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Abstract

Industries, which produce hundreds of terabyte of CT data per year, demand automated evaluation approaches. This work provides

a first glance of an attempt to automatically detect and characterize possible defects and/or anomalies which formed during

common joining processes. We investigated a standard riveting process with respect to the resulting final head height of steel self-

piercing half-hollow rivets. The methods include conventional image processing algorithms, like edge-detection, thresholding

and principle component analysis (PCA) which were used to pre-process the CT data. In order to automatically evaluate the

reconstructed volumes, which contained several of the aforementioned rivets, we compared the performance of different, publicly

available, convolutional neural network (CNN) architectures. Furthermore, we investigated the impact of data augmentation and

showed by means of a k-fold cross-validation that the training data causes no overfitting of the network. The obtained results

suggest that an automated evaluation of the generated computed tomography scans, with regard to a rivet’s final head height, is

feasible. However, in order to increase the network’s reliability and accuracy, the amount of training data needs to be further

enlarged and diversified.
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1 Introduction

Modern car bodies consist of several steel, aluminium and/or carbon fibre reinforced polymers (CFRP) components, which are

usually joined by riveting, welding, screwing and/or glueing. The quality of the joined components and the joining elements, is

in general crucial for the structural integrity of a car. Hence, a frequent and thorough inspection of the joining processes and their

outcomes is of utmost importance. Joining processes in the research and development phase (R&D phase) of prototypes are often

without any routine. Due to new designs, components, and structural requirements the testing of joints in this field is usually a

model-specific testing process. The implementation of modi operandi is therefore impracticable.

The current inspection of car bodies in prototype production is predominantly destructive, decentralized and deals with testing an

abundance (thousands) of joining sites. These three points result in the challenges that we aim to overcome: 1) A thorough invest-

igation of every single inspection site is necessary but extremely time-intensive, due to the abundance of connecting components.

2) The joining sites are most often manipulated in the course of their testing, due to destructive testing methods (e.g. micro-

sectioning and stress-tests). The use of computed tomography has the potential to eliminate this drawback. However, scanning

whole cars [4, 6] is still very time-intensive. Instead, pieces of the body must be cut out before they can be analyzed in conven-

tional industrial CT-systems. This, however, manipulates the sample once again. 3) Testing joining sites with micro-sections is

not comprehensive enough, since only a 2D cross-section of the sample’s 3D volume is used to evaluate its quality. 4) The testing

of the respective joining techniques is often decentralized. Different modalities (micro-sectioning, thermography, ultrasound, CT,

eddy-current, etc.) in different locations are used for different joints. This results in an avoidable wastage of resources.

In order to realize a non-destructive, sustainable and efficient testing process for car body prototypes, the points raised above must

be amended. To do so, we aim at realizing an automated system which is able to both record and evaluate whole sections of car

bodies comprehensively and without the need of destroying them. This work provides a first glance of an attempt to automatically

detect and characterize possible defects and/or anomalies which occur during common joining processes. We investigated a

standard riveting process with respect to the resulting final head height of steel self-piercing half-hollow rivets in aluminium

plates (see Figure 1).
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(a) Unprocessed rivets and joined plates

displayed as micro-sections.

(b) Joined aluminium plates with differ-

ently processed steel rivets displayed as mi-

crosections.

(c) CT-reconstruction of joined aluminium

plates with steel rivets.

Figure 1: Steel self-piercing half-hollow rivets

2 Samples

In order to create a data set that resembles realistic joining sites, the physical samples used in this work were specifically produced

by experts who intentionally induced common defects/anomalies (see [8], [7] and [9]). Exemplary samples with their respective

scans can be seen in Figure 1.

Among the different types of rivets used in car bodies and all the characteristic parameters used to determine whether or not a

rivet joint is flawed or not, we chose to investigate the final head height of steel self-piercing half-hollow rivets (see Figure 2). In

the following, assessing statements like flawed or flawless (correct) refer to the head height only. Other characteristics were not

considered at this point. We joined two plates with either exclusively

• proud head heights (sticks too far out),

• flush head heights (penetrates too deep),

• flawless head height, and

• a mixture of proud, flush and flawless head heights.

The head height is expressed with the parameter hr. This physical labelling makes it easier to produce digitally labeled training

and test data later on.

Figure 2: Three classes where investigated: proud, correct and flush head height. For specifications see [9].

The data set was generated by scanning the plates with two CT systems, namely a v|tome|x M240 and a v|tome|x L240, both by

GE Sensing & Inspection Technologies. The tomography settings can be seen in Table 1:

Set System Current Voltage Power Projections Detector area Averaged Exp. Time

[µA] [kV] [W] [px×px] [ms]

1 v|tome|x M240 390 220 85.8 2600 2024×2024 3 2000

2 v|tome|x L240 340 220 74.8 2200 2024×2024 4 1000

Table 1: Tomography settings

The rivet volumes were detected and extracted with conventional image processing algorithms like Otsu-thresholding [17] and

region-growing [3]. In order to extract only symmetrical mid-sections through the center of mass of the 3D rivet, a principal
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(a) Exemplary data extracted via PCA and image pro-

cessing.

(b) Exemplary augmented data.

Figure 3: Excerpt from data-set

component analysis (PCA) was employed. Two of the resulting three eigenvectors span the desired mid-sections, that cut the

rivets symmetrically in half. By applying these algorithms to the volume of the reconstructed CT-scan, 2D images (224x224

pixel) containing only the mid-section of one rivet were extracted. This approach produced 171 images (34 flush, 99 correct and

38 proud head heights). In order to artificially create a larger, more diverse data-set, data augmentation (translation, rotation and

scaling) was employed. This enlarged the data set by a factor of 6, resulting in 1026 (204 flush, 594 correct and 228 proud head

heights) images. An excerpt of the data set can be seen in Figure 3.

3 Evaluation methods

Four different pre-trained (with 106 images from the ImageNet data-base [16]) and publicly available CNN architectures were

tested on the data set:

• vgg19 with a layer depth of 19 [12],

• resnet18 with a layer depth of 18 [13],

• resnet101 with a layer depth of 101 [13], and

• googlenet with a layer depth of 22 [14].

The training set was partitioned in 60% training data, 20% validation data and 20% test data. The trainings were all performed with

a mini-batch size of 20, an initial learning rate of 10−4 and a maximum number of epochs of 30. To investigate the performance

of the networks, correctly and incorrectly classified cases from the augmented data set are visualized in confusion matrices (see

section 4).

To make the resulting network more robust against overfitting, a k-fold cross-validation was applied during the training process.

It involves randomly partitioning of the original dataset into subsets of roughly equal size. By repeating the process k times, the

average cross validation error indicates the performance of the network [15]. In our case, we generated k = 3 data sets, each with

a different constitution regarding training, validation and test data set.

4 Results

If only the PCA data-set (without augmentation) is used for training, the overall classification success rates of the specific cat-

egories (proud, correct, flush) of the confusion matrices reached 62.6%, 66.5%, 66.5% and 63.1% for vgg19, resnet18, resnet101

and googlenet, respectively. The data augmentation improved the networks performance considerably as can be seen in Table 2.

The respective improvements are ↑ 31.6%, ↑ 18.9%, ↑ 14.1% and ↑ 26.2%.

The validation accuracies of the 3-fold cross validation showed only subtle variations (86.0%, 86.7% and 85.5%) compared to the

validation accuracy of the initial constellation (87.0%). Hence, the network did not fall victim to overfitting.
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Table 2: Performance of different networks evaluated with confusion matrices. Top-left: vgg19, Top-right: resnet18 Bottom-left:

resnet101, Bottom-right: googlenet. The sum resulting in each column (proud, correct, flush) represent how many instances of

each category were actually in the data set. The distribution among the equally named rows, represent the predictions of the

network. With an optimally performing network, the red cells contain only zero (no wrong classification) and the green cells the

total number of each category (all instanced of each category were predicted correctly).

ACTUAL

proud correct flush ∑ [%]

proud 45 0 0 100|0

P
R

E
D

IC
T

IO
N

correct 1 119 11 90.8|9.2

flush 0 0 30 100|0

∑ [%] 97.8|2.2 100|0 73.2|26.8 94.2|5.8

ACTUAL

proud correct flush ∑ [%]

proud 30 0 0 100|0

P
R

E
D

IC
T

IO
N

correct 15 114 9 82.6|17.4

flush 1 5 32 84.2|15.8

∑ [%] 65.2|34.8 95.8|4.2 78.0|22 85.4|14.6

ACTUAL

proud correct flush ∑ [%]

proud 33 7 0 82.5|17.5

P
R

E
D

IC
T

IO
N

correct 13 105 13 80.2|19.8

flush 0 7 28 80|20

∑ [%] 71.7|28.3 88.2|11.8 68.3|31.7 80.6|19.4

ACTUAL

proud correct flush ∑ [%]

proud 43 2 1 93.5|6.5

P
R

E
D

IC
T

IO
N

correct 3 108 7 91.5|8.5

flush 0 9 33 78.6|21.4

∑ [%] 93.5|6.5 90.8|9.2 80.5|19.5 89.3|10.7

5 Conclusion

We investigated an automatic approach to evaluate the quality of steel self-piercing half-hollow rivets in CT-data. The feature we

chose to investigate was the rivets’ head height. The principle feasibility of detecting such a subtle characteristic automatically

in CT reconstructions by means of image processing and convolutional neural networks was successfully shown. However, in

order to increase the network’s reliability and accuracy, the amount of training data needs to be further enlarged and diversified.

In order to assess the quality of a rivet joint comprehensively, more quality characteristics need to be considered, meaning more

samples need to be produced, scanned and used for training.
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