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Abstract

This thesis is concerned with the optimal control of parabolic obstacle problems. We
first study the obstacle problems independently of the control aspect by regularizing
with semilinear parabolic PDEs. We derive regularity results for the obstacle problems
by taking appropriate limits of the solutions of the semlinear equations. We then dis-
cuss optimal control problems governed by obstacle problems or by the corresponding
regularized problems. We derive existence of optimal solutions, necessary optimality
conditions and second order sufficient conditions.
After that, we analyse space-time discretizations of the regularized obstacle problems and
derive quasi-optimal L∞-estimates for the error between the solutions to the obstacle
problems on the continuous level and the regularized, discretized solutions. Lastly, we
apply those estimates to discretized and regularized optimal control problems and derive
partially optimal L2-estimates for the errors betweens the continuous controls and states
and the corresponding discretized, regularized variables.
Moreover, we give a quick introduction into our used algorithms and provide experiments
that verify the sharpness of some of our estimates.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der optimalen Steuerung von parabolischen Hinder-
nisproblemen. Zunächst untersuchen wir die Hindernisprobleme losgelöst vom Optimie-
rungskontext, indem wir mit semilinearen parabolischen PDEs regularisieren. Wir leiten
Regularitätsresultate für die Hindernisprobleme her, indem wir passende Grenzwerte
von Lösungen der semilinearen Gleichungen nutzen. Dann diskutieren wir Optimalsteue-
rungsprobleme mit Beschränkungen durch Hindernisprobleme bzw. durch die zugehöri-
gen regularisierten Probleme. Wir zeigen Existenz von Lösungen und leiten notwendige
Optimalitätsbedingungen sowie hinreichende Optimalitätsbedingungen zweiter Ordnung
her.
Abschließend analyisieren wir Raum-Zeit-Diskretisierungen der regularisierten Hinder-
nisprobleme und beweisen quasi-optimale L∞-Abschätzungen für den Fehler zwischen
den Lösungen der Hindernisprobleme auf der kontinuierlichen Ebene und den regula-
risierten, diskretisierten Lösungen. Zuletzt, wenden wir diese Abschätzungen auf die
diskretisierten und regularisierten Optimalsteuerungsprobleme an und leiten teilweise
optimale L2-Abschätzungen für den Fehler zwischen den kontinuierlichen Steuerungen
und Zuständen und den zugehörigen diskretsierten, regularisierten Größen her.
Außerdem geben wir eine kurze Einführung in die verwendeten Algorithmen und liefern
Experimente, die die Optimalität manche unserer Abschätzungen belegen.
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Introduction

This thesis is concerned with the study of optimal control of parabolic obstacle problems.
The specific problems are of the form

min
(y,u)∈W (I)×Uad

jv(y) + jT (y(T )) + g(u) =: J(y, u),

such that


(∂ty +Ay + f(y)− u, ϕ− y)L2(I×Ω) ≥ 0

∀ϕ ∈ L2(I, V ) such that ϕ ≥ Ψ,
y(0) = y0, y|ΣD = 0, y ≥ Ψ.

(OC)

Here, u is the control, y is the corresponding state and Ψ is the name-giving obstacle. The
operator A is symmetric on an appropriate Hilbert space V . Further, I is a time interval,
Ω the spatial domain and f is a non-linearity. The cost functionals jv, jT and g can be of
a quite generic form, though the quadratic case is sometimes considered for special results.
The admissible set Uad is bounded in an appropriate norm, which always includes simple box
constraints. The interesting part is of course the connection between state and control. We
will later make the following statement precise: essentially at every point in I × Ω the state
y solves the semi-linear equation ∂ty+Ay+ f(y) = u or it touches the obstacle Ψ. Both can
happen at once. A visual interpretation can be given by the image of a person stepping on
a trampoline and gravity pulling the membrane towards the ground. If the person is light
enough, the state (membrane) never touches the obstacle (ground), while for heavy persons
the state might touch the obstacle.

Variational inequalities appear for example in the study of American options in the Black-
Scholes model; for a mathematical derivation see for example [IK06] and the references to
[Øks98, Sey02] therein. Another application is their relation/equivalence to free bound-
ary problems which are for example studied in relation to ice sheet models, e.g. [CDV10],
[JB12], where the obstacle problem is non-linear and elliptic or [CDD+02], where a non-linear
parabolic obstacle problem is used. An introduction to the modelling of membrane deforma-
tions with obstacle problems and various other applications can be found in [Rod87].

The first of the main achievements of this thesis is the derivation of second order sufficient
conditions for the optimal control problems given by (OC). The techniques are based on the
elliptic case studied in [KW12b]. There is limited related work. We shall mention [BM15]
and [Bet19]. [BM15] is concerned with second order sufficient conditions in for VI models in
static plasticity. [Bet19] is closer to our situation as it is considering second order sufficient
conditions in the realm of semi-smooth, semilinear parabolic PDEs.

The most important result is the numerical analysis of regularized obstacle problems in
Chapter 4. The analysis consists of two vital sub-results. One is the establishment of global
L∞-error estimates for linear parabolic problems in Section 4.4.1. Parts of the extensive and
long proof were derived in cooperation with Lucas Bonifacius and are found in the appendix.
The second result is the transfer of techniques from [Noc88] to the parabolic case. There it
is shown that the convergence rates for the discretization of the regularized obstacle problem
do not depend on the regularization parameter γ. This is confirmed experimentally. The
obtained rates for the complete error, i.e. discretization and regularization error combined,
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are, up to a logarithmic factor, O(γ 1
α + k + h2), where α ≥ 1 depends on the choice of regu-

larization, k is the time discretization parameter and h the spatial discretization parameter.
The rates are shown to be optimal in examples in Chapter 7.

Lastly, we would like to mention the combination of the previous to results in Chapter 5
where the local growth conditions of the second order sufficient conditions are combined with
the rates from Chapter 4 to obtain a convergence rate for the optimal control and the optimal
state for the regularized, discretized problems. The proven rates are partially shown to be
sharp via examples in Chapter 7. To our knowledge the only other work concerned with
the numerical analysis of the optimal control with obstacle problems is [MT13]. There the
obstacle problem is stationary and no regularization is used.

I would like to express my deepest gratitude to the following people. The list is non-exhaustive
and not sorted by importance. For repeated programming advice I thank Lukas Failer and
Dominik Meidner. For feedback regarding the thesis I would like to thank Sebastian Engel.
For essential cooperation with Lucas Bonifacius I will be eternally thankful. For endless
patience and his deep pool of knowledge I would like to thank Constantin Christof. For
sacrificing their time and reviewing my work I would like to thank Thomas Apel and Christian
Meyer. Last, but certainly not least, I would like to thank my supervisor Boris Vexler for
always lending support and giving the freedom to follow ideas on my own terms.

Lastly, we give a short overview of the chapters to follow. Each chapter and some sections
start with the collection of the standing assumptions of the chapter or section and a brief
overview over related research.

Chapter 1: Definitions and Notation

This chapter is concerned with laying the foundation by restating well-known results, in-
troducing notation and proving smaller lemmata. We require basics from measure theory,
Sobolev spaces, Bochner spaces and interpolation space theory. All those topics are in-
terlinked, but the measure theory becomes especially important in the formulation of the
optimality system in Chapter 3. The interpolation space theory is vital to properly define
our problems and then again appears in the finite element error estimates in Chapter 4.

Chapter 2: Obstacle Problems and their Regularization via Semilinear PDEs

Here, we introduce the considered obstacle problem in detail. We start with a short comment
on the abstract framework and then give a more concrete problem formulation. We then
introduce a family of semilinear equations, where we replace the obstacle constraint with
a penalty term. We prove various regularity results, depending on the smoothness of the
domain, and show, in particular, that those regularities do not depend on the penalty term.
These proofs will rely on the fact that the penalty term satisfies a monotonicity condition,
but other than that one can choose it relatively freely.

This independence from the penalty term allows us to easily prove existence and regularity
of solutions to the specified obstacle problem by taking the limit. Convergence rates cannot
be proven in general, but, by adapting techniques from [Noc88] from the elliptic setting to
the parabolic setting, we are able to show L∞-convergence rates for the error between the
solutions to the regularized obstacle problem and the original, unregularized problem. The
rate heavily depends on the structure of the regularization parameter.

Chapter 3: Optimal Control Problems and their Regularizations

In this chapter we introduce our optimal control problem, which has the form of (OC). The
quantities are be specified and made precise.
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We once again use regularization techniques. We consider the semilinear equations from
the previous chapter and use them as constraints in (OC) instead of an obstacle problem.
Additionally we modify the cost functionals slightly so that they include information about
a chosen solution of the unregularized problem. The regularized control problem is smooth
enough to use differentiability to obtain necessary first order optimality conditions. Again,
one can bound important terms, this time in the optimality conditions, independently of
the penalization term, and then take the limit in appropriate norms. By modifying the cost
functionals as mentioned above the quantities obtained by taking the limit carry information
about this chosen solution and characterize it. One obtains a so-called stationarity system.
We also explain why standard approaches, like KKT-conditions, are not best suited for this
class of problems. We derive some properties on the multipliers of the resulting system
which is important in the discussion of second order sufficient conditions. It is also useful in
showing the equivalence of the original problem to a state constraint problem, which we do
for a special case.

After that we discuss sufficient optimality conditions for the original problem, which we
mentioned earlier, and a regularized variant of it. Lastly, we give a short outlook on control
problems without control constraints.

Chapter 4: Discretization and Numerical Analysis for Regularized Obstacle
Problems

This chapter is, in our eyes, the most important. We start by an in-depth discussion of
the discretization in the spatial variable via piecewise linear finite elements. We prove, in
particular, the L∞-stability of the Ritz projection and an L∞-norm resolvent estimate for
finite element operators. Then we introduce a discretization in the time variable by the means
of piecewise constant elements.

We then can finally discretize the regularized obstacle problem from Chapter 2. The numerical
analysis is heavily inspired by the elliptic ideas from [Noc88]. We already gave the relevant
details in the discussion of our main results.

Chapter 5: Numerical Analysis of Discretized, Regularized Optimal Control
Problems

This chapter is now a culmination of the previous two chapters: we regularize and discretize
the optimal control problem by discretizing the state. We first leave the control untouched.
We analyse the global solutions to those semi-discrete problems with respect to convergence
and convergence rates. The solutions to the regularized, discretized problem do converge to
solutions of the original problem. The same, however, cannot be said for the multipliers of
the optimality systems. Convergence rates for control and state are proven by using a local
quadratic growth condition.

To discuss the discretization of the controls we will first see that, under common assumptions
on the cost functional and the admissible set, the controls for the semi-discrete problem are
automatically piecewise constant. However, the discretization in the spatial variable is not
automatically carried over.

We discretize the control piecewise linearly in space separately and repeat the discussion
from the semi-discrete case and lean on it to prove a convergence rate of O(γ 1

2α + k
1
2 + h)

for the L2-norms of the controls and states, up to logarithmic factors, with the α once again
depending on the regularization term.

Chapter 6: Solution Algorithms for Discretized, Regularized Obstacle Problems
and Optimal Control Problems

9
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In the algorithmic chapter we only quickly discuss ways and challenges in solving the reg-
ularized, discretized obstacle problem from Chapter 4 and the regularized, discretized opti-
mization problems from Chapter 5. We prove here that the solution operator tending to the
regularized obstacle problem is in fact two times differentiable, which is important for the
application of Newton’s method.

We use Newton’s method to solve the semilinear equations. To solve the optimal control prob-
lem we use a pathfollowing strategy combined with a trust region method, which globalizes
a semi-smooth Newton method.

Chapter 7: Numerical Examples

In this section we first show results that confirm that the estimates for the combined regu-
larization/discretization error derived in Chapter 5 are sharp. We also observe the aforemen-
tioned decoupling of the regularization and discretization error.

We then construct a specific example to analyse the rate obtained for the regularized, dis-
cretized optimal control problem from Chapter 5. We will see that the error in the regular-
ization parameter is often the dominant one, which makes the experimental error analysis in
time and space difficult.

Chapter 8: Appendix

The appendix contains multiple auxiliary results that do either disturb the flow of the main
thesis or are used at so many different points throughout the thesis that they do not belong
to any specific chapter. For example, the existence results for non-linear PDEs together with
regularity estimates, which include tracked constants, are found in Section 8.4.

We also find the aforementioned work with Lucas Bonifacius in the appendix.

Lastly, we provide a short index of symbols for the reader, which contains the most important
variables and abbreviations.
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1 Definitions and Notation

1.1 Measure Theory

We require a few tools from measure theory. We take the following definitions from [Rud74,
Sections 6.1, 6.18] restricted to the real case. The definitions also apply to complex valued
measures, which we do not need.

Definition 1.1 Let Ω ⊂ RN be a set and B(Ω) its Borel σ-algebra. Then M(Ω) denotes the
space of all real valued, regular Borel measures.

We define the measure of total variation |µ| for a µ ∈M(Ω) as

|µ| : B(Ω)→ R,

A 7→ sup
{ ∞∑
k=1
|µ(Ak)| : Ak ∈ B(Ω),

∞⋃
k=1

Ak = A,Ak are pairwise disjoint
}
.

Together with the norm

|| · ||M(Ω) : M(Ω,RN )→ R≥0,

µ 7→ |µ|(Ω)

M(Ω) is a Banach space; see [AFP00, Remark 1.7].

Remark 1.2 Let Ω ⊂ RN be a set. Considering the space of infinitely differentiable functions
C∞c (Ω) with compact support in Ω together with the sup norm

||v||L∞(Ω) = sup
x∈Ω
|v(x)| for v ∈ C∞c (Ω),

we define C0(Ω) as the closure of C∞c (Ω) under this norm. Then [AFP00, Theorem 1.54] and
[ABM14, beginning of Chapter 10.1] hold true:

M(Ω) ' C0(Ω)∗.

Note that for compact Ω we have C0(Ω) = C(Ω̄).

Thus we have for a µ ∈M(Ω)

||µ||M(Ω) = sup
{∫

Ω
v(x) dµ(x), v ∈ C0(Ω), ||v||L∞(Ω) ≤ 1

}
.

The following definition can be found in [AFP00, Definition 1.64].

Definition 1.3 Let Ω ⊂ RN . For a µ ∈M(Ω), µ ≥ 0 we define the support as

suppµ := {x ∈ Ω : x ∈ A,A open in Ω =⇒ µ(A) > 0}.

This is just the set of all points, whose open neighborhoods are never zero sets. For a general
µ ∈M(Ω) we define the support

suppµ := supp |µ|

11



1 Definitions and Notation

The next definition can be found in [AFP00, Definition 1.65 and the following remark].

Definition 1.4 Let Ω ⊂ RN . For a µ ∈M(Ω) and A ∈ B(Ω) we define the restriction µ|A is
the measure in M(A) such that µ|A(B) = µ(A ∩B) for each B ∈ B(A).

1.2 Domains

Definition 1.5 We frequently use Ck,α-domains, which are defined along the lines of [Trö09,
Section 2.2.2] or [Gri11, Definition 1.2.1.1]. The idea is that the boundary of Ω can be locally
written as the graph of a Ck,α-function.

Let α ∈ [0, 1] and k ∈ N0. We say that a bounded domain Ω ⊂ RN , with N ∈ N, is a
Ck,α-domain if the following holds true: there are constants a, b > 0, finitely many linear,
local coordinate transformations S1, . . . , SM : RN → RN obtained by rotation and shifts and
Ck,α-functions fi : [−a, a]N−1 → R such that with the abbreviation x = S−1

i y we have

(y, yN ) ∈ Ω ∩ Si((−a, a)N−1 × (−b, b)) ⇐⇒ fi(x1,...,N−1) < xN ,

(y, yN ) ∈ ∂Ω ∩ Si((−a, a)N−1 × (−b, b)) ⇐⇒ fi(x1,...,N−1) = xN .

Of course ∂Ω shall be covered by those transformation, i.e.

∂Ω ⊂
M⋃
i=1

Si((−a, a)N−1 × (−b, b)).

The whole affaire is illustrated in Figure 1.1. For α = 0 we understand C0((−a, a)N−1) =
C([−a, a]N−1). This is not in conflict with the common notation used for uniformly continuous
maps, since every continuous map on compact sets is uniformly continuous anyway. We also
write Ck for Ck,0-domains.

We call C0,1-domains Lipschitz domains.

Remark 1.6 In the light of the remarks at the beginning of [GT77, Section 6.2] or the remark
after [Gri11, Definition 1.2.1.2] this definition implies that for each x0 ∈ ∂Ω there is a open
ball B(x0) and an open set D together with a bijective map Φ ∈ Ck,α(B(x0), D) such that

• Φ(B(x0) ∩ Ω) ⊂ RN−1 × R>0,

• Φ(B(x0) ∩ ∂Ω) ⊂ RN−1 × {0},

• Φ−1 ∈ Ck,α(D,B(x0)).

In [GT77, Section 6.2] and after [Gri11, Definition 1.2.1.2] it is remarked that, if k ≥ 1,
Definition 1.5 is equivalent to the formulations given in this remark.

Definition 1.7 Let Ω ⊂ RN and let Γ be a relatively open subset of ∂Ω. The set Ω ∪ Γ is
called Gröger regular in the sense of [Grö89] if it is bounded and for any x ∈ ∂Ω there exist
an open neighbourhood Ux of x and a bi-Lipschitz mapping φx : Ux → φx(Ux) such that
φx(Ux ∩ Ω) is one of the following three sets: B1(0) ∩ RN−1 × R<0, B1(0) ∩ RN−1 × R≤0 or{
x ∈ B1(0) ∩ RN−1 × R≤0 : xN < 0 or x1 > 0

}
.

The interpretation is given in [Grö89, Remark 1] and restated in our notation. Gröger regu-
larity means, roughly speaking, that Γ and ∂Ω\Γ are separated by a Lipschitzian hypersurface
of ∂Ω. It is straightforward to see that if Ω is a Lipschitz domain Ω̄ is Gröger regular.

12



1.3 Sobolev Spaces

Figure 1.1: Transformation of ∂Ω onto function graphs.

Definition 1.8 Let Ω ⊂ RN be a domain. It is said to satisfy the cone condition, in the
sense of [Tri78, Definition 4.2.3] or [Agm65, Definition 2.1], if there exists a finite, open cover
U1, . . . , UM of ∂Ω such that for each Ui there exists a cone Ci of finite length, centered at the
origin such that:

(Ui ∩ Ω) + Ci ⊂ Ω.

The cone condition is useful for the proofs of some embedding and extension theorems, see
for example [Tri78, Remark 4.2.4.6].

In [Ada75, Remark 4.7] we find the following statement:

Theorem 1.9 Lipschitz domains satisfy the cone condition.

1.3 Sobolev Spaces

Throughout Section 1.3 let Ω ⊂ RN be a domain for N ∈ N. Unless noted otherwise all the
given vector spaces are considered as real vector spaces. If not specified all definitions and
results for real vector spaces are found in [Trö09, Sections 2.1-2.4]. The extensions to the
complex cases are usually straightforward, decomposing everything into real and imaginary
parts. It is necessary to study the complex valued case as we require them in the analysis of
operator resolvents later in Section 4.1.6.

Definition 1.10 Whenever we refer to the measurability of a function f : Ω→ R we consider
it as Lebesgue-measurability in the sense of [Rud74, Theorem 2.20, Definition 3.6]. Loosely
speaking the Lebesgue-measurable sets are given by the σ-algebra obtained by completing
the Borel-σ-algebra with respect to the Lebesgue-measure, cf. [Rud74, Theorem 1.36]. Also,
whenever we refer to a property to hold “almost everywhere” (a.e.) in a domain or set, we
mean that the property holds everywhere, except for a subset of Lebesgue-measure 0.

Let f : Ω→ R be measurable. Let p ∈ [1,∞]. We define

‖f‖Lp(Ω) :=
(∫

Ω
|f |p dx

) 1
p

for p <∞ and ‖f‖L∞(Ω) := esssupx∈Ω |f(x)|

with possibly infinite values. We define the Lebesgue space Lp(Ω) as the vector space of
equivalence classes of measurable functions f : Ω → R such that ‖f‖Lp(Ω) < ∞. Here, two

13



1 Definitions and Notation

functions are considered equivalent if they differ on a set of Lebesgue measure 0. As is it
customary, however, we will refer to elements f ∈ Lp(Ω) as functions, essentially identifying
the equivalence class with one of its representatives.

For complex, measurable functions we define the analogous spaces Lp(Ω,C). For f ∈ Lp(Ω,C)
we define ‖f‖Lp(Ω,C) := ‖|f |‖Lp(Ω).

For any p ∈ [1,∞] the spaces Lp(Ω) and Lp(Ω,C) are Banach spaces. The spaces L2(Ω) and
L2(Ω,C) are Hilbert spaces with the inner products

(f, g)L2(Ω) =
∫

Ω
fg dx, respectively, (f, g)L2(Ω) =

∫
Ω
fḡ dx.

Lemma 1.11 We have the isomorphy

Lp(Ω,C) ' Lp(Ω) + iLp(Ω).

Where the direct sum uses an arbitrary finite dimensional norm | · |s on R2 ' C.

Proof. By [Rud74, Paragraph 1.9] f : Ω→ C is measurable if and only if its real part, Re(f),
and imaginary part, Im(f), are measurable. On the one hand we have

‖(Re(f), Im(f))‖Lp(Ω)+iLp(Ω) =
∣∣∣(‖Re(f)‖Lp(Ω), ‖Im(f)‖Lp(Ω)

)∣∣∣
s

≤Cs,1
(
|‖Re(f)‖Lp(Ω) + ‖Im(f)‖Lp(Ω)

)
≤ 2Cs,1‖f‖Lp(Ω,C).

Here Cs,1 is an equivalency constant of | · |s on R2 and the 1-norm. On the other hand

‖f‖Lp(Ω,C) = ‖|f |‖Lp(Ω) ≤ ‖Re(f)‖Lp(Ω) + ‖Im(f)‖Lp(Ω) ≤ C1,s‖(Re(f), Im(f))‖Lp(Ω)+iLp(Ω).

Here C1,s is another equivalency constant of the 1-norm and | · |s on R2.

Definition 1.12 Let p ∈ [1,∞] and v ∈ Lp(Ω). With ∂xiv ∈ Lp(Ω) we denote the partial
weak derivative of v in the variable xi if

−
∫

Ω
∂xivϕ dx =

∫
Ω
v∂xiϕdx ∀ϕ ∈ C∞0 (Ω).

Schwarz’ lemma holds for weak derivatives, i.e. if ∂xi∂xjv exists it is equal to ∂xj∂xiv.

If the weak derivatives of appropriate order exist we write

∇v =

∂x1v
...

∂xN v

 , ∇2v =

∂x1x1v . . . ∂x1xN v
...

...
∂xNx1v . . . ∂xNxN v

 .

For k ∈ N we denote by W k,p(Ω) the space of all functions in Lp(Ω) such that all the weak
derivatives exist up to order k and lie in Lp(Ω). We equip them with the natural norm

‖v‖Wk,p(Ω) :=

 ∑
α1+···+αN≤k,

αi∈N0

‖∂α1
x1 · · · ∂

αN
xN
v‖pLp(Ω)


1
p

or for p =∞

‖v‖Wk,∞(Ω) := sup
α1+···+αN≤k,

αi∈N0

‖∂α1
x1 · · · ∂

αN
xN
v‖L∞(Ω).
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1.3 Sobolev Spaces

We can make analogous constructions for complex valued functions. By C∞c (Ω,C) we denote
the infinitely differentiable functions with values in C and compact support. This is not the
space of holomorphic functions, but functions that are smooth from RN to R2 ' C. The
following properties for those spaces, e.g. them being Banach spaces, follow by Lemma 1.11
and the decomposition into real and imaginary parts.

Let v ∈ Lp(Ω,C). The i-th derivative of v is defined via

−
∫

Ω
∂xivϕ̄ dx =

∫
Ω
v∂xiϕ̄ dx ∀ϕ ∈ C∞0 (Ω,C).

Therefore we can define W k,p(Ω,C) and ‖·‖Wk,p(Ω,C) in analogy to the real case.

Lemma 1.13 For any p ∈ [1,∞] and k ∈ N0 the spaces W k,p(Ω) and W k,p(Ω,C) are Banach
spaces. For p = 2 we even have a Hilbert space, which we denote by Hk(Ω) with the inner
product

(y, v)Hk(Ω) =
∑

α1+···+αN≤k,
αi∈N0

(
∂α1
x1 · · · ∂

αN
xN
y, ∂α1

x1 · · · ∂
αN
xN
v
)
L2(Ω)

.

The analogue can be done for the complex case. We denote W k,2(Ω,C) by Hk(Ω,C). It is
equipped with the inner product

(y, v)Hk(Ω,C) =
∑

α1+···+αN≤k,
αi∈N0

(
∂α1
x1 · · · ∂

αN
xN
y, ∂α1

x1 · · · ∂
αN
xN
v̄
)
L2(Ω,C)

.

Lemma 1.14 Let k ∈ N0 and p ∈ [1,∞]. We have

W k,p(Ω,C) 'W k,p(Ω) + iW k,p(Ω).

Here we use an arbitrary norm | · |s on R2, just as in 1.11. A weak derivative ∂xlv, with
l ∈ {1, 2, . . . , N}, of a v ∈W k,p(Ω,C) is given by ∂xlv = ∂xlRe(v) + i∂xlIm(v). Higher order
derivatives decompose accordingly.

Definition 1.15 Let k ∈ N, p ∈ [1,∞). By W k,p
0 (Ω) we denote the closure of C∞0 (Ω) in

W k,p(Ω). In particular we write Hk
0 (Ω) for W k,2

0 (Ω).

The second half of the following result is found in [Gri11, Corollary 1.5.1.6]. The complex
valued case is again treated by decomposition.

Lemma 1.16 Assume Ω is a bounded Lipschitz domain and p ∈ [1,∞]. Then there exists a
linear and continous map tr : W 1,p(Ω)→ Lp(∂Ω), which satisfies for any y ∈ C(Ω̄)∩W 1,p(Ω)

tr y = y|∂Ω a.e. on ∂Ω.

A quite well known, but seldom proven result is the following:

Lemma 1.17 For a function f ∈ L∞(Q) with Q ⊂ RN+1 with N ∈ N0 and |Q| <∞ we have

lim
p→∞
‖f‖Lp(Q) = ‖f‖L∞(Q).

15



1 Definitions and Notation

Proof. Let p ∈ (1,∞), then

‖f‖Lp(Q) ≤ |Q|
1
p ‖f‖L∞(Q).

This upper bound converges to ‖f‖L∞(Q) for p→∞. For δ > 0 and a fixed representative of
f we define

Sδ :=
{

(t, x) ∈ Q : |f(t, x)| ≥ ‖f‖L∞(Q) − δ
}
.

Then we have

‖f‖Lp(Q) ≥
(∫

Sδ

|f(t, x)|p d(t, x)
) 1
p

≥ |Sδ|
1
p

(
‖f‖L∞(Q) − δ

)
.

So we find for any δ > 0:

‖f‖L∞(Q) − δ ≤ lim inf
p→∞

‖f‖Lp(Q) ≤ lim sup
p→∞

‖f‖Lp(Q) ≤ ‖f‖L∞(Q).

Because δ > 0 and the representative of f were chosen arbitrarily this implies

lim inf
p→∞

‖f‖Lp(Q) = lim sup
p→∞

‖f‖Lp(Q) = ‖f‖L∞(Q).

1.4 Bochner Spaces

Definition 1.18 Let p ∈ [1,∞] and X be a Banach space. By Lp(I,X) we denote the
equivalence classes of functions y : I → X such that y is Bochner measurable in the sense of
[Emm04, Definition 7.1.8] and

‖y‖Lp(I,X) :=
(∫

I
‖y(t)‖pX dt

) 1
p

<∞

or for p =∞

‖y‖Lp(I,X) := sup
t∈I
‖y(t)‖X <∞.

Here two functions are equivalent if they coincide almost everywhere in the sense of Lebesgue
measurability. As before we identify an equivalence class with its representative for conve-
nience.

For the closed interval Ī = [a, b] we define C(Ī , X) as the space of continuous functions
y : Ī → X. It is equipped with the norm ‖·‖L∞(I,X). For α ∈ (0, 1] we define Cα(I,X) as the
space of Hölder-continuous functions with the norm

|y|Cα(I,X) := sup
t,s∈I
t6=s

‖y(t)− y(s)‖X
|t− s|α

, ‖y‖Cα(I,X) := |y|Cα(I,X) + ‖y‖L∞(I,X)

Lastly, we introduce the following duality pairing for y ∈ L2(I,X) and v ∈ L2(I,X∗):

(y, v)L2(I,X,X∗) :=
∫
I
(y(t), v(t))X,X∗ dt

or with the ordner of X and X∗ reversed.

Depending on the situation we will sometimes drop the arguments from the integrands.
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1.4 Bochner Spaces

Lemma 1.19 For any p ∈ [1,∞], I a real, bounded interval and any real Banach space X
we have that Lp(I,X) is a Banach space. C(Ī , X) is also a Banach space. If X is a Hilbert
space and p = 2 we can introduce an inner product. Let y, v ∈ L2(I,X), then the following
is an inner product

(y, v)L2(I,X) :=
∫
I

(y(t), v(t))X dt.

Proof. The first two statements are just [Emm04, Satz 7.1.23i)] and [Emm04, Satz 7.1.1].
The last statement can be found in [Emm04, Satz 7.1.23vii)].

Definition 1.20 For y ∈ Lp(I,X) with p, I and X as in Definition 1.18 we define ∂ty ∈
Lp(I,X), if it exists, by∫

I
∂ty(t)ϕ(t) dt = −

∫
I
y(t)∂tϕ(t) dt ∀ϕ ∈ C∞c (I).

We thus define for k ∈ N0

W k,p(I,X) :=
{
y ∈ Lp(I,X) : ∂kt y ∈ Lp(I,X)

}
.

We call V ⊂ H ⊂ V ∗ a Gelfand triple if H,V are Hilbert spaces and all embeddings are
continuous and dense. V ∗ is purposefully not identified with V . According to [Wlo92,
Theorem 17.1 and the short comment in Definition 17.1] it is sufficient for the first embedding
to be continuous and dense as this implies the same for the second embedding. Given a
Gelfand triple we define

W (I) :=
{
y ∈ L2(I, V ) : ∂ty ∈ L2(I, V ∗)

}
.

It is a Hilbert space equipped with the inner product

(f, g)W (I) := (f, g)L2(I,V ) + (∂tf, ∂tg)L2(I,V ∗)

according to [Wlo92, Theorems 25.4, 25.5].

The following is a collection of well-known results and can be found in [Emm04, Satz 8.1.9
and Korollar 8.1.10].
Lemma 1.21 Assume we have a Gelfand triple of Hilbert spaces H,V . Let I = (a, b) ⊂ R.
Then we have the continuous embedding W (I) ↪→ C(Ī , H).

For any y, v ∈W (I) we have∫
I

(∂ty(t), v(t))V ∗,V dt = (y(T ), v(T ))H − (y(0), v(0))H −
∫
I

(∂tv(t), y(t))V ∗,V dt.

This entails for y ∈W (I)∫
I

(∂ty(t), y(t))V ∗,V dt = 1
2‖y(T )‖2H −

1
2‖y(0)‖2H .

Definition 1.22 Let p ∈ [1,∞], Ω ⊂ RN a bounded domain and I := (a, b) ⊂ R. We
abbreviate Q := I × Ω and define

W 1,2
p (Q) :=

{
y ∈ Lp(I,W 2,p(Ω)) : ∂ty ∈ Lp(I, Lp(Ω))

}
.

Equipped with the norm

‖y‖
W 1,2
p (Q) := ‖y‖Lp(I,W 2,p(Ω)) + ‖y‖W 1,p(I,Lp(Ω))

it is a Banach space. This can be proven completely analogously to the case of real valued
Sobolev spaces, see for example [Eva98, proof of Theorem 5.2.3.2].
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1 Definitions and Notation

The following result can be found in [Emm04, Satz 7.1.23].

Lemma 1.23 Let p ∈ [1,∞), I := (a, b) ⊂ R and X a reflexive Banach space. Further let
q ∈ (1,∞] such that 1

p + 1
q = 1, then

Lp(I,X)∗ ' Lq(I,X∗).

This entails that Lp(I,X) is reflexive.

The next result is just a repeated application of [Emm04, Satz 7.1.24].

Lemma 1.24 For p ∈ (1,∞) we have

Lp(I, Lp(Ω)) ' Lp(Q).

The following result is usually refered to as folklore, but the author was not able to find a
source and thus provides a proof.

Lemma 1.25 For p ∈ (1,∞) the space W 1,2
p (Q) is reflexive.

Proof. We have

W 1,2
p (Q) = Lp(I,W 2,p(Ω)) ∩W 1,p(I, Lp(Ω)).

We first show that W 2,p(Ω) is reflexive, then we immediately get by the previous lemma that
Lp(I,W 2,p(Ω)) is reflexive.

We define the map

T : W 2,p(Ω)→ Lp(Ω)× Lp(Ω)N × Lp(Ω)N×N

y 7→ (y,∇y,∇2y).

Choosing the natural norm for the space on the right hand side, i.e.

‖(a, b, c)‖Lp(Ω)×Lp(Ω)N×Lp(Ω)N×N =
(
‖a‖pLp(Ω) + ‖b‖p

Lp(Ω)N + ‖c‖p
Lp(Ω)N×N

) 1
p

shows that T is an isometry. The image of T is thus a closed subspace of Lp(Ω)×Lp(Ω)N ×
Lp(Ω)N×N , which is just the Cartesian product of 1 +N +N2 copies of the reflexive Lp(Ω)
and thus reflexive. Closed subspaces of reflexive spaces are reflexive, see for example [Alt99,
Theorem 6.8].

The space W 1,p(I, Lp(Ω)) is also a Banach space and can be treated similarly with the map

T : W 1,p(I, Lp(Ω))→ Lp(Q)× Lp(Q)
y 7→ (y, ∂ty) .

Arguing as before and using the previous theorem we now see that W 1,p(I, Lp(Ω)) is also
reflexive.

Now we consider the map:

T : W 1,2
p (Q)→ Lp(I,W 2,p(Ω))×W 1,p(I, Lp(Ω)),

y 7→ (y, y).

So the image of T is just the diagonal of Lp(I,W 2,p(Ω)) ×W 1,p(I, Lp(Ω)). The diagonal of
a product of two Banach spaces is closed, thus the image of T is a closed set of a reflexive
space and [Alt99, Theorem 6.8] again delivers the desired result.
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Lemma 1.26 Assume Ω is a bounded Lipschitz domain. Then for p ∈ (max(1, N − 1),∞)
the space W 1,2

p (Q) embedds compactly into Lp(I,W 1,p(Ω)).

Proof. By Theorem 1.9 Ω satisfies the cone condition. This allows us to see that by [Ada75,
Theorem 6.2] the space W 2,p(Ω) embedds compactly in W 1,p(Ω). Now the claim follows by
[Sim85, Corollary 2].

It is possible to generalize the result of the density of smooth functions in Lebesgue spaces
to Bochner spaces, see for example [MS17, Lemma A.1].

Theorem 1.27 Let I := (a, b) ⊂ R. C∞c (I, V ) is dense in Lp(I, V ) for any p ∈ [1,∞) and
any separable Banach space V .

We can now improve this result by explicitly constructing the sequences of smooth functions
approximating non-smooth functions.

Corollary 1.28 Let I := (a, b) ⊂ R. Let (ηε)ε>0 ⊂ C∞c (I) be a family of functions satisfying
for any ε > 0

supp(ηε) ⊂ [−ε, ε], ηε ≥ 0,
∫ ∞
−∞

ηε(t) dt = 1.

Let V be a separable Banach space, p ∈ [1,∞) and f ∈ Lp(I, V ). Then

fε := f ∗ ηε =
∫
R
f(s)ηε(· − s) ds

converges to f in Lp(I, V ). We implicitly extend f by 0 on R \ I.

Proof. Let δ > 0. By Theorem 1.27 there exists a g ∈ C∞c (I, V ) such that

‖f − g‖Lp(I,V ) ≤ δ.

Then we have

‖f − fε‖Lp(I,V ) ≤ ‖f − g‖Lp(I,V ) + ‖g − gε‖Lp(I,V ) + ‖gε − fε‖Lp(I,V ),

≤ δ + ‖g − gε‖Lp(I,V ) + ‖gε − fε‖Lp(I,V ).

We have gε− fε = (g− f)ε. We abbreviate h = g− f for the moment. For any t ∈ R we have
for q = p

p−1 , with the appropriate changes for p = 1 in the following,

‖hε(t)‖V ≤
∫
R
‖h(s)‖V ηε(t− s) ds ≤

(∫
R
‖h(s)‖pV ηε(t− s) ds

) 1
p
(∫

R
ηε(t− s) ds

) 1
q

.

By assumption the second factor is equal to 1 and thus∫
R
‖hε(t)‖pV dt ≤

∫
R

∫
R
‖h(s)‖pV ηε(t− s) ds dt =

∫
R
‖h(s)‖pV

∫
R
ηε(t− s) dt ds =

∫
R
‖h(t)‖pV dt.

Thus

‖gε − fε‖Lp(I,V ) ≤ ‖g − f‖Lp(I,V ) ≤ δ.

This yields

‖f − fε‖Lp(I,V ) ≤ 2δ + ‖g − gε‖Lp(I,V ).
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For any t ∈ R we have

‖g(t)− gε(t)‖V =
∥∥∥∥∫

R
(g(s)− g(t))ηε(t− s) ds

∥∥∥∥
V
≤ sup

s∈(t−ε,t+ε)
‖g(s)− g(t)‖V .

Since the support of g is compact, g is uniformly continuous and there exists an ε0 > 0,
independent of t, such that

sup
s∈(t−ε,t+ε)

‖g(s)− g(t)‖V ≤ δ

holds for any ε < ε0. This implies for ε < ε0

‖g − gε‖L∞(I,V ) ≤ δ

and thus

‖f − fε‖Lp(I,V ) ≤ 2δ + |I|
1
p δ.

As δ > 0 was arbitrary this concludes the proof.

Proposition 1.29 Let V be a separable Banach space and I := (a, b) ⊂ R. Let p ∈ [1,∞), k ∈
N0. Then for any f ∈W k,p(I, V ) and any Î ⊂⊂ I we have for fε from Corollary 1.28

‖fε − f‖Wk,p(Î,V )
ε→0−−→ 0.

We also have fε ∈ C∞(Î , V ).

Proof. Let (ηε)ε>0 be as in Corollary 1.28. Let f ∈ W 1,p(I,X). We may assume ε to be so
small that Î + [−ε, ε] ⊂ I. This implies that ηε(T − s) = ηε(−s) = 0 for any s ∈ Î.

We show that fε := f ∗ηε lies in W 1,p(Î , X) with ∂tfε = f ∗η′ε = (∂tf)ε. Let ϕ ∈ C∞c (Î), then∫
I
fε(t)ϕ′(t) dt =

∫
R
f(s)

∫
I
ηε(t− s)ϕ′(t) dt ds

= −
∫
R
f(s)

∫
I
η′ε(t− s)ϕ(t) dt ds

= −
∫
I

∫
R
f(s)η′ε(t− s) dsϕ(t) dt

= −
∫
I

∫
R
∂tf(t)ηε(t− s) dsϕ(t) dt.

(1.1)

Iterating this for k > 1 yields the desired regularity of fε and Corollary 1.28 yields the desired
convergence.

Note that the calculations in (1.1) also show that fε lies indeed in C∞(Î , V ) with the deriva-
tives f (k)

ε = f ∗ η(k)
ε for k ∈ N.

Theorem 1.30 Let V be a separable Banach space and I := (a, b) ⊂ R. Let p ∈ [1,∞), k ∈
N0. Then for any f ∈ W k,p(I, V ) there exists a sequence (fε)ε>0 ⊂ C∞(Ī , V ) ⊂ C∞(I, V ) ∩
W k,p(I, V ) such that

‖fε − f‖Wk,p(I,V )
ε→0−−→ 0.
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1.5 Interpolation Spaces

Proof. Let (ρj)j∈N be a smooth partition of unity on I, cf. [Wlo92, Theorem 1.2]. We define
the compact sets Îj := supp(ρj). Let ε > 0, by Proposition 1.29 there exists for each Îj a
function f jεj ∈ C

∞(Îj , V ) such that

‖ρjf − f jεj‖Wk,p(Î,V ) ≤ 2−jε.

We define fε := ∑∞
j=1 f

j
εj ∈ C

∞(I, V ). Note that for each t ∈ I only finitely many summands
of this series are unequal from 0. Then

‖fε − f‖Wk,p(I,V ) =

∥∥∥∥∥∥
∞∑
j=1

(f jεj − f)

∥∥∥∥∥∥
Wk,p(I,V )

≤
∞∑
j=1
‖f jεj − ρjf‖Wk,p(I,V ) ≤ ε.

Lemma 1.31 Let Y,X separable Banach spaces such that Y is dense in X. Let I := (a, b) ⊂
R and p ∈ [1,∞). Then C∞(Ī , Y ) is dense in W 1,p(I,X) ∩ Lp(I, Y ).

Proof. We make the same construction as in the proof of Theorem 1.30. Let (ρj)j∈N be a
smooth partition of unity on I, see again [Wlo92, Theorem 1.2]. We define the compact
sets Îj := supp(ρj) ⊂ I. Let ε > 0. By Proposition 1.29 for each Îj there exists a function
f jεj ∈ C

∞(Îj , Y ) ⊂ C∞(Îj , X) such that

‖ρjf − f jεj‖W 1,p(Î,X) + ‖ρjf − f jεj‖Lp(Î,Y ) ≤ 2−jε.

Now the rest follows as in the proof of Proposition 1.29.

Remark 1.32 A special case for the situation in Lemma 1.31 is Y = C∞(Ω̄) and X = Lp(Ω).
Here Ω ⊂ RN is a bounded domain, k ∈ N, I := (a, b) ⊂ R and p ∈ [1,∞). Lemma 1.31 then
states that

C∞(Ī , C∞(Ω̄))
‖·‖

W
1,2
p (Q) = W 1,2

p (Q).

1.5 Interpolation Spaces

We shortly introduce interpolation spaces, required to consider appropriate initial conditions
for our parabolic equations and inequalities. This section wholly follows [Ama95, Chapter
I.2]. We later use deeper results for interpolation spaces in Section 8.6 to Section 8.8 for the
numerical analysis and interpolation error estimates.

Definition 1.33 A pair (E0, E1) of real Banach spaces is called an interpolation couple, if
there exists a locally compact space X such that both embed continuously into X.

E is called an intermediate space with respect to the interpolation couple (E0, E1) if we have
the continuous embeddings

E0 ∩ E1 ↪→ E ↪→ E0 + E1.

Let x ∈ E0 + E1, t > 0 and define

K(t, x) = K(t, x, E0, E1) = inf{‖x0‖E0 + t‖x1‖E1 : x = x0 + x1}.
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1 Definitions and Notation

Let θ ∈ (0, 1), q ∈ [1,∞]. Then we define the interpolation space

(E0, E1)θ,q := {x0 ∈ E0 + E1 : ‖x‖θ,q <∞}

equipped with the norm

‖x‖θ,q = ‖t−θK(t, x)‖Lq∗(R>0).

Here Lq∗(R>0) is the vector space of functions f : R>0 → R such that

‖f‖Lq∗(R>0) =
(∫ ∞

0
f(s)q ds

s

) 1
q

<∞.

Theorem 1.34 Let Ω ⊂ RN be a bounded domain satisfying the cone condition. For r, p ∈
[1,∞) with 1

r + N
2p ∈ (0, 1) one has the compact embedding:

W 1,r(I, Lp(Ω)) ∩ Lr(I,W 2,p(Ω)) ↪→ C
κ
2 ,κ(Q) := C

κ
2 (I, Cκ(Ω))

for any κ ∈ (0, 1− 1
r −

N
2p). In particular for any p ∈ (1 + N

2 ,∞) we have:

W 1,2
p (Q) ↪→ C

κ
2 ,κ(Q) compactly

for any κ ∈ (0, 1− 1
p(1 + N

2 )).

Proof. Let X,Y be function spaces, such that Y is densely embedded into X. By [Ama01,
Theorem 3] and a rescaling argument we have the continuous embedding

W 1,r(I,X) ∩ Lr(I, Y ) ↪→ Cκ
′(I, (X,Y )τ,1) (1.2)

for any κ′ ∈ (0, 1− 1/r −N/(2p)) and τ ∈ [N/(2p), 1− 1/r − κ′).

By [Tri78, Theorem 4.2.6] there exist norm preserving extension operators

S0 : Lp(Ω)→ Lp(RN ),
S2 : W 2,p(Ω)→W 2,p(RN ).

By [Tri78, Theorem 1.2.4] this implies that there exists a norm preserving extension operator

S :
(
Lp(Ω),W 2,p(Ω)

)
τ,1
→
(
Lp(RN ),W 2,p(RN )

)
τ,1
. (1.3)

Thus combining (1.2), (1.3) and chosingX = Lp(Ω) and Y = W 2,p(Ω) we have the continuous
embedding

W 1,r(I, Lp(Ω)) ∩ Lr(I,W 2,p(Ω)) ↪→ Cκ
′(I,

(
Lp(RN ),W 2,p(RN )

)
τ,1

).

By [BL76, Theorem 6.4.5] and [Tri78, Theorem 2.8.1c)] this implies

W 1,r(I, Lp(Ω)) ∩ Lr(I,W 2,p(Ω)) ↪→ Cκ
′(I,B2τ

p,1(RN )) ↪→ Cκ
′(I, C2τ−N

p (RN ))

↪→ Cκ
′(I, C2τ−N

p (Ω))

because τ ≥ N
2p by its earlier choice. B2τ

p,1(RN ) denotes a Besov space introduced in greater
detail in [BL76, Definition 6.2.2].
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1.5 Interpolation Spaces

We now let κ ∈ (0, 1− 1/r−N/(2p)). We then choose κ′ = κ
2 ∈ (0, 1

2(1− 1/r−N/(2p))) and
τ = 1

2(κ + N
p ). Clearly τ ≥ N/(2p) and also, τ = κ + N/(2p) − κ/2 < 1 − 1/r − κ/2. Thus

we can infer

W 1,r(I, Lp(Ω)) ∩ Lr(I,W 2,p(Ω)) ↪→ C
κ
2 (I, Cκ(Ω)).

These embeddings are compact by the following argument: Choose κ ∈ [0, 1 − 1
r −

N
2p) and

κ̃ ∈ (κ, 1 − 1
r −

N
2p). Because Hölder spaces embedd compactly in Hölder spaces of lower

exponent we have

W 1,r(I,W 2,p(Ω)) ↪→ C
κ̃
2 ,κ̃(Q) ⊂⊂ C

κ
2 ,κ(Q).

This concludes the main part of the proof. Choosing p = r ∈ (1 + N
2p ,∞) yields the special

case.
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2 Obstacle Problems and their Regularization
via Semilinear PDEs

2.1 Variational Inequalities in an Abstract Setting

In this section we consider parabolic variational inequalities in an abstract setting, see for
example [Bar84, Chapter 4]. In later sections we give a more concrete setting and numerical
analysis for that specific setting. We nevertheless quickly have a look at the abstract situation
to see the underlying structures and general ideas before we study the obstacle problem
specifically.

Definition 2.1 Let V,H, V ∗ be a Gelfand triple. With I = (0, T ) we denote the bounded
time interval for some end time T > 0.

We consider a linear, continuous, symmetric operator A : V → V ∗ that satisfies Gårding’s
inequality for some νH , νV > 0:

(Av, v)V ∗,V + νH‖v‖2H ≥ νV ‖v‖2V ∀v ∈ V.

We introduce the following bilinear forms:

aΩ : V × V 7→ R, (y, v) 7→ (Ay, v)V ∗,V ,

aI : L2(I, V )× L2(I, V )→ R, (y, v) 7→
∫
I
(Ay(t), v(t))V ∗,V dt.

(2.1)

For subsets of I we use the appropriate notation.

We also consider a convex, proper, lower semi-continuous function Φ : H → R̄ := R ∪ {∞}.
We assume that domV (Φ) is dense in domH(Φ). Note, Φ : V → R̄ is also convex and lower
semi-continuous with respect to the norm topology of V . We shall assume that there is a
function 0̂ ∈ domV (Φ). Note that we may not necessarily have 0̂ = 0.

We keep our problem formulation close to [Bar84, Section 4.1]. Given a y0 ∈ H and u ∈
L2(I, V ∗) we now look for a solution y ∈W (I) of

(∂ty(t) +Ay(t), v − y(t))V ∗,V + Φ(v)− Φ(y(t)) ≥ (u(t), v − y(t))V ∗,V
a.e. in I, ∀v ∈ V,

y(0) = y0.

(VIabs)

Using the subdifferential, cf. [BC11, Chapter 16], ∂Φ : H → P(H) of the convex map Φ this
is equivalent to writing{

∂ty(t) +Ay(t) + ∂Φ(y(t)) 3 u(t) a.e. in I,
y(0) = y0.

(2.2)

We call a solution to (VIabs) a strong solution.
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2 Obstacle Problems and their Regularization via Semilinear PDEs

Remark 2.2 We can also define weak solutions y ∈ C(Ī , H) ∩ L2(I, V ) by∫
I
(∂tv, v − y)V ∗,V + (Ay, v − y)V ∗,V + Φ(v)− Φ(y) dt+ 1

2‖v(0)− y0‖2H

≥
∫
I
(u, v − y)V ∗,V dt ∀v ∈W (I).

(2.3)

This concept of solution is obtained by integration by parts and for example used in [IK06].
We do not delve into this any further as it is clear from the structure of (2.3) that very little
regularity information on the state can be gained. Since the ultimate goal of this thesis is to
pursue numerical analysis, this approach is not fruitful for us.

We restate [Bar84, Theorem 4.1].

Theorem 2.3 Let y0 ∈ domH(Φ) and u ∈ L2(I,H). (VIabs) has a unique strong solution
y := y(y0, u) ∈ H1(I,H) ∩ L2(I, V ). It satisfies

‖y(y1
0, u

1)− y(y2
0, u

2)‖L2(I,V )∩C(Ī,H) ≤ C
(
‖u1 − u2‖L2(I,H) + ‖y1

0 − y2
0‖H

)
.

for y1
0, y

2
0 ∈ H, u1, u2 ∈ L2(I,H).

Remark 2.4 Now we can consider an abstract version of the obstacle problem, which we
make concrete in the following section. Let ∅ 6= K ⊂ H be a convex and closed set and
f : H → R be the continuous Gâteaux derivative of a convex functional F : H → R. We
define Φ := F + χK , where χK denotes the convex indicator functional of K, i.e. χK(v) = 0
if v ∈ K and χK(v) = ∞ is v 6∈ K. Φ has the desired properties because F is convex,
continuous and therefore proper and K is closed and not empty making χK convex, closed
and proper as well.

The variational inequality (VIabs) in the version of (2.2) is then equivalent to{
∂ty(t) +Ay(t) + f(y(t)) + ∂χK(y(t)) 3 u(t) a.e. in I,
y(0) = y0.

(2.4)

Here we used [BC11, Corollary 16.38] and the charaterization ∂F (y) = {f(y)}, which can be
found in [BC11, Proposition 17.26]. This is equivalent to{

(∂ty(t) +Ay(t) + f(y(t)), v − y(t))V ∗,V ≥ (u(t), v − y(t))V ∗,V a.e. in I, ∀v ∈ V ∩K,
y(0) = y0.

2.2 Obstacle Problems

It is possible, though, to derive strong statements about regularity for the obstacle problem
when not working in the abstract setting. For the numerical analysis this will be of utmost
importance. That is why we present a concrete model case for the obstacle problem and work
in that setting for the rest of this thesis.

2.2.1 Standing Assumptions

For the rest of Chapter 2 the following assumptions and definitions shall apply.
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2.2 Obstacle Problems

Assumption 2.5 The space dimension is denoted by N ∈ N>0. The regularity for the control
is chosen as some fixed qu ∈ (1 +N/2,∞) ∩ [2,∞). The set Ω ⊂ RN is a bounded Lipschitz
domain.

We write H := L2(Ω). For a boundary portion ΓD ⊂ ∂Ω and p ∈ (1,∞) we define

C∞ΓD(Ω) :=
{
v|Ω : v ∈ C∞c (RN ) and supp v ∩ ΓD = ∅

}
,

V := C∞ΓD(Ω)H
1(Ω)

, W 1,p
ΓD (Ω) := C∞ΓD(Ω)W

1,p(Ω)
.

We define ΣD := I × ΓD, ΓN := ∂Ω \ ΓD and ΣN := I × ΓN . The sets ΓD and ΣD

are the Dirichlet boundary portions, where the state will vanish. The sets ΓN and ΣN are
the corresponding Neumann boundary portions. We assume that Ω ∪ ΓN is Gröger regular
according to Definition 1.7.We assume that ΓD itself a N − 1-dimensional Lipschitz domain.
This entails that the relative boundary of ΓD ⊂ ∂Ω is of N − 1-Hausdorff measure 0. (This
may or may not be implied by Gröger regularity, cf. the reference to [Grö89, Remark 1]
in Definition 1.7. We do not delve deeper into this question as the focus of this thesis lies
somewhere else and simply assume it.)

This property is necessary so that we have by [Dok73, Theorem 1] that W 1,p
ΓD (Ω) is equal to

the kernel of the trace operator γ0 : W 1,p(Ω) → ΓD. So in particular each smooth function
that vanishes on ΓD lies in W 1,p

ΓD . For a more accessible proof in a less general situation also
see [DŽ06] co-written by the same author.

Note that V is a closed, dense subspace of H and that for any M ≥ 0 we have

‖max(v −M, 0)‖V ≤ C‖v‖V v ∈ V (2.5)

by Proposition 8.19.

Definition 2.6 We also introduce a nonlinearity

f : Q× R→ R,
(t, x, y) 7→ f(t, x, y).

We often write f with only one argument y ∈ R, f(y) then refers to the function f(·, ·, y).
Whenever we write f ′ it refers to the derivative in the y-component. Derivatives in time or
space are not considered. The nonlinearity shall satisfy

• f ′(t, x, y) ≥ 0 and f ′(t, x, ·) ∈ C(R) ∀(t, x) ∈ Q,

• f(0), f ′(0) ∈ L∞(Q),

• ∀M > 0 there is an L(M) > 0 such that

|f(t, x, y1)− f(t, x, y2)|+
∣∣f ′(t, x, y1)− f ′(t, x, y2)

∣∣ ≤ L(M)|y1 − y2| (2.6)

holds for all (t, x) ∈ Q and all y1, y2 ∈ BM (0).

Remark 2.7 This allows for example for nonlinearities of the form f(t, x, y) = y3.

Note that the assumption that f ′ satisfies a local Lipschitz condition can be weakened in
some contexts.

Note that compared to our most general framework for the obstacle problem in Remark 2.4
the obstacle Ψ and the nonlinearity f may be time dependent. We also do not require y0 ∈ V .
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2 Obstacle Problems and their Regularization via Semilinear PDEs

Definition 2.8 We let A : H1(Ω)→ H1(Ω)∗ be a symmetric operator of the form

(Av, y)V ∗,V =
∫

Ω

N∑
i,j=1

aij(x)∂xiv(x)∂xjy(x)dx

with aij ∈ L∞(Ω) and aij = aji for any i, j = 1, . . . , N . We assume that there is a νell > 0
such that for almost all x ∈ Ω̄ and ξ ∈ RN one has

ξTA(x)ξ ≥ νell|ξ|22 > 0. (2.7)

Here we wrote A(x) for the matrix (aij)i,j=1,...,N . It will be clear from the context whether
A refers to the matrix or the operator. As ΓD = ∅ can happen, (2.7) does not imply the
ellipticity of A|V . For readers wondering where the 0-order terms are in the definition of
A: for technical reasons we include them in the non-linearity f . This includes bounded,
non-negative zero order terms. So, we do not lose generality here.

We use the same bilinear forms introduced in (2.1).

For p ∈ [2,∞) we define

domp(A) := {v ∈ V ∩ Lp(Ω) : Av ∈ Lp(Ω) ⊂ V ∗} ,
Wp := (Lp(Ω), domp(A))1− 1

p
,p .

Definition 2.9 To fully pose the obstacle problem we also need an initial state y0 ∈ Wqu .
By Proposition 8.51 this implies y0 ∈ C(Ω̄). In particular we have that y0 is bounded on Ω,
which we will use frequently. Wp might be difficult to interpret so we would like to simply
note that W 2,∞(Ω)∩V or domp(A) embed continuously into Wp by Proposition 8.32. Those
two spaces are both easier to imagine and the first one will play a role in our numerical
analysis in the later chapters.

Lastly we of course require an obstacle Ψ ∈ L∞(Q)∩L2(I,H1(Ω)) with ∂tΨ ∈ L2(I,H1(Ω)∗).
It shall satisfy Ψ(0) ≤ y0 ∈ H and Ψ|ΣD ≤ 0, so that a function y ∈ W (I) with y(0) = y0,
y|ΣD = 0 and y ≥ Ψ exists. We further assume that ∂tΨ, AΨ ∈ Lqu(Q). We define

KΨ :=
{
v ∈ L2(Q) : v ≥ Ψ a.e. in Q

}
.

The regularity assumptions on Ψ are chosen in such a way that it does not destroy regularity
of the state y. When a solution to an obstacle problem touches the obstacle, it clearly cannot
be more regular than the obstacle on this set, which is called the active set.

Remark 2.10 If Ψ ∈ W 1,2
qu (Q) and A has Lipschitz continuous coefficients we automatically

have AΨ ∈ Lqu(Q). To see that first note that Rademacher’s theorem, cf. [AFP00, Theorem
2.14], implies that the aij are differentiable almost everywhere in Ω for all i, j ∈ {1, . . . , N}.
Then use the weak product rule to obtain

−div (A∇Ψ) = −
N∑
i=1

∂xi

 N∑
j=1

aij∂xjΨ

 = −
N∑

i,j=1
aij∂xi∂xjΨ + ∂xjΨ∂xiaij ∈ Lqu(Q).

We also have by Theorem 1.34 that Ψ ∈ W 1,2
qu (Q) is Hölder continuous and in particular in

L∞(Q). Thus any Ψ ∈ W 1,2
qu (Q) that is smaller or equal to 0 on ΓD and satisfies Ψ(0) ≤ y0

on Ω is a valid choice. In particular any constant smaller or equal to −‖y0‖L∞(Ω) is valid.
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2.2 Obstacle Problems

Definition 2.11 We now define the obstacle problem for the considered quantities, but give
existence and regularity later. y ∈W (I) is a solution to the obstacle problem if
y ∈ KΨ,

(∂ty +Ay, v − y)L2(I,V ∗,V ) + (f(y), v − y)L2(I,H) ≥ (u, v − y)L2(I,H) ∀v ∈ KΨ ∩ L2(I, V ),
y(0) = y0.

(VI-OB)
Note that the boundary information is contained in V and thus W (I).

We will note that the considered problem is very similar to the ones studied in [Fet87, IK06,
IK10, Bar81, Fri87, AL02]. In contrast we allow our obstacle to be time dependent and in
particular non necessarily equal to 0. We also allow for an additional non-linearity. Yet, we
work in slightly less abstract spaces H and V then some of the mentioned authors since our
focus lies on the regularity of solutions to the obstacle problem. The same obstacle problem is
considered in [Dom82] for regularity analysis, but without any proofs. An interesting problem
with obstacles from above and below and an additional non-linearity is considered in [Che03].
Then restrictions on f are, however, more strict than ours, while the right hand side is more
general. A very general and abstract formulation of essentially our problem can be found in
[Bar84, Chapter 4]. Most of the mentioned papers refer to various optimal control problems
with a parabolic obstacle problem as a constraint. We will give a more detailed overview in
the sections discussing our optimization problem.
Example 2.12 Before we continue we would like to give a simple example that satisfies all
the standing assumptions. So that one may see that we do indeed not talk about an empty set
of problems. Let Ω = B1(0) and ΓD = ∂Ω. We further choose Ψ = −1. Then for u ∈ L2(Q)
a concrete example of (VI-OB) reads

y ≥ −1 a.e. in Q,
(∂ty −∆y + y3, v − y)L2(Q) ≥ (u, v − y)L2(Q) ∀v ∈ L2(I, V ), v ≥ −1 a.e. in Q,
y(0) = 0.

2.2.2 Properties of Nonlinearities

We collect some very important continuity and differentiability properties of f .
Lemma 2.13 As a Nemytskii-operator f is locally Lipschitz continuous from L∞(Q) to
L∞(Q).

Proof. This is an immediate consequence of the local Lipschitz continuity of f in its last
argument.

Corollary 2.14 In particular f(Ψ) ∈ L∞(Q).
Lemma 2.15 As a Nemytskii-operator f is Fréchet differentiable from L∞(Q) to L∞(Q).

Proof. For almost any (t, x) ∈ Q and y, d ∈ L∞(Q) we have, with the local Lipschitz conti-
nuity of f ′,∣∣f(t, x, y(t, x) + d(t, x))− f(t, x, y(t, x))− f ′(t, x, y(t, x))d(t, x)

∣∣
=
∣∣∣∣∫ 1

0
f ′(t, x, y(t, x) + sd(t, x))− f ′(t, x, y(t, x)) ds d(t, x)

∣∣∣∣
≤ L(‖y‖L∞(Q) + ‖d‖L∞(Q))

∫ 1

0
s|d(t, x)| ds |d(t, x)| ≤

L(‖y‖L∞(Q) + ‖d‖L∞(Q))
2 ‖d‖2L∞(Q).
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2 Obstacle Problems and their Regularization via Semilinear PDEs

L(‖y‖L∞(Q) + ‖d‖L∞(Q)) is the Lipschitz constant of f ′(t, x, ·) on the closed ball with radius
‖y‖L∞(Q) +‖d‖L∞(Q). By assumption it does not depend on (t, x). As we send d to 0 we may
assume that the Lipschitz constant stays bounded and we obtain the claim.

2.3 Regularization via Semilinear PDEs

We will now consider a family of regularizations of the obstacle problem established in Sec-
tion 2.2. To that end we will introduce a term, that is essentially a penalization of the
condition y ≥ Ψ.

2.3.1 Regularization Terms

Definition 2.16 We fix a function β ∈ C(R) such that

1. β is monotonically increasing and locally Lipschitz continuous,

2. β|R≥0 = 0,

3. β(R<0) = (−∞, 0).

We further define for γ > 0 the actual regularization term βγ := 1
γβ.

For some situations we will consider a special family of regularizations.

Proposition 2.17 Let α ≥ 1. We define

β : R→ R,

r 7→


0 if r ≥ 0,
−(−r)α if 0 > r ≥ −α1/(1−α),

r + α−1
α α1/(1−α) if − α1/(1−α) > r.

For α = 1 the expression α1/(1−α) is considered to be 0. This is motivated by α1/(1−α) → 0
for α α>1−−→ 1. Thus the second case factually drops out.

The function β satisfies the assumptions from Definition 2.16. Even stronger we have β ∈
C0,1(R). For α > 1 we have β ∈ C1(R). For α ≥ 2 we even have β ∈ C1,1(R).

Proof. We first check the continuity of β at −α1/(1−α) as at 0 the term β is clearly continuous.
Coming from the left we have

−(−(−α1/(1−α)))α = −αα/(1−α)

and coming from the right we have

−α1/(1−α) + α− 1
α

α1/(1−α) = −α−1α1/(1−α) = −α1/(1−α)−1 = −αα/(1−α).

Thus β is continuous and 2. and 3. of Definition 2.16 are clearly satisfied. The Lipschitz
continuity is clear for α = 1. For α > 1 this will follow from the boundedness of the derivative
which we prove next.
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2.3 Regularization via Semilinear PDEs

For the rest of the proof let α > 1. Then the derivative on each section is given by

β′(r) =


0 if r ≥ 0,
α(−r)α−1 if 0 > r ≥ −α1/(1−α),

1 if − α1/(1−α) > r.

Seeing that

α(−(−α)1/(1−α))α−1 = 1 and − α(−0)α−1 = 0

we have that β′ is continuous at the critical points. It is clearly bounded.

To see the Lipschitz continuity of the derivative for α ≥ 2 we see that we have

β′′(r) =


0 if r ≥ 0,
−α(α− 1)(−r)α−2 if 0 > r ≥ −α1/(1−α),

0 if − α1/(1−α) > r,

in a weak sense. This is clearly bounded so a version of Rademacher’s theorem, e.g. [AFP00,
Proposition 2.13], delivers the Lipschitz continuity of β′.

The Nemytskii-operator properties for βγ(· − Ψ) and their proofs are the same as for f in
Section 2.2.2.

Lemma 2.18 βγ(· − Ψ) is Fréchet differentiable from L∞(Q) to L∞(Q) as a Nemytskii
operator. In particular it is locally Lipschitz continuous and βγ(−Ψ) ∈ L∞(Q).

Definition 2.19 We consider the following semilinear parabolic PDE for y ∈W (I){
∂ty +Ay + f(y) + βγ(y −Ψ) = u,

y|ΣD = 0, y(0) = y0,
(PDEγ)

which has the weak formulation(∂ty +Ay, v)L2(I,V ∗,V ) + (f(y) + βγ(y −Ψ), v)L2(Q) = (u, v)L2(Q) ∀v ∈ L2(I, V ),
y(0) = y0.

(2.8)

This definition is a relaxation of (VI-OB) by replacing the constraint y ≥ Ψ with a (smooth)
penalization term βγ .

This type of regularization is used frequently for the elliptic and parabolic obstacle problem.
For the usage in the elliptic case we would like to point out [Noc88] specifically, as it will be
the basis for later arguments. For the usage in parabolic obstacle problems see for example
[AL02, Che03, Fri87]. Different regularizations are for example used in [Bar81, IK06, IK10].
Remark 2.20 A regularization of the form (PDEγ) is motivated by the original formulation
of (VI-OB) interpreted in the abstract setting of (2.4). For presentation’s sake we drop the
non-linearity f from the discussion in this remark. Its inclusion is straightforward.

Assume that Ψ is not time dependent. We define Φ = χKΨ as above (2.4). We will show that

∂Φ: H → P(H), y 7→
{
∅ if y 6∈ KΨ,

{g∗ ∈ H : g|{y>Ψ} = 0, g|{y=Ψ} ≤ 0} else.
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2 Obstacle Problems and their Regularization via Semilinear PDEs

Figure 2.1: The regularization terms from Proposition 2.17 for various α and γ. The black *
denote points where the function changes its definition sections.

Here, the active set {y = Ψ} := {(t, x) ∈ Q : y(t, x) = Ψ(t, x)} has to be interpreted for fixed
representatives of y and Ψ and the properties of g hold almost everywhere. The same hold
true for {y > Ψ}, which is defined analogously.

To see that this is actually the correct interpretation of the subdifferential let y ∈ KΨ. The
situation y 6∈ KΨ is trivial. Let g ∈ ∂Φ(y), this means by definition

0 ≥ (g, v − y)H ∀v ∈ KΨ.

Let ε > 0 and E ⊂ {y ≥ Ψ + ε}. The following statements holds almost everywhere. Then
v± := y ± ε1E ∈ KΨ and 0 ≥ (g,±1E)H . Thus 0 =

∫
E g dx. As E ⊂ {y ≥ Ψ + ε} was

arbitrary we have g|{y≥Ψ+ε} = 0. As ε > 0 was arbitrary this implies g|{y>Ψ} = 0. Let z ≥ 0
on {y = Ψ} and choose v := 1{y>Ψ}y + 1{y=Ψ}(z + Ψ) ∈ KΨ, then

0 ≥ (g, v − y)H = (g, z)L2({y=Ψ}).

Thus g|{y=Ψ} ≤ 0. It is also easy to see the any g ∈ H with g|{y=Ψ} ≤ 0 and g|{y>Ψ} = 0 lies
in ∂Φ(y).

Defining the Lipschitz graph

∂Φ̂ : R→ P(R),

r 7→


0 if r > 0,
(−∞, 0] if r = 0,
∅ if r < 0,

The inclusion formulation in (2.4) is now equivalent to{
∂ty(t) +Ay(t) + ∂Φ̂(y(t)−Ψ(t)) 3 u(t) a.e. in I,
y(0) = y0.

Now it is easy to see how (2.4) and (PDEγ) relate as problems. Visually we can see this in
Figure 2.1 and Figure 2.2.
Remark 2.21 Another motivation can be derived from the elliptic case. The elliptic obstacle
problem, or at least a simplified model problem, is given by

y ≥ Ψ,
(∇y,∇(v − y))L2(Ω) ≥ (u, v − y)L2(Ω) ∀v ∈ H1

0 (Ω), v ≥ Ψ
y|∂Ω = 0.
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2.3 Regularization via Semilinear PDEs

Figure 2.2: The derivatives of the regularization terms from Proposition 2.17 for various α and
γ. The black * denote points where the function changes its definition sections.

This is just equivalent to y being the minimizer of

min
v∈H1

0 (Ω),v≥Ψ

1
2‖∇v‖

2
L2(Ω) − (u, v)L2(Ω).

Replacing the constraint v ≥ Ψ by a penalty term with γ > 0 results in

min
v∈H1

0 (Ω)

1
2‖∇v‖

2
L2(Ω) − (u, v)L2(Ω) + 1

2γ ‖(v −Ψ)−‖2L2(Ω).

The optimality condition for the optimizer yγ of this then reads

(∇yγ ,∇v)L2(Ω) − (u, v)L2(Ω) + 1
γ

((yγ −Ψ)−, v)L2(Ω) = 0 v ∈ H1
0 (Ω).

This is the elliptic analogue of (PDEγ) for a specific βγ .

2.3.2 Existence and Regularity of Solutions to Regularized Obstacle Problems

We restate Theorem 8.17 for this situation.

Theorem 2.22 There exists an unique weak solution yγ ∈W (I) of{
∂tyγ +Ayγ + f(yγ) + βγ(yγ −Ψ) = u,

yγ(0) = y0, yγ |Σ = 0.

Even stronger there are κ∗, Clip > 0, depending only on an upper bound on the Lipschitz
constants of f and βγ on a ball with radius greater or equal to ‖y0‖L∞(Ω), such that if κΩ ∈
[0, κ∗) and κI ∈ (0, 1) with

1
qu

(
1 + N

2

)
+ κΩ

2 < 1 and κI ∈
(

0, 1− 1
qu

(
1 + N

2

)
− κΩ

2

)
we have

‖y‖CκI (I,CκΩ (Ω)) + ‖∂ty‖Lqu (Q) + ‖y‖L2(I,V ) + ‖Ay‖Lqu (Q) + ‖f(y) + βγ(y −Ψ)‖Lqu (Q)

≤ Clip
(
‖u− f(0)− βγ(−Ψ)‖Lqu (Q) + ‖y0‖Wqu

)
.

This regularity implies in particular that we have

∂tyγ +Ayγ + f(yγ) + βγ(yγ −Ψ) = u a.e. in Q.
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2 Obstacle Problems and their Regularization via Semilinear PDEs

We now have existence of solutions, but under certain circumstances we are able to prove
that certain norms of y are actually independent of γ, allowing us to later consider the limit
γ → 0, which in turn allows rigorous analysis of (VI-OB).

Definition 2.23 Let κI , κΩ be as in Theorem 2.22. We define the solution operator

Sγ : Lqu(Q)→W (I) ∩ CκI (I, CκΩ(Ω)),
u 7→ Sγ(u) := y solution of (PDEγ).

This solution operator is Lipschitz continuous in a relatively weak norm, but independently
of γ.

Lemma 2.24 The operator Sγ is Lipschitz continuous in the following senses: for any
u1, u2 ∈ Lqu(Q) we have

‖Sγ(u1)− Sγ(u2)‖L2(I,V )∩C(Ī,H) ≤ C‖u1 − u2‖L2(I,V ∗)

and

‖Sγ(u1)− Sγ(u2)‖L∞(Q) ≤ C‖u1 − u2‖Lqu (Q).

The constant C > 0 does not depend on u1, u2, βγ or f .

Proof. To prove the first claim let u1, u2 ∈ Lqu(Q) and yi := Sγ(ui) for i = 1, 2. Abbreviating
δu := u1 − u2 and δy := y1 − y2 we find by the high regularity that

(∂tδy +Aδy + f(y1)− f(y2) + βγ(y1 −Ψ)− βγ(y2 −Ψ), δy)L2((0,t)×Ω)

= (δu, δy)L2((0,t)×Ω).

Here we tested with δy · 1(0,t) for t ∈ I. By the monotonicity of f and βγ and partial
integration we find

1
2‖δy‖

2
H |t0 +

∫ t

0
aΩ(δy, δy) dt ≤ ‖δu‖L2((0,t),V ∗)‖δy‖L2((0,t),V ).

By the uniform ellipticity of the matrix (aij)i,j=1,...,N with constant νell > 0 this implies

1
2‖δy(t)‖2H + νell‖∇y‖2L2((0,t)×Ω)) ≤ ‖δu‖L2(I,V ∗)‖δy‖L2(I,V ).

So, as t was arbitrary,

sup
t∈I
‖δy(t)‖2H ≤ 2‖δu‖L2(I,V ∗)‖δy‖L2(I,V ). (2.9)

We can finally conclude

‖δy‖2L2(I,V ) ≤ ν
−1
ell ‖δu‖L2(I,V ∗)‖δy‖L2(I,V ) + 2T‖δu‖L2(I,V ∗)‖δy‖L2(I,V ).

This implies

‖δy‖L2(I,V ) ≤ max(ν−1
ell , 2T )‖δu‖L2(I,V ∗).

The L∞(I,H)-estimate now follows immediately from (2.9).

The second part is just an application of Theorem 8.22.
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Lemma 2.25 Let u ∈ Lqu(Q) and yγ = Sγ(u). The sequence
(
‖βγ(yγ −Ψ)‖Lqu (Q)

)
γ>0

is
bounded independently of γ. In particular

‖βγ(yγ −Ψ)‖Lqu (Q) ≤ ‖u‖Lqu (Q) + ‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q).

Proof. Let u ∈ Lqu(Q). We write y = Sγ(u). We dropped the index from the state for
presentation in the proof. By Theorem 2.22 we find

‖βγ(y −Ψ)‖quLqu (Q) =
∫
Q
|βγ(y −Ψ)|qu−2βγ(y −Ψ)βγ(y −Ψ) d(t, x)

=
∫
Q
b(y −Ψ) (u− ∂ty −Ay − f(y)) d(t, x),

(2.10)

where we introduced b(r) := |βγ(r)|qu−2βγ(r) ≤ 0. We further define B as the antiderivative
of b with B(0) = 0. It satisfies B|[0,∞) = 0 and B ≥ 0.

The first term is easily estimated∫
Q
b(y −Ψ)u d(t, x) ≤ ‖b(y −Ψ)‖

L
qu
qu−1 (Q)

‖u‖Lqu (Q)

=
[∫
Q
|βγ(y −Ψ)|qu d(t, x)

] qu−1
qu ‖u‖Lqu (Q) = ‖βγ(y −Ψ)‖qu−1

Lqu (Q)‖u‖Lqu (Q).

(2.11)

The next term we estimate as

−
∫
Q
b(y −Ψ)∂ty d(t, x) = −

∫
Q
b(y −Ψ)∂t(y −Ψ) d(t, x)−

∫
Q
b(y −Ψ)∂tΨ d(t, x)

= −
∫

Ω

∫
I
∂t (B(y −Ψ)) dt dx−

∫
Q
b(y −Ψ)∂tΨ d(t, x)

≤ −
∫

Ω
B(y(T )−Ψ(T ))−B(y0 −Ψ(0)) dx+ ‖βγ(y −Ψ)‖qu−1

Lqu (Q)‖∂tΨ‖Lqu (Q).

Here we used the chain rule for weak derivatives . Because y0 ≥ Ψ(0) a.e. in Ω we have
B(y0−Ψ(0)) = 0 a.e. in Ω and in general B(y(T )−Ψ(T )) ≥ 0 a.e. in Ω by the construction
of B. Therefore we find

−
∫
Q
b(y −Ψ)∂ty d(t, x) ≤ ‖βγ(y −Ψ)‖qu−1

Lqu (Q)‖∂tΨ‖Lqu (Q). (2.12)

The third term is estimated similarly. Note that y − Ψ|ΣD = −Ψ|ΣD ≥ 0 so that by the
definition of b we have b(y −Ψ) ∈ V by the trace characterization of V and therefore

−
∫
Q
b(y −Ψ)Ay d(t, x) = −

∫
Q

N∑
i,j=1

aijb
′(y −Ψ)∂xi(y −Ψ)∂xjy d(t, x)

= −
∫
Q

N∑
i,j=1

aijb
′(y −Ψ)∂xi(y −Ψ)∂xj (y −Ψ) d(t, x)

−
∫
Q

N∑
i,j=1

aijb
′(y −Ψ)∂xi(y −Ψ)∂xjΨ d(t, x).

By the ellipticity of (aij)i,j=1,...,N and the monotonicity of b this is bounded from above by

−
∫
Q
b(y −Ψ)AΨ d(t, x) ≤ ‖βγ(y −Ψ)‖qu−1

Lqu (Q)‖AΨ‖Lqu (Q), (2.13)
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2 Obstacle Problems and their Regularization via Semilinear PDEs

To see the monotonicity of b we take its weak derivative for qu > 2. For qu = 2 it is trivially
seen.

b′(r) = (qu − 2)|βγ(r)|qu−3 sgn(βγ(r))βγ ′(r)βγ(r) + |βγ(r)|qu−2βγ
′(r)

= (qu − 1)|βγ(r)|qu−2βγ
′(r) ≥ 0,

since βγ is monotonely increasing.

The fourth term makes use of the monotonicity of f . The following is always to be understood
in an almost everywhere sense. When we have y ≥ Ψ we find b(y−ψ) = 0 and when we have
y < Ψ we find f(y) ≤ f(Ψ). We also have −b(y −Ψ) ≥ 0. So in total

−
∫
Q
b(y −Ψ)f(y) d(t, x) ≤

∫
Q
−b(y −Ψ)f(Ψ) d(t, x) ≤ ‖βγ(y −Ψ)‖qu−1

Lqu (Q)‖f(Ψ)‖Lqu (Q).

(2.14)

Inserting (2.11)-(2.14) into (2.10) yields the claim.

Lemma 2.26 Let u ∈ Lqu(Q) and yγ = Sγ(u). The sequence
(
‖f(yγ)‖Lqu (Q)

)
γ>0

is then
bounded independently of γ. In particular:

‖f(yγ)‖Lqu (Q) ≤ C
qu−1
qu

y0 ‖y0‖L∞(Ω) + 2‖u‖Lqu (Q) + 2‖f(0)‖Lqu (Q)

+ ‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q).

Here Cy0 is the Lipschitz constant of f on L∞(Q) with respect to the ball with radius
‖y0‖L∞(Q).

Proof. We first note that by assumption f(0) ∈ Lqu(Q). Thus in (PDEγ) we can subtract
f(0) from both sides and substitute u by ũ = u− f(0). We thus assume f(0) = 0.

We write y := Sγ(u) and again drop the index from the notation. The proof is very similar to
the proof of Lemma 2.25. Introducing f̂(y) = |f(y)|qu−2f(y) we again have by Theorem 2.22

‖f(y)‖quLqu (Q) =
∫
Q
f̂(y) (ũ− ∂ty −Ay − βγ(y − ψ)) d(t, x).

As in the proof of Lemma 2.25 we have∫
Q
f̂(y)ũ ≤ ‖f(y)‖qu−1

Lqu (Q)‖ũ‖Lqu . (2.15)

We introduce F (t, x, ·) as an antiderivative to f̂(t, x, ·) satisfying F (t, x, 0) = 0 a.e. in Q.
Because f(t, x, ·) is monotonically increasing and f(t, x, 0) = 0 we have F (t, x, ·) ≥ 0 a.e. in
Q. Using F we have∫

Q
−∂tyf̂(y) d(t, x) = −

∫
I
∂t

(∫
Ω
F (y) dx

)
dt = −

∫
Ω
F (y(T )) dx+

∫
Ω
F (y0) dx

≤
∫

Ω
F (y0) dx.

(2.16)

For almost every (t, x) ∈ Q we have, by construction and f(t, x, 0) = 0,

F (y0) =
∫ y0

0
|f(r)|qu−2f(r) dr ≤ Cqu−1

y0 ‖y0‖qu−1
L∞(Ω)

∫ y0

0
dr ≤ Cqu−1

y0 ‖y0‖quL∞(Ω).

36



2.3 Regularization via Semilinear PDEs

Here CL,‖y0‖L∞(Ω) is the local Lipschitz constant of f on the ball with radius ‖y0‖L∞(Ω).

Note that because f is monotonically increasing in y, so is f̂ . We then have by the ellipticity
of (aij)i,j=1,...,N

−
∫
Q
f̂(y)Ay d(t, x) = −

N∑
i,j=1

∫
Q
f̂ ′(y) ∂xiy aij ∂xjy ≤ 0. (2.17)

The last term is estimated using Lemma 2.25:

−
∫
Q
βγ(y −Ψ)f̂(y) d(t, x) ≤ ‖βγ(y −Ψ)‖Lqu (Q)‖f̂‖

L
qu
qu−1 (Q)

= ‖βγ(y −Ψ)‖Lqu (Q)

(∫
Q

(
|f(y)|qu−1

) qu
qu−1 d(t, x)

) qu−1
qu

= ‖βγ(y −Ψ)‖Lqu (Q)‖f(y)‖qu−1
Lqu (Q)

≤
(
‖ũ‖Lqu (Q) + ‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q)

)
‖f(y)‖qu−1

Lqu (Q).

(2.18)

Putting (2.15)-(2.18) together yields

‖f(y)‖quLqu (Q) ≤ C
qu−1
y0 ‖y0‖quL∞(Q)

+
(
2‖ũ‖Lqu (Q) + ‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q)

)
‖f(y)‖qu−1

Lqu (Q).

Now Lemma 8.2 yields

‖f(y)‖Lqu (Q) ≤ C
qu−1
qu

y0 ‖y0‖L∞(Q) + 2‖ũ‖Lqu (Q) + ‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q).

Recalling ũ = u− f(0) concludes the proof.

Corollary 2.27 There exist κ∗, C > 0, independent of γ, but depending on the Lipschitz
constant of f(t, x, ·) with (t, x) ∈ Q on the ball with radius ‖y0‖L∞(Ω), such that the following
holds: for u ∈ Lqu(Q) and yγ := Sγ(u) we have

‖yγ‖CκI (I,CκΩ (Ω)) + ‖∂tyγ‖Lqu (Q) + ‖yγ‖L2(I,V ) + ‖Ayγ‖Lqu (Q)

≤ C
(
‖u‖Lqu (Q) + ‖y0‖Wqu

+ ‖f(0)‖Lqu (Q)

+‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q)
)

where κΩ ∈ [0, κ∗) and κI ∈ (0, 1) with

1
qu

(
1 + N

2

)
+ κΩ

2 < 1 and κI ∈
(

0, 1− 1
qu

(
1 + N

2

)
− κΩ

2

)
.

Proof. We can rewrite (PDEγ) to{
∂tyγ +Ayγ = u− f(yγ)− βγ(yγ −Ψ) on Q,
yγ(0) = y0, yγ |ΣD = 0.

By Theorem 8.20, Lemma 2.25 and Lemma 2.26 we obtain the desired estimate.
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2 Obstacle Problems and their Regularization via Semilinear PDEs

We obtain the following continuity result.

Corollary 2.28 Let (un)n∈N be a sequence in Lqu(Q) converging weakly to some u ∈ Lqu(Q).
Then we have Sγ(un) n→∞−−−→ Sγ(u) uniformly.

Proof. As weakly convergent sequences are bounded we have by Corollary 2.27 that

‖Sγ(un)‖CκI (I,CκΩ (Ω)) + ‖Sγ(un)‖W (I) ≤ C 6n

for some Hölder exponents satisfying the conditions from Corollary 2.27. By Lemma 8.8 and
the reflexivity of the Hilbert spaceW (I) we have that a subsequence of (Sγ(un))n∈N converges
uniformly and weakly in W (I) to some y ∈W (I)∩C(Q̄). Let v ∈ L2(I, V ). Taking the limit
in the weak formulation in (2.8) immediately shows that y = Sγ(u).

To see that the whole sequence converges we make a simple calculus argument: assume that
(Sγ(un))n∈N does not converge to y uniformly. Then we have that a subsequence (Sγ(unk))k∈N
satisfies ‖Sγ(unk) − y‖L∞(Q) ≥ ε for some ε > 0. However, by the previous arguments a
subsequence of (Sγ(unk))k∈N does now converge to y = Sγ(u): a contradiction.

2.4 Convergence of Solutions to Regularized Obstacle Problems

This section is dedicated to transfer regularity results from the solutions to the regular-
ized problems (PDEγ) to the solution to the unregularized problem (VI-OB). This is rel-
atively straightforward, but not necessarily the only approach to obtain regularity results
on (VI-OB). A different approach based on cutting off certain terms, which is standard in
parabolic theory, is for example used, without proof, in [Dom82, Section 4].

Lemma 2.29 Let κΩ, κI ∈ (0, 1) satisfy the conditions from Theorem 2.22. Let (γn)n∈N be a
zero sequence. There exist a y ∈W (I)∩CκI (I, CκΩ(Ω)), with ∂ty ∈ Lqu(Q) and Ay ∈ Lqu(Q),
and a subsequence (γnk)k∈N such that we have:

Sγnk (u) k→∞−−−→ y strongly in CκI (I, CκΩ(Ω)) and weakly in W (I).

There also exists a λ(u) ∈ Lqu(Q) such that

−βγ(Sγ(u)−Ψ) γ→0−−−→ λ(u) weakly in Lqu(Q).

Proof. It is possible to find some κ′I ∈ (κI , 1), κ′Ω ∈ (κΩ, 1) such that κ′I , κ′Ω still satisfy the
assumptions from Corollary 2.27.

By Corollary 2.27 we have

‖yγ‖
C
κ′
I (I,Cκ

′
Ω (Ω))∩W (I)

≤ C6γ .

By the compact embedding of Hölder spaces into Hölder spaces of lower order, see Lemma 8.8,
there exists a subsequence of (γn)n∈N, which we again denote by (γn)n∈N, and a y ∈ CκI (I, CκΩ(Ω))
such that

yγn
n→∞−−−→ y strongly in CκI (I, CκΩ(Ω)).

38



2.4 Convergence of Solutions to Regularized Obstacle Problems

By the reflexivity of the Hilbert space W (I) there exists a subsequence of (γn)n∈N, which we
also denote by (γn)n∈N, and a ỹ ∈W (I) such that

yγn
n→∞−−−→ ỹ weakly in W (I).

We now show ỹ = y. By the convergence in CκI (I, CκΩ(Ω)) we have

‖ỹ − y‖2L2(Q) = lim
n→∞

(ỹ − yn, ỹ − y)L2(Q) .

Since (·, ỹ − y)L2(Q) is a continuous linear functional on W (I) we have by the weak conver-
gence in W (I)

‖ỹ − y‖2L2(Q) = lim
n→∞

(ỹ − yn, ỹ − y)L2(Q) = 0.

By Lemma 2.25 we have ‖βγn(yγn −Ψ)‖Lqu (Q) ≤ C 6γ . This implies the weak convergence (of
some subsequence) to some limit λ(u) ∈ Lqu(Q) by the reflexivity of Lqu(Q).

Theorem 2.30 Let C, κΩ, κI ∈ (0, 1) be as in Corollary 2.27; in particular C is independent
of γ. Let (γn)n∈N be a zero sequence. The y from Lemma 2.29 is the unique solution to
(VI-OB) and the whole sequence of states (Sγn(u))n∈N converges to it. Its multiplier λ(u)
from Lemma 2.29 is also unique. We also have the estimates

‖y‖CκI (I,CκΩ (Ω)) + ‖y‖W (I)

≤ C
(
‖u‖Lqu (Q) + ‖y0‖Wqu

+ ‖f(0)‖Lqu (Q)

+‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q)
)

and

‖λ(u)‖Lqu (Q) ≤ ‖u‖Lqu (Q) + ‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q).

The state y and the corresponding λ(u) satisfy:
(∂ty +Ay + f(y), v)L2(I,V ∗,V ) = (λ+ u, v)L2(Q) ∀v ∈ L2(Q),
y(0) = y0, y|ΣD = 0,
λ(u) ≥ 0, y −Ψ ≥ 0, (λ(u), y −Ψ)L2(Q) = 0.

Remark 2.31 In the situation of Theorem 2.30 it is easy to see that (λ(u), y − Ψ)L2(Q) = 0
implies supp(λ(u)) ⊂ {y = Ψ} ∪ Z, where Z is a set of Lebesgue measure 0. Since λ(u) ≥ 0
and y−Ψ ≥ 0 a.e. in Q we also have that their product λ(u)(y−Ψ) ≥ 0 a.e. in Q. Thus the
complementarity is equivalent to 0 = ‖λ(u)(y −Ψ)‖L1(Q) and therefore λ(u)(y −Ψ) = 0 a.e.
in Q. That means only on a set of measure 0 can we expect λ(u) > 0 and y−Ψ > 0 both at
once.

Proof. We will show that y is the unique solution to (VI-OB). Then a standard calculus
argument shows that if we have for each subsequence a subsubsequence that converges to y,
that y is the limit of the whole sequence. So, we may assume that (Sγn(u))n∈N converges
to y in the sense of Lemma 2.29. (See for example the argument at the of the proof of
Corollary 2.28.)

By Lemma 2.29 and its uniform convergence in C(Q̄) we obviously have y(0) = y0. By the
weak convergence in W (I) we have y|ΣD = 0.
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2 Obstacle Problems and their Regularization via Semilinear PDEs

Assume there is a set O ⊂ Q with |O| > 0 and an ε > 0 such that y ≤ Ψ − ε. Now by the
uniform convergence from Lemma 2.29 there is an nε ∈ N such that Sγn(u) ≤ Ψ− ε

2 on O for
any n ≥ nε. Then we have

βγn(Sγn(u)−Ψ) ≤ βγn(−ε/2) = 1
γn
β(−ε/2)

on O for n ≥ nε. Then for n ≥ nε we have∫
Q
βγn(Sγn(u)−Ψ) d(t, x) ≤

∫
O
βγn(Sγn(u)−Ψ) d(t, x) ≤ 1

γn
|O|β(−ε/2) γn→0−−−→ −∞.

This contradicts Lemma 2.25. Thus for any set O ⊂ Q with non-zero measure and any ε > 0
we have

y > Ψ− ε on O.

Thus y ≥ Ψ.

We can consider the weak formulation of (PDEγ) and test it with v − Sγn(u) for some
v ∈ KΨ ∩ L2(I, V ). Then we have

(∂tSγn(u) +ASγn(u) + f(Sγn(u)), v − Sγn(u))L2(Q)

= (−βγn(Sγn(u)−Ψ), v − Sγn(u))L2(Q) + (u, v − Sγn(u))L2(Q) .
(2.19)

We have

(−βγn(Sγn(u)−Ψ), v − Sγn(u))L2(Q) = (βγn(Sγn(u)−Ψ), Sγn(u)−Ψ + Ψ− v)L2(Q)

≥ (βγn(Sγn(u)−Ψ),Ψ− v)L2(Q) .

Here we used the monotonicity of βγn . Now (2.19) implies

(∂tSγn(u) +ASγn(u) + f(Sγn(u)), v − Sγn(u))L2(Q) ≥ (u, v − Sγn(u))L2(Q) .

Now we take the limit. The convergence to (VI-OB) is clear by Lemma 2.29 and the fact that
f is continuous from L∞(Q) to L∞(Q) by Corollary 2.14. This shows that y indeed solves
(VI-OB).

To see uniqueness of the solutions let y1, y2 ∈W (I) ∩KΨ be solutions to (VI-OB). Then we
can test the formulation for y11(0,t̂) with y21(0,t̂) for some t̂ ∈ (0, T ) and vice versa to obtain:

(∂ty1 +Ay1 + f(y1)− u, y2 − y1)L2((0,t̂)×Ω) ≥ 0,
(∂ty2 +Ay2 + f(y2)− u, y1 − y2)L2((0,t̂)×Ω) ≥ 0.

Adding those two lines yields

(∂t(y1 − y2) +A(y1 − y2) + f(y1)− f(y2), y2 − y1)L2((0,t̂)×Ω) ≥ 0.

By partial integration, monotonicity of f and the ellipticity of the coefficients of A we conclude

0 ≥ 1
2‖y1(t̂)− y2(t̂)‖2H + νell‖∇y1 −∇y2‖2H .

Thus in particular for any t̂ ∈ (0, T ) we have y1(t̂) = y2(t̂) almost everywhere in Ω and thus
y1 = y2.
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The norm estimates are just a consequence of taking the limit in Lemma 2.25 and Corol-
lary 2.27.

To obtain the complementarity system we again consider the weak formulation of (PDEγ)
for u and Sγn(u) and take the limit using Lemma 2.29. We thus have for any v ∈ L2(I, V )

(∂ty +Ay + f(y), v)L2(Q) = (λ(u) + u, v)L2(Q) .

Using the density of L2(I, V ) in L2(Q) we find the multiplier formulation. The density can
bee seen by C∞c (Q) ⊂ L2(I, V ) and [Rud74, Theorem 3.14].

Because {v ∈ Lqu(Q) : v ≥ 0} is closed and convex we have λ(u) ≥ 0, because it is the weak
limit of −βγn(Sγn(u)− ψ) ≥ 0.

The complementarity is also easily checked: We already know y ≥ Ψ and λ(u) ≥ 0. Thus

(λ(u), y −Ψ)L2(Q) ≥ 0.

But we also know, by the previous convergences and the monotonicity of βγ ,

(λ(u), y −Ψ)L2(Q) = lim
n→∞

(−βγn(Sγn(u)−Ψ), Sγn(u)−Ψ)L2(Q) ≤ 0.

The complementarity system also entails that

λ(u) = ∂ty +Ay + f(y)− u

is unique.

Definition 2.32 Based on Lemma 2.29 and Theorem 2.30 we define the solution operator
to (VI-OB):

S : Lqu(Q)→W (I) ∩ CκI (I, CκΩ(Ω)),
u 7→ lim

γ→0
Sγ(u).

Here κI , κΩ ∈ (0, 1) are subject to the conditions from Corollary 2.27 and the convergence is
to be understood in the sense of Lemma 2.29. We also define

λγ(u) := −βγ(Sγ(u)−Ψ)

for γ > 0.

The following theorem states that the assumptions on the multiplier λ are not only necessary,
but also sufficient for y to be a solution to (VI-OB).

Theorem 2.33 Assume there is a y ∈W (I) and a λ ∈ Lqu(Q) satisfying
(∂ty +Ay + f(y), v)L2(Q) = (λ+ u, v)L2(Q) ∀v ∈ L2(Q),
y(0) = y0,

λ ≥ 0, y −Ψ ≥ 0, (λ, y −Ψ)L2(Q) = 0.

Then we have y = S(u) and λ = λ(u).

Proof. Let v ∈ KΨ. We then have by the complementarity and λ ≥ 0

(∂ty +Ay + f(y), v − y)L2(Q) = (λ+ u, v − y)L2(Q) = (λ, v −Ψ)L2(Q) + (u, v − y)L2(Q)

≥ (u, v − y)L2(Q) .

41



2 Obstacle Problems and their Regularization via Semilinear PDEs

We can now extend the previous results and show continuity of the mapping (γ, u) 7→ Sγ(u),
in a certain sense.

Theorem 2.34 Let (un)n∈N ⊂ Lqu(Q) be a weakly convergent series, converging to u ∈
Lqu(Q), and (γn)n∈N a zero sequence, with γn ≥ 0. We then have for any κI , κΩ ∈ (0, 1)
satisfying the conditions from Corollary 2.27

• Sγn(un) n→∞−−−→ S(u) strongly in CκI (I, CκΩ(Ω)) and weakly in W (I),

• λγn(un) n→∞−−−→ λ(u) weakly in Lqu(Q).

Proof. We abbreviate yn := Sγn(un). Because (un)n∈N is uniformly bounded in Lqu(Q) we
have that

‖yn‖CκI (I,CκΩ (Ω))∩W (I), ‖λ(un)‖Lqu (Q) ≤ C independent of n

by Corollary 2.27 (for γn > 0) and Theorem 2.30 (for γn = 0).

As in the proof of Lemma 2.29 there exists a y ∈ CκI (I, CκΩ(Ω)) ∩W (I) such that

yn
n→∞−−−→ y strongly in CκI (I, CκΩ(Ω)) and weakly in W (I)

and λ ∈ Lqu(Q) such that

λγn(un) n→∞−−−→ λ weakly in Lqu(Q).

The rest of the proof is now essentially the same as the one of Theorem 2.30. The weak
convergence of (un)n∈N does not pose a problem as it is multiplied with a strongly convergent
sequence, yielding convergence of the product.

From Lemma 2.24 we get an easy corollary due to the uniform convergence of (Sγ(u))γ>0.

Corollary 2.35 The operator S is Lipschitz continuous in the following senses: there is a
C > 0 such that for any u1, u2 ∈ Lqu(Q) we have

‖S(u1)− S(u2)‖L2(I,V )∩C(Ī,H) ≤ C‖u1 − u2‖L2(I,V ∗)

and

‖S(u1)− S(u2)‖L∞(Q) ≤ C‖u1 − u2‖Lqu (Q).

In the L∞(Q)-norm we can explicitly give a convergence rate for γ → 0. The following
statements are the extension of [Noc88, Theorem 2.1] to the parabolic case. It will be later
useful when deriving finite element error estimates for (PDEγ). Note that in contrast to
[Noc88, Theorem 2.1] we do not require the operator A to be elliptic.

Proposition 2.36 Let u ∈ L∞(Q) and Ψ with ∂tΨ, AΨ ∈ L∞(Q). Write yγ = Sγ(u). Then
we have for any γ > 0:

‖βγ(yγ −Ψ)‖L∞(Q) ≤ ‖u‖L∞(Q) + ‖∂tΨ‖L∞(Q) + ‖AΨ‖L∞(Q) + ‖f(Ψ)‖L∞(Q),

‖f(y)‖L∞(Q) ≤ Cy0‖y0‖L∞(Ω) + 2‖u‖L∞(Q) + 2‖f(0)‖L∞(Q)

+ ‖f(Ψ)‖L∞(Q) + ‖∂tΨ‖L∞(Q) + ‖AΨ‖L∞(Q).

Here Cy0 is the Lipschitz constant of f with respect to its last component on a ball with radius
‖y0‖L∞(Ω).
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2.4 Convergence of Solutions to Regularized Obstacle Problems

Proof. By Corollary 2.14 we have f(Ψ) ∈ L∞(Q), so everything on the right hand sides is
well-defined.

By Lemma 2.25 and Lemma 2.26 we have for any p ∈ (1 +N/2,∞) ∩ [2,∞)

‖βγ(y −Ψ)‖Lp(Q) ≤ ‖u‖Lp(Q) + ‖∂tΨ‖Lp(Q) + ‖AΨ‖Lp(Q) + ‖f(Ψ)‖Lp(Q),

‖f(y)‖Lp(Q) ≤ C
p−1
p

y0 ‖y0‖L∞(Ω) + 2‖u‖Lp(Q) + 2‖f(0)‖Lp(Q)

+ ‖∂tΨ‖Lp(Q) + ‖AΨ‖Lp(Q) + ‖f(Ψ)‖Lp(Q).

We now send p to ∞ and receive the desired result by Lemma 1.17.

Theorem 2.37 Assume β has the form given in Proposition 2.17 for some α ≥ 1. u ∈
L∞(Q) and assume Ψ with ∂tΨ, AΨ ∈ L∞(Q). Further, assume γ ∈ (0, c−1αα/(1−α)) (with
αα/(1−α) = e−1 for α = 1) where we define c := ‖u‖L∞(Q) + ‖∂tΨ‖L∞(Q) + ‖AΨ‖L∞(Q) +
‖f(Ψ)‖L∞(Q). Then we have

‖S(u)− Sγ(u)‖L∞(Q) ≤ (cγ)1/α.

Proof. From Proposition 2.36 we have

‖λγ(u)‖L∞(Q) ≤ ‖u‖L∞(Q) + ‖∂tΨ‖L∞(Q) + ‖AΨ‖L∞(Q) + ‖f(Ψ)‖L∞(Q). (2.20)

By the same proof one can obtain

‖λ(u)‖L∞(Q) ≤ ‖u‖L∞(Q) + ‖∂tΨ‖L∞(Q) + ‖AΨ‖L∞(Q) + ‖f(Ψ)‖L∞(Q) (2.21)

from Theorem 2.34.

By definition we have for any integer p ∈ (1 + N/2,∞) that S(u), Sγ(u) ∈ W (I) ∩ L∞(Q).
Therefore we find

(S(u)− Sγ(u))2p+1 =: e2p+1 ∈ L2(I, V ).

Now we can test the equations for S(u) and Sγ(u) with e2p+11(0,t̂) for some t̂ ∈ I and take
the difference, resulting in(

∂te+Ae+ (f(S(u))− f(Sγ(u))), e2p+1
)
L2((0,t̂)×Ω)

=
(
λ(u)− λγ(u), e2p+1

)
L2((0,t̂)×Ω)

.

(2.22)

We estimate this term by term. We start with the A-term:

(Ae, e2p+1)L2((0,t̂)×Ω) =
N∑

i,j=1

∫
Q
aij ∂xie ∂xj (e2p+1) d(t, x)

= (2p+ 1)
N∑

i,j=1

∫
(0,t̂)×Ω

aij e
2p ∂xie ∂xje d(t, x)

= 2p+ 1
(p+ 1)2

N∑
i,j=1

∫
(0,t̂)×Ω

aij ∂xi(ep+1) ∂xj (ep+1) d(t, x) ≥ 0.

(2.23)

Here we used the ellipticity of the matrix (aij)i,j=1,...,N in the last inequality. The terms in
(2.22) with f are simply estimated by the monotonicity of f :(

f(S(u))− f(Sγ(u)), e2p+1
)
L2((0,t̂)×Ω)

≥ 0. (2.24)
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Now we turn to the term with the time derivative in (2.22) and see

(
∂te, e

2p+1
)
L2((0,t̂)×Ω)

= 1
2p+ 2

∫ t̂

0
∂t

(∫
Ω
e2p+2 dx

)
dt = 1

2p+ 2‖e(t̂)‖
2p+2
L2p+2(Ω).

This, (2.23) and (2.24) inserted into (2.22) results in

1
2p+ 2‖e(t̂)‖

2p+2
L2p+2(Ω) ≤

(
λ(u)− λγ(u), e2p+1

)
L2((0,t̂)×Ω)

.

Thus we have shown that for any t̂ ∈ I there holds

‖e(t̂)‖L2p+2(Ω) ≤ (2p+ 2)
1

2p+2

((
λ(u)− λγ(u), e2p+1

)
L2((0,t̂)×Ω)

) 1
2p+2

. (2.25)

The following statements hold true for almost every (t, x) ∈ Q.

• If S(u)(t, x) > Ψ(t, x) and Sγ(u)(t, x) ≥ Ψ(t, x) we have

λ(u)(t, x) = −βγ(Sγ(u)−Ψ)(t, x) = 0,

which implies [
(λ(u) + βγ(Sγ(u)−Ψ))e2p+1

γ

]
(t, x) = 0.

• If S(u)(t, x) > Ψ(t, x) and Sγ(u)(t, x) < Ψ(t, x) we have

λ(u)(t, x) = 0, eγ(t, x) > 0 and βγ(Sγ(u)−Ψ)(t, x) ≤ 0.

This in turn implies [
(λ(u) + βγ(Sγ(u)−Ψ))e2p+1

γ

]
(t, x) ≤ 0.

• If S(u)(t, x) = Ψ(t, x) and Sγ(u)(t, x) ≥ Ψ we have

λ(u)(t, x) ≥ 0, eγ(t, x) ≤ 0 and βγ(Sγ(u)−Ψ)(t, x) = 0,

resulting in [
(λ(u) + βγ(Sγ(u)−Ψ))e2p+1

γ

]
(t, x) = (λ(u), e2p+1

γ )(t, x) ≤ 0.

• If S(u)(t, x) = Ψ(t, x) and Sγ(u)(t, x) < Ψ we have[
(λ(u) + βγ(Sγ(u)−Ψ))e2p+1

γ

]
(t, x) =

[
(λ(u) + βγ(Sγ(u)−Ψ))(Ψ− Sγ(u))2p+1

]
(t, x),

≤ (λ(u)(Ψ− Sγ(u))2p+1)(t, x).
(2.26)

We claim that Sγ(u)(t, x) − Ψ(t, x) ≥ −(cγ)1/α. By assumption γ ∈ (0, c−1αα/(1−α)).
Assume Sγ(u)(t, x)−Ψ(t, x) := r < −α1/(1−α). Then

βγ(r) = 1
γ

(
r + α− 1

α
α1/(1−α)

)
≤ 1
γ

−1
α
α1/(1−α) < −cα−α/(1−α) 1

α
α1/(1−α) = −c.
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A contradiction to (2.20). Thus r ∈ [−α1/(1−α), 0]. In turn this and the form of βγ
imply

−c ≤ −1
γ
|r|α and thus =⇒ cγ ≥ |r|α.

By the definition of r we thus have

(cγ)1/α ≥ |Sγ(u)(t, x)−Ψ(t, x)|.

Together with (2.26) we find by Lemma 1.17[
λ(u)− λγ(u), e2p+1

]
(t, x) ≤ c

(
(cγ)

1
α

)2p+1

Those four cases inserted into (2.25) yields for any t̂ ∈ I

‖e(t̂)‖L2p+2(Ω) ≤ ((2p+ 2)c)
1

2p+2
(
(cγ)

1
α

) 2p+1
2p+2 .

Sending p to ∞ we find

‖e(t̂)‖L∞(Ω) ≤ (cγ)
1
α .

As e is continuous and t̂ was arbitrary this implies the desired estimate.

2.4.1 Improved Regularity Results for Obstacle Problems on Smooth Domains

In smooth domains we can obtain higher regularity of solutions to (PDEγ).

Lemma 2.38 Assume Ω is a C1,1 domain and that ΓD = ∂Ω. There exist C > 0 and κI , κΩ,
satisfying the conditions of Corollary 2.27 such that the following holds: for u ∈ Lqu(Q) and
yγ = Sγ(u) for γ > 0 we have

‖yγ‖CκI (I,CκΩ (Ω)) + ‖yγ‖W 1,2
qu (Q) ≤ C

(
‖u‖Lqu (Q) + ‖y0‖Wqu

+ ‖f(0)‖Lqu (Q)

+‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q)
)
.

Proof. This follows from Corollary 2.27 in combination with basic higher elliptic regularity,
since ΓD = ∂Ω, see Theorem 8.23.

Remark 2.39 If we did not use Hölder regularity obtained by the results from [DtER15] in
Theorem 8.20 and theorems based on it, Theorem 1.34 would give us Hölder regularity based
on the W 1,2

qu (Q) regularity.

Now by those improved estimates one can obtain an improved version of Theorem 2.34.

Theorem 2.40 Assume Ω is a C1,1 domain and that ΓD = ∂Ω. There exist C > 0 and κI , κΩ,
satisfying the conditions of Corollary 2.27 such that the following holds: let (un)n∈N ⊂ Lqu(Q)
a weakly convergent series, converging to u ∈ Lqu(Q), and (γn)n∈N a zero sequence with γn ≥ 0
for all n ∈ N. We then have

• Sγn(un) n→∞−−−→ S(u) strongly in CκI (I, CκΩ(Ω)) and weakly in W 1,2
qu (Q),

• λγn(un) n→∞−−−→ λ(u) weakly in Lqu(Q).
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This in particular implies for y = S(u)

‖y‖CκI (I,CκΩ (Ω)) + ‖y‖
W 1,2
qu (Q) ≤ C

(
‖u‖Lqu (Q) + ‖y0‖Wqu

+ ‖f(0)‖Lqu (Q)

+‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q)
)
.

Proof. The proof for the convergences is the same as for Theorem 2.34. We just use the
reflexivity of W 1,2

qu (Q) from Lemma 1.25 instead of the reflexivity of W (I).

The norm estimates follow from Lemma 2.38.

2.4.2 Improved Regularity Results for Obstacle Problems on Polygonal Domains

As for smooth domains, one can obtain improved regularity results for polygonal domains.
The strategies are the same as in Section 2.4.1, just using the elliptic regularity result Corol-
lary 8.27 instead of Theorem 8.23.

Lemma 2.41 Assume A = −∆. Let Ω ⊂ R2 a polygonal domain. That means we can
decompose its boundary in Γ1,Γ2, . . . , Γ̄M edges. By ωj ∈ (0, 2π) we denote the angles between
Γj and Γj+1 with ΓM+1 = Γ1. We assume that the Dirichlet boundary ΓD is a union of edges
of ∂Ω and ΓD 6= ∅.

We define

Φj :=
{

0 if Γj 6⊂ ΓD,
π
2 if Γj ⊂ ΓD,

for j = 1, . . . ,M with ΦM+1 := Φ1. We further define for j = 1, 2, . . . ,M

ωlim,j :=
{
π
2 if Φj = Φj+1,
π
4 if Φj 6= Φj+1.

For each j ∈ {1, 2, . . . ,M} we assume ωj ≤ ωlim,j or qu < ωj
ωj−ωlim,j .

There exist C > 0 and κI , κΩ, satisfying the conditions of Corollary 2.27 such that the
following holds: for u ∈ Lqu(Q) and yγ = Sγ(u) for γ > 0 we have

‖yγ‖CκI (I,CκΩ (Ω)) + ‖yγ‖W 1,2
qu (Q) ≤ C

(
‖u‖Lqu (Q) + ‖y0‖Wqu

+ ‖f(0)‖Lqu (Q)

+‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q)
)
.

Theorem 2.42 Assume A and Ω satisfy the same properties as in Lemma 2.41.

There exist C > 0 and κI , κΩ, satisfying the conditions of Corollary 2.27 such that the
following holds: let (un)n∈N ⊂ Lqu(Q) a weakly convergent series, converging to u ∈ Lqu(Q),
and (γn)n∈N a zero sequence with γn ≥ 0 for all n ∈ N. We then have

• Sγn(un) n→∞−−−→ S(u) strongly in CκI (I, CκΩ(Ω)) and weakly in W 1,2
qu (Q),

• λγn(un) n→∞−−−→ λ(u) weakly in Lqu(Q).

This in particular implies for y = S(u)

‖y‖CκI (I,CκΩ (Ω)) + ‖y‖
W 1,2
qu (Q) ≤ C

(
‖u‖Lqu (Q) + ‖y0‖Wqu

+ ‖f(0)‖Lqu (Q)

+‖∂tΨ‖Lqu (Q) + ‖AΨ‖Lqu (Q) + ‖f(Ψ)‖Lqu (Q)
)
.
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3 Optimal Control Problems and their
Regularizations

This chapter is dedicated to the derivation of the optimal control problems we shall analyze
for the rest of the thesis. We study regularized and unregularized problems, which are related
quite closely. We will discuss the problems with respect to the existence of solutions, necessary
first order optimality conditions and second order sufficient conditions. At the beginning of
each section we give a short overview over the current state of research, our motivations and
strategies.

Assumption 3.1 For the whole of Chapter 3 we obviously assume the definitions and stand-
ing assumptions from Section 2.2.1 to hold true. Therefore we may apply most results from
Chapter 2 freely. Whenever mentioned, the regularization term β shall satisfy the properties
from Definition 2.16.

3.1 Optimal Control of Obstacle Problems with Control
Constraints

Our problem will use a smooth cost functional of a simple structure together with distributed
controls. Similar types of problems were for example also studied in [Bar81, Che03, BZ99,
Fri87] and [Bar84, Chapter 5]. For the elliptic version of our problem we shall representatively
mention [MP84]. We go into more depth on the relevant references at the beginning of the
respective sections.

Related problems which also sometimes fall under the umbrella of “Optimal control with
parabolic VIs” will be shortly listed here. For example, in [BT11] optimal control problems
with parabolic VIs of second kind are analysed, see [BT11, Section 2] for the differences to
the obstacle problem. The authors are able to show that their highly non-quadratic problem
has a unique solution under certain, strong assumptions. Another related problem is the
control of the diffusion coefficients of A studied for example in [IK10]. There a regularization
approach, different from ours, is used. Problems that look similar to ours, on first glance
at least, but are very different, are problems were the obstacle itself is the control. See for
example [BL04, AL02].

Definition 3.2 We consider the optimal control problem

min
(y,u)∈W (I)×L2(Q)

jv(y) + jT (y(T )) + g(u) =: J(y, u),

such that S(u) = y and u ∈ Uad,
(OC)

where

• jv : L2(Q)→ R is continuously Fréchet differentiable,

• jT : L2(Ω)→ R is continuously Fréchet differentiable,

• g : L2(Q)→ R is continuously Fréchet differentiable and convex.
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The derivatives can be identified with corresponding L2-functions according to the Riesz
representation theorem. We further demand that there exists a constant c ∈ R such that
J(y, u) ≥ c holds for any admissible (y, u).

The admissible set Uad is a convex, bounded and closed subset of Lqu(Q). By these assump-
tions Uad is also weakly closed. Note that the assumptions on g imply that it is weakly lower
semi-continuous, cf. [BP12, Proposition 2.10].

Theorem 3.3 (OC) has at least one solution (ȳ, ū).

Proof. By assumption we have that J is bounded from below and thus there exists an
infimizing sequence (S(un), un)n∈N of (OC). By the boundedness of Uad we have that
(‖un‖Lqu (Q))n∈N is bounded and thus there exists a weak limit ū in Lqu(Q) of a subse-
quence. We denote the subsequence by the same indices. Because Uad is weakly closed we
have ū ∈ Uad. By Lemma 2.29 and Definition 2.32 we do have that (S(un))n∈N converges to
S(ū) in the sense given in Lemma 2.29, in particularly uniformly. Thus we have

inf
u∈Uad

J(S(u), u) = lim
n→∞

J(S(un), un) = lim inf
n→∞

(jv(S(un)) + jT (S(un)(T )) + g(un))

≥ lim inf
n→∞

jv(S(un)) + lim inf
n→∞

jT (S(un)(T )) + lim inf
n→∞

g(un).

As (S(un))n∈N converges uniformly and as g is weakly lower semi-continuous we arrive at

inf
u∈Uad

J(S(u), u) ≥ jv(S(ū)) + jT (S(ū)(T )) + g(ū) = J(S(ū), ū).

Remark 3.4 Note that the differentiability assumptions on jT , jv and g were not necessary
to prove existence of a solution of (OC). It is enough that jv, jT and g are weakly lower
semi-continuous.

It is also easy to see that solutions to (OC) are not unique in general as S is clearly not
injective. Consider Ω = (0, 1), I = (0, 1) and the constant obstacle Ψ = 0. The initial
condition is chosen as y0 = 0 and the variational inequality is given by{

(∂ty −∆y, v − y)L2(Q) ≥ (u, v − y)L2(Q) ∀v ∈ L2(I, V )
y|I×∂Ω = 0, y(0) = 0.

We have S(u) = 0 for any u ∈ Lqu(Q) that satisfies u ≤ 0 almost everywhere in Q. This can
be easily seen by checking that for any such u the state y = 0 satisfies

(∂t0−∆0− u, v − 0)L2(Q) = (−u, v)L2(Q) ≥ 0

for any admissible v ≥ Ψ = 0.

We choose the admissible set as

Uad =
{
u ∈ Lqu(Q) : u ≤ 0 almost everywhere in Q,

∫
Q
u d(t, x) = −1

}
.

Further we choose jv(y) = 1
2‖y‖

2
L2(Q), jT = 0 and g(u) = ‖u‖L1(Q). Thus for any u ∈ Uad we

have

jv(S(u)) + jT (S(u)(T )) + g(u) = 1
2‖0‖

2
L2(Q) + 0 + 1 = 1.

Therefore all u ∈ Uad are optimal solutions.
Remark 3.5 It is possible to show uniqueness by utilizing the equivalence of (OC) to a convex,
state constrained problem, at least under certain assumptions, see Section 3.4.3.
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3.2 Control Problems Utilizing Regularized Obstacle Problems

For this section we let (ȳ, ū) be a global solution of (OC). We then consider a family of
regularizations

min
(y,u)∈W (I)×L2(Q)

jv(y) + jT (y(T )) + g(u) + 1
2 ‖u− ū‖

2
L2(Q) =: Jū(y, u),

such that Sγ(u) = y and u ∈ Uad.
(OCγ,ū)

Regularizations like these, relying on a chosen solution (ȳ, ū), often appear in problems with-
out a unique solution. In case of optimal control involving variational inequalities see for
example [Bar81, MP84, BL04, AL02] and in particular [Bar84, Chapter 5]. Note that these
problems are obviously only of theoretical interest as they require the a priori knowledge of
a solution (ȳ, ū) to (OC). We later study regularized and discretized problems, where this a
priori knowledge is not required. The analysis of those problems will be similar.

Lemma 3.6 (OCγ,ū) has a solution (ȳγ , ūγ).

Proof. The same arguments and convergences used for the proof of Theorem 3.3 can be
transfered to (OCγ,ū) as well.

Theorem 3.7 Let κI , κΩ ∈ (0, 1) satisfy the properties from Theorem 2.22. For any sequence
of solutions ((ūγ , yγ))γ>0 of (OCγ,ū) we have

• ūγ
γ→0−−−→ ū strongly in L2(Q) and weakly in Lqu(Q),

• ȳγ
γ→0−−−→ ȳ strongly in CκI (I, CκΩ(Ω)) and weakly in W (I),

• λ(ūγ) γ→0−−−→ λ(ū) weakly in Lqu(Q).

Remark 3.8 If we assume higher regularity of the domain, e.g. C1,1 domains or polygonal do-
mains with appropriate conditions on interior angles and qu, we can improve this convergence
result to convergence in the senses of Theorems 2.40 and 2.42.

Proof of Theorem 3.7. By the boundedness of Uad we have that (‖ūγ‖Lqu (Q))γ>0 is bounded.
Thus there exists a weak limit ũ ∈ Lqu(Q) along an appropriate zero sequence (γn)n∈N. By
Theorem 2.34 we have for ỹ := S(ũ) that

Sγn(ūγn) n→∞−−−→ ỹ strongly in CκI (I, CκΩ(Ω)) and weakly in W (I)

and

λγn(uγn) n→∞−−−→ λ(ũ) weakly in Lqu(Q).

We then have, by the lower semi-continuity of g,

J(ỹ, ũ) ≤ lim inf
n→∞

J(ȳγn , ūγn) ≤ lim sup
n→∞

Jū(ȳγn , ūγn) ≤ lim sup
n→∞

Jū(ȳ, ū) = J(ȳ, ū).

As (ȳ, ū) is a minimizer of J we have that (ỹ, ũ) is also a minimizer of (OC) and

lim
n→∞

J(ȳγn , ūγn) = lim
n→∞

Jū(ȳγn , ūγn) = J(ȳ, ū).
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This implies

lim
n→∞

1
2‖ūγn − ū‖

2
L2(Q) = 0.

So we find ũ = ū and ỹ = ȳ and the strong convergence of (ūγn)n∈N in L2(Q). Because the
limit is unique the whole sequence converges and not just the studied subsequence.

3.3 Optimality Conditions for Regularized Optimal Control
Problems

We now use the regularized problems to deduce optimality conditions for the unregularized
problem. We will use the differentiability of Sγ to derive optimality conditions for (OCγ,ū)
and then in the next section pass to the limit.

Close to our approach is the work of [Bar81], respectively [Bar84]. In [Bar81] the author
started with a graph-inclusion reformulation of (VIabs) and regularizes from there. Never-
theless, we still give a full discussion of the optimality conditions as understanding them fully
is tantamount in applying them to the discussion of the numerical analysis of the optimal
control problem itself. We also include a non-linearity in our discussion which is absent in
the discussion in [Bar81].

In [Fri87] an approach similar to our was used. There the author used this approach to
consider C2-domains and specific obstacles to study bang-bang problems and boundary con-
trols.

In [Che03] a very general approach was taken for a problem, similar to ours, posed in general
metric spaces. There the author deduced Pontryagin’s maximum principle in a very general
setting. As we plan to use smoothness and high regularity to deduce and work with even
second order conditions we abstain from pursuing this further. Another approach working
with Pontryagin’s maximum principle is found in [BZ99].

Throughout Sections 3.3 to 3.7 we make the following assumption on βγ , unless noted other-
wise.

Assumption 3.9 Assume that βγ lies in C1,1
loc (R).

3.3.1 Regularity and Differentiability of Solution Operators Belonging to
Regularized Obstacle Problems

We start by studying the regularity of Sγ .

Proposition 3.10 Assume that βγ lies in C0,1
loc (R). The regularized solution operator

Sγ : Lqu(Q)→W (I) ∩ CκI (I, CκΩ(Ω))

is locally Lipschitz continuous. The Lipschitz constant does depend on γ.
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Proof. Let u1, u2 ∈ Lqu(Q) and yi := Sγ(ui) ∈ W (I) ∩ CκI (I, CκΩ(Ω)). The regularity is
given by Theorem 2.22. Taking the differences of the equation defining the yi we have{

∂t(y1 − y2) +A(y1 − y2) + (f(y1)− f(y2)) + (βγ(y1 −Ψ)− βγ(y2 −Ψ)) = u1 − u2,

(y1 − y2)(0) = 0, (y1 − y2)|ΣD = 0.
(3.1)

By Theorem 2.22 we have

‖yi‖W (I)∩CκI (I,CκΩ (Ω) ≤ Cγ
(
‖u‖Lqu (Q) + ‖y0‖Wqu

+ ‖f(0)‖L∞(Q) + ‖βγ(−Ψ)‖L∞(Q)
)
.

Thus, by the local Lipschitz continuity of f we have almost everywhere in Q

|f(t, x, y1(t, x))− f(t, x, y2(t, x))| ≤ L|y1(t, x)− y2(t, x)| (3.2)

with an L depending only on an upper bound to ‖u1‖Lqu (Q) and ‖u2‖Lqu (Q) but not on (t, x).

Thus by Rademacher’s Theorem, cf. [AFP00, Proposition 2.13], and the fundamental theorem
of calculus for Sobolev functions, cf. [Bré11, Theorem 8.2], we have almost everywhere in Q
that

f(t, x, y1(t, x))− f(t, x, y2(t, x))

=
∫ 1

0
f ′(t, x, y2(t, x) + s(y1(t, x)− y2(t, x)) ds · (y1(t, x)− y2(t, x)).

Here, due to [AFP00, Proposition 2.13] and (3.2), we have that the weak derivative f ′ in
the y-component, is bounded by L independently of (t, x) ∈ Q. The same arguments can be
made for βγ(· −Ψ). We denote the constant for βγ by L as well.

If we abbreviate δy := y1 − y2 and δu := u1 − u2 we can write (3.1) as{
∂tδy +Aδy +

∫ 1
0 f
′(y2 + s(y1 − y2)) + βγ

′(y2 + s(y1 − y2)) ds δy = δu,

δy(0) = 0, δy|ΣD = 0.

We define ∫ 1

0
f ′(y2 + s(y1 − y2)) + βγ

′(y2 + s(y1 − y2)) ds =: ay1,y2 .

By our earlier arguments ay1,y2 is bounded by 2L and by the monotonicity of f and βγ it is
non-negative.

So in total δy solves a parabolic PDE, with the elliptic operator A and the “non-linearity”
y 7→ ay1,y2y which has the Lipschitz constant 2L, which does not depend on y1 or y2. Thus
we can apply Theorem 8.17 to get

‖δy‖W (I)∩CκI (I,CκΩ (Ω)) ≤ C‖δu‖Lqu (Q),

which is just the sought local Lipschitz continuity.

Theorem 3.11 The operator

Sγ : Lqu(Q)→W (I) ∩ CκI (I, CκΩ(Ω))

is Fréchet differentiable. Its derivative at u ∈ Lqu(Q) in direction d ∈ Lqu(Q) is given by
Sγ
′(u)d = z ∈W (I) ∩ CκI (I, CκΩ(Ω)) as the weak solution of{

∂tz +Az + f ′(Sγ(u))z + βγ
′(Sγ(u)−Ψ)z = d,

z(0) = 0, z|ΣD = 0.
(3.3)
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Proof. Let u, d ∈ Lqu(Q) and z the solution to (3.3). We also define y := Sγ(u) and yd :=
Sγ(u+ d). Subtracting the equation for y and z from the one for yd yields

∂t(yd − y − z) +A(yd − y − z) +
(
f(yd)− f(y)− f ′(y)z

)
+
(
βγ(yd −Ψ)− βγ(y −Ψ)− βγ ′(y −Ψ)d

)
= 0

(3.4)

in a weak sense, with appropriate boundary conditions.

The mapping f is Fréchet differentiable from L∞(Q) to L∞(Q) by Lemma 2.15. So

f(yd)− f(y)− f ′(y)(yh − y) = Rf ∈ L∞(Q)

with Rf satisfying

‖Rf‖L∞(Q) = o(‖yd − y‖L∞(Q)). (3.5)

The same holds true for βγ with some Rβγ . Introducing yd − y − z =: rd (3.4) reads{
∂trd +Ard + f ′(y)rd + βγ

′(y −Ψ)rd = −Rf −Rβγ ,
rd|ΣD = 0, rd(0) = 0.

Now, as in the last part of the proof of Proposition 3.10 Theorem 8.17 delivers,

‖rd‖W (I)∩CκI (I,CκΩ (Ω)) ≤ C‖Rf +Rβγ‖Lqu (Q)

This implies, using the local Lipschitz continuity from the previous theorem and (3.5)

‖rd‖W (I)∩CκI (I,CκΩ (Ω)
‖d‖Lqu (Q)

≤ C
‖Rf +Rβγ‖L∞(Q)
‖yd − y‖L∞(Q)

‖yd − y‖L∞(Q)
‖d‖Lqu (Q)

‖d‖Lqu (Q)−−−−−−→ 0.

Remark 3.12 We now prove, if βγ is non-smooth but has a special structure, that Sγ is
still differentiable, provided that in the differentiation point u there holds that {Sγ(u) = Ψ},
defined below, is of measure 0. From experience this assumption is satisfied for any “naturally
occurring” right hand side or control. We prove this theorem to indicate that some, or rather
all, of the first order optimality discussion in Section 3.3.2 can be done for non-smooth βγ as
well as smooth βγ . But to avoid the constant mentioning of the assumption that {S(u) = Ψ}
is a set of measure zero, we shall only discuss the cases of smooth βγ and as the transfer to
the non-smooth situation is straight forward.

The following theorem is not formulated in its utmost generality. It is possible to consider
even less differentiable non-smooth regularization terms and non-linearities, cf. [Bet19]. We
limit ourselves to a self contained and transparent example, which we will use later in our
experiments in Chapter 7.

Theorem 3.13 Assume that βγ is of the form from Proposition 2.17 for α = 1. Then

Sγ : Lqu(Q)→W (I) ∩ CκI (I, CκΩ(Ω))

is Fréchet differentiable for each u ∈ Lqu(Q) such that

{Sγ(u) = Ψ} := {(t, x) ∈ Q : Sγ(u)(t, x) = Ψ(t, x)}

is of Lebesgue measure 0. As Ψ represents an equivalence class this set would be different
for a different representative of the same equivalence class. However, sets for two different
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representatives only differ on a set of of measure 0, so the statement is independent of the
specific representative.

The derivative at u ∈ Lqu(Q) in direction d ∈ Lqu(Q) is given by Sγ ′(u)d = z ∈ W (I) ∩
CκI (I, CκΩ(Ω)) as the weak solution of{

∂tz +Az + f ′(Sγ(u))z + βγ
′(Sγ(u)−Ψ)z = d,

z(0) = 0, z|ΣD = 0.
(3.6)

Here we use the notation βγ
′(r) = 1

γ 1(−∞,0)(r), keeping in mind that the problematic case
r = 0 is not relevant under our assumptions.

Proof. Let the notation be as in the proof of Theorem 3.11. By the same first steps we have,
with rd := yd − y − z,{

∂trd +Ard + f ′(y)rd + (βγ(yd −Ψ)− βγ(y −Ψ)− βγ ′(y −Ψ)z) = −Rf ,
rd(0) = 0, rd|ΣD = 0.

Rearranging this further results in

∂trd +Ard + f ′(y)rd + βγ
′(y −Ψ)rd

= −Rf + βγ
′(y −Ψ)(yd − y) + βγ(y −Ψ)− βγ(yd −Ψ).

Again, Theorem 8.17 yields
‖rd‖W (I)∩CκI (I,CκΩ (Ω))

≤ C(‖Rf‖Lqu (Q) + ‖βγ ′(y −Ψ)(yd − y) + βγ(y −Ψ)− βγ(yh −Ψ)‖Lqu (Q)).
(3.7)

We have to show that the right hand side is of order o(‖d‖Lqu (Q)). The term Rf is of order
o(‖d‖Lqu (Q)), as in the proof of Theorem 3.11. We continue to inspect the terms with βγ . Let
ε > 0 be arbitrary. By Proposition 3.10 we find for d sufficiently small that y(t, x)−Ψ(t, x) < ε
implies yd(t, x)−Ψ(t, x) < ε

2 . Thus, by the definition of βγ , we find for those small d

‖βγ ′(y −Ψ)(yd − y) + βγ(y −Ψ)− βγ(yd −Ψ)‖Lqu (Q)

= ‖βγ ′(y −Ψ)(yd − y) + βγ(y −Ψ)− βγ(yd −Ψ)‖Lqu ({|y−Ψ|<ε})

≤
(1
γ
‖yd − y‖L∞(Q) + ‖βγ(y −Ψ)− βγ(yd −Ψ)‖L∞({|y−Ψ|<ε})

)
|{|y −Ψ| < ε}|

1
qu .

By the Lipschitz continuity of βγ with constant γ−1 and Proposition 3.10 this implies

‖βγ ′(y −Ψ)(yd − y) + βγ(y −Ψ)− βγ(yd −Ψ)‖Lqu (Q) ≤
2
γ
‖d‖Lqu (Q)|{|y −Ψ| < ε}|

1
qu .

This entails
‖rd‖W (I)∩CκI (I,CκΩ (Ω))

‖d‖Lqu (Q)
≤
o(‖d‖Lqu (Q))
‖d‖Lqu (Q)

+ C|{|y −Ψ| < ε}|
1
qu .

Sending ‖d‖Lqu (Q) to 0 yields

lim sup
‖d‖Lqu (Q)→0

‖rd‖W (I)∩CκI (I,CκΩ (Ω))
‖d‖Lqu (Q)

≤ C|{|y −Ψ| < ε}|
1
qu .

As ε > 0 was arbitrary σ-continuity of the Lebesgue measure, e.g. [BK15, Proposition 3.1.],
implies

lim sup
‖d‖Lqu (Q)→0

‖rd‖W (I)∩CκI (I,CκΩ (Ω))
‖d‖Lqu (Q)

≤ C|{y −Ψ = 0}|
1
qu .

By assumption the right hand side is equal to 0 and we can conclude the proof here.
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3.3.2 First Order Optimality Conditions for Regularized Optimal Control
Problems

Now we get an easy optimality condition by differentiating into the proper directions.

Corollary 3.14 If (ȳγ , ūγ) is optimal for (OCγ,ū) then(
j′v(ȳγ), S′(ȳγ)(u− ūγ)

)
L2(Q) +

(
j′T (ȳγ(T )), (S′(ȳγ)(u− ūγ))(T )

)
L2(Ω)

+
(
g′(ūγ) + γ(ūγ − ū), u− ūγ

)
L2(Q) ≥ 0 ∀u ∈ Uad.

We can now introduce an adjoint state to simplify this system.

Definition 3.15 For a given pair (y, u) = (Sγ(u), u) with u ∈ Lqu(Q) we define pγ =
pγ(y, u) ∈W (I) as the unique weak solution of{

−∂tp+Ap+ f ′(y)p+ βγ
′(y −Ψ)p = j′v(y),

p(T ) = jT (y(T )), p|ΣD = 0.
(3.8)

Recall that A is by assumption self-adjoint. A solution to this linear problem exists by
[Wlo92, Theorem 26.1]. There we also find the regularity p̄γ ∈W (I).

For an optimal solution (ȳγ , ūγ) of (OCγ,ū) we call (ūγ , ȳγ , p̄γ) := (ūγ , ȳγ , p(ȳγ , ūγ)) an optimal
triple of (OCγ,ū).

Using p̄γ we can reformulate Corollary 3.14 to:

Corollary 3.16 If (ȳγ , ūγ) is optimal then p̄γ = pγ(ȳγ , ūγ) and ūγ satisfy(
p̄γ + g′(ūγ) + γ(ūγ − ū), u− ūγ

)
L2(Q) ≥ 0 ∀u ∈ Uad.

Proof. We test (3.8) with p̄γ with z := S′γ(ȳγ)(u− ūγ) for some u ∈ Uad and see that(
j′v(ȳγ), z

)
L2(Q) = (−∂tp̄γ +Ap̄γ , z)L2(I,V ∗,V ) +

(
f ′(ȳγ)p̄γ + βγ

′(ȳγ −Ψ)p̄γ , z
)
L2(Q)

= (p̄γ , ∂tz +Az)L2(I,V,V ∗) +
(
f ′(ȳγ)z + βγ

′(ȳγ −Ψ)z
)
L2(Q)

− (p̄γ(T ), z(T ))L2(Ω) + (p̄γ(0), z(0))L2(Ω)

= (p̄γ , u− ūγ)L2(Q) −
(
j′T (ȳγ(T )), z(T )

)
L2(Ω) .

Applying this to the result of Corollary 3.14 yields the desired optimality condition.

Lemma 3.17 Let (ūγ , ȳγ , p̄γ) be an optimal triple of (OCγ,ū). Then

‖p̄γ‖C(Ī,H)∩L2(I,V ) ≤ C
(
‖j′T (ȳγ(T ))‖L2(Ω) + ‖j′v(ȳγ)‖L2(Q)

)
.

The constant C > 0 is independent of γ and the terms on the right are also bounded inde-
pendently of γ.

Proof. Testing (3.8) with p̄γ · 1(t,T ) for some t ∈ I yields

1
2‖p̄γ(t)‖2H −

1
2‖p̄γ(T )‖2H + νell‖∇p̄γ‖2L2((t,T )×Ω) ≤ (−∂tp̄γ +Ap̄γ , p̄γ)L2((t,T )×Ω)

=
(
−f ′(ȳγ)p̄γ , p̄γ

)
L2((t,T )×Ω) +

(
−βγ ′(ȳγ)p̄γ , p̄γ

)
L2((t,T )×Ω) +

(
j′v(ȳγ), p̄γ

)
L2((t,T )×Ω)

≤ ‖j′v(ȳγ)‖L2(Q)‖p̄γ‖L2(Q).
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Here we used partial integration and the positivity of f ′ and βγ ′. As t ∈ I was arbitrary this
entails

sup
t∈I
‖p̄γ(t)‖2H ≤ 2‖j′v(ȳγ)‖L2(Q)‖p̄γ‖L2(Q) + ‖j′T (ȳγ(T ))‖2H . (3.9)

Thus

‖p̄γ‖2L2(I,V ) ≤
√
T sup

t∈I
‖p̄γ(t)‖2H + ‖∇p̄γ‖2L2(Q) ≤ C

(
‖j′v(ȳ)‖L2(Q)‖p̄γ‖L2(Q) + ‖j′T (ȳγ(T ))‖2H

)
.

By Young’s inequality we can kick back the term with p̄γ on the right and obtain

‖p̄γ‖2L2(I,V ) ≤
√
T sup

t∈I
‖p̄γ(t)‖2H + ‖∇p̄γ‖2L2(Q) ≤ C

(
‖j′v(ȳ)‖2L2(Q) + ‖j′T (ȳγ(T ))‖2H

)
.

Taking the root yields the estimate for ‖p̄γ‖L2(I,V ). Inserting this into (3.9) yields the claim
for ‖p̄γ‖C(Ī,H) as well. By Theorem 2.30, the boundedness of Uad and the continuity of j′T
and j′v the bounded stays bounded independently of γ.

Before we analyse its behaviour for γ → 0 we also bound the multiplier associated with p̄γ .

Lemma 3.18 Let (ūγ , ȳγ , p̄γ) be an optimal triple of (OCγ,ū). We have

‖βγ ′(ȳγ −Ψ)p̄γ‖L1(Q) ≤ C(‖j′T (ȳγ(T ))‖H + ‖j′v(ȳγ)‖L2(Q))

with C > 0 independent of γ > 0. The right hand side is bounded independently of γ.

Proof. For δ > 0, x ∈ R we define absδ(x) =
√
δ + x2 and sgnδ(x) = x√

δ+x2 = abs′(x).

Now we test (3.8) with sgnδ(p̄γ) to receive(
βγ
′(ȳγ −Ψ)p̄γ , sgnδ(p̄γ)

)
L2(Q)

= (∂tp̄γ −Ap̄γ , sgnδ(p̄γ))L2(I,V ∗,V ) +
(
−f ′(ȳγ)p̄γ + j′v(ȳγ), sgnδ(p̄γ)

)
L2(Q) .

We estimate the left side term by term:

(∂tp̄γ , sgnδ p̄γ)L2(I,V ∗,V ) =
∫

Ω

∫ T

0
∂t(absδ(p̄γ)) dt dx =

∫
Ω

absδ(p̄γ(T ))− absδ(p̄γ(0)) dx

≤
∫

Ω
|p̄γ(T )|+

√
δ dx ≤ C‖j′T (ȳγ(T ))‖H + |Ω|δ.

Here, C > 0 is independent of γ.

Using the ellipticity of A and the positivity of sgn′ we can estimate the second term:

− (Ap̄γ , sgnδ p̄γ)L2(I,V ∗,V ) = −
N∑

i,j=1

(
aij∂xi p̄γ , sgn′δ(p̄γ)∂xj p̄γ

)
L2(Q)

≤ 0.

Because f ′ ≥ 0 and sgnδ(s)s ≥ 0 for any s the third term satisfies(
−f ′(ȳγ)p̄γ , sgnδ(p̄γ)

)
L2(Q) ≤ 0.

The fourth term is estimated directly by the boundedness of sgnδ:(
j′v(ȳγ), sgnδ(p̄γ)

)
L2(Q) ≤ ‖sgnδ(p̄γ)‖L∞(Q)‖j′v(ȳγ)‖L1(Q) ≤ C‖j′v(ȳγ)‖L2(Q).
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Here, C is independent of γ. So for any δ > 0 we have

(
βγ
′(ȳγ −Ψ)p̄γ , sgnδ(p̄γ)

)
L2(Q) ≤ C(‖j′T (ȳγ(T ))‖H + |Ω|δ + ‖j′v(ȳγ)‖L2(Q)). (3.10)

Again, C is independent of γ. We now want to consider the limit δ → 0. By the boundedness
of ȳγ and Ψ the integrand on the left of (3.10) is bounded by an L1(Q)-function. Thus the
theorem of dominated convergence, e.g. [BK15, Proposition 5.4], yields

C(‖j′T (ȳγ(T ))‖H + ‖j′v(ȳγ)‖L2(Q)) ≥ lim
δ→0

(
βγ
′(ȳγ −Ψ)p̄γ , sgnδ(p̄γ)

)
L2(Q)

=
∫
Q

lim
δ→0

βγ
′(ȳγ −Ψ)p̄γ sgnδ(p̄γ) d(t, x)

=
∫
Q
βγ
′(ȳγ −Ψ)p̄γ sgn(p̄γ) d(t, x).

By the positivity of βγ ′ we find

‖βγ ′(ȳγ −Ψ)p̄γ‖L1(Q) ≤ C(‖j′T (ȳγ(T ))‖H + ‖j′v(ȳγ)‖L2(Q)).

As in the last line of the proof of Lemma 3.17 this is bounded independently of γ.

Lemma 3.19 Let (ūγ , ȳγ , p̄γ) an optimal triple of (OCγ,ū). We have

‖βγ ′(ȳγ −Ψ)p̄γ‖W (I)∗ ≤ C
(
‖j′v(ȳγ)‖L2(Q) + ‖j′T (ȳγ(T ))‖H + ‖f ′(ȳγ)‖L∞(Q)

)
.

with C > 0 independent of γ > 0. The right hand side is bounded independently of γ.

Proof. Let ϕ ∈W (I). We test (3.8) with ϕ and obtain

(βγ ′(ȳγ −Ψ)p̄γ , ϕ)L2(Q)

= (∂tp̄γ −Ap̄γ , sgnδ(p̄γ))L2(I,V ∗,V ) +
(
−f ′(ȳγ)p̄γ + j′v(ȳγ), sgnδ(p̄γ)

)
L2(Q) .

≤ ‖j′v(ȳγ)‖L2(Q)‖ϕ‖L2(Q) + ‖A‖L∞(Ω)‖p̄γ‖L2(I,V )‖ϕ‖L2(I,V )

+ ‖f ′(ȳγ)‖L∞(Q)‖p̄γ‖L2(Q)‖ϕ‖L2(Q) −
∫
I
(p̄γ , ∂tϕ)H dt+ (p̄γ(t), ϕ(t))H |T0 .

By Lemma 3.17 we can bound these resulting in

(βγ ′(ȳγ −Ψ)p̄γ , ϕ)L2(Q) ≤ C
(
‖j′v(ȳγ)‖L2(Q) + ‖j′T (ȳγ(T ))‖H + ‖f ′(ȳγ)‖L∞(Q)

)
‖ϕ‖L2(I,V )

+ ‖p̄γ‖L2(I,V )‖∂tϕ‖L2(I,V ∗) + 2‖p̄γ‖C(Ī,H)‖ϕ‖C(Ī,H)

≤ C
(
‖j′v(ȳγ)‖L2(Q) + ‖j′T (ȳγ(T ))‖H + ‖f ′(ȳγ)‖L∞(Q)

)
‖ϕ‖W (I).

This proves the estimate.

By Theorem 3.7 and the local Lipschitz continuity of f ′, which is uniform in Q, the term
‖f ′(ȳγ)‖L∞(Q) stays bounded independently of γ. The other terms stay bounded as in the
last line of the proof of Lemma 3.17.
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3.4 Optimality Conditions for Unregularized Optimal Control
Problems

As stated in the beginning of Section 3.3 we can now consider the limit γ → 0 to obtain
optimality conditions for the unregularized optimal control problem.

Here, we shall also discuss other approaches to establish optimality conditions for (OC). The
possibly most direct approach was recently discovered in [Chr19]. It proves and uses the
directional differentiability of S : L2(Q)→ L2(I, V ). Also see [Chr18] for important work on
the differentiability in the elliptic case. So far the concrete form of the directional derivative of
S is not known. Its existence is shown by indirect arguments. Also, to make (OC), or rather
one of its regularizations, accessible to computation, a derivative with higher smoothness
would be of interest, see Chapter 6. It is also not immediately clear how the analysis of the
end time funtional jT would look like when trying to use directional differentiability of S
to derive optimality conditions. We thus do not delve deeper into the approach of [Chr19].
Here, we would also like to warn the reader of [JJ13]: a paper that makes the same claims.
The authors, however, claim that Lipschitz continuity implies Gateaux differentiability, cf.
the proof of [JJ13, (101) in Theorem 12].

Similar strategies have been discussed for related problems, for example in [JKRS03] the
conical differentiability of the solution operator to a parabolic problem, involving a boundary
obstacle, is analysed. Yet, we must warn that the paper contains some vagueness, which
makes it impossible to transfer the results from their problem to ours. Specifically, the proof
of [JKRS03, (9)] refers to an unavailable source. Personal communication with one of the
authors was not productive either. Conical differentiability for elliptic variational inequalities
is for example examined in [Mig76].

We will also comment shortly on why constraint qualifications and the Karush-Kuhn-Tucker
conditions are unsuited for deriving optimality conditions. The appropriate way is to derive so
called stationarity systems as in Theorem 3.38. There are various stationarity concepts (e.g.
W-stationarity, C-stationarity, B-stationarity, S-stationarity, M-stationarity) that correspond
to how much information on the involved multipliers ((λ̄, p̄, µ̄) in Theorem 3.38) is obtained.
As we mainly use the regularized problems for computation and numerical analysis anyway,
we do not delve into those concepts. For the elliptic version of (OC) see for example [Wac16b,
Wac14, HW18] for stationarity concepts and their differences. The works make use of capacity
theory, which is a can of worms we do not want to open within the scope of this thesis.
Remark 3.20 This is the point where we comment on the issue of constraint qualifications and
why we not simply use Karush-Kuhn-Tucker conditions, cf. [UU12, Theorem 16.14]. Using
Theorem 2.33 and the surrounding discussion one can reformulate (OC) to the equivalent
problem

min
(y,u,λ)∈W (I)×Uad×Lqu (Q)

jv(y) + jT (y(T )) + g(u) = J(y, u),

such that
{

∂ty +Ay + f(y) = u+ λ

λ ≥ 0, y −Ψ ≥ 0, (y −Ψ, λ)L2(Q) = 0.

This is now a mathematical problem with complementarity constraints (MPCC). The obstacle
constraint now essentially corresponds to two equality and two inequality constraints. They
are also easily differentiable, yet: one cannot expect reasonable constraint qualifications to
hold on the biactive set {y = Ψ} ∩ {λ = 0}. We give the following quote from [HW18,
Section 4.1]: “Due to the violation of standard constraint qualifications, the classical Karush-
Kuhn-Tucker conditions fail to be satisfied for some optimization problem of type (12) [a
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finite dimensional MPCC]; Moreover since the Mangasarian-Fromovitz condition is inevitably
violated, the set of Lagrange multipliers for (12) is always unbounded (or empty).”

To see this we consider a simplistic example in two dimensions.

min
(x,y)∈R2

j(x, y) s.th. h(x, y) := xy = 0, g1(x, y) = −x ≤ 0, g2(x, y) = −y ≤ 0 (3.11)

The cost functional j is an arbitrary function R2 → R, it is not important in this example.
The interesting part of this example is its biactive set: {(0, 0)}. The Mangasarian-Fromovitz
constraint qualification (MFCQ), cf. [UU12, Definition 16.19], is now satisfied in (0, 0) if
∇h(0, 0) has full rank and there exists a d ∈ R2 such that ∇h(0, 0)Td = 0, ∇g1(0, 0)Td < 0
and ∇g2(0, 0)Td < 0. Well, its easy to see that ∇h(0, 0) = (0, 0)T , which obviously does not
have full rank, resulting in the consequences described in the above quote of [HW18].

Motivated by this we will derive stationarity conditions and will see that the multipliers we
derive will be bounded, cf. Theorem 3.38, and possibly unique.

3.4.1 Stationarity Conditions

The goal of the following few statements is to establish so-called stationarity conditions in
Theorem 3.38.
Remark 3.21 All the following analysis could be extended to less smooth βγ than the ones in
Assumption 3.9, if one makes the assumptions from Theorem 3.13 instead of βγ ∈ C1,1

loc (R),
cf. Remark 3.12. Only minor adaptions would have to be made in the following.

Lemma 3.22 Let (γn)n∈N be a zero sequence and ((ūγn , ȳγn , p̄γn))n∈N be a sequence of corre-
sponding optimal triples. There exists a subsequence (γnk)k∈N and a p̄ ∈ L∞(I,H)∩L2(I, V )
such that

p̄γnk
k→∞−−−→ p̄ weakly in L2(I, V ) and weakly* in L∞(I,H).

The adjoint p̄ satisfies

‖p̄‖L∞(I,H)∩L2(I,V ) ≤ C(‖j′T (ȳ(T ))‖L2(Q) + ‖j′v(ȳ)‖L2(Q)).

Proof. Let (γn)n∈N be a zero sequence. Using Lemma 3.17 we see that
(
‖p̄γn‖L2(I,V )

)
n∈N

is a
uniformly bounded sequence in a Hilbert space, thus we find a weakly convergent subsequence,
denoted by the same indices, converging weakly to some p̄ ∈ L2(I, V ). By Lemma 1.23 we
have that L1(I,H)∗ = L∞(I,H). By Banach-Alaoglu, cf. [Wer11, Corollary VIII.3.12], the
unit ball in L∞(I,H) is weak* compact. L1(I,H) is separable by Theorem 1.27 in conjunction
with [Emm04, Korollar 7.1.3] and thus the weak* topology is metrizable, see [Bré11, Theorem
3.28]. Therefore weak* compactness and weak* sequential compactness coincide, see for
example [Bré11, Theorem 3.30]. So, in conclusion we can extract a subsequence of (γn)n∈N,
denoted by the same indices, such that (p̄γn)n∈N has weak* limit p̂ in L∞(I,H). To see that
this weak* limit is simply p̄, let ϕ ∈ L2(I,H) = L2(Q) ⊂ L2(I, V )∗ ∩ L1(I,H). Then

(p̄, ϕ)L2(Q) = lim
n→∞

(p̄γn , ϕ)L2(Q) = (p̂, ϕ)L2(Q).

Because L2(Q) is dense in L1(I,H) by Theorem 1.27 we can conclude p̄ = p̂.

Theorem 3.7 and Lemma 3.17 together imply the statement after taking the limit on both
sides of the inequality in Lemma 3.17 as the norms are weakly and weakly* lower semi-
continuous.
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Definition 3.23 Given an optimal triple (ūγ , ȳγ , p̄γ) we abbreviate

η̄γ := −βγ ′(ȳγ −Ψ)p̄γ ∈ L1(Q) ∩W (I)∗.

In the following we consider the dual space of C(Q̄) frequently. According to [Rud74, Theorem
6.19] we have C(Q̄)∗ ' M(Q̄). Since C(Q̄) is separable, e.g. [Kec95, Theorem 4.19], weak*
compactness is the same as weak* sequential compactness in M(Q̄) by the same arguments
as the ones used in the proof of Lemma 3.22.

Lemma 3.24 Let (γn)n∈N be a zero sequence and ((ūγn , ȳγn , p̄γn))n∈N a sequence of cor-
responding optimal triples. There exists a subsequence (γnk)k∈N, an η̄ ∈ M(Q̄) and an
η̄∗ ∈ W (I)∗ such that η̄γnk

k→∞−−−→ η̄ weakly* in M(Q̄) and η̄γnk
k→∞−−−→ η̄∗ weakly in W (I)∗.

The limits satisfy

‖η̄‖M(Q̄) ≤ C(‖j′T (ȳ(T ))‖H + ‖j′v(ȳ)‖L2(Q)),
‖η̄∗‖W (I)∗ ≤ C(‖j′T (ȳ(T ))‖H + ‖j′v(ȳ)‖L2(Q) + ‖f ′(ȳ)‖L∞(Q))

with some C > 0.

Proof. Let (γn)n∈N be a zero sequence. By the boundedness of (η̄γn)n∈N in W (I)∗ by
Lemma 3.19 there exists a subsequence (η̄nk)k∈N converging weakly to a limit η̄∗ ∈W (I)∗ as
W (I) is a Hilbert space. The sequence is also bounded in L1(Q) ⊂ M(Q̄) by Lemma 3.18.
We thus have by the remarks in Definition 3.23 that there exists a subsequence (η̄nk)k∈N,
with the same indices, converging weakly* to a limit η̄ ∈M(Q̄).

Because norms are weakly* lower semi-continuous and because (ȳγnk )k∈N converges uniformly
by Theorem 3.7 we find the norm estimates by Lemma 3.18 and Lemma 3.19

Remark 3.25 It is not clear that η̄ and η̄∗ can be identified. However, for any ϕ ∈W (I)∩C(Q̄)
we find for (γnk)k∈N from the proof of the previous Lemma 3.24

(η̄, ϕ)M(Q̄),C(Q̄) = lim
k→∞

(η̄γnk , ϕ)L2(Q) = lim
k→∞

(η̄γnk , ϕ)W (I)∗,W (I) = (η̄∗, ϕ)W (I)∗,W (I).

It would now be possible to consider η̄ and η̄∗ as two seperate multipliers or to make additional
assumptions on either to force a unique identification by, for example, setting η̄ to 0 on certain
parts of the boundary, cf. [CV19].

We refrain from doing this for the simple reason that it does add a whole lot to the resulting
optimality system in Theorem 3.38, but makes the presentation a lot less clear. We shall,
however, mention it from time to time. It will turn out that η̄ ∈ M(Q̄) has the more
interesting properties anyway.

Definition 3.26 We define the set of multipliers

P βȳ :=
{

(p̄, η̄) ∈ (L2(I, V ) ∩ L∞(I,H))×M(Q̄) : There exists a sequence

(p̄γn , η̄γn)n∈N converging to (p̄, η̄) weakly/weakly* × weakly*

in (L2(I, V ) ∩ L∞(I,H))×M(Q̄)
}
.

(3.12)

We say that a pair (p̄, η̄) ∈ P βȳ is generated by (γn)n∈N if there are solutions (ȳγn , ūγn) to
(OCγ,ū) such that the corresponding pair (p̄γn , η̄γn) converges to (p̄, η̄) in the sense of (3.12).

Remark 3.27 Here one could extend P βȳ to include η̄∗ from Lemma 3.24 as a third multiplier.
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Definition 3.28 To establish a relation between p̄ and η̄, for (p̄, η̄) ∈ P βȳ , we define

W0(I) := {v ∈W (I) : v(0) = 0}.

This is well-defined because W (I) ↪→ C(Ī , H) continuously. Due to this embedding we have
that W0(I) is a closed subspace of W (I) and therefore a Hilbert space itself.

Lemma 3.29 Each (p̄, η̄) ∈ P βȳ satisfies

(p̄, ∂tϕ)L2(I,V,V ∗) + a(ϕ, p̄) +
(
f ′(ȳ)p̄, ϕ

)
L2(Q)

= (η̄, ϕ)M(Q̄),C(Q̄) +
(
j′v(ȳ), ϕ

)
L2(Q) +

(
j′T (ȳ(T )), ϕ(T )

)
H

for any ϕ ∈W0(I) ∩ C(Q̄).

Proof. Let ϕ ∈W0(I) ∩ C(Q̄) and γ > 0. Then after partial integration (3.8) yields

(p̄γ , ∂tϕ)L2(I,V,V ∗) −
(
j′T (ȳγ(T )), ϕ(T )

)
H + a (p̄γ , ϕ)L2(Q) +

(
f ′(ȳγ)p̄γ , ϕ

)
L2(Q)

= (η̄γ , ϕ)W (I)∗,W (I) +
(
j′v(ȳγ), ϕ

)
L2(Q) .

Taking the limit yields the desired result with Lemma 3.22 and Lemma 3.24.

Remark 3.30 Here one could derive the same equality η̄∗ from Lemma 3.24 with the strength-
ening assumption that the test functions ϕ stem only fromW0(I) making the equality slightly
stronger.

We can finally derive the analogue to Corollary 3.16.

Corollary 3.31 If (ȳ, ū) is optimal, then for any (p̄, η̄) ∈ P βȳ we have(
p̄+ g′(ū), u− ū

)
L2(Q) ≥ 0 ∀u ∈ Uad.

Proof. For any u ∈ Uad we have for any γ > 0 by Corollary 3.16:(
p̄γ + g′(ūγ) + γ(ūγ − ū), u− ūγ

)
L2(Q) ≥ 0. (3.13)

By the strong convergence of the controls from Theorem 3.7 and the continuity of g′ we have(
g′(ūγ) + γ(ūγ − ū), u− ūγ

)
L2(Q)

γ→0−−−→
(
g′(ū), u− ū

)
L2(Q) .

Let (p̄, η̄) ∈ P βȳ be generated by the zero sequence (γn)n∈N. Then we have that the weak
convergence of (p̄γn)n∈N together with the strong convergence of the controls yields

(p̄γn , u− ūγn)L2(Q)
n→∞−−−→ (p̄, u− ū)L2(Q) .

Taking the limit in (3.13) yields the desired result.

A huge part of the stationarity conditions is the complementarity of certain multipliers with
certain states. The derivation of those complementarity conditions is the goal of the next few
lemmas.

Lemma 3.32 Assume Ψ ∈ C(Q̄). Let (p̄, η̄) ∈ P βȳ . We have (ȳ − Ψ, η̄)C(Q̄),M(Q̄) = 0.
We have that η̄ is concentrated on the well-defined set {(t, x) ∈ Q̄ : ȳ(t, x) = Ψ(t, x)}, i.e.
supp(η̄) ⊂ {(t, x) ∈ Q̄ : ȳ(t, x) = Ψ(t, x)}.
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Proof. We know that (ȳγ)γ>0 converges uniformly by Theorem 3.7 to ȳ. Thus

max(ȳγ −Ψ, 0) γ→0−−−→ ȳ −Ψ ≥ 0 uniformly.

Let (p̄, η̄) ∈ P βȳ produced by (γn)n∈N. For any function ϕ ∈ C(Q̄) we have, since β′γn(ȳγn −
Ψ) max(ȳγ −Ψ, 0) = 0 almost everywhere in Q̄,

((ȳ −Ψ)ϕ, η̄)C(Q̄),M(Q̄) = lim
n→∞

−
∫
Q̄
ϕmax(ȳγn −Ψ, 0)βγ ′(ȳγn −Ψ)p̄γn d(t, x) = 0. (3.14)

Because ȳ and Ψ are continuous on Q̄ the sets Lε := {(t, x) ∈ Q̄ : ȳ(t, x) − Ψ(t, x) ≥ ε} and
Q0 := {(t, x) ∈ Q̄ : ȳ(t, x)−Ψ(t, x) = 0} are well defined, unique and closed in Q̄.

We now show η̄|Q\Q0 = 0. Let ϕ ∈ Cc(Q̄ \ Q0), where Cc(Q̄ \ Q0) is the set of continuous
functions with compact support in Q̄ \ Q0. It is dense in C0(Q̄ \ Q0), e.g. [Rud74, Section
6.18]. On the compact set supp(ϕ) the continuous map ȳ −Ψ ≥ 0 attains a minimum ε ≥ 0
at some (tε, xε) ∈ supp(ϕ) ⊂ Q̄ \ Q0. We claim that ε > 0. If ȳ(tε, xε) − Ψ(tε, xε) = 0, we
would have (tε, xε) ∈ Q0, a contradiction.

Then supp(ϕ) ∈ C(Lε) and ϕ
ȳ−Ψ ∈ C(Q̄). Therefore (3.14), testing it with ϕ

ȳ−Ψ , yields

0 = (ϕ, η̄)C(Q̄),M(Q̄) =
∫
Q̄\Q0

ϕdη̄ =
∫
Q̄\Q0

ϕdη̄|Q̄\Q0
.

As ϕ was arbitrary in Cc(Q̄ \Q0) and by the aforementioned density and [Rud74, Theorem
2.19] once again we find 0 = η̄|Q̄\Q0

∈M(Q̄ \Q0) ' C0(Q̄ \Q0)∗. Proposition 8.1 now entails
the claim on the support.

This also entails the complementarity condition.

We will now state a growth assumption on βγ . As we plan to take the limit γ → 0, to go
from (PDEγ) to (VI-OB), this is not a meaningful restriction. In Proposition 2.17 we have a
concrete example for a βγ satisfying Assumption 3.33 as we will prove in Proposition 3.34.

Assumption 3.33 Assume that there exist cβ1 , c
β
2 > 0 with

cβ1 |β(r)| ≤ |β′(r)r| ≤ cβ2 |β(r)| ∀r ∈ R.

Proposition 3.34 Assume β has the form from Proposition 2.17 for some α > 1. Then β
satisfies Assumption 3.33.

Remark 3.35 This proposition still holds true for α = 1, as the only non-differentiable spot
of β is r = 0, where we might assign an arbitrary value as it is weighted by r = 0.

Proof. Clearly for r ≥ 0 there is nothing to show. Let 0 > r ≥ −α1/(1−α). Then we have

|β(r)| = |(−r)α| < α|(−r)α| = |β′(r)r| = α|β(r)|.

Now let r < −α1/(1−α). Then we have

|β(r)| = −r − α− 1
α

α1/(1−α) < −r = |β′(r)r|.
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We show |β′(r)r| ≤ α|β(r)| by showing this is equivalent to a true inequality:

|β′(r)r| ≤ α|β(r)| ⇐⇒ − r ≤ −αr − (α− 1)α1/(1−α)

⇐⇒ (α− 1)r ≤ −(α− 1)α1/(1−α)

⇐⇒ r ≤ −α1/(1−α).

The last line is true by the assumption we made on r in this case.

The following is a “correction” of [Bar81, Lemma 7] following the ideas of [Bar84] by the
same author. Unfortunately in [Bar81, Lemma 7] an application of Arzela-Ascoli’s theorem
was not possible.

Lemma 3.36 Let (p̄, η̄) ∈ P βȳ be generated by (γn)n∈N. We then have for any s > N
2 that

p̄ ∈ BV (Ī , (Hs(Ω) ∩ V )∗) and

p̄γn
n→∞−−−→ p̄ strongly in L2(Q).

Here Hs(Ω) is a fractional Sobolev space, see Section 8.8, and BV (Ī , (Hs(Ω)∩V )∗) is defined
as the set of functions v : Ī → (Hs(Ω) ∩ V )∗ such that

Var(v, (Hs(Ω) ∩ V )∗) := sup
n∈N,0=t0<t1<···<tn=T

n∑
j=1
‖v(tj−1)− v(tj)‖(Hs(Ω)∩V )∗ <∞.

see for example [BP86, Chapter 1, Section 3.2.]. In this definition no equivalence classes are
used.

We could obviously use this to make the definition of P βȳ sharper without loss of generality.
However, it is not necessary and the presentation is clearer without it.

Proof. We only give a sketch of the proof as a relatively detailed proof is given above [Bar84,
(5.34), p. 181]. The arguments there are essentially that ‖∂tp̄γn‖L1(I,(Hs(Ω)∩V )∗) is bounded
independently of γn. We have −∂tp̄γn = −Ap̄γn − f ′(ȳγn)p̄γn + η̄γn + j′v(ȳγn(T )). The only
difference to [Bar84] is that we have an additional term stemming from the non-linearity.
All the terms are bounded in the given norm by the arguments in [Bar84, p. 181], except
f ′(ȳγn)p̄γn . This term is bounded by the local Lipschitz continuity of f ′ in its third argument,
Theorem 3.7 and Lemma 3.17. Now an application of Helly’s theorem and the arguments in
[Bar84, p. 181] yield the claim.

Based on ideas of [Bar81, Theorem 2] we find:

Lemma 3.37 Let (p̄, η̄) ∈ P βȳ . Assume that βγ satisfies Assumption 3.33. We have(
λ̄, p̄

)
L2(Q)

= 0.

Proof. For γ > 0 we have by Assumption 3.33

|(λ̄γ , p̄γ)L2(Q)| ≤
∫
Q
|βγ(ȳγ −Ψ)||p̄γ | d(t, x) ≤ C

∫
{ȳγ−Ψ<0}

|βγ ′(ȳγ −Ψ)(ȳγ −Ψ)||p̄γ | d(t, x)

= C

∫
{ȳγ−Ψ<0}

|η̄γ ||ȳγ −Ψ| d(t, x) ≤ C‖η̄γ‖L1(Q)‖max(0, ȳγ −Ψ)‖L∞(Q).

By Lemma 3.18, Theorem 3.7 and ȳ ≥ Ψ this upper bound converges to 0.
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By Theorem 3.7 (λγ)γ>0 converges weakly to λ̄ in L2(Q). Along the sequence (γn)n∈N that
generates (p̄, η̄) we have that (p̄γn)n∈N converges strongly in L2(Q) by Lemma 3.36. We thus
find

(λ̄, p̄)L2(Q) = lim
n→∞

(
p̄γn , λ̄γn

)
L2(Q)

= 0.

We now put all the previous results together and arrive at our first order optimality condi-
tions.

Theorem 3.38 Let (ȳ, ū) be a globally optimal solution to (OC). Assume Ψ ∈ C(Q̄) and let
s > N

2 . Then there exists a (p̄, η̄) ∈ (L2(I, V ) ∩ L∞(I,H) ∩ BV (Ī , (Hs(Ω) ∩ V )∗) ×M(Q̄)
such that

• S(ū) = ȳ,

• For all ϕ ∈W0(I) ∩ C(Q̄) we have

(p̄, ∂tϕ)L2(I,V,V ∗) + aI (p̄, ϕ) +
(
f ′(ȳ)p̄, ϕ

)
L2(Q)

= (η̄, ϕ)M(Q̄),C(Q̄) +
(
j′v(ȳ), ϕ

)
L2(Q) +

(
j′T (ȳ(T )), ϕ(T )

)
H ,

(3.15)

• For all u ∈ Uad we have (
p̄+ g′(ū), u− ū

)
L2(Q) ≥ 0, (3.16)

• supp(η̄) ⊂ {(t, x) ∈ Q̄ : ȳ(t, x) = Ψ(t, x)} and in particular (ȳ −Ψ, η̄)C(Q̄),M(Q̄) = 0,

• (λ̄, p̄)L2(Q) = 0 where λ̄ = λ̄(ū).

There even exists a C > 0, depending only on (ȳ, ū) such that ‖p̄‖L2(I,V )∩L∞(I,H) ≤ C and
‖η̄‖M(Q̄) ≤ C.

Proof. This theorem is just the collection of Lemmas 3.29, 3.32, 3.36 and 3.37 and Corol-
lary 3.31 for the first five points. Lemma 3.37 is applicable by choosing β according to
Proposition 2.17 so that Proposition 3.34 implies Assumption 3.33. To see the norm bounds
simply consider Lemma 3.22 and Lemma 3.24.

Remark 3.39 One could extend this system to include η̄∗ with the results mentioned in
Remark 3.30 and the norm estimate from Lemma 3.24, but one can now see that the additional
knowledge is limited as things like the complementarity conditions to not hold for η̄∗.

Example 3.40 We provide an example where we can clearly see that the adjoint is in general
discontinuous in time, in particular it is not in W (I), and not unique.

For presentation’s sake we choose I := (−1, 1). A simple shift of +1 makes the example fit
exactly into our setting. We also choose N = 2 and Ω := B1(0) with the Dirichlet boundary
ΓD = ∂B1(0). As admissible set we choose Uad := {u ∈ L∞(Q) : 0 ≤ u ≤ 1 a.e. in Q}. We
choose the non-linearity f = 0 and the operator A := −∆. The control constraints have
to be active on a non-zero set, as we will later see that there is some form of uniqueness
of the adjoint and its multiplier on the set where the control constraints are inactive, cf.
Theorem 3.46.

We choose the control ū := 0 ∈ Uad, the obstacle Ψ := 0 and state ȳ := S(0) = 0. Here the
multiplier λ̄ is equal to 0. As functionals we choose jT = 0, jv(y) := 1

2‖y − yQ‖
2
L2(Q) and
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g(u) := αg
2 ‖u‖

2
L2(Q) with αg > 0. Here yQ := −1 < 0. As non-linearity we simply choose

f = 0.

We now show that (ȳ, ū) are indeed optimal. For any control 0 6= u ∈ Uad we of course have
that 1

2‖u‖L2(Q) > 0. Because yQ ≤ 0 and S(u) ≥ Ψ = 0, we also have 1
2‖S(u) − yQ‖2L2(Q) ≥

1
2‖0− yQ‖2L2(Q). Thus we find for any u ∈ Uad

αg
2 ‖0‖

2
L2(Q) + 1

2‖0− yQ‖
2
L2(Q) = J(ū, ȳ) < J(u, S(u)).

Hence, (ȳ, ū) is optimal.

To define the adjoint we let q ∈ (1 + N/2,∞) be arbitrary and introduce p1 as the solution
to the linear PDE {

−∂tp1 −∆p1 = 0 on (−1, 0)× Ω
p1(0) = p0, p1|ΣD = 0.

(3.17)

Here 0 ≥ p0 ∈Wq is a starting value, which we specify later. We also define p2 as the solution
to {

−∂tp2 −∆p2 = −yQ on Q
p2(1) = 0, p2|ΣD = 0.

(3.18)

By Theorem 8.17, after changing the sign in the time component, we have p1, p2 ∈W 1,2
q (Q).

We now define the adjoint as p̄ := p1·1(−1,0)+p2. It is easy to see that p̄ ∈ L2(I, V )∩L∞(I,H).
To see the BV (Ī , (Hs(Ω) ∩ V )∗)-regularity, for any s > N

2 , we show that Var(p̄, L1(Ω)) <
∞. By [DNPV12, Theorem 8.2] we have Hs(Ω) ⊂ L∞(Ω), so Var(p̄, (Hs(Ω) ∩ V )∗)) ≤
C Var(p̄, L1(Ω)) < ∞. Note that we have to prove this for any fixed representative of p̄,
which we shall also call p̄. Its easy to see from the definition of Var that

Var(p̄, L1(Ω)) ≤ Var(p2, L
1(Ω)) + Var(p1 · 1(−1,0), L

1(Ω)).

By the W 1,2
q (Q)-regularity of p2 we immediately find Var(p2, L

1(Ω)) ≤ C‖p2‖W 1,2
q (Q). To

estimate Var(p1 · 1(−1,0), L
1(Ω)) let −1 = t0 < t1 < · · · < tM = 1. Let ĵ ∈ {0, 1, . . . ,M − 1}

such that tĵ < 0 < tĵ+1. Using the W 1,2
q (Q) regularity of p1 we find

M∑
j=1
‖p1(tj) · 1(−1,0)(tj)− p1(tj−1) · 1(−1,0)(tj−1)‖L1(Ω)

=
ĵ∑
j=1
‖p1(tj)− p1(tj−1)‖L1(Ω) + ‖p1(tk̂)‖L1(Ω)

≤
ĵ∑
j=1

∫ tj

tj−1
‖∂tp1‖L1(Ω) dt+

∫ 0

tĵ

‖∂tp1‖L1(Ω) dt+ ‖p1(0)‖L1(Ω)

≤ ‖∂tp1‖L1(Q) + ‖p0‖L1(Ω).

Thus Var(p1, L
1(Ω)) ≤ C‖p1‖W 1,2

q (Q) + ‖p0‖L1(Ω).

We define the corresponding multiplier η̄ := p0δ0 ∈ M(Q̄), where δ0 = δ0(t) is the Dirac
measure in time at the point 0 and p0 has to be interpreted as a density of the Lebesgue
measure.

Now we show that all conditions from Theorem 3.38 are satisfied. All points, except the
second and third one, are seen immediately. We now show that

(p̄, ∂tϕ)L2(I,V,V ∗) + aI(p̄, ϕ) = (η̄, ϕ)M(Q̄),C(Q̄) + (j′v(ȳ), ϕ)L2(Q) (3.19)
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holds for any ϕ ∈W (I) ∩ C(Q̄) with ϕ(−1) = 0. Let ϕ be of this form and let us compute:

(p̄, ∂tϕ)L2(I,V,V ∗) + aI(p̄, ϕ) =
∫ 0

−1
(p1, ∂tϕ)V,V ∗ + aΩ(p1, ϕ) dt

+
∫ 1

−1
(p2, ∂tϕ)V,V ∗ + aΩ(p2, ϕ) dt

=
∫ 0

−1
−(∂tp1, ϕ)V,V ∗ + aΩ(p1, ϕ) dt+ (p1, ϕ)H |0−1

+
∫ 1

−1
−(∂tp2, ϕ)V,V ∗ + aΩ(p2, ϕ) dt+ (p2, ϕ)H |1−1

= (p0, ϕ(0))H + (−yQ, ϕ)L2(Q).

By construction we have j′v(ȳ) = 0− yQ = −yQ and thus (3.19) is satisfied.

Lastly we have to show that the third point of Theorem 3.38 is satisfied. Because of the
structures of g and Uad this condition is equivalent to

ū = P[0,1]

(
− 1
αg
p̄

)
.

To see that, inspect the proof of the later Corollary 3.41. Thus, if we can show that p̄ ≥ 0, we
have proven that all conditions of Theorem 3.38 are met. If t ∈ (0, 1) we have p̄(t) = p2(t).
By Theorem 8.15 we have p2(t) ≥ 0 and thus p̄(t) ≥ 0 almost everywhere in Ω. Note that p̄
satisfies {

−∂tp̄+Ap̄ = −yQ in (−1, 0)× Ω
p̄(0) = p0 + p2(0), p̄|ΣD = 0.

By Theorem 8.15 we have p2(0) ≥ 0 and, since yQ = −1 < 0, we also have p2(0) 6= 0. We
will show p2(0) ∈ Wq and choose p0 ∈ −p2(0) · (0, 1) ≤ 0 to see that p0 + p2(0) ≥ 0. Thus
Theorem 8.15 again delivers p̄ ≥ 0 on (−1, 0)× Ω. To see p2(0) ∈ Wq one can use the trace
method for interpolation spaces, see Section 8.6, and immediately deduce via the definition
that

‖p2(0)‖Wq ≤ C‖p2‖W 1,2
q (Q).

Thus we have shown p̄ ≥ 0 and conclude the proof. We also see here that p0 and thus p̄ and
η̄ = p0δ0 are not uniquely determined by the properties of Theorem 3.38.

3.4.2 Properties of Adjoints and Multipliers

We can now deduce a few properties from this stationarity system. Note that this system
was obtained via regularization, but its final form in Theorem 3.38 has nothing to do with
the regularization anymore. The following statements thus hold true without any knowledge
about the regularization.

A famous consequence is the relation of control and adjoint in the case of box constraints.
For this corollary the assumption Ψ ∈ C(Q̄) is not needed.

Corollary 3.41 Let ū and p̄ satisfy (3.16) and assume g is given by

g(u) =
∫
Q
ϕ(u) d(t, x) (3.20)
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with ϕ strictly convex and differentiable. Also assume Uad is given as a box, bounded from
below and above by ul, uu ∈ Lqu(Q). Then we have

ū = P[ul,uu][−(ϕ′)−1(p̄)].

Proof. The proof is standard, e.g. [Trö09, Lemma 2.26], so we only give a sketch. By (3.16)
we get almost everywhere in Q

ū(t, x)


= ul(t, x) if p̄(t, x) + ϕ′(ū(t, x)) > 0,
∈ [ul(t, x), uu(t, x)] if p̄(t, x) + ϕ′(ū(t, x)) = 0,
= uu(t, x) if p̄(t, x) + ϕ′(ū(t, x)) < 0.

(3.21)

All the following arguments are to be interpreted to hold almost everywhere in Q.

The function ϕ is strictly convex and thus its derivative is strictly monotonically increasing
and invertible. Assume we have at some point in Q

(ϕ′)−1(−p̄) > uu ≥ ū.

Applying ϕ′ to both sides implies

p̄+ ϕ′(ū) < 0.

Thus by (3.21) we have here ū = uu.

The same line of arguing implies ū = ul whenever (ϕ′)−1(−p̄) < ul. For the remaining case,
the middle portion of (3.21) implies the projection formula directly by rearranging terms.

Remark 3.42 Under the assumptions on g by Corollary 3.41 we also can deduce some minimum
principles. The formulation in (3.21) implies the weak minimum principle directly. Almost
everywhere in Q we have

min
v∈[ul,uu]

(
p̄+ ϕ′(ū)

)
v =

(
p̄+ ϕ′(ū)

)
ū.

Analogously to the proof of [Trö09, Theorem 2.27] we obtain the minimum principle:

min
v∈[ul,uu]

p̄v + ϕ(v) = p̄ū+ ϕ(ū).

Remark 3.43 An important consequence of the projection formula from Corollary 3.41 is the
fact that the regularity of p̄ transfers to ū, provided ul, uu are regular enough. If for example
ul, uu ∈ Lqu(Q)∩L2(I, V ) we have ū ∈ L2(I, V ). Taking the positive part, and thus projection
onto sufficiently regular box constraints, preserves V -regularity, see Proposition 8.19.

As we have hinted at, here and there, the multipliers are not unique. Yet, we can show that
a given adjoint p̄ determines its multiplier η̄ and vice versa, to an extent.

Theorem 3.44 For any (p̄, η̄), (p̃, η̃) ∈ L2(I, V )×M(Q̄) satisfying (3.15) we have

• p̄ = p̃ in L2(I, V ) implies η̄ = η̃ in M(Q ∪ ΣN ) ⊂M(Q̄),

• η̄ = η̃ in M(Q̄) implies p̄ = p̃ in L2(Q).
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Proof. Let (p̄, η̄), (p̃, η̃) be as above.

First assume that p̄ = p̃. Let ϕ ∈ C∞c (Q ∪ ΣN ). Then by (3.15) have:

(η̄ − η̃, ϕ)M(Q∪ΣN ),C(Q∪ΣN ) = (η̄ − η̃, ϕ)M(Q̄),C(Q̄) = 0.

By density of C∞c (Q ∪ ΣN ) in C0(Q ∪ ΣN ) and the representation theorem, see for example
[Rud74, Theorem 6.17], this implies η̄ = η̃ in M(Q ∪ ΣN ).

Now assume η̄ = η̃ in M(Q̄). Then for any ϕ ∈W0(I) ∩ C(Q̄) we have

(p̄− p̃, ∂tϕ)L2(I,V,V ∗) + (A(p̄− p̃), ϕ)L2(I,V ∗,V ) + (f ′(ȳ)(p̄− p̃), ϕ)L2(Q) = 0.

This implies

(p̄− p̃, ∂tϕ+Aϕ)L2(I,V,V ∗) +
(
p̄− p̃, f ′(ȳ)ϕ

)
L2(Q) = 0.

Now let v ∈ C∞c (Q) be arbitrary. Let ϕ be the solution to{
∂tϕ+Aϕ+ f ′(ȳ) = v,

ϕ|ΣD = 0, ϕ(0) = 0.
(3.22)

By Theorem 8.20 this solution satisfies ϕ ∈ W (I) ∩ C(Q̄). Thus ϕ0 ∈ W0(I) ∩ C(Q̄). We
therefore have for any v ∈ C∞c (Q)

(p̄− p̃, v)L2(Q) = 0.

Using the density of C∞c (Q) in L2(Q) we have p̄ = p̃.

Remark 3.45 We see that in the first case of Theorem 3.44 the measures do not necessarily
agree on Q̄ \ (Q ∪ ΣN ) = ΣD. One could force uniqueness by for example forcing any η̄

appearing as a component in P βȳ to be 0 on ΣD, cf. [CV19].

An immediate consequence of Corollary 3.41 is the following result.

Theorem 3.46 Let Uad = [ul, uu] with ul, uu ∈ Lqu(Q). Assume g has the form of (3.20)
with ϕ being strictly convex and differentiable. Let Ql :=

{
(t, x) ∈ Q̄ : ū(t, x) = ul(t, x)

}
. It

is defined up to a set of Lebesgue measure zero. Technically the set has to be defined for two
fixed representatives of ū and ul. Analogously we define Qu for uu.

For any (p̄, η̄), (p̃, η̃) ∈ L2(I, V )×M(Q̄) satisfying (3.15) we have p̄ = p̃ a.e. on Q̄\(Ql∪Qu).
We also have η̄|Q̄\(Ql∪Qu) = η̃|Q̄\(Ql∪Qu).

So in a certain sense the multipliers are “unique” where the control ū is “interesting” and not
just touching the box constraints.

Proof. The following statements are understood to be true almost everywhere. Let (t, x) ∈
Q̄ \ (Ql ∪Qu). By Corollary 3.41 we have

−(ϕ′)−1(p̃(t, x)) = ū(t, x) = −(ϕ′)−1(p̄(t, x)).

By the invertibility of ϕ′ this yields the desired equality p̃(t, x) = p̄(t, x).
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Now we have by (3.15) for any v ∈ C∞c (Q̄ \ (Ql ∪Qu)):

(η̄,v)M(Q̄),C(Q̄) = (p̄, ∂tv +Av + f ′(ȳ)p̄− j′(ȳ), v)L2(Q) − (j′T (ȳ(T )), v(T ))H
= (p̃, ∂tv +Av + f ′(ȳ)p̃− j′(ȳ), v)L2(Q) − (j′T (ȳ(T )), v(T ))H = (η̃, v)M(Q̄),C(Q̄).

By the density of C∞c (Q̄ \ (Ql ∪ Qu)) in C0(Q̄ \ (Ql ∪ Qu)) we have η̄ = η̃ as functionals
on C0(Q̄ \ (Ql ∪ Qu)). The Riesz representation theorem, e.g. [Rud74, Theorem 6.19], now
delivers the desired equality as measures.

Under relatively mild assumptions, we can prove that p̄ is bounded in L∞(Q). Under these
additional assumptions one could strengthen the stationarity system from Theorem 3.38 to
include the regularity p̄ ∈ L∞(Q) as a condition.

Theorem 3.47 Let q̃u ∈ (1 + N/2,∞). Assume j′v is continuous as an operator Lq̃u(Q) →
Lq̃u(Q). Also let jT = 0 and g be of the form from Corollary 3.41.

Let (p̄, η̄) ∈ P βȳ be generated by (γn)n∈N. We then have

p̄γn
n→∞−−−→ p̄ weak* in L∞(Q),

ūγn
n→∞−−−→ ū weak* in L∞(Q)

and the estimates

‖p̄‖L∞(Q), ‖ū‖L∞(Q) ≤ C‖j′v(ȳ)‖Lq̃u (Q).

The constant C > 0 does not depend on Uad.

Proof. By Theorem 8.22 we find for q̃u > 1 +N/2 that

‖p̄γn‖L∞(Q) ≤ C‖j′v(ȳγn)‖Lq̃u (Q) (3.23)

where C does not depend on f , βγ ′ or Uad.

Since (ȳγn)n∈N converges uniformly to ȳ by Theorem 3.7 the right hand side stays bounded
and even converges to ‖j′v(ȳ)‖Lq̃u (Q). Therefore there is a C > 0 independent of n such that

‖p̄γn‖L∞(Q) ≤ C.

Because L1(Q)∗ ' L∞(Q) we have that a subsequence of (p̄γn)n∈N converges weakly* in
L∞(Q) to some limit, cf. the arguments in the proof of Lemma 3.22. The sequence (p̄γn)n∈N
also converges weakly in L2(Q) ⊃ L2(I, V ) to p̄ by assumption. This entails that this subse-
quence converges weakly* in L∞(Q) to p̄. Because the limit is unique basic calculus arguments
prove that the whole sequence converges to p̄ weakly* in L∞(Q). Because norms are weakly*
lower semi-continuous we can conclude the claimed norm bound from (3.23).

The norm bounds for ū immediately follow from Corollary 3.41 and those for p̄. The weak*
convergence of the controls follows from the norm bound, as for (p̄γn)n∈N, and their L2(Q)-
convergence from Theorem 3.7.

Theorem 3.48 Assume the obstacle satisfies ∂tΨ+AΨ+f(Ψ) ≤ 0 and that ȳ,Ψ ∈ L2(I,H2(Ω)).
Then

ū ≤ 0 almost everywhere on {(t, x) ∈ Q : ȳ(t, x) = Ψ(t, x)}.

The given set has to interpreted for a fixed representative of Ψ. For two different representa-
tives of Ψ the corresponding sets differ only on a set of Lebesgue measure 0.
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If additionally the control cost term g and Uad are of the form of Corollary 3.41 with ϕ
satisfying ϕ′(0) = 0 and Uad satisfying 0 < uu almost everywhere, we have the following: let
p̄ ∈ L2(I, V ) satisfy (3.16). Then

p̄ ≥ 0 almost everywhere on {(t, x) ∈ Q : ȳ(t, x) = Ψ(t, x)}.

Remark 3.49 Technically ∂tΨ + AΨ + f(Ψ) ≤ 0 and 0 < uu could be just assumed to hold
on {(t, x) ∈ Q : ȳ(t, x) = Ψ(t, x)}. This would be a very technical and unnatural condition.

The regularity assumptions on ȳ and Ψ are satisfied on C1,1-domains and sufficiently nice
polygonal domains by Definition 2.9, Theorem 2.40 and Theorem 2.42, provided they satisfy
proper boundary conditions.

The other conditions of Theorem 3.48 are satisfied, e.g. if

• Uad = [−a, a] for some a > 0,

• g(u) = αg
2 ‖u‖

2
L2(Q) for some αg > 0,

• f satisfies the required properties and additionally f(0) = 0,

• Ψ = −c for some constant c > ‖y0‖L∞(Ω).

More generally one could also consider functions 0 ≥ Ψsource ∈ Lqu(Q), 0 ≥ Ψ0 ∈ Wqu and
the obstacle Ψ as the solution of{

∂tΨ +AΨ + f(Ψ) = Ψsource,

Ψ(0) = Ψ0, Ψ|ΣD = 0.

By the maximum principle, cf. Theorem 8.15, we find Ψ ≤ 0. Depending on the regularity
of the domain the obstacle Ψ has different regularity. Checking the results in Section 8.4 we
can see that Ψ satisfies Assumption 2.5.

Proof of Theorem 3.48. All of the following arguments are assumed to hold almost every-
where. On {(t, x) ∈ Q : ȳ(t, x) = Ψ(t, x)} we have by Lemma 8.14 that

ū ≤ ū+ λ(ū) = ∂tȳ +Aȳ + f(ȳ) = ∂tΨ +AΨ + f(Ψ) ≤ 0, (3.24)

as λ̄(ū) is non-negative.

Under the additional assumptions we have by Corollary 3.41 that on {(t, x) ∈ Q : ȳ(t, x) =
Ψ(t, x)} there holds

uu > 0 ≥ ū = Pul,uu

[(
ϕ′
)−1 (−p̄)

]
.

Thus we have 0 ≥ (ϕ′)−1 (−p̄) on {(t, x) ∈ Q : ȳ(t, x) = Ψ(t, x)}. This implies by the
monotonicity of ϕ′

−ϕ′(0) ≤ p̄

on the set in question. As we assumed ϕ′(0) = 0 we conclude the proof.

Remark 3.50 We now obtain the following, intuitive observation: if Ψ evolves negatively, i.e.
it becomes drop further and further below y0 ≥ Ψ(0), and if ū > 0, i.e. the state constantly
moves upwards from y0, obstacle and state never touch. Therefore in this situation the active
set {(t, x) ∈ Q : ȳ(t, x) = Ψ(t, x)} is empty.

In a nutshell: if, in the situation of Theorem 3.48, we have ul > 0, we immediately find
{(t, x) ∈ Q : ȳ(t, x) = Ψ(t, x)} = ∅.
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We also make the following observation which is akin to [CW19, Theorem 5.1].

Theorem 3.51 Assume the obstacle satisfies ∂tΨ+AΨ+f(Ψ) = 0 and that ȳ,Ψ ∈ L2(I,H2(Ω)).
Assume that g(u) = αg

2 ‖u‖
2
L2(Q) for some αg > 0. Then

ū = 0 almost everywhere on {(t, x) ∈ Q : ȳ(t, x) = Ψ(t, x)} and λ = 0.

The given set has to interpreted for a fixed representative of Ψ. For two different representa-
tives of Ψ the corresponding sets differ on a set of Lebesgue measure 0.

If the admissible set Uad is of the form of Corollary 3.41 with ul < 0 < uu almost everywhere,
then the following holds: let p̄ ∈ L2(I, V ) satisfy (3.16). Then

p̄ = 0 almost everywhere on {(t, x) ∈ Q : ȳ(t, x) = Ψ(t, x)}.

Proof. By (3.24) of the previous Theorem 3.48 we find ū + λ(ū) = 0 on {ȳ = Ψ}. Here we
abbreviated the active set. Now consider

û :=
{
ū on {ȳ > Ψ},
0 on {ȳ = Ψ},

and λ̂ = 0.

We see that

∂tȳ +Aȳ + f(ȳ) = ū+ λ̄(ū) = û+ λ̂. (3.25)

Here we used that λ(ū) = 0 a.e. in {ȳ > Ψ} by Remark 2.31 and ū+λ(ū) = 0 a.e. in {ȳ = Ψ}.
Hence S(ŷ) = ȳ with the multiplier û = λ(û) = 0 by Theorem 2.33. By construction and
Theorem 3.48 we have ū ≤ û and find

J(ȳ, ū) ≥ J(ȳ, û) ≥ J(ȳ, ū),

which entails g(ū) = g(û) and therefore ‖ū‖L2(Q) = ‖û‖L2(Q). Thus, we have by construction
ū = û. In particular we have ū = 0 on {ȳ = Ψ}.

The claim on λ(ū) follows from the arguments below Equation (3.25).

Under the additional assumptions the projection formula from Corollary 3.41 implies the
claim on p̄ similar to the arguments in Theorem 3.48.

3.4.3 Equivalence to State Constrained Problems

In this section we will only scratch the surface of showing the equivalence between (OC) and a
state constrained problem. The developments in this area are pretty recent, see for example
[CW19] for the discussion of this equivalence in the elliptic case and [CV19] for a similar
discussion in the parabolic case. The usefulness of this approach cannot be understated, as
(OC) is a non-linear problem (even for f = 0), while state constrained problems are (for
f = 0 at least) typically convex. This allows us to characterize solutions to either type of
problem in two ways, yielding stronger optimality conditions. Extending those results and
possibly including the non-linearity f will be subject to future research.

As this discussion has been too recent to include fully in this thesis, we give a sketch for a
special case, that will be used in our numerical examples, see Section 7.3.1. The articles are
very general and technical, so for simplicity we give a self contained proof for a special case
based on the general ideas of the aforementioned articles. We will use constant obstacles,
while the works mentioned above use conditions like −∆Ψ ≤ 0, respectively, ∂tΨ−∆Ψ ≤ 0,
cf. Theorem 3.48.
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Theorem 3.52 Assume Ψ is a negative constant smaller or equal to ‖y0‖L∞(Ω), f = 0, and
that Ω is a C1,1-domain with ΓD = ∂Ω. Further assume that g(u) = αg

2 ‖u‖
2
L2(Q) for some

αg > 0. Then ũ ∈ Uad is a solution to

min
u∈Uad

J(y, u) s.th. y = S(u) (OC)

iff it is a solution to

min
u∈Uad

J(y, u) s.th. y = Slin(u) and y ≥ Ψ. (3.26)

Here Slin is the solution operator to the linear PDE{
∂ty +Ay = u in Q,
y(0) = y0, y|ΣD = 0.

For the well-definedness of Slin see Theorem 8.17.

Proof. By Theorem 3.51 we immediately find that

min
u∈Uad

J(y, u) s.th. y = S(u)

is equivalent to

min
u∈Uad

J(y, u) s.th. y = S(u), u = 0 on {y = Ψ}. (3.27)

Here, {y = Ψ} is an abbreviation of the set appearing in Theorem 3.51. Theorem 3.51 is
applicable, because S(u) ∈ L2(I,H2(Ω)) by the regularity of Ω, see Theorem 2.40.

We claim that (y, u) ∈ S(Uad)× Uad satisfies

y = S(u) and u = 0 on {y = Ψ} (3.28)

iff

y = Slin(u) and y ≥ Ψ. (3.29)

Let (3.28) be satisfied. Then the second condition of (3.29) is clearly satisfied. We also have
by Remark 2.31 that ∂ty + Ay = u almost everywhere in {y > Ψ} := Q \ {y = Ψ}. Lastly,
since Ψ is constant, we find u = 0 = ∂ty + Ay on {y = Ψ} by Lemma 8.14. The boundary
and initial conditions are obviously satisfied. So in total, indeed, Slin(u) = y.

To see that (3.29) implies (3.28) we define λ = 0 and see that

∂ty +Ay = u+ λ a.e. in Q

and

(λ, y −Ψ)L2(Q) = 0.

Now Theorem 2.33 implies that y = S(u). To see the claim on the support of u we again use
that Ψ is constant and find u = ∂ty +Ay = 0 on {y = Ψ}.

Now, (3.26) and (3.27) have the same constraints, yielding the equivalence.
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Corollary 3.53 Let the situation be as in Theorem 3.52. Additionally assume that jv and
jT are convex. Assume that (ŷ, û) ∈ S(Uad)× Uad satisfies

(p̂+ αgû, u− û)L2(Q) ≥ 0 ∀u ∈ {u ∈ Uad : Slin(u) ≥ Ψ} . (3.30)

Here p̂ is the solution to {
−∂tp̂+Ap̂ = j′v(ŷ) in Q,
p̂(T ) = jT (ŷ(T )), p̂|ΣD = 0.

This is well-defined by [Wlo92, Theorem 26.1].

Then (ŷ, û) is an optimal solution to (OC).

Proof. Because Slin is linear (3.30) is just the necessary and sufficient optimality condition for
the convex state constrained problem (3.26) in Theorem 3.52, see for example the calculations
in [Trö09, Chapter 3.6]. Thus, by Theorem 3.52 we find that (ŷ, û) is optimal for (OC).

3.5 Second Order Sufficient Conditions for Unregularized Control
Problems

We now transfer ideas and results for the elliptic case from [KW12b] to our parabolic situation.
We see that with those arguments it is possible, under specific assumptions, to prove local
quadratic growth of the functional for optimizers. This can be done without stumbling
upon famous norm gap problems, where the growth of the functional happens in a norm
different from the one that the local neighborhood is determined in, e.g. [Trö09, Chapters
4,5]. Interestingly the two norm gap seems unavoidable when discussing a certain type of
semi-linear, semi-smooth parabolic PDE, see for example [Bet19]. Also see [BM15] where
second order assumptions are made in the field of plasticity modelling with VIs.

Assumption 3.54 Let (ȳ, ū) be an admissible pair for (OC).

1. jv : L2(Q)→ R is twice continuously Frechét differentiable,

2. jT : L2(Ω)→ R is twice continuously Frechét differentiable,

3. g : L2(Q)→ R is twice continuously Frechét differentiable.

Additionally the following properties shall be satisfied:

4. There exists a νg > 0 such that g′′(ū) is elliptic with ellipticity constant νg.

5. We have one of the following:

5.1 f is linear and j′′v (ȳ)v2 + j′′T (ȳ(T ))v(T )2 ≥ 0 for all v ∈ CκI (I, CκΩ(Ω)) ∩W0(I),

5.2 N ≤ 3, f ′′(t, x, ·) exists, is uniformly continous for all (x, y) ∈ Q, satisfies f ′′(ȳ) ∈
L∞(Q) and

j′′v (ȳ)v2 + j′′T (ȳ(T ))v(T )2 −
∫
Q
f ′′(ȳ)p̄v2 d(t, x) ≥ 0 ∀v ∈ CκI (I, CκΩ(Ω)) ∩W0(I).
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6. Assume Ψ ∈ C(Q̄). Let (λ̄, p̄, η̄) be a triple of adjoint and multipliers satisfying the
necessary optimality conditions from Theorem 3.38 together with (ȳ, ū). As additional
assumptions we assume there exists a τ > 0 such that

p̄ ≥ 0 on {(t, x) ∈ Q : Ψ(t, x) ≤ ȳ(t, x) < Ψ(t, x) + τ} and η̄ ≤ 0 as a measure on Q̄.

Remark 3.55 Assumption 3.54.1-Assumption 3.54.5 are satisfied for quadratic cost function-
als, which may or may not have an additional linear part, provided f is linear.

By Theorem 3.48 we already know that under common conditions we have p̄ ≥ 0 on the
active set. So, Assumption 3.54.6 can be seen as a tightening of that condition.

Under assumptions we can even get p̄ ≥ 0 globally. The following idea is a modification
of [Mig76, Théorème 4.1] and [KW12b, Remark 2.13] to the parabolic case. The following
lemma is applicable for the case of quadratic functionals of the form

αQ
2 ‖y − yQ‖

2
L2(Q),

αΩ
2 ‖y(T )− yT ‖2L2(Ω) (3.31)

if the desired states yQ ∈ L2(Q), yT ∈ L2(Ω) satisfy yQ ≤ Ψ, yT ≤ Ψ(T ).

Lemma 3.56 Assume that (p̄, η̄) ∈ P βȳ is generated by (γn)n∈N and j′v(ȳ), j′T (ȳ(T )) ≥ 0
almost everywhere as L2(Q)-/L2(Ω)-functions. Then we have p̄ ≥ 0 and η̄ ≤ 0 as a measure
on Q.

Under these assumption one could thus strengthen the optimality system in Theorem 3.38
to include those sign conditions as restrictions on (p̄, η̄).

Proof. Let ((p̄γn , η̄γn))n∈N be the sequence that converges to (p̄, η̄) in the sense of Defini-
tion 3.26. We first prove the sign of p̄. We decompose p̄γn = p̄+

γn − p̄
−
γn into its positive and

negative parts. Since taking those parts preserves V -regularity, cf. Proposition 8.19, we can
test the regularized adjoint equation with −p̄−γn to get(

j′v(ȳγn),−p̄−γn
)
L2(Q)

=
(
−∂tp̄γn , p̄−γn

)
L2(Q)

+ a(p̄γn ,−p̄−γn) +
((
f ′(ȳγn) + β′γn(ȳγn −Ψ)

)
p̄γn ,−p̄−γn

)
L2(Q)

.

By Proposition 8.19 the supports of ∇p̄−γn and ∇p̄+
γn are disjoint. This implies

a(p̄γn ,−p̄−γn) = a(−p̄−γn ,−p̄
−
γn) ≥ νell‖p̄−γn‖

2
L2(I,V ). (3.32)

By assumption f ′ ≥ 0 and β′γn ≥ 0, thus((
f ′(ȳγn) + β′γn(ȳγn −Ψ)

)
p̄γn ,−p̄−γn

)
L2(Q)

=
((
f ′(ȳγn) + β′γn(ȳγn −Ψ)

)
p̄−γn , p̄

−
γn

)
L2(Q)

≥ 0.

[Wac16a, Lemma 3.3], partial integration of Bochner functions, also applies to W (I). Here
we need to consider that the there mentioned [Rou13, Lemma 7.2] also applies to V and not
only H1(Ω). This means(
−∂tp̄γn ,−p̄−γn

)
L2(Q)

= −1
2‖p̄

−
γn(T )‖2H + 1

2‖p̄
−
γn(0)‖2H ≥ −

1
2‖p̄

−
γn(T )‖2H = −1

2‖j
′
T (ȳγn(T ))−‖2H .
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So in total we have(
j′(ȳγn),−p̄−γn

)
L2(Q)

+ 1
2‖j

′
T (ȳγn(T ))−‖2H ≥ νell‖p̄−γn‖

2
L2(Q). (3.33)

Since p̄γn
n→∞−−−→ p̄ in L2(Q), from Lemma 3.36, implies p̄±γn

n→∞−−−→ p̄± in L2(Q) we have:

(
j′v(ȳ),−p̄−

)
L2(Q) + 1

2‖j
′
T (ȳ(T ))−‖2H ≥ νell‖p̄−‖2L2(Q).

By the positivity assumptions on j′v and j′T this implies 0 ≥ ‖p̄−‖L2(Q). Thus p̄ = p̄+ ≥ 0.

We now turn to the sign of η̄. Let ϕ ∈ C∞c (Q) with ϕ ≥ 0. Note that S′γn(ūγn) is a positive
operator by Theorem 3.11 and Theorem 8.15. Thus

C(Q̄) 3 S′γn(ūγn)(β′γn(ȳγn −Ψ)ϕ) =: wγn ≥ 0. (3.34)

For the regularity see again Theorem 3.11.

By the definition of p̄γn and η̄γn we find(
j′v(ȳγn), wγn

)
L2(Q) +

(
j′T (ȳγn(T )), wγn(T )

)
H = (−η̄γn , ϕ)L2(Q) . (3.35)

By standard arguments, e.g. the ones used for the adjoint in the proof of Lemma 3.17, we
have that ‖wγn‖C(Ī,H)∩L2(I,V ) is bounded independently of γn.

So in particular we have that (wγn)n∈N is bounded in L2(Q) and thus an appropriate sub-
sequence has a weak limit w ∈ L2(Q). Recall that each wγn ≥ 0 by (3.34). As the set of
non-negative functions in L2(Q) is closed and convex, it is weakly closed and we have w ≥ 0
almost everywhere. The exact same way it can be shown that a subsequence of (wγn(T ))n∈N
converges weakly to some 0 ≤ wT ∈ L2(Ω).

By the uniform convergence of the states, see Theorem 3.7, we have

‖j′v(ȳ)− j′v(ȳγn)‖L2(Q), ‖j′T (ȳ(T ))− j′T (ȳγn(T ))‖H n→∞−−−→ 0.

Thus (3.35) yields, after taking the limit along the appropriate subsequence,

−(η̄, ϕ)M(Q̄),C(Q̄) = (j′v(ȳ), w)L2(Q) + (j′T (ȳ(T )), wT )H ≥ 0.

Thus we have shown for any ϕ ∈ C∞c (Q̄) that is non-negative:

(η̄, ϕ)M(Q̄),C(Q̄) ≤ 0.

It is well-known that the non-negative functions in C∞c (Q̄) are dense in the non-negative
functions in C0(Q̄) (in the standard mollification argument non-negative mollifiers are used)
with respect to ‖·‖L∞(Q) and thus η̄ ≤ 0 as a measure in M(Q̄) ' C(Q̄)∗.

We now finally prove local quadratic growth under Assumption 3.33. This theorem and the
proof are a modification of the elliptic case in [KW12b].

Theorem 3.57 Let Assumption 3.54 hold for some (ū, ȳ, λ̄, p̄, η̄). Then there exist r, δ > 0
such that

‖u− ū‖L2(Q) < r =⇒ J(S(u), u) ≥ J(ȳ, ū) + δ‖u− ū‖2L2(Q).
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Proof. Assume there exists a sequence (uk)k∈N ⊂ L2(Q) converging to ū strongly in L2(Q)
such that

J(yk, uk)− J(ȳ, ū) < ρ2
k

k
,

where we abbreviated ρk := ‖uk − ū‖L2(Q) and yk = S(uk). We also abbreviate λk = λ(uk),
λ̄ = λ(ū).

Then, using the mean value theorem and differentiability, we have for appropriate ξQk lying
between yk and ȳ, ξTk lying between yk(T ) and ȳ(T ) and ξuk lying between uk and ū that

J(yk, uk)− J(ȳ, ū) = j′v(ȳ)(yk − ȳ) + 1
2j
′′
v (ξQk )(yk − ȳ)2

+ j′T (ȳ(T ))(yk(T )− ȳ(T )) + 1
2j
′′
T (ξTk )(yk(T )− ȳ(T ))2

+ g′(ū)(uk − ū) + 1
2g
′′(ξuk )(uk − ū)2

−
(
(∂t +A) (yk − ȳ)− (λk − λ̄) + (f(yk)− f(ȳ))− (uk − ū), p̄

)
L2(Q)

.

(3.36)

The last line is just an added 0. We know by Corollary 3.31 that(
p̄+ g′(ū), uk − ū

)
L2(Q) ≥ 0

so the whole expression in (3.36) is bounded from below by

j′v(ȳ)(yk − ȳ) + 1
2j
′′
v (ξQk )(yk − ȳ)2

+ j′T (ȳ(T ))(yk(T )− ȳ(T )) + 1
2j
′′
T (ξTk )(yk(T )− ȳ(T ))2

+ 1
2g
′′(ξuk )(uk − ū)2

−
(
(∂t +A) (yk − ȳ)− (λk − λ̄) + (f(yk)− f(ȳ)), p̄

)
L2(Q)

.

(3.37)

By (3.15) from Theorem 3.38 and the fact that yk − ȳ ∈W0(I) ∩ C(Q̄) we have

− ((∂t +A) (yk − ȳ), p̄)L2(Q) +
(
j′v(ȳ), yk − ȳ

)
L2(Q) +

(
j′T (ȳ(T ))(yk(T )− ȳ(T ))

)
H

= − (η̄, yk − ȳ)M(Q̄),C(Q̄) +
(
f ′(ȳ)p̄, yk − ȳ

)
L2(Q) .

Inserting this into (3.37) yields the lower bound

1
2j
′′
v (ξQk )(yk − ȳ)2 + 1

2j
′′
T (ξTk )(yk(T )− ȳ(T ))2 + 1

2g
′′(ξuk )(uk − ū)2

−
(
−(λk − λ̄) + (f(yk)− f(ȳ))− f ′(ȳ)(yk − ȳ), p̄

)
L2(Q)

− (η̄, yk − ȳ)M(Q̄),C(Q̄) .

(3.38)

Because Uad is bounded and Lqu(Q) is reflexive we may assume, without loss of generality,
that (uk)k∈N converges weakly to ū in Lqu(Q). We now know by Theorem 2.34 that (yk)k∈N
converges uniformly to ȳ. Thus for k large enough we have ‖yk − ȳ‖L∞(Q) < τ and thus, by
Remark 2.31,

suppλk ⊂ {yk = Ψ} ⊂ {Ψ ≤ ȳ < Ψ + τ}.
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The sets are defined as the corresponding set in Theorem 3.51 and only defined up to sets
of measure zero, see Remark 2.31. So for large k we have together with (p̄, λ̄)L2(Q) = 0, the
positivity assumption on p̄ and the positivity of λk:(

λk − λ̄, p̄
)
L2(Q)

=
∫
{Ψ≤ȳ<Ψ+τ}

λkp̄ d(t, x) ≥ 0 (3.39)

Because η̄ is “orthogonal” to ȳ −Ψ by Lemma 3.32 we have

− (η̄, yk − ȳ)M(Q̄),C(Q̄) = − (η̄, yk −Ψ)M(Q̄),C(Q̄) ≥ 0, (3.40)

because −η̄ ≥ 0 by assumption and yk ≥ Ψ anyway.

So (3.36), (3.38), together with (3.39) and (3.40) yields for large k

ρ2
k

k
>

1
2j
′′
v (ξQk )(yk − ȳ)2 + 1

2j
′′
T (ξTk )(yk(T )− ȳ(T ))2 + 1

2g
′′(ξuk )(uk − ū)2

−
(
f(yk)− f(ȳ)− f ′(ȳ)(yk − ȳ), p̄

)
L2(Q) .

By Assumption 3.54.5 we arrive at

ρ2
k

k
>

1
2
(
j′′v (ξQk )− j′′v (ȳ)

)
(yk − ȳ)2 + 1

2
(
j′′T (ξTk )− j′′T (ȳ(T ))

)
(yk(T )− ȳ(T ))2

+ 1
2g
′′(ξuk )(uk − ū)2 −

(
f(yk)− f(ȳ)− f ′(ȳ)(yk − ȳ)− 1

2f
′′(ȳ)(yk − ȳ)2, p̄

)
L2(Q)

.

(3.41)

We now study the term involving f and its derivatives. If f is linear it simply vanishes. We
thus can assume that N ≤ 3 and all the other properties for f of Assumption 3.54.5.2 are
satisfied. We will show that∣∣∣∣∣

(
f(yk)− f(ȳ)− f ′(ȳ)(yk − ȳ)− 1

2f
′′(ȳ)(yk − ȳ)2, p̄

)
L2(Q)

∣∣∣∣∣ = o(ρ2
k). (3.42)

Let ε > 0 be arbitrary and δf > 0 such that |a− b| < δf implies |f ′′(t, x, a)− f ′′(t, x, b)| < ε
for all (t, x) ∈ Q by the uniform continuity assumption on f ′′. For k large enough we have
by the uniform convergence of the states that ‖yk − ȳ‖L∞(Q) < δf . Thus (3.42) is bounded
from above by∣∣∣∣∣
(∫ 1

0

∫ 1

0
(f ′′(ȳ + st(yk − ȳ))− f ′′(ȳ))s dt ds(yk − ȳ)2, p̄

)
L2(Q)

∣∣∣∣∣ ≤
∫
Q

1
2ε|yk − ȳ|

2|p̄| d(t, x).

By Proposition 8.11 this bounded from above by

Cε‖p̄‖L2(I,V )∩C(Ī,H)‖yk − ȳ‖
2
L2(I,V )∩C(Ī,H).

With the Lipschitz continuity of S, Corollary 2.35, we arrive at∣∣∣∣∣
(
f(yk)− f(ȳ)− f ′(ȳ)(yk − ȳ)− 1

2f
′′(ȳ)(yk − ȳ)2, p̄

)
L2(Q)

∣∣∣∣∣ ≤ Cερ2
k (3.43)

for large enough k. Thus

lim sup
k→∞

ρ−2
k

∣∣∣∣∣
(
f(yk)− f(ȳ)− f ′(ȳ)(yk − ȳ)− 1

2f
′′(ȳ)(yk − ȳ)2, p̄

)
L2(Q)

∣∣∣∣∣ ≤ Cε.
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As ε > 0 was arbitrary this implies∣∣∣∣∣
(
f(yk)− f(ȳ)− f ′(ȳ)(yk − ȳ)− 1

2f
′′(ȳ)(yk − ȳ)2, p̄

)
L2(Q)

∣∣∣∣∣ = o(ρ2
k). (3.44)

Rearranging (3.41) now delivers

(
j′′v (ξQk )− j′′v (ȳ)

)(yk − ȳ
ρk

)2
+
(
j′′T (ξTk )− j′′T (ȳ(T ))

)(yk(T )− ȳ(T )
ρk

)2
+ g′′(ξuk )

(
uk − ū
ρk

)2

≤ 2
k

+ o(ρ2
k)

ρ2
k

.

(3.45)

On to the final stretch: By ellipticity of g′′(ū) and (3.45) we have

0 < νg ≤ g′′(ū)
(
uk − ū
ρk

)2
= (g′′(ū)− g′′(ξuk ))

(
uk − ū
ρk

)2
+ g′′(ξuk )

(
uk − ū
ρk

)2

≤ (g′′(ū)− g′′(ξuk ))
(
uk − ū
ρk

)2
+ 2
k

+ o(ρ2
k)

ρ2
k

− (j′′v (ȳ)− j′′v (ξQk ))
(
yk − ȳ
ρk

)2
− (j′′T (ȳ)− j′′v (ξTk ))

(
yk(T )− ȳ(T )

ρk

)2
.

(3.46)

We have assumed g′′ to be continuous, therefore

(g′′(ū)− g′′(uk))
(
uk − ū
ρk

)2
≤ ‖g′′(ū)− g′′(uk)‖Bil(L2(Q),L2(Q))

∥∥∥∥uk − ūρk

∥∥∥∥2

L2(Q)

k→∞−−−→ 0.

(3.47)

Here ‖·‖Bil(L2(Q),L2(Q)) is the norm of a linear, continuous operator L2(Q)→ L2(Q)∗. Anal-
ogously the terms involving (j′′v (ȳ) − j′′v (ξQk )) and (j′′T (ȳ) − j′′v (ξTk )) vanish for k → ∞. Thus
(3.46) implies after taking the limit that

0 < νg ≤ 0. (3.48)

This is a contradiction and thus the quadratic growth condition has to be satisfied.

Remark 3.58 It may be possible to improve the previous result by weakening the conditions
from Assumption 3.54 by, for example, employing the directional derivative of S from [Chr19].

Remark 3.59 We remark here that the previous Example 3.40 also satisfies second order
sufficient conditions. This shows that even second order conditions do not necessarily entail
that the set of multipliers in the first order conditions are unique.

Assumption 3.33.1 - Assumption 3.33.5 are clearly satisfied by Example 3.40.

By construction (ū, ȳ, λ̄, p̄, η̄) satisfies the necessary optimality conditions from Theorem 3.38
and by the arguments in Example 3.40 we have p̄ ≥ 0 globally on Q. Also by construction
η̄ = p0 · δ0 ≤ 0 as a measure. Thus Assumption 3.33.6 is satisfied.
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3.6 Second Order Sufficient Conditions for Regularized Control
Problems

We consider the following regularized control problem for comparison with (OC):

min
(y,u)∈W (I)×L2(Q)

jv(y) + jT (y(T )) + g(u),

such that Sγ(u) = y and u ∈ Uad.
(OCγ)

Note that this differs from (OCγ,ū) in so far that we do not require any optimal solution
(ū, ȳ) to define it. We collect the most important statements about (OCγ) in the following
theorem:

Theorem 3.60 (OCγ) has at least one optimal solution (ȳγ , ūγ).

Assume that βγ ∈ C1,1
loc (R) or that βγ is of the form from Proposition 2.17 for αβ = 1 and

that |{ȳγ = Ψ}| = 0. Then (ȳγ , ūγ) satisfies

(p̄γ + g′(ūγ), u− ūγ)L2(Q) ≥ 0 ∀u ∈ Uad.

Here p̄γ ∈W (I) solves the linear, parabolic PDE{
−∂tp̄γ +Ap̄γ + βγ

′(ȳγ −Ψ)p̄γ + f ′(ȳγ)p̄γ = j′v(ȳγ)
p̄γ(T ) = j′T (ȳγ(T )), p̄γ |ΣD = 0.

Here we again have βγ ′(r) = γ−11(−∞,0)(r) if αβ = 1.

Proof. The existence proof is essentially the same as the one for the unregularized problem
(OC) in Theorem 3.3.

The optimality conditions are just basic optimality conditions obtained by differentiating
the problem in proper directions, e.g. [Trö09, Lemma 2.21]. For the differentiability see
Theorem 3.11 or Theorem 3.13. Introducing the adjoint just works as in Corollary 3.31.

Theorem 3.61 Let (γn)n∈N be a zero sequence and ((ȳγn , ūγn))n∈N a sequence of solutions
to (OCγ) for γ = γn. There exists a subsequence (γnk)k∈N and (ȳ, ū) ∈W (I)×Uad such that

• ūγnk
k→∞−−−→ ū weakly in Lqu(Q),

• ȳγnk
k→∞−−−→ ȳ strongly in CκI (I, CκΩ(Ω)) and weakly in W (I)

and (ȳ, ū) is a solution to (OC).

Proof. The existence of limits and the indicated convergence types are proven as in Theo-
rem 3.7. To see that the limit (ȳ, ū) is indeed optimal, we have by the weakly lower semi-
continuity of g:

J(ȳ, ū) ≤ lim inf
k→∞

J(ȳγnk , ūγnk ).

By the optimality of (ȳγnk , ūγnk ) we have for any u ∈ Uad

J(ȳ, ū) ≤ lim
k→∞

J(Sγnk (u), u) = J(S(u), u). (3.49)

Here we used that by definition, cf. Definition 2.32, (Sγnk (u))k∈N converges uniformly to
S(u).
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Remark 3.62 One could now retrace a lot of the theorems and deductions from Section 3.3 and
obtain boundedness and convergence of the controls, states, adjoints and the corresponding
multipliers. This would lead to the analysis of accumulation points of the respective quantities
and thus to a link to the unregularized problem. We do not, however, reiterate all the
theorems, because that would produce little new information in our eyes. We therefore limit
ourselves to the analysis of second order sufficient conditions, because this is also interesting
within the numerical analysis of (OC), respectively (OCγ), see Chapter 5 and in particular
Remark 5.8.

The only thing that may not be obvious is the question whether the regularized controls
converge to ū strongly in L2(Q). For u = ū (3.49) implies g(ūk)

k→∞−−−→ g(ū). If g is for example
given by νg

2 ‖·‖
2
L2(Q), this convergence implies that ‖uk‖L2(Q)

k→∞−−−→ ‖u‖L2(Q). Together with
the weak convergence of the controls, this implies the strong L2(Q)-convergence. Thus the
rest of the statements is now indeed retraceable.

Before we prove an analogue of Theorem 3.57 for the regularized control problem (OCγ). We
note that it is not straightforward to transfer the result of Theorem 3.57 to the regularized
setting as the following one-dimensional example shows.

Example 3.63 The unique minimizer of d : [−1, 1] → R, d(x) = x2 is clearly 0 and there
clearly holds a quadratic growth condition in 0 with constant 1. Yet, consider the following
family of functions:

dε : [−1, 1]→ R,

x 7→


x2 if x ≤ 0,
ε(x− ε)2 − ε3 if 0 < x ≤ ε,
(x− ε)2 − ε3 if ε < x,

with ε ∈ (0, 1). We see that ε is the minimizer with minimal value −ε3. The minimizers also
satisfy local growth conditions, more specifically

d(x) ≥ d(ε) + ε(x− ε)2 ∀x ∈ [−1, 1].

We also see that for any c > ε that

d(x) = ε(x− ε)2 − ε3 < d(ε) + c(x− ε)2 ∀x ∈ (0, ε).

Thus ε is the maximal constant for the local quadratic growth and not just a lower bound.

We also see that (dε)ε∈(0,1) converges uniformly to d:

sup
x∈[−1,1]

|dε(x)− d(x)| = max
(

sup
x∈(0,ε]

x2 − ε(x− ε)2 + ε3, sup
x∈(ε,1]

x2 − (x− ε)2 + ε3
)

≤ max
(

sup
x∈(0,ε]

ε2 − εx2 + 2xε2, sup
x∈(ε,1]

2xε− ε2 + ε3
)
≤ 2(ε+ ε2 + ε3).

Concluding, we have uniform convergence of functions (dε)ε∈(0,1) to the function d. Their
unique minimizers (ε)ε∈(0,1) converge to the unique minimizer 0 of d. The minimizers of dε
each satisfy a quadratic growth condition with the maximal growth constant ε > 0. Yet, the
minimizer 0 of d satisfies a growth condition with constant 1.

That means that one cannot deduce any behaviour on the quadratic growth in the minimizer
of dε from the two facts that: d, the limit, satisfies a growth condition in its minimizer, and
dε itself satisfies a growth condition in its minimizer.
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Even with this possible weakness in mind we will prove quadratic growth conditions for
(OCγ) where the growth constants and radii will depend on γ. This is still interesting for the
numerical analysis, see the related Remark 5.8.

Assumption 3.64 Let (ūγ , ȳγ , p̄γ) be such that they satisfy the necessary first order optimal-
ity conditions of (OCγ) from Theorem 3.60. This assumes in particular that Sγ is Frechét
differentiable in ūγ. This triple and the functionals jv, jT , g shall satisfy the following points

1. jv : L2(Q)→ R is twice continuously Frechét differentiable,

2. jT : L2(Ω)→ R is twice continuously Frechét differentiable,

3. g : L2(Q)→ R is twice continuously Frechét differentiable.

Additionally the following properties shall be satisfied:

4. There exists a νg > 0 such that g′′(ūγ) is elliptic with ellipticity constant νg,

5. Assume N ≤ 3, βγ ∈ C2(R), f ′′(t, x, ·) exists, is uniformly continous for all (x, y) ∈ Q,
satisfies f ′′(ȳγ) ∈ L∞(Q) and

j′′v (ȳγ)v2 + j′′T (ȳγ(T ))v(T )2 −
∫
Q
p̄γ(βγ ′′(ȳγ −Ψ) + f ′′(ȳγ))v2 d(t, x) ≥ 0 (3.50)

for all v ∈ CκI (I, CκΩ(Ω)) ∩W0(I).

Remark 3.65 We shall once again comment on these assumptions and their validity. Assump-
tion 3.64.1-Assumption 3.64.4 are again quite obvious and relatively benign assumptions.

Assumption 3.64.5, however, ist complicated. It essentially is the analogue/replacement of
Assumption 3.33.5 - Assumption 3.33.6. This is not immediately obvious, but becomes clearer
throughout the proof of local quadratic growth in Theorem 3.67. We can at least provide a
heuristic motivation. Assume for the moment that the sign of p̄ from the unregularized case in
Assumption 3.33 is the same as the sign of p̄γ , for sufficiently small γ. This is possible under
a restrictive, but simple assumption, cf. Remark 3.69. So, if p̄γ ≥ 0 on {Ψ ≤ ȳ < Ψ + τ}, we
find by uniform convergence of (ȳγn)n∈N to ȳ, cf. Theorem 3.61, that p̄γ ≥ 0 on {ȳγ ≤ Ψ}
for γ small enough. Therefore we see that

−(p̄γβγ ′′(ȳγ −Ψ), d2)L2(Q) ≥ 0.

So, if the analogue of Assumption 3.33.5 holds for ȳγ this “implies” Assumption 3.64.5.

Our analysis is closely related to the study of second order sufficient conditions of semilinear,
semi-smooth parabolic PDEs. The literature is limited and we are only aware of [Bet19].
There assumption (4.22) is the analogue to our Assumption 3.64.5. The author of [Bet19]
comes to the conclusion, at the end of section 4, that the there given second order conditions
are comparatively sharp. We therefore conclude that there are no obvious ways to avoid this
type of condition.

The author of [Bet19] cannot avoid a two-norm gap, while we can, using the special structure
of our problem and fact that Assumption 3.64.5 is structurally similar, but stronger, than
(4.22) in [Bet19]. We comment later how to weaken Assumption 3.64.5 by accepting a two-
norm gap.

Proposition 3.66 Assume that β ∈ C2(R). Then for any y ∈ L∞(Q) we have

‖β′′(y + δy)− β′′(y)‖L∞(Q)
‖δy‖L∞(Q)→0
−−−−−−−−−→ 0.
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Proof. We abbreviate ry := ‖y‖L∞(Q) + 1. As β′′ is continuous and [−ry, ry] is compact we
have that β′′|[−ry ,ry ] is uniformly continuous. So any ε > 0 there exists a δ > 0 such that for
any r, r′ ∈ [−ry, ry] with |r − r′| < δ we have |β′′(r)− β′′(r′)| < ε. Thus we can conclude

lim sup
‖δy‖L∞(Q)→0

‖β′′(y + δy)− β′′(y)‖L∞(Q) < ε.

As ε > 0 was arbitrary we conclude the proof.

Theorem 3.67 Assume that Assumption 3.64 is satisfied for some (ūγ , ȳγ , p̄γ). Then there
exist rγ , δγ > 0 such that

‖u− ūγ‖L2(Q) < rγ =⇒ J(Sγ(u), u) ≥ J(ȳγ , ūγ) + δγ‖u− ūγ‖2L2(Q).

Proof. Copying the proof of Theorem 3.57 until (3.38) verbatim yields

ρ2
k

k
>

1
2j
′′(ξQ,kγ )(ykγ − ȳγ)2 + 1

2j
′′(ξT,kγ )(ykγ(T )− ȳγ(T ))2 + 1

2g
′′(ξu,kγ )(ukγ − ūγ)2

−
(
−(λkγ − λ̄γ) + f(ykγ)− f(ȳγ)− f ′(ȳγ)(yk − ȳγ), p̄γ

)
L2(Q)

−
(
η̄γ , y

k
γ − ȳγ

)
L1(Q),L∞(Q)

.

(3.51)

Here we have λkγ := −βγ(ȳkγ − Ψ), λ̄γ = −βγ(ȳγ − Ψ) and η̄γ = −βγ ′(ȳγ − Ψ)p̄γ . As in the
proof of Theorem 3.57 we may still assume that (ukγ)k∈N converges weakly to ūγ in Lqu(Q).
By Corollary 2.28 we therefore have that (ykγ)k∈N converges uniformly to ȳγ .

We now analyse the terms in (3.51) involving the regularization term:

−
(
−(λkγ − λ̄γ), p̄γ

)
L2(Q)

−
(
η̄γ , y

k
γ − ȳγ

)
L1(Q),L∞(Q)

=
∫
Q
−βγ(ȳkγ −Ψ)p̄γ + βγ(ȳγ −Ψ)p̄γ + βγ

′(ȳγ −Ψ)p̄γ(ȳkγ − ȳγ) d(t, x)

= −
∫
Q

(∫ 1

0

∫ 1

0
βγ
′′(ȳγ −Ψ + st(ykγ − ȳγ))s dt ds

)
(ykγ − ȳγ)2p̄γ d(t, x).

(3.52)

We now compare this to (−1
2βγ
′′(ȳγ −Ψ)p̄γ , (ykγ − ȳγ)2)L2(Q). The arguments will be similar

to those for f in the proof of the unregularized case, cf. Theorem 3.57. We find∣∣∣∣∫
Q

(∫ 1

0

∫ 1

0
βγ
′′(ȳγ −Ψ + st(ykγ − ȳγ))s dt ds− 1

2βγ
′′(ȳγ −Ψ)

)
(ykγ − ȳγ)2p̄γ d(t, x)

∣∣∣∣
≤ ‖p̄γ‖L3(Q)‖ykγ − ȳγ‖2L3(Ω)

·
∥∥∥∥∫ 1

0

∫ 1

0
[βγ ′′(ȳγ −Ψ + st(ykγ − ȳγ))− βγ ′′(ȳγ −Ψ)]s dt ds

∥∥∥∥
L∞(Ω)

dt.

We again have by Proposition 8.11 and Corollary 2.35 that∣∣∣∣∫
Q

(∫ 1

0

∫ 1

0
βγ
′′(ȳγ −Ψ + st(ykγ − ȳγ))s dt ds− 1

2βγ
′′(ȳγ −Ψ)

)
(ykγ − ȳγ)2p̄γ d(t, x)

∣∣∣∣
≤ Cρ2

k

∫ 1

0

∫ 1

0
‖βγ ′′(ȳγ −Ψ + st(ykγ − ȳγ))− βγ ′′(ȳγ −Ψ)‖L∞(Q)s dt ds.

(3.53)
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By our assumptions Proposition 3.66 applies. Thus for fixed s, t ∈ (0, 1) we have

‖βγ ′′(ȳγ −Ψ + st(ykγ − ȳγ))− βγ ′′(ȳγ −Ψ)‖L∞(Q)
k→∞−−−→ 0.

By the theorem of dominated convergence, e.g. [BK15, Proposition 5.4], and the boundedness
of βγ ′′ on the compact set [− supk∈N‖ykγ − Ψ‖L∞(Q), supk∈N‖ykγ − Ψ‖L∞(Q)] we can conclude
that ∫ 1

0

∫ 1

0
‖βγ ′′(ȳγ −Ψ + st(ykγ − ȳγ))− βγ ′′(ȳγ −Ψ)‖L∞(Q)s dt ds

k→∞−−−→ 0.

Thus (3.53) entails∣∣∣∣∫
Q

(∫ 1

0

∫ 1

0
βγ
′′(ȳγ −Ψ + st(ykγ − ȳγ))s dt ds− 1

2βγ
′′(ȳγ −Ψ)

)
(ykγ − ȳγ)2p̄γ d(t, x)

∣∣∣∣ = o(ρ2
k).

This and (3.52) therefore entail

−
(
−(λkγ − λ̄γ), p̄γ

)
L2(Q)

−
(
η̄γ , y

k
γ − ȳγ

)
L1(Q),L∞(Q)

= −
∫
Q

1
2βγ

′′(ȳγ −Ψ)p̄γ(ykγ − ȳγ)2 d(t, x) + o(ρ2
k).

(3.54)

As in the proof of (3.44) in Theorem 3.57 we have∣∣∣∣(f(ykγ)− f(ȳγ)− f ′(ȳγ)(yk − ȳγ)− 1
2f
′′(ȳγ)(yk − ȳγ)2, p̄γ)L2(Q)

∣∣∣∣ = o(ρ2
k). (3.55)

As in (3.47) we find

g′′(ξu,kγ )(ukγ − ūγ)2 = g′′(ūγ)(ukγ − ūγ)2 + o(ρ2
k).

Again the same holds true for jv and jT so that together with (3.54) and (3.55) we conclude
from (3.51):

2ρ2
k

k
+ o(ρ2

k) >j′′v (ȳγ)(ykγ − ȳγ)2 + j′′T (ȳγ(T ))(ykγ(T )− ȳγ(T ))2 + g′′(ūγ)(ukγ − ūγ)2

−
∫
Q
p̄γ(βγ ′′(ȳγ −Ψ) + f ′′(ȳγ))(ykγ − ȳγ)2 d(t, x).

(3.56)

By (3.50), keeping in mind that ykγ − ȳγ ∈ CκI (I, CκΩ(Ω)) ∩W0(I), and Assumption 3.64.4
we find

2ρ2
k

k
+ o(ρ2

k) >νg.

Sending k →∞ now yields the desired contradiction.

Remark 3.68 As promised at the end of Remark 3.65 we shall comment on a variant of The-
orem 3.67 involving a two norm gap. The following thoughts are essentially [Bet19, Theorem
4.13]. Presume that in the proof of Theorem 3.67 we assume ρk = ‖ukγ − ūγ‖Lqu (Q)

k→∞−−−→ 0,
which is stronger than the situation in Theorem 3.67. One arrives at (3.56) just the same.
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Dividing this by ρk and using the differentiability of Sγ : Lqu(Q)→ C(Q̄) from Theorem 3.13
yields

0 ≥ 1
2j
′′
v (ȳγ)[Sγ ′(ūγ)d]2 + 1

2j
′′
T (ȳγ(T ))[Sγ ′(ūγ)d](T )2 + 1

2νg

−
(1

2 p̄γβγ
′′(ȳγ −Ψ) + 1

2f
′′(ȳγ), [Sγ ′(ūγ)d]2

)
L2(Q)

.
(3.57)

Now (3.50) again yields a contradiction. However, it is sufficient to assume a weaker version
of (3.50), namely

j′′v (ȳγ)(Sγ ′(ūγ)d)2 + j′′T (ȳγ(T ))(Sγ ′(ūγ)d)(T )2

−
∫
Q
p̄γ(βγ ′′(ȳγ −Ψ) + f ′′(ȳγ))(Sγ ′(ūγ)d)2 d(t, x) ≥ 0

for all d ∈ Lqu(Q).
Remark 3.69 In Theorem 3.67 all the constants rγ , δγ > 0 depend on γ. But in a very special
situation, we can easily obtain a quadratic growth condition uniform in γ. This is more or
less just an academic situation but it gives us an indication that the quadratic growth of
(OCγ) might be uniform in γ after all. This is reserved for future research.

We study the case that jT = 0, jv is quadratic of the form (3.31) and yQ ≤ Ψ − ε on Q for
some ε > 0. We also consider g(u) := αg

2 ‖u‖
2
L2(Q) for some αg > 0. For presentations’ sake

we also choose f = 0. Lastly, we of course presume β ∈ C2(R).

By the uniform convergence of (ȳγ)γ>0 to some ȳ by Theorem 3.61, after consideration of
subsequences, we have ȳγ ≥ yQ for all sufficiently small γ. By the maximum principle and
the definition of p̄γ we have p̄γ ≥ 0 as in the proof of Lemma 3.56. Hence, we see that the
reduced cost functional

jγ(u) := αQ
2 ‖Sγ(u)− yQ‖2L2(Q) + αg

2 ‖u‖
2
L2(Q)

satisfies for any d ∈ Lqu(Q)

j′′γ (ūγ)d2 = (S′(ūγ)d, S′(ūγ)d)L2(Q) + (S(ūγ)− yQ, S′′(ūγ)d2)L2(Q) + αg(d, d)L2(Q)

≥ αg‖d‖2L2(Q) + (S(ūγ)− yQ, S′′(ūγ)d2)L2(Q)

= αg‖d‖2L2(Q) + ((−∂t +A+ βγ
′(S(ūγ)−Ψ))p̄γ , S′′(ūγ)d2)L2(Q).

S′′ will be shown to be well-defined later in Theorem 6.3 and Theorem 6.5. Using the
definition of S′′(ūγ)d2 and under the assumption that {ȳγ = Ψ} is a zero set, we arrive at

j′′γ (ūγ)d2 ≥ αg‖uγ‖2L2(Q) + (p̄γ ,−βγ ′′(ȳγ −Ψ)[S′(ūγ)d]2)L2(Q).

As we argued before we have p̄γ ≥ 0. We also know that βγ ′′ ≤ 0 and thus j′′γ (ūγ)d2 ≥
αg‖d‖2L2(Q). We thus see that in this special case a quadratic growth condition holds inde-
pendently of γ. Sending γ to 0 obviously entails that the same growth condition holds for
the unregularized problem.

3.7 Optimal Control of Obstacle Problems Without Control
Constraints

We now shortly comment on the control problem when Uad is unbounded. The trick is
reducing it to a constrained control problem.
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Definition 3.70 In Section 3.7 we consider the control problem

min
(y,u)∈W (I)×L∞(Q)

jv(y) + jT (y(T )) + g(u) =: 1
2‖y − yQ‖

2
L2(Q) + αg

2 ‖u‖
2
L2(Q),

such that S(u) = y.

(OCunbd)

In particular, we have jT = 0 and αg > 0 is some arbitrary constant. Note that this problem
admits only bounded controls, but is not a control constrained problem in and of itself.

As a tool we also introduce the constrained control problems for a > 0:

min
(y,u)∈W (I)×L∞(Q)

1
2‖y − yQ‖

2
L2(Q) + αg

2 ‖u‖
2
L2(Q),

such that S(u) = y and u ∈ [−a, a].
(OCa)

We immediately see that (OCa) satisfies all the assumptions from Definition 3.2. Thus all
results from Sections 3.1 through 3.5 hold for any a > 0. We will show that for a sufficiently
large a (OCa) is equal to (OCunbd) and thus can easily transfer the results from the previous
sections to (OCunbd).

Theorem 3.71 Assume N ≤ 3. Let q̃u ∈ (1+N/2, 3] and assume that jv(y) = 1
2‖y−yQ‖

2
L2(Q)

with yQ ∈ Lq̃u(Q). Assume g is of the form from Corollary 3.41. Then there exists a a0 > 0
such that (OCa) is equivalent to (OCunbd) for all a ≥ a0.

Proof. As mentioned before it is clear that (OCa) satisfies the assumptions from Definition 3.2
and thus a solution (ȳa, ūa) exists. By Theorem 3.47 we have

‖ūa‖L∞(Q) ≤ C 6a‖j′v(ȳ)‖Lq̃u (Q) ≤ C 6a(‖ȳ‖L3(Q) + ‖yQ‖Lq̃u (Q)). (3.58)

By Proposition 8.11 and the assumption N ≤ 3 there is a θ ∈ (0, 1) such that

‖ȳ‖L3(Q) ≤ C‖ȳ‖1−θC(Ī,H)‖ȳ‖
θ
L2(I,V ). (3.59)

C > 0 does not depend on a. We will show at the end that

‖ȳ‖L2(I,V )∩C(Ī,H) ≤ C (3.60)

where C does not depend on a. Then (3.59) entails

‖ȳ‖L3(Q) ≤ C 6a

and then (3.58)

‖ūa‖L∞(Q) ≤ C 6a.

We choose a0 as the right hand side and let a ≥ a0. We show that any solution to (OCa)
solves (OCunbd) and vice versa. Let ū be a solution to (OCunbd). Thus

J(S(ū), ū) = min
u∈L∞(Q)

J(S(u), u) ≤ min
u∈[−‖ū‖L∞(Q),‖ū‖L∞(Q)]

J(S(u), u) = J(S(ū), ū). (3.61)

Hence ū is, unsurprisingly, a solution to

min
u∈[−‖ū‖L∞(Q),‖ū‖L∞(Q)]

J(S(u), u).
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By the earlier discussion this entails ‖ū‖L∞(Q) ≤ a0. By the same line of arguing as in (3.61)
we have that ū solves (OCa). This also automatically entails

min
u∈L∞(Q)

J(S(u), u) = min
u∈[−a,a]

J(S(u), u).

In turn, this entails that every solution to (OCa) also solves (OCunbd).

It remains to prove (3.60). This is not difficult, but lengthy. We test the multiplier for-
mulation, see Theorem 2.30, with ȳ · 1(0,t) for t ∈ I and use the monotonicity of f to see
that (

‖λ(ū)‖L2(Q) + ‖ū‖L2(Q)
)
‖ȳ‖L2(Q) ≥

∫ t

0
(∂tȳ + f(ȳ), ȳγ)H + aΩ(ȳ, ȳ) ds

≥ 1
2‖ȳ(t)‖2H −

1
2‖y0‖2H + νell‖∇ȳ‖2L2((0,t)×Ω) − ‖f(0)‖L2(Q)‖ȳ‖L2(Q).

As t ∈ I was arbitrary we conclude(
‖ū‖L2(Q) + ‖f(0)‖L2(Q) + ‖λ(ū)‖L2(Q)

)
‖ȳ‖L2(Q) + 1

2‖y0‖2H ≥
1
2‖ȳ‖

2
L∞(I,H).

As in the proof of Lemma 3.17, cf. the arguments below (3.9), we get that

‖ȳ‖L2(I,V )∩C(Ī,H) ≤ C
(
‖ū‖L2(Q) + ‖f(0)‖L2(Q) + ‖λ(ū)‖L2(Q) + ‖y0‖H

)
.

Here C does only depend on T and νell. By the optimality of ū and the structure of g we
find

‖ū‖L2(Q) ≤
√
α−1
g J(S(0), 0). (3.62)

Thus we have for a C independent of a or ūa that

‖ȳ‖L2(I,V )∩C(Ī,H) ≤ C
(
1 + ‖λ(ū)‖L2(Q)

)
. (3.63)

It remains to estimate ‖λ(ū)‖L2(Q).

Using the same techniques as in Lemma 2.25 one can show that

‖λγ(ū)‖L2(Q) ≤ ‖ū‖L2(Q) + ‖∂tΨ‖L2(Q) + ‖AΨ‖L2(Q) + ‖f(Ψ)‖L2(Q)

holds for any γ > 0. Since by Theorem 2.30 we have λγ(ū) γ→0−−−→ λ(ū) weakly in Lqu(Q) and
therefore weakly in L2(Q) we deduce by the weakly lower semi-continuity of the norms that

‖λ(ū)‖L2(Q) ≤ ‖ū‖L2(Q) + ‖∂tΨ‖L2(Q) + ‖AΨ‖L2(Q) + ‖f(Ψ)‖L2(Q).

This together with (3.62) and (3.63) we have shown (3.60).

Remark 3.72 Now the important results of the previous sections can be transferred to
(OCunbd) by means of (OCa). We do not go over every little lemma, but most importantly the
necessary optimality conditions from Theorem 3.38 hold true. The most interesting part here
is the relation between control and adjoint. Let (ȳ, ū) be an optimal solution to (OCunbd), a0
from Theorem 3.71 and a > 0. Then we know, by Theorem 3.38, or rather by Corollary 3.41,
that

ū = P[−a,a][−α−1
g p̄].

As a ≥ a0 was arbitrary this show that ū = −αgp̄. Exactly what one would hope for an
unbounded problem. This does entail that the adjoint p̄ and the multiplier η̄ are unique by
Theorem 3.44.

The sufficient conditions from Section 3.5 obviously also hold true under the appropriate
assumptions.

85





4 Discretization and Numerical Analysis for
Regularized Obstacle Problems

Throughout Chapter 4 we assume the definitions and assumptions of Section 2.2.1 to apply.
We also assume that N ≥ 2, even though up to and including Section 4.1.3 N = 1 is possible
by the same proofs and references. However, the later sections often make reference to works
where N ≥ 2 is assumed, which makes it easier to parse by ignoring the special case N = 1.

The structure of this chapter is as follows: we first start with the discussion of the dis-
cretization of V = H1

0 (Ω) by linear elements. This discussion includes the derivation of
L∞(Ω)-quasi-stability results of the Ritz projection by techniques of [SW82] and resolvent
estimates for the operator A by techniques of [BTW03].

After that we discretize the time dependencies by piecewise constant functions and combine
this discretization with the spatial discretization to obtain L∞(Q)-error estimates for linear
parabolic PDEs. We will then finally turn to the discretization of the regularized obstacle
problem and its numerical analysis, which requires the theory for linear parabolic PDEs.

4.1 Spatial Discretization

4.1.1 Definitions

Definition 4.1 By Kh we denote a triangulation of Ω. That means that Kh is a set of
open, convex, and tetrahedral cells K ⊂ Ω with diameters hK . The mesh size is denoted by
h := maxK∈Kh hK . We define Ωh := int⋃K∈Kh K̄ ⊂ Ω. The set Ωh is polygonal/polyhedral.
We do not allow hanging nodes and the closures of two different cells, which intersect, shall
always intersect in a common facet. The set of nodes is denoted by Nh. We will use the
terms “mesh” and “triangulation” interchangeably throughout this thesis.

The reference element K̂ is defined as the unit simplex, i.e. K̂ := span(0, e1, . . . , eN ). By
JK : K̂ → K we denote the linear mapping from the reference element to the general element.
We always assume it to be bijective, which implicitly entails, for example, that K cannot be
a line.

As usual we can not work on arbitrary cells. We require several regularity and quasi-
uniformity assumptions:

Definition 4.2 We call a family (Kh)h>0 of meshes quasi-uniform if there is a constant C > 0
such that

hK ≤ h ≤ C|K|
1
N ∀K ∈ Kh, h > 0.

This immediately implies for some C > 0, independent of K or h

hK ≤ h ≤ ChK .
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4 Discretization and Numerical Analysis for Regularized Obstacle Problems

This property is also sometimes referred to as quasi-uniformity.

We call a family of meshes (Kh)h>0 shape regular if there exists a C > 0 such that

hK
ρK
≤ C ∀K ∈ Kh. (4.1)

Here ρK denotes the diameter of the largest circle/ball inscribed in K.

Proposition 4.3 Let (Kh)h>0 be a family of shape regular meshes. Then there exists a c > 0
such that for all h > 0, K ∈ Kh and all edges E of K we have |E| ≥ chK .

If (Kh)h>0 is additionally quasi-uniform this entails |E| ≥ ch.

Proof. It is obvious that the diameter of the incircle of a tetrahedron is always smaller than
the shortest edge. Thus any edge E ⊂ K satisfies |E| ≥ ρK ≥ chK , where we used the shape
regularity.

It is clear that the first claim implies the second by the quasi-uniformity assumption.

Definition 4.4 Note that for the rest of the thesis we assume V := H1
0 (Ω). This is stressed

again later. Whenever we refer to A−1 or similar operators, we assume that A is equipped with
homogenous boundary conditions. This is clear by the definition of domp(A) for p ∈ (1,∞)
but it is important to keep in mind nevertheless. The space of piecewise linear functions in
V subordinate to a triangulation Kh is denoted by Vh, i.e.

Vh := {vh ∈ C0(Ωh) : vh|K is linear ∀K ∈ Kh} .

By linear we technically mean affine linear.

We assume Ωh ⊂ Ω and thus can extend each vh ∈ Vh by 0 to a function inH1
0 (Ω)∩C(Ω̄). This

is the reason we consider V = H1
0 (Ω): extending the finite element function with something

else than 0 poses its own challenges. So, we have Vh ⊂ V . This is very important so that
all the following definitions are well-defined and intuitive. In general it is of course possible
to consider non-conforming case Ωh 6⊂ Ω. Then one would have to extend H1

0 (Ω) by 0 onto
H1

0 (Ω∪Ωh) and Vh in the same fashion. Then one could redefine the bilinear forms aΩ/aI on
the space H1

0 (Ω ∪ Ωh) , respectively L2(I,H1
0 (Ω ∪ Ωh)), and work from there. We do not do

this as we think it does not add much to the present analysis in terms of new results. From
time to time we will comment on it nevertheless.

For k ∈ N, p ∈ [1,∞] we define:

W k,p,h(Ωh) :=

vh ∈ L1(Ωh) : ‖v‖p
Wk,p,h(Ωh) :=

∑
K∈Kh

‖vh‖pWk,p(K) <∞

 .
We can clearly use this definition for any subset of Ωh consisting of a union of cells.

Note that in this definition ‖vh‖W 2,p,h(Ωh) = ‖vh‖W 1,p(Ωh) for any vh ∈ Vh. This notation is
frequently used in our references.

We of course require the notions of interpolation and projection, which we will introduce
here. They are well-known, we therefore see the following paragraph as an introduction of
notation.
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4.1 Spatial Discretization

Definition 4.5 Let Kh be a triangulation of Ω and Vh the corresponding space of affine
elements. Then we define the interpolation operator

Ih : C0(Ω̄)→ Vh,

v 7→ Ihv,

where Ihv is the unique affine function that satisfies v(x̂) = Ihv(x̂) for any node x̂ ∈ Nh.

We also define the L2-projection via

Ph : L2(Ω)→ Vh,

v 7→ the unique vh such that (v − vh, ϕh)L2(Ω) = 0 ∀ϕh ∈ Vh.

Lastly we define the Ritz-projection via

Rh : H1
0 (Ω)→ Vh,

v 7→ the unique vh such that aΩ(v − vh, ϕh) = 0 ∀ϕh ∈ Vh

and the discrete version of the operator A via

Ah : Vh → V ∗h , vh 7→
∫

Ω
∇vThA∇ · dx.

The symbol A in the integral refers to the coefficient matrix of the operator.

4.1.2 Preliminary Results About Meshes

In this section we collect minor results on meshes that mostly verify assumptions made by
authors we cite. A common assumption on the distance of ∂Ω and ∂Ωh is implied under
regularity of Ω, see for example [Ran17, proof of Theorem 3.3].

Proposition 4.6 Assume N = 2 and that Ω is a convex C2 domain. Let (Kh)h>0 be a family
of meshes such that the boundary nodes of each Ωh lie on ∂Ω, then

max
x∈∂Ωh

dist(x, ∂Ω) = O(h2).

The following proposition proves a uniform Lipschitz property of the meshes that is for
example used in [SW82] and other papers by the same authors. There it is, however, not
verified but assumed. We verify it in a case we also use in programming.

Proposition 4.7 Let N = 2. Let (Kh)h>0 a family of quasi-uniform and shape regular
meshes. Assume δ := maxx∈∂Ωh dist(x, ∂Ω) ≤ Cδh

2; the max is attained, because ∂Ωh is
compact. Finally assume the smallest angle in ∂Ωh is bounded from below by α0 ∈ (0, π)
independently of h.

Then the (Ωh)h>0 and Ω are uniform Lipschitz domains for sufficiently small h. More pre-
cisely there is a h0 > 0 such that for h ∈ (0, h0) one has the following: for the quan-
tities a, b, Si, hi, fi from the definition of the Lipschitz property of Ω one has that there
are Lipschitz functions fhi such that after transforming with Si we have for all (y, yN ) ∈
(−a, a)N−1 × (−b, b):

(y, yN ) ∈ Ωh ⇐⇒ fhi (y) > yi > fhi (y)− b,
(y, yN ) ∈ ∂Ωh ⇐⇒ fhi (y) = yN .
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4 Discretization and Numerical Analysis for Regularized Obstacle Problems

(a) The “tube” Hδ around ∂Ω of size δ. The
blue line has the length δ. (b) A sketch illustrating the points used in

the estimate ofm. It is basically a zoomed
in part of Figure 4.1a.

(c) The points used to estimate the maximum
slope of the line connecting (a′, aN ) and
(b′, bN ).

(d) The points used to prove that ∂Ωh can be
written as a graph for h sufficiently small.

Here, we implicitly used Ωh as the symbol for the original Ωh transformed by S−1
i , as it is

customary.

Also all the S1((−a, a)N−1×(−b, b)), . . . , SM ((−a, a)N−1×(−b, b)) cover ∂Ωh for each h > 0.
Furthermore if we let LΩ := maxi=1,...,#fi Lipfi we have

max
i=1,...,#fi

Lipfhi
≤ LΩ + (2 + LΩ)Cδh

ce
.

Here ce > 0 is the h-independent constant from Proposition 4.3. We also have

max
i=1,...,#fi

‖fi − fhi ‖L∞([−a,a]N−1) ≤ (2 + LΩ)δ ≤ Cδ(2 + LΩ)h2.

In words: almost the same transformations, that locally represent ∂Ω as a graph, can be used
to represent ∂Ωh locally as a graph.

Proof. We do everything for one coordinate system, i.e. after transformation by one Si, and
drop the index i. We first analyse what the maximum distance of ∂Ωh to ∂Ω in xN direction
could be. Looking at Figure 4.1a one can see that ∂Ωh is contained in the “tube” Hδ of
thickness δ around ∂Ω. Formally

∂Ωh ∩ ((−a, a)N−1 × R) ⊂ Hδ := {x ∈ Ω : dist(x, ∂Ω) ≤ δ} ∩ ((−a, a)N−1 × R).

We analyse Hδ to obtain some behaviour of ∂Ωh.

We denote the maximum vertical expansion of Hδ by m. In formulae:

m := sup
(y′0,yN0 )∈Hδ

|(y′0, yN0 )− (y′0, f(y′0))| = sup
(y′0,yN0 )∈Hδ

|yN0 − f(y′0)|.
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4.1 Spatial Discretization

Let (y′0, yN0 ) ∈ Hδ. By definition of Hδ there exists a (x′0, f(x′0)) ∈ (−a, a)N−1 × R such that
|(y′0, yN0 )− (x′0, f(x′0))| ≤ δ. Then we have

|yN0 − f(y′0)| = |(y′0, yN0 )− (y′0, f(y′0)| ≤ δ + |(x′0, f(x′0))− (y′0, f(y′0))|
≤ δ + |x′0 − y′0|+ LΩ|x′0 − y′0| ≤ (2 + LΩ)δ.

Thus

m ≤ (2 + LΩ)δ. (4.2)

So for h <
√

b
Cδ(2+LΩ) we have m < b and thus the whole tube around ∂Ω is contained in our

local coordinate system and thus in particular ∂Ωh is contained there as well. Yet, this does
not imply that ∂Ωh can be represented as a graph.

We now compute the maximum slope a line segment of at least length ceh, i.e. a possible
facet of ∂Ωh contained in Hδ, can have. Here ce > 0 is the constant from Proposition 4.3
obtained by quasi-uniformity and shape regularity. Let a = (a′, aN ), b = (b′, bN ) ∈ Hδ such
that |(a′, aN ) − (b′, bN )| ≥ c′h. Without loss of generality we may assume aN ≥ bN , cf.
Figure 4.1c. Then we define the linear map connecting a and b:

L(a′,aN ),(b′,bN )(x′) = aN + (x′ − a′)T (b′ − a′)
|b′ − a′|2

(bN − aN ).

Its gradient is given by

∇L(a′,aN ),(b′,bN )(x′) = b′ − a′

|b′ − a′|2
(bN − aN ).

Thus the slope of the line segment between a and b is bounded by |b
N−aN |
|b′−a′| . By the assumption

aN ≥ bN we have the following estimate on the upper bound

aN − bN

|a′ − b′|
≤ f(a′)− f(b′)

|a′ − b′|
+ f(b′)− bN
|a′ − b′|

≤ LΩ + m

ceh
.

By (4.2) we find the following bound on the slope

|∇L(a′,aN ),(b′,bN )| ≤ LΩ + (2 + LΩ)
ce

δ

h
=: LdiscΩ . (4.3)

We now show that ∂Ωh can indeed be written locally as a graph. We have already shown
that the open sets S1((−a, a)N−1 × (−b, b)), . . . , SM ((−a, a)N−1 × (−b, b)) cover ∂Ωh. Thus
by the Lebesgue’s number lemma, e.g. [Mun75, Chapter 3, Lemma 7.2], there exists a h0 > 0
so small that for each h ≤ h0 we have that each subset of ∂Ωh of diameter at most 2h is
contained in one of the covering sets. Then each two connected edges are contained fully in
one of the systems. Now consider any two connected edges of ∂Ωh. We will now show that
the situation of Figure 4.1d cannot happen for sufficiently small h. That means that the two
edges cannot run into opposite directions. Let everything be transformed into a coordinate
system that completely contains those two edges, which exists by our earlier observations.

In the following (a′, aN ), (b′, bN ), (c′, cN ), (c′, L(a′,aN ),(b′,bN )(c′)) are chosen as in Figure 4.1d.
[a, b] and [b, c] are edges and thus are longer than ceh by assumption. We estimate l from
Figure 4.1d. We see by (4.3) that

ceh ≤ |c′ − b′|+ |cN − bN | ≤ |c′ − b′|+ |L(c′,cN ),(b′,bN )(c′)− L(c′,cN ),(b′,bN )(b′)|
≤ (1 + LdiscΩ )|c′ − b′| = (1 + LdiscΩ )l.
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4 Discretization and Numerical Analysis for Regularized Obstacle Problems

Thus l ≥ ceh
1+LdiscΩ

. Now we can estimate sin(α1 + α2) > 0:

sin(α1 + α2) = sin(α1) cos(α2) + sin(α2) cos(α1) = m1
|d− b|

l

|d− b|
+ m2
|c− b|

l

|c− b|
.

Since |d− b| ≥ l and |c− b| ≥ l we have

sin(α1 + α2) ≤ 2m
l
≤ 2m(1 + LdiscΩ )

ceh
.

Applying (4.2) and using the definition of α0 yields

0 < sin(α0) ≤ sin(α1 + α2) ≤ 2(2 + LdiscΩ )2

c

δ

h
≤ 2(2 + LdiscΩ )2Cδ

c
h.

For h sufficiently small this yields a contradiction.

Since Ωh ⊂ Ω those coordinate systems and transformations cover the whole of ∂Ωh for those
small enough h.

Remark 4.8 We note here that the angle condition from Proposition 4.7 is also known as
Zlámal condition, cf. [BKK11], which implies that triangular meshes are shape regular.
Consider a triangle with edges of length a, b, c and the corresponding angles α, β, γ. Without
loss of generality assume a ≤ b ≤ c. Then by the law of sines we see that α0 ≤ α ≤ β ≤ γ.
By school knowledge the formula for the incircle ρ is given as

ρ = 1
2

√
(b+ c− a)(a+ c− b)(a+ b− c)

a+ b+ c
≥ 1

2

√
a

3c(a2 − (c− b)2).

By the law of sines and basic identities for the sine we have

c = sin(γ)
sin(α)a ≤

1
sin(α)a.

Thus we deduce

ρ ≥ 1
2

√
sin(α)

3

√√√√a2

(
1−

( sin(γ)
sin(α) −

sin(β)
sin(α)

)2)

≥ 1
2

√
sin(α)

3
a

sin(α)

√
sin2(α)− (sin(γ)− sin(β))2

≥ 1
2

√
sin(α0)

3 c
√

sin2(α)− (sin(γ)− sin(β))2.

We know that γ = π − (α+ β) and therefore find

ρ ≥ c

2

√
sin(α0)

3

√
sin2(α)− (sin(α+ β)− sin(β))2

= c

2

√
sin(α0)

3

√
sin2(α)− (sin(β)(cos(α)− 1) + sin(α) cos(β))2

= c

2

√
sin(α0)

3√
sin2(α)(1− cos2(β))− sin2(β)(1− cos(α))2 − 2 sin(β) cos(β) sin(α)(cos(α)− 1).

92



4.1 Spatial Discretization

Clearly 0 < α ≤ β < π
2 so that the last summand in the root is larger than 0 resulting in

ρ ≥ c

2

√
sin(α0)

3

√
(1− cos2(α)− (1− cos(α))2) sin2(β)

≥ c

2

√
sin(α0)

3 sin(α)
√

2 cos(α)− 2 cos2(α).

As the smallest angle α can not be larger than π/3 we get by the monotonitcity of the cosine

ρ ≥ c

√
sin(α0)

6 sin(α)
√

cos(π/3)
√

1− cos(α) ≥ c

2

√
sin3(α0)

12

√
1− cos(α0).

This shows the shape regularity.

An important consequence of having uniform Lipschitz domains is the following

Proposition 4.9 Let (Kh)h>0 be a family of meshes such that (Ω)h>0 and Ω are uniform
Lipschitz domains. For the quantities a, b, Si, hi, fi from the definition of the Lipschitz prop-
erty of Ω and fhi satisfying the properties listed in Proposition 4.7 we have in each coordinate
system Si

‖fi − fhi ‖L∞([−a,a]N−1) ≤ C 6hδ.

Proof. This is just proven as (4.2), whose proof does not require any regularity assumptions
on (Kh)h>0, N or any interior angles.

4.1.3 Preparatory Steps to Proving L∞-stability of the Ritz Projection

In this section we prove and verify statements often used as assumptions made by the authors
of [SW82]. That way we can assure applicability of their theorems and our deductions. We
start with the well-known interpolation inequality.

Lemma 4.10 Let (Kh)h>0 be a family of quasi-uniform and shape regular meshes. Let
p ∈ [1,∞] and m ∈ {0, 1, 2}, satisfying m > N

p for p > 1 and m ≥ N for p = 1. Then we
have for any k ∈ {0, . . . ,m}, K ∈ Kh and v ∈Wm,p(K):

|v − Ihv|Wk,p(K) ≤ Chm−k|v|Wm,p(K).

The constant C > 0 does not depend on K,h, k, p.

Proof. This standard estimate can be found in [BS08, Theorem (4.4.24)].

The next proposition corresponds to assumption [SW82, (A.2)] and is essentially a trace
theorem where the dependency on the domain has been tracked.

Proposition 4.11 Assume that (Kh)h>0 is quasi-uniform and shape regular. Let K ∈ Kh
and let v ∈W 1,1(K). Then there exist a C > 0 independent of h, v and K such that:∫

∂K
|v| dS ≤ C

(
h−1‖v‖L1(K) + |v|W 1,1(K)

)
.
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4 Discretization and Numerical Analysis for Regularized Obstacle Problems

Proof. Defining v̂ := v ◦ JK we have ∇v̂ = DJTK ∇v ◦ JK and ∇v = D(J−TK )∇v̂ ◦ J−1
K . For

each edge/surface E ⊂ K and Ê := J−1
K (E) we have∫

E
|v| dS =

∫
JK(Ê)

|v| dS =
∫
Ê
|v ◦ JK | |detDJK | dS ≤ C

∫
Ê
|v̂|hN−1 dS

where we used the Jacobi transformation formula, see for example [BK15, Chapter 10]. We
only get an hN−1 instead of hN from Proposition 8.28 as we consider an N − 1-dimensional
subset, i.e. Ê, of K̂ and thus a restriction of J to Ê.

By the trace theorem for Sobolev spaces, see for example [Gri11, Theorem 1.5.1.3], we can
bound this further by ChN−1‖v‖W 1,1(K). Using the transformation again this bound is equal
to

ChN−1
∫
K

(∣∣∣v̂ ◦ J−1
K

∣∣∣+ ∣∣∣∇v̂ ◦ J−1
K

∣∣∣) ∣∣∣detD
(
J−1
K

)∣∣∣ dx.
Using the definition of v and v̂ and the bound on the Jacobi determinant from Proposition 8.28
this is in turn bounded by

Ch−1
∫
K
|v|+

∣∣∣∣(D(J−1
K )

)−1
∇v
∣∣∣∣ dx ≤ Ch−1

∫
K
|v|+

∣∣∣(DJK ◦ J−1
K

)
∇v
∣∣∣ dx.

Using the norm estimate for the Jacobian from Proposition 8.28 and the fact that the edge
was arbitrary we conclude ∫

∂K
|v| dS ≤ Ch−1

∫
K
|v|+ h|∇v| dx.

The following proposition is a generalization of the famous inverse inequalities frequently
encountered in numerical analysis.

Proposition 4.12 Let m, k ∈ N0 with 0 ≤ m ≤ k and p, q ∈ [1,∞] with q ≤ p. Assume
that (Kh)h∈(0,1] is quasi-uniform and shape regular. Then there exist ρ, C > 0, independent
of h,K, p and q such that for any linear vh : K → R

‖vh‖Wk,p(K) ≤ Ch
m−k−N( 1

q
− 1
p

)
K ‖vh‖Wm,q(Kρ,h) ∀K ∈ Kh

where Kρ,h := {x ∈ K : dist(x, ∂K) > ρh}.

Proof. The statement can be proven by changing the proof for the well known inverse in-
equality, see for example [EG04, Lemma 1.138] or [BS08, Lemma (4.5.3)]. The core of all the
proofs is to establish

‖v̂h‖Wk,p(K̂) ≤ C‖v̂h‖L1(K̂)

by the equivalence of norms on the finite dimensional space of linear polynomials on K̂. We
instead use

‖v̂h‖Wk,p(K̂) ≤ C‖v̂h‖L1(ρK̂).

for some ρ ∈ (0, 1). We now assume that K̂ is centered at 0 such that JK(0) = 0 ∈ K, i.e.
JK is linear. This obviously does not change the norms. Now the exact same arguments of
[BS08, Lemma (4.5.3)] yield

‖vh‖Wk,p(K) ≤ Ch
−k+N

p
−N
q ‖vh‖Lq(JK(ρK̂)) = Ch

−k+N
p
−N
q ‖vh‖Lq(ρK).

The estimate for m > 0 also follows by the same arguments as in [BS08, Lemma (4.5.3)].
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4.1 Spatial Discretization

The next proposition is a useful result which shows that the L2-projection onto Vh behaves
nicely with any norm and not just the L2-norm.

Proposition 4.13 Assume (Kh)h>0 is a family of quasi-uniform and shape regular meshes.
Let p ∈ [1,∞]. Then there is a C > 0 independent of h such that

‖Phu‖Lp(Ωh) ≤ C‖u‖Lp(Ωh) ∀u ∈ L∞(Ω).

Proof. The main theorem of [DDW75] can be applied to the polygonal domain Ωh, as the
constants there do not depend on Ω. The assumptions in [DDW75] are satisfied for affine
triangular elements by the remarks at the end of the paper.

Assumption 4.14 We now state a collection of mesh regularity assumptions that will be
required by the following theorems. Its requirement will be stated explicitly. In cases where
they could be relaxed we will give note. The assumptions are strong enough such that all the
previous results from Section 4.1.3 until this point are valid.

Assume N ∈ {2, 3} and that Ω is a C2,α-domain for some α > 0.

Assume that (Kh)h∈(0,1] is a family of quasi-uniform and shape regular meshes. Further
assume

δ := max
x∈∂Ωh

dist(x, ∂Ω) ≤ Ch2. (4.4)

Assume that (Ωh)h>0 and Ω are uniform Lipschitz domains. That means that there exist
finitely many local coordinate systems represented by the affine transformations S1, . . . , Sm
and local transformations f1, . . . , fm, fh1 , . . . , fhm for h > 0, as in Definition 1.5 for k = 0,
α = 1, such that the the boundaries of each Ωh and Ω can be represented as a Lipschitz graph
as in Definition 1.5. Also see the results in Proposition 4.7 for a rigorous formulation. If Ω
is assumed to more regular than a Lipschitz f1, . . . , fm are assumed to be of the appropriate,
higher regularity. There also exists a C > 0 such that all the Lipschitz constants of the fhi
are bounded by C.

The restriction N ∈ {2, 3} and the domain regularity are not necessary for all of the follow-
ing statements, for example, Proposition 4.15 and Proposition 4.20 do not require it, while
Proposition 4.18 and all results based on it do. Corollary 8.31 also requires N ∈ {2, 3}, which
is proven in the appendix and used throughout Section 4.1.6.

The following is a result about local approximation, which, together with all the following
propositions, allows us to estimate the usually difficult to handle L∞-errors in Section 4.1.5.
It corresponds to [SW82, Assumption A.4], a paper we will cite frequently.

Proposition 4.15 Let Assumption 4.14 be satisfied. There exist C, c > 0 independent of
Ω such that for any v ∈ W 2,∞(Ω) ∩ C0(Ω) and any h ∈ (0, 1] there is a vh ∈ Vh with the
following properties: let B := Bd(y) and B′ := B2d(y) two balls with y ∈ Ω, d ≥ ch. We set
Dh := B ∩ Ωh, D′ := B′ ∩ Ω. Then

h−1‖v − vh‖L∞(Dh) + ‖v − vh‖W 1,∞(Dh) ≤ Ch‖v‖W 2,∞(D′) + Ch−1δ‖v‖W 1,∞(D′). (4.5)

Remark 4.16 Proposition 4.15 can be generalized to higher order finite elements, cf. [SW82,
Remarks after A.4].
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Proof. The proof is close to the ideas in the remark after [SW82, Assumption A.4]. Let
v ∈ W 2,∞(Ω) with v|∂Ω = 0. The idea is to use the nodal interpolant on the interior of Ωh

and a slight modification on the boundary of Ωh to obtain vh.

We define Lh :=
{
K ∈ Kh : K̄ ∩ ∂Ωh 6= ∅

}
. This is the boundary layer of Ωh that needs

special consideration. By N 0
h := Nh ∩ ∂Ωh we denote the boundary nodes of Ωh. We define

vh on the nodes x̂ ∈ Nh via

vh(x̂) :=
{
v(x̂) if x̂ 6∈ ∂Ωh,

0 if x̂ ∈ ∂Ωh.

We can clearly extend vh to a function in Vh. Note that vh is the nodal interpolant of v far
enough away from ∂Ωh.

We first consider K 6∈ Lh. Then vh|K = Ihv|K and therefore, by shape regularity and a
standard estimate for the interpolant, see Lemma 4.10,

h−1‖v − vh‖L∞(K) + ‖v − vh‖W 1,∞(K) ≤ Ch‖v‖W 2,∞(K). (4.6)

We now check what happens at the boundary. For any K ∈ Lh the inverse property of
Proposition 4.12 gives us

h−1‖vh − Ihv‖L∞(K) + ‖vh − Ihv‖W 1,∞(K) ≤ Ch−1‖vh − Ihv‖L∞(K). (4.7)

We will show that

h−1‖vh − Ihv‖L∞(K) ≤ Ch−1δ‖v‖W 1,∞(Sh), (4.8)

where we clarify Sh later. We then have for any K in Lh

h−1‖v − vh‖L∞(K) + ‖v − vh‖W 1,∞(K)

≤ h−1‖v − Ihv‖L∞(K) + ‖v − Ihv‖W 1,∞(K) + h−1‖Ihv − vh‖L∞(K) + ‖Ihv − vh‖W 1,∞(K)

≤ Ch‖v‖W 2,∞(K) + Ch−1δ‖v‖W 1,∞(Sh).

(4.9)

Here we used the same interpolation error estimate as before and (4.8).

We now establish (4.8). Because for each cell K ∈ Lh the nodes x̂ ∈ K \ ∂Ωh satisfy
vh(x̂) = Ihv(x̂) and we have, by linearity,

sup
x∈K
|vh(x)− Ihv(x)| = sup

x∈∂K∩Nh
|vh(x)− Ihv(x)| = sup

x∈∂K∩N 0
h

|Ihv(x)|. (4.10)

Therefore (4.7) entails

h−1‖vh − Ihv‖L∞(K) + ‖vh − Ihv‖W 1,∞(K) ≤ Ch−1‖Ihv‖L∞(∂K∩N 0
h

).

Because Ihv is the nodal interpolant of v we have by the mean value theorem, since v|∂Ω = 0,

h−1‖vh − Ihv‖L∞(K) + ‖vh − Ihv‖W 1,∞(K) ≤ Ch−1δ‖∇v‖L∞(Sh). (4.11)

Here Sh := ∪x̂∈∂K∩N 0
h
B̄δ(x̂) so that in particular a straight line from each x̂ ∈ ∂K ∩ N 0

h to
∂Ω is contained in Sh.
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Its remains to translate these elementwise estimates to the stated balls. We define c := 1+Cδ
where Cδ > 0 is such that δ ≤ Cδh2 ≤ Cδh. Let y ∈ Ω and d ≥ ch. We define

BKh := int
⋃

K∈Kh,
K∩B 6=∅

K̄,

the “discrete neighborhood” of B. We then have for any x ∈ BKh , since |x− y| ≤ d+h ≤ 2d,

Dh ⊂ BKh ⊂ D
′.

Now let K ⊂ BKh . If K 6∈ Lh we have by (4.6) the estimate

h−1‖v − vh‖L∞(K) + ‖v − vh‖W 1,∞(K) ≤ Ch‖v‖W 2,∞(D′) + Ch−1δ‖v‖W 1,∞(D′). (4.12)

If K ∈ Lh we have by (4.9)

h−1‖v − vh‖L∞(K) + ‖v − vh‖W 1,∞(K) ≤ Ch‖v‖W 2,∞(D′) + Ch−1δ‖v‖W 1,∞(Sh).

If we can show that Sh = Sh(K) ⊂ D′ holds, this inequality and (4.12) conclude the proof.

For any ŷ ∈ Sh there exists by definition an x̂ ∈ ∂K such that ŷ ∈ B̄δ(x̂). Because K ∈ BKh
there is an xB ∈ B ∩ K̄. Then we have

|y − ŷ| ≤ |y − xB|+ |xB − x̂|+ |x̂− ŷ| ≤ d+ h+ δ ≤ d+ (1 + Cδ)h ≤ 2d.

This implies the inclusion Sh ⊂ D′ and concludes the proof.

Proposition 4.17 Let Assumption 4.14 be satisfied. By the uniform Lipschitz domain prop-
erty we have a, b > 0, affine transformations S1, . . . , Sm and mappings f1, . . . , fm, f

h
1 , . . . , f

h
m :

(−a, a)N−1 → (−b, b) such that these quantities satisfy Definition 1.5, the local representa-
tions of boundaries via the fi and fhi , for Ω and Ωh simualtenously.

Then we have the following: there exists an ε > 0 such that

Ω̄ \ int(Ωh) ⊂ ∪mi=1Si([−a+ ε, a− ε]N−1 × [−b+ ε, b− ε]).

There also exists an ε′ > 0 such that for each i ∈ {1, 2, . . . ,m} and all xa ∈ [−a+ ε, a− ε]N−1

we have fi(xa) ≥ −b+ ε′.

Proof. We first show Ω̄ \ int Ωh ⊂ ∪mi=1Si((−a, a)N−1× (−b, b)) =: ∪mi=1Ri. Assume there was
an x ∈ Ω̄ \ int(Ωh) such that x 6∈ ∪mi=1Ri. Then, since Ωh is compact, there has to exist some
xh ∈ ∂Ωh such that dist(x,Ωh) = |x−xh|. We now take note of the set Ωh∩∪mi=1Ri, the area
indicated green in Figure 4.2. By the placement of x outside of ∪mi=1Ri it is easy to see that

dist(x,Ωh) ≤ dist(x,Ωh ∩ ∪mi=1Ri) < dist(x, ∂Ωh ∩ ∪mi=1Ri).

Therefore xh 6∈ ∂Ωh ∩ ∪mi=1Ri. But by assumption we do have ∂Ωh ∩ ∪mi=1Ri = ∂Ωh, which
is now a contradiction to xh ∈ ∂Ωh. We therefore can now operate with the knowledge that
Ω̄ \ int(Ωh) ⊂ ∪mi=1Ri.

We now argue that there exists a ε > 0 such that

Ω̄ \ int(Ωh) ⊂ ∪mi=1Si([−a+ ε, a− ε]N−1 × [−b+ ε, b− ε]) =: ∪mi=1R
ε
i .

Assume for all n ∈ N there was an xn ∈ Ω̄ \ int(Ωh) such that xn 6∈ ∪mi=1R
1
n
i . By the

compactness of Ω̄\ int(Ωh) we may assume, after going to a subsequence with the same name,
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4 Discretization and Numerical Analysis for Regularized Obstacle Problems

Figure 4.2: The boundaries of ∂Ω and ∂Ωh. The grey rectangles represent the open cuboids
Ri = Si((−a, a)N−1 × (−b, b)). The area indicated green is Ωh ∩ ∪mi=1Ri. The
points x and xh indicate the situation of the proof that Ω \ Ωh ⊂ ∪mi=1Ri.

that there exists an x ∈ Ω̄ \ int(Ωh) such that limn→∞ xn = x. We have x ∈ Ω̄ \ int(Ωh) ⊂
∪mi=1Si((−a, a)N−1 × (−b, b)). The sets on the right hand side are open and the Si are affine
transformations. Thus there exists a η > 0 such that x ∈ ∪mi=1Si((−a + η, a − η)N−1 ×
(−b + η, b − η)). By the convergence of (xn)n∈N to x we have for n large enough that
xn ∈ ∪mi=1Si((−a + η, a− η)N−1 × (−b + η, b− η)) ⊂ ∪mi=1R

η
i . This is a contradiction to the

choice of xn for n large enough.

The claim of the fi follows from the fact that [−a + ε, a − ε]N−1 is compact and thus each
continuous fi : [−a + ε, a − ε]N−1 → (−b, b) takes a mimimum f(x̂ia) > −b at some x̂ia ∈
[−a+ ε, a− ε]N−1. We can thus choose ε′ := mini=1,2,...,m(f(x̂ia)) + b > 0.

This next statement about lower order global approximation corresponds to [SW82, Assump-
tion A.5].

Proposition 4.18 Let Assumption 4.14 be satisfied. Let h ∈ (0, 1].

Then there exists C > 0 such that for v ∈ H2(Ω) ∩H1
0 (Ω) there exists vh ∈ Vh such that

h−1‖v − vh‖L2(Ω) + ‖v − vh‖H1(Ω) + h‖v − vh‖H2,h(Ωh) ≤ Ch‖v‖H2(Ω). (4.13)

Here H2,h(Ωh) := W 2,2,h(Ωh) as defined in Definition 4.4.

Proof. We argue for smooth v since the general statement will follow via density from Propo-
sition 8.9. Let v ∈ C2,α(Ω̄)∩H1

0 (Ω) and define vh as in Proposition 4.15. In the first step we
will show that the difference v − vh is quite easily estimated on Ωh by comparing vh with the
nodal interpolant Ihv. Because h ≤ 1 we see that

h−1‖v − vh‖L2(Ω) + ‖v − vh‖H1(Ω) + h‖v − vh‖H2,h(Ωh)

≤ h−1‖v − vh‖L2(Ω) + |v − vh|H1(Ω) + h|v − vh|H2,h(Ωh)

≤ h−1‖v − Ihv‖L2(Ω) + |v − Ihv|H1(Ω) + h|v|H2,h(Ωh)

+ h−1‖Ihv − vh‖L2(Ωh) + |Ihv − vh|H1(Ωh).

Here |·|H1(Ω) and |·|H2,h(Ω) refer to the seminorms on their respective spaces and only involve
the highest order derivatives.
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By Lemma 4.10 and Proposition 4.12, note that h ≤ ChK by quasi-uniformity, we find

h−1‖v − vh‖L2(Ω) + ‖v − vh‖H1(Ω) + h‖v − vh‖H2,h(Ωh)

≤ h−1‖v‖L2(Ω\Ωh) + |v|H1(Ω\Ωh) + h‖v‖H2(Ω) + Ch−1‖Ihv − vh‖L2(Ωh).
(4.14)

As in the proof of (4.10) we see that

‖Ihv − vh‖L2(Ω) ≤ Ch
N
2 max
x∈∂K∩N 0

h

|v(x)|.

Because v ∈ H2(Ω) ⊂ W 1,4(Ω) by N ≤ 3 and standard Sobolev embeddings, we have, by
Morrey’s inequality, see [Ada75, Chapter V, Theorem 5.4 Part II], that

‖v‖C0,1−N/4(Ω) ≤ C‖v‖H2(Ω).

Thus, we find by the 0-boundary values of v that

‖Ihv − vh‖L2(Ω) ≤ Ch
N
2 δ1−N4 ‖v‖H2(Ω) ≤ Ch

N
2 +2−N2 ‖v‖H2(Ω) = Ch2‖v‖H2(Ω). (4.15)

We proceed to make local arguments, similar to those in [LMWZ10, Lemma 2.1], but more
rigorous. We use the same notation for the local boundary representation as in Proposi-
tion 4.17, cf. Definition 1.5, and abbreviate Si((−a, a)N−1 × (−b, b)) =: Ri and Si([−a +
ε, a − ε]N−1 × [−b + ε, b − ε]) =: Rεi . As a reminder: the Si are the affine transformations
into the local coordinate systems. Thus by Proposition 4.17 there is an ε > 0 be such that
Ω̄ \ int(Ωh) ⊂ ∪mi=1R

ε
i ⊂ ∪mi=1Ri. We therefore find

h−1‖v‖L2(Ω\Ωh) + |v|H1(Ω\Ωh) ≤
m∑
i=1

(h−1‖v‖L2(Ri∩(Ω\Ωh)) + |v|H1(Rεi∩(Ω\Ωh))). (4.16)

Now, let i ∈ {1, . . . ,m} be fixed. Transforming everything into the local system and using
the Jacobi transformation formula, e.g. [BK15, Chapter 10], we have, with ṽ = v ◦ Si,

‖v‖2L2(Ri∩(Ω\Ωh)) = |det(DSi)|
∫

(−a,a)N−1

∫ fi(xa)

fhi (xa)
ṽ(xa, r)2 dr dxa.

Recall that fi, fhi : (−a, a)N−1 → (−b, b) are the functions locally representing ∂Ω and ∂Ωh.
As v = 0 a.e on ∂Ω we can use the fundamental theorem of calculus, keeping v ∈ C2(Ω̄) in
mind, to find

‖v‖2L2(Ri∩(Ω\Ωh)) ≤ C
∫

(−a,a)N−1

∫ fi(xa)

fhi (xa)

(
−
∫ fi(xa)

r
∂xN ṽ(xa, s) ds

)2

dr dxa.

Continuing with Proposition 4.9 and the Cauchy-Schwarz inequality we find

‖v‖2L2(Ri∩(Ω\Ωh)) ≤ C
∫

(−a,a)N−1
δ

(∫ fi(xa)

fhi (xa)
|∂xN ṽ(xa, s)| ds

)2

dxa

≤ Cδ
∫

(−a,a)N−1
‖∇ṽ(xa, ·)‖2L2((fhi (xa),fi(xa))‖1‖

2
L2((fhi (xa),fi(xa)) dxa

≤ Cδ2
∫

(−a,a)N−1
‖∇ṽ(xa, ·)‖2L2((fhi (xa),fi(xa)) dxa.
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Transforming everything back, Si is again only entering in form of Jacobi matrices, yields
‖v‖L2(Ri∩(Ω\Ωh)) ≤ Cδ‖v‖H1(Ri∩(Ω\Ωh)). By assumption δ ≤ Ch2 and we arrive at

‖v‖L2(Ri∩(Ω\Ωh)) ≤ Ch2‖v‖H2(Ω). (4.17)

For the second group of summands in (4.16) we again transform everything to see

|v|2H1(Rεi∩(Ω\Ωh)) ≤ C
∫

(−a+ε,a−ε)N−1

∫ fi(xa)

fhi (xa)
|∇ṽ(xa, r)|2 dr dxa.

Applying Proposition 8.4, a specific embedding statement, and Proposition 4.9 we find

|v|2H1(Rεi∩(Ω\Ωh)) ≤ Cδ
∫

(−a+ε,a−ε)N−1
‖∇ṽ(xa, ·)‖2L∞((−b,fi(xa))) dxa

≤ Cδ
∫

(−a,a)N−1
max((fi(xa) + b), (fi(xa) + b)−1)‖∇ṽ(xa, ·)‖2H1((−b,fi(xa))) dxa

From Proposition 4.17 we have the existence of an ε′ > 0 such that fi(xa) ≥ −b + ε′ for all
xa ∈ [−a + ε, a − ε]N−1. So in particular max((fi(xa) + b), (fi(xa) + b)−1) ≤ 2b + (ε′)−1 for
all xa ∈ [−a+ ε, a− ε]N−1. Thus we find the following upper bound

|v|2H1(Ri∩(Ω\Ωh)) ≤ Cδ
∫

(−a,a)N−1
‖∇ṽ(xa, ·)‖2H1((−b,fi(xa))) dxa

Transforming everything back we get

|v|H1(Ri∩(Ω\Ωh)) ≤ Ch‖v‖H2(Ri∩Ω).

This and (4.17) inserted into (4.16) shows h−1‖v‖L2(Ω\Ωh) + |v|H1(Ω\Ωh) ≤ Ch2‖v‖H2(Ω). This
in conjunction with (4.15) and (4.14) yields (4.13) for v ∈ C2,α(Ω̄) ∩H1

0 (Ω).

To see the general statement let v ∈ H2(Ω) ∩ H1
0 (Ω) and (vn)n∈N ⊂ C2,α(Ω̄) ∩ H1

0 (Ω) be a
sequence converging to it in H2(Ω) by Proposition 8.9. Let (vhn)n∈N ⊂ Vh be the sequence of
functions satisfying (4.13) for their corresponding vn. Then it is clear that (‖vhn‖H1(Ω))n∈N
is bounded. Since Vh is finite dimensional, we may assume (after possibly going to a subse-
quence) that vhn

n→∞−−−→ vh for some vh ∈ Vh. Thus taking the limit in

h−1‖vn − vhn‖L2(Ω) + ‖vn − vhn‖H1(Ω) + h‖vn‖H2,h(Ωh) ≤ Ch‖vn‖H2(Ω)

yields the claim, since ‖v − vh‖H2,h(Ωh) = ‖v‖H2,h(Ωh).

Remark 4.19 In the previous proposition it is not possible to extend the result to higher
dimension by the same techniques. For N = 4 one would still have the embedding H2(Ω) ⊂
W 1,4(Ω), but Morrey’s inequality would no longer be applicable, since 1 · 4 = N .

The following property is called superapproximation and corresponds to [SW82, Assumption
A.6].

Proposition 4.20 Assume Assumption 4.14 holds true. There exist C, c > 0 such that the
following properties are satisfied. Let d ≥ ch and D1 ⊂ RN be an open set. We define
Di+1 := {x ∈ RN : dist(x,Di) ≤ d} for i = 1, 2, 3. We define Dh

i := Di ∩ Ωh.

Let ω ∈ C∞c (D3) with

‖ω‖Wk,∞(D3) ≤ Ld−k for k = 0, 1, 2 and ω = 1 on D2.
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Then for any vh ∈ Vh there is a χh ∈ Vh with suppχh ⊂ Dh
4 such that

‖ω2vh − χh‖H1(Dh4 ) ≤ CLh
(
d−2‖vh‖L2(Dh4 \D1) + d−1‖vh‖H1(Dh4 \D1)

)
.

The constant C > 0 does not depend on Ω.

Proof. We choose χh = Ih(ω2vh). By Lemma 4.10 we have for any K ∈ Kh
|ω2vh − Ih(ω2vh)|2H1(K) ≤ Ch

2|ω2vh|2H2(K).

By suppω ⊂ D3 we see that supp(Ih(ω2vh)) ⊂ ⋃K∈Kh,K∩Dh3 6=∅K. Thus we deduce

|ω2vh − Ih(ω2vh)|2
H1(Dh4 ) ≤ Ch

2 ∑
K∈Kh

K∩Dh3 6=∅

|ω2vh|2H2(K)

≤ Ch2 ∑
K∈Kh

K∩Dh3 6=∅

‖∇2(ω2)vh +∇(ω2)∇vTh ‖2L2(K).

Since ∇ω = 0 on D2 we deduce for d ≥ h

‖ω2vh − Ih(ω2vh)‖2
H1(Dh4 )

≤ Ch2 ∑
K∈Kh

K∩Dh3 6=∅
K∩Dh1 =∅

‖∇2(ω2)‖2L∞(K)‖vh‖
2
L2(K) + ‖∇(ω2)‖2L∞(K)‖∇vh‖

2
L2(K)

≤ Ch2 ∑
K∈Kh

K∩Dh3 6=∅
K∩Dh1 =∅

L2d−4‖vh‖2L2(K) + L2d−2‖∇vh‖2L2(K).

Estimating this from above yields, since d ≥ h,

‖ω2vh − Ih(ω2vh)‖2
H1(Dh4 ) ≤ CL

2h2
(
d−4‖vh‖2L2(Dh4 \D1) + d−2‖∇vh‖2L2(Dh4 \D1)

)
.

Taking the root yields the claim.

We lastly state a generalization of [SW82, Theorem 4.1]. This generalization is required in
[BTW03], while the special case D = Bd(y) ∩ Ωh and Dd = B2d(y) ∩ Ωh is used in [SW82,
Theorem 4.1].

Proposition 4.21 Let Assumption 4.14 hold. Let h ∈ (0, 1
2). Let A have C0,1(Ω)-coefficients.

Let D ⊂ Ωh be open. For d > 0 we define Dd := {x ∈ Ωh : dist(x,D) ≤ d}. Then there exist
C, c > 0 such that for d ≥ ch and any v ∈ H1

0 (Ω) and vh ∈ Vh satisfying

(Ah(v − vh), ϕh)V ∗
h
,Vh

= 0 for ϕh ∈ Vh with supp vh ⊂ Dd

we have

‖∇(vh − v)‖L2(D) ≤ C inf
ϕh∈Vh

(‖∇(v − ϕh)‖L2(Dd) + d−1‖v − ϕh‖L2(Dd) + d−1‖vh − v‖L2(Dd)).

Proof. The proof was done in [SW82, Theorem 4.1, Remark 4.1] for balls, C∞-domains
and the Laplacian. From the operator one only needs ellipticity, boundedness and higher
elliptic H2(Ω)-regularity, which is provided by our A and Ω; see Theorem 8.23. Checking
the proof one can see that our assumptions on Ω and A are sufficient, as Proposition 4.12,
Proposition 4.18 and Proposition 4.20 still hold. The fact that balls are used in the proof is
basically incidental and any open set will do the job.
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4.1.4 Green’s Functions

As we will have to dig deep into the nature of the numerical analysis of elliptic equations, we
obviously have to provide some basic results on Green’s functions. The following statement
is the main result of [Sol71]. To the best of our knowledge it is the theorem with the
least regularity assumptions on Ω and A that still provides estimates for sufficiently many
derivatives of the Green’s function for our purposes.

Proposition 4.22 Assume N ≥ 2. Assume Ω is a C3,α-domain and A is symmetric, uni-
formly elliptic and has coefficients in C1,α(Ω̄) for some α ∈ (0, 1). Then there is a Green’s
function G(x, y), i.e. for any y ∈ Ω the function G(·, y) solves{

AG(·, y) = δy in Ω,
G(·, y)|∂Ω = 0,

in a distributional sense. It satisfies for any k, l ∈ N0, k ≤ 2, l ≤ 1

|∇kx∇lyG(x, y)| ≤ C
{
| ln |x− y|| if 2−N − k − l = 0,
|x− y|2−N−k−l else.

Remark 4.23 For very smooth domains and coefficients see also the results of [Kra67, GW82,
Väh12]. For similar statements for convex domains see [Fro93].

4.1.5 L∞-stability of Ritz Projections

This section is devoted to generalizing [SW82, Theorem 5.1] in Theorem 4.29. [SW82, Theo-
rem 5.1] was proven for C∞ domains and the Laplace operator. Yet, with the previous results
from Sections 4.1.3 and 4.1.4 we can generalize their statements.

Proposition 4.24 Let (Kh)h∈(0,1] be a family of meshes satisfying Assumption 4.14. Then
there exists a c′ > 0 such that the following holds: let u ∈ C(Ω̄) ∩ H1

0 (Ω) and let uh be its
Ritz projection. Let x0 ∈ Ω̄h with

‖u− uh‖L∞(Ωh) = |u(x0)− uh(x0)|.

If dist(x0, ∂Ωh) ≤ c′h then

‖u− uh‖L∞(Ωh) ≤ 2‖u‖L∞(Ωh).

Proof. This is just [SW82, Lemma 5.1]. Their proof does apply without any changes.

Notation 4.25 For the rest of Section 4.1.5 we use the following notation. Let u ∈ C(Ω̄) ∩
H1

0 (Ω) and uh its Ritz projection. The point x0 ∈ Ω̄h is chosen such that: ‖u− uh‖L∞(Ωh) =
|u(x0) − uh(x0)|. Let c′ be from Proposition 4.24 and K0 denote a cell containing x0. We
define

K ′0 :=
{
x ∈ K : dist(x, ∂Ωh) ≥ c′h

}
and assume x0 ∈ K ′0. We may assume c′ to be small enough so that Proposition 4.12 applies
to a subset of K ′0 ⊂ K0.

Theorem 4.29, the main result of this section, is formulated without use of this notation
and can be cited freely without confusion. The notation is discarded after the proof of
Theorem 4.29.
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Proposition 4.26 Let (Kh)h∈(0,1] a family of meshes satisfying Assumption 4.14. In the
situation of Notation 4.25 we have

‖u− uh‖L∞(Ωh) ≤ C‖u‖L∞(Ωh) + Ch−
N
2 ‖u− uh‖L2(K′0).

Proof. The proof is given in [SW82, (5.4)].

It remains to estimate ‖u−uh‖L2(K′0). If we can do this, Proposition 4.24 and Proposition 4.26
give an estimate of ‖u−uh‖L∞(Ωh). The following statement can be found in [SW82, Lemma
5.2] for the Laplacian and a smooth domain.

Proposition 4.27 Assume Ω is a C3,α-domain for some α ∈ (0, 1) and A is symmetric and
has coefficients in C1,1(Ω). Let (Kh)h∈(0,1/2) be a family of meshes such that Assumption 4.14
is satisfied. Additionally assume that (Ωh)h∈(0,1] and Ω are uniform Lipschitz domains.

Let ϕ ∈ C∞c (K ′0) with ‖ϕ‖L2(K′0) = 1. Let v be defined by
{
Av = ϕ in Ω,
v|∂Ω = 0.

(4.18)

Then we have ∫
∂Ωh
|∂νAv| dS ≤ Ch

N
2 ,

∫
Ω\Ωh

|∇v| dS ≤ Cδh
N
2 .

Here ∂νAv is the co-normal derivative νTA∇v, where ν is the outer normal to ∂Ω and A the
coefficient matrix of the operator with the same symbol.

Proof. The proof of [SW82, Lemma 5.2] is immediately applicable provided we have pointwise
estimates for the Green’s function up to second order derivatives in Proposition 4.22. Our
assumptions are more than enough for Proposition 4.22 to apply.

Proposition 4.28 Assume Ω is a C3,α-domain for some α ∈ (0, 1) and A is symmetric and
has coefficients in C1,1(Ω̄). Let (Kh)h∈(0,1) satisfy Assumption 4.14.

Let ϕ ∈ C∞0 (K ′0) with ‖ϕ‖L2(K′0) = 1. Let v be defined by
{
Av = ϕ in Ω,
v|∂Ω = 0.

(4.19)

Then

‖∇(v − vh)‖W 1,1,h(Ωh) + h−1‖∇(v − vh)‖L1(Ωh) ≤ C|ln h|h
N
2 .

Proof. The proof of [SW82, Lemma 5.3] immediately applies. It is based “only” on Propo-
sitions 4.12, 4.15, 4.18, 4.20, 4.21, 4.26 and 4.27 and the estimates for the Green’s function
for one and two derivatives in the same variable, see Proposition 4.22. All their prerequisites
are satisfied by Assumption 4.14.

The next theorem is now finally the culmination of the previous small lemmas and propo-
sitions. It is a generalization of [SW82, Theorem 5.1] with respect to domain and operator
regularity.
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Theorem 4.29 Assume Ω is a C3,α-domain for some α ∈ (0, 1) and A has C1,1(Ω̄) coeffi-
cients. Let Assumption 4.14 be satisfied for a family of meshes (Kh)h∈(0,1/2). Additionally
assume that (Ωh)h∈(0,1/2) and Ω are uniform Lipschitz domains.

For any u ∈ H1
0 (Ω) ∩ C(Ω̄) and its Ritz-projection uh we have

‖u− uh‖L∞(Ωh) ≤ C|ln h| inf
ϕh∈Vh

‖u− ϕh‖L∞(Ωh).

Proof. Let x0 ∈ Ω̄h such that |u(x0)− uh(x0)| = ‖u− uh‖L∞(Ωh). If dist(x0, ∂Ω) ≤ c′h with
the c′ from Notation 4.25 we have by Proposition 4.24 ‖u − uh‖L∞(Ωh) ≤ 2‖u‖L∞(Ωh). If
dist(x0, ∂Ω) ≥ c′h we have by Proposition 4.26

‖u− uh‖L∞(Ωh) ≤ C‖u‖L∞(Ωh) + Ch−
N
2 ‖u− uh‖L2(K′0) (4.20)

with the K ′0 from Notation 4.25. Now let ϕ ∈ C∞c (K ′0) with ‖ϕ‖L2(K′0) = 1 and v ∈ H2(Ω)
defined as in (4.18). We see that∫

K′0

(u− uh)ϕdx =
∫

Ωh
(u− uh)Av dx,

=
∫
∂Ωh

(u− uh)∂νAv dS − aΩh(u− uh, v)

=
∫
∂Ωh

u ∂νAv dS − aΩh(u− uh, v).

(4.21)

We define vh as the Ritz projection of v and have via Galerkin-orthogonality and extension
by 0 that

aΩh(u− uh, vh) = aΩ(u− uh, vh) = 0,
aΩh(uh, v − vh) = aΩ(uh, v − vh) = 0.

Thus (4.21) yields ∫
K′0

(u− uh)ϕdx =
∫
∂Ωh

u ∂νAv dS − aΩh(u, v − vh). (4.22)

The first term is estimated using Proposition 4.27:∣∣∣∣∫
∂Ωh

u ∂νAv dS

∣∣∣∣ ≤ ‖u‖L∞(Ωh)

∫
∂Ωh
|∂νAv| dS ≤ Ch

N
2 ‖u‖L∞(Ωh). (4.23)

The second term in (4.22) is more difficult:

aΩh(u, v − vh) =
∑
K∈Kh

aK(u, v − vh)

=
∑
K∈Kh

∫
K
uAv dx−

∫
K
uAvh dx−

∫
∂K

u ∂νA(v − vh) dx := T1 + T2 + T3.
(4.24)

The term T2 simply vanishes as Avh = 0 on each cell K ∈ Kh.

The term T1 in (4.24) is treated easily by realizing that Av = ϕ and supp(ϕ) ⊂ K ′0 which
shows that ∣∣∣∣∣∣

∑
K∈Kh

∫
K
uAv dx

∣∣∣∣∣∣ ≤
∫
K′0

|uϕ| dx ≤ ‖u‖L∞(Ω)‖ϕ‖L1(K0) ≤ h
N
2 ‖u‖L∞(Ω).
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Here we used ‖ϕ‖L2(K′0) = 1 and Hölder’s inequality.

The term T3 is estimated by using Proposition 4.11 applied to ∇(v − vh) ∈ W 1,1,h(Ωh) and
an application of Proposition 4.28:∣∣∣∣∣∣
∑
K∈Kh

∫
∂K

u ∂νA(v − vh) dx

∣∣∣∣∣∣ ≤ C‖u‖L∞(Ωh)
∑
K∈Kh

(
h−1‖∇(v − vh)‖L1(K) + ‖∇(v − vh)‖W 1,1(K)

)
≤ C‖u‖L∞(Ω)|ln h|h

N
2 .

We have now shown that all three terms, T1, T2 and T3, are bounded by C|ln h|hN2 ‖u‖L∞(Ω).
This, (4.24) and (4.23) inserted into (4.21) results in∫

K′0

(u− uh)ϕdx ≤ C|ln h|h
N
2 ‖u‖L∞(Ω).

As ϕ ∈ C∞c (K ′0) was arbitrary with ‖ϕ‖L2(K′0) = 1 this entails

‖u− uh‖L2(K′0) ≤ C|ln h|h
N
2 ‖u‖L∞(Ω).

(4.20) now finally shows

‖u− uh‖L∞(Ωh) ≤ C|ln h|‖u‖L∞(Ω).

For any ϕh ∈ Vh the Ritz projection of (u− ϕh) is given by (uh − ϕh). Thus we have

‖u− uh‖L∞(Ωh) = ‖(u− ϕh)− (uh − ϕh)‖L∞(Ωh) ≤ C‖u− ϕh‖L∞(Ωh).

Remark 4.30 We would like to reiterate comments made in [SW82] regarding the case of non-
conforming finite elements. So let all the assumptions of Theorem 4.29 be satisfied except
Ωh ⊂ Ω and Ω being a C3,α-domain. Now consider a domain Ωδ with δ from Assumption 4.14
that is C3,α-smooth for some α ∈ (0, 1) and that satisfies Ωδ ⊃ Ω ∪ Ωh and

max
x∈Ωh

dist(x, ∂Ωδ) ≤ Cδ and max
x∈Ω

dist(x, ∂Ωδ) ≤ Cδ.

For the sake of presentation we only consider A := −∆, one would have to take additional
care of the coefficients of A in the general case.

Let u be given as the solution of {
−∆u = f in Ω,
u|∂Ω = 0.

We now extend f by 0 onto Ωδ and solve{
−∆uδ = f in Ωδ,

uδ|∂Ωδ = 0.

Now the Ritz projection uδh of uδ satisfies:

‖uδ − uδh‖L∞(Ωh) ≤ C(Ωδ)|ln h| inf
ϕh∈Vh

‖uδ − ϕh‖L∞(Ωδ).
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The Ritz-projection of u is just uδh|Ωh . To see this let ϕh ∈ Vh and observe that

(f, ϕh)L2(Ω) = aΩ(u, ϕh) = aΩ∪Ωh(u, ϕh),
= (f, ϕh)L2(Ωδ) = aΩδ(uδh, ϕh) = aΩ∪Ωh(uδh, ϕh).

Thus

aΩ∪Ωh(u− uδh, ϕh) = 0 ∀ϕh ∈ Vh.

So we can write uh = uδh and get

‖u− uh‖L∞(Ωh∩Ω) ≤ ‖u− uδ‖L∞(Ω) + C(Ωδ)|ln h| inf
ϕh∈Vh

‖uδ − ϕh‖L∞(Ωh).

By the maximum principle, e.g. [GT01, Theorem 8.1], and −∆(u− uδ) = 0 on Ω we find:

‖u− uh‖L∞(Ωh∩Ω) ≤ ‖uδ‖L∞(∂Ω) + C(Ωδ)|ln h| inf
ϕh∈Vh

‖uδ − ϕh‖L∞(Ωh).

If now one exploits higher elliptic regularity for sufficiently nice f one can derive further
estimates. If f ∈ L∞(Ω) we have by higher elliptic regularity, e.g. Theorem 8.23,

‖uδ‖W 2,p(Ω) ≤ C 6p(Ωδ)p‖f‖Lp(Ωδ) = C 6p(Ωδ)p‖f‖Lp(Ω).

By standard interpolation theory we have

inf
ϕh∈Vh

‖uδ − ϕh‖L∞(Ωh) ≤ C(Ωδ)h2−N
p p‖f‖Lp(Ω).

Choosing p = |ln h| yields

inf
ϕh∈Vh

‖uδ − ϕh‖L∞(Ωh) ≤ C(Ωδ)|ln h|h2‖f‖L∞(Ω).

For p > N + 1 we also have

‖uδ‖C1(Ωδ) ≤ C(Ωδ)‖uδ‖W 2,N+1(Ωδ) ≤ C(Ωδ)‖f‖L∞(Ω).

Now the mean value theorem, uδ|∂Ωδ = 0 and maxx∈∂Ω dist(x, ∂Ωδ) ≤ Ch2 imply

‖uδ‖L∞(∂Ω) ≤ C(Ωδ)h2‖f‖L∞(Ω).

So in total

‖u− uh‖L∞(Ωh∩Ω) ≤ C(Ωδ)|ln h|h2‖f‖L∞(Ω).

So if one shows or presumes that C(Ωδ) stays bounded for δ → 0, we have the same con-
vergence rate for the non-conforming case as for the conforming case. The behaviour of the
constant C(Ωδ), with respect to Ω and Ωδ, could theoretically be tracked throughout our
proofs. The claim is made, but, to the authors knowledge, not proven below [SW82, (1.6)].

4.1.6 L∞-norm Resolvent Estimates for Finite Element Operators

This section is devoted to generalize the results from [BTW03]. There all statements are
given for convex C∞-domains and A = −∆, which is more restrictive than we appreciate.
We therefore trace the domain regularity and the properties of A throughout [BTW03] and
note where changes are necessary.
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In the following we need the notion of complex valued partial differential equations. They
are defined by the same weak formulations except that the test functions and the solution
are chosen from complex valued spaces. For example for z ∈ C the PDE{

Av + zv = χ,

v|∂Ω = 0,

has the weak formulation∫
Ω
∇vTA∇ϕ̄+ zvϕ̄ dx =

∫
Ω
χϕ̄ dx ∀ϕ ∈ H1

0 (Ω,C).

If z ∈ R and χ is real valued, we realize, by the linearity of the problem, that the solution
v solves the real valued version of the PDE; just test with any ϕ ∈ H1

0 (Ω) ⊂ H1
0 (Ω,C).

So in fact introducing complex numbers into partial differential equations extends our used
framework naturally.

First we collect some minor estimates which correspond to [BTW03, (2.1)-(2.6)], so that the
reader may easily transfer their results to our situation.

Proposition 4.31 Let (Kh)h∈(0,1] be a family of meshes satisfying Assumption 4.14. We
define Ṽh := Vh + iVh. Then we have:

1. There is a C > 0, independent of h, such that for any vh ∈ Ṽh, p, q ∈ [1,∞], 0 ≤ l ≤ k
and K ∈ Kh

‖vh‖Wk,p(K,C) ≤ Ch
l−k−N( 1

q
− 1
p

)‖vh‖W l,q(K,C)

2. The L2-projection Ph of L2(Ω,C) onto Ṽh satisfies with a C independent of h

‖Phv‖L∞(Ω,C) ≤ C‖v‖L∞(Ωh,C) ∀v ∈ L∞(Ω,C),

3. The L2-projection Ph of L2(Ω,C) onto Ṽh satisfies with a C independent of h

‖Phv‖W 1,∞(Ω,C) ≤ C‖v‖W 1,∞(Ωh,C) ∀v ∈W 1,∞(Ω,C) ∩ C0(Ω̄,C),

4. Additionally assume we have for some α ∈ (0, 1) that Ω is a C3,α-domain and that A
has C1,α(Ω)-coefficients. Then there is a C > 0, independent of h, such that for any
u ∈W 1,∞(Ω,C) ∩ C0(Ω̄,C) and its complex Ritz-projection uh ∈ Ṽh, defined via∫

Ω
(∇u−∇uh)TA∇v̄h dx = 0 ∀vh ∈ Ṽh,

we have

‖uh‖W 1,∞(Ω,C) ≤ C
(
‖u‖W 1,∞(Ωh,C) + h‖u‖W 1,∞(Ω\Ωh)

)
.

Proof. 1. is just a consequence of Proposition 4.12 applied to real and imaginary part of
vh ∈ Ṽh.

2. is just the application of Proposition 4.13 onto real and imaginary part of v ∈ L∞(Ω,C).

3. can be proven by using the nodal interpolant Ihv of v ∈W 1,∞(Ω,C). We have

‖Phv − Ihv‖L∞(Ω,C) = ‖Ph(v − Ihv)‖L∞(Ω,C) ≤ C‖v − Ihv‖L∞(Ω,C).
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Here we used the L∞(Ω,C)-stability of the projection from 2. By a standard interpolation
error estimate applied to real and imaginary part, cf. Lemma 4.10, we thus have

‖Phv − Ihv‖L∞(Ω,C) ≤ Ch‖v‖W 1,∞(Ω,C).

By the inverse inequality from 1. we therefore have

‖Phv − Ihv‖W 1,∞(Ω,C) ≤ C‖v‖W 1,∞(Ω,C).

Clearly ‖Ihv‖W 1,∞(Ω,C) ≤ ‖v‖W 1,∞(Ω,C) by Lemma 4.10 applied to real and imaginary part.
Therefore

‖Phv‖W 1,∞(Ω,C) ≤ ‖Phv − Ihv‖W 1,∞(Ω,C) + ‖Ihv‖W 1,∞(Ω,C) ≤ C‖v‖W 1,∞(Ω,C).

4. is just an application of Corollary 8.31 to real and imaginary part.

Now we state a generalization of [BTW03, Theorem 2.1].

Proposition 4.32 Let Ω be a C2-domain and let A have C0,1(Ω)-coefficients. For any
ρ0 ∈ (0, π2 ) there is a C > 0 such that

‖(λ Id−A)−1v‖W j,∞(Ω,C) ≤ C(1 + |λ|)−1+ j
2 ‖v‖L∞(Ω,C) (4.25)

for λ 6∈ Σρ0 := {z ∈ C : | arg z| ≤ ρ0}, j = 0, 1, v ∈ C(Ω̄,C).

Proof. As stated in the first remark in the proof of [BTW03, Theorem 2.1] the results of
[Ste74, Theorem 1] hold true if we consider any elliptic operator A with no lower order terms
and thus get, as in [BTW03, Theorem 2.1], that (4.25) holds true for any ρ0 ∈ (0, π2 ) and λ
with |λ| ≥ R for some R > 0. [Ste74] does not require higher regularity than C2 for Ω or
more than uniform continuity of the coefficients of A.

The remaining case that |λ| < R is treated in the rest of the proof of [BTW03, Theorem
2.1]. There only higher W 2,p-regularity for elliptic problems is needed, which is true by
Theorem 8.23.

Inspecting the proof of [BTW03, Theorem 2.2], we immediately see that it is enough to
assume that Ω is a C2-domain. The domain regularity is used to construct a C2 function,
whose regularity has to be preserved by the boundary regularity under extension.

Proposition 4.33 Let Ω be a C2-domain and let A have coefficients in C0,1(Ω). Then for
any ρ0 ∈ (0, π2 ) there is a C > 0 such that

‖A(λ Id−A)−1v‖L∞(Ω,C) ≤ C(1 + |λ|)−
1
2 ‖v‖W 1,∞(Ω,C) λ 6∈ Σρ0 , v ∈W 1,∞(Ω,C) ∩ C0(Ω,C).

The following proposition is one of the main reasons, next to the usage of Green’s functions,
why we need higher domain regularity than the usual C1,1-regularity.

Proposition 4.34 Let Ω be a C2,1-domain. Let A be an operator with uniformly elliptic,
symmetric coefficients in C1,1(Ω). Then we have that for any α ∈ (0, 1) there is a C > 0
such that for any f ∈ C0,α(Ω,C) the solution g of{

Ag = f in Ω,
g|∂Ω = 0 on ∂Ω,

(4.26)

satisfies

‖g‖C2,α(Ω) ≤ C‖f‖C0,α(Ω).
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Proof. We first discuss the real-valued case. Let f ∈ C0,α(Ω) and g the solution to (4.26).
By [Gri11, Lemma 2.4.2.1 and the remarks thereafter, Theorem 2.4.2.5] we have that for any
p ∈ (1,∞) there is Cp > 0, independent of f and g, such that

‖g‖W 2,p(Ω) ≤ Cp‖f‖Lp(Ω) ≤ Cp‖f‖C0,α(Ω). (4.27)

For p large enough we have by the Sobolev embeddings, e.g. [Eva98, Theorem 5.6],

‖g‖C1,α(Ω) ≤ Cp(α)‖f‖C0,α(Ω).

[Gri11, Theorem 6.3.2.1] yields g ∈ C2,α(Ω), but no estimate. But now [Gri11, Theorem
6.3.1.4] is also applicable and yields, together with (4.27),

‖g‖C2,α(Ω) ≤ Cα
(
‖f‖C0,α(Ω) + ‖g‖C1,α(Ω)

)
≤ Cα‖f‖C0,α(Ω).

The complex valued statement now follows from separation into real and imaginary part.

This is a generalization of [BTW03, Theorem 2.3].

Proposition 4.35 Let Ω be a C2,1-domain and let A be a symmetric operator with coefficients
in C2(Ω̄). Then for any ρ0 ∈ (0, π2 ) and α ∈ (0, 1) there is a C > 0 such that

‖(λ Id−A)−1v‖C1,α(Ω̄) ≤ C (1 + |λ|)−1+α
2 ‖v‖W 1,∞(Ω) ∀λ 6∈ Σρ0 , v ∈W 1,∞(Ω) ∩ C0(Ω).

Proof. First we note that [Tri78, Theorem 4.5.2] applies to C2,1-domains and not only C∞-
domains. It implies in particular that for any α ∈ (0, 1) one has(

Cα(Ω), C2,α(Ω)
)

1
2 ,∞

= C1,α(Ω).

Here (·, ·) 1
2 ,∞

denotes an interpolation space. The reason [Tri78, Theorem 4.5.2] is still
applicable for less smooth domains is that it is only necessary to extend and retract functions
v ∈ C2,α(Ω) to and from functions in C2,α(RN ). This is possible by [Gri11, Theorem 6.2.4].

This observation and the Schauder-type estimate from Proposition 4.34 for less regular do-
mains can now be inserted into the proof of [BTW03, Theorem 2.3], generalizing it.

We can now state a generalization of [BTW03, Theorem 1.1].

Theorem 4.36 Let Assumption 4.14 be satisfied. Let Ω be a C3,α-domain for some α ∈ (0, 1).
Let h ∈ (0, 1

2). Assume A has C2(Ω̄) coefficients. Then for any ρ0 ∈ (0, π2 ) there exists a
C > 0, independent of h, such that

‖(λ Id−Ah)−1vh‖L∞(Ω) ≤ C(1 + |λ|)−1‖vh‖L∞(Ω) ∀λ 6∈ Σρ0 , vh ∈ Ṽh.

Proof. The proofs of [BTW03, Theorem 1.1] in [BTW03, Section 3] are based on the in-
equalities given by Propositions 4.31 to 4.33 and 4.35 and do not require any more boundary
regularity or regularity of the operator.

Corollary 4.37 Let Assumption 4.14 be satisfied. Let Ω be a C3,α-domain for some α ∈
(0, 1). Let h ∈ (0, 1

2). Assume A has C2(Ω̄) coefficients. Then for any ρ0 ∈ (0, π2 ) there exists
a C > 0, independent of h, such that for any p ∈ [1,∞] one has

‖(λ Id−Ah)−1v‖Lp(Ω) ≤ C(1 + |λ|)−1‖v‖Lp(Ω) ∀λ 6∈ Σρ0 , v ∈ Lp(Ω,C). (4.28)
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Proof. Let h ∈ (0, 1
2) and λ ∈ C \ Σρ0 for some ρ0 ∈ (0, π2 ).

We first show the estimate for p = 2. Let v ∈ L2(Ω,C). We define wh := − (λ Id−Ah)−1 v ∈
Vh that means

aI(wh, ϕ̄h)− (λwh, ϕ̄h)L2(Q) = (v, ϕ̄h)L2(Q) ∀ϕh ∈ Ṽh.

Choosing ϕh = wh and splitting into real and imaginary part yields

cell‖∇wh‖2L2(Ω,CN ) −Re(λ)‖wh‖2L2(Ω,C) ≤ Re((v, w̄h)L2(Ω))
−Im(λ)‖wh‖2L2(Ω,C) = Im((v, w̄h)L2(Ω)).

(4.29)

If Re(λ) ≤ 0 we take the absolute value on both sides and get

2‖v‖L2(Ω,C)‖wh‖L2(Ω,C) ≥ Re((v, w̄h)L2(Ω)) + |Im((v, w̄h)L2(Ω))|
≥ cell‖∇wh‖2L2(Ω,CN ) + |Re(λ)|‖wh‖2L2(Ω,C) + |Im(λ)|‖wh‖2L2(Ω,C).

Using the Poincaré inequality and the triangle inequality we can bound this further from
below by

c1‖wh‖2L2(Ω,C) + c2|λ|‖wh‖2L2(Ω,C) ≥ c(1 + |λ|)‖wh‖2L2(Ω,C).

Thus

‖wh‖L2(Ω,C) ≤ C(1 + |λ|)−1‖v‖L2(Ω,C).

Now assume Re(λ) > 0 and, due to symmetry, without loss of generality Im(λ) > 0. Because
λ 6∈ Σρ0 we cannot have Re(λ) > 0 and Im(λ) = 0. In this situation we have

ρ0 ≤ arg λ = arctan
(
Im(λ)
Re(λ)

)
=⇒ tan(ρ0) ≤ Im(λ)

Re(λ) .

Thus Re(λ) ≤ (tan(ρ0))−1 Im(λ). Then by (4.29)

cell‖∇wh‖2L2(Ω,CN ) ≤ Re(λ)‖wh‖2L2(Ω,C) + Re((v, w̄h)L2(Ω))

≤ 1
tan(ρ0)Im(λ)‖wh‖2L2(Ω,C) + Re((v, w̄h)L2(Ω))

= − 1
tan(ρ0)Im((v, w̄h)L2(Ω)) + Re((v, w̄h)L2(Ω))

≤
(

1 + 1
tan(ρ0)

)
‖v‖L2(Ω,C)‖wh‖L2(Ω,C).

Here we used Im(λ)‖wh‖2L2(Ω) = −|Im((v, w̄h)L2(Ω)| and the Cauchy Schwarz inequality. Now
we can argue analogously to the earlier case and obtain (4.28) for p = 2.

Now we discuss p =∞. Let v ∈ L∞(Ω,C). Theorem 4.36 almost gives us the desired (4.28),
but v 6∈ Vh. Yet, Theorem 4.36 in conjunction with Proposition 4.31.2 does deliver

‖(λ Id−Ah)−1v‖L∞(Ω,C) = ‖(λ Id−Ah)−1Phv‖L∞(Ω,C)

≤ C(1 + |λ|)−1‖Phv‖L∞(Ω,C) ≤ C(1 + |λ|)−1‖v‖L∞(Ω,C).

We now make an interpolation argument. We may assume that the constant C in (4.28) is
the same for p = 2 and p =∞. Let p ∈ (2,∞). By [BL76, Theorem 5.1.1] we have

Lp(Ω,C) =
[
L2(Ω,C), L∞(Ω,C)

]
1− 2

p

.
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All the spaces are complex and [·, ·]1− 2
p
denotes the complex interpolation functor. It is used

and introduced for example in [BL76, Theorem 4] or [Tri78, Section 1.9]. We do not need
any details.

By [Tri78, Theorem 1.9.3] the interpolation is exact of type 1− 2
p , that means for any linear

continuous operator T : L∞(Ω,C)→ L∞(Ω,C) we have

‖T‖Lp(Ω,C),Lp(Ω,C) ≤ ‖T‖
2
p

L2(Ω,C),L2(Ω,C)‖T‖
1− 2

p

L∞(Ω,C),L∞(Ω,C).

Thus we have in particular

‖(λ Id−Ah)−1‖Lp(Ω,C),Lp(Ω,C) ≤ C(1 + |λ|)−1.

Here C is the same C as for p = 2 and p =∞.

By duality arguments we now argue for p = 1. Let vh ∈ Vh and Φ ∈ L∞(Ω,C) with
‖Φ‖L∞(Ω,C) ≤ 1. Now

(
(λ Id−Ah)−1vh, Φ̄

)
L2(Ω)

=
(
vh,
(
λ̄ Id−Ah

)−1
Φ̄
)
L2(Ω)

≤ ‖vh‖L1(Ω,C)

∥∥∥∥(λ̄ Id−Ah
)−1

Φ̄
∥∥∥∥
L∞(Ω,C)

.

Now, because λ 6∈ Σρ0 ⇐⇒ λ̄ 6∈ Σρ0 , we can use the already stated estimate for p =∞ and
the fact that ‖Φ‖L∞(Ω,C) ≤ 1 to obtain(

(λ Id−Ah)−1vh, Φ̄
)
L2(Ω)

≤ ‖vh‖L1(Ω,C)C(1 + |λ|)−1‖Φ‖L∞(Ω,C) ≤ C(1 + |λ|)−1‖vh‖L1(Ω,C).

As Φ ∈ L∞(Ω,C) with ‖Φ‖L∞(Ω,C) ≤ 1 was arbitrary this yields the desired L1(Ω,C)-
estimate. The constant is the same as for p =∞.

By the same interpolation arguments as before the case for p ∈ (1, 2) follows.

4.2 Time Discretization

In the following definitions we stick closely to the notation used in [LV17b, Section 3], but
also adapt it to smooth domains.

Definition 4.38 We divide I = [0, T ] into M subintervals of the form (tm−1, tm] =: Im with
0 = t0 < t1 < · · · < tM−1 < tM = T . The interval size is abbreviated by km := tm−tm−1 > 0.
We also introduce k := maxm=1,...,M km.

The semidiscrete space X0
k denotes the functions which are piecewise constant in time:

X0
k =

{
vk ∈ L2(I, V ) : vk|Im ∈ P0(Im, V ),m = 1, . . . ,M

}
.

Here P0(Im, V ) is the space of constant functions with values in the Hilbert space V = H1
0 (Ω).

We use the following notation for limits and jumps at tm of vk ∈ X0
k :

vk(t+m) := lim
ε→0+

vk(tm + ε), vk(t−m) := lim
ε→0−

vk(tm + ε), [vk]m := vk(t+m)− vk(t−m).

Note that the end time value for vk ∈ X0
k is well-defined as T ∈ IM .
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We also define the nodal interpolant Ik : C(Ī , V )→ X0
k . Given a v ∈ C(Ī , V ) the interpolant

Ikv is the unique function in X0
k such that v(tm) = Ikv(tm) holds for all m = 1, 2, . . . ,M .

The same construction obviously works if one uses a different space than V .

Given a mesh Kh we also introduce the fully discrete spaces

X0,1
k,h :=

{
vkh ∈ X0

k : vkh|Im ∈ P0(Im, Vh),m = 1, . . . ,M
}

and the bilinear form B on X0
k ∪W (I).

Bk(v, ϕ) :=
M∑
m=1

(∂tv, ϕ)L2(Im,V ∗,V ) + aI(v, ϕ) +
M∑
m=2

(
[v]m−1, ϕ

+
m−1

)
H

+
(
v(0+), ϕ(0+)

)
H

= −
M∑
m=1

(v, ∂tϕ)L2(Im,V,V ∗) + aI(v, ϕ)−
M−1∑
m=1

(
v−m, [ϕ]m

)
H + (v(T ), ϕ(T ))H .

Remark 4.39 For v ∈W (I) the expressionB(v, ϕ) has a simple structure, because v ∈ C(Ī , H)
and thus the jumps vanish:

B(v, ϕ) = (∂tv, ϕ)L2(I,V ∗,V ) + aI(v, ϕ) +
(
v(0), ϕ(0+)

)
H

= −
M∑
m=1

(v, ∂tϕ)Im×Ω + aI(v, ϕ) +
M−1∑
m=1

(v(tm), [ϕ]m)H + (v(T ), ϕ(T ))H .

For v ∈ X0
k the expression also looks simpler:

B(v, ϕ) = aI(v, ϕ) +
M∑
m=2

(
[v]m−1, ϕ

+
m−1

)
L2(Ω)

+
(
v(0+), ϕ(0+)

)
L2(Ω)

.

Lemma 4.40 Bk is a positive definite bilinear form on X0
k . In particular we have B(vk, vk) ≥

aI(vk, vk) + ‖v(T )‖2H + ‖v(0+)‖2H for all vk ∈ X0
k .

Proof. The bilinearity is clear. To show positive definiteness let vk ∈ X0
k . Then, by the two

formulations of B and the piecewise constantness of vk we have:

2B(vk, vk) =
M∑
m=1

(
(∂tvk, vk)L2(Im,V ∗,V ) − (vk, ∂tvk)L2(Im,V,V ∗)

)
+ 2aI(vk, vk)

+
M−1∑
m=1

((
[vk]m, v(t+m)

)
H
−
(
v(t−m), [vk]m

)
H

)
+
(
v(0+), v(0+)

)
H

+ (v(T ), v(T ))H

=
M−1∑
m

(
[vk]m, v(t+m)− v(t−m)

)
+
(
v(0+), v(0+)

)
H

+ (v(T ), v(T ))H + 2aI(vk, vk)

=
M−1∑
m

([vk]m, [vk]m)H +
(
v(0+), v(0+)

)
H

+ (v(T ), v(T ))H + 2aI(vk, vk) ≥ 2aI(vk, vk).

If B(vk, vk) = 0 we have by the ellipticity of aI that ‖vk‖L2(I,V ) = 0, yielding the positivity.
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4.3 Discretization of Regularized Obstacle Problems

Definition 4.41 Let Kh be a triangulation of Ω and I be discretized by intervals of size
at most k. Let γ > 0 and u ∈ L2(Q) and y0 ∈ L2(Ω). The regularized, discretized state
yγkh = yγkh(u) ∈ X0,1

k,h is defined as the solution to

Bk(ykh, ϕkh) + (f(ykh) + βγ(ykh −Ψ), ϕkh)L2(Q) = (u, ϕkh)L2(Q) +
(
y0, ϕkh(0+)

)
H

(Rγkh)

for all ϕkh ∈ X0,1
k,h. We introduce the solution operator

Sγkh : L2(Q)→ X0,1
k,h,

u 7→ yγkh(u).

[MV17, Theorem 3.1] gives the well-definedness of Sγkh. Its proof immediately applies to
both C1,1-domains and convex polygonal/polyhedral domains:

Theorem 4.42 (Rγkh) has a unique solution. In particular Sγkh is well-defined.

Lemma 4.43 Sγkh is Lipschitz continuous in the following sense: there exists a C > 0,
independent of γ, k, h, such that for all u1, u2 ∈ L2(Q) we have

‖Sγkh(u1)− Sγkh(u2)‖L2(I,V ) + ‖Sγkh(u1)(T )− Sγkh(u2)(T )‖H ≤ C‖u1 − u2‖L2(I,V ∗).

By the equivalence of norms in the finite dimensional space X0,1
k,h this implies that Sγkh is

Lipschitz continuous with respect to any norm in X0,1
k,h. The Lipschitz constant does then

depend on k and h.

Proof. We abbreviate yi := Sγkh(ui) ∈ X0,1
k,h for i = 1, 2. Testing (Rγkh) with y1 − y2 for u1

and u2 and taking the difference yields

Bk(y1 − y2, y1 − y2) + (f(y1)− f(y2) + βγ(y1 −Ψ)− βγ(y2 −Ψ), y1 − y2)L2(Q)

= (u1 − u2, y1 − y2)L2(Q).

We abbreviate δy := y1 − y2 and δu := u1 − u2. By the monotonicity of f and βγ and
Lemma 4.40 we have

aI(δy, δy) + ‖δy(T )‖2H ≤ ‖δu‖L2(I,V ∗)‖δy‖L2(I,V ).

Because V = H1
0 (Ω) we have that aI : L2(I, V ) × L2(I, V ) → R is actually elliptic by the

Poincaré inequality, e.g. [Eva98, Theorem 5.6.3], so that

c‖δy‖2L2(I,V ) + ‖δy(T )‖2H ≤ ‖δu‖L2(I,V ∗)‖δy‖L2(I,V ) ≤
1
2c‖δu‖

2
L2(I,V ∗) + c

2‖δy‖
2
L2(I,V ).

Here we used Young’s inequality in the last estimate. Subtracting c
2‖δy‖

2
L2(I,V ) from both

sides and taking the root yields the claim.

We shortly discuss the regularity of the mapping Sγkh : L2(Q) → X0,1
k,h. The proof is very

similar to the proof of Theorem 3.11.
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Theorem 4.44 Assume that βγ ∈ C1(R) and f(t, x, ·) ∈ C1,1
loc (R) for any (t, x) ∈ Q. Here

the Lipschitz constants of f(t, x, ·) or f ′(t, x, ·) may not depend on (t, x) ∈ Q. Then

Sγkh : L2(Q)→ X0,1
k,h

is Fréchet differentiable. For u, d ∈ L2(Q) its derivative S′γkh(u)d =: zγkh(u, d) solves

Bk(zγkh(u, d), ϕkh)+
((
βγ
′(Sγkh(u)−Ψ) + f ′(Sγkh(u))

)
zγkh(u, d), ϕkh

)
L2(Q)

= (d, ϕkh)L2(Q) ϕkh ∈ X0,1
k,h.

Proof. Let u ∈ L2(Q) and d ∈ L2(Q). We define yγkh(u) := Sγkh(u), yγkh(u+d) := Sγkh(u+d)
and zγkh(u, d) as above. They satisfy

Bk(yγkh(u), ϕkh) + (βγ(yγkh(u)−Ψ) + f(yγkh(u)), ϕkh)L2(Q)

= (u, ϕkh)L2(Q) +
(
y0, ϕkh(0+)

)
H
,

Bk(yγkh(u+ d), ϕkh) + (βγ(yγkh(u+ d)−Ψ) + f(yγkh(u+ d)), ϕkh)L2(Q)

= (u+ d, ϕkh)L2(Q) +
(
y0, ϕkh(0+)

)
H
,

Bk(zγkh(u, d), ϕkh) +
((
βγ
′(yγkh(u)−Ψ) + f ′(yγkh(u))

)
z(u, d), ϕkh

)
L2(Q)

= (d, ϕkh)L2(Q) .

Those equations hold for all ϕkh ∈ X0,1
k,h. Subtracting the lines from each other and introduc-

ing

rγkh(u, d) := yγkh(u+ d)− yγkh(u)− zγkh(u, d)

yields for any ϕkh ∈ X0,1
k,h:

Bk (rγkh(u, d), ϕkh) +
(
βγ(yγkh(u+ d)−Ψ)− βγ(yγkh(u)−Ψ)− βγ ′(yγkh(u)−Ψ)zγkh(u, d)

+f(yγkh(u+ d))− f(yγkh(u))− f ′(yγkh(u))zγkh(u, d), ϕkh
)
L2(Q) = 0.

(4.30)

Using the fundamental theorem of calculus we have almost everywhere in Q:

f(yγkh(u+ d))− f(yγkh(u))− f ′(yγkh(u))zγkh(u, d)

=
∫ 1

0
f ′(yγkh(u) + s(yγkh(u+ d)− yγkh(u)))(yγkh(u+ d)− yγkh(u)) ds

−
∫ 1

0
f ′(yγkh(u))zγkh(u, d) ds

=
∫ 1

0
f ′(yγkh(u) + s(yγkh(u+ d)− yγkh(u)))rγkh(u, d) ds

+
∫ 1

0

(
f ′(yγkh(u) + s(yγkh(u+ d)− yγkh(u)))− f ′(yγkh(u))

)
zγkh(u, d) ds.

We abbreviate Θf,s := f ′(yγkh(u) + s(yγkh(u+ d)− yγkh(u))) to obtain

f(yγkh(u+ d))− f(yγkh(u))− f ′(yγkh(u))zγkh(u, h)

=
∫ 1

0
Θf,srγkh(u, d) ds+

∫ 1

0
(Θf,s − f ′(yγkh(u)))zγkh(u, d) ds.

(4.31)
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Analogously we obtain

βγ(yγkh(u+ d)−Ψ)− βγ(yγkh(u)−Ψ)− βγ ′(yγkh(u)−Ψ)zγkh(u, d)

=
∫ 1

0
Θβγ ,srγkh(u, d) ds+

∫ 1

0
(Θβγ ,s − βγ ′(yγkh(u)−Ψ))zγkh(u, d) ds.

(4.32)

Inserting (4.31) and (4.32) into (4.30) thus yields

Bk(rγkh(u, d), ϕkh) +
(
(Θf,s + Θβγ ,s)rγkh, ϕkh

)
L2(Q)

= −
(∫ 1

0
Θβγ ,s − βγ ′(yγkh(u)−Ψ) ds · zγkh(u, d), ϕkh

)
L2(Q)

−
(∫ 1

0
Θf,s − f ′(yγkh(u)) ds · zγkh(u, d), ϕkh

)
L2(Q)

.

Choosing ϕkh = rγkh(u, d) and using Lemma 4.40 together with the ellipticity of aI , note that
Poincaré inequality, e.g. [Eva98, Theorem 5.6.3], is applicable, and Θf,s,Θβγ ,s ≥ 0 yields

c‖rγkh(u, d)‖2L2(I,V ) ≤
∥∥∥∥∫ 1

0
Θβγ ,s − βγ ′(yγkh(u)−Ψ) ds · zγkh(u, d)

∥∥∥∥
L2(Q)

‖rγkh(u, d)‖L2(Q)

+
∥∥∥∥∫ 1

0
Θf,s − f ′(yγkh(u)) ds · zγkh(u, d)

∥∥∥∥
L2(Q)

‖rγkh(u, d)‖L2(Q).

Thus

c‖rγkh(u, hu)‖L2(I,V ) ≤
∥∥∥∥∫ 1

0
Θβγ ,s − βγ ′(yγkh(u)−Ψ) ds · zγkh(u, d)

∥∥∥∥
L2(Q)

+
∥∥∥∥∫ 1

0
Θf,s − f ′(yγkh(u)) ds · zγkh(u, d)

∥∥∥∥
L2(Q)

.

(4.33)

We now may assume ‖d‖L2(Q) ≤ 1. By the Lipschitz continuity of Sγkh and the equivalency
of norms in X0,1

k,h we have

‖yγkh(u)‖L∞(Q), ‖yγkh(u+ d)‖L∞(Q) ≤ R0 independent of d. (4.34)

By the continuity of βγ ′ it is also uniformly continuous on the compact set [−R0, R0]. Let
δ > 0. By this uniform continuity and the Lipschitz continuity of Sγkh then there exists a ε > 0
such that ‖d‖L2(Q) < ε implies |βγ(s(yγkh(u+d)−yγkh(u))+yγkh(u)−Ψ)−βγ(yγkh(u)−Ψ)| < δ,
independently of s. Thus the first term on the right in (4.33) is bounded by δ‖zγkh(u, d)‖L2(Q)
for those small d.

We also have by the local Lipschitz continuity of f ′ and (4.34) that∣∣∣∣∫ 1

0
Θf − f ′(yγkh(u)) ds

∣∣∣∣ ≤ C|yγkh(u+ d)− yγkh(u)|.

Thus (4.33) entails

lim sup
‖d‖L2(Q)→0

‖rγkh(u, d)‖L2(I,V )

≤ C lim sup
‖d‖L2(Q)→0

(δ‖zγkh(u, d)‖L2(Q) + ‖|yγkh(u)− yγkh(u+ d)| · |zγkh(u, d)|‖L2(Q)).
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By the usual arguments, the ellipticity of Bk (Lemma 4.40), and the positivity of βγ ′ and f ′,
we get the estimate ‖zγkh(u, d)‖L2(Q) ≤ C‖d‖L2(Q). With this and the Lipschitz continuity
from Lemma 4.43 we find

lim sup
‖d‖L2(Q)→0

‖rγkh(u, d)‖L2(I,V )
‖d‖L2(Q)

≤ C lim sup
‖d‖L2(Q)→0

(δ + ‖d‖L2(Q)) = Cδ.

As δ > 0 was arbitrary we conclude the proof.

Remark 4.45 As with Theorem 3.11 and Theorem 3.13 we can deviate from the assumption
βγ ∈ C1(R) a little bit, by considering a βγ of the form from Proposition 2.17 for α = 1 and
assuming {Sγkh(u) = Ψ} is of Lebesgue measure 0.

4.4 Convergence Rates for Solutions to Discretized, Regularized
Obstacle Problems

Before we continue we would like to quickly address the question why we use first order finite
elements in space and not possibly higher order elements. Especially in view of the high
regularity of solutions to our variational inequalities and their regularizations. One reason
is that affine elements are easier to handle from an implementation perspective. But, more
importantly, we would like to give the following quote from [EG04, page 67]: “In particular, if
a domain with curved boundary is approximated geometrically with affine meshes, using finite
elements of degree larger than one is not asymptotically more accurate than using first-order
finite elements.” So, to see an improvement in our situation by using higher order elements,
one would have to use non-isoparametric elements and non-affine meshes. This, however, is
out of the scope of this thesis.

We again stress that the assumptions and properties from Section 2.2.1 are assumed to hold
throughout Chapter 4. The following assumptions shall also hold for the rest of Chapter 4.
For some intermediate results the assumptions might be stronger than necessary. But for
presentations’ sake it is convenient to consider all assumptions from the beginning, as in the
end we all need them anyway.

We also note that we will use results from Sections 8.6 to 8.8. They are formulated for
I = (0, 1), but the results suited for I = (0, T ) can be all obtained by rescaling with the
factors T and 1

T . Very importantly we would like to stress that Assumption 4.47 is strong
enough such that Lemma 8.53 applies, cf. Remark 8.54. This in particular entails that results
about interpolation spaces from Section 8.7 are freely applicable.

Assumption 4.46 We assume there exist constants c1, c2 > 0 such that:

kc2 ≤ c1 min
m=1,...,M

km.

We further assume that there exists a κ > 0 such that

κ−1 ≤ km
km−1

≤ κ ∀m = 1, . . . ,M − 1.

We also assume k ≤ k0 < min(T4 , e−(N+1)) for some constant k0.
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Assumption 4.47 We assume (Kh)h>0 to be quasi-uniform and shape regular.

Assume Ωh ⊂ Ω.

Assume that (Ωh)h>0 and Ω are uniform Lipschitz domains. That means that there ex-
ist finitely many local coordinate systems S1, . . . , Sm and local transformations f1, . . . , fm,
fh1 , . . . , f

h
m for h > 0, as in Definition 1.5 for k = 0, α = 1, such that the the boundaries

of each Ωh and Ω can be represented as a Lipschitz graph as in Definition 1.5. Also see the
results in Proposition 4.7 for a rigorous formulation. If Ω is assumed to more regular than a
Lipschitz f1, . . . , fm are assumed to be of the appropriate, higher regularity. There also exists
a C > 0 such that all the Lipschitz constants of the fhi are bounded by C.

We also assume that

max
x∈∂Ωh

dist(x, ∂Ω) = O(h2).

We shall also assume that h ≤ h0 < e−(N+2) for some constant h0.

Assumption 4.47 is essentially a sharpening of Assumption 4.14 so that results from Chapter 8
are freely applicable.

Assumption 4.48 Assume N ∈ {2, 3}. Assume Ω to be a C3,α-domain. Here α ∈ (0, 1) is
some arbitrary but fixed constant. We also assume A has coefficients in C2(Ω̄).

Remark 4.49 The limiting factors on the regularity on Ω and A are Theorem 4.29 and Propo-
sition 4.35. The regularity is required for pointwise estimates of the Green’s function.

The numerical analysis for smooth domains is different to the numerical analysis for polygonal
domains insofar that the solutions to the undiscretized problem are very regular globally, but
we have to consider the error introduced by approximating the smooth Ω by a polygonal
Ωh.

4.4.1 An L∞-error Estimate for Linear Parabolic PDEs

Our goal in the following is to derive L∞(Q)-error esimates for the linear parabolic problem
and for the regularization (PDEγ) of (VI-OB). The linear parabolic problem has been anal-
ysed, for example, in [STW98, STW80]. There, however, a semi-discretization of the linear
parabolic problem was considered, i.e. the time was not discretized. Also the results have
been derived under very strong regularity assumptions on solutions of{

∂ty −∆y = u in Q,
y(0) = 0, y|ΣD = 0.

It was assumed that y ∈ W 1,2
∞ (Q), which is stronger than one could expect, even for u ∈

L∞(Q). For a semi-discretization for linear parabolic problems see also [Nit79].

So, to our knowledge the global L∞(Q)-error estimate for the linear parabolic problem in
smooth domains is novel. In [Bon18, Section 5.3.3] interior estimates for polygonal domains
were considered and the strategies used there and here were co-developed by the author of
[Bon18], Lucas Bonifacius, and myself; see Sections 8.6 to 8.8.

The structure of this section is as follows: we combine a resolvent estimate for the operator
A and with the L∞(Ω)-quasi optimality of the Ritz projection to derive an appropriate quasi
best approximation result for the Galerkin approximation in the time dependent case. This
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is the same strategy as in [LV16, LV17a, LV17b], where it was used for polygonal domains.
Then we can use an interpolation error estimate, see Section 8.6 through Section 8.8, to get
an error estimate for the Galerkin approximation.

Note, even though [LV17a] and the other mentioned works were written for polygonal domains
the proofs we will cite work for our situation as well, since they only depend on the resolvent
estimates for the discrete operators. We have proven those in Corollary 4.37. Since the proofs
are so similar we only restate the most important lemmas required to prove Theorem 4.54
via the strategies of [LV16].
Remark 4.50 The following estimate can be generalized to different norms, e.g. weighted
L2(Ω)-norms. See, for example, [LV16, Theorem 4.1.] in the case that Ω is convex and
polygonal/polyhedral.

The proof of the following is essentially the combination of [LV17a, Theorem 1 and Corollary
1], which are the semi-discrete analogoues of this statement. The fully discrete version is
stated in [LV17a, Theorem 10].

Lemma 4.51 Let Assumption 4.47 and Assumption 4.48 be satisfied. Let p ∈ [1,∞]. Let
y0 ∈ Lp(Ω) and ykh defined by

B(ykh, ϕkh) =
(
y0, ϕ

+
kh,0

)
L2(Q)

∀ϕkh ∈ X0,1
k,h. (4.35)

Then there exists a C > 0 independent of k, h and p such that

sup
t∈Im
‖Ahykh(t)‖Lp(Ωh) + k−1

m ‖[ykh]m−1‖Lp(Ωh) ≤
C

tm
‖Phy0‖Lp(Ωh).

Proof. The proof of [EJL98, Theorem 5.1] can be applied to any norm and not only the
L2(Ω)-norm used there since Corollary 4.37 holds for any p ∈ [1,∞]. It yields

sup
t∈Im
‖Ahykh(t)‖Lp(Ωh) ≤

C

tm
‖Phy0‖Lp(Ωh) (4.36)

for any m = 1, . . . ,M , see the proof of [EJL98, (5.7)].

Formulating (4.35) as an Euler method we can prove the second part. This can be done by
spelling out B(ykh, ϕkh) for ϕkh ∈ X0,1

k,h:

B(ykh, ϕkh) =
M∑
m=2

(
[ykh]m−1, ϕkh(t+m−1)

)
L2(Ω)

+
(
ykh(0+), ϕkh(0+)

)
L2(Ω)

+ km
(
Ahykh(t+m−1), ϕkh(t+m−1)

)
L2(Ω)

.

So for any ϕh ∈ Vh we have, by choosing ϕkh(t, x) := ϕh(x)1(tm−1,tm)(t) for m > 0,

([ykh]m−1, ϕh)L2(Ω) + km
(
Ahykh(t+m−1), ϕh

)
L2(Ω)

= 0.

As dim(Vh) < ∞ and ϕh ∈ Vh is arbitrary this implies k−1
m [ykh]m−1 = −Ahykh(t+m−1). Now

the claim follows from (4.36).

The following lemma is an easy consequence of Lemma 4.51. The proof is given in [LV16,
Lemma 12].
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Lemma 4.52 Let p, y, ykh as in Lemma 4.51. Then there exists a constant C > 0 independent
of k and h such that

M∑
m=1

(
‖Ahykh‖Lp(Ωh) + km‖[ykh]m−1‖Lp(Ωh)

)
≤ C ln T

k
‖Phy0‖Lp(Ωh).

For m = 1 the jump term is understood in the following sense:

[ykh]0 = ykh(0+)− Phy0.

The following is our version of [LV16, Lemma 13].

Lemma 4.53 Let Assumption 4.47 and Assumption 4.48 be satisfied. Let p ∈ [1,∞]. Let
f ∈ Lp(Q) and ykh defined by

B(ykh, ϕkh) = (f, ϕkh)L2(Q) ∀ϕkh ∈ X0,1
k,h. (4.37)

Let s ∈ [1,∞]. Then there exists a C > 0 independent of k, h, p and s such that

‖Ahykh‖Ls(I,Lp(Ω)) +
(

M∑
m=1

km‖k−1
m [ykh]m−1]‖sLp(Ω)

) 1
s

≤ C ln T
k
‖Phf‖Ls(I,Lp(Ω))

respectively

‖Ahykh‖L∞(I,Lp(Ω)) + max
m∈{1,...,M}

‖k−1
m [ykh]m−1]‖Lp(Ω) ≤ C ln T

k
‖Phf‖L∞(I,Lp(Ω)).

Here Ph denotes the L2-Projection of f onto Vh in each time point.

Proof. This is proven as [LV17a, Theorem 11], which refers to the semi-discrete case for the
proof. The estimates for ‖Ahykh‖Ls(I,Lp(Ω)) are proven as in [LV17a, Theorem 2], which is
the aforementioned semi-discrete case. The estimates for the jump points follows, similarly
to the proof of Lemma 4.51, by writing the discrete scheme as an Euler’s method. This is
done in detail in [LV17a, Corollary 2].

The following theorem is the analogue of [LV16, Theorem 1] for smooth domains.

Theorem 4.54 Let y ∈W (I) ∩ C(Q̄) and ykh ∈ X0,1
k,h such that

B(y − ykh, ϕkh) = 0 ϕkh ∈ X0,1
k,h.

Then

‖y − ykh‖L∞(Q)≤ C|ln k||ln h| inf
ϕkh∈X0,1

k,h

‖y − ϕkh‖L∞(Q) + ‖y‖L∞(Q\Qh).

The constant C > 0 does not depend on k, h or y.

Proof. We first note that

‖y − ykh‖L∞(Q)= max(‖y − ykh‖L∞(Qh), ‖y − ykh‖L∞(Q\Qh)).

By definition of Vh we have

‖y − ykh‖L∞(Q\Qh)= ‖y‖L∞(Q\Qh).

The proof of [LV16, Theorem 1] can be applied to ‖y − ykh‖L∞(Qh) based on Lemma 4.53
and Lemma 4.51 for p = 1, Proposition 4.13 and Theorem 4.29. This yields the desired
estimate.
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We can now state our main theorem for the Galerkin approximation of linear parabolic
problems.

Theorem 4.55 Assume f ∈ L∞(Q), y0 ∈ W 2,∞(Ω) ∩ V . Let y ∈ W (I) ∩ C(Q̄) be the weak
solution of {

∂ty +Ay = f on Q,
y(0) = y0, y|ΣD = 0.

Let ykh be the Ritz projection of y, i.e.

B(y − ykh, ϕkh) = 0 ∀ϕkh ∈ X0,1
k,h.

Then we have

‖y − ykh‖L∞(Q) ≤ C|ln k|2|ln h|4(k + h2)
(
‖f‖L∞(Q) + ‖y0‖W 2,∞(Ω)

)
.

Proof. By Theorem 4.54 and the regularity from Theorem 8.17 the previous Theorem 4.54
applies and we have

‖y − ykh‖L∞(Q)≤ C|ln k||ln h| inf
ϕkh∈X0,1

k,h

‖y − ϕkh‖L∞(Q) + ‖y‖L∞(Q\Qh).

Choosing ϕkh = IkIhy we find the estimate

‖y − ykh‖L∞(Q) ≤ C|ln k||ln h|(‖y − Iky‖L∞(Q) + ‖Ik(y − Ihy)‖L∞(Q)) + ‖y‖L∞(Q\Qh)

≤ C|ln k||ln h|(‖y − Iky‖L∞(Q) + ‖y − Ihy‖L∞(Q)) + ‖y‖L∞(Q\Qh).

(4.38)

We first estimate the last term as it is the easiest. We give an estimate of the Hölder norm of
the spatial part of y. By (8.34), a consequence of Proposition 8.39, and the following remark
we have

W 1,2
p (Q) ↪→ C

(
Ī ,
(
Lp(Ω),W 2,p(Ω)

)
1−1/p,p

)
with an embedding constant independent of p. Thus by Corollary 8.24 we have

‖y‖C(Ī,(Lp(Ω),W 2,p(Ω))1−1/p,p) ≤ C‖y‖W 1,2
p (Q) ≤ Cp

2
(
‖f‖Lp(Q) + ‖y0‖Wp

)
.

By Proposition 8.32 and Remark 8.33 we have:

‖y‖C(Ī,(Lp(Ω),W 2,p(Ω))1−1/p,p) ≤ Cp
2
(
‖f‖L∞(Q) + ‖y0‖W 2,∞(Ω)

)
. (4.39)

By Proposition 8.57 this implies for p ≥ N + 2 > 2

‖y‖C(Ī,W 2(1−1/p),p(Ω)) ≤ Cpp
2
(
‖f‖L∞(Q) + ‖y0‖W 2,∞(Ω)

)
.

By the same lemma Cp has the behaviour ∼ p for p → ∞. By Lemma 8.59 this implies in
turn for p > N + 2.

‖y‖C(Ī,C1,1−(N+2)/p(Ω)) ≤ Cp
3
(
‖f‖L∞(Q) + ‖y0‖W 2,∞(Ω)

)
. (4.40)

The Hölder exponent is 2(1− 1/p)− 1−N/p = 1− 2/p−N/p = 1− (N + 2)/p. This implies
in particular, that y(t, ·) is Lipschitz continuous in space for ever t ∈ Ī.
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Now let (t, x) ∈ Q \Qh. By y|ΓD = 0 and (4.40) we have for p > N + 2 and for some x̂ ∈ ∂Ω
with dist(x, ∂Ω) = |x̂− x|2 that

|y(t, x)| = |y(t, x)− y(t, x̂)| ≤ ‖y‖C(Ī,C1,1−(N+2)/p(Ω))|x− x̂|

≤ Cp3|x− x̂|
(
‖f‖L∞(Q) + ‖y0‖W 2,∞(Ω)

)
.

By assumption we have |x̂− x| ≤ Ch2. Choosing p = N + 3 > N + 2 therefore yields

|y(t, x)| ≤ Ch2
(
‖f‖L∞(Q) + ‖y0‖W 2,∞(Ω)

)
.

Thus the third term of (4.38) satisfies the given bound.

The second term of (4.38) is treated similarly. Let t ∈ Ī and x ∈ Ω̄h such that

|y(t, x)− Ihy(t, x)| = ‖y(t, ·)− Ihy(t, ·)‖L∞(Ωh).

By the definition of Ωh there has to exist a cell K ∈ Kh such that x ∈ K̄. Further, there has
to exist a subset conv(x̂1, x̂2, . . . , x̂l) =: E ⊂ K such that x̂ ∈ relint(E). Here, x̂1, x̂2, . . . , x̂l
are corners of K. That basically means that the maximizer x has to lie in the relative interior
of one of the facets of K. If we had l = 1, i.e. x is a corner of K, we could infer

0 = |y(t, x)− Ihy(t, x)| = ‖y(t, ·)− Ihy(t, ·)‖L∞(Ωh).

This is a trivial case that obviously satisfies the given estimate. We may therefore assume
l ≥ 2. We define the one dimensional function

f : (0, 1 + ε)→ R,
s 7→ y(t, x̂1 + s(x− x̂1))− Ihy(t, x̂1 + s(x− x̂1)).

Here, ε > 0 is so small such that x̂1 + s(x− x̂1) ∈ K̄ for all s ∈ (0, 1 + ε). This is well-defined
due to x lying in the relative interior of E. Obviously f has an extremum at s = 1 with
|f(1)| = ‖y(t, ·)−Ihy(t, ·)‖L∞(Ωh). If E ⊂ ∂K have by Proposition 4.56 that f is continuously
differentiable. If E = K the differentiability of f is clear. So in either case

0 = f ′(1) = ∇(y(t, x)− Ihy(t, x))T (x− x̂1).

We therefore find for some ξs ∈ (0, 1)

|y(t, x)− Ihy(t, x)| = |f(1)− f(0)| = |f ′(ξs)| = |f ′(ξs)− f ′(1)|
= |∇((y(t, ξ)− Ihy(t, ξ))− (y(t, x)− Ihy(t, x)))T (x− x̂1)|
≤ |∇(y(t, ξ)− y(t, x))||x− x̂1|.

Here, ξ = x̂1 + s(x − x̂1) ∈ relint(E). By the Hölder continuity of ∇y from (4.40) we can
deduce for any p > N + 2

|y(t, x)− Ihy(t, x)| ≤ Ch2−(N+2)/pp3
(
‖f‖L∞(Q) + ‖y0‖W 2,∞(Ω)

)
.

Choosing p = |ln h| we deduce

‖y − Ihy‖L∞(Q) ≤ C|ln h|3h2
(
‖f‖L∞(Q) + ‖y0‖W 2,∞(Ω)

)
.

Thus the second term in (4.38) satisfies the claimed bound as well.
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All that remains to estimate is the first term on the right hand side of (4.38). By (8.35), a
consequence of Proposition 8.39, we have the following embedding for s ∈ [2,∞), p ∈ [2,∞)
and τ ∈ (0, 1)

W 1,s(I, Lp(Ω)) ∩ Ls(I, domp(A)) ↪→ Cα(I, (Lp(Ω),domp(A))τ,1)

for any α ∈ [0, 1 − 1/s − τ). The embedding constant does not depend on s, p, τ or α. For
τ = N/p we have by Proposition 8.51

W 1,s(I, Lp(Ω)) ∩ Ls(I, domp(A)) ↪→ Cα(I, C(Ω̄))

where the embedding constant is bounded by

C
Γ(N2p)
Γ(Np )

where Γ is the Γ-function. This quotient is bounded independently of p by Proposition 8.6.
Now Corollary 8.50 yields

‖y‖Cα(I,C(Ω̄)) ≤ C‖y‖W 1,s(I,Lp(Ω))∩Ls(I,domp(A))

≤ C s2

s− 1(‖u‖Ls(I,Lp(Ω)) + ‖y0‖(Lp(Ω),domp(A))1−1/s,s).

By Proposition 8.32 and Remark 8.33 we can conclude for s > N + 1

‖y‖Cα(I,C(Ω̄)) ≤ Cs(‖u‖L∞(Q) + ‖y0‖W 2,∞(Ω))

for any α ∈ [0, 1 − 1/s − N/p). Choosing s = p ≥ | ln k0| > N + 1 and α = 1 − | ln k0|/s
results in

‖y − Iky‖L∞(Q) ≤ Ck1−(N+2)/ss(‖u‖L∞(Q) + ‖y0‖W 2,∞(Ω)).

Choosing s = |ln k| ≥ | ln k0| yields the desired estimate for the first term of (4.38).

Proposition 4.56 Let D ⊂ RN be a polygonal domain. Let conv(x̂1, x̂2, . . . , x̂l) = E ⊂ ∂D.
Let g ∈ C1(D) ∩ C(D̄) such that ∇g can be extended to a continuous function on D̄. Lastly,
let a, b ∈ relint(E). Then the function

f : (0, 1)→ R,
s 7→ g(a+ s(b− a))

lies in C1((0, 1)). Its derivative is given by g′(s) = ∇f(a+ s(b− a))T (b− a).

Proof. The idea will be to, more or less, shift the analysis into the open set D, where standard
definitions and results apply. Let all the quantities be as above and s ∈ (0, 1) be fixed. We
abbreviate cs := a+s(b−a). Since a polygonal domain is also a Lipschitz domain, it satisfies
the cone condition from Definition 1.8 via Theorem 1.9. The cone condition implies that
there exists an open set U ⊂ RN containing cs and a cone C such that for each x ∈ U ∩ ∂Ω
we have x+ C ⊂ D. Let ν be the axis of the cone, then for each x ∈ U ∩ E we have for any
ε ∈ (0, 1) that x+ εν ∈ D. Lastly, since U is open we can choose a d0 > 0 small enough such
that Bd0(cs) ⊂ U and Bd0(cs) ∩ E ⊂ relint(E).

We then have for any d ∈ R, with |d| sufficiently small, that

|f(s+ d)− f(s)−∇g(cs)T (b− a)d|
≤ |g(cs+d)− g(cs+d − εν)− g(cs) + g(cs − εν)−∇g(cs)T (b− a)d+∇g(cs − εν)T (b− a)d|

+ |g(cs+d − εν)− g(cs − εν)−∇g(cs − εν)T (b− a)d|.
(4.41)
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We analyse the second term on the right hand side. It is equal to∣∣∣∣∫ 1

0
∇g(cs − εν + r(cs+d − cs))T (b− a)−∇g(cs − εν)T (b− a) dr

∣∣∣∣ |d|
and further bounded by∫ 1

0
|∇g(cs − εν + r(cs+d − cs))−∇g(cs − εν)| dr|b− a||d|.

By the theorem of dominated convergence, e.g. [BK15, Proposition 5.4], this converges for
ε→ 0 to the following∫ 1

0
|∇g(cs + r(cs+d − cs))−∇g(cs)| dr|b− a||d|.

Thus, after taking the limit ε → 0 in (4.41), we find with the above and the continuity of g
and ∇g that

|g(s+ d)− g(s)−∇f(cs)T (b− a)d| ≤
∫ 1

0
|∇g(cs + r(cs+d − cs))−∇g(cs)| dr|b− a||d|.

Using the theorem of dominated convergence again, we see that the right hand side is of order
o(|d|), which concludes the proof.

4.4.2 An L∞-error Estimate for the Discretization of Regularized Obstacle
Problems

Remark 4.57 Before we prove our estimate:

‖Sγ(u)− Sγkh(u)‖L∞(Q) ≤ C|ln h|2|ln k|2(k + h2)

with C independent of γ > 0 we would like to adress the work of [Fet87]. In [Fet87] it is
proven that under strong regularity assumptions an appropriate discretization of (VI-OB),
using the same spaces for the discretization we use, directly leads to an L∞(Q)-error estimate
of the order C(ε)ck−εh−ε(k+ h2). The assumptions are that Ω is a two-dimensional, smooth
convex domain and A = −∆. Further, the solution y = S(u) of (VI-OB) satisfies

y ∈ L∞(I,W 2,p(Ω)), ∀p ∈ [1,∞),
∂ty ∈ L∞(I, L∞(Ω)),
∆y ∈ L∞(I, L∞(Ω)).

(4.42)

It shall also satisfy

∂tty ∈ L2(Q). (4.43)

Further the triangulation has no angle that exceeds π
2 − c1 for some fixed c1 > 0 and that

there exists a c2 > 0 such that k ≥ c2h
2.

The regularities in (4.42) are satisfied under the assumptions u ∈ C(I, L∞(Ω)), ∂tu ∈
L1(I, L∞(Ω)), y0 ∈ W 2,∞(Ω) ∩ V and y0 ≥ Ψ; see [Fet87, remark before (1.3)] and the
there mentioned [Bré72]. Under appropriate conditions one can show that (4.42) and (4.43)
both hold true for the one phase Stefan problem; see [FK75] and the corresponding [Fet87,
remark above the first theorem].
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In [YWG14] the authors prove a rate of O(h + k
1
2 ) for a very similar numerical scheme

and a simplified version of our obstacle problem. This result implicitly uses a regularization
approach that is, however, different from ours. The difficulty in [YWG14] is the initial
condition which only lies in V , while our initial condition will lie in W 2,∞(Ω) ∩ V .

The main result of [GM19] is a convergence rate of O(h+k
3
4 ) times some logarithmic factors

in a specific, pointwise discrete norm. They do not use any form of regularization, but make
high regularity assumptions on the appearing quantities and use conforming finite elements.

[OS16] discusses a full discretization of the parabolic obstacle problem involving fractional
operators which is note-worthy, but not close to our question. Statements about semi-
discretizations of semilinear parabolic problems and their convergence rates under minimal
regularity assumptions can for example be found in [CH02].

The next proofs and ideas are based on the elliptic case studied in [Noc88]. We start by
introducing some form of a regularized parabolic Green’s function.

Definition 4.58 For 0 ≤ b ∈ L∞(Q), and δ̃ ∈ L∞(Q) with ‖δ̃‖L1(Q) ≤ 1 we define G ∈W (I)
as the solution of {

−∂tG+AG+ bG = δ̃,

G(T ) = 0, G|ΣD = 0.
(4.44)

See Theorem 8.17 for existence and regularity of G.

Its Galerkin approximation is denoted by Gkh ∈ X0,1
k,h and is defined via

Bk(ϕkh, G−Gkh) = 0 ∀ϕkh ∈ X0,1
k,h.

Note that b does not play a role in the definition of Gkh.

Later b will be a sum of terms involving βγ and f . In [Noc88] the δ̃ is some form of regulariza-
tion of the delta distribution centered at an appropriate point satisfying ‖δ̃‖L1(Q) = 1. Our
argument is subtly different, as it utilizes duality where this interpretation is not necessary,
see [HKP19, Section 4], where we first used this approach.

The general idea is to estimate the L∞(Q)-error of the states by the L1(Q)-error of G and
Gkh. This L1(Q)-error in turn will be estimated by the L∞(Q)-error for a linear PDE. While
this is our motivation the actual arguments are made in reverse; starting with the estimation
of the L1(Q)-error of G and Gkh.

Lemma 4.59 For the G from Definition 4.58 we have

‖bG‖L1(Q) ≤ 1 and ‖−∂tG+AG‖L1(Q) ≤ 2.

Proof. For ε > 0 we define absε(x) :=
√
x2 + ε and sgnε(x) := abs′ε(x) = x√

x2+ε . We now test
(4.44) with sgnε(G) to obtain

(−∂tG+AG+ bG, sgnε(G))L2(Q) =
(
δ̃, sgnε(G)

)
L2(Q)

≤ 1.

We now estimate the terms without b starting with

− (∂tG, sgnε(G))L2(Q) = −
∫
I
∂t

(∫
Ω

absε(G) dx
)
dt

= −
∫

Ω
absε(G)(T )− absε(G)(0) dx =

∫
Ω

absε(G)(0) dx ≥ 0.
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Now we treat the elliptic term

(AG, sgnε(G))L2(Q) =
N∑

i,j=1

∫
Q
aij∂xiG sgn′ε(G)∂xjGd(t, x) ≥ 0.

Here we used the a.e. positive semi-definiteness of the matrix (aij)i,j=1,...,N and the fact that
sgnε is monotonically increasing.

Thus, we have proven so far

1 ≥
∫
Q
b

G2
√
G2 + ε

d(t, x).

The integrand on the right-hand side is bounded by ‖b‖L∞(Q) · |G| ∈ L1(Q), so that the
theorem of dominated convergence, e.g. [BK15, Proposition 5.4], yields

1 ≥ lim
ε→0

∫
Q
b

G2
√
G2 + ε

d(t, x) =
∫
Q
b|G| d(t, x) = ‖bG‖L1(Q).

Here we used that b ≥ 0.

Using the regularity from Theorem 8.17 we can write a.e. in Q that −∂tG+AG = −bG+ δ̃.
Therefore we can easily conclude

‖−∂tG+AG‖L1(Q) ≤ ‖bG‖L1(Q) + ‖δ̃‖L1(Q) ≤ 2.

Lemma 4.60 Let G be as in Definition 4.58. For ΦQ ∈ L∞(Q),ΦT ∈W 2,∞(Ω)∩V we have

(G−Gkh,ΦQ)L2(Q) +
(
G(0)−G+

0 ,Φ0
)
L2(Ω)

≤ 2‖ζ − ζkh‖L∞(Q)

where ζ is defined as the solution to{
∂tζ +Aζ = ΦQ,

ζ(0) = Φ0, Φ|ΣD = 0,
(4.45)

and ζkh as its Galerkin approximation, i.e. ζkh satisfies

Bk(ζ − ζkh, ϕkh) = 0 ∀ϕ ∈ X0,1
k,h.

Proof. Using the bilinear form Bk equation (4.45) is equivalent to

Bk(ζ, ϕ) =
(
Φ0, ϕ

+
0

)
H

+ (ΦQ, ϕ)L2(Q) ∀ϕ ∈ X0
k .

Thus

(G−Gkh,ΦQ)L∞(Q) +
(
G(0)−G+

0 ,Φ0
)
L2(Ω)

= Bk(ζ,G−Gkh) = Bk(ζ − ζkh, G−Gkh).

Here we used the definition of Gkh. Using the same idea for ζkh the whole expression equals

Bk(ζ − ζkh, G) = −
M∑
m=1

(ζ − ζkh, ∂tG)L2(Im,V,V ∗) + aI(ζ − ζkh, G) = (−∂tG+AG, ζ − ζkh)L2(Q)

where we used the fact that G ∈ W 1,2
2 (Q) ⊂ W (I) and the secondary formulation of Bk.

Using the previous Lemma 4.59 we can derive the estimate immediately.
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Theorem 4.61 Let f̂ : Q×R→ R that satisfies all the properties of f from Definition 2.6. In
addition we assume there exists a C∞ > 0 such that |f̂(t, x, y)| ≤ C∞ for all (t, x, y) ∈ Q×R.
Let u ∈ L∞(Q) and y0 ∈W 2,∞(Ω) ∩ V . Let y be the solution to{

∂ty +Ay + f̂(y) = u,

y|Σ = 0, y(0) = y0,
(4.46)

and let ykh be its Galerkin approximation for some k, h > 0. Then there exists a C > 0,
independent of y, ykh, k, h and f̂ such that

‖y − ykh‖L∞(Q) + ‖y(T )− ykh(T )‖L∞(Ω)

≤ C|ln k|2|ln h|2(k + h2)
(
‖u‖L∞(Q) + C∞ + ‖y0‖W 2,∞(Ω)

)
.

Proof. We define

b :=


f̂(y)−f̂(ykh)

y−ykh if y − ykh 6= 0,
0 else.

By the monotonicity of f̂ this is non-negative. By the local Lipschitz continuity of f̂ the b
stays bounded as well. Now let δ̃ ∈ L∞(Q) with ‖δ̃‖L1(Q) ≤ 1. We consider G with this
specific b and δ̃. We also define the error ekh := y − ykh. Then we have(

ekh, δ̃
)
L2(Q)

= (bG, ekh)L2(Q) +Bk(ekh, G)

=
(
f̂(y)− f̂(ykh), G

)
L2(Q)

+Bk(y − ykh, G)

=
(
f̂(y)− f̂(ykh), G−Gkh

)
L2(Q)

+Bk(y − ykh, G−Gkh).

Here we used the Galerkin orthogonality of y − ykh. We decompose this into the parts
involving y and those involving ykh:(

f̂(y) + ∂ty +Ay,G−Gkh
)
L2(Q)

+
(
y0, G(0)−G+

0

)
H

= (u,G−Gkh)L2(Q) +
(
y0, G(0)−G+

0

)
H
.

The parts involving ykh are easily estimated, by the Galerkin orthogonality of G and Gkh(
f̂(ykh), G−Gkh

)
L2(Q)

+Bk(ykh, G−Gkh) =
(
f̂(ykh), G−Gkh

)
L2(Q)

.

Thus we have(
ekh, δ̃

)
L2(Q)

= (u,G−Gkh)L2(Q) +
(
y0, G(0)−G+

0

)
H
−
(
f̂(ykh), G−Gkh

)
L2(Q)

. (4.47)

Applying Lemma 4.60 and Theorem 4.55 to ΦQ = u− f̂(ykh) and Φ0 = y0 we obtain(
ekh, δ̃

)
L2(Q)

≤ C|ln k|2|ln h|2(k + h2)
(
‖u‖L∞(Q) + C∞ + ‖y0‖W 2,∞(Ω)

)
. (4.48)

The constant C is from Theorem 4.55 and thus does not depend on f̂ or any of the other
indicated quantities. Since C∞c (Q) is dense in L1(Q) one can easily deduce that{

ϕ ∈ C∞c (Q) : ‖ϕ‖L1(Q) ≤ 1
}
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is dense in {
ϕ ∈ L1(Q) : ‖ϕ‖L1(Q) ≤ 1

}
.

Thus

‖ekh‖L∞(Q) = sup
δ̃∈
{
ϕ∈C∞c (Q):‖ϕ‖L1(Q)≤1

} (ekh, δ̃)L2(Q)

≤ C|ln k|2|ln h|2(k + h2)
(
‖u‖L∞(Q) + C∞ + ‖y0‖W 2,∞(Ω)

)
.

To see the end time estimate note that for each k there is an intervall IM−1 = (tM−1, T ] ⊂ I
such that ykh is constant on. Thus

‖y(T )− ykh(T )‖L∞(Ω) ≤ ‖y − ykh‖L∞(IM−1×Ω) ≤ ‖y − ykh‖L∞(Q).

Remark 4.62 To apply the previous result to our regularized obstacle problem we have to
discuss one last hurdle: βγ and, in general, f are not bounded by some C∞ > 0 which is
required to obtain (4.48) from (4.47), which is a crucial step in the proof of Theorem 4.61.
There might be the option to prove that |βγ(yγkh)+f(yγkh)| is bounded independently of k, h
or γ, but this is, as of now, future research, which would have a lot of interesting implications.
We go a different route and show that we can replace βγ and f by bounded functions without
changing the regularizing PDE.

Assume u, ∂tΨ, AΨ ∈ L∞(Q). Then, by Proposition 2.36, we have an upper bound C∞ > 0
independent of γ > 0 such that

‖βγ(yγ −Ψ)‖L∞(Q), ‖f(yγ)‖L∞(Q) ≤ C∞ − 1 for any γ > 0.

The bound C∞ depends only on an upper bound of ‖u‖L∞(Q), ‖f(0)‖L∞(Q), ‖f(Ψ)‖L∞(Q),
‖∂tΨ‖L∞(Q), ‖AΨ‖L∞(Q) and ‖y0‖L∞(Ω).

By the monotonicity of βγ , the continuity of βγ and the basic assumption that βγ(r) r→−∞−−−−→
−∞ there is a largest R∞ ∈ (0,∞) such that βγ(−R∞) = −C∞ + 1

2 . Thus we can consider
a function β̂γ that satisfies:

• β̂γ ∈ C(R), β̂γ ∈ C1(R) provided βγ ∈ C1(R),

• β̂γ |[−R∞,∞) = βγ |[−R∞,∞),

• ‖β̂γ‖L∞(R) ≤ C∞.

Since βγ(yγ−Ψ) > −C∞+1 > −C∞+ 1
2 we have yγ−Ψ > −R∞. Thus βγ(yγ−Ψ) = β̂γ(yγ−Ψ)

and we can replace βγ by β̂γ in (PDEγ) and essentially change nothing. So we may assume
‖βγ‖L∞(R) ≤ C∞ and still solve the same equation. Importantly, note that the truncation
point R∞ does depend on γ > 0, while the cut-off height C∞ does not.

In the case that βγ ∈ C(R) we can simply choose

β̂γ(r) := max(−C∞, βγ(r)) ∈ C(R). (4.49)
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This obviously satisfies the desired properties. Clearly the same construction cannot be used
for the case when one wants to keep differentiability. This can be for example achieved by
defining for βγ ∈ C1(R)

β̂γ(t) =


−C∞ if t < −R∞ − 1

βγ
′(−R∞) ,

−C∞ + βγ
′(−R∞)2

2

(
t+R∞ + 1

βγ
′(−R∞)

)2
if −R∞ − 1

βγ
′(−R∞) ≤ t < −R∞,

βγ(t) if −R∞ ≤ t.
(4.50)

Higher smoothness preservation is obviously possible by using more sophisticated formulae
or smoothing kernels.

The analogous line of arguing yields that we may assume ‖f‖L∞(I×Ω×R) ≤ C∞ by Proposi-
tion 2.36. Note that here C∞ additionally depends on the Lipschitz constant of f on a ball
with radius ‖y0‖L∞(Ω).

Whenever we refer to this truncation strategy we implicitly use (4.49) for βγ ∈ C(R) \C1(R)
and (4.50) for βγ ∈ C1(R).
Remark 4.63 Note that these truncated functions cannot be used in Chapter 2, because they
are bounded and the unboundedness of βγ is used in proving λ(S(u)) = limγ→∞−βγ(Sγ(u));
see the middle portion of the proof of Theorem 2.30 with its contradiction argument.

We obtain an immediate, but important corollary:

Theorem 4.64 Assume that u, ∂tΨ, AΨ ∈ L∞(Q), y0 ∈ W 2,∞(Ω) ∩ V and that the results
from Remark 4.62 hold true, i.e. βγ and f are truncated at height C∞. Then

‖yγ − yγkh‖L∞(Q) + ‖yγ(T )− yγkh(T )‖L∞(Ω)

≤ C|ln k|2|ln h|4(k + h2)
(
‖u‖L∞(Q) + C∞ + ‖y0‖W 2,∞(Ω)

)
for y = S(u) and yγkh = Sγkh(u) for γ > 0.

The constants C and C∞ do not depend on γ.

Proof. This follows from Theorem 4.61 with f̂(t, x, y) = βγ(y −Ψ(t, x)) + f(t, x, y) as both,
βγ and f are truncated.

We can now give a complete error estimate for an essentially computable approximation of
y = S(u). We say “essentially”, because on still needs to discuss how to evaluate all the
appearing integrals.

Theorem 4.65 Assume that u, ∂tΨ, AΨ ∈ L∞(Q), y0 ∈ W 2,∞(Ω) ∩ V and that the results
from Remark 4.62 hold true, i.e. βγ and f are truncated at height C∞. Assume that β has
the form of Proposition 2.17 for some α ≥ 1. Then

‖y − yγkh‖L∞(Q) + ‖y(T )− yγkh(T )‖L∞(Ω)

≤ C
(
γ

1
α + |ln k|2|ln h|2(k + h2)

) (
‖u‖L∞(Q) + C∞ + ‖y0‖W 2,∞(Ω)

)
for y = S(u) and yγkh = Sγkh(u) for γ > 0.

The constants C and C∞ do not depend on γ, k or h.

Proof. This is a direct consequence of Theorem 2.37 and Theorem 4.64.
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Remark 4.66 Concluding this chapter we would like to shortly comment on the difficulties
one has when trying to transfer our strategies to a polygonal domain Ω. One is obviously
the lack of regularity at the corners of the polygon. While we still have Hölder regularity
according to Theorem 2.42, it is not clear how exactly the exponents behave as one can also
see in Theorem 2.42 that the space-time-derivative regularity, which we used heavily for our
interpolation error estimates in Theorem 4.55, is limited by the polygonality of the domain.

One way around this, is the use of interior estimates, where one picks smooth subdomains of
Ω and derives the estimates on those. This is possible, e.g. [Bon18, Section 5.3.3], but yields
difficulties when trying to emulate the duality arguments from [Noc88].

Another approach was made in [HKP19], where L2(Ω)-estimates for the regularized, elliptic
obstacle problem were derived, by ’cutting out’ the corners in the estimates. Whether this
approach is transferable to the parabolic situation, is, as of this moment, unknown.
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5 Numerical Analysis of Discretized,
Regularized Optimal Control Problems

5.1 Semi-discrete, Regularized Control Problems

Before we go into the details we would like to comment on related approaches of discretizing
an optimal control problem involving the obstacle problem. We focus on a priori error
estimates.

One great result, using an elliptic variational inequality and not a parabolic one, is found in
[MT13]. Under the assumption that a discrete maximum principle is satisfied, the authors
derive a (quasi optimal) convergence order for the controls in the L2(Ω)-norm of o(h1−ε) and
of order o(h2−ε) for the L2(Ω)-norm of the states, without the use of regularization. We do
not follow this approach as we would like to avoid the use of a discrete maximum principle in
this thesis. In possible future research it might still be interesting to see how the arguments
may transfer to the parabolic case.

Not concerned with a priori error estimates, but a posteriori error estimates, is the work of
[GHHL14] where an elliptic obstacle problem is considered. Combining a posteriori estimates
and adaptivity, again in the elliptic case, is also done in [MRW15, CH15].

A related topic is the discretization error analysis for optimal control problems with semilinear
parabolic equations. The “problem” with those papers is, however, that the constants in those
works do depend on the non-linearity. Thus applying them to a regularized problem of the
form (OCγ) is possible, but the constants would then depend on the regularization parameter
γ. Therefore one would lose the nice additive structure of the error from Theorem 4.65. We
shall nevertheless mention the following showcase examples: [NV12, FR11, TC13]

To the author’s knowledge there is no work concerning the numerical analysis, in particular
a priori error estimates, of optimal control problems with parabolic variational inequalities
as constraint.

The assumptions are the same as in the end of Chapter 4. To be precise: the assumptions
and properties from Section 2.2.1 are assumed to apply. Assumption 4.46, Assumption 4.47
and Assumption 4.48 are also considered valid throughout Chapter 5.

We start with considering the following regularization and discretization of (OC):

min
(yγkh,u)∈X0,1

k,h
×L2(Q)

jv(yγkh) + jT (yγkh(T )) + g(u) = J(yγkh, u),

such that Sγkh(u) = yγkh and u ∈ Uad.
(SOCγkh)

Note, the control is not discretized, yet. The control will turn out to be discretized implicitly
in time in Section 5.2.

All the appearing quantities have the properties from (OC). In addition, we assume that Uad
is bounded in L∞(Q) by some constant RUad > 0. We also define g(u) = αg

2 ‖u‖
2
L2(Q) with

αg > 0. For transparency and simplicity we assume β to be of the form of Proposition 2.17,
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for some αβ > 1. It and f are truncated in the sense of Remark 4.62. For Remark 4.62 to
hold we assume ∂tΨ, AΨ, f(Ψ) ∈ L∞(Q).

As we want to use Theorem 4.65 we also assume y0 ∈W 2,∞(Ω) ∩ V .

To make our solution operators differentiable, i.e. to apply Theorem 4.44, let f(t, x, ·) ∈
C1,1
loc (R) for any (t, x) ∈ Q. Here the Lipschitz constants of f(t, x, ·) and f ′(t, x, ·) must not

depend on (t, x) ∈ Q.

Throughout Chapter 5 ((γn, kn, hn))n∈N ⊂ R3
>0 shall refer to a zero sequence satisfying

|ln kn|2|ln hn|4(kn + h2
n) n→∞−−−→ 0.

This is necessary for the convergence of the right hand side to 0 in Theorem 4.65.
Remark 5.1 The following results hold true if we consider a βγ as in Proposition 2.17 for
αβ = 1 and assume that the boundary of the active set is of Lebesgue measure 0. This is
enough to keep Sγkh differentiable, cf. Remark 4.45.

5.1.1 Existence of Global Solutions and Convergence Rates

Theorem 5.2 (SOCγkh) has at least one solution (ȳγkh, ūγkh) ∈ X0,1
k,h × Uad.

Proof. The proof is basically the same as the one in the continuous case in Theorem 3.3. For
the continuity of Sγkh see Lemma 4.43.

Theorem 5.3 Let ((ȳγnknhn , ūγnknhn))n∈N be a sequence of solutions to (SOCγnknhn). There
exists a subsequence and a global solution (ȳ, ū) of (OC) such that

ȳγnl ,knl ,hnl
l→∞−−−→ ȳ strongly in L∞(Q),

ȳγnl ,knl ,hnl (T ) l→∞−−−→ ȳ(T ) strongly in L∞(Ω),

ūγnl ,knl ,hnl
l→∞−−−→ ū weakly* in L∞(Q) and strongly in L2(Q).

Proof. By the boundedness of Uad in L∞(Q) we have that there exists a subsequence (nl)l∈N
and a ū ∈ L∞(Q) such that

ūγnlknlhnl
l→∞−−−→ ū weakly* in L∞(Q) and weakly in Lqu(Q).

We have to show that the states converge as well. Define ȳ := S(ū). We have

‖ȳ − ȳγnlknlhnl‖L∞(Q)

≤ ‖S(ū)− S(ūγnlknlhnl )‖L∞(Q) + ‖S(ūγnlknlhnl )− Sγnlknlhnl (ūγnlknlhnl )‖L∞(Q).

Theorem 4.65 now implies

‖S(ūγnlknlhnl )− Sγnlknlhnl (ūγnlknlhnl )‖L∞(Q) ≤ C(γ
1
αβ
nl + |ln knl |2|ln hnl |4(knl + h2

nl
))RUad .

By Theorem 2.34 we have

‖S(ū)− S(ūγnlknlhnl )‖L∞(Q)
l→∞−−−→ 0.
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Hence, by our assumption of (γn, kn, hn)n∈N,

‖ȳ − ȳγnlknlhnl‖L∞(Q)
l→∞−−−→ 0.

This implies that the end time values converge as well.

Let us now show that (ȳ, ū) is an optimal solution to (OC). Note that weak* convergence in
L∞(Q) implies weak convergence in L2(Q). Let u ∈ Uad. Weakly lower semi-continuity of g
in L2(Q) and the continuity of jv and jT imply

J(ȳ, ū) = jv(ȳ) + jT (ȳ) + g(ū)
≤ lim inf

l→∞
jv(ȳγnlknlhnl ) + jT (ȳγnlknlhnl (T )) + g(ūγnlknlhnl )

≤ lim inf
l→∞

jv(Sγnlknlhnl (u)) + jT (Sγnlknlhnl (u)(T )) + g(u).
(5.1)

Similar arguments as before lead to

‖Sγnlknlhnl (u)− S(u)‖L∞(Q)
l→∞−−−→ 0, ‖Sγnlknlhnl (u)(T )− S(u)(T )‖L∞(Ω)

l→∞−−−→ 0,

and thus

J(ȳ, ū) ≤ lim inf
l→∞

jv(Sγnlknlhnl (u)) + jT (Sγnlknlhnl (u)(T )) + g(u) = J(S(u), u).

This shows that (ȳ, ū) is a solution to (OC).

It remains to show the strong L2(Q) convergence of the controls. By the arguments in (5.1)
we have the following chain of inequalities:

J(ȳ, ū) = lim inf
l→∞

J(ȳγnlknlhnl , ūγnlknlhnl ) ≤ lim inf
l→∞

J(Sγnlknlhnl (ū), ū) = J(ȳ, ū). (5.2)

This implies lim inf l→∞ g(ūγnlknlhnl ) = g(ū). Taking a subsequence, denoted by the same
indices, we have

αg
2 ‖ūγnlknlhnl‖

2
L2(Q)

l→∞−−−→ αg
2 ‖ū‖L2(Q).

Together with the weak convergence in L2(Q) this implies strong convergence in L2(Q).

We now continue to show a priori error estimates for the functional values. Estimates for the
controls and the states are presented later.

Theorem 5.4 Let (ȳγkh, ūγkh) be a global solution to (SOCγkh) and (ȳ, ū) be a global solution
to (OC). We then have

|J(ȳ, ū)− J(ȳγkh, ūγkh)| ≤ C
(
γ

1
αβ + |ln k|2|ln h|4(k + h2)

)
.

Proof. By optimality of (ȳ, ū) we have

J(ȳ, ū)−J(ȳγkh, ūγkh) ≤ J(S(ūγkh), ūγkh)− J(ȳγkh, ūγkh)
= jv(S(ūγkh))− jv(Sγkh(ūγkh)) + jT (S(ūγkh)(T ))− jT (Sγkh(ūγkh)(T )).

(5.3)

The functionals jv, jT are Fréchet differentiable and thus locally Lipschitz continuous. By
the boundedness of Uad and the Lipschitz continuity of S, see Corollary 2.35, we have

‖S(ūγkh)‖L2(Q)∩L∞(I,H) ≤ C
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with a C > 0 independent of (γ, k, h). We will show that

‖Sγkh(ūγkh)‖L2(Q), ‖Sγkh(ūγkh)(T )‖H ≤ C independent of ūγkh, γ, k, h. (5.4)

Admitting this for the moment we can deduce

J(ȳ, ū)−J(ȳγkh, ūγkh)
≤ C(‖S(ūγkh)− Sγkh(ūγkh)‖L2(Q) + ‖S(ūγkh)(T )− Sγkh(ūγkh)(T )‖H).

(5.5)

By Theorem 4.65 and the boundedness of Uad we have

J(ȳ, ū)− J(ȳγkh, ūγkh) ≤ C
(
γ

1
αβ + |ln k|2|ln h|4(k + h2)

)
.

The estimate

J(ȳγkh, ūγkh)− J(ȳ, ū) ≤
(
γ

1
αβ + |ln k|2|ln h|4(k + h2)

)
.

is obtained analogously.

It remains to show (5.4). Testing the defining equation of ȳγkh with ȳγkh itself yields

Bk(ȳγkh, ȳγkh) + (f(ȳγkh) + βγ(ȳγkh −Ψ), ȳγkh)L2(Q) = (u, ȳγkh)L2(Q) + (y0, ȳγkh(0+))H .

By the fact that βγ a nnd f are truncated in the sense of Remark 4.62 we can conclude

Bk(ȳγkh, ȳγkh)− 2C∞‖ȳγkh‖L2(I,V ) ≤ ‖u‖L∞(Q)‖ȳγkh‖L2(I,V ) + ‖y0‖H‖ȳγkh(0+)‖H .

By the positive definiteness of Lemma 4.40, the Poincaré inequality, e.g. [Eva98, Theorem
5.6.3], and Young’s inequality we find

c‖ȳγkh‖2L2(I,V ) + ‖ȳγkh(0+)‖2H + ‖ȳγkh(T )‖2H

≤ 4
c
C2
∞ + c

4‖ȳγkh‖
2
L2(I,V ) + 1

c
‖u‖2L∞(Q) + c

4‖ȳγkh‖
2
L2(I,V ) + 1

2‖y0‖2H + 1
2‖ȳγkh(0+)‖2H .

Ordering terms results in

‖ȳγkh‖2L2(I,V ) + ‖ȳγkh(0+)‖2H + ‖ȳγkh(T )‖2H ≤ C
(
C2
∞ + ‖u‖2L∞(Q) + ‖y0‖2H

)
.

By the boundedness of Uad the right hand side is bounded independently of ūγkh and the
other quantities.

5.1.2 L2-Convergence Rates for Local Solutions

So far we have not paid attention to local solutions of (OC). We rectify this now, as not
all solution algorithms applicable to (SOCγkh) or, later, (FOCγkh) provide global solutions.
As the finite dimensional problem (FOCγkh) is accessible to computation we consider local
solutions as something of note.

Lemma 5.5 Let (ȳ, ū) be a strict local minimum to (OC). That means there exists a r > 0
such that

J(ȳ, ū) < J(S(u), u) ∀u ∈ B̄r(ū).

Here B̄r(ū) refers to the closed unit ball in L2(Q).

Then there is a sequence of local solutions of (SOCγkh) converging to (ȳ, ū) in the sense of
Theorem 5.3. They are locally optimal on balls closed in L2(Q) with the radii (rn)n∈N, which
satisfy rn n→∞−−−→ r.
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Proof. Let (ȳ, ū) be as above and γ, k, h > 0. We consider the auxiliary problem

min
(y,u)∈X0,1

k,h
×L2(Q)

J(y, u),

such that Sγkh(u) = y and u ∈ Uad ∩ B̄r(ū).
(AUX)

Theorem 5.2 is also applicable to (AUX) as Uad ∩ B̄r(ū) is convex, closed in Lqu(Q) and
bounded in L∞(Q). Thus there exists a solution (ȳrγkh, ūrγkh) to (AUX). Just as in the proof
of Theorem 5.3 there is a subsequence of (γn, kn, hn)n∈N, denoted by the same indices, such
that (ȳrγnknhn , ū

r
γnknhn

)n∈N converges to some (ŷ, û). It convergences strongly in L∞(Q) in
the states, strongly in L∞(Ω) in the end times, weakly* in L∞(Q) and weakly in L2(Q) in
the controls. We have û ∈ B̄r(ū), because B̄r(ū) is weakly closed, and see that

J(ŷ, û) ≤ lim inf
n→∞

J(yγnknhn , uγnknhn) ≤ lim inf
n→∞

J(Sγnknhn(ū), ū) = J(ȳ, ū).

By the strict optimality of (ȳ, ū) this implies (ŷ, û) = (ȳ, ū). This line also entails, as in the
proof of Theorem 5.3, see (5.2), g(ūrγnknhn) n→∞−−−→ g(u) and thus the strong L2(Q) convergence
of the controls.

Therefore we have for n large enough ūrγnknhn ∈ Br(ū) ( B̄r(ū). Thus choosing rn :=
r − ‖ūrγnknhn − ū‖L2(Q) > 0, for n large enough, we have B̄rn(ūrγnknhn) ⊂ B̄δ(ū). This entails

J(ȳrγnknhn , ū
r
γnknhn) = min

u∈Uad∩B̄r(ū)
J(Sγnknhn(u), u) ≤ min

u∈Uad∩B̄rn (ūr
γnknhn

)
J(Sγnknhn(u), u).

Thus for n large enough the (ȳrγnknhn , ū
r
γnknhn

) are indeed local solutions to (SOCγkh).

Theorem 5.6 Let (ȳ, ū) be a strict local minimum of (OC) in the sense of Lemma 5.5. Let
((ȳγnknhn , ūγnknhn))n∈N be the sequence of local solutions to (SOCγkh) that converges to (ȳ, ū)
by Lemma 5.5. Then we have

|J(ȳ, ū)− J(ȳγnknhn , ūγnknhn)| ≤ C
(
γ

1
αβ
n + |ln kn|2|ln hn|4(kn + h2

n)
)

for n ∈ N sufficiently large.

We slightly abuse notation here. The fixed sequence (γn, kn, hn)n∈N would require us to use
subsequences in Theorem 5.6, i.e. ((ȳγnlknlhnl , ūγnlknlhnl ))l∈N. This would however lead to a
massive influx in the use of indices, which we avoid here and in similar situations.

Proof. The proof is almost the same as for Theorem 5.4 applied to the local auxiliary problems
(AUX).

By Lemma 5.5 we have ‖ūγnknhn− ū‖L2(Q) < r for n sufficiently large and therefore J(ȳ, ū) <
J(ȳγnknhn , ūγnknhn). Thus

|J(ȳ, ū)− J(ȳγnknhn , ūγnknhn)| = J(ȳγnknhn , ūγnknhn)− J(ȳ, ū).

Using the (rn)n∈N from Lemma 5.5, it follows for n sufficiently large, that rn > r
2 and

‖ūγkh − ū‖L2(Q) < r
2 so that we have ū ∈ Brn(ūγnknhn) and by the local optimality of

(ȳγnknhn , ūγnknhn) that

J(ȳγnknhn , ūγnknhn)− J(ȳ, ū) ≤ J(Sγnknhn(ū), ū)− J(S(ū), ū).

This is now estimated as the terms in (5.3) from the proof of Theorem 5.4.
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Theorem 5.7 Let (ȳ, ū) be a local solution to (OC) such that a local quadratic growth con-
dition of the form of Theorem 3.57 holds, i.e. there are r, δ > 0 such that

‖u− ū‖L2(Ω) < r =⇒ J(S(u), u) ≥ J(ȳ, ū) + δ‖u− ū‖2L2(Ω).

Let ((ȳγnknhn , ūγnknhn))n∈N be the sequence of local solutions to (SOCγkh) that converges to
(ȳ, ū) by Lemma 5.5. Then, for n so large that ‖ūγnknhn − ū‖L2(Q) < r, we obtain

‖ūγnknhn − ū‖L2(Q) ≤ C

√
γ

1
αβ
n + |ln kn|2|ln hn|4(kn + h2

n),

‖ȳγnknhn − ȳ‖L∞(I,H) ≤ C

√
γ

1
αβ
n + |ln kn|2|ln hn|4(kn + h2

n).

Proof. The local quadratic growth condition obviously entails that (ȳ, ū) is a strict local
minimum. Thus Lemma 5.5 actually applies. The quadratic growth condition implies, for n
so large such that ‖ūγnknhn − ū‖L2(Q) < r, that

δ‖ūγnknhn − ū‖2L2(Q)

≤ J(S(ūγnknhn), ūγnknhn)− J(ȳ, ū)
= J(S(ūγnknhn), ūγnknhn)− J(Sγnknhn(ūγnknhn), ūγnknhn) + J(ȳγnknhn , ūγnknhn)− J(ȳ, ū)
≤ jv(S(ūγnknhn))− jv(Sγnknhn(ūγnknhn)) + jT (S(ūγnknhn)(T ))− jT (Sγnknhn(ūγnknhn)(T ))

+ C(γn + |ln kn|2|ln hn|4(kn + h2
n)).

Here we used Theorem 5.6 in the last inequality. The last two terms are estimated as in the
proof of Theorem 5.4. We thus obtain

‖ūγnknhn − ū‖2L2(Q) ≤ C
(
γ

1
αβ
n + |ln kn|2|ln hn|4(kn + h2

n)
)
.

Taking the root yields the desired estimate for the controls.

To get the estimate for the states we split the error:

‖ȳγnknhn − ȳ‖L∞(I,H)

≤ ‖Sγnknhn(ūγnknhn)− S(ūγnknhn)‖L∞(I,H) + ‖S(ūγnknhn)− S(ū)‖L∞(I,H).

The first term converges with the stated rate by Theorem 4.65. The second term is a con-
sequence of the estimates for the controls and the Lipschitz continuity of S, cf. Corol-
lary 2.35.

Remark 5.8 We compare these rates to the ones obtained in [NV12]. The article is concerned
with the optimal control of semilinear equations under state constraints. Our regularized
optimization problem (OCγ) fall essentially into this category, as we could simply add empty
state constraints. [NV12, Theorem 5.1] establishes a convergence rate of the controls of
order O(k). Note, however, that in their semi-discrete analysis the space was not discretized.
Essentially the authors obtain twice as good an order as we have. Why is that? We had to
take great precautions to make the constant in front of the terms in Theorem 5.7 independent
of γ, i.e. independent of the non-linearity in the equation. Thus citing [NV12] directly would
result in convergence rates where the constants would depend on the regularization parameter.

For the fully discretized problem [NV12, Proposition 5.1] obtains a rate of O(k + h
3
2−ε for

arbitrary ε > 0 and piecewise bilinear elements. We will obtain a worse rate in Theorem 5.28,
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while having the benefit that our rate does explicitly not depend on the regularization pa-
rameter.

It would be of great interest to see if the techniques of [NV12] or related work could be used
to obtain better convergence rates in k and h, under certain assumptions at least, and keep
them independent of the regularization parameter.

5.1.3 Optimality Conditions

Theorem 5.9 Each locally optimal control ūγkh of the reduced problem

min
u∈Uad

J(Sγkh(u), u) = J(Sγkh(ūγkh), ūγkh)

satisfies for any u ∈ Uad with ȳγkh := Sγkh(ūγkh)

0 ≤
(
j′v(ȳγkh), S′γkh(ūγkh)(u− ūγkh)

)
L2(Q)

+
(
j′T (ȳγkh(T )), [S′γkh(ūγkh)(u− ūγkh)](T )

)
H

+ αg (ūγkh, u− ūγkh)L2(Q) .

Here “locally” is to be understood in the L2(Q)-sense, see Lemma 5.5.

Proof. This is an immediate consequence of Theorem 4.44 and the usual optimality conditions
for control constrained problems, e.g. the proof of [Trö09, Lemma 2.21].

Lemma 5.10 Given u ∈ L2(Q) we define pγkh(u) ∈ X0,1
k,h as the solution to

Bk(ϕkh, pγkh(u)) +
(
[βγ ′(Sγkh(u)−Ψ) + f ′(Sγkh(u))]pγkh(u), ϕkh

)
L2(Q)

=
(
j′T (Sγkh(u)(T )), ϕkh(T )

)
H +

(
j′v(Sγkh(u)), ϕkh

)
L2(Q) ∀ϕkh ∈ X0,1

k,h.

Then for all u, v ∈ L2(Q) we have(
j′T (Sγkh(u)(T )), [S′γkh(u)v](T )

)
H

+
(
j′v(Sγkh(u)), S′γkh(u)v

)
L2(Q)

= (pγkh(u), v)L2(Q) .

Proof. Let u, v ∈ L2(Q). The definition of pγkh(u) is tested with zγkh := S′γkh(u)v to obtain
(
j′T (Sγkh(u)(T )), zγkh(T )

)
H +

(
j′v(Sγkh(u)), zγkh

)
L2(Q)

= Bk(zγkh, pγkh(u)) +
([
βγ
′(Sγkh(u)−Ψ) + f ′(Sγkh(u))

]
pγkh(u), zγkh

)
L2(Q) .

Using the definition of zγkh = S′γkh(u)v by Theorem 4.44 yields that the last line is equal to

(pγkh(u), v)L2(Q) .

Combining Theorem 5.9 and Lemma 5.10 immediately yields
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Corollary 5.11 Each locally optimal control ūγkh of the reduced problem

min
u∈Uad

J(Sγkh(u), u) = J(Sγkh(ūγkh), ūγkh)

satisfies

(pγkh(ūγkh) + αgūγkh, u− ūγkh)L2(Q) ≥ 0 ∀u ∈ Uad.

Here “locally” has to be understood in the L2(Q)-sense.

Definition 5.12 Given an optimal solution (ȳγkh, ūγkh) to (SOCγkh) we define p̄γkh :=
pγkh(ūγkh). We call (ūγkh, ȳγkh, p̄γkh) an optimal triple.

5.1.4 Convergence of Adjoints and Multipliers

We now discuss how taking the limit (γ, k, h) → 0 relates to the analogous discussion for
γ → 0 in Section 3.4.

Lemma 5.13 The Ritz projection Rh : V → Vh satisfies

‖Rhu− u‖H ≤ C‖u‖V h ∀u ∈ V.

The constant C > 0 does not depend on h or u.

Proof. This is a standard result and is implied by [BS08, Theorem (5.7.6)]. The prerequisites
are clearly satisfied because we have V = H1

0 (Ω), with Ω being smooth, and the results from
Section 4.1.3.

We now discuss how the adjoints and the multipliers converge. Throughout Section 5.1.4 let
(ūγkh, ȳγkh, p̄γkh) be an globally optimal triple to (SOCγkh) for (γ, k, h) > 0. We start with
some abstract, preparatory propositions.

Proposition 5.14 For n ∈ N let vn ∈ X0,1
kn,hn

, here (γn, kn, hn) is the chosen sequence from
the beginning of this chapter. The sequence (vn)n∈N shall converge to a v ∈ C(Ī , H)∩L2(I, V )
weakly in L2(I, V ) and strongly in L∞(I,H). Then we have

Bk(vn, IknRhnϕ) n→∞−−−→ aI(v, ϕ) + (v(T ), ϕ(T ))H − (v, ∂tϕ)L2(I,H) ∀ϕ ∈ H1(I, V ).

Proof. Let ϕ ∈ H1(I, V ) be fixed. We first note that

‖Ikϕ− ϕ‖2L2(I,V ) =
M∑
m=1
‖ϕ(tm)− ϕ(·)‖2L2(Im,V ) =

M∑
m=1

∫ tm

tm−1

∥∥∥∥∫ tm

t
∂tϕ(s) ds

∥∥∥∥2

V
dt

≤
M∑
m=1

∫ tm

tm−1

(∫ tm

t
‖∂tϕ(s)‖V ds

)2
dt

≤
M∑
m=1

km

(∫ tm

tm−1
‖∂tϕ(s)‖V ds

)2

≤
M∑
m=1

k2
m

∫ tm

tm−1
‖∂tϕ(s)‖2V ds dt ≤ k2‖∂tϕ‖2L2(I,V ).
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Thus Ikϕ
k→0−−−→ ϕ in L2(I, V ). By aI(vn, IknRhnϕ) = aI(vn, RhnIknϕ) = aI(vn, Iknϕ) it

follows that

|aI(vn, IknRhnϕ)− aI(v, ϕ)| ≤ |aI(vn, Iknϕ− ϕ)|+ |aI(vn − v, ϕ)|
≤ C‖vn‖L2(I,V )‖Iknϕ− ϕ‖L2(I,V ) + |aI(vn − v, ϕ)|.

By the weak convergence of (vn)n∈N in L2(I, V ) and the strong convergence of (Iknϕ)n∈N in
L2(I, V ) we find

|aI(vn, IknRhnϕ)− aI(v, ϕ)| n→∞−−−→ 0. (5.6)

Furthermore, we have

−
M−1∑
m=1

(
vn(t−m), [IknRhnϕ]m

)
H + (vn(T ), IknRhnϕ(T ))H

= −
M−1∑
m=1

(v(t−m), IknRhnϕ(t+m)− IknRhnϕ(t−m))H + (vn(T ), IknRhnϕ(T ))H

= −
M−1∑
m=1

(v(t−m), Rhnϕ(tm+1)−Rhnϕ(tm))H + (vn(T ), Rhnϕ(T ))H .

Lemma 5.13 gives us

‖Rhnϕ(T )− ϕ(T )‖H ≤ Chn‖ϕ(T )‖V ≤ Chn‖ϕ‖H1(I,V )
n→∞−−−→ 0. (5.7)

We now treat the jump terms:∣∣∣∣∣
M−1∑
m=1

(v(t−m), Rhnϕ(tm+1)−Rhnϕ(tm))H − (v, ∂tϕ)L2((0,t1),H)

∣∣∣∣∣
=
∣∣∣∣∣
M−1∑
m=1

∫ tm+1

tm
(vn(s), ∂t(Rhnϕ)(s))H − (v(s), ∂tϕ(s))H ds

∣∣∣∣∣
≤

M−1∑
m=1

∫ tm+1

tm
|(vn(s)− v(s), ∂t(Rhnϕ)(s))H |+ |(v(s), ∂t(Rhnϕ)(s)− ∂tϕ(s))H | ds

≤ ‖vn − v‖L∞(I,H)‖∂t(Rhϕ)‖L1(I,H) + ‖v‖L∞(I,H)‖∂t(Rhnϕ)− ∂tϕ‖L1(I,H).

By Proposition 8.12 we have almost everywhere in I that ∂tRhϕ = Rh∂tϕ. Lemma 5.13
implies almost everywhere in I that

‖∂tRhnϕ− ∂tϕ‖H = ‖Rhn∂tϕ− ∂tϕ‖H ≤ Chn‖∂tϕ‖V .

Thus we have shown∣∣∣∣∣
M−1∑
m=1

(vn(t−m), Rhnϕ(t+m)−Rhnϕ(t+m−1))H − (v, ∂tϕ)L2((t1,T ),H)

∣∣∣∣∣
≤ C

(
‖vn − v‖L∞(I,H)‖∂t(Rhϕ)‖L1(I,H) + h‖∂tϕ‖V

)
.

Using Proposition 8.12 again and recalling that ϕ is fixed we deduce:∣∣∣∣∣
M−1∑
m=1

(vn(t−m), Rhnϕ(t+m)−Rhnϕ(t+m−1))H − (v, ∂tϕ)L2((t1,T ),H)

∣∣∣∣∣
≤ C

(
‖vn − v‖L∞(I,H) + h

)
.

(5.8)
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It remains to show that

|(v, ∂tϕ)L2((0,t1),H)|
n→∞−−−→ 0. (5.9)

This follows from the theorem of dominated convergence, e.g. [BK15, Proposition 5.4]:

|(v, ∂tϕ)L2((0,t1),H)| ≤
∫ T

0
‖v(s)‖H‖∂tϕ(s)‖H · 1(0,t1) ds ≤ ‖v‖L2(I,H)‖ϕ‖L2(I,H)

which is independent of t1. Thus the theorem of dominated convergence is applicable and
yields

lim
n→∞

∫ T

0
‖v(s)‖H‖∂tϕ(s)‖H · 1(0,t1) ds =

∫ T

0
lim
n→∞

‖v(s)‖H‖∂tϕ(s)‖H · 1(0,t1) ds = 0

as t1 → T for n → ∞. Hence, this implies (5.9). Combining (5.6), (5.7), (5.8) and (5.9)
yields

|Bk(vn, IknRhnϕ)− aI(v, ϕ)− (v(T ), ϕ(T ))H − (v, ∂tϕ)L2(I,H)|
n→∞−−−→ 0.

Proposition 5.15 For n ∈ N let vn ∈ X0,1
kn,hn

. The sequence (vn)n∈N shall converge to a
v ∈ L2(I, V ) weakly in L2(I, V ). Let Ik : H1(I, V ) → L∞(I, V ) be the nodal interpolant in
time and Rh : V → Vh the usual Ritz projection along aΩ. Then we have

Bk(IkRhϕ, vn) n→∞−−−→ aI(v, ϕ) + (∂tϕ, v)L2(I,H) ∀ϕ ∈ H1(I, V ) ∩W0(I).

Proof. Let ϕ ∈ H1(I, V ) ∩W0(I) be fixed.

As in the proof of (5.6) in the previous Proposition 5.14 we find

aI(IknRhnϕ, vn) = aI(vn, Iknϕ) n→∞−−−→ aI(v, ϕ).

Furthermore, it holds

M∑
m=2

(
[IkRhϕ]m−1, vn(t+m−1)

)
H

=
M∑
m=2

(
IkRhϕ(t+m−1)− IkRhϕ(t−m−1), vn(t+m−1)

)
H

=
M∑
m=2

(
Rhϕ(tm)−Rhϕ(tm−1), vn(t+m−1)

)
H
.

We now treat the jump terms once again:

M∑
m=2

(
IkRhϕ(t+m−1)− IkRhϕ(t−m−1), vn(t+m−1)

)
H
− (∂tϕ, v)L2((0,tM−1),H)

=
M∑
m=2

∫ tm

tm−1

(
∂t(Rhnϕ)(s), vn(t+m−1)

)
H
− (∂tϕ(s), v(s))H ds

=
M∑
m=2

∫ tm

tm−1

(
∂t(Rhnϕ)(s), vn(t+m−1)− v(s))

)
H

+ (∂tϕ(s)− ∂t(Rhnϕ)(s), v(s))H ds

=
∫
Q
∂t(Rhnϕ)1(t1,T )(vn − v) d(t, x) +

M∑
m=2

∫ tm

tm−1
(∂tϕ(s)− ∂t(Rhnϕ)(s), v(s))H ds.

(5.10)
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The first term converges to 0, because Rhn(∂tϕ)1(t1,T ) converges strongly to ∂tϕ in L2(Q) by
Lemma 5.13 and vn n→∞−−−→ v weakly in L2(I, V ) ⊃ L2(Q).

By Proposition 8.12 we have almost everywhere in I that ∂tRhϕ = Rh∂tϕ. Thus using
Lemma 5.13 again implies almost everywhere in I:

‖∂tRhnϕ− ∂tϕ‖H = ‖Rhn∂tϕ− ∂tϕ‖H ≤ Chn‖∂tϕ‖V .

Thus the second term in (5.10) converges to 0 as well, cf. the arguments in Proposition 5.14.

The remaining part (∂tϕ, v)L2((tM−1,T ),H) converges to 0, which can be proven by the theorem
of dominated convergence as in the proof of (5.9).

Proposition 5.16 Let ϕ ∈ C(Ī , V ) ∩H1(I,H). Then we have

‖IkRhϕ− ϕ‖L2(Q) ≤ C(h‖ϕ‖L∞(I,V ) + k‖∂tϕ‖L2(Q)),
‖IkRhϕ(T )− ϕ(T )‖H ≤ Ch‖ϕ‖L∞(I,V ).

Proof. By the triangle inequality and Hölder’s inequality we immediately find

‖IkRhϕ− ϕ‖L2(Q) ≤ ‖Ik(Rhϕ− ϕ)‖L2(Q) + ‖Ikϕ− ϕ‖L2(Q)

≤ ‖Ik(Rhϕ− ϕ)‖L∞(I,H) +

 M∑
j=1

∫
Ij

‖ϕ(tj)− ϕ(t)‖2H dt

 1
2

.

By the stability of the nodal interpolant and a standard estimate for the Ritz projection, cf.
Lemma 5.13, we bound this from above by

‖IkRhϕ− ϕ‖L2(Q) ≤ ‖Rhϕ− ϕ‖L∞(I,H) +

 M∑
j=1

∫
Ij

(∫ tj

t
‖∂tϕ(s)‖H ds

)2
dt

 1
2

≤ Ch‖ϕ‖L∞(I,V ) + k
1
2

 M∑
j=1

(∫
Ij

‖∂tϕ(s)‖H ds
)2
 1

2

≤ Ch‖ϕ‖L∞(I,V ) + k

 M∑
j=1

∫
Ij

‖∂tϕ(s)‖2H ds

 1
2

.

This shows the first estimate. The second estimate follows readily from Lemma 5.13:

‖IkRhϕ(T )− ϕ(T )‖H = ‖Rhϕ(T )− ϕ(T )‖H ≤ Ch‖ϕ(T )‖V .

Theorem 5.17 There exists a subsequence of (γn, kn, hn)n∈N and a 5-tuple

(ū, ȳ, λ̄, p̄, η̄) ∈ Uad × ∩
⋂

p∈[qu,∞)
W 1,2
p (Q)× L∞(Q)× L2(I, V )×W0(I)∗

such that

• (ū, ȳ) is optimal for (OC) and a sequence of optimal solutions (ȳγnlknlhnl , ūγnlknlhnl )l∈N
to the discretized, regularized problems converges to (ȳ, ū) in the sense of Theorem 5.3,

• λ̄γnlknlhnl := −βγ(ȳγnlknlhnl − Ψ) l→∞−−−→ λ̄ weakly* in L∞(Q) such that (ū, ȳ, λ̄) satisfy
the conditions from Theorem 2.33,
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• p̄γnlknlhnl
l→∞−−−→ p̄ weakly in L2(I, V ),

• η̄γnlknlhnl := −R∗hnI
∗
kn

(βγnl (ȳγnlknlhnl − Ψ)p̄γnlknlhnl )
l→∞−−−→ η̄ weakly in (H1(I, V ) ∩

W0(I))∗. Here R∗hn is the adjoint operator taken with respect to the H-norm and I∗kn is
the adjoint operator taken with respect to the L2(Q)-norm.

The pair (p̄, η̄) satisfies for any ϕ ∈W0(I):

(p̄, ∂tϕ)L2(I,V,V ∗) + aI(p̄, ϕ) + (f ′(ȳ)p̄, ϕ)L2(Q)

=(η̄, ϕ)W0(I)∗,W0(I) + (j′v(ȳ), ϕ)L2(Q) + (j′T (ȳ(T )), ϕ(T ))H ,

Proof. The first claim follows immediately from Theorem 5.3, while the regularity of ȳ follows
from Lemma 2.38.

Since by construction, i.e. being truncated as in Remark 4.62, the λ̄γnlknlhnl are bounded
uniformly in L∞(Q), we have a subsequence converging weakly* to some λ̄ in L∞(Q).

Let us show that (ū, ȳ, λ̄) satisfy the conditions from Theorem 2.33. For v ∈ C∞c (Q) we have
by Proposition 5.14 and Proposition 5.16 and the already established convergence behaviour
that the following equality

Bk(ȳγnlknlhnl , IknRhnv) +
(
f(ȳγnlknlhnl ), IknRhnv

)
L2(Q)

=
(
λ̄γnlknlhnl + ūγnlknlhnl , IknRhnv

)
L2(Q)

converges to

−(ȳ, ∂tv)L2(Q) + aI(ȳ, v) + (f(ȳ), v)L2(Q) = (λ̄+ ū, v)L2(Q).

By the high regularity of ȳ we can use partial integration in space and time to arrive at

(∂tȳ +Aȳ + f(ȳ), v)L2(Q) = (λ̄+ ū, v)L2(Q).

By the density of C∞c (Q) in L2(Q), we conclude that the first condition of λ̄ of Theorem 2.33
is satisfied. To see the complementarity condition note that we already have, by the mono-
tonicity of βγ , that λ̄ ≥ 0. Thus by the definition of λ̄γnlknlhnl and βγ there holds

0 ≤ (λ̄, ȳ −Ψ)L2(Q) = lim
l→∞

(λ̄γnlknlhnl ,−(ȳγnlknlhnl −Ψ)−)L2(Q)

≤ lim sup
l→∞

C∞‖(ȳγnlknlhnl −Ψ)−‖L1(Q) = 0.

Testing the defining equation for p̄γnlknlhnl with p̄γnlknlhnl itself and using the ellipticity of
Bk from Lemma 4.40 yields

c‖p̄γnlknlhnl‖
2
L2(I,V ) + ‖p̄γnlknlhnl (T )‖2H

≤
(
j′v(ȳγnlknlhnl )− [βγ ′(ȳγnlknlhnl −Ψ) + f ′(ȳγnlknlhnl )]p̄γnlknlhnl , p̄γnlknlhnl

)
L2(Q)

+ (j′T (ȳγnlknlhnl (T )), p̄γnlknlhnl (T ))H
≤ ‖j′v(ȳγnlknlhnl )‖L2(I,V ∗)‖p̄γnlknlhnl‖L2(I,V ) + ‖j′T (ȳγnlknlhnl (T ))‖H‖p̄γnlknlhnl (T )‖H .

(5.11)

Here we used the monotonicity of βγ and f . Note that c > 0 does not depend on γnl ,knl or
hnl . Using Young’s inequality we arrive at

c‖p̄γnlknlhnl‖
2
L2(I,V ) + ‖p̄γnlknlhnl (T )‖2H

≤ 1
2c‖j

′
v(ȳγnlknlhnl )‖

2
L2(I,V ∗) + c

2‖p̄γnlknlhnl‖
2
L2(I,V ) + 1

2‖j
′
T (ȳγnlknlhnl (T ))‖2H + 1

2‖p̄γnlknlhnl (T )‖2H .
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Thus
c

2‖p̄γnlknlhnl‖
2
L2(I,V ) ≤

c

2‖p̄γnlknlhnl‖
2
L2(I,V ) + 1

2‖p̄γnlknlhnl (T )‖2H

≤ 1
2c‖j

′
v(ȳγnlknlhnl )‖

2
L2(I,V ∗) + 1

2‖j
′
T (ȳγnlknlhnl (T ))‖2H .

(5.12)

Taking the square root yields the desired result. By the uniform convergence of the states
the upper bound actually stays bounded and thus extracting an appropriate subsequence we
find a weak L2(I, V )-limit p̄ of (p̄γnlknlhnl )l∈N. Here, we denoted the subsequence by the same
sign.

The analysis of the (η̄γnlknlhnl )l∈N is more involved. Let ϕ ∈ H(I, V ) ∩W0(I). We have

(η̄γnlknlhnl , ϕ)L2(Q) = −(β′γnl (ȳγnlknlhnl −Ψ)p̄γnlknlhnl , IknlRknlϕ)L2(Q)

= Bk(IknlRknlϕ, p̄γnlknlhnl ) + (f ′(ȳγnlknlhnl )p̄γnlknlhnl , IknlRknlϕ)L2(Q)

− (j′v(ȳγnlknlhnl ), IknlRknlϕ)L2(Q) − (j′T (ȳγnlknlhnl (T )), IknlRknlϕ(T ))H .

By the strong convergence of the states in L∞(Q), the weak convergences of the adjoints,
Proposition 5.15 and Proposition 5.16 we conclude that the right hand side converges to

aI(ϕ, p̄) + (p̄, ∂tϕ)L2(I,H) + (f ′(ȳ)p̄, ϕ)L2(Q) − (j′v(ȳ), ϕ)L2(Q) − (j′T (ȳ(T )), ϕ(T ))H
=: (η̄, ϕ)H1(I,V )∗,H1(I,V ).

The operator η̄ is, however, not only well-defined on H1(I, V ) ∩W0(I). The expression on
the left is, in fact, continuous with respect to the W (I)-norm. Because H1(I, V ) ∩W0(I) is
dense in W0(I) by Proposition 8.13, η̄ can now be extended to an operator on W0(I) such
that

(η̄, ϕ)W0(I)∗,W0(I)

= aI(ϕ, p̄) + (p̄, ∂tϕ)L2(I,H) + (f ′(ȳ)p̄, ϕ)L2(Q) − (j′v(ȳ), ϕ)L2(Q) − (j′T (ȳ(T )), ϕ(T ))H

holds for all ϕ ∈W0(I).

Before we continue to interpret those optimality conditions, let us prove the following corol-
lary:

Corollary 5.18 The control ū and the adjoint p̄ from Theorem 5.17 satisfy

(p̄+ g′(ū), u− ū)L2(Q) ≥ 0 ∀u ∈ Uad.

Proof. This is an immediate consequence of the same inequality for the discrete solutions in
Corollary 5.11, the strong convergence of the controls in L2(Q), cf. Theorem 5.3, and the
weak convergence in L2(Q) ⊂ L2(I, V ) of the adjoints to p̄ by Theorem 5.17.

Remark 5.19 We now compare the properties we just derived, to the stationarity conditions
from Theorem 3.38, to see how our “new” multipliers from Theorem 5.17 behave, when
compared to the continuous derivation of those multipliers.

The first condition in Theorem 3.38 is clearly satisfied, as we have shown S(ū) = ȳ in the
beginning of this chapter. The second condition is actually weaker than what we obtain for
η̄ in Theorem 5.17. In fact the η̄ from Theorem 5.17 satisfies the same condition as η̄∗ from
Remark 3.30, see also Remark 3.39. The third condition is also satisfied by Corollary 5.18.
The fourth condition does not have an equivalent, since we cannot interpret η̄ as a measure
in Theorem 5.17.
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The complementarity conditions from Theorem 3.38 are not satisfied, or rather: we were
not able to prove them. The difficulty is to interpret η̄γkh as a measure by finding an
L1(Q)-bound for it. Without a L1(Q)-bound it is essentially impossible to prove the fourth
condition of Theorem 3.38, which in turn was used in Lemma 3.37 to show the fifth condition
in Theorem 3.38. To establish an L1(Q)-bound on η̄γkh or a similar multiplier might be of
interest to future research as finding L1(Q)-bounds of (partially) discretized quantities might
be related to finding L∞(Q)-bounds of discretized quantities, which is of great interest, cf.
the truncation in L∞(Q) of the multiplier in Remark 4.62 and Remark 5.21.

5.2 Implicit Time Discretization of the Controls in the
Semi-discrete Case

We will now show that, although we have just discretized the state, we automatically have a
temporal discretization of the control, at least under certain assumptions. This is important
as optimal controls of (OC) lack regularity in general. This can be seen by inspecting Corol-
lary 3.41: the control ū has the regularity of the adjoint state p̄. But the adjoint state only
solves {

−∂tp̄+Ap̄+ f ′(ȳ)p̄ = j′v(ȳ) + η̄,

p̄|ΣD = 0, p̄(T ) = j′T (ȳ(T ))

in the weak sense of Lemma 3.29. That means in general p̄ does not posses any form of useful
differentiability regularity in time.

Corollary 5.20 Assume that Uad is given by box constraints ul < uu ∈ R. Then each locally
optimal control ûγkh to (SOCγkh) satisfies

ūγkh = P[ul,uu](−α−1
g p̄γkh). (5.13)

In particular ūγkh ∈ X0
k with

‖ūγkh‖L2(I,V ) ≤ C
(
‖j′v(ȳγkh)‖L2(I,V ∗) + ‖j′T (ȳγkh(T ))‖H

)
.

C does not depend on γ, k or h.

Proof. The proof for the projection formula is the same as for Corollary 3.41 using Corol-
lary 5.11 and the structure of g(u) =

∫
Q
αg
2 u

2 d(t, x). The fact that ūγkh is piecewise constant
in time is now an consequence of the fact that projecting a function from X0,1

k,h unto constant
constraints keep it piecewise constant on the same intervalls.

By (5.13) and Proposition 8.19 the following holds for almost every t ∈ I

‖ūγkh(t)‖V ≤ α−1
g ‖p̄γkh(t)‖V

and thus

‖ūγkh‖L2(I,V ) ≤ α−1
g ‖p̄γkh‖L2(I,V ).

We already have bounded ‖p̄γkh‖L2(I,V ) by the desired quantities in (5.12).

Note that we can now state, under the assumptions of Corollary 5.20, that the following
equality is true:

min
u∈Uad

J(Sγkh(u), u) = min
u∈X0

k
∩Uad

J(Sγkh(u), u). (5.14)

144



5.3 Fully Discrete, Regularized Control Problems

Remark 5.21 Motivated by Section 3.7, the equivalence of the unbounded control problem
and the bounded control problem, one can ask the question, wether the unbounded and
bounded control problem are also equivalent in the discrete case? That means, essentially,
finding a C > 0, independent of γ, k or h, such that

‖ūγkh‖L∞(Q) ≤ C.

This bound is essential in proving the convergence rates in this section, e.g. in Theorem 5.3
and all proofs based on it. From our experience in numerical experiments this C > 0 appears
to exist, see the explanations below (7.2) in Section 7.3.1, but an actual proof would be of
great interest for future research.

Lastly, if we happen to have −αp̄γkh ∈ Uad, for all possible adjoints, Equation (5.13) delivers
ūγkh = −αp̄γkh ∈ X0,1

k,h, for all those adjoints and controls. Thus, in this case

min
u∈Uad

J(Sγkh(u), u) = min
u∈X0,1

k,h
∩Uad

J(Sγkh(u), u).

Hence, the semi-discrete problem is now equivalent to the fully discrete problem and the
controls are discretized in time and space automatically. From our experience this happens
when Uad is given by sufficiently large box constraints, see for example Section 7.3.1.

5.3 Fully Discrete, Regularized Control Problems

In this section we will finally discuss the fully discrete problem:

min
(yγkh,ukh)∈X0,1

k,h
×X0,1

k,h

jv(yγkh) + jT (yγkh(T )) + g(ukh) = J(yγkh, ukh),

s.th. Sγkh(ukh) = yγkh and ukh ∈ Uad.
(FOCγkh)

The problem (FOCγkh) is completely finite dimensional and thus accessible to computation,
cf. Chapter 6.

Theorem 5.22 The problem (FOCγkh) has at least one solution (ŷγkh, ûγkh) ∈ X0,1
k,h ×X

0,1
k,h.

Proof. The proof is basically the same as the one in the continuous case in Theorem 3.3. For
the continuity of Sγkh see Lemma 4.43.

Theorem 5.23 Each locally optimal control ûγkh of the reduced problem

min
u∈Uad∩X0,1

k,h

J(Sγkh(u), u) = J(Sγkh(ûγkh), ûγkh)

satisfies

(pγkh(ûγkh) + αgûγkh, ukh − ûγkh)L2(Q) ≥ 0 ∀ukh ∈ Uad ∩X0,1
k,h. (5.15)

Let us define p̂γkh := pγkh(ûγkh). In particular, we find

ûγkh = P
Uad∩X0,1

k,h
[−α−1

g p̂γkh].

Proof. The optimality condition follows similarly to the semi-discrete case from Theorem 5.9,
Lemma 5.10 and Corollary 5.11. The relation in (5.15) just defines ûγkh as the L2(Q)-
projection of p̂γkh on Uad ∩X0,1

k,h.
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Proposition 5.24 Let ul, uu ∈ R with ul ≤ uu and define Ũad := {v ∈ H : ul ≤ v ≤
uu a.e. in Ω}. Then there exist C > 0 such that for all h ∈ (0, 1] and all u ∈ V ∩ Ũad there
exists a uh ∈ Vh ∩ Ũad such that

‖uh − u‖V ∗ ≤ Ch2‖u‖V and ‖uh − u‖H ≤ Ch‖u‖V .

Proof. The desired result is almost just a combination of [dlRMV08, Lemmas 4.2-4.5]. In
that paper, however, the authors assume that Ωh = Ω̄, which is not the case for our smooth
domains. [dlRMV08] treats curved boundaries differently. We also consider homogenous
Dirichlet boundary conditions and therefore have to check if their ideas are applicable to our
situation.

The authors of [dlRMV08] make the following construction, which goes back to [Car99]: given
a nodal hat function ϕx̂, centered at a node x̂ ∈ Nh, they define

πx̂(u) :=
∫

supp(ϕi) uϕx̂ dx∫
supp(ϕx̂) ϕx̂ dx

and Πhu :=
∑
x̂∈Nh

πx̂(u)ϕx̂.

This does, however, not necessarily preserve boundary values. We thus consider the set of
interior nodes N int

h , i.e. those x̂ ∈ Nh such that x̂ 6∈ ∂Ωh. We define

uh :=
∑

x̂∈N int
h

πx̂(u)ϕx̂ ∈ Vh.

First of all: it easy easy to see that uh ∈ Vh∩Uad by the definition of the πx̂(u), cf. [dlRMV08,
Lemma 4.5].

[dlRMV08, Lemma 4.2] is applicable to our situation and it delivers for each x̂ ∈ Nh

‖u− πx̂(u)‖L2(supp(ϕx̂)) ≤ Ch‖∇u‖L2(supp(ϕx̂)).

We define the domain

Ω′h :=
⋃

K∈Kh,
K∩∂Ωh=∅

K.

This is the union of those cells that have positive distance to the discrete boundary. This is
where our uh and the Πhu from [dlRMV08] coincide. The proof of [dlRMV08, Lemma 4.3] is
immediately applicable to Ω′h and delivers

‖u− uh‖L2(Ω′
h

) ≤ Ch‖∇u‖L2(Ω′
h

) (5.16)

because we have ∑x̂∈Nh ϕx̂ = 1 on Ω′h, which is a key part of the proof.

The rest of the domain has to be considered as well, however. We have by [LMWZ10, Lemma
2.1]

‖u− uh‖L2(Ω\Ω′
h

) ≤ Ch‖∇(u− uh)‖L2(Ω\Ω′
h

).

This is possible because Ω \Ω′h is contained in a tube around ∂Ω with width proportional to
h, cf. the arguments in the proof of Proposition 4.18. By Proposition 4.12 we find

‖u− uh‖L2(Ω\Ω′
h

) ≤ Ch‖∇u‖L2(Ω\Ω′
h

) + C‖uh‖L2(Ωh\Ω′h) (5.17)
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Let K ∈ Kh be such that K ⊂ Ωh \ Ω′h. Then we have

‖uh‖L2(K) ≤
∑

x̂∈N inth ∩K

‖πx̂(u)ϕx̂‖L2(K) ≤
∑

x̂∈N inth ∩K

‖ϕx̂‖L2(K)|πx̂(u)|

≤
∑

x̂∈N inth ∩K

Ch
N
2

∫
supp(ϕx̂) |u|ϕx̂ dx∫

supp(ϕx̂) ϕx̂ dx

≤ Ch
N
2

∑
x̂∈N inth ∩K

‖u‖L2(supp(ϕx̂))‖ϕx̂‖L2(K)‖ϕx̂‖−1
L1(K).

By Proposition 4.12 we know that Ch−N‖ϕx̂‖L1(K) ≥ ‖ϕx̂‖L∞(K) = 1. Thus

‖uh‖L2(K) ≤ C
∑

x̂∈N inth ∩K

‖u‖L2(supp(ϕx̂)) ≤ C(N + 1)‖u‖L2(
⋃
K̃∈Kh,K̃∩K 6=∅

K̃).

Thus we find

‖uh‖2L2(Ωh\Ω′h) ≤ C
∑
K∈Kh

K∩∂Ωh 6=∅

‖u‖2
L2(
⋃
K̃∈Kh,K̃∩K 6=∅

K̃).

The cells K̃ in the unions are those cells that touch another cell K that touches a boundary.
Due to our regularity assumptions each cell has at most L neighbours, cf. [dlRMV08, Remark
3.4 in reference to Assumption 3.3], so that we can conclude

‖uh‖2L2(Ωh\Ω′h) ≤ CL
∑

K∈Kh:
∃K1∈Kh:K1∩∂Ωh 6=∅

and K∩K1 6=∅

‖u‖2L2(K) ≤ C‖u‖
2
L2({x∈Ω:dist(x,∂Ω)≤2h}).

Using [LMWZ10, Lemma 2.1] once again we find

‖uh‖L2(Ωh\Ω′h) ≤ Ch‖∇u‖L2(Ω).

Thus (5.17) delivers

‖u− uh‖L2(Ω\Ω′
h

) ≤ Ch‖∇u‖L2(Ω).

Together with (5.16) we find

‖u− uh‖L2(Ω) ≤ Ch‖∇u‖L2(Ω).

The estimate

‖u− uh‖V ∗ ≤ Ch2‖∇u‖L2(Ω)

follows now from the proof of [dlRMV08, Lemma 4.4].

Theorem 5.25 Assume Uad is given by box constraints ul < uu. Let (ŷγnknhn , ûγnknhn)n∈N be
a sequence of solutions to (FOCγkh). There exists a subsequence and a global solution (ȳ, ū)
of (OC) such that

ŷγnl ,knl ,hnl
l→∞−−−→ ȳ strongly in L∞(Q),

ŷγnl ,knl ,hnl (T ) l→∞−−−→ ȳ(T ) strongly in L∞(Ω),

ûγnl ,knl ,hnl
l→∞−−−→ ū weakly* in L∞(Q) and strongly in L2(Q).
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Proof. The proof is in line with the semi-discrete case in Theorem 5.3.

Lemma 5.26 Let (ŷγkh, ûγkh) be a global solution to (FOCγkh) and (ȳ, ū) be a global solution
to (OC). We then have

|J(ȳ, ū)− J(ŷγkh, ûγkh)| ≤ C
(
γ

1
αβ + |ln k|2|ln h|4(k + h2)

)
.

Proof. As in the proof of Theorem 5.4 we have

J(ȳ, ū)− J(ŷγkh, ûγkh) ≤ C
(
γ

1
αβ + |ln k|2|ln h|4(k + h2)

)
.

However, to see the reverse estimate we cannot simply do the same as ū 6∈ X0,1
k,h ∩ Uad. We

insert a solution ūγkh to (SOCγkh), which implies by Corollary 5.20 that ūγkh ∈ X0
k ∩ Uad,

and see

J(ŷγkh, ûγkh)− J(ȳ, ū) = J(ŷγkh, ûγkh)− J(ȳγkh, ūγkh) + J(ȳγkh, ūγkh)− J(ȳ, ū).

The last two terms are bounded by the claimed estimate via Theorem 5.4. It remains to
estimate

J(ŷγkh, ûγkh)− J(ȳγkh, ūγkh).

Thus consider ukh ∈ X0,1
k,h, where for almost every t ∈ I ukh(t) is the function obtained by

Proposition 5.24 applied to ūγkh(t). We then find

J(ŷγkh, ûγkh)− J(ȳγkh, ūγkh)
≤ J(Sγkh(ukh), ukh)− J(ȳγkh, ūγkh)
= jv(Sγkh(ukh))− jv(S(ūγkh)) + jT (Sγkh(ukh)(T ))− jT (S(ūγkh)(T )) + g(ukh)− g(ūγkh).

As in the proof of (5.5) in the proof of Theorem 5.4 it follows

jv(Sγkh(ukh))− jv(S(ū)) + jT (Sγkh(ukh)(T ))− jT (S(u)(T ))
≤ C‖Sγkh(ukh)− Sγkh(ūγkh)‖L2(Q) + ‖Sγkh(ukh)− Sγkh(ūγkh)(T )‖H .

By Lemma 4.43 and Proposition 5.24 this is bounded from above by

C‖ukh − ūγkh‖L2(I,V ∗) ≤ Ch2‖ūγkh‖L2(I,V ). (5.18)

By Corollary 5.20 this is bounded from above by

Ch2
(
‖j′v(ȳγkh)‖L2(I,V ∗) + ‖j′T (ȳγkh(T ))‖H

)
which behaves like Ch2 as ‖ȳγkh‖L∞(Q) and ‖ȳγkh(T )‖H stay bounded for (γ, k, h) → 0 by
Theorem 4.65 and the boundedness of Uad in L∞(Q), see the proof of (5.4).

It remains to estimate g(ukh) − g(ūγkh). This is straightforward using its definition, (5.18)
and the subsequent estimates

g(ukh)− g(ūγkh) = α

∫
Q

(ukh + ūγkh)(ukh − ūγkh) d(t, x)

≤ ‖ukh + ūγkh‖L2(I,V )‖ukh − ūγkh‖L2(I,V ∗) ≤ Ch2.

This concludes the proof.
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Just the same way as in the semi-discrete case one can obtain Lemma 5.5 and Theorem 5.6.
We combine the result into the following theorem:

Theorem 5.27 Let (ȳ, ū) be a strict local minimum to (OC) in the sense of Lemma 5.5.
Then there exists a sequence of local solutions (ŷγnknhn , ûγnknhn)n∈N to (FOCγkh) converging
to (ȳ, ū) in the sense of Theorem 5.25. They satisfy

|J(ȳ, ū)− J(ŷγnknhn , ûγnknhn)| ≤ C(γ
1
αβ
n + |ln kn|2|ln hn|4(kn + h2

n) + hn).

Lastly we obtain the analogoue of Theorem 5.7 by the same proof:

Theorem 5.28 Let (ȳ, ū) be a local solution to (OC) such that a local quadratic growth
condition of the form of Theorem 3.57 holds, i.e. there are r, δ > 0 such that

‖u− ū‖L2(Ω) < r =⇒ J(S(u), u) ≥ J(ȳ, ū) + δ‖u− ū‖2L2(Ω).

Let (ŷγnknhn , ûγnknhn) be the sequence of local solutions to (SOCγkh) that converges to (ȳ, ū)
by Theorem 5.27. Then we have, for n so large that ‖ûγnknhn − ū‖L2(Q) < r,

‖ûγnknhn − ū‖L2(Q) ≤ C

√
γ

1
αβ
n + |ln kn|2|ln hn|4(kn + h2

n),

‖ŷγnknhn − ȳ‖L∞(I,H) ≤ C

√
γ

1
αβ
n + |ln kn|2|ln hn|4(kn + h2

n).

We decided to skip an in depth discussion of the convergence of multipliers as in Section 5.1.4
as we already saw in Section 5.1.4 that it is difficult to derive a stronger stationarity system
than Theorem 3.38 using discrete quantities, cf. Remark 5.19.
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6 Solution Algorithms for Discretized,
Regularized Obstacle Problems and Optimal
Control Problems

We only shortly present the algorithms used to solve (Rγkh) and (FOCγkh). We will essentially
use a semi-smooth Newton method to solve the regularized, discretized obstacle problem and
a Newton method or a trust region method to solve the optimization problem. We then
combine those two with a pathfollowing method for the regularization parameter. The focus
in this thesis does not lie on the algorithms and their theory. Hence, the following introduction
will be short and not focused on theoretical results.

For more extensive discussions on how to solve obstacle problems and related variational
inequalities we would like to direct the reader to [IK90, IK03, KKT03], where elliptic vari-
ational inequalities are solved using Lagrangian methods, in conjunction with semi-smooth
Newton methods and active set strategies. A similar approach using Lagrange multipliers on
parabolic variational inequalities is used in [IK06].

The solution of optimal control problems with elliptic variational inequalities are discussed
in [IK00] by the means of Lagrange multipliers and active set strategies. The same type of
problem is considered in [KW12a] where the Moreau-Yosida regularization and a semi-smooth
Newton method in conjunction with a pathfollowing method is used.

6.1 Solving Regularized, Discretized Obstacle Problems

6.1.1 An Implicit Euler Scheme

It is well-known, or at least easily provable, that a discontinuous Galerkin method as intro-
duced in Definition 4.41 is equivalent to an implicit Euler scheme in the finite dimensional
space Vh, see also the proof of Lemma 4.51. That means that the equation in V ∗h in (Rγkh)
is equivalent to the system of equations
y1
γkh = y0 ∈ Vh,

yj+1
γkh = kj+1(−Ahyj+1

γkh + uj+1 − f(yj+1
γkh)− βγ(yj+1

γkh −Ψ)) + yjγkh ∈ V
∗
h for j = 0, . . . ,M − 1.

Here yjγkh := yγkh(t+j ). Thus we have to solve M − 1 non-linear equations in the finite
dimensional spaces Vh, V ∗h . For each j we determine yj+1

γkh by solving the equation given by
the previous iterate yjγkh. We solve the system

yj+1
γkh + kj+1Ahy

j+1
γkh + kj+1f(yj+1

γkh) + kj+1βγ(yj+1
γkh −Ψ) = yjγkh + kj+1u

j+1

by a semi-smooth Newton method as for example presented in [Ulb11, Chapter 3]. Note that
all βγ-terms of the form of Proposition 2.17 are semi-smooth of order 1, according to [Ulb11,
Definition 2.13]. The proof is immediate and thus skipped. To solve the appearing linear
systems a multigrid solver with an ILU decomposition as smoother is used, see for example
[BB00].
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Remark 6.1 It is well-known that Newton’s method for finding a root of F : Rn → R converges
locally quadratic if its derivative F ′ is Lipschitz continuous, see for example [UU12]. There
can also be seen that the constant in the local error estimates is proportional to the Lipschitz
constant of F ′. In our case we can clearly see that the derivative of

F : Vh → V ∗h ,

yh 7→ yh + kj+1Ahyh + kj+1f(yh) + βγ(yh −Ψ)− yjγkh + kj+1u
j+1

is proportional to γ−1 due to the presence of βγ . This means that the smaller γ, i.e. the
more non-linear the F , the worse the convergence behaviour of the Newton’s method will be.
This is not surprising, but of course unfortunate for us as we of course intend to decrease γ
to 0. This cannot be compensated, but one has to keep in mind the errors caused by (k, h).
By Theorem 4.65 we have, under appropriate circumstances,

‖y − yγkh‖L∞(Q) ≤ C(γ
1
α + | ln k|2| ln h|4(k + h2)).

Thus choosing γ � (k + h2)α, ignoring the log-terms, has no benefit to the approximation
error. Therefore balancing the errors caused by (γ, k, h) might make “larger” γ relatively
“unproblematic”. Another strategy is a pathfollowing method proposed in Section 6.3.2.

6.1.2 Quadrature Errors in the Numerical Solution of Semilinear Equations

In Section 4.4.2, in particular Theorem 4.61 and Theorem 4.64, we have shown that the
Galerkin approximation of a semilinear parabolic equation satisfies an a priori error estimate
that is independent of the involved non-linearity. Yet, the numerical intergration of the non-
linear term poses certain challenges that could interfere with those estimates. Illustratively
we consider the following PDE, with zero initial and boundary conditions:

∂ty +Ay + βγ(y + 1) = u

for βγ being of the form Proposition 2.17 for α = 1. This means the obstacle is constant and
equal to −1. We also recall its Galerkin approximation

B(ykh, ϕkh) + (βγ(ykh −Ψ), ϕkh)L2(Q) = (u, ϕkh)L2(Q) ∀ϕkh ∈ X0,1
k,h.

To compute the solution of this equation we need to evaluate

(βγ(ykh −Ψ), ϕx̂i)L2(Im,Ω) =
∑
T∈T

km (βγ(ykh|Im −Ψ), ϕx̂i)L2(K)

for the nodal basis functions ϕx̂i and each time interval Im for m ∈ {1, . . . ,M}. Note that
the portion Ω \ Ωh can be ignored since ykh and ϕx̂i vanish there.

If we have ykh|Im ≥ Ψ on K, i.e. the discrete state is locally admissible, we have

(βγ(ykh|Im −Ψ), ϕx̂i)L2(K) = 0.

This integral is very easy to compute numerically.

The other simple case is that ykh|Im < Ψ on K. Then we have

(βγ(ykh|Im −Ψ), ϕx̂i)L2(K) = 1
γ

(ykh|Im −Ψ, ϕx̂i)L2(K) .

Due to the smoothness of Ψ and the simple structures of ykh and ϕx̂i this is integrable up to
a high order error or, in the case Ψ = −1, even exactly. Thus causing no quadrature error.
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6.1 Solving Regularized, Discretized Obstacle Problems

The highest complexity arises when K intersects the boundary of the discrete, regularized
active set. Then we have that βγ is no longer linear on the set (ykh −Ψ)(K), since

βγ(ykh|Im −Ψ) =
{ 1
γ (ykh|Im −Ψ) if ykh|Im −Ψ < 0,
0 if ykh|Im −Ψ ≥ 0.

This is a non-smooth term. Thus usual quadrature strategies can potentially cause a signifi-
cant error.

There are ways in which we mitigate this effect. Firstly, under many circumstances the
boundary of the active set is a N − 1-dimensional set. Thus by all the convergences one can
expect that the regularized, active boundary ∂{ykh = Ψ} behaves similarly. Thus we expect
that ∂{ykh = Ψ} intersects a number of elements proportional to h−N+1. The quadrature
error for any quadrature rule based on point evaluations is bounded from above like this:∣∣∣(βγ(ykh|Im −Ψ), ϕx̂i)L2(Ω) − (βγ(ykh|Im −Ψ), ϕx̂i)L2(Ω),quad

∣∣∣
≤ C

∑
K∈Kh,

K∩∂{ykh=Ψ}6=∅

∣∣∣(βγ(ykh|Im −Ψ), ϕx̂i)L2(K) − (βγ(ykh|Im −Ψ), ϕx̂i)L2(K),quad

∣∣∣
≤ C

∑
K∈Kh,

K∩∂{ykh=Ψ}6=∅

2C∞|K| ≤ Ch−N+1C∞h
N ≤ ChC∞.

(6.1)

Here C∞ is the usual γ-independent truncation of βγ according to Remark 4.62. This,
however, is a large over estimate.

Alternatively one can make a similar argument for smooth βγ . Assume for the moment that
βγ ∈ C2(Ω), then clearly on each cell K we have βγϕx̂i for each nodal function. Then the
quadrature error for the trapezoidal rule is bounded from above by

C‖∇2(βγ(ykh|Im −Ψ)ϕx̂i)‖L∞(K)h
2

≤ C(‖∇2βγ(ykh|Im −Ψ)‖L∞(Ω) + ‖∇(ykh|Im −Ψ)βγ‖L∞(Ω)‖∇ϕx̂i‖L∞(Ω))h2.

The derivatives of βγ are proportional to 1/γ and thus the global quadrature error is then
of order O(γ−1h2h−N+1h

N
2 ) = O(γ−1h3−N2 ). This follows from the same calculations as in

(6.1). So, if one keeps γ fixed, or for a sequence on experiments at least bounded from below,
this gives a rate of O(h2) for N = 2.

Secondly, we do use a quadrature formula on a finer mesh than than the one used for Ωh. In
our examples we subdivide each cell into 16 subcells on which we integrate βγ(ykh|Im−Ψ)·ϕx̂i .
This makes the error relatively small by essentially reducing the constants appearing in the
given estimates.

Lastly, in our experiments we do observe not any influence of γ in the discussed regard
anyway, see the experiments in Section 7.1.

6.2 Second Order Fréchet derivatives for the Solution Operators
of Regularized Obstacle Problems

The purpose of this section is to compile some second order differentiability information on
Sγ , as we plan to use a semi-smooth Newton method. The arguments are mostly standard,
except where the non-differentiability of βγ at 0 comes into play. For this reason we give a
self-contained proof in this situation. For the fully smooth situation one can consult standard
text books, for example [Trö09].
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Theorem 6.2 Assume that βγ and f(t, x, ·) are in C1,1
loc (R) for any (t, x) ∈ Q. Here the

Lipschitz constants of f(t, x, ·) and f ′(t, x, ·) may not depend on (t, x) ∈ Q. Then

S′′γ : Lqu(Q)→ Lin(Lqu(Q),W (I) ∩ CκI (I, CκΩ(Ω)))

is locally Lipschitz continuous.

Proof. As βγ and f have the same behaviour, we integrate βγ into f for the purposes of
this proof. Let u, d, v ∈ Lqu(Q) and define w := Sγ

′(u)v, wd := Sγ
′(u + d)v. We have to

show ‖wd−w‖W (I)∩CκI (I,CκΩ (Ω)) ≤ C‖v‖Lqu (Q)‖d‖Lqu (Q) for sufficiently small d. We see that
δw := wd − w solves{

∂tδw +Aδw + f ′(Sγ(u+ h))wd − f ′(Sγ(u))w = 0,
δw(0) = 0, δw|ΣD = 0.

Rearranging this equation shows

∂tδw +Aδw + f ′(Sγ(u))δw = [f ′(Sγ(u))− f ′(Sγ(u+ d))]wd.

Theorem 8.17 and the local Lipschitz continuity of f entail

‖δw‖W (I)∩CκI (I,CκΩ (Ω)) ≤ ‖[f ′(Sγ(u))− f ′(Sγ(u+ d))]wd‖Lqu (Q)

≤ C‖Sγ(u)− Sγ(u+ d)‖L∞(Q)‖wd‖Lqu (Q).

Here C > 0 depends on an upper bound to ‖Sγ(u)‖L∞(Q) and ‖Sγ(u + d)‖L∞(Q). By the
Lipschitz continuity from Theorem 8.22 we can conclude

‖δw‖W (I)∩CκI (I,CκΩ (Ω)) ≤ C‖d‖Lqu (Q)‖v‖Lqu (Q)

with a C > 0 depending on a upper bound to ‖u‖L∞(Q) and ‖d‖L∞(Q). This shows the local
Lipschitz continuity.

Theorem 6.3 Assume f(t, x, ·) ∈ C2,1
loc (R) for any (t, x) ∈ Q, with derivatives being bounded

independently of (t, x). The Lipschitz constant of f ′′(t, x, ·) may also not depend on (t, x).
Let βγ be of the form Proposition 2.17 for α = 2 and assume γ to be sufficiently small. Then

Sγ
′ : Lqu(Q)→ Lin(Lqu(Q),W (I) ∩ CκI (I, CκΩ(Ω)))

is Fréchet differentiable in each u such that {Sγ(u) = Ψ} is of Lebesgue measure 0. For
u, d1, d2 ∈ Lqu(Q) the derivative Sγ ′′(u)[d1, d2] =: z satisfies

∂tz +Az + f ′(Sγ(u))z + βγ
′(Sγ(u)−Ψ)z

= −f ′′(Sγ(u))[Sγ ′(u)d1 Sγ
′(u)d2]− βγ ′′(Sγ(u)−Ψ)[Sγ ′(u)d1 Sγ

′(u)d2]
z(0) = 0, z|ΣD = 0.

Remark 6.4 The assumption that γ is small may seem counterintuitive, but is basically only
done to avoid multiple case distinctions. It is possible to prove more general results, but this
would not enhance our understanding of the appearing equations any further.

Proof. Note that we drop γ from Sγ for the purposes of this proof to reduce visual cluttering.
We do not, in fact, prove that the unregularized operator is twice differentiable.

Let u, d1, d2 ∈ Lqu(Q). With the z from above we have to show

‖S′(u+ d1)d2 − S′(u)d2 − z‖W (I)∩CκI (I,CκΩ (Ω)) ≤ o(‖d1‖Lqu (Q))‖d2‖Lqu (Q)
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6.2 Second Order Fréchet derivatives for the Sol. Op. of the Reg. Obstacle Problem

as this is equivalent to

‖S′(u+ d1)− S′(u)− S′′(u)d1‖Lin(Lqu (Q),W (I)∩CκI (I,CκΩ (Ω))) ≤ o(‖d1‖Lqu (Q)).

Here we already presupposed the existence of S′′ in this step. The step is only illustrative
and thus this is no circular argument.

We begin by arguing that only the first two cases of the definition of βγ are relevant. For
γ sufficiently small we have by Theorem 2.37 and some trivial calculations that S(u)−Ψ ≥
−cγ

1
2 . Thus let γ be small enough that S(u) − Ψ ≥ −1

4 . Because S : Lqu(Q) → L∞(Q) is
Lipschitz continuous by Theorem 8.22 we have for ‖d1‖Lqu (Q) sufficiently small that S(u +
d1)−Ψ > −1

2 . This implies the claim with respect to the cases of βγ .

We define w1 := S′(u+ d1)d2 and w2 := S′(u)d2. They and z satisfy

(∂t +A+ f ′(S(u)) + βγ
′(S(u)−Ψ))w1 = d2 + [f ′(S(u))− f ′(S(u+ d1))

+ βγ
′(S(u)−Ψ)− βγ ′(S(u+ d1)−Ψ)]w1,

(∂t +A+ f ′(S(u)) + βγ
′(S(u)−Ψ))w2 = d2,

(∂t +A+ f ′(S(u)) + βγ
′(S(u)−Ψ))z = −f ′′(S(u))[S′(u)d1 S

′(u)d2]
− βγ ′′(S(u)−Ψ)[S′(u)d1 S

′(u)d2].

(6.2)

Defining r := w1 −w2 − z we have to show ‖r‖W (I)∩CκI (I,CκΩ (Ω)) = o(‖d1‖Lqu (Q))‖d2‖Lqu (Q).
Adding and subtracting the equations in (6.2) and using Theorem 8.17 we see that

‖r‖W (I)∩CκI (I,CκΩ (Ω))

≤ C‖[f ′(S(u))− f ′(S(u+ d1)) + βγ
′(S(u)−Ψ)− βγ ′(S(u+ d1)−Ψ)]w1

+ f ′′(S(u))[S′(u)d1, S
′(u)d2] + βγ

′′(S(u)−Ψ)[S′(u)d1, S
′(u)d2]‖Lqu (Q)

≤ C‖[f ′(S(u+ d1))w1 − f ′(S(u))w1 − f ′′(S(u))[S′(u)d1, S
′(u)d2]‖Lqu (Q)

+ C‖βγ ′(S(u+ d1)−Ψ)w1 − βγ ′(S(u)−Ψ)w1 − βγ ′′(S(u)−Ψ)[S′(u)d1, S
′(u)d2]‖Lqu (Q).

(6.3)

The terms involving f are treated similarly to the terms with βγ . We thus only analyse
the terms involving βγ . We have the following estimates by integration and the triangle
inequality:

‖βγ ′(S(u+ d1)−Ψ)w1 − βγ ′(S(u)−Ψ)w1 − βγ ′′(S(u)−Ψ)[S′(u)d1, S
′(u)d2]‖Lqu (Q)

≤
∥∥∥∥∫ 1

0
βγ
′′(S(u+ d1)−Ψ + s(S(u)− S(u+ d1))) ds·

· [(S(u)− S(u+ d1))w1 − S′(u)d1, S
′(u)d2]‖Lqu (Q)

+
∥∥∥∥∫ 1

0
βγ
′′(S(u+ d1)−Ψ + s(S(u)− S(u+ d1)))− βγ ′′(S(u)−Ψ) ds·

·[S′(u)d1, S
′(u)d2]

∥∥
Lqu (Q) .

(6.4)

Using basic Hölder estimates we bound this from above by

2
γ
‖(S(u)− S(u+ d1))w1 − S′(u)d1S

′(u)d2‖Lqu (Q)

+
∫ 1

0
‖βγ ′′(S(u+ d1)−Ψ + s(S(u)− S(u+ d1)))− βγ ′′(S(u)−Ψ)‖Lqu (Q) ds

· ‖S′(u)d1‖L∞(Q)‖S′(u)d2‖L∞(Q).

(6.5)
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Recalling w1 = S′(u+ d1)d2 and the Fréchet differentiability of S, cf. Theorem 3.11, the first
term in (6.5) is bounded by

C

γ
(‖(S(u)− S(u+ d1)− S′(u)d1)w1‖Lqu (Q) + ‖S′(u)d1(S′(u+ d1)d2 − S′(u)d2)‖Lqu (Q))

≤ C

γ
(o(‖d1‖Lqu (Q))‖S′(u+ d1)d2 − S′(u)d2‖L∞(Q) + o(‖d1‖Lqu (Q))‖S′(u)d2‖L∞(Q)

+ ‖S′(u)d1‖L∞(Q)‖S′(u+ d1)d2 − S′(u)d2‖Lqu (Q))

By the Lipschitz continuity of S from Theorem 6.2 and Theorem 8.17 we have that for
sufficiently small d1, independent of d2, this is bounded from above by

C

γ
(o(‖d1‖Lqu (Q))(‖d1‖Lqu (Q) + 1)‖d2‖Lqu (Q) + ‖d1‖2Lqu (Q)‖d2‖Lqu (Q))

= C

γ
o(‖d1‖Lqu (Q))‖d2‖Lqu (Q).

(6.6)

The second term in (6.5) is treated similarly as in Theorem 3.13. Let ε > 0. By the Lipschitz
continuity of S : Lqu(Q)→ L∞(Q) from Theorem 8.22 we have for d1 sufficiently small that
|S(u)−Ψ| > ε implies |S(u+d1)−Ψ| > ε

2 , cf. the arguments above (6.2). Thus S(u)−Ψ and
S(u+ d1)−Ψ share the same sign on {|S(u)−Ψ| > ε}. By the form of the second derivative
of βγ ′′ and Theorem 8.17 the second term of (6.5) is thus bounded from above by

C

γ
‖1‖Lqu ({|S(u)−Ψ|≤ε})‖d1‖Lqu (Q)‖d2‖Lqu (Q) = C

γ
|{|S(u)−Ψ| ≤ ε}|

1
qu ‖d1‖Lqu (Q)‖d2‖Lqu (Q).

This and (6.6) inserted into (6.4) thus yields

‖βγ ′(S(u+ d1)−Ψ)w1 − βγ ′(S(u)−Ψ)w1 − βγ ′′(S(u)−Ψ)[S′(u)d1 S
′(u)d2]‖Lqu (Q)

≤ C

γ

(
o(‖d1‖Lqu (Q))‖d2‖Lqu (Q) + |{|S(u)−Ψ| ≤ ε}|

1
qu ‖d1‖Lqu (Q)‖d2‖Lqu (Q)

)
.

As f ′′ is locally Lipschitz continuous in the third component the same arguments yield

‖[f ′(S(u+ d1))w1 − f ′(S(u))w1 − f ′′(S(u))[S′(u)d1 S
′(u)d2]‖Lqu (Q)

≤ o(‖d1‖Lqu (Q))‖d2‖Lqu (Q).

Thus by (6.3) we find

‖r‖W (I)∩CκI (I,CκΩ (Ω))
‖d1‖Lqu (Q)‖d2‖Lqu (Q)

≤ C

γ

(
o(‖d1‖Lqu (Q))
‖d1‖Lqu (Q)

+ |{|S(u)−Ψ| ≤ ε}|
1
qu

)

and can conclude

lim sup
‖d1‖Lqu (Q)→0

‖r‖W (I)∩CκI (I,CκΩ (Ω))
‖d1‖Lqu (Q)‖d2‖Lqu (Q)

≤ |{|S(u)−Ψ| ≤ ε}|
1
qu .

As ε > 0 was arbitrary, we can send it to 0 and see that

lim sup
‖d1‖Lqu (Q)→0

‖r‖W (I)∩CκI (I,CκΩ (Ω))
‖d1‖Lqu (Q)‖d2‖Lqu (Q)

≤ |{S(u) = Ψ}|
1
qu .

By assumption the right hand side is 0, concluding the proof.
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For the case that one would consider a smooth βγ the differentiability can obviously also be
obtained. Remark 6.4 applies here as well.

Theorem 6.5 Assume f(t, x, ·) ∈ C2,1
loc (R) for any (t, x) ∈ Q, with derivatives being bounded

independently of (t, x). The Lipschitz constant of f ′′(t, x, ·) may also not depend on (t, x). Let
βγ be of the form from Proposition 2.17 for α > 2 and γ sufficiently small or βγ ∈ C2,1

loc (R).
Then

S′γ : Lqu(Q)→ Lin(Lqu(Q),W (I) ∩ CκI (I, CκΩ(Ω)))

is Fréchet differentiable. For u, d1, d2 ∈ Lqu(Q) the derivative S′′(u)[d1, d2] =: z satisfies
∂tz +Az + f ′(S(u))z + βγ

′(S(u)−Ψ)z
= −f ′′(S(u))[S′(u)d1 S

′(u)d2]− βγ ′′(S(u)−Ψ)[S′(u)d1 S
′(u)d2]

z(0) = 0, z|Σ = 0.

Proof. If βγ is of the form from Proposition 2.17 for α > 2 we have by the same arguments
from the previous theorem, that only the first two cases in βγ are active. Thus in either
case we basically have βγ ∈ C2,1

loc (R). Thus retracing the steps of the previous theorem or a
standard text book, e.g. [Trö09], yield the desired result.

6.3 Solving Regularized, Fully Discretized Optimal Control
Problems

6.3.1 Newton’s Method

We solve the fully discretized optimal control problem given by (FOCγkh). It is a finite
dimensional optimization problem and thus its solution is relatively straight forward. Let us
assume that βγ is smooth, i.e. at least in C1,1(R), so that Theorem 4.44 applies and Sγkh is
differentiable. Considering the same strategies used for Sγ in Section 6.2 we can obtain the
following theorem analogous to Theorem 6.3:

Theorem 6.6 Assume f(t, x, ·) ∈ C2,1
loc (R) for any (t, x) ∈ Q, with derivatives being bounded

independently of (t, x). Let βγ be of the form Proposition 2.17 for α = 2 and assume (γ, k, h)
to be sufficiently small. Then

S′γkh : Lqu(Q)→ Lin(Lqu(Q), X0,1
k,h)

is Fréchet differentiable in each u such that {Sγkh(u) = Ψ} is of Lebesgue measure 0. For
u, d1, d2 ∈ Lqu(Q) the derivative S′′γkh(u)[d1, d2] =: z satisfies

B(z, ϕkh) + (f ′(Sγkh(u))z + βγ
′(Sγkh(u)−Ψ)z, ϕkh)L2(Q)

= (−f ′′(S(u))[S′γkh(u)d1, S
′
γkh(u)d2]− βγ ′′(Sγkh(u)−Ψ)[S′γkh(u)d1, S

′
γkh(u)d2])L2(Q)

for any ϕkh ∈ X0,1
k,h.

One could also prove the corresponding variant of Theorem 6.5. We leave this out as we only
actively use the stated version in the numerical experiments.

Under the assumptions of the previous theorem, we have that that J(Sγkh(u), u) =: jγkh(u) is
smooth. Thus we can apply a Newton’s method to jγkh : X0,1

k,h → R. Note that the Lipschitz
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continuity of second derivative is responsible for the locally quadratic convergence behaviour
of the method. The derivatives of jγkh are of the form

j′γkh(u)du = Jy(Sγkh(u), u)S′γkh(u)du + Ju(Sγkh(u), u)du,
j′′γkh(u)[d1, d2] = Jyy(Sγkh(u), u)[S′γkh(u)d1, S

′
γkh(u)d2] + Jy(Sγkh(u), u)S′′γkh(u)[d1, d2]+

+ Jyu(Sγkh(u), u)[S′γkh(u)d1, d2] + Juy(Sγkh(u), u)[S′γkh(u)d2, d1]
+ Juu(Sγkh(u), u)[d1, d2].

Remark 6.7 We see that the regularities of Sγkh play a vital role in the smoothness of j′′γkh.
As in Remark 6.1 this means that smaller γ cause worse convergence behaviour of the applied
Newton method.

Note that a simple Newton’s method does not necessarily yield convergence or even admis-
sibility of the computed solution. The admissibility can be obtained by using a primal dual
active set strategy, cf. [UU12, Algorithmus 20.1] for the schematic overview in the context of
quadratic optimization. The global convergence will not be proven here, but we use a trust
region Method in conjunction with Newton’s method, which is known to have nice, global-
izing properties. The method can be found in [UU12]. Any appearing symmetric operators
are inverted using a conjugate gradient method.

6.3.2 A Pathfollowing Strategy

As stated in Remark 6.1 and Remark 6.7 small regularization parameters are adverse for
the convergence behaviour of both, the solution of the semilinear equation and the optimal
control problem itself. Thus it is advisable to use a pathfollowing strategy. We therefore first
solve (FOCγkh) for a large γ0 � 0 with an arbitrary starting control u0 ∈ Uad ∩ X0,1

k,h. We
obtain an optimal solution ūγ0kh ∈ Uad ∩ X

0,1
k,h. Then reduce γ0 by some factor ηγ ∈ (0, 1)

to obtain a γ1 < γ0. Then we solve (FOCγkh) for γ1 using ūγ0kh as the initial guess. This
should reduce the number of iterations required as ūγ0kh and ūγ1kh are expected to be very
close. Iterating this we obtain a standard pathfollowing strategy, presented in pseudo code
in Algorithm 2.

We do not give any convergence proof or any deeper results as this is not the focus of this
thesis. Considering that in each iteration one does usually not obtain ūγjkh but only an
approximation, makes it clear that this analysis is non-trivial. A really in depth discussion of
pathfollowing strategies and their convergence in the context of optimal control of state con-
strained problems, which are related to control problems with obstacle problem constraints,
cf. [CW19, CV19], can be found in [Kru14].

Algorithm 2: A simple pathfollowing strategy in the regularization parameter.
Data: γ0, γ > 0, ηγ ∈ (0, 1) such that γ0 · ηKγ = γ for some K ∈ N, u0 ∈ Uad ∩X0,1

k,h

Result: ūγkh
1 Set l = 1, γl = γ0;
2 while γl ≥ γ do
3 Solve (FOCγkh) for (γl, k, h) and the initial guess u0 and obtain ūγlkh via

Section 6.3.1; Set γl = ηγ · γl, u0 = ūγlkh;
4 end
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7 Numerical Examples

7.1 Sharpness of Convergence Rates of the Discretization of
Regularized Obstacle Problems

We consider a numerical example that indicates that the error estimate from Theorem 4.64
is indeed sharp, apart from maybe the powers in logarithmic factors. We also see that the
constant in the estimate does indeed not depend on the regularization parameter γ. We work
on the time-space cylinder Q = (0, 1) × B1(0). We have a small gap to the theory here, as
we use bilinear elements. . That means all cells K ∈ Kh are quadrilaterals that are obtained
by a bilinear transformation JT from the reference element [0, 1]2. Each vh ∈ Vh satisfies
that vh|T = ṽh ◦ JT where ṽh : [0, 1]2 → R is bilinear, see for example [Kat08, Chapter 13].
Another small gap is that all integrals and functionals are evaluated only on I × Ωh instead
of Q. Since the boundaries of ∂Ωh and ∂Ω have a distance proportional to h2, since the
assumptions of Proposition 4.6 will always be satisfied, this error is considered negligible.

As parameters for the algorithms described in the previous chapter we choose a relative
tolerance of 10−15 for the semi-smooth Newton method to solve the semilinear equations, a
global tolerance of 10−13, a dampening factor of 0.01 and a tolerance of 10−6 for the appearing
multigrid solver for the linear system.

For the actual problem we consider the bounded, but non-smooth function

u(t, x) =
{
−5 if t ≤ 0.8,
5 if t > 0.8.

Furthermore, consider the initial state y0 = 0 and the nonlinearity f = 0. A is given as the
negative Laplacian. As regularization term β we choose the one from Proposition 2.17 for
αβ = 1 and we truncate it, in the sense of Remark 4.62, liberally at −1000. We will observe
than this does not negatively influence the convergence order at all and was mainly done to
avoid slow down of the code as β has to be defined via case distinctions and having one less
case happening turned out to be positive for the computation speed. All appearing semilinear
equations are solved by a semi-smooth Newton method, cf. Section 6.1.

For all experiments in Section 7.1 we use a reference solution yrefγ ∈ X0,1
k,h as approximation

to the real solution yγ = Sγ(u). We choose yrefγ = Sγ,kref ,href (u) with href ≈ 1.2 · 10−2 and
kref ≈ 9.8 · 10−4. The parameter γ will vary throughout the experiments.

In the first experiment we send k to zero and observe the behaviour of

‖Sγ(u)− Sγkh(u)‖L∞(Q) ≈ ‖Sγ,kref ,href (u)− Sγkh(u)‖L∞(Q).

Here we choose and keep h and γ fixed. Looking at Figure 7.1 one can see that for large h the
error in h dominates, leading to a saturation behaviour. For the smaller h one can however
see that the convergence behaviour is roughly of O(k). This indicates that the error estimate
from Theorem 4.64 is indeed sharp in k and has the additive structure.
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Figure 7.1: The approximate convergence behaviour of ‖Sγ(u)−Sγkh(u)‖L∞(Q) for k → 0 for
various, fixed h and γ.

The most interesting part, however, is the fact that even for different γ the curves overlap
quite heavily. That means γ does not play a part in the the L∞(Q)-finite element error,
exactly as predicted in Theorem 4.64.

In the second experiment we now keep k fixed and send h to zero and observe the error
behaviour again. Looking at Figure 7.2 one can see a similar, but more pronounced error
saturation as before. Indeed only for the smallest k = kref an unobstructed convergence
order of roughly O(h2) be observed. This is due to the fact that the linear convergence in k
causes a much greater error in the time discretization than in the spatial discretization.

Once again, even for different γ the curves overlap quite heavily. That means γ does not play
a part in the convergence behaviour of the L∞(Q)-estimate.
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Figure 7.2: The approximate convergence behaviour of ‖Sγ(u)−Sγkh(u)‖L∞(Q) for h→ 0 for
various, fixed k and γ.

7.2 Sharpness of the Regularization Error Estimate of Regularized
Obstacle Problems

We consider the same quantities as in Section 7.1, except we use different parameters. Here
yref = Sγref ,kref ,href (u) with γref = 10−4, href ≈ 6.14 · 10−3 and kref ≈ 4.88 · 10−4. We
compute the error ‖Sγkh(u)−yref‖L∞(Q) ≈ ‖Sγkh(u)−S(u)‖L∞(Q) for various, fixed k, h and
send γ to 0 and observe the convergence behaviour.

In Figure 7.3 one can see that for small h and k the error in γ dominates in a linear fashion.
Showing that Theorem 2.37 is a sharp estimate. One can also clearly see that the error in k
is the dominant error, as the curves + and ∗ are very close, yet the h varies by a factor of
≈ 4 between the two curves.
Remark 7.1 [Noc88] also argues for sharpness of the regularization error in the elliptic case,
by explicitly stating an example, see [Noc88, Remark 2.2].
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Figure 7.3: The approximate convergence behaviour of ‖S(u)− Sγkh(u)‖L∞(Q) for γ → 0 for
various, fixed k, h.

7.3 An Optimal Control Example with Exact Solution

7.3.1 Construction of the Example

In this section we consider an example where the exact solution is known. We are mostly
interested in analysing how sharp the estimates from Theorem 5.28 for the controls are. In
the context of state constrained problems, which are related to the optimization of obstacle
problems, see [CW19, CV19], it is well-known that the states can exhibit better convergence
rates, even though the predicted rates are worse, cf. [MRV11, the end of Section 8].

The following construction is inspired by the example in [CV19]. We work with quadratic
cost functionals, specifically

J(y, u) = 1
2‖y − yQ‖

2
L2(Q) + 10−3

2 ‖u‖2L2(Q).

We will heavily use rotational symmetry. To that end we define Ω := B1(0), I := [0, 1],

g : [0, π]→ R,

r 7→ cos(r)−
(

1− 1
2r

2
)
− 3

16π2 r
4 +

(
2− 5

16π
2
)

= cos(r) +
(

1− 5
16π

2
)

+ 1
2r

2 − 3
16π2 r

4

(7.1)

and

ϕ : [0, 1]→ R,

t 7→


48t2 − 128t3 if t ≤ 0.25
1 if 0.25 < t < 0.75
48(1− t)2 + 128(1− t)3 if 0.75 ≤ t.
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Using those two functions we define the rotationally symmetric state on Q

ȳ(t, x) = ϕ(t)g(π|x|).

We will choose the control such that there is no multiplier λ̄, i.e.

ū(t, x) := (∂t −∆)ȳ(t, x) = ϕ′(t)g(π|x|)− ϕ(t)∆(g(π|x|)). (7.2)

By some basic, but tedious calculations, see Proposition 8.7, we see that ‖ū‖L∞(Q) ≤ 60.
This is a strong over estimate, yet, we choose Uad to be given by box constraints [−70, 70].
The reason we do this, is that we can now avoid the usage of a primal-dual active set strategy
and essentially solve an unbounded problem as it turns out that all computed, regularized
and discretized controls, happen to lie comfortably in [−70, 70] for any point in space-time,
even without this additional strategy. This yields increased performance of the code. In the
computed example the control for the “roughest” approximation, i.e. γ = 1, k ≈ 1.6 · 10−2

and h ≈ 7.7 · 10−1, lie in [−47.7, 22.7]. An approximation for γ = 10−5, k ≈ 2.0 · 10−3,
h ≈ 4.9 · 10−2, however, lies in [−9.9, 6.4]. All other observed controls lies in between.

By basic formulae for the Laplacian we have ∆g(|x|) = g′′(|x|)+ g′(|x|)
|x| for x 6= 0, which is one

of the reasons we chose this particular g: the first few terms of its Taylor expansion vanish
so that ∆g(|x|) is still smooth. Thus

ū(t, x) = ϕ′(t)g(π|x|)− π2ϕ(t)
(
g′′(π|x|) + g′(π|x|)

π|x|

)
. (7.3)

As the obstacle we choose a function, that is constant over time:

Ψ(t, x) :=
{
g(π|x|) if |x| < 1

2 ,

g(π2 ) + πg′(π2 )(|x| − 1
2) if |x| ≥ 1

2 .

Figure 7.4: The cross sections from ȳ and Ψ at t = 0.5 from our constructed example together
with the function ϕ on the right.

With Figure 7.4 it is easy to see that the active set is [0.25, 0.75] × B 1
2
(0) ⊂ Q. A proof is

a lenghty, but elementary calculation utilizing one-dimensional calculus. As we do not have
active box constraints, we simply choose

p̄(t, x) := −αū(t, x).

Its straight forward to check boundary conditions. Since this p̄ is quite smooth, it should
satisfy

(−∂t −∆)p̄ = ȳ(t, x)− yQ(t, x) + η̄(t, x) a.e. in Q.
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We choose η̄ last, as its the key of this construction, and see that

yQ(t, x) := −α(∂t + ∆)ū+ ȳ(t, x) + η̄(t, x)
= −α(∂2

t −∆∆)ȳ(t, x) + ȳ(t, x) + η̄(t, x)

= −αϕ′′(t)g(π|x|) + απ4
(
g(IV )(π|x|) + 2g′′′(π|x|)

π|x|
− g′′(π|x|)

π2|x|2
+ g′(π|x|)

π3|x|3
)

+ η̄(t, x).

The multiplier η̄ is supposed to live on the active set [0.25, 0.75] × B 1
2
(0) ⊂ Q. Thus we

simply choose η̄ = −2 · 1[0.25,0.75]×B 1
2

(0).

All in all, the given data satisfy the necessary first order optimality conditions from Theo-
rem 3.38. It is also easy to see that all the assumptions for quadratic growth, cf. Assump-
tion 3.54, are satisfied, except p̄ ≥ 0 on a neighborhood of the active set. We, however, still
get that (ȳ, ū) is the unique, global minimum our optimization problem by Theorem 3.52
and Corollary 3.53. Let Slin be defined as in Theorem 3.52. It is self-adjoint because A is
self-adjoint. For any u ∈ {u ∈ Uad : S(u) ≥ Ψ} we find

(S∗lin(ȳ − yQ) + αgū, u− ū)L2(Q) = (S∗lin(ȳ − yQ)− S∗lin(ȳ − yQ + η̄), u− ū)L2(Q)

= (S∗lin(−η̄), u− ū)L2(Q) = (−η̄, S(u)− ȳ)L2(Q) .

Here we used in particular that λ̄ = 0. By the definition of η̄ and ū we find

(S∗lin(ȳ − yQ) + αgū, u− ū)L2(Q) = 2
∫
{ȳ=Ψ}

S(u)−Ψ d(t, x) ≥ 0.

This is the necessary condition from Corollary 3.53 and shows the optimality of (ȳ, ū).
Remark 7.2 With respect to the implementation it is important to treat the factors |x|−1,
|x|−2, |x|−3 in the previous example properly, when integrating numerically. They seemingly
explode for |x| → 0. All quantities in the example were chosen in such a way that this does
not happen. This can be seen by considering the Taylor expansion of the appearing terms.
We have for |x| = r 6= 0

∆(g(|x|)) = g′′(r) + g′(r)
r

= −sin(r)
r
− cos(r)− 3

π2 r
2 + 2

= −
(

1− 1
6r

2 +O(r4)
)
−
(

1− 1
2r

2 +O(r4)
)
− 3
π2 r

2 + 2

=
(2

3 −
3
π2

)
r2 +O(r4)

and

∆∆(g(|x|)) = cos(r) + 2 sin(r)
r

+ cos(r)
r2 − sin(r)

r3 − 12
π2

= . . .

=
(7

3 −
12
π2

)
− 47

60r
2 +O(r4).

We recommend using the derived Taylor approximations of order O(r2) to compute the
functionals for small r, thus avoiding integration errors.
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7.3.2 Estimated Convergence Rates

In this section all computations were done with a regularization term of the form of Proposi-
tion 2.17 for αβ = 2, making it smooth and thus accessible to computation, see Section 6.3.

To solve the appearing semilinear equations we choose the same parameters as in Section 7.1,
i.e. we choose a relative tolerance of 10−15 for the semi-smooth Newton method, a global
tolerance of 10−13, a damping factor of 0.01 and a tolerance of 10−6 for the appearing multigrid
solver for the linear system.

To solve the optimization problems we used a semi-smooth Newton method with global and
relative tolerances of 10−5 and at most 50 steps. As globalization we used a trust region
method a maximum of 10 line search steps, a damping factor of 0.8, a starting trust region
radius of 1, a maximum trust region radius of 10. For the CG-method we used at most 20
iterations and global and relative tolerances of 10−5

The predicted rate in for the regularization error is O(γ 1
4 ) for small enough γ, as long as the

error caused by h or k is not dominant, see Theorem 5.28. In Figure 7.5 one can see that
the rates in the regularization term are sharp for the controls, but not for the states, which
appear to have the convergence order of O(γ 1

2 ).

We will see that this rate, as sharp as it may be, causes a major issue. Looking at Figure 7.6
we can see that the convergence behaviour for h→ 0 for the states seems fine. The rate looks
similar to O(h1.5), which is at least worse than the rate from the solution operator itself, c.f.
Theorem 4.65. But for the controls it is not possible to see anything similar, as one can easily
see that the error curve flattens out basically immediately. As we can see that two curves for
different k, but the same γ, almost overlap completely, we can conclude that γ is the culprit
for the flattening out, i.e. O(γ 1

4 ) is the dominant error. We also note that the curves for
γ = 10−6 and γ = 10−7 are also close, indicating that the error in k is also comparatively
large.

The effect is less pronounced for the error with respect to k. While the error in Figure 7.7
for the states flattens out quickly and gives no real hint about possible convergence rates, for
the controls we get at least the hint that the error in the times is of order O(k0.8). This rate
is better than the predicted rate of O(k0.5) from Theorem 5.28, keeping Remark 5.1 in mind.
But it is also worse than the rate of the solution operator which is O(k), up to logarithmic
factor, c.f. Theorem 4.65.
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Figure 7.5: The behaviour of the errors in L2-norm for the control (top) and the state (bot-
tom) for decreasing regularization parameters.
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7.3 An Optimal Control Example with Exact Solution

Figure 7.6: The behaviour of the errors in L2-norm for the control (top) and the state (bot-
tom) for decreasing h.
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7 Numerical Examples

Figure 7.7: The behaviour of the errors in L2-norm for the control (top) and the state (bot-
tom) for decreasing k.
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8 Appendix

8.1 Miscellaneous Auxiliary Results

8.1.1 Supports of Measures

This section just contains a minor additional result on measure spaces, but does not really
fit in the preceeding sections.

Proposition 8.1 Let Ω ⊂ RN be bounded and Borel-measurable, A ⊂ Ω be open in Ω and
µ ∈M(Ω). Then µ|A = 0 iff supp(µ) ⊂ Ω \A.

Proof. First let µ|A = 0 and x ∈ A. This immediately implies |µ|A|(A) = 0 as this is the
norm on M(A). Assume x ∈ supp(µ). Then by the openness of A, there must be a ε > 0
such that Bε(x) ⊂ A. Then we have 0 < |µ|(Bε(x)) = |µ|A|(Bε(x)) = 0. A contradiction.

Now let A ⊂ Ω \ supp(µ) be open in Ω. This implies A ∈ B(Ω). We define An := {x ∈ A :
dist(x, ∂A) ≥ 1

n}. Because the distance function is continuous those sets are closed, and by
the boundedness of Ω, even compact.

Let n ∈ N. It is easy to check that An ∩ QN is dense in An. We write this countable set as
{x1, x2, . . . }. Because none of these points lie in supp(µ) we find for each j ∈ N and open set
x ∈ Uj ⊂ Ω such that |µ|(Uj) = 0. By the compactness of An there exists a finite subcover
∪Mj=1Uj of the open covering ∪∞j=1Uj ⊃ An. Here we obviously rearranged the indices for the
sake of presentation. From this we conclude by the subadditivity of measures

|µ|(An) ≤
M∑
j=1
|µ|(Uj) = 0.

By the definition of regular measures, cf. [Rud74, Defintion 2.15], we have

|µ|(A) = sup
K⊂A,

K is compact

|µ|(K).

Its now very is easy to check that every compact K ⊂ A lies in some An, because A is open.
Therefore |µ|(K) ≤ |µ|(An) = 0. Therefore the regularity implies |µ|(A) = 0 which entails
the claim.

8.1.2 Inequalities

This section just contains some technical inequalities which do not fit anywhere else.

Lemma 8.2 Let a, b, c ≥ 0 and p > 1. Assume ap ≤ bap−1 + cp. Then

a ≤ b+ c.
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Proof. Assume we have the converse a > b+ c. Then we have

bap−1 + cp ≥ ap > ap−1b+ ap−1c.

This implies cp−1 > ap−1 and thus c > a > b+ c ≥ c. This is a contradiction.

Lemma 8.3 Let C, T > 0 and f ∈ C([0, T ]) such that

f(t)2 ≤ C‖f‖L2(0,t) + f(0)2 ∀t ∈ [0, T ]. (8.1)

Then

‖f‖C([0,T ]) ≤ C
√
T + 1 +

√
3

2 |f(0)|.

Proof. Integrating over both sides in (8.1) from 0 to t ∈ (0, T ) yields

‖f‖2L2(0,t) ≤ Ct‖f‖L2(0,t) + tf(0)2.

The previous lemma now entails:

‖f‖L2(0,t) ≤ Ct+
√
t|f(0)|.

Using this in (8.1) yields

f(t)2 ≤ C2t+ C
√
t|f(0)|+ |f(0)|2 =

(√
tC + 1

2 |f(0)|
)2

+ 3
4 |f(0)|2.

Taking the square root on both sides and using the subadditivity of the root yields

|f(t)| ≤
√
tC + 1

2 |f(0)|+
√

3
2 |f(0)|.

The following is an embedding where the constant in the estimate has been tracked. Note
that the behaviour of the constant is sharp with respect to the inverse interval length. To
see that consider constant functions.
Proposition 8.4 Let a < b ∈ R and f ∈ H1((a, b)). Then we have

‖f‖2L∞((a,b)) ≤ 2 max((b− a), (b− a)−1)‖f‖2H1((a,b)).

Proof. Let f ∈ C1((a, b)). The general statement follows from density, e.g. [Ada75, Theorem
3.16], and the embedding H1((a, b)) ↪→ L∞((a, b)), e.g. [Ada75, Theorem 5.4].

Let r ∈ (a, b). Then we find

|f(r)|2 = (b− a)−1
∫ b

a
|f(r)|2 ds = (b− a)−1

∫ b

a

∣∣∣∣∫ r

s
f ′(t) dt+ f(s)

∣∣∣∣2 ds.
Pulling the absolute further inside yields

|f(r)|2 ≤ (b− a)−1
∫ b

a

(∫ r

s

∣∣f ′(t)∣∣ dt+ |f(s)|
)2

ds

≤ (b− a)−1
∫ b

a

(
‖f ′‖L1((a,b)) + |f(s)|

)2
ds ≤ 2(b− a)−1

∫ b

a
‖f ′‖2L1((a,b)) + |f(s)|2 ds.

Integrating each summand and using Hölder’s inequality we now arrive at
1
2 |f(r)|2 ≤ ‖f ′‖2L1((a,b)) + (b− a)−1‖f‖2L2((a,b)) ≤ (b− a)‖f ′‖2L2((a,b)) + (b− a)−1‖f‖2L2((a,b)).

This yields the claim.
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Proposition 8.5 Let d > 0. Then for any N ∈ N≥2 and h > 0 we have

∫ d

0

rN−2

rN + hN
dr ≤

{
2
N arctan((hd)N2 )h−1 if hd ≤ 1,
N−1(π2 + (hd)N−1 − 1)h−1 if hd > 1.

(8.2)

In particular: ∫ d

0

rN−2

rN + hN
dr ≤ Ch−1 (8.3)

where C > 0 only depends on an upper bound on hd and N .

Proof. We make the coordinate transformation z = h−1r so that we obtain:∫ d

0

rN−2

rN + hN
dr =

∫ hd

0
h−2 zN−2

zN + 1h dz = h−1
∫ hd

0

zN−2

zN + 1 dz.

If dh ≤ 1 we have
∫ d

0

rN−2

rN + hN
dr ≤ h−1

∫ hd

0

z
N
2 −1

zN + 1 dz = h−1 2
N

arctan
(
z
N
2
)
|hd0 = 2

N
arctan((hd)

N
2 )h−1.

If dh > 1 we have similarly
∫ d

0

rN−2

rN + hN
dr ≤ h−1

∫ 1

0

z
N
2 −1

zN + 1 dz + h−1
∫ hd

1

zN−2

zN + 1 dz

≤ 2
N

arctan(1)h−1 + h−1
∫ hd

1
zN−2 dz = π

2N h−1 + 1
N − 1((hd)N−1 − 1)h−1.

This implies the claimed bound in (8.2).

(8.3) is now an immediate consequence of (8.2).

Proposition 8.6 Let z > 0 then the Γ-function satisfies

Γ(z) ≤ 2eΓ(2z).

Proof. Let z > 0. The Γ-function is defined and estimated as follows:

Γ(z) =
∫ ∞

0
tz−1e−t dt ≤

∫ 1

0
tz−1 dt+

∫ ∞
1

t2z−1e−t dt ≤ z−1 + 2e
∫ ∞

1
t2z−1e−t dt.

We have ∫ 1

0
t2z−1e−t dt ≥ e−1

∫ 1

0
t2z−1 dt = e−1(2z)−1.

Thus we conclude

Γ(z) ≤ 2e
∫ 1

0
t2z−1e−t + 2e

∫ ∞
1

t2z−1e−t dt. = 2eΓ(2z).

Proposition 8.7 The function ū : (0, 1)×B1(0)→ R, defined in (7.2) satisfies

‖ū‖L∞((0,1)×B1(0)) ≤ 60.
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Proof. By the reformulation of ū in (7.3) and abbreviating r := π|x| we find for any (t, x) ∈
(0, 1)×B1(0) that

|ū(t, x)| ≤ |ϕ′(t)||g(r)|+ π2|ϕ(t)|
∣∣∣g′′(r) + r−1g′(r)

∣∣∣ .
We first estimate the terms with ϕ. We see

ϕ′(t) =


96t− 384t2 if t ≤ 0.25,
0 if 0.25 < t < 0.75,
−96(1− t)− 384(1− t)2 if 0.75 ≤ t,

and

ϕ′′(t) =


96− 768t if t ≤ 0.25,
0 if 0.25 < t < 0.75,
96 + 768(1− t) if 0.75 ≤ t.

Due to symmetry it is enough to consider the case t ≤ 0.5. If t ∈ (0, 0.25) we have ϕ′′(t) = 0
iff t = 0.125, thus only there can ϕ′ have a local maximum. Thus

|ϕ′(t)| ≤ max(|ϕ′(0)|, |ϕ′(0.125)|, |ϕ′(0.25)|) = |ϕ′(0.125)| = 6.

By the same ideas we also have |ϕ(t)| ≤ 1. Thus

|ū(t, x)| ≤ 6|g(r)|+ π2|g′′(r) + r−1g′(r)|.

We first estimate the polynomial part of g. To that end define

gp(r) :=
(

1− 5
16π

2
)

+ 1
2r

2 − 3
16π2 r

4.

We observe

g′p(r) = r − 3
4π2 r

3, g′′p(r) = 1− 9
4π2 r

2.

The roots of g′p are given by 0 and ± 2π√
3 . There are no roots in (0, π) meaning that

|gp(r)| ≤ max(|gp(0)|, |gp(π)|) = 5
16π

2 − 1. (8.4)

We also have the trigonometric part of g and see

gt(r) := cos(r), −(g′′t (r) + r−1g′t(r)) = cos(r) + r−1 sin(r).

Thus by (8.4) we have |g(r)| ≤ 5
16π

2 and find

|ū(t, x)| ≤ 15
8 π

2 + π2|g′′(r) + r−1g′(r)|.

For the polynomial part we see∣∣∣g′′p(r) + r−1g′p(r)
∣∣∣ =

∣∣∣∣2− 3
π2 r

2
∣∣∣∣ ≤ 2.
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For the trigonometric part we see that

|g′′t (r) + r−1g′t(r)| ≤ 1 + max
s∈[0,π]

|s−1 sin(s)|

Setting derivative of s−1 sin(s) to 0 (for s ∈ (0, π)) we find

0 = −s cos(s) + sin(s)
s2 ⇐⇒ 0 = s− tan(s).

Here we used that s = π
2 is clearly not a solution so that we may divide by cos(s). Numerically

it is easy to see that this has no solutions in (0, π). Thus

|g′′t (r) + r−1g′t(r)| ≤ 1 + max
(

(lim
t→0
|t−1 sin(t)|,

∣∣∣∣ 2π sin
(
π

2

)∣∣∣∣ , |π−1 sin(π)|
)

= 2.

This finally results in

|ū(t, x)| ≤ 15
8 π

2 + 4π2 ≤ 6π2 < 60.

8.1.3 Compact Embeddings of Hölder Spaces

The following statement is well-known, when the Hölder exponents κI , κΩ are the same.

Lemma 8.8 Let I = (0, T ) for some T > 0, Ω ⊂ RN for some N ≥ 1 and κI , κΩ ∈ (0, 1].
Then

CκI (I, CκΩ(Ω)) ↪→↪→ Cκ
′
I (I, Cκ′Ω(Ω))

for any κ′I ∈ (0, κI), κ′Ω ∈ (0, κΩ).

Proof. Let (yn)n∈N ⊂ CκI (I, CκΩ(Ω)) be a sequence bounded by some C > 0. We see that
for any (t, x), (s, y) ∈ I × Ω we have

|yn(t, x)− yn(s, y)| ≤ |yn(t, x)− yn(s, x)|+ |yn(s, x)− yn(s, y)|
≤ ‖yn(t, ·)− yn(s, ·)‖L∞(Ω) + |x− y|κΩ |yn(s)|CκΩ (Ω)

≤ |t− s|κI‖yn‖CκI (I,CκΩ (Ω)) + |x− y|κΩ‖yn(s)‖CκΩ (Ω)

≤ (|t− s|κI + |x− y|κΩ)C.

Hence the sequence (yn)n∈N is equicontinuous. Now the theorem of Arzela-Ascoli, e.g. [Ş03,
Theorem 5.7.8], implies that the sequence has an accumulation point y with respect to the
L∞(I ×Ω)-norm. The converging subsequence is denoted by the same indices for simplicity.

We now show y ∈ CκI (I, CκΩ(Ω)). Let s, t ∈ I with t 6= s and x, y ∈ Ω with x 6= y. We see

|(y(t, ·)− y(s, ·))(x)− (y(t, ·)− y(s, ·))(y)|
|x− y|κΩ

= lim
n→∞

|(yn(t, ·)− yn(s, ·))(x)− (yn(t, ·)− yn(s, ·))(y)|
|x− y|κΩ

≤ lim sup
n→∞

|yn(t, ·)− yn(s, ·)|CκΩ (Ω).
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Thus, taking the supremum over all x 6= y and using the uniform convergence we find

‖y(t, ·)− y(s, ·)‖CκΩ (Ω) ≤ lim sup
n→∞

‖yn(t, ·)− yn(s, ·)‖CκΩ (Ω).

Dividing both sides by |t− s|κI yields

‖y(t, ·)− y(s, ·)‖CκΩ (Ω)
|t− s|κI

≤ lim sup
n→∞

‖yn(t, ·)− yn(s, ·)‖CκΩ (Ω)
|t− s|κI

≤ lim sup
n→∞

|yn|CκI (I,CκΩ (Ω)) ≤ C.

Taking the supremum over all t 6= s yields

|y|CκI (I,CκΩ (Ω)) ≤ C.

It remains to estimate ‖y‖L∞(I,CκΩ (Ω)). This can be done completely analogously. So, in total
we have ‖y‖CκI (I,CκΩ (Ω)) ≤ C.

It remains to show yn
n→∞−−−→ y in Cκ

′
I (I, Cκ′Ω(Ω)). Let ε ∈ (0, 1), κ′I = (1 − ε)κI and

κ′Ω = (1− ε)κΩ. We argue the general case at the end. Due to the just proven regularity of y
we may subtract it from (yn)n∈N and assume without loss of generality y = 0. Then we have
for any t, s ∈ I that

|yn(t, ·)− yn(s, ·)|
C
κ′Ω (Ω)

= sup
x,y∈Ω,
x 6=y

|(yn(t, ·)− yn(s, ·))(x)− (yn(t, ·)− yn(s, ·))(y)|
|x− y|κ′Ω

= sup
x,y∈Ω,
x 6=y

( |(yn(t, ·)− yn(s, ·))(x)− (yn(t, ·)− yn(s, ·))(y)|
|x− y|κΩ

)κ′Ω
κΩ

· |(yn(t, ·)− yn(s, ·))(x)− (yn(t, ·)− yn(s, ·))(y)|1−
κ′Ω
κΩ

≤ 4|yn(t, ·)− yn(s, ·)|
κ′Ω
κΩ
CκΩ (Ω)‖yn‖

1−
κ′Ω
κΩ

L∞(I×Ω).

(8.5)

By assumption (yn)n∈N is bounded in CκI (I, CκΩ(Ω)) by C. Thus, we can conclude

|yn(t, ·)− yn(s, ·)|
C
κ′Ω (Ω)

≤ 4‖yn‖
κ′Ω
κΩ
CκI (I,CκΩ (Ω)) (|t− s|κI )

κ′Ω
κΩ ‖yn‖

1−
κ′Ω
κΩ

L∞(I×Ω)

≤ 4(C + 1)|t− s|κ′I‖yn‖εL∞(I×Ω).

Here we used κI
κΩ
− κ′Ω = κ′I by their specific definitions. Also

‖yn(t, ·)− yn(s, ·)‖L∞(Ω)

|t− s|κ′I
=
(
‖yn(t, ·)− yn(s, ·)‖L∞(Ω)

|t− s|κI

)κ′
I
κI

‖yn(t, ·)− yn(s, ·)‖
1−

κ′
I
κI

L∞(Ω)

≤ 2(C + 1)‖yn‖εL∞(I×Ω).

Combining these two estimates yields

‖yn(t, ·)− yn(s, ·)‖
C
κ′Ω (Ω)

|t− s|κ′I
≤ 6(C + 1)‖yn‖εL∞(I×Ω).

Thus |yn|
C
κ′
I (I,Cκ

′
Ω (Ω))

≤ 6(C + 1)‖yn‖εL∞(I×Ω). Just as in (8.5) one can show the estimate
‖yn‖L∞(I,CκΩ (Ω)) ≤ 2(C + 1)‖yn‖εL∞(I×Ω). Thus

‖yn‖
C
κ′
I (I,Cκ

′
Ω (Ω))

≤ 8(C + 1)‖yn‖εL∞(I×Ω). (8.6)
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This now finally converges to 0 as ε > 0.

Now, let κ′I ∈ (0, κI) and κ′Ω ∈ (0, κΩ). We define ε := min
(
1− κ′I

κI
, 1− κ′Ω

κΩ

)
> 0. We then

have (1− ε)κI ∈ [κ′I , κI) and (1− ε)κΩ ∈ [κ′Ω, κΩ) and can immediately conclude

‖yn‖
C
κ′
I (I,Cκ

′
Ω (Ω))

≤ diam(Ω)(1−ε)κΩ−κ′Ω‖yn‖
C
κ′
I (I,C(1−ε)κΩ (Ω))

≤ (diam(Ω) + 1)‖yn‖
C
κ′
I (I,C(1−ε)κΩ (Ω))

.

Doing the same for the time variable and using (8.6) we can finally conclude

‖yn‖
C
κ′
I (I,Cκ

′
Ω (Ω))

≤ (T + 1)(diam(Ω) + 1)‖yn‖C(1−ε)κI (I,C(1−ε)κΩ (Ω))

≤ 8(T + 1)(diam(Ω) + 1)(C + 1)‖yn‖εL∞(I×Ω).

Sending n→∞ yields the claim in the general case.

8.1.4 Boundary value preserving density

The following density result is very specific, which is unfortunately necessary for the previous
proof of Proposition 4.18.

Proposition 8.9 Let Ω ⊂ RN be a C2,α̃-domain for some α̃ > 0. Then C2,α̃(Ω̄) ∩H1
0 (Ω) is

dense in H2(Ω) ∩H1
0 (Ω) with respect to ‖·‖H2(Ω).

Proof. Let v ∈ H2(Ω)∩H1
0 (Ω) be given and ε > 0 be arbitrary. Since C∞c (Ω) is dense in L2(Ω),

e.g. [Ada75, Theorem 2.19], there exists a fε ∈ C∞c (Ω) such that ‖(−∆v)− fε‖L2(Ω) ≤ ε. By
[GT01, Theorem 6.14] there now exists a unique solution vε ∈ C2,α̃(Ω̄) ∩H1

0 (Ω) to the PDE
−∆vε = fε on Ω, vε|∂Ω = 0. By higher elliptic regularity, e.g. [Gri11, Lemma 2.4.2.1 and the
remarks thereafter, Theorem 2.4.2.5], we therefore find

‖v − vε‖H2(Ω) ≤ C‖(−∆v)− fε‖L2(Ω) ≤ Cε.

As ε > 0 was arbitrary this shows the claim.

8.2 Statements on Bochner Spaces

The following proposition is used in the proof of second order sufficient conditions in Sec-
tion 3.5.

Proposition 8.10 Let N ∈ {1, 2, 3}. Let Ω ⊂ RN be a bounded domain satisfying the
cone condition and I := (0, T ) for some T > 0. We have L2(I,H1(Ω)) ∩ C(Ī , L2(Ω)) ⊂
L4(L

4N
N+2 (Ω)). Even stronger there are C > 0 and θ ∈ (0, 1) such that

‖y‖
L4(L

4N
N+2 (Ω))

≤ C‖y‖1−θ
C(Ī,L2(Ω))‖y‖

θ
L2(I,H1(Ω))

holds for any y ∈ C(Ī , L2(Ω)) ∩ L2(I,H1(Ω)).
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Proof. We show that we have the embedding(
L2(I,H1(Ω)), C(Ī , H)

)
θ,4

↪→ L4(L
4N
N+2 (Ω))

for some θ ∈ (0, 1). Then [Tri78, Theorem 1.3.3g)] delivers the desired norm estimate.

We only treat the case N = 3. The other cases are similar but easier as H1(Ω) then embedds
into higher order Lebesgue spaces.

We have the Sobolev embedding H1(Ω) ↪→ L
2N
N−2 (Ω). For any r ∈ [1,∞) we also have

C(Ī , L2(Ω)) ↪→ Lr(I, L2(Ω)). Thus we find for any θ ∈ (0, 1), checking the definition of the
interpolation spaces,(

L2(I,H1(Ω)), C(Ī , L2(Ω))
)
θ,4

↪→
(
L2(I, L

2N
N−2 (Ω)), Lr(I, L2(Ω))

)
θ,4
.

We now let r ∈ (2,∞) and θr ∈ (1/2, 1) such that

1
4 = 1− θr

2 + θr
r
. (8.7)

Then [Tri78, Theorem 1.18.4] delivers the isomorphism(
L2(I,H1(Ω)), C(Ī , L2(Ω))

)
θr,4

↪→
(
L2(I, L

2N
N−2 (Ω)), Lr(I, L2(Ω))

)
θr,4

' L4(I, (L
2N
N−2 (Ω), L2(Ω))θr,4).

By [Tri78, Theorem 1.3.3e)] we have for any εr > 0 small enough such that θr + εr < 1:

(L
2N
N−2 (Ω), L2(Ω))θr,4 ↪→ (L

2N
N−2 (Ω), L2(Ω))θr+εr, 4N

N+2
.

Using [Tri78, Theorem 4.3.1.1 and its reference to Theorem 2.4.2.2 (10)] we have

(L
2N
N−2 (Ω), L2(Ω))θr,4 ↪→ L

4N
N+2 (Ω) (8.8)

provided θr + εr satisfies

1(
4N
N+2

) = 1− (θr + εr)(
2N
N−2

) + θr + εr
2 .

In turn, this is equivalent to

N + 2
2N = (1− (θr + εr))(N − 2)

N
+ (θr + εr) = 1− 2

N
(1− (θr + εr)).

This is equivalent to

N + 2 = 2N − 4(1− (θr + εr))
⇐⇒ 6− 4(θr + εr) = N

⇐⇒ θr + εr = 6−N
4 .

(8.9)

As (6 − N)/4 = 3/4 we can choose r large enough in (8.7) to have θr = 2.5/4. Choosing
εr := 0.5/4 we have satisfied both (8.7) and (8.9) and thus have obtained (8.8). This concludes
the proof.
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The following statement is very similar to Proposition 8.10 for slightly different spaces. The
proof is very similar, so we only give a rough sketch. It appears for example in discussion of
second order conditions in Section 3.6.

Proposition 8.11 Let N ∈ {1, 2, 3}. Let Ω ⊂ RN be a bounded domain satisfying the cone
condition and I := (0, T ) for some T > 0. We have L2(I,H1(Ω)) ∩ C(Ī , L2(Ω)) ⊂ L3(Q).
Even stronger there are C > 0 and θ ∈ (0, 1) such that

‖y‖L3(Q) ≤ C‖y‖1−θC(Ī,L2(Ω))‖y‖
θ
L2(I,H1(Ω))

holds for any y ∈ C(Ī , L2(Ω)) ∩ L2(I,H1(Ω)).

Proof. As in the proof of Proposition 8.10 we obtain the embedding(
L2(I,H1(Ω)), C(Ī , L2(Ω))

)
θr,4

↪→ L3
(
I,
(
L

2N
N−2 (Ω), L2(Ω)

)
θr,3

)
for any r ∈ (2,∞) and θr ∈ (0, 1) satisfying

1
3 = 1− θr

2 + θr
r
. (8.10)

We also obtain (
L

2N
N−2 (Ω), L2(Ω)

)
θr,3

↪→ L3(Ω)

provided we have

1
3 = 1− θr

2N
N−2

+ θr
2 . (8.11)

We have to find r ∈ (2,∞) and θr ∈ (0, 1) such that (8.10) and (8.11) are both satisfied.
Reforming (8.11) yields the equivalent forms

1
3 = N − 2

2N + θr(
N

2N −
N − 2

2N ) ⇐⇒ 2N
6N −

3N − 6
6N = θr

1
N

⇐⇒ − N

6 + 1 = θr.

For N ≤ 3 this is compatible with θr ∈ (0, 1). Inserting this into (8.10) we have

1
3 = N

12 +
(

1− N

6

) 1
r
⇐⇒

4
12 −

N
12

1− N
6

= 1
r

⇐⇒ 1
2

4−N
6−N = 1

r

⇐⇒ r = 26−N
4−N .

For N ≤ 3 this is again well defined and we can conclude the proof.

Proposition 8.12 Let I ⊂ R be an open interval, V a Hilbert space and T : V → V a linear
and continuous operator. Let y ∈ H1(I, V ) then Ty ∈ H1(I, V ) with ∂t(Ty) = T∂ty. We also
have the following estimate

‖Ty‖H1(I,V ) ≤ ‖T‖L(V,V )‖y‖H1(I,V ).
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Proof. Let ϕ ∈ C∞c (I) and v ∈ V be arbitrary test functions. Then(∫
I
T (∂ty)(t)ϕ(t) dt, v

)
V

=
∫
I
ϕ(t) (T (∂ty)(t), v)V dt

=
∫
I
ϕ(t) (∂ty(t), T ∗v)V dt =

(∫
I
ϕ(t)∂ty(t) dt, T ∗v

)
V
.

By the definition of the Bochner derivative this is in turn equal to(
−
∫
I
ϕ′(t)y(t) dt, T ∗v

)
V

=
(
−
∫
I
ϕ′(t)Ty(t) dt, v

)
V
.

As v was arbitrary this implies∫
I
T (∂ty)(t)ϕ(t) dt = −

∫
I
ϕ′(t)Ty(t) dt.

By the definition of the Bochner derivative this implies ∂t(Ty) = T∂ty.

Proposition 8.13 Let I ⊂ R be an open interval and (V,H, V ∗) a Gelfand triple of Hilbert
spaces. Then the space H1(I, V ) ∩W0(I) is dense in W0(I) with respect to the W (I)-norm.

Proof. Let f ∈ W0(I). We show that f can be approximated by some (fε)ε>0 ⊂ W0(I) such
that f |(0,ε) = 0. For ε > 0 define the following for t ∈ I

ρε(t) :=


0 if t ∈ (0, ε),
ε−1(t− ε) if t ∈ (ε, 2ε),
1 if t ∈ (2ε, T ),

∈W 1,∞(I).

Furthermore, define fε := f ρε. It satisfies

‖fε − f‖2L2(I,V ) =
∫ 2ε

0
‖f(t)ρε(t)− f(t)‖2V dt =

∫ 2ε

0
|ρε(t)− 1|2‖f(t)‖2V dt.

Because |ρε(t)− 1| ∈ [0, 1] we have

‖fε − f‖L2(I,V ) ≤ ‖f‖L2((0,2ε),V ). (8.12)

By the theorem of dominated convergence, e.g. [BK15, Proposition 5.4], the term converges
to 0 for ε→ 0. The derivatives are treated similarly, but are slightly more complicated.

‖∂t(fε)− ∂t(f)‖L2(I,V ∗) ≤ ‖ρε∂tf − ∂tf‖L2(I,V ∗) + ‖fρ′ε‖L2(I,V ∗).

The first term converges to 0 by the same arguments used to obtain (8.12). The second term
equals by the definition of ρε

‖fρ′ε‖2L2(I,V ∗) =
∫ 2ε

ε
‖f(t)‖2V ∗ε−2 dt = ε−2

∫ 2ε

0

∥∥∥∥∫ t

0
∂tf(s) ds

∥∥∥∥2

V ∗
dt

≤ ε−2
∫ 2ε

0

(∫ t

0
‖∂tf(s)‖V ∗ ds

)2
dt.

By Hölder’s inequality we get

‖fρ′ε‖2L2(I,V ∗) ≤ ε
−2
∫ 2ε

0
t

∫ t

0
‖∂tf(s)‖2V ∗ ds dt ≤ 4

∫ 2ε

0
‖∂tf(s)‖2V ∗ ds.

As before this converges to 0 for ε→ 0.

Now, each fε can be approximated by smooth functions in W (I). This can be done analo-
gously to the proof of [Wlo92, Lemma 25.1].
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The following is an almost verbatim quote of [CV19, Lemma A.1], which is still in preparation
and not published as of yet, so in particular its name in the paper might change. We obtained
the result via private communication and want to stress that is not our work and it is presented
to not leave any gaps. The only change we made is to adapt the notation.

Lemma 8.14 (Stampacchia’s Lemma for Bochner-Sobolev Functions) Suppose that a T > 0,
a domain Ω ⊂ RN , N ≥ 1, and a v ∈ L2((0, T ), H1(Ω)) are given. Define v+ := max(0, v),
where max(0, ·) acts pointwise a.e. in (0, T ) × Ω. Then, the function v+ is an element of
L2(0, T,H1(Ω)), the gradient ∇(v+) ∈ L2((0, T ), L2(Ω,RN )) ' L2((0, T ) × Ω,RN ) of v+

satisfies

∇(v+) =
{
∇v a.e. in {v > 0}
0 a.e. in {v ≤ 0}

, (A.1)

and we have

∇v = 0 a.e. in {v = 0}. (A.2)

If, further, the function v additionally possesses H1((0, T ), L2(Ω))-regularity, then v+ is also
an element of H1((0, T ), L2(Ω)) and it holds

∂t(v+) =
{
∂tv a.e. in {v > 0}
0 a.e. in {v ≤ 0}

, (A.3)

as well as

∂tv = 0 a.e. in {v = 0}, (A.4)

and if v is even in L2(0, T ;H2(Ω)), then the Hessian ∇2v ∈ L2((0, T ), L2(Ω,RN×N )) '
L2((0, T )× Ω,RN×N ) of v satisfies

∇2v = 0 a.e. in {v = 0}. (A.5)

As always {v > 0} := {(t, x) ∈ Q : v(t, x) > 0} and similar sets are defined for a fixed, but
arbitrary representative of v.

Proof. The L2((0, T ), H1(Ω))-regularity of v+ follows straightforwardly from the results in
[ABM14, Section 5.8] and [HKST15, Section 3], the formula (A.1) can be established com-
pletely analogously to [ABM14, Theorem 5.8.2], and to obtain (A.2), it suffices to note that
(A.1) and the lineartiy of the operator ∇ yield

0 = ∇v −∇(v+ + v−) = ∇v −∇(v+)−∇(v−) =
{
∇v a.e. in {v = 0}
0 a.e. in {v 6= 0}

,

where v− is short for min(0, v) = −max(0,−v). This proves the first part of the lemma. Let
us assume now that v is also an element of H1((0, T ), L2(Ω)). Then, the H1((0, T ), L2(Ω))-
regularity of v+ and the formula (A.3) follow straightforwardly from [Woo07, Corollary 2.3,
Equation (2)], and the derivation (A.4) is completely along the lines of that of (A.2). It
remains to establish (A.5). To this end, we first note that, for every v ∈ L2((0, T ), H2(Ω)),
we have (due to (A.2) and since ∂nv ∈ L2((0, T ), H1(Ω)) holds for all spatial partial derivatives
∂nv, n = 1, . . . , N)

(∂nv)1{v=0} = 0 ∈ L2((0, T )× Ω) ∀n = 1, . . . , N
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and

(∂m∂nv)1{∂nv=0} = 0 ∈ L2((0, T )× Ω) ∀m,n = 1, . . . , N.

The above implies in particular that

1{v=0} = 1{∂nv=0}1{v=0} ∈ L2((0, T )× Ω) ∀n = 1, . . . , N

This establishes (A.5) and completes the proof.

8.3 A Parabolic Maximum Principle

The following theorem and its proof are a generalization of [USL88, Theorem III.7.2]. A
difficulty in the proof is that y ∈W (I) does not imply that y+ 6∈W (I).

Theorem 8.15 Let Ω ⊂ RN be open and bounded, T > 0, I := (0, T ) and Q := I × Ω. Let
ΓD ⊂ ∂Ω and ΣD := I × ΓD be the Dirichlet boundary portions. Let V , H and W (I) be as
in Assumption 2.5. Let u, f ∈ L2(Q) with u, f ≥ 0 a.e. in Q. Let y0 ∈ L2(Ω) with y0 ≥ 0
a.e. in Ω. Let y ∈W (I) be a solution to{

∂ty +Ay + fy = u,

y(0) = y0, y|ΣD = 0.

Then we have y ≥ 0 a.e. in Q.

Proof. We define y− := min(0, y) ∈ L2(I, V ) ∩ C(Ī , H). Note that y− has this regularity by
Proposition 8.19 and y ∈ W (I) ⊂ C(Ī , H). Then we test the equation for y with y− · 1(0,t)
for t ∈ I to obtain∫ t

0

(
∂ty, y

−)
V ∗,V dt+ a(0,t)(y, y−) =

(
u− fy, y−

)
L2((0,t)×Ω) . (8.13)

By Proposition 8.19 we also have

a(0,t)(y, y−) ≥ νell‖y−‖2L2((0,t),V ) ≥ 0. (8.14)

Note that the reference to [Rou13, Lemma 7.2] in the proof of [Wac16a, Lemma 3.3] also
applies to our situation where V is not necessarily equal to H1(Ω). So [Wac16a, Lemma 3.3]
is applicable and we have∫ t

0

(
∂ty, y

−)
V ∗,V dt = 1

2‖y
−(t)‖2H −

1
2‖y

−(0)‖2H . (8.15)

We also have (
u− fy, y−

)
L2((0,t)×Ω) =

(
u− fy−, y−

)
L2((0,t)×Ω) ≤ 0. (8.16)

Inserting (8.14), (8.15) and (8.16) into (8.13) yields

1
2‖y

−(t)‖2H −
1
2‖y

−(0)‖2H ≤ 0.

But since y0 ≥ 0 we have y−(0) = y−0 = 0 and thus ‖y−(t)‖2H ≤ 0. Therefore y−(t) = 0 a.e.
in Ω. In turn, as t ∈ I was arbitrary, we find y− = 0 a.e. in Q.
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8.4 Existence Results and Estimates for Semilinear Parabolic PDEs

This section contains a general existence result for solutions of non-linear PDEs. The following
assumption shall hold throughout Section 8.4. We will refer to it explicitly.

Assumption 8.16 In Section 8.4 let I, Ω, Q, ΓD, ΣD, V , qu and A have the same properties
as in Section 2.2.1. Note that in particular Wqu ⊂ C(Ω̄) by Proposition 8.51. Let f̃(t, x, y) :
I × Ω× R→ R be a function satisfying:

• f̃(·, ·, y) is measurable for each y ∈ R,

• f̃ is locally Lipschitz continuous in y: For all M > 0 there is a LM > 0 such that

|f̃(t, x, y1)− f̃(t, x, y2)| ≤ LM |y1 − y2| ∀y1, y2 ∈ BM (0),

• f̃(t, x, ·) is monotonically increasing for a.e. (t, x) ∈ Q,

• f̃(0) ∈ Lqu(Q).

Theorem 8.17 Assume Assumption 8.16 holds. Let y0 ∈ Wqu, u ∈ Lqu(Q). There exists a
unique solution y of {

∂ty +Ay + f̃(y) = u,

y(0) = y0, y|ΣD = 0.
(8.17)

There is a κ∗ such for any κΩ ∈ [0, κ∗) and κI ∈ (0, 1) with

1
qu

(1 +N/2) + κΩ
2 < 1 and κI ∈

(
0, 1− 1

qu
(1 +N/2)− κΩ

2

)
there is a C > 0 such that

‖y‖CκI (I,CκΩ (Ω)) + ‖∂ty‖Lqu (Q) + ‖y‖L2(I,V ) + ‖Ay‖Lqu (Q) + ‖f̃(y)‖Lqu (Q)

≤ C
(
‖u− f̃(0)‖Lqu (Q) + ‖y0‖Wqu

)
.

The proof is split in multiple parts and consists of various existence and regularity results
spread over various articles and books. We collect the results throughout Section 8.4 and
start the proof of Theorem 8.17 on page 184.

Proposition 8.18 Under the assumptions of Theorem 8.17 and the additional assumption
|f̃(t, x, y)| ≤ C for all (t, x, y) ∈ Q × R the parabolic equation (8.17) has a unique solution
y ∈W (I) which satisfies

‖y‖C(Ī,H)∩L2(I,V ) ≤ C 6f̃
(
‖u− f̃(0)‖L2(Q) + ‖y0‖L2(Ω)

)
.

For M ≥ 0 we also have for yM := max(y −M, 0)

‖yM‖C(Ī,H)∩L2(I,V ) ≤ C 6f̃ , 6M
(
‖u− f̃(0)‖L2(Q) + ‖y0‖L2(Ω)

)
.

Proof. Note that [Trö09, Lemma 5.3] was proven for different boundary conditions, never-
theless the proof still applies with minor modifications and yields the existence of a solution
y ∈W (I) to (8.17).
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Now we can test (8.17) with y · 1(0,T ′) for T ′ ∈ I and get
∫ T ′

0
(∂ty, y)V ∗,V + (f̃(y)− f̃(0), y)H dt+ a(0,T ′)(y, y) =

∫ T ′

0
(u− f̃(0), y)H dt.

By partial integration, the monotonicity of f̃ and the ellipticity of A we get

1
2‖y(T ′)‖2H −

1
2‖y0‖2H + νell‖∇y‖2L2((0,T ′),H) ≤ ‖u− f̃(0)‖L2(I,H)‖y‖L2(0,T ′,H). (8.18)

This implies

‖y(T ′)‖2H ≤ 2‖u− f̃(0)‖L2(Q)‖y‖L2(0,T ′,H) + ‖y0‖2H .

By Lemma 8.3 this yields

‖y‖C(Ī,H) ≤ 2
√
T‖u− f̃(0)‖L2(I,H) + 1 +

√
3

2 ‖y0‖H ≤ 2
√
T‖u− f̃(0)‖L2(I,H) + 2‖y0‖H

and this implies

‖y‖L2(I,H) ≤ 2T‖u− f̃(0)‖L2(I,H) + 2
√
T‖y0‖H .

It remains to estimate ‖∇y‖L2(I,H). (8.18) implies

νell‖∇y‖2L2(I,H) ≤ ‖u− f̃(0)‖L2(I,H)
(
2T‖u− f̃(0)‖L2(I,H) + 2

√
T‖y0‖H

)
+ 1

2‖y0‖2H

=
(√

2T‖u− f̃(0)‖L2(I,H) + 1√
2
‖y0‖H

)2
.

Taking the root yields the desired estimate for ∇y. Note that all the constants do not depend
on f̃ .

Now letM ≥ 0. By Proposition 8.19 we have yM ∈ L2(I, V ) and ‖yM‖L2(I,V ) ≤ C 6M‖y‖L2(I,V ).
It is also clear that ‖yM‖C(Ī,H) ≤ ‖y‖C(Ī,H). Thus the second estimate follows from the first.

The following proposition can be seen as a variant of [KS80, II Proposition 5.3], which was
also used in the context of variational inequalities.

Proposition 8.19 Let Ω ⊂ RN be bounded and open. Let v ∈ H1(Ω) and M ≥ 0, then
vM := max(v − M, 0) lies in H1(Ω). Let V be as in Assumption 8.16. If v ∈ V , then
vM ∈ V . We also have

∇vM =
{

0 if v ≤M,

∇v if v > M.

Proof. Let v ∈ H1(Ω) by [KS80, Section II, Theorem A.1] we have vM ∈ H1(Ω) and the
given form of the gradient. To see that the boundary data are preserved let v ∈ V . Let
(vε)ε>0 ⊂ C∞ΓD(Ω) be a sequence approximating v ∈ V in the H1(Ω)-norm. Such a sequence
exists by the definition of V . Then by [KS80, Theorem A.1] we again have vMε ∈ H1(Ω), but
also vMε ∈ C(Ω̄) by construction. Thus for any x ∈ ΓD ⊂ ∂Ω we find

vε(x)−M = −M ≤ 0 =⇒ max(vε(x)−M, 0) = 0.
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Therefore vMε ∈ V by the characterization of V via the trace operator, see the discussion
above (2.5). We now show vMεn

n→∞−−−→ vM weakly H1(Ω), for an appropriate zero sequence.
Because V is closed and convex, by definition, it is weakly closed and thus vM ∈ V .

We have by the H1(Ω)-convergence of (vε)ε>0

‖vMε ‖H1(Ω) ≤ ‖vε −M‖H1(Ω) ≤ ‖vε‖H1(Ω) +M |Ω|
1
2 ≤ C.

Thus for any zero sequence (εn)n∈N there exists a subsequence, denoted by the same name,
such that (vεn)n∈N converges weakly in H1(Ω), a Hilbert space, to some ṽ. We show that
ṽ = vM . The squared norm ‖·‖2H is convex and continuous with respect to the H1(Ω)-norm
therefore it is weakly lower semi-continuous. This allows us to estimate

‖ṽ − vM‖2H ≤ lim inf
n→∞

‖vMεn − v
M‖2H ≤ lim inf

n→∞
‖vεn − v‖2H = 0.

Here we used the fact that max(·, 0) is a Lipschitz continuous mapping with Lipschitz constant
1 and the strong convergence vεn

n→∞−−−→ v in H1(Ω). We have shown ṽ = vM , where ṽ is the
weak H1(Ω)-limit of (vεn)n∈N. This concludes the proof as stated earlier.

The following result is almost [DtER15, Theorem 3.1]. A similar statement was also proven
in [USL88, Chapter V, Sections 1 and 2].

Theorem 8.20 Assume Assumption 8.16 holds. There exists a κ∗ > 0 such that the following
holds: if κΩ ∈ [0, κ∗) and κI ∈ (0, 1) satisfy

1
qu

(1 +N/2) + κΩ
2 < 1 and κI ∈

(
0, 1− 1

qu
(1 +N/2)− κΩ

2

)
(8.19)

then there is a C > 0 such that the following holds true: Let u ∈ Lqu(Q) and y0 ∈Wqu. Then
there exists a solution y ∈W (I) of{

∂ty +Ay = u,

y(0) = y0, y|ΣD = 0.
(8.20)

It lies in CκI (I, CκΩ(Ω)) with

‖y‖CκI (I,CκΩ (Ω)) + ‖y‖L2(I,V ) + ‖∂ty‖Lqu (Q) + ‖Ay‖Lqu (Q) ≤ C
(
‖u‖Lqu (Q) + ‖y0‖Wqu

)
.

Proof. By [BN18, Propositions A.2, A.3] Ω satisfies the regularity assumptions [DtER15,
Assumptions 2.3, 2.4, 2.5]. Thus [DtER15, Theorem 2.9b)] is applicable and gives that
A : domqu(A)→ Lqu(Ω) has maximal parabolic Lqu(I, Lqu(Ω))-regularity. By [Ama04, Propo-
sition 3.1] this implies that there exists a unique solution to (8.20) satisfying:

‖∂ty‖Lqu (Q) + ‖Ay‖Lqu (Q) ≤ C
(
‖u‖Lqu (Q) + ‖y0‖Wqu

)
.

Note that we cheated a little bit: [DtER15] was written for N ≥ 2, while would like to
admit N = 1 as well. The arguments so far do not really depend on the dimension as a
one-dimensional domain, an interval, has arbitrary regularity.

[DtER15, Theorem 3.1] contains the Hölder estimate of the given form for N ≥ 2. For N = 1,
however, we see the regularity directly by Theorem 1.34 with κ∗ = 1− qu−1(1 +N/2).
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Remark 8.21 The results of [DtER15] are far more general that we let on. It would be
possible in fact, to use more general domains than Lipschitz domains, for example Gröger
regular domains that were introduced in [GR89]. To see that those domains are more general
see [HDR09, Section 7.3].

It also be possible to use right hand sides that are in Ls(I, Lp(Ω)) for different s and p,
but this theorem suffices for our presentation. We are mostly interested in the application
of those regularity results in special domains, together with high regularity of the control u
provided by control constraints, c.f. Proposition 2.36 and Remark 4.62.

Proof of Theorem 8.17. By considering u− f̃(0) instead of u we may assume f̃(0) = 0. Then
for k ≥ 0 consider

f̃k(t, x, y) :=


f̃(t, x, k) if k ≤ y,
f̃(t, x, y) if − k < y < k,

f̃(t, x,−k) if y ≤ −k.

By Proposition 8.18 the problem{
∂tyk +Ayk + f̃k(yk) = u,

yk(0) = y0, yk|ΣD = 0
(8.21)

has a unique solution yk satisfying

‖yk‖C(Ī,H) + ‖y‖L2(I,V ) ≤ C 6k
(
‖u‖Lqu (Q) + ‖y0‖L2(Ω)

)
.

Just as in the proof of Lemma 2.26 one can show:

‖f̃k(yk)‖Lqu (Q) ≤ CLip, 6k
(
‖u‖Lqu (Q) + ‖y0‖L∞(Ω)

)
. (8.22)

The C does only depend on the Lipschitz constant of f̃k on the Ball B‖y0‖L∞(Ω) . This is
obviously the same Lipschitz constant as for f̃ , on the ball B‖y0‖L∞(Ω) . Therefore yk is the
unique solution of {

∂tyk +Ayk = u− f̃k(yk) in Q,
yk(0) = y0, yk|ΣD = 0.

(8.23)

By Theorem 8.20 there are κ∗, C > 0 such that for all κΩ ∈ (0, κ∗] and κI ∈ (0, 1) satisfying
(8.19) we have

‖yk‖CκI (I,CκΩ (Ω)) + ‖yk‖L2(I,V ) + ‖∂tyk‖Lqu (Q) + ‖Ayk‖Lqu (Q)

≤ C
(
‖u− f̃k(yk)‖Lqu (Q) + ‖y0‖Wqu

)
.

(8.24)

Here no constant depends on k or u. By (8.22) and Wqu ⊂ C(Ω̄) from Proposition 8.51 we
find

‖yk‖CκI (I,CκΩ (Ω)) + ‖∂tyk‖Lqu (Q) + ‖yk‖L2(I,V ) + ‖Ayk‖Lqu (Q)

≤ C 6k
(
‖u‖Lqu (Q) + ‖y0‖Wqu

)
.

Note that the right hand side does not depend on k. So choosing

k > C 6k
(
‖u‖Lqu (Q) + ‖y0‖Wqu

)
≥ ‖yk‖L∞(Q)

we have f̃k(yk) = f̃(yk) and yk is the unique solution to (8.17).
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Theorem 8.22 Let everything be as in Assumption 8.16. The solution operator belonging to
(8.17) is Lipschitz continuous from Lqu(Q) to L∞(Q) with a Lipschitz constant independent
of the non-linearity f̃ .

If one could prove that taking the positive part of a y0 ∈Wqu implies y+
0 ∈Wqu , it would be

straight forward to extend the result to Lipschitz continuity of the operator from Lqu(Q) ×
Wqu → L∞(Q).

Proof. Let u1, u2 ∈ Lqu(Q), y0 ∈Wqu and y1, y2 the corresponding solutions to (8.17). Sub-
tracting the equations for the states yields, abbreviating δu := u1 − u2 and δy := y1 − y2,

δu = ∂tδy +Aδy + f̃(y1)− f̃(y2) = ∂δy +Aδy +
∫ 1

0
f̃ ′(y2 + sδy) ds δy a.e. in Q

by the regularities of y1 and y2 from Theorem 8.17. We abbreviate a :=
∫ 1

0 f̃
′(y2 + sδy) ds.

By the monotonicity of f̃ we have a ≥ 0. We denote the positive and negative part of δu by
δu±, respectively. We then denote by δyp/m the solutions to{

∂tδy
p +Aδyp + ayp = δu+ in Q,

δyp(0) = 0, δyp|Σ = 0.
and

{
∂tδy

m +Aδym + aym = δu− in Q,
δym(0) = 0, δym|Σ = 0.

They exist by Theorem 8.17. By the maximum principle from Theorem 8.15 we find δyp ≥ 0
and δym ≤ 0. We also have the usual Lebesgue decomposition of δy into positive and
negative parts: δy = δy+ +δy−. Let (t, x) ∈ Q with δy(t, x) ≥ 0. Then δy+(t, x) = δy(t, x) =
δyp(t, x) + δym(t, x). Thus δyp(t, x) ≥ δy+(t, x). We can therefore conclude δyp ≥ δy+ on Q.
Analogously we can deduce δym ≤ δy−.

We define ŷ as the solution to {
∂tŷ +Aŷ = δu+,

ŷ(0) = 0, ŷ|Σ = 0.

It exists and exhibits high regularity by Theorem 8.17. We can compare this to δyp and see

∂tδy
p +Aδyp = δu+ − ayp ≤ δu+ = ∂tŷ +Aŷ a.e. in Q.

By Theorem 8.15 we find

0 ≤ δy+ ≤ δyp ≤ ŷ ≤ ‖ŷ‖L∞(Q).

By Theorem 8.17 applied to ŷ we find thus

0 ≤ δy+ ≤ C‖δu+‖Lqu (Q) ≤ C‖δu‖Lqu (Q).

Note that this C does not depend on a or f̃ by the definition of ŷ.

Arguing analogously for δy− yields the claim.

The following statements are just a corollary/restating of the well-known results of [Gri11]
on elliptic regularity.
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Theorem 8.23 In addition to the assumptions in Assumption 8.16 let Ω be a C1,1-domain,
let A have C0,1(Ω)-coefficients and assume V = H1

0 (Ω). Let p ∈ [2,∞). Then there is a
C 6p > 0 such that for every u ∈ Lp(Ω) and the solution y of{

Ay = u on Ω,
y|∂Ω = 0

one has

‖y‖W 2,p(Ω) ≤ C 6p
p2

p− 1‖u‖Lp(Ω).

Proof. This is just the well-known result about higher elliptic regularity, see for example
[Gri11, Lemma 2.4.2.1, Theorem 2.4.2.5] or [GT01, Theorem 9.15, Lemma 9.17]. The be-
haviour of the constant can be obtained by tracking it throughout the proofs of [GT01].

Corollary 8.24 In addition to the assumptions in Assumption 8.16 let Ω be a C1,1-domain,
let A have C0,1(Ω)-coefficients and assume V = H1

0 (Ω). Then we have

‖y‖
W 1,2
qu (Q) ≤ Cqu

(
‖u− f̃(0)‖Lqu (Q) + ‖y0‖Wqu

)
.

Here Cqu > 0 does not depend on y or u, but only on the same quantities as in Theorem 8.17.

If we additionally have that Ω is a C2-domain we have

‖y‖
W 1,2
qu (Q) ≤ C 6ququ

2
(
‖u− f̃(0)‖Lqu (Q) + ‖y0‖Wqu

)
.

Here C 6qu > 0 does not depend on y, u or qu, but only on the same quantities as in Theo-
rem 8.17.

Proof. The first claim is a simple combination of Theorem 8.23 with Theorem 8.17.

Under the higher regularity assumptions Lemma 8.53 and Remark 8.54 apply. Therefore
Corollary 8.50, rescaled to (0, T ) = I, together with Theorem 8.17 imply that (8.24), in the
proof of Theorem 8.17, can be improved to

‖yk‖CκI (I,CκΩ (Ω)) + ‖yk‖L2(I,V ) + ‖∂tyk‖Lqu (Q) + ‖Ayk‖Lqu (Q)

≤ C 6qu
qu

2

qu − 1
(
‖u− f̃k(yk)‖Lqu (Q) + ‖y0‖Wqu

)
.

Using this new knowledge about the behaviour of the constant the proof of Theorem 8.17
entails in particular

‖∂ty‖Lqu (Q) + ‖Ay‖Lqu (Q) ≤ C 6qu
qu

2

qu − 1
(
‖u‖Lqu (Q) + ‖y0‖Wqu

)
.

This together with the higher elliptic regularity from Theorem 8.23 yields the claim.

Lemma 8.25 Assume A = −∆ and that Ω ⊂ R2 is a polygonal domain. That means we can
decompose its boundary in Γ1,Γ2 . . . ,ΓM edges. By ωj ∈ (0, 2π) we denote the angles between
Γj and Γj+1 with ΓM+1 = Γ1. We assume that the Dirichlet boundary ΓD is a union of edges
of ∂Ω.

We define

Φj :=
{

0 if Γj 6⊂ ΓD,
π
2 if Γj ⊂ ΓD,
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for j = 1, . . . ,M with ΦM+1 := Φ1. We assume ΓD 6= ∅.

Let p ∈ (2,∞). We assume that following assumptions hold: For any j = 1, . . . ,M we have

1
π

(
Φj+1 − Φj −

2
q
ωj

)
6∈ Z.

Here q := p
p−1 . For all k ∈ Z one shall have

Φj+1 − Φj + kπ

ωj
=: λj,k ≤ −

2
q

or λj,k ≥ 0 or λj,k = −1.

Then each solution y ∈ H1(Ω) to{
−∆y = u in Ω,
y|ΓD = 0, ∂νy|∂Ω\ΓD = 0,

(8.25)

with u ∈ Lp(Ω) satisfies

‖y‖W 2,p(Ω) ≤ C‖u‖Lp(Ω)

for a constant C > 0 depending on p, but not on y or u.

It is possible to show higher regularity results for y even if ΓD = ∅ by the same chapters
of [Gri11]. We do not develop this further as the focus of this thesis lies mostly on smooth
domains.

Proof. Let p ∈ (2,∞). By [Gri11, Theorem 4.4.3.7] there is a unique solution y ∈ W 2,p(Ω)
to (8.25). By [Gri11, Theorem 4.3.2.4] and [Gri11, Remark 4.3.2.5] we have

‖y‖W 2,p(Ω) ≤ C(‖u‖Lp(Ω) + ‖y‖Lp(Ω)). (8.26)

We have N = 2 so we find by standard Sobolev embeddings ‖y‖Lp(Ω) ≤ C‖y‖H1(Ω). By stan-
dard ellipticity estimates we also have ‖y‖H1(Ω) ≤ C‖u‖Lp(Ω) since the Poincaré inequality,
e.g. [Eva98, Theorem 5.6.3], yields the ellipticity of A by the assumption ΓD 6= ∅. Using
these two estimates in (8.26) yields the claim.

Proposition 8.26 Assume that Ω ⊂ R2 is a polygonal domain. That means we can decom-
pose its boundary in Γ1,Γ2, . . . ,ΓM edges. By ωj ∈ (0, 2π) we denote the angles between Γj
and Γj+1 with ΓM+1 = Γ1. We assume that the Dirichlet boundary ΓD is a union of edges of
∂Ω.

We define

Φj :=
{

0 if Γj 6⊂ ΓD,
π
2 if Γj ⊂ ΓD,

for j = 1, . . . ,M with ΦM+1 := Φ1. We further define for j = 1, 2, . . . ,M

ωlim,j :=
{
π
2 if Φj = Φj+1,
π
4 if Φj 6= Φj+1.
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Let p ∈ (1,∞) and j ∈ {1, 2, . . . ,M}. If ωj ≤ ωlim,j or p < ωj
ωj−ωlim,j we have

1
π

(
Φj+1 − Φj −

2
q
ωj

)
6∈ Z. (8.27)

Here q := p
p−1 . We then also have

Φj+1 − Φj + kπ

ωj
=: λj,k ≤ −

2
q

or λj,k ≥ 0. (8.28)

Proof. Let all the quantities be as above. To make the proofs more readable, we drop the
index j from ωj and ωlim,j .

We first consider the case Φj+1 = Φj. We first show (8.28) and then (8.27). If 0 ≤ k ∈ Z, we
immediately see λj,k ≥ 0. If 0 > k ∈ Z the first inequality in (8.28) is equivalent to

k ≤ − 2
π

1
q
ω.

By assumption we have either ω ≤ ωlim or q = p
p−1 >

ω
ωlim

. In the first case we find

0 > − 2
π

1
q
ω ≥ − 2

π

1
q
ωlim = −1

q
> −1 ≥ k. (8.29)

In the second case we find

0 > − 2
π

1
q
ω > − 2

π
ωlim = −1 ≥ k. (8.30)

This shows (8.28). Now (8.29) and (8.30) immediately imply (8.27).

We now consider the case Φj+1 = Φj + π
2 . The last case Φj+1 = Φj − π

2 follows by shifting k
in the following arguments. Again, if 0 ≤ k ∈ Z, we immediately see λj,k ≥ 0. If 0 > k ∈ Z
the first inequality in (8.28) is equivalent to

1
2 + k ≤ − 2

π

1
q
ω.

If ω ≤ ωlim we find

0 > − 2
π

1
q
ω ≥ − 2

π

1
q
ωlim = − 1

2q > −
1
2 ≥ k + 1

2 .

If q > ω
ωlim

we find

0 > − 2
π

1
q
ω > − 2

π
ωlim = −1

2 ≥ k + 1
2 .

Now (8.29) and (8.30) once again imply (8.27).

Combining Lemma 8.25 and Proposition 8.26 immediately implies the following result.

Corollary 8.27 Assume A = −∆ and that Ω ⊂ R2 is a polygonal domain. That means we
can decompose its boundary in Γ1,Γ2, . . . ,ΓM edges. By ωj ∈ (0, 2π) we denote the angles
between Γj and Γj+1 with ΓM+1 = Γ1. We assume that the Dirichlet boundary ΓD is a union
of edges of ∂Ω. We assume ΓD 6= ∅. Let p ∈ (2,∞).
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We define

Φj :=
{

0 if Γj 6⊂ ΓD,
π
2 if Γj ⊂ ΓD,

for j = 1, . . . ,M with ΦM+1 := Φ1. We further define for j = 1, 2, . . . ,M

ωlim,j :=
{
π
2 if Φj = Φj+1,
π
4 if Φj 6= Φj+1.

For each j ∈ {1, 2, . . . ,M} we assume ωj ≤ ωlim,j or p < ωj
ωj−ωlim,j .

Then each solution y ∈ H1(Ω) to{
−∆y = u in Ω,
y|ΓD = 0, ∂νy|∂Ω\D = 0,

(8.31)

with u ∈ Lp(Ω) satisfies

‖y‖W 2,p(Ω) ≤ C‖u‖Lp(Ω)

for a constant C > 0 depending on p, but not on y or u.

8.5 Minor Results on Finite Element Spaces

Throughout Section 8.5 we assume that the definitions and implicit assumptions of Sec-
tion 4.1.1 apply. This includes the assumptions in Section 2.2.1 as they hold for the whole of
Chapter 4.

The following estimates on the Jacobian of the element transformation JK , see Definition 4.1,
are well-known, but for simple referencing we restate it.

Proposition 8.28 Let (Kh)h>0 be a family of quasi-uniform meshes. We have for some
C1, C2 > 0

C1h
N ≤ |det(DJK(x))| ≤ C2h

N ∀K ∈ Kh, x ∈ K.

If (Kh)h>0 is additionally shape regular we have for some C1, C2 > 0 and all x ∈ K

‖DJK(x)‖ ≤ Ch and ‖D(J−1
K )(x)‖ ≤ Ch−1.

Proof. In [EG04, Lemma 1.100] the well-known estimates

|det(DJK)| = |K|
|K̂|

, ‖DJK‖ ≤
hK
ρK̂

, ‖D(J−1
K )‖ ≤

hK̂
ρK

are proven. The claims are now an immediate estimate of the quasi-uniformity and, when
required, shape regularity.

189



8 Appendix

The next two results are devoted to a short recap and generalization of parts of [BTW03].
The results given there are made for “sufficiently smooth domains” and the Laplacian. We
were interested in the least regularity required to obtain the same results by essentially the
same proofs. The following proposition is a generalization of [BTW03, Theorem A.1]. Note
that there is a small typo in the statement of [BTW03, Theorem A.1]: W 1,∞(Ω) instead of
W 1,∞(Ω) ∩ C0(Ω).

Proposition 8.29 Assume Ω is a C3,α-domain and A has C1,α(Ω)-coefficients for some
α ∈ (0, 1). Let (Kh)h∈(0,1] be a family of meshes satisfying Assumption 4.14.

Define ρxh(y) :=
(
|x− y|2 + h2) 1

2 for x, y ∈ Ω. Then there is a C > 0 such that for any
W 1,∞(Ω) ∩ C0(Ω̄), its Ritz projection vh and any we have x ∈ Ωh

|∇vh(x)| ≤ C‖∇v‖L∞(Ωh) + ‖(ρxh(y))−Nv‖L1(∂Ωh).

Proof. The proof of [BTW03, Theorem A.1] is immediately applicable. It only requires the
existence of a Green’s function G(x, y) which satisfies the bounds

|∇xG(x, y)| ≤ C|x− y|1−N ,
|∇2

xG(x, y)| ≤ C|x− y|−N ,
|∇2

x∇yG(x, y)| ≤ C|x− y|−1−N .

This is true by Proposition 4.22. The fact that we use a general symmetric, uniformly elliptic
operator with Lipschitz continuous coefficients does not change the proof at all. Just note
that H2(Ω) ↪→ C(Ω̄) for N ≤ 3, that is why we can use the nodal interpolant of H2(Ω)
functions freely and do not require the use of a different kind of interpolant, see the proof of
[BTW03, (A.15)].

Remark 8.30 It is possible to generalize the result to dimensions greater than 3. But then one
can longer use the nodal interpolant for v ∈ H2(Ω). In fact the authors of [BTW03] use Scott-
Zhang type interpolants, see for example [SZ90]. However, their estimates for Scott-Zhang
type interpolants require convexity of the domain, which we would like to avoid.

Corollary 8.31 Assume Ω is a C3,α-domain and that A has C1,α(Ω)-coefficients for some
α ∈ (0, 1). Let (Kh)h∈(0,1] a family of meshes such that Assumption 4.14 holds.

Then there is a C > 0 independent of h such that for any W 1,∞(Ω) ∩ C0(Ω) and its Ritz-
projection vh ∈ Ṽh we have

‖vh‖W 1,∞(Ω) ≤ C‖v‖W 1,∞(Ωh) + Ch‖v‖W 1,∞(Ω\Ωh).

Proof. By the remark under [BTW03, Theorem A.1] Proposition 8.29 implies the desired
result.

8.6 Interpolation Spaces

The following Sections 8.6 to 8.8 were all created in very close collaboration with Lucas
Bonifacius1 and were also used in his dissertation ([Bon18, Section 5.3.3, Section A.1, Section
A.6]).

1 Lucas Bonifacius, formerly: TU München, Lehrstuhl für Optimalsteuerung, Department of Mathemat-
ics, Boltzmannstr. 3, 85748 Garching b. München, Germany (lucas.bonifacius@ma.tum.de, https:
//www-m17.ma.tum.de/Lehrstuhl/LucasBonifacius).
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8.6 Interpolation Spaces

We collect several well-known properties of interpolation spaces. For further information we
refer to the monographs [BL76, Tri78, Lun09]. To facilitate access to the individual topics,
this appendix is rendered as self-contained as possible. Furthermore, since for the pointwise
discretization error estimate we require the precise dependencies of the constants, we will
state them explicitly.

Let X and Y be real or complex Banach spaces. The couple {X,Y } is called an interpolation
couple, if both X and Y are continuously embedded into a linear Hausdorff space V. Then
the space X ∩ Y equipped with the norm

‖u‖X∩Y = max { ‖u‖X , ‖u‖Y }

is a linear subspace of V. Moreover, the space X + Y with the norm

‖u‖X+Y = inf
x∈X,y∈Y
u=x+y

‖x‖X + ‖y‖Y

is also a linear subspace of V. The interpolation theory is concerned with intermediate spaces,
i.e. is any Banach space E such that

X ∩ Y ↪→ E ↪→ X + Y.

An intermediate space E is called interpolation space, if for every linear operator T ∈ L(X+Y )
whose restriction to X belongs to L(X) and whose restriction to Y belongs to L(Y ), the
restriction of T to E belongs to L(E).

In the following we will introduce the K-method and the trace method that lead to the
so-called real interpolation spaces. Thereafter, we will discuss the connection of real interpo-
lation spaces and domains of fractional powers of sectorial operators.

Given a Banach space X, let Ls∗(R+;X) denote the space of s integrable functions with values
in X with respect to the measure dt/t. Moreover, we set L∞∗ (R+;X) = L∞(R+;X). For
X = R and any s we write Ls(R+;R) =: Ls(R+).

The K-method

Let {X,Y } be an interpolation couple. For t ∈ (0,∞) and u ∈ V the K-functional is defined
as

K(t, u,X, Y ) = inf
x∈X,u−x∈Y

[‖x‖X + t‖u− x‖Y ] .

For τ ∈ (0, 1) and 1 ≤ s ≤ ∞ we define the real interpolation space

(X,Y )τ,s := {u ∈ X + Y : t 7→ t−τK(t, u,X, Y ) ∈ Ls∗(R+) }

equipped with the norm
‖u‖τ,s = ‖t−τK(t, u,X, Y )‖Ls∗(R+);

see, e.g. [Lun09, Section 1.1]. If ambiguity is not to be expected, we simply write K(t, u)
instead of K(t, u, Y,X). In this thesis the norm of the real interpolation space is always
defined by the K-functional as above, if not indicated otherwise.

Proposition 8.32 Let τ ∈ (0, 1), 1 ≤ s ≤ ∞, and {X,Y } an interpolation couple such that
Y ↪→ X with embedding constant C. Then for any u ∈ (X,Y )τ,s

‖u‖τ,s ≤
(

s

(s− τ)τ

)1/s
C1−τ/s‖u‖Y

if s <∞ and
‖u‖τ,∞ ≤ C1−τ‖u‖Y .
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Remark 8.33 A common choice for us will be s ∈ (s0,∞) for some s0 > 1 and τ := 1− 1/s.
Then the constant from Proposition 8.32 stays bounded for large s, since

(
s

(s− τ)τ

)1/s
=
(

s

(s− 1 + 1
s )(1− 1

s )

)1/s

≤
(

s2

(s− 1)2

)1/s

≤ 1
(s0 − 1)2

(
s1/s

)2
.

Proof of Proposition 8.32. Let τ ∈ (0, 1), 1 ≤ s ≤ ∞, and u ∈ (X,Y )τ,s. Then by the
definition of the K-functional we obtain

K(t, u,X, Y ) ≤ min(t‖u‖Y , ‖u‖X) ≤ min(t, C)‖u‖Y .

For s =∞ we now immediately see

‖u‖τ,∞ ≤ sup
t∈(0,∞)

t−τ min(t, C)‖u‖Y ≤ C1−τ‖u‖Y .

For s <∞ we split the integral in the definition of the norm and obtain

‖u‖sτ,s ≤
∫ C

0
t−τ ts‖u‖sY

dt
t

+
∫ ∞
C

t−τCs‖u‖sY
dt
t

=
( 1
s− τ

ts−τ |C0 −
1
τ
t−τ |∞C Cs

)
‖u‖sY =

( 1
s− τ

+ 1
τ

)
Cs−τ‖u‖sY .

Taking the s-th root yields the claim.

Proposition 8.34 Let τ ∈ (0, 1), 1 ≤ s1 ≤ s2 ≤ ∞. Then

(X,Y )τ,s1 ↪→ (X,Y )τ,s2

with embedding constant bounded by c(τ, s1, s2) = [s1 min { τ, 1− τ }]1/s1−1/s2. For the case
s1 = s2 =∞ we obviously have c(τ, s1, s2) = 1.

Proof. See proof of [Lun09, Proposition 1.1.3].

Proposition 8.35 Suppose Y ↪→ X. If 0 < τ1 < τ2 < 1, then

(X,Y )τ2,∞ ↪→ (X,Y )τ1,1

with embedding constant bounded by c(τ1, τ2) = (τ2 − τ1)−1 + τ−1
1 .

Proof. See proof of [Lun09, Proposition 1.1.4].

Combination of Propositions 8.34 and 8.35 immediately implies the following embedding; see
also [Tri78, Theorem 1.3.3 e)].

Proposition 8.36 Suppose Y ↪→ X. If 0 < τ1 < τ2 < 1 and 1 ≤ s1, s2 ≤ ∞, then

(X,Y )τ2,s1 ↪→ (X,Y )τ1,s2

with embedding constant bounded by c(τ1, τ2, s1, s2) = c(τ2, s1,∞)c(τ1, τ2)c(τ1, 1, s2).

Remark 8.37 For the particular choice τ1 = 1− 2/r, τ2 = 1− 1/r, s1 = r, and s2 = p for any
r > 2 and p > 1, the embedding constant of Proposition 8.36 is bounded by

c(1− 2/r, 1− 1/r, r, p) =
[
rmin

{
1− 1

r
,
1
r

}]1/r
(
r +

(
1− 1

r

)−1
)[

pmin
{

1− 2
r
,
2
r

}]1−1/p

≤ r1/r(r + 1)p1−1/p ≤ cr.
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The trace method

Let γ0 denote the trace mapping, i.e. γ0u = u(0). Moreover, for τ ∈ (0, 1) set

v0,1−τ (t) = t1−τv(t) and v1,1−τ (t) = t1−τ∂tv(t)

and introduce the trace space as

V (s, 1− τ, Y,X) := { γ0v : v0,1−τ ∈ Ls∗(R+;Y ), v1,1−τ ∈ Ls∗(R+;X) } ,

equipped with the norm

‖u‖Tr
τ,s = inf { ‖v0,1−τ‖Ls∗(R+;Y ) + ‖v1,1−τ‖Ls∗(R+;X) : γ0v = u } .

It is well-known that the trace method is equivalent to the K-method and thus leads to the
same interpolation spaces. More specifically, it holds

Proposition 8.38 Let {X,Y } be an interpolation couple, τ ∈ (0, 1), 1 ≤ s ≤ ∞. Then

V (s, 1− τ, Y,X) = (X,Y )τ,s

with equivalent norms. Precisely, it holds

‖u‖τ,s ≤
1
τ
‖u‖Tr

τ,s ≤
2
τ

(
2 + 1

τ

)
‖u‖τ,s.

Proof. See [Lun09, Proposition 1.2.2], where also constants are given explicitly in the proof.

The trace method yields an important embedding result for spaces of maximal parabolic
regularity.

Proposition 8.39 Let T > 0 and X,Y be Banach spaces that satisfy the assumptions from
Lemma 1.31. If s ∈ (1,∞), then

W 1,s((0, T );X) ∩ Ls((0, T );Y ) ↪→ C([0, T ]; (X,Y )1−1/s,s). (8.32)

If τ ∈ (0, 1− 1
s ), then

W 1,s((0, T );X) ∩ Ls(I;Y ) ↪→ Cα((0, T ); (X,Y )τ,1), 0 ≤ α < 1− 1
s
− τ . (8.33)

Moreover, the embedding constants are bounded by

c(8.32)(s) = cs

s− 1 and c(8.33)(τ, s) = 2
(
c(8.32)(s)

)τ/(1−1/s)
.

Proof. The embedding constant for (8.33) is explicitly verified in the proof of [DtER15,
Lemma 3.4 b)]. Precisely, the constant for (8.33) is bounded by 2cλ with λ = τ/(1 − 1/s)
and c from (8.32). For these reasons, it remains to verify the dependencies of (8.32), where
we follow the ideas of [Ama95, Theorem III.4.10.2].

For the particular choice τ = 1− 1/s, the trace space becomes

V (s, 1/s, Y,X) := { γ0v : v ∈W 1,s(R+;X) ∩ Ls(R+;Y ) } ,
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equipped with the norm
‖u‖Tr

1−1/s,s = inf { ‖v‖W 1,s(R+;X)∩Ls(R+;Y ) : γ0v = u } .

Clearly, the trace mapping γ0 : W 1,s(R+;X) ∩ Ls(R+;Y ) → V (s, 1/s, Y,X) is linear and
continuous with norm less than or equal to one.

Let λt denote the semigroup of left translations, i.e. λtu(t′) = u(t + t′) for all t, t′ ≥ 0. It is
easily verified that λt is a contraction semigroup on W 1,s(R+;X) ∩Ls(R+;Y ). Moreover, λt
is strongly continuous; cf. [Ama95, Lemma III.4.10.1 (i)]. Noting that γ0λtu = u(t), we infer

‖u(t)‖Tr
1−1/s,s ≤ ‖λtu‖W 1,s(R+;X)∩Ls(R+;Y ) ≤ ‖u‖W 1,s(R+;X)∩Ls(R+;Y ), t ≥ 0.

Furthermore, if 0 ≤ t < t′ <∞, we have
‖u(t′)− u(t)‖Tr

1−1/s,s ≤ ‖λt(λt′−t − 1)u‖W 1,s(R+;X)∩Ls(R+;Y )

≤ ‖(λt′−t − 1)u‖W 1,s(R+;X)∩Ls(R+;Y )

for all u ∈ W 1,s(R+;X) ∩ Ls(R+;Y ). Employing strong continuity of λt, we deduce that
u : R+ → V (s, 1/s, Y,X) is continuous. In summary,

W 1,s(R+;X) ∩ Ls(R+;Y ) ↪→ C(R+;V (s, 1/s, Y,X))
with embedding constant less than or equal to one.

To prove (8.32), we use the result on R+ combined with a retraction/coretraction argument.
Let u ∈ D([0, T );Y ), where D([0, T );Y ) denotes the space of Y valued C∞-functions on [0, T )
with compact supports. We define the reflection of u as

û(t) =
{
u(t), if 0 ≤ t ≤ T,
u(2T − t), if T < t ≤ 2T.

Let η ∈ C∞(R+) be a smooth cut-off function such that η equals one on [0, (4/3)T ] and
vanishes on [(5/3)T,∞). Then we define the extension of u by Eu = ηû. Since D([0, T );Y )
is dense in W 1,s((0, T );X) ∩ Ls((0, T );Y ) (see for example Lemma 1.31), we obtain

‖Eu‖W 1,s(R+;X)∩Ls(R+;Y ) ≤ 2‖η‖C1(R+)‖u‖W 1,s((0,T );X)∩Ls((0,T );Y )

for all u ∈W 1,s((0, T );X) ∩ Ls((0, T );Y ). Thus, for any t ∈ [0, T ),
‖u(t)‖Tr

1−1/s,s = ‖(Eu)(t)‖Tr
1−1/s,s ≤ ‖Eu‖W 1,s(R+;X)∩Ls(R+;Y )

≤ c‖u‖W 1,s((0,T );X)∩Ls((0,T );Y ),

with c = 2‖η‖C1(R+), which is independent of s. Finally, according to Proposition 8.38 it
holds V (s, 1/s, Y,X) = (X,Y )1−1/s,s and

‖u‖1−1/s,s ≤
s

s− 1‖u‖
Tr
1−1/s,s,

which yields (8.32).

We will frequently use the following embeddings for spaces of maximal parabolic regularity;
see Proposition 8.39. Let X and Y be Banach spaces such that they satisfy the assumptions
from Lemma 1.31 and s ∈ (1,∞). Then

W 1,s(I;X) ∩ Ls(I;Y ) ↪→ C([0, T ]; (X,Y )1−1/s,s). (8.34)

If τ ∈ (0, 1− 1
s ), then

W 1,s(I;X) ∩ Ls(I;Y ) ↪→ Cα(I; (X,Y )τ,1), 0 ≤ α < 1− 1
s
− τ . (8.35)

Furthermore, the embedding constants can be chosen uniformly for s ∈ [2,∞) and τ ∈
(0, 1).
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Intermediate spaces and the reiteration theorem

Let {X,Y } be an interpolation couple, 0 ≤ θ ≤ 1, and E be an intermediate space, i.e.
X ∩ Y ↪→ E ↪→ X + Y . The space E is said to belong to the class Jθ(X,Y ) between X and
Y if there is c > 0 such that

‖x‖E ≤ c‖x‖1−θX ‖x‖θY , x ∈ X ∩ Y.

We write E ∈ Jθ(X,Y ) for short. It holds the following reiteration theorem.

Proposition 8.40 Let 0 ≤ θ0 < θ1 ≤ 1 and τ ∈ (0, 1). If Ei ∈ Jθi(X,Y ), i = 0, 1, then

(X,Y )(1−τ)θ0+τθ1,s ↪→ (E0, E1)τ,s, s ∈ [1,∞].

Moreover, the embedding constant is bounded by

2(θ1 − θ0)−1−1/s(1 + 3θ−1)(c0 + c1(1− τ)−1)τ−2
(

2 + 1
τ

)
where ci denotes the constant from the definition of the class Jθi(X,Y ) and θ := (1−τ)θ0+τθ1.

Before we give a proof of Proposition 8.40, we have to trace the constants mentioned in
[Lun09, Remark 1.2.4].

Proposition 8.41 For each v ∈ V (p, 1− θ, Y,X), with θ ∈ (0, 1), we have that the mean

w(t) := 1
t

∫ t

0
v(s) ds, t > 0,

satisfies the estimate

‖t1−θw‖Lp∗(R+;Y ) + ‖t2−θw′‖Lp∗(R+;Y ) + ‖t1−θw′‖Lp∗(R+;X)

≤
(

1 + 3
θ

)(
‖v0,1−θ‖Lp∗(R+;Y ) + ‖v1,1−θ‖Lp∗(R+;X)

)
. (8.36)

We also have γ0w = γ0v.

Proof. Let v and w be as above. First note that the derivative of w is given by

w′(t) = − 1
t2

∫ t

0
v(s) ds+ 1

t
v(t)

= 1
t

(−w(t) + v(t)) = 1
t2

∫ t

0
−v(s) + v(t) ds.

(8.37)

We estimate the first summand in (8.36), using [Lun09, Corollary A.3.1]

‖t1−θw‖Lp∗(R+;Y ) ≤
1
θ
‖t1−θv‖Lp∗(R+;Y ) = 1

θ
‖v0,1−θ‖Lp∗(R+;Y ). (8.38)

As a consequence, the second summand in (8.36) can now be estimated as

‖t2−θw′‖Lp∗(R+;Y ) = ‖t1−θ(−w(t) + v(t))‖Lp∗(R+;Y )

≤ ‖t1−θw(t)‖Lp∗(R+;Y ) + ‖t1−θv(t)‖Lp∗(R+;Y )

≤
(

1 + 1
θ

)
‖v0,1−θ‖Lp∗(R+;Y ).

(8.39)
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The third summand in (8.36) can be estimated employing the last expression of (8.37). Thus,

‖w′(t)‖X ≤ ‖
1
t2

∫ t

0

∫ t

s
v′(σ) dσ ds‖X

≤ 1
t2

∫ t

0

∫ t

0
‖v′(σ)‖X dσ ds ≤

1
t

∫ t

0
‖v′(σ)‖X dσ.

Now we have

‖t1−θw′‖p
Lp∗(R+;X) =

∫ ∞
0

t(1−θ)p‖w′‖pX
dt
t
≤
∫ ∞

0
t−θp

(∫ t

0
σ‖v′(σ)‖X

dσ
σ

)p dt
t
.

Now the Hardy-Young inequality, see, e.g. [Lun09, Equation (A.3.1)], leads to

‖t1−θw′‖p
Lp∗(R+;X) ≤ θ

−p
∫ ∞

0
s−θp

(
s‖v′(s)‖X

)p ds
s

= θ−p
∫ ∞

0
s(1−θ)p‖v′(s)‖pX

ds
s

= θ−p‖v1,1−θ‖pLp∗(R+;X).

(8.40)

Thus the desired inequality follows by adding (8.38), (8.39), and the p-th root of (8.40).

The last statement directly follows from continuity of v: For t > 0, we have

|1
t

∫ t

0
v(s) ds− γ0v| = |

1
t

∫ t

0
v(s)− v(0) ds| ≤ sup

s∈[0,t]
|v(s)− v(0)|.

Continuity of v on [0,∞) and going to the limit t→ 0 in the inequality above yields

γ0w = lim
t→0

w(t) = lim
t→0

1
t

∫ t

0
v(s) ds = γ0v,

concluding the proof.

Proof of Proposition 8.40. This is a standard result in interpolation theory. To trace the
constants, we follow the proof of [Lun09, Theorem 1.3.5] that relies on the trace method.
Set θ = (1 − τ)θ0 + τθ1 and let u ∈ (X,Y )θ,s. Then there exists v ∈ W 1,s(I;X) ∩ Ls(I;Y )
such that u is the trace of v at t = 0, i.e. γ0v = u. Defining w by the mean of v as in
Proposition 8.41 we obtain

‖t1−θw′(t)‖Ls∗(R+;X) + ‖t2−θw′(t)‖Ls∗(R+;Y ) ≤ c(θ, v),

where c(θ, v) :=
(
1 + 3θ−1) (‖v0,1−θ‖Ls∗(R+;Y ) + ‖v1,1−θ‖Ls∗(R+;X)

)
and v0,1−θ and v1,1−θ are

defined as in the trace method. We have to verify that

g(t) = w(t1/(θ1−θ0)), t > 0,

belongs to V (s, 1 − τ, E0, E1). This will imply that u = γ0v = γ0w = γ0g belongs to the
interpolation space (E0, E1)τ,s. Let ci be such that

‖x‖Ei ≤ ci‖x‖
1−θi
X ‖x‖θiY , x ∈ X ∩ Y.

Clearly, it holds

‖w′(t)‖Ei ≤
ci

tθi+1−τ ‖t
1−τw′(t)‖1−θiX ‖t2−τw′(t)‖θiY , i = 0, 1.

Whence, from the equalities

θ0 + 1− θ = 1− τ(θ1 − θ0), θ1 + 1− θ = 1 + (1− τ)(θ1 − θ0),
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we infer

‖t1−τ(θ1−θ0)w′(t)‖Ls∗(R+;E0) ≤ c0c(θ, v), (8.41)
‖t1+(1−τ)(θ1−θ0)w′(t)‖Ls∗(R+;E1) ≤ c1c(θ, v). (8.42)

Substitution in the integral yields

‖t1−τg(t)‖Ls∗(R+;E1) = (θ1 − θ0)−1/s‖t(1−τ)(θ1−θ0)w(t)‖Ls∗(R+;E1).

Furthermore, using w(t) = −
∫∞
t w′(σ) dσ, inequality (8.42), and the Hardy-Young inequality,

we get
‖t(1−τ)(θ1−θ0)w(t)‖Ls∗(R+;E1) ≤

c1c(τ, v)
(1− τ)(θ1 − θ0) ,

and thus
‖t1−τg(t)‖Ls∗(R+;E1) ≤ (θ1 − θ0)−1/s c1c(τ, v)

(1− τ)(θ1 − θ0) .

Moreover, since
g′(t) = (θ1 − θ0)−1t−1+1/(θ1−θ0)w′(t1/(θ1−θ0)),

we obtain, by (8.41),

‖t1−τg′(t)‖Ls∗(R+;E0) = (θ1 − θ0)−1−1/s‖t1−τ(θ1−θ0)w′(t)‖Ls∗(R+;E0)

≤ (θ1 − θ0)−1−1/sc0c(θ, v).

This and (8.6) yields the estimate

‖t1−τg′(t)‖Ls∗(R+;E0) + ‖t1−τg(t)‖Ls∗(R+;E1) ≤ (θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)c(θ, v).

This implies, by the definition of the trace norm (note γ0g = u) and its equivalence to the
K-method, see Proposition 8.38, that

‖u‖(E0,E1)τ,s ≤ τ
−1‖u‖Tr

(E0,E1)τ,s

≤ τ−1
(
‖t1−τg′(t)‖Ls∗(R+;E0) + ‖t1−τg(t)‖Ls∗(R+;E1)

)
,

≤ τ−1(θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)c(θ, v),
= τ−1(θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)(

1 + 3
θ

)(
‖v0,1−θ‖Lp∗(R+;Y ) + ‖v1,1−θ‖Lp∗(R+;X)

)
.

Finally, taking the infimum over all v with γ0v = u, we find

‖u‖(E0,E1)τ,s ≤ τ
−1(θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)

(
1 + 3θ−1

)
‖u‖Tr

(X,Y )τ,s

≤ τ−1(θ1 − θ0)−1−1/s(c0 + c1(1− τ)−1)
(
1 + 3θ−1

) 2
τ

(
2 + 1

τ

)
‖u‖(X,Y )τ,s

concluding the proof.

8.7 The Real Interpolation Method and Domains of Fractional
Operators

In this paragraph we consider linear operators A on a Banach space X with ρ(A) ⊃ (−∞, 0).
Suppose there exists M > 0 such that

‖zR(z,A)‖L(X) ≤M, z < 0.

The real interpolation space betweenX and the domain ofA can be characterized as follows.
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Proposition 8.42 Let τ ∈ (0, 1) and 1 ≤ s ≤ ∞. Then

(X,domX(A))τ,s =
{
x ∈ X : t 7→ xτ (t) := tτ‖AR(−t, A)x‖X ∈ Ls∗(R+)

}
,

and the norms ‖·‖τ,s and
‖x‖∗τ,s := ‖x‖X + ‖xτ‖Ls∗(R+).

are equivalent. Precisely,

‖x‖τ,s ≤
(
2 +M((1− τ)s)−1/s

)
‖x‖∗τ,s, ‖x‖∗τ,s ≤ (M + 1)‖x‖τ,s.

Proof. This follows from the proof of [Lun09, Proposition 3.1.1].

Definition 8.43 A linear operator A on a Banach space is called sectorial, if there exists
M > 0 such that ρ(A) ⊃ (−∞, 0) and

‖R(z,A)‖L(X) ≤
M

1 + |z| , z ≤ 0.

This allows to define fractional powers of A by means of the Dunford-Taylor integral; see, e.g.
[Tri78, Section 1.15] and [Lun09, Chapter 4]. The theory of interpolation spaces is closely
related to domains of fractional operators. We summarize some of these properties in the
sequel.

Proposition 8.44 Let z1, z2 ∈ C such that Rez1 < Rez2. Then

domX(Az2) ↪→ domX(Az1)

and the embedding constant is bounded by max { 1, ‖Az1−z2‖L(X) }. Moreover, the mapping
z 7→ Az ∈ L(X) is holomorphic in the half plane Rez < 0 and A0 = Id.

Proof. From the proof of [Lun09, Theorem 4.1.6] we have

‖Az1x‖X ≤ ‖Az1−z2‖L(X)‖Az2x‖X .

The remaining properties immediately follow from the definition; see also the text after
[Lun09, Definition 4.1.3].

Proposition 8.45 Let A be a sectorial operator on a Banach space X. Then

(X,domX(A))τ,1 ↪→ domX(Aτ ), τ ∈ (0, 1),

where the embedding constant is bounded by (M + 1) max { 1, (Γ(τ)Γ(1− τ))−1 }.

Remark 8.46 For τ ∈ (0, 1) we have Γ(τ) ≥ 1−e−1 and thus max(1, (Γ(τ)Γ(1−τ))−1) ≤ const.,
independently of τ . This can be seen from the definition of the gamma function

Γ(τ) =
∫ ∞

0
tτ−1e−t dt ≥

∫ 1

0
tτ−1e−t dt

≥
∫ 1

0
e−t dt = 1− e−1 > 0.
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Proof of Proposition 8.45. We closely follow the proof of [Lun09, Proposition 4.1.7]. Let
x ∈ (X,domX(A))τ,1. Due to Proposition 8.42, the mapping t 7→ tτ‖AR(−t, A)x‖X belongs
to L1

∗(R+). Using the representation formula for Aτ , see, e.g. [Lun09, Equation (4.1.7)], we
obtain

‖Aτx‖X ≤
1

Γ(τ)Γ(1− τ)

∫ ∞
0

tτ‖AR(−t, A)x‖X
dt
t
≤ 1

Γ(τ)Γ(1− τ)‖xτ‖
∗
L1
∗(R+).

Hence, using again Proposition 8.42 we obtain,

‖x‖X + ‖Aτx‖X ≤ max { 1, (Γ(τ)Γ(1− τ))−1 } ‖x‖∗τ,1
≤ (M + 1) max { 1, (Γ(τ)Γ(1− τ))−1 } ‖x‖τ,1,

concluding the proof.

Proposition 8.47 Let A be a sectorial operator on a Banach space X. Then

domX(Aτ ) ↪→ (X,domX(A))τ,∞, τ ∈ (0, 1),

where the embedding constant is bounded by

(2 +M)M(M + 1)2

Γ(1− τ)Γ(1 + τ)

( 1
1− τ + 1

τ

)
.

Proof. We closely follow the proof of [Lun09, Proposition 4.1.7]. Let x ∈ domX(Aτ ). Ac-
cording to Proposition 8.42 we have

‖x‖τ,s ≤ (2 +M) sup
t>0

tτ‖AR(−t, A)x‖X .

Using the representation formula

A−τ−1x = 1
Γ(1− τ)Γ(1 + τ)

∫ ∞
0

z−τR(−z,A)2x dz,

see [Lun09, Equation (4.1.8)], we obtain

AR(−t, A)x = A2R(−t, A)
Γ(1− τ)Γ(1 + τ)

∫ ∞
0

z−τR(−z,A)2Aτx dz.

Moreover, for any t > 0 we estimate

‖AR(−t, A)x‖X ≤
M

1 + t

∫ t

0
z−α(M + 1)2‖Aτx‖X + (M + 1)

∫ ∞
t

z−α
M(M + 1)

1 + z
‖Aτx‖X .

Hence,

tτ‖AR(−t, A)x‖X ≤
M(M + 1)2

Γ(1− τ)Γ(1 + τ)

(
t

1 + t

1
1− τ + 1

τ

)
‖Aτx‖X

concluding the proof.

In the Hilbert space case, we can give the following embedding.

Proposition 8.48 Let A be a sectorial, self-adjoint operator on a Hilbert space H. Then

domH(Aτ ) ↪→ (H,domH(A))τ,2,

where the embedding constant is bounded by

1 + (−2 cos(πτ)Γ(−2τ))1/2.
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Proof. Following the proof of [Tri78, Theorem 1.18.10], the constant c in step 2 is given by∫ ∞
0

|eitµ − 1|2
(tµ)2τ

dt
t

= −2 cos(πτ)Γ(−2τ).

Taking square roots yields the bound.

The following two results were derived independently of Lucas Bonifacius. Its proof is partly
based on [Lun95, Proposition 2.2.2].

Theorem 8.49 Let X be a Banach space, A be a sectorial operator on X and p ∈ (1,∞).
Then we have for each x ∈ (X,domX(A))1− 1

p
,p that

‖Ae−tAx‖Lp(0,1;X) ≤ C
(

p

p− 1

)2
‖x‖1− 1

p
,p.

C is independent of p or X and depends only on the M in the sectoriality definition of A.
(e−tA)t>0 denotes the analytic semigroup generated by A, see for example [Lun95, Definition
2.0.2].

Proof. Let t ∈ (0,∞) and the other quantities as above. We will use the trace method
and Proposition 8.38 as key components. To that end let v ∈ Lp∗(R+; domX(A)) with v′ ∈
Lp(R+, X) and γ0v = x. We see that

‖Ae−tAx‖X ≤ ‖Ae−tAv(t)‖X + ‖Ae−tA
∫ t

0
v′(s) ds‖X

≤ ‖e−tA‖Lin(X,X)‖Av(t)‖X + ‖tAe−tA‖Lin(X,X)

∥∥∥∥1
t

∫ t

0
v′(s) ds

∥∥∥∥
X
.

(8.43)

By [Lun95, Proposition 2.1.1.(iii)] there exists a C > 0 depending only on M such that

‖e−tA‖Lin(X,X), ‖tAe−tA‖Lin(X,X) ≤ C.

Integrating (8.43) on both sides from 0 to 1 yields

‖Ae−tAx‖Lp(0,1;X) ≤ C(‖v‖Lp(0,∞;domX(A)) + ‖
∥∥∥∥1
t

∫ t

0
v′(s) ds

∥∥∥∥
X
‖Lp(0,∞)).

By [Lun95, Corollary 1.2.9] with θ = 1
p we find ‖

∥∥∥1
t

∫ t
0 v
′(s) ds

∥∥∥
X
‖Lp(0,∞;X) ≤ p

p−1‖v
′(t)‖Lp(0,∞;X).

Thus

‖Ae−tAx‖Lp(0,1;X) ≤ C
p

p− 1(‖v‖Lp(0,∞;domX(A)) + ‖v′(t)‖Lp(0,∞;X))

≤ C p

p− 1

(∥∥∥t 1
p v
∥∥∥
Lp∗(R+;domX(A))

+
∥∥∥t 1

p v′(t)
∥∥∥
Lp∗(R+;X)

)
.

As v was arbitrary with γ0v = x we have by the definition of ‖x‖Tr1− 1
p
,p

‖Ae−tAx‖Lp(0,1;X) ≤ C
p

p− 1‖x‖
Tr
1− 1

p
,p
.

By Proposition 8.38 this implies

‖Ae−tAx‖Lp(0,1;X) ≤ C
p

p− 1

(
1 + 1

1− 1
p

)
‖x‖1− 1

p
,p.

This implies the claim.
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The following is an important estimate for maximal parabolic regularity with tracked con-
stants. We require it in our numerical analysis.

Corollary 8.50 Let X be a Banach space and A be a sectorial operator on X. Assume that
for a p0 ∈ (1,∞) the following holds: for each f ∈ Lp0(0, 1;X) there exists a y ∈ Lp0(0, 1;X)
such that {

∂ty +Ay = f a.e. in (0, 1)
y(0) = 0.

Further, there needs to exists a Cp0 > 0, independent of X, such that

‖y‖Lp0 (0,1;X) ≤ Cp0‖f‖Lp0 (0,1;X).

This is called well-posedness in the sense of [AS94, Definition 3.1].

Then we have the following for each p ∈ (1,∞): for all y0 ∈ (X,domX(A))1− 1
p
,p and f ∈

Lp(0, 1;X) there exist a y ∈ Lp(0, 1;X) such that{
∂ty +Ay = f a.e. in (0, 1)
y(0) = y0.

Further y satisfies

‖∂ty‖Lp(0,1;X) + ‖Ay‖Lp(0,1;X) ≤ C
(

p2

p− 1‖f‖Lp(0,1;X) +
(

p

p− 1

)2
‖y0‖(X,domX(A))1− 1

p ,p

)
.

C depends only p0 and M , but not on X or p.

Proof. Let p ∈ (1,∞) and f, y0 as above. By linearity we may consider the following two
equations seperately:{

∂tyf +Ayf = f a.e. in (0, 1)
yf (0) = 0.

{
∂tyy0 +Ayy0 = 0 a.e. in (0, 1)
yy0(0) = y0.

So, for the moment assume y0 = 0. By [AS94, Theorem 3.2] there exists a solution yf , thanks
to our assumption, and it satisfies

‖yf‖Lp(0,1;X) ≤ Cp0
p2

p− 1‖f‖Lp(0,1;X).

Now we consider the case f = 0. By [Lun95, Proposition 2.1.1] we find yy0 = e−tAy0.
Therefore, by Theorem 8.49,

‖∂tyy0‖Lp(0,1;X) = ‖Ayy0‖Lp(0,1;X) ≤ C
(

p

p− 1

)2
‖y0‖(X,domX(A))1− 1

p ,p
.

Adding yf and yy0 yields the solution with the the desired estimates.

Proposition 8.51 For all p ∈ (1,∞) and τ ∈ (0, 1) such that d/(2p) < τ and that A is
sectorial on Lp(Ω) it holds

(Lp(Ω),domp(A))τ,1 ↪→ C(Ω).
Moreover, the embedding constant is bounded by

c(M + 1)2Γ(τ −N/(2p))
Γ(τ)

with c > 0 is independent of τ or p. M is the sectoriality constant of A from Definition 8.43.
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Proof. According to Proposition 8.45 we have

(Lp(Ω), domp(A))τ,1 ↪→ domp(Aτ ).

Note that the embedding constant can be bounded independently of τ or p; see Remark 8.46.
As in the proof of [DtER15, Theorem 2.10 c)], for ω > 0 to be specified later, we use the
integral representation of the fractional operator

(A+ ω + 1)−τ = 1
Γ(τ)

∫ ∞
0

tτ−1e−t(A+ω+1) dt;

see, e.g. [Paz83, Equation (6.9), Chapter 2]. Employing [DtER15, Theorem 2.10 b)], there
are c > 0 and ω > 0 such that for κ > 0 sufficiently small we find

‖u‖Cκ(Ω) ≤
cM2

Γ(τ)

∫ ∞
0

tτ−1t−N/(2p)−κ/2e−t‖(A+ ω + 1)τu‖Lp(Ω) dt,

where the constants c and ω are independent of κ, p, and τ . For the integral we have the
expression ∫ ∞

0
tτ−1−N/(2p)−κ/2e−t dt = Γ(τ −N/(2p)− κ/2)

and thus arrive at

‖u‖Cκ(Ω) ≤
cΓ(τ −N/(2p)− κ/2)

Γ(τ) ‖(A+ ω + 1)τu‖Lp(Ω).

c is still independent of κ,p and τ .

We will show that

‖(A+ ω + 1)τu‖Lp(Ω) ≤ (M + 1)2(ω + 1)‖u‖domp(Aτ ), (8.44)

and thus show

‖u‖C(Ω̄) ≤
c(M + 1)2Γ(τ −N/(2p)− κ/2)

Γ(τ) ‖domp(Aτ )‖Lp(Ω).

Finally, going to the limit κ→ 0 yields the bound on the embedding constant as specified in
the proposition.

It remains to show (8.44). Tracking the constant through the proof of [Lun09, Lemma 4.1.11]
shows that we have

‖Aτu− (A+ ω + 1)τu‖X ≤
sin(πτ)
π

(
M2

1− τ + (1 +M)
τ

)
(ω + 1)τ‖u‖X .

By elementary calculus von has | sin(πτ)/τ |, | sin(πτ)/(1− τ)| ≤ π and thus

‖Aτu− (A+ ω + 1)τu‖X ≤ (M + 1)2(ω + 1)‖u‖X .

This finally implies (8.44):

‖(A+ ω + 1)τu‖X ≤ (M + 1)2(ω + 1)‖u‖X + ‖Aτu‖X ≤ (M + 1)2(ω + 1)(‖u‖X + ‖Aτx‖X).
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Remark 8.52 It is worth mentioning that Proposition 8.51 holds for fairly general domains
and divergence form operators even with mixed boundary conditions. In case of homoge-
neous Dirichlet conditions [DtER15, Assumptions 2.3 and 2.5] are vacuously true. Moreover,
[DtER15, Assumptions 2.4] requires the Dirichlet boundary part to be a (N − 1)-set; see
[JW84, Chapter II]. Since Ω is a Lipschitz domain and there is no Neumann boundary part,
from [MR16, Theorem 4.3] we conclude that ∂Ω is a (N − 1)-set. Furthermore, [DtER15]
deals with operators of the form A = −∇ ·µ∇, where µ is a uniformly elliptic and essentially
bounded coefficient function that is clearly satisfied in our setting.

The following result is our replacement for [Bon18, Remark A.17]. While [Bon18] works with
the Laplacian, there the domain restrictions are weak. We, however, allow for a more general
operator, while posing restrictions on the domain. This is not a problem for our application
as the required regularity has to be assumed anyway.

Lemma 8.53 Let Ω be a C2-domain and let A be an elliptic, symmetric operator in divergence
form with coefficients in C0,1(Ω), equipped with homogenous Dirichlet boundary conditions.
Then for any γ0 ∈ (0, π2 ) there is a M > 0 such that for any p ∈ [1,∞] one has

‖(λ Id−A)−1v‖Lp(Ω,C) ≤
M

1 + |λ|‖v‖Lp(Ω,C)

for any λ 6∈ Σy0 := {z ∈ C : | arg z| ≤ γ0} and v ∈ Lp(Ω,C).

Proof. The proof for p = 2 is the same as in the discrete case, see Corollary 4.37. We will now
show the case p = ∞. Then the rest of the estimates for p 6= 2,∞ follows by interpolation
and duality by the same arguments as in Corollary 4.37.

The statement holds true for p = ∞, provided v ∈ C(Ω̄,C), by Proposition 4.32. Now let
v ∈ L∞(Ω,C) be arbitrary, then we approximate v by a sequence of smooth functions. We
introduce a family of mollifiers (ηε)ε>0 ⊂ C∞c (Ω) satisfying for any ε > 0

supp(ηε) ⊂ B̄ε(0), ηε ≥ 0,
∫

Ω
ηε(t) dt = 1.

Such a family is well-known to exist. It is also well-known that for each ε > 0 we have

vε(y) := (v ∗ ηε)(y) =
∫

Ω
v(x)ηε(y − x) dy ∈ C∞c (RN )

where we implicitly extend v by 0 onto RN \Ω. It is well-known that vε ε→0−−→ v in L2(Ω) and we
can also immediately see that ‖vε‖L∞(Ω,C) ≤ ‖v‖L∞(Ω,C). Thus we have by Proposition 4.32:

‖(λ Id−A)−1vε‖L∞(Ω,C) ≤
M

1 + |λ|‖v‖L∞(Ω,C)

for any λ 6∈ Σy0 := {z ∈ C : | arg z| ≤ γ0}. Now fix λ 6∈ Σy0 . By Banach-Alaoglu there exists a
sequence yεn := (λ Id−A)−1vεn converging weakly* in L∞(Ω,C) to some limit y ∈ L∞(Ω,C).
For details see the proof of Lemma 3.22. Then we have by the weakly lower semi-continuity
of the norm that

‖y‖L∞(Ω,C) ≤
M

1 + |λ|‖v‖L∞(Ω,C).

We will show y = (λ Id−A)−1v. Then the desired statement follows. Just as in the proof of
Corollary 4.37 one can show

‖yεn‖H1(Ω,C) ≤ C‖vεn‖L2(Ω,C).
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By the L2-convergence of the (vε)ε>0 the right hand side stays bounded and thus a subse-
quence of (yεn)n∈N, denoted by the same indices, converges weakly to y in H1

0 (Ω,C), implying
in particular y ∈ H1

0 (Ω,C). Thus for any ϕ ∈ H1
0 (Ω,C) ⊂ L1(Ω,C) we have that

0 = aΩ(yεn , ϕ̄)− λ (yεn , ϕ̄)L2(Ω) − (−vεn , ϕ̄)L2(Ω)

converges to

0 = aΩ(y, ϕ̄)− λ (y, ϕ̄)L2(Ω) − (−v, ϕ)L2(Ω)

for n→∞. Thus y = (A− λ Id)−1(−v) = (λ Id−A)−1v.

Remark 8.54 The very important and preceeding Lemma 8.53 entails that for those operators
and domains the results of Section 8.7 are applicable for any X = Lp(Ω) with embedding
constants that do not depend on p.

8.8 Fractional Sobolev spaces

We summarize well-known properties of fractional Sobolev spaces that are also called Sobolev-
Slobodeckij spaces. For more details, we refer to the monograph [AF03, Chapter 7]; see also
[DNPV12] for an introduction to this topic.

Let Ω ⊆ RN be an open set. For θ ∈ (0, 1) and p ∈ [1,∞) we define

[f ]θ,p,Ω :=
(∫

Ω

∫
Ω

|f(x)− f(y)|p
|x− y|d+θp dx dy

)1/p

the Gagliardo (semi)norm of f and define the norm of the fractional Sobolev space on Ω
denoted W θ,p(Ω) by

‖f‖W θ,p(Ω) :=
(
‖f‖pLp(Ω) + [f ]pθ,p,Ω

)1/p
.

If θ > 1 and θ is not an integer, then write θ = m + σ with m ∈ N and σ ∈ (0, 1). In this
case the norm of W θ,p(Ω) is given by

‖f‖W θ,p(Ω) :=

‖f‖pWm,p(Ω) +
∑
|α|=m

[Dαf ]pσ,p,Ω

1/p

.

Here, α denotes the multindex and |α| = ∑
αj . We emphasize that the fractional Sobolev

norm does not reproduce the (classical) Sobolev norm in the limit cases θ → k with k ∈ N;
cf. [BBM01, Remark 5].

For the point-wise error estimates we require the embedding of the real interpolation space
between Sobolev spaces into the fractional Sobolev space. To clearly see the dependencies
of the constants, we give an independent proof that relies on elementary arguments. Note
that in the following even equality holds (up to equivalent norms), but we only need one
injection.

Proposition 8.55 For any p ∈ [1,∞) and θ ∈ (0, 1) one has

(Wm,p(RN ),Wm+1,p(RN ))θ,p ↪→Wm+θ,p(Rd), m ∈ N, (8.45)

where the embedding constant is bounded by(
min { θ, 1− θ } p+ 22pcN

)1/p
,

and cN exclusively depends on the spatial dimension N .
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Proof. We follow the proof of [Lun09, Example 1.1.8]; cf. also [AF03, Theorem 7.47].

Step 1: m = 0. Let u ∈ (Lp(RN ),W 1,p(RN ))θ,p. Consider a splitting u = v + w with
v ∈ Lp(RN ) and w ∈W 1,p(RN ). Recall that∫

RN
|w(x+ h)− w(x)|p dx ≤ |h|p‖∇w‖pLp .

Therefore, using Jensen’s inequality twice,

[u]pθ,p ≤ 2p−1
∫
Rd

∫
RN

|v(x+ h)− v(x)|p
|h|d+θp dx dh+ 2p−1

∫
Rd

∫
RN

|w(x+ h)− w(x)|p
|h|d+θp dx dh

≤
∫
RN
|h|−N−θp

(
22p−2‖v‖pLp + 2p−1|h|p‖w‖pW 1,p

)
dh

≤ 22p−2
∫
RN
|h|−N−θp (‖v‖Lp + |h|‖w‖W 1,p)p dh.

Hence, by means of the definition of the K-functional, we obtain

[u]pθ,p ≤ 22p−2
∫
RN
|h|−N−θpK(|h|, u)p dh

≤ 22p−2
∫ ∞

0
t−1−θpK(t, u)p dt

∫
∂B1(0)

dσ = 22p−2cd‖u‖pθ,p,

where the constant cN exclusively depends on the spatial dimension N . Furthermore, we
have

‖u‖Lp ≤ ‖u‖Lp+W 1,p = K(1, u, Lp,W 1,p) ≤ ‖u‖θ,∞ ≤ (pmin { θ, 1− θ })1/p ‖u‖θ,p,

due to Proposition 8.34. Hence,

‖u‖W θ,p =
(
‖u‖pLp + [u]pθ,p

)1/p
≤
(
pmin { θ, 1− θ }+ 22pcd

)1/p
‖u‖θ,p.

Step 2: m ≥ 1. The general case m ≥ 1 follows by analogous arguments as above, where
we simply replace the space Lp by Wm,p and W 1,p by Wm+1,p. Moreover, we estimate the
seminorm [Dαu]θ,p instead of [u]θ,p.

Lemma 8.56 For any p ∈ [1,∞) and θ ∈ (0, 1) \ {1
2} one has

(Lp(RN ),W 2,p(RN ))θ,p ↪→W 2θ,p(Rd).

Furthermore, the embedding constant c(τ) is uniform in p ∈ [1,∞) and satisfies c(τ) ∼
(1− θ)−1 as θ → 1 and c(τ) ∼ |1/2− θ|−1 as θ → 1/2.

Proof. According to [Maz85, Corollary 1.4.7.1] it holds

‖∇u‖Lp ≤ cp‖u‖1/2W 2,p‖u‖1/2Lp , for all u ∈W 2,p(Rd),

where cp ≤ cK1/p
N and Kd denotes the volume of the N dimensional unit ball. Thus,

‖u‖W 1,p ≤ (1 + cK
1/p
N )‖u‖1/2W 2,p‖u‖1/2Lp , u ∈W 2,p(RN ).

Whence, the spaceW 1,p(RN ) belongs to the class J1/2(Lp(Rd),W 2,p(RN )). For these reasons,
if θ > 1/2, then the reiteration theorem Proposition 8.40 (with θ0 = 1/2 and θ1 = 1) and the
embedding (8.45) imply

(Lp,W 2,p)θ,p ↪→ (W 1,p,W 2,p)2θ−1,p ↪→W 2θ,p.
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Similarly, if θ < 1/2, then the reiteration theorem (with θ0 = 0 and θ1 = 1/2) yields

(Lp,W 2,p)θ,p ↪→ (Lp,W 1,p)2θ,p ↪→W 2θ,p.

Moreover, the embedding constants from the reiteration theorem are bounded by

(2θ − 1)−121+1/p(c0 + c1(2− 2θ)−1)(1 + 3θ−1)2(1− 2θ)−1
(
2 + (1− 2θ)−1

)
in the first case, and by

(2θ)−121+1/p)(c0 + c1(1− 2θ)−1)(1 + 3θ)θ−1(2 + (2θ)−1)

in the second case. With the constant from Proposition 8.55 we obtain the asymptotic
behavior of the embedding constant as stated in the proposition.

Proposition 8.57 Let ω′ ⊂ RN be a domain with a Lipschitz boundary. For all θ ∈ (0, 1) \
{ 1

2 } and p ∈ (1,∞) it holds

(Lp(ω′),W 2,p(ω′))θ,p ↪→W 2θ,p(ω′).

Furthermore, the embedding constant c(θ) is uniform in p ∈ [1,∞) and satisfies c(θ) ∼
(1− θ)−1 as θ → 1 and c(θ) ∼ |1/2− θ|−1 as θ → 1/2.

Before we give the proof we need to restate the Stein extension theorem.

Lemma 8.58 Let Ω ⊂ RN be a bounded domain with Lipschitz boundary and m ∈ N. Then
there exists an extension operator E mapping W k,p(Ω) into W k,p(RN ) for all k = 0, . . . ,m
and p ∈ [1,∞). Moreoever there is a c > 0 independent of p, k, f such that

‖Ef‖Wk,p(RN ) ≤ c‖f‖Wk,p(Ω) ∀f ∈W k,p(Ω).

Proof. The result is proved in [Ste70, Theorem VI.3.5]. The bound on the norm of E as
stated above can be found in [Ste70, Chapter VI.3, Equation (32)].

proof of Proposition 8.57. The proof is based on the corresponding result on RN by first
extending the functions from ω′ to Rd and retraction afterwards; cf., e.g. [BS08, Equa-
tion 14.2.4].

According to Lemma 8.58 there exists an extension operator E : W k,p(ω′) → W k,p(RN ) for
all k = 0, 1, 2 and its norm is independent of p. Hence

‖f‖W 2τ,p(ω′) = ‖Ef‖W 2τ,p(ω′) ≤ ‖Ef‖W 2τ,p(RN )

≤ c(τ)‖Ef‖(Lp(RN ),W 2,p(RN ))τ,p

≤ c(τ)‖f‖(Lp(RN ),W 2,p(RN ))τ,p ,

where we have used the interpolation result Lemma 8.56 on RN in the second inequality and
a general interpolation principle for linear operators, see, e.g. [Tri78, Section 1.2.2], in the
last inequality. Note that for the above estimate it is essential that the extension operator E
is the same for k = 0 and k = 2 in order to interpolate operators.

The following result was derived independently of Lucas Bonifacius, but we clearly use related
techniques and ideas.
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Lemma 8.59 Let Ω be a Lipschitz domain. For p ∈ [1,∞), s ∈ (0, 1) with s > N
p we have

the embedding

W 1+s,p(Ω) ↪→ C1,α(Ω)

with embedding constant uniform in s and p and α = s− N
p .

Proof. The proof consist of two parts. It requires the use of Campanato spaces, but we will
not require any prior knowledge of those. An extensive discussion can be found in [Gia83]
and [Mor66]. For p, λ ∈ [1,∞) and f ∈ Lp(Ω) we define

|f |p
Lp,λ(Ω) := sup

a∈Ω,0<r<Ω
r−λ

∫
Br(a)∩Ω

|f(x)− fa,r|p dx.

Here we use the mean value

fa,r := 1
Br(a) ∩ Ω

∫
Br(a)∩Ω

f(x) dx.

We now show that |f |Lp,sp(Ω) ≤ C6p, 6s‖f‖W s,p(Ω). After that we will use |f |Lp,sp(Ω) to estimate
the Hölder norm of f . The first part of the proof is very close to [DNPV12, Theorem 8.2].
We introduce the abbreviation Ωr(a) := Br(a) ∩ Ω for r > 0 and a ∈ Ω. For any ξ ∈ R we
have after an application of Hölder’s inequality

|ξ − (f)a,r| =
1

|Ωr(a)|p

∣∣∣∣∣
∫

Ωr(a)
ξ − f(y) dy

∣∣∣∣∣
p

≤ 1
|Ωr(a)|

∫
Ωr(a)

|ξ − f(y)|p dy.

Setting ξ = f(x) and integrating yields∫
Ωr(a)

|f(x)− (f)a,r|p dx ≤
1

|Ωr(a)|

∫
Ωr(a)

∫
Ωr(a)

|f(x)− f(y)|p dy dx

≤ (2r)N+sp

|Ωr(a)|

∫
Ωr(a)

∫
Ωr(a)

|f(x)− f(y)|p
|x− y|N+sp dy dx.

(8.46)

Because Ω is a Lipschitz domain there is a c > 0 independent of a and r (and of course s and
p) such that

|Ωr(a)| ≥ crN ; (8.47)

see for example the remark after [Gia83, Chapter III, Definition 1.3]. Thus (8.46) yields∫
Ωr(a)

|f(x)− (f)a,r|p dx ≤
2N+sprsp

c
‖f‖pW s,p(Ω).

This implies

|f |Lp,sp(Ω) ≤
1
c

1
p

2
N
p

+s‖f‖W s,p(Ω) ≤
1

min(c, 1)2
N
p

+s‖f‖W s,p(Ω).

Because 2
N
p

+s ≤ 2N+1 we have

|f |Lp,sp(Ω) ≤ C 6s, 6p‖f‖W s,p(Ω). (8.48)

We now continue very closely to [Gia83, Chapter III, Theorem 1.2] and track the appearing
constants carefully. For 0 < r < R we have

|(f)a,r − (f)a,R|p ≤ 2p−1 (|f(x)− (f)a,r|p + |f(x)− (f)a,R|p) .
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Using (8.47) again yields after integration over Ωr(a)

crN |(f)a,r − (f)a,R|p ≤ 2p−1
(∫

Ωr(a)
|f(x)− (f)a,r|p dx+

∫
ΩR(a)

|f(x)− (f)a,R|p dx
)

≤ 2p−1
(
rsp|f |pLp,sp(Ω) +Rsp|f |pLp,sp(Ω)

)
≤ 2pRsp|f |pLp,sp(Ω).

Dividing by crN and taking the p-th root on both sides yields

|(f)a,r − (f)a,R| ≤
2
c

1
p

r
−N
p Rs|f |Lp,sp(Ω) ≤

2
min(c, 1)r

−N
p Rs|f |Lp,sp(Ω) = C 6s, 6pr

−N
p Rs|f |Lp,sp(Ω).

Setting Rj := 2−jR for j ∈ N implies for j ≤ k ∈ N.

|(f)a,Rj − (f)a,Rk | ≤ C 6s, 6p R
−N
p

k Rsj |f |Lp,sp(Ω) = C 6s, 6p R
s−N

p

j 2−
N
p

(k−j)|f |Lp,sp(Ω)

≤ C 6s, 6p R
s−N

p

j |f |Lp,sp(Ω).

(8.49)

Thus ((f)a,Rk)k∈N is a Cauchy sequence, since we assume s > N/p, and we therefore can
define the limit

f̃(a) := lim
k→∞

(f)a,Rk .

By the Lebesgue differentiation theorem, cf. [GM09, Theorem 2.16], we have f(a) = f̃(a)
a.e. in Ω. Therefore taking the limit k →∞ in (8.49) and setting j = 0 yields

|(f)a,R − f(a)| ≤ C 6s, 6pRs−
N
p |f |Lp,sp(Ω). (8.50)

We can now show Hölder continuity of f . For x, y ∈ Ω and R := |x− y| we have

|f(x)− f(y)| ≤ |(f)x,2R − f(x)|+ |(f)x,2R − (f)y,2R|+ |(f)y,2R − f(y)|. (8.51)

The first and third term are estimated by (8.50). For the middle term we integrate over
Ω2R(x) ∩ Ω2R(y) to get∫

Ω2R(x)∩Ω2R(y)
|(f)x,2R − (f)y,2R| dz ≤

∫
Ω2R(x)∩Ω2R(y)

|(f)x,2R − f(z)|+ |f(z)− (f)y,2R| dz

≤
∫

Ω2R(x)
|(f)x,2R − f(z)| dz +

∫
Ω2R(y)

|f(z)− (f)y,2R| dz

≤ |Ω2R(x)|1−
1
p

(∫
Ω2R(x)

|(f)x,2R − f(z)|p dz
) 1
p

+ |Ω2R(y)|1−
1
p

(∫
Ω2R(y)

|(f)y,2R − f(z)|p dz
) 1
p

≤ 2(2R)N−
N
p (2R)s|f |Lp,sp(Ω) ≤ 2N+2RN−

N
p

+s|f |Lp,sp(Ω).

This implies

|(f)x,2R − (f)y,2R| ≤ |Ω2R(x) ∩ Ω2R(y)|−12N+2RN−
N
p

+s|f |Lp,sp(Ω).

By construction ΩR(x) ⊂ Ω2R(x) ∩ Ω2R(y) and thus by (8.47) we have

|Ω2R(x) ∩ Ω2R(y)|−1 ≤ c−1R−N
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and therefore

|(f)x,2R − (f)y,2R| ≤ C 6s, 6pRs−
N
p |f |Lp,sp(Ω). (8.52)

Inserting (8.52) and (8.50) into (8.51) yields

|f(x)− f(y)| ≤ C 6s, 6p Rs−
N
p |f |Lp,sp(Ω)

Thus with α := s− N
p > 0, the earlier choice of R = |x− y| and (8.48) we have shown:

|f |C0,α(Ω) ≤ C 6s, 6p‖f‖W s,p(Ω).

It remains to restimate ‖f‖L∞(Ω). Let x ∈ Ω arbitrary. Let y ∈ Ω such that f(y) =
|Ω|−1 ∫

Ω f(z) dz. This is possible because f is continuous and Ω is connected. Then

|f(x)| ≤ |f(x)− f(y)|+ |f(y)| ≤ C6s, 6p‖f‖W s,p(Ω) + |Ω|−1‖f‖L1(Ω).

Because ‖f‖L1(Ω) ≤ C‖f‖W s,p(Ω), where C can be chosen independently of s and p, we have
shown:

‖f‖L∞(Ω) ≤ C 6s, 6p‖f‖W s,p(Ω).
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Symbols

General

N natural numbers; starts at 1
N0 natural numbers including 0
a.e. abbreviation for ’almost everywhere’
N Spatial dimension; at least 1; sometimes restricted to 2 or 3
| · |, | · |p the euclidean and the p-Norm on RN ; with one exception:

| · | can also refer to the Lebesgue measure of a set

Domains, Space and Time

supp the support of a measure or function p. 11
Ω a domain in RN ; usually exhibits higher regularity
ΓD,ΓN refers to the Dirichlet boundary part, respectively, the Neu-

mann boundary parts of ∂Ω
p. 27

T a positive, real number; the endtime
I time intervall I := (0, T )
ΣD,ΣN time-space Dirichlet and Neumann boundaries; ΣD := I ×

ΓD, ΣN := I × ΓN
p. 27

Function Spaces

Ck(Ω) for k ∈ N, functions that are k-times differentiable on Ω
Cα(Ω) for α ∈ (0, 1], functions that α-Hölder continuous on Ω
Ck(Ω̄) for k ∈ N, functions that are k-times differentiable on Ω,

where all derivatives can be extended to Ω̄
Ck,α(Ω) functions that are k-times differentiable on Ω; The k-th

derivative has α-Hölder regularity; here k ∈ N0 and α ∈
(0, 1]; all derivatives can be extended to Ω̄, i.e. this set co-
incides with the set Ck,α(Ω̄)

Cα,β(Q) continuous function on Q̄ that are Hölder continuous with
exponent α ∈ (0, 1) in the first component and Hölder con-
tinuous with exponent β ∈ (0, 1) in all but the first compo-
nent

p. 22

C∞c (Ω) infinitely differentiable functions with compact support in a
domain Ω

C0(Ω) continuous functions with 0 boundary value
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Lp(Ω),W 1,p(Ω) real Lebesgue and Sobolev spaces for p ∈ [1,∞] and a do-
main Ω ⊂ RN

p. 13, 14

Lp(Ω,C) complex Lebesgue spaces for p ∈ [1,∞] and a domain Ω ⊂
RN

p. 13

W 1,p(Ω,C) complex Sobolev spaces for p ∈ [1,∞] and a domain Ω ⊂ RN p. 14
‖·‖Lp(Ω) real Lp(Ω) norm p. 13
‖·‖Lp(Ω,C) complex Lp(Ω) norm p. 13
H a Hilbert space; mostly utilized as an abbreviation of the

commonly used L2(Ω) = H
p. 25, 27

V a Hilbert space contained in a larger Hilbert spaceH; mostly
utilized as an abbreviation of the commonly used H1(Ω)
equipped with Dirichlet data

p. 25, 27

W 1,p
ΓD (Ω) a Sobolev space equipped with Dirichlet data p. 27

Lp(I,X) Bochner space for p ∈ [1,∞] with values in a Banach space
X

p. 16

C(Ī , X) space of continous functions with values in a Banach space
X

p. 16

Cα(I,X) spaces of α-Hölder continuous functions with values in a
Banach space X for α ∈ (0, 1]

p. 16

W k,p(I,X) Bochner-Sobolev space for p ∈ [1,∞], k ∈ N0 with values in
a Banach space X

p. 17

W (I) a special Hilbert space: W (I) = L2(I, V )∩W 1,2(I, V ∗) with
V a Hilbert space

p. 17

W0(I) a subspace of W (I); W0(I) = {v ∈W (I) : v(0) = 0} p. 60
Wp a special interpolation space for initial conditions p. 28

Discretization

K,Kh cell of a mesh; all cells of a mesh p. 87
h mesh size p. 87
Nh nodes of a mesh p. 87
Vh subspace of V of piecewise linear elements p. 87
Ṽh the complex valued version of Vh p. 107
Hk,h(Ωh),
W k,p,h(Ωh)

spaces of finite element functions vh such that
‖v‖p

Wk,p,h(Ωh) := ∑
K∈Kh‖v‖

p
Wk,p(K) is finite; Hk,h(Ωh) :=

W k,2,h(Ωh)

p. 88

X0
k space of functions that are piecewise constant in time p. 111

X0,1
k,h space of functions that are piecewise constant in time and

piecewise linear in space
p. 111

Rh, Ph, Ih the Ritz projection onto Vh along the bilinear form aΩ; the
L2(Ω)-projection onto Vh and the interpolation in Vh

p. 89

Ah the discretization of the operator A p. 89
Ik the nodal interpolant in the time component of a continuous

Bochner function
p. 111
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Symbols

Obstacle Problem

Ψ the obstacle; its regularity varies p. 27
KΨ set of admissible functions; i.e. functions greator or equal to

Ψ almost everywhere
p. 27

P βȳ a set of multipliers obtained by special limits used in the
establishment of optimality conditions

p. 59

Constants and Embeddings

C, c > 0 generic constants whose meaning may change from line to
line; usually independent of certain quantities of interest;
often equipped with an additional index

C 6f , C6q examples for constants that do not depend on f or q respec-
tively

A ⊂ B the standard inclusion; A = B is allowed
A ⊂⊂ B A, B are topological spaces and A is a compact subset of B
X ↪→ Y the normed vector space X is continuously embedded into

the normed vector space Y
X

C
↪−→ Y the normed vector space X is continuously embedded into

the normed vector space Y with embedding constant C
X ↪→↪→ Y the normed vector space X is compactly embedded into the

normed vector space Y

Functions and Operators

1A indicator function of a set A
domp(A) the domain of an operator A : domp(A) ⊂ Lp(Ω) → Lp(Ω),

for p ∈ [1,∞]
domX(A) the domain of an operator A : domX(A) ⊂ X → X

(·)′ this refers to the derivative of a one dimensional function; or
in the case of functions f : Q × R → R, (t, x, y) 7→ f(t, x, y)
to the derivative in the third, singled out component

∂t, ∂xj this refers to the derivative in time or j-th space component;
it can refer to the strong, weak or distributional derivative,
depending on the context

∇,∇2 the (weak) gradient and hessian in the spatial coordinates
aΩ bilinear form in spatial coordinates p. 28
aI , a(0,T ) bilinear form integrated over a given time interval p. 28
(·, ·)X,X∗ the dual pairing of a Banach space X and its dual; the order

in the index does not matter
(·, ·)H an inner product on a Hilbert space H
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Symbols

(·, ·)L2(I,X,X∗) a special duality pairing; let X be a Banach space, f ∈
L2(I,X) and g ∈ L2(I,X∗) we have (f, g)L2(I,X,X∗) :=∫
I (f(t), g(t))X,X∗ dt

p. 16
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