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Abstract
Massive MIMO is a promising candidate technology to meet the ever-increasing wireless

throughput demand in 5G mobile networks. To increase the spectral efficiency of orthog-
onal frequency division multiplexing (OFDM) massive MIMO, coordinated multipoint or
cooperative MIMO has been identified as a potential solution. Joint transmission coordi-
nated multipoint (JT CoMP) deals with constructive exploitation of interference through
coherent eNodeB cooperation. To develop the frequency-division duplex (FDD) version
of massive MIMO, the amount of channel state information (CSI) that needs to be fed
back from the UEs to the eNodeB increases as compared to time-division duplex (TDD).
To reduce the CSI reporting complexity in FDD-mMIMO, a predetermined grid of beams
(GoB) is applied to make the channel matrix sparse when the UEs report only their pre-
ferred beams.

The computational complexity of zero-forcing precoding at the eNodeB benefits from
the sparsity of the channel matrix when CoMP massive MIMO and GoB are combined.
Each UE reports only the effective channel matrix relevant channel components (RCCs).
Low-complexity Moore-Penrose inverse precoding gains a factor of 100 in terms of floating
point operations (FLOPs) with respect to using the full pseudo inverse calculation when
a MIMO-OFDM system with 100 physical resource blocks (PRBs) per time transmission
interval (TTI) for single subcarrier and multiple subcarrier is considered. A trade-off
between the computational complexity gain and SINR degradation as well as the spectral
efficiency is analyzed.

xiii



Zusammenfassung
Massive MIMO ist eine vielversprechende Technologie, um die stets wachsende Nach-

frage nach drahtlosem Datendurchsatz für 5G Mobilfunknetze zu leisten. Um die spek-
trale Effizienz von orthogonal frequency division multiplexing (OFDM) massive MIMO zu
steigern, wurde coordinated multipoint oder cooperative MIMO als mögliche Lösung iden-
tifiziert. Joint transmission coordinated multipoint (JT CoMP) behandelt die konstruktive
Nutzung von Interferenz durch kohärente eNodeB Kooperation. Um die frequency-division
duplex (FDD) Version von massive MIMO zu entwickeln, lässt sich die Menge von channel
state information (CSI), die Bedarf an einer Rückführung von den UEs zu dem eNodeB
hat, im Vergleich zu time-division duplex (TDD) erhöhen. Ein prädeterminiertes Grid
of Beam (GoB) wird angewendet, um eine dünnbesetzte Kanalmatrix zu erhalten, wenn
jeder UE nur seine bevorzugten beams meldet. Dies reduziert die Komplexität vom CSI
reporting.

Die Berechnungskomplexität von zero-forcing precoding am eNodeB profitiert von der
dünnbesetzten Kanalmatrix, wenn CoMP massive MIMO und GoB kombiniert werden.
Jeder UE meldet nur den betroffenen Teil seiner Kanalmatrix, der die jeweils relevant
channel components (RCCs) enthält. Low-complexity Moore-Penrose inverse precoding
verringert die Berechnungperformance in floating point operations (FLOPs) um Faktor 100
im Vergleich zu full pseudo inverse Berechnung bei 100 physical resource blocks (PRBs)
pro time transmission interval (TTI) für single subcarrier und multiple subcarrier massive
MIMO-OFDM Systeme. Es wird Analyse des Trade-offs zwischen der Reduzierung in
FLOPs, der Verschlechterung von SINR und der spektralen Effizienz durchgeführt.





1
Introduction

1.1. Motivation

While the first Internet era (1985-2000) and the second Internet era (2000-2015) were
defined to build the Internet and its new services, the third Internet wave is being defined by
building the Internet into everything (2015+) which is distrupting many industry sectors
[6]. Data traffic in the last five years of the second Internet era (2010-2015) witnessed
growth dominated by sharing personal content delivered from and to mobile devices [7].
By introducing new mobile devices that support a wide range of applications, the gap
of user experience between fixed and mobile environments becomes narrower. The new
Internet era toward 2020 and beyond brings two significant trends in mobile services (see
Figure 1.1):

1. Everything will be connected by wireless to enable information collection and con-
trol of devices. Remote monitoring and real-time services such as Vehicle-to-Vehicle
(V2V) communications and smart metering which supports Machine-to-Machine
(M2M) and Internet of Things (IoT) can be considered as the emerging service
examples for this trend.

2. Wireless services, e.g., high resolution video streaming, tactile internet, low-latency
safety systems and remote health consulting will be more extensive and enriched
through content and are expected to be delivered in real-time.

Given these trends, the mobile data traffic has grown 24-fold in 2010 to 2015 [8].
According to the analysis of the growth in mobile network traffic rate published by Bell
Labs Consulting, by 2020 the volume of mobile traffic will be 1000-fold larger compared
to 2010 [2]. Furthermore, more diversified services will bring more variations in data rate,
depending on the location, time, application and type of device [9].
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Figure 1.1.: New Internet era major trends toward 2020 and beyond [1]

The new Internet era imposes challenging requirements. For example, Figure 1.2
illustrates the latency and bandwidth requirements of the future Internet wave services [2].
Critical and immersive services such as Augmented Reality (AR) require ultra-low latency
networks with single-digit milliseconds of delay. To carry high volumes of traffic from
billions of mobile and IoT devices, the future Internet era requires ultra-high capacity.
Services with ultra-high speed, e.g., 360-degree video, will demand peak data rates of up
to 1 Gbps [2], [10].

Given these requirements, the fifth generation (5G) mobile networks will have to
support more stringent latency and reliability requirements, a wide range of data rates
and network scalability and flexibility [11]. The response to such requirements can be
a combination of existing technologies and new radio concepts, as depicted in Figure 1.3.
According to Bell Labs studies, in order to achieve 5G mobile network targets, six essential
technologies should be considered [9]:

1. Modular framing structure: 5G transmission frame structure that enables very
low latency and fast Hybrid Automatic Repeat Request (HARQ) coexistence with
fourth generation (4G) and transmission of variable frame length to support ultra-
broadband, ultra-narrowband and ultra-low latency applications.

2. New air interface: 5G New Radio (NR) that supports diverse use cases with ex-
treme requirements, as well as a wide range of frequencies and deployment options
using a flexible and scalable design.

3. Massive MIMO: to achieve a 1000-fold increase in mobile data traffic and en-
hanced Mobile Broadband (eMBB) targets, advances in Multiple-Input Multiple-
Output (MIMO) technology is essential.
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Figure 1.2.: New Internet era latency and bandwidth requirements [2]

Figure 1.3.: 5G mobile network concept and requirements
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4. New spectrum: to avoid the shortage of wireless carriers due to the rapid increase
of mobile data growth, 5G is driving the exploration of millimeter wave frequency
spectrum (>24 GHz).

5. Multi-RAT: to provide ultra-reliable broadband access to a wide range of applica-
tions, an integration of a variety of Radio Access Technologies (RATs) with network
controlled traffic steering and cell-free architecture is required.

6. New core: to handle highly dynamic traffic profiles, cloudification of the core net-
work is required. For any service mix, new vitualized and Software-Defined Network-
ing (SDN) solutions are used to provide flexible routing.

1.2. Thesis Context

The benefits of using multiple antennas at both the Base Station (BS) and at the User
Equipment (UE) was described by Foschini [12]. This multiple antenna approach is now
used in every major wireless access standard in spite of the large gap between theoretical
investigations and practical implementations. To achieve a 1000-fold increase in data rates
for cell-edge UEs is a challenging task when the experienced rates are orders of magnitudes
larger than the cell average. Coordinated Multi-Point (CoMP) can be used to reduce the
interference from neighboring cells, but a lack of accurate Channel State Information (CSI)
at the BS is still a challenge. Advanced cooperative precoder and beamforming design can
improve interference mitigation on a multi-cell level [13], [14].

To reduce interference, increasing the number of antennas at the BS expands capacity
from a single site through beamforming [15]. Considering a hundred antennas, simulation
results [16], [17] have shown capacity increases of an order of magnitude. The deploy-
ment of large transmit antenna arrays serving a much smaller number of UEs is called
Massive MIMO (mMIMO). Long Term Evolution (LTE) systems have solutions currently
that use up to 64 atennas at the Evolved Node B (eNodeB) [18]. mMIMO can be used
in heavy, scatter-propagation and Non-line-of-Sight (NLoS) conditions, to achieve much
higher throughput at a given range. Antenna arrays in mMIMO systems scale with wave-
length, which is inversely proportional to the frequency used.

Frequency Division Duplex (FDD) mMIMO is relevant compared to Time Division
Duplex (TDD) as many of the below 6 GHz frequency bands are FDD bands and it
provides better coverage than the high RF bands. Furthermore, FDD has coverage gains
over TDD as FDD signals are transmitted constantly, while in TDD average transmit power
is reduced due to switching between Uplink (UL) and Downlink (DL) signals. mMIMO
with full cooperation (coherent joint transmission CoMP) has been a research topic in
3rd Generation Partnership Project (3GPP) due to some stringent requirements on time
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and frequency synchronization, need for accurate CSI and precoding complexity. 3GPP
Release 18 has recently identified CoMP mMIMO wireless systems as the main enabler for
sixth generation (6G) mobile networks and it is getting more accepted by many companies.

To deploy below 6 GHz FDD mMIMO CoMP systems, one main aspect is to combat
with the high overhead due to CSI feedback and the precoding complexity of large channel
matrix at the eNodeB.

1.3. Overview of thesis and Contributions

In this thesis, we investigate the computational complexity of below 6 GHz FDD
mMIMO systems. The deployment of a large number of antennas at the eNodeBs that are
synchronized via a CoMP architecture greatly increases the downlink precoding complex-
ity as compared to Multi-user MIMO (MU-MIMO) and Single-user MIMO (SU-MIMO)
systems. To analyze the computational complexity of precoding at the eNodeB, Floating
Point Operations (FLOPs) can be used as a performance metric to count the number
of mathematical operations when different Zero-Forcing (ZF) precoding schemes are em-
ployed. One solution to reduce the complexity is to filter out significant beams received
at the UE. To apply this idea, we use a joint analog beamformer and digital precoding.
Analog beamformer or Grid of Beams (GoB) precoder converts physical antenna arrays at
the eNodeB into a limited set of orthogonal narrow beams which are considered as signi-
fant received beams at the UE. technique and a power threshold. We briefly summarize
the contents and contributions of each chapter.

Chapter 2 introduces the principles of MIMO systems and briefly reviews mMIMO
deployments in CoMP scenarios. By introducing the 3GPP 3D urban macro channel
model, we motivate the use of an integrated mMIMO, GoB and CoMP system model. The
chapter ends with an investigation of linear beamforming at the UE.

Chapter 3 reviews linear precoding at the eNodeB. First, we review the state-of-the-
art methods and their complexity levels to calculate the pseudo inverse of the channel
matrix for a single-subcarrier OFDM system. Second, we analyze Channel Component
(CC) in the channel matrix which represents the combination of the beams formed at the
eNodeB (Tx) and the UE Rx beamformers. As a result, channel matrix will be sparse
due to the directivity of the generally narrow GoB beamformers. We will assume that the
UEs receive those channel components with a power that is a predefined threshold above
the Rx-power of the strongest beam. These limited number of CCs are called Relevent
Channel Components (RCCs) and they will be used to adjust the mMIMO matrix precoder
and a low-complexity pseudo inverse scheme. Utilizing a toolbox to count the FLOPs, we
discuss the impact of a power threshold on the performance degradation and complexity.
We also discuss the sensitivity of spectral efficiency and Signal to Interference plus Noise
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Ratio (SINR) to a complexity gain for a single-subcarrier OFDM system.

Chapter 4 investigates linear precoding solutions for multiple-subcarriers FDDmMIMO
systems. An approximate pseudo inverse scheme for the Strong Precoding Channel Com-
ponents (SPCCs) is proposed. We define four major parameters and we discuss in detail
the impact of each parameter on the performance metrics when a low-complexity pseudo
inverse filter is applied to multiple-subcarriers.

Chapter 5 summarizes the main findings of this thesis and discusses open problems
and possible future lines of work.



2
System Model

2.1. Introduction

This chapter lays the foundations for the thesis by giving an overview of MIMO
communications. We first review the fundamental concepts of MIMO systems in section 2.2
Diversity and spatial multiplexing are considered as the main characteristics of MIMO to
understand how link capacity and reliability can be increased. MIMO can be extended
to scheduling a certain number of UEs at the same time and frequency. However, new
challenges appear including accurate reporting of CSI and combating interference.

Beamforming and precoding at the eNodeB can reduce interference in Multi-user
MIMO (MU-MIMO) systems, and such techniques also require CSI estimation. To serve
many UEs, MIMO can be extended to massive MIMO (mMIMO) where the eNodeB is
equipped with a large number of antennas. mMIMO’s main features are discussed in
section 2.3. Although mMIMO can provide higher spectral efficiency, the complexity of
system design becomes challenging when handling high rate CSI for each antenna element
and performing precoding at the eNodeB. A Grid of Beams (GoB) can reduce CSI reporting
substantially, and we review this approach in section 2.3.1.

The complexity of system design is even more challenging when using Joint Transmis-
sion (JT) CoMP in combination with 3GPP urban macro channels. The computational
complexity scales up to the entire Cooperation Area (CA) where each UE has a link not
only to the dominant cell, but also to other eNodeBs. The main characteristics and chal-
lenges of CoMP are discussed in section 2.4.
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The main features of the system model, i.e., the combination of mMIMO, GoB and
JT CoMP, are provided in section 2.5. A 3GPP 3D urban macro channel model and the
corresponding essentials are introduced in section 2.6.

2.2. MIMO Review

Wireless channels suffer from fading due to destructive addition of multipath compo-
nents and interference from other UEs. Advanced antenna techniques can combat fading
and interference. Single-Input Single-Output (SISO) is the basic antenna configuration
that employs a single antenna at the transmitter and a single antenna at the receiver (see
Figure 2.1). SISO can be expanded to using multiple antennas at the receiver which is

Figure 2.1.: SISO architecture

known as Single-Input Multiple-Output (SIMO) (see Figure 2.2). Multiple-Input Single-
Output (MISO) occurs if multiple antennas are used at the transmitter and a single an-
tenna at the receiver. Using multiple antennas at one side of the wireless link leads to the
possibility of performing interference cancelation and to realize diversity gain.

Figure 2.2.: SIMO architecture

Diversity equips the receiver with several (ideally independent) replicas of the trans-
mitted signal leading to link reliability improvements. Diversity can be provided via time
(due to Doppler spread) or frequency (due to delay spread). The use of spatial diver-
sity is practically attractive as it does not incur an expenditure in transmission time or
bandwidth.
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Applying multiple antennas at both the transmitter and receiver is known as MIMO.
The use of MIMO enables spatial multiplexing as an additional fundamental gain that
increases spectral efficiency. If spatial multiplexing is used, the receiver exploits differences
in the spatial signatures induced by the MIMO channel to separate data signals. This
method can bring a linear capacity increase, as compared to a system with a single antenna
at one or both sides of the communication link.

MIMO technology is logically divided into Single-user MIMO (SU-MIMO), MU-MIMO
and mMIMO. SU-MIMO (see Figure 2.3) represents the simplest type of MIMO. Through

Figure 2.3.: Single-user MIMO

a combination of Time Division Multiplexing (TDM) and Frequency Division Multiplex-
ing (FDM), different UEs are orthogonally multiplexed. In theory, the spectral efficiency
for SU-MIMO can be increased by simultaneously applying large antenna arrays at the
transmitter and the UE. However, in practice, considerations such as UE complexity in
terms of the number of RF chains per antenna as well as separating data streams using
digital signal processing seriously limit the implementation of SU-MIMO [19]. In contrast,
MU-MIMO (see Figure 2.4) allows to serve more than one UE on the same time-frequency
resource. One can view the gain of MU-MIMO as being achieved by breaking up the single-
user UE antennas and treating them as multiple autonomous UEs. MU-MIMO technology
generally has higher capacity than SU-MIMO under rich multipath conditions and low
correlation between the antennas of different UEs. Further, a MU-MIMO eNodeB jointly
processes the signals from each of the UEs which leads to higher spectral efficiency.

This thesis focuses on MU-MIMO and mMIMO. The main characteristics of MU-
MIMO are explained briefly in section 2.2.2. mMIMO, which is the ultimate realization of
MIMO technology, is introduced in section 2.3
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Figure 2.4.: Multi-user MIMO with K UEs

2.2.1. Time-Division Duplex versus Frequency-Division Duplex

CSI requirements at the UEs are different in SU-MIMO, MU-MIMO and mMIMO.
CSI can be estimated from received pilot signals or it can be obtained through feedback
from the UE to the eNodeB. If Time-Division Duplex (TDD) is applied, an eNodeB uses
uplink pilots to estimate the uplink and downlink channels when the channel between the
UE antennas and eNodeB antennas is reciprocal. In contrast, all the UEs in Frequency-
Division Duplex (FDD) estimate the downlink channel from the pilots sent by the eNodeB.
Estimated CSI known as CSI feedback is sent back to the eNodeB.

To ease channel estimation at the UE, each eNodeB antenna must be assigned a unique
pilot waveform, and such pilots need to be mutually orthogonal. Thus, for M antennas
that transmit orthogonal pilots in the downlink, at leastM samples must be sent for pilots
per coherence interval.

Depending on the power constraint, FDD can provide higher downlink rates than
TDD [20]. For example, if B is the total bandwidth for both the uplink and downlink, P
denotes the received power at the UE, and N0 denotes the noise Power Spectral Density
(PSD), then the TDD downlink rate under a noise-limited operation and a per-symbol
power constraint is as follows:

TDDdownlink = B
2 log2(1 + P

BN0
) (b/s). (2.1)

The downlink rate in FDD operation can be expressed as follows:

FDDdownlink = B
2 log2(1 + P

(B/2)N0
) (b/s). (2.2)

The expressions in (2.1) and (2.2) show the fact that transmission in TDD takes place
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over the full bandwidth, but only half of the time. As such, with TDD the transmitter
is silent half of the time and for a given P the received energy per unit time is half of
FDD. Whereas, B in FDD is divided by 2 both inside and outside of the logarithm since
transmission takes place continuously, but over half of the bandwidth. Under a peak power
constraint and noise-limited operation, FDD provides 3 dB better SNR than TDD [20]. In
this thesis, we focus on FDD MIMO technologies.

2.2.2. Multi-user MIMO

When MU-MIMO is employed, a certain number of UEs are scheduled on the same
time and frequency resource. In the frequency domain, the transfer function of the channel
between an eNodeB and a UE at a specified frequency is modeled by a complex matrix
H ∈ CN×M . The total number N of receive antennas is split between K UEs. For
coherent detection in the downlink, CSI from all the UEs to the eNodeB antenna elements
is needed. Utilizing estimated CSI, a joint precoding of data symbols can be applied prior
to transmission.

We next introduce characteristics of MU-MIMO including channel estimation, pre-
coding and beamforming, see Figure 2.5.

Figure 2.5.: MU-MIMO components
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Channel Estimation

An eNodeB adapts the signal to the radio channel and each UE uses its CSI to decode.
A major obstacle bringing MU-MIMO from theory into practice is how to obtain accurate
CSI at the eNodeB. In general, accurate CSI is more readily available in TDD-based
systems than in FDD-based systems due to the inherent channel reciprocity [21]. In TDD
MU-MIMO, UEs send pilots on the uplink and all the channels between the UEs and the
eNodeB can be estimated.

Although the number of required pilot sequences is independent of the number of
antennas at the eNodeB, and feedback from the UEs is avoided, TDD restricts multi-
cell MU-MIMO. Significantly, pilots in TDD in multi-cell MU-MIMO must be different
from one cell to another cell. Thus, channel estimation in a “home” cell causes pilot
contamination with channels from other cells which degrades channel estimation quality
regardless of whether we add more antennas.

FDD MU-MIMO uses different uplink and downlink frequency bands which results
in different CSI for both links. Downlink CSI is obtained by means of transmitting pilot
symbols from an eNodeB to all UEs. The overhead due to reporting estimated CSI from
the UEs to an eNodeB is one of the main challenges in FDD MU-MIMO.

Precoding

Precoding is a transmit processing operation in the spatial domain. Precoding is
required to effectively utilize multiple channels between an eNodeB and the UEs. To
illustrate the role of linear precoding in MU-MIMO, Figure 2.6(a) gives an overview of 2 ×
2 MU-MIMO where both the UEs and the eNodeB are equipped with two antennas. x1 and
x2 are the input signals at the eNodeB, and r1 and r2 are the received signals at the first
UE. Figure 2.6(a) shows that the wireless channel provides four separate paths (shown as
arrows) between the eNodeB and each UE. Transmission paths may comprise direct Line
of Sight (LOS) and numerous paths created by reflection, scattering and diffraction from
the channel environment.

If precoding is added as shown in Figure 2.6(b), the eNodeB must know the channel
matrix H to a sufficient level of precision. The precoder can preprocess the streams before
transmission. y1 and y2 in Figure 2.6(b) are the precoded signals applied to each transmit
antenna. For a 2 × 2 MU-MIMO system with linear precoding, the precoding matrix W
multiplies the input signals to generate:[

y1
y2

]
= W

[
x1
x2

]
. (2.3)
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The UE1 output is then given by:[
r1
r2

]
= H

[
y1
y2

]
+
[
z1
z2

]
= HW

[
x1
x2

]
+
[
z1
z2

]
. (2.4)

(a) 2×2 MU-MIMO system (b) 2×2 MU-MIMO Precoder

Figure 2.6.: MU-MIMO precoding

MU-MIMO precoding can also be non-linear, e.g., precoding methods such as dirty-paper-
coding (DPC) or Lattice-aided methods have better performance than linear precoding.
However, linear precoding methods, e.g., Zero Forcing (ZF), Matched Filter (MF) or Min-
imum Mean Square Error (MMSE), generally have less complexity [22]. ZF precoding lets
the eNodeB null out multiuser interference. In other words, ZF decouples the multiuser
channel into independent single-user channels, which often achieves a large portion of the
dirty paper coding capacity [23]. MF precoding is interference limited at high SINR, but
it outperforms ZF at low SINR. In this thesis, we use ZF precoding to cancel out the
interference.

Beamforming

Beamforming modifies the radiation pattern of an antenna array and can be applied
in all antenna array systems [24]. The principle of beamforming is depicted in Figure 2.7.
When the directions of the dominant propagation paths at the eNodeB(s) are identified,
beamforming can be applied to adjust the eNodeB and UE beam patterns such that they
have a high directivity towards the dominant angles of reception. Beamforming can lead to
coverage gain, and it can reduce the delay spread caused by multipath signal propagation.
Further, beamforming reduces CSI feedback since the number of beams received at the
UEs (known as Rx beams) is less than the number of antenna elements located at the
eNodeB.

A beamformer at the eNodeB is equipped with M antennas and a beamformer at
the UE is equipped with N antennas. For the downlink, information bit sequences are
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Figure 2.7.: Beamforming principle

first subjected to the eNodeB beamformer. For example, for M=2 the eNodeB can form
two beams in the direction of the dominant multipath components. The UE beamformer
adjusts its two beam patterns to provide high directivity towards the dominant angles of
reception. Beamforming in MU-MIMO combines the signals by adjusting the phase and
amplitude weights of the signals. We distinguish the following beamforming techniques:

1. Fixed beamforming: signals are combined applying fixed complex weights regard-
less of the channel conditions. These weights define the amplitude and phase shifts
for each antenna element.

2. Adaptive beamforming: to give the desired peaks and nulls in the radiation
pattern of the antenna array, the complex weights can be chosen adaptively. The
weights are usually slowly changed to steer the beam until maximum signal strength
is achieved and the “direction” to the signal source is found.

2.3. Massive MIMO Systems

mMIMO is an ultimate and scalable version of MU-MIMO [25]. There are other terms
in literature used for mMIMO, such as Large Scale Antenna Systems, Very Large MIMO,
Hyper MIMO and Full-Dimension MIMO, in which the number of antennas at the eNodeB
is much larger than the number of UEs. A somewhat precise way to define mMIMO is
to relate it to the ratio of active UEs to eNodeB antennas that serve those UEs. If this
ratio is low, all UEs in the cell can be served simultaneously without any impacts in UE
sepecific throughput. If number of UEs further increases the cell reaches its maximum
capacity, the optimal point where the maximal cell resources are distributed among all
Ues. Hence, mMIMO is understood as a vast over-provisioning of resources that presents
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a fundamental paradigm shift to today’s resource limited communication systems rather
than a simple increase in number of eNodeB antennas.

Two main issues differentiate mMIMO from MU-MIMO. First, the number M of
antennas at eNodeB in mMIMO is much larger than the number K of UEs and the total
number N of receiver antennas. Second, mMIMO systems are more scalable than MU-
MIMO systems. We consider the scenarios where the UEs are equipped either with a single
antenna, i.e, N = K, or multiple antennas. A mMIMO system structure in the uplink and
downlink with single UE antennas is shown in Figure 2.8 and Figure 2.9.

Figure 2.8.: mMIMO system uplink operation

Figure 2.9.: mMIMO system downlink operation

When mMIMO is used, different data streams occupy the same frequencies due to
spatial multiplexing. To perform multiplexing, the array needs to know the frequency
response of the propagation channel between each of its elements and each of the UEs. If
the number of antennas increases, the beams can be focused more specifically to the UEs.

In the uplink, the operation is substantially the reverse of the downlink. The UE data
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streams are encoded and transmitted over the same frequencies. Prior to decoding, the
eNodeB receives the sum of data streams which are affected by the propagation channels.
Utilizing CSI, a demodulation scheme is applied at the eNodeB to produce individual data
streams from the received signals.

The eNodeB ensures that each UE receives only its intended signal. A large number
of eNodeB antennas ensures that the effects of small-scale fading disappear, as does intra-
cell interference among UEs [26]. The only remaining impediment is pilot contamination
from the transmissions that are associated with the same pilot sequence used in channel
estimation.

To show how mMIMO can increase spectral efficiency, consider a Uniform Linear
Antenna Array (ULA), see Figure 2.10.

Figure 2.10.: Azimuth beamforming from a horizontal ULA

The antenna spacing is uniform at a distance of λ
2 where λ is the wavelength, and

all the antennas have fixed radiation patterns and tilt all beams down with respect to the
ground. Sending the same signal with different phase-shifts, the direction of the radiated
signal will be different from the direction of individual antennas. Further, the elevation
angle is the same for all the beams and the beamwidth in the azimuth domain shrinks with
more antenna elements. In both MU-MIMO and mMIMO, multiple beams with different
azimuth angles are created simultaneously.

To allow for steering beams in different elevation angles, the ULA array can be rotated
so that the antennas are deployed at different heights above the ground, see Figure 2.11.
To control both azimuth and elevation, multiple ULAs can be deployed on top of each
other, see Figure 2.12.

The result is a Uniform Planar Array (UPA) with a massive number of antennas that
give 2D beamforming gain wherever the UE is in the coverage area. As more antennas are
added, the beams become narrower and easier to jointly steer in specific azimuth-elevation
directions. As such, spectral efficiently in mMIMO can be increased by means of using
narrow beams in specific azimuth-elevation directions.
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Figure 2.11.: Elevation beamforming from a vertical ULA

Figure 2.12.: Beamforming from a planar array

2.3.1. Grid of Beams and Relevant Channel Components

One major problem with FDD mMIMO is the need for more CSI when a large number
of transmit antennas is used. Digital precoding, which requires CSI at the eNodeB, effec-
tively compensates for the larger path loss in the higher frequency bands. Thus, accurate
CSI for mMIMO must be obtained only near the eNodeB [27]. Digital precoding with
fixed digital beamforming can be combined with a fixed analog beamformer to reduce the
number of baseband signals that are passed to the digital precoder W. Joint processing of
the analog fixed beamforming and the digital precoding has been proposed to reduce the
cost of simulteneous transmission of data streams in mMIMO systems [28].

A fixed analog beamformer is often called a Grid of Beams (GoB) precoder. This
analog beamformer (GoB precoder) consists of phase shifters, power amplifiers and adders
to reduce the number of baseband chains while keeping the throughput. GoB precoder
limits UEs channel in the end to an effective channel via generating fixed wideband beams
Figure 2.13 gives a structure of a mMIMO system at the eNodeB when a joint analog
beamformer and digital precoding are employed. The GoB precoder V converts the M
physical antenna arrays into a limited set of orthogonal narrow fixed GoB.

Considering an OFDM-mMIMO system with F baseband chains, K data streams at
each subcarrier are precoded and converted into F precoded signals. The M × F GoB
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Figure 2.13.: Joint fixed GoB and digital precoding structure at the eNodeB

precoder V (comprised of M × F phase shifters and M power amplifiers) is applied after
an Inverse Fast Fourier Transform (IFFT) and a Digital-to-Analog Converter (DAC).

The UEs thus receive only the effective channel matrices, whose number is relatively
small compared to the number of entries of the mMIMO channel matrices [29]. In [30],
GoB has been employed to subdivide a cell into radial subsectors in the azimuth direction.
For the urban configuration considered in this thesis, an array of eight beams per azimuth
and two beams per elevation directions generate 16 beams per cell (see Figure 2.14).

Figure 2.14.: GoB concept

Further, the number of fixed beams can be increased to 32 per cell if two polarizations
per antenna element are applied. If Hb

i(t)= [Hb
i1(t),Hb

i2(t), ...,Hb
iN

(t)]T is the bth matrix
“tap” of the Channel Impulse Response (CIR) matrix Hi(t) of the link from eNodeB to
the ith UE at time instant t and N is the number of antennas at the UE, then (2.4) can
be expressed as follows: 

ri1
..
..
riN

 (t) =


y1
..
..
yM

 (t) ∗Hi(t)+


Z1b

..

..
Z1N

 (t) (2.5)
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or

ri(t) = y(t) ∗Hi(t) + Zi(t) =
Ntap−1∑
b=0

N×M︷ ︸︸ ︷
Hb
i(t)

M×1︷ ︸︸ ︷
y(t− bT ) . (2.6)

Hi(t) is then defined as:

Hi(t) =
Ntap−1∑
b=0

Hb
i(t)δ(t− bT ). (2.7)

In (2.6) and (2.7), Ntap is total number of the taps and T is the sampling period. If we
focus on a single link between the eNodeB and a specific UE, we drop the UE index i and
(2.7) can be expressed as follows:

H(t) =
Ntap−1∑
b=0

Hb(t)δ(t− bT ). (2.8)

In (2.8), Hb(t) is a matrix of size N×M where N is the number of antennas at the UE. The
GoB azimuth and elevation characteristics influence the beamforming via a GoB precoder
matrix V of size M × F . The combination of GoB and mMIMO channel leads to [30]:

Heff (t) =
N×M︷ ︸︸ ︷
H(t)

M×F︷︸︸︷
V (2.9)

where Heff (t) represents the effective channel at time instant t. Considering (2.8) and
(2.9), we have:

Heff (t) =
Ntap−1∑
b=0

Hb(t)Vδ(t− bT ). (2.10)

If we focus on a single matrix “tap” of Heff (t) at a specific time instant, the effective
channel with respect to the bth “tap” of the channel impulse response matrix can be
expressed as follows [31]:

Hb
eff (t) = Hb(t)V. (2.11)

A Channel Component (CC) in the matrix Hb
eff (t) represents the combination of the

beams formed at the eNodeB (Tx) and the UE Rx beamformers at time t. As a result,
Hb
eff (t) will be sparse due to the directivity of the generally narrow GoB beamformers.

We will assume that the UEs receive those channel components with a power that is
a predefined threshold above the Rx-power of the strongest beam [30]. These limited
number of CCs are called Relevent Channel Components (RCCs) and they will be used to
adjust the mMIMO matrix precoder, as discussed in Chapter 3. In the following, we will
use H(t) to denote the effective matrix for simplicity.
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2.3.2. OFDM Systems

Orthogonal Frequency-Division Multiplexing (OFDM) is a modulation scheme that
uses a Discrete Fourier Transform (DFT) to decompose a frequency-selective channel into
many parallel channels called subcarriers. The channel is converted to a cyclic convolution
by prepending a cyclic prefix. This circular convolution is equivalent to multiplication
in the frequency domain. The total bandwidth occupied by an OFDM symbol can be
expressed as follows:

Bsymbol = NPRBsubBsep = NPRBsub

Tuseful
(2.12)

whereNPRBsub denotes the number of subcarriers in one PRB,Bsep represents the frequency
separation between neighboring subcarriers, and Tuseful denotes the useful period of OFDM
symbol transmission. Bsymbol is greater than the channel coherence bandwidth Bcoh, while
the Bsep is smaller than Bcoh. The total time period of an OFDM symbol is the sum of
Tuseful and the cyclic prefix time. Figure 2.15 demonstrates a Time-Frequency view of an
OFDM symbol . Table 2.1 shows the sample OFDM parameters with a short cyclic prefix
time that are employed in this thesis.

Parameter Symbol Value
OFDM symbol duration Tsym

1
7ms

Useful OFDM symbol duration Tuseful
1
15ms

Cyclic prefix duration Tcp
1

7×15ms
Symbol bandwidth Bsymbol 180 kHz
Subcarrier spacing Bsep 15 kHz

Coherence bandwidth Bcoh 105 kHz
Number of OFDM blocks per PRB NOFDM 7
Number of subcarriers in one PRB NPRBsub 12

Table 2.1.: OFDM parameters

To support MIMO systems with a large number of antennas and wide bandwidth,
the combination of MIMO and OFDM was proposed [32]. MIMO-OFDM is based on
transmitting OFDM signals through a number of antennas to achieve diversity. An ex-
ample of a MIMO-OFDM system in the downlink is depicted in Figure 2.16. Each data
signal is first passed through an OFDM modulator (OMOD) at the eNodeB. All data
streams x1, x2, ..., xN are launched from their corresponding antennas simultaneously. At
the receiver, each signal passes through an OFDM demodulator.
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Figure 2.15.: OFDM structure

Figure 2.16.: MIMO-OFDM

2.4. Coordinated Multi Point

Coordinated multipoint (CoMP), or cooperative MIMO or Network MIMO, has been
identified as a promising concept to improve spectral efficiency in MIMO-OFDM [32]. As
presented in [32], [33], CoMP can help to mitigate inter-cell interference. 3GPP initiated
a study item on CoMP for LTE-Advanced in March 2008 and this was followed by 3GPP
Release 11 [34]. Since the same spectrum resources are used in CoMP multiple times due
to spatial reuse, the interference signals at the edge between the cells are received with
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similar power at the UEs. To exploit the interference, CoMP can be applied both in the
uplink and downlink.

A typical setup for a CoMP area consisting of three cells is represented in Figure
2.17(a). Each of the UEs has a dominant link to its serving cell A, B or C. Further, there
are strong links to the other two eNodeBs. EnodeBs are logically connected through a fast
fiber link or a multi-hop connection involving different backhaul technologies. In this the-
sis, all the UEs use the same resources in frequency and time and the mutual interference
is mitigated through multi-cell signal processing. Figure 2.17(b) depicts a cooperation ar-
chitecture for CoMP in a Cooperation Area (CA) comprised of 9 cells or 3 sites. Multiple
cells belonging to one eNodeB cooperate in intra-site CoMP. In contrast, Inter-site CoMP
involves multiple eNodeBs. The cells at one site can have different links via fiber to a
central unit.

Various levels of cooperation schemes in CoMP are studied in [35]. Two main downlink
coordination categories are identified by 3GPP for LTE-Advanced [36], see Figure 2.18
and 2.19:

Joint Transmission (JT): CSI information and UE data are shared between the
cooperation sites. This approach requires high backhaul bandwidth. Multiple sites can
thus contribute to a single user by converting the interference signal to a useful signal.
Transmission between the sites and UEs must be coherent for joint precoding and syn-
chronized transmission.

Coordinated Scheduling/Beamforming (CS/CB):User data is not shared among
all the cooperating sites. In other words, user data is available at one site, but scheduling
and beamforming design is coordinated between sites. CSI is shared among all the coop-
erating sites. Moreover, beamforming vectors are selected such that the interfering joint
transmissions are steered toward the null space of the interfered UE to minimize interfer-
ence. In comparison with JT, CS/CB implementation requires less backhaul support.

This thesis concentrates on proposing solutions for JT CoMP. As expressed above,
JT CoMP is a challenging technology where synchronization between cooperating sites
and fast exchange of user data over the backhaul is essential. However, recent research
validated that the concepts of JT CoMP including joint processing, CSI feedback and
synchronous user data exchange can be feasible [35].
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(a) CoMP setup (b) CoMP cooperation architecture

Figure 2.17.: CoMP

Figure 2.18.: Joint transmission

Figure 2.19.: Coordinated beamforming
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2.5. Integrated mMIMO, GoBs, and JT CoMP

This section introduces the main concepts and components for integrating mMIMO,
GoB and JT CoMP. An integrated mMIMO and JT CoMP provides a spatial multiplexing
of a large number of UEs per cell combined with a centralized joint cooperation precoder to
combat intra CA interference. Figure 2.20 shows the main characteristics of the integrated
mMIMO, GoB and JT CoMP which are defined as follows [30], [37]:

1. Cooperation area :
Forming cooperation areas varies from inter-site to intra-site JT CoMP. We concen-
trate on a JT CoMP scenario with a CA comprising of three sites (or nine cells).

2. Massive MU-MIMO:
Due to the remarkable spatial multiplexing capability of mMIMO, many UEs can be
served simultaneously in the CA.

3. mMIMO fixed GoB:
As mentioned in section 2.3.1 the overhead due to the CSI reference signals can be
limited by reducing the number of physical antenna elements to a small number of
fixed GoBs. Thus, a limited number of channel components or beams will be received
by the UEs. Due to the directivity of the analog GoB beamformer, UEs receive only
a small number of beams and the channel matrix will become sparse. The number
of beams and their direction depend on different scenarios and load conditions. The
GoB precoding matrix V= [V 1, V 2, ..., V 32] which was introduced in section 2.3.1, is
used to generate the narrow beams, where the V i, i=1,2,...,32 are column vectors of
length M.

4. CoMP Precoder:
A flexible 5G solution adapts to different infrastructure availability and different UE
capabilities. The precoding per UE for the MIMO precoding matrixW can be chosen
by the eNodeB. Precoding can depend on the UE speed, UE reporting capabilities,
reliability requirements, data packet size and load conditions.

5. Coded CSI:
Availability of accurate CSI plays a vital role for JT CoMPMU-MIMO. As mentioned
in section 2.2, high CSI overhead as well as the required uplink reporting makes FDD
mMIMO design challenging. Employing GoB, hundreds of antenna elements can be
reduced to more reasonable numbers. Since the channel matrix H is sparse and the
number of RCCs is much smaller than the number of overall channel components,
only a subset of RCCs will be received by each UE.

6. Multiple UE antennas:
Employing beamforming at the UE can result in generating narrow Rx-beamformers
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Figure 2.20.: Integrated GoB and mMIMO main components

and reducing RCCs or Relevant Multi Path Components (RMPCs). However, studies
focusing on carrier frequencies below 6 GHz indicate that UE antenna elements are
often limited to less than four or eight due to increased power consumption and other
costs [3].

7. CSI Received Signals (RSs) estimation based on CIR:
The CIR of one RCC in the time domain is denoted as CIR(t,γ) where γ is the
delay at time t due to the MPCs. CSI RSs can be obtained in the frequency domain
after an FFT operation. The MPCs define the frequency selectivity of the RCCs. We
assume that the UE estimates the CIR based on the CSI RSs in the frequency domain
Channel Transfer Function (CTF), i.e., CIR is obtained after an IFFT operation. The
number of MPCs can be reduced to the number of relevant taps of the CIR. Each
tap of the CIR represents the superposition of several MPCs in the time domain. If
one Physical Resource Block (PRB) or multiple PRBs are selected for the frequency
domain CTF, the number of relevant taps of the CIR is reduced [37]. As such, the
CIR is reduced to a single tap corresponding to a single complex value per PRB.
The required number of PRBs for PMI reporting in 3GPP LTE will be dramatically
reduced if the wideband radio channel can be characterized by a reduced number of
taps.

8. CSI reporting of RCCs:
Accurate CSI at the eNodeB is required for advanced interference mitigation in inte-
grated mMIMO and JT CoMP scenarios. One often restricts reporting to a relatively
small number of RCCs above a certain power threshold.
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2.6. 3GPP 3D Urban Macro Channel Model and
Grid of Beams

To improve the spectral efficiency of a radio-link, one can exploit 3D spatial dimen-
sions (azimuth and elevation) and use mMIMO configurations. An incorporation of a
3D channel model into the 3GPP evaluation methodology was started in January 2013 [3].
The 3D model is described as a Geometry-based Stochastic Channel Model (GSCM) which
extends the 2D channel models from WINNERII and ITU [38], [39].

The 3GPP 3D Urban Macro Channel (3D-UMa) is considered a typical usage scenario
for elevation beamforming in FDD-mMIMO systems [38]. The 3D-UMa applies to carrier
frequencies between 2-6 GHz and bandwidths up to 100MHz. Higher carrier frequencies,
e.g., up to 300 GHz, have a different set of challenges and are out of the scope of this
thesis.

2.6.1. Antenna Modeling

We focus on a mMIMO 2D array of size 16 × 16 (16 elements per row and 16 elements
per colunm). As discussed in section 2.3, to permit 3D beamforming in space, radio
waves in both vertical (elevation) and horizontal (azimuth) directions in the structured 2D
antenna array can be controlled. To increase the number of antenna elements up to 512,
two cross polarized antennas are placed at each position (see Figure 2.21). Moreover, to
split the power in the vertical and horizontal directions equally for all the UEs, a constant
polarization model is used.

2.6.2. LOS Probability and Pathloss Modeling

LOS probability modeling in 3D-UMa is inspired by the stochastic modeling approach
used in WINNER II [38]. To reuse the existing modeling parameters from 2D stochastic
models and to reduce the processing time for system level simulations, building/street
dimensions are not considered.

The 3D-UMa LOS probability is a function of height and distance, and is obtained
by the sum of type-1 and type-2 LOS probabilities. As introduced in the ITU model [39],
the type-1 LOS probability depends only on the horizontal distance between the eNodeB
and the UEs. A UE on a high floor of a building is considered to be in type-2 LOS state
if the UE on a first floor can never achieve a LOS state. In 3D-UMa, type-2 LOS states
occur when the UEs are located on a floor higher than 12m.
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Figure 2.21.: Cross-polarized 2D antenna array structure at the eNodeB

LOS pathloss modeling in 3D-UMa assumes two-ray propagation resulting in a pathloss
equation based on an environmental height, i.e., the height of a dominant reflection from
the ground that can be added constructively or destructively to the direct ray received by
the UE located at the street level. The environmental height is assumed to be 1m for a UE
associated with a type-1 LOS condition. In case of type-2 condition, the environmental
height is randomly determined from a discrete uniform distribution [40].

Non-Line of Sight (NLOS) pathloss modeling in 3D-UMa is dominated by the paths
traveling via multiple diffraction over the rooftops followed by diffraction of edges of build-
ings. To model this phenomenon, a linear height gain term is given by −α(h−1−5) where
α (in dB/m) represents the gain coefficient and h is the UE height.

2.6.3. Fast Fading Model

Each path between a transmitter and receiver is defined by a number of rays. The
rays at the transmitter are characterized by their angles-of-departure (AoD), power and
delay, and the rays at the receiver are characterized by their angles-of-arrival (AoA). The
coordinate system for 3D-UMa is depicted in Figure 2.22 where θ denotes the zenith angle
and ϕ is the azimuth angle. If θ = 0 the direction points to the vertical, and if θ = 90 the
direction points to the horizon. The direction of propagation n̂ defines the spherical basis
vectors θ̂ and ϕ̂. The procedure for generating 3D-UMa channel coefficients is shown in
Figure 2.23 and has the following steps [41]:
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Figure 2.22.: 3D-UMa channel coordinate system

Figure 2.23.: Procedure to generate 3D-UMa channel coefficients [3]

1. General Parameters :
Network layout is specified, including the number of UEs, eNodeBs and their 3D
locations and antenna parameters like field patterns, number of antenna elements,
transmit power, radiation pattern, downtilts.

2. Large Scale Parameters :
Once the general parameters are defined, large scale parameters are specified between
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the transmitter and receiver. Large scale parameters include LOS/NLOS propagation
conditions, path loss, delay spread, angular spread, Ricean K factor and shadow
fading. The maximum RMS azimuth arrival and azimuth departure spread values
are set to 104 degrees, i.e., σASA=min(σASA, 104◦), σADA=min(σADA, 104◦). The
maximum RMS zenith arrival and zenith departure spread values are set to to 52
degrees, i.e., σZSA=min(σZSA, 52◦), σZDA=min(σZDA, 52◦)

3. Small Scale Parameters :
Small scale parameters are obtained randomly based on the 3D-UMa stochastic dis-
tribution functions defined in [3] and randomly drawn large scale parameters. The
main small scale parameters are delay distribution and cluster powers. AoA and
AoD for both azimuth and elevation directions of each ray are obtained randomly.
Once the AoA and AoD are defined, the rays within a cluster are coupled randomly.

Eventually, the Cross Polarization Power Ratios (XPR) for each ray of each cluster
are calculated. Note that the difference in the distances travelled by the plane wave
between different antennas leads to a difference in the phases of the corresponding
fast fading channel components.

4. Coefficient Generation :
As the next step, a third level of randomness is introduced by the random initial
phases of the scatterers in each path. Channel coefficients are generated for each
cluster and for each transmitter and receiver pair. As discussed, each ray with
different AoA and AoD travels different distances to different antenna elements. As
such, the sum of the channel coefficients corresponding to each ray leads to different
channel coefficients corresponding to each path.

The stochastic parameters of the integrated 3D-UMa and GoB channel are independent
of the antenna elements. Further, GoB is independent of the individual realizations of the
stochastic parameters of the channel when it is applied to the antenna elements.

2.6.4. UE Cell Selection

For the simulation evaluations described in Chapter 3 and 4, a JT CoMP cooperation
area of size 1320m × 1160m comprised of three adjacent sites or nine cells with three
sector sites is considered. Each UE is allocated to a cell if the average received power of
32 beams from the corresponding cell is the highest received power among all the existing
9 eNodeBs. Figure 2.24 depicts the UEs’ distribution in the JT CoMP cooperation area.
UEs in each cell are specified with the same color. Inter-site distance is taken as 500m.
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Figure 2.24.: UE distribution [4]

Figure 2.25.: Randomly selected UE distribution [4]
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To specify the simulation results, 10 UEs per cell are selected though a uniform random
distribution so that for a three-site JT CoMP cooperation there will be 90 UEs distributed
in 9 cells. Figure 2.25 shows a sample of the randomly selected 90 UE positions in the
cooperation area.

2.6.5. SINR and Spectral Efficiency Models

This section describes the SINR and spectral efficiency models that we use for our
simulation results detailed in Chapter 3 and 4. The ZFBF precoder W is given by the
M ×N matrix

W =
M × N︷︸︸︷
HH

N × N︷ ︸︸ ︷
(HHH)−1 (2.13)

where HH is the complex-conjugate transpose of H. The received signal is

y = HWx+ n (2.14)

where x indicates the symbol vector. We define the noise-free signal
∼
y = HWx. (2.15)

The essential simulation parameters are summarized in Table 2.2 The transmit power per
cell is equally distributed over 1200 subcarriers and 32 beams with a bandwidth of 18 MHz
around a carrier frequency of 2.1 GHz. The derived SINR per UE can be expressed as [5]:

SINR[dB] = Ptx[dBm]− Pn[dBm]− IUE(i) − PNLUE(i)[dB] (2.16)

where

Ptx = Tx PowerdBm/NUE − 10 log10NTotalsub (2.17)
Pn = −173.83 + 10 log10NSubSp + Receiver NF [dB]. (2.18)

Ptx specifies the transmit power distributed equally among all the UEs. IUE(i) denotes the
received interference at UE i in dBm. NUE is number of UEs in one cell, NTotalsub is the
total number of subcarriers in 100 PRBs. In order to observe the effect of noise on the
channel, the noise formulation referred to as Pn has been used. Bsep denotes the subcarrier
spacing and Receiver NF refers to the receiver noise figure in dB. N is either 8 (for UE
beamforming experiments) or 1.

The spectral efficiency per cell in bit/sec/Hz for each UE is [5]:

SEbit/sec/Hz/cell = 90× CLTE × 1200× 7
1ms × 20MHz × 9 . (2.19)
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Symbols PHY Layer Parameters Value Value
fc Carrier Frequency (GHz) 2.1
TB Total Bandwidth (MHz) 20
UB Used Bandwidth (MHz) 18
Bsep Subcarrier Spacing (KHz) 15

NTotalsub Number of Subcarriers 1200
NPRB Number of PRBs 100

Tx PowerdBm Tx Power per UE per cell (dBm) 46
ReceiverNF Receiver NF (dB) 7

NUE Number of UEs 90
N Number of Antennas per UE 1 or 8
Ncell Number of Cells 9
NBeams Number of Tx Beams 288
NOFDM Number of OFDM blocks per PRB 7
TTI Duration of one subframe (ms) 1

Table 2.2.: Simulation Parameters

CLTE in (2.19) is average number of bits per modulation symbol based on the 3GPP phys-
ical layer procedures described in [42], where the SINR is mapped to an LTE Modulation
and Coding Scheme (MCS). NUE=90 in (2.19) is the number of UEs, NTotalsub=1200 is
the number of subcarriers, NOFDM=7 is the number of OFDM symbols per PRB, TTI=
1ms is the duration of one subframe, TB =20MHz is the used bandwidth and Ncell=9 is the
number of cells.

2.6.6. Scenario and Network Development Setup

When the UE cell selection (explained in section 2.6.4) is completed, the following
steps are taken (see Figure 2.26):

Figure 2.26.: Channel matrix generation

1. Path loss, e.g. Reference Signal Received Power (RSRP), measurements for all Tx-
beams are collected per UE. With 32 beams per cell and nine cells per cooperation
area there are up to 32× 9 = 288 channel components in total per UE.
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2. Once the channel components are collected at the UE, an FFT operation of size 2048
is applied to the Rx-signals of the UE antenna element.

3. The frequency domain signal which is created after the FFTs is limited to 18 MHz
bandwidth with 1200 sub carriers, or 100 PRBs with 12 sub carriers, times 7 OFDM
symbols.

2.7. UE Beamforming

2.7.1. Linear Receiver Beamformer for JT CoMP Scenarios

Low complexity linear precoding with perfect CSI for MIMO beamforming at the UE
has received attention in recent studies [43], [44], [45]. The maximum SINR subject to a
total power constraint per eNodeB was studied in [46], [47]. Decentralized beamforming
algorithms, which achieve Pareto-boundary rates, were proposed for the MIMO interference
channel [48].

Investigating the FDD mMIMO JT CoMP scenario, the feasibility of handling the
overhead due to the CSI estimation is essential. GoB can reduce feedback by limiting the
transmit signals to a set of narrow beams. When little CSI feedback is reported, the sen-
sitivity of channel estimation errors to perform MU-MIMO precoding will be reduced [33],
of course at the expense of accuracy. GoB provides efficient feedback by reporting only the
RCCs within a threshold with respect to the strongest channel matrix component observed
by the UE. Focusing on the JT CoMP urban macro scenarios detailed in Chapter 2, eight
Tx-beams are generated through GoB in the azimuth direction and two in the elevation
direction per polarization. Figure 2.27 depicts the approach of multiple receive antennas
when using linear beamforming at the receiver.

2.7.2. Maximum Ratio Combining

A common method to combat multipath fading is antenna diversity. A classic com-
bining technique is maximum-ratio-combining (MRC), where the signals from the receive
antenna elements are weighted such that the SINR of their sum is maximized. When MRC
is used, the receiver and transmitter can combat severe fading effects. There have been
various transmit diversity techniques proposed in literature. For example, a delay transmit
diversity scheme was proposed by [49] where the signal replicas are transmitted through
multiple antennas at different times.

A simple but effective example of transmit diversity was proposed by [50], where first
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Figure 2.27.: UE MRC beamforming [4]

a pair of symbols is transmitted using two antennas, and then the transformed version of
the pair is transmitted to obtain MRC-like diversity. These transmit diversity techniques
maximize the SINR, but not the rate. To establish MRC aiming at maximizing SINR
of the combiner output with multiple receive antennas, we assume the UEs are equipped
with eight antenna elements and they employ an MRC Rx-beamformer with respect to the
strongest Tx-beam. If bed(k) denotes the gain of the strongest Tx-beam of the kth UE at
the dth antenna and hd(k) represents the kth channel component of the dth antenna, the
MRC weight is given by a complex correlation between the two signals [4]:

ωd(k) = bed(k)Hhd(k) (2.20)

where ωd(k) is the kth MRC weight for the related Tx-beam bed(k). The MRC output for
the dth antenna at the kth UE is then given by the sum of all the weighted signals:

hMRC(k) =
8∑
d=1

ωd(k)bed(k). (2.21)

The same beamforming weights will affect the reception of all other beams from the same
UE.

MRC UE beamforming can be applied to the system models in section 2.5 and sec-
tion 2.6, where the channel precoding matrix W is calculated through the pseudo inverse
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algorithm proposed in [4]. The sparse effective channel matrix H used is based on the
RCCs above the power threshold relative to the strongest beam. Figure 2.28 illustrates
the system architecture when linear beamforming is applied at the UE. The GoB is gen-
erated through a fixed wideband uniform beamforming vector V being combined into the
GoB precoding matrix. If each UE is equipped with eight Rx antennas, the 256 channel
components can be reduced when an MRC beamformer of size C8×1 is employed.

Figure 2.28.: UE beamforming per user per cell [4]

Using a geometry-based 3D channel model, the GoB is obtained by a first fixed pre-
coder applying two different antenna tilt values (8◦ and 20◦) to 8 azimuth beams with two
polarizations each. In order to apply the proposed scheme, we take the following steps:

1. UEs are allocated to cells based on the strongest received beam. In other words, UEs
located in the first cell have the beam with the highest received power in the first
cell.

2. 10 UEs per cell are selected randomly so that for a three site cooperation area there
will be 90 UEs distributed in the 9 cells.

3. RSRP measurements for all Tx-beams are collected by each UE. With 32 beams per
cell and nine cells per cooperation area there are 32× 9 = 288 channel components
in total per UE.

4. Once the channel components are collected at the UE, an FFT of size 2048 is applied
to each Rx-signal for each of the eight UE antenna elements.
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5. The frequency domain signal is created by the FFT at the Transceiver (TRx) and
is limited to a 18 MHz bandwidth with 1200 subcarrier or 100 PRBs of size 12
subcarriers with 7 OFDM symbols.

6. Applying the proposed MRC method at the UEs over 8 receiver antenna elements,
the effective RCCs of the channel matrix are obtained.

2.7.3. Power Normalization Loss

As a result of applying GoB to the RCCs, some of the UEs receive the same beam
or a subset of the same beams as their strongest beam(s). As such, a high correlation of
these channels will often lead to a high Power Normalization Loss (PNL) [29]. PNL for ZF
precoders degrades the overall performance. To combat this, the UEs that generate a very
high PNL even with all the active beams should be removed from the served multi-user
set. Apart from allocating a separate subband with different setups of active beams to
such UEs, all the active beams for the remaining UEs must be considered.

However, the overhead for CSI reporting is still rather high. To find the best beam
deactivation pattern for a set of UEs, the number of RCCs should not impose too high PNL
to the network as compared with the case that all the beams are active, and the number
of beams that contribute to the interference floors of different UEs must be reduced.
Characterizing the performance of the overall solution, the PNL of UE i can be defined as

PNLdB = 10 log10

NUE∑
i=1

NBeams∑
j=1

‖ϕ‖2
ij; ‖ϕ‖ij = Wij (2.22)

where
W = pinv(Hbeam(B)). (2.23)

Wij in (2.22) is the ith row and jth column element of matrix W. Vector B in (2.23)
represents the beams [be1, be2, ..., beNACbeam]. If PRx(Hij) denotes the Rx power of beam j
at UE i, the total number of RCCs can be calculated by applying an RCC power threshold
PTH where PRx(Hij) > PTH . As such, those channel components with PTH > PRx(Hij)
are considered as interference floor components. Reducing the number of interference floor
channel components not only decreases the inter-stream interference, but also decreases
additional PNL as compared to the full beam activation case.



3
mMIMO JT CoMP Precoding for a
Single Subcarrier

3.1. Introduction

This chapter provides precoding analysis of JT CoMP focusing on a single subcarrier
of an OFDM signal. As introduced in Chapter 2, the idea of MU-MIMO, where the base
station is equipped with hundreds of antenna elements, is widely believed to be a key
technology for future (below 6GHz) 5G mobile networks. When MU-MIMO is combined
with GoB and JT CoMP, spectral efficiency increases even more compared to small-scale
MIMO technology. In order to benefit from such integration, precoding algorithms are
essential to avoid inter-cell interference.

Existing works show that linear precoding techniques such as Zero-Forcing (ZF) can
approach capacity [51], [52], [53]. ZF precoding involves the inverse of the Gram matrix of
the UEs’ channel vectors. The computational complexity of inverting the Gram matrix is
on the order of O(K3) with respect to the number K of UEs. To reduce complexity, there
have been many efforts recently to use, e.g., SVD or QR decomposition. Furthermore,
simple matrix multiplication via transforming the inverse of a Gram matrix into that of a
simple precondition matrix using Neumann series can be applied [54], [55], [56]. Besides,
to address the complexity challenges, an accurate analysis of complexity is essential.

In this chapter, the main focus is on ZF precoding methods that reduce the complex-
ity of JT CoMP with sparse channel matrices. Moreover, we develop a flexible toolbox
that provides routines to count the number of operations. This chapter is organized as
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follows. In section 3.2, we introduce the main computational complexity characteristics
of linear precoding for single subcarrier JT CoMP channel matrices. section 3.3 provides
an overview of the conventional methods to compute the pseudo inverse of a channel ma-
trix. section 3.4 proposes a new approach to exploit sparsity to reduce the computational
complexity. The SINR performance of the proposed pseudo inverse algorithm is compared
with a reference method [57], [58], [59]. In section 3.5, we propose linear beamforming at
the UE to increase the spectral efficiency for single-subcarrier channel matrices. We show
that linear beamforming at the UE can outperform the non-beamformed performance by
reducing the number of RCCs. The SINR, spectral efficiency and the computational com-
plexity of the proposed beamforming technique are compared with the reference model
in [59].

3.2. Single-subcarrier Linear Precoding

OFDM is commonly used in multi user wireline and wireless communications. By
dedicating to each UE a fraction of the available number of subcarriers, multiple-access
interference is mitigated which leads to a larger system capacity. As discussed in Chap-
ter 2, ZFBF enables decoupling into a system with a small number of parallel independent
subchannels. Basically, each substream in a ZFBF system is independently coded and a
linear processing is applied at the transmitter to eliminate interference among different
substreams utilizing the channel spatial dimensions. Further, ZFBF can be carried out by
means of beamforming weight vectors obtained from the columns of the Moore-Penrose
pseudo inverse of the m× n channel matrix H as follows:

H† = HH(HHH)−1

W = [ H†1
‖H†1‖

,
H†2
‖H†2‖

, ...
H†K
‖H†K‖

]
(3.1)

where H† is the pseudo inverse, HH denotes complex conjugate transpose, and H =
[H1,H2, ...HK ]. Note that we are now using m × n matrices H, rather than n × M
or N ×M matrices H in Chapter 2. The inversion in (3.1) is possible if H has m ≤ n and
has full rank.

In JT CoMP scenarios where both the UEs’ CSI and data information are shared,
precoding design faces numerous challenges. Most of these challenges are dominated by
the computation of the inverse of the so-called Gram Matrix G which can be expressed as
follows:

case m ≤ n : G = HHH

case m ≥ n : G = HHH.
(3.2)

We will usually consider the former case m ≤ n. In OFDM, we must apply a matrix
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G for each subcarrier. Thus, developing efficient precoding algorithms is essential. The
Hermitian structure of H can reduce the complexity due to the possibility of ignoring its
lower triangular part. As such, the m main diagonal entries as well as the m2−m

2 upper
off-diagonal elements of H are taken into account. Computing each element of G requires
n multiplications and n − 1 additions, so there will be 1

2mn(m + 1) multiplications and
1
2(n − 1)m(m + 1) additions in total. This gives nm2 + mn − m2

2 −
m
2 FLOPs. Further,

computing G−1 yields a total of m3 +m2 +m FLOPs using efficient methods like Cholesky
factorization [60]. Since the Transmission Time Interval (TTI) is 1ms for 7 OFDM symbols
and we have 100 subdivided PRBs per TTI, the total number of FLOPs per symbol per
second for a single-subcarrier will be on the order of 105 [5]. To investigate the significance
of reducing the computational complexity in JT CoMP single subcarrier scenarios, we
compare the complexity of existing methods to the proposed scheme.

3.3. Pseudo Inverse of Channel Matrices

We next give essential definitions and review the state-of-the-art methods to com-
pute the Moore-Penrose pseudo inverse of a matrix. The matrix H† is the unique matrix
satisfying the four Penrose equations [61]:

(i) HH†H = H
(ii) H†HH† = H†

(iii) (HH†)H = HH†

(iv) (H†H)H = H†H.

If H is square and non-singular, then its inverse satisfies all defining properties of a Moore-
Penrose pseudo inverse. When the matrix H is full rank, then the Moore-Penrose pseudo
inverse can be directly calculated as follows:

case m ≤ n : H† = HHG−1

case m ≥ n : H† = G−1HH.
(3.3)

,

3.3.1. SVD Decomposition

One of the most commonly used methods to compute H† is Singular Value Decompo-
sition (SVD). For any H ∈ Cm×n, there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n

such that:
H = UΣVH (3.4)
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where Σ is an m× n diagonal matrix having the form:

Σ =

σ1 0 0 . . . 0 0 0
0 σ2 0 . . . 0 0 0
0 0 σm 0 . . . 0 0

 σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0, for m ≤ n. (3.5)

The columns of U are the left singular vectors, while the columns of matrix V are the
right singular vectors. As the first step to implement an SVD algorithm, the matrix H
will be upper diagonalized. By applying unitary Householder reflections UB and VB, a
bidiagonal matrix B is derived as [62]:[

B
0

]
= UH

BHVB. (3.6)

Householder bidiagonalization of H requires 8(m− j)(n− j) FLOPs for iteration j com-
puting the product of the transpose of H(j : m, j : n) and a Householder vector υ of H.
The complexity of scaling this product by β to compute the Householder reflector w can
be ignored. Computing υ wH needs 6(m − j)(n − j) FLOPs and subtracting υ wH from
H requires 2(m − j)(n − j) FLOPs. Additional computations are taken into account if
j ≤ n−2, where computing the product ofH(j : m, j+1 : n) and υ requires 8(m−j)(n−j)
FLOPs. Considering 6(m − j)(n − j − 1) FLOPs for υ wH and its subtraction from H
requires 2(m − j)(n − j − 1) FLOPs, so the total number of FLOPs for iteration j is
approximately 32(m− j)(n− j). Thus, the total estimated FLOPs count for the complex
Householder bidiagonalization can be expressed as follows:

FLOP SV D =
n∑
j=1

32(m− j)(n− j)

= 32
n∑
j=1

[mn− (m+ n)j + j2]

= 32
n∑
j=1

mn− 32
n∑
j=1

(m+ n)j + 32
n∑
j=1

j2

= 32mn2 − 32(m+ n)n(n+ 1)
2 + 32n(n+ 1)(2n+ 1)

6
= 32mn2 − 16(mn2)− 16n3 + 16

3 (2n3 + 3n2 + n)

= 16mn2 − 16n3 + 32
3 n

3 + 16n2 + 16
3 n.

(3.7)

To achieve the canonical FLOPs count, lower order terms are neglected. We then have:

FLOP SV D = 16mn2 − 16
3 n

3. (3.8)
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Using the SVD, the pseudo inverse of a matrix can be easily computed as follows:

H† = VΣ†UH. (3.9)

where for m ≤ n, we have the n×m matrix

Σ† =



1/σ1 0 0 . . . 0
0 1/σ2 0 . . . 0
0 0 1/σ3 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1/σm
0 0 0 . . . 0


σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 (3.10)

for all the non-zero singular values. If any of the σi are zero, then a zero is placed in the
corresponding entry of Σ†. If H is rank deficient, then one or more of its singular values
will be zero.

The computation of the SVD is non-trivial. It suffices to know that all the respectable
software packages for doing mathematics (such as MATLAB or Mathematica) contain
functions for computing the SVD. A MATLAB pseudo-code to compute the SVD of a
complex matrix H is given in section 3.5.5.

3.3.2. QR Decomposition

Another method to compute the Moore-Penrose pseudo inverse applies the so-called
QR factors or QR decomposition. The QR decomposition breaks H into two sub matrices,
Q andR, whereQ is unitary andR is upper triangular. This decomposition is practical for
a square matrix of full rank, because it is automatically invertible. The QR decomposition
is rather effective for computing the pseudo inverse. If H ∈ Cm×n where m ≤ n and H
has rank equal to m, then the factorized matrix H with linearly independent columns can
be written as:

Hm×n = Qm×nRn×n (3.11)
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where Q satisfies QHQ = I and we have

R =

r11 r12 . . . r1n
0 r22 . . . r2n
0 0 . . . rnn



Q =

 q11 q12 . . . q1m
. . . . . . . . . . . .
qm1 qm2 . . . qmn



H =

h11 h12 . . . h1n
. . . . . . . . . . . .
hm1 hm2 . . . hmn

 .

(3.12)

Thus, the pseudo inverse of H ∈ Cm×n (where m ≤ n) can be expressed as:

H† = ((QR)H(QR))−1(QR)H

= (RHQHQR)−1RHQH

= R−1QH

(3.13)

where the last step follows by QHQ = I. Gram-Schmidt Orthogonalization (GSO) [63] is
a direct method to compute the Q and R matrices. The Gram-Schmidt process for an
m× n matrix H proceeds as:

q
j

= (hj −
j−1∑
i=1

rijqi)/rjj

uj = hj −
j−1∑
i=1

qH
i
hjqi, u1 = h1

qk = uk
‖uk‖

rj = qHj H

(3.14)

where j = 1....n. The hj and q
j
are the jth column vectors of H and Q, respectively. rj

denotes the jth row vector of R.

The Gram-Schmidt algorithm can be applied through either Classical Gram-Schmidt
(CGS) or Modified Gram-Schmidt (MGS) [64]. The CGS algorithm allows a memory
efficient implementation due to its inherent parallelism and becauseQ can build the original
columns of H.

The superior MGS algorithm overcomes inaccuracies of CGS by subtracting linear
combinations of q

j
not directly from H but from an intermediate column vector tj of Q

before constructing the orthogonal vectors (see Figure 3.1).
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for j=1:n
t(:,j)=h(:,j);

for i=1:j-1
r(i,j)=q(i,t(i,j));
t(:,j)=t(:,j)-(r(i,j)*t(:,j));
q(:,j)=t(:,j)./norm(t(:,j),2);
r(j,j)=norm(t(:,j),2);
end
end

Figure 3.1.: MGS algorithm

To compute H† using MGS, the QR decomposition involves the computation of norms
and inner products of n-dimensional vectors, division of n-dimensional vectors by norms,
and scaling the normalized columns of Q by the inner product. Further, the computation
of R−1 requires multiplication and additions of scalars.

The multiplication of R−1 and QH in (3.13) is done using an array to achieve maxi-
mum parallelism. The MGS QR decomposition FLOPs count for H† consists of counting
additions, subtractions, multiplications and divisions as follows:

FLOPQR
MGS(Addition) =

n∑
i=1

(m− 1 +
n∑

j=i+1
m− 1)

=
real︷ ︸︸ ︷

n(m−1) +

complex︷ ︸︸ ︷
n(n− 1)(m− 1)

2
= 1

2n(n+ 1)(m− 1)

(3.15)

FLOPQR
MGS(Subtraction) =

n∑
i=1

n∑
j=i+1

m =
n∑
i=1

m(n− i) = 1
2mn(n− 1) (3.16)

FLOPQR
MGS(Division) =

n∑
i=1

m = mn (3.17)

FLOPQR
MGS(Multiplication) =

real︷ ︸︸ ︷
mn2 −mn+

complex︷ ︸︸ ︷
nm2 .

(3.18)
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3.3.3. Geninv Pseudo Inverse

We describe a low-complexity algorithm to compute the Moore-Penrose inverse. This
algorithm is based on a reverse order applicable to a full rank singular symmetric positive
matrix. By applying Cholesky factorization, the computational complexity can be reduced
especially when we are dealing with large systems. According to [57], if we consider the
matrix H of size m × n with m < n and the positive matrix (HHH) of size n × n, there
is a unique upper triangular matrix O such that OHO = HHH. The computation of O is
a simple Cholesky factorization of non-singular matrices. If we remove the zero rows from
O, a lower-diagonal matrix L of size n× r with rank of r ≤ n is obtained where we have

HHH = LLH. (3.19)

To compute the Moore-Penrose inverse based on factorizing, we consider matrix A of size
n× r and matrix C of size r× t where r ≤ n and r ≤ t. The Moore-Penrose inverse of the
matrix product AC can be expressed as [57]

(AC)† = (C)†(A)† = CH(AHACCH)†AH. (3.20)

If C= I in (3.20) we have
(A)† = (AHA)†AH. (3.21)

Since A has size n× r and rank r, the following exists

(AHA)† = (AHA)−1
. (3.22)

If we set C to AH and CH = A then, (3.20) can be rewritten as

(AC)† = A
(
AHAAHA

)†
AH (3.23)

= A
((
AHA

)†(
AHA

)†)
AH. (3.24)

According to (3.22), we have

(AAH)† = A(AHA)−1(AHA)−1AH. (3.25)

Proposition 1. The pseudo inverse of H can be obtained by:

H† =
(

L(LHL)−1(LHL)−1LH
)

HH (3.26)

where LH is conjugate transpose of L of size n× r.
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Proof. Using (3.22) and (3.25) , we have

L† = (LHL)†LH. (3.27)
(LLH)† = L(LHL)−1(LHL)−1LH. (3.28)

From equation (3.29) and (3.28) we have:

(HHH)† = (LLH)† = L(LHL)−1(LHL)−1LH. (3.29)

by multiplying HH with (3.29), we have the Moore-penrose inverse of matrix H as follows

(HHH)†HH = H† =
(
L(LHL)−1(LHL)−1LH

)
HH

This algorithm effectively relies on two principle operations, namely the full rank
Cholesky factorization of (HHH) and the inverse of (LHL). In order to count the FLOPs
for (LHL)−1, the first step is to analyse LH . Let X = [x1, ..., xn] = LH denote the inverse
of the lower triangular matrix L. For b < s where s = 2..., n we have [X]b,s = 0. Thus, we
have

Lxs = es (3.30)

which can be solved via forward substitution. For t ≤ b < s, we can express (3.30) as:

b∑
a=t

lb,axa,s = δb,s (3.31)

where lb,a = [L]b,a for the ath main diagonal element, δb,s denotes the Kronecker delta and
xa,s = [X]a,s = [xs]a,1. If s = b, then xs,s = 1

ls,s
and a single multiplication is required. For

b > s, we need (b− s+ 1) multiplications and (b− s− 1) additions. Thus, the number of
FLOPs for the lower left off-diagonal entries consist of

n−1∑
t=1

n∑
b=t+1

(b− s+ 1) =
n−1∑
t=1

[(1− t)(n− t) +
n∑

b=t+1
b]

=
n−1∑
t=1

[n+ t2 − t(n+ 1) + n2 + n− t2 − t
2 ]

=
n−1∑
t=1

[n
2

2 + 3n
2
t2

2 − t(n+ 3
2)]

= (n− 1)n2 (n+ 3) + (n− 1)n(2n− 1)
2.6 − (n+ 3

2)(n− 1)n
2

= 1
6n

3 − 1
2n

2 − 2
3n

(3.32)
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multiplications and
n−1∑
t=1

n∑
b=t+1

(b− n+ 1) = 1
6n

3 − 1
2n

2 + 1
3n (3.33)

additions. Considering n multiplications for the main-diagonal entries, we have 1
6n

3 −
1
2n

2 + 1
3n multiplications and 1

6n
3− 1

2n
2 + 1

3n additions. Thus, the total number of FLOPs
is 1

3n
3 + 2

3n.

To count the FLOPs to compute the Gram matrix LHL, only the main diagonal
elements and upper right off-diagonal elements have to be evaluated. Focusing on the
main diagonal elements, we have:

[LHL]a,a =
N∑
t=a
|ln,a|2 (3.34)

where ln,a = [L]n,a for ath main diagonal element. As such, n − a + 1 multiplications
and n− a additions are needed for the main diagonal elements. Hence, all main diagonal
elements need ∑n

t=1(n − t + 1) = 1
2n

2 + 1
2n multiplications and ∑n

t=1(n − t) = 1
2n

2 − 1
2n

additions.
For the upper right off-diagonal element [LHL]a,b in row a and column b, we have:

[LHL]a,b =
n∑
t=b

l∗t,alt,b (3.35)

where l∗ denotes the conjugate. Summing expressions in (3.30), we have

n−1∑
a=1

n∑
b=a+1

(n− b+ 1) =
n−1∑
a=1

[(n− a)(n+ 1)−
n∑

b=a+1
b]

=
n−1∑
a=1

[n2 + n− a(n+ 1)− n(n+ 1)− a(a+ 1)
2 ]

=
n−1∑
a=1

n2 + n

2 + a2

2 − a(n+ 1
2)

= (n− 1)(n+ 1)n
2 + (n− 1)n(2n− 1)

2.6 − (n+ 1
2)n(n− 1)

2
= 1

6n
3 − 1

6n

(3.36)

as the number of multiplications and

n−1∑
a=1

n∑
b=a+1

(n− b) = 1
6n

3 − 1
2n

2 + 1
3n (3.37)

as the number of additions. According to (3.36) and (3.37), all the essential elements of the
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Gram matrix LHL require 1
6n

3 + 1
2n

2 + 1
3n multiplications and 1

6n
3 − 1

6n additions, which
leads to 1

3n
3 + 1

6n
2 + 1

6n FLOPs. The total number of FLOPs accounting for (LHL)−1 is
n3 + n2 + n.

3.3.4. Other Approaches to Compute Pseudo Inverse

Greville Pseudo Inverse

The Greville method is a common approach to obtain the pseudo inverse with low-
complexity and it calculates the Moore-Penrose inverse H† in an iterative fashion. In the
ith iteration (i = 1, 2, ..., n), we compute H†i , where Hi is the submatrix of H that includes
its first i columns. Thus, the process begins with a column vector to calculate the Moore-
Penrose inverse and then extends with one more vector in the following iteration. The
Greville algorithm has the following steps [58].

1. Decompose H into a set of vectors hi as follows:

H = [h1, h2, ..., hn] (3.38)

where hi is the ith column of H.

2. Form the Hi matrices of size i× n as follows:

Hi =[Hi−1 hi]
H1 =h1 (i = 1)

Hi =
[
Hi−10
hi

]
(i = 2, ..., n).

3. Set the vectors di, ci as:

di = H†i−1hi
ci = hi −Hi−1di

= hi −Hi−1H†i−1hi

(3.39)

4. To calculate the Moore-Penrose matrix H†i−1 of size n× i we have :

[Hi−1 hi]† =
[
H†i−1 − digT

i

gT
i

]
(i = 2, ..., n) (3.40)
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where the vector gT
i
can be obtained as :

gT
i

= cT
i (ci 6= 0) (3.41)

gT
i

= (1 + dT
i di)−1dT

i HT
i−1 (ci = 0) (3.42)

where gT
i
is the ith row of H†i .

Neumann Series for Matrix Inversion

A non-conventional method to reduce the complexity of ZF precoding uses Neumann
series to transform the inverse of the Gram matrixG into a simple precondition matrix [56].
The Neumann series expansion for G−1 is as follows [65]:

G−1≈
E∑
r=1

(IK −DG)rD (3.43)

and as we assume
lim
r→∞

(−D−1F)rD−1 = 0. (3.44)

In (3.44), F = G − D and IK is an identity matrix of size n × n in (3.43). Three
different designs can be studied for the precondition matrixD. The first design, denoted as
Dd, is a scaled identity matrix where only diagonal inputs are inverted. The second design,
denoted as Dfc, is a precondition matrix where the diagonals and the first column from
matrixG are inverted. The complexity of the second approach is smaller than the first due
to the diagonal dominance ofG. The third design, denoted asDt, adds secondary diagonal
lines of the matrix G to reduce the degradation affected by the high channel correlation.
To investigate the computational complexity, a three-term Neumann series expansion of
G is given as follows:

G−1
3 ≈(I + (I−DG) + (I−DG)2)D. (3.45)

From (3.45), there are four steps that consist of computing the precondition matrixD,
the term (I−DG) and the square of the previous term. Table 3.1 lists the computational
complexity of each step, if any of the three above preconditioning matrices is applied. As
shown in Table 3.1, the complexity of the third step grows cubically with n. The exact
matrix inverse can be replaced with a Neumann series. Further, the middle step (third
step in the given example) can be computed partially.
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D (I−DG) (I−DG)2 (I−DG)D
Dd 3n n2 − n 1

2n
3 − 1

2n
2 1

2n
2 + 1

2n

Dfc 5n− 2 2n2 − 2 1
2n

3 − 3
2n+ 1 1

2n
2 + 3

2n−
1
2

Dt 8n− 5 3n2 − 2n 1
2n

3 + 1
2n

2 3
2n

2 + 1
2 − 1

Table 3.1.: FLOPs count for each step corresponding to three precondition matrix designs

3.4. Proposed Scheme

In this section, we propose a Sparse Geninv (SGeninv) algorithm to calculate a Moore-
Penrose pseudo inverse based on the state-of-the-art Geninv method described in sec-
tion 3.3.4. SGeninv utilizes the sparsity of the combined mMIMO and JT CoMP channel
matrices at multiple coordination sites and increases the feasibility of FDD-MIMO. In order
to take advantage of sparsity, in section 3.4.1 we introduce the main properties of Relevant
Channel Components (RCCs). Further, a reordering scheme to reduce the computational
complexity is detailed in section 3.4.2.

3.4.1. Relevant Channel Components

FDD requires an explicit estimation of downlink channel components, as well as CSI
reporting using a feedback channel. The limited GoB concept discussed in Chapter 2 can
be used to subdivide the cells into subsectors. This reduces the overhead of CSI reporting.

As a simple example, the set of channel components within a certain power of the
strongest channel component is often a small subset of all channel components. Thus, the
channel matrix which contains CSI between all the eNodeB beams and the served UE will
be sparse. Each UE estimates and reports the CSI for its sparse set of RCCs to the eNodeB.
To enforce sparsity, a power threshold window PTH with respect to the strongest channel
component per UE is applied. An appropriate value for PTH depends on the performance
metrics and the desired impact of sparsity on the proposed pseudo inverse scheme.

3.4.2. Reverse Cuthill-Mckee Reordering

A supportive technique to compute the pseudo inverse of a sparse matrix is the Re-
verse Cuthill-Mckee (RCM) method. This technique reorders a matrix A to reduce the
bandwidth defined as:

Bd = max(Labi − Labj), i, j = 1...k (3.46)
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where Labi is the label of node i and Labj is the label of node j when nodes i and j are
neighbours in A among k nodes. The bandwidth reduction problem can be considered
as a graph labling problem. We wish to find the node labling that minimizes Bd of the
adjacency matrix A of the graph G(k).

To reduce the bandwidth, one permutes the columns and rows so that all the non-zero
elements are moved to a band near the diagonal. Thus, we will have a sparse matrix where
all the non-zero elements are re-located.

The impact of RCM matrix reordering on a sparse matrix A is illustrated in Figure
3.2, where A∗ denotes the reordered matrix. As can be seen, A∗ is obtained through
row and column permutations. For a graph G(k), the RCM algorithm uses the following
steps [66]:

1. Prepare an empty queue Qu and an empty result array Re.

2. Select the Parent node G(k)P with the lowest degree that has not been inserted in
the result array Re.

3. Add G(k)P in the first position of Re.

4. Add to the queue all the nodes adjacent to G(k)P with respect to an increasing order
of their degree.

5. Extract the first node from the queue and examine it as the child node G(k)C .

6. If G(k)C has not been previously inserted in Re, add it in the first free position and
add to Qu all the neighbours of G(k)C that are not in Re in increasing order of their
degrees.

7. If Qu is not empty, repeat from (1).

8. If there are unexplored nodes repeat from (1).

9. Reverse the order of the elements in Re. Element Re[i] is swapped with element
Re[n+ 1− i].

The computational complexity related to the RCM algorithm is estimated as O(log(f)|E|)
where f and E denote the maximum degree in the adjacency graph and the total number
of edges in the considered sparse matrix, respectively [67].
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Figure 3.2.: RCM algorithm and adjacency graph [5]

3.4.3. Complexity Analysis of Sparse Channel Matrices

In order to design and benchmark a low-complexity pseudo inverse algorithm, a de-
tailed analysis using FLOPs is required. As a baseline, the Lightspeed MATLAB toolbox
which features a set of routines for accurate FLOPs counting was used [68]

The FLOPs count routines provided by Lightspeed are significantly more accurate
than the FLOPs functions that were included in MATLAB up to version 5. However,
the range of applicable functions in Lightspeed is limited and restricted to real-valued
operations.

In order to analyze the number of FLOPs using a reliable approach, an evolved Light-
speed toolbox is proposed that considers complex-valued matrix operations. Moreover, the
techniques for sparse pseudo inverse computation that were discussed in previous sections
are used. Figure 3.3 gives an overview of how Lightspeed is used by the proposed toolbox.
The toolbox basically scans each line and searches for the requested function in Lightspeed.

Figure 3.4 shows the proposed toolbox’s main components. The mathematical func-
tions and operations used in the toolbox along with their exact FLOPs count are detailed
in the Appendix A. Our sparsity routines include the following:
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Figure 3.3.: Proposed scheme for FLOPs count

Figure 3.4.: Proposed FLOPs count scheme components

1. Store the locations of the non-zero elements in the matrix before reordering: this
could be done by using the adjacency graph of the matrix.

2. Reorder the sparse matrix by applying the Reverse Cuthill-Mckee algorithm: to
produce a matrix with much smaller bandwidth, the adjacency graph of the sparse
matrix is used as input.

We obtain the sparse matrix elements, where the non-zeros of the initial sparse matrix
are relabeled. Figure 3.2 shows the effect of the RCM reordering process.

3. Multiply new reordered matrices while avoiding unnecessary multiplications and ad-
ditions: Obtaining the reordered sparse matrix, where all the non-zero elements of
each row are close to the diagonal, we can specify the position of the non-zero ele-
ments in the matrix. As such, unnecessary multiplications (zero multiplications) and
non-essential additions can be avoided.
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3.5. Evaluation Results

This section compares the deployments and linear precoding schemes introduced in
this chapter. We first present the impact of PTH on the channel matrix H. Three pseudo
inverse schemes including SVD, Greville and Sgeninv are employed to evaluate the average
SINR, spectral efficiency and the computational complexity of the ZF precoding in FLOPs
against the reference method. Evaluation results are generated based on the 3GPP 3D
channel model which is explained in section 2.6. We presented preliminary results in [4], [5]
and we add the following results:

. We analyze the impact of applying PTH window both on the performance and com-
plexity.

. We demontrate the effect of increasing the number of RCCs on the complexity.

. We analyze the impact of applying PTH window on the RCCs.

3.5.1. Channel Matrix Power

Before evaluating the precoding methods, we analyze the effect of applying PTH with
respect to the strongest channel component on the channel coefficients. The power of the
ith UE and jth Tx beam in the channel H with respect to the strongest Tx beam can be
defined as follows:

PREL = PH(i,j) − Pstrbe(i) (3.47)

where PH(i,j) is the Tx power of the ith UE and jth Tx beam in the channel H. Pstrbe(i)

denotes the strongest Tx beam power at the ith UE:

Pstrbe(i) = arg max(be(i)). (3.48)

Figure 3.5 depicts the average PREL of theH over 100 PRBs. As can be seen, the strongest
Tx beams of the UEs in a same cell are the ones transmitted from the eNodeBs in the
same cell. Figure 3.6 depicts the PREL in one PRB.
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Figure 3.5.: Average PREL of the H over 100 PRBs
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Figure 3.6.: PREL of the H in one PRB
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3.5.2. RCC Analysis

To distinguish the RCCs from the non-RCCs in H, Figure 3.7 shows the PREL distri-
bution when PTH= -20 dB with respect to Pstrbe is applied on the H channel components.
RCCs that receive Tx beams greater than -20 dB with respect to Pstrbe are depicted in red.
The impact of PTH window on the number of RCCs over 100 PRBs is given in Figure 3.8.

0 50 100 150 200 250 300

Beam Index

0

10

20

30

40

50

60

70

80

90

U
E

 I
n

d
e

x

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Figure 3.7.: RCC distribution in H when PTH= -20 dB

For a small PTH window, e.g., -15 dB, the RCCs percentage is less than 5% for all
the PRBs. Considering 288 beams received at each UE (as discussed in Chapter 2), the
number of RCCs when a larger PTH window, e.g., -30 dB is applied, is not more than 70
or 25% for each UE over 100 PRBs. For performance evaluation, a PTH window between
-15 dB and -25 dB is applied.
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Figure 3.8.: PTH impact on the RCC distribution per UE

3.5.3. Comparison of SINR

We first analayze the SINR under the 3D channel modeling and the system model
explained in Chapter 2 (see section 2.6). Figure 3.9 shows the CDF of the SINR for
Sgeninv when applying three PTHs. The SINR degradation for PTH= -20 dB reaches 2 dB
on average. The term “on average” for the CDF plot means median.

In Figure 3.9 Sgeninv with PTH= -20 dB has SINR loss of 2 dB on average since the
point where 50 percent of the data that is at or below SINR= 13.5 dB (with PTH= -20 dB)
from Sgeninv and the point where 50 percent of the data that is at or below SINR= 15.5
dB from the MATLAB Pinv curve differs by 2 dB degradation. The SINR degradation can
be reduced to 1 dB on average with PTH= -25 dB. Figure 3.10 shows the CDF of the SINR
for NUE=90 (or 9 UEs per cell) and NAntenna=1. For this deployment, the MATLAB Pinv
function was used as a benchmark where the sparsity of the channel matrix is not taken
into account.
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Figure 3.9.: Sgeninv SINR performance
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Figure 3.10.: Sgeninv and Greville SINR performance

The SINR loss caused by Sgeninv with PTH= -25 dB is nearly 1 dB on average. The
SINR loss for the state-of-the-art Greville with the same PTH window is around 2 dB. The
SINR performance of Sgeninv for a small window PTH performs better as compared to
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Greville. Figure 3.11 depicts the CDF of the SINR for Greville when applying PTH= -15
dB, -20 dB and -25 dB. For a small PTH window, when the RCCs changes between 5%
and 10% per UE, the SINR loss changes between 6 dB and 4 dB. If the number of RCCs
increases up to 20% per UE, the Greville SINR degradation reduces by 2 dB as compared
to the benchmark. By increasing the number of RCCs to 20% per UE, Sgeninv SINR
degradation drops by 1 dB. The Sgeninv algorithm performs better than Greville.
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Figure 3.11.: Greville SINR performance

3.5.4. Comparison of Spectral Efficiency

Here we compare the spectral efficiency (as discussed in section 2.6.5) for both Sgeninv
and Greville. Similar to the SINR, the MATLAB Pinv function was used as a benchmark
to evaluate the spectral efficiency for both Sgeninv and Greville. The CDF of the spectral
efficiency for Greville with PTH=-15 dB, -20 dB and -25 dB is given in Figure 3.12. If a
small PTH window, e.g., -15 dB is applied, the degradation is greater than 10 bit/sec/Hz
on average. For a larger PTH window, e.g., -25 dB, the spectral efficiency loss drops to
6 bit/sec/Hz on average. Figure 3.13 shows the spectral efficiency of Sgeninv with PTH=
-15 dB, -20 dB and -25 dB.

Similar to Greville, the degradation is higher on average for a small PTH window,
e.g., -15 dB (9 bit/sec/Hz) when the Sgeninv algorithm is used. For a larger PTH window,
e.g., -25 dB, spectral efficiency loss can be reduced to 3 bit/sec/Hz on average. A spectral
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efficiency comparison of Greville and Sgeninv is depicted in Figure 3.14. Similar to the
SINR performance, the Sgeninv algorithm performs better than Greville. By increasing the
number of RCCs to 20% (PTH= -25 dB) per UE, the Sgeninv spectral efficiency performs
well with a degradation of 3 bit/sec/Hz on average.
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Figure 3.12.: Greville spectral efficiency
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Figure 3.14.: Sgeninv and Greville spectral efficiency

3.5.5. Comparison of FLOPs

We next analyze the FLOPs count using the complexity toolbox introduced in sec-
tion 3.4. We first compare the Greville, geninv and MATLAB Pinv performance as shown
in Table 3.2 when no complexity reduction technique is used. The FLOPs count of each
approach is calculated for a channel matrix H of size 90 × 288 based on the complexity
analysis discussed in section 3.3.

The SVD based pseudo inverse function used in MATLAB is given in Figure 3.15.
The FLOPs count for the MATLAB Pinv function includes counting FLOPs for the SVD
decomposition function (known as svdecon) and the element wise binary operation handle
function (indicated by bsxfun in Table 3.2).

Pseudo Inverse Method FLOPs

geninv 17,617,371

MATLAB Pinv
svdecon︷ ︸︸ ︷

13, 936, 860 +
bsxfun︷ ︸︸ ︷

4, 717, 623 = 18, 654, 483

Greville 27,248,466

Table 3.2.: FLOPs count for H90×288
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function [complexity_Total,W] = MATLABpinv(H,tol)

[complexity_part1,U,S,V] = svdecon(H);
s = diag(S);
if nargin < 2

tol = max(size(H)) * eps(norm(s,inf));
end
r1 = sum(s > tol)+1;
V(:,r1:end) = [];
U(:,r1:end) = [];
s(r1:end) = [];
s = 1./s(:);
W = bsxfun(@times,V,s.')*U';

complexity_part2=FLOPS(bsxfun(@times,V,s.'),U);
complexity_Total=complexity_part1+complexity_part2;
end

Figure 3.15.: MATLAB Pinv function

Figure 3.16 and Figure 3.17 depict the impact of the proposed scheme (discussed
in section 3.4) on the Sgeninv and Greville performance. To investigate the impact, the
average SINR loss per UE over 1200 subcarriers and computational complexity in terms
of FLOPs are evaluated. As shown in Figure 3.16, both the FLOPs count and average
SINR loss per UE over 1200 subcarriers follow an exponential behavior when PTH window
changes between -15 dB and -39 dB.

The computational complexity of the state-of-the-art Greville can be reduced by nearly
five times (5.5 × 106 vs. 27.2 × 106) and by three times (5.5 × 106 vs. 18.6 × 106) as
compared to the SVD based MATLAB Pinv function if PTH= -15 dB. However, the average
SINR loss becomes large (around 8 dB). If a PTH window of -27 dB is taken, then the SINR
loss of Greville can be reduced to 1 dB.

The complexity gain in this case will be around four times (6.5 × 106 vs. 27.2 ×
106) as compared to the number of Greville FLOPs shown in Table 3.2. Similarly, the
Sgeninv performance (as depicted in Figure 3.17) follows an exponential behavior when
PTH window changes between -15 dB and -39 dB. For low PTHs window, e.g, -15dB, the
complexity reduction is around five times (3.5 × 106 vs. 18.6 × 106) as compared to the
MATLAB Pinv function. However, the impact on the SINR will be approximately 6.5 dB.
To decrease the SINR loss to 1 dB, a PTH window of -25 dB can be employed. The FLOPs
in this case will increase to 4.2 × 106 which is four times (4.5 × 106 vs. 18.6 × 106) less
than the reference MATLAB Pinv function complexity.
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Figure 3.16.: Greville SINR Loss and FLOPs count a single subcarrier
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Figure 3.17.: Sgeninv SINR Loss and FLOPs count for a single subcarrier
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Figure 3.18 compares the average SINR loss per UE over 1200 subcarriers with the
percentage of RCCs for Sgeninv when PTH window changes between -15 dB and -39 dB.
If PTH= -15 dB, the RCC percentage will be limited to only 15%. To achieve 1 dB loss on
the average SINR, the number of RCCs will need to increase to 45%.
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Figure 3.18.: Sgeninv SINR Loss and RCC percentage

3.5.6. UE Beamforming Performance Analysis

As discussed in section 2.7, beamforming at the UE can be considered. This section
presents the evaluation results based on the linear receiver beamformer introduced in
section 2.7.2 and section 2.7.3 and [4]. To exemplify the impact of changing the number
of RCCs when each UE is equipped with linear beamforming using 8 received antennas
in the cooperation area, two power level thresholds (-20 dB, -25 dB) with respect to
the strongest channel component per UE have been employed. Figure 3.19 contrasts the
number of reported RCCs to the eNodeB for a single antenna UE against the case when
the UEs employ MRC beamformers with eight UE antennas. Utilizing UE beamformers
leads to maximizing the received power on one hand and reducing the number of reported
RCCs down to approximately 50 percent on average on the other hand. Further, this
impact more pronounced for the larger threshold window of -25dB.
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Figure 3.19.: CDF plot vs. RCCs per UE [4]

Figure 3.20 provides the CDF for the PNL over 100 PRBs. Taking the scheduling
aspects of user grouping in MU-MIMO into account, the UEs are scheduled only if their
PNL is below 5dB. The PNL for the case of an ideal reporting of all channel components
is approximately 1 dB smaller compared to the case of limited reporting of RCCs. The
MRC beamformer maximizes the received power and limits reporting to a smaller number
of RCCs. Choosing an appropriate power threshold is important to balance both effects.
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Figure 3.20.: CDF plot vs. PNL [4]





4
mMIMO JT CoMP Precoding for
Multiple Subcarriers

4.1. Introduction

Precoding solutions for multiple-subcarrier systems can obtain the maximum possi-
ble gains of FDD mMIMO technology. Accurate CSI reporting to the eNodeB and the
computational complexity of the ZF precoder are significant challenges in such systems.
One approach to reduce the complexity for calculating the precoder matrices is to select a
fraction of subcarriers and to perform interpolation across subcarriers.

MIMO-OFDM interpolated precoding based on QR decomposition was proposed in
[69], [70] where the QR decomposition of Laurent Polynomials (LPs) approximates the pre-
coding. Precoding based on unitary precoders was discussed in [71] where three interpola-
tion approaches were applied. In the first approach, the interpolation is done by rotating a
construction trajectory between two consecutive pilot subcarriers. In the second approach,
a conditional interpolation is used that identifies an inherited precoder interpolation. In
the third approach, an interpolation in the Grassmann manifold is discussed [71], [72].

In this chapter, the problem of computational complexity in multiple-subcarrier JT
CoMP scenarios is formulated. The main focus is on reducing the number of FLOPs
without degrading performance too much. A low-complexity pseudo inverse approximation
scheme is proposed based on the SGeninv algorithm (see section 4.3). We demonstrate
the benefits of precoding when multiple approaches are applied to the receiver’s channel
matrix beams with respect to the average received power.
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This chapter is organised as follows: existing methods to approximate the matrix
pseudo inverse are discussed in section 4.2. Details of a pseudo inverse approximation
approach are provided in section 4.3. In section 4.4, a comprehensive implementation of the
proposed multi-approach ZF precoding is presented. Further, the impact of using a multi-
approach scheme applying both prior art and the Sgeninv pseudo inverse approximation
to the RCCs is discussed. Simulation results are presented in section 4.5.

4.2. Interpolation-Based QR Decomposition in
MIMO-OFDM Systems

A standard approach applies subcarrier-by-subcarrier QR decomposition, where one
estimates the channel matrix H by interpolation, and performs the QR decomposition on
each subcarrier [73]. The basic idea is to represent the inverse of a polynomial matrix by a
matrix with rational entries. This approach provides complexity savings since the number
of OFDM tones is much larger than the channel order.

Let CP×D denote the set of complex-valued P ×D matrices and T ∆= {s ∈ C : |s| = 1}
indicate the unit circle. We define a matrix-valued function E : T → CP×D for integers j1
and j2 ≥ 0 as the Laurent Polynomial (LP) matrix [73]:

E(s) =
j2∑

e=−j1
Ees

−e, s ∈ T (4.1)

where Ee ∈ CP×D. Considering QR decomposition of the LP matrices, the interpolation-
based algorithms are formulated through LP matrices. Figure 4.1 and Figure 4.2 depict
QR decomposition interpolation examples for both a general subcarrier-by-subcarrier ap-
proach, as well as the LP matrices interpolation-based approach. Using the brute-force
scheme, H1, H5 and H9 are selected as the pilot subcarriers (see Figure 4.1). However, the
computational complexity will be high if we apply QR decomposition on every subcarrier.
To avoid that, an interpolation-based QR preprocessing can be used (see Figure 4.2).
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Figure 4.1.: QR decomposition general interpolation scheme

Figure 4.2.: QR decomposition interpolation with LP matrices
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If q
k
denotes kth column of Q and rk denotes kth row of R, the auxiliary variable ∆k

is defined as follows:
∆k

∆= ∆k−1[R]2k,k k = 1, 2, 3, ...,M (4.2)

with ∆0
∆= 1. [R]k,k in (4.2) indicates the entry of kth column and kth row of R, and M

denotes the number of columns of R. The mapped LP matrices Q̃ and R̃ are obtained as
follows [73]:

Q̃ = Q∆ R̃ = ∆R (4.3)
Q = Q̃∆−1 R = ∆−1R̃ (4.4)

where ∆ is a diagonal matrix with (k, k) entry ∆k, and

Q̃ ∆= [q̃1q̃2...q̃M ] (4.5)

R̃ ∆= [r̃T1 rT2 ...r̃TM ]T (4.6)

where

q̃
k

∆= ∆k−1[R]k,kqk (4.7)

r̃k
∆= ∆k−1[R]k,krk. (4.8)

If we denote the ordered column rank of E by K, for K > 0 and k = 1, 2, .., K, then rk
and q

k
can be computed using:

rk = (∆k−1[R]k,k)
−1r̃k (4.9)

q
k

= (∆k−1[R]k,k)
−1q̃

k
. (4.10)

(∆k−1[R]k,k) is calculated from the elements of the main diagonal of R̃ as follows:

(∆k−1[R]k,k) =
√
R̃k,k, if k = 1 (4.11)

(∆k−1[R]k,k) =
√
R̃k−1,k−1R̃k,k, if k = 2, 3, .., K. (4.12)

The Q and R matrices of the data subcarriers are obtained by the inverse of their
interpolated Q̃ and R̃matrices. IfK > 0, then for k = 1, 2, ..., K the inverse of the mapped
matrices Q̃ and R̃ can be obtained through calculating the scaling factor (∆k−1[R]k,k)−1

using (4.12) and scaling q̃
k
and r̃Tk according to (4.9) and (4.10). Employing LP matrices

in QR decomposition for an M ×M matrix can reduce the number of FLOPs to O(M2)
as compared to the QR decomposition per subcarrier, for which the number of FLOPs is
O(M3).
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4.3. Proposed Scheme

4.3.1. Approximate Pseudo Inverse for Relevant Precoding
Matrix Components

We next discuss the proposed approximate pseudo inverse scheme for multiple-subcarrier
ZF precoding. According to (3.26), the Moore-Penrose pseudo inverse of H90×288 can be
expressed as:

H† = HHL(LHL)−1(LHL)−1LH (4.13)

where H† is a matrix size of 288× 90 and L is a matrix size of 90× 89. We subdivide
(4.13) into three steps of multiplications as follows:

P1 = L×
(
LHL

)−1

P2 = P1 × PH
1

P3 = H† = HH ×P2.

(4.14)

Let W(j,i)
Element−wise be the element-wise precoding matrix element of the ith row and

jth column of H†. We write:

W(j,i)
Element−wise = P(j,i)

3 (4.15)
W(j,i)

Element−wise = HH(j, :)×P(:,i)
2 . (4.16)

We apply a power threshold with respect to the strongest element on the jth row
of HH; the elements below this threshold will be set to zero. Thus, in computing P1 the
number of rows in the matrix L to be multiplied by (LHL)−1 will be limited to the number
of non zero elements in the jth row of HH while the power threshold window is applied.

4.4. Implementation of Multi-approach Precoding

This section presents a practical implementation of the proposed precoding with mul-
tiple subcarriers. The scheme is based on dividing the Precoding Channel Components
(PCCs) into strong, weak and very weak classes based on the average power precoding ma-
trix. To reduce the complexity, an element-wise pseudo inverse approximation is applied
to the Strong Precoding Channel Components (SPCCs).

Linear interpolation is used to compute the pseudo inverse of the Weak Precoding
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Channel Components (WPCCs) with low computational complexity. PCCs with the lowest
average power, denoted as Very Weak Precoding Channel Components (VWPCCs), are
set to zero.

4.4.1. Non-Interpolated ZF Precoding Matrices

Non-interpolated ZF precoding matrices are considered as precoding matrices which
are obtained either through the SVD decomposition function svdecon (as introduced in
section 3.5.5), state-of-the-art geninv, or the proposed Sgeninv algorithm, introduced in
Chapter 3. Wint denotes the non-interpolated precoding matrix of size 288× 90.

4.4.2. Average Power Precoding Matrix

In order to apply the proposed scheme, we must first distinguish the SPCCs from the
WPCCs. If NWint

denotes the number of pilot precoding matrices Wint, the average power
of the precoding matrix PWint

is calculated as follows:

PWint (dB) = 10 log10
1

NWint

288∑
i=1

90∑
j=1

NWint∑
δ=1

∣∣∣∣∣∣Wint
(i,j,δ)

∣∣∣∣∣∣
2

(4.17)

where W (i,j,δ)
int denotes the ith row and jth column of the δth pilot precoding matrix Wint.

The SPCCs and WPCCs can be distinguished using appropriate power thresholds.

4.4.3. Large Subcarrier Spacing

For all the Wint matrices, Large Subcarrier Spacing (LargeSCS) specifies the subcar-
riers for which the pilot ZF precoding is applied. Furthermore, the Wint matrix elements
spaced by the LargeSCS can be used as the WPCCs interpolation intervals.

4.4.4. Small Subcarrier Spacing

Similarly to the WPCCs, the SPCCs can be interpolated using a Small Subcarrier
Spacing (SmallSCS). It is assumed that SmallSCS ≤ LargeSCS since the SPCCs have
a stronger effect on the performance when the multi-approach scheme is applied.
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4.4.5. Strong PCCs Power Threshold

To filter out the SPCCs from the WPCCs in the matrix Wint, a strong component
power threshold window StrongPT H

with respect to the strongest power element SPCCmax

on Wint is employed. For each SPCC at the jth column and ith row of PWint
, we have

PWint (i,j) ≥ SPCCmax − StrongPT H
(4.18)

where
SPCCmax = argmax(PWint

). (4.19)

4.4.6. Weak PCCs and Very Weak PCCs

To identify Tx-beams that are sufficiently below the SPCCs, the WPCCs and VW-
PCCs are introduced. PWint (i,j) is specified as follows:

PWint (i,j) ≥ SPCCmax −WeakPT H
(4.20)

PWint (i,j) < SPCCmax − StrongPT H
. (4.21)

WeakPT H
in (4.20) denotes the weak PCC threshold window that identifies the WPCC

matrix elements in PWint
. PWint (i,j) identifies as a VWPC at the jth column and ith row, if

neither (4.18) nor (4.20), (4.21) is fulfilled. As such, VWPCCs are set to zero for all the
NWint

number of subcarriers. Combining (4.18), (4.20) and (4.21), PWint (i,j) can be defined
as

PWint (i,j) =


SPCC, if PWint (i,j) ≥ SPCCmax − StrongPT H

WPCC, if SPCCmax −WeakPT H
≤ PWint (i,j) < SPCCmax − StrongPT H

VWPCC, otherwise.
(4.22)

4.4.7. Interpolation-based Approximate Multiple-subcarrier ZF
Precoding

Figure 4.3 illustrates the proposed scheme for interpolation. First, the Sgeninv al-
gorithm (or other examined methods) are applied to obtain the pseudo inverse of channel
matrices on pilot subcarriers spaced by the LargeSCS. In order to specify the SPCCs and
WPCCs, the average power precoding matrix PWint

over all the pilot precoding matrices is
calculated. By applying (4.22) on each element (i, j) of PWint (i,j), all the SPCCs, WPCCs
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and VWPCCs are specified.

Figure 4.3.: Multi-approach interpolation-based scheme

An approximate pseudo inverse, as discussed insection 4.3, is applied to the SPCCs.
Considering the approximated SPCCs as the main intervals, linear interpolation for all
the SPCCs between the intervals spaced by SmallSCS is applied. If PWint (i,j) identifies a
WPCC, linear interpolation with respect to LargeSCS is employed. Eventually, all the
specified VWPCCs are set to zero within all the subcarriers.

If SmallSCS < LargeSCS then we define

NsmallSCS = bLargeSCS/SmallSCSc+ (SmallSCS mod LargeSCS) (4.23)

As depicted in Figure 4.4, α and β denote the subcarrier indices for the SPCCs and the
WPCCs respectively. The number of SPCCs between α+NsmallSCS×SmallSCS and α+β
are approximated by calculating the remaining SPCCs as given in (4.23). If SmallSCS =
LargeSCS, then α and β are equal. Figure 4.5 illustrates an example for the subcarrier
spacing interpolation when SmallSCS = LargeSCS=72.
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Figure 4.4.: Subcarrier interpolation when SmallSCS<LargeSCS
.

Figure 4.5.: Subcarrier interpolation when SmallSCS = LargeSCS

Interpolation-based Precoding Using State-of-the-Art Pseudo Inverse

This section details the proposed interpolation when the state-of-the-art pseudo in-
verse algorithm is applied to the pilot subcarriers. Figure 4.6 gives an overview of four
pilot subcarriers among 1200 subcarriers when LargeSCS = 72.

If the state-of-the-art algorithm is applied to calculate the precoding matrices of the
pilot subcarriers, then the PCCs, WPCCs and VWPCCs are found by first taking the
average power precoding matrix PWint

of the pilot subcarriers. According to (4.19), both
StrongPT H

and WeakPT H
are applied with respect to SPCCmax which identifies the com-

ponents in PWint
.
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Figure 4.6.: Pilot subcarriers and precoding channel components

SPCCs in the PWint
matrix are employed as the intervals to approximate the SPCCs

of the non-pilot subcarriers which are spaced by SmallSCS. Clearly, the number of
SPCCs identified in PWint

depends on the selected StrongPT H
with respect to SPCCmax.

The larger threshold value with respect to SPCCmax results in applying the proposed
approximate pseudo inverse method to a larger number of PCCs.

. Figure 4.7 depicts the SPCCs linear interpolation process when SmallSCS = 4.
SPCCs on SC5 are calculated using the proposed approximation method. How-
ever, all the SPCCs between SC1 and SC5 are obtained through linear interpolation
between the approximated SPCCs on SC1 and SC5.

. Figure 4.8 represents the WPCCs linear interpolation process for a total number
of 1200 subcarriers when LargeSCS = 72. All the WPCCs on SC1 and SC73
are obtained by applying the state-of-the-art pseudo inverse. For WPCCs located
between SC1 and SC73 linear interpolation is applied.
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Figure 4.7.: Strong precoding channel components interpolation

Figure 4.8.: Weak precoding channel components interpolation
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. Figure 4.9 illustrates the process of zeroing out the VWPCCs as described in sec-
tion 4.4.6. As discussed above, the number of VWPCCs which are set to zero for all
the subcarriers depends on WeakPT H

and StrongPT H
.

Figure 4.9.: Very weak precoding channel components interpolation

Interpolation-based Precoding using Sparse Geninv Pseudo Inverse

To illustrate the computational complexity reduction using the proposed pseudo in-
verse method, an average power matrix can be defined as follows:

PWint (dB) = 10 log10
1

NWint

288∑
i=1

90∑
j=1

NWint∑
δ=1

∣∣∣∣∣∣WSGeninv
(i,j,δ)

∣∣∣∣∣∣
2

(4.24)

where
W

(,,δ)
Sgeninv = SGeninv(Hδ). (4.25)

The complexity reduction is influenced not only by approximating the SPCCs, but an
additional gain is obtained while the pseudo inverse of Wint is calculated. However, the
performance degrades due to applying StrongPT H

window and WeakPT H
window to the
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channel components of H. The main impact of employing StrongPT H
and WeakPT H

is
to set some channel components to zero before calculating the PWint

and specifying the
SPCCs, WPCCs and VWPCCs. An evaluation of the proposed approach is discussed next.

4.5. Evaluation Results

We analyze the performance of our multiple-subcarrier ZF precoding methods by
examining the average SINR. In the following, first the performance degradation of the
proposed approximate pseudo inverse with desired SPCCs is investigated. Following this,
different WeakPT H

are considered to analyse the degradation of the average SINR when
the reference ZF precoding is applied.

Finally, the performance loss as well as the computational complexity gain of the
schemes introduced in section 4.3 and section 4.4.7 are compared with the state-of-the-art
and reference algorithms.

4.5.1. Element-wise Approximate Pseudo Inverse

This section investigates the impact of the proposed approximate pseudo inverse on
the average SINR for the multiple subcarrier case. In order to employ an appropriate
range for the SmallSCS with respect to StrongPT H

, the interpolation based element-wise
ZF precoding for SPCCs is evaluated.

Figure 4.10 shows the average SINR performance of 90 UEs over 1200 subcarriers as
the SmallSCS changes between 2 and 20. Moreover, the SPCCs are distinguished from
the other coefficients in PWint

. StrongPT H
changes from -3 dB to -21 dB. The average

SINR for StrongPT H
= -3 dB remains constant irrespective of SmallSCS. The reference

average SINR= 15.5 dB is calculated over 1200 subcarriers using ZF precoding based on
SVD decomposition.

The SINR loss will increase by up to 0.5 dB with respect to the reference when
StrongPT H

= -9 dB. However, SmallSCS has no such significant impact. The SINR
loss with respect to the reference point starts to increase slightly when StrongPT H

= -
12 dB. Performance degradation due to increasing SmallSCS is moderate when -15 dB
≤ StrongPT H

≤ -18 dB.

If StrongPT H
= -18 dB, then the SINR loss increases for SmallSCSs between 2 and

8. However, when the SmallSCSs are between 8 and 17, the average SINR degradation
reduces to 0.8 dB. If StrongPT H

= -18 dB, then there is 1 dB loss in the average SINR when
SmallSCS= 20. If StrongPT H

window increases to -21 dB and SmallSCS=14, then the
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average SINR loss of 1 dB affects the performance moderately.
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Figure 4.10.: Element-wise ZF precoding performance

4.5.2. VWPCC Impact on ZF Precoding with Multi-Subcarriers

Before investigating the complexity reduction, we first evaluate the performance degra-
dation of the reference method of ZF precoding for multiple subcarriers when VWPCCs
with respect to the SPCC are zeroed out.

Figure 4.11 shows the CDF for SINR when V eryWeakPT H
varies between -30 dB and

-39 dB with respect to the SPCC of Wsub where sub ranges from 1 to 1200. For each
experiment, we first obtain the precoding W of all the subcarriers using svdecon as a
pseudo inverse method.

Consequently, the VWPCCs corresponding to each subcarrier are set to zero when
SPCCsub is defined. V eryWeakPT H

defines the power threshold with respect to the
VWPCC. The number of VWPCCs increases as a larger V eryWeakPT H

is employed.
However, the SINR loss increases as a larger number of VWPCCs are set to zero. For
V eryWeakPT H

≤ -35 dB, the SINR loss is less than 1 dB. For higher thresholds, the SINR
loss increases up to 2 dB (V eryWeakPT H

= -31 dB).
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Figure 4.11.: VWPCCs cancellation effect

4.5.3. Comparison of SINR Loss and FLOPs Count

Simulation results for the proposed interpolation-based multiple-subcarrier ZF precod-
ing is analyzed in this section. We choose SmallSCS=17 to keep the average SINR loss
caused by the element-wise ZF precoding close to 1 dB. Furthermore, V eryWeakPT H

= -35
dB is applied to minimize the computational complexity and to reduce the average SINR
loss per UE over 1200 subcarriers to below 1 dB with respect to the reference example (as
detailed in section 3.5.5). Simulation parameters that were used to calculate the number
of FLOPs and the SINR loss for ZF precoding with multiple subcarriers are summarized
in Table 4.1.

Each PRB in LTE consists of 12 consecutive subcarriers in the frequency domain,
where each subcarrier comprises 6 resource elements if a long cyclic prefix is applied. Each
PRB thus consists of 6 × 12 = 72 resource elements. To examine the approximate ZF pre-
coding with multiple subcarriers with respect to the LTE physical transmission resources,
we assume LargeSCS= 72. If the MATLAB Pinv function is used as the reference method
to calculate ZF precoding of 1200 subcarriers without approximation, then the total com-
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putational complexity approaches 1200 × 18654483 = 2.2385 × 1011 FLOPs. To exemplify

Symbols PHY Layer Parameters Value Value

fc Carrier Frequency (GHz) 2.1
TB Total Bandwidth (MHz) 20
UB Used Bandwidth (MHz) 18
Bsep Subcarrier Spacing (KHz) 15
Nsub Number of Subcarriers 1200
NPRB Number of PRBs 100

Tx PowerdBm Tx Power per per cell (dBm) 46
ReceiverNF Receiver NF (dB) 7

NUE Number of UEs 90
N Number of Antennas per UE 1
Ncell Number of Cells 9
NBeams Number of Tx Beams 288
NOFDM Number of OFDM blocks per PRB 6
TTI Duration of one subframe (ms) 1

LargeSCS Large subcarrier spacing 72
SmallSCS Small subcarrier spacing 17

V eryWeakPT H
Very weak threshold -35 dB

SGeninvPTH SGeninv power threshold -20 dB
GrevillePTH Greville power threshold -20 dB

Table 4.1.: ZF Precoding with simulation parameters

the effect of the approximate ZF precoding on the SINR loss and complexity gain, Sgeninv,
Greville and the MATLAB pinv function are employed to calculate the pilot subcarrier
precoding.

Figure 4.12 depicts the average SINR loss per UE over 1200 subcarriers against the
FLOPs count when the Greville algorithm considering GrevillePTH= -20 dB is applied.
While StrongPT H

changes between -15 dB and -30 dB with respect to the SPCC, the SINR
loss varies between 1.8 dB and 2.2 dB. The FLOPs count reduces linearly from 3.6 × 109

(with 1.8 dB average SINR loss) to 0.23 × 109 for 1200 subcarriers with 2.2 dB average
SINR loss.
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Figure 4.12.: Greville performance for multiple subcarriers

Figure 4.13 shows the approximate ZF precoding performance when the Sgeninv algo-
rithm is used to calculate the pilot precoding matrices. The average SINR loss decreases
by 0.4 dB as compared to Greville. Similar to the Greville approach, the computational
complexity reduces by a factor of 100 as compared to the SVD based pseudo inverse when
the approximate ZF precoding and an element-wise pseudo inverse for the SPCCs are
applied.

Figure 4.14 demonstrates the approximate ZF precoding performance when the MAT-
LAB optimized SVD based function is applied as the baseline to calculate pilot precoding
matrices. In contrast with Sgeninv and Greville, no power threshold is employed to specify
the RCCs before precoding. StrongPT H

is applied to the PWint
matrix with respect to the

SPCCmax. The average SINR loss decreases by 0.4 dB as compared to Sgeninv and 0.8 dB
as compared to Greville for StrongPT H

= -15 dB, -16 dB. The approximate ZF precoding
SINR loss difference between Pinv and Sgeninv is reduced when a lager StrongPT H

window
of, e.g., -30 dB is applied as the performance loss drops by 0.26 dB.

The FLOPs count difference between Pinv and Sgeninv is 0.25× 109 when StrongPT H
=

-15 dB. This difference increases to 1.14 × 109 when a larger StrongPT H
, e.g., -30 dB is

applied. Similar to the ZF precoding single subcarrier analysis, choosing an appropriate
power threshold window, e.g., StrongPT H

, for multiple subcarrier precoding improves the
perfomance loss as well as the complexity gain.
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Figure 4.13.: Sgeninv performance for multiple subcarriers
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Figure 4.14.: MATLAB Pinv performance for multiple subcarriers



5
Conclusion and Outlook

This dissertation has presented precoding algorithms for mMIMO systems, including
a computational complexity analysis. One of the main outcomes of this work is to present
a toolbox to count the precoding computational complexity in floating point operations
(FLOPs) for large channel matrices. This toolbox adds more mathematical features to
calculate FLOPs as compared to the existing Lightspeed.

To present the low-complexity beamforming solutions, we focused on joint transmis-
sion coordinated multipoint (JT CoMP) or network MIMO scenarios where the interference
is mitigated substantially but we must deal with a large channel matrix. Low-complexity
beamforming methods were presented by employing a grid of beams (GoB) at the eNodeB
to deactivate non-relevant beams towards the UEs.

Channel state information (CSI) feedback overhead is another challege in frequency
division duplex (FDD) massive MIMO systems. A power threshold window PTH was used
at the UE to reduce the CSI reporting requirements to the eNodeB.

For MIMO-OFDM with multiple subcarriers, we extended the Sgeninv scheme by
introducing two power thresholds that are employed after precoding. StrongPT H

and
WeakPT H

were applied to distinguish the Strong Precoding Channel Components (SPCCs)
and Weak Precoding Channel Components (WPCCs) of the average precoding matrix.
Linear interpolation in combination with defining pilot subcarriers via Large Subcarrier
Spacing (SCS) and Small SCS demonstrated a good performance. An element-wise pseudo
inverse was used to approximate the SPCCs of the precoding matrices. Linear interpolation
was employed for the WPCCs approximation over multiple subcarriers. To evaluate the
performance, LTE physical transmission resources were considered. In contrast with single
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subcarrier MIMO-OFDM, a complexity gain of a factor of 100 as compared to the reference
method was observed (see section 4.5.3) when Sgeninv or Greville are used to generate the
pilot subcarriers. The average SINR degradation increases by only 0.5 dB as compared to
the performance for a single subcarrier. To reduce the SINR loss and achieve complexity
gain for multiple subcarriers, the reference method was employed. The average SINR loss
for a small StrongPT H

window, e.g, -15 dB, is about 0.4 dB as compared to Sgeninv if the
reference MATLAB Pinv function is used to calculate the pilot precoding matrices.

Further research topics include the following:

. Extend the complexity analysis to other pseudo inverse methods for single and mul-
tiple subcarriers.

. Extend the analysis to larger cooperation sites with more UEs per cell.

. Evaluate the effect of expanding the size of the channel matrix on the complexity
gain and performance degradation.

. Analyze the optimization problem where the number of FLOPs and SINR degrada-
tion are defined, for example, per LargeSCS, per SmallSCS, per StrongPT H

and
per WeakPT H

.

. Evaluate the precoding schemes using other interpolation methods to approximate
the WPCCs.

. Include the CSI estimation techniques at the UE and consider the impact of the
non-perfect CSI reporting on the precoding for single and multiple subcarriers.

. To enhance the use of low-complexity beamforming solutions, the analysis of the
Relevant Multi Path Components (RMPCs) as well as the Relevant Channel Compo-
nents (RCCs) can be considered. Reducing the number of MPCs affects the number
of the relevant taps of the Channel Impulse Response (CIRs) per RCC. One could
consider the use of RMPCs as well as the RCCs on the precoding complexity gain
and performance degration.



A
FLOPs Count for Mathematical
Operations

Basic Mathematical Operations

Basic complex-valued mathematical operations for the FLOPs count analysis discussed
in Chapter 3 are given as follows:

FLOPs count for the real part:

FLOPreal(Addition) = 1

FLOPreal(Subtraction) = 1

FLOPreal(Division) = 1

FLOPreal(Multiplication) = 1

FLOPreal(Comparison) = 1

FLOPreal(Fast Inverse Square Root) = 8
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FLOPs count for complex part:

FLOPcomplex(Addition) = 2× FLOPreal(Addition)

FLOPcomplex(Subtraction) = 2× FLOPreal(Subtraction)

FLOPcomplex(Multiplication) = 4× FLOPreal(Multiplication)
+ 2× FLOPreal(Addition)

FLOPcomplex(Division) = FLOPcomplex(Multiplication)
+ 2× FLOPreal(Multiplication)
+ FLOPreal(Multiplication)
+ 2× FLOPreal(Division)

Matrix Operations

Basic complex-valued matrix operations used in the FLOPs count toolbox are given
as follows:
If A is a matrix of size m× n and B is a matrix of size n× p, then we have

FLOPA×B =
[
m× n× p× FLOPcomplex(Multiplication)

+m× (n− 1)× p× FLOPcomplex(Addition)
]

If A is a matrix of size m× n and B is a matrix of size p× q, then we have

FLOPKronecker Product = m× n× p× q × FLOPcomplex(Multiplication)

If A is a semi-definite matrix of size m×m and B is a semi definite matrix of size n× n,
then we have

FLOPKronecker Product =
[
m×

(
(n2 − n)× 0.5× 2× FLOPreal(Multiplication)

+ n× FLOPreal(Multiplication)
)

+ (m2 −m)× 0.5×
(

(n2 − n)× 0.5× FLOPcomplex(Multiplication)

+ 2× n× FLOPreal(Multiplication)
)]
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If A is a positive-definite matrix of size m×m then we have

FLOP(A−1) =
[
(1
2m

3 + 3
2m

2)× FLOPcomplex(Multiplication)

+ (1
2m

3 − 1
2m

2)× FLOPcomplex(Addition)

+m× FLOPreal(Fast Inverse Square Root)
]

If A is a matrix of size m×n then the Square Frobenius Norm can be calculated as follows:

FLOPSquareFrobNorm(A) =
[
2×m× n× FLOPreal(Multiplication)

+ (n×m− 1)× FLOPreal(Addition)
]





B
Abbreviations

List of Abbreviations

3GPP 3rd Generation Partnership Project
3D − UMa 3D urban macro channel

4G 4th generation mobile networks
5G 5th generation mobile networks
AoA angle of arrival
AoD angle of departure
AR augmented reality
BS base station
CA cooperation area
CB coordinated beamforming
CC channel component
CIR channel impulse response
CoMP coordinated multi point
CS coordinated scheduling
CSI channel state information
CTF channel transmission function
DAC digital analog convertor
DFT discrete fourier transform
DPC dirty-paper coding
eMMB enhanced mobile broadband
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eNodeB evolved node B
FFT fast fourier transform
FDD frequency division duplex
FDM frequency division multiplexing
FLOPs floating point operations
FLOP SV D floating point operations for SVD

FLOPQR
MGS(Addition) floating point for number of additions in MGS QR

FLOPQR
MGS(Multiplication) floating point for number of subtractions in MGS QR

FLOPQR
MGS(Subtraction) floating point for number of subtractions in MGS QR

GoB grid of beam
GSO gram-schmidt orthogonalization
GSCM geometric-based stochatistic channel model
HARQ hybrid automatic repeat request
IFFT hybrid automatic repeat request
IoT internet of things
ITU International Telecommunication Union
JT joint transmission
LoS line of sight
LP laurent polynomials
LTE long term evolution
M2M machine-2-machine
MCS modulation and coding scheme
MF matched filter
MGS modified gram-schmidt
MIMO multiple-input multiple-output
MISO multiple-input single-output
mMIMO massive multiple-input multiple-output
MMSE minimum mean square error
MPC multi path component
MRC maximal ratio combining
NLoS non-line of sight
NR new radio

MU −MIMO multi-user multiple-input multiple-output
OFDM orthogonal frequency division multi-point
ODMOD OFDM demodulator
OMOD OFDM modulator
PCC precoding channel component
PNL power normalization loss
PRB physical resource block
PSD power spectral density
RAT radio access technology
RCC relevant channel component
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RCM reverse cuthill-mckee
RMPC relevant multi path component
RS received signal

RSRP reference signal received power
Rx received beams at UE
SC sub-carrier spacing
SDN software defined network
SINR signal-to-interference plus noise ratio
SIMO single-input multiple-output
SISO single-input single-output
SPCC strong precosing channel component

SU −MIMO single-user multiple-input multiple-output
SV D singular value decomposition
TDD time division duplex
TDM time division multiplexing
TRx Transceiver
Tx received beams at the eNodeB
TTI transmission time interval
UE user equipment
ULA uniform linear array
UPA uniform planar array
V 2V vehicle-to-vehicle

WPCC weak precoding channel component
VWPCC very weak precoding channel component
XPR cross polarization ratio
ZF zero forcing

ZFBF zero forcing beamforming
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