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Abstract— We propose a robust reachable-set-based model
predictive control method for constrained linear systems.
The systems are described by sampled-data models, where a
continuous-time physical plant is controlled by a discrete-time
digital controller. Thus, the state measurement and the control
input are only updated at discrete sampling times, while the
constraint satisfaction must be guaranteed not only at, but
also between two consecutive time steps. By considering the
computation time and using scalable reachability analysis and
convex optimization tools, we compute real-time controllers that
ensure constraint satisfaction for an infinite time horizon. We
demonstrate the applicability of our proposed method using a
vehicle platooning benchmark.

I. INTRODUCTION

Model predictive control (MPC) has proven to be a very
successful control method for complex systems over the last
decades [1]. Its great popularity is mainly due to its simple
concept and its ability to deal with state and input constraints.
In order to use MPC in safety-critical applications, e.g.,
autonomous driving or human-robot collaboration, formal
robustness guarantees against uncertainties are needed. Thus,
robust MPC approaches are required that guarantee con-
straint satisfaction for all possible realizations originating
from uncertainties, e.g., unknown but bounded disturbances.

An ideal robust MPC method performs a min-max opti-
mization over feedback policies [2]. However, this approach
is impractical due to its computational complexity. Other
robust methods use linear state feedback policies and tighten
the state and input constraints so that only the disturbance-
free prediction model needs to be considered [3], [4]. A sim-
ilar idea, which is often referred to as tube-based MPC [5], is
to ensure that the state trajectory stays within a tube of fixed
size that is ideally given by the minimal robust positively
invariant (RPI) set. A variety of extensions of this method
exists, such as parameterized or elastic tube-based MPC [6],
[7]. Depending on the application, these approaches are
successfully applied in real-time. For instance, a system of
oscillating masses with sampling times in the order of 1 ms
and the trajectory tracking of a mobile robot with a sampling
period of 350 ms are studied [8], [9].

When considering discrete-time models, as done by most
of the literature on robust MPC including all previously men-
tioned papers, constraint satisfaction can only be guaranteed
at discrete time steps. However, in reality, a continuous-
time physical plant is controlled by a discrete-time digital
controller. Therefore, constraint satisfaction must also be
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guaranteed between two sampling instants. Due to its prac-
tical importance, the consideration of sampled-data robust
MPC has gained increasing interest. For instance, the ap-
proach in [5] is extended to deal with piecewise constant
nominal control inputs while continuous-time state feedback
is assumed [10]. In addition to sampled-data nominal inputs,
in [11], state measurements are only updated at discrete time
instants while the unknown but bounded additive disturbance
is assumed to be constant during time intervals.

Due to the high computational complexity of most robust
MPC approaches, traditional centralized MPC is often un-
suitable to deal with high-dimensional systems. For instance,
the computation of the minimal RPI set is a hard task for
high-dimensional systems [12]. Typically, these problems
can only be solved if the original control problem can
be decomposed into simpler ones, as done in distributed
MPC [13], [14]. In contrast, our reachability analysis has
a complexity of O(n3

x) with respect to the state space
dimension nx [15], which allows us to handle comparably
larger systems. In particular, we consider a 9-dimensional
benchmark problem with a sampling time of 100 ms without
exploiting the sparsity of the system.

In this paper, we propose a scalable robust reachable-
set-based MPC approach for constrained linear sampled-
data systems. As in [11], [16], our controller receives state
measurements and outputs piecewise constant control signals
only at discrete time steps. Additionally, we take computation
times explicitly into account, which is neglected by most ro-
bust MPC approaches, with the exception of, e.g., [17], [18].
We demonstrate the usefulness of our robust reachable-set-
based MPC approach using a vehicle platooning benchmark.

The rest of this paper is organized as follows. In Sec. II,
the control problem is stated and the applied reachability
analysis is summarized. Subsequently, the computation of
verified terminal sets is presented in Sec. III. Our reachable-
set-based dual-mode MPC approach is stated in Sec. IV,
followed by a numerical example in Sec. V. Conclusions
and suggestions for future work are provided in Sec. VI.

II. PRELIMINARIES

In this section, we state the control objective. Additionally,
we give an overview of our reachability analysis.

A. Problem Statement

In this paper, we consider disturbed, continuous-time,
linear time-invariant systems of the form

ẋ(t) = Ax(t) +Bu(t) + w(t), (1)
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where x(t) ∈ Rnx is the system state and u(t) ∈ Rnu is
the control input at time t ∈ R≥0. The additive disturbance
trajectory w(·) is unknown but bounded by the disturbance
set W ⊂ Rnx , i.e., w(t) ∈ W for all times t. To obtain a
more concise notation, we use w(·) ∈ W .

In contrast to the system dynamics given in continuous-
time, the controller receives the measurement of the state and
sets the piecewise constant control input u only at discrete
sampling times tk = k∆t with k ∈ Z≥0 and ∆t ∈ R>0. We
employ the simple yet effective sampled-data state feedback
control law

u(t) = ū(tk) +Kx(tk) for t ∈ [tk, tk+1), (2a)
ū(t) = ū(tk) for t ∈ [tk, tk+1), (2b)

where ū is the piecewise constant correction input that is
optimized online, and K ∈ Rnu×nx denotes a user-defined
feedback matrix.

The disturbed system in (1) must satisfy state and input
constraints of the form

x(·) ∈ X , u(·) ∈ U , (3)

i.e., the state and input trajectories must stay inside the given
constraint sets X ⊂ Rnx and U ⊂ Rnu , respectively. In this
paper, the control objective is to steer the disturbed system
to a neighborhood of the origin while minimizing a user-
defined cost function and satisfying the constraints in (3) for
all times t ∈ R≥0.

Assumption 1: X , U , and W are convex, closed, bounded
polytopes containing the origin. �

B. Reachability Analysis

To accommodate for the state-dependent control input
in our set-based reachability analysis, we consider an aug-
mented state x̃ ∈ Rnx+nu [16]. The corresponding dynamics
are [

ẋ(t)
u̇(t)

]

︸ ︷︷ ︸
˙̃x(t)

=

[
A B
0 0

]

︸ ︷︷ ︸
Ã

[
x(t)
u(t)

]

︸ ︷︷ ︸
x̃(t)

+

[
w(t)

0

]

︸ ︷︷ ︸
w̃(t)

, (4)

where the piecewise constant state-dependent input u is given
in (2). Additionally, we define the projection operators

Πx

(
S̃
)

=

{
x ∈ Rnx

∣∣∣∣ ∃u ∈ Rnu such that
[
x
u

]
∈ S̃

}
,

Πu

(
S̃
)

=

{
u ∈ Rnu

∣∣∣∣ ∃x ∈ Rnx such that
[
x
u

]
∈ S̃

}
,

which project a set of augmented states S̃ ⊂ Rnx+nu onto
the space of nonaugmented states and inputs, respectively.

The solution of (4) at time t ≥ t0 based on the nonaug-
mented initial state x(t0), piecewise constant correction input
trajectory ū(·), and disturbance trajectory w(·) is denoted by
ξ̃
(
t, x(t0), ū(·), w(·)

)
∈ Rnx+nu . By considering an initial

state set X0 ⊆ X and the disturbance set W , we obtain the
exact reachable set

R̃e
(
t,X0, ū(·),W

)
=
{
ξ̃
(
t, x(t0), ū(·), w(·)

) ∣∣ x(t0) ∈ X0,

w(·) ∈ W
}

for the system in (4), which is the set of augmented states
that are reachable at time t. Similarly, the exact reachable
set for the time interval τk = [tk, tk+1) is

R̃e
(
τk,X0, ū(·),W

)
=
⋃

t∈τk
R̃e
(
t,X0, ū(·),W

)
,

which is the union of reachable sets at all times within
τk. Since, in general, reachable sets cannot be computed
exactly [19], we compute tight over-approximations R̃ ⊇ R̃e
instead [15].

A crucial aspect of reachability analysis is the choice of
the set representation, e.g., polytopes or ellipsoids. In this
paper, we represent all reachable sets R̃ by zonotopes, since
the complexity of our zonotope-based reachability analysis
for the augmented system in (4) is only O

(
(nx+nu)3

)
, i.e.,

it scales polynomially with respect to the augmented state
space dimension [15]. As a result, reachable sets for sys-
tems with several hundred state variables can be computed.
Additionally, zonotopes can be stored efficiently as matrices.
A zonotope Z̃ ⊂ Rnx+nu is defined by

Z̃ =

{
x̃ ∈ Rnx+nu

∣∣∣∣ x̃ = c̃+

ng∑

i=1

α(i)g̃(i), α(i) ∈ [−1, 1]

}
,

where c̃ ∈ Rnx+nu is the center, and g̃(i) ∈ Rnx+nu is the
ith generator of Z̃ . To obtain a more compact notation, we
use the short form Z̃ =

〈
c̃, g̃(1), g̃(2), . . . , g̃(ng)

〉
.

III. VERIFIED TERMINAL SET

In this section, we define robust positively invariant (RPI)
sets and verified terminal sets. Additionally, we present our
scalable algorithm to compute verified terminal sets and
introduce a distance between two sets.

A. Set Definitions

As stated in Sec. II-A, our goal is to steer the disturbed
system to a neighborhood of the origin while satisfying the
constraints in (3) for all times. A common way to ensure
constraint satisfaction for an infinite time horizon is to reach
a terminal set that is an RPI set. A set S ⊆ X is an RPI set for
the continuous-time system in (1) if Πx

(
R̃
(
t,S, 0,W

))
⊆ S

holds for all t ≥ t0 [20], [21].
A common procedure to compute polytopic RPI sets

for a continuous-time system is based on constructing
its corresponding discrete-time Euler auxiliary system [22,
Def. 4.25]. As a result, methods for computing RPI sets of
discrete-time systems can be exploited to compute RPI sets
for the original continuous-time ones [22, Lemma 4.26].
However, these methods are unable to deal with high-
dimensional systems due to the curse of dimensionality.

A zonotopic RPI set containing the origin can be deter-
mined by checking if the condition Πx

(
R̃
(
τk+1, 0, 0,W

))
⊆

Πx

(
R̃
(
τk, 0, 0,W

))
holds for some k. However, perform-

ing this enclosure check is computationally intractable for
high-dimensional systems, since it requires transforming the
zonotope Πx

(
R̃
(
τk, 0, 0,W

))
to a polytope in halfspace-

representation [23].



Instead of computing an RPI set, we propose a scalable
method to obtain a verified terminal set. We call a set Ω ⊆ X
a verified terminal set for the disturbed system in (1) and the
terminal controller u(t) = Kx(tk) for t ∈ τk, if there exists
some finite time tΩ > t0 such that

Πx

(
R̃
(
tΩ,Ω, 0,W

))
⊆ Ω (5a)

Πx

(
R̃
(
t,Ω, 0,W

))
⊆ X for t ∈ [t0, tΩ) (5b)

Πu

(
R̃
(
t,Ω, 0,W

))
⊆ U for t ∈ [t0, tΩ) (5c)

holds. Hence, we allow the state trajectory x(·) to leave Ω for
some time t ∈ (t0, tΩ) in contrast to RPI sets. Nevertheless,
(5b) and (5c) ensure that the state and input constraints
are satisfied for t ∈ [t0, tΩ) while employing the terminal
controller. Thus, the constraints in (3) are fulfilled for an
infinite time horizon after the state trajectory enters Ω at t0.

B. Algorithm

Before we propose an algorithm for computing a verified
terminal set Ω satisfying the conditions in (5), we introduce
the distance

d(S1,S2) = β (6)

between two sets S1 and S2, where β ∈ R≥0 is the smallest
nonnegative value that satisfies S1 ⊆ (1 + β)S2 [24]. Thus,
d(S1,S2) = 0 if and only if S1 ⊆ S2.

We present Alg. 1 to efficiently compute a verified ter-
minal set Ω for the case that Ω is an axis-aligned box,
which significantly simplifies the enclosure check in (5a). To
customize our scalable algorithm, we introduce βmax ∈ R>0

and lmax ∈ R>0 as the user-defined maximum distance and
interval length, respectively. Moreover, the function box(S)
returns the smallest axis-aligned box enclosing the set S.

Algorithm 1 Verified terminal set

Input: X ,U ,W, βmax, lmax
Output: Ω

1: Bmin ← computeMinimalBox(X ,W, βmax)
2: if safeUntilEnclosed(Bmin,X ,U ,W) then
3: I ←

[
1, 1 + d

(
box(X ),Bmin

)]

4: while lmax < length(I) do
5: Bscaled ← center(I)Bmin
6: if safeUntilEnclosed(Bscaled,X ,U ,W) then
7: I ← [center(I), max(I)]
8: else
9: I ← [min(I), center(I)]

10: end if
11: end while
12: Ω← min(I)Bmin
13: else
14: Ω← {}
15: end if

The function computeMinimalBox is called in line 1 of
Alg. 1 and is presented in Alg. 2. This function computes
reachable sets for consecutive time intervals corresponding
to the following two initial state sets: the origin and the

state constraint set X . These reachable sets are denoted by
S̃0 and S̃X . Intuitively, the sets Πx(S̃0) and Πx(S̃X ) would
converge to the minimal RPI set as t → ∞ [21], if all
eigenvalues of A + BK had negative real part, ∆t = 0,
and reachable sets could be computed exactly. Since these
assumptions cannot be fulfilled in practice, we use an easily
computable termination criterion in line 4 of Alg. 2. If the
distance between the box enclosures of Πx(S̃X ) and Πx(S̃0)
is smaller than βmax, we stop computing reachable sets for
further time intervals. Finally, the minimal box Bmin, which
is illustrated in Fig. 1, is obtained in line 9.

Algorithm 2 Function computeMinimalBox

Input: X ,W, βmax
Output: Bmin

1: k ← 0
2: S̃0 ← R̃

(
τk, 0, 0,W

)

3: S̃X ← R̃
(
τk,X , 0,W

)

4: while βmax ≤ d
(
box
(
Πx(S̃X )

)
, box

(
Πx(S̃0)

))
do

5: k ← k + 1
6: S̃0 ← R̃

(
τk, 0, 0,W

)

7: S̃X ← R̃
(
τk,X , 0,W

)

8: end while
9: Bmin ← (1 + βmax) box

(
Πx(S̃0)

)

Πx(S̃0)Πx(S̃X )

Bmin

Fig. 1. The minimal box Bmin, which is obtained by executing Alg. 2,
is shown in black. The zonotopes Πx(S̃0) and Πx(S̃X ) and their smallest
axis-aligned box enclosures are shown in blue and red, respectively. It is
assumed that the center of Πx(S̃0) is the origin.

By calling the function computeMinimalBox in line 1 of
Alg. 1, the box Bmin is obtained. By construction, we know
that Πx

(
R̃
(
τk,X , 0,W

))
⊆ Bmin holds for some finite k.

Thus, if Bmin ⊆ X holds, the condition in (5a) is guaranteed
to be satisfied for the verified terminal set candidate Bmin. To
ensure (5b) and (5c) are also fulfilled, we use the function
safeUntilEnclosed(B,X ,U ,W). This function returns true
for a box B if some j ∈ Z>0 exists such that

Πx

(
R̃
(
tj ,B, 0,W

))
⊆ B

Πx

(
R̃
(
τk,B, 0,W

))
⊆ X for k ∈ {0, 1, 2, . . . , j − 1}

Πu

(
R̃
(
τk,B, 0,W

))
⊆ U for k ∈ {0, 1, 2, . . . , j − 1}

holds, otherwise it returns false. Thus, if the hard constraints
in (3) are not satisfied for a reachable set of Bmin in line 2
of Alg. 1, the procedure returns an empty terminal set in
line 14. Otherwise, in line 3, we initialize an admissible
one-dimensional interval I corresponding to scaling factors



of Bmin such that safeUntilEnclosed(min(I)Bmin,X ,U ,W)
is true whereas safeUntilEnclosed(max(I)Bmin,X ,U ,W) is,
in general, false. The functions min, max, center, and length
determine the minimum, maximum, center, and length of an
interval, respectively. In lines 4 to 11, we perform a binary
search to find an admissible scaling interval of maximum
length lmax in order to increase the size of the verified
terminal set. In line 12 of Alg. 1, the final verified terminal
set Ω, which is guaranteed to satisfy the conditions in (5),
is obtained.

IV. ROBUST REACHABLE-SET-BASED MPC

In this section, we present our robust reachable-set-based
dual-mode MPC approach considering a prediction horizon
of N ∈ Z>0. Before we state the optimal control problem
and propose our algorithm, we take the computation time
into consideration and describe our constraint tightening
procedure.

A. Computation Time Consideration

In order to guarantee safety of the system, i.e., satisfaction
of the constraints in (3) for all times, we need to consider
the nonzero computation time for solving the optimal control
problem [17], [18]. The correction input trajectory that is
optimized during the time interval τk is piecewise constant,
subsequently denoted by ūk(·), and illustrated in Fig. 2.

· · · tk−1 tk tk+1 tk+2 tk+3 · · ·
t

ūk−1(t0) ūk−1(t1) ūk−1(t2)

ūk(t0) ūk(t1) ūk(t2)

τk−1 τk τk+1 τk+2

Fig. 2. Piecewise constant correction input trajectories ūk−1(·) and ūk(·)
for the prediction horizon N = 3.

At tk, the available computation time for the optimization
of ūk−1(·) is over. Then, we set

ūk(t) = ūk−1(t+ t1) for t ∈ [t0, t1), (7)

and apply the input ūk−1(t1)+Kx(tk) to the system during
τk while we optimize ūk(t) for t ∈ [t1, tN ). In case the
optimization needs more time to finish than the length of
one sampling time interval ∆t, we abort it prematurely. If
the obtained correction input trajectory ūk(·) is not feasible,
we use the solution of the previous optimization as backup,
i.e., we set

ūk(t) =

{
ūk−1(t+ t1) for t ∈ [t0, tN−1)

0 for t ∈ [tN−1, tN )
. (8)

This backup solution approach is valid, since we assume that
an initial feasible solution for the optimal control problem
exists, which is a common assumption in robust MPC.

B. Constraint Tightening

Since the system in (1) and the disturbance setW are time-
invariant, the reachable set R̃

(
t, 0, 0,W

)
can be computed

offline for any t ∈ R≥0. Thus, we can reduce the online
computational effort by tightening the constraints in (3)
based on the superposition principle [3], [4]. This allows us
to ensure constraint satisfaction despite disturbances based
on the disturbance-free system.

First, we introduce the Minkowski addition S1 ⊕ S2 =
{s1 + s2 | s1 ∈ S1, s2 ∈ S2}, and the Minkowski difference
S1	S2 = {s3 | s3⊕S2 ⊆ S1} of two sets S1 and S2. Then,
the tightened state, input, and terminal constraint sets are

X(τi) = X 	Πx

(
R̃
(
τi, 0, 0,W

))
, (9a)

U(τi) = U 	Πu

(
R̃
(
τi, 0, 0,W

))
, (9b)

Ω =
1

1 + λ
Ω	Πx

(
R̃
(
tN , 0, 0,W

))
, (9c)

where i ∈ {0, 1, 2, . . . , N−1} and λ ∈ R>0 is a user-defined
contraction parameter. In (9c), before the verified terminal
set Ω is tightened, it is shrank by 1

1+λ . Based on this shrank
set, convergence of the state trajectory to Ω in finite time can
be guaranteed by introducing a contraction constraint [18],
[24].

Assumption 2: The tightened state, input, and terminal
constraint sets in (9) are nonempty. �

C. Optimal Control Problem

Before we state the optimal control problem, we define
the contraction cost for time step tk and j ∈ Z>0 by

J
(
k, j
)

=

j−1∑

i=1

d

(
Πx

(
R̃
(
ti, x(tk), ūk(·),W

))
,

1

1 + λ
Ω

)
.

In general, for three nonempty sets S̃1, S̃2, and S3, the
overall distance d

(
Πx(S̃1) ⊕ Πx(S̃2),S3

)
is unequal the

sum d
(
Πx(S̃1),S3

)
+ d
(
Πx(S̃2),S3

)
. Thus, the contraction

cost cannot be easily decomposed based on the super-
position principle in contrast to the constraint tightening
in Sec. IV-B. Nevertheless, we can significantly reduce
the online computational effort by computing the mini-
mum and maximum values of Πx

(
R̃
(
ti, 0, 0,W

))
for i ∈

{1, 2, . . . , N−1} in each dimension offline, i.e., by comput-
ing box

(
Πx

(
R̃
(
ti, 0, 0,W

)))
.

The optimization problem solved during the time inter-
val τk is

min
ūk(·)

N−1∑

i=1

L
(
x̄(ti), ūk(ti)

)
+ V

(
x̄(tN )

)
, (10)

where x̄(t) = Πx

(
R̃
(
t, x(tk), ūk(·), 0

))
, L denotes a posi-

tive definite stage cost, and V is a positive definite terminal
cost, subject to (2), (7), and the tightened state, input, and
terminal constraints

Πx

(
R̃
(
τi, x(tk), ūk(·), 0

))
⊆X(τi), (11a)

Πu

(
R̃
(
τi, x(tk), ūk(·), 0

))
⊆U(τi), (11b)

Πx

(
R̃
(
tN , x(tk), ūk(·), 0

))
⊆Ω, (11c)



where i ∈ {0, 1, 2, . . . , N − 1}. Additionally, the minimiza-
tion in (10) is subject to the contraction constraint

J
(
k,N

)
− J

(
k − 1,mk−1

)
< −λ, (12)

where λ is the contraction parameter used in (9c), and
mk ∈ Z>0 is the smallest positive integer that verifies
d
(
Πx

(
R̃
(
tmk

, x(tk), ūk(·),W
))
, 1

1+λΩ
)

= 0.
In order to use an off-the-shelf solver for the optimization

problem (10), the set-based constraints need to be trans-
formed into a system of inequalities. To determine if a zono-
tope Z̃ =

〈
c̃, g̃(1), g̃(2), . . . , g̃(ng)

〉
is enclosed by a convex,

closed, bounded polytope P̃ = {x̃ ∈ Rnx+nu
∣∣ H̃x̃ ≤ h̃},

we have to check if

H̃c̃+

ng∑

i=1

∣∣H̃g̃(i)
∣∣ ≤ h̃

is fulfilled [18], where the absolute value and the inequality
are applied elementwise.

In (10), we evaluate x̄ only at discrete time points, since
we obtain these evaluations as a byproduct of our reachability
analysis for the sets in (11) and (12) resulting in small com-
putation times. Clearly, other cost functions are possible. In
case the chosen cost function is convex, the optimal control
problem is a convex optimization problem and can be solved
efficiently by existing convex optimization algorithms [25].

D. Algorithm

Our robust reachable-set-based dual-mode MPC approach
is presented in Alg. 3. As mentioned in Sec. IV-A, we assume
that an initial feasible solution ū−1(·) for the optimization
problem (10) with J

(
−2,m−2

)
=∞ is given at t0.

Algorithm 3 Robust reachable-set-based dual-mode MPC

Input: ūk−1(·), x(tk)
Output: ūk(·)

1: u(t)← ūk−1(t1) +Kx(tk) for t ∈ τk
2: if x(tk) ∈ Ω then
3: ūk(·)← 0
4: else
5:

(
rūk

(·), rfeasible
)
← solve (10)

6: if rfeasible then
7: ūk(·)← rūk

(·)
8: else
9: ūk(·)← apply ūk−1(·) to (8)

10: end if
11: end if

In line 1 of Alg. 3, the input u that is applied to the system
during the time interval τk is updated based on Sec. IV-A.
In line 2, we check if the measured state x(tk) lies inside
the verified terminal set Ω. If this is the case, the stabilizing
terminal controller from Sec. III is used, i.e., ūk(·) is set
to 0. Otherwise, the optimal control problem (10), which
provides two return values, is solved until tk+1 in line 5.
The first return value rūk

(·) corresponds to the optimized
correction input trajectory and the second return value rfeasible

is a Boolean flag that is true if the optimization problem
was solved successfully, otherwise it is false. In case of an
infeasible solution, we compute a correction input trajectory
according to (8) in line 9 of Alg. 3. As mentioned in
Sec. IV-A, the optimization is aborted prematurely when the
computation time reaches ∆t.

Proposition 1: If Assumptions 1 and 2 are fulfilled and
there exists an initial feasible solution at t0, then Alg. 3 steers
the disturbed system in (1) to a neighborhood of the origin
while minimizing the cost function in (10) and satisfying the
constraints in (3) for all times. �

The proof follows the same line of thoughts as [18,
Thm. 1] with a minor modification, which is explained
subsequently. Based on [18], a sufficient condition for guar-
anteeing convergence of the state trajectory to the verified
terminal set Ω is given by replacing N with mk in (12).
This leads to a mixed-integer optimization problem that is
much harder to solve. Nevertheless, we know that mk ≤ N
holds due to the tightened terminal constraint in (11c). Since
the distance introduced in (6) is nonnegative, it follows that
0 ≤ J(k,mk) ≤ J(k,N) holds. Thus, convergence to the
verified terminal set Ω is assured.

V. NUMERICAL EXAMPLE

In this section, we show the applicability of our approach
using a vehicle platooning benchmark [26]. The dynamics
corresponding to the relative motion of the ith following
vehicle with i ∈ Z>0 and its vehicle ahead are

ëi = ai−1 − ai,
where the relative position error ei denotes the difference
between the two vehicles and a given safe reference dis-
tance. Moreover, ai corresponds to the effective acceleration
described by the drivetrain dynamics

ȧi = − 1

Ti
ai +

1

Ti
ui,

where ui is a control input and Ti is a time constant, which is
assumed to be 0.5 s for all i. The acceleration of the leading
vehicle a0 is considered as a disturbance. By assuming three
following vehicles, the nonaugmented state of the platoon is
given by x =

[
e1 ė1 a1 e2 ė2 a2 e3 ė3 a3

]T
,

the control input is u =
[
u1 u2 u3

]T
, and the disturbance

is w =
[
0 a0 0 . . . 0

]T
.

Since vehicle-to-vehicle communication is assumed, a
central controller can be designed. The used state feedback
matrix K in (2a) is obtained by an LMI-based control
approach [26]. We also want to mention that some sparsity
exists in the system matrix that could be exploited to speed
up the optimization, as done in distributed MPC [13], [14].
However, since we want to show the applicability of our
approach to large systems, we ignore the underlying structure
and consider the system as a black box.

We assume the acceleration of the leading vehicle a0,
which acts as a disturbance, to be guaranteed to lie within
the interval [−1, 1] m

s2
. For all i ∈ {1, 2, 3}, we require the

relative position error ei(·) to be bounded by [−10, 10] m.



Thus, by setting the safe reference distance to 10 m, the
distance between two following vehicles is guaranteed to be
within [0, 20] m. As a result, compared to a nonplatooning
scenario, the air resistance of the following vehicles is
reduced and the road capacity is increased. In addition to the
relative position error constraints, we restrict the velocity ėi
and acceleration ai of all following vehicles to be bounded by
[5, 5] m

s and [−8, 8] m
s2

, respectively. Additionally, the control
inputs ui are constrained to lie within [−8, 8] m

s2
for all i.

In (10), we use the stage cost L
(
x̄, ūk

)
= x̄T x̄+ 10ūTk ūk

and terminal cost V (x̄) = x̄T x̄. The prediction horizon
is N = 20 and the sampling time is ∆t = 100 ms.
The maximum distance and interval length required for
computing the verified terminal set Ω are βmax = 10−3 and
lmax = 10−3, respectively. The contraction parameter used in
(9c) is λ = 0.2 and ū−1(t0) is 0. The initial state is x(t−1) =[−7 m 3 m

s 3 m
s2

7 m −4 m
s 4 m

s2
1 m 2 m

s 0
]T

.
The projections of sets and trajectories onto relative po-

sition and velocity error dimensions are shown in Fig. 3.
The actual state, input, and disturbance trajectories over
time, which correspond to the red trajectories in Fig. 3,
are shown in Fig. 4. As illustrated in Fig. 4b, the additive
disturbance a0 is chosen randomly from the admissible set
[−1, 1] m

s2
. Although a0 is assumed piecewise constant in

this simulation, our reachability analysis takes all possible
realizations within a time interval into account.

Our robust reachable-set-based MPC method is integrated
into our MATLAB reachability tool CORA [27]. The convex
optimization problem (10) is modeled by YALMIP [28]
with parameter ‘allownonconvex’ set to 0, and solved by
MOSEK [29] with default parameters. All computations
are run on a laptop with an Intel Core i7-7820HQ and
32 GB memory. The time needed to compute the verified
terminal set Ω by executing Alg. 1 is 0.7 s (offline), and
the maximum computation time for a single optimization is
84 ms (online). Since it is smaller than the sample time ∆t,
we never have to abort the optimization prematurely.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a scalable robust reachable-set-based
MPC approach for constrained linear sampled-data systems.
By taking the computation time into consideration and using
verified terminal sets, we ensure constraint satisfaction for
an infinite time horizon while steering the system to a
neighborhood of the origin. Moreover, we have shown that
the online computations of our approach can be performed in
real-time. In the future, we plan to include state measurement
uncertainty by means of set-based observers. Additionally,
we want to apply our robust MPC approach to even higher-
dimensional problems.
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[18] B. Schürmann, N. Kochdumper, and M. Althoff, “Reachset model pre-
dictive control for disturbed nonlinear systems,” in IEEE Conference
on Decision and Control, 2018, pp. 3463–3470.

[19] G. Lafferriere, G. J. Pappas, and S. Yovine, “Symbolic reachability
computation for families of linear vector fields,” Journal of Symbolic
Computation, vol. 32, no. 3, pp. 231–253, 2001.

[20] S. Tarbouriech and C. Burgat, “Positively invariant sets for constrained
continuous-time systems with cone properties,” IEEE Transactions on
Automatic Control, vol. 39, no. 2, pp. 401–405, 1994.
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