 = 0) and the
Togliatti Quintic.

(c) Monte-carlo simulations of glass shapes bounded by algebraic surfaces: A torus, the Barth
Sextic and the algebraic surface (x4 + y*-1)?2 - (2/3-2*) = 0.

Figure 811.: Images generated with Applet 17, a path tracer for surfaces.

149

https://aaron.montag.info/dissertation/17

Chapter 8. Visualizations of implicit surfaces

8.5. Analytic landscapes

A further application of the renderer of algebraic and non-algebraic surfaces lies in
the visualization of complex functions. Let f : C — C be a meromorphic function.
Meromorphic functions are functions that are holomorphic, i.e. conformal, on the entire
domain except for a discrete set D of isolated points. The graph of f would live in the
four-dimensional real space and is difficult to capture visually. However, instead of
visualizing f : C — C, the graph of the function f : R2 \ D — R with f(x,y) = [f(x +i -)l
lies in R3 and can be visualized.

It turns out, If f is rational, i.e. f = % for two polynomials p,q : C — C (wlog. p and g
have distinct roots) then the analytic landscape S¢ := {(x,y, [f(x + iy)I) | x + iy € g7 (C*)}
is a truncated algebraic surface:

)| - |p(x + iy)|
lq(x +iy)l
g+ iy)I2 = Ipx+iy)P=0Az=0

(x,y,z)eSf < z=|f(x+iy
= Z2

As p and g are polynomials, also their squared norms are polynomials in x and y:
[p(x +iy)|? = Re(p(x + iy))? + Im(p(x + iy))?, etc. Thus, the function

Fx,y,2) = 22 - 1qx + iy)I? = | p(x + iy) |2

=72 - (Re? q(x + iy) + Im? q(x + iy)) - (Re? p(x + iy) + Im? p(x + iy))

is algebraic with degF = max{2 +2degq,2degp} and F'({o}) n (R? x R>0) coincides
with Sg, the graph of f, the analytic landscape for f : ¢ — C. In the Chapter before
we have introduced an algorithm that can render algebraic surfaces efficiently and
accurately enough for visualizations through raycasting. This algorithm can be applied
here as well.

The raycasting algorithm requires aside from F, also the gradient dF : R3 — R3 for
shading. The complex derivatives p’ : ¢ — C and g’ : C — C can be pre-computed
through symbolic computation. With the help of the Cauchy-Riemann equations dF :
R3 — R3 can be derived from p’ and g’ :

72 (ReqReq +Imqgimq’) - (Rep’Rep +Imp’Imp)
dF(x,y,z)=2|2z*- (-ReqIimg’ +ImqgReq’) - (-Rep’Imp+Imp'Rep) |,
z((Reg)? +(Imq)?)

where the arguments for p, p/, g and g’ always are x + iy.
In Applet 18, the algebraic surfaces F are rendered for a user specified rational
complex function f (screenshotin Figure 8:12a). In Applet 19 (screenshot in Figure 8:12b

150

https://aaron.montag.info/dissertation/18
https://aaron.montag.info/dissertation/19

8.5. Analytic landscapes

Figure 812.: The complex function f(z) = ﬁj with two zeros and two poles induces
an algebraic surface of degree 6. (a) The associated algebraic surface
2+ (2 +2)y2+xt=2x2+1) = (V¥ - (2-2x%) y2 + x4 +2x> +1) = 0 and (b)
the truncated algebraic surface that equals to the analytic landscape of f.
The color of (x,y, If(x +iy)|) is assigned based on the phase and modulus

of f(x +1iy)

Figure 813.: Analytic landscapes for the functions (a) z — 233—_1 (b) z +— log(z) rendered
with the adaptive interpolation approach.

151

Chapter 8. Visualizations of implicit surfaces

and Figure 813) the landscapes are furthermore clipped such that only patches with
non-negative z-value are displayed. Furthermore, the color of each point (x,y, [f(x+iy)|)
indicates the phase of the complex number f(x + iy) according to Wegert and Semmler
(2010).

The root-finder used in Applet >19 uses adaptive interpolation with degree 7 poly-
nomials. With this, surfaces of reasonable high-degree can still be rendered accurately
and efficiently while avoiding numeric noise. This makes it possible to render well an-
alytic landscapes for rational functions such as 233)—_1 which gives rise to a surface of
algebraic degree 62 (comp. Figure 813a). Also non-rational complex functionsf : C — C,
which do not give rise to an algebraic surfaces, can be rendered surprisingly well with
this approach (comp. Figure 813b, Figures 814b and 814c¢).

8.5.1. Comparison with photographs of old plaster models of complex
functions

In the collection of old plaster models of Schilling (1903) also models that illustrate
complex functions have been included. However, at that time it was usual to make two
separate sculptures for the real and imaginary part instead of choosing the modulus of
the function values as the height and representing the argument with a color. A simple
computation shows that a graph of the real and imaginary part of a rational complex
function f = g is an algebraic surface:

qlx +iy)
- e (pbc+ iy) - qlc+ i) = o,

(x,v,2) € {06y, Refx+iy)) [x+iy e g(C™)} = 2= Rf(x +iy) = R (p(X+ iy))

< z-|qx+iy)?

which gives rise to the tri-variate polynomials, whose zero set is the surface:

F(x,y,2) = z- (Re? q(x + iy) + Im? q(x + iy)) - & (p(x +iy) - qlx + iy)) .

Again, with help of the Cauchy-Riemann equations, dF can be derived.

Options to render only the real or imaginary part of a complex function have been
added to Applet >19. It also turned out that the internal approximation through low-
degree polynomials gives raise to a suitable way to visualize the real and imaginary
part for many non-rational meromorphic functions.

We want to reproduce some of the pictures of the old sculptures, more precisely of
the photographs in the first column of Figure 814, on the computer. The second column
of Figure 814 depicts simulations of the images by raycasting.

152

https://aaron.montag.info/dissertation/19
https://aaron.montag.info/dissertation/19

8.5. Analytic landscapes

(a) Real part of the complex function 1, i.e the plot of the function (x,y) — Re(iny) =

_X
X2+y2

(c) Graph of real part of a Weierstra g function.

Figure 814.: The first column consists of photographs of plaster models that were kindly
provided by Gerd Fischer. The second column contains the plot of the same
function through raycasting. The graph is colored according to the complex
phase of the corresponding function value. The third column consists of
renderings generated through Monte-Carlo path tracing of the same graph.

153

Chapter 8. Visualizations of implicit surfaces

In order to obtain images that are more close to Gerd Fischers’ photographs, more
physical based rendering is desirable and an option to use Monte-Carlo path tracing to
approximate the rendering equation as it has been introduced in Section 8.4 has been
added to Applet >19. The images can be seen in the third column of Figure 8:14.

The Weierstral’ g function for the model in Figure 814¢ has been computed by making
use of its periodicity. The summation in its “fundamental cell” has been approximated
by evaluating a truncated sum of the series of the Weierstall g function, which is a
rational function.

154

https://aaron.montag.info/dissertation/19

Chapter 9.

Deformation of images

Another strength of the presented CindyGL framework is its ability to deform images.
Programs such as

colorplot(
imagergb(image, f(#))
);

compute deformations on the GPU. In Applet t>20, variants of the given program can be
explored. The user can upload images or use the webcam as live-feed input for image.

The function f : R> — R? specifies an (inverse) deformation of an image. The color
of image at position f(#) is assigned to the pixel with coordinate #. In more mathe-
matical terms, image can be considered as a function ¥ : R? — [0, 1]3, which assigns a
color to each coordinate. The program outputs the image X o f : R?2 — [0, 1]3.

These operations are a generalization of deformations. A bijective map specifies a
deformation (in the classical sense) of the original image to the deformed image. To
compute such a deformation in the given setting, f has to be chosen as the inverse
of the deformation function. We also allow non-injective functions f, meaning that
two different patches of the “deformed” image can possibly originate from the same
position of the original image. Instead of speaking of “deforming images”, it is more
precise to say that the original images are looked through a specified function. However,
in this chapter, we will often use the term “deformation”, since the verb “to deform” is
more common in language, although technically speaking it only covers the particular
family of injective functions f.

For instance, the function f(x,y) = (-y, x) corresponds to a 90° (clockwise) rotation,
but also more complicated functions can be used to create interesting effects (Compare
Figure 91).

Since CindyGL performs these operations on the GPU, real-time interactivity is possi-
ble: Both, the image and the function can change in real-time. Together with the ability

155

https://aaron.montag.info/dissertation/20

Chapter 9. Deformation of images

Figure 91.: webcam images viewed through the functions f(x,y) = (x3,y) and f(x,y) =
(x,y) + 0.05 - (sin(40x), cos(4oy)), respectively.

of CindyJS to have a webcam as input feed, even the image of a camera is deformed
in real time. Deforming a live-image is advantageous in Mathematics education: The
interactivity is drastically increased when the user of a program experiments with a
picture of himself or has the possibility to interplay with the physical world.

This scheme has many applications. For instance, von Gagern and Mercat (2010)
introduce several mathematical image transformations (“filters”) that are suitable for
the GPU and present applications in the fields of education and arts. The filters in-
clude the generation of (hyperbolic) tilings by wallpaper groups and the deformation
of images using conformal maps. von Gagern and Mercat note that using live footage
could be used to demonstrate mathematical concepts to the publicin an appealing and
fascinating way and, therefore, could raise people’s interest in the underlying mathe-
matical concepts. The filters presented in their work can be implemented as the afore-
mentioned transformation scheme with relatively little effort. Mercat, for instance, has
already transferred his conformal webcam to CindyGL.

Richter-Gebert (2017) has developed the tool iOrnament Crafter. It is a post-pro-
cessing tool for the app iOrnament. Conform deformations can be applied to the
double periodic previously drawn ornaments. Internally, these deformations are mod-
eled through conformal lookup functions specifying where the original ornament is
accessed to define the color of the resulting deformation at a given coordinate. In par-
ticular, spirals of ornaments can be generated with the help of the complex logarithm.
In the next section, we will give mathematical foundations for these deformations and
show how these effects can be produced using this scheme together with CindyGL.

Also, Kovacs (2019) used CindyGL in this setting in the classroom. He used the inver-
sion atthe unitcircle as deformation function f and pointed the camera to a blackboard.

'See http://bit.1ly/webcamconf

156

http://bit.ly/webcamconf

Drawing geometric objects such as lines or other circles on the chalkboard, the objects
deformed through circle inversion were visible to students instantaneously. Specific
properties of the inversion such as the deformation of lines to circles or the preserva-
tion of tangents could be demonstrated easily.

Images stored on the computer usually have a bounded rectangular size. What hap-
pens if for some position (x,y) on the screen f(x,y) € R? lies outside of the images
domain of the image? By default, CindyGL outputs the color black in this case. It is pos-
sible to lay out the image periodically in the entire two-dimensional plane by using the
modifier repeat->true for the imagergb command. In mathematical terms, the im-
age could be defined as a function x : R?/{wq,w,) — [0,1]3 instead of x : R? — [0,1]3,
hence as a map from the torus to the color space, where {w;, w,) denotes the lattice
generated by the vectors w4, w, € R? spanning the fundamental tile of the image. Points
in R? are identified whenever their difference is a sum of integral multiples of w4 and
Ws.

In Applet 20, it is possible to set the repeat-modifier to true and explore “defor-
mations” of different periodically laid out input images. After having fixed a function
f:R? — R?, the image defined through the concatenation x omof is displayed, where
m:R? — R?/{w,, w,) denotes the canonical projection in the quotient space.

Two further modifiers for imagergb, that are also adjustable in Applet 20, are
interpolate and mipmap. The first modifier specifies the behavior of imagergh
whenever the image is accessed at a position that does not coincide with the middle
of the pixel. With interpolate->false, the color of the closest pixel is returned,
whereas interpolate->true causes that, the color is obtained by linear interpola-
tion of the four closest pixels.

Setting mipmap->true to the value true, triggers CindyGL to precompute some
mipmaps, i.e.,, some downsampled textures are precomputed to reduce aliasing arti-
facts. When a color is requested from imagergb, then the possibility of the OpenGL
Shading model to communicate between neighboring pixels is used: An estimation
of the Jacobian of the current deformation is calculated, which then specifies the re-
quired level of detail of the texture. Technically, a pixel P can be considered as a
square-shaped area on a screen with center (x,y), i.e. P = [-§, £]> +(x,y). The statement
imagergb(image, f(x,y), mipmap->true) gives a very rough heuristic for the

color
1

o2
€% Jpel-5.5]

K) +phap ~ 7 | 50 gt XN,

where the integral on the right hand side is approximated by a lookup in the mipmap-
texture based on the determinant of Jy.
High-frequency effects arising in sparsely sampled patches of the accessed texture

157

https://aaron.montag.info/dissertation/20
https://aaron.montag.info/dissertation/20

Chapter 9. Deformation of images
1 \ \f /\\\% AN \\\%&S\\ §
‘ \ I\ /

idasceed
I \ 1\

Figure 9.2.: Adeformation of a regular pattern induced by f(x, y) = (x, y-exp(2x)) rendered
once with the modifiers interpolate and mipmap set to true (above) and
once without (below).

%
\
SNNNNNNNNNNNNNNNNKNCCEiim 1777777

LM

are reduced (compare the right sides of figure Fig. 9.2).

9.1. Holomorphic functions

Particular nice looking (inverse) deformations f : R? — R? are those which preserve
the angles (including their orientation), i.e. conformal deformations. If we identify R?
with the complex numbers C, f : R? 2 U — R? is conformal, ifand only if f : C 2 U — C
is holomorphic and the derivative of f vanishes nowhere in U (Olver, 2015).

Most functions from complex analysis, such as compositions of polynomials, ratio-
nal functions, trigonometric functions, the exponential map, the logarithm, and the
complex square root, are holomorphic almost everywhere (everywhere but on a set
with vanishing measure they are locally holomorphic). Furthermore, if they are non-
constant, the set of points with vanishing derivative is discrete in their domain. Thus,
they are conformal almost everywhere.

Maps in one complex variable have a methodological advantage: Many of them are
easy to specify if a set of elementary functions such as the complex trigonometric
functions are provided.

In Applet >21, a function f : U — C in one complex variable z can be specified. An

158

https://aaron.montag.info/dissertation/21

9.1. Holomorphic functions

Figure 9.3.: (a) An image from Coimbra, (b) the same image watched through the confor-
mal function f(z) = 22.

image using the following program is rendered:

colorplot(
imagergb(image, f(z), repeat->true)

);

Thereby, to each pixel on the screen a complex number z is associated. The pixel at the
position zon the screen gets the color of the periodically laid out image at the position
f(z). Different periodic tiles, as well as the webcam image can be selected as input. In
formulas, for a given map f, the image x o 7 o f is displayed where the periodic tile
with width wy € Rso and height }vvz € Rso is specified through x : C/{ws, wy) — [0,13.
Again, : C — C/{wq,w,) denotes the canonical quotient map.

The idea to compute images or the webcam looked through a holomorphic maps is
not new (Mercat, 2009; de Smit et al.,, 2012; Mercat, 2015).

Several concepts of complex analysis can be demonstrated and explained by this
framework. Let g : C — C be a (bijective) transformation. Then, with f = g™, the
transferred image is rendered. In Applet >21, draggable complex variables a,b € C
can be used within the definition of f. How do complex numbers act on themselves
through addition and multiplication? It becomes visible that the action g(z) = z+ a
(f(2) = z-a) induces a translation along the vector a whereas the multiplication g(z) = a-z
(f(z) = z/a) causes a mixture of stretching and rotation around 0, moving the point 1
to a. The inversion at the unit-circle can be entered through the anti-conformal map
g9(2) = f(2) = 1. This has been studied in a classroom by Kovacs (2019).

A particular nice non-injective example is the squaring function f(z) = z? (see Fig-
ure 9.3 and Figure 9.4b). The entire complex plane except for zero is doubled in a
conformal way. Mercat (2009); de Smit et al. (2012) have already studied this image
effect induced by the complex squaring function. The framework CindyGL can apply it

159

https://aaron.montag.info/dissertation/21

Chapter 9. Deformation of images

Figure 9.4.: The image x o m o f for different functions f, where 7 : C — C/{(1,i,/3)
denotes the canonical quotient map. The basic tile x : C/{1,iy/3) — [0,1]
is depicted in (a). In (b), the complex squaring function f,(z) = z? has been
used. Subfigures (c) and (d) show visible branch-cuts along R<c when using
the complex logarithm or square root to define fc(z) = v/z- (2 + i) or f4(2) =
Log(2) - (2 + i), respectively. The factor (2 + i) has been added to make the
branch cut more apparent.

to a webcam and create interesting effects. If the webcam points to the screen depic-
turing the live feed image watched through f(z) = 2, we generate images of Julia-sets
as described in Section 4.3.2 (in particular, observe Figure 4.2a).

Can the set of functions that render locally conformal deformations of the original
image be extended? On the contrary, if non-holomorphic functions, such as Log(z)
orsqrt(z), are entered, a sharp line left of zero becomes visible (compare Figure 9.4¢
and d) disturbing the integrity of the image. The visible lines arise from the branch
cuts of the implemented functions.

let S ={ze C | im(z) € (-m w]} be a horizontal strip in the complex plane. Then
the complex exponential function defines a bijection between S and C*. The log-
arithm in CindyJS is implemented as the inverse function of exp : S — C*, i.e, as
Log : C* — S, the principal branch of the complex logarithm. The imaginary part of
Log(z) with z = eltelzlis defined to be ¢ € (-, 7). The map Log: C* — S cannot be con-
tinuous: Consider the complex variable z moving along a path in C* crossing the ray
of the negative real numbers from the upper half-plane to the lower halfplane. When z
approaches the ray from above, the imaginary part of Log(z) approaches . However, if
z comes from below, then the imaginary part of Log(z) approaches —m. Thus, the imagi-
nary part of Log(z) is forced to jump by 2 when z is crossing the negative real numbers.
The complex square root in CindyJS is implemented as the function z — exp(%Log(z)),
and the visible at the negative real axis origins from the branch-cut of the Log. These

160

9.1. Holomorphic functions

branch cuts can also be observed in Applet 19 by rendering the graph of the real and
imaginary part.

Can we still generate images that use the branched complex logarithm without a
visible cut? One way to make the logarithm continuous (and even holomorphic) is to
replace it with a multi-valued function. This can also be considered as replacing the co-
domain of the complex logarithm by C/{27i), where (27iy denotes the subgroup of (C, +)
that is generated by 2mi, i.e. two elements in C are identified whenever their difference
is an integer multiple of 27i. Since the group of translations {27i) acts proper and
discontinuously on C, the space C/{2mi) can be considered as a Riemannian manifold
and the map log: C* — C/{2wi) as conformal.

In order to generate images with the branched complex logarithm avoiding visible
cuts, one can make use of the periodicity of the image. Let the vectors w4, w, € C span
the dimensions of the fundamental tile of the periodically laid out image. The image
X : C/{wsy,wy) — [0,1]3 has a periodicity for every k € Z? \ {o}:

Vze C:x(z+Rwq + Rows) = x(2).

The branch-cut of the logarithm can be made invisible if the jumps by the value 2mi
are aligned with an arbitrarily chosen period of the image:

Lemma 70. Let x : C/{wq,wy) — [0,1]3 be an image with periods w4y and w, and let
7. C — C/{w4,w,) be the canonical quotient map.
Any meromorphic h : C — C together with a k € Z2 \ {0} give rise to a (potentially
branched) function L : U — C via
Riwq + Row
L(2) = Mmg(h(z))
2mi
such that
- mol:U— C/{wq,w,) is conformal on U = C \ {h™(0),h™(e0)}, and, thus,

- the image x omo L : U — [0,1]3, which is defined almost everywhere up to an
isolated discrete set, does not have any visible branch-cuts.

Proof. Let us outline a proof to these properties. For the scaled rotation

}'?1W1 + k2W2
—_ 7

A:C—C,
27

’

we introduce its lift between quotient spaces as A : C/{2miy — C/{Rwq + Ryw,) and
the quotient map 7 : C/{Rqwq + Raw,) — C/{w4, wo) (note that {wy, wy) is a subgroup
of (Rywy + Raw,)). Then the following composition

Uy, ©x 198, ¢ piamiy 2 ©f Ry + Rows) T ©FCw, w)

161

https://aaron.montag.info/dissertation/19

Chapter 9. Deformation of images

Figure 9.5.: The image x o o L with L(z) = Z72V3 | og (%) where the fundamental tile

27

x has the periodicities 1 and i,/3.

consists of holomorphic functions between Riemann surfaces only. The entire compo-
sition as a function is equal to the function wo L, i.e. to the composition

u My, ox L8, ¢ 2 ¢ T, i, w)).

Since the first sequence as composition of holomorphic functions is holomorphic by
itself, also 7o L is holomorphic.

The isolated set of zeros and poles of h : € — C determine the only points where
m o L is not locally conformal. The function mo L : U — x : C/{wq,wa) — [0,1] is
holomorphic. In particular it is continuous. If this continuous function is plugged into
x : C/{ws,wy) — [0,1]3 then the branch cut will become invisible in the image mo Lo
X.]

Figure 9.5 has been rendered using a function constructed according to Lemma 70.
The two periodicities 1 and 4/3i of the base tile have been taken into consideration and
no branch-cut is visible anymore.

162

9.2. The Droste effect

QQSE I [75‘51%

Al
Q%@FB R.

25
3
0@
°

<,

&

Figure 9.6.: (a) An image x : C =2 D — [0,13, (b) its “polar” form Xpolar = X © €Xp,
and (c) the image X o5, build from x5, by artificially adding repetition in
real-direction.

9.2. The Droste effect

The so-called Droste Effect is an effect of an image recursively containing itself (Fig-
ure 9.7a serves as a good example). This section adapts and extends the considerations
presented in de Smit and Lenstra (2003) and Schleimer and Segerman (2016) such that
it fits to the context of the previous section.

Let an image x : D — [0,1]3 with D = C be given. We consciously allow the image
to be potentially defined on the entire Riemann sphere € = C u {0}, allowing for
applying the following on spherical footage. We assume that S « D n C is a compact
set containing o in its interior such that x|s depicts an object that is supposed to be
cut out. This could be the contents of a frame for instance. We recursively replace x|s
by a smaller conformal copy of a part of the image x. In Figure 9.6a, for example, S
could be the area of the blue banner within the red-white striped frame where D c C
is the entire rectangular domain of the image.

Every cutting and pasting step should be conformal to make use of the visually pleas-
ing properties of angle preservation. The final image should be a conformal defor-
mation of the original image in every pixel, except for the cutting positions and the
limit-point 0.

We consider the image x in log-exp conjugated coordinates, which can be seen as a
conformal variant of polar coordinates. In our setting, this corresponds to the image

Xpolar = X © €Xp.

The image xpolar, an example of which has been generated in Figure 9.6b, already
has periodicity 2wi because exp(z + 2mi) = exp(z). We will denote this by interpreting

163

Chapter 9. Deformation of images

exp 1 C/{2mi) — C and Xpolar = X © exp : (exp™' D)/(2mi) — [0,1]3. The Droste effect
can be obtained if a second artificial period is constructed for x5, In the following,
we construct such a periodicity in real-direction based on the given set S, compare
Figure 9.6¢. The Droste effect has one free parameter, specifying the down scaling factor
of an image. We will encode this by a sufficiently small parameter a > 0 such that

exp(a) - S < D. (9)

still holds.
Since S contains 0 = limy_,_, exp(z + ka) in its interior and oo = lim,_, . exp(z + ka)
is contained in the open set C \ S, the discrete set

{kReZ | exp(z+ka)¢ S}c R

attains a minimum for every z € C. Furthermore, the following assignment does not
depend on the choice of a representative z € [z] € C/{a, 27i) up to a multiple of 27i:

ADDPERIODE(2) = z+ amin{k € Z | exp(z + ka) ¢ S}.
This gives rise to a well-defined “periodifying” operator
ADDPERIODS : C/{a, 2mi) — C/{2mi)

and to the tiling

Xpolar = Xpolar © ADDPERIODE = x o exp cADDPERIODY,

having both the periods 27ri and a.

Note that Equation (9) yields (exp oADDPERIODE)™(S) = & and, thus, Xo|ar does not
depict the region x|s anymore that was supposed to be cut out. Also, a has been cho-
sen sufficiently small to avoid accessing the original picture at an undefined position.

For the back-conversion of the tiling Xo(ar : C/{a, 27i) — [0,1]3 from the “conformal
polar coordinates” to the “normal coordinates”, it is desirable to use the complex log-
arithm. However, it is important to avoid visible branch-cuts. At this point, Lemma 70
gives a wide class of potential interesting images: Any complex function L chosen ac-
cording to Lemma 70 can generate the branch-cut free image

X = >~<polar omol =xoexp oADDPERIODg‘ omol.

This function is a version of the original image x to which the Droste effect has been
applied. For instance, the direct back-conversation via L(z) = ©%22T! | og(z) = Log(2)

reversing the previous exponentiation gives rise to an image x with a straight Droste

164

9.2. The Droste effect

(a) L(z) = @222 og(7) = Log(2)) L(z) = Teut2m Log()

27l

\\\‘“

\\\\\\\\\ _/ =

‘ R 7 R 7
I\ =&Y 7 S\ |||S ‘ /, ‘
AR 7//\ 1. N/ g'\ =/ \\\\\\\\\ ‘ /% &
_— : - b’ -

’ \
/ \

(c) L(z) = %2 og(2 tan(z)) (d) L(z) = 22™ Log(4sin(2))

Figure 9.7.: Lemma 70 gives rise to complex functions L such that the images X = Xpolar©
mol show the Droste effect (in classical, twisted, and exotic variants) without
visible branch cuts, even though L has branch cuts. The function Xpojar
C/{a,2miy — [0,1]3 is the same as was used for Figure 9.6.

165

Chapter 9. Deformation of images

Figure 9.8.: (a) Original image, (b) Twisted Droste effect applied to the green area using
Applet >22. Droste area selected by chroma keying.

effect (see Figure 97a). If L(2) = 1'O‘—;r'f—”"Log(z) is used, then the twisted Droste-effect
appears (see Figure 9.7b). The effect occurring in M. C. Escher’s famous lithograph Print
Gallery is in fact of this kind and has been studied from a mathematical point of view
by de Smit and Lenstra (2003). Other parameters and the use of further mereomorphic
functions give rise to more exotic twisted effects, for instance see Figures 9.7c and 9.7d.

The tiling Xpolar : C/{a,2mi) — [0,1]3 used in Figure 9.6 can be applied as input
image within Applet >21 by computing X = Xpolar © L. To obtain sharper images, all
these operators within

X = X © exp oADDPERIODS oo L

can be approximated in real-time and the need for rasterization of an intermediate
image is therefore eliminated. In Applet 22, images are interactively “drostified” by
specifying an object S < C. It is also possible to detect the object as a green screen
(see Figure 9.8) or to compute the Droste Effect on the image captured by the webcam
in real time.

9.3. Spherical image processing

One further possible application of CindyGL is image processing on the sphere. Spher-
ical images and footage can be obtained from spherical cameras.

As already mentioned before, the framework Cindy)S has the ability to read live
footage from the webcam as input. For our experiments the spherical camera Ricoh
Theta S has been used since it can be connected to a computer as an external webcam
and therefore it is suitable for live interactions with Cindy]S.

166

https://aaron.montag.info/dissertation/22
https://aaron.montag.info/dissertation/21
https://aaron.montag.info/dissertation/22

9.3. Spherical image processing

Figure 9.9.: Screenshots of Applet >23. The complex plane in Definition 72 “crosses the
equator” of the sphere. For improved visibility, the plane has been shifted
in the applet, inducing a scaling on the complex plane. Subfigure (a) de-
picts the Riemann sphere and the stereographic projection, and (b) spheri-
cal footage projected on the complex plane.

A spherical image can be considered as a function that assigns a color to each point
on the sphere S?. Commonly, a spherical image or video is stored as a conventional
image or video in equirectangular projection. The two-dimensional coordinate space
of the pixels directly transfers into longitude and latitude of the points on the S?:

Definition 71 (equirectangular parametrization of the sphere). Any point on the sphere
S? except for the poles can be described by a unique latitude ¢ € (-3, 5) and longitude
e (-m] Let D= (-F, %) x (-m, 7] u {~m, 7} x {o}. With atan2(y, x) € (-,] we denote
the angle of the vector (x,y) € R? \ {0,0} and set atan2(0,0) := 0. The bijective map

p: 5% — Dis defined as follows:

) cos(¢) cos(\)
p(x,y,2) = (arcsimiz > ;o NN = | cos(¢)sin(n)
atan2(y, x) 5in(0)

In this representation, idealized? spherical images are considered as functions ¥ :
D — [0,1]3. The spherical image corresponds to the image ¥ o p: S*> — [0, 1]3.
9.3.1. Spherical images as functions on the Riemann sphere

For technical purposes we mapped an image in equirectangular parametrization to
the sphere. However, for mathematical purposes it turned out to be more fruitful to

2In practice, only a finite set of pixels is stored and the special cases for the poles of the sphere are
simply ignored.

167

https://aaron.montag.info/dissertation/23

Chapter 9. Deformation of images

follow the approach of Schleimer and Segerman (2016) and, subsequently, to encode
the coordinate-space of a spherical image on the Riemann sphere C = C u {o0}. The
process behind the re-formalization is the stereographic projection from S2 to C.

Definition 72 (The stereographic projection from S2 to C). The stereographic projection
from S2 to C is a bijective map ¢ : 52 — C with

ooy -1y Fen=n o (& 142) fzeC
I AR G (0,1) ifz=o

Instead of considering a spherical image as a function x : D — [0,1]3 and performing
computations on i or Xop : 5?2 — [0, 1]3, we will consider it as a function x : C — [0, 1]3
through x = X opoo ™. This connection is visualized in Applet 23 and the screenshots
in Figure 9.9. The raycasting of the scene including the plane and the sphere has been
done utilizing techniques described in Chapter 8.

9.3.2. Pulling back analytic functions

Given a transformation f : € — C and an image x : C — [0,1]3, Schleimer and
Segerman (2016) introduce the term pullback of f for the image x o f. Since the stereo-
graphic projection is conformal, images generated as pullback of conformal functions
f: € — C give rise to conformal deformations of images on the sphere. For instance,
the mapz — % induces a rotation turning the sphere upside-down. More generally, the
Mobius transformations z — ZZ?‘Y:Q with (3‘ g) e SU(2) correspond to rotations of the
sphere (Richter-Gebert and Orendt, 2009). The non-bijective example z — 72 as pull-
back function produces a branch-point at the south- and north-pole of the Riemann
sphere.

How to visualize the concept of pullback functions x o f : C — [0,1]3 on a two-
dimensional screen of finite area?

In Applet >23, it can be studied how particular maps on f : ¢ — C are pulled back
to deformations of a sphere (depicted in Figure 9.10a).

In Applet 24, the user is positioned inside the sphere and can observe how the
texture is changing for specified transformations f : C — C (see Figure 9.10b).

What kind of computation is done within Applet >24? Drag moves of the mouse
are accumulated in a Mobius transformation UserRROTATION : € — C. Internal, a SU(2)-
matrix containing the coefficients of the Mobius-transformation UserROTATION : C — C
is iteratively multiplied with new SU(2)-matrices corresponding to the rotations induced
by each of drag events made by the user. The matrix products carry over into the
composition of the corresponding Mobius transformations (Richter-Gebert and Orendt,

168

https://aaron.montag.info/dissertation/23
https://aaron.montag.info/dissertation/23
https://aaron.montag.info/dissertation/24
https://aaron.montag.info/dissertation/24

9.3. Spherical image processing

Figure 910.: (a) A pullback of the function z — z? generates two branch-points at the
poles produced within Applet >23. (b) A pullback of the function z + sin(2)
viewed from inside the Riemann sphere in Applet >24.

2009). Let R < C denote the rectangular area of the visible screen, SCREEN : R — C be
the inclusion map and x : D — [0,1]3 be the camera live-feed, which can be accessed
within CindyJS as a webcam. Applet 24, which aims to visualize the spherical image
x o f, computes and displays the map

K opoo ' of o USERROTATION o SCREEN,

where x is the real-time image from a spherical camera in equirectangular coordinates.

9.3.3. The spherical Droste effect

The deformations of Section 9.2 generating the Droste effect in Section 9.2 can be also
pulled back to spherical images when considered as functions x : ¢ — [0,1]3. The
transformations induced through the “cut-and-paste process” can be interpreted as lo-
cally defined Mobius transformations. Viewing the Droste effect on the Riemann sphere
gives the possibility to “look-back”.

In the formulation of Section 9.2, we generate Droste Effects with the center o € S.
Whatifan object Sisto be cutoutsuchthato ¢ S « C? Apointfrom the interior of S can
be shifted to o by previously applying a corresponding SU(2)-Mébius transformation
MOVECENTER : C — C and the set S can be pulled back through the same deformation.

Within Applet >22, it is possible to produce the spherical Droste effect in real-time
(A screenshot is in Figure 911). For a camera live-feed ¥ : C — [0,1]° and a choosen

169

https://aaron.montag.info/dissertation/23
https://aaron.montag.info/dissertation/24
https://aaron.montag.info/dissertation/24
https://aaron.montag.info/dissertation/22

Chapter 9. Deformation of images

Figure 911.: A twisted Droste effect applied to a spherical image by using the techniques
from Section 9.2 on a spherical image x : C — [0, 1]3

Droste-function L according to Lemma 70, the applet renders the function

% opoo o MOVECENTER

a
o exp oADDPERIODMOVECENTER(S)(Z) omol

o USERROTATION o SCREEN.

Again, it is possible to detect the set S that has to be cut out from a green screen.

This project aimed to generate a playful framework for Mathematics Education. The
potential use of spherical live images increases interactivity immensely. Matt Parker
used the framework and applets presented in this section several times on stage during
the show “You Can't Polish a Nerd” 3.

3See https://www.youtube.com/watch?v=pgyI8aPctal and https://www.youtube.com/
watch?v=UqtakKJQM_GM.

170

https://www.youtube.com/watch?v=pgyI8aPctaI
https://www.youtube.com/watch?v=UqtaKJQM_GM
https://www.youtube.com/watch?v=UqtaKJQM_GM

Chapter 10.

Conclusion and outlook

The thesis started with the question of how GPU fragment shaders could be understood
as a mathematical model. A definition of DPMs has been established. The abstrac-
tion gave a more transparent viewpoint on how to create a class of programs utilizing
rather unconventional computational methods. In the context of this model, complex-
ity classes were defined. Several interesting questions on the lower bounds on com-
plexity arose, and some of them are still open. A particular open question remained:
Can complexity classes be separated according to the dimension of the real domain
allowed within the model?

This work includes a practical part as well. Several different ways for physical re-
alizations of DPMs were outlined. A particular focus lied on realizations through GPU
fragment shaders, which has been the initial motivation. A theorem that allows for
uniform approximation through finitely sampled textures has been derived. It is likely
that the requirements for uniform convergence could be weakened. Also, conditions
for convergence in other spaces, for instance, in measure spaces, are still to be exam-
ined. In this context, programming of such GPUs has been eased in a way that is close
to the original model. This resulted in the software CindyGL, which includes shader
programming within dynamic geometry software.

Several algorithms for visualizations of mathematical content, which include ray-
casting of surfaces, and deformation of footage, were presented using this enhanced
setting. Both of the presented implemented pieces of software in the derived scheme
have caught public attention and have been used by external entities for mathematics
communication.

171

Bibliography

Aaronson, S., 2005. Guest column: Np-complete problems and physical reality. ACM
Sigact News 36 (1), 30-52.

Barnsley, M. F, 1988. Fractals everywhere.
Barnsley, M. F, 2006. Superfractals. Cambridge University Press.

Blum, L., Cucker, F, Shub, M., Smale, S., 2012. Complexity and real computation. Springer
Science & Business Media.

Blum, L, Shub, M., Smale, S., 1989. On a theory of computation and complexity over the
real numbers: np-completeness, recursive functions and universal machines. Bul-
letin (New Series) of the American Mathematical Society 21 (1), 1-46.

Botana, F, Abanades, M. A, 2014. Automatic deduction in (dynamic) geometry: Loci
computation. Computational Geometry 47 (1), 75-89.

Boyd, J. P, 2013. Finding the zeros of a univariate equation: proxy rootfinders, chebyshev
interpolation, and the companion matrix. SIAM review 55 (2), 375-396.

Casanova, H., Legrand, A, Robert, Y, 2008. Parallel algorithms. CRC Press.

Catanzaro, B., Garland, M., Keutzer, K., 2011. Copperhead: Compiling an embedded data
parallel language. ACM SIGPLAN Notices 46 (8), 47-56.

Cooley, J. W., Tukey, J. W., 1965. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation 19 (90), 297-301.

Cormen, T. H,, Leiserson, C. E,, Rivest, R. L, Stein, C,, 2009. Introduction to algorithms.
MIT press.

de Casteljau, P, 1963. Courbes et surfaces a poles. André Citroén, Automobiles SA, Paris.

de Smit, B,, Lenstra, H. W,, 2003. The Mathematical Structure of Escher’s Print Gallery.
na.

173

Bibliography

de Smit, B., McClure, M., Palenstijn, W. J,, Sparling, E. I, Wagon, S., 2012. Through the
looking-glass, and what the quadratic camera found there. The mathematical Intelli-
gencer 34 (3), 30-34.

Eigenwillig, A., 2008. Real root isolation for exact and approximate polynomials using
descartes’ rule of signs.

Epstein, D. B., 1992. Word processing in groups. AK Peters/CRC Press.

Erk, K, Priese, L., 2008. Theoretische Informatik: Eine umfassende Einfuhrung. Springer-
Verlag.

Evans, A, Romeo, M., Bahrehmand, A, Agenjo, ., Blat, J., 2014. 3d graphics on the web: A
survey. Computers & Graphics 41, 43-61.

Farouki, R. T, 1991. On the stability of transformations between power and bernstein
polynomial forms. Computer Aided Geometric Design 8 (1), 29-36.

Fischer, G., 2017. Mathematical Models: From the Collections of Universities and Muse-
ums - Photograph Volume and Commentary. Springer Fachmedien Wiesbaden, Wies-
baden.

URL https://doi.org/10.1007/978-3-658-18865-8

Fischer, M.], Fischer, M.]., Rabin, M. O., 1974. Super-exponential complexity of presburger
arithmetic.

Gregg, C, Hazelwood, K, 2011. Where is the data? why you cannot debate CPU vs. GPU
performance without the answer. In: Performance Analysis of Systems and Software
(ISPASS), 2011 IEEE International Symposium on. IEEE, pp. 134—144.

Hadeler, K-P, Miiller, J., 2017. Cellular Automata: Analysis and Applications. Springer.

Head, T., 2009. Parallel computing by xeroxing on transparencies. In: Algorithmic Bio-
processes. Springer, pp. 631-637.

Heintz, J., Recio, T, Roy, M-F, 1991. Algorithms in real algebraic geometry and applica-
tions to computational geometry. DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science 6, 137-163.

Herlihy, M., Shavit, N., 2011. The Art of Multiprocessor Programming. Morgan Kaufmann.

Holzl, R, 2001. Using dynamic geometry software to add contrast to geometric
situations-a case study. International Journal of Computers for Mathematical Learn-
ing 6 (1), 63-86.

174

https://doi.org/10.1007/978-3-658-18865-8

Bibliography

Hopcroft, J. E, 2008. Introduction to automata theory, languages, and computation. Pear-
son Education India.

Kajiya, J. T, 1986. The rendering equation. In: ACM SIGGRAPH computer graphics. Vol. 20.
ACM, pp. 143-150.

Kaneko, M., 2017. Using tangible contents generated by CindyJS and its influence on
mathematical cognition. In: International Conference on Computational Science and
Its Applications. Springer, pp. 199-215.

Klockner, A, Pinto, N., Lee, Y., Catanzaro, B., Ivanoy, P, Fasih, A, 2012. Pycuda and py-
opencl: A scripting-based approach to gpu run-time code generation. Parallel Com-
puting 38 (3), 157-174.

Kobel, A., 2015. Polynomial gcd in the presence of floating-point errors. Mathematics
Stack Exchange.
URL https://math.stackexchange.com/q/1376517

Konnerth, G-M., 2017. Interactive tools for visualising phase plots of complex functions.
Bachelor's thesis, Technical University of Munich.

Kovacs, Z., 02 2019. Teaching inversion interactively with webcams via Cindy)S.
Levine, J., 2009. Flex & Bison: Text Processing Tools. " O'Reilly Media, Inc."

Liste, R. L., 2014. El color dinamico de GeoGebra. Gaceta De La Real Sociedad Matematica
Espafola 17 (3), 525-547.

Marco, A, Martl, J.-J,, et al,, 2007. A fast and accurate algorithm for solving bernstein-
vandermonde linear systems. Linear algebra and its applications 422 (2-3), 616-628.

Marrin, C., 2011. Webgl specification. Khronos WebGL Working Group.
Maskit, B., 2012. Kleinian groups. Vol. 287. Springer Science & Business Media.
Mason, J. C, Handscomb, D. C.,, 2002. Chebyshev polynomials. Chapman and Hall/CRC.

McShane, E. J., 1934. Extension of range of functions. Bulletin of the American Mathe-
matical Society 40 (12), 837-842.

Mercat, C,, 2009. Applications conformes - inversez-vous le portrait! Accessed: 2020-02-
28.
URL http://images.math.cnrs.fr/Applications-conformes.html

175

https://math.stackexchange.com/q/1376517
http://images.math.cnrs.fr/Applications-conformes.html

Bibliography

Mercat, C., 10 2015. La diffusion: un lieu pour une mathématique plus humaine? Espace
Mathématique Francophone 2015, Rachid Bebbouchi, USTHB, Oct 2015, Alger, Algérie.
hal-01313156.

Montag, A, 2014. Interactive image sequences converging to fractals, bachelor’'s Thesis.
Available at http://aaron.montag.info/ba/main.pdf.

Montag, A, Richter-Gebert, J., 2016. CindyGL: authoring GPU-based interactive mathe-
matical content. Springer, 359-365.

Montag, A, Richter-Gebert, J., 2018. Bringing together dynamic geometry software and
the graphics processing unit. arXiv preprint arXiv:1808.04579.

Mumford, D., Series, C., Wright, D., 2002. Indra’s pearls: the vision of Felix Klein. Cam-
bridge University Press.

Munshi, A, Gaster, B, Mattson, T. G, Ginsburg, D., 2011. OpenCL programming guide.
Pearson Education.

Nickolls, J., Dally, W. J., 2010. The GPU computing era. IEEE micro 30 (2).
Novikov, P. S., 1954. On algorithmic unsolvability of the word problem.
Nvidia, 2017. CUDA C programming guide, v8.0.

Obreshkov, N., 1952. Generalization of descartes’ theorem for imaginary roots. In: Dok-
lady Akademii Nauk SSSR (NS). Vol. 85. pp. 489-492.

Olver, P. J,, 2015. Complex analysis and conformal mapping. University of Minnesota.

Owens, J. D, Luebke, D., Govindaraju, N., Harris, M., Kruger,)., Lefohn, A. E., Purcell, T. J,,
2007. A survey of general-purpose computation on graphics hardware. In: Computer
graphics forum. Vol. 26. Wiley Online Library, pp. 80-113.

Pharr, M., Jakob, W., Humphreys, G., 2016. Physically based rendering: From theory to
implementation. Morgan Kaufmann.

Ponce Campuzano, J., 02 2019. Complex Analysis: A visual and interactive introduction.
Available at https://www.dynamicmath.xyz/cabook/.

Reese, |, Zaranek, S., 2012. Gpu programming in matlab. MathWorks News&Notes. Natick,
MA: The MathWorks Inc, 22-5.

Reimers, M., Seland, J., 2008. Ray casting algebraic surfaces using the frustum form. In:
Computer Graphics Forum. Vol. 27. Wiley Online Library, pp. 361-370.

176

http://aaron.montag.info/ba/main.pdf
https://www.dynamicmath.xyz/cabook/

Bibliography

Richter-Gebert,)., 2017. iornament-aus dem mathematischen maschinenraum. Mit-
teilungen der DMV 25 (2), 75-81.

Richter-Gebert, J., Kortenkamp, U., 2010. The power of scripting: DGS meets program-
ming. Acta Didactica Napocensia 3 (2), 67-78.

Richter-Gebert,)., Kortenkamp, U. H., 2000. User Manual for The Interactive Geometry
Software Cinderella. Springer Science & Business Media.

Richter-Gebert, J., Kortenkamp, U. H., 2012. The Cinderella. 2 Manual: Working with The
Interactive Geometry Software. Springer Science & Business Media.

Richter-Gebert,)., Orendt, T., 2009. Geometriekalkule. Springer-Verlag.

Sagraloff, M., Mehlhorn, K, 2016. Computing real roots of real polynomials. Journal of
Symbolic Computation 73, 46-86.

Schilling, M., 1903. Catalog mathematischer modelle: fur den hoheren mathematischen
unterricht. Martin Schilling.

Schleimer, S., Segerman, H., 2016. Squares that look round: Transforming spherical im-
ages. arXiv preprint arXiv:1605.01396.

Schlick, C., 1994. An inexpensive BRDF model for physically-based rendering. In: Com-
puter graphics forum. Vol. 13. Wiley Online Library, pp. 233-246.

Scholz, D., 2014. Pixelspiele. Springer.
Simpson, R.)., Kessenich, J., 2009. The opengl es shading language. Language Version 1.

Singh, D., Reddy, C. K,, 10 2014. A survey on platforms for big data analytics. Journal of
Big Data 2 (1), 8.
URL https://doi.org/160.1186/s40537-014-0008-6

Spencer, M. R., 1994. Polynomial real root finding in bernstein form.
Stewart, G. W., 1996. Afternotes on numerical analysis. Vol. 49. Siam.

Stoltenberg-Hansen, V., Lindstrom, I, Griffor, E. R,, 1994. Mathematical theory of domains.
Vol. 22. Cambridge University Press.

Stussak, C.,, 2009. RealSurf - a GPU-based realtime ray caster for algebraic surfaces. In:
Proceedings of the 25th Spring Conference on Computer Graphics.

77

https://doi.org/10.1186/s40537-014-0008-6

Bibliography

Sutter, H., 2005. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s journal 30 (3), 202-210.

Tarditi, D, Puri, S., Oglesby, J., 2006. Accelerator: using data parallelism to program gpus
for general-purpose uses. In: ACM SIGARCH Computer Architecture News. Vol. 34. ACM,

PP. 325-335.

von Gagern, M., Kortenkamp, U., Kranich, S., Montag, A., Richter-Gebert,)., Strobel, M,,
Wilson, P, 2019. The CindyJS Project: A JavaScript framework for interactive (math-
ematical) content. Available at https://github.com/CindyJ]S/CindyJS and
https://cindyjs.org.

von Gagern, M., Kortenkamp, U., Richter-Gebert, J., Strobel, M., 2016. Cindy)S. Springer,
319-326.

von Gagern, M., Mercat, C,, 2010. A library of OpenGL-based mathematical image filters.
In: International Congress on Mathematical Software. Springer, pp. 174-185.

Vukicevic, V., 2014. Bugzilla@Mozilla [webcl] add opencl in gecko. Accessed: 2017-05-20.
URL https://bugzilla.mozilla.org/show_bug.cgi?id=664147#c30

Warren, H. S., 2013. Hacker’s delight. Pearson Education.

Wegert, E., Semmler, G., 2010. Phase plots of complex functions: a journey in illustration.
Notices AMS 58, 768-780.

178

https://github.com/CindyJS/CindyJS
https://cindyjs.org
https://bugzilla.mozilla.org/show_bug.cgi?id=664147#c30

	Introduction
	Main results and contributions
	Overview of the individual chapters
	Applets
	Terminology and notation

	Foundations: Domain-Parallel-Machines (DPMs)
	Two equivalent definitions for DPMs
	DPMs as extended finite-dimensional BSS machines
	Finite dimensional DPMs
	Computations of a DPM

	Programming DPMs
	Step 1: Rename variables and encode tuples.
	Step 2: Allow for concatenated computation nodes.
	Step 3: Transfer the ``flowchart'' of a DPM into goto-code.
	Step 4: Use expressions containing intermediate values
	Step 5: Use advanced control structures
	Step 6: An operation for point-wise parallel programs

	Mathematical algorithms suitable for DPMs
	Fast discrete Fourier transformation
	(Possible infinite) cellular automata
	Subset Sum problem in linear time
	Generation of objects with self-similarity
	Iterated Function Systems
	Interactive realization on the GPU
	Kleinian groups

	Iterating functions
	Iterating functions on BSS machines
	Iterating functions on DPMs in sublinear time

	DPMs as models for real-world systems
	DPMs with finite domains D as parallel computers
	A single-threaded computer with access to a GPU
	Optical phenomena for parallel computation
	Computing by copying onto transparencies
	Analog feedback loops

	First steps in computability and complexity theory of DPMs
	Relations of DPMs to other computational models
	Simulation and acceleration of BSS machines and Turing machines through DPMs
	Acceleration of finite-dimensional BSS machines through DPMs
	Simulation of DPMs through uniform BSS machines

	Domains and complexity
	Iterating complex squaring with a DPM with real domain

	Implementation: Pixel shaders as special DPMs
	Approximating DPM algorithms on a GPU
	Multi-linear interpolation
	Discretization of continuous domains
	A convergence theorem for approximating DPMs

	Programming GPUs
	Introduction
	Technical background
	The gap in programming concepts between CPU and GPU
	Our objectives for a high-level language with GPU support
	Related work

	Concept
	Detection of parts for parallelization and splitting the code
	Type detection
	Transcompilation
	Lazy storage of data

	Example implementation: CindyGL
	Usage of CindyGL
	Implicit curves and sets of locus within dynamic geometry software
	Feedback loops and GPGPU applications in CindyGL
	Educational value

	Application: DPMs for Visualizations
	Visualizations of implicit surfaces
	Square-free polynomials
	Extracting roots of a univariate square-free polynomial
	Termination
	Recursive tree traversal

	Interpolation of a function to Bernstein coefficients
	Enhancing the numeric stability of the interpolation

	Monte-Carlo path tracing of surfaces
	Analytic landscapes
	Comparison with photographs of old plaster models of complex functions

	Deformation of images
	Holomorphic functions
	The Droste effect
	Spherical image processing
	Spherical images as functions on the Riemann sphere
	Pulling back analytic functions
	The spherical Droste effect

	Conclusion and outlook

