
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik XIX

Tool support for architectural decision making in large

software intensive projects

Manoj Mahabaleshwar

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Alexander Pretschner

Prüfer der Dissertation:
1. Univ.-Prof. Dr. Florian Matthes

2. Univ.-Prof. Dr. Bernd Brügge

Die Dissertation wurde am 31.10.2019 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 08.03.2020 angenommen.

II

Zusammenfassung
Während des letztens Jahrzehnts hat sich ein Paradigmenwechsel vollzogen, in der Weise, in der
Wissenschaftler und Praktiker Softwarearchitekturen betrachten. Eine Softwarearchitektur wird
heutzutage nicht nur als Blaupause gesehen, sondern als eine Menge von Designentscheidungen,
die zur Blaupause des zugrundeliegenden Softwaresystems führen. Architekten und Entwick-
ler treffen regelmäßig Designentscheidungen, die zum Beispiel die Wahl eines Architekturstils,
eines Entwurfsmusters und der zugrundeliegenden IT-Infrastruktur betreffen. Die Dokumen-
tation solcher Entscheidungen hilft, in großen Projekten, Fragen zu beantworten wie: „Welche
Designentscheidungen wurden bereits getroffen?”, „Welche Architekturelemente und Qualität-
sattribute werden von einer Entscheidung beeinflusst?”, „Wer sollte in eine neue Entscheidung
involviert sein?”, „Welche ähnlichen Entscheidungen wurden in der Vergangenheit getroffen?”
und „Welche Alternativen sollten beim Treffen einer Entscheidung berücksichtigt werden?”.

Obwohl zahlreiche Tools zum Architektur-Wissensmanagement (architectural knowledge man-
agement, AKM) das Dokumentieren von Designentscheidungen unterstützen, beobachten wir,
dass diese Entscheidungen in der Praxis selten dokumentiert werden. Die Gründe warum De-
signentscheidungen nicht explizit dokumentiert werden sind zahlreich. Diese umfassen, ohne
darauf beschränkt zu sein, die fehlende Integration von AKM Tools in der Software Engineer-
ing Praxis. Darüber hinaus werden solche AKM Tools als störend wahrgenommen, da sie den
Architekten dazu zwingen, Designentscheidungen manuell zu dokumentieren, was umständlich
und teuer ist.

Im Gegensatz zu traditionellen AKM Tools, die einen Top-Down-Ansatz verfolgen, schlagen wir
einen Bottom-Up-Ansatz für das Kuratieren und die Wiederverwendung von Architekturwissen
vor. Im Bottom-Up-Ansatz werden Architekturentscheidungen automatisch aus verschiedenen
Systemen abgerufen und mit öffentlich verfügbaren Wissensquellen erweitert. Spezifisch um De-
signentscheidungen die in der Vergangenheit getroffen wurden zu verstehen und um Architekten
beim Treffen zukünftiger Entscheidungen zu unterstützen, präsentieren wir die Umsetzung eines
Amelie - Decision Explorer (ADeX) genannten Frameworks. Die Komponenten innerhalb des
Frameworks rufen zunächst projektbezogene Informationen von verschiedenen Systemen ab und
identifizieren dann automatisch Designentscheidungen innerhalb der Projektdaten unter Ver-
wendung von Techniken des maschinellen Lernens.

Im nächsten Schritt annotiert ADeX, mit Hilfe von Natural Language Processing, Architek-
turelemente und Qualitätsattribute, die von den extrahierten Entscheidungen beeinflusst wer-
den. Unter Verwendung der Annotationen aus dem vorherigen Schritt quantifiziert ADeX die
Architektur-Expertise von Individuen, um Experten für die Lösung neuer Designprobleme zu
empfehlen. Schließlich schlägt ADeX, unter Verwendung eines Ontologie-basierten Ansatzes, Al-
ternativen vor, die beim Treffen von Architekturentscheidungen (architectural decision-making,
ADM) berücksichtigt werden können. Basierend auf den Ergebnissen dieser Schritte werden
verschiedene Standpunkte generiert, um Architekten bei der Beantwortung der zuvor genannten
Fragen im ADM-Prozess zu unterstützen.

III

IV

Die qualitative Evaluation von ADeX zeigt, dass es den benötigten Aufwand zur Pflege von Ar-
chitekturwissen reduziert und Stakeholdern einen Rückblick auf Designentscheidungen in großen
Softwareprojekten ermöglicht. Darüber hinaus wurden die Komponenten innerhalb des Frame-
works quantitativ evaluiert, hierfür wurden Datensätze aus Open-Source- und Industrieprojek-
ten verwendet. Basierend auf diesen Datensätzen fanden wir heraus, dass Entscheidungen mit
einer Genauigkeit von 91% automatisch aus Issues extrahiert werden können, Architekturele-
mente können mit einer Genauigkeit von 84% annotiert werden und Experten können mit einer
Genauigkeit von 79% empfohlen werden um neue Designprobleme zu adressieren.

Außerdem wird ADeX, das während der letzten vier Jahre realisiert wurde, aktuell im Rahmen
einer AI4AM genannten Initiative von unserem Industrie-Partner verwendet, um seine Vorteile
für die Geschäftsbereiche hervorzuheben. Ein solches Setup bietet uns die nötige Plattform
um verwandte Herausforderungen im ADM zu untersuchen, inklusive der Aspekte Bias und
Unsicherheiten beim Treffen von Entscheidungen.

V

VI

Abstract
Over the last decade, there has been a paradigm shift in the way researchers and practitioners
view software architectures. Today, a software architecture is not only seen as a blueprint but
instead is considered as a set of design decisions that leads to the blueprint of the underly-
ing software system. Architects and developers regularly make design decisions, for instance,
concerning the selection of an architectural style, design pattern, and also the underlying IT
infrastructure. Documenting such decisions especially in large projects is beneficial to answer
questions such as “What design decisions have already been made?”, “Which architectural ele-
ments and quality attributes are affected by a decision?”, “Who should be involved in making
a new decision?”, “Which similar decisions have been made in the past?”, and “What are the
alternatives to consider while making a design decision?”.

Even though many of the architectural knowledge management (AKM) tools provide means to
capture design decisions, we observe that, in practice, those decisions are rarely documented.
The reasons for not explicitly capturing design decisions are manifold. These include, but not
limited to, the lack of integration of AKM tools in software engineering practice. Second, these
AKM tools are considered intrusive since they require architects to manually document decisions
which can be tedious and expensive.

Contrary to the traditional AKM tools that follow a top-down approach, we propose a bottom-up
approach for AK curation and reuse thereof. In the bottom-up approach, design decisions are
automatically retrieved from various systems as well as annotated with publicly available knowl-
edge sources. Specifically for understanding design decisions made in the past and for supporting
architects in making future decisions, we present the realization of a framework called Amelie -
Decision eXplorer (ADeX). The components within the framework first retrieve project-related
information from disparate systems and then, automatically identify design decisions within
project’s data using machine-learning techniques. Next, by using natural language process-
ing, ADeX annotates architectural elements and quality attributes affected by the extracted
decisions. Using the annotations from the previous step, ADeX quantifies the architectural ex-
pertise of individuals to recommend experts for addressing new design concerns. And finally,
using an ontology-based approach, ADeX suggests alternatives that can be considered during
architectural decision-making (ADM). Based on the results of these steps, various viewpoints are
generated to support architects answer the aforementioned questions during the ADM process.

The qualitative evaluation of ADeX shows that it reduces the effort required for maintaining AK
and provides stakeholders with a retrospective view of design decisions in large software projects.
Furthermore, the components within the framework have been quantitatively evaluated using
datasets both from open-source and industrial projects. Based on those datasets, we found that
decisions can be automatically extracted from issues with an accuracy of 91%, architectural
elements can be annotated with an accuracy of 84%, and with an accuracy of 79% experts can
be recommended to address new design concerns.

Finally, ADeX, which has been realized over the last four years is currently being used by our
industry partner to highlight its benefits to the business units under an initiative called AI4AM.
Such a setup provides us the necessary platform to further investigate related challenges of ADM
including the aspects of biases and uncertainties in decision making.

VII

VIII

Acknowledgment
For writing this acknowledgment section, when I reflect on how my journey began at the Soft-
ware Engineering for Business Information Systems (sebis) Chair, it is hard to believe that I
have been associated with the sebis chair for almost seven years now; first, as a master’s student
and then, as a PhD candidate. My first interaction with Prof. Dr. Florian Matthes in 2012,
when I approached him for a working student position remains vivid in my memory. His en-
thusiasm during the discussions, openness, and encouragement for new ideas as well as playing
the devil’s advocate to challenge my train of thoughts have remained consistent over the years.
For providing me the opportunity and the environment to grow as a researcher, for supervising
my dissertation, and for guiding and encouraging me during difficult times in the process with
extreme patience, my utmost gratitude goes to my Doktorvater - Prof. Dr. Florian Matthes. I
also want to thank Prof. Dr. Bernd Brügge for the discussions related to my dissertation and
for being my second reviewer. I specifically thank him for pointing out the missing references
in the related literature, for reminding me to include the threats to validity in the evaluation
section, and for suggesting a better structure to the introduction chapter.

At the sebis chair, collaborations and discussions with my colleagues not only contributed to
co-authored publications and successful execution of lectures but more importantly, helped me
grow as a researcher by broadening my limited understanding of many topics including enter-
prise architecture management, model-based software systems, natural language processing and
understanding, machine learning, software ecosystems, and blockchain. Special thanks to Klym
Shumaiev for his contributions to our joint research ventures in the area of software architecture
knowledge management and related projects with our industry partner. I would also like to
acknowledge the efforts of Daniel Braun for translating the abstract of this dissertation into the
German language. Many thanks to all the students who contributed to my research with their
master’s and bachelor’s theses.

I would like to thank my colleagues in the Architecture Definition and Management department
at Siemens Corporate Technology. Especially, Andreas Biesdorf and Uwe Hohenstein who have
provided valuable inputs to my research and have helped me with organizational issues, such as,
getting contacts with business units at Siemens to conduct the case studies in my research.

Lastly, I would like to express my gratitude to my family for their continued support. I am
grateful to my parents for their understanding and for encouraging me during my dissertation.
Geographically being miles apart, throughout my dissertation, they made sure that I was not
distracted from my goals even during difficult times. Finally, during the last phase of my
dissertation, my significant other Deepa Hegde made sure that my social commitments were
met through her efforts. I am thankful to her for her patience, her encouragement, and for her
persistent reminders that I need to complete the final submission process of my dissertation.

Garching b. München

Manoj Mahabaleshwar

IX

X

Table of Contents

1 Introduction 1

1.1 Problem statement and research questions . 3
1.2 Contributions of this dissertation . 6
1.3 Outline of this dissertation . 8

2 Foundations and related work 9

2.1 Research methodology for conducting the semi-systematic literature review . . . 9
2.1.1 Inclusion and exclusion criteria for identifying research publications 10
2.1.2 Search strategy for identifying relevant research publications 11
2.1.3 Data extraction and synthesis for conducting the literature review 12

2.2 Review results of the identified 227 publications 13
2.2.1 Architectural knowledge management . 14
2.2.2 Architectural design decisions . 18
2.2.3 Architectural design rationale . 31
2.2.4 Architectural decision making . 32
2.2.5 Group decision making . 38

3 Requirements elicitation 41

3.1 Requirements related to architectural knowledge management 42
3.2 Requirements related to architectural decision making 45

4 A conceptual framework for architectural decision making 49

4.1 Stakeholders of the framework . 50
4.2 Components and their responsibilities within the framework 51

4.2.1 SocioCoretx: A meta-model based AKM system 52
4.2.2 SyncPipes: A data integration and synchronization platform 53
4.2.3 Decision classifier: A machine-learning based document classifier 54
4.2.4 Architectural elements annotator: A named-entity extractor 54

XI

Table of Contents

4.2.5 Architectural solutions recommender: An ontology-based approach 55
4.2.6 Rationale extractor: Identifying the rationale behind design decisions . . . 56
4.2.7 Expert recommender: User-profile based recommendations 57
4.2.8 Workbench4DC: Clustering similar design decisions 57
4.2.9 Amelie - Decision Explorer: User interfaces for end-users 58

4.3 Process steps within the AKM framework . 59

5 System design and implementation 61

5.1 SocioCortex . 62
5.1.1 The hybrid-wiki meta-model . 63
5.1.2 Using SocioCortex for architectural knowledge management 64
5.1.3 The dynamic architectural knowledge model 65
5.1.4 The static architectural knowledge model 66
5.1.5 User interface for capturing architectural knowledge in SocioCortex 69

5.2 SyncPipes . 71
5.2.1 The configuration of the extractor and the loader services in SyncPipes . . 72
5.2.2 Data transformation using user-defined data mappings 74
5.2.3 User interfaces for managing data transformation 76

5.3 Document classifier . 79
5.4 Workbench4DC: Document clustering component 82
5.5 Akre-Server: Architectural recommendations component 87

5.5.1 Architectural solutions recommender . 88
5.5.2 Rationale extractor . 96
5.5.3 Expert recommender . 98
5.5.4 System design of the Akre-Server component 101

5.6 Amelie - Decision explorer client . 103

6 Evaluation 111

6.1 Quantitative evaluation of components within ADeX 111
6.1.1 Quantitative evaluation of the architectural annotator component 112
6.1.2 Quantitative evaluation of the decision classifier component 115
6.1.3 Quantitative evaluation of the expert recommender 124

6.2 Qualitative evaluation of ADeX in real-world projects 131
6.3 Evaluation summary . 137

7 Future work and conclusion 139

7.1 Lessons learned . 139
7.2 Ongoing research activities . 141
7.3 Conclusion . 148

Bibliography 151

Primary studies used in literature review 162

Abbreviations 181

XII

List of Figures

1.1 The representation of ADD and its associated concepts in an ADD model. The
concepts in the ADD model have been derived from [1–4] (cf. Section 2.2.2.1 for
a detailed discussion) . 3

1.2 Outline of this dissertation . 8

2.1 Planning, conducting, and reporting a systematic literature review: as prescribed
by Kitchenham and Charters [5] . 10

2.2 The search strategy that resulted in 227 publications for conducting the semi-
systematic literature review . 12

2.3 The trend in the number of publications related to AKM, ADDs, and ADM
distributed over the past years . 13

2.4 The classification of the identified 227 publications into different AK categories . 14
2.5 A traceability support system . 18
2.6 The context of CBAM . 19
2.7 The conceptual model of ADD used in the Archium approach 22
2.8 A conceptual model capturing ADD and its associated concepts 26
2.9 The conceptual model of the architecture design decision support system 27
2.10 An architectural design rationale model by Burge and Brown 31

4.1 A conceptual framework for managing ADDs and supporting the ADM process . 50
4.2 The realization of a conceptual framework for managing ADDs and supporting

ADM . 52
4.3 The process steps within ADeX to support the ADM process: using the Apache

Spark project as an example scenario . 60

5.1 The high-level architecture of ADeX: the core components and their dependencies 62
5.2 The hybrid-wiki meta-model of SocioCortex: image taken from [6] 63
5.3 The design of an AKM system using SocioCortex as the backend 64

XIII

List of Figures

5.4 The dynamic AK model for capturing the design and the context knowledge (the
concepts have been taken from [7–11]) . 66

5.5 The static AK model for capturing general AK 67
5.6 An exemplary MxL expression for finding domain experts based on an ECA rule 69
5.7 The user interface of SocioCortex for collaboratively modeling the application

domain and for capturing the instances of the domain concepts 70
5.8 The conceptual model of SyncPipes for AK integration and synchronization . . . 71
5.9 Interfaces for implementing the extractor and loader services in SyncPipes 72
5.10 Concepts for persisting ETL pipelines and data mappings in SyncPipes 73
5.11 The steps in the data transformation workflow in SyncPipes 74
5.12 Sequence diagram showing the data extraction and loading process in SyncPipes 75
5.13 The dashboard view in SyncPipes shows the available extractor and loader services

as well as the status of the ETL jobs . 76
5.14 The user interface for configuring an extractor or a loader service in SyncPipes . 77
5.15 The user interface for configuring a pipeline’s data mapping in SyncPipes 78
5.16 The user interface for editing and executing a pipeline in SyncPipes [source: [12]] 78
5.17 The high-level overview of the design decision detection and classification process 79
5.18 The high-level system design of the document classification component 80
5.19 A class diagram showing the concepts and their relationships in the document

classification component . 81
5.20 A machine learning pipeline for design decision detection and classification 81
5.21 The application controllers and their dependencies for managing business logic in

the document classification component . 82
5.22 The high-level overview of the document clustering process 83
5.23 The high-level system design of the document clustering component 83
5.24 A class diagram showing the concepts and their relationships in the document

clustering component . 84
5.25 The user interface for creating and configuring a document clustering pipeline . . 85
5.26 The user interface showing the result of a executing a document clustering pipeline 86
5.27 The user interface for predicting the the cluster model of a given design decision . 87
5.28 The high-level system design of the recommendation component 88
5.29 A subset of concepts in the DBpedia ontology that are relevant for the recom-

mendation component . 91
5.30 The system design of the ontology-based recommendation component 95
5.31 Concepts and their relationships for persisting annotations and suggestions in the

recommendation component . 95
5.32 The list of quality attributes and their subcategories in the ISO/IEC 25010 standard 96
5.33 The high-level overview of the approach for recommending experts who could be

involved in the ADM process . 98
5.34 An exemplary excerpt of an expertise matrix: rows in the matrix capture the

expertise profiles of individuals and columns represent architectural elements . . . 100
5.35 The system design of the Akre-server component: the design shows the application

controllers and their dependencies on the data models 102
5.36 A datatable in ADeX shows the list of projects that have been imported from Jira 104

XIV

List of Figures

5.37 User interfaces to import all the Jira issues of a project and to execute the pro-
cessing pipeline for decision detection and annotation 105

5.38 Quality attributes viewpoint: each individual bar represents a quality attribute
and the segments within a bar indicate the design decision category 106

5.39 Architectural elements viewpoint: each bubble represents an architectural element
and the size of the bubble indicates the element’s relevance to the project 107

5.40 Expertise matrix viewpoint: rows correspond to individuals, columns capture
architectural elements, and cells indicate the expertise of an individual on the
corresponding architectural element . 108

5.41 A datatable showing the recommendation of experts and their expertise score for
addressing open design concerns . 109

5.42 A datatable showing the list of automatically detected design decisions, their
associated quality attributes and architectural elements 109

5.43 Recommendations related to a design decision: annotated architectural elements,
their alternatives, and similar design decisions made in the past 110

6.1 The machine learning pipeline for design decision detection and classification;
Classifiers: SVM, Naive Bayes, Decision tree, Logistic regression, One-vs-rest;
n-grams: one to five; Split strategies: 90%, 80%, 70%, 60%, 50%; 120

6.2 The influence of n-grams and split strategy on decision detection: increasing the
training dataset increases the F-score and the variation of n in n-grams does not
drastically affect the F-score . 122

6.3 The influence of n-grams and split strategy on decision classification: increasing
the training dataset increases the F-score and the variation of n-grams does not
have any noticible affect on the F-score . 123

6.4 The evaluation results of the expert recommender for the Apache Spark dataset . 126
6.5 The evaluation results of the expert recommender for the Hadoop Common dataset127
6.6 The evaluation results of the expert recommender for the Industry Project I dataset128
6.7 The evaluation results of the expert recommender for the Industry Project II dataset129
6.8 A Microsoft Word plugin for architectural recommendations: the plugin uses the

recommendation services presented in this dissertation 135
6.9 A chatbot for architectural recommendations . 136

7.1 The OODA Loop decision cycle; Adapted from [13] 142
7.2 The BRM with the OODA Loop; BRM adapted from [14] 143
7.3 The two-stage classification of cognitive biases using the OODA loop 144
7.4 An example of a cognitive bias (planning fallacy) as documented in the bias catalog145
7.5 A virtual meeting companion for supporting architects in online meetings 147

XV

XVI

List of Tables

1.1 The description of concepts in the ADD model (taken from [3] and [4]) 4

2.1 Requirements captured by Kruchten et al. [P1] for managing an Architectural
Knowledge (AK) repository . 19

2.2 A taxonomy of design decisions: presented by Kruchten et al. in [P2] 23

3.1 Architectural Knowledge Management (AKM) related use cases, their relevance
to this dissertation, and their sources . 44

3.2 Architectural Decision Making (ADM) related use cases, their relevance to this
dissertation, and their sources . 46

5.1 The list of quality attributes in the ISO/IEC 25010 standard and their keywords
used for automatic rationale extraction . 97

6.1 Evaluation results of the automatic annotation of architectural elements in natural
(English) language text . 112

6.2 Evaluation results of the recommendation of software and alternative solutions . 113
6.3 Exemplary recommendations for software solutions that are automatically gener-

ated by the recommendation component . 114
6.4 Exemplary recommendations for alternative solutions that are automatically gen-

erated by the recommendation component . 114
6.5 Rules for manual classification of design decisions into structural, behavioral, and

non-existence/ban decision categories . 118
6.6 The configuration parameters used for training the machine learning classifiers . . 120
6.7 Decision detection: confusion matrix of the SVM classifier with a linear kernel . . 121
6.8 Decision classification: confusion matrix of the SVM classifier with a linear kernel 123
6.9 The details about the dataset of four projects used for the evaluation of the expert

recommendation system . 125

XVII

XVIII

CHAPTER 1

Introduction

Software architecture is both an artifact as well as a process. A software architecture as an
artifact can be thought of as a blueprint of a software system. This blueprint is created at
different abstraction levels: high-level is typically referred to as software architecture and low-
level or implementation-level, is considered as software design. The blueprint of a software
system is generated based on a series of Architectural Design Decisions (ADDs) regularly taken
by software architects and developers that have a far-reaching impact on the functional and
non-functional properties of the resulting architecture and the corresponding software system.

Even though the term “architecting” is not defined in a standard English dictionary, the pro-
cess of designing the software architecture is commonly referred to as “architecting” by some
researchers and practitioners in the software architecture community. More commonly, the pro-
cess is referred to as “architectural activity”, “design process”, or “software design”. This process
of designing software systems is both a complex and a knowledge-intensive activity [15]. The
knowledge-intensive activity includes making ADDs about the structural, behavioral, and orga-
nizational aspects for conceptualizing and realizing the blueprint of the corresponding software
system. Since, software architecture as an artifact is created at different abstraction levels, ADDs
too are taken at different abstraction levels such as high-level, medium-level (detailed design),
and realization-level (implementation or code specific) [16]. The decisions at different abstraction
levels are related to each other and form a tree structure (referred to as the funnel of decision-
making [17]). Moreover, the decisions at a higher level of abstraction constraint or influence
the decisions at lower levels. The high-level decisions for instance include the selection of ar-
chitectural styles, medium-level decisions correspond to adding, updating, or removing software
components, interfaces, third-party software modules from the architecture, and realization-level
decisions include changes made to the source code of software systems. Such decisions taken by
architects and developers, in turn, result in the architecture of the software system. Hence, over
the last decade, with the representation of Architectural Design Decision (ADD) as a first-class

1

1. Introduction

entity [18–20], there has been a paradigm shift in how we view software architecture. Today,
software architecture is considered as a set of architectural design and ADDs [3,21].

Software architecture = Software design + ADDs

This new perspective of representing software architecture as (a) the result of ADDs taken by
architects and developers through an Architectural Decision Making (ADM) process and (b) fo-
cusing on ADM process that results in the software architecture can be considered as one of the
key advancements in software architecture research. This is because, ADDs represent the ratio-
nale that motivates the selection of architectural elements within the software architecture [22].
The need for documenting ADDs and their associated concepts including architectural concerns,
alternative architectural solutions, and rationale for ADDs has been emphasized both in research
as well as in industry [23]. Furthermore, as discussed in Chapter 2, from the year 2005 to 2011,
there have been a plethora of Architectural Knowledge Management (AKM) tools presented at
research conferences that provide stakeholders the capability to document and manage ADDs
and their related concepts. Unfortunately, even though, architects understand the benefits of
explicitly documenting ADDs [24], in practice, those decisions are rarely captured [25] in those
AKM tools, and they are lost over time. However, we argue that even though ADDs are not ex-
plicitly documented, those ADDs are implicitly captured in various systems which are regularly
used by architects and developers in their day-to-day activities. These systems, for instance,
include Wikis, Issue Management Systems (IMSs), versioning systems, and chat clients. By ap-
plying the approaches presented in this dissertation, ADDs implicitly captured in those systems
can be automatically extracted and analyzed by stakeholders in software projects.

This dissertation focuses on supporting architects and developers during the ADM process in
large software projects. We present a series of approaches that help to address specific use cases
related to the ADM process. The use cases include the following:

(a) extraction and classification of design decisions from disparate information sources;

(b) annotation of architectural elements within textual information;

(c) recommendation of alternative decision options;

(d) reasoning about design decisions;

(e) identification of similar decisions made in the past;

(f) recommendation of experts for addressing new design concerns;

These use cases are stitched together coherently, and the approaches for each of the use cases are
realized by independent components which are integrated within a component-based framework
with adequate tool support. We refer to this system as “ADeX” (Amelie - Decision eXplorer).
Over the past four years, ADeX has been implemented based on the findings from the existing
AKM tools, the future research directions proposed in the literature, and collaboration with
our industry partner (an architecture definition and management department within a large
multinational company). Furthermore, each component has been evaluated through quantitative
analysis and the applicability of ADeX for supporting architects and developers during ADM is
demonstrated through qualitative studies.

2

1. Introduction

1.1 Problem statement and research questions

Since the explicit representation of ADDs as first-class entities in 2004, many researchers have
proposed meta-models for managing ADDs [1, 2]. Subsequently, based on those models many
AKM tools [26–28] have been implemented to support the documentation of ADDs and its
associated concepts. As shown in Figure 1.1, the concepts within the ADD model include the
rationale behind a decision, concerns addressed by a decision, and the architectural elements
affected by a decision.

Architectural
design decision

Concern

raises

addressed by
Architectural

element affects

Rationale
Alternative

solution

Strength

Weakness

based on

trade off
has

1

1

**

*

* *

*

*

1

1

1 *

Stakeholdermakes

*

*

*

*
has

1

*
has

Figure 1.1: The representation of ADD and its associated concepts in an ADD model. The
concepts in the ADD model have been derived from [1–4] (cf. Section 2.2.2.1 for a
detailed discussion)

We have consolidated the core concepts in the ADD model shown in Figure 1.1 based on the
literature review of forty-two publications presented in Section 2.2.2.1. In this dissertation, we
use the definitions of the concepts in the ADD model as presented in Table 1.1. Note: these
definitions are primarily taken from [3] and [4].

As shown in Figure 1.1, stakeholders have (quality) concerns which are addressed by one or
more architectural design decisions. The decisions taken by stakeholders affect one or more
architectural elements and may raise new concerns. An ADD is [should be] made by consid-
ering multiple alternative solutions. The selection or the rejection of alternatives based on
their strengths and weaknesses forms the rationale of a design decision. Documenting ADDs
helps stakeholders to (a) avoid architectural knowledge vaporization in large software projects,
(b) understand and reason about a software architecture during both the development and main-
tenance phases [29], and (c) reuse knowledge about already made decisions while making new
decisions in similar context.

Furthermore, practitioners are emphasizing the need for capturing and reusing ADDs to avoid
knowledge vaporization and to reduce the time and effort involved in addressing recurring design
problems. To enable the documentation process, industry-standard software architecture tem-
plates (for example, arch421) also provide placeholders to capture ADDs. However, the manual
effort [30,31], time, and cost [24] involved in the documentation process are a concern for stake-

1https://arc42.org/

3

https://arc42.org/

1. Introduction

Concept Description

Stakeholder Stakeholders are individuals, groups, or organizations holding
concerns for the system of interest. Examples of stakeholders:
client, owner, user, consumer, architect, developer, and auditor.

Concern A concern is any interest in the system. Examples of concerns:
(system) purpose, functionality, structure, behavior, cost, non-
functional requirements.

Architectural element Any item in an architecture description is considered an element.
Examples of architectural elements: views, styles, patterns, com-
ponents, modules, technologies.

Architectural design

decision

A description of the set of architectural additions, subtractions,
and modifications to the architecture, the rationale, and the de-
sign rules, design constraints and additional requirements that
realize one or more concerns on a given architecture.

Rationale Architectural rationale records the explanation, justification, or
reasoning about architectural decisions that have been made and
alternative solutions not chosen.

Alternative solution Alternatives are potential solutions to the requirement the design
decision addresses. The choice is the decision part of an architec-
tural design decision; it selects one of the considered alternatives.

Strength and Weak-

ness

The pros and cons of each alternative provides architects the basis
for a choice and forms the justification for that decision.

Table 1.1: The description of concepts in the ADD model (taken from [3] and [4])

holders, and its immediate benefit is not visible [32]. Stakeholders also consider capturing ADDs
to be intrusive and boring [24].

Moreover, with the rapid adoption of agile methodologies for software development, ADDs both
in large Open Source Software (OSS) and in industrial projects are scarcely documented [33].
However, stakeholders involved in projects that follow this agile movement, tend to use agile
project management tools such as issue trackers and version control systems [34, 35]. In such
projects, even though ADDs are not explicitly documented, they are implicitly captured in
different systems including project management, issue management, source code version man-
agement, and meeting recording systems [36, 37]. In this dissertation, we present ADeX which
follows a bottom-up approach to AKM with the focus on automating the AK curation process.
ADeX helps to automatically extract, annotate, and generate specific views on AK to support
ADM process. Here, the bottom-up approach refers to the idea that ADeX extracts information
and derives AK from project data without the need for stakeholders to explicitly and manually
capture ADDs in a specific AKM tool and in a particular format (in a top-down manner) to
receive recommendation support.

Finally, realizing the fact that software design is a complex decision-making process has engaged
researchers in borrowing and incorporating ideas related to how people make decisions from
philosophy, cognitive science, and sociology. As indicated in [38–40], research in the area of

4

1. Introduction

understanding and supporting architects during the ADM process is still in its infancy. There
have been some efforts in understanding the ADM process in software architecture (“How ADDs
are made?”) which includes addressing research questions such as “What is an ADD?”, “Why is
an ADD made?”, “When is a decision taken?”, and ‘Who makes ADDs?” [38, 41]. Furthermore,
another characteristic of decision making is choosing the “best/suitable” solution from a set of
choices. The selection process raises questions such as “What are the alternative solutions?”.
In this dissertation, once we extract ADDs from project’s textual information, we address the
aforementioned questions by providing tool support that could be integrated within software
architects’ and developers’ working environment.

In particular, we address the following research questions:

RQ 1: How to consolidate project data from disparate information systems?

RQ 2: How to extract design decisions from textual information?

RQ 3: How to identify architectural elements and recommend alternatives to support ADM?

RQ 4: How to identify the rationale behind a design decision?

RQ 5: How to identify similar design decisions made in the past?

RQ 6: Who should be involved in making a design decision?

The first two research questions are related to extracting project information from different data
sources (e.g., Jira tickets, architectural documents, etc.) and then, automatically identifying the
already made decisions from those sources. In this dissertation, we only focus on the information
extracted from the data sources that are in natural (English) language text. Hence, RQ 2 deals
with identifying design decisions in taxtual information. The remaining research questions focus
on supporting architects and developers during the ADM process. The research question - RQ 3
aims towards annotating the identified ADDs with information about the associated architectural
elements and suggesting alternative options that can be considered during the ADM process.

Since quality attributes of a system are the drivers of ADDs and form the rationale behind a
decision, RQ 4 investigates the challenge of identifying the rationale behind an ADD. Readers
should note that RQ 4 has already been explored by many researchers including Burge, Du-
toit, Tang, and Paech in the context of rationale-based software engineering [42–45]. Some of
the above works have been discussed in the literature review section presented in Chapter 2.
Furthermore, as discussed in Chapter 5, we address RQ 4 given its relevance to ADDs and for
the completeness of this dissertation using a keyword-based approach derived from the works
of [46–48].

RQ 5 emphasizes identifying similar decisions made in the past so that architects and developers
can learn from previous experiences while making new ADDs. Finally, given that ADDs are made
in groups, addressing RQ 6 helps to identify experts in specific architectural topics who can be
involved in making new ADDs.

5

1. Introduction

1.2 Contributions of this dissertation

In this research endeavor, we aim to address the aforementioned research questions related to
ADDs and ADM by providing tool support that could be integrated within software architects’
and developers’ working environment to:

(a) Extract and reuse AK related to similar ADDs made in large software projects,

(b) Recommend alternative architectural solutions that could be considered during ADM,

(c) Highlight and reason about the rationale behind ADDs, and

(d) Recommend experts to address specific ADDs.

In the subsequent chapters, we elaborately discuss how these features are addressed within
the proposed conceptual framework, and the corresponding implementation named ADeX. To
briefly summarize, ADeX serves the following purposes. Firstly, ADeX is used for getting in-
sights, especially into large software-intensive projects. Architects and developers can use ADeX
to browse through projects and get a quick overview of the already made design decisions. These
design decisions are automatically identified, for instance, from issues in an Issue Management
System (IMS). Further information regarding those design decisions can be explored; such as,
the affected quality attributes and architectural elements (concepts like databases or concrete
technologies like SQL). Project managers could also use the overview of the concepts and tech-
nologies used in a project for staffing purposes. Secondly, ADeX is used to support architects
and developers during the decision-making process. For instance, unresolved design concerns
from an IMS are extracted into ADeX’s knowledge base, and after preprocessing, architects get
recommendations for resolving those concerns. ADeX helps stakeholders answer questions such
as “who should be involved in ADM?” and “which similar ADDs have been made in the past?”.

Furthermore, architects instead of exploring the solution space, often choose solutions (for exam-
ple, software products) based on their intuition and past experiences. We, therefore, integrated
a recommendation mechanism that shows software solutions and alternatives related to archi-
tectural elements in a given design decision. The recommendations trigger the mental thought
process of architects and help them to reflect on their choices. The components within ADeX
that provide these features have been publicly made available on Github2. Moreover, the datasets
that were created to train the Machine Learning (ML) models to automatically extract decisions
and to find similar decisions made in the past have also been made public. This contribution will
serve as a starting point for researchers to further reference and investigate the design decision
detection and classification problems.

The use cases tackled by ADeX have been derived from the future research directions shared by
researchers in the software architecture research community as well as from practitioners in an
industry. The models and approaches used in ADeX builds upon the existing research work; for
instance, the recovery of design decisions relies on the definition of concepts in Kruchten’s AK
ontology [18]; the dynamic AK model of ADeX’s knowledge is derived from [11]; the rationale
extraction uses the quality keywords documented in [48]; and the expertise matrix used to
identify individuals for decision making is based on the expertise browser presented in [49].

2https://github.com/sebischair

6

1. Introduction

Our research on automatic curation of ADDs complements the current research activities in
the direction of the application of artificial intelligence for AKM. For instance, the recent re-
search initiatives such as Continuous Usage- and Rationale-based Evolution Decision Support
(CURES)3 can use Amelie - Decision eXplorer (ADeX) and our lessens learned as a building
block for supporting developers during software evolution. The authors of [50] and [51] refer to
design decisions and the related rationale as design knowledge and argue that design knowledge
is captured informally in Wiki, issue tracking, version control, and chat systems using natural
language text. To overcome the challenge of intrusiveness of the existing AKM tools, Kleebaum
et al. [52] present a plug-in for Jira named Jira DecDoc that integrates into developers’ working
environment to support the capture and use of design knowledge. Jira DecDoc uses the decision
documentation model [53, 54] that supports developers to incrementally capture design knowl-
edge in their sprint cycles. The users’ needs form the usage knowledge about the system and
is reflected by features and tasks in Jira. While implementing each feature in a feature branch,
developers can document the design alternatives, their strengths and weaknesses, and the choice
(decision) taken to implement the corresponding feature. We believe that our approach that
uses supervised ML to automatically identify design decisions from issues captured in Jira as
well as the work of Alkadhi et al. [55, 56] that extracts rationale in chat messages can be used
to prepopulate the design knowledge model in legacy systems for retrospective analysis.

One of the drawbacks of the application of supervised ML techniques for automatic retrieval of
design knowledge from natural language text is that it requires substantial effort to prepare the
training dataset and to tune and train the ML models. Moreover, the generalization possibilities
and transfer learning of models across projects in different domains are yet in the scope of future
investigation. We agree with these critiques that are also mentioned in [57, 58] and we have
discussed these challenges in our lessons learned chapter.

It is also vital to inform the readers of this dissertation the assumptions and constraints that
apply to the presented approaches and the implemented system (ADeX). Since a primary focus of
our work lies in providing automation support through components that learn from ADDs made
in software projects, we emphasize on medium- and realization-level decisions (cf. Section 1 -
ADDs are made at different abstraction levels). These ADDs are less likely to be influenced by
projects’ business and political aspects and are typically and implicitly captured in disparate
agile project management systems. Furthermore, we make the following assumptions based on
the past empirical studies conducted by researchers working in the area of AKM:

� Architects do not take a rationalistic approach but favor a naturalistic ADM [39,41].

� Software architects make ADDs based on their expertise and past experiences [39,59].

� The current state of the project and past project artifacts are observable given a predefined
domain model [27].

The contribution of this dissertation is a set of approaches integrated in ADeX that supports
(junior and newly recruited) software architects and developers in industry:

� First, to get accustomed to the assigned long-running software projects by exploring and
understanding design decisions that were already made to address specific quality concerns.

3https://se.ifi.uni-heidelberg.de/research/projects/cures.html

7

1. Introduction

� Second, to learn from decisions that were made by other architects in similar projects.

� Third, to trigger the thought process through the recommendation of alternatives so that
they consider different options before making a design decision.

� Finally, to encourage the culture of explicitly documenting or even labeling design decisions
by highlighting its benefits with regards to traceability and impact analysis during the
development and maintenance of software systems.

1.3 Outline of this dissertation

Chapter 1

Introduction

Chapter 2

Foundations & related work

Chapter 6

Evaluation

Chapter 7

Future work and conclusion

Chapter 3

Requirements elicitation

Chapter 5

System design and

implementation

Chapter 4

A conceptual

framework for ADM

Figure 1.2: Outline of this dissertation

As shown in Figure 1.2, this dissertation is organized
into seven chapters. Chapter 1 provides an introduc-
tion to ADDs and ADM and motivates the readers
about the new perspective of viewing software ar-
chitecture as a set of ADDs. The contributions of
this dissertation, as well as the research questions ad-
dressed in this dissertation, are also discussed here.

In Chapter 2, the state of the art analysis of top-
ics concerning ADM is presented. Following a semi-
systematic literature review process 227 publica-
tions belonging to different genres including ADDs,
(group) decision making, AKM, ADD models, and
tools are presented in depth.

The analysis results from the literature review along
with the inputs from our industry partner form the
use cases for the conceptual framework and the cor-
responding ADeX system presented in this disserta-
tion. These use cases are consolidated in Chapter 3.

Chapter 4 and Chapter 5 describe in detail the core contributions of this dissertation. The
conceptual framework and the implementation of the ADeX system based on the framework are
covered in these two chapters. The design of each of the components and the algorithms used
within ADeX are elaborated in Chapter 5.

The results of both the quantitative and qualitative evaluation of the components in ADeX are
discussed in Chapter 6.

Over the last four years, we have received many suggestions, criticisms, and improvement areas
both from the industry as well as from the software architecture research community. We share
our lessons learned and conclude with an outlook in Chapter 7.

Note: Some of the sections in this dissertation have been taken from the publica-
tions [27,60–64] wherein, the author of this dissertation is also the first author of those
publications.

8

CHAPTER 2

Foundations and related work

This chapter provides readers of this dissertation the necessary background and the state-of-
the-art analysis of the topics concerning ADM in software engineering. It covers various aspects
with regards to ADDs, such as models of AK with the focus on design decisions, tool support
for ADM, ADM techniques, and factors influencing ADM.

The research gaps, challenges, and requirements identified by researchers working in the area of
ADM are highlighted (as italics in the text) through a semi-systematic literature review. Those
highlights presented in this chapter form the foundations, in the form of use cases, of the ADeX
system presented in this dissertation.

2.1 Research methodology for conducting the semi-systematic

literature review

Various researchers have proposed guidelines and protocols for conducting systematic literature
reviews in software engineering (cf. [65–68]). We use the guidelines prescribed by Kitchenham
and Charters in a technical report [5]. As discussed by Kitchenham and Charters, there can
be many reasons for undertaking a systematic literature review. We conducted a systematic
literature review to provide the necessary background to position our work on ADM. This
justification for performing the review is part of the “planning the review ” stage within the
systematic review process.

In essence, as shown in Figure 2.1, the review is broken down into three stages, namely, planning,
conducting, and reporting the review. In the planning stage, the need for the review (as discussed
before), the research questions related to the study (cf. Section 1.1) are presented. Then, the
literature review protocol is presented. In the second stage, as per the review protocol, the

9

2. Foundations and related work

1. Planning the review
1.1. Need for a review
1.2. Research questions
1.3. Review protocol

2. Conducting the review
2.1. Identification of research
2.2. Study selection
2.3. Data extraction and synthesis

3. Reporting the review
3.1. Dissemination strategy
3.2. Study formatting

Figure 2.1: Planning, conducting, and reporting a systematic literature review: as prescribed by
Kitchenham and Charters [5]

actual review is performed. And finally, the review is presented, in our case, as part of the
documentation within this dissertation.

It should be noted that we did not conduct specific steps within the review stages which are also
not considered mandatory by Kitchenham and Charters [5]. Those steps include commissioning
the review, evaluating the review protocol, and evaluating the review report.

As part of the review protocol that was followed while conducting the review, the following
strategies were used:

� For the identification of research, we defined the inclusion and exclusion criteria

� For the selection of relevant publications, we described the search strategy

� Data extraction was performed based on the inclusion and exclusion criteria

� Finally, the collected references were analyzed and summarized

Each of these steps are elaborated in detail in the subsequent subsections.

2.1.1 Inclusion and exclusion criteria for identifying research publications

For the inclusion criteria as part of the selection process, we considered those publications that:

+ refer to software architecture or software design

+ discuss ADDs as the main topic (this could include AKM, ADD models, and ADM)

Since the search query (as discussed in the next subsection) was formulated using English terms,
we restricted ourselves to those studies published in the English language. Furthermore, to
retrieve all relevant studies over the years, no lower boundary was set on the publication date.
However, since the search queries were executed on 17.07.2018, that is considered as the upper
boundary of the publication date. The following list of exclusion criteria were considered for the
literature review:

- Publications which are not in the English language.

- Studies published after 17.07.2018.

- Studies published by the author of this dissertation. Those publications are discussed in detail
in this dissertation.

10

2. Foundations and related work

- Publications describing a conference, a workshop, or a keynote talk.

- Publications that could not be accessed (even behind our library’s proxy - four in total).

- Publications that discuss the architecture of a specific system (for example, architecture of a
decision support system). Such papers were retrieved due to the search query construct and
could not have been avoided.

- Publications that focused on very specific specialized related topics, such as requirements nego-
tiation among stakeholders, model-driven approaches for realizing design decisions, modeling
service-oriented process decisions, and pattern-based approaches.

2.1.2 Search strategy for identifying relevant research publications

The following four digital libraries were chosen for retrieving the key publications. Since we were
interested in ADDs, we considered these four important publishers and indexes that contain
software architecture publications:

� ACM Digital Library

� IEEE Xplore Digital Library

� ScienceDirect

� Springer Link

These four publishers publish proceedings of the major software architecture conferences and
workshops including, (a) International Conference on Software Engineering (ICSE); (b) Working
IEEE/IFIP Conference on Software Architecture (WCSA); (c) European Conference on Soft-
ware Architecture (ECSA); (d) International Conference on Software Architecture (ICSA); (e)
Working on Sharing and Reusing Architectural Knowledge (SHARK); (f) Workshop on Decision
Making in Software ARCHitecture (MARCH); and (g) International Conference on Software
Architecture Workshops (ICSAW).

It can be argued that the above list is not exhaustive; however, the sources mentioned above
cover the major interest groups of researchers working in the area of software architecture and
those who publish in “A-ranked” conferences and workshops. Hence, the retrieved publications
would include relevant publications representing the state-of-the-art in the area of ADM.

To ensure all relevant publications were retrieved, we formulated a broad search query based
on the inclusion criteria. First, we wanted to include publications in the area of “software
architecture” or “software design” (Q1). Second, in the context of Q1, we considered those
publications that discuss “decision making” or mentioned “design decisions” (Q2). Finally, given
that both Q1 and Q2 had to be satisfied, they were combined using an AND clause.

Q1: (“software architecture” OR “software design”)

Q2: (“decision making” OR “decision-making” OR “design decisions”)

FSQ: (Q1 AND Q2)

11

2. Foundations and related work

The final search query (FSQ) implies that at least one term from both Q1 and Q2 must appear
at least once. The FSQ was matched against the title, abstract, and keywords of the publications
in each of the digital library. In each of the above digital libraries, the search was executed using
the advanced search option that provided the inclusion of such joined queries. It should be noted
that only for Springer Link, we could not match the query against the three publication fields
(title, abstract, and keywords). Instead, we had to perform a full-text search on the publications
that resulted in a larger number (1,455 publications) of retrieved publications as compared to
the results of other digital libraries.

2.1.3 Data extraction and synthesis for conducting the literature review

On executing the search query on individual digital libraries on 17.07.2018, we found 90 publica-
tion in ACM Digital Library, 141 in ScienceDirect, 1,455 and 230 publications in Springer Link
and IEEE Xplore Digital Library respectively. These search results were exported to a CSV file
for further analyses. Next, as shown in Figure 2.2, each of the publication was filtered by read-
ing the title and abstract according to the aforementioned inclusion criteria. This filtering step
resulted in 69, 26, 60, and 163 publications from ACM Digital Library, ScienceDirect, Springer
Link, and IEEE Xplore Digital Library respectively. These 318 publications were merged into a
new CSV file. Out of these 318 publications, we found 17 publications that occurred more than
once and were removed. For each of the remaining 301 publication, their full text was thoroughly
read. During this step, many publications were removed as per the already mentioned exclusion

Automatic search of
ACM Digital Library

90 publications

Filter by title and
abstract

69 publications

Automatic search of
ScienceDirect

141 publications

Filter by title and
abstract

26 publications

Automatic search of
Springer Link

1,455 publications

Filter by title and
abstract

60 publications

Automatic search of
IEEE Xplore Digital Library

230 publications

Filter by title and
abstract

163 publications

Merge publications

318 publications Remove duplicates

301 publications

Filter by content

227 publicationsLegend: Process step Outcome

Figure 2.2: The search strategy that resulted in 227 publications for conducting the semi-
systematic literature review

12

2. Foundations and related work

criteria. This final step resulted in a total of 227 publications which were summarized and the
findings based on those 227 publications are presented in this dissertation.

2.2 Review results of the identified 227 publications

Figure 2.3 shows the distribution of 227 publications (according to their publication year) that
were selected for the analysis. The first publication about design decision was presented in 1980.
Even though we had an upper bound for the publication date (the date when the search query
was executed - 17.07.2018), we found three papers that were yet to be published in 2018 and
were already available as pre-prints. Those three papers were also included in our study.

Note that in Figure 2.3, we see a steep increase in the number of publications per year related
to design decisions after 2004 (referred to as a paradigm shift in software architecture). As also
indicated by Capilla et al. [1], the original paradigm was purely technical and viewed architecture
with components and connectors, views, patterns, reference architectures, etc. The second or the
new paradigm looks at architecture from a socio-technical standpoint. Since 2004, researchers
in software architecture community started to look at architecture not only as a composition of
components and their relationships but instead began to reflect on how those components and
relations come into existence (how architects reason and make decisions).

This trend of viewing software architecture as a set of design decisions can be attributed to the
works of authors including Jansen, Bosch, and Kruchten. Since 2004, there has been a plethora
of publications addressing various aspects of design decisions, for example, models and tools
for managing design decisions, different decision-making strategies, and factors influencing the
decision-making process. Today, in 2018, we observe at least one research track dedicated to
architectural design decisions and decision making in software architecture conferences such as
ECSA and ICSA.

1 1 1 1 1 1
2

3
2 2

0
1

3

11

9

16

21

16

14

18

11

21

16 16

21

15

3

0

5

10

15

20

25

1980 1985 1990 1992 1993 1994 1995 1996 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

N
o

. o
f

p
u

b
lic

at
io

n
s

Publication year

Figure 2.3: The trend in the number of publications related to AKM, ADDs, and ADM dis-
tributed over the past years

13

2. Foundations and related work

GDM
(11)

ADD (38 + 36)

ADR
(10)

ADD Tools (36)

AKM (26)

AK- AD Models
(42)

ADM (41 + 23)

ADM –
optimization

(23)

Figure 2.4: The classification of the identified 227 publications into different AK categories

To analyze the 227 identified publications, we categorized them into different categories, namely,
AKM, ADDs, AK/AD models, Architectural Design Rationale (ADR), ADM, and Group Deci-
sion Making (GDM). Many of the publications cover more than one topic. While pointing out
this overlap, we discuss them only in one of those topics. Furthermore, one could argue that
GDM is part of ADM or managing ADDs is part of AKM. It should be noted that the publica-
tions were categorized into the aforementioned topics only for the convenience of summarizing
the results. Depending on the context and the theme of the publication, we categorized those
publications into one of those topics. For instance, if a publication specifically emphasized GDM,
even though presented, for example, an ADM strategy, it was sorted into the GDM category.

Accordingly, Figure 2.4, shows the number of publications per topic. For instance, we have a
total of 74 publications listed under ADDs; out of which, we have 36 publications that provide
tool support for managing ADDs. Twenty-six publications focus specifically on managing AK
and ten publications discuss the topic of ADR. We also categorized twenty-three publications
within ADM that model ADM as a multi-objective problem.

In the following sub-sections, we summarize the publications starting with the broad area of
AKM, followed by ADDs, AK models, and ADR. In the end, we present those publications
related to the topic of ADM and GDM. In each of the following sections, we have tried to
discuss the publications in a chronological order of the publication date. However, in some
situations, we have also grouped some publications to fit the context.

2.2.1 Architectural knowledge management

One of the very early works by Parnas and Clements [P3] emphasizes that designing software is
quite an irrational process. They state that the rationale behind the long sequence of design deci-
sions made by developers are rarely explained. Furthermore, they also argue that software design
cannot be entirely rational for many reasons, such as requirements and domain understanding

14

2. Foundations and related work

evolve and humans cannot comprehend all the information for rational thinking. However, they
indicate that developers try to capture the rationale after the fact. They suggest that by faking
a rational design process (i.e., by following an ideal process as closely as possible), developers
can get guidance on how to proceed. Finally in this paper, the authors discuss the need for
documenting design decisions, that is, recording all design alternatives that were considered and
the rationale as to why an option was considered or rejected.

In [P4], the authors conducted multiple interviews and were the first (in our review list) to
observe that design decisions are lost (forgotten) from one design meeting to the next. They
indicate that previously made decisions are commonly questioned in the subsequent ones. To
improve the design process, they suggest the need for integrating, documenting, and sharing
AK. [P5] also states that architectural degradation during software development happens when
already made design decisions are modified or when they are not recorded and forgotten over
time. Another publication [P6] also highlights that AK (specifically ADDs) reside in architects’
mind and are lost over time. Explicitly modeling and capturing design decisions helps to manage
the rationale about the elements within a software architecture. [P7] presents the interview
results of 279 architects and highlights that architects spend more time on making ADDs and
less time on documenting those decisions.

Farenhorst et al., in [P8,P9], present the first generation AK sharing tool named EAGLE with
integrated features to support the ADM process. This tool combines codification techniques
(design decision repositories, document management facilities) with professionalization mecha-
nisms (yellow pages, discussion forums) to deliver AK to the “right” people at the “right” time.
Furthermore, they also share observations from industry about AK sharing. They compare and
discuss six different software architecture tools. Moreover, the same authors based on four case
studies [P10] indicate that architects would use any AK tool support, if and only if, AK sharing
is versatile and lightweight. The tools should explicitly support managing decisions, search-
ing relevant information, and even finding the right colleagues. [P11] also compares different
approaches based on knowledge modeling, decision-making, and rationale management capabili-
ties. The findings in [P11] indicate that there is a limited support for identifying Architecturally
Significant Requirements (ASRs) and for managing cross-cutting ADDs.

For sharing high-quality AK across projects in different domains, Liang et al. [P12] present an
indirect mapping approach which compares the semantic distance between different AK models
to quantify the AK sharing quality and to find a high-quality AK model with the shortest seman-
tic distance. On a related note on sharing AK, in [P13], Van Vliet discusses a research project
named GRIFFIN that aims to address the challenges of capturing AK from a decision-oriented
perspective. The author argues that along with the design, the knowledge that has led to that
design is also essential, leading to the point that the so-called AK concerns the set of design
decisions and their rationale. Furthermore, the author also highlights that design decisions ad-
dress one or more concerns and there may be multiple ways of resolving them. Hence, a decision
is a choice among alternatives that meet some favorable characteristics (rationale) and impacts
the subsequent decisions. De Boer and Farenhorst [P14] after a systematic literature review on
the definitions of AK noticed that most of those definitions focus on design decisions. De Boer
also called for “closer cooperation between architecture and requirements engineering commu-
nities” since there seems to be “no fundamental differences between architecturally significant

15

2. Foundations and related work

decisions and ASRs” [P15]. Chen in [P16] also proposes the co-development of requirements and
architecture by using the (implicit) links between ASRs and ADDs.

A tool named Knowledge Architect uses a domain-specific AK model to annotate architectural
documents and stores those annotations in a knowledge base [P17]. The semantically enriched
knowledge instances are then used to facilitate AK retrieval and to improve the understandability
of architectural documents. However, it should be noted that the task of creating knowledge
elements in the AK model is a manual and an effort intensive activity.

A plugin for Sparx Enterprise Architect called ADMentor is presented in [P18]. This tool main-
tains decisions in a backlog and allows tagging them as, for instance, urgent for a design iteration.
It lists the decisions in a table and also facilitates filtering and ordering features. ADMentor
was validated by capturing design decisions in 85 cloud applications and 75 workflows.

Another tool named ArchiMedes built on top of MediaWiki (a semantic KM platform) is pre-
sented in [P19]. The tool’s core capabilities include publication, enrichment, analysis, and in-
tegration of AK from ArchiMate-compliant repositories. In our approach, presented in this
dissertation, those features are provided by the SocioCortex platform which is also based on a
HybridWiki meta-model which is similar to the semantic MediaWiki platform’s model.

Tang et al. [P20] present a comprehensive comparison of five AKM tools. Based on the com-
parison, they stated the need for improved support for AK sharing, collaborative work, and
personalization mechanisms. Furthermore, in this publication, they also define four categories
of AK, namely, context knowledge, general knowledge, reasoning knowledge, and design knowl-
edge. These categories are discussed in Chapter 5, as they were used to build the knowledge
base of the system presented in this dissertation.

A systematic mapping study of fifty-five publications is presented in [P21]. In this study, the
authors analyzed which AK-based approaches were used in which architectural activities. They
found that even though AK capture and representation is popular, AK recovery (for instance, by
documenting past design decisions) is seldom used in software architecture. Another literature
review in 2014 analyzed the models of AKM approaches [P22]. The authors admitted that their
review results did not show any strong evidence for the support of core AKM activities (e.g.,
AK maintenance) and they found only weak evidence for AK sharing and reuse.

To enable an integrated AK extraction and sharing process, the authors of [P23] present a method
that uses the trust of stakeholders on AK evaluation. They emphasize collecting and using valid
AK and promoting cooperation among individuals in different architectural activities. Further-
more, cooperation among individuals should not be limited to architects and developers. [P24]
calls for improved collaboration between requirements engineers and architects. It is suggested
that architects might benefit from explicitly linking requirements and decision elements.

Soliman et al. [P25] discuss a significant challenge with the existing AKM tools, which is, man-
ually capturing and maintaining the AK (e.g., architectural solutions and design decision rules)
in AK repositories for supporting architects. Creating and maintaining such AK repositories
is time-consuming and a tedious process. The amount of AK gathered manually is somewhat
incomplete thereof. Hence, authors call for efficient methods for capturing and maintaining AK.
We agree with Soliman et al. and the bottom-up approach for AKM presented in this disserta-

16

2. Foundations and related work

tion correlates with that idea. In [P25], authors specifically focus on technology decisions. They
classified StackOverflow posts into different types of architecture- and technology-related knowl-
edge (pure programming posts, architecture-relevant posts, and cross-architecture/programming
posts). Such classification can be used to train ML models to structure future posts in their re-
spective category automatically. As a follow-up, to support architects while solving architectural
problems, the same authors developed an ontology (with 3,800 AK concepts) by analyzing 65
architecturally-significant StackOverflow posts [P26]. On the related note, the authors of [P27]
also highlighted that eventually, ADM is constrained by technology decisions.

AK integration is not extensively supported by many of the existing AKM tools. The authors
of [P28] highlight an important point: “architects and developers do not always document and
share AK in organization-internal systems, but for the sake of convenience just refer to a diverse
collection of organization-external information sources (e.g., blog posts, Q&A portals, GitHub
repositories).” While the authors discuss the need to integrate AK from different information
systems and mention a semantic model to consolidate, synthesize, and disseminate AK, they do
not elaborate on the concepts within their semantic model.

One of the most relevant and motivational publications relevant for this dissertation is by Capilla
et al. in 2016 [P29]. The lack of widespread adoption of AKM approaches even with the
improvements over the years, led Capilla et al. to investigate the success and shortcomings of
current AKM approaches and to document what industry needs from AK. In this work, the
authors touch upon various aspects including the challenges in the current AKM practices on
how architects and developers make decisions. These challenges are listed below:

� A uniform AKM approach cannot cover all AK variability. Each of the AKM approaches
has its own set of concepts and relationships in their AKM models. Hence, solutions should
cater to the specific needs of practitioners.

� The one-size-fits-all approach does not work: tools and AK models should be organization-,
domain-, or project-specific. Users should be able to configure them accordingly.

� Existing AKM tools do not integrate with other commercial tools. There is a need for a
highly integrated, easy-to-use, and shared AKM tool.

� AKM tools should interoperate with tools from different SDLC phases to establish traceabil-
ity (between requirements, decision decisions, architectural elements, and code). Creating
traces can help estimate the impact of a decision on other artifacts.

� For an AKM tool to be adopted, it must be lightweight.

� AKM tools must be descriptive and not prescriptive (give advice and not make decisions).

� AKM tools should substantially improve their usability and their visualization features.

� AKM tools should (semi-) automate some of the AKM use cases.

� AKM tools should be able to track evolving and runtime decisions.

� Architects base their decisions on their own experiences and expertise. AKM tools should
consider that design reasoning is rather ad-hoc and not a rational process all the time.

17

2. Foundations and related work

Some of these challenges have helped us formulate the requirements for our bottom-up AKM
approach (cf. Chapter 3). We have considered some of the directions suggested by Capilla et al.
as guidelines for building the tool (ADeX) presented in this dissertation.

2.2.2 Architectural design decisions

The very first mention of design decisions was in 1980 (from the list of publications in our
review list). During that time, software architecture, as a field of study, had not yet been well
established, and the reference to design decisions was in the programming/source code context.
In [P30], the author represented a design decision using an applicability predicate (antecedent)
and a predicate expressing the desired qualitative effect (consequent). An example decision in
a program is represented as:

Decision: replace recursion by iteration

Antecedent: the given program description is a linear recursive function

Consequent: the new version is equivalent to the given one and is an iteration using a fixed
number of new auxiliary variables.

The author also showed how to represent the hierarchical specification of design decisions using
composition rules based on formal logical representations.

Next, in 1990, the authors of [P31] argued that design decisions (encapsulation vs. interleaving,
generalization vs. specialization, or data variables vs. procedures) could be detected in the
existing code using reverse engineering. They also highlighted that once such design decisions
are identified in code, they must be documented to support software maintenance and reuse.

Figure 2.5: A traceability support system

Furthermore, during the 90s, when building
software through the transformation of mod-
els was popular, the authors of [P32] pro-
posed to map these models through design de-
cisions and to ensure traceability across mod-
els. They presented the first tool (traceability
support system as shown in Figure 2.5) that
allowed programmers to capture the problem,
alternatives, design decisions, the rationale
behind those decisions, and the links between
the source and the target models.

During the same period (early 90s) when
Issue-Based Information Systems (IBIS) were
becoming popular, many Software Engineer-
ing (SE) approaches were proposed based on
IBIS. The authors of [P33] also used the IBIS
representation as a method for capturing design argumentation. They introduced a model to help
programmers answer questions such as “Why certain decisions were made? ”, “What alternatives
have been explored? ”, and “Will this change violate any design constraints? ”.

18

2. Foundations and related work

Requirement Description

Architectural review which AK elements have been added or modified?

Review concerns for a quality concern, which are the associated knowledge elements?

Evaluate impact if there is a change in an element, what are the impacted elements
(decisions, quality attributes, AEs)?

Get a rationale for an AE, trace back to its related decisions.

Study the chronology understand the sequence of design decisions over time.

Add a decision manually or automatically integrate decisions to other AEs.

Cleanup the system removing a decision should be reflected on associated elements.

Spot the critical
stakeholder

stakeholders who have the most “weight” on a decision and those who
will be affected if that decision changes.

Clone AK for AK reuse

Integration with multiple systems

Table 2.1: Requirements captured by Kruchten et al. [P1] for managing an AK repository

Kruchten in this seminal work [P34] stated that “the documentation produced during the archi-
tectural design is captured in two documents: a software architecture document, organized by
the 4+1 views, and a software design guideline, which captures (among other things) important
design decisions that must be respected to maintain the architectural integrity of the system”. To
document these design decisions, the authors of [P35] proposed to use a tree structure. Wherein,
each node contains “concerns and constraints, the solution to address the problem (decision),
new concerns raised by applying a decision, and references to other decisions”. Kruchten in [P36]
also highlighted that a software architect must be able to communicate design decisions to the
involved stakeholders effectively and should consider their decisions as well. He further went
on to say that an architect must “make some decisions very quickly, based on experience and
‘gut feelings’ rather than pure, thorough analysis”. [P37] also suggested that the ‘soft-skills’ and
external influences are important in the socialization of decisions.

To understand what an AK repository should contain and how to use it, Kruchten et al. [P1]
presented a list of requirements, as shown in Table 2.1. They also argued that since “the burden
to capture assumptions and decisions outweighs largely the immediate benefits”, we should aim
to automate the collection of decisions and their rationale. Kruchten et al., in that publication
also showed how to represent decisions using a graph and that the requirements in Table 2.1
correspond to certain operations on that graph.

Figure 2.6: The context of CBAM

Kazman correlated ADDs to quality attributes
in [P38] (“the quality attributes of a system are
dictated by its architectural design decisions”).
In this work, he presented the Cost Benefit Anal-
ysis Method (CBAM) to model the costs and the
benefits of ADDs. Figure 2.6 shows the context
of the CBAM which links costs to ADDs. Ac-
cording to that context, a design decision ad-
dresses quality attributes and stakeholders can
analyze the cost-to-benefit ratio of investing in a

19

2. Foundations and related work

specific decision. CBAM was further revised to incorporate an iterative elicitation process with
a decision analysis framework [P39]. Another publication [P40] also investigated the economic
perspective of capturing ADDs and presented a “structured intuitive model for product line eco-
nomics” for product line decision-making. Furthermore, to compute the savings in effort, [P41]
proposed a cost-benefit framework for ADM. By analyzing the differences in an architectural
refactoring activity, this framework correlates the developer effort to the change in coupling.

The very first explicit mention of the statement “architecture of software is a collection of design
decisions that are expensive to change” was in [P42] (in 2001). The author of that publication,
Ran argued that the “expensive to change” decisions are those decisions on which most other
decisions depend on (indicating that design decisions are interrelated). Bosch in 2004 also
emphasized that “software architecture is, fundamentally, a composition of architectural design
decisions” and “designing a software architecture can be viewed as a decision process” [P43].
Researches in software architecture community attribute the paradigm shift in how we view
software architectures to this work by Bosch as well. Furthermore, since knowledge about
design decisions are lost over time and the changes to the software system can violate earlier
decisions, he pointed out that design decisions should be represented as first-class entities in
software architecture. Jansen and Bosch in [P44] also pointed out that a tool that supports the
evolution of software architecture must: (a) support multiple views, since design decisions affect
various architectural concepts and (b) support the addition, modification, and deletion of those
design decisions. However, given that design decisions are not explicitly documented (which is
also emphasized in this dissertation), Jansen and Bosch [P45] proposed “Architectural Design
Decision Recovery Approach”, which is a bottom-up approach to recover design decisions. By
comparing different versions/releases of a software system, the architectural deltas are extracted
which reflect on the decisions made by architects.

Van der Ven and Bosch showed that commit messages in source code repositories are yet an-
other source wherein design decisions are implicitly captured by architects and developers [P46].
They analyzed 100 commits (mostly related to ruby gem files) and concluded that medium-level
decisions could be identified in commit messages. Medium-level decisions include for instance
the selection of specific components or interaction between components. Another potential data
source for reverse engineering design decisions is the bug reports of software systems [P47].

The proposal to extend the 4+1 view model with the decision view was made in [P48]. In that
paper, Dueñas and Capilla, also capture the following requirements for managing ADDs:

� The system should have multi-perspective and multi-user (groupware) support.

� ADDs should have visual representation so that they can be easily understood.

� ADDs in large systems should have some classifications (hierarchy, abstraction).

On the abstraction level of design decisions, the author of [P49] distinguished between strategic
(e.g., architectural style, CBSE standard, or application framework) and tactical decisions (e.g.,
design pattern, refactoring, or programming idiom). He argued that strategic decisions have
a far-reaching impact on the implementation and tactical decisions have a localized effect on
the software system. To capture such design decisions a template called “architectural decision
description template” was proposed in [P50]. This template includes concepts such as Issue,

20

2. Foundations and related work

Decision, Status, Assumptions, Constraints, Arguments, Implications, and Related decisions.
Another method to capture design decisions is using mind-maps. Using a mind-mapping tool,
architects can capture the internal structure of ADDs (including their dependencies) in the
form of diagrams [P51]. A template-based approach that was evaluated with students in the
context of service-oriented design is presented in [P52]. It contains the basic concepts related to
ADDs but does not capture relationships between ADDs and software artifacts. On the other
hand, [P53] showed how to link structural and technological decisions documented in decision
templates with requirements and the corresponding architectural models.

In 2007, Clerc et al. [P54] based on a survey found out that even though the idea of representing
software architecture as a set of ADDs was not completely adopted in practice, the concept of
ADDs had gained importance among practitioners. These ADDs address system behavior, the
interaction between components, system deployment, evolution, and non-functional properties
of a software system [P55]. To reduce the amount of work required for practitioners to capture
these ADDs, [P56] presented a straightforward approach comprising of three steps: flag, filter,
and form. As the name suggests, when architects encounter a design decision, they can flag it;
then using filtering they can find relevant decisions in a project, and lastly, forming means to
create a decision entry (decision, priority, category, status) based on the decision model.

Selecting an architectural style or a pattern is an essential type of ADD. [P57] emphasized
that point, and linked patterns to high-level ADDs. [P58] suggested that ADD recovery can
be improved by focusing on those decisions related to the application of specific architectural
patterns. In [P59], a pattern model is linked to the component meta-model, and the selection
of a pattern and the corresponding components implicitly captures that decision.

Heijstek et al. [P60] conducted interviews with 47 participants and found that neither diagrams
nor textual descriptions were significantly more efficient for conveying ADDs. However, it should
be noted that the diagrams used in their study was either component or class diagrams. We
believe that it would have been more interesting, if those authors had conducted similar studies
with, for instance, decision graphs instead of classical design diagrams.

To document design decisions made at the source code level, [P61] introduced Java annotations
to mark operations of reused components. These annotations within components can then be
used to check usage compliance when they are reused.

[P62] presented the results of a systematic mapping study (from 2005 to 2011) to confirm with
our findings that there has been a growing interest in the topic of ADDs. They highlight that
there exists little research in the area of GDM and uncertainty in decision making. We found
eight more publications specifically discussing GDM since their study was published in 2014.
And regarding the topic of uncertainty, in our research department, we have recently started
investigating this topic (cf. [69] and [70]).

Miesbauer and Weinreich [P63] conducted interviews with nine experts from six different com-
panies and listed down very interesting findings (which are also highlighted in other publications
discussed in this chapter) that are relevant for this dissertation:

� Non-existence or ban decisions are not captured.

� None of the participants focused on process and tool decisions.

21

2. Foundations and related work

� Decisions can be classified into organization, project, architecture, implementation, and
deployment decisions.

� Places for documenting design decisions include: source code, meeting minutes, project
diaries, issue tracking systems, and wikis.

� Even if critical design decisions are documented, their rationale are not captured.

� Personal experience and preferences have a significant influence on the ADM process.

� Previously made decisions have a high influence on new decisions (they are inter-related).

� Requirements drive design decisions.

� While documenting design decisions may be costly, wrong decisions are expensive, too.

2.2.2.1 Formal representation of architectural design decisions

In this subsection, we present those publications that focus on the models of ADDs. Some of
these publications refer to the model as a meta-model, however, we refer to them as the domain
model for capturing ADDs (cf. the Object Modeling Group’s modeling layers).

Figure 2.7: The conceptual model of ADD used
in the Archium approach

Jansen and Bosch [P64] present an approach
called Archium and also its model which rep-
resents design decisions as first-class entities.
They emphasize that architecture is the com-
position of a set of ADDs. Furthermore, they
also explicitly define design decisions, and we
use the same definition in this dissertation:

“A description of the set of ar-
chitectural additions, subtractions
and modifications to the architec-
ture, the rationale, and the de-
sign rules, design constraints and
additional requirements that real-
ize one or more requirements on a
given architecture.”

The conceptual model for ADDs as presented
by Jansen and Bosch is shown in Figure 2.7.
An issue can be resolved by multiple solutions
and the decision is to choose an alternative
by making trade-offs among the alternatives.
Making such a decision results in the architec-
tural modification which influences other existing/future requirements and decisions. Based on
this model, the authors present the Archium approach and with examples, they show how to
capture design decisions in a given context.

22

2. Foundations and related work

In [P65], the authors propose an ontology that is composed of architectural assets, ADDs, stake-
holder concerns, and an architectural implementation roadmap. Since this was a position paper,
not much details about the ontology (its creation and maintenance) are presented. However,
Kruchten et al. [P2] present a detailed description of an ontology for AK representation with the
focus on design decisions. Kruchten et al. argue that “AK consists of architectural design as well
as the design decisions, assumptions, context, and other factors that together determine why a
particular solution is the way it is.” In short, “AK = Design Decisions + Design”. Kruchten et
al. also emphasize the fact that AK (design decisions and their rationale) is tacit, remains in
the heads of architects, and are usually lost since they are not explicitly captured. And hence,
it becomes difficult to trace the reasons for already made design decisions. They also hint that
there is a need to “automate the collection of rationale (or of decisions, or both)”. In the ontol-
ogy presented by Kruchten et al., they provide a taxonomy of design decisions and capture their
relationships. The definitions of different types of design decisions are presented in Table 2.2.
These definitions are important for this dissertation, since, they are referred to in Section 5.3
while presenting the process of automatic extraction and classification of design decisions. They
also discuss the following types of relationships between design decisions: constraints, forbids,
enables, subsumes, conflicts with, overrides, comprises (decomposes into), is an alternative to,
is bound to, is related to, and depends on.

The authors of [P66], also argue that despite the importance of ADDs (capitalizing on the
previous ADDs to provide the foundations for learning and training), ADDs remain tacit and
are lost over time. In the model they propose, they highlight the changes made to the design of a
system. They provide a vocabulary for those operations that change the design: addComponent,
addConnector, deleteQualityRequirement, addFunctionalRequirement, deletePort, and so on.
Such operations applied to the design of the system can be versioned to preserve the history of

Design decision Description

1. Existence decisions one element/artifact will positively show up, that is, will exist in
the system’s design or implementation.

1.1. Structural decisions lead to the creation of subsystems, layers, partitions, components
in some view of the architecture.

1.2. Behavioral decisions are related to how the elements interact together to provide func-
tionality or to satisfy some quality requirements, or connectors.

1.3. Bans or non-
existence decisions

state that some element will not appear in the design or imple-
mentation. They are not traceable to any existing artifact.

2. Property decisions state an enduring, overarching trait or quality of the system.
They can be design rules or guidelines or design constraints, as
some trait that the system will or will not exhibit.

3. Executive decisions decisions that do not relate directly to the design elements or
their qualities, but are driven more by the business environment,
and affect the development process, the people, the organization,
and to a large extent the choices of technologies and tools.

Table 2.2: A taxonomy of design decisions: presented by Kruchten et al. in [P2]

23

2. Foundations and related work

ADDs. In our work, we detect such operations by applying Natural Language Processing (NLP)
on the textual description of issues in an IMS.

Zimmermann et al. [P67] present a model which includes concepts such as ADLevel, ADTopic,
ADD, ADAlternative, and ADOutcome. Based on this model, they propose a framework for
collaborative ADM; especially in the context of enterprise architectures. [P68] also presents a
model for AKM and the authors argue that the critical elements of an AK model are ADDs
and their rationale. They highlight that internalizing AK helps architects to avoid sub-optimal
solutions and to learn from their mistakes. An approach called ADVERT [P69] helps architects
to document ADDs, their rationale, and links ADDs to the triggering requirements and the
implementing Architectural Elements (AEs). The authors of [P70] extend the model presented
in [P67] by including links between ADOutcome and software artifacts represented by the ADAr-
tifact entity. To indicate the impact of an alternative on the architectural artifact, they also
introduce wouldImpact-traceability link between ADAlternatives and ADArtifacts.

An AK model called CORE [P71] captures the links between ADDs, AEs, stakeholders, and
processes. This model also characterizes ADDs using concerns, decision topics, and alternatives.
De Boer et al. in this publication emphasize that ADDs are interrelated and their relations
typically form a tree structure (from abstract to concrete decisions). Another model presented
in [P72], captures ASRs, ADDs, alternatives, and rationale along with their relationships. [P73]
also captures an extensive AK model comprising of concepts ranging from stakeholders, their
concerns, requirements, decisions, to architectural artifacts. This model explicitly emphasizes
the involvement of multiple stakeholders during ADM. The authors of [P74], in their model,
explicitly link ADDs to requirements. They also discuss two types of ADDs (recurring and
project specific) and their effects on requirements and their prioritization.

To link and to capture the traceability from ADDs to AEs in Unified Modeling Language (UML)
diagrams, [P75] proposes a UML profile for capturing ADDs and an associated profile for repre-
senting Non-Functional Requirements (NFRs). Such profiles ensure the treatment of ADDs as
first-class elements in the design of a system. [P76] also proposes architecture-specific decision
types (virtualization, replication, single instantiation, etc.) and link them with UML diagrams.
UML’s object constraint language is then used to capture constraints of those decision types.
The link between ADDs and AEs is explicitly shown in the model presented in [P77] and [P78].
The links include cardinalities of 1:1, 1:n, and n:1 relations between ADDs and AEs. Using these
links and a decision constraint graph, impact analysis can be performed to identify those AEs
affected by changed ADDs. Another model that explicity links ADDs to architectural solution-
s/elements is discussed in [P79]. For documenting ADDs, authors of [P80] present a model and a
graphical modeling notation called “Maps of Architectural Decisions”. This model includes con-
cepts such as concern, connector, solution, requirement, decision-maker, pros, and cons. These
concepts can also be tagged with elements such as defined, chosen, solved, (in)feasible, etc.

[P81] emphasizes on representing the relationships between ADDs as well as the NFRs addressed
by those ADDs and AEs implementing those ADDs as a network of design knowledge. The model
presented in [P81] includes relationships that were proposed by Kruchten et al. in [P2]. In a
related publication [P82], a Concept-Requirement-Decision tree is used to organize architectural
topics hierarchically. Similarly, a design map is used in [P83] for capturing ADDs (selection of
architectural styles) and tracing those ADDs to specific NFRs. With the focus on facilitating

24

2. Foundations and related work

traceability from requirements to design, [P84] links concepts from the goal-oriented modeling
language (goal, soft goal, task, and resource) to the concepts in an ADD model (decisions,
alternatives, and rationale).

The authors of [P85, P86] also capture the relationships between NFRs, ADDs, and AEs in
their tactic traceability information models. They argue that “extracting the traceability links by
annotating information from existing architectural documents can reduce the time of information
retrieval from documents”. The idea is to recover decisions and their traceability links from
documents by training a ML classifier (a bottom-up approach). Even though a very important
work in the context of this dissertation, unfortunately, the publication [P86] is only a proposal
and the technical details for realizing such an approach are missing.

In the context of software Product Line Engineering (PLE), Capilla and Babar [P87] show how
the models of the PAKME and ADDSS tools can be merged to support the concepts of PLE.
This integrated model captures the dependencies between ADDs and the variability rules in
the associated feature models. Furthermore, the need to capture another related concept –
vulnerability of ADDs along with the rationale is discussed in [P88].

In the model presented by Tang and Van Vliet [P89,P90], they emphasize the concept of design
constraints. They also categorize those constraints into requirement-, quality requirement-,
context-, and solution-related constraints. These constraints influence and drive ADDs made by
architects during the design phase. To support the evolution and maintenance of AK, Che and
Perry present a so-called Triple View Model (TVM) [P91,P92]. This model captures the What
(element view), Why (intent view), and how (constraint view) of ADDs.

Zimmermann has been a notable author who, over the years, has contributed to ADM in the
context of service-oriented architectures (SOA). In [P93], he presents an ADM framework for
SOA systems. The decision templates used within that framework can assist the selection of a
Software Architecture (SA) that supports runtime models. In another paper [P94], Zimmermann
et al. investigate the use of ADD models for the microservice architecture. In this work, they
present (a) a taxonomy of the areas of microservice design, (b) the involved stakeholders, (c)
the use cases for which microservice decision model is helpful, and (d) the model elements that
are part of the decision model (system components, technology options, etc.). Zimmermann
with his colleagues, in [P95], emphasize the need to capture the context of a decision explicitly.
Understanding the context of ADDs is critical for enabling recommendations and reuse in a
similar context. Hence, they propose a context model comprising of five concepts (organization,
product, stakeholder, development method and technology, and market and business).

In a series of publications [P96–P98] in 2015, Zdun and his colleagues present the tool called
CoCoADvISE and the so-called reusable decision model. CoCoADvISE uses a knowledge base
to support ADM in the context of software ecosystems. The knowledge base maintains design
patterns, tactics, quality attributes, decision drivers, decisions, their relationships, and domain
experts’ feedback on the documented ADDs. CoCoADvISE uses the knowledge base to generate
specific recommendations and to produce a questionnaire for making new ADDs.

The technology related decisions are one of the most often made decisions. Soliman et al. [P99]
extend the AK model to capture technology decisions (with concepts such as architecturally
significant technology aspects, their features, architectural aspects, benefits, and drawbacks).

25

2. Foundations and related work

Architectural
design decision

Concern

raises

addressed by
Architectural

element affects

Rationale
Alternative

solution

Strength

Weakness

based on

trade off
has

1

1

**

*

* *

*

*

1

1

1 *

Stakeholdermakes

*

*

*

*
has

1

*
has

Figure 2.8: A conceptual model capturing ADD and its associated concepts

The authors of [P94] and [P100] also extended the AK model to reflect the sustainability of
ADDs. The notion of sustainability of ADDs has been elaborated by Zdun et al. in [P101]. They
state that the ADD sustainability comprises of (a) “the time period when the right and relevant
decisions remain unchanged”, and (b) “the cost efficiency of required changes to those decisions”.
To reduce AK documentation effort, Zdun et al. propose to capture only significant ADDs and
their relationships using configurable AK templates (lean approach for documentation).

To help stakeholders measure the quality of knowledge captured across multiple decision models
and for reuse thereof, [P102] presents a set of metrics to capture stakeholders’ goals.

In [P103], Shahin et al. compare nine AKM tools and their models and state the following:

� ADD models treat architectural design as an ADM process

� ADDmodels have consensus on capturing rationale, constraints, and decisions’ alternatives

� Tools do not exist for all the ADD models, some of them use text templates for capturing
and documenting ADDs

� ADD personalization is a desired feature that is currently missing in most of ADD tools

The main takeaway for the readers from the analysis of the aforementioned models is that the
core of any AK or ADD model is the concept of ADD and its rationale. The quality concerns
of stakeholders are the main drivers for ADDs [P104]. This is also evident in the conceptual
model of architecture description prescribed by the ISO/IEC/IEEE 42010 standard [4]. The
model shown in Figure 2.8 summarizes the main concepts (based on the already discussed mod-
els) that are relevant to this dissertation. In essence, Stakeholders have concerns and architects
and developers address those concerns by making ADDs. Making an ADD affects one or more
architectural elements as well as may raise new concerns. An ADD should be made by consid-
ering multiple alternative solutions and by analyzing the trade-offs between their strengths and
weaknesses, which is the rationale for making that ADD.

26

2. Foundations and related work

2.2.2.2 Architectural design decisions - tools

The first publication (in our literature review) that explicitly focuses on capturing and ordering
ADDs was in the year 2000 [P105]. This paper presents Argo/UML that targets the cognitive
tasks (decision ordering in a to-do list, ADM, task-specific design understanding) during software
design. Supporting designers to make “good” ADDs is important since those ADDs strongly
influences the implementation and maintenance effort.

In a series of publication from 2006 to 2008, Capilla et al. [P106–P112] present a web-based tool
called Architecture Design Decision Support System (ADDSS) to record and manage ADDs.
The model behind ADDSS which represents a design decision as a first-class entity is shown in
Figure 2.9. Design decisions are mapped to the requirements of the system through stakeholders
and affect the architecture of a software system.

Figure 2.9: The conceptual model of the architecture design decision support system

Capilla et al. discuss that ADDSS1 supports the following features:

� Groupware support (web-based tool)

� Multiple projects and architectures

� Different categories of users and permissions

� Architecture visualization (architecture models can only be uploaded as images)

� Multi-perspective support (different views on web pages)

1The link provided to access ADDSS is no longer available

27

2. Foundations and related work

� A visual representation (a simple UI to list design decisions)

� Gradual formalization (a chronological visualization of the decisions)

� Architecture iterations (versions, related to gradual formalization)

� Patterns and styles (with add/remove options)

� Design decisions support (rather naive: linking design decisions to styles and patterns)

� Dependencies between decisions (detailed categorization of dependencies between decisions
is part of their future work)

� Alternative decisions (add/remove to a list)

� Support for (non-) functional requirements (links to decisions)

� Architecture documentation (generate reports)

� Basic customization mechanisms

� Timers to measure the capturing effort of ADDs

� RSS feeds to notify updates

� Complexity control (not clear how)

Based on his experience with ADDSS and comparing other AKM tools, Capilla in [P113] suggests
the following improvement areas for the next generation tools:

� New tools should integrate all aspects of the design process (e.g., with existing architectural
specification and modeling tools).

� New tools must support creating concrete links between decisions and resulting models (as
well as embedded facilities for design rationale).

� New tools that help architects in capturing ADDs should reduce their intrusiveness.

With the focus on visualization of ADDs, Lee and Kruchten [P114,P115] present a tool for ADDs
exploration and analysis. Using this tool, users can create, modify, remove, and view ADDs and
their relationships. ADDs are visualized using a directed graph (nodes represent ADDs, and the
directed edges represent the impact-relationships between them). Another visualization within
this tool represents the historical view of a set of ADDs which captures their evolution as well
as their status using different symbols.

Lee and Kruchten [P116] present another tool that filters AK from tags/annotations in the
source code. A software-package in their tool also extracts AK from emails. In this work they
differentiate between three approaches for capturing ADDs:

1. Formal elicitation: gathering software decisions in an explicit and structured manner
(which uses formal modeling)

2. lightweight top-down approach: focuses on the early design phases, to capture mini-
mal/necessary information about ADDs.

28

2. Foundations and related work

3. lightweight bottom-up approach: capturing ADDs that are documented within dif-
ferent artifacts generated during Software Development Lifecycle (SDLC).

It should be noted that, according to these three approaches mentioned above, the system
(ADeX) presented in this dissertation follows a lightweight bottom-up approach. In our ap-
proach, we automatically extract AK from tools such as MS Project, Enterprise Architect, Jira,
and Github as well as process them further using ML and NLP techniques.

Another visualization-centric tool is presented by De Boer et al. [P117] and refer to the tool as
ontology-driven visualization (ODV). ODV uses table and matrix representations of decisions
and quality attributes. ODV is used to support reviewers to assess the product quality (with
trade-off analysis and if-then analysis scenarios).

An extension to a tool named Compendium to support the visualization and exploration of
ADDs and their underlying rationale is presented in [P118]. Compendium is a semantic hyper-
text concept mapping tool and supports argumentation-based approach for ADM. Within this
tool, each compendium node can be represented as a decision, note, question, answer, or pro/con
argument. Using those nodes, different visualizations (e.g., dependencies between ADDs) can be
created to support collaborative ADM [P119]. Furthermore, Shahin et al. evaluate these visu-
alizations in a controlled experiment with 10 participants [P120]. They show that visualization
diagrams of ADDs improves architects’ understanding of the existing architecture. In another
experiment with 21 subjects, Shahin et al. also indicate that “experienced participants benefited
more from ADDs in comparison with less experienced ones” [P121].

In [P122], the authors present a tool to integrate a decision management system (Architectural
Decision Knowledge Wiki) and a UML-based modeling tool (IBM Rational Software Modeler)
to closely link decisions to the structural and behavioral elements in the models.

Chen et al. [P123,P124] focus on customization features in their Architecture Design Decision
Management (ADDM) tool. Within this tool, they provide users of the system the flexibility to
adapt the ADD model to organize their AK in a better manner.

A semi-automatic approach to capture traceability relations from design decisions to architec-
tural elements and the code base can be achieved using the tool called LISA [P125]. When
developers are implementing a selected active design decision, modification events are auto-
matically created. These events include information about the impacted implementation and
architectural elements. These modification events are maintained in LISA along with the link
to the corresponding active design decision which can be reviewed thereafter.

A bottom-up approach that uses domain ontologies is presented using a tool called TREx
in [P126]. This tool uses domain ontologies to annotate text with architectural topics. Based
on those annotations and predefined rules, TREx tags statements as either design decisions or
design structures. However, creating these rules seems to be an effort-intensive manual task that
needs to be performed by domain experts.

A system called Design Practice Streams (DPS) that uses video recordings of design meetings
to help architects reflect on the made ADDs is presented in [P127]. DPS records the sketches
drawn on a whiteboard as well as produces a textual transcript of the voice recordings. After
the design meetings, architects can search for topics in the transcripts or select a region on the

29

2. Foundations and related work

whiteboard and navigate to specific segments within the video. [P128] also proposes the idea of
using a video wall for collaborative ADM. In that idea paper, they indicate that one can analyze
the meeting discussions (multi-touch screen for the screenplay, audio, and video) with text and
argumentation mining.

Another interesting tool that uses design meetings recordings is called Design Verbal Interven-
tions Analysis (DVIA) [P129–P131]. In this tool, the meeting recordings are used in combination
with verbal intervention analysis model to classify and map segments within transcribed meeting
logs to an ADD model (which comprises of issues, orientations, clarification, explanations, dis-
agreements, constraints, assessments, choices, and assumption elements). However, it is not clear
which parts within their approach is manual/automated2. The process of identifying the intent
behind a segment within the meeting transcript and mapping those intents to the decision model
seems to be manual and has not been elaborated within the paper. They do mention that ADD
recovery is difficult, costly, and inefficient and requires effort for transcription, identification,
and categorization of decision topics.

For persisting and choosing adequate design patterns from a knowledge repository and support-
ing architects during the development phase, an AKM tool called Architectural Development
using Architectural Knowledge (ADUAK) is presented in [P132]. Another repository-based tool
called ArchiTech allows domain experts to create ADDs which are prominent in a specific do-
main and link them to NFRs [P133]. By capturing the above information, one can reuse them
across projects in the same domain by suggesting ADDs to address specific NFRs. The authors
of [P134] also propose maintaining a repository of reference architectures and styles. Then, once
the system requirements are captured in their tool, stakeholders can prioritize the requirements,
and finally based on the priorities, stakeholders can get recommendations about choices. A simi-
lar approach called ADMD3 is presented in [P135], where the idea is to annotate recurring ADDs
using specific checklists (decision-specific questions) and to persist them for future reuse.

An extensive tool to support architects to reason about ADDs is presented in [P136]. The tool
referred to as Architectural Design Decision Support Framework (ADvISE) is an Eclipse plug-in
which supports creating reusable ADD models. Using the Question, Option, Criteria (QOC)
method, this tool allows creating questionnaires for making ADDs. The View-based Modeling
Framework (VbMF) integrated with AdvISE provides the component-and-connector view-model
and links the model elements with decisions in ADvISE. The tool also supports considering
uncertainty using basic fuzzy logic based inference mechanisms.

A tool based on the repertory grid technique called RGT tool3 is presented in [P137, P138].
This tool allows users to capture ADDs, prioritize concerns, and analyze ADDs in a group
setting using different viewpoints. The viewpoints include (a) chronological viewpoint (changes
to ADDs over time), (b) dependency viewpoint (relationships between ADDs), and (c) group
viewpoint (stakeholders’ concerns, alternatives, ratings for alternative-concern pairs).

Manteuffel et al. have developed a plugin called Decision Architect4 (DA) for the Enterprise
Architecture (EA) system [P139]. The model of DA is based on the ISO/IEC/IEEE 42010 model

2There is no mention of the executable of the DIVA tool for testing.
3The link provided for the tool in [P137] is not available.
4https://archive.codeplex.com/?p=decisions

30

2. Foundations and related work

along with the addition of Relationship and Relationship Type concepts. DA allows users to
create, edit, delete, and view ADDs, it’s associated concepts and relationships between them.
DA provides five different viewpoints to support different concerns (e.g., decision relationship
view shows relationships between ADDs). A very powerful feature of such a plugin is that the EA
system provides the necessary models (e.g., from requirements and design) which can be linked
with the plugin’s model. Given that the EA system is widely used in industry, such a plugin
addresses the challenge of applying and (re)using AK during architects’ day-to-day activities.

Another Eclipse plugin called DecDoc allows users to capture ADDs and link them to artifacts
such as requirements (from an AKM tool - UNICASE), architectural elements, and code [P140].
This tool focuses on supporting collaborative and incremental documentation of ADDs.

Even though there is an abundance of ADD models and tools for capturing of ADDs, they are
not adopted in practice and ADDs are seldom documented [P139]. Like many other publications
discussed before, [P141] suggest the following reasons for the lack of adoption:

� The absence of industrial applicability requirements

� Only marginal support of brownfield development (bottom-up approaches)

� Insufficient consideration of the overhead during the documentation of ADDs

� Simplified or often missing perspective on the evolution of systems and ADDs

� Lack of tool-support and integration with commercial tools

2.2.3 Architectural design rationale

Even though the term design rationale was not included in the search query, we found ten
publications specifically focused on ADR. Among them, five publications are from 2004 to 2008.
During this time, it should be noted that rationale-based/driven approaches were also popular
in the software engineering research community.

Figure 2.10: An architectural design rationale
model by Burge and Brown

To systematically manage design rationale,
Burge and Brown [P142] present a tool named
InfoRat. The model behind this tool is quite
straightforward as shown in Figure 2.10. In
this model, the concept requirement can be
broken down into goals and sub-goals. Goals
can then be satisfied by one or more alterna-
tives. The rationale behind an alternative is
represented as claims, for or against each al-
ternative. Once information is captured using
InfoRat, inferences can be made to find inconsistencies and completeness of goals. Continuing her
work on design rationale management, Burge with her coauthors presented SEURAT (Software
Engineering Using RATionale) system with the aim to integrate ADR capture and visualization
into standard SE practices [P143,P144]. Since architects do not document their decisions as a
separate process, SEURAT was integrated into Eclipse IDE, so that it is tightly integrated with

31

2. Foundations and related work

the design and development activities and the capture and the use of rationale becomes part of
a standard process. By using SEURAT for capturing rationale for design choices and applying
semantic inferencing, authors argue that the impact of decisions on a software system can be
determined.

Another extension to the SEURAT tool called SEURAT-Architecture is presented in [P145].
This extension uses a predefined library of patterns and NFRs to guide architects during the
selection of architectural patterns. Each recommended pattern for a concern can be considered
as an alternative and the reason as to why a pattern was recommended acts as the rationale.

In [P146], the authors present a web-based tool for managing ADR. They indicate that an ADR
should comprise of: (a) a description of issues addressed prior to the decision; (b) a list of the
considered alternative solutions; (c) the criteria used in the selection of an alternative; (d) the
arguments used to support/oppose each alternative; (e) the final decision;

An approach for documenting ADR is presented by Falessi et al. in [P147]. The so-called value-
based design decision rationale documentation (VB DDRD) approach focuses on documenting
only those set of required information depending on the documentation purpose (e.g., what-if
analysis and avoiding design erosion). The ADR information includes concepts such as issue,
design decision, status, assumption, constraint, etc. Falessi et al. suggest capturing minimal/re-
quired information (lean models) to describe ADDs and to reduce the burden and effort during
the design process in an agile development environment [P148].

Another tool that focuses on integrating ADR as part of the design documentation process uses
a template-based approach [P149]. This work shows how to support architects in retrieving
ADR using a tool. However, many of the tool’s screenshots seem to be manually edited.

An online “intelligent software architecture rationale capture system” presented in [P150] allows
architects to manage ADR collaboratively. The tool helps architects understand the relationships
between ADR, requirements, and architectural elements during SDLC.

Tang et al. [P151] present practitioners’ view on the value of ADR; how they document and
use design decisions. Their study shows that practitioners are aware of the importance of ADR
and they use them more often then they document them. Apart from discussing the need for
improved context-specific ADR tool support, they also reflect on biases in decision making. They
highlight that architects focus on “good news” rather than on “bad news”. That is, architects
tend to discuss the benefits of new technologies without focusing on their negative aspects. Such
biases have to be studied since their awareness can help architects to be objective during ADM.

2.2.4 Architectural decision making

The act of making a design decision by analyzing the trade-offs among alternatives to meet the
desired criteria and then selecting an alternative is referred to as the ADM process (cf. [P152]
for a similar definition). Over the years, there have been many discussions about how architects
go about such an ADM process. That is, do they follow a systematic approach by listing
and prioritizing alternatives before making a decision (known as Rationalistic Decision Making
(RDM) approach)? Or, do they make a decision based on their experience and gut feelings

32

2. Foundations and related work

(known as Naturalistic Decision Making (NDM) approach)? Furthermore, there are also few
studies which explore those factors that influence an architect’s decision-making process, such
as, time, budget, cognitive biases, and architectural assumptions. In this section, we discuss
those publications in our review list that reflect on the ADM processes as well as the factors
influencing those processes.

The very first publication in our review list that highlights that architects follow the NDM
approach was published in 1996. Even though [P153] has not been cited by anyone and has
not received any attention, the author states an important point: “the set of design decisions is
handled intuitively, and also the set of alternatives for each of the design decisions is strongly
influenced by experiences from earlier designs”.

For ADM, authors of [P154] present a method developed at Siemens called “system architecture
analysis”. This method includes a set of evaluations to ensure that (a) different alternatives
were considered, (b) their pros and cons were discussed, and (c) design decisions and their
inter-dependencies were analyzed.

Zannier and Maurer [P155] present the structure of their qualitative study. They elaborately
discuss the definitions of RDM and NDM, as well as introduce factors such as expertise and
mental modeling affecting ADM. In their subsequent work, Zannier and Maurer [P156] con-
ducted twelve case studies by interviewing software developers and mentors in agile projects.
They indicate that NDM dominates RDM and in NDM experience and intuition play a crucial
role. They also found out that agile projects supported better communication and debate about
alternatives between architects and developers as compared to traditional software development
projects [P157]. They also suggest that, if a design problem is well-structured, architects tend
to use RDM, whereas if it is ill-structured, then NDM is preferred [P158]. In another publica-
tion [P159], Zannier and Maurer based on their interviews conclude that architects do not always
strive for optimal alternative and do not always consider alternatives (a key to RDM). However,
they indicate that “alternatives are considered more often in groups (in casual conversations)”
and ADM is a highly cognitive and a social process.

In [P160], the authors summarize the commonly used ADM strategies which could be used for
selecting a component given the alternatives that meet specific stakeholders’ constraints. They
provide an overview of the strength and weaknesses of Analytic Hierarchy Process (AHP), simple
multi-attribute rating technique, utility theory, and weighted score method. However [P161]
argues that companies (six Norwegian companies, eight interviews) do not use well-known ADM
processes but rather use their own customized approaches. Based on an industrial case study,
the authors of [P162] also confirm that architects do not follow any systematic ADM approach
but instead follow informal and lightweight approaches. They mention that factors like time,
money, and organizational practices influence ADM in organizations.

Tang et al. [P163] conducted a controlled experiment with two groups to understand the effects
of design reasoning while addressing design concerns. They found that explicitly capturing
the design rationale (for design decisions) improves the overall quality of the architecture and
helps architects to backtrack the decisions. Tang et al. emphasize that explicit reasoning helps
architects to avoid architectural assumptions during the ADM process [P164]. They conducted
another study to understand how architects consider alternatives during ADM [P165]. In that

33

2. Foundations and related work

study they found out that architects do not explore many options and finalize their decisions as
soon as they have good enough supporting reasons; indicating that architects exhibit satisficing
behaviors (a characteristic of NDM). The idea of managing architectural assumptions is further
discussed by Yang et al. in [P166]. Based on their interviews they found that even though the
term architectural assumptions is not commonly used, architects frequently make architectural
assumptions during ADM.

On the notion of applying past experiences for making new ADDs, [P167] reports that archi-
tects use their expertise to arrive at an ADD (especially in the early stages of design) without
performing extensive [mental] search for an optimal alternative. Using experience or analogy to
recognize similar patterns of design concerns is a characteristic of recognition primed decision-
making which is an NDM approach.

A decision-making framework comprising of two levels (macro and micro) is presented in [P168].
The macro-level is used to analyze the design strategy using problem and solution orientations.
Whereas the micro-level uses the decision mode and the decision strategy for analysis. The au-
thors of [P168] argue that ADM is a creative exploration process which includes problem recogni-
tion and hypotheses testing. Another framework called GRADE (Goals, Roles, Assets, Decision,
Environment) is presented in [P169,P170] to support architects while selecting a sourcing option
(in-house, COTS, open source, and outsourcing). Another project called ORION also supports
the selection of sourcing options by capturing decision cases in a knowledge repository [P171].

The authors of [P172] combine risk-based reasoning with the quality attribute model to support
ADM. First, risks drive architects to select an architectural style to meet the quality goals, and
the quality goals help to choose architectural tactics. Another framework that uses architectural
tactics to select software components is presented in [P173]. The framework called COMPo-
nents using ArChitectural Tactics (COMPACT) supports a collaborative component search (in
a catalog using keyword search) and recommendation of tactics to suit NFRs.

In the context of agile development, [P174] presents a so-called responsibility-driven architecture
to understand when, how, and who should make ADDs. Another decision-centric architecture
design approach is given in [P175]. This approach follows a sequence of steps during a design
process. First, an issue (architecturally significant requirement) leads to multiple candidate
architectural solutions. Selecting a candidate solution reflects a decision and the pros and cons
for the solutions become the rationale for that decision.

Lytra et al. conducted a multi-method study to identify 400 potential service-based integration
patterns. Based on this study, they then proposed a frequent-items set method to investigate
(based on the frequency of co-occurrence of decision points) which decision points may or may
not coexist in the design decision space [P176].

Tofan et al. [P177] conducted interviews with 43 architects and suggested the following research
directions. There is a need for (a) addressing uncertainty in ADM, (b) better approaches for
GDM, and (c) improved understanding of dependencies between ADDs and effort estimation to
analyze ADDs. The topic of uncertainty in ADM is being investigated by a colleague at our
research department5. Even though the other two challenges are relevant, unfortunately, they
are out of scope of our work, and we too consider them as part of future research.

5See: https://wwwmatthes.in.tum.de/pages/fnxvsn1w9ck1

34

2. Foundations and related work

In [P178], the authors model the ADM activities using the business process modeling notation.
The activities include motivating a decision, specifying candidate alternatives, selecting the best
alternative, and finally collaborative review and approval. Another process-based approach is
presented in [P179] which proposes an ADM process using a tag-based traceability system. It
supports collaboration among architects, notifies them about changes, and includes feedback
loops to improve the ADM process. However, being a short paper, the authors do not detail the
approach, for instance, how the tag-based approach works for maintaining traceability.

[P180] is one of the very first works, in our review list, that discusses the influence of cognitive
biases in decision making. In this work, Wirfs-Brock indicates the presence of confirmation and
information biases in design discussions. Zalewski et al. [P181] conducted a workshop with 14
software engineers to understand the influence of biases in ADM. Based on that workshop, they
documented 12 cognitive biases that are prominent in ADM. [P182] also covers the aspect of
cognitive biases in ADM and introduces RDM, NDM, and bounded rationality. We agree with
the following points made by Tang and Van Vliet in [P182]:

1. People are irrational in general.

2. Rationality of individuals is by what they already know, cognitive limitations of the human
mind, and the finite amount of time available to make a decision (referring to [14]).

3. According to the law of least effort, people minimize cognitive load and use intuition in
ADM (referring to [71])

These finding align with the Law of Least Efforts – which states that people tend to minimize
cognitive load and tend to use intuition in making decisions. Intuitions and cognitive biases lead
to unsound design decisions. Antony Tang suggests the following three main reasons of design
reasoning failures in [P183]:

� Cognitive bias: relates to “I have a hammer, and everything is a nail”;

� Illogical reasoning: unsound arguments and inferences to reach a design conclusion (basic
premises of a decision);

� Low-quality premises: if assumptions are unclear (ambiguous design concerns and require-
ments), architects could end up making decisions based on faulty inputs;

Weinreich et al. [P184] also argue that “education, experience, and biases like passion, evange-
lism, personal preferences of the people in charge, and company values” greatly influence ADM.
Based on the results of twenty-five interviews, they listed down eight factors that influence
ADM, namely, company size, business factors, organizational factors, technical factors, cultural
factors, individual factors, project factors, and decision scope. With respect to decision scope,
they classified ADDs according to granularity, scope, and impact [P185]. The low-impact deci-
sions are typically made by an individual or in a small group, whereas, high-impact decisions
are made in larger groups while involving experienced individuals. An important point (for this
dissertation) they mention in [P184] is that architects, in the first place, have to know that there
are alternatives otherwise, they do not realize that they are making a decision.

In [P186], the authors studied the architectural description of open-source projects documented

35

2. Foundations and related work

in [72] and found that quality attributes strongly influence ADM and the decisions in those
projects had been made in small teams or by single individuals.

A very interesting and intuitive card game is presented in [P187]. The cards (representing con-
strain, assumption, risk, and tradeoff) is used to help architects during their ADM process. Since
architects can forget to reason about their decisions [P188], such card games could help to spark
architects’ reasoning process. In our approach by automatically generating and recommending
alternatives, we too aim to trigger the thought process of architects during ADM.

The interview results presented in [P189] indicate that the experience of decision maker affects
the return of investment of projects. On the other hand, the study also reveals that factors
such as the role of a decision maker or if he or she codes the system are irrelevant. With the
focus on the source code of the system, the authors of [P190] conducted interviews with 104
software developers and found that they make many decisions concerning the design, scope, and
technology use. They indicated that “developers rarely conceptualize their work as decisions
between more than two options and developers have trouble remembering multiple options”.

An important aspect that should be considered by any ADM support system is that they
should explicitly include reflective questions for architects to consider during ADM. The au-
thors of [P191] distinguish between two minds: Mind 1 and Mind 2. Mind 1 reflects the design
reasoning mind with the problem-solving mindset, whereas, Mind 2 is the reflective mind with
a feedback mindset. ADM tools should include mechanisms to trigger, question, and reflect on
the activities performed by Mind 1.

For a more detailed discussion on the factors influencing ADM, readers are further directed to
the work by Tang at al. [P192].

2.2.4.1 Optimization-based approaches

For supporting architects during the ADM process, we found twenty-three publications that
specifically target to model the ADM process as a constraint satisfaction problem by modeling
conflicting criteria in decision making. Since we follow the school of thought that suggests
designing software systems (making ADDs) is a wicked problem6, we believe (based on our
observations in industry) that even though, such approaches for ADM are essential, they are not
used (or will be used in the near future) by practitioners in industry (especially, for information
systems and not embedded systems). Hence, we have not extensively reviewed these twenty-three
publications but have tried to summarize the gist of those publications.

To choose the most optimal design alternative that meets a set of criteria, AHP is one of the
popularly used approaches. For example in [P193], authors use AHP to select components that
meet quality criteria. First, all the goals/objectives are captured hierarchically, the criteria used
to achieve those objectives are specified, and the alternative options are listed. Second, at each
level of the hierarchy a decision table is created. Finally, a constraint solver prioritizes and
selects an optimal alternative that meets the pre-specified constraints.

6Rittel and Webber referred to ill-defined design problems as wicked problems. These problems are difficult to
solve due to contradictory, often incomplete, and frequently changing requirements [73,74]

36

2. Foundations and related work

The authors of [P194] apply AHP for ADM and base their approach on the following steps:

� Along with cost and benefit values, capture the alternatives in a goal model.

� Capture alternatives’ preferences using AHP.

� Use a search-based optimizer to perform heuristic sampling of the decision space.

� Rank the alternatives and select the optimal option.

To select the best alternative that meets different quality criteria [P195] and [P196] also propose
to use AHP. Another approach that uses the hierarchical criterion structure based on the criteria
importance theory is presented in [P197] which allows the selection of an optimal alternative.

Since architects do not define all the constraints for selecting an optimal solution, authors
of [P198] take a different viewpoint on how to apply constraint propagation algorithms to sup-
port ADM. Instead of finding the optimal solution, they stress on using constraint solvers for
eliminating or reducing infeasible options that are inconsistent with the already made choices.

The design task is represented as a search problem in [P199]. Since ADDs are interrelated, their
relationships are captured using two relation types (superior and inferior), and when a superior
decision is under consideration, all its related inferior decisions are treated jointly to identify
inconsistencies among decisions and to support ADM.

[P200] and [P201] consider ADM to be a Multiple-Criteria Decision-Making (MCDM) problem
and represent occurrence probabilities as a first-class entity in ADM. By using occurrence
probabilities for each combination of alternatives, the consequence of each alternative can be
evaluated. [P202] also uses an MCDM method to select an optimal alternative by making trade-
offs between different quality attributes (which are weighted by stakeholders). In [P203] also, the
authors apply evolutionary algorithms and MCDM strategies to identify design alternatives.

Fuzzy inference (Choquet integral) is used in [P204,P205] to select the most suitable architectural
style that meets stakeholders’ different (quantified) goals and objectives. On the use of fuzzy
inference, [P206] presents a method called Multicriteria decision aid (MCDA) for the selection of
an alternative while considering uncertainty (fuzziness) in stakeholders’ requirements. Esfahani
et al. [P207] use a fuzzification approach to represent uncertainty as a triangular fuzzy value to
support architects explore the solution space under uncertainty.

A web-based tool called Decision buddy is presented in [P208], which allows users to capture
issues and alternatives, prioritize alternatives using a constraint solver based on the weights
of corresponding quality attributes, and finally approve or reject those alternatives that meet
the criteria. Another tool named RADAR which uses a multicriteria optimization approach
is presented in [P209]. To select an optimal alternative, they suggest the following steps: (1)
model the decision problem and create a decision model; (2) apply montecarlo simulation on
the decision model and shortlist the optimal alternative using multicriteria optimization; (3) if
required, get more information and repeat steps 1 and 2.

A weighted-score approach using a decision matrix is used to compare choices against decision
criteria as well as to compare the options against ideal solutions is presented in [P210]. Imran
et al. [P211] also propose a weighted-score approach for ranking and selecting the best architec-

37

2. Foundations and related work

tural pattern that meets the quality goals. Another multiagent-based tool called DesignBots is
presented in [P212] which takes as input the initial architecture of the system and a weighted
list of quality constraints. Based on the input, the system then suggests different alternatives
to improve the architecture.

In [P213], the authors present a model-driven approach for the evaluation of design decisions
while considering quality attributes. They claim that their system can be used to select an opti-
mal decision when its impact on the quality attribute is unclear. Another interesting approach
that considers ethics in ADM is presented in [P214]. In this work, the authors present a MCDM
scheme which considers ethical analysis explicitly.

Finally, the last publication in our review list that focuses on the optimization problem is from
Shahbazian et al. [P215]. In this work, the authors present a search and simulation-based
approach for understanding the impact of ADDs on the underlying system.

2.2.5 Group decision making

We found eleven publications focusing on GDM. They address various topics including the
challenges and factors influencing GDM, methods, and models of GDM.

Alali and Sillito [P216] conducted interviews with thirteen architects about their design process
and showed that ADM is a group activity. They describe that the motivation for collaboration in
response to social commitments and organizational work contexts include: (a) improving ADDs
and (b) sharing ADM effort. Another case study [P217] in a large organization shows that the
majority of software teams make ADDs collaboratively. In this work, the authors indicate that
the majority of the teams prefer consultative decision-making style as it helps to make ADDs
while talking into account the considerations of all the team members.

In [P218], the authors present an “ONTOlogy-based Group Decision Support System” which
allows architects to participate in the GDM process through a web interface. The system relies
on a group argumentation model to support conflict resolution during GDM. Another tool that
uses an argumentation viewpoint approach for GDM is the Software Architecture Warehouse
(SAW) [P219]. SAW is a collaborative web-based tool that manages AK and also provides
features for handling different decision models. In wiki pages, architects can collaborate and
discuss architectural choices for design issues, evaluate, and select a suitable option thereof.
In [P220], the authors propose a process named GADGET to help architects increase consensus
during GDM. GADGET process adheres to the idea of bounded rationality. In this process, for
a decision topic, alternatives and concerns are discussed, those alternatives are prioritized, and
based on that, architects in a group aim to reach consensus.

In the context of agile projects, the authors of [P221] suggest combining the ADM process with
Scrum. They propose four steps of GDM to be included during a sprint planning: (a) problem
identification, (b) development of alternatives, (c) preference indication and prioritization, and
(d) reaching consensus among group members.

Rekha and Muccini [P222] conducted a survey with thirty participants to gain insights about
the challenges in GDM. They found that structured approaches were not used but instead

38

2. Foundations and related work

brainstorming was used in 70% of the companies to reach consensus in GDM. They also found
that conflicting decisions and misunderstanding of goals were the challenges in GDM. In another
paper [P223], they argue that the current methods do not suit GDM. The methods should
include stakeholders’ preferences, rules indicating how those preferences should be considered,
and mechanisms for conflict resolution. Rekha and Muccini [P224] suggest including GDM
strategies into an architecting phase to not only capture ADDs but also to document the GDM
factors that result in those ADDs. Based on these observations, they extended the ADD model
with concepts from GDM and organizational structures [P225]. This model includes concepts
such as groupDecisionSession, groupMembership, stakeholder which are linked to ADDs. In their
very recent work, Rekha and Muccini [P226] conduced another survey with 35 practitioners.
The results of this survey also show that a standard way of ADM is less common and tools for
ADM are rarely used (because the quality of the available ADM tools is below satisfactory).
Interestingly, they also indicate that “despite the involvement of team members in discussions,
the final decision is made by an individual”. Finally, Rekha and Muccini again emphasize the
need for supporting architectural groups by integrating GDM principles into ADM tools.

39

40

CHAPTER 3

Requirements elicitation

The tool named “Amelie - Decision eXplorer (ADeX)” presented in this dissertation is based on
the requirements from our industry partner as well as from the challenges identified by researchers
as discussed in the previous chapter. Since it was highlighted by many researchers (e.g., [P141])
that the existing AKM tools must consider industry requirements adequately, we made sure that
components within ADeX were iteratively implemented after carefully considering the needs of
our industry partner.

In 2015, a research project named “Architecture management enabler for large industrial software
(Amelie)” was initiated within the Architecture Definition and Management (ADM) research
department at a large IT company in Germany. This department comprises of more than forty
software architects who provide architectural consulting to various business units. The core idea
behind the Amelie initiative was to build an AKM system to ensure that (a) the tacit AK of
architects within the department was made explicit, (b) the organization-specific architectural
patterns, methods, and experts were systematically documented, and (c) architects receive just-
in-time recommendations based on the captured AK during the execution of their projects.
Based on this initial idea, two research assistants (including the author of this dissertation)
and three architects at the ADM department started the research project. Over the course of
four years, eight workshops with six software architects were conducted at regular intervals.
The purpose of the workshops was two-fold. First, we wanted to ensure that the findings from
the literature align with the expectations/needs of architects, to define the use cases for the
system. Second, the implemented prototype (individual component within ADeX) met those
expectations and to gather feedback for improvements. Such continuous interactions with the
architects as well as the literature review helped us reframe the initial idea of the AKM system.
First, the focus shifted to managing ADDs as a first-class AK and supporting architects during
ADM in large software projects. Second, instead of a top-down approach to AKM (wherein,
based on a model, architects capture ADDs and the tool provides recommendations thereof),

41

3. Requirements elicitation

we shifted our focus to a bottom-up approach in which ADDs are automatically retrieved from
different information systems and are annotated with publicly available data sources in order to
support architects during the ADM process.

Even though the semi-systematic literature review was performed during the later phase of the
dissertation to provide a holistic view of ADM, the comparative tool study conducted by Tang
et al. [75], an extensive literature review by Capilla et al. [1], the use cases from Liang and
Avgeriou [76], and the experiences from Kruchten et al. [77] provided us the comprehensive list
of requirements that should be supported by tools for AKM and ADM. These requirements
were validated and prioritized by the architects in the earlier mentioned ADM department and
are summarized in this chapter. We first present those requirements related to AKM that are
broader in scope and then, discuss the requirements specific to ADM and ADD management.

3.1 Requirements related to architectural knowledge

management

We found twenty-five requirements related to AKM that were mentioned in the literature studies.
Out of those requirements, architects in the Architecture Definition and Management depart-
ment found twenty-two requirements to be highly relevant and three to be partially significant
(UC 10, UC 13, and UC 21). Furthermore, due to time constraints, not all the use cases have
been implemented in ADeX. However, only sixteen use cases that fit the storyline of our bottom-
up approach that focus on supporting architects analyze ADDs have been implemented.

It should be noted that the below-listed requirements in Table 3.1 and Table 3.2 were
validated with our industry partner during a Master’s thesis project at our research
department. These requirements have already been documented by Xu in her Master’s
thesis report [78].

Table 3.1 shows the list of requirements related to AKM. The first column represents the use case
number, the second column captures a short description, the third column shows the reference
to the publication discussing the corresponding use case, and finally, the fourth column indicates
the relevance to this dissertation. We use ‘Y’ to indicate if the use case is supported by ADeX
and ‘-’ for those use case that are out of scope of this dissertation.

After conducting interviews with three software architects (cf. [78]) who were responsible for
the AKM initiative (Amelie), we were not surprised that they considered all the twenty-six use
cases identified from literature studies to be relevant. They only suggested that the use cases,
namely, versioning AK (UC 10), notifications (UC 13), and translating AK (UC 21) were not of
high-priority. Furthermore, many of the below-listed use cases are quite generic and broad which
are covered by most of the existing AKM tools. For instance, create, read, update, and delete
(CRUD) operations (UC 1) on the AK elements (depending on the AK model) are essential
features of any AKM tool. Also, searching (UC 2) persisted information in the knowledge base
using search queries or filters, and sharing (UC 3) that information are standard features.

42

3. Requirements elicitation

No. Description Ref. ADeX

UC 1. Managing AK elements and their relationships: create, read,
update, and delete AK elements in a knowledge repository.

[79,80], [P2,P29] Y

UC 2. Searching AK: search and view AK elements using search
criteria/filters.

[80], [P20] Y

UC 3. Sharing AK: share AK with different stakeholders. [1, 26,76,81] Y
UC 4. Reusing AK: the architect reuses AK in another project con-

text (e.g., reusing ADDs from an old to a new project and
reusing internal or external data sources).

[1, 82], [P20] Y

UC 5. Integration with tools: (semi-) automatic integration with
tools and different types of information during the SDLC.

[1, 76,83], [P20] Y

UC 6. (Semi-) automatic AK enrichment: generate AK content
proactively (e.g., automatically distilling and interpreting
AK from text without the users’ intervention).

[80] Y

UC 7. Comprehending AK: learn and comprehend AK (e.g., un-
derstand the rationale of a design decision).

[76], [P20] Y

UC 8. Identifying stakeholders: according to certain criteria (e.g.,
who has the most “weight” on an ADD).

[82], [P2] Y

UC 9. Tracing AK: trace between various AK elements (e.g., ADDs
and quality attributes).

[84] Y

UC 10. Versioning AK: manage different versions of the AK. [85], [P2] Y
UC 11. Collaborative environment support: concurrent access for

multiple users.
[P8,P20,P29] Y

UC 12. Customizing and configuring AK: a comprehensive and tai-
lorable AK representation to support and evolve AK. Pro-
vide organization-, domain-, or project-specific AK models
and tools. Provide users with different levels of permissions.

[26], [P20,P29] Y

UC 13. Notification about AK changes: subscribe to specific AK
elements, and get notified about changes to them.

[P9] Y

UC 14. Distilling AK: distill AK from a system into general knowl-
edge (e.g., architectural styles) that can be reused.

[P20] Y

UC 15. Applying general AK: use application-independent/static
AK (e.g., architectural styles to solve the problems at hand).

[76], [P20] Y

UC 16. Synthesis and automated decision-making support: provide
automated support for architects during AKM (e.g., rec-
ommend experts for a certain decision or provide multiple
potential solutions to address a concern).

[80, 86], [P9,P20] Y

UC 17. Maintenance support: analysis of changes on AK elements. [86, 87], [P21] -
UC 18. Implementation support: trace the implementation artifacts

to ADDs.
[44,88], [P20] -

UC 19. Architectural evaluation support: analyze trade-offs and
risks of each solution. Perform a critical evaluation of the
AK, e.g. to make sure that requirements have been satisfied
in the architecture design.

[82,89], [P20,P29] -

UC 20. Reasoning capability: basic inference mechanism that can
automatically detect inconsistencies, state new questions or
perform some fuzzy reasoning.

[P29] -

UC 21. Translating AK: facilitate reuse by translating the formal
AK based on a domain model into another domain model.

[90] -

43

3. Requirements elicitation

UC 22. Support trade-off analysis: analyze the architecture by trad-
ing off different quality attributes.

[82], [P20] -

UC 23. Cleaning up architecture: users make sure that all the de-
pendencies of removed AK (e.g., the consequences of an
ADD) have been removed as well.

[82] -

UC 24. Support design maturity assessment: the architect evalu-
ates when the architecture can be considered as finished,
complete, and consistent (e.g., verify whether a system con-
forming to the architecture can be made or bought).

[82] -

UC 25. Risk analysis: identify flaws in the architecture. [82] -

Table 3.1: AKM related use cases, their relevance to this dissertation, and their sources

With respect to UC 4, reuse of AK depends on the purpose of an AKM system. For example,
in ADeX, reuse can be viewed from two perspectives. One, by highlighting the design decisions
made in large software systems or by showing similar design decisions made in the past, we hope
that architects and developers are implicitly able to apply them in similar context. Second,
we achieve reuse by explicitly using AK maintained in public data sources like the DBpedia
ontology to recommend alternative solutions for addressing design concerns. The same goes for
UC 7, comprehending AK depends on what information is presented to the users of the system.
In ADeX, users can reason about how many decisions were made to address a specific quality
concern, which architectural elements are affected by those design decisions, or who should be
involved in making a design decision (UC 8). Reasoning about related AK elements also links to
the tracing AK use case (UC 9). Those indications about which elements are affected by a design
decision can only be achieved if the system provides mechanisms to capture such relationships.

AK can be broadly categorized into general and application-specific AK. The general AK (UC
14) (e.g., architectural styles, design patterns) which often does not change is applied in an
evolving project-specific context (UC 15). In our system, we distinguish between these two
types of AK categories and represent them using different domain models.

Some use cases such as versioning AK elements (UC 10) and notifications about AK changes (UC
13) are facilitated as out-of-the-box features if we use any wiki-based systems (e.g., MediaWiki
and SocioCortex) as the backend of the AKM system. Furthermore, use cases in the context of
multi-user support, namely, collaborative environment (UC 11) and customizing and configuring
AK (UC 12) are de-facto features in today’s web-based systems. Any production-ready system
should provide features that allow multiple users to tailor the views that best fit their project
needs. However, it should be noted that most of the existing systems only support configuration
options for the user interfaces, but as highlighted in [P29] the domain models behind the AKM
tools must also be configurable to meet the organization-, domain-, and project-specific needs.
We specifically address this use case with the use of a meta-model based system that allows
users to configure the domain models at runtime (discussed later in Chapter 5).

Many researchers have already highlighted the need for AKM tools to integrate with other
systems regularly used by architects and developers. We provide particular emphasis on this use
case (UC 5) to ensure that ADeX can automatically import and synchronize data from systems
like MS Project, JIRA, Github issues, and Enterprise Architect. Furthermore, we not only use

44

3. Requirements elicitation

data from organizations’ internal systems but also publicly available data sources to enrich AK
automatically (UC 6) and to generate recommendations (UC 16).

As elaborated in the later chapters, the first sixteen use cases are currently supported by ADeX,
and the use cases UC 17 to UC 25 are considered to be out-of-scope for this dissertation. The
rationale for not including them in our scope includes not only the time and effort constraints
but also the fact that we focus on the analysis of natural language text extracted from sources
such as issue management systems to provide recommendation support. Hence, use cases such
as translating AK (UC 21), design maturity assessment (UC 24), or risk analysis (UC 25) does
not fit the context.

3.2 Requirements related to architectural decision making

In the previous section, we presented those use cases that were in the context of AKM. In this
section, we list eighteen use cases that address ADM. These use cases have also been extracted
from the literature review discussed in Chapter 2. Since ADDs are an integral part of AK, some
of the generic use cases such as creating and updating ADDs have already been covered in the
previous section. We follow the same scheme as in the previous section to represent the priorities
of the use cases in Table 3.2 and discuss those use cases that are relevant for this dissertation.
‘Y’ in the fourth column indicates that the use case is supported by ADeX and ‘-’ denotes that
the use case is out of the scope of this dissertation (for the same reasons as discussed in the
previous section).

It should be noted that when the Amelie research project was initiated in 2015 by our industry
partner, the focus was merely on AKM. However, over time, by incorporating the trends in the
software architecture research community, the focus slightly shifted towards the management of
ADDs within the AKM system.

Table 3.2 summaries the use cases that are specific to the management of ADDs. The challenge
of interoperability of the AKM systems with those systems regularly used by architects during
the SDLC has already been discussed in the previous section. Similarly, the authors of [91] also
discuss the need to support the import of ADDs from different systems. In this dissertation, we
enable the extraction of projects’ data from different systems (UC 26) such as MS Project, JIRA,
Github Issues, and Enterprise Architect. Once the information is extracted, it is preprocessed,
and design decisions already made and implicitly captured in those tools are extracted using
a ML algorithm (UC 27). Once design decisions are automatically extracted from projects’
data, the subsequent preprocessing step annotates the descriptions of those decisions using NLP
techniques. The NLP techniques help to identify and link architectural elements and quality
attributes addressed by the extracted design decisions. The links or the relationships between
design decisions and its associated concepts such as quality attributes and architectural elements
are modeled in the knowledge base using a meta-model based approach.

45

3. Requirements elicitation

No. Description Ref. ADeX

UC 26. Support ADD import and export: allow information ex-
change between different systems

[91] Y

UC 27. ADD recovery: architects reconstruct decisions with their
associated rationale from an existing or 3rd party system.

[82] Y

UC 28. Support complex representation of ADDs: use modles/on-
tologies to represent the complex nature of ADDs, as well
as their dense inter-dependencies

[P20,P29], [82] Y

UC 29. Searching and filtering ADDs: by role, phase, and scope [90] Y
UC 30. Retrieving ADDs: given the architectural model, trace back

to the ADD it is based on. Provide the drivers and the
rationale of the decisions

[44,82,90,92] Y

UC 31. ADD visualization: depending on the stakeholders’ concerns
visualize ADDs and their relations using different viewpoints

[82,93] Y

UC 32. Identifying architectural driver: identify which architectural
drivers have the most influence on the design of the system

[82] Y

UC 33. ADD consequence analysis: the main consequences of a de-
cision are the changes in the model when a decision is exe-
cuted. In addition, new decision topics can be introduced

[44,82,92] Y

UC 34. Support stakeholder-specific overview: identify key ADDs
and unresolved concerns for a specific stakeholder

[82] Y

UC 35. Recommend experts: who should be involved in ADM - Y
UC 36. Similar ADDs: for making a new ADD, find similar already

made ADDs
- Y

UC 37. Recommend alternative choices: while making new ADDs - Y
UC 38. Affected stakeholders identification: identify which stake-

holders will be affected by changes in decisions
[82] -

UC 39. Pattern detection of ADD dependencies: identify patterns
in the graphs of decisions that can be interpreted in a useful
fashion. E.g., decisions being hubs (“Godlike” decisions), cir-
cularity of a set of decisions, and decisions that gain weight
over time and are thus more difficult to change or remove

[82,92] -

UC 40. Check implementation against ADDs: check how is the im-
plementation is in line with the ADDs, to know where in the
development process people disregard the made decisions

[92] -

UC 41. Completeness check: check if the requirements are all suffi-
ciently covered by the decisions

[82,92] -

UC 42. Consistency check: check if the current ADDs is internally
consistent. Check if the chosen alternatives have inconsis-
tent consequences on the architectural model

[82,92,94] -

UC 43. Superfiuous ADD detection: check decisions that overlap
(e.g., decisions do not affect the current architectural model
at all and are unnecessary)

[82,92] -

Table 3.2: ADM related use cases, their relevance to this dissertation, and their sources

46

3. Requirements elicitation

The automatically extracted design decisions and the corresponding annotated architectural
knowledge are persisted in the knowledge base1 that maintains the inter-dependencies (UC
28). The system then allows end-users to filter and search design decisions (UC 29) from the
knowledge base that affect specific quality attributes and architectural elements attributes. UC
30 is related to the previous use cases of linking the design decisions to their associated concepts
such as architectural elements and quality attributes. These concepts form the drivers and
the rationale of the made design decisions. The design decisions and the related concepts are
presented to the end-users using different views comprising of different visualizations (UC 31)
in the ADeX system. For instance, the quality attributes influencing the design decisions are
presented using a bar chart visualization and the architectural elements affected by those design
decisions are shown in a bubble chart (cf. Chapter 5 for an in-depth discussion). Furthermore,
these visualizations, also help to indicate those quality attributes and architectural elements
that have the most or the least influence on the design decisions (UC 32). When a new design
decision is made, it can introduce new architectural elements (UC 33). This use case is reflected
in the architectural elements visualization through the introduction of new nodes representing
those elements. Another visualization uses a tabular representation to display all the already
made design decisions along with its related concepts including the status, priority, and the
assigned individual to those decisions (UC 34).

We introduced the next three use cases based on the inputs from our industry partner and their
relevance given the context of ADM. The use case (UC 35) supports architects by recommending
experts who could be involved during the ADM process. While making new design decisions,
if similar decisions have been made in the past, architects get recommendations about them
(UC 36). Such a use case helps architects explore those previously made similar decisions and
understand the impact of such a decision from the perspective of their impact, effort, and cost of
realizing such design decisions. The third use case in this list (UC 37) is focused on the process of
ADM. That is, when making design decisions, architects have to consider and evaluate multiple
alternatives to choose an alternative that meets the requirements. To aid this process, ADeX
automatically generates these alternatives along with the meta-data from a publicly available
data source and presents them to the architects. The purpose of such a use case is to trigger the
thought process of architects to consider or at least be aware of the possible alternatives while
making design decisions.

The use cases (UC 38-43), even though relevant in the context of ADM, have not been covered in
this dissertation. Some of these use cases are discussed in Chapter 7 as part of our future work.
For instance, UC 40 is a logical extension to our work. Currently, we only link design decisions to
issues in task management system; these issues can be further linked to code commits in version
control systems and hence, establish traceability from decisions to their implementation.

In total, 16 use cases specific to AKM and 12 use cases related to ADM are supported by the
system (ADeX) presented in this dissertation. It should be noted that, as already mentioned,
there are few use cases that overlap (e.g., UC 5 and UC 26). Such scenarios are highlighted
in the subsequent chapters accordingly. The next chapter elaborates on the architecture of the
ADeX and highlights how ADeX supports the aforementioned use cases.

1The ML algorithm, NLP techniques, and meta-model based approach are elaborated in the next chapter

47

48

CHAPTER 4

A conceptual framework for architectural decision making

The conceptual AKM framework shown in Figure 4.1 addresses the ADM related challenges
discussed in the previous chapter. In this chapter, we briefly present the components within
the framework and link them to the use cases presented in Table 3.1 and Table 3.2. The AKM
framework integrates within software architects’ and developers’ working environment to:

� consolidate projects’ data from disparate data sources

� extract design decisions made in legacy software systems

� highlight and reason about design decisions’ rationale

� recommend alternatives that could be considered while making new design decisions

� find experts who should be involved in decision making

� recommend similar decisions to estimate the time and effort required for addressing new
design concerns

This chapter presents how these use cases are addressed by realizing the independent components
within the proposed framework. We propose to track the current state of a project, extract
information from project artifacts, and support software architects and developers to addresses
specific architectural concerns. This high-level objective is accomplished through the following
tasks which are handled by different components within the framework:

� Develop an evolvable and configurable domain model to capture project-specific informa-
tion including project context, requirements, ADDs, tasks, and stakeholders in a meta-
model based AKM system.

� Extract, Transform, and Load (ETL) project-related data from different tools (such as
Excel, MS Project, Enterprise architect, and JIRA) into the AKM system.

49

4. A conceptual framework for architectural decision making

current project

Meta-model based AKM system

ETL

ETL

Decision

classifier

ML model for

decision detection

and classification

past projects

d
es

ig
n

d
ec

is
io

n

uses

d
o

cu
m

en
t

AE annotator
uses

d
o

cu
m

en
ts

an
n
o

ta
te

d

d
o

cu
m

en
t

User interfaces

recommendations

Software architects

Software developers

Facilitators

Domain experts

past projects

current project

Architectural

solutions

recommender

A
rc

h
it

ec
tu

ra
l

E
le

m
en

t
(A

E
)

re
co

m
m

e-

n
d

at
io

n
s

uses

Expert

recommender

Rationale

extractor

d
es

ig
n

d
ec

is
io

n

q
u
al

it
y

co
n
ce

rn

Quality

attributes

uses

d
es

ig
n

d
ec

is
io

n

ar
ch

it
ec

ts
 &

d
ev

el
o

p
er

s

Expertise

profile

uses

Feedback loop

Document

clustering

ML model for

identifying similar

design decisions

uses

d
es

ig
n

d
ec

is
io

n

si
m

il
ar

d
ec

is
io

n
s

Ontology

Figure 4.1: A conceptual framework for managing ADDs and supporting the ADM process

� Implement an approach to extract design decisions made in the past. Focus on automati-
cally detecting, extracting, and classifying design decisions from issues maintained in issue
management systems such as JIRA and Github issues.

� Device an approach to automatically identify architectural elements in the text.

� Populate the knowledge base of the AKM system with alternative architectural solutions.
Given an architectural concern, the system should recommend architects and developers
to consider available alternative solutions.

� To determine the rationale behind design decisions, link them with quality attributes.

� Design a user-profile model to capture decision makers’ preferences. User preferences, in
the context of ADDs, for instance, include (a) frequently used technologies, plugins, and
libraries, (b) inclination to address concerns related to particular architectural elements
or concerns related to specific quality attributes of the system. Use such a user-profile to
recommend relevant experts to discuss new design concerns.

� Develop an approach to detect similar design decisions made in the past.

� Using a web-based User Interface (UI), present different perspectives and recommendations
to the end-users of the system.

4.1 Stakeholders of the framework

As shown in Figure 4.1, there are two main roles within the proposed framework; stakeholders
who are the end-users of the system and those stakeholders who ensure that the necessary infor-
mation is correctly maintained in the AKM system or facilitate the end-users of the system.

End-users: Software architects (solution and system architects) and software developers are
the primary end-users of the system. However, in specific scenarios, the realized framework
is also beneficial to project managers. End-users have the flexibility to import their projects

50

4. A conceptual framework for architectural decision making

using the ETL platform. After the automatic transformation of the imported project’s data
by different components, end-users are presented with different perspectives that aid them to
understand design decisions made in the past. Different perspectives allow software architects
and developers to narrow down on those aspects that are relevant to their given context. For
instance, in a specific project, if a software architect is concerned with the performance of the
respective system and wants to explore and learn from decisions made in the past, a specific
UI provides the possibility to that architect to analyze only those design decisions that were
made to address performance related concerns. After a retrospective analysis, end-users can
make new design decisions and update the necessary artifacts within their project as part of the
feedback loop. One of the core benefits of this framework is that it does not intrude, or force
end-users to actively maintain the AKM system, or use any specific tool. They can continue to
use the information systems such as Jira, MS Project, or Enterprise architect to document their
discussions in their projects. Hence, as shown in Figure 4.1, the feedback loop links back to
these aforementioned systems. The new information, henceforth, is brought back into the AKM
system using the ETL component.

Facilitators: The second group of stakeholders who are the facilitators of the system is shown
in the lower part of Figure 4.1. These facilitators are either the maintainers of the system or
domain experts who ensure that the necessary information is correctly maintained in the AKM
system. The maintainers of the system are software developers who, for instance, provide the
correct mapping between the ETL component and the AKM system, implement new connectors
for importing data from a new information system, or fix any bugs and maintain the system over
time. On the other hand, for industry-specific projects, domain experts related to those projects
play a crucial role. For instance, corresponding to the architectural element component or the
expert recommender component, domain experts provide input for including organization- and
project-specific architectural elements that, for example, are not available in the lookup ontology
shown in Figure 4.1.

The responsibilities of these two categories of stakeholders compliant each other. If the end-
users of the system notice discrepancies in the recommendations, they can also actively update
the recommendations through the User Interfaces (UIs), but can also communicate those issues
to the domain experts and maintainers of the system. On the other hand, after an iteration of
analysis of a given project, maintainers of the system can request for feedback from the end-users
to improve components’ services for subsequent iterations.

4.2 Components and their responsibilities within the framework

Figure 4.2 shows the realization of the AKM framework presented in the previous section.
The realization of the framework in collaboration with our industry partner is named ADeX.
ADeX is the acronym for “Amelie - Decision eXplorer” where Amelie stands for “Architectural
Management Enabler for Leading Industrial softwarE”. The subsections briefly present each of
the components within ADeX. The detailed description of each of the component is presented
in the next chapter.

51

4. A conceptual framework for architectural decision making

current project

SocioCortex

SyncPipes

SyncPipes

Decision

classifier

ML model for

decision detection

and classification

past projects

d
es

ig
n

d
ec

is
io

n

uses

d
o

cu
m

en
t

Web client / Word plugin

alternative solutions &

expert recommendations

AE annotator
uses

d
o

cu
m

en
ts

an
n
o

ta
te

d

d
o

cu
m

en
t

ADD explorer

relationships

between ADDs

Software architects

Software developers

Facilitators

Domain experts

past projects

current project

Architectural

solutions

recommender
A

rc
h
it

ec
tu

ra
l

E
le

m
en

t
(A

E
)

re
co

m
m

e
-

n
d

at
io

n
s

uses

Expert

recommender

Rationale

extractor

d
es

ig
n

d
ec

is
io

n

q
u
al

it
y

co
n
ce

rn

ISO/IEE

25010

uses

d
es

ig
n

d
ec

is
io

n

ar
ch

it
ec

ts
 &

d
ev

el
o

p
er

s

Expertise

profile

uses

Feedback loop

Workbenck

4DC

ML model for

identifying similar

design decisions

uses

d
es

ig
n

d
ec

is
io

n

si
m

il
ar

d
ec

is
io

n
s

Figure 4.2: The realization of a conceptual framework for managing ADDs and supporting ADM

4.2.1 SocioCoretx: A meta-model based AKM system

SocioCortex is a collaborative knowledge management system which follows the hybrid-wiki
approach [95]. The hybrid-wiki approach handles scenarios wherein a system’s domain model
as well as the data captured by the system evolve simultaneously. Notably, in the early phases
of the development of a new software, new requirements emerge and the understanding of the
domain evolves. Hence, in such situations, the domain model of the system needs to evolve
constantly.

Furthermore, in the context of an AKM system, stakeholders in different projects use different
terminology to refer to the same or similar concepts. For instance, if in one project, the term Issue
is used, then in another project, Task could be used to represent the same concept. Moreover,
the manner in which relationships are maintained between concepts in the domain model may
also vary. For instance, if in one project, stakeholders link tasks to quality requirements then
in another project this relationship may be nonexistent, or tasks could be related to a general
concept of requirement. In such scenarios as well, the domain model of the underlying software
system needs to be adapted accordingly.

A model-based approach or the idea of models@runtime facilitates stakeholders of different
projects to configure their domain models so as to meet the system requirements. The meta-
model of such an AKM system and the following use cases supported by SocioCortex (out-of-
the-box features) are further elaborated in Chapter 5.

UC 1: Managing AK elements and their relationships: create, read, update, and delete AK
elements in a knowledge repository.

UC 2: Searching AK: search and view AK elements using search criteria/filters.

UC 3: Sharing AK: share AK with different stakeholders.

52

4. A conceptual framework for architectural decision making

UC 4: Reusing AK: the architect reuses AK in another project context (e.g., reusing ADDs from
an old to a new project and reusing internal or external data sources). [Clone functionality]

UC 9: Tracing AK: trace between various AK elements (e.g., ADDs and quality attributes).
[Using relationships between concepts in the AK model]

UC 10: Versioning AK: manage different versions of the AK.

UC 12: Customizing and configuring AK: a comprehensive and tailorable AK representation
to support and evolve AK. Provide organization-, domain-, or project-specific AK models and
tools. Provide users with different levels of permissions.

UC 13: Notification about AK changes: subscribe to specific AK elements, and get notified
about changes to them. [Watch a wiki-page feature]

UC 14: Distilling AK: distill AK from a system into general knowledge (e.g., architectural
styles) that can be reused. [Static and dynamic knowledge models]

UC 28: Support complex representation of ADDs: use modles/ontologies to represent the
complex nature of ADDs, as well as their dense inter-dependencies.

At a high level, SocioCortex can be seen as a backend-as-a-service (BAAS) system that allows to
model and capture AK related to a project. Once the project related concepts such as Project,
Issue, Stakeholder, Quality attribute, etc. are modeled, data corresponding to each of those
concepts within a project can be captured in the system. The other components within ADeX
use the APIs provided by SocioCortex to read and write data for fulfilling their responsibilities.

4.2.2 SyncPipes: A data integration and synchronization platform

The need for integrating data from different information systems such as a project management,
issue management, and architecture modeling system has already been emphasized in the past [1,
75,76,83]. The SyncPipes component addresses that specific need:

UC 5: Integration with tools: (semi-) automatic integration with tools and different types of
information during the SDLC.

UC 26: Support ADD import and export: information exchange between different systems.

SyncPipes follows a model-based approach which allows developers to implement adapters within
the platform that are not only reusable but also configurable at runtime. SyncPipes abstracts
the tasks involved in importing data from external sources into the target system. Developers
only need to implement an extractor and a loader. The extractor specifies how to retrieve data
from source systems like MS Project, Jira, or Enterprise Architect. On the other hand, a loader
corresponds to the logic of importing data into the target system. In the given scenario, the
target system is SocioCortex. The target system can also be any other classical database such as
MySQL, MongoDB, or Neo4j. Once extractors and loaders are implemented, stakeholders have
the flexibility to choose a specific extractor and a loader using a web-based UI. Furthermore,
they can also specify the mapping between concepts in the source system and the target system

53

4. A conceptual framework for architectural decision making

for extracting and loading the data. For example, end-users can map the concept Issue in Jira
to the concept Task in the AKM system through a UI.

Once the aforementioned mapping is specified between the source and the target system, users
can specify how frequently the data needs to be imported and synchronized from the source
system into the target system. Finally, using the configurations of the source and the target
system as well as the mapping configurations, users can start the pipeline for importing the data.
In the current implementation, extractors have been implemented for Excel, MS Project, Jira,
Github Issue tracker, and Enterprise Architect. And the loaders include SocioCortex and Mongo
database. The technical details about the SyncPipes platform are elaborated in Section 5.2.

4.2.3 Decision classifier: A machine-learning based document classifier

As discussed in the related-work section, design decisions are not explicitly documented in
large software projects. However, those design decisions are implicitly captured in different
information systems. These systems could include issue management systems, chat applications,
wiki systems, and e-mail clients. To detect decisions from discussions maintained in the such
systems, a decision classifier component was integrated into the framework.

Once all the issues have been imported using the previously discussed SyncPipes component, the
decision classifier component identifies those issues which correspond to design decisions. That is,
an issue is labeled as either a “design decision” or “not a design decision” (binary classification). If
an issue is marked as a design decision, then it is further classified into one of the three decision
categories, namely, structural, behavioral, and non-existence/ban design decisions. Further
details about the classification approach to detect design decisions are presented in Section 5.3.

The primary responsibility of this component is to identify those discussions that relate to
design decisions. Let us consider, a large software project which has twenty thousand issues.
This component helps to find those critical issues (e.g., in the range of 500 to 1500 issues) that
represent design decisions which impact the design of the system.

4.2.4 Architectural elements annotator: A named-entity extractor

This component addresses the challenge of identifying architectural relevant topics within natural
language text. Once an issue has been imported into SocioCortex and the decision classifier has
labeled those issues (as explained in the previous section), the textual description of all those
issues that are labeled as design decisions is annotated with architectural elements. The textual
description comprises of information maintained in the title and the description of an issue.

The annotated architectural elements could include terms related to architectural styles, pat-
terns, software technologies, communication protocols, or data formats. These architectural
elements are identified using concepts captured in a publicly available cross-domain ontology
named DBpedia1. The textual description of design decisions is matched with the concepts
in the DBpedia ontology, and those concepts that occur in the textual description are tagged

1http://dbpedia.org

54

4. A conceptual framework for architectural decision making

and persisted in SocioCortex. These annotations linked to the textual descriptions are further
highlighted in a UI. End-users can click on those annotations to learn about architectural ele-
ments and to get recommendations about alternative architectural elements. By automatically
identifying architectural elements in design decisions, this annotator component addresses:

UC 6: (Semi-) automatic AK enrichment: generate AK content proactively (e.g., automatically
distilling and interpreting AK from text without the users’ intervention).

UC 17: Implementation support: trace the implementation artifacts to ADDs.

UC 32: Identifying architectural driver: identify which architectural drivers have the most
influence on the design of the system.

4.2.5 Architectural solutions recommender: An ontology-based approach

Due to the fast changing technological landscape for software development, it is practically
infeasible for architects and developers to be up-to-date with new and emerging technologies.
Furthermore, during the ADM process, architects and developers need to evaluate “some” of
the available alternative solutions before making a decision. Hence, to facilitate architects and
developers during the decision-making process, architectural solutions recommender component
was added to the AKM framework. This component supports the following use cases:

UC 7: Comprehending AK: learn and comprehend AK (e.g., implications of an ADD).

UC 18: Synthesis and automated decision-making support: provide automated support for
architects during ADM.

UC 37: Recommend alternative choices: while making new ADDs.

The architectural solutions recommender provides two main services. First, when an end-user
selects an annotation within the textual description of a design decision (identified according to
the discussion in the previous section), the meta-information about the selected architectural
element is presented in the UI. The meta-information of an architectural element includes the
element’s description, its license (open- or closed-source), underlying technology, and links to the
corresponding Wikipedia article. The meta-information of the annotated architectural elements
is retrieved from the respective attributes of concepts in the DBpedia ontology. The second
service provided by this component includes two types of recommendations:

Rec I is the recommendation of software solutions to support an ADD. As discussed before, the
variety of software solutions to support an ADD is not always available to software architects.
Guiding an architect during the design phase through recommendations of possible software
solutions might improve the possibility that an architect will consider multiple alternatives
before making an ADD. For instance, if an architect realizes, that under project constraints
most of the available software solutions to implement an ADD are proprietary, then she can
re-negotiate with stakeholders before making the decision.

Rec II is the recommendation of alternative solutions (architectural styles, patterns, and tech-
nologies) related to an ADD. Contrary to the previous type, where the aim is to recommend
software solutions for higher-level concepts, here, alternative solutions belonging to the same ab-

55

4. A conceptual framework for architectural decision making

straction level are proposed. During architectural documentation, providing relevant alternatives
allows architects to reason about their ADDs in consideration with the available alternatives.

The main idea behind providing the aforementioned recommendations is that these suggestions
will act as a stimulus (trigger) that might lead architects and developers to think about alterna-
tive options before making a design decision. The algorithms to generate these recommendations
using the DBpedia ontology is elaborated in Section 5.5.1.

4.2.6 Rationale extractor: Identifying the rationale behind design decisions

The next component in the pipeline, the rationale extractor component, extracts architectural
knowledge from natural language text. As discussed in Section 2.2.2 (cf. Figure 2.8), a design
decision is made to address stakeholders’ concerns. These concerns correspond to the qual-
ity 2 requirements of the software system. Since design decisions are made to address quality
concerns, they in-turn reflect the rationale behind those decisions. The design rationale forms
the core of the ADM process [43]. Given that design decisions are not explicitly documented in
software architecture documents, understandably, the rationale behind design decisions affecting
the design of the system is also missing thereof.

Once design decisions are extracted using the decision detection ML model, the rationale ex-
tractor component extracts the possible rationale behind the identified design decisions by as-
sociating quality attributes to those design decisions.

The quality attributes defined in the ISO/IEC 25010 standard are used as a reference during
the extraction process. The quality attributes described in the ISO/IEC 25010 quality model
encompass all the quality attributes that are part of the FURPS model. FURPS stands for
Functionality, Usability, Reliability, Performance, and Supportability. The FURPS model [96,97]
that was initially developed at Hewlett-Packard is widely used in software industry. Similar to
the ISO/IEC 25010 quality model, the quality attributes are hierarchical classified in the FURPS
model. For instance, performance of a software system deals with speed, throughput, efficiency,
resource consumption (keywords: power, ram, cache, etc.), and capacity. The quality attributes,
their subcategories, as well as their associated keywords are used to automatically associate
design decisions with the respective quality attributes. The automatic extraction process to
identify the rationale and to link them to design decisions addresses the following use cases.
Further details about the extraction process that uses a keyword-based (indicator term based)
approach are provided in Section 5.5.2.

UC 28: ADD recovery: architects reconstruct decisions with their associated rationale from an
existing or 3rd party system.

UC 30: Retrieving ADDs: given the architectural model, trace back to the ADD it is based on.
Provide the drivers and the rationale of the decisions.

2ISO/IEC 25010 and FURPS model include functionality as part of quality attributes.

56

4. A conceptual framework for architectural decision making

4.2.7 Expert recommender: User-profile based recommendations

The expert recommender component provides end-users suggestions about architects and devel-
opers (experts) who could be involved in the ADM process for addressing new design concerns.
In particular, the following use cases are addressed by this component:

UC 8: Identifying stakeholders: according to a certain criteria.

UC 16: Synthesis and automated decision-making support: provide automated support for
architects during ADM (e.g., recommend experts for a certain decision or provide multiple
potential solutions to address a concern).

UC 35: Recommend experts: who should be involved in ADM.

The expert recommender component uses the results from the previously discussed components
to model the architectural expertise of architects and developers within a software project. That
is, once the architectural elements and quality attributes are identified using the architectural
elements annotator and the rationale extractor component for all the design decisions within a
project, those architectural elements and quality attributes are used to create a so-called ex-
pertise matrix. And to quantify the architectural expertise of architects and developers within
a project, their experience related to addressing design concerns for specific architectural ele-
ments is used. If an architect or a developer has addressed design concerns associated with an
architectural element, then that individual is considered to have expertise on that topic.

Within the expertise matrix, rows represent software architects and developers within a project
and columns correspond to all the identified architectural elements in that project. The cells
in the expertise matrix contain integer values which indicate the expertise of an individual on
a specific topic. The textual description of a new design concern is matched with the expertise
matrix to find suitable architects and developers who have expertise in resolving that design
concern. From the list of recommended experts, the end-user can filter and select those experts
who need to be involved in addressing the design concern. It should be noted that, the expertise
matrix based approach assumes that architects and developers tend to address those issues that
they are familiar with and have expertise in. The expertise matrix approach which is elaborated
in Section 5.5.3 and has been evaluated using two open-source projects and two industry projects
as discussed in the evaluation Section 6.1.3.

4.2.8 Workbench4DC: Clustering similar design decisions

The last component in the AKM framework for extracting AK is the document clustering (Work-
bench4DC) component. This component addresses – UC 36: Similar ADDs: for making a new
ADD, find already made similar ADDs.

Workbench4DC component provides various configuration options for the facilitators of the
ADeX system to tune and generate cluster models of documents. In the given scenario, these
documents correspond to design decisions. Once all the design decisions are identified using the
decision classifier component, the pipeline for generating clusters of similar decisions is executed
by the Workbench4DC component. Facilitators of the system can specify the classification

57

4. A conceptual framework for architectural decision making

algorithm (for example, k-means) and configure the preprocessing steps as well as the parameters
(for example, the value of k or the number of cross-validations). Using the clustering algorithm,
for a given project, a cluster model of similar design decisions is created and persisted in the
file system. For a new and open design concern, its description is compared against the cluster
model to identify the cluster to which it belongs. Then, the description is compared against
each of the design decision within that cluster to find the most similar design decisions using
cosine and Jaccard similarity score. Details about the classification algorithm and the similarity
scores are elaborated in Section 5.4. These similar design decisions are finally presented to the
end-users using the UIs of the ADeX web-client. Thus, allowing end-users to quickly look up
similar design decisions made in the past to understand their complexity as well as to estimate
the time and effort required to address similar design concerns.

4.2.9 Amelie - Decision Explorer: User interfaces for end-users

The results of all the preprocessing steps for extracting AK from a software project are con-
solidated and presented to the end-users of ADeX through the UIs in a web client. Using the
decision explorer client, end-users can investigate their projects by importing, for instance, all
the respective issues from Jira into ADeX. The functionality of all the previously discussed
components are automatically triggered and does not require any involvement of the end-users.
Once all the issues are processed and AK is extracted, end-users can navigate through various
visualizations to analyze their projects. For example, a UI with a bar chart shows all the qual-
ity attributes addressed by different design decisions made in the project or the UI with the
matrix shows the expertise of architects and developers on specific architectural topics. All the
UIs provided by the ADeX client is discussed in detail in Section 5.6. Though those UIs, the
following use cases are fulfilled:

UC 11: Collaborative environment support: concurrent access for multiple users.

UC 29: Searching and filtering ADDs: by role, phase, and scope.

UC 31: ADD visualization: depending on the stakeholders’ concerns visualize ADDs and their
relations using different viewpoints.

UC 33: ADD consequence analysis: the main consequences of a decision are the changes in the
model when a decision is executed. In addition, new decision topics can be introduced.

UC 34: Support stakeholder-specific overview: identify key ADDs and unresolved concerns for
a specific stakeholder.

Using the UIs in the ADeX client, end-users can focus only on those design decisions that are
relevant for them in their given context and save considerable amount time which otherwise
would have been required in searching, for example, a large dataset of issues maintained in their
projects. Furthermore, some of the UIs provide necessary recommendations that help end-users
make informed and sustainable decisions by exploring similar decisions made in the past.

58

4. A conceptual framework for architectural decision making

4.3 Process steps within the AKM framework

This section summarizes the steps that an end-user typically follows while using ADeX. ADeX
supports software architects and developers to perform retrospective analysis of design decisions
in legacy software projects from different perspectives and aids them to make informed future
decisions based on those perspectives.

For discussing the steps that an end-user follows within ADeX, let us consider the Apache Spark
project. The contributors of Apache Spark project have maintained 21,660 issues in Jira over
the last six years. Since design decisions are not explicitly documented within those issues and
architects and developers (especially, newly joined contributors) would not know which design
decisions were made in the past or to whom to ask about new design concerns. ADeX helps them
to address those concerns by automatically extracting AK in textual description and providing
different visualizations for addressing their concerns.

First, all the 21,660 issues from Apache Spark’s Jira are imported into ADeX’s knowledge
base (SocioCortex) using the SyncPipes component. Then, the decision detector and classifier
component labels those issues that represent design decisions. As shown in Figure 4.3, out of
21,600 issues, 466 issues are labeled as design decisions. Out of these 466 design decisions, 226
design decisions are further classified as structural decisions, 389 and 166 design decisions are
tagged as behavioral and non-existence/ban design decisions.

Next, in the augment step, different components further process the textual description of each
of the extracted design decision. For example, the architectural elements annotator component
annotates all the architectural elements within the textual description of design decisions and also
generates alternative architectural solutions as recommendations and persists them in ADeX’s
knowledge base. These annotated architectural elements are not only highlighted in the textual
description within the web UI but are also used to create the visualization of design decisions
concerning specific architectural elements. This visualization is represented as a bubble chart as
shown in Figure 4.3.

After completing the step of annotating architectural elements, ADeX automatically starts to
identify the rationale behind design decisions using the rationale extractor component. This step,
highlights, and links all the extracted design decisions with the quality attributes of software
systems to indicate why a design decision was made. These links are also used to create a different
perspective for the end-users. End-users using the stacked bar chart, as shown in Figure 4.3,
can focus only on those design decisions addressing specific quality attributes. For example, if
a newly joined architect or developer in the Apache Spark project wants to investigate which
design decisions were already made to address performance related concerns, she can click on the
corresponding bar in the visualization to examine only those design decisions. For instance, out
of 466 design decisions in the Apache Spark project, 54 design decisions were made to address
performance related concerns; out of which, 12 design decisions were related to structural design
decisions, 28 corresponds to behavioral, 14 design decisions represent non-existence/ban design
decisions. This way, for instance, by viewing only 12 design decisions (out of 21,600 issues),
end-users can quickly investigate what structural decisions were made in the past to improve
the performance of Apache Spark.

59

4. A conceptual framework for architectural decision making

21,660 issues in Apache Spark project

466 design decisions

226 structural decisions 389 behavioral decisions 166 ban decisions

14

28

12

Extract
d

esign

d
ecisio

n
s

C
lassify

d
esign

d

ecisio
n

s

G
en

erate
view

s

A
u

gm
e

n
t

d
esign

d

e
cisio

n
s

A
n

n
o

tate
arch

itectu
ral

ele
m

en
ts

A
n

n
o

tate
q

u
ality

attrib
u

tes

G
en

erate
exp

ertise
m

atrix

Fin
d

 sim
ilar

d
esign

d

ecisio
n

s

Figure 4.3: The process steps within ADeX to support the ADM process: using the Apache
Spark project as an example scenario

The next step uses the results from the previous steps to generate an expertise matrix. That is, all
the identified architectural elements and quality attributes within the identified design decisions
in a project are used to create a matrix that indicates the architectural expertise of architects
and developers in that project. As shown in Figure 4.3, this expertise matrix highlights the
architectural expertise of individuals on specific architectural concepts. Furthermore, the same
expertise matrix is also used to recommend suitable experts to address new design concerns.

The final step in the extraction process is creating cluster models of similar design decisions.
This step uses an unsupervised ML technique to create a cluster model of similar design decisions
in a project. That is, in this step, groups of similar design decisions are created and persisted
in ADeX’s knowledge base. So that, a new open design concern can be matched against the
cluster model to recommend end-users the most similar design decisions made in the past. This
allows end-users to investigate how similar design concerns were addressed in the past, which
components were impacted while addressing similar concerns, as well as estimate the time and
effort involved in addressing similar concerns.

All the aforementioned steps are automatically handled by the underlying system without the
involvement of end-users. End-users only have to select the project they would like to analyze
through the UI. Once, for instance, all the issues are processed by various components in the
framework, the visualizations discussed before are generated and presented to the users. In the
next chapter, these steps are elaborated in detail with explanations about how to design and
implement different components within the framework.

60

CHAPTER 5

System design and implementation

This chapter describes how each of the individual components is designed, implemented, and
integrated to realize an instance of the AKM framework, which is referred to as ADeX. The
UML 2.0 specification is used for the representation of the system’s design diagrams. In the
subsequent sections, first, the design is explained from the holistic system’s perspective and
then, each of the components within the system is elaborated.

As shown in Figure 5.1, the high-level architecture of ADeX follows the three-layered architec-
tural style for web applications. The presentation layer comprises of independent web front-ends
that provide UIs for end-users, administrators, and facilitators of the system. The end-users of
ADeX mainly interact with the UI component named Amelie - Decision Explorer client. The
other web clients for SyncPipes, document classifier, and document clustering provide UIs for
administrators and facilitators to monitor and configure various parameters to enable the pre-
processing of data from different data sources that maintain project related information. Next,
the middle application layer comprises of multiple components including SyncPipes server, Akre-
Server, Document Classifier, and Workbench4DC that handles the business logic of the system.
The Akre-Server component is responsible for orchestrating the invocation of services offered by
other components within the application layer. Finally, the persistence layer serves the data to
the application layer. The persistence layer comprises of a model-based system called SocioCor-
tex1 that not only provides backend-as-a-service (BAAS) but also supports user management
with its UI. The persistence layer also contains an instance of MongoDB2 which is used to store
various configuration parameters that are used by the components in the business logic layer.

The components in the presentation layer interact with the components in the application layer
over HTTPS on predefined ports. The components in the application layer interact with the

1http://server.sociocortex.com/
2https://www.mongodb.com/

61

5. System design and implementation

SyncPipes
client

SyncPipes
client

Document
classifier client

Document
classifier client

Document
clustering client

Document
clustering client

Amelie - decision
explorer client

Amelie - decision
explorer client

Presentation layer

SyncPipes
server

SyncPipes
server

Document
classifier

Document
classifier

Workbench4DCWorkbench4DC

Akre-ServerAkre-Server

Application layer

Persistence layer

MongoDB
SocioCortexSocioCortex

SyncPipes
client

Document
classifier client

Document
clustering client

Amelie - decision
explorer client

Presentation layer

SyncPipes
server

Document
classifier

Workbench4DC

Akre-Server

Application layer

Persistence layer

MongoDB
SocioCortex

Figure 5.1: The high-level architecture of ADeX: the core components and their dependencies

persistence layer to read and write data. After performing the corresponding business logic,
the response is sent back to the respective UI component. The design of ADeX also reflects
the microservices architecture. Each of the components has its own UI in the presentation
layer, has respective business logic in the application layer, and has corresponding collections in
the MongoDB. Hence, every component can be deployed independently of each other and can
communicate with each other through web services. Each of the components responsibilities
along with their design is elaborated in the subsequent sections.

5.1 SocioCortex

As shown in Figure 5.1, SocioCortex acts as a backend of ADeX. SocioCortex not only maintains
software projects’ data but also captures the conceptual (domain) model of software engineering
projects. The main benefit of using SocioCortex as a backend-as-a-service (BaaS) is that it
provides domain experts and facilitators of ADeX the flexibility to configure and adapt the
domain model at runtime. The runtime adaptation of the domain model helps to meet the needs
(for example, naming conventions) of different software engineering projects. As alternatives, one
can also use other systems such as Parse3 or Apache Usergrid4 to achieve the same capability.

SocioCortex is used as a collaborative information management system that enables stakeholders
to manage their application’s data as well as its conceptual model. This section describes the
core concepts of SocioCortex and explains how the AK base is modeled in SocioCortex.

3https://parseplatform.org/
4http://usergrid.apache.org/

62

5. System design and implementation

5.1.1 The hybrid-wiki meta-model

The meta-model of the SocioCortex platform is referred to as the hybrid-wiki meta-model [6,98].
An excerpt of this meta-model is shown in Figure 5.2. The Entity Type and Attribute Definition
allow the definition of the domain model (also called the user model) specific to an application
domain. The Entity Type is used to instantiate a domain-specific concept, and the Attribute
Definition captures the properties of that concept. An Attribute Definition is further associated
with a specific type and multiplicity constraints. A user can create a concrete domain model at
runtime by instantiating the Entity Type and Attribute Definition. For instance, in the context
of AKM, concepts such as Decision and Architectural Element are defined as Entity Types,
and their attributes and relationships are captured using Attribute Definitions. Furthermore,
users can create multiple Entities instantiating a specific Entity Type. An Entity can contain
multiple Attributes relating to an Attribute Definition. The Entity and Attribute concepts allow
users to create instances of the domain model that were captured as Entity Types and Attribute
Definitions. All the above concepts are part of a so-called Workspace which acts as a container
and restricts the scope. Once the domain model is captured in a Workspace, the model can be
cloned, reconfigured, and reused for similar subsequent projects. The meta-model based platform
supports the following use cases: (a) the domain model should be organization-, domain-, and
project-specific and (b) the domain models should be reusable and configurable to the project’s
context (team size, development methodology, processes, etc.).

Workspace
space

EntityType

AttributeDefinition

Entity
type

0..1

1

Attribute

AttributeValue

NumberValue …Value

space

1

definition

0..1

TypeConstraint

NumberConstraint …Constraint

attributes

values

attributeDefinitions

typeConstraint*

*

0..1

*

name : String

multiplicity : Multiplicity

<<enumeration>>

Multiplicity

Any number

At least one

Exactly one

Maximal one

1

1

* *

1

1

*

*

name : String

name : Stringtype : String

Entity.type

conforms

EntityType.name

Attribute.name

conforms

AttributeDefinition.name

Figure 5.2: The hybrid-wiki meta-model of SocioCortex: image taken from [6]

63

5. System design and implementation

5.1.2 Using SocioCortex for architectural knowledge management

Architectural knowledge can be classified into four broad categories, namely context, design,
general, and reasoning knowledge [75]. The context knowledge captures project-specific infor-
mation such as management information and architectural significant requirements. The design
knowledge comprises of the architectural design of the system. The context and the design
knowledge evolve as a software project progresses and hence they are referred to as dynamic
AK. The general AK captures architectural methods, styles, patterns, and organization-specific
corporate information (for example, organizational processes) that help architects while design-
ing software systems. Since the general AK changes less frequently over the course of a project,
we refer to general AK as static AK. Finally, reasoning knowledge contains information that
guides software architects to apply static knowledge in the project context. It also maintains
design decisions, rationale, and alternatives that were considered during the ADM process in
specific project instances, which can be reused in similar projects.

The high-level design of how SocioCortex is used for capturing AK is shown in Figure 5.3. Socio-
Cortex’s meta-model is used to create domain models (static and dynamic knowledge model) at
runtime. The facilitators of ADeX can configure the domain model through the web UI of Socio-
Cortex. The reasoning knowledge is managed by the rule engine component which captures the
reasoning logic using a model-based expression language (MxL) that accesses the meta-model
for computations. The domain models, model-based expressions, and model instances (data)
can be managed through the REST APIs. Such a design ensures the “separation of concerns”
design principle between client applications and the SocioCortex platform.

Client applications

REST API

Access control

Rule engine (Reasoning knowledge)

Model-based expressionsEvents & notifications

Meta-model

Static knowledge model Dynamic knowledge model

Static knowledge

base

Dynamic

knowledge base

S
o

ci
o

C
o

rt
ex

Figure 5.3: The design of an AKM system using SocioCortex as the backend

64

5. System design and implementation

5.1.3 The dynamic architectural knowledge model

For capturing dynamic AK in software projects, the domain model comprises of concepts
from project management, requirements engineering, AKM, implementation, and maintenance
phases. Providing a consolidated view over the current state of the different SDLC phases is cru-
cial for software architects during decision making. There exists a large body of knowledge that
captures the concepts and relationships between them in different phases of the SDLC through
general-purpose ontologies and addresses a multitude of problems including traceability, decision
support, tool integration, and documentation. For instance, [7] propose an ontology to capture
the structural elements of software architecture. Tang et al. present a software ontology for
annotating knowledge in requirement and architecture documents and to support traceability
and reasoning over requirements specification and architecture design [8, 9, 99].

Furthermore, efforts from industries to standardize the interfaces for tools used in the SDLC are
becoming prominent, wherein multiple industry partners are coordinating to define standards
such as the Open Services for Lifecycle Collaboration (OSLC) [10]. The OSLC standard not only
has an underlying ontology but also provides guidelines for exposing data using the linked-data
format with well-defined standard interfaces. Even though tool vendors have started to adopt
such standards, the expressiveness of such standards is still limited (as it is still in the definition
phase) and needs to be adapted for specific use cases. For constructing our domain model, we
analyzed the existing ontologies [7–9], OSLC standard, and data models of specific tools such
as Business Canvas Model, MS Project5, Enterprise Architect6, JIRA7, and Bugzilla8 which are
extensively used in practice.

The core concept within the domain model is Project with multiple attributes such as name,
description, start date, and end date. As shown in Figure 5.4, a Project is associated with its
corresponding Business plan which is further associated with concepts derived from the Business
Model Ontology [100]. The updated version of this ontology (Business Model Canvas [101]) has
nine core concepts including value proposition, partners, key activities, resources, and customers.
The concept Requirement references the concept Key activity in the business model ontology.
A project has multiple requirements which are classified into Functional and Non-functional
requirements. As also modeled in [8] and [9], an architectural Decision depends on the require-
ments and results in a specific Architecture. A decision is made by considering multiple Design
alternatives. An Architectural rationale justifies the decision made by an architect (cf. [4]).
The architecture is further elaborated with concepts such as architectural Element composed
of Attributes and Methods. These concepts are derived from the Enterprise Architect9 model-
ing tool’s schema. Furthermore, since a software architect needs to have a consolidated view
over the current project plan and the availability of resources, we have included the concepts
from the project management domain in our domain model. The concepts and the relationship
between the concepts such as Person, Task, and Assignment are derived from the work pre-
sented in [11] and the XML schema of the Microsoft Project management tool. Furthermore, in

5https://products.office.com/en/project/project-and-portfolio-management-software
6https://sparxsystems.com/products/ea/
7https://www.atlassian.com/software/jira
8https://www.bugzilla.org/
9https://sparxsystems.com/

65

5. System design and implementation

Project

Business plan

GeographyDomainCustomer

Key activity

Functional

Requirement

Test case

Design decision

Non-functional

Architecture

Rationale

Element

Work

TaskActivity

Status Priority

Person

Role TeamExpertise

Assignment

Method Attribute

depends on

elaborated by

p
er

ta
in

s
to

affected by depends on

justified by

Design alternative

1..*

has

0..*

refers to
refers to

1..*

1..*

1..* 0..*1..*

based on

0..*

1

1..*

1..*

1..*

1..*

has has

1

0..*

0..*

0..*

0..*

has

hashas belongs to

Category

IssueChange request Bug

belongs to

Class

0..*

Figure 5.4: The dynamic AK model for capturing the design and the context knowledge (the
concepts have been taken from [7–11])

SDLC, tools such as JIRA and Bugzilla are commonly used for managing tasks; these tools were
also investigated. Concepts such as task Categories (Issue, Bug, and Change request) and their
corresponding workflows derived from issue management systems were modeled in the dynamic
architectural knowledge model. To keep the view of the domain model simple and to allow better
readability, not all the concepts and the relationships are presented in Figure 5.4. It should be
noted that the domain model is an instance of the meta-model and hence it can be configured
through the SocioCortex’s UIs and can be adapted as per the project needs.

In this dissertation, we emphasize on the concepts related to design decisions shown in the lower-
left corner of Figure 5.4. Given that most of the concepts and relationships shown in Figure 5.4
are derived from the existing literature, our main contribution to the model is establishing
the relationships between the concepts related to design decisions and the software engineering
artifacts. To the best of this author’s knowledge, this is the first attempt to model design
decisions in such a holistic context.

5.1.4 The static architectural knowledge model

The static AK captures knowledge about architectural styles, reference architectures, design
patterns, architectural methods, and architectural standards. Furthermore, it also captures
organization-specific corporate knowledge such as templates for architectural methods, experts
who can help instantiate architectural methods in a specific context, and the time and cost
involved in applying architectural methods and standards. The model of static architectural

66

5. System design and implementation

Method

Method

step

Artifact

Template

Standard

Expert

Resource

Architectural

element
Phase

1

*

belongs to

1

*

belongs to 1

*comprises of

* *

requires

* 1
results in

*has

*confirms to
*uses

*

Figure 5.5: The static AK model for capturing general AK

knowledge is shown in Figure 5.5. This model is again an instance of the hybrid-wiki meta-
model presented in subsection 5.1.1, which allows domain experts to extend the model with new
concepts at runtime in SocioCortex.

The static knowledge model focuses on the Methods applicable in the architectural lifecycle of
a project. Examples of architectural methods include design methods (attribute-driven design,
4+1 views, and Siemens four-views [102]) or analysis methods (scenario-based analysis, architec-
ture analysis method, and architecture trade-off). The architectural method belongs to a Phase
in the architecture life cycle and can be composed of multiple Method steps. A Method confirms
to a specific architectural Standard and requires human, budget, and time Resources. Within
an organization, architects (Experts) with expertise in specific methods can help other project
partners in applying those methods. Furthermore, specific Methods could also use Architectural
elements such as architectural styles and patterns in their method steps. Each Method generates
corresponding Artifacts which can be instantiated using organization-specific Templates.

The knowledge base comprising of both the static and dynamic AK which is modeled in Socio-
Cortex covers the following use cases:

� Create, persist, modify, and delete AK (that represents both the static and dynamic AK)
elements in the knowledge base.

� Search AK elements using keywords and categories.

� Subscribe to AK elements and get notifications when they are updated.

� Manage different versions of the AK.

The need for these use cases is also highlighted in [76]. The focus of the knowledge base compo-
nent is to manage (gather, structure, store, search, and version) AK and to make them available
for all the other value-added services that guide software architects based on the current state
of the project.

67

5. System design and implementation

The rule engine component

Using information about the current state of a project (which is available from the dynamic
AK model) and the application-generic knowledge (static AK model), the rule engine evaluates
the rules in the rules repository and presents relevant recommendations to the end-users. These
rules are event condition action (ECA) rules implemented using the model-based expression
language (MxL) [103]. The MxL is a domain-specific language that allows querying the domain
model in SocioCortex. A rule represented using MxL is an expression and executing a rule implies
evaluating the corresponding expression. Since MxL is defined over the hybrid-wiki meta-model,
it can access all the EntityTypes - which represent concepts in the domain model. A simple
expression such as “find(Project).where(Status=‘ongoing’)”, returns all the instances of Projects
that are currently ongoing. For implementing such rules, one can also use alternative business
rules management systems such as Drools [104]. However, these rule engines are typically model-
based and not meta-model based systems. In other words, a change in the domain model would
also require updating the rules, as well as, the source code of the system. Whereas, MxL is
implemented over the meta-model of the SocioCortex platform. A change in the domain model
is automatically reflected in the MxL rules. For instance, if the concept “Task” is changed to
“Issue” in the domain model then, the respective MxL rules are updated accordingly.

An event in an ECA rule triggers the execution of the corresponding rules. These events are
categorized into three broad classes as described below.

� Domain events are triggered due to data-level changes within the artifacts of a project.
Typically, these are the frequently occurring events since they reflect the current state of a
project. The domain events could represent, for instance, uploading an architecture review
document, changing a task’s status in a project, or adding a decision to use a specific
reference architecture. Furthermore, since data is captured as instances of Entity and
Attribute types in the hybrid-wiki meta-model (cf. subsection 5.1.1), operations (create,
update, or delete) on these types would trigger a domain event.

� Model-change events are triggered when the domain model is updated to accommodate
the changing project context. For instance, when a domain expert deletes the relationship
between Decision and Architecture and adds a new relationship between Decision and
Architecture Element, the corresponding rules need to be updated and re-evaluated. Since
concepts belonging to the domain model are represented as instances of Entity Type and
Attribute Definition in the meta-model, any operation (update and delete) on them will
trigger a model-change event.

� User-triggered events are used when an architect actively executes (triggers manually) the
rules to identify the actions that need to be performed.

If the condition in an ECA rule is satisfied, the corresponding action is performed. Conditions are
expressed using MxL expressions and can be either simple or nested expressions. For instance,
a simple expression could include checking the status of a project and a nested expression could
represent multiple such queries joined by ‘and’ and ‘or’ operators. If all the conditions in an
ECA rule are satisfied, the corresponding actions are recommended to the end-users. These
actions are represented as MxL expressions as they allow invocation of operations on the data.

68

5. System design and implementation

Figure 5.6: An exemplary MxL expression for finding domain experts based on an ECA rule

To illustrate the application of a simple rule, consider the following use case: the system should
recommend domain experts with a minimum of five years of experience in architecture review and
analysis. Furthermore, such a recommendation should be context-aware, that is, it is relevant
for software architects only when the following conditions are satisfied:

c1) the status of the project is “ongoing”,

c2) the project is in the “design” phase, and

c3) the task “prepare architecture documentation” is “complete”.

The corresponding ECA rule can be captured as an MxL expression along with the meta-
information such as name, description, and parameters as shown in Figure 5.6. The parameters
are a list of input variables that can be used within an expression.

The above rule is evaluated every time there is a domain event corresponding to a Project or a
Task. This rule can also be triggered by a user-triggered event and by executing the getDomain-
Experts(‘Amelie’) expression. This example shows how the system uses the dynamic knowledge
about the current state of the project along with the static knowledge (with expertise in the
generic knowledge base) to recommend context-sensitive information to software architects. It
also indicates that the expressions rely on the concepts from the domain model introduced in
Figure 5.4. The rules in the repository not only include such recommendations but also include
actions such as generating reports or downloading templates based on the decisions taken by
the architects during the project. The rule engine component specifically addresses the use case
to offer automated support to software architects and developers during the ADM process.

5.1.5 User interface for capturing architectural knowledge in SocioCortex

SocioCortex is a collaborative web-based application that allows (a) domain experts to model
an application’s domain as well as (b) end-users to capture and maintain data adhering to

69

5. System design and implementation

Figure 5.7: The user interface of SocioCortex for collaboratively modeling the application domain
and for capturing the instances of the domain concepts

that domain model, collaboratively. Here, “collaboratively” refers to the idea that both domain
experts and end-users learn from each others’ activities and perform their tasks in an environment
where both the model and its data co-evolve [6].

Figure 5.7 shows the UI of SocioCortex10. The list of workspaces in SocioCortex is made available
in the navigation bar on the left side of the screen. On selecting a specific workspace, the
workspace is expanded within the list of Entity Types within that workspace. In Figure 5.7, the
workspace named Amelie is selected which contains Entity Types such as Project, Task, Quality
Attributes, Decision Category, etc. These Entity Types and their relationships have been created
by domain experts for maintaining AK in software projects. On selecting an Entity Type, all
the Entities (data/instances) belonging to that Entity Type are presented in a data table. In
Figure 5.7, all the instances of Tasks are shown in the center of the screen. The data table
presents all the attributes and their corresponding values. For example, corresponding to the
Entity Type - Task, the data table shows the task’s name, its description, the project to which
it belongs to, if it is a design decision, and if so, the category of a design decision. End-users
can create and update these attributes through the UI.

As discussed in the next section, all the tasks of a project are automatically extracted from issue
management systems such as Jira and Github Issues using the SyncPipes component and are
persisted in SocioCortex. Those issues are then processed to automatically extract architectural
knowledge. For example, as shown in Figure 5.7, each task is automatically labeled to indicate
if it is a design decision or not a design decision; they are also annotated with architectural
elements (see concepts and keywords in Figure 5.7) and quality attributes.

10http://server.sociocortex.com

70

5. System design and implementation

5.2 SyncPipes

The SyncPipes component addresses the general use case of AK integration for AKM tools.
Specifically, this component synchronizes data that is spread across software engineering lifecy-
cle tools to one centralized Knowledge Base (KB). SyncPipes acts like a “bot” with sensors and
actuators for our platform. The sensors monitor the current state of projects’ artifacts, and ac-
tuators keep the information within the KB synchronized. Figure 5.8 illustrates the conceptual
model of the SyncPipes component. The Source model represents various source tools that can
be handled by SyncPipes (e.g., JIRA, MS Project, Excel, and Enterprise Architect); whereas,
the Target model corresponds to the KB of ADeX. Both the source and target models are
specializations of ToolModel. The ToolModel provides interfaces to connect with the tools
using user credentials. It also implements methods such as getTypes and getEntities to work
with a unified data-model representation. The data model of the source and target tools conform
to a meta-model represented using the JSON-Schema [105] format. The SyncPipes component
uses a Mapper to capture the mapping of the concepts from the source to the target tool’s
data model. For instance, a facilitator of ADeX can map a concept “New Feature” in JIRA
to “Requirement” in ADeX’s domain model. The mapper allows facilitators to consider only
those concepts and attributes that are relevant and necessary to establish traceability across
the artifacts. Once a facilitator specifies the mapping, the Handler concept uses the mapping
information to extract data from the source tool, to transform the data, and to persist it in the
target tool. Subsequently, the Handler also starts the SyncJob that triggers the transformation
process based on specific events or at regular time intervals. The concepts mentioned above sup-
port selective model selection, alignment, transformation, and synchronization of data residing
in different tools into ADeX.

MetaModel

ToolModel

SourceModel TargetModel

Mapper

Handler

SyncJob

1

1

references

1

1

references
**

*

1

*

1

*

2

uses

*

2

uses

Figure 5.8: The conceptual model of SyncPipes for AK integration and synchronization

The core aspect of the SyncPipes component is the extensibility of the data integration services
to include new source and target systems. This is achieved through the so-called services which
comprise of several interfaces that developers must adhere to while implementing new services.
Figure 5.9, provides an overview of the interfaces necessary for implementing new extractor
and loader services. Each extractor service is responsible for fetching data from individual data
sources. An extractor service could either be active or passive. An active extractor service fetches
data from data sources that expose their data through REST APIs. Once a reference API is

71

5. System design and implementation

configured, such active services do not require human intervention for updating data during the
synchronization process. Whereas, a passive extractor service corresponds to extracting data
from files such as Microsoft Excel or Comma Separated Value (CSV) files. On the other hand, a
loader service is responsible for importing the data extracted from the extractor service into the
corresponding target system. The most essential interfaces necessary for implementing a new
extractor or loader service are described below.

5.2.1 The configuration of the extractor and the loader services in SyncPipes

For a service that requires custom configurations such as credentials for accessing a database
or REST APIs, the service must include a custom configuration that will be an instance of
ServiceConfiguration. The service configuration describes the structure of the configuration
data using the JSON-Schema format. For example, the configuration of a loader service to
import issues from JIRA includes - JIRA’s root API, user name, password, and a project key.
This configuration also implements a getConfigSchema method that returns the data schema
of the configuration. The configuration of a service is persisted in the database using the store
method. The load method is used to fetch the persisted configuration data from the database
into the service’s configuration.

The extractor and the loader services in SyncPipes

SyncPipes is a platform for developers to write extractor and loader services based on the
interfaces defined in SyncPipes. The end-users of SyncPipes can then choose their desired source
and target systems, configure the extractor and loader service, define the mapping between the
source and target data structures, and finally start the execution process. To achieve this,
developers must implement all the interfaces shown in Figure 5.9.

The extractor and the loader services have the same base interface named Service. The getName
method returns the name of the service which is used as a primary key and is exposed through
a REST API to the SyncPipes client. The getConfiguration method returns the associated
ServiceConfiguration instance. On the other hand, the setConfiguration method sets a specific
configuration that will be used during the extraction or the loading process. Each service

<<Interface>>

Service

<<Interface>>

Service

+ getName: string
+ getConfiguration: ServiceConfiguration
+ setconfiguration(config): void
+ getSchema(): Schema
+ getConfigSchema(): Promise
+ prepare(context, logger): Promise

<<Interface>>

PipelineContext

<<Interface>>

PipelineContext

+ pipeline: Pipeline
+ inputData: Array<Buffer>

<<Interface>>

LoaderService

<<Interface>>

LoaderService

+ load(): stream.Writable

<<Interface>>

ExtractorService

<<Interface>>

ExtractorService

+ getType(): ExtractorServiceType
+ updateconfigSchema(inputData): Promise
+ extract(): stream.Readable

<<Interface>>

ServiceConfiguration

<<Interface>>

ServiceConfiguration

+ getSchema(): Schema
+ store(): Object
+ load(config): void

<<Interface>>

Service

+ getName: string
+ getConfiguration: ServiceConfiguration
+ setconfiguration(config): void
+ getSchema(): Schema
+ getConfigSchema(): Promise
+ prepare(context, logger): Promise

<<Interface>>

PipelineContext

+ pipeline: Pipeline
+ inputData: Array<Buffer>

<<Interface>>

LoaderService

+ load(): stream.Writable

<<Interface>>

ExtractorService

+ getType(): ExtractorServiceType
+ updateconfigSchema(inputData): Promise
+ extract(): stream.Readable

<<Interface>>

ServiceConfiguration

+ getSchema(): Schema
+ store(): Object
+ load(config): void

Figure 5.9: Interfaces for implementing the extractor and loader services in SyncPipes

72

5. System design and implementation

<<Interface>>

mongose.Document

<<Interface>>

mongose.Document

<<Interface>>

Mapping

<<Interface>>

Mapping

+ name: string
+ extractorService: string
+ loaderService: string
+ groups: Array
+ created: Date
+ updated: Date

<<Interface>>

Pipeline

<<Interface>>

Pipeline

+ name: string
+ extractorConfig: ServiceConfig
+ loaderconfig: ServiceConfig
+ executions: Array
+ created: Date
+ updated: Date

<<Interface>>

ServiceConfig

<<Interface>>

ServiceConfig

+ name: string
+ service: string
+ config: any
+ groups: Array
+ created: Date
+ updated: Date

<<Interface>>

MappingGroup

<<Interface>>

MappingGroup

+ toPrefix: string
+ properties: Array

<<Interface>>

PropertyMapping

<<Interface>>

PropertyMapping

+ fromPath: string
+ toPath: string
+ primaryKey: boolean
+ uniqueKey: boolean
+ foreignKey: string

<<Interface>>

PipelineExecution

<<Interface>>

PipelineExecution

+ log: Array
+ started: Date
+ finished: Date

<<Interface>>

LogMessage

<<Interface>>

LogMessage

+ level: string
+ message: string
+ context: any

<<Interface>>

mongose.Document

<<Interface>>

Mapping

+ name: string
+ extractorService: string
+ loaderService: string
+ groups: Array
+ created: Date
+ updated: Date

<<Interface>>

Pipeline

+ name: string
+ extractorConfig: ServiceConfig
+ loaderconfig: ServiceConfig
+ executions: Array
+ created: Date
+ updated: Date

<<Interface>>

ServiceConfig

+ name: string
+ service: string
+ config: any
+ groups: Array
+ created: Date
+ updated: Date

<<Interface>>

MappingGroup

+ toPrefix: string
+ properties: Array

<<Interface>>

PropertyMapping

+ fromPath: string
+ toPath: string
+ primaryKey: boolean
+ uniqueKey: boolean
+ foreignKey: string

<<Interface>>

PipelineExecution

+ log: Array
+ started: Date
+ finished: Date

<<Interface>>

LogMessage

+ level: string
+ message: string
+ context: any

Figure 5.10: Concepts for persisting ETL pipelines and data mappings in SyncPipes

describes the data that it either generates as output (for extractors) or expects as input (for
loaders) using the JSON-Schema. The getSchema method returns the data schema that a service
is generating or expecting. If the data schema is unknown at compile time, then it needs to
be updated using the updateSchema method during the execution time in the prepare method.
The prepare method is invoked right before starting the extraction or the loading process. An
instance of the PipelineContext is passed along with an instance of the Logger interface to the
prepare method. The PipelineContext has two properties, namely, pipeline and inputData. A
pipeline that needs to be executed is an instance of the concept – Pipeline (cf. Figure 5.10). The
inputData is an array of Buffers11, which is only available for passive extractor services. The
second argument passed to the prepare method is an instance of Logger which enables services
to write log messages that are associated with the current pipeline execution. The prepare
method performs those tasks which are required before starting the actual extraction or loading
processes. For example, this could include connecting to a database or setting up an HTTP
client. A service that extracts data from a source system has to implement the ExtractorService
interface, which extends the Service interface with two additional methods, namely, getType
and extract. The getType method returns a value of the ExtractorServiceType which can

11https://nodejs.org/api/buffer.html

73

https://nodejs.org/api/buffer.html

5. System design and implementation

Figure 5.11: The steps in the data transformation workflow in SyncPipes

either be active or passive. If the type is Passive, the application expects to be provided with
additional data, for example, an Excel file. The data is made available to the service through
the PipelineContext.inputData property. Second, an ExtractorService implements the extract
method that returns a stream.Readable12. The extractor service then uses this stream to push
the data extracted from the source system.

Subsequently, the loader services allow importing the extracted data into the target system. To
implement a loader service, the developer has to implement the LoaderService interface that also
extends the Service interface. The interface requires the implementation of the load method,
which returns an instance of the stream.Writable13. Through that stream, a loader is provided
with the extracted data from the extraction service which will be loaded into the target system.

5.2.2 Data transformation using user-defined data mappings

For importing data from the source system into the target system, users can map the data
schema of the source system with the data schema of the target system. Based on the mapping,
SyncPipes performs the actual data transformation. Three fundamental elements are required
to perform the data transformation process:

1. Both the extractor and the loader services must describe the data schema they either
produce or expect using the JSON-Schema.

2. A mapping to transform the data between the source and the target system.

3. Data which will be transformed; this data must adhere to the corresponding JSON-Schema.

As shown in Figure 5.10, every pipeline has an associated mapping. It is a meta-data container
encapsulating the name of the mapping, names of the corresponding extractor and loader ser-
vices, and the dates when the mapping was created and updated. Each mapping is broken down
into groups, which are further broken down into properties. This allows end-users to map the
nested tree structure of the JSON data-schema from the source system to the target system. The
PropertyMapping interface has two properties fromPath and toPath. The fromPath property
defines which values should be extracted from the source object and the extracted values are
then inserted into the target object using the toPath property.

12https://nodejs.org/api/stream.htmlstream_class_stream_readable
13https://nodejs.org/api/stream.htmlstream_class_stream_writable

74

https://nodejs.org/api/stream.html stream_class_stream_readable
https://nodejs.org/api/stream.html stream_class_stream_writable

5. System design and implementation

The GraphTransformer handles the data transformation. It is instantiated with the schemata
of the extractor and the loader service as well as with an instance of the respective Mapping.
The graph transformer first converts the mapping into a tree structure and then transforms
the instances of the source schema using the provided mapping. As shown in Figure 5.11, the
transform method consists of five steps; the arrows are the different steps in the transformation
process, and the boxes describe the required input data for each step.

In Step 1, the graph transformer generates a tree structure of the input source’s data schema
using the composite design pattern. In Step 2, it creates an initial tree structure of the target
system’s data schema. Next, in Step 3, using the mapping’s tree structure, the graph transformer
extracts the corresponding source data. Next as part of the insertion step, first the foreign keys
are handled by inserting the primary keys into the target object in Step 4. Finally, in Step 5,
the remaining extracted values are inserted into the target object.

The end-to-end workflow of the SyncPipes data extraction and loading process is shown in
Figure 5.12. Transforming data using an extractor, and a loader services requires executing
a Pipeline, which is selected by the end-user of the system. If the requested pipeline exists,
the associated services are loaded and the application creates a new pipeline execution object
and persists it in the database. Thereafter, a new pipeline context is created and is populated
with the information related to that pipeline, which is serialized and sent to a message broker
(RabbitMQ). The message broker notifies the GraphTransformer to start a new pipeline execu-
tion. On receiving the pipeline context as a message, the GraphTransformer loads the services

Figure 5.12: Sequence diagram showing the data extraction and loading process in SyncPipes

75

5. System design and implementation

associated with the pipeline. Then, the prepare method is called both on the extractor and the
loader services. The GraphTransformer waits until the prepare methods are complete. Upon
completion of the prepare method, the GraphTransformer invokes the extractor service. The
GraphTransformer receives the data from the extractor service and pushes it to the mapper.
Using the respecting mapping configuration, the mapper transforms the data provided by the
extractor service and pushes it to the loaded service. Finally, the loader service invokes the load
method that loads the data extracted from the source system into the target system. Figure 5.12
captures the aforementioned steps using a sequence diagram.

5.2.3 User interfaces for managing data transformation

Figure 5.13: The dashboard view in SyncPipes shows the available extractor and loader services
as well as the status of the ETL jobs

The SyncPipes client component provides facilitators of ADeX, the UIs to configure the pipelines
for importing and synchronizing data from different systems into a target system. The SyncPipes
client is a front-end web application implemented using TypeScript14 which transcompiles to
JavaScript15. The SyncPipes client interacts with the SyncPipes server using REST APIs to
invoke the exposed services and to present the results in the UIs (cf. Figure 5.1).

Using the dashboard view of the SyncPipes client, facilitators of ADeX can quickly view all the
available extractor and loader services. For example, as shown in Figure 5.13, SyncPipes provides
extractor services such as ExcelExtractor, JiraIssueExtractor, and JiraProjectExtractor services.
It also provides loader services such as MySQLLoader, MongoLoader, and SocioCortexLoader
services. Furthermore, on this dashboard, the facilitator can even glance over the previously
executed integration pipelines and see the status of those executions.

As discussed in the previous sections, each of the extractor and loader services has associated
configurations. These configurations can be updated by the facilitator using the interface shown
in Figure 5.14. Depending on the service that a facilitator wants to use, she can select the
respective service and edit its configuration. Figure 5.14 shows the configuration parameters for
the JiraIssueExtractor service. These parameters include the description of the configuration,

14http://www.typescriptlang.org/
15https://developer.mozilla.org/en-US/docs/Web/JavaScript

76

5. System design and implementation

Figure 5.14: The user interface for configuring an extractor or a loader service in SyncPipes

URL of the Jira repository that exposes REST APIS, user name and password to access those
APIs, and finally, the name of the project in the Jira repository to extract the issues. Once these
parameters are configured, they can then be reused for executing multiple pipelines.

Furthermore, it should also be noted that, when the end-users of ADeX select a project to analyze
using the Amelie - Decision Explorer client (discussed later in Section 5.6), the aforementioned
configuration is automatically created using the configuration API provided by the SyncPipes
server and the extraction process is automatically executed.

Once the configurations for the extractor and loader services are created, next, the facilitator can
generate the mapping between the data model of the extractor service and the loader service.
The mapping between the data models is created in a declarative manner using the UI shown in
Figure 5.15. On selecting the extractor and the loader service, along with their configurations,
their corresponding data models are presented to the facilitator. Figure 5.15 shows the data
model of the extractor (JiraIssueExtractor) service on the left side. On the right side, the data
model of the loader (MongoDBLoader) service is presented. The tree structure of the data
model can be explored to view the attributes within each node (concept). Facilitators select
and map the nodes as well as their attributes (on both sides). For better understandability
and readability, the mapping is also shown on the lower part of the screen. For example, the
attribute summary of an issue type in the extractor service’s data model is mapped to the
attribute named title of task type in the loader service’s data model.

Once such a mapping is created between an extractor and a loader service, it is further used as a
mapping configuration while importing the data into the target system. It should be noted that
such a mapping needs to be created only once between the extractor and loader service. For

77

5. System design and implementation

Figure 5.15: The user interface for configuring a pipeline’s data mapping in SyncPipes

instance, while importing issues from Jira into SocioCortex, the same mapping configuration is
used for all the projects even though, the execution pipeline is different for each of them.

Finally, when both the extractor’s and loader’s service configurations and the mapping between
the data models of those services are available, an execution pipeline can be created as shown
in Figure 5.16. This execution can either be executed by clicking on the play icon on the UI or
can be invoked by calling the corresponding REST API exposed by the SyncPipes server. The
later is used by the ADeX system to trigger the import process automatically.

SyncPipes was developed as part of Frido Koch’s Bachelor thesis project [12].

Figure 5.16: The user interface for editing and executing a pipeline in SyncPipes [source: [12]]

78

5. System design and implementation

5.3 Document classifier

The Document Classifier component addresses the use case of identifying and classifying design
decisions from issues extracted using the SyncPipes component. Once all the issues in a project
are imported, a two-phase supervised ML-based approach is used to identify design decisions
within those issues. As shown in Figure 5.17, in the first phase, an issue is either classified as a
“design decision” or “not a design decision” using the decision detector component. The decision
detector component uses a classification model that has been trained using more than 1,500
labeled issues from two open source projects, namely, Apache Spark and Apache Hadoop. If the
decision detector component labels an issue as a design decision, then that design decision is
further processed by the decision classifier component in the second phase. The decision classifier
component uses a pre-trained classification model to further classify the decision into one of the
three decision categories, namely, structural, behavioral, and non-existence or ban decisions.

AKM tool

Decision detector Decision classifier

Structural

decision

Decision detection
ML model

Decision classification
ML model

issues

uses uses

classify Behavioral

decision
Ban

decision

design
decisions

Issue
management

system Syncpipes

Phase 1 Phase 2

Figure 5.17: The high-level overview of the design decision detection and classification process

The Document Classifier component is implemented using the Java Play web application frame-
work16 and has its own three-layered architecture. The presentation layer provides the necessary
UIs for administrators of ADeX to create classification pipelines, run those pipelines, and to an-
alyze the execution results. These functionalities can also be invoked by other components in
ADeX (specifically, the Akre component) through the exposed web-service APIs. The applica-
tion layer provides the logic to train and run the ML classification models. The data (issues)
necessary for training the model is imported from the backend of ADeX (SocioCortex). Finally,
the persistence layer uses a document-store (MongoDB) to store the information related to the
classification pipelines and all the classification models are persisted on the filesystem as shown
in Figure 5.18. Each of these layers are subsequently elaborated.

Persistence layer of the document classifier component

In the context of classifying documents, a classification pipeline includes a series of steps nec-
essary for generating a ML classification model which is trained using labeled training dataset.
All the relevant information corresponding to a pipeline is persisted in a document-oriented
database (MongoDB). As shown in Figure 5.19, a clustering pipeline is uniquely identified by its
name. Each pipeline has a set of labels that can be assigned to a new document that needs to
be classified. Furthermore, for each label, a path or a location to the set of training documents
must be provided. These training documents can either be on the filesystem or can be tables or
collections in a database. Apart from the labels, those attributes of a document that must be
used for training the classification model must also be provided. These attributes are referred

16https://www.playframework.com/

79

5. System design and implementation

PipelineControllerPipelineController

+ get(name): Pipeline
+ getAll(): List<Pipeline>
+ getClassifiers: List<Classifier>
+ create(Pipeline): Pipeline
+ train(name): Result
+ predict(Document): Result
+ setClassifier(classifierName): void

RESTController

<<component>>

SocioCortex

<<component>>

SocioCortex

MongoDB
File system

issue
<<flow>>

issue
<<flow>>

<<component>>

Angular views

<<component>>

Angular views

train, predict, visualizetrain, predict, visualize

load
model
load

model

save
model
save

model

save
pipeline

save
pipeline

load
pipeline

load
pipeline

PipelineController

+ get(name): Pipeline
+ getAll(): List<Pipeline>
+ getClassifiers: List<Classifier>
+ create(Pipeline): Pipeline
+ train(name): Result
+ predict(Document): Result
+ setClassifier(classifierName): void

RESTController

<<component>>

SocioCortex

MongoDB
File system

issue
<<flow>>

<<component>>

Angular views

train, predict, visualize

load
model

save
model

save
pipeline

load
pipeline

Figure 5.18: The high-level system design of the document classification component

to as mining attributes. For instance, the summary and description attributes of issues in an
IMS are used for training the Decision Detection model. The trained model is persisted in the
filesystem using the modelPath attribute in the classification pipeline.

For training a classification model, users can specify the classifier that needs to be used. The
current implementation of Document Classifier supports two classifiers, namely, Naive Bayes
and Support Vector Machine (SVM) classifiers. The selection of a classifier is maintained in the
classifier attribute in the respective clustering pipeline.

Application layer of the document classifier component

The logic for training the classification models and for predicting the label for a new document
is contained in the application layer. To train a classification model, first, a pipeline is created
using the create functionality in the Pipeline controller. While creating a new pipeline, users
must provide a classifier, labels for the classification, and the location of the labeled documents.
Once a pipeline is created, the “train” functionality can be called upon, which invokes the
training pipeline’s run method to load the training data, preprocess them, build a classification
model using the respective classifier, save the model in the filesystem, and finally return the
classification results.

80

5. System design and implementation

PersistentEntityPersistentEntity

+ getAll(): Objects
+ findByName(fieldName, fieldValue): Object
+ save(): void
+ delete(): void

ClassificationPipelineClassificationPipeline

- name: string
- minningAttributes: List<string>
- modelPath: string
- split: int
- createdAt: Date

ClassificationLabelClassificationLabel

- name: string
- path: string
- labelId: string
- type: string

IssueIssue

- name: string
- summary: string
- description: string
- created: Date
- resolved: Date
- status: string
- type: string
- priority: string
- designDecision: boolean

<<abstract>>

AbstractClassifier

<<abstract>>

AbstractClassifier

- name: string

NaiveBayesClassifier

LibSVMClassifier

1

+ classifier

0..11

+ classifier

0..1

PersistentEntity

+ getAll(): Objects
+ findByName(fieldName, fieldValue): Object
+ save(): void
+ delete(): void

ClassificationPipeline

- name: string
- minningAttributes: List<string>
- modelPath: string
- split: int
- createdAt: Date

ClassificationLabel

- name: string
- path: string
- labelId: string
- type: string

Issue

- name: string
- summary: string
- description: string
- created: Date
- resolved: Date
- status: string
- type: string
- priority: string
- designDecision: boolean

<<abstract>>

AbstractClassifier

- name: string

NaiveBayesClassifier

LibSVMClassifier

1

+ classifier

0..1

Figure 5.19: A class diagram showing the concepts and their relationships in the document
classification component

The execution of a training pipeline includes a series of standard ML steps. For detecting design
decisions in issues, each issue’s textual description (summary and description) is considered
as one document. As discussed in the previous sections, a labeled training dataset with 1,571
issues (760 design decisions and 751 non-design decisions) is used to create the decision detection
model. Once the training dataset is loaded and transformed into instances consumable by the
Weka library, a sequence of standard NLP steps are applied for preprocessing the documents.
As shown in Figure 5.20, these steps include, tokenizing the documents, transforming those
tokens to lower cases, removing stops words, stemming the tokens to their root words, and
finally, generating token pairs using n-grams. Once, the preprocessing is complete, for each
document, a tf-idf vector representation is created. These documents are then split into training
and testing datasets (using split strategies - cf. Evaluation chapter). The training dataset is
then used to create the classification model using 10-fold validations. Once the model is created,
it is persisted on the filesystem, and the testing dataset is used to check the accuracy (F-score)
of the classification model which is sent back to the client for further analysis.

Part 1: Process documents

Part 2: Generate model
(10-fold validation)

TokenizeLabeled
dataset

Transform
cases

Filter stop
words

Stem
words

Generate n-
Grams (n=1..5)

Create TF-IDF
representation

Training

Multi-class classifiers

Testing – Apply model

Classification
model

Sh
u

ff
le

d
 s

p
lit

Results

model
Training data

Testing data

Preprocessing

issues

Figure 5.20: A machine learning pipeline for design decision detection and classification

81

5. System design and implementation

PipelinecontrollerPipelinecontroller

+ get(name): Pipeline
+ getAll: List<Pipeline>
+ getClassifiers(): List<Classifier>
+ create(Pipeline): Pipeline
+ train(name): Result
+ predict(Document): Result

PredictionPipelinePredictionPipeline

+ loadModel(): void
+ createDataFrame(): void
+ classify(): void
+ run(): string

- pipeline: Pipeline
- textToClassify: string
- classifier: AcstractClassifier
- data: Instances

TrainingPipelineTrainingPipeline

+ init(): void
+ getData(labels): void
+ load(): void
+ process(): void
+ evaluate(): void
+ save(): void
+ run(): Result

- pipeline: Pipeline
- crossValidation: int
- trainingData: Instances
- classifier: AbstractClassifier
- modelPath: string

ClassifierFactoryClassifierFactory

+ getClassifier(name): Classifier

WekaTrainingPipeline WekaPredictionPipelineusesuses usesuses

usesusesusesuses

RESTController

Pipelinecontroller

+ get(name): Pipeline
+ getAll: List<Pipeline>
+ getClassifiers(): List<Classifier>
+ create(Pipeline): Pipeline
+ train(name): Result
+ predict(Document): Result

PredictionPipeline

+ loadModel(): void
+ createDataFrame(): void
+ classify(): void
+ run(): string

- pipeline: Pipeline
- textToClassify: string
- classifier: AcstractClassifier
- data: Instances

TrainingPipeline

+ init(): void
+ getData(labels): void
+ load(): void
+ process(): void
+ evaluate(): void
+ save(): void
+ run(): Result

- pipeline: Pipeline
- crossValidation: int
- trainingData: Instances
- classifier: AbstractClassifier
- modelPath: string

ClassifierFactory

+ getClassifier(name): Classifier

WekaTrainingPipeline WekaPredictionPipelineuses uses

usesuses

RESTController

Figure 5.21: The application controllers and their dependencies for managing business logic in
the document classification component

The same steps are applied for generating a classification model for classifying design decisions
into one of the three categories, namely, structural, behavioral, and non-existence or ban deci-
sions. The only difference being that the labeled training dataset is different. Among the 760
labeled design decisions, 360 design decisions are labeled as structural decisions, 300 as behav-
ioral, and 250 as ban design decisions. These three labels with the corresponding datasets are
used for creating the trained decision classification model.

For predicting a label of a new document in the application phase, the predict function in
the Pipeline controller is invoked. The Pipeline controller uses the Weka prediction pipeline,
which is a specialization of prediction pipeline (cf. Figure 5.21) to process the new document.
The prediction pipeline first loads the persisted trained classification model from the filesystem,
creates a data frame of the new document that can be processed by the Weka library, preprocesses
the document, finds the appropriate label, and sends back the label to the client.

Presentation layer of the document classifier component

The UIs in the presentation layer allow administrators and facilitators of ADeX to manually
create new classification pipelines, configure the classifiers, train the classification models, and
analyze the results of classification.

5.4 Workbench4DC: Document clustering component

The Document Clustering component addresses the use case of identifying similar design deci-
sions made in the past. Once all the issues in a project are labeled by the Document Classifier
component as either “design decision” or “not a design decision”, the Document Clustering com-
ponent aggregates all the design decisions belonging to that project, builds a cluster model,

82

5. System design and implementation

Figure 5.22: The high-level overview of the document clustering process

and persists it on the file system. These cluster models are created using the K-means algo-
rithm. Hence, each cluster contains a set of similar design decisions around its centroid. The
aforementioned steps correspond to the training phase in the ML process and are depicted in
Figure 5.22. During the application phase , for a new design decision within that project, the
Document Clustering component loads the already created cluster model, identifies the cluster
to which the new design decision belongs to, and then ranks the most similar documents within
that clustering using a document similarity measure. The resulting similar decisions are then
returned to the Amelie - Decision Explorer client and presented to the end users. Note that, in
the subsequent discussions, a document refers to a design decision and clustering of documents
corresponds to the clustering of design decisions.

System design of the document clustering component

The Document Clustering component is self-contained and has its own three-layered architecture
with presentation, application, and persistence layers. As shown in Figure 5.23, the persistence
layer handles the storing and retrieval of the ML pipelines, its configurations, the cluster models,
and the results of pipeline executions. The application layer handles training the cluster models
and predicting the clusters for new design decisions. Furthermore, it also exposes the necessary

Figure 5.23: The high-level system design of the document clustering component

83

5. System design and implementation

application programming interfaces (APIs) which are accessed by the presentation layer as well as
by other components in the ADeX system. The UI in the presentation layer allows administrators
and facilitators of ADeX to configure, run, and analyze the results of executing a clustering
algorithm to find similar design decisions.

Persistence layer of the document clustering component

Document clustering uses MongoDB and the filesystem for storing information. The information
regarding the pipeline configurations and available libraries are stored in MongoDB. On the other
hand, the trained models and their corresponding results are stored on the filesystem.

In the context of clustering documents, a cluster pipeline includes the selection of:

� a ML library (for example, Apache Spark or Weka)

� a clustering algorithm (for example, K-means or bisecting k-means)

� configuration options (for example, the desired number for k and number of iterations)

When a user or an external system (through the exposed REST APIs) creates new cluster
pipelines for training the documents in a project, the corresponding information is stored in
MongoDB using the collections shown in Figure 5.24. Once the clusters are created, the corre-
sponding models are stored in the filesystem, and the name of the project is used as an identifier.
During the application phase, that is, given a new design decision, the system loads the saved
model using the project name, retrieves the respective cluster pipeline from MongoDB, and
finally executes the “predict” method to identify similar design decisions.

Figure 5.24: A class diagram showing the concepts and their relationships in the document
clustering component

84

5. System design and implementation

Application layer of the document clustering component

The controllers in the application layer handle the logic of creating, training, and applying the
cluster models to new documents. Hence, this layer comprises of two central controllers, namely,
Train controller and Predict controller as shown in Figure 5.23. To create and train the cluster
models for all the design decisions in a project: the Training controller first loads all the design
decisions from SocioCortex, uses the configurations set by the user to create the cluster models,
and persists the results before sending the results to the presentation layer.

The Predict controller is responsible for all operations related to predicting the cluster for a
new design decision and identifying most similar design decisions within that cluster. For a new
design decision in a project, the Predict controller first loads the saved cluster model from the
filesystem, applies the model on the new design decision, and finds the cluster label for this
new design decision. Once the cluster label is identified (which contain many design decisions),
a ranking algorithm using the Cosine similarity is applied to each design decision within that
cluster to return an ordered list of similar design decisions.

The functionalities to train a cluster model and to predict similar decisions are exposed as

Figure 5.25: The user interface for creating and configuring a document clustering pipeline

85

5. System design and implementation

Figure 5.26: The user interface showing the result of a executing a document clustering pipeline

REST interfaces by the REST controller. These REST endpoints are invoked both from the UI
of Document Clustering component as well as from the Akre-Server component that orchestrates
the preprocessing of design decisions within a project.

Presentation layer of the document clustering component

The UIs in the presentation layer allow administrations and facilitators of ADeX to manually
create new cluster pipelines, configure the parameters necessary of creating cluster models, train
the cluster models, and analyze the results of the generated clusters.

Figure 5.25 shows the UI for creating a new document clustering pipeline. An admin starts
by providing a unique name for the pipeline followed by selecting the ML library (e.g., Apache
Spark) for creating the cluster models. Then she can choose the clustering algorithm (KMeans17

or Bisecting KMeans18) and the method for feature extraction (Hashing-TF19 or Word2Vec20).
Furthermore, the admin can also configure the value of K (which is the number of clusters) as
well as the maximum number of iterations to run. Next, the admin can choose from either of the
two data sources from where to retrieve the design decisions using a unique project key (either
from SocioCortex or from MongoDB). In Figure 5.25, HADOOP is provided as the project key
to link and extract the design decisions from the MongoDB. Alternatively, the admin can also
choose to upload a CSV file for building the cluster model. Once all the configuration parameters
are set, the admin can click on the “Save & Run” button to execute the pipeline.

Once the document clustering pipeline is executed, and the cluster model is generated, the admin
is redirected to the UI shown in Figure 5.26. This view allows her to analyze the generated
cluster model. On the left-hand side, the admin can see the list of clusters (20 based on the

17https://spark.apache.org/docs/latest/mllib-clustering.html#k-means
18https://spark.apache.org/docs/latest/mllib-clustering.html#bisecting-k-means
19https://spark.apache.org/docs/latest/mllib-feature-extraction.html#tf-idf
20https://spark.apache.org/docs/latest/mllib-feature-extraction.html#word2vec

86

5. System design and implementation

Figure 5.27: The user interface for predicting the the cluster model of a given design decision

configuration in Figure 5.25) and the number of documents in each cluster. On the right-hand
side, the admin can select a specific cluster and view each of the individual document (only the
ID) within each cluster. On selecting a document, she can further see the features (terms) that
resulted in including that specific document in the respective cluster.

If the cluster models have a disproportionate number of documents within the clusters, the
admin can navigate back to the create pipeline view, reconfigure the algorithm parameters, and
rerun the clustering pipeline. Furthermore, the admin can test the generated cluster model by
providing a new document as shown in Figure 5.27. Once, the admin provides the document and
clicks on the “Get cluster label” button, the Predict controller uses the corresponding cluster
model and predicts the cluster label for that document (cluster label is 10 in Figure 5.27).
Moreover, the admin also sees the related similar documents within that cluster which are
ranked according to the Cosine similarity score.

The document clustering component was designed and developed as part of
Prateek Bagrecha’s Master thesis project [106].

5.5 Akre-Server: Architectural recommendations component

The Akre-Server component addresses multiple use cases, namely, a) identifying and annotat-
ing architectural elements within the textual description, b) recommending alternative solutions
for an architectural element, c) detecting and annotating quality attributes within the textual
description, and d) recommending experts to address new design concerns. Apart from ad-
dressing the aforementioned use cases, as also presented in Figure 5.1, this component also

87

5. System design and implementation

serves as a middleware that synchronously invokes preprocessing services in different compo-
nents (SyncPipes, Document Classifier, and Document Clustering), aggregates the results, and
returns the response to the client application, which is, the Amelie - Decision Explorer client.
Before discussing the invocation of preprocessing services, first, all the use cases are described
below. Also, note that, unlike other components, this component does not have a dedicated UI.
It only provides the business logic and interacts with the persistence layer.

5.5.1 Architectural solutions recommender

This sub-component uses the DBpedia ontology for identifying architectural elements within
text and then identifies alternatives corresponding to those architectural elements. The high-
level design of this sub-component is shown in Figure 5.28. The text that needs to be annotated
(description of a design decision) can be provided as input from the Amelie - Decision Explorer
client or through the invocation of the REST service.

Clients
Amelie Word plugin client Amelie – Decision Explorer

Application
server

UIMA Annotator

Sentence annotator

DBpediaDBpedia annotator

Architecture element
annotator

Amelie knowledge
base

Input text Annotations
Meta-information

Recommendations1 4URI of annotated
element

3

Sparql Query Executor

Sparql query generator

Filter and sort results

2

User preference
repository

Figure 5.28: The high-level system design of the recommendation component

On receiving the textual information, this sub-component triggers a set of annotators that identi-
fies and annotates architectural elements within the text and sends back those annotations to the
client. Next, corresponding to an annotated architectural element, the lookup sub-component
retrieves meta-information about that architectural element from the DBpedia ontology and
sends it to the client. Subsequently, the SPARQL query executor identifies alternative architec-
tural choices and returns the recommendations to the client (Step 3 in Figure 5.28). These steps
are further elaborated in the subsequent subsections.

88

5. System design and implementation

5.5.1.1 Phase 1: Automatic annotation of architectural elements

For annotating text with architectural elements, the annotators are implemented with the Un-
structured Information Management Architecture (UIMA) framework21. This framework pro-
vides the necessary infrastructure to configure and run pipelines of annotator components for an-
alyzing unstructured information. In the scenario under consideration, three annotators (namely,
sentence annotator, DBpedia annotator, and architectural element annotator) are used.

1. Sentence annotator: The input text received from the client is broken down into sen-
tences using the sentence annotator. These sentences are passed to the DBpedia annotator.

2. DBpedia annotator: For annotating text with concepts in the DBpedia ontology, a
plugin named DBpedia Spotlight [89] is reused. DBpedia Spotlight is an open-source
project that provides REST-based web services to annotate text with DBpedia entities.
DBpedia Spotlight performs two main tasks: phrase spotting and disambiguation. In
the first step, the phrase-spotting algorithm identifies phrases that should be linked to
DBpedia entities in the given input text. These phrases are identified using a string-
matching algorithm (Aho-Corasick22). In the second step, the phrases are further scored
using TF-IDF weights and compared using Cosine similarity (cf. [89]). All the phrases
with similarity scores above a configurable threshold value are returned to the client. The
evaluation results presented in Section 6.1.1 are based on a threshold value of 0.7. The
result from this annotator is further processed by the Architecture element annotator to
generate a JavaScript Object Notation (JSON) array of annotations as shown in Listing 5.1.

Listing 5.1 shows the annotation of an architectural element – “relational database” which
starts at character position 271 and ends at the 290th position within a given textual
description. The start and end positions indicate the UIs to color code the architectural
elements in the text. The similarity score is returned by the disambiguation step which
indicates the relevance of the annotated resource. The support parameter (value: 625)
indicates the number of incoming links to this particular DBpedia resource. The term
that was annotated is also included in the JSON response as well the link to the DBpedia
resource. The type parameter is discussed in the subsequent sub-sections.

1 [{
2 "begin": "271",
3 "end": "290",
4 "similarityScore": "0.9982600192890149",
5 "support": "625",
6 "URI": "http://dbpedia.org/resource/Relational_database",
7 "token": " relational database",
8 "type": "Genre"
9 }]

Listing 5.1: An exemplary JSON response with one annotation item

21https://uima.apache.org
22http://alias-i.com/lingpipe

89

5. System design and implementation

3. Architecture element annotator: To improve the precision of the annotated text re-
sults, an architecture element annotator is implemented which restricts annotations re-
ceived from the DBpedia annotator to those that correspond to architectural elements.
A bag of words consisting of tokens captured in the knowledge base is used for filtering
out irrelevant annotations. Admins can create or update these concepts and tailor the list
to specific projects. If an admin marks annotations as irrelevant, then such annotations
are filtered out by this annotator. Alternatively, if the admin adds a custom annotation,
then the corresponding annotation is added to the result. In the current prototype, these
concepts are identified in text using a string-matching algorithm.

5.5.1.2 Phase 2: Retrieve meta-information for architectural elements

If an end-user is interested in a specific annotated architectural element (which is indicated
by a mouse-click in the client), a new request along with the URI of the annotated element is
sent to the Akre-Server. The look-up component in the Akre-Server uses the URI to retrieve
properties of the architectural element from the DBpedia ontology. The list of properties, for
instance, include dbo:abstract, dct:subject, owl:sameAs, rdfs:comment, dbo:wikiPageID, and
dbo:wikiPageExternalLink. These properties within the DBpedia ontology (dbo) are derived
from the upper ontologies including Dublin core (dct), Web Ontology Language (owl), Resource
Description Framework Schema (rdfs), Simple Knowledge Organization System (skos), etc. The
properties of the requested element are compiled into a JSON object and sent back to the client.
The meta-information related to the selected architectural element is displayed on the right side
of the UI under the meta-information tab within the ADeX client.

5.5.1.3 Phase 3: Recommendation support

To provide recommendations related to the architectural elements including architectural styles,
patterns, and software solutions, concepts and relationships between concepts within the DBpe-
dia ontology were first manually analyzed. Understanding these concepts and their relationships
is necessary for realizing two specific types of recommendations (see below as Rec 1 and Rec
2). The subset of concepts within the DBpedia ontology, that is necessary for formulating the
SPARQL queries (presented in Listing 5.2, 5.3, and 5.4) are elaborated. The concepts and the
relationships between those concepts are shown in Figure 5.29.

� owl:Thing - This is the base class of all ontology classes.

� skos:Concept - A fundamental element of the SKOS ontology that allows one to assert
that a resource is a concept. A relationship R rdf:type C, indicates that the resource R is
an instance of (type of) concept C. Some examples of concepts include “architectural pat-
terns”, “software design patterns”, “web application framework”, and “relational database
management systems”. Furthermore, each concept can be hierarchically structured using
the skos:broader relationship. For example, the concept “patterns” is a broader concept of
“software design patterns”.

90

5. System design and implementation

owl:Thing

Work

Software

skos: ConceptTopicalConcept

Genre

dbo:genre

skos:broader

dct:subject dct:subject

Figure 5.29: A subset of concepts in the DBpedia ontology that are relevant for the recommen-
dation component

� TopicalConcept - TopicalConcept is a class defined in the DBpedia ontology. It is the
base class for concepts such as “genre”, “academic subject”, “mathematical concept”, etc.

� Genre - Genre is a subclass of TopicalConcept and allows one to capture the genre of
a specific object. Instances of Genre include, for instance, “relational database”, “graph
database”, “service-oriented architecture”, etc. An instance of Genre, in our context, can be
realized by multiple concrete software solutions. Hence Genre has an inverse relationship
with Software through the “is dbo:genre of ” relation. Furthermore, a Genre can belong
to a higher-level Concept through the relation “dct:subject”. For example, Genres such as
“graph database” and “column-oriented database” belong to the concept “database models”.

� Work - Work is a class defined in the DBpedia ontology. It captures generic properties
such as creationYear, developer, and productionCompany which are relevant for different
kinds of work including “software”, “artwork”, “article”, and “book”.

� Software - Software is a subclass of Work and has properties such as description, re-
lease date, programming language, license, computing platform, and operating system.
As shown in Figure 5.29, the class Software has two object properties “dbo:genre” and
“dct:subject”. The domain of dbo:genre relation is Software and its range is Genre. For
instance, the software “Neo4j” which is an open-source graph database belongs to the
Genre of a “graph database”. Similarly, the domain of dct:subject relation is Software and
its range is skos:Concept. Continuing with the example of “Neo4J”, it has a dct:subject
relation with the “NoSQL” Concept in DBpedia ontology.

The aforementioned concepts and their relationships are used for formulating the SPARQL
queries and for providing recommendations to the end-users of ADeX. The SPARQL query
language [107] allows querying an ontology defined in RDF, OWL, etc. For each of the annotated
element in the textual description of design decisions, SPARQL queries are executed by the
query executor sub-component in the Akre-Server (cf. Figure 5.28). The two specific types of
recommendations a) recommending software solutions to realize an ADD and b) recommending
alternative solutions related to an ADD are discussed in the subsequent sections.

91

5. System design and implementation

Rec 1: Recommend software solutions to realize an ADD

To recommend software solutions, two different SPARQL queries handle the relevant types -
Genre and Concept. If the annotated architectural element is an instance of Genre, then the
query in Listing 5.2 is executed. The scenario with the instance of Concept also results in
a similar SPARQL query and is not illustrated here. In the example below, *variable gets re-
placed by the corresponding architectural element (e.g., http://dbpedia.org/resource/Relational
database). Recommendations related to the selected architectural element are presented to the
end-users, for example, if a user selects “Java” in the document, alternatives to Java programming
language are presented.

1 PREFIX dct:<http://purl.org/dc/terms/>
2 PREFIX dbo:<http://dbpedia.org/ontology/>
3 PREFIX ns:<http://www.w3.org/1999/02/22−rdf−syntax−ns#>
4 SELECT DISTINCT ?software WHERE {
5 {
6 SELECT ?software WHERE {
7 ?software dbo:genre *variable .
8 ?software ns:type dbo:Software }
9 } UNION {
10 SELECT ?software WHERE {
11 *variable dct:subject ?concept .
12 ?software dct:subject ?concept .
13 ?software ns:type dbo:Software }
14 } UNION {
15 SELECT ?software WHERE {
16 *variable dct:subject ?concept .
17 ?genre dct:subject ?concept .
18 ?genre ns:type dbo:Genre .
19 ?software dbo:genre ?genre .
20 ?software ns:type dbo:Software }
21 }
22 }

Listing 5.2: SPARQL query for retrieving software solutions

The query in Listing 5.2 is executed against the DBpedia ontology using the Apache Jena
framework [108]. This query aggregates the results of three sub-queries wherein each subquery
extracts software resources for a given Genre. For instance, the results for the Genre “Relational
database” include the URIs of software such as “SQLite”, “MySQL”, “MariaDB”, “SQL Server”,
etc. Each URI is further processed to retrieve the meta-information including label, description,
and license which sent back to the client as an array of JSON objects.

Sub-query 1: Retrieves Software resources related to a Genre (for example, “Relational
database”) using the dbo:genre relationship. The result of the Select statement is a set of URIs
of the software resources (indicated by ?software).

Sub-query 2: This sub-query focuses on “Genre dct:subject Concept” and “Software dct:subject
Concept” relationships. For a Genre (such as, “Relational database”), first, all the Concepts are
retrieved and then the Software resources related to each of the Concept is extracted.

92

5. System design and implementation

Sub-query 3: This sub-query ensures that the Software resources corresponding to similar
Genres are extracted. For a Genre, first, its related Concepts are retrieved using the dct:subject
relationship. Subsequently, for each of the Concept all the Genres and their corresponding
Software resources are added to the result. This sub-query can also be extended based on the
skos:broader relation for a wider set of results.

Rec 2: Recommend alternate solutions (architecture styles, patterns, or technolo-

gies) related to an ADD

In the previous step, the aim was to recommend software solutions for higher-level concepts
(Genre). However, in this step, alternative solutions belonging to the same abstraction level
(Genre or Software) are proposed. In other words, alternatives to the annotated architectural
elements are extracted from the DBpedia ontology.

1 PREFIX dct: <http://purl.org/dc/terms/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 PREFIX ns: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
4 SELECT DISTINCT ?alternative WHERE {
5 {
6 SELECT ?alternative WHERE {
7 *variable ns:type dbo:Genre .
8 *variable dct:subject ?concept .
9 ?alternative dct:subject ?concept .
10 ?alternative ns:type dbo:Genre }
11 } UNION {
12 SELECT ?alternative WHERE {
13 *variable ns:type dbo:Software .
14 *variable dbo:genre ?genre .
15 *variable dct:subject ?subject .
16 ?alternative dbo:genre ?genre .
17 ?alternative dct:subject ?subject .
18 ?alternative ns:type dbo:Software }
19 }
20 }

Listing 5.3: SPARQL query for retrieving alternative solutions

Sub-query 1: If the annotated element is an instance of Genre then, the first select clause
of the SPARQL query in Listing 5.3 is applicable. For instance, if the annotated element is
“Relational database”, then the output includes “Key-value database”, “Column-oriented DBMS”,
“Document-oriented database”, “Object database”, etc. as alternatives. Note that *variable is
replaced by the annotated element in the SPARQL query. The query first checks if the resource
is of type Genre, then it retrieves all its associated Concepts using the dct:subject relation. Next,
using the inverse relationship again it retrieves all the other Genres of the identified concepts.

Sub-query 2: This sub-query returns alternative solutions for concrete software solutions. It
navigates the graph structure of the DBpedia ontology to retrieve software resources belonging
to the same Genre. That is, if the annotated element is “MongoDB”, the result (?alternative)
comprises of “CouchDB”, “OrientDB”, and “ArangoDB”.

To improve the precision of recommendations related to architectural styles and design patterns,

93

5. System design and implementation

we composed another query with a predefined filter. The logic of this query is similar to the
previous queries, that is, it involves graph navigation using the object property (dct:subject).
The query shown in Listing 5.4, recommends alternative architectural styles and patterns. For
instance, corresponding to an architectural style such as “multi-tier architecture” the retrieved
results include “service-oriented architecture”, “microservices”, “entity component system”, etc.

1 PREFIX dct: <http://purl.org/dc/terms/>
2 SELECT DISTINCT ?alternative WHERE {
3 *variable dct:subject ?concept .
4 ?alternative dct:subject ?concept .
5 FILTER(regex(?concept, "pattern", "i"))
6 }

Listing 5.4: SPARQL query for retrieving alternative architectural styles and design patterns

Once the recommendations for alternatives are generated (both for Rec 1 and Rec 2), a con-
fidence score is generated using Wiki Trends23 ratings. An average of the trend score for the
past five years on a monthly basis is computed and assigned as the confidence score for each of
the alternative solution recommendations. A descending confidence score then sorts the results
before presenting to the end-users. Moreover, users also have the option to either accept or reject
recommended results corresponding to each annotated architectural element. Consequently, the
confidence score is either incremented or decremented accordingly in the database. Recommen-
dations with a confidence score below a configurable threshold value are filtered out and not
shown to the users. Furthermore, as elaborated in the next subsection, the database consisting of
annotated architectural elements, their corresponding recommendations, and confidence scores
acts as a cache for improving the performance of the recommendation system.

5.5.1.4 System design of the ontology-based recommendation component

The annotation and the recommendation services are provisioned as REST services in ADeX.
Once all the issues within a project have been imported using the SyncPipes component and
have been labeled as either a “design decision” or “not a design decision”, the request to annotate
the textual description of all design decisions is made by the Akre-Server component. As shown
in Figure 5.30, the architectural elements controller handles the REST request to update all
design decisions with the annotations. For each design decision, this controller invokes the
document annotation functionality within the document controller. Subsequently, the document
controller initializes the concept annotator UIMA pipeline and executes three annotators (cf.
Section 5.5.1.1). The result is returned to the architectural elements controller for persistence.

On receiving the annotations for each of the design decision, the architectural elements controller
saves the annotations within the collection named Architectural Elements (cf. Figure 5.31)
within the Mongo database. Furthermore, in the background, on receiving the response from the
concept annotator pipeline, the document controller also invokes the software recommendation

23http://www.wikipediatrends.com/

94

5. System design and implementation

Figure 5.30: The system design of the ontology-based recommendation component

controller and the alternative recommendation controller for each of the annotations to generate
recommendations Rec 1 and Rec 2 respectively. As shown in Figure 5.30, these two controllers,
in turn, execute the corresponding SPARQL queries (queries presented in Listings 5.2 to 5.4)
through the SPARQL query executor. On generating software solution recommendations (Rec
1), they are persisted in the SoftwareSolution collection as shown in Figure 5.31. Similarly,
recommendations about alternative solutions for each of the annotated architectural element is
stored in the ArchitecturalAlternative collection.

Persisting the annotations and the corresponding alternative solution improves the performance
of the entire application. When the already annotated design decision needs to be presented
on the UI of ADeX, the UIMA pipeline need not be executed again. The already persisted
annotations and their corresponding recommendations are fetched from the persistence storage
(which acts as a cache) and are presented on the UI.

Figure 5.31: Concepts and their relationships for persisting annotations and suggestions in the
recommendation component

95

5. System design and implementation

5.5.2 Rationale extractor

The rationale extractor sub-component addresses the use case of identifying the rationale of a
design decision. When a decision is made to address a specific quality attribute, that quality
attribute is recorded as the rationale for the decision. To automatically identify the quality
attribute(s) captured in the textual description of a design decision, the list of quality attributes
documented in the ISO/IEC 25010 standard is used. As shown in Figure 5.32, the quality
attributes of a software system are classified into design-time and run-time quality attributes.
Developers need to consider the portability and maintainability of software systems as internal
quality attributes which influences systems’ sustainability. On the other hand, quality attributes
such as usability and efficiency are referred to as external quality attributes which affect the
end-uses of software systems in operational mode. Furthermore, to address a quality attribute
such as portability, architects and developers need to take into account quality attributes such as
adaptability, installability, and replaceability which are shown as the leaf nodes in Figure 5.32.

For each of the quality attribute, corresponding synonyms and their representing keywords are
maintained in the database. These keywords were identified from previous research [46,109,110]
related to quality requirements detection in requirement specifications. Some of the quality
attributes along with their complementary keywords are shown in Table 5.1.

It should be noted that this sub-component was implemented as a prototype only to demonstrate
the feasibility of the approach and for ensuring the completeness of the ADM framework. It
should also be highlighted that there exist a plethora of approaches to classify non-functional
requirements (NFRs) in the requirements engineering domain. The keyword-based approaches
presented in [46, 111, 112] have shown that NFRs can be automatically identified in natural
language text. In [46], the authors refer to keywords as “indicator terms”. They showed that

Figure 5.32: The list of quality attributes and their subcategories in the ISO/IEC 25010 standard

96

5. System design and implementation

Quality attribute Parent Keywords

Portability portable, coexistence, coexist, installability, installable

Maintainability
maintenance, stability, stable, modifiability, modifiable, modify,
changable, modular, modularity, integrability, integrable

Usability
able successfully, easy, easy use, intuitive, use system, user able,
usable, useful, operability, operable, learnable, learnability

Reliability
reliable, dependable, completeness, correctness, accurate, consistency,
recover, recoverability, recoverable, maturity, fault tolerance, fault tolerant

Functionality

Adaptability Portability flexibility, adapt, configurable, configure, customize, customizable

Reusability Maintainability reuse, reusable

Analyzability Maintainability analyze, examine, break down

Composability Maintainability compose

Extensibility Maintainability extensible

Understandability Usability readable, comprehensive, understandable, clear

Availability Reliability available, day, hour, time, year

Scalability Functionality simultaneous, scalable, scale, shard

Interoperability Functionality interoperable, interoperate

Suitability Functionality suitable, appropriate

Performance Functionality

asynchronous, fast, longer, minute, multi-threading, overhead,
processing, throughput, memory usage, response time, latency,
execution speed, workload, time behavior, resource utilization,
efficient, efficiency

Security Functionality
access, allowed, authorized, authorized user, dispute, malicious,
prevent, secure, confidentiality, authorization, encryption, password,
protect, safeguard, safe, warrant, authentication

Accuracy Functionality accurately , accurate , exact

Table 5.1: The list of quality attributes in the ISO/IEC 25010 standard and their keywords used
for automatic rationale extraction

an NFR-classifier based on a simple keyword-matching algorithm could support requirement
analysts in detecting and classifying NFRs from an uncategorized requirements specification
with a satisfactory recall score between 60-90% depending on the quality attribute.

The authors of [110] used a decision tree classifier equipped with a part-of-speech tagger to detect
NFRs captured in software requirements specification (SRS) documents. They showed that with
a 10-fold-cross-validation their approach achieves a higher accuracy of 98.56% as compared to the
indicator terms based approach presented in [111] (on the same dataset). To achieve the same
objective Casamayor [113], used the expectation maximization algorithm with naive Bayesian
classification. The dataset used by these researchers is publicly available in the PROMISE data
repository [114]. Zeng et al. [115] too used the PROMISE dataset and applied the support vector
machine (SVM) algorithm with a linear kernel. They showed that for the classification of NFRs,
individual words are the best index terms (as compared to N-grams and multi-word expressions)
in text description of short NFRs. Zeng et al. also showed that the accuracy of classification
algorithms is better on categories of large sizes than on smaller sizes. Slankas and Williams [47]
in their study compared three different algorithms namely, SVM, multinomial naive Bayes, and
k-nearest neighbor algorithm. They argued that, for their dataset, k-nearest neighbor performs
better than multinomial naive Bayes classifier and the SVM algorithm outperforms the k-nearest
neighbor algorithm. In the RE17 data challenge on the “Quality attributes (NFR)” dataset,
Kurtanović and Maalej [116] demonstrated that SVM can be used to automatically classify

97

5. System design and implementation

(with a precision and recall of 92%) requirements as functional or non-functional requirements.
They further applied SVM to identify four specific NFRs: usability, security, operational, and
performance. They explained that only using word features for feature selection results in higher
recalls (but lower precision) for classifying NFRs than when additional syntax and meta-data
features are applied.

The keyword-based approach presented this section mimics the proposal from [46, 111]. The
rationale extractor sub-component uses the quality attributes and their corresponding keywords
shown in Table 5.1 and associates them with design decisions. Once all the tasks have been
classified as either a design decision or not a design decision, the Akre-Server component invokes
an API to update all tasks with quality attributes. In the current implementation, the textual
description of a design decision is compared with the keywords of quality attributes using ba-
sic string matching process. The matched quality attributes are then persisted in the Mongo
database for generating the necessary UIs.

In the context of this dissertation, tagging design decisions with quality attributes allow end-
users of ADeX to get a rough estimate about how many design decisions were made to address a
specific quality attribute or to investigate those quality attributes that have not been addressed
during the development and maintenance of the respective software system.

5.5.3 Expert recommender

This sub-component realizes the use case of automatically identifying appropriate software ar-
chitects and developers to support the design decision-making process. It uses the results from
the previous sub-components to recommend experts who could be involved in addressing specific
open design concerns.

Figure 5.33 shows the high-level overview of the approach used to implement this expert recom-
mender sub-component. During the training phase, first, all the existing issues in a project
are imported using the SyncPipes component. In Step 2, the decision detector component filters
those issues that reflect design decisions. In Step 3, architectural elements and quality attributes
within the textual description of design decisions are automatically annotated by the annotator
component. For each design decision, the annotated elements, the quality attributes, and the
individual who made the design decision are used to create an expertise matrix in Step 4a, which
is then persisted for subsequent use.

During the application phase (in the lower part of Figure 5.33), a newly created issue goes
through Steps 1, 2, and 3 as described before. A concept vector corresponding to the open design

design
decision

design
decisions

Detect

decisions

Annotate

architectural

elements Match &

prioritize Expert 2

Expert 1

Create expertise

matrix
Training Phase

Application Phase
Create

concept vector
design
decision

design
decisions

Expertise

matrix

concept
vector

expertise
matrix

Extract

issues

existing
issues

new
issues

use

1 2 3 4a

4b 5

Figure 5.33: The high-level overview of the approach for recommending experts who could be
involved in the ADM process

98

5. System design and implementation

decision is computed in Step 4b. This vector is then compared against the expertise matrix in
Step 5 to generate a list of experts who could discuss the corresponding concern.

5.5.3.1 Recommendation of experts using an expertise matrix

Since, Step 1 (extract issues), Step 2 (detect decisions), and Step 3 (annotate architectural
elements) have already been discussed in Section 5.2, 5.3, and 5.5.1 respectively; this section
elaborates on the remaining steps.

In Step 4(a), to automatically build the expertise matrix, the concepts from a previously pro-
posed expert recommendation system are reused. In particular, the terms, expertise atoms
and expertise matrix were introduced in [49]. With the expertise matrix, individuals’ expertise
profiles are represented as rows, and architectural elements are represented as columns. Let:

� 𝐷 = {𝑑1, 𝑑2, 𝑑3,, 𝑑m} be the set of architects and developers,

� 𝐸 = {𝑒1, 𝑒2, 𝑒3,, 𝑒n} be the set of architectural elements, and

� 𝑉 mn be the expertise matrix.

Here, m is the total number of architects and developers and n is the total number of architectural
elements identified by the annotator component.

Expertise atoms (EAs) are the elementary atoms of expertise. They reflect an individual’s
expertise in a specific architectural topic. Each element 𝑉 [𝑖][𝑗] in 𝑉 mn represents an EA. By
resolving a design concern, an individual gains expertise related to those architectural elements
contained within that concern. The total count of the occurrences of an architectural element
in all the design decisions resolved by an individual indicates his or her expertise level for the
corresponding architectural element. That is, the higher the expertise level of an individual for
an architectural element (𝑉 [𝑖][𝑗]) is, the more is the expertise in handling concerns related to
the corresponding architectural element. The expertise level of an individual for an architectural
element can also be zero, which indicates that she has not yet resolved a design concern pertaining
to that architectural element and quantifies that she has no expertise on that topic. Moreover,
an individual can also have expertise in zero or more architectural elements.

Each row (𝑉 [𝑖]) within the expertise matrix (𝑉 mn) represents an expertise profile for individual
architects and developers. An individual’s name is extracted from the “assignee” attribute of an
issue, which represents the person who resolved this issue and gained expertise henceforth. Using
this expertise profile, one can quantitatively assess the expertise of architects and developers
corresponding to each architectural element.

Expertise profile: Each row (𝑉 [𝑖]) within the expertise matrix (𝑉 mn) represents an expertise
profile for individual architects and developers. An individual’s name is extracted from the
“assignee” attribute of an issue, which represents the person who resolved this issue and gained
expertise henceforth. Using this expertise profile, one can quantitatively assess the expertise of
architects and developers corresponding to each architectural element.

Expertise matrix: Within this matrix, rows capture expertise profiles, columns represent
architectural elements, and cells correspond to expertise atoms. An excerpt of an expertise

99

5. System design and implementation

Figure 5.34: An exemplary excerpt of an expertise matrix: rows in the matrix capture the ex-
pertise profiles of individuals and columns represent architectural elements

matrix is shown in Figure 5.34. The darker the color of a cell, the higher the value for the
corresponding expertise atom. Once the matrix is generated for a project, it is persisted in the
Mongo database and is further used to generate a list of experts for new open design concerns.

Now, with respect to the application phase, once a new issue is added to an issue management
system and imported into ADeX, the decision detector component checks if it represents a design
concern. If so, the annotator component identifies the architectural elements within this new
design concern. The frequency of occurrence of an architectural element within the textual
description of a design concern represents its weighting factor within that concern.

In essence, first, those contributors who have expertise in one or more architectural elements
within the design concern are identified and then those individuals are ranked according to their
expertise level corresponding to the weighting factor of architectural elements within the new
open design concern. Hence in Step 4(b), to be able to compare the textual description of a
design concern against the expertise matrix, an n-dimensional sparse vector is created; where n
is the total number of identified architectural elements. This vector is referred to as the concept
vector (CV) of a design concern. The concept vector is represented as a one-dimensional integer
array of size n and each element in the array is initialized with zero values. The position of an
architectural element in the concept vector is consistent with its column in the expertise matrix.
The value in the position corresponding to each architectural element present in the new design
concern is then replaced by its frequency count.

� 𝐶𝑉 = {𝑐1, 𝑐2, 𝑐3,, 𝑐n};𝑤ℎ𝑒𝑟𝑒 𝑐i ≥ 0;

The concept vector computed in the previous step is matched against the expertise matrix
generated and in Step 4 (a) to generate the list of experts. The pseudocode for generating the
expert list is described in Algorithm 1. The function “MATCH” takes as input the concept

100

5. System design and implementation

Algorithm 1 Match and prioritize

1: function match(CV, Vmn, D)
2: 𝑒𝑥𝑝𝑒𝑟𝑡𝐿𝑖𝑠𝑡← {}
3: for i in 0..m do

4: 𝑒𝑥𝑝𝑒𝑟𝑡𝑉 𝑒𝑐𝑡𝑜𝑟 ← 𝑛𝑒𝑤𝐴𝑟𝑟𝑎𝑦(𝑛);
5: for j in 0..n do

6: 𝐸𝑉 [𝑗]← 𝐶𝑉 [𝑗]× 𝑉 [𝑖][𝑗]
7: end for

8: 𝑠𝑢𝑚← 0
9: for j in 0..n do

10: 𝑠𝑢𝑚← 𝑠𝑢𝑚+ 𝐸𝑉 [𝑗]× 𝐸𝑉 [𝑗] ◁ Compute score as vector magnitude

11: end for

12: 𝑠𝑐𝑜𝑟𝑒← 𝑆𝑄𝑅𝑇 (𝑠𝑢𝑚)
13: if score >0 then

14: 𝑒𝑥𝑝𝑒𝑟𝑡𝐿𝑖𝑠𝑡.𝑎𝑑𝑑(“𝑝𝑒𝑟𝑠𝑜𝑛′′, 𝐷[𝑖])
15: 𝑒𝑥𝑝𝑒𝑟𝑡𝐿𝑖𝑠𝑡.𝑎𝑑𝑑(“𝑠𝑐𝑜𝑟𝑒′′, 𝑠𝑐𝑜𝑟𝑒)
16: end if

17: end for

18: 𝑒𝑥𝑝𝑒𝑟𝑡𝐿𝑖𝑠𝑡← 𝑂𝑅𝐷𝐸𝑅𝐵𝑌 (𝑒𝑥𝑝𝑒𝑟𝑡𝐿𝑖𝑠𝑡, “𝑠𝑐𝑜𝑟𝑒′′)
19: end function

vector, expertise matrix, and the set of architects and developers. For each expertise profile
(row) in the matrix, an expert vector (EV) of size n is created. Each element in EV is the
product of the frequency of an architectural element (𝐶𝑉 [𝑗]) in a new design concern and the
expertise level (𝑉 [𝑖][𝑗]) of the respective individual corresponding to that architectural element.
For instance, if a new design concern emphasizes an architectural element with a higher frequency
count and a specific individual has more expertise with that architectural element, then the score
for that individual should proportionally increase with respect to both these variables. Once
the expert vector is generated for an individual, expertise score is calculated as the magnitude
(vector length) of that expert vector. The magnitude of the expert vector is calculated as the
square root of the dot product of the vector by itself. Hence, the expertise score generated for
an individual is equally distributed across all architectural elements in the new design concern.
If this score is greater than zero, the corresponding individual along with the expertise score is
added to the expert list. As a last step, after iterating over all expertise profiles, the expert list
is ordered by the expertise score.

5.5.4 System design of the Akre-Server component

As discussed in the introduction of this Chapter, the Akre-Server component also acts as a
middleware that coordinates the tasks related to preprocessing all issues within a project. This
component interacts with the other components namely, Syncpipes, Document classifier, and
Document clustering and invokes the corresponding services within those components.

The workflow of preprocessing all the issues within a project is as follows:

1. Once a request to create a new project is made by the Amelie - Decision explorer client,
the Akre-Server invokes the SyncPipes component (cf. Section 5.2) to import all the issues
within that project into the issues collection in the Mongo database.

2. On importing all the issues from Jira, as shown in Figure 5.35, the preprocess controller
calls the label design decision controller. This controller delegates the task to the Document

101

5. System design and implementation

Figure 5.35: The system design of the Akre-server component: the design shows the application
controllers and their dependencies on the data models

102

5. System design and implementation

classifier component (cf. Section 5.3) to label all design decisions and to further classify
them into different decision categories.

3. Once all the design decisions are identified within the project, the preprocess controller
invokes the task of associating all design decisions with quality attributes (as discussed in
subsection 5.5.2).

4. Next, the preprocessing step involves the task of annotating all design decisions with their
respective architectural elements (cf. subsection 5.5.1).

5. On annotating all the design decisions with architectural elements and quality attributes,
next, the task to create an expertise matrix is invoked.

6. Finally, the preprocess controller invokes the service provided by the Document clustering
component (cf. Section 5.4) to create and save the cluster model capturing similar design
decisions within those clusters.

Apart from preprocessing issues within a project, this component also facilitates the Amelie -
Decision explorer client with the necessary business logic. For example, the assignee prediction
controller uses the expertise matrix to recommend experts who could be involved in addressing
design concerns. Furthermore, this component also provides all the necessary data for creating
various visualizations (as presented in the next section) to the decision explorer client.

5.6 Amelie - Decision explorer client

The Amelie - Decision explorer client24 is the main front-end of ADeX. This front-end is an inde-
pendent component that interacts with the Akre-Server component and provides the necessary
visualizations to the end-users of ADeX. As the name of the component suggests, end-users of
ADeX can examine and analyze those design decisions made in large (legacy) software projects
from different perspectives.

This component is built using node.js25 and relies on a JavaScript library called React26 for
its UI components. All the graphical visualizations are implemented using another JavaScript
library called D3.js27. The data necessary for generating the UIs is fetched from the Akre-Server
over the predefined REST endpoints.

In this section, an effort is made to explain how end-users can effectively use ADeX by elaborating
on each of the UI within the Amelie - Decision explorer client.

The first view a user encounters is the data table of a list of projects (only their name and
some meta-information) that have already been imported from Jira. On this view, the user can
search for a project’s name, keywords within its description, or filter projects based on project
categories. Furthermore, if issues within a project have already been imported through the
SyncPipes component, then the user sees the total number of issues within that project in the

24https://amelietor-9f8c3.firebaseapp.com
25https://nodejs.org
26https://reactjs.org
27https://d3js.org/

103

5. System design and implementation

Figure 5.36: A datatable in ADeX shows the list of projects that have been imported from Jira

last column. For instance, as shown in Figure 5.36, the Apache Spark28 project has already been
imported and contains 22,279 issues. On the other hand, the issue count for the project named
Clerezza29 is empty, indicating that the project has not been imported into ADeX.

If a user wishes to import and analyze design decisions in a project that has not yet been
imported, selecting the respective project in the data table takes the user to the UI shown
in Figure 5.37a. Through this view, first, the user can click on the Import button to import
all the issues from Jira into ADeX. This action causes the execution of a pipeline within the
SyncPipes component as explained in Section 5.2. Once all the issues are imported, next,
the user can click on the Process button as shown in Figure 5.37b. This action executes a
series of tasks to extract architectural relevant information from issues. In particular, first
all the design decision are labeled, they are classified into different decision categories, quality
attributes and architectural elements are annotated within the automatically labeled design
decisions, expertise matrix is generated, and finally, cluster model containing similar design
decisions are created. The execution of these steps is handled by the Akre-Server component
as explained in Section 5.5.4. Once all the design decisions are processed, the user is directed
to the web page shown in Figure 5.38. Also, if a project was already processed, clicking on the
project in the data table (cf. Figure 5.36) also directs the user to this web page.

In this view, on the top panel, the user gets an overview of the selected project. It includes
project description retrieved from Jira, the total number of issues related to that project, and the
number of identified design decisions. As shown in Figure 5.38, Apache Spark contains 22,279
issues which were extracted from Jira and 463 issues which were labeled as design decisions.

The view on the web page shown in Figure 5.38, corresponds to the quality attributes view (first
tab). This view helps the user analyze how many design decisions were made to address specific
quality concerns. The design decisions are also categorized (using color codes) according to the

28https://issues.apache.org/jira/projects/SPARK
29https://issues.apache.org/jira/projects/CLEREZZA

104

5. System design and implementation

(a) Import all issues in a project (b) Process all the imported issues

Figure 5.37: User interfaces to import all the Jira issues of a project and to execute the processing
pipeline for decision detection and annotation

decision categories, namely, structural, behavioral, and non-existence/ban decisions. The struc-
tural decisions are indicated with dark blue color, behavioral and ban decisions are highlighted
using light blue and orange colors respectively. On the right side of the panel, those quality
attributes corresponding to which no design decisions were made are listed. This helps users to
quickly analyze those quality attributes that needs more attention.

For instance, corresponding to 462 design decisions in the Apache Spark project, 27 design
decisions were made to address performance related concerns. Within those 27 design deci-
sions, there are 3 structural decisions, 19 behavioral, and 5 non-existence/ban design decisions.
Furthermore, no design decisions correlated to composability, portability, extensibility, and in-
teroperability. Also, given the fact that Apache Spark is an analytical engine for processing big
data, understandably, most of the design decisions are related to performance, availability, and
security. Only a few decisions were made concerning suitability, reusability, and adaptability.

The user can click on any of the segment within the bar chart to view the list of corresponding
design decisions in a data table. For instance, clicking on the orange segment on the bar related
to performance shows only those five non-existence/ban design decisions in a data table (as
shown in Figure 5.42). This allows the end-user to drill-down from 22,279 issues to only those
specific types of design decisions, and analyze them further. This facilitates the idea of narrowing
the view of an architect to facilitate him/her to focus only on those aspects that are interesting
from an architectural perspective.

The tab adjacent to Quality Attributes is related to Architectural elements. Clicking on this tab
shows a bubble chart containing architectural elements which were discussed within the project’s
design decisions. As shown in Figure 5.39, each bubble within the bubble chart corresponds to
an architectural element. And the size of a bubble reflects the frequency of the occurrence of
that architectural element (also indicated with the frequency count) in all design decisions of the
project. These architectural elements are automatically identified by the architectural elements
annotator component using the DBpedia ontology (cf. the discussion in Section 5.5.1). Similar

105

5. System design and implementation

Figure 5.38: Quality attributes viewpoint: each individual bar represents a quality attribute and
the segments within a bar indicate the design decision category

to the quality attributes view, the scroll bar on the top allows a user to view the evolution of
architectural elements over time. That is, sliding the scroll bar to the year 2015, for instance,
shows those architectural elements that were relevant at that time. The evolutionary view helps
a user analyze which architectural elements were newly introduced and their influence over a
period of time. Finally, clicking on a specific architectural element takes the user to the data
table containing design decisions related to that specific architectural element.

The bubble chart in Figure 5.39, pertains to design decisions in the Apache Spark project. Since
Apache Spark is a data processing engine, which exposes its functionalities over well-defined
interfaces, there were many (70) design decisions concerning APIs. Furthermore, since Apache
Spark supports different programming languages, they are indicated with the bubbles of Java,
Python, and Scala. The view also shows that there were design decisions made related to a
communication protocol such as HTTP and HTTPS. Clicking on the HTTP bubble will display
only 25 design decisions out of 22,279 issues to the user (reflecting the idea of allowing users to
narrow down the large search space to only those interesting aspects).

The next tab in the list, after Architectural elements is the Expertise matrix. Clicking on this
tab takes the user to the interface shown in Figure 5.40. This UI presents the expertise matrix;
where columns represent architectural elements and rows correspond to the contributors within
a project. The cells in the expertise matrix are color coded. The darker a cell, the more exper-

106

5. System design and implementation

Figure 5.39: Architectural elements viewpoint: each bubble represents an architectural element
and the size of the bubble indicates the element’s relevance to the project

tise a contributor (row) has concerning an architectural element (column). Hovering over a cell
also shows the score representing the expertise of that individual over a specific architectural
element. Furthermore, a search bar is integrated with the expertise matrix. Entering an archi-
tectural element in the search bar shows one column (corresponding to that specific architectural
element) and individuals (rows) who have expertise in addressing design concerns related to that
architectural element. This helps a user to quickly identify the appropriate individuals who have
expertise in specific topics. On the other hand, entering the name of an individual shows one
row and multiple architectural elements in which this individual has expertise.

The expertise matrix shown in Figure 5.40 is related to the Apache Spark project and is generated
using the algorithm discussed in Section 5.5.3. The Amelie - decision explorer client interacts
only with the Akre-Server over REST APIs to generate all the user interfaces (including the
expertise matrix, bar chart, bubble chart, and data tables).

Next, for those open issues in Jira which are labeled as design concerns by the decision detection
component, the expert recommendation component suggests a list of individuals who could be
involved in addressing those concerns. As shown in Figure 5.41, these recommendations are
available under the tab named Expert recommender. The left column in the open design deci-
sions data table contains the title and description of open issues labeled as design concerns. The
right column presents the list of experts who could be involved in addressing the corresponding

107

5. System design and implementation

Figure 5.40: Expertise matrix viewpoint: rows correspond to individuals, columns capture ar-
chitectural elements, and cells indicate the expertise of an individual on the corre-
sponding architectural element

open design concern. By default, only two experts most suited for solving the design concern
is shown to the user. However, clicking on the down arrow, as shown in Figure 5.41, shows all
the experts with their expertise score. The list of experts is ordered according to descending
expertise score. The higher expertise score for an individual indicates that she is more suited to
address the respective concern. The experts for addressing an open design concern are identified
using the algorithm presented in Listing 1 of Section 5.5.3.

Based on this idea of recommending experts to address design concerns, a Master’s thesis was
conducted by Kevin Koch [117]. In this Master’s thesis, a (richer) sophisticated UI was devel-
oped. It included features to add/remove experts from the recommendations manually. Prede-
fined teams of experts could be assigned to resolve certain design concerns. It also contained a
clear separation of roles (moderator, a team of architects and developers for resolving a design
concern, and decision owner) within the expert recommender system. Furthermore, the UI also
provided options to include novices along with experts in a decision-making team to ensure
knowledge exchange among team members. This Master thesis was conducted as part of an
extension to the work presented in Section 5.5.3 (cf. [117] for a detailed report).

The last tab in the list corresponds to all the design decisions in a project. As shown in Fig-
ure 5.42, all the design decisions within a project are listed using a data table. The data table is
integrated with search and filtering options. The end-user can perform a full-text search on the
title and description of design decisions or filter only those design decisions corresponding to a
specific quality attribute or architectural element. The data table captures the ID of design de-

108

5. System design and implementation

Figure 5.41: A datatable showing the recommendation of experts and their expertise score for
addressing open design concerns

cisions as well as the title and description, which are retrieved from Jira. The quality attributes
column shows the associated quality attributes that are tagged by the rationale extractor com-
ponent and the architectural elements column contains those elements that are annotated by the
architectural elements annotator component. The last column presents the category of design
decisions (structural, behavioral, and ban/non-existence decision). Each design decision (row)
in the data table is selectable and clicking on a design decision allows a user to analyze that
decision through the UI shown in Figure 5.43.

This last view on the design decision is a detailed view that facilitates architects and developers
to make informed design decisions. As shown in Figure 5.43, the left section of the UI shows
the textual description (title and description) of the selected design decision. On the lower

Figure 5.42: A datatable showing the list of automatically detected design decisions, their asso-
ciated quality attributes and architectural elements

109

5. System design and implementation

Figure 5.43: Recommendations related to a design decision: annotated architectural elements,
their alternatives, and similar design decisions made in the past

part of the screen, a button to annotate the textual description is available. Clicking on this
annotate button invokes a service in the Akre-Server component to process the design decision
and to annotate it with architectural elements using the DBpedia ontology (as discussed in
Section 5.5.1). This results in highlighting the textual description with architectural elements.
Next, when the end-user selects an architectural element, an info-box with three tabs is shown on
the right side of the screen. The first tab corresponds to the meta-information about the selected
architectural element which is retrieved from the DBpedia ontology. It includes a description
of the architectural element, the type of license (open-source, closed-source), external URL,
etc. The second tab corresponds to the recommendations about the alternative solutions at the
same granularity. For example, if the architectural element “relational database” is selected, the
recommendations in this tab could include “document-oriented database”, “graph database”, and
“key-value store”. These recommendations are generated using the SPARQL query presented in
Listing 5.3. The third tab corresponds to the recommendation of alternative software solutions
to realize a decision. For example, for the same architectural element “relational database”,
the recommendation includes “MySql”, “Microsoft SQL”, and “SqlLite”. As already discussed in
Section 5.5.1, these recommendations are generated by executing the SPARQL query presented
in Listing 5.2. End-users also have options to add new or delete recommendations through the
UI. These recommendations will then be either shown or removed in the next iteration.

Lastly, an info-box is shown on the right side of the screen. It presents the ID, summary, and
similarity scores (cosine and Jaccard scores) of decisions similar to the selected decision. These
scores are generated based on the explanation provided in Section 5.4. End-users can select a
similar design decision and analyze it to understand how it was resolved.

110

CHAPTER 6

Evaluation

This chapter presents the evaluation of different components within the ADeX system. The
evaluation is categorized into two sections: quantitative and qualitative evaluation. In quan-
titative evaluation, the accuracy of the approaches within specific components are measured
and documented. Whereas in qualitative evaluation, feedback gathered during presentations
and informal interviews with the project partners in an industrial setting is documented. The
quantitative evaluation helps to measure the correctness of the presented approaches. Whereas,
the quantitative evaluation provides insights on the completeness and applicability of ADeX in
real-world projects.

6.1 Quantitative evaluation of components within ADeX

In this section, the quantitative evaluation of the following components is presented:

1. Architectural elements annotator and alternative solutions recommender component

2. Decision detection and classification component

3. Expert recommendation component

It should be noted that the components, namely, the document clustering (for finding similar
design decisions) and the rationale extractor (for mapping quality attributes with design de-
cisions) were implemented and evaluated as part of two Master’s thesis projects. Hence, the
evaluation corresponding to those two components can be found in [118] and [119] respectively.
Furthermore, with respect to the expert recommender component, an extended evaluation of
specific ML algorithms (which are not performed by this author) is documented in the Master’s
thesis of Koch [117].

111

6. Evaluation

6.1.1 Quantitative evaluation of the architectural annotator component

To evaluate the cross-domain ontology-based approach for annotating architectural elements
within architectural description and for the recommendation of alternative solutions for ADM, an
empirical study was conducted. For this study, we had set forth the following three hypothesis:

1. The DBpedia ontology can be used to extract architectural elements in text.

2. Software solutions to realize an ADD can be extracted from the DBpedia ontology.

3. Alternatives for architectural elements can be extracted from the DBpedia ontology.

As part of the evaluation setup, four chapters with the headings “Technical/IT infrastructure”
and “Technical decisions” from four different software architecture documents were analyzed.
These documents were aligned to a company-specific blueprint and were produced as part of
large software engineering projects in the data analytics domain. All the four documents were
used by our industry partner for internal and external communication. These documents were
maintained by four different sub-teams of architects (7-10 people) and they used these architec-
tural documents for communicating with stakeholders of the projects (more than 100 people).

The evaluation was conducted in two phases. The first phase covered the approach of anno-
tating architectural elements in textual description and the second phase corresponded to the
recommendation of alternative solutions.

Phase 1: Evaluation of architectural elements annotator

Two software architects (including the author of this dissertation) with more than five years of
experience manually annotated the architecture documents with architectural elements. Each
architect independently color-coded all four documents. After that, in a shared meeting, the in-
dependently color-coded annotations were merged. Annotations that were not accepted by both
the architects during the meeting were excluded and the final number of manual annotations in
each of the document were counted. Note that, irrespective of an architectural element’s occur-
rence frequency, an annotated architectural element is only counted once within a document. As
shown in Table 6.1, document 1 contained 29 unique, manually annotated architectural elements,
document 2, 3, and 4 contained 39, 31, and 49 annotations, respectively.

To get the count of automatic annotations, the same four software architecture documents were
subsequently uploaded to ADeX and the input text was annotated by the DBpedia annotator

Documents
(#) Manual
annotations

(#) Automatic
annotations

(#) Irrelevant
annotations

(%) Precision (%) Recall F-score

Doc 1 29 24 2 91.66 75.86 0.83

Doc 2 39 35 3 91.42 82.05 0.86

Doc 3 31 33 8 75.75 80.64 0.78

Doc 4 49 47 4 91.49 87.75 0.84

Table 6.1: Evaluation results of the automatic annotation of architectural elements in natural
(English) language text

112

6. Evaluation

component (as discussed in Section 5.5.1.1). Some of the annotated architectural elements
included “N-tier”, “client/server”, “middleware”, “Java”, “C Sharp”, “Hadoop”, and “MySQL”.

Table 6.1 shows the comparison of results between the manual and the automatic annotation of
architectural elements in the architecture documents. Document 1 was automatically annotated
with 24 architectural elements, document 2, 3, and 4 were annotated with 35, 33, and 47
architectural elements, respectively. Overall, 148 non-repetitive architectural elements were
manually color-coded by the architects. In comparison, the DBpedia annotator automatically
annotated 139 unique architectural elements. The overall precision (fraction of automatically
retrieved architectural elements that are relevant) of the annotator component is 87.58%, the
recall (fraction of relevant architectural elements that were successfully retrieved) is 81.57%, and
the F-score (harmonic mean of the precision and recall [120]) is 0.84.

Table 6.1 shows the precision, recall, and F-score for each of the analyzed architecture document.
The results for Doc 3 are least accurate (precision - 75.75%, recall - 80.64%, and F-score - 0.78).
The reason for lower accuracy for Doc 3 was the fact that it contained organization-specific terms
and acronyms used in different context. Moreover, since the document contained architectural
terms used specifically within the organization (e.g., custom communication protocol, internal
software system names) the recall was also low (80.64 %).

However, the results based on the remaining documents indicate that the general architectural
elements can be extracted from documents using the publicly available DBpedia ontology (hypothe-
sis 1). Subsequently, other useful meta-information related to the annotated elements (including
the description and the link to the Wikipedia article) can also be extracted and presented to
architects during the software architecture documentation process.

Phase 2: Evaluation of the recommendation system

The two architects mentioned before manually evaluated the results corresponding to the rec-
ommendation of software solutions (Rec I) and alternate architectural solutions (Rec II). The
evaluation was carried out using the UI presented in Section 5.6. For the evaluation, only the
top ten recommendations were considered. This restriction was applied not only due to the
impracticability of evaluating all the results in a considerable amount of time but also due to
the lack of user interest in the hits positioned below the tenth position (cf. [121]). Furthermore,
since it is not feasible to enumerate all relevant recommendations for each of the annotated
element, the recall score was ignored and only the precision at ten (P@10) was considered. The
results of both recommendations are shown in Table 6.2.

To reiterate, Rec I corresponds to the recommendation of concrete software solutions to realize
a design decision. That is, for high-level architectural elements that have rdf:Type as Genre
or Concept in the DBpedia ontology, Rec I suggests software solutions. Some of these high-

Correct recommendations Total recommendations (%) Precision

Rec I 228 283 80.56

Rec II 306 379 80.73

Table 6.2: Evaluation results of the recommendation of software and alternative solutions

113

6. Evaluation

Annotated concept Software solutions

Web container Apache Tomcat, Apache Geronimo, Enhydra, GlassFish, JBoss Application Server, Jetty

File system IBM General Parallel File System, Extended file system, File Allocation Table, Amazon S3

Object-oriented Smalltalk, Ruby, Java, C++, C Sharp, Visual Basic.NET, Objective-C, TypeScript, Lava

Relational database PointBase, TimesTen, FrontBase, DatabaseSpy, MaxDB, MySQL, MariaDB, WebScaleSQL

NoSQL EXist, BaseX, Neo4j, Elliptics, LevelDB, FoundationDB, DocumentDB, C-treeACE

Table 6.3: Exemplary recommendations for software solutions that are automatically generated
by the recommendation component

level architectural elements include “Web container”, “File system”, and “Relational database”.
Table 6.3 shows a subset of the recommended software solutions for realizing some of the ADDs.
For instance, while considering a web container, an architect or a developer can investigate
software solutions such as Apache Tomcat, Glassfish, or JBoss application server.

Out of 139 automatically annotated architectural elements, 29 architectural elements were of
type Genre or Concept. For those 29 architectural elements, a total of 283 software solutions were
recommended. Among them, 228 recommendations were marked as correct by the architects.
The precision of Rec I is 80.56%. This result positively supports the hypothesis that software
solutions to realize an ADD can be extracted from the DBpedia ontology (hypothesis 2).

For Rec II, all the annotated architectural elements were analyzed. These elements, for instance,
included “Apache Tomcat”, “Java”, “PostgreSQL”, and “Maven”. Some of these recommendations
are shown in Table 6.4. For instance, an alternative to the N-tier architectural style is the use
of service-oriented architectures; some alternatives for the Hadoop file system could be Google
file system, Amazon S3, Microsoft Azure’s file system, etc. For all the annotated architectural
elements, as shown in Table 6.2, a total of 379 alternatives were generated by the system. Out
of which, 306 recommendations were considered as relevant by the experts. Hence, the precision
of Rec II is 80.73%. The result indicates that the alternatives for architectural elements can be
extracted from the DBpedia ontology (hypothesis 3).

During the evaluation, it was observed that, as compared to the annotated architectural elements
related to architectural styles or design patterns, the recommendations related to elements repre-
senting software systems were better. This is mainly because software technologies are consider-
ably well maintained in the DBpedia ontology as compared to some of the higher-level concepts.
Notably, in the DBpedia ontology, concepts such as “Object-oriented”, “Hypertext Transfer Pro-
tocol”, or “Unified Modeling Language” belong (rdf:Type) to the concept Thing, which is a broad
concept. Furthermore, these concepts also inherit properties from other broad concepts through
the dct:subject relationship. Hence, the results related to these elements are typically incorrect.

Annotated concept Alternative solutions

N-tier Service-oriented architecture

COBRA D-Bus, Internet Communications Engine, DCOM, XPCOM, IBM System Object Model

HDFS Google File System, Ceph, Amazon S3, NFS, Microsoft Azure’s file system

Teradata Salesforce.com, Oracle Exadata, MonetDB, HPCC, Scriptella, Sybase IQ, Apatar

Junit CsUnit, TestNG, Selenium, Mockito, JTriger

Model-view-controller Pipeline, Presentation-abstraction-control

Table 6.4: Exemplary recommendations for alternative solutions that are automatically gener-
ated by the recommendation component

114

6. Evaluation

Due to such scenarios, it becomes necessary to limit the results of the SPARQL queries to avoid
performance issues in the recommendation system. However, the drawback of enforcing such a
limitation is a decreased accuracy of the recommendations. Hence, even though the results are
satisfactory for architectural elements that are related to software type, further investigation is
required to extract recommendations related to architectural styles and patterns.

Limitations and threats to validity

In this study, we identified four major limitations of the ontology-based approach and subse-
quently, proposed the possible solutions to addresses those limitations:

Limitation 1: In the ontology-based approach, we did not consider the context for the recom-
mendations. The context must be identified based on how users interact with the system. If
the user accepts an annotated architectural element, then this confirmation must be used for
the recommendations that follow within the same document. For instance, if a user up-votes
the term “Java” then the context of the programming language must be set a priori. That is,
if the term “JUnit” follows within the document, then the alternative software solutions should
correspond to “Java”. This can be accomplished by exploring the dbo:programmingLanaguage
relationship between “work” and “programming language” concepts in the DBpedia ontology.

Limitation 2: The relationships indicated by the dotted arrows in Figure 5.29 represent many-
to-many relationships. In the SPARQL queries, we did not ignore the concepts that could lead
to false positives. Prioritizing, as well as, removing some of the related concepts before executing
the SPARQL queries will improve the recommendations. By identifying semantic similarity of
concepts in the domain and range of a relationship, it is possible to provide a ranking mechanism
to investigate the associated concepts.

Limitation 3: The accuracy of the recommendations relies on the DBpedia ontology. For
instance, it is possible that a newly introduced software solution is not updated in the DBpedia
ontology and hence, it is not reflected in the recommendations. A feedback loop from the users
that directly adds new concepts to the DBpedia ontology should address this limitation.

Limitation 4: For this evaluation, only four software architecture documents were considered.
We realize that the corpus is not large enough and the recommendation system needs to be
evaluated with a larger number of software architecture documents as part of the future work.

6.1.2 Quantitative evaluation of the decision classifier component

To evaluate the ML-based approach to (a) automatically detect and (b) classify the extracted
decisions into three decision categories, issues maintained in two large open-source projects were
used. The two projects are namely, Apache Spark and Apache Hadoop Common.

Apache Spark is a large-scale data processing engine. Since early 2014, contributors of this
project have captured more than 19,000 publicly accessible issues in JIRA from version 0.9.0 to
2.1.01. Apache Hadoop, on the other hand, is a distributed computing software and the Hadoop
Common component is the core that provides utilities to the other Hadoop components such

1as of 25.01.2017, when the issues were imported

115

6. Evaluation

as YARN and MapReduce. Since early 2013, contributors of Hadoop Common project have
maintained more than 10,000 issues from versions 0.2.0 to 3.0.0-apha12. Both these projects
are related to each other, as Apache Spark runs in Hadoop clusters. These two projects were
selected for evaluation due to the following reasons:

� Industry partner’s interest to analyze design decisions for building a data analytics platform

� Experts responsible for generating the training dataset for ML had used either one of the
systems and were involved in data analytics projects

� Both are long-running projects and have maintained more than 10,000 issues

� Both these projects are extensively used in data management solutions3

For evaluating the supervised ML-based approach, first, we created a labeled dataset with train-
ing and testing data. Thereafter, different supervised ML algorithms were tested and the accu-
racy of the algorithms was analyzed. In particular, the following steps were carried out:

� Data extraction

� Data curation

� Manual labeling for generating the dataset

� Setting up the ML pipeline

� Analyzing the results of each of the algorithm

These steps are elaborated in the subsequent subsections.

6.1.2.1 Data extraction

The issues maintained in Apache Spark and Apache Hadoop Common projects were first ex-
tracted from Jira into ADeX’s database4. During the extraction process, issues were extracted
from Jira while filtering for the following relevant settings. The list of prerequisites for issues
to qualify for the study helped to narrow down the large number of issues to those issues that
potentially reflect design decisions. For instance, a critical task that has been resolved by im-
plementation indicates that there is a potential change in the detailed design of a system.

� Issue Type = Task, New Feature, Improvement, or Epic

� Priority = Blocker, Critical, or Major

� Status = Resolved

� Resolution = Fixed, Implemented, Done, or Resolved

Issues from Jira were extracted using SyncPipes. In total, 2,259 issues from Apache Spark and
420 issues from Hadoop Common projects were extracted and persisted in ADeX.

2as of 25.01.2017, when the issues were imported
3https://www.gartner.com/doc/3371732/critical-capabilities-data-warehouse-data
4https://server.sociocortex.com/typeDefinitions/1vk4hqzziw3jp/Task

116

6. Evaluation

6.1.2.2 Data curation

As part of the description of an issue, the summary (title) and description attributes of an
issue were considered. The summary and description attributes elaborately describe an issue’s
purpose. It should be noted that comments within issues could also be analyzed in this context.

As a first step, the summary and description of all the extracted issues were cleaned by removing
the following:

� Code snippets within the text, as well as code inside {{}} and {code} blocks

� Comments inside noformat blocks

� URLs inside the text

The above restrictions were introduced so as to ensure that the intent of the issue could be
justified only on the basis of the description without the need for code snippets for explanation.

6.1.2.3 Manual labeling

Two software architects (including the author of this thesis) with more than five years of ex-
perience individually analyzed the extracted 2,259 issues in two steps. In the first step, issues
were classified into into two classes, namely “Design Decision” and “Not A Design Deci-

sion”. In the second step, the decisions identified in the first phase were manually classified
into three decision classes, namely “Structural decision”, “Behavioral decision”, and "Ban
decision” (cf. Section 5.3). These steps were not necessarily carried out sequentially, but as
per the convenience of the experts. Before starting the labeling process, to ensure a common
understanding between the two architects, a set of rules as shown in Table 6.5 were setup for
manual classification. The classification of design decisions is purely based on the definition of
decision categories as discussed in Section 2. To the best of author’s knowledge, there does not
exist any design decisions dataset that can be used for reference. Hence, the rules shown in
Table 6.5 was put forth to support the two architects for manually labeling design decisions.

Based on the aforementioned rules, both the architects manually analyzed the text in the sum-
mary and description attributes of all the extracted issues. Those issues with a missing de-
scription and whose intent was not explanatory using the textual description were marked as
deleted. The issues that belonged to a specific decision category were labeled respectively, as
well as, marked as a Design Decision. However, the issues that did not belong to any of the
decision categories were marked as Not A Design Decision. During this process, we observed
that some of the issues were abstract, in the sense that, they were broad issues that could be
classified into more than one category. For example, the issue titled “Implement columnar in-
memory representation5” aims to improve the memory efficiency of the system and represents a
design decision. This issue affects the behavior of the system by introducing a new functionality
and affects the structural aspects by introducing new Java classes for its implementation. In this
study, multi-label classification was not applied and the focus was only on multi-class classifica-

5https://issues.apache.org/jira/browse/SPARK-12785

117

https://issues.apache.org/jira/browse/SPARK-12785

6. Evaluation

Structural decision:

+ Adding or updating plugins, libraries, or third-party systems

+ Adding or updating classes, modules, or files (e.g., a class refers to a Java class)

+ Changing access specifier of a class

+ Merging or splitting classes or modules

+ Moving parts of the code or the entire files from one location to another (code
refactoring to address maintainability issues)

+ Updating names of classes, methods, or modules

Behavioral decision:

+ Adding or updating functionality (methods/functions) and process flows

+ Providing configuration options for managing the behavior of the system

+ Adding or updating application programming interfaces (APIs)

+ Adding or updating dependencies between methods

+ Deprecating or disabling specific functionality

+ Changing the access specifiers of methods

Ban decision:

+ Removing existing plugins, libraries, or third-party systems

+ Discarding classes, modules, code snippets, or files

+ Deleting methods, APIs, process flows, or dependencies between methods

+ Removing deprecated methods

Design decision:

+ An issue that belongs to any one of the above categories

Not a design decision:

+ An issue that does not belong to any of the above categories

Table 6.5: Rules for manual classification of design decisions into structural, behavioral, and
non-existence/ban decision categories

118

6. Evaluation

tion6 and hence, the labeling of issues was restricted to only one label. Moreover, the majority
of issues could be classified into one category since issues are typically concise so that developers
can easily understand and implement the tasks. To sum up, architects were requested to mark
issues belonging to more than one category as deleted since we argued that applying multi-
class classification for detection and classification of design decisions is sufficient to validate the
application of ML-technique to extract and classify design decisions.

Once the architects labeled all the issues individually, in a shared meeting, the training dataset
was consolidated with two focus points:

� Issues that were marked as deleted by both the architects were removed from ADeX.

� All those issues that had inconsistent decision categories were also removed. Since incon-
sistent dataset results in unreliable classification results, this step ensured that the issues
in the dataset were labeled correctly.

The labeling process resulted in a dataset with 2,139 issues with 781 issues labeled as Design
Decisions and 1,358 issues labeled as Not A Design Decision. To avoid skewed results towards Not
A Design Decision label (due to a higher number of issues labeled as Not a Design Decision), 790
issues labeled as Not A Design Decision were randomly selected for generating the design decision
detection model. Furthermore, out of 781 design decisions, 226 were labeled as Structural,
389 were labeled as Behavioral, and the remaining 166 as Ban design decision. To ensure a
balanced input for generating the ML model for design decision classification, 160 issues from
each category were randomly selected.

6.1.2.4 Setting up the machine learning pipeline

The pipeline shown in Figure 6.1 was used to generate the ML models for decision detection and
decision classification. The pipeline itself was divided into two parts. In the first part – “process
documents”, the labeled dataset was the input and the pipeline generated the term frequency
representation of issues. The output of the first part was then consumed by the second part –
“Generate model”, to produce the classification model and the result of applying the model on
the testing dataset. Each issue in the labeled dataset was first tokenized to retrieve words. All
the words were then transformed to lower cases. Stop words such as articles, conjunctions, and
prepositions were removed. The remaining words were then stemmed to their root words using
the Porter stemming algorithm [122]. Subsequently, a list of generated n-grams was appended
to the word list. Generating n-grams helps to maintain the context of the usage of specific terms
by considering its surrounding terms. For the evaluation, different values of n (from 1 to 5) was
experimented and the corresponding results are documented in the next section. Finally, the
list of words was converted into a term frequency representation. For decision detection with a
labeled dataset of 1,571 issues (781 and 790 issues labeled as design decision and not a design
decision respectively), the term frequency-inverse document frequency (tf-idf) was used for vector
representation. The tf-idf representation evaluates the number of times a word appears in an
issue but is offset by the frequency of the word in the corpus. However, for decision classification,

6Given that there are multiple labels, in multi-class classification, a document can be assigned to one and only
one label. Whereas, in multi-label classification, a document can be assigned to any number of labels.

119

6. Evaluation

Part 1: Process documents

Part 2: Generate model
(10-fold validation)

TokenizeLabeled
dataset

Transform
cases

Filter stop
words

Stem
words

Generate n-
Grams (n=1..5)

Create TF-IDF
representation

Training

Multi-class classifiers

Testing – Apply model

Classification
model

Sh
u

ff
le

d
 s

p
lit

Results

model
Training data

Testing data

Preprocessing

issues

Figure 6.1: The machine learning pipeline for design decision detection and classification;
Classifiers: SVM, Naive Bayes, Decision tree, Logistic regression, One-vs-rest; n-
grams: one to five; Split strategies: 90%, 80%, 70%, 60%, 50%;

only the term frequency (tf) was used as the dataset was comparatively smaller with 480 design
decisions (160 issues in each decision category).

The term frequency representation of issues is provided as input to the second part of the pipeline
for generating the classification model. Different shuffled split strategies (90%, 80%, 70%, 60%,
and 50%) were used for observing the results. That is, documents were split into training dataset
and testing dataset with different split percentages during multiple runs. Furthermore, the k-fold
cross-validation technique was used in the model generation process for estimating the accuracy.
In the test runs, 10-fold cross-validation (k=10) was used. Using 10-fold cross-validation is
common in data mining and machine-learning as it produces less biased accuracy estimations
for datasets with small sample sizes [123]. Different multi-class classifiers were tested on the
dataset with the parameters shown in Table 6.6. The classification model was then applied on
the testing dataset to generate the classification results.

We implemented the pipeline shown in Figure 6.1 using Spark’s scalable machine learning library
(MLlib) [125]. The MLlib component provides interfaces to create and execute the pipe and filter
based pipelines. The pipeline with its configurations and the generated model was eventually
persisted as a Spark model instance in ADeX for subsequent decision classification tasks. That
is, for automatic detection and classification of newly created issues, this Spark model instance
is executed and the classification label is persisted in ADeX.

The end-to-end workflow of the automatic design decision detection and classification was dis-
cussed in Section 5.3 (cf. Figure 5.17). Since the output of the first phase (decision detection)
is the input to the second phase (decision classification), high accuracy of the results from the

Support vector machines – Kernel: linear; SVM type: C-SVC; Library: LibSVM [124]
Decision tree – Criterion: gain ratio; Depth: 20; Confidence: .25; Minimal gain: .1
Logistic regression – Kernel: dot; ElasticNet: .8; Regularization: .001; Iterations:10
One-vs-rest – Base classifier: Logistic regression
Naive Bayes – Additive smoothing: 1

Table 6.6: The configuration parameters used for training the machine learning classifiers

120

6. Evaluation

first phase is critical. The decision detection component loads the issues, uses the ML model
generated for decision detection, and classifies each issue as either a decision or not a decision
class. Next, the classification component takes the identified design decisions and classifies them
into different categories using the decision classification ML model.

6.1.2.5 Evaluation of the ML pipelines for detecting and classifying design decisions

By applying the ML-based approach, we wanted to evaluate the following two hypothesis:

1. Design decisions can be automatically identified and extracted from issues.

2. Design decisions can be automatically classified into ADD categories, namely structural,
behavioral, and ban decisions.

This subsection describes the validation or the invalidation of the aforementioned hypothesis.
We present the results of applying different classifiers under different configurations for both
decision detection and classification using the labeled dataset. In the given scenario of detecting
and classifying decisions, the precision (fraction of automatically retrieved documents that are
relevant) is as important as the recall (the fraction of relevant documents that were successfully
retrieved). For instance, in case of decision detection, it is necessary that all issues that reflect
design decisions are retrieved (high recall) and those issues which are not design decisions should
not be automatically labeled as design decisions (high precision). Hence, the accuracy as the
F-score [120], which is the harmonic mean of precision and recall is measured.

The multi-class classifiers namely SVM, Naive Bayes, Decision tree, Logistic regression, and
One-vs-rest were evaluated. Since the logistic regression functionality provided by the Spark
APIs could not handle polynomial labels, it was not used for decision classification but only for
decision detection (binary)7. Split strategies from 90% to 50% and n-grams from one to five
were analyzed. First, one could expect that varying the n-grams from one to five would increase
the accuracy proportionally. That is, the use of patterns of words, which preserves the context
of those words, should positively influence the accuracy of classification. Second, decreasing
the split percentage from 90% to 50%, should reduce the accuracy substantially since lesser
number of documents would be used for training the classifiers. In total, 25 individual runs (5
split strategies and 5 n-grams) were executed for each classifier and the corresponding precision,
recall, and F-score were calculated. Finally, the average accuracy (average F-score) based on
the arithmetic mean of the 25 individual runs for each of the classifiers was analyzed.

Results related to the automatic detection of design decisions

True decision True not a decision Class precision

Decision 212 18 92.17%

Not a decision 22 219 90.87%

Class recall 90.60% 92.41%

Table 6.7: Decision detection: confusion matrix of the SVM classifier with a linear kernel

7cf. https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#logistic-regression

121

6. Evaluation

The SVM classifier (average accuracy: 91.29%) outperformed Logistic regression (83.43%), One-
vs-rest (79.45%), Decision tree (79.18%), and Naive Bayes (76.04%) classifiers. Since, the tf-idf
representation of issues has a high dimensional feature space, sparse vectors, and few irrelevant
features due to the data curation process, the SVM outperformed the rest of the classifiers. The
maximum accuracy of 94.91% for the SVM classifier was achieved for a larger training set (90%
split) with 3, 4, and 5 grams representation and the minimum accuracy of 87.4% with a smaller
training set (50% split) and 1-gram settings. The confusion matrix for one specific execution
run with 70% split and 3-gram configuration is shown in Table 6.7. This matrix depicts true
and false positives as well as true and false negatives. The true positives (correct classifications)
are highlighted on the diagonal of the confusion matrix. The precision for classifying an issue
as a design decision is 92.17% and the recall is 90.60%. In addition, the precision for labeling
an issue as Not A Design Decision is 90.87% and its recall is 92.41%.

Also, as shown in Figure 6.2, reducing the size of the training dataset (from 90% to 50%) the
F-score decreases as expected but does not diverge more than 4% points from the average F-
score of 91.29%. This indicates that the labeled dataset with 1,571 issues is sufficiently large
enough to achieve a consistent F-score. Furthermore, it can be observed that the variation
of n in n-gram generation does not drastically affect the F-score. As expected, the F-score is
comparatively lower when the combination of words (n=1) is not considered but the F-score
slightly improves in the case of 2-grams and 3-grams. However, there does not seem to be any
noticeable variations when n is greater than three.

To sum, by using the linear SVM classifier along with n-gram (n >= 2) representation of words,
design decisions can be automatically extracted from issues with an accuracy of 91.29% (hypoth-
esis 1). Since no similar study exists with benchmarking results, 91.29% accuracy for automatic
design decision detection can be considered encouraging.

50 55 60 65 70 75 80 85 90
Split strategy (%)

88

89

90

91

92

93

94

95

F-
sc

or
e

(%
)

n=1
n=2
n=3
n=4
n=5

Figure 6.2: The influence of n-grams and split strategy on decision detection: increasing the
training dataset increases the F-score and the variation of n in n-grams does not
drastically affect the F-score

122

6. Evaluation

True ban True structural True behavioral Class precision

Ban 45 3 0 93.75%

Structural 4 41 13 70.69%

Behavioral 0 6 39 86.67%

Class recall 91.84% 82% 75%

Table 6.8: Decision classification: confusion matrix of the SVM classifier with a linear kernel

Results related to the automatic classification of design decisions

Even for automatic design decision classification, the linear SVM (average accuracy: 82.79%)
performed better as compared to classifiers including Naive Bayes (59.09%), Decision tree
(60.33%), and One-vs-rest (30%) classifiers. The confusion matrix for linear SVM with 70%
training dataset and 30% testing dataset with trigrams is shown in Table 6.8.

Identifying ban decisions is critical, since they are typically not present in software artifacts.
As shown in Table 6.8, the precision (93.75%) and recall (91.80%) for automatically classifying
design decisions into ban decisions category are above 90%. On the other hand, the precision
for structural and behavioral decisions are 70.69% and 86.67% and their recall values are 82%
and 75% respectively. The lower precision and recall for structural and behavioral decisions is
due to the existence of similar features (due to the classification rules presented in Table 6.5) in
their corresponding training dataset.

As shown in Figure 6.3, reducing the size of the training dataset (90% to 50%) decreases the
F-score as expected (89.9% to 76.2%). This variation is justified since the labeled dataset
for decision categories is significantly smaller (160 design decisions in each category). On the

50 55 60 65 70 75 80 85 90
Split strategy (%)

76

78

80

82

84

86

88

90

F-
sc

or
e

(%
)

n=1
n=2
n=3
n=4
n=5

Figure 6.3: The influence of n-grams and split strategy on decision classification: increasing the
training dataset increases the F-score and the variation of n-grams does not have
any noticible affect on the F-score

123

6. Evaluation

contrary, the variation of n-grams does not have any notable affect on the F-score. This indicates
that the individual words within issues (or bag of words in text) play a significant role in the
classification as compared to the usage of specific patterns of words and the context of the words.
To conclude, with the linear SVM classifier design decisions can be classified into structural,
behavioral, and ban decision categories with an accuracy of 82.79% (hypothesis 2).

6.1.2.6 Threats to validity

The results presented in the previous subsection are based on 1,571 labeled issues for design
decision detection and 480 labeled design decisions for classification. The labeled dataset for
classification is not as comprehensive as the dataset used for decision detection. Even though,
we speculate that the generalization capabilities of design decision classification can be further
improved by increasing the sample size of the dataset, providing relevant quantitative evidence
is beyond the scope of this study. However, it should be noted that typically in ML-based
approaches for text classification, increasing the sample size of the dataset substantially improves
the classification performance [126].

The 1,571 labeled issues are extracted from two large OSS projects, wherein contributors have
systematically maintained issues for more than three years. The hypothesis validated using
the dataset might not be generalizable for projects where issues are reported scarcely. Hence,
understanding what characteristics of the projects could influence the precision and recall of our
approach are considered as part of our future work.

In the previous subsections, we have presented the results of automatic decision detection and
classification independently of each other. However, if we consider the workflow shown in Fig-
ure 5.17, the accuracy of the decision detection affects the subsequent decision classification
phase. In this study, we did not compute the accuracy of the end-to-end workflow.

Finally, as explained in the data curation process, we did not consider issues belonging to more
than one ADD category. Considering such issues would require investigation of appropriate clas-
sification algorithms for multi-label classification and the study of the corresponding results.

6.1.3 Quantitative evaluation of the expert recommender

This subsection presents the evaluation of the expert recommender component that suggests
appropriate architects and developers to address specific design concerns. The approach of using
the expertise matrix was presented in Section 5.5.3. For the evaluation, we have used datasets
of four different software projects that maintain issues in Jira. The two open-source projects
(Apache Spark and Apache Hadoop Common) that were used in Section 6.1.2 for evaluating the
ML-based approach have been used. And, the other two projects are closed-source projects from
the industry partner. As shown in Table 6.9, the open-source projects have a higher number of
unique contributors: Apache Spark has 95 unique contributors who made 447 design decisions
and Apache Hadoop Common has 111 unique contributors who made 238 design decisions. The
industrial projects are comparatively smaller, wherein, only 13 and 14 unique contributors have
made design decisions in Project I and II respectively.

124

6. Evaluation

For analyzing the results of the individual datasets, the following strategy was applied:

1. Order design decisions based on the resolution date.

2. Split design decisions dataset into training [90% to 30%] and testing dataset [10% to 70%].

3. Use the training dataset to create the matrix.

4. For each design decision in the testing dataset, identify experts by matching the concept
vectors against the matrix.

5. Open-source projects: Measure the precision at 5, 10, 15, 20, 25, 30, and max. The
precision at 5 (P@5) indicates if an individual who actually resolved the design decision
belongs to the top 5 results in the list of recommended experts. Here, max value refers
to the total number of experts who can be recommended, that is, those individuals who
resolved design decisions related to architectural elements at least once. Note that the
recommended list is the list of top-n experts in the context of P@n where n is the list size.

6. Industry projects: Measure the precision at 2, 4, and 6. Since there are only 13 and 14
contributors in the industry projects, using a larger list will result in higher accuracy but
will not lead to any interesting observations.

The overall accuracy of the expert recommendation algorithm (cf. Algorithm 1) can be calcu-
lated as the average of P@max across the investigated projects. As discussed in the subsequent
subsections, even though the overall accuracy with P@max is higher than 60%, the average
P@max varies depending on the project and hence, it does not provide valuable insights. How-
ever, understanding the behavior with smaller recommendations (P@5 and P@10) and observing
the trend across different list sizes (P@5 to P@max) and split strategies is interesting for re-
searchers to reflect on the influence of project characteristics on the recommendation system.

Furthermore, it should be noted that since design concerns were originally assigned to contrib-
utors without the aid of any system, the precision values should be interpreted as lower-bound
estimates of the accuracy. Checking if an individual who actually resolved a design concern lies
in the recommended expert list, indicates that new design concerns are assigned to individuals
who have dealt with similar cases in the past. As demonstrated in the subsequent subsections,
this assumption gets stronger as the size of the recommendation list increases.

ID Name Domain Type # design decisions # unique contributors

1 Apache Spark Data processing Open source 447 95

2 Apache Hadoop Common Distributed computing Open source 238 111

3 Industry Project I Connected Mobility Closed source 368 13

4 Industry Project II Knowledge management Closed source 143 14

Table 6.9: The details about the dataset of four projects used for the evaluation of the expert
recommendation system

125

6. Evaluation

5 10 15 20 25 30 max

90% 26.67 33.33 51.11 60 62.22 64.44 73.33

80% 28.89 36.67 47.78 52.22 55.56 56.67 68.89

70% 28.15 41.48 48.89 53.33 55.56 57.78 62.96

60% 28.49 41.9 48.04 54.75 58.1 60.89 63.69

50% 30.36 42.86 48.21 52.23 56.25 57.14 58.48

40% 33.83 45.35 49.81 52.04 55.02 56.51 56.51

30% 30.35 39.94 44.09 46.33 47.92 48.24 48.24

20

30

40

50

60

70
C
O

R
R

E
C
T
 M

A
T
C
H

 %

NO. OF RECOMMENDED EXPERTS

Figure 6.4: The evaluation results of the expert recommender for the Apache Spark dataset

6.1.3.1 Evaluation of the expert recommender using the Apache Spark dataset

Among the datasets, the Apache Spark dataset has the largest number of labeled design decisions
(447) with 95 unique contributors who resolved those design decisions. As shown in Figure 6.4,
increasing the size of the training dataset for creating the expertise matrix (from 60% to 90%)
and the size of the recommendation list (see from P@15 to P@max), the precision also increases.
This is rather intuitive as one could imagine that increasing the size of the training dataset as
well as the solution space (expert list), the accuracy must also increase. However, corresponding
to the results – P@5 and P@10, using larger training datasets decreases the accuracy. The
reason for this is that when a larger training dataset is used, the values of expertise atoms gets
distributed across the corresponding expertise matrix and the individual who resolved a design
decision in the testing dataset might not be present in the recommended list of more qualified
personnel. On the contrary, when a smaller training dataset (40% and 50%) is used, the expertise
matrix is rather concise and results in higher accuracy (for P@5 and P@10) as compared to a
larger training dataset. This is an important observation, since, for a 100 members team of
architects and developers, recommending more than 5 to 10 key experts who should be involved
in the decision-making process might be an overhead. Hence, it is necessary to consider an
optimal size of the training dataset to prevent an overfitting of the expertise matrix and to
subsequently use it for recommendations. In case of the Apache Spark project, using 40% or
50% of the dataset (approx. 200 design decisions) is sufficient to recommend experts for ADM.

Furthermore, reduced P@5 and P@10 values with a larger training dataset indicate that these
design decisions are not made by a selected few individuals but is well distributed among the
architects and developers. As it should be in an ideal case, this indicates a “healthy” project
where knowledge does not reside only with a few experts.

126

6. Evaluation

5 10 15 20 25 30 max
90% 8,33 20,83 37,5 41,67 58,33 58,33 66,67
80% 10,42 18,75 31,25 39,58 43,75 47,92 54,17
70% 11,11 19,44 26,39 30,56 31,94 33,33 44,44
60% 12,5 16,67 21,88 28,13 30,21 33,33 38,54
50% 15,25 25,42 28,81 33,9 35,59 38,14 41,53
40% 12,68 16,9 23,24 27,46 28,87 30,99 31,69
30% 11,97 16,2 21,83 21,83 23,24 23,24 23,24

5

15

25
35

45

55

65
CO

RR
EC

T
M

AT
CH

 %

NO. OF RECOMMENDED EXPERTS

Figure 6.5: The evaluation results of the expert recommender for the Hadoop Common dataset

6.1.3.2 Evaluation of the expert recommender using the Hadoop Common dataset

The Apache Hadoop Common dataset comprises of 238 design decisions which have been resolved
by 111 unique contributors. As shown in Figure 6.5, the results for this dataset are similar to
the results of the Apache Spark dataset.

� Increasing the size of the training dataset (from 60% to 90%) and the recommendation list
(from P@15 to P@max) increases the accuracy.

� For P@5 and P@10, the smaller training datasets (50%) outperforms the larger dataset.

� Lower P@5 and P@10 values for larger training datasets indicate a “healthy” project where
design decisions are not made by a few architects and developers.

Similar observations from both these open-source projects indicate that even a smaller design
decisions dataset is sufficient to build a comprehensive expertise matrix to recommend experts
who could be involved in the DDM process.

6.1.3.3 Evaluation of the expert recommender using the Industry Project I dataset

Unlike the open-source projects wherein stakeholders have maintained issues in Jira since 2012,
the industrial projects are under development and maintenance since 2016 and the team size of
architects and developers is considerably smaller. The first project under consideration is the
connected mobility lab (CML) project. This project aims to provide mobility-related services
for commuters in metropolitan areas by benefiting from the sensor data collected from different
means of transportation. Stakeholders of this project have captured 1,233 issues in Jira. Using
the decision detection model, 368 design decisions were identified which were resolved by 13

127

6. Evaluation

2 4 6

90% 43.24 75.68 91.89

80% 51.35 72.97 91.89

70% 48.65 74.77 92.79

60% 45.27 71.62 89.86

50% 44.57 73.37 89.67

40% 41.18 74.66 89.14

30% 36.43 56.2 65.12

30

40

50

60

70

80

90

C
O

R
R

E
C
T
 M

A
T
C
H

 %

NO. OF RECOMMENDED EXPERTS

Figure 6.6: The evaluation results of the expert recommender for the Industry Project I dataset

unique contributors. After creating the expertise matrix using the training dataset and matching
the concept vectors of design decisions in the testing dataset, the precision at 2, 4, and 6 was
measured. Note that, n in P@n was restricted to 6 due to fewer contributors. Since this project
has a large number of design decisions (368), as shown in Figure 6.6, the precision values do not
vary significantly for different split strategies. Similar to the open-source projects, increasing the
size of the training dataset and the size of the recommendation list also increases the accuracy
of the recommendation system.

Contrary to the open-source projects, higher accuracy for P@2 and P@4 was observed in case
of industrial projects (cf. Figure 6.6 and 6.7). The average accuracy (P@2 and P@4) across
different splits is 44.38% and 71.32% respectively. That is, in 44% of the cases, either of the two
individuals who had the most expertise actually resolved the design decision. Similarly, 71% of
decisions were resolved by the top four individuals with most expertise. Surprisingly, either one
of the top two recommended experts remained consistently in all the recommendations.

Even though the higher accuracy indicates that the system can identify experts who can deal
with specific decisions, the fact that only those individuals actually resolved most of the decisions
is not “healthy” for the project. It shows that there are only a few individuals with relevant
expertise and the chances of knowledge vaporization in case they leave the project is higher.

6.1.3.4 Evaluation of the expert recommender using the Industry Project II dataset

The second industry project that was analyzed is a knowledge management system which guides
stakeholders during different phases of the application lifecycle of software projects. Stakeholders
of this project have maintained 1,153 issues in Jira since early 2016 and the decision detection

128

6. Evaluation

model identified 143 design decisions which were resolved by 14 unique contributors. As shown
in Figure 6.7, the results are similar to that of the first industry project:

� The average accuracy of finding experts in the top 2 and top 4 recommendation list is as
high as 58.60% and 73.77% respectively.

� Higher accuracy (P@2 and P@4) and consistently recommending either one of the top two
experts indicate that decisions were made only by a few individuals and there is a need
for knowledge transfer within the team.

2 4 6

90% 66.67 80 86.67

80% 62.07 75.86 82.76

70% 58.14 72.09 81.4

60% 55.17 70.69 82.76

50% 56.94 76.39 83.33

40% 55.81 72.09 84.88

30% 55.45 69.31 79.21

40

50

60

70

80

90

C
O

R
R

E
C
T
 M

A
T
C
H

 %

NO. OF RECOMMENDED EXPERTS

Figure 6.7: The evaluation results of the expert recommender for the Industry Project II dataset

6.1.3.5 General observations and threats to validity

A. Project and team characteristics

As presented in previous subsections, we observed higher accuracy with smaller recommendation
lists for the industry projects as compared to the OSS projects. This is due to a couple of factors,
namely, the number of contributors and the culture of assignment of issues. Typically, teams
of small and medium-sized projects (with 10 to 50 architects and developers) contain only a
few architects and senior developers. The key design decisions including setting up the IT
infrastructure, selecting the communication protocol, and making changes to the data models
are made by those experienced architects and developers. Hence, for new design decisions,
the proposed algorithm correctly identifies those experts in such smaller teams as compared to
larger teams where design decisions are resolved by many contributors. Furthermore, in the OSS
projects, contributors independently resolve issues (bottom-up) by submitting a pull request in
the code repository which is then merged into the main branch and the respective issue is closed.
Whereas, in the industry projects we analyzed, issues are assigned to developers by architects

129

6. Evaluation

or senior developers (top-down). Hence, contrary to the industry projects, in the OSS projects
where developers had more freedom to choose the design problems, we observed that the values
of the expertise atoms were scattered across the expertise matrix. To avoid the risk of knowledge
vaporization, we prescribe the use of the expertise matrix to identify hotspots within the matrix
(rows containing darker cells) early in the project so as to ensure the involvement of junior
developers while addressing design concerns.

Within the scope of this study, we have not addressed the cold-start problem in the recom-
mendation system. That is, when new contributors join the team, currently, it is not possible
to automatically create their expertise profiles. However, we consider this to be a technical
challenge as one could integrate external data sources such as professional resumes and (public
and organizational) social networks to extract their skills.

Another shortcoming of the matrix-based approach is that we have to consider an optimal size of
the training dataset for creating the expertise matrix. As discussed in the previous subsection,
using a larger training dataset might not result in better accuracy. The size of the training
dataset has to be dealt on a project-to-project basis. Within the scope of this study, we could

not generalize the optimal size of the training dataset .

One of the frequent concerns raised by our industry partner is “how to deal with issues captured
in different languages”. In some projects, either all the issues are in the German language or
there is a mixture of both the English and the German text. Dealing with such scenarios

is challenging as we not only have to use a translation service but also retrain the decision
detection models which is time and effort intensive.

Finally, during the demonstration of the results to the stakeholders of Industry Project II, one
of the architects expressed that it would be beneficial to apply the approach across the organi-
zation’s projects so as to know with whom one has discuss for resolving similar design problems.
Addressing this point is not a technical problem but it is difficult since every project within

an organization has different confidentiality criteria . Moreover, getting the approvals
to conduct such studies and to demonstrate the benefits of such approaches to the respective
stakeholders is both a time-consuming and a “political” activity within large organizations.

B. Expert recommendation

The architects from Industry Project I highlighted that the system should also consider attributes
including availability and workload of experts as well as criticality and priority of design deci-
sions. Since projects maintain such structured information in Jira, we should consider these

complimentary parameters while generating the list of experts.

Furthermore, it is necessary to emphasize that the aim is not to automatically assign contributors
to address a design concern but to recommend a list of experts who could be involved in the ADM
process. In this context, first, we need to have a balanced mix of both senior and junior architects
and developers in the list so as to ensure knowledge transfer. Second, it is not sufficient to present
only the list of experts but we also need to identify and assign roles to the experts such
as owners, decision-makers, and moderators. We are currently investigating with our industry
partner the aforementioned aspects of improving the quality of the recommendations as part of
an of a follow-up research project under an AI4AM initiative.

130

6. Evaluation

C. Personal experience and cognitive biases

In the expertise matrix based approach, we made the assumption that architects and developers -
intentionally or unintentionally - rely on their experiences while making design decisions or even
when selecting a design problem to be addressed. The use of experience as an “anchor” while
making decisions may lead to anchor and confirmation cognitive biases [127]. The qualitative
interview-based studies [128] and [39] have indicated personal experience to be a key factor
influencing the ADM process. The recommendation results for the OSS projects show that there
is a high chance (cf. P@max; avg. 61.72% for Spark and 42.89% for Hadoop) that contributors
select similar concerns that they have addressed in the past. Similarly, in the industry projects,
issues reflecting design decisions are assigned to those developers who have dealt with similar
concerns in the past (cf. P@6; avg. 91.22% for Industry Project I and 82.45% for Project II).

The aforementioned observation provides quantitative evidence to indicate that experience

of architects and developers play an important role when they select and resolve

design concerns which in turn influences the ADM process.

6.2 Qualitative evaluation of ADeX in real-world projects

This section presents the feedback received from project partners in the industry during internal
presentations. The discussion in this section consolidates the feedback from 15 software archi-
tects and developers received during open discussions in five different presentations. During
these presentations, ADeX was demonstrated to the audience. Due to time constraints, the
project data was preprocessed prior to the presentations. For instance, during the demonstra-
tion of the results for Industry Project II discussed in the quantitative evaluation section (cf.
Section 6.1.3.3), the issues from the project had already been imported into ADeX and the
pipeline discussed in Section 5 had already been executed. Feedback received during and after
the presentations are grouped into the following categories:

Meta-model based AKM framework:

Contrary to this author’s intuitive opinion that stakeholders appreciated/understood the ben-
efits of a meta-model based system for architectural knowledge management, it was rather
difficult to convince the need for such a system. During one of the presentations at a confer-
ence8, one of the audiences raised the following question “If the focus is on supporting software
architects during the decision-making process by extracting design decisions from Jira, why do
you (referring to this author) need a meta-model based system/approach?”.

Further convincing was required to emphasize the the fact that each project maintains it’s
artifacts using different concepts and to enable quick adaptation of the software system, the
domain models (in this particular scenario - dynamic knowledge model) need to be configurable
at runtime. This follows the idea of models at runtime. For instance, if stakeholders of one
project use the term Issue, in another project they might use the term Iask. In such cases,
maintainers of the software system (ADeX) should quickly be able to change the domain model.
These changes not only relate to the name of the concept in the domain model, but also includes

815 minutes Q&A session during the doctoral symposium presentation of the paper [61] at the ECSA 2017

131

6. Evaluation

relationships with other concepts, their usage in rules (model-based expressions), as well as
their corresponding user interfaces. The meta-model based framework presented in Section 5.1
facilitates such adaptations at runtime. Contradictory to model-driven approaches (for example,
using eclipse modeling framework), model-based approach does not require recompiling the
source code to make those adaptation; both the domain model and its corresponding data can
be updated at runtime using a web interface (cf. [6]).

SyncPipes - the data synchronization platform:

The idea of reusable and configurable adapters is not new. However, since in 2015, there did not
exist a platform for developing and reusing adapters to extract data from REST-based services,
transform the data, and then load the data into target systems, the need for SyncPipes to
integrate and synchronize data into ADeX was well received by the industry partner. Once
the adapters for importing data from Jira, GitHub issue tracker, and Enterprise Architect were
demonstrated to the industry partner, a development team took over the further development of
SyncPipes adapters. The adapters for Team Foundation Server to extract issues and MS project
to import project tasks were independently implemented by the development team.

Decision detection and classification:

Once a design decision is identified by the decision detection ML-model, that design decision is
classified into one of the three categories, namely, structural, behavioral, and non-existence/ban
decision. These decision categories are based on the taxonomy defined by [18]. These design
decisions can also be classified according to their abstraction level. That is, as suggested in [16,
129], design decisions can be made at three level, namely, high-, medium-, and low-level design
decisions. During one of the presentations, architects suggested that the classification based on
the abstraction level would be more beneficial for them. That is, it will allow them to view
and analyze only high-impact (high-level) design decisions. Classifying design decisions based
on the abstraction level is a valuable feedback and is considered as part of future research.
One approach to address this problem would be to follow the similar approach for decision
classification presented in this dissertation. Instead of labeling design decisions based on the
categories suggested by [18], they would have to be labeled according to their abstraction levels
and the models would have to be retrained thereafter.

The second feedback or the area of improvement concerning the classification of design decision
relates to the accuracy of the classification model. As presented in the evaluation section 6.1.2,
the accuracy specifically for structural and behavioral decisions is comparatively lower than
ban decisions. The reason for lower accuracy being that, sometimes, it is difficult even for
a human to distinctively classify a decision as structural or behavioral. A behavioral change
to a system, more often than not, causes structural change and vice-verse. Hence, in principle,
instead of labeling design decision specifically into one decision category (cf. discussion presented
in Section 6.1.2), one should label decisions into multiple categories. That is, a multi-class
classification model must be used. This is a shortcoming of the ML-learning based classification
approach presented in this thesis, which not only the author is aware of, but was also highlighted
during discussions with stakeholders. The argument being that manually labeling documents is
a time and effort intensive task and within the time constraints and scope of this study, to prove

132

6. Evaluation

the feasibility of applying ML in the given context, only a multi-label classification was applied.
The application of multi-class classification is subject to future research.

User interface related to quality attributes:

The bar chart showing the number of design decisions addressing specific quality attributes and
its evolution was rather an eye-catchy feature during the presentations. During the presentation,
the results of rationale extractor component was both appreciated as well as critiqued.

On the right side of the UI (as presented in Figure 5.38), the list of quality attributes which were
not tagged with any of the design decisions are listed. During demonstrating the results for the
case study - Industry project II, one of the architects mentioned that “we are not missing those
quality attributes, since they are not related to our project”. The term “missing” rather puts
forth a notion of “blaming” an architect for not considering a specific quality attribute. Hence,
there is a need for further investigation on how to represent those quality attributes that do not
have any discussions related to them within design decisions.

During the same presentation, many of the segments within the bar chart were investigated
by reasoning about their corresponding design decisions. It was observed that even though
most of the design decisions were tagged with correct quality attributes, architects present in
the discussion pointed out a few discrepancies. For instance, “decision X does not relate to
performance but instead it is about addressing availability concerns”. The rationale extractor
component is based on very basic keyword matching approach and hence showed false positives.
As discussed in Section 2, there already exists a plethora of work in the direction of classification
of non-functional requirements. Since, in this dissertation, not much focus was given specifically
to the topic of rationale extractor, it is indeed the case that some of the design decisions are
tagged with incorrect quality attributes. However, by building on previous research, we believes
that the rationale extractor component can be further improved to meet stakeholders’ needs.
The same was also communicated to the stakeholders of the industry project I.

User interface related to architectural elements:

There were two main suggestions for improving the user interface with the bubble chart of
architectural elements (cf. Figure 5.39). In the current implementation, each bubble represents
an architectural element and there does not exist any relationships between the nodes. It was
suggested that highlighting the relationships between nodes using edges might be helpful for
architects to understand the dependencies between different architectural elements. For instance,
an architectural element such as Java can be linked with JDBC and JUnit.

The second suggestion, similar to the first one, also deals with how architectural elements are
related to each other. Architectural elements belonging to similar categories (genres) can be
grouped together. Doing so, will simplify the visualization with fewer number of architectural
elements. If end-users are interested in a specific architectural element, then, they can drill-down
by clicking on the high-level architectural element. For example, if there exists architectural
elements such as application server, Apache Tomcat, and Glassfish server, then these three
elements can be grouped together. Realization of such a categorization should not be effort
intensive, as the required information (rdf:type - genre, concept, or work) is already available
from the DBpedia ontology (cf. discussion in Section 5.5.1).

133

6. Evaluation

Expert recommender system:

The architects and developers found the UI of the expertise matrix (EM), shown in Figure 5.40, a
useful tool to quickly lookup (using the search functionality) individuals with expertise in specific
architectural topics. During the presentation of the results for Industry project II, architects
and developers argued if a specific individual was indeed an expert on a specific topic. We found
the conversations “political”; in the sense that, for those individuals who were not present in
the presentation room but were part of the project, it was argued that they did not contribute
“much” to that architectural element and hence they should not be an expert. However, such
comments were not made against each other who were present in the audience. In essence,
software engineering generally is “people’s” problem. How one person considers whether another
person is an expert on a specific topic depends not only on quantitative numbers but also on
personal relationships. Hence, further investigation is needed, to better understand the social
network of architects and developers and incorporate respective metrics within the EM.

During the discussions, an important concern was raised against the use of an expertise matrix
to quantify and measure the the expertise of architects and developers. At least three architects
commented the following: “some people [architects and developers] might not be happy that
you are measuring their expertise”. The notion that such an expertise matrix could potentially
be used for or against an individual by the upper management is indeed a concern. Special care
must be taken before using such a system in industrial settings. Appropriate approvals from
all involved parties regarding monitoring their activities (for instance, in Jira) and quantifying
their expertise about architectural knowledge must be made upfront.

Concerning the view shown in Figure 5.41, which lists the experts who could be involved in
addressing certain design concerns, three specific comments were made. In the current UI, along
with the expert in the recommendation list, their corresponding expertise score is displayed.
One of the architects, during the presentation, commented that “showing the expertise score
leads to saying that person A is better or worse than person B; this is not nice.” This concern
too is similar to the “people’s problem” discussed before. In general, ADeX needs to be further
evaluated so as to ensure such minute details do not hinder its actual benefits.

A lead architect involved in Industry project I commented the following: “Our project scope
has reduced over the years and we are less than ten team members. I am not sure, how useful
this is for us. We all know whom to talk to when we want to ask something. Anyway, this
helps us to improve the process of task assignment. I see that I am recommended as an expert
in many case. I did not actually solve those issues. During our meetings, for documentation, I
only added myself as an assignee and resolved those issues”. Regarding the first point, we agree
that such a recommendation system makes more sense for large software projects with more
than [at least] fifty software architects and developers. Concerning the second point, the same
lead architect also added “it might be interesting to consider not only the assignee of an issue,
but also those individuals who changed the status of that issue, commented within the issue,
or who made the changes in the code”. Since, issue management systems such as Jira are very
powerful in maintaining such rich information in a structured manner, it is technically possible
to identify and consider these aspects. Investigating the changes at the code level depending on
a specific issue rather depends on the project itself. In some projects, stakeholders maintain the
pull request that resolved the issue or specify the issue ID in the Git commit. This information

134

6. Evaluation

can be considered while creating the expertise matrix. The investigation of the aforementioned
scenarios is considered as part of future research.

Architects from the Industry project II suggested the following concrete improvements. Firstly,
they suggested to have a predefined team of experts who could be assigned to resolve design
concerns. Second, in the list of recommended experts, they suggested to include novices. Since,
including novices might help reduce the chances of knowledge vaporization. Thirdly, since,
architects’ time is very precious and the number of architects within a project is usually limited,
they also suggested to indicate the availability and work pressure of the recommend experts.
Based on those factors, a project manager or a scrum master can pick suitable and available
architects and developers to resolve design concerns. These suggestions were incorporated in a
prototype developed as part of a Master’s thesis [117].

Recommendation of similar design decisions:

In a Master’s thesis [118], we observed that it is possible to identify different types of similar
design decisions. The recommended list of similar design decisions includes “related to”, “sub-
task”, “same as”, and “required by”. Even before highlighting the aforementioned fact, the lead
architect of Industry project I commented: “In Jira, we do not maintain relationship between
issues. I feel these similar decisions can be used to enrich the issues with links. I think this is a
more useful feature [compared to expert recommendation] for us”.

Even though, the decision clustering component only identifies similar design decisions and does
not indicate the type of relationship, finding the type of relationship would be beneficial not
only for documentation but also to create decision graph for impact analysis.

The development team involved in the Industry project II is currently investigating the topic of
identifying similar issues in issue management systems using document clustering approaches.

Figure 6.8: A Microsoft Word plugin for architectural recommendations: the plugin uses the
recommendation services presented in this dissertation

135

6. Evaluation

Annotation of architectural elements in textual description:

Figure 6.9: A chatbot for architectural recom-
mendations

The team driving the AKM research within
the industry partner suggested to use the ser-
vices from the architecture annotator com-
ponent in different ways. To better inte-
grate the process of annotating architectural
elements and for providing recommendations
to architects in their day-to-day activities,
the first suggestion was to embed the ser-
vices into Microsoft Word. Since, architects
use Word to document the architectural de-
scription in their projects, it would be ben-
eficial if they can receive recommendations
“on the fly” while writing those documents in-
stead of uploading those documents to a web
client. Hence, as shown in Figure 6.8, a Word
plugin was implemented that used the ser-
vices provided by the Akre-Server component.
New extensions within the pipe-and-filter ar-
chitecture of the existing UIMA pipeline were
also added to annotate custom organization-
specific terms as well as terms used in SECO
pattern catalog [130]. The recommendations
about experts were also presented to archi-
tects using this plugin.

The infrastructure provided by the UIMA
framework allowed incorporating new require-
ments related to the annotation of documents
(in this case, in the Atom editor). In the sec-
ond iteration, to address the challenges faced
by a testing team within our industry partner,
the UIMA pipeline was extended with a reg-
ular expression (regex) annotator. The testing team in a business unit maintained more than
17,000 test cases and many of these test cases contained code smells. These code smells could
be identified by a set of rules. For example, “a test case should not hardcode the name of the
machine” [patterns of machine names were given]. Since test cases were written in a variant of
Visual Basic (VB) language and the Atom editor supported VB, an Atom plugin was imple-
mented to highlight the code smells within test cases. Using this plugin, it is also possible to
add custom regex to annotate textual documents.

In the last and the ongoing iteration, a chat application is being developed which uses the already
existing services provided by the Akre-Server component. As shown in Figure 6.9, this chat bot
- NCK bot (named after the business unit within the industry partner who plan to use it in
production) answers different questions raised by the stakeholders. Since, the stakeholders of

136

6. Evaluation

this project used German as the main language for communication, the Akre-Server component
was modified to process German natural language text. Using this chat bot, end users can find
answers for the following question:

� Find experts for a specific topic

� List issues concerning specific quality attributes

� Find issues that are similar to another issue

The main intent behind the use of a chat application is to integrate the recommendation services
into the daily activities of architects and developers and to provide an easier means of commu-
nication with the recommendation system. Given that architects and developers frequently use
chat applications to communicate with each other, they can use the same system to get help, as
and when required, without any overhead of shifting to a different system and perspective.

6.3 Evaluation summary

Section 6.1, presented the quantitative evaluation of various approaches that form the core of
different components within ADeX. The quantitative evaluation provided concrete values for the
accuracy of the described approaches including, the ontology-based, ML-based, and expertise-
matrix based recommendation approaches. On the other hand, Section 6.2, summarized the
feedback comprising of areas of improvement, positive, as well as, negative aspects of ADeX
as perceived by software architects and developers in industry. Along with the feedback, few
lessons learned during the presentation were also discussed. Detailed discussion on the lessons
learned is elaborated in the next chapter.

Concerning the qualitative evaluation, it can be argued that a systematic qualitative evaluation
of the end-to-end system was not performed. However, it should be noted that, this research
project in collaboration with the industry partner was started in 2015 and is an ongoing endeavor.
The components and services within ADeX are conceptualized and realized iteratively based
on the feadback received both from stakeholders in business units of the industry partner as
well as from researchers in the software architecture community. Each component followed
more than one iteration of Hevner’s three-cycle design science method [131]. Hence, qualitative
assessment is an inherent and integral part of the design and development phase of ADeX. It
should also be noted that, apart from the feedback discussed in the previous section, a Master’s
thesis project [78] was also conducted to improve the usability of the system. In that thesis,
usability was not restricted to the usability of the user interfaces but also covered aspects such
as understandability and maintainability of ADeX for the developers and future maintainers.
Even in that thesis, detailed requirements were collected to improve the user interfaces of the
system. Once the user interfaces were adapted, they were again presented to the stakeholders
in the industry to validate if the requirements were met.

In essence, since ADeX is an ongoing research project that facilitates new ideas for support-
ing software architects and developers in the architectural decision-making process, feedback
(ground-truth) based on the application of the system in real-live projects will continue to play
a major role in how the system evolves in the future.

137

138

CHAPTER 7

Future work and conclusion

Over the last four years, with frequent interactions with architects in our industry partner as
well as researchers in software architecture research community, we have received many feedback
and suggestions for the improvement of the ADeX system. This chapter presents those improve-
ment areas and our future research roadmap. We distinguish between lessons learned from our
experiences with our industry partner and lessons learned from interactions with researchers at
ICSA and ECSA conferences from 2015 to 2018.

7.1 Lessons learned

Lessons learned from our industry partner

Lessons learned 1 : Initially, ADeX was developed as a standalone application which provided
various services and user interfaces as presented in the previous chapters. We soon realized that
architects instead prefer services to be integrated with those systems that they frequently use.
For instance, plug-in in Microsoft Word to support architects while they are writing architectural
documents, plug-in for IDEs while they are implementing a solution, or a chatbot integrated
with wiki systems while they are maintaining architectural documents. Early on in the project
itself, we considered this critical aspect and provided those services in the respective clients
as discussed in Section 6.2. As part of our future work, we intend to conduct user experience
studies to reflect on the effectiveness of such integration.

Lessons learned 2 : This dissertation only focuses on the text analysis of the project artifacts to
support architects during the decisions making process. Consideration and analysis of other data
formats including audio from architectural meetings and images in architectural documents as
well as whiteboards are valid inputs and concerns from our industry partner. In this direction,

139

7. Future work and conclusion

we recently completed a Master thesis project titled “Automatic documentation of results during
online architectural meetings1”. Given the fact that many of the high- and medium-level decisions
are made in groups during architectural meetings, this project aims to investigate how a virtual
meeting assistant can support architects during those meetings by analyzing the audio input
during live architectural meetings.

Lessons learned 3 : The quantitative evaluation of different recommendations presented in this
dissertation was performed by considering datasets from both open-source and closed-source
projects. However, the evaluation of the recommendations was performed only within the project
and not across the projects. That is, for instance, the question of whether the ML model trained
using the dataset of Apache Spark project can be used to detect decisions in Apache Hadoop
project has not been investigated. In other words, the reuse of AK across projects (in different
domains) remains to be investigated. At our research department, this topic of reuse of AK
across projects will be taken forward by our newly joined research associate2.

Lessons learned 4 : Establishing tractability across software artifacts has been an ever-green
problem in software engineering, and our interactions with the business units at our industry
partner have also suggested the same. One of the frequent questions often raised during the
demonstration of the ADeX system is that “can we trace the identified design decisions to
the actual implementation”. The fact that many of the taken decisions are never realized,
duplicated (UC 43, cf. Section 3.2), or changed during the implementation, is not reflected
in the documentation. These aspects introduce new challenges and future research directions
in the context of this dissertation. An aspect that we observe as a low-effort investigative
step, which we aim to investigate next, is the idea of leveraging from the conventions typically
followed in well-maintained open-source projects (e.g., Apache projects). In many of the Apache
foundation projects, we observe that developers either maintain an explicit link between an issue
in issue management system to source code commits in versioning systems (or vice versa) or
maintain such information in the comment descriptions. Extracting these links might also help
to establish traces between design decisions (since they are identified from issues) to their actual
implementation. Such a mechanism would then open new ways to explore ideas including the
impact of design decisions (UC 39), effort estimation for realizing similar decisions, and checking
the implementation against made design decisions (UC 40).

Lessons learned from the research community

Lessons learned 5 : In contrast to our observations with our industry partner, we notice that
researchers, especially since 2012, have been more inclined towards the process of ADM rather
than towards tooling capabilities. Our analysis of the literature review indicates that from
2005 to 2011 there was a fair amount of publications presenting AKM tools that supported
documenting design decisions. However, since then, the focus seems to have shifted to better
understanding how architects make design decisions. Many topics are recently being investigated
in depth: GDM, factors such as cognitive biases influencing ADM, and the effect of uncertainties
in decision making. Within the scope of this dissertation, we have only managed to share some
of our insights on the topic of cognitive biases in ADM (cf. next section for a discussion) and
the use of uncertainty expressions in GDM (cf. [70]).

1https://wwwmatthes.in.tum.de/pages/1e011s37ghgvz
2https://wwwmatthes.in.tum.de/pages/v2o7t4t0vg87

140

7. Future work and conclusion

7.2 Ongoing research activities

In the final phases of this dissertation, two specific topics were explored. The first topic, related
to ADM, was covered to ensure the completeness of the discussions on ADDs. Second, we
investigated the possibility of extending our approach to support architects and developers by
analyzing the real-time audio streams in online meetings. We briefly summarize these two
activities in this section.

Decision making process models and cognitive biases

Any discussion on ADDs cannot be complete without covering the process of making those
decisions. The process of making ADDs is referred to as the ADM process and reflects on the
“how” aspect of an ADD. To better understand different decision-making process models and to
document the influence of human cognitive limitations on the steps within the process models,
a master’s thesis [132] was carried out in our research department3.

Note: This section has been taken from our study documented in the publication
titled “Decision making and cognitive biases in designing software architectures” [133].

In this study, we observed that two Decision Making Models (DMMs), namely, behavioral (NDM)
and normative (RDM) models are frequently discussed in software architecture literature [40,41,
71,134,135]. We also saw references to Bounded Rational Model (BRM) for ADM [39,59,136].

The decision-making process that follows a sound logical reasoning belongs to the normative
decision-making approach. Kahneman refers to normative decision making as System 2 thinking
which is slower, deliberative, and logical [71]. Normative approaches such as the Rational
Economic Model (REM), the Brunswik’s Lens Model, and the Cynefin framework are typically
applicable in ideal scenarios (“ideal decision-making process”) wherein requirements with no
future changes and resources such as time, budget, and team dynamics are available a priori.

The Brunswik’s Lens Model [137] helps decision-makers to determine the optimal decision based
on the statistical weights assigned to the factors and clues influencing alternative decisions. It
requires an optimal decision and the corresponding weights to begin the process and to compare
it against the actual decision. The Cynefin framework [138] is useful for executives and policy-
makers to make sense of situations for decision making. It provides decision-makers guidelines on
how to analyze situations in five different context, namely, simple, complicated, complex, chaotic,
and disorder. The REM [139] comprises of a series of steps for decision-making. Decision-makers
(a) define the concerns, (b) list the alternatives to address a concern, (c) rank and assign weights
to the alternatives, and (d) choose the optimal alternative based on the weights.

It should be noted that while normative approaches work well in ideal situations, it is difficult for
architects to use it since they work under various real-life constraints such as time, complexity,
and permanently changing budget constraints. On the other hand behavioral approaches that
reflect real-world scenarios are subject to cognitive biases. The Recognition-Primed Decision
Model (RPDM) and the BRM are two examples of behavioral decision-making approaches.

3https://wwwmatthes.in.tum.de/pages/19gmopufr04wi

141

7. Future work and conclusion

The RPDM is derived from the naturalistic decision-making framework that relies on mental
simulations. The use of analogy for situation recognition and mental simulation for alternative
evaluation and selection define the RPDM [140]. In RPDM, decision-makers (a) define the
concerns, (b) recognize a concern based on previous knowledge and list the alternatives, (c)
sequentially and iteratively apply mental simulation to check if an alternative addresses the
concern, and (d) make the decision by choosing the first alternative that addresses the concern.
The aim of the decision-maker while using RPDM is to find a “good-enough” alternative that
meets an acceptability threshold.

The concept of bounded rationality was proposed by Simon in 1950s [14,141]. In BRM, decision-
makers collect only a manageable subset of alternatives, rank the alternatives using heuristics,
and choose a “satisficing” alternative (without using any optimization algorithm), which may
or may not be the optimal one. The emphasis here is that, decision-makers look for the first
workable option rather than the optimal option. Since the selection of an alternative neither
maximizes nor satisfies, it is referred to as satisficing. For selecting a satisficing alternative,
heuristics, for instance, could be previous experience or team capabilities.

Even though architects may not always be aware of how they make design decisions and their
decision-making process may not be explicit [39], researchers have shown that architects im-
plicitly apply one of the aforementioned models during decision-making. Moreover, the generic
problem-solving methods such as 8Ds [142], GROW [143], PDCA [144], or OODA loop [13] can
also aid architects structure the decision-making process. The Plan-Do-Check-Adjust (PDCA)
is an iterative four-step problem-solving method used for continuous process improvement. The
“plan-do-check” co-relates with the “hypothesis-experiment-evaluation” scientific method along
with iteration cycles to ensure the alignment of the act phase with the goals or plans set for the
iteration. Once the goals or objectives are established in the plan phase, do phase focuses on
making small changes to meet the goals and to gather information on the effects of the changes.
In the check phase, the information from the do phase is analyzed and finally, in the adjust/act
phase the issues in the analysis results are recorded to improve the process. The issues identified
in the adjust phase triggers the next iteration of the PDCA method.

The Observe, Orient, Decide, and Act (OODA) loop is a four-phase decision cycle used by
strategists in many domains including business, litigation, and military strategy. The OODA

Figure 7.1: The OODA Loop decision cycle; Adapted from [13]

142

7. Future work and conclusion

loop developed by Boyd is a generic decision-making process model. It describes how to gain
competitive advantage in any situation. In software engineering, OODA loop has been discussed
in the context of autonomous systems [145,146]. Within the OODA loop, an actor makes obser-
vations about the surrounding environment, orients his or her thinking process by perceiving
the important information based on the context, decides on a course of action, and finally acts
on it. As shown in Figure 7.1, this process is iterative with loops providing feedback to the
observe phase for constant reorientation and adaption.

Designing software systems involves strategic and tactical decision making while keeping in mind
various factors such as long-term sustainability, technical capabilities of the teams, short-term
availability of resources, and time constraints. In such a context, the OODA loop is relatable to
architects and is an intuitive generic problem-solving method. To help architects remember the
steps in DMMs, namely REM, RPDM and BRM, we have established the relationship between
the DMMs and the OODA loop. It should be highlighted to the readers that we are in an early
exploration phase of OODA loop’s applicability as an overarching framework. Furthermore, the
applicability of OODA loop (or any other general problem-solving methods) to a certain decision-
making stage (high-, medium-, or realization-level decisions as per our previous discussions) is
open for investigation. However, we choose OODA loop for this discussion since, as explained
in the next paragraphs, it enables us to structure thirty-three cognitive biases to the observe,
orient, decide, and act phases during the decision-making process.

Figure 7.2: The BRM with the OODA Loop; BRM adapted from [14]

For example, as shown in Figure 7.2, architects define the design concerns in the observe phase
and gather information related to those concerns until they feel it is complete. Then, architects
create a subset of alternatives to orient themselves with the design concerns captured in the
observe phase. Next, using heuristics such as previous experience and team capabilities, archi-
tects choose a “satisficing” alternative in the decide phase. Finally, the choosen alternative is
implemented in the act phase. Similarly, we have also documented the relationship of REM and
RPDM to the OODA loop in [133].

Furthermore, since architects are biased during their decision-making process, to raise awareness
about cognitive biases during the ADM process, we also mapped the cognitive biases to the

143

7. Future work and conclusion

Figure 7.3: The two-stage classification of cognitive biases using the OODA loop

OODA loop. Even though more than two hundred cognitive biases have been identified by
experts in various domains, we selected thirty-three biases that have already been discussed in
the context of software engineering from publications including [147] and [148]. Furthermore,
since the list of cognitive biases is extensive, a two-stage classification was used to modularize the
information. In the first stage, each cognitive bias is assigned to one or more phases of the OODA
loop. In the second stage, a further classification is made under each phase depending on the
relationships between different biases. Figure 7.3 shows the two-stage hierarchical classification
as well as relationships between biases (related to/similar). The selected thirty-three biases are
represented as the leaf nodes4.

Within the observe phase, since architects focus on how to gather information and how to present
them in the subsequent phase, biases can be classified into two main subcategories, namely,
information gathering biases and information presentation biases. Information gathering biases
include for instance, search, reference, and confirmation bias. On the other hand, framing and

4https://tum-master-thesis.herokuapp.com/

144

7. Future work and conclusion

similarity biases are classified as presentation biases. Furthermore, biases can be related to each
another. For example, reference bias is related to anchoring and adjustment bias as they both
establish a point of reference which sets the tone for further steps in decision making.

The orient phase consists of biases which influence how people interpret the information and
orient themselves to the situation at hand. During this process, architects orient themselves
by filtering available information and are influenced by the similarity of the situation, their
previous experiences, and current trends. Hence, the subcategories under the orient phase are
biases related to semblance, information filtering biases, biases related to experience, and biases
related to trends.

Since the actual decision-making happens in the decide phase, this phase is associated with
largest number of biases. The decisions are made based on the complexity of the problem, nature
of how the solution will be identified (trends), experience, and decision-making strategies.

Corresponding to the act phase, since only two related biases, namely, misinformation effect and
post-purchase rationalization were identified, we did not sub-classify these biases.

Figure 7.4: An example of a cognitive bias (planning fallacy) as documented in the bias catalog

145

7. Future work and conclusion

A catalog containing detailed information about each bias is presented in a web interface as
well as documented in a report [132] as part of this research project. Readers are directed to
that report for a detailed description regarding the selection of specific biases and the reasons
for their classification under a specific category. The planning fallacy bias from the catalog is
presented in Figure 7.4. Each bias is described using the same template containing (a) definitions
from different sources, (b) OODA phase to which it belongs to, (c) the subclass within the
classification, (d) rationale for classification under a specific class and subclass, (d) an example
from the architectural decision making context, its implications, (e) hints on how architects can
debias, and finally (f) their related biases.

In this research project we have explored three concepts (OODA loop, DMMs, and cognitive
biases) along with their relationships in the context of ADM. To help architects relate their ADM
process, be it rationalistic or naturalistic, we have mapped the steps in three different DMMs to
the OODA loop which is a generic DMM. These three DMMs have already been discussed in the
context of ADM by various researchers. Next, we have made the steps in those DMMs explicit
using process flow diagrams and mapped those steps to the different phases of the OODA loop.
Furthermore, since architects are biased during their ADM process, to raise awareness about
cognitive biases we have documented thirty-three important biases as part of the cognitive bias
catalog and mapped those biases to the OODA loop phases and subcategories.

Currently, we are investigating ways to improve the bias catalog and to make it accessible to
architects and developers at large in our partner industry. It should be highlighted that even
though the awareness of biases establishes the first point for debiasing, awareness alone is not
sufficient. The best one can expect is a discussion on cognitive biases and some limited actions
(as in the bias catalog) can be taken by architects to avoid those biases. Further research is
required to provide substantial tool support to help architects debias during the ADM process.

A virtual meeting companion to support ADM in online meetings

The work calendars of architects who are involved in multiple projects are typically cluttered
with meetings. In these meetings, architects discuss design concerns, explore alternatives, and
make design decisions. Due to time constraints and manual effort, such discussions are rarely
documented. In weekly and bi-weekly meetings, architects even miss out on capturing the
minutes of meetings. Overtime, architects due to cognitive limitations forget what decisions have
been made in the previous meetings [36,149,150] and why those decisions were made [151,152].

Furthermore, in large software companies, software development teams are geographically dis-
tributed and architectural meetings are seldom face to face. The meetings are held virtually
using online meeting tools such as Skype, Microsoft Teams, or Circuit. Over the last couple of
decades, the verbal communication analysis using meeting support technology (speech record-
ing, transcription, natural language understanding and generation) has become a significant area
of research [153]. Given the context that architectural meetings in distributed teams are held
online and many design decisions are made in those meetings, we believe that tapping into the
conversations of architectural meetings can help to better understand and support architects
during the ADM process in real time. Similar arguments have been discussed in the disserta-
tion of Schiller [154]. The author presents a framework named STACHUS which is based on a
grammar for meeting keywords including design problem, design decision, task etc. Once the

146

7. Future work and conclusion

meetings are transcribed to text using an automatic speech recognition (ASR), the grammar
is used to detect the meeting keywords and the meeting protocol is automatically generated.
Furthermore, the system also pushes the identified tasks identified during the meetings to an
issue management system along with the task description and its due date.

Our industry partner has started a research project titled “CircuitBot - A Virtual Meeting
Companion” to support architects during architectural meetings. The meeting companion is
referred to as CircuitBot since the tool Circuit is used primarily for online meetings. The high-
level vision of the CircuitBot is shown in Figure 7.5.

Figure 7.5: A virtual meeting companion for supporting architects in online meetings

The left side of Figure 7.5 shows the participants of the architectural meeting in a Circuit
conference bridge. The moderator of the conference can invite the CircuitBot (Virtual Meeting
Assistant in Figure 7.5) to join the conference. Once the bot joins the conference it starts to
record the conversations and sends the audio chunks to the bot’s back-end for processing (shown
on the right side of Figure 7.5). On receiving the audio chunks, the bot uses an ASR engine
to transcribe the voice to text. The real-time transcripts of the conversations are presented to
the meeting moderator on a web page. Moreover, the transcripts are sent to a natural language
understanding (NLU) service which labels the transcripts for instance as action items, decisions,
person responsible for an action item, and the deadline for the action item. These labels are
also presented to the moderator on the bot’s homepage. The moderator has the controls to
validate the recommendations from the NLU component and can finalize the meeting summary
comprising of meeting meta-data, transcripts, labeled action items, decisions, and responsible
individuals. The meeting summary in a pdf format is automatically pushed to the Circuit
conversation so that the meeting participants can reflect on the discussions and update the
meeting summary if required. The meeting summary is also indexed and persisted so as to
enable look-up use cases. For instance, architects can ask the bot “when was a certain decision
made?” or “what decisions were taken in the previous meeting?”.

147

7. Future work and conclusion

Based on the idea presented above, we created a proof of concept (PoC) as part of a Master
thesis project [155]. In this project, first, we conducted semi-structured interviews with ten prac-
titioners to get their views on a virtual meeting assistant. Many of the interviewees suggested
to include (a) action items, (b) assigned person, (c) task deadline, (d) decisions, and (e) catch
words or keywords. In this PoC, we have used Speechmatics5 as an ASR engine and Rasa6 for
NLU. Even though the evaluation results of the bot was not satisfactory (high word error rate for
transcriptions and low F1 scores for decision detection), we were able to identify key challenges
that need to be addressed to improve the meeting assistant and to support architects in online
meetings. The key challenges include (a) training the ASR engine and Rasa NLU models with
domain specific terms, (b) improving the quality of the voice received from the speakers, (c)
considering emotions (e.g., pitch, pause, and speech rate) of the speaker to detect uncertainties,
(d) including referring expressions to capture context, and (e) considering dialogue acts for im-
proving decision knowledge extraction. During this study, we observed that the transcripts of
the architectural meetings contain dialogue acts such as concern, alternatives, cons of an alter-
native, reiteration of a concern, the selection of an alternative (decision), and the justification
for a decision. Considering such dialogue acts while processing the transcripts in combination
with the grammar for meeting keywords proposed in the STACHUS framework can improve
the design knowledge extraction process. We are currently investigating the aforementioned
challenges in collaboration with our industry partner.

7.3 Conclusion

In this dissertation, we have presented a conceptual framework and its realization with the
tool named ADeX for the automatic curation of design decisions and for supporting architects
and developers during the decision-making process. We have documented in detail the research
activities related to ADM based on a semi-systematic literature review. 227 publications which
were considered for a detailed analysis and their documentation in Chapter 2 have helped us
position our research and its relevance to the software architecture research community. The
inputs received from our industry partner in combination with the findings from the literature
review led to the formulation and prioritization of the use cases for ADeX.

We emphasize that forcing architects to document their decisions is often unreasonable and
therefore, bottom-up approaches to AKM should complement the top-down approaches for cap-
turing, structuring, and reusing AK in large software engineering projects. The distinguishing
factor of ADeX as compared to the existing AKM tools that follow top-down approaches is that
it does not expect stakeholders to manually capture data within AKM tools to support AKM use
cases. ADeX uses NLP and ML techniques to identify design decisions made in the past by ex-
tracting information from disparate data sources (e.g., MS Project, Enterprise Architect, JIRA,
and Github issues). As an important contribution of this dissertation, we have made the source
code of ADeX as well as the datasets used for building the ML models publicly available.

Another major shortcoming of the existing AKM tools is the lack of their configurability to

5https://www.speechmatics.com/
6https://rasa.com/

148

7. Future work and conclusion

align to different projects and organizational context. Hence, we have used a meta-model based
system named SocioCortex as a foundation for ADeX. SocioCortex provides the flexibility to
adapt the domain model (in our context, the AK model) at runtime and provides experts with
the capability to define the AK model that meets specific project requirements.

Furthermore, we have presented a novel ontology-based approach to support architects and
developers during ADM. By reusing the knowledge captured in a publicly available cross-domain
ontology (the DBpedia ontology) we can identify architectural elements in natural language text
and automatically generate alternative solutions that can be considered by decision makers
during the ADM process. Furthermore, by combining both the ontology-based approach and a
matrix-based approach, we have demonstrated how to quantify AK in an organization and how
to identify those architects and developers (experts) who should be involved in ADM.

Finally, keeping in mind that the existing AKM tools are intrusive and add an overhead for
architects, we made sure that the AK extracted by ADeX is presented to architects in a seam-
less integrated manner. Using different views that provide different perspectives, architects and
developers can drill-down from a large amount of information collected from different sources
and focus on specific aspects such as (a) quality attributes addressed or not addressed by design
decisions, (b) architectural elements that are affected by design decisions, (c) experts who can
help to make new design decisions, (d) similar decisions taken in the past, and (e) alternative so-
lutions for ADM. We showed that ADeX can help software architects and developers, especially
in large software projects, to answer the following questions:

� What design decisions have already been made?

� Which architectural elements and quality attributes are affected by a decision?

� Who should be involved in making a new decision?

� Which similar design decisions have been made?

� What are the alternatives to consider while making a decision?

Finally, the components and their respective views within ADeX have been developed over the
last four years in collaboration with our industry partner who provided practical feedback. The
components, as discussed in Chapter 6, have been evaluated both qualitatively and quantita-
tively. The lessons learned from those evaluation results have been summarized. Furthermore,
we have also presented two specific ongoing activities, namely the influence of biases on ADM
and supporting architects in online meetings. To further our research activities, we are actively
seeking collaboration with researchers from cognitive science background who can provide better
insights into the human aspects of architectural decision making.

Robillard et al. [156] argue that as a fuzzy human concept, recovering aspects related to design
decisions can be notoriously difficult. The contribution of this dissertation should only be
considered as a starting point for further exploring the application of recent trends in NLP
and ML in the area of software architecture knowledge management. Moreover, given that,
“software is designed by the people, for the people”, we also emphasize the need for focused
research on the topics of human aspects of architectural decision making including cognitive
biases and uncertainties during ADM.

149

150

Bibliography

[1] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years of software archi-
tecture knowledge management: Practice and future,” Journal of Systems and Software, vol.
116, pp. 191–205, 2016.

[2] M. A. Babar, T. Dingsøyr, P. Lago, and H. Van Vliet, Software architecture knowledge
management. Springer, 2009.

[3] A. Jansen and J. Bosch, “Software architecture as a set of architectural design decisions,” in
5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05). IEEE, 2005,
pp. 109–120.

[4] ISO/IEC/IEEE, “Systems and software engineering – architecture description,”
ISO/IEC/IEEE 42010:2011(E), pp. 1–46, Dec 2011.

[5] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in
software engineering,” Keele University and Durham University Joint Report, Tech. Rep.
EBSE 2007-001, 2007.

[6] T. Reschenhofer, M. Bhat, A. Hernandez-Mendez, and F. Matthes, “Lessons learned in align-
ing data and model evolution in collaborative information systems,” in IEEE/ACM Interna-
tional Conference on Software Engineering Companion (ICSE-C). IEEE, 2016, pp. 132–141.

[7] D. Ameller and X. Franch, “Ontology-based architectural knowledge representation: struc-
tural elements module,” in International Conference on Advanced Information Systems En-
gineering. Springer, 2011, pp. 296–301.

[8] K. A. De Graaf, A. Tang, P. Liang, and H. Van Vliet, “Ontology-based software architec-
ture documentation,” in Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture. IEEE, 2012, pp. 121–130.

[9] A. Tang, P. Liang, V. Clerc, and H. van Vliet, “Supporting co-evolving architectural require-
ments and design through traceability and reasoning,” Relating Software Requiremens and
Software Architecture, 2011.

[10] O. C. S. Workgroup, “Oslc core specification version 2.0,” Open Services for Lifecycle Col-

151

Bibliography

laboration, Technical Report, 2010.

[11] B. Bruegge and A. H. Dutoit, “Object–oriented software engineering. using uml, patterns,
and java,” Learning, vol. 5, no. 6, p. 7, 2009.

[12] F. Koch, “Rest-based data integration services for software engineering domain,” Master’s
thesis, Technische Universität München, 2016.

[13] G. Hammond, The mind of war: John Boyd and American security. Smithsonian Institu-
tion, 2012.

[14] H. A. Simon, The sciences of the artificial. MIT press, 1996.

[15] M. A. Babar, “Supporting the software architecture process with knowledge management,”
in Software Architecture Knowledge Management. Springer, 2009, pp. 69–86.

[16] J. S. van der Ven and J. Bosch, “Making the right decision - supporting architects with
design decision data,” in European Conference on Software Architecture. Springer, 2013,
pp. 176–183.

[17] A. G. J. Jansen, Architectural design decisions. University Library of Groningen, 2008.

[18] P. Kruchten, “An ontology of architectural design decisions in software intensive systems,”
in 2nd Groningen Workshop on Software Variability. Citeseer, 2004, pp. 54–61.

[19] J. Bosch, “Software architecture: The next step,” in European Workshop on Software Ar-
chitecture. Springer, 2004, pp. 194–199.

[20] J. Tyree and A. Akerman, “Architecture decisions: Demystifying architecture,” IEEE Soft-
ware, vol. 22, no. 2, pp. 19–27, 2005.

[21] P. Kruchten, R. Capilla, and J. C. Dueñas, “The decision view’s role in software architecture
practice,” IEEE Software, vol. 26, no. 2, pp. 36–42, 2009.

[22] J. C. Dueñas and R. Capilla, “The decision view of software architecture,” in European
Workshop on Software Architecture. Springer, 2005, pp. 222–230.

[23] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little, Documenting
software architectures: views and beyond. Pearson Education, 2002.

[24] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of architecture design rationale,”
Journal of Systems and Software, vol. 79, no. 12, pp. 1792–1804, 2006.

[25] R. Farenhorst, J. F. Hoorn, P. Lago, and H. Van Vliet, “The lonesome architect,” in Joint
Working IEEE/IFIP Conference on Software Architecture & European Conference on Soft-
ware Architecture. WICSA/ECSA 2009. IEEE, 2009, pp. 61–70.

[26] M. A. Babar and I. Gorton, “A tool for managing software architecture knowledge,” in
2nd Workshop on Sharing and Reusing Architectural Knowledge-Architecture, Rationale, and
Design Intent (SHARK/ADI’07: ICSE Workshops 2007). IEEE, 2007, pp. 11–11.

[27] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, M. Hassel, and F. Matthes, “Meta-
model based framework for architectural knowledge management,” in Proccedings of the

152

Bibliography

10th European Conference on Software Architecture Workshops. ACM, 2016, p. 12.

[28] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, and P. Avgeriou, “Industrial imple-
mentation of a documentation framework for architectural decisions,” in IEEE/IFIP Con-
ference on Software Architecture (WICSA). IEEE, 2014, pp. 225–234.

[29] G. Buchgeher and R. Weinreich, “Automatic tracing of decisions to architecture and im-
plementation,” in 9th Working IEEE/IFIP Conference on Software Architecture (WICSA).
IEEE, 2011, pp. 46–55.

[30] R. Capilla, F. Nava, and C. Carrillo, “Effort estimation in capturing architectural knowl-
edge,” in Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 2008, pp. 208–217.

[31] J. Lee, “Design rationale systems: understanding the issues,” IEEE Expert, vol. 12, no. 3,
pp. 78–85, 1997.

[32] L. Lee and P. Kruchten, “Capturing software architectural design decisions,” in Canadian
Conference on Electrical and Computer Engineering. CCECE 2007. IEEE, 2007, pp. 686–
689.

[33] S. Ambler, Agile modeling: effective practices for extreme programming and the unified
process. John Wiley & Sons, 2002.

[34] C. J. Stettina and W. Heijstek, “Necessary and neglected?: an empirical study of inter-
nal documentation in agile software development teams,” in Proceedings of the 29th ACM
international conference on Design of communication. ACM, 2011, pp. 159–166.

[35] J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, “Distributed scrum: Agile project
management with outsourced development teams,” in 40th Annual Hawaii International
Conference on System Sciences. HICSS 2007. IEEE, 2007, pp. 274a–274a.

[36] C. Miesbauer and R. Weinreich, “Classification of design decisions–an expert survey in
practice,” in European Conference on Software Architecture. Springer, 2013, pp. 130–145.

[37] A. Kleebaum, J. O. Johanssen, B. Paech, R. Alkadhi, and B. Bruegge, “Decision knowledge
triggers in continuous software engineering,” in Proceedings of the 4th International Workshop
on Rapid Continuous Software Engineering. ACM, 2018, pp. 23–26.

[38] S. T. Hassard, A. Blandford, and A. L. Cox, “Analogies in design decision-making,” in
Proceedings of the 23rd British HCI Group Annual Conference on People and Computers:
Celebrating People and Technology. British Computer Society, 2009, pp. 140–148.

[39] A. Tang, M. Razavian, B. Paech, and T.-M. Hesse, “Human aspects in software architec-
ture decision making: a literature review,” in IEEE International Conference on Software
Architecture (ICSA). IEEE, 2017, pp. 107–116.

[40] C. Zannier and F. Maurer, “Social factors relevant to capturing design decisions,” in Proceed-
ings of the Second Workshop on SHAring and Reusing architectural Knowledge Architecture,
Rationale, and Design Intent. IEEE Computer Society, 2007, p. 1.

[41] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision making based on em-

153

Bibliography

pirical results of interviews with software designers,” Information and Software Technology,
vol. 49, no. 6, pp. 637–653, 2007.

[42] A. H. Dutoit, R. McCall, I. Mistrik, and B. Paech, “Rationale management in software
engineering: Concepts and techniques,” in Rationale Management in Software Engineering.
Springer, 2006, pp. 1–48.

[43] A. H. Dutoit, R. McCall, I. Mistrík, and B. Paech, Rationale management in software
engineering. Springer Science & Business Media, 2007.

[44] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for design traceability
and reasoning,” Journal of Systems and Software, vol. 80, no. 6, pp. 918–934, 2007.

[45] J. E. Burge, J. M. Carroll, R. McCall, and I. Mistrik, Rationale-based software engineering.
Springer, 2008.

[46] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated classification of non-
functional requirements,” Requirements Engineering, vol. 12, no. 2, pp. 103–120, 2007.

[47] J. Slankas and L. Williams, “Automated extraction of non-functional requirements in avail-
able documentation,” in 1st International Workshop on Natural Language Analysis in Soft-
ware Engineering (NaturaLiSE). IEEE, 2013, pp. 9–16.

[48] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements in software
engineering. Springer Science & Business Media, 2012, vol. 5.

[49] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative approach to identifying
expertise,” in Proceedings of the 24rd International Conference on Software Engineering.
ICSE 2002. IEEE, 2002, pp. 503–512.

[50] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “How do practitioners manage
decision knowledge during continuous software engineering?” in Proceedings of the 31st In-
ternational Conference on Software Engineering and Knowledge Engineering, ser. SEKE’19.
KSI Research Inc., 2019, pp. 735–740.

[51] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Towards a systematic approach
to integrate usage and decision knowledge in continuous software engineering,” in CSE@ SE,
2017, pp. 7–11.

[52] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “Tool support for decision and
usage knowledge in continuous software engineering,” in Proceedings of the 3rd Workshop on
Continuous Software Engineering. Ulm, Germany: CEUR-WS.org, 2018, pp. 74–77.

[53] T.-M. Hesse and B. Paech, “Supporting the collaborative development of requirements and
architecture documentation,” in 3rd International Workshop on the Twin Peaks of Require-
ments and Architecture (TwinPeaks). IEEE, 2013, pp. 22–26.

[54] T.-M. Hesse, A. Kuehlwein, and T. Roehm, “Decdoc: A tool for documenting design deci-
sions collaboratively and incrementally,” in 1st International Workshop on Decision Making
in Software ARCHitecture (MARCH). IEEE, 2016, pp. 30–37.

[55] R. Alkadhi, J. O. Johanssen, E. Guzman, and B. Bruegge, “React: an approach for capturing

154

Bibliography

rationale in chat messages,” in ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 2017, pp. 175–180.

[56] R. M. A. Alkadhi, “Rationale in developers’ communication,” Ph.D. dissertation, Technische
Universität München, 2018.

[57] F. Gilson and D. Weyns, “When natural language processing jumps into collaborative soft-
ware engineering,” in IEEE International Conference on Software Architecture Companion
(ICSA-C). IEEE, 2019, pp. 238–241.

[58] A. Kleebaum, M. Konersmann, M. Langhammer, B. Paech, M. Goedicke, and R. Reussner,
“Continuous design decision support,” in Managed Software Evolution. Springer, 2019, pp.
107–139.

[59] H. van Vliet and A. Tang, “Decision making in software architecture,” Journal of Systems
and Software, vol. 117, pp. 638–644, 2016.

[60] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes, “Automatic extraction
of design decisions from issue management systems: a machine learning based approach,” in
European Conference on Software Architecture. Springer, 2017, pp. 138–154.

[61] M. Bhat, K. Shumaiev, and F. Matthes, “Towards a framework for managing architectural
design decisions,” in Proceedings of the 11th European Conference on Software Architecture:
Companion Proceedings. ACM, 2017, pp. 48–51.

[62] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, M. Hassel, and F. Matthes, “An
ontology-based approach for software architecture recommendations,” in 23rd Americas
Conference on Information Systems (AMCIS), Boston, MA, USA, 2017. [Online]. Available:
http://aisel.aisnet.org/amcis2017/SemanticsIS/Presentations/7

[63] M. Bhat, K. Shumaiev, K. Koch, U. Hohenstein, A. Biesdorf, and F. Matthes, “An expert
recommendation system for design decision making: Who should be involved in making a
design decision?” in 2018 IEEE International Conference on Software Architecture (ICSA).
IEEE, 2018, pp. 85–8509.

[64] M. Bhat, C. Tinnes, K. Shumaiev, , A. Biesdorf, U. Hohenstein, and F. Matthes, “Adex:
A tool for automatic curation of design decision knowledge for architectural decision recom-
mendations,” in 2019 IEEE International Conference on Software Architecture Companion
(ICSA-C). IEEE, 2019.

[65] J. Biolchini, P. G. Mian, A. C. C. Natali, and G. H. Travassos, “Systematic review in soft-
ware engineering,” System Engineering and Computer Science Department COPPE/UFRJ,
Technical Report ES, vol. 679, no. 05, p. 45, 2005.

[66] D. Budgen and P. Brereton, “Performing systematic literature reviews in software engineer-
ing,” in Proceedings of the 28th international conference on Software engineering. ACM,
2006, pp. 1051–1052.

[67] T. Dyba, T. Dingsoyr, and G. K. Hanssen, “Applying systematic reviews to diverse study
types: An experience report,” in 1st International Symposium on Empirical Software Engi-
neering and Measurement. ESEM 2007. IEEE, 2007, pp. 225–234.

155

http://aisel.aisnet.org/amcis2017/SemanticsIS/Presentations/7

Bibliography

[68] B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele Univer-
sity, vol. 33, no. 2004, pp. 1–26, 2004.

[69] K. Shumaiev and M. Bhat, “Automatic uncertainty detection in software architecture doc-
umentation,” in IEEE International Conference on Software Architecture Workshops (IC-
SAW). IEEE, 2017, pp. 216–219.

[70] K. Shumaiev, M. Bhat, O. Klymenko, A. Biesdorf, U. Hohenstein, and F. Matthes, “Un-
certainty expressions in software architecture group decision making: explorative study,” in
Proceedings of the 12th European Conference on Software Architecture: Companion Proceed-
ings. ACM, 2018, p. 42.

[71] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.

[72] A. Brown and G. Wilson, “The architecture of open source applications, volume i and
volume ii,” Ebook, May, 2012.

[73] H. Rittel, “On the planning crisis: Systems analysis of the’ first and second generations’,”
Bedriftskonomen, vol. 8, pp. 390–396, 1972.

[74] H. W. Rittel and M. M. Webber, “Dilemmas in a general theory of planning,” Policy Sci-
ences, vol. 4, no. 2, pp. 155–169, 1973.

[75] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar, “A comparative study of
architecture knowledge management tools,” Journal of Systems and Software, vol. 83, no. 3,
pp. 352–370, 2010.

[76] P. Liang and P. Avgeriou, “Tools and technologies for architecture knowledge management,”
in Software Architecture Knowledge Management. Springer, 2009, pp. 91–111.

[77] P. Kruchten, P. Lago, H. Van Vliet, and T. Wolf, “Building up and exploiting architectural
knowledge,” in 5th Working IEEE/IFIP Conference on Software Architecture. WICSA 2005.
IEEE, 2005, pp. 291–292.

[78] J. Xu, “Improving the usability of an integrated decision support system for design decision
making,” Master’s thesis, Technische Universität München, 2017.

[79] M. A. Babar, I. Gorton, and B. Kitchenham, “A framework for supporting architecture
knowledge and rationale management,” in Rationale Management in Software Engineering.
Springer, 2006, pp. 237–254.

[80] P. Lago, R. Farenhorst, P. Avgeriou, R. C. de Boer, V. Clerc, A. Jansen, and H. van Vliet,
“The griffin collaborative virtual community for architectural knowledge management,” in
Collaborative Software Engineering. Springer, 2010, pp. 195–217.

[81] G. Fischer and J. Otswald, “Knowledge management: problems, promises, realities, and
challenges,” IEEE Intelligent Systems, vol. 16, no. 1, pp. 60–72, 2001.

[82] J. S. Van Der Ven, A. Jansen, P. Avgeriou, and D. K. Hammer, Using architectural decisions.
University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science,
2006.

156

Bibliography

[83] W. C. Regli, X. Hu, M. Atwood, and W. Sun, “A survey of design rationale systems:
approaches, representation, capture and retrieval,” Engineering with Computers, vol. 16, no.
3-4, pp. 209–235, 2000.

[84] M. A. Babar, A. Northway, I. Gorton, P. Heuer, and T. Nguyen, “Introducing tool support
for managing architectural knowledge: an experience report,” in 15th Annual IEEE Interna-
tional Conference and Workshop on the Engineering of Computer Based Systems (ECBS).
IEEE, 2008, pp. 105–113.

[85] P. Haumer, K. Pohl, K. Weidenhaupt, and M. Jarke, “Improving reviews by extended
traceability,” in Proceedings of the 32nd Annual Hawaii International Conference on Systems
Sciences. HICSS-32. IEEE, 1999, pp. 10–pp.

[86] A. MacLean, R. M. Young, V. M. Bellotti, and T. P. Moran, “Questions, options, and
criteria: Elements of design space analysis,” Human–Computer Interaction, vol. 6, no. 3-4,
pp. 201–250, 1991.

[87] B. Ramesh and M. Jarke, “Toward reference models for requirements traceability,” IEEE
Transactions on Software Engineering, no. 1, pp. 58–93, 2001.

[88] E. J. Conklin and K. B. Yakemovic, “A process-oriented approach to design rationale,”
Human–Computer Interaction, vol. 6, no. 3-4, pp. 357–391, 1991.

[89] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, “Improving efficiency and accuracy
in multilingual entity extraction,” in Proceedings of the 9th International Conference on
Semantic Systems. ACM, 2013, pp. 121–124.

[90] P. Liang, A. Jansen, and P. Avgeriou, “Collaborative software architecting through archi-
tectural knowledge sharing,” Collaborative Software Engineering (CoSE), pp. 343–368, 2008.

[91] N. Schuster, “Adkwik–a collaborative system for architectural decision modeling and deci-
sion process support based on web 2.0 technologies,” Stuttgart Media University, 2007.

[92] A. Jansen, J. Van Der Ven, P. Avgeriou, and D. K. Hammer, “Tool support for architectural
decisions,” in The Working IEEE/IFIP Conference on Software Architecture. WICSA’07.
Ieee, 2007, pp. 4–4.

[93] L. Lee and P. Kruchten, “A tool to visualize architectural design decisions,” in International
Conference on the Quality of Software Architectures. Springer, 2008, pp. 43–54.

[94] M. Shahin, P. Liang, and M. R. Khayyambashi, “A survey of architectural design decision
models and tools,” Technical Report SBU-RUG-2009-SL-01, Sheikh Bahaei University &
University of Groningen, 2009.

[95] F. Matthes, C. Neubert, and A. Steinhoff, “Hybrid wikis: Empowering users to collabora-
tively structure information,” ICSOFT (1), vol. 11, pp. 250–259, 2011.

[96] R. B. Grady and D. L. Caswell, Software metrics: establishing a company-wide program.
Prentice-Hall, Inc., 1987.

[97] R. B. Grady, Practical software metrics for project management and process improvement.
Prentice-Hall, Inc., 1992.

157

Bibliography

[98] T. Büchner, F. Matthes, and C. Neubert, “Data model driven implementation of web co-
operation systems with tricia,” in Objects and Databases. Springer, 2010, pp. 70–84.

[99] A. Tang, P. Liang, and H. Van Vliet, “Software architecture documentation: The road
ahead,” in 9th Working IEEE/IFIP Conference on Software Architecture. IEEE, 2011, pp.
252–255.

[100] A. Osterwalder, “The business model ontology a proposition in a design science approach,”
Ph.D. dissertation, Université de Lausanne, Faculté des hautes études commerciales, 2004.

[101] A. Osterwalder and Y. Pigneur, Business model generation: a handbook for visionaries,
game changers, and challengers. John Wiley & Sons, 2010.

[102] C. Hofmeister, R. Nord, and D. Soni, Applied software architecture. Addison-Wesley
Professional, 2000.

[103] T. Reschenhofer, I. Monahov, and F. Matthes, “Type-safety in ea model analysis,” in
IEEE 18th International Enterprise Distributed Object Computing Conference Workshops
and Demonstrations (EDOCW). IEEE, 2014, pp. 87–94.

[104] P. Browne, JBoss Drools business rules. Packt Publishing Ltd, 2009.

[105] F. Galiegue, K. Zyp et al., “Json schema: Core definitions and terminology,” Internet
Engineering Task Force (IETF), p. 32, 2013.

[106] P. Bagrecha, “Implementation of an exploratory workbench for identifying similar design
decisions,” Master’s thesis, Technische Universität München, 2018.

[107] E. Prud, A. Seaborne et al., “Sparql query language for rdf,” W3C recommendation, 2006.

[108] A. Jena, “A free and open source java framework for building semantic web and linked
data applications,” Available online: jena.apache.org (accessed on 28 April 2015), 2015.

[109] R. Kazman, M. Klein, and P. Clements, “Atam: Method for architecture evaluation,”
Carnegie-Mellon Univ Pittsburgh PA Software Engineering Institute, Tech. Rep., 2000.

[110] I. Hussain, L. Kosseim, and O. Ormandjieva, “Using linguistic knowledge to classify non-
functional requirements in srs documents,” in International Conference on Application of
Natural Language to Information Systems. Springer, 2008, pp. 287–298.

[111] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “The detection and classification of
non-functional requirements with application to early aspects,” in 14th IEEE International
Requirements Engineering Conference (RE’06). IEEE, 2006, pp. 39–48.

[112] L. Rosenhainer, “Identifying crosscutting concerns in requirements specifications,” in Pro-
ceedings of OOPSLA Early Aspects, 2004.

[113] A. Casamayor, D. Godoy, and M. Campo, “Identification of non-functional requirements
in textual specifications: A semi-supervised learning approach,” Information and Software
Technology, vol. 52, no. 4, pp. 436–445, 2010.

[114] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, “The
promise repository of empirical software engineering data,” 2012. [Online]. Available:

158

Bibliography

http://promisedata.org/repository

[115] W. Zhang, Y. Yang, Q. Wang, and F. Shu, “An empirical study on classification of non-
functional requirements,” in 23rd International Conference on Software Engineering and
Knowledge Engineering (SEKE 2011), 2011, pp. 190–195.

[116] Z. Kurtanović and W. Maalej, “Automatically classifying functional and non-functional
requirements using supervised machine learning,” in IEEE 25th International Requirements
Engineering Conference (RE). IEEE, 2017, pp. 490–495.

[117] K. Koch, “Design and implementation of an expert recommendation system for making
design decisions,” Master’s thesis, Technische Universität München, 2017.

[118] P. Bagrecha, “Implementation of an exploratory workbench for identifying similar design
decisions,” Master’s thesis, Technische Universität München, 2017.

[119] M. Ruppel, “Automatic extraction of design decision relationships from a task managment
system,” Master’s thesis, Technische Universität München, 2017.

[120] C. J. Van Rijsbergen, “Information retrieval,” 1979. [Online]. Available: www.
onlinelibrary.wiley.com

[121] Caphyon, “Ctr study,” https://www.advancedwebranking.com/cloud/ctrstudy/, 2016, ac-
cessed: 2018-09-13.

[122] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137,
1980.

[123] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation,” in Encyclopedia of Database
Systems. Springer, 2009, pp. 532–538.

[124] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM Trans-
actions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27, 2011.

[125] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen et al., “Mllib: Machine learning in apache spark,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.

[126] C. D. Manning, C. D. Manning, and H. Schütze, Foundations of statistical natural language
processing. MIT press, 1999.

[127] M. Razavian, A. Tang, R. Capilla, and P. Lago, “In two minds: how reflections influence
software design thinking,” Journal of Software: Evolution and Process, vol. 28, no. 6, pp.
394–426, 2016.

[128] I. Groher and R. Weinreich, “A study on architectural decision-making in context,” in
12th Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 2015, pp.
11–20.

[129] R. C. De Boer, R. Farenhorst, P. Lago, H. Van Vliet, V. Clerc, and A. Jansen, “Architec-
tural knowledge: Getting to the core,” in International Conference on the Quality of Software
Architectures. Springer, 2007, pp. 197–214.

159

http://promisedata.org/repository
www.onlinelibrary.wiley.com
www.onlinelibrary.wiley.com
https://www.advancedwebranking.com/cloud/ctrstudy/

Bibliography

[130] K. Telschig, N. Schöffel, K.-B. Schultis, C. Elsner, and A. Knapp, “Seco patterns: Archi-
tectural decision support in software ecosystems,” in 1st International Workshop on Decision
Making in Software ARCHitecture (MARCH). IEEE, 2016, pp. 38–44.

[131] A. R. Hevner, “A three cycle view of design science research,” Scandinavian Journal of
Information Systems, vol. 19, no. 2, p. 4, 2007.

[132] A. Manjunath, “Decision-making and cognitive biases in designing software architectures,”
Master’s thesis, Technische Universität München, 2018.

[133] A. Manjunath, M. Bhat, K. Shumaiev, A. Biesdorf, and F. Matthes, “Decision making and
cognitive biases in designing software architectures,” in IEEE International Conference on
Software Architecture Companion (ICSA-C). IEEE, 2018, pp. 52–55.

[134] G. A. Klein, Streetlights and shadows: Searching for the keys to adaptive decision making.
MIT Press, 2011.

[135] M. Crowder, “Decision-making: two schools of thought or one?” in Salford Postgraduate
Annual Research Conference, 2012, p. 47.

[136] M. Crowder, “Decision-making in practice: The use of cognitive heuristics by senior
managers,” 2013. [Online]. Available: http://hdl.handle.net/10034/314940

[137] E. Brunswik, “The conceptual framework of psychology,” Psychological Bulletin, vol. 49,
no. 6, pp. 654–656, 1952.

[138] D. J. Snowden and M. E. Boone, “A leader’s framework for decision making,” Harvard
Business Review, vol. 85, no. 11, p. 68, 2007.

[139] W. Edwards, “The theory of decision making,” Psychological Bulletin, vol. 51, no. 4, p.
380, 1954.

[140] C. M. Mitchell, J. G. Morris, J. J. Ockerman, and W. J. Potter, “Recognition primed
decision making as a technique to support reuse in software design,” Naturalistic Decision
Making, pp. 305–318, 1997.

[141] H. A. Simon, “Models of man; social and rational.” Wiley, 1957. [Online]. Available:
https://psycnet.apa.org/record/1958-00363-000

[142] L. Rambaud, 8D structured problem solving: A guide to creating high quality 8D reports.
Phred Solutions, 2006.

[143] M. Landsberg, The Tao of coaching: Boost your effectiveness at work by inspiring and
developing those around you. Profile Books, 2015.

[144] N. R. Tague, The quality toolbox. ASQ Quality Press Milwaukee, WI, 2005, vol. 600.

[145] S. Behere and M. Torngren, “A functional architecture for autonomous driving,” in 1st
International Workshop on Automotive Software Architecture (WASA). IEEE, 2015, pp.
3–10.

[146] S. Karim and C. Heinze, “Experiences with the design and implementation of an agent-
based autonomous uav controller,” in Proceedings of the 4th International Joint Conference

160

http://hdl.handle.net/10034/314940
https://psycnet.apa.org/record/1958-00363-000

Bibliography

on Autonomous Agents and Multiagent Systems. ACM, 2005, pp. 19–26.

[147] A. Zalewski, K. Borowa, and A. Ratkowski, “On cognitive biases in architecture decision
making,” in European Conference on Software Architecture. Springer, 2017, pp. 123–137.

[148] W. Stacy and J. MacMillan, “Cognitive bias in software engineering,” Communications of
the ACM, vol. 38, no. 6, pp. 57–63, 1995.

[149] S. Rugaber, S. B. Ornburn, and R. J. LeBlanc, “Recognizing design decisions in programs,”
IEEE Software, vol. 7, no. 1, pp. 46–54, 1990.

[150] K. Power and R. Wirfs-Brock, “Understanding architecture decisions in context,” in Eu-
ropean Conference on Software Architecture. Springer, 2018, pp. 284–299.

[151] C. Potts and G. Bruns, “Recording the reasons for design decisions,” in Proceedings of
the 10th international conference on Software engineering. IEEE Computer Society Press,
1988, pp. 418–427.

[152] G. Pedraza-Garcia, H. Astudillo, and D. Correal, “Analysis of design meetings for un-
derstanding software architecture decisions,” in XL Latin American Computing Conference
(CLEI). IEEE, 2014, pp. 1–10.

[153] A. Popescu-Belis, D. Lalanne, and H. Bourlard, “Finding information in multimedia
records of meetings,” Idiap, Tech. Rep., 2011.

[154] J. Schiller, “A framework for externalizing information in agile meetings,” Ph.D.
dissertation, Technische Universität München, 2011. [Online]. Available: http://
nbn-resolving.de/urn:nbn:de:bvb:91-diss-20110531-998198-1-0

[155] O. Klymenko, “Automatic documentation of results during online architectural meetings,”
Master’s thesis, Technische Universität München, 2019.

[156] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, M. A. Gerosa,
M. Godfrey, M. Lanza, M. Linares-Vásquez et al., “On-demand developer documentation,” in
IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE,
2017, pp. 479–483.

161

http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20110531-998198-1-0
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20110531-998198-1-0

Primary studies used in literature review

[P1] P. Kruchten, P. Lago, H. Van Vliet, and T. Wolf, “Building up and exploiting archi-
tectural knowledge,” in 5th Working IEEE/IFIP Conference on Software Architecture.
WICSA 2005. IEEE, 2005, pp. 291–292.

[P2] P. Kruchten, P. Lago, and H. Van Vliet, “Building up and reasoning about architec-
tural knowledge,” in International Conference on the Quality of Software Architectures.
Springer, 2006, pp. 43–58.

[P3] D. L. Parnas and P. C. Clements, “A rational design process: How and why to fake it,”
IEEE Transactions on Software Engineering, no. 2, pp. 251–257, 1986.

[P4] D. B. Walz, J. J. Elam, and B. Curtis, “Inside a software design team: knowledge ac-
quisition, sharing, and integration,” Communications of the ACM, vol. 36, no. 10, pp.
63–77, 1993.

[P5] M. Lavallée and P. N. Robillard, “Causes of premature aging during software develop-
ment: an observational study,” in Proceedings of the 12th International Workshop on
Principles of Software Evolution and the 7th annual ERCIM Workshop on Software Evo-
lution. ACM, 2011, pp. 61–70.

[P6] J. S. van der Ven, A. G. Jansen, J. A. Nijhuis, and J. Bosch, “Design decisions: The bridge
between rationale and architecture,” in Rationale Management in Software Engineering.
Springer, 2006, pp. 329–348.

[P7] R. Farenhorst, J. F. Hoorn, P. Lago, and H. Van Vliet, “The lonesome architect,” in
Joint Working IEEE/IFIP Conference on Software Architecture & European Conference
on Software Architecture. WICSA/ECSA 2009. IEEE, 2009, pp. 61–70.

[P8] R. Farenhorst, P. Lago, and H. Van Vliet, “Effective tool support for architectural knowl-
edge sharing,” in European Conference on Software Architecture. Springer, 2007, pp.
123–138.

[P9] R. Farenhorst, R. Izaks, P. Lago, and H. Van Vliet, “A just-in-time architectural knowl-
edge sharing portal,” in 7th Working IEEE/IFIP Conference on Software Architecture.
WICSA 2008. IEEE, 2008, pp. 125–134.

162

Primary studies used in literature review

[P10] R. Farenhorst and H. Van Vliet, “Understanding how to support architects in shar-
ing knowledge,” in ICSE Workshop on Sharing and Reusing Architectural Knowledge.
SHARK’09. IEEE, 2009, pp. 17–24.

[P11] W. Bu, A. Tang, and J. Han, “An analysis of decision-centric architectural design ap-
proaches,” in Proceedings of the 2009 ICSE Workshop on Sharing and Reusing Architec-
tural Knowledge. IEEE Computer Society, 2009, pp. 33–40.

[P12] P. Liang, A. Jansen, and P. Avgeriou, “Selecting a high-quality central model for sharing
architectural knowledge,” in 8th International Conference on Quality Software. QSIC’08.
IEEE, 2008, pp. 357–365.

[P13] H. Van Vliet, “Software architecture knowledge management,” in 19th Australian Con-
ference on Software Engineering. ASWEC 2008. IEEE, 2008, pp. 24–31.

[P14] R. C. De Boer and R. Farenhorst, “In search of architectural knowledge,” in Proceedings
of the 3rd international workshop on Sharing and reusing architectural knowledge. ACM,
2008, pp. 71–78.

[P15] R. C. De Boer and H. Van Vliet, “On the similarity between requirements and architec-
ture,” Journal of Systems and Software, vol. 82, no. 3, pp. 544–550, 2009.

[P16] F. Chen, “From architecture to requirements: Relating requirements and architecture for
better requirements engineering,” in IEEE 22nd International Requirements Engineering
Conference (RE). IEEE, 2014, pp. 451–455.

[P17] A. Jansen, P. Avgeriou, and J. S. van der Ven, “Enriching software architecture docu-
mentation,” Journal of Systems and Software, vol. 82, no. 8, pp. 1232–1248, 2009.

[P18] O. Zimmermann, L. Wegmann, H. Koziolek, and T. Goldschmidt, “Architectural de-
cision guidance across projects-problem space modeling, decision backlog management
and cloud computing knowledge,” in 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA). IEEE, 2015, pp. 85–94.

[P19] R. C. de Boer, “Archimedes publication and integration of architectural knowledge,” in
IEEE International Conference on Software Architecture Workshops (ICSAW). IEEE,
2017, pp. 268–271.

[P20] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar, “A comparative study
of architecture knowledge management tools,” Journal of Systems and Software, vol. 83,
no. 3, pp. 352–370, 2010.

[P21] Z. Li, P. Liang, and P. Avgeriou, “Application of knowledge-based approaches in soft-
ware architecture: A systematic mapping study,” Information and Software Technology,
vol. 55, no. 5, pp. 777–794, 2013.

[P22] R. Weinreich and I. Groher, “A fresh look at codification approaches for sakm: A sys-
tematic literature review,” in European Conference on Software Architecture. Springer,
2014, pp. 1–16.

[P23] M. S. Nejad, S. Moaven, J. Habibi, and R. Alidousti, “Toward a collaborative method

163

Primary studies used in literature review

for knowledge management of software architectural decisions based on trust,” in 12th
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE,
2015, pp. 828–834.

[P24] T.-M. Hesse and B. Paech, “Documenting relations between requirements and design
decisions: A case study on design session transcripts,” in International Working Confer-
ence on Requirements Engineering: Foundation for Software Quality. Springer, 2016,
pp. 188–204.

[P25] M. Soliman, M. Galster, A. R. Salama, and M. Riebisch, “Architectural knowledge
for technology decisions in developer communities: An exploratory study with stack-
overflow,” in 13th Working IEEE/IFIP Conference on Software Architecture (WICSA).
IEEE, 2016, pp. 128–133.

[P26] M. Soliman, M. Galster, and M. Riebisch, “Developing an ontology for architecture knowl-
edge from developer communities,” in IEEE International Conference on Software Ar-
chitecture (ICSA). IEEE, 2017, pp. 89–92.

[P27] T. D. LaToza, E. Shabani, and A. Van Der Hoek, “A study of architectural decision
practices,” in 6th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), 2013. IEEE, 2013, pp. 77–80.

[P28] J. Musil, F. J. Ekaputra, M. Sabou, T. Ionescu, D. Schall, A. Musil, and S. Biffl, “Contin-
uous architectural knowledge integration: Making heterogeneous architectural knowledge
available in large-scale organizations,” in 2017 IEEE International Conference on Soft-
ware Architecture (ICSA). IEEE, 2017, pp. 189–192.

[P29] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years of software archi-
tecture knowledge management: Practice and future,” Journal of Systems and Software,
vol. 116, pp. 191–205, 2016.

[P30] M. Sintzoff, “Suggestions for composing and specifying program design decisions,” in
International Symposium on Programming. Springer, 1980, pp. 311–326.

[P31] S. Rugaber, S. B. Ornburn, and R. J. LeBlanc, “Recognizing design decisions in pro-
grams,” IEEE Software, vol. 7, no. 1, pp. 46–54, 1990.

[P32] A. Cimitile, F. Lanubile, and G. Visaggio, “Traceability based on design decisions,” in
Proceedings Conference on Software Maintenance. IEEE, 1992, pp. 309–317.

[P33] P. Chung and R. Goodwin, “Representing design history,” in Artificial Intelligence in
Design’94. Springer, 1994, pp. 735–752.

[P34] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE software, vol. 12, no. 6,
pp. 42–50, 1995.

[P35] A. Ran and J. Kuusela, “Design decision trees,” in Proceedings of the 8th International
Workshop on Software Specification and Design. IEEE Computer Society, 1996, p. 172.

[P36] P. Kruchten, “The software architect,” in Software Architecture. Springer, 1999, pp.
565–583.

164

Primary studies used in literature review

[P37] J. Tyree, “Architectural design decisions session report,” in 5th Working IEEE/IFIP
Conference on Software Architecture. WICSA 2005. IEEE, 2005, pp. 285–286.

[P38] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs and benefits of architectural
decisions,” in Proceedings of the 23rd International Conference on Software Engineering.
ICSE 2001. IEEE, 2001, pp. 297–306.

[P39] M. Moore, R. Kazman, M. Klein, and J. Asundi, “Quantifying the value of architec-
ture design decisions: lessons from the field,” in Proceedings of the 25th International
Conference on Software Engineering. IEEE Computer Society, 2003, pp. 557–562.

[P40] P. C. Clements, “An economic model for software architecture decisions,” in Proceedings
of the First international Workshop on the Economics of Software and Computation.
IEEE Computer Society, 2007, p. 1.

[P41] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework for making architec-
tural decisions in a business context,” in ACM/IEEE 32nd International Conference on
Software Engineering, 2010, vol. 2. IEEE, 2010, pp. 149–157.

[P42] A. Ran, “Fundamental concepts for practical software architecture,” ACM SIGSOFT
Software Engineering Notes, vol. 26, no. 5, pp. 328–329, 2001.

[P43] J. Bosch, “Software architecture: The next step,” in European Workshop on Software
Architecture. Springer, 2004, pp. 194–199.

[P44] A. Jansen and J. Bosch, “Evaluation of tool support for architectural evolution,” in Pro-
ceedings of the 19th IEEE International Conference on Automated Software Engineering.
IEEE Computer Society, 2004, pp. 375–378.

[P45] A. Jansen, J. Bosch, and P. Avgeriou, “Documenting after the fact: Recovering archi-
tectural design decisions,” Journal of Systems and Software, vol. 81, no. 4, pp. 536–557,
2008.

[P46] J. S. van der Ven and J. Bosch, “Making the right decision: supporting architects with
design decision data,” in European Conference on Software Architecture. Springer, 2013,
pp. 176–183.

[P47] A. J. Ko and P. K. Chilana, “Design, discussion, and dissent in open bug reports,” in
Proceedings of the 2011 iConference. ACM, 2011, pp. 106–113.

[P48] J. C. Dueñas and R. Capilla, “The decision view of software architecture,” in European
Workshop on Software Architecture. Springer, 2005, pp. 222–230.

[P49] A. H. Eden, “Strategic versus tactical design,” in Proceedings of the 38th Annual Hawaii
International Conference on System Sciences. HICSS’05. IEEE, 2005, pp. 313a–313a.

[P50] J. Tyree and A. Akerman, “Architecture decisions: Demystifying architecture,” IEEE
software, vol. 22, no. 2, pp. 19–27, 2005.

[P51] A. Zalewski and M. Ludzia, “Diagrammatic modeling of architectural decisions,” in Eu-
ropean Conference on Software Architecture. Springer, 2008, pp. 350–353.

165

Primary studies used in literature review

[P52] Q. Gu, P. Lago, and H. Van Vliet, “A template for soa design decision making in an
educational setting,” in 36th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA 2010). IEEE, 2010, pp. 175–182.

[P53] D. Dermeval, J. Pimentel, C. Silva, J. Castro, E. Santos, G. Guedes, A. Finkelstein et al.,
“Stream-add-supporting the documentation of architectural design decisions in an archi-
tecture derivation process,” in IEEE 36th Annual Computer Software and Applications
Conference (COMPSAC). IEEE, 2012, pp. 602–611.

[P54] V. Clerc, P. Lago, and H. Van Vliet, “The architect’s mindset,” in International Confer-
ence on the Quality of Software Architectures. Springer, 2007, pp. 231–249.

[P55] N. Medvidovic and R. N. Taylor, “Software architecture: foundations, theory, and prac-
tice,” in Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2. ACM, 2010, pp. 471–472.

[P56] L. Lee and P. Kruchten, “Capturing software architectural design decisions,” in Canadian
Conference on Electrical and Computer Engineering. CCECE 2007. IEEE, 2007, pp.
686–689.

[P57] N. B. Harrison, P. Avgeriou, and U. Zdun, “Using patterns to capture architectural
decisions,” IEEE Software, vol. 24, no. 4, 2007.

[P58] U. van Heesch, P. Avgeriou, U. Zdun, and N. Harrison, “The supportive effect of pat-
terns in architecture decision recovery-a controlled experiment,” Science of Computer
Programming, vol. 77, no. 5, 2012.

[P59] M. T. T. That, S. Sadou, and F. Oquendo, “Using architectural patterns to define archi-
tectural decisions,” in Joint Working IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA). IEEE, 2012, pp.
196–200.

[P60] W. Heijstek, T. Kuhne, and M. R. Chaudron, “Experimental analysis of textual and
graphical representations for software architecture design,” in International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE, 2011, pp. 167–
176.

[P61] A. Calvagna and E. Tramontana, “Delivering dependable reusable components by ex-
pressing and enforcing design decisions,” in IEEE 37th Annual Computer Software and
Applications Conference Workshops (COMPSACW). IEEE, 2013, pp. 493–498.

[P62] D. Tofan, M. Galster, P. Avgeriou, and W. Schuitema, “Past and future of software archi-
tectural decisions–a systematic mapping study,” Information and Software Technology,
vol. 56, no. 8, pp. 850–872, 2014.

[P63] C. Miesbauer and R. Weinreich, “Classification of design decisions–an expert survey in
practice,” in European Conference on Software Architecture. Springer, 2013, pp. 130–
145.

[P64] A. Jansen and J. Bosch, “Software architecture as a set of architectural design decisions,”
in 5th Working IEEE/IFIP Conference on Software Architecture. WICSA 2005. IEEE,

166

Primary studies used in literature review

2005, pp. 109–120.

[P65] A. Akerman and J. Tyree, “Position on ontology-based architecture,” in 5th Working
IEEE/IFIP Conference on Software Architecture. WICSA 2005. IEEE, 2005, pp. 289–
290.

[P66] M. L. Roldán, S. Gonnet, and H. Leone, “A model for capturing and tracing architec-
tural designs,” in Advanced Software Engineering: Expanding the Frontiers of Software
Technology. Springer, 2006, pp. 16–31.

[P67] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster, “Reusable
architectural decision models for enterprise application development,” in International
Conference on the Quality of Software Architectures. Springer, 2007, pp. 15–32.

[P68] R. Farenhorst, P. Lago, and H. Van Vliet, “Prerequisites for successful architec-
tural knowledge sharing,” in Australian Software Engineering Conference (ASWEC’07).
IEEE, 2007, pp. 27–38.

[P69] M. Konersmann, Z. Durdik, M. Goedicke, and R. H. Reussner, “Towards architecture-
centric evolution of long-living systems (the advert approach),” in Proceedings of the 9th
international ACM Sigsoft conference on Quality of software architectures. ACM, 2013,
pp. 163–168.

[P70] S. Gerdes, S. Lehnert, and M. Riebisch, “Combining architectural design decisions and
legacy system evolution,” in European Conference on Software Architecture. Springer,
2014, pp. 50–57.

[P71] R. C. De Boer, R. Farenhorst, P. Lago, H. Van Vliet, V. Clerc, and A. Jansen, “Archi-
tectural knowledge: Getting to the core,” in International Conference on the Quality of
Software Architectures. Springer, 2007, pp. 197–214.

[P72] F. Gilson and V. Englebert, “Rationale, decisions and alternatives traceability for archi-
tecture design,” in Proceedings of the 5th European Conference on Software Architecture:
Companion Volume. ACM, 2011, p. 4.

[P73] B. Orlic, R. Mak, I. David, and J. Lukkien, “Concepts and diagram elements for ar-
chitectural knowledge management,” in Proceedings of the 5th European Conference on
Software Architecture: Companion Volume. ACM, 2011, p. 3.

[P74] Z. Durdik, A. Koziolek, and R. H. Reussner, “How the understanding of the effects of
design decisions informs requirements engineering,” in 2nd International Workshop on
the Twin Peaks of Requirements and Architecture (TwinPeaks). IEEE, 2013, pp. 14–18.

[P75] L. Zhu and I. Gorton, “Uml profiles for design decisions and non-functional requirements,”
in Proceedings of the Second Workshop on Sharing and Reusing Architectural Knowledge
Architecture, Rationale, and Design intent. IEEE Computer Society, 2007, p. 8.

[P76] M. Küster, “Architecture-centric modeling of design decisions for validation and trace-
ability,” in European Conference on Software Architecture. Springer, 2013, pp. 184–191.

[P77] Y. Choi, H. Choi, and M. Oh, “An architectural design decision-centric approach to

167

Primary studies used in literature review

architectural evolution,” in 11th International Conference on Advanced Communication
Technology. ICACT 2009., vol. 1. IEEE, 2009, pp. 417–422.

[P78] I. Lytra, H. Tran, and U. Zdun, “Constraint-based consistency checking between design
decisions and component models for supporting software architecture evolution,” in 16th
European Conference on Software Maintenance and Reengineering (CSMR). IEEE,
2012, pp. 287–296.

[P79] M. Soliman and M. Riebisch, “Modeling the interactions between decisions within
software architecture knowledge,” in European Conference on Software Architecture.
Springer, 2014, pp. 33–40.

[P80] M. Szlenk, A. Zalewski, and S. Kijas, “Modelling architectural decisions under chang-
ing requirements,” in Joint Working IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA). IEEE, 2012, pp.
211–214.

[P81] E. Navarro, C. E. Cuesta, and D. E. Perry, “Weaving a network of architectural knowl-
edge,” in Joint Working IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture. WICSA/ECSA 2009. IEEE, 2009, pp. 241–244.

[P82] J. P. Ros and R. S. Sangwan, “A method for evidence-based architecture discovery,” in
9th Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 2011,
pp. 342–345.

[P83] A. Sawada, M. Noro, H.-M. Chang, Y. Hachisu, and A. Yoshida, “A design map for
recording precise architecture decisions,” in 18th Asia-Pacific Software Engineering Con-
ference. IEEE, 2011, pp. 298–305.

[P84] D. Dermeval, J. Castro, C. Silva, J. Pimentel, I. I. Bittencourt, P. Brito, E. Elias,
T. Tenório, and A. Pedro, “On the use of metamodeling for relating requirements and
architectural design decisions,” in Proceedings of the 28th Annual ACM Symposium on
Applied Computing. ACM, 2013, pp. 1278–1283.

[P85] M. Mirakhorli and J. Cleland-Huang, “Transforming trace information in architectural
documents into re-usable and effective traceability links,” in Proceedings of the 6th In-
ternational Workshop on SHAring and Reusing Architectural Knowledge. ACM, 2011,
pp. 45–52.

[P86] M. Mirakhorli, “Tracing architecturally significant requirements: a decision-centric ap-
proach,” in Proceedings of the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 1126–1127.

[P87] R. Capilla and M. A. Babar, “On the role of architectural design decisions in software
product line engineering,” in European Conference on Software Architecture. Springer,
2008, pp. 241–255.

[P88] P. G. Avery and R. D. Hawkins, “Software design decision vulnerability analysis,” in 9th
IET International Conference on System Safety and Cyber Security. IET, 2014.

[P89] A. Tang and H. Van Vliet, “Modeling constraints improves software architecture design

168

Primary studies used in literature review

reasoning,” in Joint Working IEEE/IFIP Conference on Software Architecture & Eu-
ropean Conference on Software Architecture. WICSA/ECSA 2009. IEEE, 2009, pp.
253–256.

[P90] A. Tang and H. Van Vliet, “Software architecture design reasoning,” in Software Archi-
tecture Knowledge Management. Springer, 2009, pp. 155–174.

[P91] M. Che and D. E. Perry, “Scenario-based architectural design decisions documentation
and evolution,” in 18th IEEE International Conference and Workshops on Engineering
of Computer Based Systems (ECBS). IEEE, 2011, pp. 216–225.

[P92] M. Che, “An approach to documenting and evolving architectural design decisions,” in
Proceedings of the 2013 International Conference on Software Engineering. IEEE Press,
2013, pp. 1373–1376.

[P93] O. Zimmermann, “Architectural decisions as reusable design assets,” IEEE software,
vol. 28, no. 1, pp. 64–69, 2011.

[P94] C. Carrillo, R. Capilla, O. Zimmermann, and U. Zdun, “Guidelines and metrics for
configurable and sustainable architectural knowledge modelling,” in Proceedings of the
2015 European Conference on Software Architecture Workshops. ACM, 2015, p. 63.

[P95] J. Carlson, E. Papatheocharous, and K. Petersen, “A context model for architectural
decision support,” in 1st International Workshop on Decision Making in Software AR-
CHitecture (MARCH). IEEE, 2016, pp. 9–15.

[P96] I. Lytra, P. Gaubatz, and U. Zdun, “Two controlled experiments on model-based ar-
chitectural decision making,” Information and Software Technology, vol. 63, pp. 58–75,
2015.

[P97] S. Stevanetic, K. Plakidas, T. B. Ionescu, F. Li, D. Schall, and U. Zdun, “Tool support
for the architectural design decisions in software ecosystems,” in Proceedings of the 2015
European Conference on Software Architecture Workshops. ACM, 2015, p. 45.

[P98] I. Lytra, G. Engelbrecht, D. Schall, and U. Zdun, “Reusable architectural decision models
for quality-driven decision support: A case study from a smart cities software ecosystem,”
in Proceedings of the Third International Workshop on Software Engineering for Systems-
of-Systems. IEEE Press, 2015, pp. 37–43.

[P99] M. Soliman, M. Riebisch, and U. Zdun, “Enriching architecture knowledge with technol-
ogy design decisions,” in 12th Working IEEE/IFIP Conference on Software Architecture
(WICSA). IEEE, 2015, pp. 135–144.

[P100] C. C. Venters, R. Capilla, S. Betz, B. Penzenstadler, T. Crick, S. Crouch, E. Y. Naka-
gawa, C. Becker, and C. Carrillo, “Software sustainability: Research and practice from a
software architecture viewpoint,” Journal of Systems and Software, 2017.

[P101] U. Zdun, R. Capilla, H. Tran, and O. Zimmermann, “Sustainable architectural design
decisions,” IEEE Software, vol. 30, no. 6, pp. 46–53, 2013.

[P102] M. Nowak and C. Pautasso, “Goals, questions and metrics for architectural decision

169

Primary studies used in literature review

models,” in Proceedings of the 6th International Workshop on SHAring and Reusing
Architectural Knowledge. ACM, 2011, pp. 21–28.

[P103] M. Shahin, P. Liang, and M. R. Khayyambashi, “Architectural design decision: Existing
models and tools,” in Joint Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture. WICSA/ECSA 2009. IEEE, 2009, pp.
293–296.

[P104] D. Ameller, C. Ayala, J. Cabot, and X. Franch, “Non-functional requirements in archi-
tectural decision making,” IEEE Software, vol. 30, no. 2, pp. 61–67, 2013.

[P105] J. E. Robbins and D. F. Redmiles, “Cognitive support, uml adherence, and xmi inter-
change in argo/uml,” Information and Software Technology, vol. 42, no. 2, pp. 79–89,
2000.

[P106] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas, “A web-based tool for managing ar-
chitectural design decisions,” ACM SIGSOFT software engineering notes, vol. 31, no. 5,
p. 4, 2006.

[P107] R. Capilla, F. Nava, J. Montes, and C. Carrillo, “Addss: architecture design decision sup-
port system tool,” in Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering. IEEE Computer Society, 2008, pp. 487–488.

[P108] R. Capilla and F. Nava, “Extending software architecting processes with decision-making
activities,” in Balancing Agility and Formalism in Software Engineering. Springer, 2008,
pp. 182–195.

[P109] R. Capilla, F. Nava, and J. C. Duenas, “Modeling and documenting the evolution of
architectural design decisions,” in Proceedings of the Second Workshop on SHAring and
Reusing architectural Knowledge Architecture, Rationale, and Design Intent. IEEE
Computer Society, 2007, p. 9.

[P110] R. Capilla, F. Nava, and A. Tang, “Attributes for characterizing the evolution of archi-
tectural design decisions,” in 3rd International IEEE Workshop on Software Evolvability.
IEEE, 2007, pp. 15–22.

[P111] F. Nava, R. Capilla, and J. C. Dueñas, “Processes for creating and exploiting architectural
design decisions with tool support,” in European Conference on Software Architecture.
Springer, 2007, pp. 321–324.

[P112] R. Capilla, F. Nava, and C. Carrillo, “Effort estimation in capturing architectural knowl-
edge,” in Proceedings of the 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering. IEEE Computer Society, 2008, pp. 208–217.

[P113] R. Capilla, “Embedded design rationale in software architecture,” in Joint Working
IEEE/IFIP Conference on Software Architecture & European Conference on Software
Architecture. WICSA/ECSA 2009. IEEE, 2009, pp. 305–308.

[P114] L. Lee and P. Kruchten, “A tool to visualize architectural design decisions,” in Interna-
tional Conference on the Quality of Software Architectures. Springer, 2008, pp. 43–54.

170

Primary studies used in literature review

[P115] L. Lee and P. Kruchten, “Visualizing software architectural design decisions,” in European
Conference on Software Architecture. Springer, 2008, pp. 359–362.

[P116] L. Lee and P. Kruchten, “Customizing the capture of software architectural design deci-
sions,” in Canadian Conference on Electrical and Computer Engineering. CCECE 2008.
IEEE, 2008, pp. 000 693–000 698.

[P117] R. C. De Boer, P. Lago, A. Telea, and H. Van Vliet, “Ontology-driven visualization of
architectural design decisions,” in Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software Architecture. WICSA/ECSA 2009.
IEEE, 2009, pp. 51–60.

[P118] M. Shahin, P. Liang, and M. R. Khayyambashi, “Rationale visualization of software archi-
tectural design decision using compendium,” in Proceedings of the 2010 ACM Symposium
on Applied Computing. ACM, 2010, pp. 2367–2368.

[P119] M. Shahin and P. Liang and M. R. Khayyambashi, “Improving understandability of
architecture design through visualization of architectural design decision,” in Proceedings
of the 2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge. ACM,
2010, pp. 88–95.

[P120] M. Shahin, P. Liang, and Z. Li, “Architectural design decision visualization for architec-
ture design: preliminary results of a controlled experiment,” in Proceedings of the 5th
European Conference on Software Architecture: Companion Volume. ACM, 2011, p. 2.

[P121] M. Shahin and P. Liang and Z. Li, “Do architectural design decisions improve the un-
derstanding of software architecture? two controlled experiments,” in Proceedings of the
22nd International Conference on Program Comprehension. ACM, 2014, pp. 3–13.

[P122] P. Konemann, “Integrating decision management with uml modeling concepts and tools,”
in Joint Working IEEE/IFIP Conference on Software Architecture & European Confer-
ence on Software Architecture. WICSA/ECSA 2009. IEEE, 2009, pp. 297–300.

[P123] L. Chen and M. A. Babar, “Supporting customizable architectural design decision man-
agement,” in 17th IEEE International Conference and Workshops on Engineering of
Computer Based Systems (ECBS). IEEE, 2010, pp. 232–240.

[P124] L. Chen, M. A. Babar, and H. Liang, “Model-centered customizable architectural design
decisions management,” in 21st Australian Software Engineering Conference. IEEE,
2010, pp. 23–32.

[P125] G. Buchgeher and R. Weinreich, “Automatic tracing of decisions to architecture and im-
plementation,” in 9th Working IEEE-IFIP Conference on Software Architecture. IEEE,
2011, pp. 46–55.

[P126] H. Astudillo, G. Valdés, and C. Becerra, “Empirical measurement of automated recovery
of design decisions and structure,” in Proceedings of the 2012 Andean Region Interna-
tional Conference. IEEE Computer Society, 2012, pp. 105–108.

[P127] K. Nakakoji, Y. Yamamoto, N. Matsubara, and Y. Shirai, “Toward unweaving streams
of thought for reflection in professional software design,” IEEE Software, vol. 29, no. 1,

171

Primary studies used in literature review

pp. 34–38, 2012.

[P128] J. M. E. van der Werf, R. de Feijter, F. Bex, and S. Brinkkemper, “Facilitating col-
laborative decision making with the software architecture video wall,” in International
Conference on Software Architecture Workshops (ICSAW). IEEE, 2017, pp. 137–140.

[P129] G. Pedraza-Garcia, H. Astudillo, and D. Correal, “Analysis of design meetings for under-
standing software architecture decisions,” in XL Latin American Computing Conference
(CLEI). IEEE, 2014, pp. 1–10.

[P130] G. Pedraza-García, H. Astudillo, and D. Correal, “Dvia: Understanding how software
architects make decisions in design meetings,” in Proceedings of the 2015 European Con-
ference on Software Architecture Workshops. ACM, 2015, p. 51.

[P131] G. Pedraza-Garcia, H. Astudillo, and D. Correal, “An approach for software knowledge
sharing based on architectural decisions,” in 2016 XLII Latin American Computing Con-
ference (CLEI). IEEE, 2016, pp. 1–10.

[P132] C. Dhaya and G. Zayaraz, “Development of multiple architectural designs using aduak,”
in International Conference on Communications and Signal Processing (ICCSP). IEEE,
2012, pp. 93–97.

[P133] D. Ameller, O. Collell, and X. Franch, “Architech: Tool support for nfr-guided architec-
tural decision-making,” in 20th IEEE International Requirements Engineering Conference
(RE). IEEE, 2012, pp. 315–316.

[P134] A. Gopalakrishnan and A. C. Biswal, “Quiver an intelligent decision support system for
software architecture and design,” in International Conference On Smart Technologies
For Smart Nation (SmartTechCon). IEEE, 2017, pp. 1286–1291.

[P135] Z. Durdik and R. Reussner, “Position paper: approach for architectural design and mod-
elling with documented design decisions (admd3),” in Proceedings of the 8th international
ACM SIGSOFT conference on Quality of Software Architectures. ACM, 2012, pp. 49–54.

[P136] I. Lytra, H. Tran, and U. Zdun, “Supporting consistency between architectural design
decisions and component models through reusable architectural knowledge transforma-
tions,” in European Conference on Software Architecture. Springer, 2013, pp. 224–239.

[P137] D. Tofan and M. Galster, “Capturing and making architectural decisions: an open source
online tool,” in Proceedings of the 2014 European Conference on Software Architecture
Workshops. ACM, 2014, p. 33.

[P138] D. Tofan, M. Galster, and P. Avgeriou, “Capturing tacit architectural knowledge using the
repertory grid technique (nier track),” in Proceedings of the 33rd International Conference
on Software Engineering. ACM, 2011, pp. 916–919.

[P139] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, and P. Avgeriou, “Industrial
implementation of a documentation framework for architectural decisions,” in IEEE/IFIP
Conference on Software Architecture (WICSA). IEEE, 2014, pp. 225–234.

[P140] T.-M. Hesse, A. Kuehlwein, and T. Roehm, “Decdoc: A tool for documenting design

172

Primary studies used in literature review

decisions collaboratively and incrementally,” in 1st International Workshop on Decision
Making in Software ARCHitecture (MARCH). IEEE, 2016, pp. 30–37.

[P141] Z. Alexeeva, D. Perez-Palacin, and R. Mirandola, “Design decision documentation: A
literature overview,” in European Conference on Software Architecture. Springer, 2016,
pp. 84–101.

[P142] J. Burge and D. C. Brown, “Reasoning with design rationale,” in Artificial Intelligence
in Design’00. Springer, 2000, pp. 611–629.

[P143] J. E. Burge and D. C. Brown, “An integrated approach for software design checking using
design rationale,” in Design Computing and Cognition’04. Springer, 2004, pp. 557–575.

[P144] J. E. Burge and J. D. Kiper, “Capturing decisions and rationale from collaborative de-
sign,” in Design computing and cognition’08. Springer, 2008, pp. 221–239.

[P145] W. Wang and J. E. Burge, “Using rationale to support pattern-based architectural de-
sign,” in Proceedings of the 2010 ICSE Workshop on Sharing and Reusing Architectural
Knowledge. ACM, 2010, pp. 1–8.

[P146] I. Douglas, “Capturing and managing decision making rationale,” in IRI-2005 IEEE
International Conference on Information Reuse and Integration. IEEE, 2005, pp. 172–
176.

[P147] D. Falessi, R. Capilla, and G. Cantone, “A value-based approach for documenting design
decisions rationale: a replicated experiment,” in Proceedings of the 3rd international
workshop on Sharing and reusing architectural knowledge. ACM, 2008, pp. 63–70.

[P148] D. Falessi, L. C. Briand, G. Cantone, R. Capilla, and P. Kruchten, “The value of design
rationale information,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 22, no. 3, p. 21, 2013.

[P149] S. Sundaravadivelu, A. Vaidyanathan, and S. Ramaswamy, “Knowledge reuse of software
architecture design decisions and rationale within the enterprise,” in International Con-
ference on Issues and Challenges in Intelligent Computing Techniques (ICICT). IEEE,
2014, pp. 253–261.

[P150] N. Chanda and X. F. Liu, “Intelligent analysis of software architecture rationale for
collaborative software design,” in International Conference on Collaboration Technologies
and Systems (CTS). IEEE, 2015, pp. 287–294.

[P151] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of the use and documentation
of architecture design rationale,” in 5th Working IEEE/IFIP Conference on Software
Architecture. WICSA 2005. IEEE, 2005, pp. 89–98.

[P152] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making techniques for
software architecture design: A comparative survey,” ACM Computing Surveys (CSUR),
vol. 43, no. 4, p. 33, 2011.

[P153] R. Rauscher, “A design assistant for scheduling of design decisions,” in Proceedings of
EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware and Software

173

Primary studies used in literature review

Design Strategies. IEEE, 1996, p. 0088.

[P154] L. Borrmann and F. N. Paulisch, “Software architecture at siemens: The challenges,
our approaches, and some open issues,” in Software Architecture. Springer, 1999, pp.
529–543.

[P155] C. Zannier and F. Maurer, “A qualitative empirical evaluation of design decisions,” in
ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4. ACM, 2005, pp. 1–7.

[P156] C. Zannier and F. Maurer, “Foundations of agile decision making from agile mentors and
developers,” in International Conference on Extreme Programming and Agile Processes
in Software Engineering. Springer, 2006, pp. 11–20.

[P157] C. Zannier and F. Maurer, “Comparing decision making in agile and non-agile software
organizations,” in International Conference on Extreme Programming and Agile Processes
in Software Engineering. Springer, 2007, pp. 1–8.

[P158] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision making based
on empirical results of interviews with software designers,” Information and Software
Technology, vol. 49, no. 6, pp. 637–653, 2007.

[P159] C. Zannier and F. Maurer, “Social factors relevant to capturing design decisions,” in
Proceedings of the 2nd Workshop on SHAring and Reusing architectural Knowledge Ar-
chitecture, Rationale, and Design Intent. IEEE Computer Society, 2007, p. 1.

[P160] J. Hutchinson and G. Kotonya, “A review of negotiation techniques in component based
software engineering,” in 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications. SEAA’06. IEEE, 2006, pp. 152–159.

[P161] M. Anvaari, R. Conradi, and L. Jaccheri, “Architectural decision-making in enterprises:
preliminary findings from an exploratory study in norwegian electricity industry,” in
European Conference on Software Architecture. Springer, 2013, pp. 162–175.

[P162] S. Dasanayake, J. Markkula, S. Aaramaa, and M. Oivo, “Software architecture decision-
making practices and challenges: an industrial case study,” in 24th Australian Software
Engineering Conference (ASWEC). IEEE, 2015, pp. 88–97.

[P163] A. Tang, M. H. Tran, J. Han, and H. Van Vliet, “Design reasoning improves software
design quality,” in International Conference on the Quality of Software Architectures.
Springer, 2008, pp. 28–42.

[P164] A. Tang, A. Aleti, J. Burge, and H. van Vliet, “What makes software design effective?”
Design Studies, vol. 31, no. 6, pp. 614–640, 2010.

[P165] A. Tang and H. van Vliet, “Software designers satisfice,” in European Conference on
Software Architecture. Springer, 2015, pp. 105–120.

[P166] C. Yang, P. Liang, P. Avgeriou, U. Eliasson, R. Heldal, and P. Pelliccione, “Architectural
assumptions and their management in industry–an exploratory study,” in European Con-
ference on Software Architecture. Springer, 2017, pp. 191–207.

[P167] S. T. Hassard, A. Blandford, and A. L. Cox, “Analogies in design decision-making,” in

174

Primary studies used in literature review

Proceedings of the 23rd British HCI group annual conference on people and computers:
celebrating people and technology. British Computer Society, 2009, pp. 140–148.

[P168] H. Christiaans and R. A. Almendra, “Accessing decision-making in software design,”
Design Studies, vol. 31, no. 6, pp. 641–662, 2010.

[P169] E. Papatheocharous, K. Petersen, A. Cicchetti, S. Sentilles, S. M. A. Shah, and
T. Gorschek, “Decision support for choosing architectural assets in the development of
software-intensive systems: The grade taxonomy,” in Proceedings of the 2015 European
Conference on Software Architecture Workshops. ACM, 2015, p. 48.

[P170] C. Wohlin, K. Wnuk, D. Smite, U. Franke, D. Badampudi, and A. Cicchetti, “Supporting
strategic decision-making for selection of software assets,” in International Conference of
Software Business. Springer, 2016, pp. 1–15.

[P171] A. Cicchetti, M. Borg, S. Sentilles, K. Wnuk, J. Carlson, and E. Papatheocharous, “To-
wards software assets origin selection supported by a knowledge repository,” in 1st Inter-
national Workshop on Decision Making in Software ARCHitecture (MARCH). IEEE,
2016, pp. 22–29.

[P172] B. Xu, Z. Huang, and O. Wei, “Making architectural decisions based on requirements:
Analysis and combination of risk-based and quality attribute-based methods,” in 7th
International Conference on Ubiquitous Intelligence & Computing and 7th International
Conference on Autonomic & Trusted Computing (UIC/ATC). IEEE, 2010, pp. 392–397.

[P173] G. Márquez and H. Astudillo, “Selecting components assemblies from non-functional
requirements through tactics and scenarios,” in 35th International Conference of the
Chilean Computer Science Society (SCCC). IEEE, 2016, pp. 1–11.

[P174] S. Blair, R. Watt, and T. Cull, “Responsibility-driven architecture,” IEEE software,
vol. 27, no. 2, 2010.

[P175] X. Cui, Y. Sun, S. Xiao, and H. Mei, “Architecture design for the large-scale software-
intensive systems: A decision-oriented approach and the experience,” in 14th IEEE In-
ternational Conference on Engineering of Complex Computer Systems. IEEE, 2009, pp.
30–39.

[P176] I. Lytra, S. Sobernig, and U. Zdun, “Architectural decision making for service-based
platform integration: A qualitative multi-method study,” in Joint Working IEEE/IFIP
Conference on Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA). IEEE, 2012, pp. 111–120.

[P177] D. Tofan, M. Galster, and P. Avgeriou, “Difficulty of architectural decisions–a survey with
professional architects,” in European Conference on Software Architecture. Springer,
2013, pp. 192–199.

[P178] G. Pedraza-Garcia, H. Astudillo, and D. Correal, “Modeling software architecture pro-
cess with a decision-making approach,” in 33rd International Conference of the Chilean
Computer Science Society (SCCC). IEEE, 2014, pp. 1–6.

[P179] A. Dragomir, H. Lichter, and T. Budau, “Systematic architectural decision manage-

175

Primary studies used in literature review

ment, a process-based approach,” in IEEE/IFIP Conference on Software Architecture
(WICSA). IEEE, 2014, pp. 255–258.

[P180] R. J. Wirfs-Brock, “Giving design advice,” IEEE Software, vol. 24, no. 4, 2007.

[P181] A. Zalewski, K. Borowa, and A. Ratkowski, “On cognitive biases in architecture decision
making,” in European Conference on Software Architecture. Springer, 2017, pp. 123–137.

[P182] H. van Vliet and A. Tang, “Decision making in software architecture,” Journal of Systems
and Software, vol. 117, pp. 638–644, 2016.

[P183] A. Tang, “Software designers, are you biased?” in Proceedings of the 6th International
Workshop on SHAring and Reusing Architectural Knowledge. ACM, 2011, pp. 1–8.

[P184] I. Groher and R. Weinreich, “A study on architectural decision-making in context,” in
12th Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 2015,
pp. 11–20.

[P185] R. Weinreich, I. Groher, and C. Miesbauer, “An expert survey on kinds, influence fac-
tors and documentation of design decisions in practice,” Future Generation Computer
Systems, vol. 47, pp. 145–160, 2015.

[P186] N. B. Harrison, E. Gubler, and D. Skinner, “Architectural decision-making in open-source
systems–preliminary observations,” in 1st International Workshop on Decision Making
in Software ARCHitecture (MARCH). IEEE, 2016, pp. 16–21.

[P187] C. Schriek, J. M. E. van der Werf, A. Tang, and F. Bex, “Software architecture design
reasoning: A card game to help novice designers,” in European Conference on Software
Architecture. Springer, 2016, pp. 22–38.

[P188] M. Razavian, A. Tang, R. Capilla, and P. Lago, “In two minds: how reflections influence
software design thinking,” Journal of Software: Evolution and Process, vol. 28, no. 6, pp.
394–426, 2016.

[P189] J. S. van der Ven and J. Bosch, “Busting software architecture beliefs: A survey on suc-
cess factors in architecture decision making,” in 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2016. IEEE, 2016, pp. 42–49.

[P190] P. Ralph and E. Tempero, “Characteristics of decision-making during coding,” in Pro-
ceedings of the 20th International Conference on Evaluation and Assessment in Software
Engineering. ACM, 2016, p. 34.

[P191] M. Razavian, A. Tang, R. Capilla, and P. Lago, “Reflective approach for software de-
sign decision making,” in Qualitative Reasoning about Software Architectures (QRASA).
IEEE, 2016, pp. 19–26.

[P192] A. Tang, M. Razavian, B. Paech, and T.-M. Hesse, “Human aspects in software architec-
ture decision making: a literature review,” in IEEE International Conference on Software
Architecture (ICSA). IEEE, 2017, pp. 107–116.

[P193] J. W. Cangussu, K. C. Cooper, and E. W. Wong, “Multi criteria selection of components
using the analytic hierarchy process,” in International Symposium on Component-Based

176

Primary studies used in literature review

Software Engineering. Springer, 2006, pp. 67–81.

[P194] N. Ernst, J. Klein, G. Mathew, and T. Menzies, “Using stakeholder preferences to make
better architecture decisions,” in IEEE International Conference on Software Architecture
Workshops (ICSAW). IEEE, 2017, pp. 133–136.

[P195] A. Harchenko, I. Bodnarchuk, I. Halay, and V. Yatcyshyn, “The tool for design of software
systems architecture,” in 12th International Conference on the Experience of Designing
and Application of CAD Systems in Microelectronics (CADSM). IEEE, 2013, pp. 138–
139.

[P196] A. Harchenko, I. Bodnarchuk, and I. Halay, “Decision support system of software archi-
tect,” in IEEE 7th International Conference on Intelligent Data Acquisition and Advanced
Computing Systems (IDAACS), vol. 1. IEEE, 2013, pp. 265–269.

[P197] S. Orlov and A. Vishnyakov, “Decision making for the software architecture structure
based on the criteria importance theory,” Procedia Computer Science, vol. 104, pp. 27–
34, 2017.

[P198] A. Egyed and D. S. Wile, “Support for managing design-time decisions,” IEEE Transac-
tions on Software Engineering, no. 5, pp. 299–314, 2006.

[P199] T. Al-Naeem, F. T. Dabous, F. A. Rabhi, and B. Benatallah, “Formulating the archi-
tectural design of enterprise applications as a search problem,” in Australian Software
Engineering Conference. IEEE, 2005, pp. 282–291.

[P200] M. Makki, E. Bagheri, and A. A. Ghorbani, “Automating architecture trade-off decision
making through a complex multi-attribute decision process,” in European Conference on
Software Architecture. Springer, 2008, pp. 264–272.

[P201] M. Riebisch and S. Wohlfarth, “Introducing impact analysis for architectural decisions,”
in 14th Annual IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems. ECBS’07. IEEE, 2007, pp. 381–392.

[P202] F. H. Jabali, S. M. Sharafi, and K. Zamanifar, “A quantitative algorithm to select software
architecture by tradeoff between quality attributes,” Procedia Computer Science, vol. 3,
pp. 1480–1484, 2011.

[P203] L. Grunske, “Identifying good architectural design alternatives with multi-objective op-
timization strategies,” in Proceedings of the 28th International Conference on Software
Engineering. ACM, 2006, pp. 849–852.

[P204] S. Moaven, J. Habibi, H. Ahmadi, and A. Kamandi, “A fuzzy model for solving archi-
tecture styles selection multi-criteria problem,” in 2nd UKSIM European Symposium on
Computer Modeling and Simulation, 2008. EMS’08. IEEE, 2008, pp. 388–393.

[P205] S. Moaven and J. Habibi and H. Ahmadi and A. Kamandi, “A decision support system
for software architecture-style selection,” in 6th International Conference on Software
Engineering Research, Management and Applications, 2008. SERA’08. IEEE, 2008, pp.
213–220.

177

Primary studies used in literature review

[P206] G. Zayaraz, S. Vijayalakshmi, and V. Vijayalakshmi, “Evaluation of software architec-
tures using multicriteria fuzzy decision making technique,” in International Conference
on Intelligent Agent & Multi-Agent Systems. IAMA 2009. IEEE, 2009, pp. 1–5.

[P207] N. Esfahani, S. Malek, and K. Razavi, “Guidearch: guiding the exploration of architec-
tural solution space under uncertainty,” in Proceedings of the 2013 International Confer-
ence on Software Engineering. IEEE Press, 2013, pp. 43–52.

[P208] S. Gerdes, M. Soliman, and M. Riebisch, “Decision buddy: tool support for constraint-
based design decisions during system evolution,” in Proceedings of the 1st International
Workshop on Future of Software Architecture Design Assistants. ACM, 2015, pp. 13–18.

[P209] S. A. Busari, “Towards search-based modelling and analysis of requirements and archi-
tecture decisions,” in 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 1026–1029.

[P210] N. Upadhyay, “Sdmf: Systematic decision-making framework for evaluation of software
architecture,” Procedia computer science, vol. 91, pp. 599–608, 2016.

[P211] M. A. Al Imran, S. P. Lee, and M. M. Ahsan, “Quality driven architectural solutions
selection approach through measuring impact factors,” in International Conference on
Electrical Engineering and Computer Science (ICECOS). IEEE, 2017, pp. 131–136.

[P212] J. A. Díaz-Pace and M. R. Campo, “Exploring alternative software architecture designs:
a planning perspective,” IEEE Intelligent Systems, vol. 23, no. 5, 2008.

[P213] M. Scheerer, A. Busch, and A. Koziolek, “Automatic evaluation of complex design deci-
sions in component-based software architectures,” in Proceedings of the 15th ACM-IEEE
International Conference on Formal Methods and Models for System Design. ACM,
2017, pp. 67–76.

[P214] G. Sapienza, G. Dodig-Crnkovic, and I. Crnkovic, “Inclusion of ethical aspects in multi-
criteria decision analysis,” in 1st International Workshop on Decision Making in Software
ARCHitecture (MARCH). IEEE, 2016, pp. 1–8.

[P215] A. Shahbazian, Y. K. Lee, Y. Brun, and N. Medvidovic, “Making well-informed soft-
ware design decisions,” in Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings. ACM, 2018, pp. 262–263.

[P216] A. Alali and J. Sillito, “Motivations for collaboration in software design decision making,”
in 6th International Workshop on Cooperative and Human Aspects of Software Engineer-
ing (CHASE). IEEE, 2013, pp. 129–132.

[P217] S. Dasanayake, J. Markkula, S. Aaramaa, and M. Oivo, “An empirical study on col-
laborative architecture decision making in software teams,” in European Conference on
Software Architecture. Springer, 2016, pp. 238–246.

[P218] J. Chai and J. N. Liu, “An ontology-driven framework for supporting complex decision
process,” in World Automation Congress (WAC). IEEE, 2010, pp. 1–6.

[P219] M. Nowak and C. Pautasso, “Team situational awareness and architectural decision mak-

178

Primary studies used in literature review

ing with the software architecture warehouse,” in European Conference on Software Ar-
chitecture. Springer, 2013, pp. 146–161.

[P220] D. Tofan, M. Galster, I. Lytra, P. Avgeriou, U. Zdun, M.-A. Fouche, R. De Boer, and
F. Solms, “Empirical evaluation of a process to increase consensus in group architectural
decision making,” Information and Software Technology, vol. 72, pp. 31–47, 2016.

[P221] S. V. F. Lopes and P. T. A. Junior, “Architectural design group decision-making in
agile projects,” in IEEE International Conference on Software Architecture Workshops
(ICSAW). IEEE, 2017, pp. 210–215.

[P222] V. S. Rekhav and H. Muccini, “A study on group decision-making in software architec-
ture,” in 2014 IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 2014,
pp. 185–194.

[P223] S. Rekha and H. Muccini, “Suitability of software architecture decision making methods
for group decisions,” in European Conference on Software Architecture. Springer, 2014,
pp. 17–32.

[P224] I. Malavolta, H. Muccini, and S. Rekha, “Enhancing architecture design decisions evo-
lution with group decision making principles,” in International Workshop on Software
Engineering for Resilient Systems. Springer, 2014, pp. 9–23.

[P225] H. Muccini, D. A. Tamburri, and V. S. Rekha, “On the social dimensions of architectural
decisions,” in European Conference on Software Architecture. Springer, 2015, pp. 137–
145.

[P226] S. Rekha and H. Muccini, “Group decision-making in software architecture: A study on
industrial practices,” Information and Software Technology, 2018.

[P227] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years of software archi-
tecture knowledge management: Practice and future,” Journal of Systems and Software,
vol. 116, pp. 191–205, 2016.

179

180

Abbreviations

ADD Architectural Design Decision

ADDs Architectural Design Decisions

ADeX Amelie - Decision eXplorer

ADM Architectural Decision Making

ADR Architectural Design Rationale

AEs Architectural Elements

AK Architectural Knowledge

AKM Architectural Knowledge Management

ASRs Architecturally Significant Requirements

BRM Bounded Rational Model

DMMs Decision Making Models

EA Enterprise Architecture

ETL Extract, Transform, and Load

181

Primary studies used in literature review

GDM Group Decision Making

IBIS Issue-Based Information Systems

IMS Issue Management System

IMSs Issue Management Systems

KB Knowledge Base

MCDM Multiple-Criteria Decision-Making

ML Machine Learning

NDM Naturalistic Decision Making

NFRs Non-Functional Requirements

NLP Natural Language Processing

OSS Open Source Software

QOC Question, Option, Criteria

RDM Rationalistic Decision Making

REM Rational Economic Model

RPDM Recognition-Primed Decision Model

SA Software Architecture

SDLC Software Development Lifecycle

SE Software Engineering

UI User Interface

UIs User Interfaces

UML Unified Modeling Language

182

	Abstract
	Table of Content
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem statement and research questions
	1.2 Contributions of this dissertation
	1.3 Outline of this dissertation

	2 Foundations and related work
	2.1 Research methodology for conducting the semi-systematic literature review
	2.1.1 Inclusion and exclusion criteria for identifying research publications
	2.1.2 Search strategy for identifying relevant research publications
	2.1.3 Data extraction and synthesis for conducting the literature review

	2.2 Review results of the identified 227 publications
	2.2.1 Architectural knowledge management
	2.2.2 Architectural design decisions
	2.2.3 Architectural design rationale
	2.2.4 Architectural decision making
	2.2.5 Group decision making

	3 Requirements elicitation
	3.1 Requirements related to architectural knowledge management
	3.2 Requirements related to architectural decision making

	4 A conceptual framework for architectural decision making
	4.1 Stakeholders of the framework
	4.2 Components and their responsibilities within the framework
	4.2.1 SocioCoretx: A meta-model based AKM system
	4.2.2 SyncPipes: A data integration and synchronization platform
	4.2.3 Decision classifier: A machine-learning based document classifier
	4.2.4 Architectural elements annotator: A named-entity extractor
	4.2.5 Architectural solutions recommender: An ontology-based approach
	4.2.6 Rationale extractor: Identifying the rationale behind design decisions
	4.2.7 Expert recommender: User-profile based recommendations
	4.2.8 Workbench4DC: Clustering similar design decisions
	4.2.9 Amelie - Decision Explorer: User interfaces for end-users

	4.3 Process steps within the AKM framework

	5 System design and implementation
	5.1 SocioCortex
	5.1.1 The hybrid-wiki meta-model
	5.1.2 Using SocioCortex for architectural knowledge management
	5.1.3 The dynamic architectural knowledge model
	5.1.4 The static architectural knowledge model
	5.1.5 User interface for capturing architectural knowledge in SocioCortex

	5.2 SyncPipes
	5.2.1 The configuration of the extractor and the loader services in SyncPipes
	5.2.2 Data transformation using user-defined data mappings
	5.2.3 User interfaces for managing data transformation

	5.3 Document classifier
	5.4 Workbench4DC: Document clustering component
	5.5 Akre-Server: Architectural recommendations component
	5.5.1 Architectural solutions recommender
	5.5.2 Rationale extractor
	5.5.3 Expert recommender
	5.5.4 System design of the Akre-Server component

	5.6 Amelie - Decision explorer client

	6 Evaluation
	6.1 Quantitative evaluation of components within ADeX
	6.1.1 Quantitative evaluation of the architectural annotator component
	6.1.2 Quantitative evaluation of the decision classifier component
	6.1.3 Quantitative evaluation of the expert recommender

	6.2 Qualitative evaluation of ADeX in real-world projects
	6.3 Evaluation summary

	7 Future work and conclusion
	7.1 Lessons learned
	7.2 Ongoing research activities
	7.3 Conclusion

	Bibliography
	Primary studies used in literature review
	Abbreviations
	Abbreviations

