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Abstract

Synthetic aperture radar (SAR) tomography is a technique for reconstructing three-
dimensional far field from two-dimensional measurements of radar echoes. As a result
of a doctoral study, this dissertation addresses mainly several sparse recovery problems
in spaceborne SAR tomography.

Single-master SAR tomography uses a common acquisition for interferogram gener-
ation. In the single-look or single-snapshot case, each look or snapshot is processed
independently. Under the assumption of a compressible far field in urban scenarios, this
typically involves solving a complex-valued `1-regularized least squares (L1RLS) prob-
lem. From a bi-criterion optimization point of view, each L1RLS solution associated
with a fixed regularization parameter is Pareto optimal, and therefore its solution path
can be sampled in order to achieve automatic tuning. Besides, we show empirically
that a simple diagonal preconditioning can substantially improve the convergence of this
notoriously ill-posed problem as applied to spaceborne SAR tomography. On the other
hand, the far fields of various looks or snapshots are jointly reconstructed in the multi-
look case. We show that the prior knowledge of scatterers sharing the same elevation
position among different looks leads in general to a joint tensor mode recovery problem
for repeat-pass acquisitions.

Single-look multi-master SAR tomography is a relatively new research topic that is
primarily inspired by prospective spaceborne SAR missions in bi- or multistatic config-
urations (i.e., with one transmitter and multiple receivers). We establish the single-look
multi-master data model, and propose a generic inversion framework comprised of non-
convex sparse recovery, model-order selection and off-grid correction. Two algorithm are
developed vis-à-vis nonconvex sparse recovery: one extends the conventional nonlinear
least squares (NLS) to the single-look multi-master data model, and the other is based
on bi-convex relaxation and alternating minimization. In addition, we prove two theo-
rems regarding the critical points of the objective function of any NLS subproblem. We
show empirically that the conventional single-look single-master approach, if applied to
a single-look multi-master stack, can be insufficient for layover separation, even when
the elevation distance between two scatterers is significantly larger than the Rayleigh
resolution.

In the end, we develop a hybrid approach for single-look pursuit monostatic acquisi-
tions. This approach estimates first scatterers’ elevation from solely pursuit monostatic
interferograms, and subsequently their motion parameters from all acquisitions by ex-
ploiting the previous elevation estimates as deterministic prior. The former is a special
case of single-look multi-master tomography, while the latter is a variant of single-look
single-master tomography. This approach is directly applicable to bistatic acquisitions.
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Zusammenfassung

Radar mit synthetischer Apertur (englisch: Synthetic Aperture Radar, abgekürzt als
SAR)-Tomografie ist eine Technik zur Rekonstruierung eines dreidimensionalen Fern-
feldes mit zweidimensionalen Messungen der Radarechos. Bei dieser Dissertation handelt
es sich hauptsächlich um Optimierungsprobleme zur Schätzung dünnbestzter Signale in
der satellitengestützten SAR-Tomografie sowie ihre Löser.

Bei der Einzelmaster-SAR-Tomografie verwendet man eine gemeinsame Aufnahme
für die Interferogramerzeugung. Im Falle der Einzellook-Einzelmaster-SAR-Tomografie
wird jeder Look unabhängig voneinder prozessiert. Unter der Annahme eines komprim-
ierbares Fernfeldes in urbanen Gebieten, steht es im Mittelpunkt der tomografischen
Prozessierung ein komplexwertiges `1-regularisiertes Problem der kleinsten Quadrate zu
lösen. Aus dem Gesichtspunkt der Bikriterien-Optimierung ist jede mit einem fixen
Regularisierungsparameter verbundene Lösung Pareto-optimal. Daher könnte man den
Lösungspfad des Optimierungsproblems abtasten, um das Tuning des Regularisierungspa-
rameters zu automatisieren. Außerdem zeigen wir empirisch mit echten SAR-Daten,
dass eine einfache diagonale Präkonditionierung die Konvergenz dieses schlecht kon-
ditioniertes Problems in der SAR-Tomografie wesentlich verbessern kann. Anderer-
seits bei der Multilook-SAR-Tomografie werden die Fernfelder mehrerer Looks gemein-
sam rekonstruiert. Die a priori Kenntnisse, dass sich die Rückstreuer in verschiedenen
Looks in derselben Elevationsposition befinden, führt im Allgemeinen zu einem Opti-
mierungsproblem zur Schätzung eines dünnbestzten Tensors, in dem die Rückstreuer
mit einem Regularisierungsterm gefordert werden, sich nach dem ersten, der Elevation-
srichtung entsprechenden, Tensormodus auszurichten.

Die Einzellook-Multimaster-SAR-Tomografie ist ein relativ neues Forschungsthema.
Dies ist vor allem durch künftige satellitengestützte SAR-Missionen in bi- oder multi-
statischen Konfigurationen (d.h., mit einem Sender und mehreren Empfängern) inspiri-
ert. Wir etablieren zuerst das Einzellook-Multimaster-Datenmodell. Darauf basierend
entwickeln wir ein allgemeines Verfahren für die tomografische Inversion. Dieses Ver-
fahren setzt sich aus drei Teilen zusammen, nämlich die nichtkonvexe Schätzung eines
dünnbestzten Signals, die Auswahl der Modellordnung, sowie die Korrektur des Git-
terfehlers. Für den ersten Teil werden zwei Algorithmen entwickelt. Der Eine passt
die konventionelle nichtlineare Methode der kleinsten Quadrate (englisch: Nonlinear
Least Squares, abgekürzt als NLS) an das Einzellook-Multimaster-Datenmodell. Der
Andere basiert auf bi-konvexer Relaxation und alternierender Minimierung. Des Weit-
eren beweisen wir zwei Theoreme hinsichtlich der kritischen Punkte der Objetivfunktion
jedes NLS-Unterproblems. Mit echten SAR-Daten zeigen wir empirisch, dass das kon-
ventionelle Einzellook-Einzelmaster-Verfahren, falls für eine tomografische Prozessierung
mit einem Einzellook-Einzelmaster-Datensatz eingesetzt, das Layover-Trennungsproblem
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Zusammenfassung

möglicherweise nicht lösen kann, selbst wenn die Distanz zwischen zwei Rückstreuern in
der Elevationsrichtung deutlich größer als die Rayleigh-Auflösung ist.

Letztendlich entwickeln wir ein Mischverfahren zur tomografischen Prozessierung von
SAR-Aufnahmen im pursuit-monostatischen Modus. Dieses Verfahren schätzt zuerst
die Elevationspositionen der Rückstreuer aus lediglich pursuit-monostatischen Interfer-
ogrammen, und anschließend ihre Bewegungsparameter aus allen Aufnahmen, wobei die
zuvor geschätzten Elevationspositionen als deterministische a priori Kenntnisse verwen-
det werden. Der erstere Schritt ist im Grunde genommen ein Sonderfall der Einzellook-
Multimaster-SAR-Tomografie, während sich der letztere Schritt als eine Variante der
Einzellook-Einzelmaster-SAR-Tomografie darstellt. Dieses Verfahren ist unmittelbar auf
bistatische SAR-Aufnamen anwendbar.
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1 Introduction

This chapter provides a very short introduction to spaceborne Synthetic Aperture Radar
(SAR) tomography in urban scenarios, a review of the state of the art, and the motivation
for the work to be elucidated in the following chapters.

First of all, we introduce the mathematical notations adopted throughout this disser-
tation.

Notation. We denote scalars as lower- or uppercase letters (e.g., m, N , λ), vectors as
bold lowercase letters (e.g., g, γ), matrices, sets and ordered pairs as bold uppercase
letters (e.g., R, Ω), tensors as calligraphic bold uppercase letters (e.g., X ), and number
fields as blackboard bold uppercase letters (e.g., Z, R, C) with the following conventions:

• gn denotes the nth entry of g.

• am and an denote the mth row and nth column of A, respectively.

• Diag(a) denotes a square diagonal matrix whose entries on the main diagonal are
equal to a, and Diag(A) denotes a vector whose entries are equal to those on the
main diagonal of A.

• Supp(x) denotes the index set of the nonzero entries or support of x.

• A, AT and AH denote the (elementwise) complex conjugate, transpose and con-
jugate transpose of A, respectively.

• AR and <(A) denote the real part of A.

• AI and =(A) denote the imaginary part of A.

• A ◦ B and A ⊗ B denote the Hadamard and Kronecker products of A and B,
respectively.

• A � 0 means that A is positive definite. B ≺ 0 means that B is negative definite.

• AΩ denotes the matrix formed by extracting the columns of A indexed by Ω.

• (A,B) denotes the vertically concatenated matrix

(
A
B

)
.

• ‖A‖1,2 denotes the `1,2 norm of A, i.e., the sum of the `2 norms of its rows.

• I denotes the identity matrix.

• [N ] denotes the set {1, . . . , N}.

1



1 Introduction

Figure 1.1: SAR imaging geometry. The azimuth, range and elevation axes are denoted as x, r
and s, respectively. The spread of repeat-pass sensor positions forms an elevation
aperture ∆b for reconstructing the 3-D far field.

• |Ω| denotes the cardinality of the set Ω.

• The nonnegative and positive subsets of a number field F are denoted as F+ and
F++, respectively.

1.1 Fundamentals of Spaceborne SAR Tomography

SAR tomography is an Interferometric SAR (InSAR) technique for reconstructing three-
dimensional (3-D) sensor far field from two-dimensional (2-D) range-azimuth measure-
ments of radar echoes [2–4]. It is occasionally deemed a multi-scatterer extension of
Persistent Scatterer Interferometry (PSI) [5–7], although the latter is based on the in-
version of phase double-differences of neighboring Persistent Scatterers (PSs).

Denote the azimuth, range and elevation axes as x, r and s, respectively, where s is
perpendicular to the x-r plane (see Fig. 1.1). Suppose there are a total of N repeat-pass
acquisitions by a spaceborne sensor. After deramping, each Single-Look Complex (SLC)
SAR measurement at some x-r positions can be approximated by the Fourier transform
Γ : R→ C of the elevation-dependent reflectivity profile γ : R→ C at the corresponding
wavenumber k [8]:

gn = Γ(kn) :=

∫
γ(s) exp(−jkns)ds, n ∈ [N ], (1.1)

where kn := −4πbn/(λr0) is the nth wavenumber dependent on the nth sensor position bn
relative to an arbitrary reference position along an axis b ‖ s, λ is the radar wavelength,

2



1.1 Fundamentals of Spaceborne SAR Tomography

and r0 is the slant range distance relative to a ground reference point. For the sake
of simplicity, we assume here that the scatterers in the far field are not subject to any
motion. An extension to the differential case, in which scatterers’ motion is typically
modeled as a linear combination of basis functions, is revisited in Sec. 3.1.

Discretizing the elevation axis as s1, . . . , sL and replacing the integral in (1.1) by a
finite sum result in a linear model:

g ≈ Rγ, (1.2)

where g ∈ CN is the SLC measurement vector, R ∈ CN×L is the tomographic sensing
matrix given by rnl := exp(−jknsl), and γ ∈ CL is the discrete reflectivity vector. This
leads to an inverse problem of estimating γ with known R and g.

Now we briefly revisit some theoretical bounds on the performance of elevation recon-
struction. The spread of repeat-pass sensor positions builds an elevation aperture ∆b
(i.e., the range of bn, see Fig. 1.1), which determines the Rayleigh resolution:

ρs :=
λr0

∆b
=

4π

∆k
, (1.3)

where ∆k is the range of kn. In the case of TerraSAR-X [9–11], ρs is typically 20–30 m,
which is much coarser than the azimuth and range resolutions at meter or sub-meter
levels in the spotlight modes. This is a consequence of confining the sensor positions into
a 250-m orbit tube [12]. Nevertheless, the actual performance of any tomographic SAR
algorithm is not limited by ρs, but rather by the Cramér-Rao Lower Bound (CRLB) of
elevation estimates [13]:

σŝ :=
1√

N
√

2SNR σk
, (1.4)

where SNR is the scatterer’s Signal-to-Noise Ratio (SNR), σk is the uncorrected sample
standard deviation of kn. Suppose the sensor positions are independent and identi-
cally distributed random variables with some fixed standard deviation, we have σŝ ∝
1/
√
N · SNR, i.e., N and SNR are to some extent interchangeable.

In the case of double scatterers, their mutual interference may lead to a degradation
of the quality of elevation estimates. The CRLB of elevation estimates is in addition
dependent on their elevation distance δs and phase difference δφ [14, 15]:

σŝi :=
1√

N
√

2SNRi τ(k1, . . . , kN , δs, δφ)
, i ∈ [2], (1.5)

where SNRi is the SNR of the ith scatterer, and τ : RN+2 → R++ is a nonlinear function
that is periodic in δφ (with a period of π) if all the other parameters are fixed [14]:

τ(k1, . . . , kN , δs, δφ) :=
√

Υ1 + Υ2 cos(2δφ) + Υ3 sin(2δφ), (1.6)

where

Υ1 := Φ1 −
Φ2

2 + Φ2
3

2Φ1
, Υ2 := −Φ2

2 − Φ2
3

2Φ1
, Υ3 := −Φ2Φ3

Φ1
, (1.7)
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Φ1 :=
X2(X2

0 −Ψ2
0 − Ω2

0)−X0(X2
1 + Ψ2

1 + Ω2
1) + 2X1(Ψ0Ψ1 + Ω0Ω1)

X2
0 −Ψ2

0 − Ω2
0

,

Φ2 :=
−Ψ2(X2

0 −Ψ2
0 − Ω2

0)−Ψ0(X2
1 + Ψ2

1 − Ω2
1) + 2Ψ1(X0X1 − Ω0Ω1)

X2
0 −Ψ2

0 − Ω2
0

,

Φ3 :=
−Ω2(X2

0 −Ψ2
0 − Ω2

0)− Ω0(X2
1 −Ψ2

1 + Ω2
1) + 2Ω1(X0X1 −Ψ0Ψ1)

X2
0 −Ψ2

0 − Ω2
0

,

(1.8)

and

Xp :=
1

Np−1

∑

n∈[N ]

kpn, Ψp :=
1

Np−1

N∑

n∈[N ]

kpn cos(knδs), Ωp :=
1

Np−1

∑

n∈[N ]

kpn sin(knδs),

(1.9)
p = 0, 1, 2.

In the next section, we review the state of the art as a result of a literature research,
and justify the motivation for the work to be introduced in the following chapters.

1.2 State of the Art and Motivation

As shown in Tab. 1.1, tomographic SAR algorithms can be roughly classified into four
categories:

• Single-look single-master
Reigber & Moreira (2000) accomplished the avant-garde work on airborne SAR
tomography by sampling densification via the integer interferogram combination
technique and subsequently discrete Fourier transform on an interpolated linear

Table 1.1: A classification of tomographic SAR algorithms with examples

Single-Master Multi-Master

S
in

g
le

-L
o
ok

Reigber & Moreira (2000) Zhu & Bamler (2012)†

Fornaro et al. (2003, 2005, 2008)

Budillon et al. (2010)

Zhu & Bamler (2010a, 2010b, 2011)

Etc.

M
u

lt
i-

L
o
ok

Aguilera et al. (2012) Gini et al. (2002)

Schmitt & Stilla (2012) Lombardini (2005)

Liang et al. (2018) Duque et al. (2009, 2010, 2014)

Shi et al. (2019) Fornaro et al. (2014)

Etc. Etc.

† Uses the single-look single-master data model
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1.2 State of the Art and Motivation

array of baselines [2]. Fornaro et al. (2003, 2005, 2008) paved the way for space-
borne SAR tomography with repeat-pass acquisitions over a long period of time
and proposed to use more advanced inversion techniques such as truncated singular
value decomposition [4,8,16]. Zhu & Bamler (2010a) made the first demonstration
of SAR tomography with very high resolution spaceborne SAR data by employing
Tikhonov regularization and Nonlinear Least Squares (NLS) [17]. Budillon et al.
(2010) and Zhu & Bamler (2010b) married compressive sensing techniques with
tomographic inversion by assuming that the sensor far field is compressible. Zhu
& Bamler (2011) proposed a generic algorithm (named SL1MMER) consisting of
spectral estimation, model-order selection and debiasing [15].

• Single-look multi-master
As far as we know, there is hardly any publication in this category. Zhu & Bamler
(2012) extended the Tikhonov regularization, NLS and compressive sensing ap-
proaches to a mixed TerraSAR-X and TerraSAR-X add-on for Digital Elevation
Measurements (TanDEM-X) stack by exploiting a pre-estimated covariance ma-
trix [18]. Still, these algorithms are based on the single-look single-master data
model.

• Multi-look single-master
Aguilera et al. (2012) utilized the joint sparsity among multiple polarimetric chan-
nels by means of distributed compressive sensing [19]. Schmitt & Stilla (2012) also
used distributed compressive sensing to reconstruct an adaptively chosen neighbor-
hood of looks in a collective manner [20]. Liang et al. (2018) employed compressive
sensing for joint 2-D range-elevation focusing in an azimuth line [21]. Shi et al.
(2019) performed nonlocal filtering of interferograms before tomographic recon-
struction [22].

• Multi-look multi-master
As a rule of thumb, any algorithm based on an estimation of the auto-correlation
matrix belongs to this category. This is closely related to state-of-the-art adaptive
multi-looking techniques that exploit all possible interferometric combinations [23–
27]. Gini et al. (2002) studied the performance of different spectral estimators such
as Capon, Multiple Signal Classification (MUSIC) and the Multi-look Relaxation
(M-RELAX) algorithm [3]. Lombardini (2005) extended SAR tomography to the
differential case by reformulating it as a multi-dimensional spectral estimation
problem and proposed to solve it with higher-order Capon [28]. Duque et al.
(2009, 2010) carried out the first investigation of bistatic SAR tomography by
using ground-based receivers and spectral estimators such as Capon and MUSIC
[29, 30]. Duque et al. (2014) analyzed the feasibility of SAR tomography using
only a single pass of alternating bistatic acquisitions, in which the hypothesis test
on the number of scatterers is based on the eigendecomposed empirical covariance
matrix [31]. Fornaro et al. (2014) proposed an algorithm (named CAESAR) using
principal component analysis of the eigendecomposed empirical covariance matrix
in an adaptively chosen neighborhood [32]. Naturally, SAR tomography in forested
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scenarios (e.g., [33–40]), where random volume scattering in canopy is generally
expected, also falls in this category.

In the single-master configuration, one SLC, typically near the center of joint orbital
and temporal distribution, is selected as the common master for interferogram genera-
tion. Suppose the master is indexed by i ∈ [N ]. Each interferogram is usually normalized
by the master magnitude, i.e., gngi/|gi|, ∀n ∈ [N ]. This phase calibration step converts
kn into the wavenumber baseline ∆kn := kn − ki, ∀n ∈ [N ]. Consequently, the zero
position of wavenumber baseline is fixed, i.e., ∆ki = 0. The rationale behind this is, e.g.,
to facilitate 2-D phase unwrapping for Atmospheric Phase Screen (APS) compensation
by smoothing out interferometric phase in the x-r plane. In the single-look case, it is
deemed plausible to assume that the discrete reflectivity vector γ in (1.2) is compress-
ible in urban scenarios, since roof, facade and ground appear to be the major sources of
layover phenomena [41]. Exploiting this compressibility prior typically involves solving
an `1-Regularized Least Squares (L1RLS) problem. In the common case of differential
SAR tomography using repeat-pass acquisitions, this problem is both large-scale and
ill-posed. First-order methods, although preferred for solving large-scale problems due
to their efficiency, are typically subject to convergence issues due to the fact that the
tomographic sensing matrix R is ill-conditioned. Besides, the choice of regularization
parameter may be crucial for obtaining reasonable elevation estimates. In the multi-look
case, Zhu et al. (2015) demonstrated that the prior knowledge of motion-free scatter-
ers among different looks sharing the same elevation position can be incorporated into
tomographic inversion by means of joint sparsity recovery [42]. However, it is often nec-
essary to consider scatterers’ motion in long-term repeat-pass acquisitions, and the joint
sparsity prior can be too strong since it tends to enforce scatterers to share the same
motion.

In the multi-master setting, the data model is similar to (1.1) in forested scenarios,
where multi-looking is required for the underlying random volume scattering. Suppose
γ(s) is a white random signal. For any master and slave sampled at k and k + ∆k,
respectively, the Van Cittert–Zernike theorem implies that the expectation (due to multi-
looking) of the interferogram, which is at the same time the autocorrelation function
RΓΓ of Γ, is the Fourier transform of the elevation-dependent backscatter coefficient
σ0 : R→ R at ∆k:

E[Γ(k + ∆k)Γ(k)] = RΓΓ(∆k) =

∫
σ0(s) exp(−j∆ks)ds, (1.10)

where the white property of γ(s), i.e., E[γ(s)γ(s′)] = σ0(s)δ(s− s′), is used. This leads
to an inverse problem similar to the one in the single-look single-master configuration.
On the contrary, the data model in the single-look setting has not been investigated yet.

A study of single-look multi-master SAR tomography is interesting on its own. More-
over, it is also partially motivated by the special case of single-look bi- or multistatic
SAR tomography that is relevant for future spaceborne SAR missions such as:

• Tandem-L, a German satellite mission concept with a principal goal to observe
the dynamics of the earth’s surface in high resolution with an unprecedented ac-
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1.2 State of the Art and Motivation

curacy [43]. It consists of two satellites, and each will be equipped with a high-
resolution wide-swath L-band SAR sensor. In general, these two satellites will fly
in close formation and operate in bistatic mode. This mode employs one sensor
as a transmitter to illuminate a common radar footprint, while both receive radar
echoes from the earth’s surface. The requirement of a highly accurate mutual
time and phase referencing will be easily fulfilled by means of the heritage of the
TanDEM-X mission [44]. Due to limited temporal decorrelation and APS, single-
pass bistatic interferograms are characterized by better phase quality as compared
to conventional repeat-pass ones and thus are more suitable for generating a global
consistent digital elevation model in high resolution [45].

• SAOCOM-CS, a bistatic mission concept adding to SAOCOM a passive companion
SAR satellite operating in L-band [46].

• Sentinel-1 SAR Companion Multistatic Explorer (SESAME), a bistatic mission
concept attaching to Sentinel-1 two passive companion SAR satellites operating in
C-band [47].

• Sentinel-1 “tandem” (i.e., one-day separation) or bistatic mission concept employ-
ing the prospective Sentinel-1C and another satellite from the series [48].

• High Resolution Wide Swath (HRWS), the successor of TerraSAR-X comprising
one or two SAR satellites operating in X-band [49,50], and several additional pas-
sive companion transponder satellites without bidirectional phase synchronization
link (known as MirrorSAR) [51–53].

Above all, Tandem-L is the most fascinating one, not only because it has already un-
dergone extremely comprehensive and intensive studies (see for example [53–57] and
the references therein), but it is also highly promising for a large variety of geophysical
applications. Therefore, we need to develop tomographic SAR algorithms dedicated to
bistatic acquisitions.

This dissertation addresses the following scientific questions:

Q1 In the single-look single-master case, how can we improve the convergence of first-
order methods for solving the L1RLS problem, and achieve automatic tuning of
its regularization parameter?

Q2 In the multi-look single-master case, given the looks where scatterers are located
at the same elevation position, how can we exploit this prior knowledge in the
repeat-pass acquisitions, while still taking scatterers’ different motion patterns
into account?

Q3 How does single-look multi-master SAR tomography work?

Q4 Given a stack of bistatic or multistatic acquisitions, how can we effectively estimate
both scatterers’ elevation and motion?

7
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The rest of the dissertation is organized as follows. The SAR and auxiliary data
sets underlying the numerical experiments in the subsequent chapters are described in
Chp. 2. Chp. 3 is dedicated to Q1 and Q2. An answer to Q3 is provided in Chp. 4.
Chp. 5 addresses Q4. Chp. 6 summarizes this dissertation and provides some outlook.
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2 Data Sets

This chapter provides a brief description of two data sets: the first one is comprised
of conventional repeat-pass SAR acquisitions of Munich and the height ground truth
of a building facade (see also Chp. 3 and 4), and the second one consists of pursuit
monostatic SAR acquisitions of the city of Las Vegas (see also Chp. 5).

2.1 Munich Data Set

The first data set contains 31 TerraSAR-X repeat-pass acquisitions of the central Munich
area in the staring spotlight mode from a descending track. These scenes were acquired
from March 31, 2016 to December 7, 2017, and processed with Deutsches Zentrum für
Luft- und Raumfahrt (DLR)’s Integrated Wide Area Processor (IWAP) [58,59]. Besides
side lobe detection, every non-peak look inside a main lobe was also removed, since
it could otherwise result in a “ghost” scatterer after tomographic reconstruction, like
any side lobe. The vertical wavenumbers of a single-master stack with the master from
December 20, 2016 are shown in Fig. 2.1. Since the IWAP-PSI results show no obvious
linear motion, a sinusoidal basis function will be employed to model periodical motion
induced by temperature change. The vertical Rayleigh resolution (1.3) at scene center
is approximately 12.66 m. Given a nominal SNR of 2 dB, the CRLB of height estimates
(1.4) is approximately 1.02 m.

Our region of interest comprises mainly a six-story building (“Nordbau”) of the Tech-
nical University of Munich (TUM), which is shown in Fig. 2.2 (left). The building
signature in the SAR intensity image can be observed in Fig. 2.2 (right). The regular
grid of salient points within the building footprint results from triple reflections on three
orthogonal surfaces: metal plate (behind window glass), window ledge and brick wall [1].
After main and side lobe detection, a total of 594 looks, whose azimuth-range positions
are illustrated in Fig. 2.3 (right), were obtained for tomographic reconstruction.

The Munich data set also consists of height ground truth made available via a SAR
imaging geodesy and simulation framework [1]. The starting point was to create a 3-
D facade model from terrestrial measurements via (drone-borne) camera, tachymeter,

0.0 0.1 0.2 0.3

Absolute Vertical Wavenumber [m−1]

Figure 2.1: Absolute vertical wavenumbers. The largest one is approximately 0.31 m−1.
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Figure 2.2: Eastern facade of the six-story TUM-Nordbau building in our region of interest [1].
Left: in-situ photo. Middle: 3-D facade model (the black shape corresponds to a
metallic window). Right: SAR intensity image.

measuring rod and differential Global Positioning System (GPS). This facade model has
an overall accuracy better than 2 cm and a very high level of details [1]. Ground control
points were employed for referencing it to an international terrestrial reference frame.
Fig. 2.2 (middle) provides a visualization of this 3-D facade model. The RaySAR simula-
tor [60] was used to simulate dominant scatterers that correspond to the aforementioned
triple reflections on the building facade. By means of atmospheric and geodynamic
corrections from DLR’s SAR Geodetic Processor [61, 62], and the recently enhanced
TerraSAR-X orbit products [63], scatterers’ absolute coordinates were converted into
azimuth timing, range timing and height, which we refer to as Level 0 ground truth
data.

Level 1 ground truth data is comprised of the height of 30 simulated PSs that are
matched with real ones. The matching was conducted in the range-azimuth geometry,
so as not to be affected by any height estimate error [64]. Fig. 2.3 (left) shows the height
simulations at the sub-pixel range-azimuth positions of the corresponding 30 PSs. This
height is relative to a corner reflector located next to a permanent GPS station on top
of a neighboring TUM building [1].

Level 2 ground truth data consists of the interpolated height of a total of 594 looks.
The interpolation was performed in the following way. First, the height of each sim-
ulated PS was converted into topographic phase. Subsequently, the distance to the
polyline representing the furthest-range cross-section of the building facade was used
as the independent variable to construct a one-dimensional (1-D) interpolator. Lastly,
topographic phase was interpolated at the previously mentioned 594 looks and converted
back into height. This interpolated height is shown in Fig. 2.3 (right). Naturally, the
underlying assumption of this interpolation is that each scatterer, if it does exist, should
be located on the building facade. A cross-validation of the 1-D interpolator was per-
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10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Topography [m]

Figure 2.3: Height ground truth of the TUM-Nordbau facade in our region of interest. Left:
RaySAR height simulations at 30 matched PS coordinates (Level 1). Right: inter-
polated height at 594 facade looks (Level 2).

formed in [1], in which the Standard Deviation (SD) and Median Absolute Deviation
(MAD) were reported to be 0.004 and 0.002 m, respectively.

2.2 Las Vegas Data Set

The second data set comprises 12 TanDEM-X pursuit monostatic acquisitions of the
City of Las Vegas in the staring spotlight mode from an ascending track. Contrary to
the bistatic mode, the pursuit monostatic counterpart utilizes two satellites in a close
formation to operate independently from each other [44]. It can be considered as a
backup solution of the bistatic mode for the case where pulse or phase synchronization
fails. The pursuit monostatic mode was temporarily employed from October 2014 to
February 2015 during the TanDEM-X Science Phase [65]. In order to rule out any radio
frequency interference between radar signals, the along-track distance was programmed
to be circa 76 km, which corresponds to a time interval of approximately 10 s. Given
moderate wind speed, the temporal decorrelation is still small for vegetated terrain
types, and APS is largely eliminated by interferogram generation [65]. During these
five months, the cross-track perpendicular baselines were set to slowly drift from 0 to
750 m, so as to favor tomographic and other applications in polar regions [65]. The
vertical wavenumbers are illustrated in Fig. 2.4. The vertical Rayleigh resolution (1.3) is
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−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

Vertical Wavenumber [m−1]

1 23 4 56
1’ 2’3’4’ 5’ 6’

Figure 2.4: Vertical wavenumbers of 12 acquisitions. The numbers on top of the crosses are the
master and slave indices of pursuit monostatic interferograms, i.e., (i, i′) represents
the ith interferogram, ∀i ∈ [6].

3 2 1 0 1 2 3
Phase [rad]

Figure 2.5: Six pursuit monostatic interferograms generated from 12 acquisitions (see also
Fig. 2.4).

approximately 5.88 m at scene center, while the CRLB of height estimates (1.4), given
a nominal SNR of 2 dB, is circa 0.68 m.
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2.2 Las Vegas Data Set

Our region of interest comprises mainly a thirty-story high-rise building and its sur-
roundings. Fig. 2.5 shows the six pursuit monostatic interferograms of this region, where
the fringes in the building footprint appear to be highly coherent.
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3 Single-Master SAR Tomography

This chapter is divided into two sections. Sec. 3.1 introduces an algorithm for solving
the L1RLS problem in the single-look case. Another algorithm for jointly reconstructing
scatterers at the same elevation position, but possibly subject to different motion, is
developed in Sec. 3.2.

3.1 Single-Look Case

If scatterers are subject to any motion, which is likely the case for repeat-pass acquisitions
over a long period of time, (1.1) becomes

gn =

∫
γ(s) exp (−j (kns+ (4π/λ)d(s, tn))) ds, n ∈ [N ], (3.1)

where d(s, tn) denotes the motion of the scatterer with elevation position s at time tn.
Without loss of generality, suppose d(s, tn) can be decomposed into a linear combination
of basis functions:

d(s, tn) =
λ

4π

∑

m∈[M ]

cm(s)ψm(tn), (3.2)

where the elevation-dependent cm denotes the unknown parameter of the mth basis
function ψ : R→ R. Thereby (3.1) becomes

gn =

∫
γ(s) exp


−j


kns+

∑

m∈[M ]

cm(s)ψm(tn)




ds, n ∈ [N ], (3.3)

which can be shown to be equivalent to a multi-dimensional Fourier transform [66].
Likewise, let s be the discretization of s, and cm be that of cm, ∀m ∈ [M ]. This leads

again to the linear model
g ≈ Rγ, (1.2)

where the tomographic sensing matrix R ∈ CN×L is given by rn := exp(−jψMn cM )⊗· · ·⊗
exp(−jψ1

nc1)⊗ exp(−jkns), ψmn := ψm(tn), and γ ∈ CL is the discrete reflectivity vector
along elevation and motion parameters. Since L = |s|∏M

m=1 |cm|, the dimension of the
inverse problem increases multiplicatively with the complexity of the motion model.

In the case of one single motion basis function, i.e., M = 1, the CRLB of the elevation
estimates of a single scatter is

σŝ :=
1

√
N
√

2SNR
√

1− r2
kψ σk

, (3.4)
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3 Single-Master SAR Tomography

where rkψ is the sample correlation coefficient between kn and ψn := ψ(tn). This can be
interpreted as a degradation of σk by taking motion into account.

As already mentioned in Sec. 1.2, the discrete reflectivity vector γ in (1.2) can be
assumed to be compressible in urban scenarios, since roof, facade and ground appear to
be the major sources of layover phenomena. Under this assumption, a popular choice is
to solve the L1RLS problem [67] [68, §3.4.2]:

minimize
γ

1

2
‖Rγ − g‖22 + λ‖γ‖1, (3.5)

where the regularization parameter λ ∈ R++ (not to be confused with the radar wave-
length) controls the balance between the model goodness of fit and the sparsity of γ.

Since L1RLS solutions are prone to spike-like artifacts [69], it is customary to perform
subsequently model-order selection in order to reduce false positive rate [15]. Based on
the Bayesian Information Criterion (BIC) [70], model-order selection can be formulated
as the following constrained minimization problem:

Ω̂ := arg min
Ω(,δ)

2N ln
(
‖RΩδΩ − g‖22/N

)
+ (5|Ω|+ 1) ln(N)

subject to Supp(δ) = Ω ⊂ Supp(γ̂),

(3.6)

where γ̂ is the solution of (3.5), and the second term in the objective function penalizes
model complexity. This involves solving a sequence of subset least squares problems in
the form of

minimize
ε

1

2
‖RΩε− g‖22, (3.7)

whose solution is known analytically.
Let K̂ := |Ω̂| denote the number of selected scatterers. Since their elevation positions

and motion parameters are unlikely to be located on the previously defined grids, we
propose to correct the consequential off-grid errors by solving the following nonlinear
and nonconvex minimization problem:

minimize
γRl ,γ

I
l ,sl,c

m
l

∑

n∈[N ]

∣∣∣∣∣∣
gn −

∑

l∈[K̂]

(γRl + jγIl ) exp


−j


knsl +

∑

m∈[M ]

ψmn c
m
l





∣∣∣∣∣∣

2

, (3.8)

where γRl , γIl , sl and cml denote the real and imaginary parts of the lth scatterer’s
complex reflectivity, its elevation and its motion parameter associated with the mth
basis function, respectively. Since its objective function is differentiable w.r.t. γRl , γIl , sl
and cml , ∀l ∈ [K̂], m ∈ [M ], (3.8) can be solved effectively by using, e.g., the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [71, §6.1].

The next two subsections are dedicated to the sparse recovery problem (3.5).

3.1.1 Accelerated Sparse Recovery

In this subsection, we develop an algorithm for solving (3.5), or equivalently

minimize
x

1

2
‖Ax− b‖22 + λ‖x‖1, (3.9)
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3.1 Single-Look Case

Algorithm 3.1 An ADMM-based algorithm for solving (3.9)

1: Input: A, b, z(0), λ, ρ
2: Initialize z← z(0)

3: Until stopping criterion is satisfied, Do
4: x← (AHA + ρI)−1(AHb + ρz− y)
5: z← Prox`1,λ/ρ (x + (1/ρ)y)
6: y← y + ρ (x− z)
7: Output: z

based on the Alternating Direction Method of Multipliers (ADMM) [72]. ADMM solves a
minimization problem by alternatively minimizing its augmented Lagrangian [73, p. 509],
in which the augmentation term is scaled by a penalty parameter ρ ∈ R++. It converges
under very general conditions with medium accuracy [72, §3.2].

The minimization problem (3.9) is equivalent to

minimize
x,z

1

2
‖Ax− b‖22 + λ‖z‖1

subject to x− z = 0.

(3.10)

Applying the ADMM update rules results in Alg. 3.1, where Prox`1,λ : CL → CL is
the proximal operator of the `1 norm scaled by λ (also known as the soft thresholding
operator [74]):

Prox`1,λ(x) := arg min
z

λ‖z‖1 +
1

2
‖x− z‖22, (3.11)

whose i-th entry is given by [75, §6.5.2]

Prox`1,λ(x)i = (1− λ/|xi|)+ xi, (3.12)

where (x)+ := max(x, 0).
In the case of differential SAR tomography, Alg. 3.1 may be slow due to the fact that

(3.9) is both large-scale and ill-posed. In order to resolve this issue, we employ several
acceleration techniques.

The first one provides a more efficient way for the x-update.

1) Matrix inversion lemma: In Alg. 3.1, an L-by-L matrix has to be inverted. In the
case of large L, a direct exact approach is tedious. Instead, we utilize the following
lemma.
Lemma 3.1 (Matrix inversion lemma [76]). For any A ∈ Cn×m, B ∈ Cm×n and
nonsingular C ∈ Cn×n, the following equation holds:

(AB + C)−1 = C−1 −C−1A(I + BC−1A)−1BC−1. (3.13)

The right-hand side of (3.13) is more efficient if inverting C is straightforward.
This condition is satisfied for AHA + ρI, and applying Lemma 3.1 leads to

(AHA + ρI)−1 =
1

ρ
I− 1

ρ2
AH

(
I +

1

ρ
AAH

)−1

A. (3.14)
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3 Single-Master SAR Tomography

As a result, instead of the original L-by-L matrix, only an N -by-N matrix needs
to be inverted. Since I + (1/ρ)AAH � 0, the Cholesky factorization, which takes
(1/3)N3 [76, §C.3.2] flops, can be used.

Alternatively, the least squares subproblem in the x-update can be solved approximately
in an iterative manner [77]. This is also known as inexact minimization [72, §3.4.4].

The following techniques can be applied in order to improve convergence.

2) Varying penalty parameter: The principal idea is to update the penalty parameter
ρ at each iteration. In addition to the convergence aspect, this also makes Alg. 3.1
less dependent on the initial choice of ρ. At the (k + 1)th iteration, a common
approach is to set [72, §3.4.1]

ρ(k+1) :=





τρ(k) if ‖r(k)‖2 > µ‖s(k)‖2
ρ(k)/τ if ‖s(k)‖2 > µ‖r(k)‖2
ρ(k) otherwise

, (3.15)

where τ, µ > 1 are parameters, r(k) := x(k) − z(k) denotes the primal residual, and
s(k) := ρ(k)(z(k) − z(k−1)) denotes the dual residual. Both r(k) and s(k) converge
to 0 as k → ∞. Intuitively, increasing ρ tends to impose a larger penalty on
the augmenting term (ρ/2)‖x− z‖22 in the augmented Lagrangian [73, p. 509] and
therefore decrease ‖r(k)‖2 on the one hand, and to increase ‖s(k)‖2 by definition on
the other, and vice versa. The motivation is to keep r(k) and s(k) approximately
of the same order. As a matter of course, (3.14) needs to be recomputed whenever
ρ changes, which can be viewed as a downside of this technique.

3) Diagonal preconditioning: In the augmented Lagrangian, the augmenting term
(ρ/2)‖x− z‖22 can be replaced by

(1/2)〈P(x− z),x− z〉, (3.16)

where P ∈ RL×L is diagonal and positive definite. Note that this falls under the
category of more general augmenting terms [72, §3.4.2]. By means of this, Alg. 3.1
is freed from the choice of ρ, and the ADMM updates become

x← (AHA + P)−1(AHb + Pz− y)

z← Prox`1,λ/p
(
x + P−1y

)

y← y + P (x− z) ,

(3.17)

where p := Diag(P), and Prox`1,w : CL → CL is the proximal operator of the
weighted `1 norm with weights w ∈ RL++:

Prox`1,w(x) := arg min
z

‖z‖w,1 +
1

2
‖x− z‖22, (3.18)

whose i-th entry is given by

Prox`1,w(x)i = (1− wi/|xi|)+ xi. (3.19)
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3.1 Single-Look Case

Table 3.1: Number of iterations using different acceleration techniques

#1 #2 #3 #4 #5 #6

Baseline 20289 14250 15752 19571 23920 16983

Vary 1445 1101 1780 1958 2005 1033

Precondition 679 480 504 1074 840 805

Relax 11272 7916 8750 10866 13288 9446

Vary+Relax 767 625 871 821 834 1051

Precondition+Relax 377 260 288 595 467 447

If AHA is ill-conditioned, which is typically the case in spaceborne SAR tomogra-
phy, P can be interpreted as a preconditioner. Naturally, Lemma 3.1 can also be
utilized to invert AHA + P.

Pock and Chambolle (2011) proposed a simple and elegant approach to construct
diagonal preconditioners for a primal-dual algorithm [78] [73, §15.2] with guaran-
teed convergence:

pi :=
1

‖ai‖αα
, ∀l ∈ [L], (3.20)

where α ∈ [0, 2] is a parameter.

4) Over-relaxation: An additional step is added to Alg. 3.1 between the x- and z-
updates:

x← βx + (1− β)z, (3.21)

where β ∈ [1.5, 1.8] is a parameter (see for example [72, §3.4.3] and the references
therein).

Fig. 3.1 illustrates the convergence curves of Alg. 3.1 using different acceleration tech-
niques, as applied to real tomographic SAR data (#6 in Tab. 3.1, see also Sec. 4.4.2).
In order to generate this plot, we first let the vanilla Alg. 3.1 run non-stop until it con-
verged with extremely high precision. Then we took this solution as an optimal point
x? and calculated the absolute difference between the values of the objective function
|f(x)− f(x?)| at each iteration. Each technique did help to accelerate Alg. 3.1 in com-
parison to “baseline”, where we set ρ = 1. The number of iterations is given in Tab. 3.1
for this and five other cases. As can be observed, the combination of diagonal precondi-
tioning and over-relaxation was the most competitive one. This will therefore be adopted
for all the ADMM-based algorithms in the following.

Last but not least, we applied the accelerated sparse recovery algorithm to the Munich
data set (see Sec. 2.1) in the full scene extent. The tomographic results are illustrated
in Fig. 3.2, where there are a total of 2711820 single and 475182 double scatterers. By
using 20 threads, the tomographic processing took circa 48.91 hours on a Linux server
with an Intel processor at 3.30 GHz.
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Figure 3.1: Convergence curves of Alg. 3.1 using different acceleration techniques. “Baseline”:
ρ = 1. “Vary”: varying penalty parameter. “Precondition”: diagonal precondition-
ing. “Relax”: over-relaxation. Bottom: a close-up of the top figure.
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Figure 3.2: Single-look single-master tomographic estimates of the Munich data set with
L1RLS. Top: topography. Bottom: periodical motion amplitude.
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3 Single-Master SAR Tomography

3.1.2 Automatic Regularization Parameter Tuning

In this subsection, we develop a scheme for automatic regularization parameter tuning
based on the theory of vector optimization.

Let f(x) := (1/2)‖Ax−b‖22 and g(x) := ‖x‖1. Consider the unconstrained bi-criterion
optimization problem

minimize
x

(w.r.t. R2
+) (f(x), g(x)) , (3.22)

which is a special case of the more general vector optimization problem [76, §4.7.1].
The rationale is to minimize f(x) and g(x) at the same time w.r.t. the nonnega-
tive quadrant. However, it can be shown that, for this specific problem, there is no
minimum element of the set of objective function values. That is, @x? such that
(f(x?), g(x?)) �R2

+
(f(x), g(x)), i.e., f(x?) ≤ f(x) and g(x?) ≤ g(x), ∀x ∈ CL. In-

stead, we are interested in its minimal elements, i.e., any (f(x?), g(x?)) such that
(f(x), g(x)) �R2

+
(f(x?), g(x?)) =⇒ (f(x), g(x)) = (f(x?), g(x?)). In other words,

−50
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−
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g
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− log(PL)
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20
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Figure 3.3: Optimal trade-off curve of an L1RLS problem. Top right: model goodness of fit vs.
negative penalized log-likelihood. Bottom left: negative penalized log-likelihood vs.
regularization term.
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3.2 Multi-Look Case: Joint Tensor Mode Recovery

any x that is no worse than x? has the same objective value as x?. In this case, x? is
referred to as a Pareto optimal point [76, §4.7.3].

A standard technique for finding Pareto optimal points is to scalarize (3.22), i.e.,

minimize
x

λT (f(x), g(x)) , (3.23)

where λ ∈ R2
++. A direct application of the results in [76, §4.7.4] leads to the following

corollary.

Corollary 3.2. For any λ ∈ R2
++, arg minx λ

T (f(x), g(x)) is Pareto optimal for the
bi-criterion optimization problem (3.22). Partially conversely, for any Pareto optimal
x?, ∃λ ∈ R2

+, λ 6= 0 such that x? is a solution of the scalarized problem (3.23).

Basically, we can find all Pareto optimal points by varying λ over the nonnegative
quadrant. In other words, we trace the optimal trade-off curve, which is defined as the
set of Pareto optimal values. An optimal trade-off curve is provided in Fig. 3.3 (bottom
right) for the same example in Fig. 3.1. The top left dot is the Pareto optimal point
where λ1/λ2 →∞. It can be proved that [73, Proposition 15.1]

lim
λ1/λ2→∞

arg min
x

(λ1f(x) + λ2g(x)) = arg min
x

‖x‖1 subject to Ax = b, (3.24)

i.e., this point corresponds to the solution of the equality-constrained `1 minimization
problem. On the other hand, the bottom right dot denotes the point where the solution
is zero. This is bound to happen since

λ1/λ2 < 1/‖AHb‖∞ =⇒ arg min
x

(λ1f(x) + λ2g(x)) = 0. (3.25)

A popular heuristic is to sample the optimal trade-off curve by utilizing (3.25), and
to select the point having the highest penalized log-likelihood via model-order selection
(3.6). We adopt this idea, and replace the likelihood by the one after off-grid correction
(3.8), since any quantization error would also propagate to it. The top right and bottom
left subfigures in Fig. 3.3 show the negative penalized log-likelihood along the optimal
trade-off curve. As can be observed, it reaches its minimum when f(x) is within the
interval of approximately [1, 7], where two scatterers are correctly detected.

The next section addresses a sparse recovery problem in the multi-look single-master
setting.

3.2 Multi-Look Case: Joint Tensor Mode Recovery

In this section, we consider a specific problem in the multi-look case described as follows.
Suppose there are a total of P looks of SLC measurements. Every look contains a certain
number of scatterers, each of which is located at the same elevation position as another
one in any other look. However, they are not necessarily subject to the same motion.
Following the conventions in Sec. 3.1, suppose scatterers’ motion can be decomposed into
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3 Single-Master SAR Tomography

Figure 3.4: Discrete reflectivity tensor X . Left: frontal slices X:,:,p. Right: a horizontal slice
Xi,:,: consisting of scatterers at the same elevation whose motion parameters are
different.

M basis functions. Let s be the discretization of elevation, and cm be the discretization
of motion parameters, ∀m ∈ [M ]. The discrete reflectivity can be represented by an
(M + 2)-way tensor X ∈ C|s|×|c1|×···×|cM |×P [79]. Fig. 3.4 shows such a tensor with
M = 1, i.e., the discrete reflectivity is a three-way tensor X ∈ C|s|×|c|×P . Each frontal
slice X:,:,p ∈ C|s|×|c|, p ∈ [P ], is the discrete reflectivity matrix of the pth look. An
instance of the aforementioned prior knowledge is illustrated in Fig. 3.4 (right).

In principle, we want to promote scatterers among different looks to align exclusively
in s, i.e., in the first mode. For any p ∈ [P ], let R(p) and g(p) denote the corresponding
tomographic sensing matrix and SLC measurement vector, respectively. We propose the
following Joint Tensor Mode-Regularized Least Squares (JTMRLS) problem:

minimize
X

1

2

∑

p∈[P ]

‖R(p) Vec(X :,...,p)− g(p)‖22 + λ
∑

i∈[|s|]
‖X i,...,:‖F , (3.26)

where Vec : Cd1×...dm → C
∏m

i=1 di is the vectorization operator, and the tensor Frobenius
norm is defined as [79]

‖Y‖F :=

√ ∑

i1∈[d1]

· · ·
∑

im∈[dm]

|yi1,...,im |2, (3.27)

for any Y ∈ Cd1×...dm .
Let g := (g(1), . . . ,g(P )) be the concatenated SLC measurement vector. The JTMRLS

problem is equivalent to a Group Sparsity-Regularized Least Squares (GSRLS) problem:

minimize
γ

1

2
‖Rγ − g‖22 + λ

∑

η∈H

‖γη‖2, (3.28)

where R is the block diagonal matrix given by

R :=




R(1)

. . .

R(P )


 , (3.29)
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3.2 Multi-Look Case: Joint Tensor Mode Recovery

Algorithm 3.2 An ADMM-based algorithm for solving (3.30)

1: Input: A, b, H, z(0), λ, ρ
2: Initialize z← z(0)

3: Until stopping criterion is satisfied, Do
4: x← (AHA + ρI)−1(AHb + ρz− y)
5: z← ProxH,λ/ρ (x + (1/ρ)y)
6: y← y + ρ (x− z)
7: Output: z

γ := (Vec(X :,...,1), . . . ,Vec(X :,...,P )) is the concatenated discrete reflectivity vector, and
each η ∈ H is an index set corresponding to a specific elevation position such that H
forms a partition of [L], L := |s|∏m∈[M ] |cm|P . Note that this generalizes the Joint
Sparsity-Regularized Least Squares (JSRLS) problem in which no motion is considered
[42].

By a change of variables, the GSRLS problem (3.28) becomes

minimize
x

1

2
‖Ax− b‖22 + λ

∑

η∈H

‖xη‖2, (3.30)

or equivalently

minimize
x,z

1

2
‖Ax− b‖22 + λ

∑

η∈H

‖zη‖2

subject to x− z = 0.

(3.31)

Applying the ADMM update rules leads to Alg. 3.2. The proximal operator ProxH,λ :
CL → CL of the group sparsity norm scaled by λ is given by:

ProxH,λ(x) := arg min
z

λ
∑

η∈H

‖zη‖2 +
1

2
‖x− z‖22, (3.32)

whose η-group entries are given by [75, §6.5.4]

ProxH,λ(x)η = (1− λ/‖xη‖2)+ xη, (3.33)

which can be interpreted as a blockwise soft thresholding.
As a proof of concept, we applied this method to the Munich data set described in

Sec. 2.1. In particular, we exploited the matched PSs in Fig. 2.3 (left) to extract five
clusters, each of which comprises five looks that contain scatterers at the same elevation
position. As already explained in Sec. 2.1, we used one sinusoidal basis function to
account for the periodical motion induced by temperature change. The height estimates
of L1RLS (3.5) and JTMRLS (3.26) are shown in Fig. 3.5, while the periodical motion
amplitude estimates are shown in Fig. 3.6. These estimates seem very similar and it
is really difficult to visually observe any difference. Fig. 3.7 (left) shows the height
estimates along azimuth. Obviously, the L1RLS estimates jitter around the JTMRLS
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Figure 3.5: L1RLS vs. JTMRLS: height estimates.
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Figure 3.6: L1RLS vs. JTMRLS: periodical motion amplitude estimates.
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Figure 3.7: L1RLS vs. JTMRLS. Left: height estimates along azimuth. Right: scatter plot of
estimated periodical motion amplitude.

ones, showing the superiority of the latter. On the other hand, their periodical motion
parameter estimates are highly correlated, as can be observed in Fig. 3.7 (right). This
implies that JTMRLS did not compromise on motion estimation by enforcing iso-height
scatterers to also share the same motion parameter.

The next chapter addresses spaceborne SAR tomography in the single-look multi-
master setting.
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4 Single-Look Multi-Master SAR
Tomography

In this chapter, we tackle the general problem of single-look multi-master SAR tomog-
raphy. Sec. 4.1 establishes the single-look multi-master data model, analyzes its impli-
cations for single and double scatterers, and introduces a generic inversion framework
consisting of nonconvex sparse recovery, model-order selection and off-grid correction.
For the nonconvex sparse recovery problem, two algorithms, namely NLS and Bi-Convex
Relaxation and Alternating Minimization (BiCRAM), are developed in Sec. 4.2 and 4.3,
respectively. Sec. 4.4 reports an experiment with the Munich data set (see Sec. 2.1).
The main theorems in this chapter are proved in Sec. 4.5.

4.1 From Data Model to Inversion Framework

Suppose we have a multi-master stack. By using the language of basic graph theory
(e.g., [80, §1]), this stack can be described by an acyclic directed graph. Denote it as
G := (V(G),E(G)) that is associated with an incidence function ψG, where V(G) :=
[N ] is a set of SLCs as vertices, and E(G) is a set of interferograms as edges. For
each e ∈ E(G), ∃m,n ∈ V(G) such that ψG(e) = (m,n). The adjacency matrix
A(G) := (am,n) ∈ {0, 1}N×N is defined as

am,n :=

{
1 : (m,n) ∈ E(G),

0 : (m,n) /∈ E(G).
(4.1)

Since G is acyclic by definition, an,n = 0, ∀n ∈ V(G), i.e., the diagonal of A(G)
contains only zero entries. We further assume that, without loss of generality, every
vertex is connected to at least another one. That G represents a multi-master stack
implies @i ∈ [N ] such that ai,n = 1, am = 0, ∀m,n ∈ [N ] \ {i}, since it would otherwise
be a single-master stack. For each (m,n) ∈ E(G), an interferogram is formed:

gngm =

∫ ∫
γ(s)γ(s′) exp

(
−j(kns− kms′)

)
dsds′. (4.2)

An extension to the differential case, where scatterers’ motion is modeled as a linear
combination of basis functions, is straightforward (see also Sec. 3.1).

From now on, we assume that the sensor far field is compressible such that it can be
well approximated by a small number of scatterers, i.e.,

gn ≈
∑

l

γl exp(−jknsl), ∀n ∈ [N ], (4.3)
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4 Single-Look Multi-Master SAR Tomography

where γl ∈ C is the reflectivity of the lth scatterer located at the elevation position sl.
By means of this, the single-look multi-master data model (4.2) becomes

gngm ≈
∑

l,l′
γlγl′ exp (−j(knsl − kmsl′)) , ∀(m,n) ∈ E(G). (4.4)

In the single-scatterer case, (4.4) can be simplified as

gngm ≈ |γ|2 exp (−j(kn − km)s) , (4.5)

i.e., the multi-master observation is in fact the Fourier transform of the scatterer’s power
at the wavenumber baseline kn− km. Consequently, the nonnegativity of the scatterer’s
power should be taken into account in the tomographic inversion. Since both the real
and imaginary parts of gngm are parametrized by |γ|2, i.e.,

<(gngm) ≈ |γ|2 cos ((kn − km)s) , =(gngm) ≈ |γ|2 sin (−(kn − km)s) , (4.6)

the inversion problem can be reformulated in the real vector space.
In the case of double scatterers, the multi-master observation (4.4) becomes

gngm ≈ |γ1|2 exp (−j(kn − km)s1) + γ1γ2 exp (−j(kns1 − kms2)) +

γ1γ2 exp (−j(kns2 − kms1)) + |γ2|2 exp (−j(kn − km)s2) .
(4.7)

Besides the Fourier transform of the scatterers’ power at the wavenumber baseline kn −
km, the right-hand side contains the second and third “cross-terms”, in which not only
the scatterers’ reflectivity but also their wavenumber-elevation-products are coupled.
This essentially rules out any linear model for single-look multi-master SAR tomography.

Remark. A single-look bistatic or pursuit monostatic (see Sec. 2.2) stack is in general
not motion-free in the case of double or multiple scatterers.

In order to demonstrate this, consider for example a linear motion model d(tn) := vtn,
where v and t denote the linear motion rate and time, respectively. Observe

gngm ≈
∑

l,l′
γlγl′ exp(−j(knsl − kmsl′ + 4πdl(tn)/λ− 4πdl′(tm)/λ))

= |γ1|2 exp (−j ((kn − km)s1 + 4πv1(tn − tm)/λ)) +

γ1γ2 exp (−j ((kns1 − kms2) + 4π(v1tn − v2tm)/λ)) +

γ1γ2 exp (−j ((kns2 − kms1) + 4π(v2tn − v1tm)/λ)) +

|γ2|2 exp (−j ((kn − km)s2 + 4πv2(tn − tm)/λ)) .

(4.8)

In the case of tm = tn, the motion-induced phase in the cross-terms vanishes if and only
if v1 = v2.

The single-look multi-master data model (4.4) already suggests a nonlinear equation
system. Suppose G comprises a total of N ′ := |E(G)| multi-master interferograms, and
e1, . . . , eN ′ is an ordered sequence of them. Let M,S : [N ′] → [N ] be the mappings
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from the interferogram index to the master and slave indices, respectively, such that a
multi-master interferogram gS(n)gM(n) is obtained for each en, n ∈ [N ′]. Let g ∈ CN ′
denote the vector of multi-master interferograms so that gn := gS(n)gM(n), ∀n ∈ [N ′].
Let s1, . . . , sL be a discretization of the elevation axis s. The single-look multi-master
data model in matrix notations is

g ≈ (Rγ) ◦ (Sγ), (4.9)

where R,S ∈ CN ′×L represent the tomographic sensing matrices of the slaves and mas-
ters, respectively, rn,l := exp(−jkS(n)sl), sn,l := exp(−jkM(n)sl), ∀n ∈ [N ′], l ∈ [L], and

γ ∈ CL is the unknown discrete reflectivity vector.
In light of (4.9), we propose the following generic framework for tomographic inversion.

(1) Nonconvex sparse recovery: Consider the minimization problem

γ̂ := arg min
γ

1

2
‖(Rγ) ◦ (Sγ)− g‖22

subject to | Supp(γ)| ≤ K,
(4.10)

where K ∈ Z++. The objective function measures the model goodness of fit,
and the inequality constraint enforces γ to be sparse (as is implicitly assumed in
(4.4)). Provided that

∑K
l=0

(
L
l

)
is small, it is feasible to solve (4.10) heuristically

by means of the algorithms to be developed in Sec. 4.2. Sec. 4.3 is devoted to
another algorithm that solves a similar problem based on bi-convex relaxation.

(2) Model-order selection: Similar as in the single-master setting (see Sec. 3.1), we
employ this procedure in order to remove outliers and thereby to reduce false
positive rate. By means of BIC, model-order selection can be formulated as the
following constrained minimization problem (cf. (3.6)):

Ω̂ := arg min
Ω(,δ)

2N ′ ln
(
‖(RΩδΩ) ◦ (SΩδΩ)− g‖22/N ′

)
+ (5|Ω|+ 1) ln(N ′)

subject to Supp(δ) = Ω ⊂ Supp(γ̂),
(4.11)

where Ω is the support of the auxiliary variable δ ∈ CL. Since | Supp(γ̂)| is
typically small, (4.11) boils down to solving a sequence of subset least squares
problems in the form of

minimize
ε

1

2
‖(RΩε) ◦ (SΩε)− g‖22, (4.12)

for which two algorithms will be developed in Sec. 4.2.

(3) Off-grid correction: Likewise, the off-grid or quantization problem arises when
scatterers are not located on the discrete elevation grid s1, . . . , sL. Let K̂ := |Ω̂|
denote the number of scatterers after model-order selection. Denote the real and
imaginary parts of the lth scatterer’s reflectivity γl as γRl and γIl , respectively,
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i.e., γl = γRl + jγIl , and its elevation position as sl, ∀l ∈ [K̂]. Based on the
underlying single-look multi-master data model (4.4), we seek a solution of the
following nonlinear and nonconvex minimization problem (cf. (3.8)):

minimize
γRl ,γ

I
l ,sl

∑

n

∣∣∣gn−
∑

l,l′
(γRl +jγIl )(γRl′ −jγIl′) exp

(
−j(kS(n)sl − kM(n)sl′)

) ∣∣∣
2
, (4.13)

whose objective function is differentiable w.r.t. γRl , γIl and sl, ∀l ∈ [K̂]. Naturally,
the on-grid estimates from (4.11) can be used as an initialization for, e.g., the
BFGS algorithm.

So far we have established a generic inversion framework for single-look multi-master
SAR tomography. The next two sections will deal with the optimization problems (4.10)–
(4.13) from an algorithmic point of view.

4.2 Nonlinear Least Squares (NLS)

As a parametric method, NLS divides a sparse recovery problem into a sequence of
subset linear least squares subproblems [81, §6.4]. In this section, we extend the concept
of NLS to the single-look multi-master data model (4.9), and tackle its subproblems
(4.12). In order to simplify notation, we consider the following equivalent problem:

minimize
x

1

2
‖(Ax) ◦ (Bx)− b‖22, (4.14)

where A,B ∈ Cm×n, x ∈ Cn, and b ∈ Cm with m > n. As already indicated in Sec. 4.1,
(4.14) is clearly worth investigation, since it not only solves the nonconvex spare recovery
problem (4.10), but also underlies model-order selection (4.11).

4.2.1 Algorithms

In this subsection, we develop two algorithms for solving (4.14).

The first algorithm is based on the ADMM [72] (cf. Alg. 3.1). Consider (4.14) in its
equivalent form:

minimize
x,z

1

2
‖(Ax) ◦ (Bz)− b‖22

subject to x− z = 0,

(4.15)

which is essentially a bi-convex problem with affine constraint [72, §9.2]. Applying the
ADMM update rules gives Alg. 4.1. Note that both the x- and z-updates amount to
solving linear least squares problems.
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4.2 Nonlinear Least Squares (NLS)

Algorithm 4.1 An ADMM-based algorithm for solving (4.14)

1: Input: A, B, b, z(0), ρ
2: Initialize z← z(0)

3: Until stopping criterion is satisfied, Do
4: Ã← Diag(Bz)A
5: x← (ÃHÃ + ρI)−1(ÃHb + ρz− y)
6: B̃← Diag(Ax)B
7: z← (B̃HB̃ + ρI)−1(B̃Hb + ρx + y)
8: y← y + ρ(x− z)
9: Output: z

The second algorithm employs the trust-region Newton’s method that solves general
unconstrained nonlinear minimization problems by exploiting first- and second-order in-
formation [71, §4]. The rationale behind this choice is to avoid saddle points that cannot
be identified by first-order information [82]. In each iteration, a norm ball, commonly
referred to as the “trust region”, centered at the current iterate is chosen adaptively. If
the second-order Taylor polynomial of the objective function is a sufficiently good ap-
proximation, we find a descent direction by solving a quadratically constrained quadratic
minimization problem. Let f : Rn → R denote the objective function, the subproblem
at the iterate x ∈ Rn is

minimize
∆x

f(x) +∇f(x)T∆x +
1

2
∆xT∇2f(x)∆x

subject to ‖∆x‖2 ≤ r,
(4.16)

where ∆x ∈ Rn is the unknown search direction, ∇f and ∇2f denote respectively the
gradient and Hessian of f , and r ∈ R++ is the radius of the current trust region. By
using the Karush-Kuhn-Tucker (KKT) conditions for nonconvex problems, Nocedal and
Wright broke down (4.16) into several cases [71, §4.3]: in one case a 1-D root-finding
problem w.r.t. the dual variable is solved by using, e.g., the Newton’s method, while in
the others there exist analytic solutions. Due to the overwhelming technical details, we
do not provide an exposition here. Interested readers are suggested to refer to [71, §4.3].
It can be proved that the trust-region Newton’s method converges to a critical point
with high accuracy under very general conditions [71, p. 92].

Now we turn back to our complex-valued NLS problem (4.14). By verifying the
Cauchy-Riemann equations (e.g., [83, p. 50]), it can be shown that the objective function
of (4.14) is not complex-differentiable w.r.t. x. Instead of using Wirtinger differentiation
that lacks in parts of the second-order information, we exploit the isomorphic mapping
x 7→ (xR,xI) and define

f(xR,xI) :=
1

2
‖(Ax) ◦ (Bx)− b‖22, (4.17)
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where f : Rn × Rn → R is real-differentiable w.r.t. xR and xI . Its gradient is given by

∇f(xR,xI) =

(
∂f
∂xR
∂f
∂xI

)
=

(
< (d)
= (d)

)
, (4.18)

where

d := AH
(
((Ax) ◦ (Bx)− b) ◦ (Bx)

)
+ BH

(
((Ax) ◦ (Bx)− b) ◦ (Ax)

)
. (4.19)

In addition, its Hessian is given by

∇2f(xR,xI) =




∂2f
∂x2

R

∂2f
∂xR∂xI

∂2f
∂xI∂xR

∂2f
∂x2

I


 =

(
< (C + D + E) −= (C−D + E)
= (C + D + E) < (C−D + E)

)
, (4.20)

where

C := AH Diag
(
(Bx) ◦ (Bx)

)
A + BH Diag

(
(Ax) ◦ (Ax)

)
B,

D := AH Diag ((Ax) ◦ (Bx)) B + BH Diag ((Ax) ◦ (Bx)) A,

E := AH Diag
(
(Ax) ◦ (Bx)− b

)
B + BH Diag

(
(Ax) ◦ (Bx)− b

)
A.

(4.21)

Note that d : Cn → Cn and C,D,E : Cn → Cn×n are, as a matter of fact, functions
of x. In order to simplify notation, the parentheses have been dropped. For the same
purpose, we define

f(x) := f (<(x),=(x)) = f(xR,xI). (4.22)

By means of the first- and second-order information of (4.17), the trust-region New-
ton’s method can be directly invoked, which boils down to solving a sequence of sub-
problems in the form of (4.16). For any optimal point x?, the KKT condition reads

∇f(x?) = 0 ⇐⇒ d(x?) = 0. (4.23)

However, none of these algorithms is guaranteed to always converge to a global min-
imum. In Sec. 4.4, we will demonstrate that the solutions are often sufficiently good.
Fig. 4.1 illustrates typical convergence curves in the case of double scatterers (#6 in
Sec. 4.4.2). Similar as in Sec. 3.1.1, we let one of the algorithms deliver a numerical
solution with very high precision, took it as an optimal point x?, and computed the
absolute difference between the values of the objective function |f(x)−f(x?)|. Both the
ADMM and the trust-region Newton’s method converged to the same solution (up to a
constant phase angle, see Sec. 4.2.2). Since the latter only used fewer than 10 iterations
to converge, it will be employed in Sec. 4.4. In spite of this, the former can still be
interesting due to its simple update rules (see Alg. 4.1).

4.2.2 Analysis of the Objective Function

In terms of the nonconvex objective function (4.17), we are first and foremost interested
in the following two questions:
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Figure 4.1: Convergence curves of NLS using ADMM (solid line) and the trust-region Newton’s
method (dashed line).

(1) Under which conditions do critical points or local extrema exist?

(2) Provided that they do exist, how many of them are there?

This subsection provides a partial answer to these questions.

First of all, we make the following general statement.

Proposition 4.1. For any x ∈ Cn and φ ∈ R, any eigenvalue of ∇2f(x) is also an
eigenvalue of ∇2f (x exp(jφ)) and vice versa.

Proof. See Sec. 4.5.1.

Informally, this proposition implies that the definiteness of the Hessian is invariant
under any rotation with a constant phase angle.

Now we state the main theorem for the general case.

Theorem 4.2. Properties of the critical points of f(x).

(1) 0 is a critical point: it is a local minimum if AH Diag(b)B + BH Diag(b)A ≺ 0,
and a local maximum if AH Diag(b)B + BH Diag(b)A � 0.

(2) If there exists a nonzero critical point, then AH Diag(b)B + BH Diag(b)A ⊀ 0.

(3) Suppose there exists a nonzero critical point z. Then

(3a) ∇2f(z) is rank deficient.
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4 Single-Look Multi-Master SAR Tomography

(3b) There exist an infinite number of critical points in the form of z exp(jφ),
φ ∈ R \ {0}. Each has the same objective function value as z, and its Hessian
has the same definiteness.

Proof. See Sec. 4.5.2.

This theorem implies that if there exists one critical point, then there are an infinite
number of them up to a constant phase angle, and each is exactly as good in terms of
objective function value. Informally, it also suggests that the NLS problem (4.14) may
not be as difficult as it appears, since we only need to find one critical point out of
infinitely many. In addition, we conjecture that AH Diag(b)B + BH Diag(b)A � 0 is a
necessary and sufficient condition (cf. Thm. 4.2(2)), and each nonzero critical point is
also a local minimum under some mild conditions.

The main theorem for the special case n = 1, i.e., A,B ∈ Cm, x ∈ C, is much stronger.

Theorem 4.3 (n = 1). Properties of the critical points of f(x).

(1) 0 is a critical point: it is a local minimum if <
(
(A ◦B)Hb

)
< 0, and a local

maximum if <
(
(A ◦B)Hb

)
> 0.

(2) There exists a nonzero critical point if and only if <
(
(A ◦B)Hb

)
> 0.

(3) Suppose there exists a nonzero critical point z. Then

(3a) ∇2f(z) is positive semi-definite and rank deficient1.

(3b) There exist an infinite number of critical points in the form of z exp(jφ),
φ ∈ R \ {0}. Each has the same objective function value as z, and its Hessian
has the same definiteness.

(3c) z is a local minimum.

Proof. See Sec. 4.5.3.

Hence a nonzero local minimum exists if and only if <
(
(A ◦B)Hb

)
> 0. If this

condition is fulfilled, then there exist infinitely many local minima that are exactly as
good in terms of objective function value. As an example, Fig. 4.2 illustrates the negative
logarithm of (4.17) with a circle of local maxima. This corresponds to a single scatterer
in Fig. 2.3 (left).

Lastly, the following corollary follows directly from the proof of Thm. 4.3.

Corollary 4.4 (n = 1). Each nonzero local minimum (provided it exists) is given by

z =
<
(
(A ◦B)Hb

)1/2

‖A ◦B‖2
exp(jφ), (4.24)

for some φ ∈ R.

1Note that ∇2f(z) ∈ R2×2 by definition.
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Figure 4.2: Negative logarithm of an NLS objective function (n = 1) with a circle of local
maxima at the verge of the “crater”.

Proof. See the proof of Thm. 4.3(2).

Let us turn back to the problem in SAR tomography. For the single-look multi-master
data model (4.9), this corollary motivates the following 1-D spectral estimator:

|γ̂l| :=




<((rl◦sl)Hg)

1/2

‖rl◦sl‖2 if <
(
(rl ◦ sl)

Hg
)
> 0

0 otherwise,
(4.25)

∀l ∈ [L]. Note that (4.25) also provides the solution of any 1-D NLS subproblem up to
a constant phase angle. As can be expected, this estimator does not have any super-
resolution power in the case of multiple scatterers.

4.3 Bi-Convex Relaxation and Alternating Minimization
(BiCRAM)

In this section, we develop a second algorithm for solving the nonconvex sparse recovery
problem (4.10).

We start by replacing the inequality constraint in (4.10) with a sparsity-inducing
regularization term, e.g.,

minimize
γ

1

2
‖(Rγ) ◦ (Sγ)− g‖22 + λ‖γ‖1, (4.26)
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where λ ∈ R++ is a regularization parameter that controls the balance between the
model goodness of fit and the sparsity of γ. In light of (4.23), the necessary condition
for any γ? to be an optimal point is

1

λ

(
RH

(
(g − (Rγ?) ◦ (Sγ?)) ◦ (Sγ?)

)
+ SH

(
(g − (Rγ?) ◦ (Sγ?)) ◦ (Rγ?)

))
∈ ∂‖γ?‖1,

(4.27)
i.e., the left-hand side is a subgradient of the `1 norm at γ?. Obviously, 0 always fulfills
this condition, which complicates solving (4.26).

In principle, an ADMM-based algorithm similar to Alg. 4.1 can be developed for
solving (4.26). However, our experience with real tomographic SAR data shows that
such an algorithm often diverges, presumably due to the high mutual coherence of the
sensing matrices and the nonconvexity of (4.26). Therefore, we consider instead the
following relaxed problem:

minimize
γ,θ

1

2
‖(Rγ) ◦ (Sθ)− g‖22 +

λ1

2
‖γ − θ‖22 + λ2‖

(
γ θ

)
‖1,2, (4.28)

where λ1, λ2 ∈ R++ are regularization parameters. Its objective function CL × CL → R
is bi-convex, i.e., it is convex in γ with θ fixed, and convex in θ with γ fixed. The
first regularization term enforces γ and θ to have similar entries, while the second
one promotes the same support. Since (4.28) is essentially an unconstrained bi-convex
problem, it can be solved via alternating minimization by Alg. 4.2.

Algorithm 4.2 An alternating algorithm for solving (4.28)

1: Input: R, S, g, γ(0), λ1, λ2

2: Initialize γ ← γ(0)

3: Until stopping criterion is satisfied, Do
4: S̃← Diag(Rγ)S
5: θ ← arg minθ

1
2‖S̃θ − g‖22 + λ1

2 ‖θ − γ‖22 + λ2‖
(
θ γ

)
‖1,2

6: R̃← Diag(Sθ)R
7: γ ← arg minγ

1
2‖R̃γ − g‖22 + λ1

2 ‖γ − θ‖22 + λ2‖
(
γ θ

)
‖1,2

8: Output: γ

At each iteration, when either γ or θ is fixed, (4.28) becomes a convex problem in the
form of

minimize
x

1

2
‖Ax− b‖22 +

λ1

2
‖x− u‖22 + λ2‖

(
x u

)
‖1,2, (4.29)

or equivalently

minimize
x,Z

1

2
‖Ax− b‖22 +

λ1

2
‖x− u‖22 + λ2‖Z‖1,2

subject to
(
x u

)
− Z = 0,

(4.30)

where Z ∈ CL×2 is an auxiliary variable. Applying the ADMM update rules leads to
Alg. 4.3.
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Algorithm 4.3 An ADMM-based algorithm for solving (4.29)

1: Input: A, b, u, Z(0), λ1, λ2, ρ
2: Initialize Z← Z(0)

3: Until stopping criterion is satisfied, Do
4: x← (AHA + (λ1 + ρ)I)−1(AHb + λ1u + ρz1 − y1)
5: Z← Prox`1,2,λ2/ρ

((
x u

)
+ (1/ρ)Y

)

6: Y ← Y + ρ
((

x u
)
− Z

)

7: Output: z1

Prox`1,2,λ : CL×2 → CL×2 is the proximal operator of the `1,2 norm scaled by λ
(e.g., [75]), i.e.,

Prox`1,2,λ(X) := arg min
Z

λ‖Z‖1,2 +
1

2
‖X− Z‖2F , (4.31)

whose i-th row is given by [75, §6.5.4]

Prox`1,2,λ(X)i = (1− λ/‖xi‖2)+ xi. (4.32)

This proximal operator promotes the two columns of Z to be sparse in a joint manner
and therefore x to share the same support with u.

In general, it is very difficult to establish any convergence guarantee for Alg. 4.2 from
a theoretical point of view, mainly due to the nonconvexity of (4.28). Nevertheless,
our experiments with real tomographic SAR data (see Sec. 4.4) show that it converges
empirically. Fig. 4.3 illustrates as an example a convergence curve in the case of two
scatterers that are closely located (#6 in Sec. 4.4.2).

Regarding regularization parameter tuning, we adopt the same heuristic introduced
in Sec. 3.1.2: we sample the solution path (λ1, λ2) 7→ x, and select the solution with
the highest penalized likelihood (4.11), in which the likelihood is replaced with the one
after off-grid correction (4.13). Last but not least, this procedure can be simplified by
performing alternating 1-D searches, i.e., fixing one parameter and tuning the other at
a time.

4.4 Experiment and Validation

This section reports our experimental results with the Munich data set (see Sec. 2.1).

4.4.1 Design of Experiment

A single-master stack was created with the acquisition from December 20, 2016 chosen
as the one and only master. Its absolute vertical wavenumbers can be found in Fig. 2.1.
A sinusoidal basis function was employed for modeling periodical motion induced by
temperature change. As already mentioned in Sec. 2.1, the vertical Rayleigh resolution at
scene center is approximately 12.66 m. Given the periodical motion model and a nominal
SNR of 2 dB, the CRLB of height estimates is approximately 1.10 m (cf. 1.02 m without
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Figure 4.3: Convergence curve of BiCRAM. The horizontal axis refers to the number of outer
iterations in Alg. 4.2.

motion model in Sec. 2.1). NLS and L1RLS were applied to this stack for tomographic
reconstruction. For the latter, Alg. 3.1 was augmented with diagonal preconditioning and
over-relaxation (see Sec. 3.1.1), where we set β = 1.8, and the choice of α is irrelevant,
for A is in this case a Fourier matrix. The optimal trade-off curve of L1RLS was
sampled 11 times with the regularization parameter varying logarithmically from λmin :=
5 · 10−2‖RHg‖∞ to λmax := 5 · 10−1‖RHg‖∞.

We formed a multi-master stack comprising interferograms of small time intervals: let
1′, 2′, 3′, 4′, . . . be a chronologically ordered sequence of SLCs, then the interferograms
or edges are (1′, 2′), (3′, 4′), etc. Consequently, this stack contains 15 interferograms.
Due to the small time intervals, we did not employ any motion model in order to
avoid overfitting. NLS and BiCRAM were applied to this stack to estimate the ele-
vation profile. Alg. 4.3, augmented by diagonal preconditioning and over-relaxation,
was employed to solve the subproblems in Alg. 4.2 for the latter. Likewise, the solu-
tion path of BiCRAM was sampled 11 times as well, where λ1 was fixed as one since,
as far as our experience went, it was found to be relatively uninfluencial, and λ2 was
set to vary logarithmically from λmin := 5 · 10−2 max

{
‖RHg‖∞, ‖SHg‖∞

}
to λmax :=

5 · 10−1 max
{
‖RHg‖∞, ‖SHg‖∞

}
. The initial solution was set to be γ(0) = (R ◦ S)Hg

due to its simplicity. Alternatively, the 1-D estimator (4.25) could be employed. With
regard to off-grid correction, forward-mode automatic differentiation [84] was used in or-
der to avoid the necessity of analytically differentiating the objective function of (4.13)
for any number of scatterers, and the optimization problem was solved by using a BFGS
implementation [85].
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Figure 4.4: Six looks subject to roof-facade layover.

In the end, we created a second multi-master stack in the identical way as the previous
one. Besides, we normalized each interferogram with the corresponding master ampli-
tude. It will be referred to as the fake single-master stack, since it was treated as if it
had been a single-master one. In order to apply the single-master approach, we com-
puted for each interferogram the difference between slave and master wavenumbers, and
used this difference as if it had been the wavenumber baseline in a single-master stack.
Likewise, NLS and L1RLS were applied in the exactly same way as in the single-master
case.

4.4.2 Experimental Results

The experiments can be divided into three settings: single-master, multi-master and fake
single-master (see Sec. 4.4.1). In each setting, two algorithms were applied to reconstruct
the elevation profile.

As a proof of concept, we picked six looks that are very likely subject to roof-facade
layover. These six looks were selected in a systematic way: we applied Tikhonov regu-
larization (i.e., the `1 norm in the regularization term of (3.9) is substituted by the `2
norm) to the single-master stack, chose all the seven looks consisting of double scatter-
ers, and disposed of one look in which scatterers’ elevation distance is almost identical
to the one in another look. Fig. 4.4 illustrates these six looks, whose indices increase
with decreasing estimated elevation distance from approximately 1.5 to 0.8 times the
Rayleigh resolution. Under the assumption that the roof is entirely flat, this ordering
agrees very well with intuition: the higher the scatterer is on the facade, the less is its
elevation distance to the roof.

The estimated height profile is shown in Fig. 4.5 (#1–3) and 4.6 (#4–6), where we used
the vertical Rayleigh resolution of the single-master stack (see Sec. 4.4.1) to normalize
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Table 4.1: Single- and multi-master height estimates of looks subject to layover #1–3 [m]

#1 #2 #3

h1 h2 h1 h2 h1 h2

RaySAR −9.22 − −8.91 − −2.39 −

Single-Master
NLS −10.27 9.10 −8.14 6.97 −4.27 10.72

L1RLS −10.27 9.10 −8.14 6.97 −4.27 10.72

Multi-Master
NLS −10.15 9.47 −8.96 8.23 −3.50 9.98

BiCRAM −10.15 9.47 −8.96 8.23 −3.50 9.98

Fake Single-Master
NLS 9.35 − −9.12 − −1.64 −
L1RLS 9.35 − −9.12 − −1.64 −

the x-axis. The height estimates are given in Tab. 4.1 and 4.2. In the single-master
setting, NLS and L1RLS delivered very similar height profiles, in spite of the sporadic
artifacts in the latter that are known to occur with `1-regularization [69]. Besides, the
height estimates were identical after off-grid correction, as can be observed in Tab. 4.1
and 4.2. In each case, the height estimate of the lower scatterer agrees very well with
the Level 2 height ground truth of facade (see Sec. 2.1). Overall, the multi-master
height estimates are consistent with the single-master ones, with deviations typically of
several decimeters. In the fake single-master setting, layover separation was however
merely successful for #5, presumably due to its high SNR (see the brightness of #5 in
Fig. 4.4). When the height distance is significantly larger than the vertical Rayleigh
resolution (#1–2), both NLS and L1RLS could retrieve two scatterers, but only the one
with the larger amplitude could pass model-order selection. When the height distance
approaches the vertical Rayleigh resolution or becomes even smaller (#3, 4, 6), neither
algorithm could retrieve a second scatterer, and the height estimate of the retrieved
single scatterer after off-grid correction is also arguably wrong. Thus, we are convinced
by this simple experiment that the conventional single-master approach, if applied to a
single-look multi-master stack, can be insufficient for layover separation.

Naturally, we also applied tomographic reconstruction to all the 594 looks within
the building footprint (see Fig. 2.3 (right)). Tab. 4.3 provides the overall runtime on
a desktop with 16-GB RAM and a quad-core Intel processor at 3.40 GHz. Note that
the periodical motion model was only employed in the single-master setting, and the
solution paths of L1RLS and BiCRAM were sampled 11 times (see Sec. 4.4.1). The
height estimates of single and double scatterers are illustrated in Fig. 4.7–4.9 for the
three settings, respectively. In the case of double scatterers, the higher one was plotted.
The apparently messy appearance (e.g., in the left column) is caused by the fact that
single scatterers are located on both roof and facade. Despite this, the gradual color
transition at the 30 PSs from far- to near-range agrees visually very well with the Level 1
ground truth (see Fig. 2.3 (left)). Tab. 4.4 gives the number of scatterers. In the single-
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Figure 4.5: Estimated height profile of #1–3 in Fig. 4.4. Vertical line: before model-order se-
lection. Circle: after model-order selection. The height values are given in Tab. 4.1.
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Figure 4.6: Estimated height profile of #4–6 in Fig. 4.4. Vertical line: before model-order se-
lection. Circle: after model-order selection. The height values are given in Tab. 4.2.
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Table 4.2: Single- and multi-master height estimates of looks subject to layover #4–6 [m]

#4 #5 #6

h1 h2 h1 h2 h1 h2

RaySAR −2.87 − −1.59 − 0.55 −

Single-Master
NLS −2.63 9.97 −1.95 10.03 0.98 11.34

L1RLS −2.63 9.97 −1.95 10.03 0.98 11.34

Multi-Master
NLS −2.06 10.45 −0.37 10.90 0.66 10.85

BiCRAM −2.06 10.45 −0.37 10.90 0.66 10.85

Fake Single-Master
NLS 1.19 − 0.63 10.03 3.47 −
L1RLS 1.19 − 0.63 10.03 3.47 −

Table 4.3: Single- and multi-master runtime

Runtime [s]

Single-Master
NLS 6154

L1RLS 736

Multi-Master
NLS 460

BiCRAM 6853

Fake Single-Master
NLS 48

L1RLS 65

scatterer setting, NLS retrieved almost twice as many double scatterers as L1RLS. This
is presumably due to a higher false positive rate: at 2 out of 30 PSs (5th/2nd row
from near range, and 5th/5th column from late azimuth on the 6 × 5 regular grid)
double scatterers were estimated, although there should only be two single ones. In the
multi-master setting, the number of double scatterers is of the same order as the one
in the single-master L1RLS, and the ratio between the numbers of single and double
scatterers is also comparable. We attribute the smaller number of single scatterers to the
nonconvexity of the sparse recovery problem (4.10): as implied by Thm. 4.2(2), a certain
condition needs to be satisfied for any nonzero height profile to exist at all, let alone
whether any algorithm can provably recover it. In the fake single-master setting, a lot
fewer double scatterers were retrieved. This is presumably a result of double scatterers
being misdetected as single scatterers, which happened 5 out of 6 times in the previous
proof-of-concept experiment (see Fig. 4.5 and 4.6).

In the next subsection, these height estimates will be systematically validated with
Level 1 and 2 ground truth data.
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Figure 4.7: Single-master height estimates of single and double scatterers. Top: NLS. Bottom:
L1RLS.
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Figure 4.8: Multi-master height estimates of single and double scatterers. Top: NLS. Bottom:
BiCRAM.
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Figure 4.9: Fake single-master height estimates of single and double scatterers. Top: NLS.
Bottom: L1RLS.
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Table 4.4: Single- and multi-master number of scatterers

Single Double Ratio Facade

Single-Master
NLS 359 332 1.08 148

L1RLS 446 168 2.65 189

Multi-Master
NLS 260 158 1.65 124

BiCRAM 291 118 2.47 133

Fake Single-Master
NLS 360 60 6.00 134

L1RLS 381 38 10.03 143

4.4.3 Validation

Since the height ground truth is restricted to the TUM-Nordbau building facade (see
Sec. 2.1), we focused our validation on single scatterers by following two approaches: the
first one is based on 30 PSs, and the second one uses extracted scatterers that correspond
to the building facade.

As already explained in Sec. 4.4.1, the 30 PSs comprising the Level 1 ground truth
(see Fig. 2.3 (left)) result from triple reflections on the building facade, and are located
on a regular grid of salient points. Because of the nearly identical scattering geometry,
these PSs should have very similar SNRs and are thus ideal for the validation of height
estimates. In each of the six cases (3 settings × 2 algorithms), single scatterers were
correctly detected at all the 30 PSs—with the exception that two were misdetected as
double scatterers by NLS in the single-master setting (see Fig. 4.7 (top)). As a result,
the height estimate error could be evaluated directly. Fig. 4.10 illustrates the normalized
histogram of height estimate error, whose statistical parameters are provided in Tab. 4.5.
As a reference, the SD and MAD of height estimate error in the PSI result were reported
to be 0.28 and 0.22 m, respectively [1]. In each of the three settings, the corresponding
two algorithms performed similarly and no significant difference can be visually observed.
A comparison of the multi-master and fake single-master results revealed the superiority
of the former: its histogram is more centered around zero with both slightly smaller SD
and MAD. This is not unexpected, since we have already analyzed the implication of the
single-look multi-master data model for single scatterers in Sec. 4.1. At this point, we
could confidently claim that the minor difference in the modeling does make a difference
in practice, albeit small, despite the longer (by approximately one order, taking into
account that the solution path of BiCRAM was sampled 11 times) processing time.
Somewhat surprisingly, the multi-master height estimate seems to be slightly better
than the single-master one. This can be attributed to the complication of single-master
tomographic processing by using an imperfect periodical motion model. On the other
hand, the simplification in the multi-master setting is justified, since motion-induced
phase was mitigated by generating interferograms of small time intervals.

The second approach employs all the facade looks contained in the Level 2 ground
truth (see Fig. 2.3 (right)). Fig. 4.12 illustrates the scatter plots of simulated and
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Figure 4.10: Normalized histogram of height estimate error of 30 PSs (Level 1). SM: single-
master. MM: multi-master. FSM: fake single-master.

Table 4.5: Statistics of height estimate error [m]: 30 PSs (Level 1)

Min Max Mean Median SD MAD

Single-Master
NLS −0.81 0.65 −0.30 −0.29 0.34 0.35

L1RLS −0.81 0.65 −0.31 −0.29 0.34 0.37

Multi-Master
NLS −0.88 0.55 −0.33 −0.36 0.31 0.28

BiCRAM −0.88 0.55 −0.33 −0.36 0.31 0.28

Fake Single-Master
NLS −1.02 0.68 −0.43 −0.48 0.34 0.30

L1RLS −1.02 0.68 −0.43 −0.48 0.34 0.30

estimated height of single scatterers. As can be observed, many single scatterers are
located on the building roof (see the gray dots above the diagonal line). In order to
extract facade scatterers, we used an interval of simulated height ±3 × CRLB. The
number of extracted facade scatterers is given in the rightmost column of Tab. 4.4.
These scatterers, depicted as black dots in Fig. 4.12, were used for the validation of
height estimates. Fig. 4.11 illustrates the normalized histogram of height estimate error,
whose statistical parameters are listed in Tab. 4.6. Likewise, the two corresponding
algorithms performed similarly in each setting, and the multi-master height estimate
error is characterized by slightly less deviation. Compared to the SD and MAD in
Tab. 4.5, these parameters are worse due to the much larger range of SNRs.

4.5 Proofs of Theorems

The proofs of the main theorems are provided in this section.

4.5.1 Proof of Proposition 4.1

The proof uses the following minor result.
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Figure 4.11: Normalized histogram of height estimate error of extracted facade scatterers
(Level 2). SM: single-master. MM: multi-master. FSM: fake single-master.

Table 4.6: Statistics of height estimate error [m]: extracted facade scatterers (Level 2)

Min Max Mean Median SD MAD

Single-Master
NLS −3.03 2.99 −0.40 −0.51 1.23 0.96

L1RLS −3.03 2.99 −0.42 −0.49 1.25 0.99

Multi-Master
NLS −3.04 2.71 −0.49 −0.40 1.13 0.85

BiCRAM −3.04 2.71 −0.50 −0.40 1.12 0.86

Fake Single-Master
NLS −2.93 2.70 −0.38 −0.50 1.15 0.91

L1RLS −2.93 2.70 −0.35 −0.48 1.21 1.05

Lemma 4.5. For any F,G ∈ Rn×n and c, d ∈ R such that c2 + d2 = 1, the following
equalities hold:

(
cI dI
−dI cI

)−1(
F −G
G F

)(
cI dI
−dI cI

)
=

(
F −G
G F

)
,

(
cI dI
−dI cI

)−1(
F G
G −F

)
=

(
F G
G −F

)(
cI dI
−dI cI

)
.

(4.33)

Proof. Observe that for any a, b ∈ R such that a2 + b2 6= 0,

(
aI bI
−bI aI

)−1

=
1

a2 + b2

(
aI −bI
bI aI

)
. (4.34)

The rest of the proof follows via straightforward computations.

Now we turn our attention to the proposition.

Proof of Proposition 4.1. First, we prove that ∇2f(x) and ∇2f (x exp(jφ)) are similar,
i.e., there exists an invertible P such that ∇2f(x) = P−1∇2f (x exp(jφ)) P.

51



4 Single-Look Multi-Master SAR Tomography

2 0 1 0 0 1 0 2 0
S im u la t e d  H e ig h t  [m ]

2 0

1 5

1 0

5

0

5

1 0

1 5

2 0

E
st

im
a

te
d

 H
e

ig
h

t 
[m

]

2 0 1 0 0 1 0 2 0
S im u la t e d  H e ig h t  [m ]

2 0

1 5

1 0

5

0

5

1 0

1 5

2 0

E
st

im
a

te
d

 H
e

ig
h

t 
[m

]

2 0 1 0 0 1 0 2 0
S im u la t e d  H e ig h t  [m ]

2 0

1 5

1 0

5

0

5

1 0

1 5

2 0

E
st

im
a

te
d

 H
e

ig
h

t 
[m

]

2 0 1 0 0 1 0 2 0
S im u la t e d  H e ig h t  [m ]

2 0

1 5

1 0

5

0

5

1 0

1 5

2 0

E
st

im
a

te
d

 H
e

ig
h

t 
[m

]

2 0 1 0 0 1 0 2 0
S im u la t e d  H e ig h t  [m ]

2 0

1 5

1 0

5

0

5

1 0

1 5

2 0

E
st

im
a

te
d

 H
e

ig
h

t 
[m

]

2 0 1 0 0 1 0 2 0
S im u la t e d  H e ig h t  [m ]

2 0

1 5

1 0

5

0

5

1 0

1 5

2 0

E
st

im
a

te
d

 H
e

ig
h

t 
[m

]

Figure 4.12: Scatter plot of simulated and estimated height of single scatterers using Level 2
height ground truth. Black: extracted facade scatterers. Gray: non-facade scat-
terers.
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Observe that

C (x exp(jφ)) = AH Diag
(

(Bx exp(jφ)) ◦ (Bx exp(jφ))
)

A +

BH Diag
(

(Ax exp(jφ)) ◦ (Ax exp(jφ))
)

B

= C(x),

D (x exp(jφ)) = AH Diag ((Ax exp(jφ)) ◦ (Bx exp(jφ))) B +

BH Diag ((Ax exp(jφ)) ◦ (Bx exp(jφ))) A

= D(x) exp(j2φ),

E (x exp(jφ)) = AH Diag
(

(Ax exp(jφ)) ◦ (Bx exp(jφ))− b
)

B +

BH Diag
(

(Ax exp(jφ)) ◦ (Bx exp(jφ))− b
)

A

= E(x).

(4.35)

Let C := C(x), D := D(x), E := E(x). The Hessian becomes

∇2f (x exp(jφ)) =

(
<(C) −=(C)
=(C) <(C)

)
+

(
< (D exp(j2φ)) = (D exp(j2φ))
= (D exp(j2φ)) −< (D exp(j2φ))

)
+

(
<(E) −=(E)
=(E) <(E)

)

=

(
<(C + E) −=(C + E)
=(C + E) <(C + E)

)
+

(
<(D) =(D)
=(D) −<(D)

)(
cos(2φ)I sin(2φ)I
− sin(2φ)I cos(2φ)I

)
.

(4.36)

The choice of P can be divided into two cases depending on the value of φ.

(1) In the trivial case, φ = (2k + 1)π/2 for some k ∈ Z. Let

P :=

(
0 −I
I 0

)
. (4.37)
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This leads to

P−1∇2f (x exp(jφ)) P =

(
0 −I
I 0

)−1(<(C + E) −=(C + E)
=(C + E) <(C + E)

)(
0 −I
I 0

)
+

(
0 −I
I 0

)−1(<(D) =(D)
=(D) −<(D)

)(
−I 0
0 −I

)(
0 −I
I 0

)

=

(
<(C + E) −=(C + E)
=(C + E) <(C + E)

)
+

(
<(D) =(D)
=(D) −<(D)

)(
0 −I
I 0

)(
−I 0
0 −I

)(
0 −I
I 0

)

=

(
<(C + E) −=(C + E)
=(C + E) <(C + E)

)
+

(
<(D) =(D)
=(D) −<(D)

)

= ∇2f(x),
(4.38)

where the second equality follows from Lemma 4.5.

(2) In the non-trivial case, φ 6= (2k + 1)π/2 for any k ∈ Z. Let

P :=




√
1+cos(2φ)

2 I − sin(2φ)√
2(1+cos(2φ))

I

sin(2φ)√
2(1+cos(2φ))

I

√
1+cos(2φ)

2 I


 . (4.39)

Likewise, the same equality holds.

Finally, we use the similarity property to show that an eigenvalue of ∇2f(x) is also
an eigenvalue of ∇2f (x exp(jφ)).

Let (λ,v) be an eigenpair of ∇2f(x). The similarity property implies

λv = ∇2f(x)v = P−1∇2f (x exp(jφ)) Pv =⇒ ∇2f (x exp(jφ)) Pv = λPv, (4.40)

i.e., (λ,Pv) is an eigenpair of ∇2f (x exp(jφ)). The proof in the other direction is
straightforward.

4.5.2 Proof of Theorem 4.2

Before we delve into the proof, it is useful to define a few auxiliary variables. Let

C̃ :=

(
<(C) −=(C)
=(C) <(C)

)
, D̃ :=

(
<(D) =(D)
=(D) −<(D)

)
, Ẽ :=

(
<(E) −=(E)
=(E) <(E)

)
,

(4.41)
so that ∇2f(x) = C̃+D̃+ Ẽ. Likewise, C̃, D̃, Ẽ : Cn → R2n×2n are de facto (composite)
functions of x. The proof of the main theorem is based on the following minor result.
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Lemma 4.6. For any x := xR + jxI , the following equalities hold:

(
xTR xTI

)
C̃

(
xR
xI

)
= xHCx,

(
xTR xTI

)
D̃

(
xR
xI

)
= <

(
xHDx

)
,

(
xTR xTI

)
Ẽ

(
xR
xI

)
= xHEx,

C̃

(
xR
xI

)
=

(
<(Cx)
=(Cx)

)
,

D̃

(
xR
xI

)
=

(
<(Dx)
=(Dx)

)
,

Ẽ

(
xR
xI

)
=

(
<(Ex)
=(Ex)

)
.

(4.42)

Proof. The proof follows via straightforward computations.

Proof of Theorem 4.2. (1) Since ∇f(0) = 0, 0 is a critical point. Observe that

C(0) = D(0) = 0, E(0) = −AH Diag(b)B−BH Diag(b)A. (4.43)

For any x := xR + jxI 6= 0,

(
xTR xTI

)
∇2f(0)

(
xR
xI

)
=
(
xTR xTI

)
Ẽ(0)

(
xR
xI

)
= xHE(0)x, (4.44)

where the second equality is given by Lemma 4.6. Since E(0) is Hermitian, we have
{

xHE(0)x > 0 if AH Diag(b)B + BH Diag(b)A ≺ 0

xHE(0)x < 0 if AH Diag(b)B + BH Diag(b)A � 0
(4.45)

for any x ∈ Cn \ {0}.
(2) Suppose ∃z 6= 0 such that ∇f(z) = 0. (4.23) implies

d(z) = AH
(
((Az) ◦ (Bz)− b) ◦ (Bz)

)
+ BH

(
((Az) ◦ (Bz)− b) ◦ (Az)

)
= 0. (4.46)

A few manipulations lead to

AH
(
(Az) ◦ (Bz) ◦ (Bz)

)
+BH

(
(Az) ◦ (Bz) ◦ (Az)

)
= AH Diag(b)Bz+BH Diag(b)Az.

(4.47)
Multiplying both sides with zH on the left yields

zH
(
AH Diag(b)B + BH Diag(b)A

)
z = 2‖(Az) ◦ (Bz)‖22 ≥ 0, (4.48)

which implies AH Diag(b)B + BH Diag(b)A ⊀ 0.

(3a) We prove that ∇2f(z) is rank deficient by showing ∇2f(z)

(
xR
xI

)
= 0, where

x := zI − jzR. Observe
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(1) (Ax) ◦ (Bz) + (Az) ◦ (Bx) = 0.

(2) For any F, Fz = 0 =⇒ Fx = 0, which together with (4.46) implies

AH Diag
(
(Az) ◦ (Bz)− b

)
Bx + BH Diag

(
(Az) ◦ (Bz)− b

)
Ax = 0. (4.49)

By Lemma 4.6, it suffices to check Cx + Dx + Ex:

Cx + Dx + Ex = AH Diag
(
(Bz) ◦ (Bz)

)
Ax + BH Diag

(
(Az) ◦ (Az)

)
Bx +

AH Diag ((Az) ◦ (Bz)) Bx + BH Diag ((Az) ◦ (Bz)) Ax +

AH Diag
(
(Az) ◦ (Bz)− b

)
Bx + BH Diag

(
(Az) ◦ (Bz)− b

)
Ax

= AH Diag(Bz)
(
(Ax) ◦ (Bz) + (Az) ◦ (Bx)

)
+

BH Diag(Az)
(
(Az) ◦ (Bx) + (Ax) ◦ (Bz)

)

= 0.
(4.50)

(3b) For any φ ∈ R, it is obvious that

d (z exp(jφ)) = d(z) = 0, f (z exp(jφ)) = f(z), (4.51)

i.e., z exp(jφ) is also a nonzero critical point that is as good. By Proposition 4.1,
∇2f (x exp(jφ)) has the same eigenvalues as ∇2f(x) and therefore the same definiteness.

4.5.3 Proof of Theorem 4.3

Without loss of generality, assume that ‖A ◦B‖ 6= 0.

Proof of Thm. 4.3. (1) When n = 1, observe that

AH Diag(b)B + BH Diag(b)A = 2<
(
(A ◦B)Hb

)
. (4.52)

The rest follows directly from Thm. 4.2(1).
(2) For any z ∈ C \ {0}, we have

d(z) = AH
(
((Az) ◦ (Bz)− b) ◦ (Bz)

)
+ BH

(
((Az) ◦ (Bz)− b) ◦ (Az)

)

= z|z|2AH(A ◦B ◦B)− zAH(b ◦B) + z|z|2BH(A ◦B ◦A)− zBH(b ◦A)

= z|z|2‖A ◦B‖22 − z(A ◦B)Hb + z|z|2‖A ◦B‖22 − z(A ◦B)Hb

= 2z
(
‖A ◦B‖22|z|2 −<

(
(A ◦B)Hb

))
,

(4.53)
which has a nonzero root if and only if <

(
(A ◦B)Hb

)
> 0. If this condition is satisfied,

its power is given by
|z|2 = <

(
(A ◦B)Hb

)
/‖A ◦B‖22. (4.54)

(3a) Suppose ∃z 6= 0 such that ∇f(z) = 0. (4.23) and (2) imply

‖A ◦B‖22|z|2 −<
(
(A ◦B)Hb

)
= 0. (4.55)
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4.5 Proofs of Theorems

By Lemma 4.6, we have for any x := xR + jxI 6= 0

(
xTR xTI

)
∇2f(z)

(
xR
xI

)

= xHC(z)x + <
(
xHD(z)x

)
+ xHE(z)x

= |x|2AH Diag
(
(Bz) ◦ (Bz)

)
A + |x|2BH Diag

(
(Az) ◦ (Az)

)
B +

<
(
x2AH Diag ((Az) ◦ (Bz)) B

)
+ <

(
x2BH Diag ((Az) ◦ (Bz)) A

)
+

|x|2AH Diag
(
(Az) ◦ (Bz)− b

)
B + |x|2BH Diag

(
(Az) ◦ (Bz)− b

)
A

= 2‖A ◦B‖22|x|2|z|2 + 2‖A ◦B‖22<(x2z2) + 2|x|2
(
‖A ◦B‖22|z|2 −<

(
(A ◦B)Hb

))

= ‖A ◦B‖22
(
2|x|2|z|2 + 2<(x2z2)

)

= ‖A ◦B‖22(xz + xz)2 ≥ 0,
(4.56)

where the equality can be attained with x = zI − jzR.
That ∇2f(z) is rank deficient is implied by Thm. 4.2(3a).
(3b) This follows directly from Thm. 4.2(3b).
(3c) Let us perturb z by ε ∈ C with |ε| being arbitrarily small and observe

f(z + ε) =
1

2
‖ (A(z + ε)) ◦

(
(Bz + ε)

)
− b‖22

=
1

2
‖(Az) ◦ (Bz) + (Az) ◦ (Bε) + (Aε) ◦ (Bz) + (Aε) ◦ (Bε)− b‖22

=
1

2
‖(Az) ◦ (Bz)− b + A ◦B(εz + εz + |ε|2)‖22

=
1

2
‖(Az) ◦ (Bz)− b‖22 +

1

2
‖A ◦B(2<(εz) + |ε|2)‖22 +

<
( (

(Az) ◦ (Bz)− b
)H (

A ◦B(2<(εz) + |ε|2)
) )

=
1

2
‖(Az) ◦ (Bz)− b‖22 +

1

2
‖A ◦B‖22(2<(εz) + |ε|2)2 +

<
(
‖A ◦B‖22|z|2 − bH(A ◦B)

)
(2<(εz) + |ε|2)

= f(z) +
1

2
‖A ◦B‖22(2<(εz) + |ε|2)2 +

(
‖A ◦B‖22|z|2 −<

(
(A ◦B)Hb

))
(2<(εz) + |ε|2)

= f(z) +
1

2
‖A ◦B‖22(2<(εz) + |ε|2)2,

(4.57)

where the last equality is given by (4.55). As a result,

f(z + ε)− f(z) =
1

2
‖A ◦B‖22(2<(εz) + |ε|2)2 ≥ 0, (4.58)

i.e., z is a local minimum.
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5 A Hybrid Approach for Pursuit
Monostatic Acquisitions

In this short chapter, we develop a framework for single-look differential SAR tomogra-
phy using pursuit monostatic acquisitions. This framework consists of two consecutive
steps: the first one reconstructs the elevation profile from pursuit monostatic interfero-
grams, which is essentially a special case of single-look multi-master SAR tomography
(see Sec. 4.1); the second one uses the previous elevation estimates as deterministic prior
for estimating scatterers’ motion parameters from all acquisitions, which is a variant of
single-look single-master SAR tomography (see Sec. 3.1).

This framework has two advantages. First of all, forming pursuit monostatic interfero-
grams contributes to curtailing APS, to reducing temporal decorrelation of non-PSs, and
to diminishing motion-induced phase for single scatterers (see Sec. 4.1). As a result, this
leads to better elevation reconstruction, and in turn to more accurate motion estimation.
Second of all, the original problem of estimating elevation and motion parameters at the
same time can be large-scale (see Sec. 3.1). By means of this divide-and-conquer strat-
egy, its size is downscaled multiplicatively in each step, which improves on the whole the
algorithmic efficiency.

In the next two sections, the technical details of the this two-step framework will be
elucidated. Sec. 5.3 gives an account of an experiment with the Las Vegas data set (see
Sec. 2.2).

5.1 Single-Look Pursuit Monostatic SAR Tomography

Suppose there are a total of 2N pursuit monostatic acquisitions. In the first step, we
reconstruct the elevation profile from the N pursuit monostatic interferograms (depicted
as solid lines in Fig. 5.1). This is in fact a special case of single-look multi-master SAR
tomography (see Sec. 4.1). Without loss of generality, let us employ the acquisitions

Figure 5.1: Pursuit monostatic interferometric combinations (solid lines) of TanDEM-X acqui-
sitions by the two satellites TSX and TDX.
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5 A Hybrid Approach for Pursuit Monostatic Acquisitions

from one satellite (say TSX) as masters, and the ones from the other (TDX) as slaves.
Denote their SLC measurement vectors as g and h, respectively. The nonconvex sparse
recovery problem reads:

minimize
γ

1

2
‖(Rγ) ◦ (Sγ)− g ◦ h‖22

subject to |Supp(γ)| ≤ K,
(4.10)

where R,S ∈ CN×L denote the tomographic sensing matrices of the TSX and TDX
acquisitions, respectively. Two algorithms, namely NLS (see Sec. 4.2) and BiCRAM
(see Sec. 4.3), have been developed for solving (4.10). Following the nonconvex sparse
recovery, model-order selection (4.11) and off-grid correction (4.13) are performed.

5.2 Single-Look Single-Master SAR “Motiography”

In the second step, we estimate scatterers’ motion parameters from all the 2N acquisi-
tions. Let K̂ be the number of scatterers after model-order selection. Let ŝl denote the
elevation estimate of the lth scatterer, ∀l ∈ [K̂]. We utilize this information as deter-
ministic prior for motion parameter estimation. Following the conventions in Sec. 3.1,
let ψm be the mth motion basis function and cm be its discrete motion parameter
vector, ∀m ∈ [M ]. Denote as a shorthand ψmn := ψm(tn). For each scatterer, we
build two “motiographic” sensing matrices of the masters and slaves, respectively, i.e.,
R(l),S(l) ∈ CN×

∏
m∈[M ] |cm|, ∀l ∈ [K̂], whose nth rows are given by (cf. the construction

in Sec. 3.1)

(
R(l)

)n
:= exp(−jψMM(n)cM )⊗ · · · ⊗ exp(−jψ1

M(n)c1)⊗ exp(−jkM (n)ŝl),
(
S(l)
)n

:= exp(−jψMS(n)cM )⊗ · · · ⊗ exp(−jψ1
S(n)c1)⊗ exp(−jkS (n)ŝl),

(5.1)

∀n ∈ [N ], where M,S : [N ] → [2N ] are the mappings from the interferogram index
to the master and slave indices, respectively (see Sec. 4.1). The “motiographic” inverse
problem can be formulated as

minimize
γ(l)

1

2
‖
∑

l∈[K̂]

R(l)γ(l) − g‖22 +
1

2
‖
∑

l∈[K̂]

S(l)γ(l) − h‖22

subject to | Supp(γ(l))| = 1, ∀l ∈ [K̂].

(5.2)

Let R̃(l) := (R(l),S(l)), g̃ := (g,h). Thereby (5.2) can be written more compactly as

minimize
γ(l)

1

2
‖
∑

l∈[K̂]

R̃(l)γ(l) − g̃‖22

subject to |Supp(γ(l))| = 1, ∀l ∈ [K̂],

(5.3)

60



5.3 Experiment and Assessment

Table 5.1: Single-master vs. hybrid approach: NLS runtime

Runtime [s]

Single-Master Tomography 82876

Pursuit Monostatic Tomography 3047

Single-Master “Motiography” 21

Table 5.2: Single-master vs. pursuit monostatic tomography: number of scatterers

Single Double Ratio Facade

Single-Master 2985 852 3.50 2450

Pursuit Monostatic 2873 1696 1.69 2410

which can be solved by a variant of NLS. Each NLS subproblem boils down to a subset
least squares problem in the form of

minimize
γ̃

1

2
‖R̃γ̃ − g̃‖22, (5.4)

where γ̃l and r̃l correspond to the lth scatterer, ∀l ∈ [K̂].

5.3 Experiment and Assessment

As a demonstration, we applied the proposed hybrid approach to the Las Vegas data set
(see Sec. 2.2). Due to the rather short time span of 132 days, we employed a sinusoidal
basis function for modeling periodical motion induced by temperature change. For the
single-look pursuit monostatic SAR tomography (see Sec. 5.1), the NLS algorithm from
Sec. 4.2 was used.

As a comparison, Fig. 5.2 shows the height and periodical motion amplitude estimated
with the single-master approach using conventional NLS. The estimates with the hybrid
approach are shown in Fig. 5.3. These results seem quite similar, despite the fact that
the uppermost part of the facade and roof of the building are missing in the former.
We suspect that the high-rise building bent at different angles in the wind on different
days of acquisition, which led to decorrelation in the single-master interferograms. In
addition, the hybrid approach was computationally less expensive due to its inherent
divide-and-conquer nature, as can be observed in Tab. 5.1. Tab. 5.2 provides the number
of scatterers in both cases.

In order to access the quality of the reconstructed point cloud, we adopted the following
strategy. First of all, we transformed each point cloud of single scatterers from SAR
into Universal Transverse Mercator (UTM) coordinates. Subsequently, we extracted
the facade segment by thresholding of the 2-D point density. Afterwards, we fitted a
vertical plane into the extracted facade segment with an `1 loss function, and considered
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0 2 0 4 0 6 0 8 0 1 0 0
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Figure 5.2: Single-master approach: estimated height and periodical motion amplitude. In the
case of double scatterers, the higher one is shown.
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Figure 5.3: Hybrid approach: estimated height and periodical motion amplitude. In the case
of double scatterers, the higher one is shown.
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Figure 5.4: Normalized histogram of height estimate error relative to a fitted vertical plane.
PM: pursuit monostatic. SM: single-master.
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5.3 Experiment and Assessment

Table 5.3: Single-master vs. pursuit monostatic tomography: height estimate error [m]

Min Max Mean Median SD MAD

Single-Master −0.87 1.11 0.00 0.00 0.29 0.29

Pursuit Monostatic −1.09 0.97 0.00 0.00 0.24 0.23

it as a reference. For each point, we calculated its signed distance to the fitted plane,
and projected it into the vertical direction. We refer to this projected distance as the
height estimate error relative to the fitted vertical plane. The number of points in
each facade segment is given in the rightmost column of Tab. 5.2. Fig. 5.4 illustrates
the normalized histogram of the height estimate error, whose statistical parameters are
listed in Tab. 5.3. Although the two histograms have very similar sample sizes and are
both centered around zero, the pursuit monostatic one has slightly less deviation, which
can also be visually observed.

The next chapter summarizes this dissertation, and suggests some follow-on research
topics.
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6 Summary and Outlook

The preceding chapters are centered around a few sparse recovery problems in spaceborne
SAR tomography with a focus on urban scenarios.

In the single-look single-master setting, a common approach involves solving a large-
scale L1RLS problem. Despite its popularity, first-order methods are often plagued by
convergence issues due to the notoriously ill-conditioned tomographic sensing matrix.
In order to resolve this problem, we developed an accelerated algorithm based on the
ADMM. In particular, we applied the matrix inversion lemma so as to facilitate the
primal variable update, which is the most computationally expensive step in this alter-
nating algorithm. Besides, we experimented with three different acceleration techniques,
namely varying penalty parameter, diagonal preconditioning, and over-relaxation, as well
as their combinations. We showed empirically that these techniques did contribute to
improving convergence as applied to real tomographic SAR data, and the combination of
diagonal preconditioning and over-relaxation provided the most acceleration among all.
The outcome of this experiment has very high practical importance, since it shows the
feasibility of using sparse recovery in large-area processing. Another equally important
issue of L1RLS or any other regularized sparse recovery problem is the tuning of regu-
larization parameter. In order to gain more insight, we inspected it from the viewpoint
of bi-criterion optimization. Based on a known theorem in the more general vector op-
timization, each solution associated with a fixed regularization parameter is essentially
a Pareto optimal point of the bi-criterion optimization problem, and a partial converse
exists as well. In light of this, we proposed to sample the optimal trade-off curve, and
to choose the one with the largest penalized likelihood after off-grid correction. This
heuristic is in general directly applicable to any regularized optimization problem. Last
but not least, we showed that the CRLB of elevation estimates, given that scatterers’
motion can be described by a single basis function, is in fact the motion-free version
scaled by a simple function of the correlation coefficient between the wavenumber and
motion basis function.

In the multi-look single-master configuration, we considered the problem of jointly
reconstructing different looks containing scatterers located at the same elevation posi-
tion, albeit possibly subject to different motion patterns. We formulated this as a joint
tensor mode recovery problem, i.e., we enforced scatterers to align only in the first mode
or elevation, which still allowed them to have different motion parameters. We showed
that the resulted JTMRLS is equivalent to a GSRLS problem, for which we developed an
algorithm based on the ADMM. We applied this algorithm to a real SAR tomographic
data set that satisfies the aforementioned requirement. The experiment confirmed the
validity of our approach: the jointly reconstructed elevation had less deviation, and the
motion parameter estimation stayed unaffected.
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6 Summary and Outlook

Many pages were dedicated to the study of single-look multi-master SAR tomography.
We established the single-look multi-master data model in the first place. For any single
scatterer, this model implies that the single-look multi-master observation is, as a matter
of fact, the Fourier transform of its power at the wavenumber baseline. As a result, the
nonnegativity of the power needs to be taken into account during tomographic inversion,
and the inverse problem can be recast as a real-valued one. For double scatterers,
the single-look multi-master observation contains additional cross-terms of scatterers’
reflectivity and their wavenumber-elevation-products, which indicates a nonlinear model
for SAR tomography. We also showed that any single-look bistatic interferogram is in
general not motion-free in the case of layover. Based on the single-look multi-master data
model, we proposed a generic framework for tomographic inversion, which consists of
nonconvex sparse recovery, model-order selection, and off-grid correction. For nonconvex
sparse recovery, we developed two algorithms, namely, NLS and BiCRAM.

• In the former, the conventional NLS was extended to the single-look multi-master
data model. For solving the NLS subproblems, we developed two algorithms based
on the ADMM and the trust-region Newton’s method, respectively. The develop-
ment of the first one was straightforward, while that of the second one was less so,
since the objective function of any NLS subproblem is not complex differentiable.
In order to circumvent this issue, we exploited the fact that the mapping from a
complex-valued vector to its real and imaginary parts is isomorphic and viewed
the objective function as one of two real-valued vectors. By means of this trick,
we derived analytically the gradient and Hessian of the objective function, so that
any first- or second-order method can be employed. We showed empirically that
the algorithm based on the trust-region Newton’s method often converged with
extremely high precision in a few iterations. We went on and proved two insightful
theorems regarding the critical points of the objective function for the general and
special (1-D) cases, respectively.

– In the general case, zero is always a critical point. More specifically, whether
it is a local minimum or maximum depends on whether a quantity is negative
or positive definite. That the same quantity is not negative definite is in
fact a sufficient condition for the existence of any nonzero critical point. If
there exists a nonzero critical point, then its Hessian is always rank deficient
(implying that the Hessian cannot be used to determine whether any nonzero
critical point is a local minimum or maximum), and an infinite number of
critical points along a circle exist as well.

– The theorem for the special case turned out to be much stronger. In addition
to the results already implied by the first theorem, that a quantity is positive
is a necessary and sufficient condition for the existence of any nonzero critical
point. If there exists one nonzero critical point, then its rank deficient Hessian
is also positive semi-definite, and this point is certainly a local minimum.

A corollary of the second theorem provides, given that the previously mentioned
condition is satisfied, the expression of any nonzero local minimum, which is also
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the analytical solution of the NLS subproblem in the special case. This motivates
in turn a 1-D spectral estimator for single-look multi-master SAR tomography.

• The latter is closely related to a variant of the L1RLS problem, whose optimality
condition is always satisfied by zero. Due to the nonconvexity of this problem and
the very high mutual coherence of tomographic sensing matrices, an algorithm
directly based on the ADMM was found to often diverge. For this reason, we
applied bi-convex relaxation and introduced an auxiliary variable. We replaced the
regularization term by two terms: one enforces the two variables to have similar
entries, and the other promotes them to share the same support. We developed
an alternating algorithm for solving this relaxed bi-convex problem, whose two
subproblems share the same form of a convex problem that can be solved by an
ADMM-based algorithm. We showed empirically that this alternating algorithm
converged with real SAR tomographic data.

We designed a delicate experiment in order to demonstrate the feasibility of the proposed
framework. This experiment consists of three single-look interferometric stacks: a single-
master one, a multi-master one comprising interferograms of small time intervals, and
a duplicate of the multi-master one that we treated as if it had been a single-master
one (by purposely mistaking the multi-master wavenumber difference for the single-
master wavenumber baseline). For the first and third stacks, we applied NLS and L1RLS
to reconstruct the elevation profile. For the second stack, NLS and BiCRAM were
employed. The ADMM-based sparse recovery algorithms were augmented with diagonal
preconditioning and over-relaxation. In terms of solution path sampling, the range of
regularization parameter and the number of samples were given. The experiment can
be divided into two parts.

• In the first part of the experiment, we tried to reconstruct the elevation profiles of
six looks subject to roof-facade layover and chosen in a systematic way. According
to the results of the single-master stack, the elevation distance decreases from ap-
proximately 1.5 to 0.8 times the Rayleigh resolution in these six looks. This agrees
very well with the locations of the looks, since their range distances are also in a
predominantly increasing order. In each of the three settings, namely single-mater,
multi-master and fake single-master, the corresponding two algorithms produced
almost identical elevation estimates after off-grid correction. The results in the
single- and multi-master settings are consistent with each other, and the eleva-
tion estimates of the lower scatterers agree very well with the facade predications
made available via a SAR imaging geodesy and simulation framework. In the fake
single-master setting, layover separation only succeeded in one of the six looks.
When the elevation distance is significantly larger than the Rayleigh resolution,
both algorithms could produce two scatterers, but only the one with the larger
amplitude could pass model-order selection. As the elevation distance draws near
to the Rayleigh resolution or becomes even smaller, neither algorithm could de-
liver a second scatterer, and the elevation estimates of the single scatterers are also
arguably wrong in comparison to the facade predications. This simple experiment
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shows that the single-master approach, if mistakenly applied to a multi-master
stack, can be insufficient for layover separation.

• The second part of the experiment involves tomographic reconstruction of all the
looks within a building footprint. The validation of the elevation estimates with
facade predications were divided into two cases. In one case, we employed directly
the height simulations of 30 PSs located on the building facade. In the other, we
had to perform a segmentation of the single scatterers first in order to discard
the ones located on the building roof. In both cases, the multi-master approach
slightly outperformed the fake single-master one, despite being computationally
more expensive by approximately one order. This shows empirically that the single-
look multi-master data model does make a difference, albeit small, even for single
scatterers in real data processing.

The aforementioned two single-look approaches were merged in a hybrid approach for
pursuit monostatic acquisitions. We developed a generic framework that splits the orig-
inal problem of estimating scatterers’ elevation and motion into two consecutive steps:
in the first step, we estimate scatterers’ elevation from only pursuit monostatic inter-
ferograms, which is a special case of single-look multi-master SAR tomography; in the
second step, we incorporate the previous elevation estimates as deterministic prior into
the tomographic sensing matrix for motion parameter estimation, which is a variant of
single-look single-master SAR tomography. The advantages of this divide-and-conquer
strategy are two-fold: 1) In comparison to conventional repeat-pass interferograms, pur-
suit monostatic ones are much less affected by APS, temporal decorrelation and motion.
They are therefore more suitable for elevation reconstruction. 2) In each step, the dimen-
sion of the original problem is downscaled by a multiplicative factor, which improves the
algorithmic efficiency. We applied this framework to a real SAR data set. As a compari-
son, we also employed the conventional single-look single-master approach. Their results
are quite similar, except that the latter could not reconstruct the uppermost part of the
facade or the roof, which we attributed to decorrelation due to different wind speeds in
repeat-pass acquisitions. In addition, we accessed the quality of each tomographic point
cloud by fitting a vertical plane into it. The height estimate error relative to this fitted
plane has slightly less deviation in the pursuit monostatic setting, which is consistent
with our findings in the more general single-look multi-master SAR tomography. As a
final note, this framework is directly applicable to bi- or multistatic acquisitions.

Lastly, we state three follow-on research topics that are motivated by this dissertation.

(1) Single-Look Single-Master SAR Tomography: Sparse Low-Rank Tensor Recovery
Following the conventions in Sec. 3.1, suppose scatterers’ motion can be decom-
posed into a linear combination of M basis functions. Denote the mth basis func-
tion as ψm, and ψm(tn) := ψmn , ∀m ∈ [M ]. Let

un := exp(−jkns), v(m)
n := exp(−jψmn cm), (6.1)

∀m ∈ [M ], n ∈ [N ]. Define d1 := |s|, and dm := |cm−1|, ∀m ∈ [M + 1] \ {1}.
Motivated by the JTMRLS problem in Sec. 3.2, the discrete reflectivity vector
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in (3.5) is essentially an (M + 1)-way tensor X ∈ Cd1×d2×...×dM+1 , and the linear
model (1.2) can be expressed elementwise by using the tensor n-mode products [79]:

gn ≈ X ×1 un ×2 v(1)
n ×3 · · · ×M+1 v(M)

n , ∀n ∈ [N ]. (6.2)

Under the assumption that the discrete reflectivity vector is K-sparse, X can be
decomposed into a sum of sparse rank-one tensors [79], i.e.,

X =
∑

l∈[K]

γlχ
(1)
l ⊗ χ

(2)
l ⊗ · · · ⊗ χ

(M+1)
l , (6.3)

where γl denotes the reflectivity of the lth scatterer, χ
(m)
l is a unit vector in the

standard basis Sdm , ∀l ∈ [K], m ∈ [M + 1], and ⊗ denotes the outer product (not
to be confused with the Kronecker product in Sec. 3.1). Fig. 6.1 illustrates such
a sparse low-rank tensor and its decomposition. Combining these two equations
leads to

gn ≈
∑

l∈[K]

γl〈un,χ(1)
l 〉〈v(1)

n ,χ
(2)
l 〉 · · · 〈v(M)

n ,χ
(M+1)
l 〉, ∀n ∈ [N ]. (6.4)

Consider for example the following sparse low-rank tensor recovery problem:

minimize
γl,χ

(m)
l

1

2

∑

n∈[N ]

|gn −
∑

l∈[K]

γl〈un,χ(1)
l 〉〈v(1)

n ,χ
(2)
l 〉 · · · 〈v(M)

n ,χ
(M+1)
l 〉|2

subject to χ
(m)
l ∈ Sdm , ∀l ∈ [K], m ∈ [M + 1].

(6.5)

In comparison to the original sparse (vector) recovery problem, this one has clearly
a smaller scale: instead of the

∏
m∈[M+1] dm entries in the (M +1)-way tensor, one

only needs to estimate K +K
∑

m∈[M+1] dm scalars.

Figure 6.1: Discrete reflectivity tensor X that can be decomposed into a sum of two rank-one
sparse tensors with γ1 = γ2 = 1.
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(2) Single-Look Pursuit Monostatic SAR Tomography: An Alternative Problem
Alternatively, we can parameterize the acquisition-specific phase artifacts including
but not limited to APS without forming any interferogram (cf. (4.10)). Denote the
SLC measurement vectors of the masters and slaves as g and h, respectively. These
can be treated as two correlated data sets, i.e.,

g ≈ (Rγ) ◦ exp(jφ), h ≈ (Sγ) ◦ exp(jφ), (6.6)

where φ ∈ RN ′ is the phase artifact vector. Under the compressibility assumption
of γ, consider the following bi-convex sparse recovery problem:

minimize
γ,φ

1

2
‖(Rγ) ◦ exp(jφ)− g‖22 +

1

2
‖(Sγ) ◦ exp(jφ)− h‖22 + λ‖γ‖1, (6.7)

or more compactly

minimize
γ,φ

1

2
‖(R̃γ) ◦ (Ĩ exp(jφ))− g̃‖22 + λ‖γ‖1, (6.8)

where R̃ := (R,S), Ĩ := (I, I), and g̃ := (g,h).

(3) Multi-Look Single-Master SAR Tomography: A Graph-Based Approach
A related problem is SAR tomography on edges, as inspired by PSI. Likewise,
the rationale is to form interferometric combinations between neighboring looks
in order to mitigate acquisition-specific phase artifacts such as APS. Suppose we
have an acyclic directed graph consisting of different looks as vertices and edges
connecting them. For any two neighboring looks that are connected via an edge,
denote their tomographic sensing matrices as R and S, their discrete reflectivity
vectors as γ and θ, and their SLC measurement vectors as g and h, respectively.
Consider the following bi-convex sparse recovery problem:

minimize
γ,θ

1

2
‖(Rγ) ◦ (Sθ)− g ◦ h‖22 + λ1‖γ‖1 + λ2‖θ‖1, (6.9)

where λ1, λ2 ∈ R++ are regularization parameters.

This marks the end of this dissertation.
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Experimental results with bistatic SAR tomography. In 2009 IEEE International
Geoscience and Remote Sensing Symposium, volume 2, pages II–37. IEEE, 2009.
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1

Single-Look Multi-Master SAR Tomography: An
Introduction

Nan Ge, Richard Bamler, Fellow, IEEE, Danfeng Hong, Member, IEEE,
and Xiao Xiang Zhu, Senior Member, IEEE

Abstract—This manuscript addresses the general problem of
single-look multi-master SAR tomography. For this purpose, we
establish the single-look multi-master data model, analyze its
implications for single and double scatterers, and propose a
generic inversion framework. The core of this framework is
nonconvex sparse recovery, for which we develop two algorithms:
one extends the conventional nonlinear least squares (NLS) to the
single-look multi-master data model, and the other is based on
bi-convex relaxation and alternating minimization (BiCRAM).
We provide two theorems for the objective function of the
NLS subproblem, which lead to its analytic solution up to a
constant phase angle in the one-dimensional case. We also report
our findings from the experiments on different acceleration
techniques for BiCRAM. The proposed algorithms are applied
to a real TerraSAR-X data set, and validated with height ground
truth made available via a SAR imaging geodesy and simula-
tion framework. This shows empirically that the single-master
approach, if applied to a single-look multi-master stack, can be
insufficient for layover separation, and the multi-master approach
can indeed perform slightly better (despite being computationally
more expensive) even in case of single scatterers. Besides, this
manuscript also sheds light on the special case of single-look
bistatic SAR tomography, which is relevant for current and future
SAR missions such as TanDEM-X and Tandem-L.

Index Terms—Synthetic aperture radar (SAR), bistatic SAR,
TanDEM-X, Tandem-L, SAR tomography, sparse recovery, non-
convex optimization.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) tomography is an in-
terferometric SAR (InSAR) technique that reconstructs

a three-dimensional far field from two-dimensional (2-D)
azimuth-range measurements of radar echoes [1]–[3]. In the
common case of spaceborne repeat-pass acquisitions, scat-
terers’ motion can also be modeled and estimated [4]–[6].
SAR tomography is sometimes considered as an extension of
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persistent scatterer interferometry (PSI) [7]–[9] to the multi-
scatterer case, although the inversion of the latter is performed
on double-difference phase observations of persistent scatter-
ers (PS) [10]. Extensive efforts were devoted to improving
the super-resolution power, robustness and computational effi-
ciency of tomographic inversion in urban scenarios (e.g., [11]–
[20]).

The publications on SAR tomography can be roughly clas-
sified into the following four categories (see also Tab. I). Note
that those listed below were only hand-picked, and we have
no intention to provide a complete list.

• Single-look single-master:
Reigber & Moreira (2000) did the pioneering work on
airborne SAR tomography by densifying sampling via
the integer interferogram combination technique and sub-
sequently employing discrete Fourier transform on an
interpolated linear array of baselines [1]. Fornaro et al.
(2003, 2005, 2008) paved the way for spaceborne SAR
tomography with long-term repeat-pass acquisitions and
proposed to use more advanced inversion techniques such
as truncated singular value decomposition [3], [5], [21].
Zhu & Bamler (2010a) provided the first demonstration
of SAR tomography with very high resolution spaceborne
SAR data by using Tikhonov regularization and nonlinear
least squares (NLS) [22]. Budillon et al. (2010) and Zhu
& Bamler (2010b) introduced compressive sensing tech-
niques to tomographic inversion under the assumption of
a compressible far-field profile. Zhu & Bamler (2011)
proposed a generic algorithm (named SL1MMER) that
is composed of spectral estimation, model-order selection
and debiasing [23].

• Single-look multi-master1:
To the best of our knowledge, the publications in this
category are rather scarce. Zhu & Bamler (2012) extended
the Tikhonov regularization, NLS and compressive sens-
ing approaches to a mixed TerraSAR-X and TanDEM-X
stack by using pre-estimated covariance matrix [24]. Ge
& Zhu (2019) proposed a framework for SAR tomogra-
phy using only bistatic or pursuit monostatic acquisitions:
non-differential SAR tomography for height estimation
by using bistatic or pursuit monostatic interferograms,
and differential SAR tomography for deformation esti-
mation by using conventional repeat-pass interferograms
and the previous height estimates as deterministic prior

1In this context, “multi-master” can be interpreted as “not single-master”
(see also our definition in Sec. II-A).
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TABLE I
A CLASSIFICATION OF TOMOGRAPHIC SAR ALGORITHMS

Single-Master Multi-Master

Si
ng

le
-L

oo
k

Reigber & Moreira (2000) Zhu & Bamler (2012)†

Fornaro et al. (2003, 2005, 2008) Ge & Zhu (2019)†

Budillon et al. (2010)
Zhu & Bamler (2010a, 2010b, 2011)
Etc.

M
ul

ti-
L

oo
k

Aguilera et al. (2012) Gini et al. (2002)
Schmitt & Stilla (2012) Lombardini (2005)
Liang et al. (2018) Duque et al. (2009, 2010, 2014)
Shi et al. (2019) Fornaro et al. (2014)
Etc. Etc.
† Mistakenly uses the single-look single-master data model

[25]. However, the single-look single-master data model
still underlies the algorithms in both publications.

• Multi-look single-master:
Aguilera et al. (2012) exploited the common sparsity pat-
tern among multiple polarimetric channels via distributed
compressive sensing [13]. Schmitt & Stilla (2012) also
employed distributed compressive sensing to jointly re-
construct an adaptively chosen neighborhood [14]. Liang
et al. (2018) proposed an algorithm for 2-D range-
elevation focusing on azimuth lines via compressive
sensing [26]. Shi et al. (2019) performed nonlocal InSAR
filtering before tomographic reconstruction [20].

• Multi-look multi-master:
In general, any algorithm estimating the auto-correlation
matrix belongs to this category. Note that this is closely
related to modern adaptive multi-looking techniques that
also exploit all possible interferometric combinations
[27]–[31]. Gini et al. (2002) investigated the performance
of different spectral estimators including Capon, mul-
tiple signal classification (MUSIC) and the multi-look
relaxation (M-RELAX) algorithm [2]. Lombardini (2005)
extended SAR tomography to the differential case by
formulating it as a multi-dimensional spectral estimation
problem and tackled it with higher-order Capon [4].
Duque et al. (2009, 2010) were the first to investi-
gate bistatic SAR tomography by using ground-based
receivers and spectral estimators such as Capon and
MUSIC [32], [33]. Duque et al. (2014) demonstrated
the feasibility of SAR tomography using a single pass
of alternating bistatic acquisitions, in which the eigen-
decomposed empirical covariance matrix was exploited
for the hypothesis test on the number of scatterers [34].
Fornaro et al. (2014) proposed an algorithm (named
CAESAR) employing principal component analysis of
the eigendecomposed empirical covariance matrix in an
adaptively chosen neighborhood [15].

This list has a clear focus on urban scenarios. Needless to
say, SAR tomography in forested scenarios involving random
volume scattering in canopy and double-bounce scattering
between ground and trunk (e.g., [35]–[42]) also falls in the
multi-look multi-master category.

Let us follow the common conventions and denote the

azimuth, range and elevation axes as x, r and s, respectively,
where s is perpendicular to the x-r plane. For the sake of
argument, suppose for any sample at the x and r positions,
the N single-look complex (SLC) SAR measurements are
noiseless. After deramping, each phase-calibrated SLC mea-
surement can be modeled as the Fourier transform Γ of the
elevation-dependent far-field reflectivity function γ : R → C
at the corresponding wavenumber k [21]:

gn = Γ(kn) :=

∫
γ(s) exp(−jkns)ds, n = 1, . . . , N, (1)

where kn := −4πbn/(λr0) is the nth wavenumber determined
by the sensor position bn along an axis b ‖ s w.r.t. an arbitrary
reference, the radar wavelength λ, and the slant-range distance
r0 w.r.t. a ground reference point. Here we consider the non-
differential case. An extension to the differential case, in which
scatterers’ motion is modeled as linear combination of basis
functions, is straightforward.

In the single-look single-master case, one SLC (say the ith,
i ∈ [N ]), typically near the center of joint orbital and temporal
distribution, is selected as the unique master for generating
interferograms, i.e., gngi/|gi|, ∀n ∈ [N ] \ {i}. This process,
which can also be interpreted as a phase calibration step,
converts kn into the wavenumber baseline ∆kn := kn − ki,
∀n ∈ [N ]. As a result, the zero position of wavenumber
baseline is fixed, i.e., ∆ki = 0. The rationale behind this is,
e.g., to facilitate 2-D phase unwrapping for atmospheric phase
screen (APS) compensation by smoothing out interferometric
phase in x-r.

Likewise, the data model of random volume scattering is
straightforward in the multi-look multi-master setting. Suppose
γ(s) is a white random signal. For any master and slave
sampled at k and k+∆k, respectively, the Van Cittert–Zernike
theorem implies that the expectation (due to multi-looking) of
the interferogram, being the autocorrelation function RΓΓ of Γ,
is the Fourier transform of the elevation-dependent backscatter
coefficient function σ0 : R→ R at ∆k:

E[Γ(k + ∆k)Γ(k)] = RΓΓ(∆k) =

∫
σ0(s) exp(−j∆ks)ds,

(2)



DRAFT

3

where the property of γ(s) being white, i.e., E[γ(s)γ(s′)] =
σ0(s)δ(s − s′), is utilized. This leads to an inverse problem
similar to the one in the single-look single-master case.

This manuscript, on the other hand, addresses the general
problem of SAR tomography using a single-look multi-master
stack. Such a stack arises when, e.g.,
• a stack of bistatic interferograms is used in order to di-

minish APS, to minimize temporal decorrelation of non-
PSs, and to eliminate motion-induced phase for single
scatterers [33], [43], [44],

• repeat-pass interferograms of small (temporal) baselines
are employed so as to limit the corresponding decorrela-
tion effects of non-PSs [45]–[47].

While both previously mentioned categories have been
intensively studied, it is not the case for single-look multi-
master SAR tomography. To the best of our knowledge, all
the existing work to date toward single-look multi-master SAR
tomography is still incorrectly based on the single-look single-
master data model [24], [25]. As will be demonstrated later
with a real SAR data set, this approach can be insufficient for
layover separation, even if the elevation distance between two
scatterers is significantly larger than the Rayleigh resolution.
This motivates us to fill the gap in the literature by revisiting
the single-look data model in a multi-master multi-scatterer
configuration, and by developing efficient methods for tomo-
graphic reconstruction. Naturally, this study is also inspired by
prospective SAR missions such as Tandem-L that will deliver
high-resolution wide-swath bistatic acquisitions in L-band as
operational products [48].

Our main contributions can be summarized as follows.
• We establish the data model of single-look multi-master

SAR tomography, by means of which both sparse re-
covery and model-order selection can be formulated as
nonconvex minimization problems.

• We develop two algorithms for solving the aforemen-
tioned nonconvex sparse recovery problem, namely,

1) NLS:
we provide two theorems regarding the critical points
of its subproblem’s objective function that also under-
lies model-order selection;

2) bi-convex relaxation and alternating minimization (Bi-
CRAM):
we propose to sample its solution path for the purpose
of automatic regularization parameter tuning, and we
show empirically that a simple diagonal precondition-
ing can effectively improve convergence.

• We propose to correct quantization errors by using (non-
convex) nonlinear optimization.

• We validate tomographic height estimates with ground
truth generated by SAR simulations and geodetic correc-
tions.

The rest of this manuscript is organized as follows. Sec. II
introduces the data model and inversion framework for single-
look multi-master SAR tomography. In Sec. III and IV, two
algorithms for solving the nonconvex sparse recovery prob-
lem within the aforementioned framework, namely, NLS and
BiCRAM, are elucidated and analyzed, respectively. Sec. V

reports an experiment with TerraSAR-X data including a
validation of tomographic height estimates. This manuscript
is concluded by Sec. VI.

II. SINGLE-LOOK MULTI-MASTER SAR TOMOGRAPHY

In this section, we establish the data model for single-
look multi-master SAR tomography, analyze its implications
for two specific cases, and sketch out a generic inversion
framework for it.

We start with the mathematical notations that are used
throughout this manuscript.

Notation. We denote scalars as lower- or uppercase letters
(e.g., m, N , λ), vectors as bold lowercase letters (e.g., g, γ),
matrices, sets and ordered pairs as bold uppercase letters (e.g.,
R, Ω), and number fields as blackboard bold uppercase letters
(e.g., Z, R, C) with the following conventions:

• gn denotes the nth entry of g.
• am and an denote the mth row and nth column of A,

respectively.
• Diag(a) denotes a square diagonal matrix whose entries

on the main diagonal are equal to a, and Diag(A) denotes
a vector whose entries are equal to those on the main
diagonal of A.

• Supp(x) denotes the index set of nonzero entries or
support of x.

• A, AT and AH denote the (elementwise) complex con-
jugate, transpose and conjugate transpose of A, respec-
tively.

• AR and <(A) denote the real part of A.
• AI and =(A) denote the imaginary part of A.
• A ◦B denotes the Hadamard product of A and B.
• A � 0, B ≺ 0 means that A is positive definite and B

is negative definite.
• AΩ denotes the matrix formed by extracting the columns

of A indexed by Ω.
• ‖A‖1,2 denotes the `1,2 norm of A, i.e., the sum of the
`2 norms of its rows.

• I denotes the identity matrix.
• [N ] denotes the set {1, . . . , N}.
• |Ω| denotes the cardinality of the set Ω.
• The nonnegative and positive subsets of a number field
F are denoted as F+ and F++, respectively.

A. Data Model

First of all, we give a definition of “single-master” and
“multi-master” by using the language of basic graph theory
(e.g., [49, §1]). Let G := (V(G),E(G)) be an acyclic
directed graph that is associated with an incidence function
ψG, where V(G) := [N ] is a set of vertices (SLCs), E(G)
is a set of edges (interferograms), and for each e ∈ E(G),
∃m,n ∈ V(G) such that ψG(e) = (m,n). Its adjacency
matrix A(G) := (am,n) ∈ {0, 1}N×N is given by

am,n :=

{
1 : (m,n) ∈ E(G),

0 : (m,n) /∈ E(G).
(3)
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Fig. 1. Single-master vs. multi-master: two exemplary configurations and the
corresponding adjacency matrices A(G).

Since G is acyclic, an,n = 0, ∀n ∈ V(G), i.e., the diagonal of
A(G) contains only zero entries. Without loss of generality,
assume that every vertex is connected to at least another one.

Definition 1. The single-master configuration means that there
exists a unique i ∈ [N ] such that ai,n = 1, am = 0, ∀m,n ∈
[N ] \ {i}. In this case, we refer to {gngi/|gi|} as the single-
master stack with a master indexed by i.

Definition 2. The multi-master configuration means that @i ∈
[N ] such that ai,n = 1, am = 0, ∀m,n ∈ [N ] \ {i}. In this
case, we refer to {gngm} as the multi-master stack.

That is, “multi-master” is equivalent to “not single-master”.
In the multi-master case, an interferogram is created for

each (m,n) ∈ E(G):

gngm =

∫ ∫
γ(s)γ(s′) exp (−j(kns− kms′)) dsds′. (4)

Hereafter, we focus on the case in which the far field
contains only a small number of scatterers such that

gn ≈
∑

l

γl exp(−jknsl), n = 1, . . . , N, (5)

where γl ∈ C is the reflectivity of the lth scatterer located
at the elevation position sl. The single-look multi-master data
model (4) becomes

gngm ≈
∑

l,l′

γlγl′ exp (−j(knsl − kmsl′)) , (6)

∀(m,n) ∈ E(G).
In the next subsection, we analyze the implications of (6)

for the single- and double-scatterer cases.

B. Implications

In the single-scatterer case, (6) becomes

gngm ≈ |γ|2 exp (−j(kn − km)s) , (7)

i.e., the multi-master observation is actually the Fourier trans-
form of the reflectivity power at the wavenumber baseline
kn − km. As a result, the nonnegativity of |γ|2 should be

considered during inversion. Since both the real and imaginary
parts of gngm are parametrized by |γ|2, i.e.,

<(gngm) ≈ |γ|2 cos ((kn − km)s) ,

=(gngm) ≈ |γ|2 sin (−(kn − km)s) ,
(8)

the inversion problem can be recast as a real-valued one.
For double scatterers, the multi-master observation is

gngm ≈ |γ1|2 exp (−j(kn − km)s1) +

γ1γ2 exp (−j(kns1 − kms2)) +

γ1γ2 exp (−j(kns2 − kms1)) +

|γ2|2 exp (−j(kn − km)s2) .

(9)

In addition to the Fourier transform of the reflectivity power
at kn − km, the right-hand side of (9) contains the second
and third “cross-terms” in which the reflectivity values of the
two scatterers (and their frequency-time-products) are coupled.
This essentially rules out any linear model.

Remark. In the multi-look multi-master setting, the data
model under random volume scattering is

E[Γ(kn)Γ(km)] =

∫
σ0(s) exp(−j(kn − km)s)ds, (10)

as already indicated in Eq. (2), i.e., no coupling is involved.

Remark. A multi-master bistatic or pursuit monostatic (i.e.,
10-second temporal baseline [50]) stack is in general not
motion-free for double (or multiple) scatterers.

To see this, consider for example the linear deformation
model d(tn) := vtn, where v and t denote linear deformation
rate and temporal baseline, respectively. Observe that

gngm

≈
∑

l,l′

γlγl′ ·

exp(−j(knsl − kmsl′ + 4πdl(tn)/λ− 4πdl′(tm)/λ))

= |γ1|2 exp (−j ((kn − km)s1 + 4πv1(tn − tm)/λ)) +

γ1γ2 exp (−j ((kns1 − kms2) + 4π(v1tn − v2tm)/λ)) +

γ1γ2 exp (−j ((kns2 − kms1) + 4π(v2tn − v1tm)/λ)) +

|γ2|2 exp (−j ((kn − km)s2 + 4πv2(tn − tm)/λ)) .
(11)

In case of tm = tn, the motion-induced phase in the cross-
terms vanishes if and only if v1 = v2.

The next subsection introduces a generic inversion frame-
work for single-look multi-master SAR tomography.

C. Inversion Framework

The single-look multi-master data model (6) already in-
dicates a nonlinear system of equations for a multi-master
stack. Suppose G is the graph associated with this stack that
contains a total of N ′ := |E(G)| multi-master observations,
and e1, . . . , eN ′ is an ordered sequence of all the edges in
E(G). Let M,S : [N ′] → [N ] be the mappings to the
master and slave image indices, respectively. For each en,
n ∈ [N ′], a multi-master observation gS(n)gM(n) is obtained.
Let g ∈ CN ′

be the vector of multi-master observations such
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that gn := gS(n)gM(n), ∀n ∈ [N ′]. Let s1, . . . , sL be a
discretization of the elevation axis s. The data model in matrix
notations is

g ≈ (Rγ) ◦ (Sγ), (12)

where R,S ∈ CN ′×L represent the tomographic observation
matrices of the slave and master images, respectively, rn,l :=
exp(−jkS(n)sl), sn,l := exp(−jkM(n)sl), ∀n ∈ [N ′], l ∈ [L],
and γ ∈ CL is the unknown reflectivity vector such that γl is
associated with the scatterer (if any) at elevation position sl.

In light of (12), we propose the following framework for
tomographic inversion.

1) Nonconvex sparse recovery: We consider the problem

γ̂ := arg min
γ

1

2
‖(Rγ) ◦ (Sγ)− g‖22

subject to |Supp(γ)| ≤ K,
(13)

where K ∈ Z++. The objective function measures the model
goodness of fit and the constraint enforces γ to be sparse, as
is implicitly assumed in (6). If

∑K
l=0

(
L
l

)
is small, (13) can

be solved heuristically by using the algorithms that will be
developed in Sec. III. Sec. IV is dedicated to another algorithm
that solves a similar problem based on bi-convex relaxation.

2) Model-order selection: This procedure removes outliers
and therefore reduces false positive rate. By using for example
the Bayesian information criterion (e.g., [51]), model-order
selection can be formulated as the following constrained
minimization problem:

Ω̂ := arg min
Ω(,δ)

2 ln
(
‖(RΩδΩ) ◦ (SΩδΩ)− g‖22/N ′

)

+ (5|Ω|+ 1) ln(N ′)/N ′

subject to Supp(δ) = Ω ⊂ Supp(γ̂),
(14)

where δ ∈ CL is an auxiliary variable, and Ω is its support.
Since |Supp(γ̂)| is typically small, (14) can be tackled by
solving a sequence of subset least squares problems in the
form of

minimize
ε

1

2
‖(RΩε) ◦ (SΩε)− g‖22, (15)

for which two solvers will be introduced in Sec. III.
3) Off-grid correction: The off-grid or quantization prob-

lem arises when scatterers are not located on the (regular) grid
of γ. Ge et al. [17] proposed to oversample γ̂ in the vicinity of
selected scatterers in order to circumvent this problem. Here
we propose a more elegant approach that is based on nonlinear
optimization.

Denote K̂ := |Ω̂| as the number of scatterers after model-
order selection. Let γRl and γIl be the real and imaginary parts
of the complex-valued reflectivity γl of the lth scatterer that
is located at sl, respectively, i.e., γl = γRl + jγIl , ∀l ∈ [K̂].
On the basis of the single-look multi-master data model (6),
we seek a solution of the following minimization problem:

minimize
γR
l ,γ

I
l ,sl

∑

n

∣∣∣gn −
∑

l,l′

(γRl + jγIl )(γRl′ − jγIl′) ·

exp
(
−j(kS(n)sl − kM(n)sl′)

) ∣∣∣
2

.

(16)

Note that the objective function is differentiable w.r.t. γRl ,
γIl and sl, ∀l ∈ [K̂]. Needless to say, the on-grid estimates
from (14) are used as the initial solution. We will revisit this
problem in Sec. III-A.

Thus far the inversion framework has been established. In
the next two sections, we will deal with the optimization
problems (13)–(16) from the algorithmic point of view.

III. NONLINEAR LEAST SQUARES (NLS)

NLS is a parametric method that breaks down a sparse
recovery problem into a series of subset linear least squares
subproblems [52, §6.4]. Here we extend the concept of NLS
to the single-look multi-master data model (12) and address
the subproblem (15), or equivalently,

minimize
x

1

2
‖(Ax) ◦ (Bx)− b‖22, (17)

where A,B ∈ Cm×n, x ∈ Cn, b ∈ Cm with m > n. As can
be concluded from Sec. II-C, (17) is clearly of interest, since
it not only solves the nonconvex spare recovery problem (13),
but also underlies model-order selection (14).

A. Algorithm

In this subsection, we develop two algorithms for solving
(17).

The first algorithm is based on the alternating direction
method of multipliers (ADMM) [53]. ADMM solves a min-
imization problem by alternatively minimizing its augmented
Lagrangian [54, p. 509], in which the augmentation term is
scaled by a penalty parameter ρ ∈ R++. A short recap can
be found in Appendix A. It converges under very general
conditions with medium accuracy [53, §3.2].

Now we consider (17) in its equivalent form:

minimize
x,z

1

2
‖(Ax) ◦ (Bz)− b‖22

subject to x− z = 0.
(18)

This is essentially a bi-convex problem with affine constraint
[53, §9.2]. Applying the ADMM update rules leads to Alg. 1.
Note that both x- and z-updates boil down to solving linear
least squares problems.

Algorithm 1 An ADMM-based algorithm for solving (17)

1: Input: A, B, b, z(0), ρ
2: Initialize z← z(0)

3: Until stopping criterion is satisfied, Do
4: Ã← Diag(Bz)A
5: x← (ÃHÃ + ρI)−1(ÃHb + ρz− y)
6: B̃← Diag(Ax)B
7: z← (B̃HB̃ + ρI)−1(B̃Hb + ρx + y)
8: y← y + ρ(x− z)
9: Output: z

The second algorithm uses the trust-region Newton’s
method that exploits second-order information for solving
general unconstrained nonlinear minimization problems [55,
§4]. The rationale behind this choice is to circumvent saddle



DRAFT

6

points that cannot be identified by first-order information [56].
In each iteration, a norm ball or “trust region” centered at
the current iterate is adaptively chosen. If the second-order
Taylor polynomial of the objective function is sufficiently good
for approximation, a descent direction is found via solving
a quadratically constrained quadratic minimization problem.
Suppose f : Rn → R is the objective function, the subproblem
at the iterate x ∈ Rn is

minimize
∆x

f(x) +∇f(x)T∆x +
1

2
∆xT∇2f(x)∆x

subject to ‖∆x‖2 ≤ r,
(19)

where ∆x ∈ Rn is the search direction, ∇f and ∇2f denote
the gradient and Hessian of f , respectively, and r ∈ R++ is
the current trust region radius. By means of the Karush-Kuhn-
Tucker (KKT) conditions for nonconvex problems, Nocedal
and Wright [55, §4.3] divided (19) into several cases: in one
case a one-dimensional (1-D) root-finding problem w.r.t. the
dual variable is solved by using for example the Newton’s
method, while in the others the solutions are analytic. Since
the technical details are quite overwhelming, we do not intend
to provide an exposition here. Interested readers are advised
to refer to [55, §4.3]. It can be shown that the trust-region
Newton’s method converges to a critical point with high
accuracy under general conditions [55, p. 92].

By verifying the Cauchy-Riemann equations (e.g., [57,
p. 50]), it is easy to show that the objective function of (17) is
not complex-differentiable w.r.t. x. In lieu of using Wirtinger
differentiation that does not contain all the second-order in-
formation, we exploit the fact that the mapping x 7→ (xR,xI)
is isomorphic and let

f(xR,xI) :=
1

2
‖(Ax) ◦ (Bx)− b‖22, (20)

where f : Rn × Rn → R is real-differentiable w.r.t. xR and
xI . Straightforward computations reveal its gradient as

∇f(xR,xI) =

(
∂f
∂xR
∂f
∂xI

)
=

(
< (d)
= (d)

)
, (21)

where
d := AH

(
((Ax) ◦ (Bx)− b) ◦ (Bx)

)
+

BH
(
((Ax) ◦ (Bx)− b) ◦ (Ax)

)
,

(22)

and its Hessian as

∇2f(xR,xI) =




∂2f
∂x2

R

∂2f
∂xR∂xI

∂2f
∂xI∂xR

∂2f
∂x2

I




=

(
< (C + D + E) −= (C−D + E)
= (C + D + E) < (C−D + E)

)
,

(23)
where

C := AH Diag
(
(Bx) ◦ (Bx)

)
A +

BH Diag
(
(Ax) ◦ (Ax)

)
B,

D := AH Diag ((Ax) ◦ (Bx)) B +

BH Diag ((Ax) ◦ (Bx)) A,

E := AH Diag
(
(Ax) ◦ (Bx)− b

)
B +

BH Diag
(
(Ax) ◦ (Bx)− b

)
A.

(24)

0 5 10 15 20 25
Number of Iterations

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|f
(x

)
−
f

(x
?
)|

ADMM

Trust-Region Newton

Fig. 2. Convergence curve of NLS using ADMM (solid line) and the trust-
region Newton’s method (dashed line).

Note that d : Cn → Cn and C,D,E : Cn → Cn×n are
essentially functions of x. Here we drop the parentheses in
order to simplify notation. For the same purpose, we adopt
the following convention:

f(x) := f (<(x),=(x)) = f(xR,xI). (25)

By using the first- and second-order information of (20),
(17) can be directly tackled by the trust-region Newton’s
method via solving a sequence of subproblems in the form
of (19). For any optimal point x?, the KKT condition is

∇f(x?) = 0 ⇐⇒ d(x?) = 0. (26)

Remark. Likewise, the objective function of (16) is real-
differentiable w.r.t. γRl , γIl and sl, ∀l ∈ [K̂]. Therefore, the
trust-region Newton’s method is directly applicable. Alterna-
tively, first-order methods such as Broyden-Fletcher-Goldfarb-
Shanno (BFGS, see for example [55, §6.1] and the references
therein) can also be used.

Needless to say, it is not guaranteed that these algorithms
always converge to a global minimum. We will demonstrate
later in Sec. V that the solutions are often good enough. Fig. 2
shows typical convergence curves in case of double scatterers
(#6 in Sec. V-C). In order to generate this plot, we first let
one algorithm run non-stop until it converged with very high
precision. We then took this solution as an optimal point x?

and compared the absolute difference of the objective value
|f(x) − f(x?)|. Both ADMM and the trust-region Newton’s
method converged to the same solution (up to a constant phase
angle, see Sec. III-B), although it only took the latter less than
10 iterations. Still, the former can be interesting due to the
simplicity of its update rules (see Alg. 1). In Sec. V, the latter
will be used for demonstration purposes.

B. Analysis of the Objective Function

Due to the nonconvexity of the objective function (20), its
analysis is not straightforward. We are primarily concerned
with the following two questions:
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1) Under which circumstances do critical points or local
extrema exist?

2) If they do exist, how many are they?
This subsection shall provide a partial answer to these ques-
tions.

First of all, we state the following general observation.

Proposition 1. For any x ∈ Cn and φ ∈ R, any eigenvalue
of ∇2f(x) is also an eigenvalue of ∇2f (x exp(jφ)) and vice
versa.

Proof. See Appendix B.

Informally, this proposition implies that the definiteness of
the Hessian is invariant under any rotation with a constant
phase angle.

Now we state the main theorem for the general case.

Theorem 2. Properties of the critical points of f(x).
(a) 0 is a critical point: it is a local minimum if

AH Diag(b)B + BH Diag(b)A ≺ 0, and a local max-
imum if AH Diag(b)B + BH Diag(b)A � 0.

(b) If there exists a nonzero critical point, then
AH Diag(b)B + BH Diag(b)A ⊀ 0.

(c) Suppose there exists a nonzero critical point z. Then
(1) ∇2f(z) is rank deficient.
(2) There exist an infinite number of critical points in the

form of z exp(jφ), φ ∈ R \ {0}. Each has the same
objective function value as z, and its Hessian has the
same definiteness.

Proof. See Appendix C.

This theorem implies that if there exists one critical point,
then there are an infinite number of them up to a constant
phase angle, and each is as good. Furthermore, we conjecture
that AH Diag(b)B + BH Diag(b)A � 0 is a necessary and
sufficient condition (cf. Thm. 2(b)), and each nonzero critical
point is also a local minimum under some mild conditions.

For the special case n = 1, i.e., A,B ∈ Cm, x ∈ C, we
have a much stronger result.

Theorem 3 (n = 1). Properties of the critical points of f(x).
(a) 0 is a critical point: it is a local minimum if
<
(
(A ◦B)Hb

)
< 0, and a local maximum if

<
(
(A ◦B)Hb

)
> 0.

(b) There exists a nonzero critical point if and only if
<
(
(A ◦B)Hb

)
> 0.

(c) Suppose there exists a nonzero critical point z. Then
(1) ∇2f(z) is positive semi-definite and rank deficient2.
(2) There exist an infinite number of critical points in the

form of z exp(jφ), φ ∈ R \ {0}. Each has the same
objective function value as z, and its Hessian has the
same definiteness.

(3) z is a local minimum.

Proof. See Appendix D.

As a result, a nonzero local minimum exists if and only if
<
(
(A ◦B)Hb

)
> 0. If this condition is satisfied, then there

2Note that ∇2f(z) ∈ R2×2 by definition.
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Fig. 3. Negative logarithm of the NLS objective function (n = 1) with a
circle of local maxima at the verge of the “crater”.

are infinitely many local minima that are exactly as good.
Fig. 3 shows as an example the negative logarithm of (20)
with a circle of local maxima.

Lastly, Thm. 3 implies the following interesting result.

Corollary 4 (n = 1). Each nonzero local minimum (if it
exists) is given by

z =
<
(
(A ◦B)Hb

)1/2

‖A ◦B‖2
exp(jφ), (27)

for some φ ∈ R.

Proof. See the proof of Thm. 3(b).

Now we return to our problem in SAR tomography. For
the single-look multi-master data model (12), this corollary
motivates the 1-D spectral estimator:

|γ̂l| :=




<((rl◦sl)Hg)

1/2

‖rl◦sl‖2 if <
(
(rl ◦ sl)

Hg
)
> 0

0 otherwise,
(28)

∀l ∈ [L]. Note that this also provides the solution for any
1-D NLS subproblem up to a constant phase angle. In case
of multiple scatterers, this estimator does not have any super-
resolution power.

IV. BI-CONVEX RELAXATION AND ALTERNATING
MINIMIZATION (BICRAM)

This section introduces a second algorithm for solving the
nonconvex sparse recovery problem (13).

A. Algorithm

As a starting point, we replace the constraint in (13) with
a sparsity-inducing regularization term, e.g.,

minimize
γ

1

2
‖(Rγ) ◦ (Sγ)− g‖22 + λ‖γ‖1, (29)
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where λ ∈ R++ trades model goodness of fit for sparsity.
In light of (26), the necessary condition for being an optimal
point γ? is

λ∂‖γ?‖1 3 RH
(
(g − (Rγ?) ◦ (Sγ?)) ◦ (Sγ?)

)
+

SH
(
(g − (Rγ?) ◦ (Sγ?)) ◦ (Rγ?)

)
,

(30)

i.e., the right-hand side is a subgradient of the `1 norm at γ?.
Obviously, 0 always satisfies this condition.

In principle, an ADMM-based algorithm similar to Alg. 1
can be used to solve (29). However, our experience with
real SAR tomographic data shows that it often diverges,
presumably due to the high mutual coherence of R and S
under nonconvexity. For this reason, we consider instead the
following relaxed version of (29):

minimize
γ,θ

1

2
‖(Rγ) ◦ (Sθ)− g‖22 +

λ1

2
‖γ − θ‖22 +

λ2‖
(
γ θ

)
‖1,2,

(31)

where λ1, λ2 ∈ R++. The objective function CL × CL → R
is bi-convex, i.e., it is convex in γ with θ fixed, and convex in
θ with γ fixed. The first regularization term enforces γ and θ
to have similar entries, and the second one promotes the same
support. Since (31) is essentially an unconstrained bi-convex
problem, it can be solved by using alternating minimization
via Alg. 2 (see also [58]–[60]).

Algorithm 2 An alternating algorithm for solving (31)

1: Input: R, S, g, γ(0), λ1, λ2

2: Initialize γ ← γ(0)

3: Until stopping criterion is satisfied, Do
4: S̃← Diag(Rγ)S
5: θ ← arg minθ

1
2‖S̃θ − g‖22 + λ1

2 ‖θ − γ‖22 +
λ2‖

(
θ γ

)
‖1,2

6: R̃← Diag(Sθ)R
7: γ ← arg minγ

1
2‖R̃γ − g‖22 + λ1

2 ‖γ − θ‖22 +
λ2‖

(
γ θ

)
‖1,2

8: Output: γ

Each time when either γ or θ is fixed, it becomes a convex
problem in the generic form of:

minimize
x

1

2
‖Ax−b‖22+

λ1

2
‖x−u‖22+λ2‖

(
x u

)
‖1,2, (32)

or equivalently

minimize
x,Z

1

2
‖Ax− b‖22 +

λ1

2
‖x− u‖22 + λ2‖Z‖1,2

subject to
(
x u

)
− Z = 0,

(33)

where Z ∈ CL×2. Applying the ADMM update rules leads to
Alg. 3.
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Fig. 4. Convergence curve of BiCRAM. The horizontal axis refers to the
outer iterations in Alg. 2.

Algorithm 3 An ADMM-based algorithm for solving (32)

1: Input: A, b, u, Z(0), λ1, λ2, ρ
2: Initialize Z← Z(0)

3: Until stopping criterion is satisfied, Do
4: x← (AHA + (λ1 + ρ)I)−1(AHb + λ1u + ρz1 − y1)
5: Z← Prox`1,2,λ2/ρ

((
x u

)
+ (1/ρ)Y

)

6: Y ← Y + ρ
((

x u
)
− Z

)

7: Output: z1

Prox`1,2,λ : CL×2 → CL×2 is the proximal operator of the
`1,2 norm scaled by λ (e.g., [61]), i.e.,

Prox`1,2,λ(X) := arg min
Z

λ‖Z‖1,2 +
1

2
‖X− Z‖2F , (34)

whose i-th row is given by [61, §6.5.4]

Prox`1,2,λ(X)i = (1− λ/‖xi‖2)+ xi, (35)

where (x)+ := max(x, 0). This proximal operator promotes
(the columns of) Z to be jointly sparse and therefore x to
share the same support with u.

Due to the nonconvexity of (31), it is very difficult to estab-
lish a convergence guarantee for Alg. 2 from a theoretical point
of view. However, our experiments with real SAR tomographic
data (see Sec. V) show that it converges empirically. As an
example, Fig. 4 depicts a convergence curve in case of two
scatterers that are closely located (#6 in Sec. V-C).

In terms of regularization parameter tuning, we adopt the
approach of sampling the solution path (λ1, λ2) 7→ x, and
selecting the solution with the highest penalized likelihood
(14). Last but not least, this procedure can be simplified by
performing 1-D search, i.e., fixing one parameter and tuning
the other at a time.

B. Implementation

This subsection addresses several implementation aspects
that contribute to accelerating Alg. 3 (and therefore Alg. 2).
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The exposition is based on an ADMM-based algorithm for
solving the `1-regularized least squares (L1RLS) problem:

minimize
x

1

2
‖Ax− b‖22 + λ‖x‖1. (36)

This is more suitable for demonstrating the power of different
acceleration techniques, since each of its subproblems has an
analytical solution and does not involve iteratively solving
another optimization problem (cf. Alg. 2). Besides, it will also
be used as a reference in Sec. V.

Now consider (36) in its equivalent form:

minimize
x,z

1

2
‖Ax− b‖22 + λ‖z‖1

subject to x− z = 0.
(37)

Applying the ADMM update rules leads to Alg. 4.

Algorithm 4 An ADMM-based algorithm for solving (36)

1: Input: A, b, z(0), λ, ρ
2: Initialize z← z(0)

3: Until stopping criterion is satisfied, Do
4: x← (AHA + ρI)−1(AHb + ρz− y)
5: z← Prox`1,λ/ρ (x + (1/ρ)y)
6: y← y + ρ (x− z)
7: Output: z

Likewise, Prox`1,λ : CL → CL is the proximal operator of
the `1 norm scaled by λ (also known as the soft thresholding
operator [62]):

Prox`1,λ(x) := arg min
z

λ‖z‖1 +
1

2
‖x− z‖22, (38)

whose i-th entry is given by [61, §6.5.2]

Prox`1,λ(x)i = (1− λ/|xi|)+ xi. (39)

The first technique provides an easier way for the x-update.
1) Matrix inversion lemma: In Alg. 3 and 4, an L-by-

L matrix needs to be inverted. For large L, a direct exact
approach can be tedious. Instead, we exploit the following
lemma.

Lemma 5 (Matrix inversion lemma [63]). For any A ∈
Cn×m, B ∈ Cm×n and nonsingular C ∈ Cn×n, we have

(AB + C)−1 = C−1−C−1A(I + BC−1A)−1BC−1. (40)

Lemma 5 suggests a more efficient method if inverting C
is straightforward. This is the case for matrices in the form of
AHA + ρI since

(AHA + ρI)−1 =
1

ρ
I− 1

ρ2
AH

(
I +

1

ρ
AAH

)−1

A, (41)

i.e., instead of the original L-by-L matrix, only an N ′-by-N ′

matrix needs to be inverted.
Alternatively, the least squares (sub)problems can be solved

iteratively in order to deliver an approximate solution [64],
which is known as inexact minimization [53, §3.4.4].

The following techniques can be employed to improve
convergence.

2) Varying penalty parameter: The penalty parameter ρ can
be updated at each iteration. Besides the convergence aspect,
this also renders Alg. 4 less dependent on the initial choice of
ρ. A common heuristic [53, §3.4.1] is to set

ρ(k+1) :=





τρ(k) if ‖r(k)‖2 > µ‖s(k)‖2
ρ(k)/τ if ‖s(k)‖2 > µ‖r(k)‖2
ρ(k) otherwise

(42)

at the (k + 1)th iteration, where τ, µ > 1 are parameters,
r(k) := x(k) − z(k) is the primal residual, and s(k) :=
ρ(k)(z(k) − z(k−1)) is the dual residual. As k → ∞, r(k)

and s(k) both converge to 0. Intuitively, increasing ρ tends to
put a larger penalty on the augmenting term (ρ/2)‖x−z‖22 in
the augmented Lagrangian and consequently decrease ‖r(k)‖2
on the one hand, and to increase ‖s(k)‖2 by definition on the
other and vice versa. The rationale is to balance r(k) and s(k)

so that they are approximately of the same order. Naturally,
one downside is that (41) needs to be recomputed whenever
ρ changes.

3) Diagonal preconditioning: The augmenting term
(ρ/2)‖x− z‖22 in the augmented Lagrangian can be replaced
by

(1/2)〈P(x− z),x− z〉, (43)

where P � 0 is a real diagonal matrix. Note that this falls
under the category of more general augmenting terms [53,
§3.4.2]. By means of this, Alg. 4 is deprived of the burden of
choosing ρ and the ADMM updates become

x← (AHA + P)−1(AHb + Pz− y)

z← Prox`1,λ/p
(
x + P−1y

)

y← y + P (x− z) ,

(44)

where p := Diag(P), and Prox`1,w : CL → CL is the
proximal operator of the weighted `1 norm with weights
w ∈ RL++:

Prox`1,w(x) := arg min
z

‖z‖w,1 +
1

2
‖x− z‖22, (45)

whose i-th entry is given by

Prox`1,w(x)i = (1− wi/|xi|)+ xi. (46)

In case AHA is ill-conditioned (such as in SAR tomography),
P can be interpreted as a preconditioner. Needless to say,
Lemma 5 can be also applied to invert AHA + P.

Pock and Chambolle (2011) proposed a simple and elegant
way to construct diagonal preconditioners for a primal-dual
algorithm [65] [54, §15.2] with guaranteed convergence:

pi := 1/‖ai‖αα, ∀i ∈ [L], (47)

where α ∈ [0, 2] is a parameter.
4) Over-relaxation: This means inserting between the x-

and z-updates of Alg. 4 the following additional update:

x← βx + (1− β)z, (48)

where β ∈ [1.5, 1.8] (see for example [53, §3.4.3] and the
references therein).
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Fig. 5. Convergence curve of Alg. 4 using different acceleration techniques.
“Baseline”: ρ = 1. “Vary”: varying penalty parameter. “Precondition”:
diagonal preconditioning. “Relax”: over-relaxation. Bottom: a close-up of the
top figure.

Fig. 5 shows the convergence curve of Alg. 4 using different
acceleration techniques, as applied to real SAR tomographic
data (#6 in Sec. V). Each technique did contribute to ac-
celerating Alg. 4 in comparison to “baseline”, where we set
ρ = 1. The number of iterations of this and five other cases
are listed in Tab. II. Obviously, the combination of diagonal
preconditioning and over-relaxation was the most competitive
one and will therefore be adopted for all the ADMM-based
algorithms in the following.

V. EXPERIMENT WITH TERRASAR-X DATA

In this section, we report our experimental results with a
real SAR data set.

A. Design of Experiment

As a demonstration, we used 31 TerraSAR-X staring spot-
light repeat-pass acquisitions of the central Munich area from
March 31, 2016 to December 7, 2017. This data set was
processed with DLR’s Integrated Wide Area Processor [66],
[67], as was elaborately described in [17]. In addition to side

lobe detection (see [17] and the references therein), any non-
peak point inside a main lobe was also removed, since it would
otherwise lead to a “ghost” scatterer in the result, as any side
lobe point would do too. Our region of interest contains a
six-story building (“Nordbau”) of the Technical University of
Munich (TUM) shown in Fig. 6 (left). The building signature
in the SAR intensity image can be observed in Fig. 9, where
the regular grid of salient points within the building footprint
is a result of triple reflections on three orthogonal surfaces:
metal plate (behind window glass), window ledge and brick
wall [68]. After main and side lobe detection, a total of 594
points were left, whose azimuth-range positions are shown in
Fig. 8 (bottom).

A single-master stack was formed by choosing the acquisi-
tion from December 20, 2016 as the one and only master. Its
vertical wavenumbers are shown in Fig. 7. A sinusoidal basis
function was used for modeling periodical motion induced
by temperature change. The vertical Rayleigh resolution at
scene center is approximately 12.66 m. The Crámer-Rao lower
bound (CRLB) of height estimates given the aforementioned
periodical deformation model [25] and a nominal signal-to-
noise ratio (SNR) of 2 dB is approximately 1.10 m. NLS
and L1RLS were applied to this stack for tomographic re-
construction. The latter was solved by Alg. 4 augmented with
diagonal preconditioning and over-relaxation (see Sec. IV-B),
where we set β = 1.8 and the choice of α is irrelevant (since
A is a Fourier matrix). The solution path of L1RLS was
sampled 11 times with the regularization parameter varying
logarithmically from λmin := 5 · 10−2‖RHg‖∞ to λmax :=
5 · 10−1‖RHg‖∞.

We constructed a multi-master stack of small temporal
baselines: suppose 1′, 2′, 3′, 4′, . . . is a chronologically ordered
sequence of SLCs, the interferograms (edges) are (1′, 2′),
(3′, 4′), etc. (see Fig. 1). As a result, this stack consists
of 15 interferograms. Due to the small-baseline feature of
this stack, we did not employ any deformation model for
the sake of simplicity. NLS and BiCRAM were applied
to reconstruct the elevation profile, where the latter was
solved by Alg. 3 employing diagonal preconditioning and
over-relaxation. Likewise, the solution path of BiCRAM was
also sampled 11 times, where λ1 was fixed as one (since
it was deemed relatively insignificant as far as our expe-
rience went), and λ2 was set to vary logarithmically from
λmin := 5 · 10−2 max

{
‖RHg‖∞, ‖SHg‖∞

}
to λmax :=

5 · 10−1 max
{
‖RHg‖∞, ‖SHg‖∞

}
. The initial solution was

given by γ(0) = (R◦S)Hg due to its simplicity. Alternatively,
(28) could be used. In terms of off-grid correction, forward-
mode automatic differentiation [69] was employed in order to
circumvent analytically differentiating the objective function
of (16) for any number of scatterers, and the optimization
problem was solved by means of a BFGS implementation [70].

Finally, we built a second small-baseline multi-master stack
in the identical way as the previous one. In addition, we
normalized each interferogram with the corresponding master
amplitude. We will refer to this as the fake single-master stack,
since we treated it as if it had been a single-master one. In
order to apply the single-master approach, we calculated for
each interferogram the difference between slave and master
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TABLE II
NUMBER OF ITERATIONS USING DIFFERENT ACCELERATION TECHNIQUES

#1 #2 #3 #4 #5 #6

Baseline 20289 14250 15752 19571 23920 16983

Vary 1445 1101 1780 1958 2005 1033

Precondition 679 480 504 1074 840 805

Relax 11272 7916 8750 10866 13288 9446

Vary+Relax 767 625 871 821 834 1051

Precondition+Relax 377 260 288 595 467 447

Fig. 6. Eastern facade of the six-story TUM-Nordbau building in our region
of interest [68]. Left: in-situ photo. Right: 3-D facade model. The black shape
corresponds to a metallic window.

0.0 0.1 0.2 0.3

Absolute Vertical Wavenumber [m−1]

Fig. 7. Single-master absolute vertical wavenumbers. The largest one is
approximately 0.31 m−1.

wavenumbers, and used it as if it had been the wavenumber
baseline, i.e., by inadequately assuming

gngm ≈
∑

l

γl exp (−j(kn − km)sl) , (49)

for each (m,n) ∈ E(G). Needless to say, NLS and L1RLS
were employed exactly the same as in the single-master case.

The next subsection briefly explains how we generated
ground truth data.

B. Generation of Height Ground Truth

Height ground truth data was made available via a SAR
imaging geodesy and simulation framework [68]. The start-
ing point was to create a three-dimensional (3-D) facade
model from terrestrial measurements, via (drone-borne) cam-
era, tachymeter, measuring rod and differential global posi-
tioning system (GPS), with an overall accuracy better than
2 cm and a very high level of details [68]. Ground control

points were used for referencing this facade model to an
international terrestrial reference frame. A visualization of the
3-D facade model is provided in Fig. 6 (right). The ray-tracing-
based RaySAR simulator [71] was employed to simulate
dominant scatterers that, as already mentioned in Sec. V-A,
correspond to triple reflections on the building facade. With the
help of atmospheric and geodynamic corrections from DLR’s
SAR Geodetic Processor [72], [73] and the newly enhanced
TerraSAR-X orbit products [74], their absolute coordinates
were converted into azimuth timing, range timing and height
that we refer to as Level 0 ground truth data.

Level 1 ground truth data consists of height at 30 simulated
PSs that are matched with real ones. The matching was
conducted in the azimuth-range geometry, so as not to be
affected by any height estimate error [75]. Fig. 8 (top) shows
the height simulations at the sub-pixel azimuth-range positions
of the corresponding 30 PSs. This height is relative to a corner
reflector that is located on top of a neighboring TUM building
and next to a permanent GPS station [68].

In addition, we performed height interpolation for a total of
594 points (see Sec. V-A) in the following way. First of all, the
height of each simulated PS was converted into interferometric
phase. Next, the distance to the polyline representing the
nearest-range cross-section of the building facade was used as
the independent variable to construct a 1-D interpolator. In the
end, the phase was interpolated at the previously mentioned
594 points and converted back into height. This interpolated
height is referred to as the Level 2 ground truth and shown
in Fig. 8 (bottom). Needless to say, one assumption is that
each point, if it does exist, should lie on the building facade.
A cross-validation of this 1-D interpolator was performed in
[68], where the standard deviation (SD) and median absolute
deviation (MAD) were shown to be 0.004 and 0.002 m,
respectively.

In the next subsection, our preliminary results are reported.

C. Experimental Results

The experiments can be divided into three categories: single-
master, multi-master and fake single-master (see Sec. V-A). In
each category, two algorithms were applied for tomographic
reconstruction.

As a proof of concept, we selected six points that are
very likely subject to facade-roof layover. These six points
were chosen in a systematic way: we performed tomographic
reconstruction on the single-master stack by using Tikhonov
regularization (i.e., the `1 norm in the regularization term
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Fig. 8. SAR intensity image and height ground truth of our region of interest.
Top: RaySAR height simulations at 30 matched PS coordinates (Level 1).
Bottom: interpolated height at 594 facade points (Level 2).

of (36) is replaced by the `2 norm), extracted all the seven
points containing double scatterers, and discarded one point
whose height distance is almost identical to the one of another
point. These six points are shown in Fig. 9, where the indices
increase with decreasing estimated height distance from ap-
proximately 1.5 to 0.8 times the vertical Rayleigh resolution.
This ordering agrees approximately with intuition under the
assumption that the roof is entirely flat: the higher the scatterer
is on the facade, the less is its height distance to the roof.

The estimated height profile is shown in Fig. 10 (#1–3) and
11 (#4–6), where we used the vertical Rayleigh resolution
of the single-master stack (see Sec. V-A) for normalizing
the x-axis. The height estimates are listed in Tab. III. In the
single-master setting, NLS and L1RLS produced very similar
height profiles, despite the occasional sporadic artifacts in
the latter which are known to be an intrinsic problem of `1-
regularization. Moreover, the height estimates were identical
after off-grid correction. In each case, the height estimate

Fig. 9. Locations of six points subject to facade-roof layover.

of the lower scatterer fits very well the Level 2 RaySAR
simulation of facade. Overall, the multi-master results are
consistent with the single-master ones, with deviations of
height estimates typically of several decimeters. In the fake
single-master setting, however, layover separation was only
successful in the fifth case, presumably due to the high SNR
(see the brightness of the point in Fig. 9). When the height
distance is significantly larger than the vertical Rayleigh reso-
lution (#1–2), both NLS and L1RLS could reconstruct double
scatterers, but only the one with larger amplitude could pass
model-order selection. When the height distance approaches
the vertical Rayleigh resolution or becomes even smaller (#3,
4, 6), neither algorithm could reconstruct a second scatterer,
and the height estimate of the single scatterer after off-grid
correction is also arguably wrong. We are therefore convinced
by this simple experiment that the conventional single-master
approach, if applied to a multi-master stack, can be insufficient
for layover separation.

Naturally, we also performed tomographic reconstruction
for all the 594 points within the building footprint in Fig. 8
(bottom). Tab. IV lists the overall runtime on a desktop with
a quad-core Intel processor at 3.40 GHz and 16-GB RAM.
Note that the periodical deformation model was only used in
the single-master case, and the solution path of L1RLS or
BiCRAM was sampled 11 times (see Sec. V-A). The height
estimates of single and double scatterers are shown in Fig. 12–
14 for the three categories, respectively. In case of double
scatterers, the higher one was plotted. The seemingly messy
appearance in the left column is due to the fact that single
scatterers originate from both facade and roof. In spite of
this, the gradual color transition at the 30 PSs from far- to
near-range agrees visually very well with the Level 1 ground
truth in Fig. 8 (top). Tab. V lists the number of scatterers
in each case. In the single-scatterer setting, NLS detected
almost twice as many double scatterers as L1RLS. This is
presumably due to a higher false positive rate: at 2 out of 30
PSs (fifth/second row from near range, and fifth/fifth column
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Fig. 10. Height profile estimate of #1–3 in Fig. 9. Vertical line: before model-order selection. Circle: after model-order selection.

TABLE III
SINGLE- AND MULTI-MASTER HEIGHT ESTIMATES OF SIX LAYOVER CASES [M]

#1 #2 #3 #4 #5 #6
h1 h2 h1 h2 h1 h2 h1 h2 h1 h2 h1 h2

RaySAR −9.22 − −8.91 − −2.39 − −2.87 − −1.59 − 0.55 −

Single-Master
NLS −10.27 9.10 −8.14 6.97 −4.27 10.72 −2.63 9.97 −1.95 10.03 0.98 11.34

L1RLS −10.27 9.10 −8.14 6.97 −4.27 10.72 −2.63 9.97 −1.95 10.03 0.98 11.34

Multi-Master
NLS −10.15 9.47 −8.96 8.23 −3.50 9.98 −2.06 10.45 −0.37 10.90 0.66 10.85

BiCRAM −10.15 9.47 −8.96 8.23 −3.50 9.98 −2.06 10.45 −0.37 10.90 0.66 10.85

Fake Single-Master
NLS 9.35 − −9.12 − −1.64 − 1.19 − 0.63 10.03 3.47 −
L1RLS 9.35 − −9.12 − −1.64 − 1.19 − 0.63 10.03 3.47 −
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Fig. 11. Height profile estimate of #4–6 in Fig. 9. Vertical line: before model-order selection. Circle: after model-order selection.

from late azimuth on the 6× 5 regular grid) double scatterers
were detected, although there should only be single ones. The
number of double scatterers in the multi-master case is in the
same order as single-master L1RLS, and the ratio between
the number of single and the one of double scatterers is also
similar. We attribute the smaller number of single scatterers to
the nonconvexity of the optimization problem. In particular, as
Thm. 2(b) suggests, a certain condition needs to be fulfilled
for any nonzero solution of height profile estimate to exist at
all, let alone whether an algorithm can provably recover it. In
the fake single-master category, many fewer double scatterers
were produced. This is presumably due to double scatterers
being misdetected as single scatterers, which occurred 5 out

of 6 times in the previous experiment (see Fig. 10 and 11).
The next subsection elucidates how we validated the height

estimates with Level 1 and 2 ground truth data.

D. Validation

Since the height ground truth is limited to facade only (see
Sec. V-B), the validation was focused on single scatterers by
following two approaches: the first one uses 30 PSs, and the
second one is based on extracted facade points.

As already mentioned in Sec. V-A, the 30 PSs constituting
the Level 1 ground truth in Fig. 8 (top) are caused by
triple reflections on the building facade, and are located on
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Fig. 12. Single-master height estimates of single and double scatterers. Top: NLS. Bottom: L1RLS.

TABLE IV
SINGLE- AND MULTI-MASTER RUNTIME

Runtime [s]

Single-Master
NLS 6154

L1RLS 736

Multi-Master
NLS 460

BiCRAM 6853

Fake Single-Master
NLS 48

L1RLS 65

TABLE V
SINGLE- AND MULTI-MASTER NUMBER OF SCATTERERS

Single Double Ratio Facade

Single-Master
NLS 359 332 1.08 148

L1RLS 446 168 2.65 189

Multi-Master
NLS 260 158 1.65 124

BiCRAM 291 118 2.47 133

Fake Single-Master
NLS 360 60 6.00 134

L1RLS 381 38 10.03 143

a regular grid of salient points. Due to the (almost) identical
scattering geometry, these PSs should have similar SNRs and
are therefore ideal for height estimate validation. In each
of the six cases, single scatterers were correctly detected at
all the 30 PSs—with the exception that double scatterers
were misdetected by NLS in the single-master setting (see

Sec. V-C). For this reason, the height estimate error could
be evaluated straightforwardly. Fig. 15 shows the normalized
histogram and Tab. VI lists some of its statistical parameters.
As a reference, the SD and MAD of height estimate error of
the PSI result are about 0.28 and 0.22 m, respectively [68].
In each of the three settings (single-master, multi-master and
fake single-master), the respective two algorithms performed
similarly and no significant difference is visible. A cross-
comparison between the multi-master and fake single-master
cases revealed the superiority of the former: its histogram is
more centered around zero, and both its SD and MAD are
slightly smaller. This is unsurprising since we already analyzed
the implications of the single-look multi-master data model
for single scatterers in Sec. II-B. At this point, we could
confidently assert that it does make a difference in practice,
albeit small, despite the longer (approximately one order
considering that the solution path of BiCRAM was sampled
11 times) processing time. Somewhat surprisingly, the multi-
master result is also slightly better than the single-master one.
We suspect that this is due to the complication of single-master
tomographic processing by using the (imperfect) periodical
deformation model, and the justified simplification in the
multi-master case thanks to the small-baseline configuration
(so that deformation-induced phase is mitigated via forming
interferograms).

The second approach is based on all facade points (Level 2
ground truth) in Fig. 8 (bottom), given that they do exist.
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Fig. 13. Multi-master height estimates of single and double scatterers. Top: NLS. Bottom: BiCRAM.

Scatter plots of simulated and estimated height of single
scatterers are shown in Fig. 17. It is obvious that many single
scatterers are located on the building roof (see the gray dots
above diagonal line). In order to extract facade points, we
used a threshold of ±3×CRLB added to the simulated value.
The extracted facade points, whose number is given in Tab. V
for each case, are shown as black dots and were used for
height estimate validation. The normalized histogram is shown
in Fig. 16 and some of its statistical parameters are provided
in Tab. VII. Likewise, the two respective algorithms performed
similarly in each setting, and the multi-master height estimate
error has slightly less deviation. The SD and MAD are worse
in comparison to those in Tab. VII due to the much larger
range of SNRs.

The next section concludes this manuscript and suggests
some prospective work.

VI. CONCLUSION AND DISCUSSION

The previous sections provided new insights into single-
look multi-master SAR tomography. The single-look multi-
master data model was established and two algorithms were
developed within a common inversion framework. The first
algorithm extends the conventional NLS to the single-look
multi-master data model, and the second one uses bi-convex
relaxation and alternating minimization. Extensive efforts were
devoted to studying the nonconvex objective function of
the NLS subproblem, and to experimenting with different

acceleration techniques for ADMM-based algorithms. We
demonstrated with the help of a real TerraSAR-X data set
that the conventional single-master approach, if applied to a
multi-master stack, can be insufficient for layover separation,
even when the height distance between two scatterers is
significantly larger than the vertical Rayleigh resolution. By
means of a SAR imaging geodesy and simulation framework,
we managed to generate two levels of height ground truth. The
height estimates in each of the three settings were validated at
either 30 PSs or hundreds of extracted facade points. Overall,
the multi-master approach performed slightly better, although
it was computationally more demanding.

A special case of the general problem analyzed so far
is single-look bistatic SAR tomography using only bistatic
(or pursuit monostatic) interferograms. On the one hand, the
advantages are that bistatic interferograms are (almost) APS-
free, and the data model is still linear for any single scatterer
whose reflectivity can be estimated up to a constant phase
angle (7). On the other, the disadvantages are that, for double
or multiple scatterers, bistatic interferograms are not motion-
free (see Sec. II-B), and the data model is nonlinear (9).

An alternative way to formulate the problem in the bistatic
setting is to parameterize APS without forming any interfero-
gram. Let g and h be the bistatic observations of the master
and slave scenes, respectively. We have essentially two data
sets:

g ≈ (Rγ) ◦ exp(jφ), h ≈ (Sγ) ◦ exp(jφ), (50)
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Fig. 14. Fake single-master height estimates of single and double scatterers. Top: NLS. Bottom: L1RLS.

TABLE VI
STATISTICS OF HEIGHT ESTIMATE ERROR [M]: 30 PSS (LEVEL 1)

Min Max Mean Median SD MAD

Single-Master
NLS −0.81 0.65 −0.30 −0.29 0.34 0.35

L1RLS −0.81 0.65 −0.31 −0.29 0.34 0.37

Multi-Master
NLS −0.88 0.55 −0.33 −0.36 0.31 0.28

BiCRAM −0.88 0.55 −0.33 −0.36 0.31 0.28

Fake Single-Master
NLS −1.02 0.68 −0.43 −0.48 0.34 0.30

L1RLS −1.02 0.68 −0.43 −0.48 0.34 0.30

TABLE VII
STATISTICS OF HEIGHT ESTIMATE ERROR [M]: EXTRACTED FACADE POINTS (LEVEL 2)

Min Max Mean Median SD MAD

Single-Master
NLS −3.03 2.99 −0.40 −0.51 1.23 0.96

L1RLS −3.03 2.99 −0.42 −0.49 1.25 0.99

Multi-Master
NLS −3.04 2.71 −0.49 −0.40 1.13 0.85

BiCRAM −3.04 2.71 −0.50 −0.40 1.12 0.86

Fake Single-Master
NLS −2.93 2.70 −0.38 −0.50 1.15 0.91

L1RLS −2.93 2.70 −0.35 −0.48 1.21 1.05
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Fig. 15. Normalized histogram of height estimate error of 30 PSs (Level 1).
SM: single-master. MM: multi-master. FSM: fake single-master.
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Fig. 16. Normalized histogram of height estimate error of extracted facade
points (Level 2). SM: single-master. MM: multi-master. FSM: fake single-
master.

where φ ∈ RN ′
is the APS vector. Under the sparsity

or compressibility assumption of γ, one could consider the
following problem:

minimize
γ,φ

1

2
‖(Rγ) ◦ exp(jφ)− g‖22+

1

2
‖(Sγ) ◦ exp(jφ)− h‖22 + λ‖γ‖1,

(51)

or more compactly

minimize
γ,φ

1

2
‖(R̃γ) ◦ (Ĩ exp(jφ))− g̃‖22 + λ‖γ‖1, (52)

where R̃ :=

(
R
S

)
, Ĩ :=

(
I
I

)
, and g̃ :=

(
g
h

)
. Note that this

problem is bi-convex in γ and φ.

Inspired by PSI, another related problem is SAR tomogra-
phy on edges. Let γ and θ represent the reflectivity profiles of
two neighboring points, and their interferometric observations
be denoted as g and h, respectively. Consider the following
problem:

minimize
γ,θ

1

2
‖(Rγ)◦(Sθ)−g◦h‖22 +λ1‖γ‖1 +λ2‖θ‖1, (53)

which is bi-convex in γ and θ. Likewise, the rationale of g ◦
h is to mitigate APS for neighboring points. Alternatively, a
parametric approach similar to (51) could also be considered.

APPENDIX A
RECAP OF ADMM

ADMM [53] solves a minimization problem in the form of

minimize
x,z

f(x) + g(z)

subject to Cx + Dz = e
(54)

by alternatively minimizing its augmented Lagrangian [54,
p. 509]

Lρ(x,y, z) := f(x) + g(z) + <〈y,Cx + Dz− e〉+
(ρ/2)‖Cx + Dz− e‖22,

(55)

i.e.,

x(k+1) := arg min
x

Lρ(x,y
(k), z(k))

z(k+1) := arg min
z

Lρ(x
(k+1),y(k), z)

y(k+1) := y(k) + ρ(Cx(k+1) + Dz(k+1) − e)

(56)

in the kth iteration, where ρ ∈ R++ is a penalty parameter.

APPENDIX B
PROOF OF PROPOSITION 1

The proof uses the following minor result.

Lemma 6. For any F,G ∈ Rn×n and c, d ∈ R such that
c2 + d2 = 1, the following equalities hold:
(
cI dI
−dI cI

)−1(
F −G
G F

)(
cI dI
−dI cI

)
=

(
F −G
G F

)
,

(
cI dI
−dI cI

)−1(
F G
G −F

)
=

(
F G
G −F

)(
cI dI
−dI cI

)
.

(57)

Proof. Observe that for any a, b ∈ R such that a2 + b2 6= 0,
(
aI bI
−bI aI

)−1

=
1

a2 + b2

(
aI −bI
bI aI

)
. (58)

The rest of the proof follows via straightforward computations.

Now we turn our attention to the proposition.

Proof of Proposition 1. First, we prove that ∇2f(x) and
∇2f (x exp(jφ)) are similar, i.e., there exists an invertible P
such that ∇2f(x) = P−1∇2f (x exp(jφ)) P.
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Fig. 17. Scatter plot of simulated and estimated height of single scatterers using Level 2 height ground truth. Black: extracted facade points. Gray: extracted
non-facade points.

Observe that
C (x exp(jφ))

= AH Diag
(

(Bx exp(jφ)) ◦ (Bx exp(jφ))
)

A +

BH Diag
(

(Ax exp(jφ)) ◦ (Ax exp(jφ))
)

B

= C(x),

D (x exp(jφ))

= AH Diag ((Ax exp(jφ)) ◦ (Bx exp(jφ))) B +

BH Diag ((Ax exp(jφ)) ◦ (Bx exp(jφ))) A

= D(x) exp(j2φ),

E (x exp(jφ))

= AH Diag
(

(Ax exp(jφ)) ◦ (Bx exp(jφ))− b
)

B +

BH Diag
(

(Ax exp(jφ)) ◦ (Bx exp(jφ))− b
)

A

= E(x).
(59)

Let C := C(x), D := D(x), E := E(x). The Hessian
becomes

∇2f (x exp(jφ))

=

(
<(C) −=(C)
=(C) <(C)

)
+

(
< (D exp(j2φ)) = (D exp(j2φ))
= (D exp(j2φ)) −< (D exp(j2φ))

)
+

(
<(E) −=(E)
=(E) <(E)

)

=

(
<(C + E) −=(C + E)
=(C + E) <(C + E)

)
+

(
<(D) =(D)
=(D) −<(D)

)(
cos(2φ)I sin(2φ)I
− sin(2φ)I cos(2φ)I

)
.

(60)

The choice of P can be divided into two cases depending
on the value of φ.
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In the trivial case, φ = (2k + 1)π/2 for some k ∈ Z. Let

P :=

(
0 −I
I 0

)
. (61)

This leads to

P−1∇2f (x exp(jφ)) P

=

(
0 −I
I 0

)−1(<(C + E) −=(C + E)
=(C + E) <(C + E)

)(
0 −I
I 0

)
+

(
0 −I
I 0

)−1(<(D) =(D)
=(D) −<(D)

)(
−I 0
0 −I

)(
0 −I
I 0

)

=

(
<(C + E) −=(C + E)
=(C + E) <(C + E)

)
+

(
<(D) =(D)
=(D) −<(D)

)(
0 −I
I 0

)(
−I 0
0 −I

)(
0 −I
I 0

)

=

(
<(C + E) −=(C + E)
=(C + E) <(C + E)

)
+

(
<(D) =(D)
=(D) −<(D)

)

= ∇2f(x),
(62)

where the second equality follows from Lemma 6.
In the non-trivial case, φ 6= (2k+ 1)π/2 for any k ∈ Z. Let

P :=




√
1+cos(2φ)

2 I − sin(2φ)√
2(1+cos(2φ))

I

sin(2φ)√
2(1+cos(2φ))

I
√

1+cos(2φ)
2 I


 . (63)

Likewise, the same equality holds.
Finally, we use the similarity property to show that an eigen-

value of ∇2f(x) is also an eigenvalue of ∇2f (x exp(jφ)).
Let (λ,v) be an eigenpair of ∇2f(x). The similarity

property implies

λv = ∇2f(x)v = P−1∇2f (x exp(jφ)) Pv

=⇒ ∇2f (x exp(jφ)) Pv = λPv,
(64)

i.e., (λ,Pv) is an eigenpair of ∇2f (x exp(jφ)). The proof in
the other direction is straightforward.

APPENDIX C
PROOF OF THEOREM 2

Before we delve into the proof, it is useful to define a few
auxiliary variables. Let

C̃ :=

(
<(C) −=(C)
=(C) <(C)

)
,

D̃ :=

(
<(D) =(D)
=(D) −<(D)

)
,

Ẽ :=

(
<(E) −=(E)
=(E) <(E)

)
,

(65)

so that ∇2f(x) = C̃ + D̃ + Ẽ. Likewise, C̃, D̃, Ẽ : Cn →
R2n×2n are de facto (composite) functions of x. The proof of
the main theorem is based on the following minor result.

Lemma 7. For any x := xR + jxI , the following equalities
hold: (

xTR xTI
)
C̃

(
xR
xI

)
= xHCx,

(
xTR xTI

)
D̃

(
xR
xI

)
= <

(
xHDx

)
,

(
xTR xTI

)
Ẽ

(
xR
xI

)
= xHEx,

C̃

(
xR
xI

)
=

(
<(Cx)
=(Cx)

)
,

D̃

(
xR
xI

)
=

(
<(Dx)
=(Dx)

)
,

Ẽ

(
xR
xI

)
=

(
<(Ex)
=(Ex)

)
.

(66)

Proof. The proof follows via straightforward computa-
tions.

Proof of Theorem 2. (a) Since ∇f(0) = 0, 0 is a critical
point. Observe that

C(0) = D(0) = 0,

E(0) = −AH Diag(b)B−BH Diag(b)A.
(67)

For any x := xR + jxI 6= 0,

(
xTR xTI

)
∇2f(0)

(
xR
xI

)

=
(
xTR xTI

)
Ẽ(0)

(
xR
xI

)

= xHE(0)x,

(68)

where the second equality is given by Lemma 7. Since E(0)
is Hermitian, we have
{

xHE(0)x > 0 if AH Diag(b)B + BH Diag(b)A ≺ 0

xHE(0)x < 0 if AH Diag(b)B + BH Diag(b)A � 0
(69)

for any x ∈ Cn \ {0}.
(b) Suppose ∃z 6= 0 such that ∇f(z) = 0. (26) implies

d(z) = AH
(
((Az) ◦ (Bz)− b) ◦ (Bz)

)
+

BH
(
((Az) ◦ (Bz)− b) ◦ (Az)

)

= 0.

(70)

A few manipulations lead to

AH
(
(Az) ◦ (Bz) ◦ (Bz)

)
+ BH

(
(Az) ◦ (Bz) ◦ (Az)

)

= AH Diag(b)Bz + BH Diag(b)Az.
(71)

Multiplying both sides with zH on the left yields

zH
(
AH Diag(b)B + BH Diag(b)A

)
z

= 2‖(Az) ◦ (Bz)‖22 ≥ 0,
(72)

which implies AH Diag(b)B + BH Diag(b)A ⊀ 0.
(c1) We prove that ∇2f(z) is rank deficient by showing

∇2f(z)

(
xR
xI

)
= 0, where x := zI − jzR. Observe

1) (Ax) ◦ (Bz) + (Az) ◦ (Bx) = 0.
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2) For any F, Fz = 0 =⇒ Fx = 0, which together with
(70) implies

0 = AH Diag
(
(Az) ◦ (Bz)− b

)
Bx +

BH Diag
(
(Az) ◦ (Bz)− b

)
Ax.

(73)

By Lemma 7, it suffices to check Cx + Dx + Ex:

Cx + Dx + Ex

= AH Diag
(
(Bz) ◦ (Bz)

)
Ax +

BH Diag
(
(Az) ◦ (Az)

)
Bx +

AH Diag ((Az) ◦ (Bz)) Bx +

BH Diag ((Az) ◦ (Bz)) Ax +

AH Diag
(
(Az) ◦ (Bz)− b

)
Bx +

BH Diag
(
(Az) ◦ (Bz)− b

)
Ax

= AH Diag(Bz)
(
(Ax) ◦ (Bz) + (Az) ◦ (Bx)

)
+

BH Diag(Az)
(
(Az) ◦ (Bx) + (Ax) ◦ (Bz)

)

= 0.

(74)

(c2) For any φ ∈ R, it is obvious that

d (z exp(jφ)) = d(z) = 0,

f (z exp(jφ)) = f(z),
(75)

i.e., z exp(jφ) is also a nonzero critical point that is as good.
By Proposition 1, ∇2f (x exp(jφ)) has the same eigenvalues
as ∇2f(x) and therefore the same definiteness.

APPENDIX D
PROOF OF THEOREM 3

Without loss of generality, assume that ‖A ◦B‖ 6= 0.

Proof of Thm. 3. (a) When n = 1, observe that

AH Diag(b)B + BH Diag(b)A = 2<
(
(A ◦B)Hb

)
. (76)

The rest follows directly from Thm. 2(a).
(b) For any z ∈ C \ {0}, we have

d(z) = AH
(
((Az) ◦ (Bz)− b) ◦ (Bz)

)
+

BH
(
((Az) ◦ (Bz)− b) ◦ (Az)

)

= z|z|2AH(A ◦B ◦B)− zAH(b ◦B) +

z|z|2BH(A ◦B ◦A)− zBH(b ◦A)

= z|z|2‖A ◦B‖22 − z(A ◦B)Hb +

z|z|2‖A ◦B‖22 − z(A ◦B)Hb

= 2z
(
‖A ◦B‖22|z|2 −<

(
(A ◦B)Hb

))
,

(77)

which has a nonzero root if and only if <
(
(A ◦B)Hb

)
> 0.

If this condition is satisfied, its power is given by

|z|2 = <
(
(A ◦B)Hb

)
/‖A ◦B‖22. (78)

(c1) Suppose ∃z 6= 0 such that ∇f(z) = 0. (26) and (b)
imply

‖A ◦B‖22|z|2 −<
(
(A ◦B)Hb

)
= 0. (79)

By Lemma 7, we have for any x := xR + jxI 6= 0

(
xTR xTI

)
∇2f(z)

(
xR
xI

)

= xHC(z)x + <
(
xHD(z)x

)
+ xHE(z)x

= |x|2AH Diag
(
(Bz) ◦ (Bz)

)
A +

|x|2BH Diag
(
(Az) ◦ (Az)

)
B +

<
(
x2AH Diag ((Az) ◦ (Bz)) B

)
+

<
(
x2BH Diag ((Az) ◦ (Bz)) A

)
+

|x|2AH Diag
(
(Az) ◦ (Bz)− b

)
B +

|x|2BH Diag
(
(Az) ◦ (Bz)− b

)
A

= 2‖A ◦B‖22|x|2|z|2 + 2‖A ◦B‖22<(x2z2) +

2|x|2
(
‖A ◦B‖22|z|2 −<

(
(A ◦B)Hb

))

= ‖A ◦B‖22
(
2|x|2|z|2 + 2<(x2z2)

)

= ‖A ◦B‖22(xz + xz)2 ≥ 0,

(80)

where the equality can be attained with x = zI − jzR.
That ∇2f(z) is rank deficient is implied by Thm. 2(c1).
(c2) This follows directly from Thm. 2(c2).
(c3) Let us perturb z by ε ∈ C with |ε| being arbitrarily

small and observe

f(z + ε) =
1

2
‖ (A(z + ε)) ◦

(
(Bz + ε)

)
− b‖22

=
1

2
‖(Az) ◦ (Bz) + (Az) ◦ (Bε) +

(Aε) ◦ (Bz) + (Aε) ◦ (Bε)− b‖22

=
1

2
‖(Az) ◦ (Bz)− b + A ◦B(εz + εz + |ε|2)‖22

=
1

2
‖(Az) ◦ (Bz)− b‖22 +

1

2
‖A ◦B(2<(εz) + |ε|2)‖22 +

<
( (

(Az) ◦ (Bz)− b
)H ·

(
A ◦B(2<(εz) + |ε|2)

) )

=
1

2
‖(Az) ◦ (Bz)− b‖22 +

1

2
‖A ◦B‖22(2<(εz) + |ε|2)2 +

<
(
‖A ◦B‖22|z|2 − bH(A ◦B)

)
·

(2<(εz) + |ε|2)

= f(z) +
1

2
‖A ◦B‖22(2<(εz) + |ε|2)2 +

(
‖A ◦B‖22|z|2 −<

(
(A ◦B)Hb

))
·

(2<(εz) + |ε|2)

= f(z) +
1

2
‖A ◦B‖22(2<(εz) + |ε|2)2,

(81)
where the last equality is given by (79). As a result,

f(z + ε)− f(z) =
1

2
‖A ◦B‖22(2<(εz) + |ε|2)2 ≥ 0, (82)

i.e., z is a local minimum.
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Bistatic-like Differential SAR Tomography
Nan Ge, Xiao Xiang Zhu, Senior Member, IEEE

Abstract—Motivated by prospective synthetic aperture radar
(SAR) satellite missions, this paper addresses the problem of
differential SAR tomography (D-TomoSAR) in urban areas using
spaceborne bistatic or pursuit monostatic acquisitions. A bistatic
or pursuit monostatic interferogram is not subject to significant
temporal decorrelation or atmospheric phase screen and there-
fore ideal for elevation reconstruction. We propose a framework
that incorporates this reconstructed elevation as determinis-
tic prior into deformation estimation, which uses conventional
repeat-pass interferograms generated from bistatic or pursuit
monostatic pairs. By means of theoretical and empirical analyses,
we show that this framework is, in the pursuit monostatic
case, both statistically and computationally more efficient than
standard D-TomoSAR. In the bistatic case, its theoretical bound
is no worse by a factor of 2. We also show that reasonable results
can be obtained by using merely 6 TanDEM-X pursuit monostatic
pairs, if additional spatial prior is introduced. The proposed
framework can be easily extended for multistatic configurations
or external sources of scatterer’s elevation.

Index Terms—SAR tomography, Tandem-L, TanDEM-X, syn-
thetic aperture radar (SAR).

I. INTRODUCTION

A. Motivation

B ISTATIC or multistatic configuration is a prominent
feature of various future synthetic aperture radar (SAR)

satellite missions. Some of these missions can be summarized
as follows.
• Tandem-L, a German satellite mission concept whose

primary goal is to observe the dynamic processes on
earth’s surface in high resolution with an unprecedented
accuracy [1]. It comprises two satellites (e.g., TL-1
and TL-2). Each of them will have on board a high-
resolution wide-swath L-band SAR. Basically, these two
satellites will fly in close formation and operate in
bistatic mode. This mode utilizes either TL-1 or TL-2
as a transmitter to illuminate a common radar footprint,
while both receive radar echoes from earth’s surface.
In addition, a bidirectional radio frequency (RF) link is
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necessary for a highly accurate mutual time and phase
referencing. This requirement will be easily fulfilled by
means of the heritage of the TanDEM-X (TerraSAR-X
add-on for Digital Elevation Measurements) mission [2].
Due to limited temporal decorrelation and atmospheric
phase screen (APS), single-pass bistatic interferograms
are characterized by better phase quality as compared to
conventional repeat-pass ones and thus are more suitable
for generating a global, consistent and high-resolution
digital elevation model [3].

• SAOCOM-CS, a bistatic mission concept attaching to
SAOCOM a passive companion SAR satellite operating
in L-band [4].

• SEntinel-1 SAR Companion Multistatic Explorer
(SESAME), a bistatic mission concept adding to
Sentinel-1 two passive companion SAR satellites
operating in C-band [5].

• Sentinel-1 “tandem” (i.e., one-day separation) or bistatic
mission concept involving the prospective Sentinel-1C
and another satellite from the series [6].

• High Resolution Wide Swath (HRWS), the successor of
TerraSAR-X comprising one or two SAR satellites oper-
ating in X-band [7], [8], and possibly several additional
passive companion transponder satellites without bidirec-
tional phase synchronization link (MirrorSAR) [9]–[11].

Above all, Tandem-L is the most intriguing mission to us,
not only because it is the one and only concept that has
already undergone very comprehensive and intensive studies
(see for example [12]–[16] and the references therein), but it
is also extremely promising for a huge variety of geophysical
applications.

In this paper, we address the problem of spaceborne differ-
ential SAR tomography (D-TomoSAR, see for instance [17]–
[23]) in urban areas using bistatic or pursuit monostatic data.
The latter, on the contrary, requires two satellites in close
formation to operate independently from each other [2]. It
can be employed as a backup solution in case pulse or phase
synchronization fails. Given a temporal baseline of a few
seconds and a moderate wind speed, the temporal decorrelation
is still small for most terrain types including vegetation and
atmospheric path delays can be assumed to cancel each other
out during interferometric processing [24]. Hereafter we refer
to bistatic and pursuit monostatic collectively as “bistatic-like”.

We propose an austere framework which 1) reconstructs
the elevation dimension with only bistatic-like interferograms,
and subsequently 2) uses this as deterministic prior to esti-
mate deformation parameters with conventional repeat-pass
interferograms generated from bistatic-like pairs. Note that
1) is essentially a non-differential TomoSAR subproblem. We
will refer to 2) as the DefoSAR subproblem. For point-like
scatterers, the advantages of this framework are at least two-
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fold: a) the (almost) APS-free nature of bistatic-like interfer-
ograms leads to better elevation reconstruction, and in turn
to more accurate deformation estimation; b) the dimension of
the original problem is downscaled multiplicatively in each
subproblem, which increases on the whole the algorithmic
efficiency. For distributed scatterers, adaptive multilooking can
be employed to increase their signal-to-noise ratio (SNR) to
the level of point-like ones [25]–[27]. Therefore, the same
arguments also apply. Besides, the elevation reconstruction of
distributed scatterers relies less on the performance of adaptive
multilooking, since their decorrelation is much less severe in
bistatic-like interferograms than in conventional repeat-pass
ones.

For the purpose of a practical demonstration, we use
TanDEM-X—to date the sole civil spaceborne bistatic or
multistatic mission—data in pursuit monostatic mode.

The proposed framework is envisioned to be incorporated
into our Tandem-L processing chain. As one would expect, it
is, with up to some minor adaptation, directly applicable to
other prospective bi- or multistatic missions.

B. Notations and structure
We adopt the following mathematical notations throughout

the whole paper. Scalars are denoted as lower- or uppercase
letters, e.g., r, N , λ. Vectors are denoted as bold lowercase
letters, e.g., b, γ. Their elements are denoted as lowercase
letters with subscript, e.g., the n-th entry of g is denoted as
gn. For vectors, ‖ · ‖2 and ‖ · ‖1 denote the `2 and `1 norm,
respectively. The supports of any vector β, i.e., the index set
of all nonzero entries of β, are denoted as supp(β). Matrices
and sets are denoted as bold uppercase letters, e.g., R, Ω.
Single rows of matrices are denoted as bold lowercase letters
with superscript, e.g., the n-th row of R is denoted as rn.
For matrices, ‖ · ‖F and ‖ · ‖1,2 denote the Frobenius and `1,2
norm, respectively. For any set Ω, |Ω| denotes its cardinality
and 2Ω its power set, i.e., the set of all subsets of Ω, including
Ω itself and the empty set ∅. The sets of integers, real and
complex numbers are denoted as Z, R, C, respectively. Their
nonnegative subsets are denoted with the subscript +, e.g., Z+

denotes the set of nonnegative integers.
The remainder of this paper is organized as follows. Sec. II

introduces the aforementioned framework together with a
theoretical analysis of its performance and complexity. This
is followed by Sec. III where an empirical experiment with
TanDEM-X pursuit monostatic data can be found. Sec. IV
concludes this paper.

II. THE TOMO- AND DEFOSAR FRAMEWORK

As briefly mentioned in Sec. I, we divide the original dif-
ferential TomoSAR problem using bistatic-like data sets into
two ordered subproblems, namely (non-differential) Tomo-
and DefoSAR. In the TomoSAR subproblem, the elevation
dimension is reconstructed with only bistatic-like interfero-
grams. Subsequently, the reconstructed elevation position of
each scatterer is used as deterministic prior in the DefoSAR
subproblem, where its deformation parameters are estimated
with conventional repeat-pass interferograms. These two cate-
gories of interferometric combinations are illustrated in Fig. 1.

Fig. 1. A sketch of bistatic-like (solid lines) and conventional repeat-pass
(dashed lines) interferometric combinations of future Tandem-L acquisitions.
Bistatic-like pairs will be acquired repeatedly by TL-1 and TL-2 every 16
days.

A. TomoSAR

Given N coregistered bistatic-like complex interferograms,
we aim to reconstruct the reflectivity profile along elevation.

For small N , however, the distribution of cross-track per-
pendicular baselines could be one-sided (see for example
Fig. 2a). In this case, we propose to flip the sign of some
of the baselines in order to maximize the standard deviation
of their distribution. The rationale is to achieve a more
uniform sampling of elevation frequencies [28], as well as
a better Cramér-Rao lower bound on the error of elevation
estimates [29]. Let b ∈ RN denote the vector of cross-track
perpendicular baselines, the aforementioned problem can be
formulated as

maximize
z∈{−1,+1}N

σ(b� z), (1)

where σ : RN → R+ maps a vector to the sample standard
deviation of its entries, and � denotes the Hadamard product.
Problem (1) is equivalent to

minimize
z∈{−1,+1}N

−
∥∥b� z− bTz/N

∥∥2
2
, (2)

which has two optimum points given unique entries of b:
suppose z∗ is one of them, then −z∗ is the other. Since N is
small, we solve (2) by exhaustive search. In the unlikely case
of one-sided baseline distribution with large N , the following
heuristic can be adopted: sort baselines by their magnitude,
choose a sign for the largest one in magnitude, set the second
largest one to have the opposite sign, and so forth till all N
baselines are exhausted. Accordingly, the signs of elevation
frequency and interferometric phase are also flipped.

The optional sign flipping procedure is followed by lay-
over separation. By the first-order Born approximation, far-
field diffraction is often modeled as the integration of a
phase-modulated elevation-dependent reflectivity profile (see
for example [19]). After discretizing the elevation dimension
and replacing integration with finite sum, bistatic-like InSAR
observations g ∈ CN of a resolution cell can be approximated
with the linear model g ≈ Rγ, where R ∈ CN×L is the
TomoSAR design matrix, and γ ∈ CL denotes the discrete
reflectivity profile along elevation. The n-th entry gn of g is
sampled at the elevation frequency ξn := 2bn/(λr), where bn
is the corresponding cross-track perpendicular baseline (after
sign flipping), λ denotes the radar carrier wavelength, and r is
the slant-range distance in the master acquisition. Let s ∈ RL
denote the discretization of the elevation dimension, the n-
th row of R is defined as rn := exp(−j2πξns), where exp
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operates elementwise. There exist numerous methods which
estimate γ with given R and g. Under the assumption that
γ is sparse (i.e., its cardinality is small), a common approach
is to solve the following `1-regularized least squares problem
[30]

γ̂ := argmin
γ

1

2
‖Rγ − g‖22 + λ‖γ‖1, (3)

where λ > 0 controls the trade-off between model goodness-
of-fit and the sparsity of γ. A similar formulation of (3) can be
found in [31]. Despite its super-resolution power and robust-
ness in terms of layover separation, `1 regularization is prone
to spurious spikes. For this reason, it is often concatenated
with model order selection which we state as follows [28]

Ω̂ := argmin
Ω(,β)

1

2
‖Rβ − g‖22 +C(|Ω|)

subject to supp(β) = Ω ⊆ supp(γ̂),

(4)

where |Ω| denotes the cardinality of the index set Ω, C :
Z+ → R+ evaluates the model complexity according to, e.g.,
Bayesian or Akaike information criterion (see [28] and the
references therein), and supp(β) = {i | βi 6= 0, i = 1, . . . , L},
i.e., it is the set of the indices of nonzero entries or supports
in β. The constraint in (4) renders the supports of the final
reflectivity profile estimate a subset of those of γ̂, and there-
fore allows outlier mitigation. Note that the underestimated
amplitude is hereby debiased as a by-product.

In the next subsection, we introduce the DefoSAR subprob-
lem which uses as deterministic prior the elevation estimates
of single or multiple scatterers from TomoSAR reconstruction.

B. DefoSAR

Given 2N − 2 coregistered conventional repeat-pass com-
plex interferograms generated from N bistatic-like pairs (see
Fig. 1), and the elevation estimates ŝ := sΩ̂ of a total number
of K := |Ω̂| scatterers, our objective is to reconstruct their
deformation by means of a composite model.

For single point-like scatterers (i.e., no layover effect),
the elevation estimates can be straightforwardly converted
into topographic phase and compensated in the conventional
repeat-pass interferograms. A similar approach for distributed
scatterers can be found in [32].

In a more general sense, ŝ can be considered as deterministic
prior. Let Ψ := {ψm} denote a set of M basis functions which
are parametrized by the temporal baseline tn and employed
to model scatterer’s deformation, and cm ∈ R|cm| be the
discretization of the unknown coefficient of ψm, we can
construct the DefoSAR design matrix R̃(ŝ,Ψ) ∈ C(2N−2)×L̃,
where L̃ := K

∏M
m=1 |cm|. Its n-th row can be expressed

as r̃n := exp(−j2πξ̃nŝ) ⊗ exp(−j(4π/λ)ψ1(tn)c1) ⊗ · · · ⊗
exp(−j(4π/λ)ψM (tn)cM ), where ξ̃n is the elevation fre-
quency of the n-th conventional repeat-pass interferogram with
cross-track perpendicular baseline b̃n, and ⊗ denotes the Kro-
necker product. Likewise, the repeat-pass InSAR observations
g̃ ∈ C2N−2 of the same resolution cell can be approximated by
g̃ ≈ R̃(ŝ,Ψ)γ̃, where γ̃ ∈ CL̃ denotes the discrete reflectivity
profile along elevation and deformation. The coefficients of
deformation basis functions can be estimated with a variant of

non-linear least squares [22] which additionally constrains γ̃
to have exactly one nonzero entry at each elevation position
in ŝ. In order to avoid overfitting, we propose furthermore
to perform deformation model order selection. Let 2Ψ be the
power set of Ψ, i.e., all possible combinations of deformation
basis functions including the non-differential case represented
by the null set ∅, the deformation model order selection
problem can be cast as

Θ̂ := argmin
Θ⊆2Ψ(, β̃)

1

2
‖R̃(ŝ,Θ)β̃ − g̃‖22 +C(|Θ|)

subject to | supp(β̃)| = | supp(I(β̃))| = |Ω̂|,
(5)

where I : CL̃ → CK integrates over each deformation
coefficient. The constraint in (5) enforces that the discrete
reflectivity profile in the elevation-deformation domain, and
the one in the (integrated) elevation domain share the same
number of supports, which leads to the previously mentioned
desired effect. Again, we solve this subproblem by exhaustive
search. In the case of a highly complex composite model, we
can proceed in a greedy manner: choose from the remaining
scatterers the one with the strongest power, rebuild the Defo-
SAR design matrix, find the best fit in terms of penalized
likelihood (5), and subtract it from the residues of g̃, etc.

Assuming that the elevation estimate of a single scatterer is
perfect, the Cramér-Rao lower bound (CRLB) on the error of
the coefficient estimate ĉ of a single basis function ψ is

σĉ :=
λ

4π
√
2N − 2

√
2SNR σψ

, (6)

where σψ is the standard deviation of ψ evaluated at different
tn, i.e., ψ(t1), . . . , ψ(t2N−2). A proof of (6) is given in the
appendix.

In a nutshell, our proposed framework can be summarized
as follows. A simple theoretical analysis is provided in the
next subsection.

Algorithm 1 Tomo- and DefoSAR
TomoSAR Input: cross-track perpendicular baselines b,
elevation frequencies {ξn}, bistatic-like InSAR observa-
tions g

1: (optional) sign flipping (2)
2: sparse reconstruction (3)
3: model order selection for elevation estimation (4)

TomoSAR Output: elevation estimates ŝ

DefoSAR Input: ŝ, temporal baselines {tn}, deformation
basis functions Ψ, repeat-pass InSAR observations g̃

4: if |ŝ| 6= ∅, deformation model order selection (5)
DefoSAR Output: selected deformation basis functions
Θ̂ and their estimated coefficients

C. Tomo- and DefoSAR vs. D-TomoSAR: a theoretical analysis

Now we analyze the performance and complexity of the
proposed framework from a theoretical point of view.

We start with a proof that
Case 1 (pursuit monostatic): the proposed framework has a

tighter theoretical bound, and
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Case 2 (bistatic): its CRLB is no worse by a factor of 2.
In order to simplify the argument, suppose without loss

of generality that N bistatic-like pairs are coregistered with
a redundant master scene that is not used in tomographic
processing. Thereby 2N (instead of 2N − 1 if we count
the interferogram in the middle of Fig. 1 as a repeat-pass
one with zero temporal baseline) conventional repeat-pass
interferograms are generated from these pairs. Note that this
assumption certainly favors the D-TomoSAR approach.

For TomoSAR using N bistatic-like pairs, the CRLB on the
elevation estimate ŝ of a single scatterer is [29]

σŝ :=
λr

4π
√
N
√
2SNR σb

, (7)

where σb is the standard deviation of the perpendicular
baselines {bn} of the N bistatic-like pairs. On the other
hand, D-TomoSAR uses as inputs 2N conventional repeat-
pass interferograms that are generated from the N bistatic-like
pairs. For a single scatterer, suppose that its deformation time
series is described by a basis function ψ. It can be shown that
the CRLB on its elevation estimate is

σ̃ŝ :=
λr

4π
√
2N
√
2SNR

√
1− ρ2σb̃

, (8)

where σb̃ is the standard deviation of the perpendicular base-
lines {b̃n} of the 2N conventional repeat-pass interferograms,
and ρ denotes the correlation coefficient between b̃n and
ψn := ψ(tn). The proof of (8) is similar to that of (6) with
one minor difference: s is considered here as an unknown and
therefore the corresponding Fisher information matrix is in
R4×4.

We assume that {b̃n} are independent and identically dis-
tributed random variables.

Case 1 (pursuit monostatic):
For each bn, there exist unique k, l ∈ Z+, 1 ≤ k 6= l ≤ 2N ,

such that bn = b̃k − b̃l. It follows that σ2
b = 2σ2

b̃
. For

example, suppose that each b̃n is uniformly distributed in
[−bmax,+bmax], bmax > 0. This implies that σ2

b̃
= (bmax)

2/3.
As a result, each bn follows a symmetric triangular distribution
with σ2

b = 2(bmax)
2/3. Dividing σŝ by σ̃ŝ yields

σŝ
σ̃ŝ

=
√
1− ρ2 < 1. (9)

Case 2 (bistatic):
From bn = (b̃k − b̃l)/2 it follows that σ2

b = σ2
b̃
/2 and

consequently σŝ/σ̃ŝ < 2, which completes the proof.
Note that similar results can be obtained for deformation

parameter estimate.
Furthermore, we analyze the complexity of the proposed

framework via flop count. In the case of a one-sided distribu-
tion of cross-track perpendicular baselines, the optional sign
flipping problem (2) can be solved using exhaustive search in
O(N2N−1) flops. For large N , the heuristic approach, which
is based on a simple sorting, can be performed in O(N logN)
flops.

The sparse reconstruction problem (3) can be solved us-
ing the alternating direction method of multipliers [33] in

O(LNT ) flops1, assuming that N � L and N � T , where T
is the number of iterations. The model order selection problem
for elevation estimates (4) is essentially a series of subset
least squares problems that can be solved in O(N) flops. The
deformation model order selection problem (5) can be solved
in O(NL̃K) flops, or O(NL̃) flops using the greedy approach.
Therefore, the total cost of the proposed framework is at most
O(LNT +NL̃K) flops.

As a comparison, the total cost of applying the sparse
reconstruction and model order selection directly to 2N repeat-
pass interferograms is O(LL̃NT ) flops. By assuming that
L ≈ L̃ � T , the proposed framework is approximately L̃
times as simple (as opposed to complex) for single and double
scatterers, which are considered as the most common cases in
urban areas [34].

In Sec. III, we demonstrate the applicability of the proposed
framework with a stack of TanDEM-X pursuit monostatic
acquisitions.

III. EXPERIMENTS WITH TANDEM-X PURSUIT
MONOSTATIC DATA

Due to the unavailability of suitable Tandem-L bistatic test
data, we applied the proposed framework to a small TanDEM-
X pursuit monostatic stack. The pursuit monostatic mode was
temporarily put into practice from October 2014 to February
2015 during the TanDEM-X Science Phase [24]. In order to
avoid RF interference between radar signals, the along-track
distance was set to approximately 76 km, which corresponds to
a temporal baseline of circa 10 seconds. During this five-month
period, 12 staring spotlight scenes of the City of Las Vegas
were acquired. Out of these, 6 pursuit monostatic interfero-
grams were generated and their baselines are plotted in Fig. 2a.
As can be observed, relatively large values in magnitude are
available, whereas in the usual cases of TSX and TDX2 the
baselines are bounded between ±250 m. As a matter of fact,
in order to favor TomoSAR and other applications in polar
regions, cross-track perpendicular baselines were programmed
to slowly drift (in magnitude) from 0 to 750 m [24]. Since all
baselines but one are negative, we applied the sign flipping
procedure that was introduced in Sec. II-A. The baselines
after sign flipping are plotted in Fig. 2b. The sign was indeed
flipped for two baselines and the standard deviation increased
from approximately 286.7 to 308.3 m. As a consequence, the
CRLB was improved by 7.5%.

As a practical demonstration of the proposed framework,
we focus on a small area which contains a high-rise building
and is therefore subject to layover. The APS was compensated
by subtracting the phase of a nearby ground reference point
in each interferogram. This step is also known as phase
calibration [35], [36]. Given a sufficiently large number of
bistatic-like pairs (for example N ≥ 11), a stack of 2N − 1
repeat-pass interferograms can be generated. Subsequently,
a standard persistent scatterer interferometry (PSI) approach

1For the sake of simplicity, we count each complex addition or multiplica-
tion as one flop.

2In this context we refer to the two satellites in the TanDEM-X mission as
TSX and TDX.
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(a) Before sign flipping

600 500 400 300 200 100 0 100 200 300 400 500 600
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(b) After sign flipping

Fig. 2. Cross-track perpendicular baselines of 6 pursuit monostatic interfer-
ograms before (2a) and after sign flipping (2b). The height of ambiguity is
approximately, in ascending order, 10, 15, 18, 64, 69 and 738 m.

b1 = 88.4 m b3 = 82.4 m b5 = 311.4 m

b2 = 7.7 m b4 = 565.5 m b6 = 373.2 m

3 2 1 0 1 2 3
Phase [rad]

Fig. 3. Pursuit monostatic interferograms of a high-rise building, generated
from 12 TSX and TDX acquisitions and annotated with their cross-track
perpendicular baselines.

[37]–[39] can be applied to estimate the APS of single point-
like scatterers. This can be resampled and compensated for
the whole scene (see for example [40] and the references
therein). Alternatively, topographic updates of single point-
like scatterers can be first estimated using only bistatic-like
interferograms and then compensated in conventional repeat-
pass interferograms for APS estimation [32]. Fig. 3 shows the
6 pursuit monostatic interferograms of a high-rise building and
its surroundings. Note that the fringes on the building facade
appear to be highly coherent. For Tandem-L, we would expect
even higher coherence, especially for distributed scatterers.
This is due to minimized temporal decorrelation in the bistatic
mode, as well as the outstanding penetration depth in L-band.

In the next subsection, the sparse reconstruction is enhanced
by exploiting joint sparsity among different resolution cells, in
order to circumvent the issue of the extremely small number
of pursuit monostatic pairs.

A. Joint sparsity reconstruction for extremely small N
Although the pursuit monostatic interferograms in Fig. 3

are mostly unaffected by APS or temporal decorrelation, the
number of elevation frequencies (i.e., 6) is extremely small.
Zhu et al. reported that, for N = 6, not exploiting special
signal structure can lead to results that are subject to outliers
[41]. With the objective of achieving high-quality elevation
reconstruction, we introduced spatial prior in the form of iso-
height line segments along range on the building facade. The
iso-height line segments were derived from freely available
geospatial data containing building footprints. All resolution
cells in a given line segment form an iso-height cluster, which
was jointly reconstructed. In other words, we solve instead the
`1,2-regularized least squares problem

Γ̂ := argmin
Γ

1

2
‖RΓ−G‖2F + λ‖Γ‖1,2, (10)

where the p-th column of Γ ∈ CL×P represents the discrete
reflectivity profile in the p-th resolution cell (also known as
snapshot) along the iso-height line segment, the p-th column
of G ∈ CN×P contains the InSAR observations of the p-th
resolution cell, ‖ · ‖F denotes the Frobenius norm, and ‖ · ‖1,2
denotes `1,2 norm, i.e., ‖Γ‖1,2 :=

∑L
i=1 ‖γi‖2. A treatise

on this algorithm can be found in [41], where it was shown
empirically that solving the `1,2-regularized least squares
problem (10) with N interferograms and P snapshots achieves
almost the same performance, in terms of elevation estimate
error, as solving the `1-regularized least squares problem (3)
with NP interferograms. Similar approaches using multiple
snapshots can be found in, e.g., [42], [43]. Subsequently, the
model order selections (4) and (5) were performed individually
for each resolution cell.

Fig. 4 shows the mean intensity map of the building of
interest and several exemplary iso-height line segments. The
height estimates of single and layover scatterers are plotted
in Fig. 5. Roof interacts with facade and ground in the near
range, while facade and ground are subject to layover in the
far range. The smooth color transition from near to far range
indicates a good quality of height estimates. Nevertheless,
there are indeed a few outliers in the far range. These outliers,
which we managed to reproduce with simulated data sets,
are presumably due to the yet nonuniform distribution of
the extremely small number of baselines. The height profile,
generated via averaging within each iso-height cluster, can be
found in Fig. 6, where roof and facade are clearly identifiable.
In order to assess the relative accuracy of height estimates,
we extracted the point cloud segment corresponding to facade
by thresholding of point density [44] and fitted a vertical
plane with `1-loss (see Fig. 7). From the bird’s-eye view, all
scatterers appear to be evenly distributed w.r.t. the fitted facade
plane. We calculated the elevation distance of each scatterer’s
estimated position to the facade plane, and projected it into
the vertical direction. We refer to this vertical component as
the height estimate error relative to the fitted vertical plane.
Its histogram resembles a zero-mean normal distribution (see
Fig. 8). The relative vertical accuracy, which is defined in this
context as the median absolute deviation (MAD) of height
estimate error, was estimated to be approximately 0.29 m.
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Fig. 4. Mean intensity map (left) and overlaying exemplary iso-height line
segments (right).

0 20 40 60 80 100
Topography [m]

Fig. 5. Height estimates of single (left) and layover scatterers (right). In the
case of layover, the height estimate of the highest scatterer is shown.

Note that this can be interpreted as an upper bound on the
true relative vertical accuracy, since the building facade is not
entirely flat.

As explained in Sec. II-B, these height estimates can be
used as deterministic prior for repeat-pass interferometry.
For single scatterers, the topographic phase was compensated
by using the height-to-phase conversion factor (see Fig. 9).
The residual phase is presumably mainly due to scatterer’s
motion and already reveals a pattern of it. Note that every
pair of repeat-pass interferograms sharing the same temporal
baseline (in days) appear almost identical after topographic
phase compensation. This provides a compelling argument
for limited temporal decorrelation and APS wihtin a pursuit
monostatic pair. Needless to say, an increase in the coherence
of prospective Tandem-L repeat-pass interferograms can be
expected. Even for distributed scatterers, L-band signal is
known to maintain a certain degree of coherence after more
than two years of time [45], [46]. This would undoubtedly lead
to a greater coverage of retrievable information. Given the span
of temporal baselines of 132 days, the motion was assumed
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Fig. 6. Cluster-wise averaged height profile.

Fig. 7. Bird’s-eye view of the point cloud segment corresponding to facade.
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Fig. 8. Histogram of height estimate error relative to a fitted vertical plane.
The median and MAD are approximately 0.00 and 0.29 m, respectively.

to consist primarily of thermal contraction and expansion due
to temperature change (see for example [47]). To this end,
a sinusoidal model was employed. By solving the DefoSAR
subproblem (5), we obtained the amplitude estimates of pe-
riodical deformation for single and layover scatterers, which
are shown in Fig. 10. In general, the amplitude of periodical
deformation is positively correlated with height (see the scatter
plot in Fig. 11) and relatively large in magnitude at the top
of the building as well as at the side. This pattern accords
with that of repeat-pass interferograms of single scatterers after
topographic phase compensation in Fig. 9b, which partially
validates our results.

A preliminary comparison with D-TomoSAR is provided in
the next subsection.
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(a) Before topographic phase compensation

(b) After topographic phase compensation

3 2 1 0 1 2 3
Phase [rad]

Fig. 9. Repeat-pass interferometric phase of single scatterers before (9a) and after topographic phase compensation (9b), annotated with their cross-track
perpendicular or temporal baselines.
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Fig. 10. Periodical deformation amplitude estimates of single (left) and
layover scatterers (right). In the case of layover, the amplitude estimate of
the highest scatterer is shown.
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Fig. 11. Scatter plot of averaged height and periodical deformation amplitude.

B. Tomo- and DefoSAR vs. D-TomoSAR: an empirical analysis

In Sec. III-A, we introduced additional spatial prior in
order to boost the sparse reconstruction for extremely small
N . The joint sparsity reconstruction method (10) is, how-
ever, only applicable to bistatic-like data sets. Therefore, a
direct comparison with the results generated by the same
method using conventional repeat-pass interferograms is ruled
out. For the sake of fairness, we employed the pixel-wise
sparse reconstruction method (3) with identical parameter
quantization for both TomoSAR and D-TomoSAR processing
using 6 pursuit monostatic and 11 repeat-pass interferograms,
respectively. As might be expected, the former was followed
by DefoSAR processing for deformation parameter estimation.
Tab. I summarizes the overall runtime on a desktop with a
quad-core Intel processor at 3.40 GHz and 16 GB RAM.
The Tomo- and DefoSAR framework was computationally
approximately 6.4 times as efficient.

As listed in Tab. II, the standard deviation σb of the cross-
track perpendicular baselines {bn} of the 6 pursuit monostatic

TABLE I
TOMO- AND DEFOSAR VS. D-TOMOSAR: RUNTIME

Tomo- and DefoSAR D-TomoSAR Ratio

Runtime [h] 0.61 3.94 6.44

TABLE II
TOMOSAR VS. D-TOMOSAR: BASELINE STANDARD DEVIATION,√

1− ρ2 AND CRLB OF HEIGHT ESTIMATES (SNR = 5 DB)

TomoSAR D-TomoSAR Ratio

Baseline σ [m] 308.31 226.33 1.36√
1− ρ2 n.a. 0.92 n.a.

CRLB of height [m] 0.48 0.52 1.10

TABLE III
STATISTICS OF THE HEIGHT ESTIMATE ERROR IN FIG. 13

TomoSAR D-TomoSAR Ratio

No. of scatterers 87595 91063 1.04

Median [m] 0.00 0.00 n.a.
Mean [m] 0.00 0.00 n.a.
MAD [m] 0.52 0.61 1.16

Standard Deviation [m] 0.50 0.58 1.16

interferograms is approximately 1.4 times as high as the one
σb̃ of {b̃n} of the 11 repeat-pass interferograms. Note that
our assumption in Sec. II-C implies that σb =

√
2σb̃. The

correlation between b̃n and the deformation basis function
ψn leads to

√
1− ρ2 ≈ 0.92. This can be interpreted as a

degradation of σb̃ by 8% at the expense of taking deformation
into account. Given a single scatterer with an SNR of 5 dB,
the CRLB of height estimates for the proposed framework is
approximately 0.48 m, which is 1.1 times as low.

Same as in Sec. III-A, we extracted the point cloud segment
corresponding to building facade by thresholding of the 2-D
point density. This process also eliminated false alarms due
to the extremely small number of interferograms. As shown
in Fig. 12, both facade segments appear quite similar, except
that the uppermost part of the facade is incomplete in the
D-TomoSAR result. A possible explanation could be that the
already complex short-distance roof-facade layover of point-
like scatterers is furthermore complicated by their deformation
behavior. The facade segment produced by D-TomoSAR has
slightly more scatterers (see Tab. III), but we consider this
difference to be insignificant. In order to access the quality
of the point cloud, we followed the same approach that was
introduced in the last subsection, namely to fit a vertical
plane into each facade segment, project the distance of each
point to the fitted plane into the vertical axis, and interpret
it as the height estimate error relative to the fitted plane.
The normalized histograms are shown in Fig. 13. While both
histograms are centered around zero, the one of TomoSAR has
less deviation. The MAD is in fact approximately 1.16 as low
for TomoSAR (cf. 1.10 as predicted in Tab. II for an average
SNR of 5 dB).
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Fig. 12. Reconstructed facade segments (color-coded by ellipsoidal height).
Left: TomoSAR using 6 pursuit monostatic interferograms. Right: D-
TomoSAR using 11 repeat-pass interferograms.
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Fig. 13. Normalized histogram of height estimate error relative to a fitted
vertical plane. Gray: TomoSAR using 6 pursuit monostatic interferograms.
Black: D-TomoSAR using 11 repeat-pass interferograms. See Tab. III for
more statistics.

IV. CONCLUSION

In the preceding sections, we tackled the problem of differ-
ential TomoSAR in urban areas using bistatic-like data sets,
which will be delivered by the prospective Tandem-L mission
as operational products. We proposed a framework which
divides the original problem into two subsequent subproblems.
The first subproblem is essentially non-differential TomoSAR
with bistatic-like interferograms and can be dealt with using
already existing methods. In the second subproblem, elevation
estimates are incorporated as deterministic prior into the
DefoSAR design matrix in order to estimate the coefficients
of deformation basis functions with conventional repeat-pass
interferograms. We showed via theoretical and empirical anal-
yses that this framework, when applied to pursuit monostatic
data, not only outperforms standard D-TomoSAR but is also
less expensive. In an extreme case, we applied our frame-
work to merely 6 TanDEM-X pursuit monostatic pairs and
achieved reasonable results for both elevation and deformation
estimates. The relative vertical accuracy of the resulted point
cloud was estimated to be approximately 0.29 m.

Although we proposed to estimate each scatterer’s elevation

position using bistatic-like interferograms, it could indeed stem
from other sources such as ray-tracing simulation with an
external 3-D building model [48] or with one reconstructed
from a single SAR intensity image [49]. The correspond-
ing minor adaptation would extend the applicability of the
proposed framework to interferometric stacks composed of
nothing but conventional repeat-pass acquisitions and thereby
allow precise object-based infrastructure monitoring.

APPENDIX
PROOF OF (6)

First we state the following result from [50].
Suppose that x ∈ RL and y ∈ CN are the parameter

and data vectors, respectively, and y is the random Gaussian
observation of the deterministic signal vector u(x) ∈ CN with
covariance matrix Cy(x). The likelihood function is

f(y | x) := 1

πN det
(
Cy(x)

) ·

exp

(
−
(
y − u(x)

)H
C−1y (x)

(
y − u(x)

))
.

It can be shown that the Fisher information matrix I(x) is
given by

[I(x)]kl := tr

(
C−1y (x)

∂Cy(x)

∂xk
C−1y (x)

∂Cy(x)

∂xl

)
+

2Re

(
∂uH(x)

∂xk
C−1y (x)

∂uH(x)

∂xl

)
,

(11)

k, l = 1, . . . , L.
Now let us consider the DefoSAR data model

g̃n = γ̃ exp(−j2πξ̃ns) exp(−j(4π/λ)ψnc) + ε̃n,

n = 1, . . . , 2N−2, where ε̃n is complex white Gaussian noise
with variance σ2

ε̃ , and ψn := ψ(tn). Here we assume that
the elevation estimate is perfect, i.e., ŝ = s. By replacing
γ̃ by a exp(jφ) where a, φ ∈ R, we define the new real
parameter vector as x :=

(
a c φ

)T
. The signal vector

is given by un(x) := a exp
(
j(φ − 2πξ̃ns − (4π/λ)ψnc)

)
,

n = 1, . . . , 2N − 2. Straightforward computations using (11)
yield the Fisher information matrix

I(x) =
2

σ2
ε̃



2N − 2 0 0

0 (4π)2a2

λ2

∑
n ψ

2
n − 4πa2

λ

∑
n ψn

0 − 4πa2

λ

∑
n ψn (2N − 2)γ2


 .

The CRLB for ĉ is found to be

σ2
ĉ := [I−1(x)]22 =

λ2σ2
ε̃

(4π)2(2N − 2)2a2σ2
ψ

.

By defining SNR := a2/σ2
ε̃ , this reduces to

σĉ =
λ

4π
√
2N − 2

√
2SNR σψ

,

which completes the proof.
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Spaceborne Staring Spotlight SAR Tomography—A
First Demonstration with TerraSAR-X
Nan Ge, Fernando Rodriguez Gonzalez, Yuanyuan Wang, Member, IEEE, Yilei Shi,

Xiao Xiang Zhu, Senior Member, IEEE

Abstract—With the objective of exploiting hardware capa-
bilities and preparing the ground for the next-generation X-
band synthetic aperture radar (SAR) missions, TerraSAR-X and
TanDEM-X are now able to operate in staring spotlight mode,
which is characterized by an increased azimuth resolution of
approximately 0.24 m compared to 1.1 m of the conventional
sliding spotlight mode. In this paper, we demonstrate for the
first time its potential for SAR tomography. To this end, we
tailored our interferometric and tomographic processors for the
distinctive features of the staring spotlight mode, which will be
analyzed accordingly. By means of its higher spatial resolution,
the staring spotlight mode will not only lead to a denser point
cloud, but also to more accurate height estimates due to the
higher signal-to-clutter ratio. As a result of a first comparison
between sliding and staring spotlight TomoSAR, the following
were observed: 1) the density of the staring spotlight point cloud
is approximately 5.1–5.5 times as high; 2) the relative height
accuracy of the staring spotlight point cloud is approximately
1.7 times as high.

Index Terms—SAR tomography, staring spotlight, synthetic
aperture radar (SAR), TerraSAR-X.

I. INTRODUCTION

TERRASAR-X and TanDEM-X, the twin German satel-
lites of almost identical build, have been delivering high-

resolution X-band synthetic aperture radar (SAR) images since
their launch in 2007 and 2010, respectively. Among civil SAR
satellites, their unprecedented high spatial resolution in meter
range and relatively short revisit time of 11 days opened up
new applications of spaceborne SAR interferometry (InSAR).
As a benchmark of medium-resolution spaceborne SAR sen-
sors, a resolution cell in an ENVISAT ASAR stripmap product
of the size 6-by-9 m2 (azimuth-by-range) is resolved by
approximately 5-by-15 pixels in a high-resolution sliding spot-
light image of TerraSAR-X with 300 MHz range bandwidth
[1]. Particularly in urban areas, this meter-level resolution
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provides the possibility of revealing detailed information in
terms of geolocation and motion of single man-made objects.
Adaptations of advanced time series analysis methods, such as
persistent scatterer interferometry (PSI) and SAR tomography
(TomoSAR), to sliding spotlight datasets showed promising
results, see, for example, [2]–[5].

In order to fully exploit the capabilities of TerraSAR-X1

and to prepare for the next-generation X-band SAR satellite
missions, e.g., HRWS [6], the TerraSAR-X staring spotlight
mode was conceptualized and consequently operationalized
[7], [8]. Compared to the high-resolution sliding spotlight
mode, the SAR sensor in staring spotlight mode employs a
larger squint angle range to achieve a better azimuth resolution
of approximately 0.24 m. As a result, the same ENVISAT
ASAR stripmap pixel, as mentioned in the previous paragraph,
is represented by 25-by-15 pixels in a staring spotlight image.
The advantages of increased (azimuth) resolution for urban
areas are at least two-fold: 1) it is more likely for point-like
targets with similar azimuth-range coordinates to appear in
different resolution cells, thus densifying the 4-D point cloud;
2) point-like targets stand out more prominently from clutter,
which leads to higher signal-to-clutter ratio (SCR). These
factors favor PSI and TomoSAR in different ways. While the
former increases the amount of information of particularly
single man-made objects, the latter provides a better lower
bound on the variance of height estimates [9].

Although it seems encouraging to adapt and apply Tomo-
SAR to staring spotlight datasets, yet to the best of our knowl-
edge there has not been any published result. A lack of datasets
could be one reason. On the other hand, several considerations
regarding staring spotlight mode need to be taken into account
during InSAR processing, which might also hinder such an
application. By means of this paper, we intend to show that
staring spotlight datasets are indeed suitable for TomoSAR.
Based on a sufficient number of acquisitions, our first results
on the scales of a city and of individual infrastructures are
demonstrated to provide an argument in favor of this statement.
We also perform a preliminary comparison between sliding
and staring spotlight TomoSAR by using a limited number of
datasets in both modes.

The remainder of this paper is organized as follows. Sec-
tion II explains the TerraSAR-X staring spotlight mode and its
related InSAR processing aspects. The principles of TomoSAR
are briefly revisited in section III, where several technical

1In the following TerraSAR-X is referred to as the monostatic constellation
of TerraSAR-X and TanDEM-X, i.e., SAR instrument is activated on either
TerraSAR-X or TanDEM-X but not both.
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Fig. 1. TerraSAR-X sliding (left) and staring (right) spotlight imaging
geometry. Modified from [1].

adaptations are elucidated as well. Section IV comprises our
first results with an interferometric stack of Washington, D.C.
and some interpretations thereof. In section V, a preliminary
comparison of sliding and staring spotlight TomoSAR is made
based on a small number of images. Conclusions are drawn
and future work is proposed in section VI. The appendix clar-
ifies the structure of the TerraSAR-X annotation component
containing a 3-by-3 grid of Doppler centroid in focused image
time, which could be used to avoid complex time conversion.

II. TERRASAR-X STARING SPOTLIGHT INTERFEROMETRY

In spotlight mode, the SAR sensor steers the azimuth
beam forth and back in order to increase the illumination (or
aperture) time tAP of a target, as illustrated in Fig. 1. As a side
effect, the Doppler centroid frequency undergoes a negative
drift in azimuth time taz of the raw data (see Fig. 2). The
beam sweep rate is a trade-off between azimuth resolution
and spatial extent. In the TerraSAR-X sliding spotlight mode,
the azimuth beam is swept at a moderate rate with a squint
angle range up to ±0.75° [10], while in the staring spotlight
mode the azimuth beam is steered exactly towards a reference
ground target as satellite proceeds. In other words, the beam
sweep rate is configured to match the frequency modulation
(FM) rate of the reference target, which enables longer azimuth
illumination time. To be more specific, the acquisition squint
angle range is restricted to approximately±2.2° due to antenna
azimuth grating lobe [7]. As a consequence, tAP is, in the
ideal case, equal to the azimuth time span of the raw data
∆traw. This leads to a maximized azimuth resolution, which
is limited by the product of tAP and the FM rate [1]. This
improved azimuth resolution comes, however, at the expense
of a reduced azimuth scene extent, i.e., the azimuth time
span of a focused image ∆timage in staring spotlight mode is
significantly shorter. Naturally, the intrinsic range bandwidth
imposes a ceiling on the slant range resolution, which is
normally solely enhanced by a hardware upgrade. Tab. I lists as
an example the parameters of a TerraSAR-X staring spotlight
acquisition of Washington, D.C.

Due to the longer integration time of approximately 7 s
in the TerraSAR-X staring spotlight mode, several challenges

Fig. 2. Time-variant Doppler spectra of SAR raw data (//) with time span
∆traw, and of focused image (shaded) with time span ∆timage in the sliding
(top, modified from [1]) and staring (bottom) spotlight modes. Bold line
segments denote the targets at the start and stop azimuth time (taz) in the
focused image, respectively. Both targets are illuminated with time tAP and
their zero-crossings define ∆timage. In the staring spotlight mode, tAP is set
to equal ∆traw in order to increase the azimuth resolution, which comes at
the expense of significantly shorter ∆timage.

arise in SAR processing [8], e.g., 1) the stop-and-go ap-
proximation becomes invalid, i.e., satellite movement between
transmitting and receiving the chirp signal can no longer be
neglected; 2) satellite trajectory deviates too much from a
linear track, i.e., orbit curvature needs to be taken into account;
3) tropospheric delay could vary significantly within the large
squint angle span and therefore needs to be corrected. All
of these effects are considerately accounted for in a revised
version of the TerraSAR-X multimode SAR processor [11],
[12].

InSAR processing, on the other hand, requires merely few
adaptations. As in the sliding spotlight mode, the master and
slave images are coregistered (resampled) on the basis of
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TABLE I
EXEMPLARY PARAMETERS OF A TERRASAR-X STARING SPOTLIGHT

ACQUISITION OF WASHINGTON, D.C. (VALUES ARE ROUNDED)

Incidence angle at scene center 41°
Azimuth resolution 0.23 m
Slant range resolution 0.59 m
Azimuth scene extent 3.1 km
Ground Range scene extent 5.5 km
Range bandwidth 300 MHz
Antenna bandwidth 2589 Hz
Focused azimuth bandwidth 38275 Hz
Acquisition pulse repetition frequency (PRF) 4448 Hz
Focused PRF 42300 Hz
Number of azimuth beams 113

Squint angle range ±2.2°
Aperture time tAP 7.24 s
Raw data scene duration ∆traw 7.24 s
Focused scene duration ∆timage 0.43 s
FM rate at scene center −5301 Hz/s
Beam sweep rate at scene center −5301 Hz/s

point-like scatterers in order to generate a coherent interfer-
ogram [1]. A requirement is the knowledge of the Doppler
centroid frequency fDC as a function of the focused image
time timage. Since fDC is annotated as a (first-order) polynomial
of the raw data time traw in the TerraSAR-X products, it
is suggested in [1], [13] to perform time conversion for the
sliding spotlight datasets via

timage = traw −
fDC(traw)

FM
. (1)

This relation, however, does not hold for the staring spotlight
mode, in which the FM rate equals the beam sweep rate, i.e.,
a target is visible throughout the whole raw data duration. In
order to circumvent this problem, a 3-by-3 grid containing fDC
in timage is provided as a TerraSAR-X annotation component
[13]. Its structure is described in the appendix of this paper.
This grid could be interpolated in order to derive the fDC at
every point of the focused image, which allows considering
second-order variations of fDC along range.

As an example, Fig. 3 shows a differential interferogram of
Washington, D.C. with an effective baseline of approximately
−71 m. The master and slave scenes were acquired respec-
tively on October 31, 2015 and October 9, 2015 and processed
with the integrated wide area processor (IWAP) [14], [15]. A
low-pass filtered digital elevation model (DEM) with a spatial
resolution of 1 arcsecond from the Shuttle Radar Topography
Mission was used. The differential phase consists primarily of
topographic phase which is related to residual height. As can
be observed in Fig. 4, the Theodore Roosevelt Bridge in the
lower left corner of Fig. 3 is subject to spatially correlated
motion, presumably due to thermal dilation and contraction
between piers caused by periodical temperature change.

The next section briefly revisits the principles of TomoSAR
and elucidates the processing chain which was employed to
produce the results in section IV and V.

Fig. 3. Staring spotlight differential interferogram of Washington, D.C. with
a spatial perpendicular baseline of approximately −71 m and a temporal
baseline of −22 days.

Fig. 4. Zoomed-in view of Fig. 3 on the Theodore Roosevelt Bridge (lower
left).

III. TOMOSAR PRINCIPLES

Due to the common side-looking geometry of spaceborne
SAR sensors, echoes of the chirp signal from equidistant
targets within an elevation extent ∆s in the far field sum to
give one measurement for each azimuth-range pixel in the
focused image, as illustrated in Fig. 5. The 3-D azimuth-
range-elevation (x-r-s) reflectivity profile is thus embedded in
2-D, i.e., information regarding elevation is encoded during
imaging. TomoSAR is a technique to reconstruct the ele-
vation axis from multibaseline measurements [16]–[18]. For
spaceborne SAR, this multibaseline configuration is usually
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Fig. 5. Layover phenomenon in side-looking SAR imaging. x, r and s
represent respectively azimuth, range, and elevation axes that form a local 3-D
Cartesian coordinate system. An elevation aperture ∆b is built by means of
repeat-pass measurements to resolve multiple scatterers in the far-field toroid
segment with elevation extent ∆s.

achieved by repeat-pass measurements (depicted as semi-
transparent satellite models in Fig. 5), in which scatterers’
motion in the course of time often needs to be taken into
account. A well-established theory models the complex InSAR
measurement gn of a specific pixel in the n-th interferogram
as the integration of a phase-modulated elevation-dependent
complex reflectivity profile γ(s) over ∆s [19]–[21]:

gn ≈
∫

∆s

γ(s) exp
(
− i 2π(ξns+ 2d(s, tn)/λ)

)
ds, (2)

where ξn := 2bn/(λr) is the elevation frequency that is
proportional to the effective baseline bn (λ and r are re-
spectively the radar wavelength and the range between sensor
and target in the master image), and d(s, tn) is the line-
of-sight displacement of the scatterer at elevation position s
and temporal baseline tn. In order to reduce the number of
unknowns, d(s, tn) could be modeled as a linear combination
of basis functions. It can be shown that (2) is equivalent to
a multidimensional spectral estimation problem [21]. After
discretizing s and displacement parameters, and subsequently
replacing integration by finite sum, a linear model for all N
InSAR measurements can be formulated as

g ≈ Rγ, (3)

where g := (g1, . . . , gN ) ∈ CN is the complex InSAR
measurement vector, R ∈ CN×L is the TomoSAR dictionary,
and γ ∈ CL is the discrete elevation-motion reflectivity profile
(or spectrum).

Various algorithms were proposed to estimate γ with given
R and g. A common approach is to use Tikhonov regulariza-
tion [4]

minimize
γ

‖Rγ − g‖22 + δ‖γ‖22, (4)

where δ > 0 is a regularization constant. Note that (4)
is equivalent to the maximum a posteriori estimator of γ

provided that the measurement noise is additive and white
with variance δ, and γ is white with variance 1.

If one is primarily concerned with man-made objects in
high-resolution spotlight images acquired over urban areas,
it is deemed reasonable to assume that radar echoes in the
far field are dominated by those from merely few point-
like scatterers within the toroid segment in Fig. 5, i.e., γ is
presumed to be compressible and thus g could be sufficiently
approximated by a linear combination of few atoms (columns)
of R. This hypothesis gave rise to approaches with sparsity-
driven `1 regularization [22], [23]:

minimize
γ

‖Rγ − g‖22 + ε‖γ‖1, (5)

where ε > 0 is another regularization constant.
In terms of the capability to resolve multiple point-like scat-

terers, conventional methods such as Tikhonov regularization
(4) are limited by the elevation resolution ρs := λr/(2∆b),
where ∆b is the elevation aperture as shown in Fig. 5. For
TerraSAR-X, ρs is in the order of several tens of meters
(typically 20–30 m given a sufficiently large stack), as a
consequence of the satellite being confined to a 250-m orbit
tube [24]. Given one single scatterer within the resolution cell,
a lower bound on the errors of elevation estimates ŝ can be
derived as [9]

σŝ :=
λr

4π
√
N
√

2SNR σb
, (6)

where SNR is the scatterer’s signal-to-noise ratio, and σb
is the standard deviation of effective baselines. In case of
double scatterers, their mutual interference could be modeled
as a scaling factor which depends primarily on their elevation
distance and phase difference [25]. For TerraSAR-X, this lower
bound is approximately one order smaller than ρs and could be
approached by means of `1 regularization (5). In other words,
(5) could achieve superresolution [26].

As an overview, a top-down model of the processing chain
is illustrated in Fig. 6 and consists primarily of the following
parts:

1) Preprocessing (via IWAP), which takes focused single-
look slant-range complex (SSC) images as input and
performs

a) InSAR processing, which provides raster images of
calibrated amplitude and differential phase, and sub-
sequently

b) PSI processing, which estimates atmospheric phase
screen (APS) from single point-like targets and a
sidelobe risk map [14], [27], [28].

Note that the use of a DEM is optional if the concerned
terrain is relatively flat.

2) TomoSAR processing.
a) Sidelobe detection. A simple hypothesis test (thresh-

olding) is applied to the sidelobe risk map from 1b).
b) APS compensation. The estimated APS is compensated

in differential phase, if the corresponding pixel con-
cerned is, with high probability, not dominated by a
sidelobe.
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c) Spectrum estimation. The elevation-motion spectrum is
estimated with, for example, (4) or (5).

d) Model selection. By minimizing the penalized negative
log-likelihood, the number of scatterers is estimated
to reduce false positive rate [25]. If `1 regularization
is employed in 2c), the underestimated amplitude is
hereby corrected as a byproduct.

e) Off-grid correction. In order to ameliorate the off-grid
problem as a consequence of discretizing elevation
and motion parameters, the estimated elevation-motion
spectrum from 2c) is oversampled in a neighborhood
of each statistically significant scatterer. A local maxi-
mum is detected in the oversampled high-dimensional
signal, which allows better quantization.

f) Outlier rejection. As a natural extension of the complex
ensemble coherence for single point-like scatterers
[29], we define for the multiple-scatterer case

η :=
1

N

N∑

n=1

exp
(
− i (∠rnγ − ∠gn)

)
, (7)

where ∠ : C → R returns the phase of a complex
number, and rn denotes the n-th row of the TomoSAR
dictionary R. We reject outliers, i.e., scatterers whose
phase history deviates significantly from the adopted
model, by thresholding of |η|.

3) Postprocessing, which couples the updated topogra-
phy and its deformation parameters to produce a 4-D
geocoded point cloud.

In the next section, we demonstrate for the first time
TerraSAR-X staring spotlight TomoSAR results produced with
the abovementioned processing chain. Based on a sufficient
number of acquisitions, the demonstration is given not only
for individual urban infrastructures, but also on the scale of a
city.

IV. FIRST PRACTICAL DEMONSTRATION OF STARING
SPOTLIGHT TOMOSAR

Forty-one staring spotlight images were acquired by
TerraSAR-X from July 4, 2014 to November 30, 2016 with a
constant repeat interval of 22 days, i.e., every second orbit. The
image from October 31, 2015 with an incidence angle of 40.7°
at scene center was chosen as the master due to its central
position in the spatial-temporal baseline plot and relatively
small atmospheric delays. Fig. 7 shows the distribution of
effective baselines bn with respect to the master scene, which
are indeed confined to ±250 m. The elevation aperture ∆b is
approximately 417 m, which leads to an elevation resolution
ρs of approximately 24.6 m at scene center. Given an SNR
of 2 dB, the lower bound for single point-like scatterers σŝ is
merely 1.44 m, i.e., less than 6% of ρs.

As previously mentioned in section III, the preprocessing
(i.e., InSAR and PSI processing) was accomplished by IWAP.
In order to decrease the computational cost, we exclusively
considered the pixels with SCR ≥ 1.7 dB as candidates for
TomoSAR processing, i.e., heavily vegetated areas and water
bodies were likely masked out. The number of candidates was
further reduced by eliminating those pixels, each of which has

Fig. 6. Top-down model of the processing chain. Modified from [30].

250 200 150 100 50 0 50 100 150 200 250
bn [m]

Fig. 7. Distribution of effective baselines bn.

an estimated likelihood of being a sidelobe larger than 0.45. As
a result, we only processed approximately 12% of the original
raster data. Scatterers’ motion was modeled with a coupled
linear and sinusoidal model with the latter having a period
of one year. The elevation-motion spectrum was estimated
either with Tikhonov regularization (4) for the whole scene,
or with `1 regularization (5) for certain regions of interest.
The maximum number of point-like scatterers within each
resolution cell was set to 2 and the model selector was trained
such that the false positive rate for double scatterers, i.e., the
empirical probability that two scatterers are detected whereas
there is at most one, is below 1‰. A neighborhood of each
selected scatterer in its 3-D elevation-motion (s-v-a, where v is
the linear deformation rate and a is the periodical deformation
amplitude) spectrum was oversampled with a factor of 10 to
alleviate the off-grid problem. Scatterers with an ensemble
coherence (7) lower than 0.6 were considered as outliers and
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excluded from postprocessing.
The updated topography h, linear deformation rate v and

periodical deformation amplitude a are shown in Fig. 8a,
8b and 8c, respectively. On the Potomac River (lower left),
scarcely any point-like scatterers could be detected, except for
those from the National Memorial on the Theodore Roosevelt
Island (cf. Fig. 3), and those on the Theodore Roosevelt Bridge
(cf. Fig. 4). The National Mall in the lower part is in general
void of point-like scatterers due to its vegetation.

Most of the buildings in the scene appear to be flat with the
exception of several high-rise ones in Rosslyn, Virginia (lower
left, to the west of the Theodore Roosevelt Bridge). Zoomed-
in views of the Watergate complex and the John F. Kennedy
Center for the Performing Arts are provided as Fig. 9 and 10,
respectively. Due to the limitations of Google Earth merely
6% of the original point cloud was used for visualization.

Bridges and overpasses are in general subject to periodical
deformation as a result of temperature changes, i.e., dilation
between piers or fixed bearings in summer and contraction in
winter. The estimated periodical deformation amplitude of the
Theodore Roosevelt Bridge is shown in Fig. 11. As an exam-
ple, Fig. 12 demonstrates the phase history of two scatterers
within a resolution cell. The higher scatterer (depicted as red
dot) is located on the bridge, while the lower (blue) resides
at one of the piers. The estimated height difference of these
two scatterers is approximately 8.3 m, which lies in the super-
resolution regime. As the upper right plot of Fig 12 suggests,
the lower scatterer on the pier undergoes little deformation,
whereas the periodical deformation amplitude of the higher
scatterer on the bridge was estimated to be approximately
2.9 mm. The topography and deformation model of double
scatterers fits quite well to the InSAR measurements (see
the lower right plot of Fig 12) and the ensemble coherence
amounts to approximately 0.97.

The Washington Marriott Marquis hotel (opened on May
1, 2014) beside the Walter E. Washington Convention Center
appears to suffer from subsidence that is presumably due to
the building weight (see Fig. 13a). In addition, it undergoes
thermal dilation and contraction which are more significant
on roof than on facade, as can be observed in Fig. 13b.
Fig. 14 shows the resolved layover effect of two scatterers,
which is a typical case of roof-facade interaction. The higher
and lower scatterers subside with a linear rate of −1.1 and
−1.0 mm/year, respectively. The scatterer on the roof moves
periodically with an amplitude of approximately 3.0 mm,
while on the contrary the one on the facade is subject to
little such deformation. Similar to the previous example in
Fig. 12, the TomoSAR model could describe the phase history
sufficiently well with an ensemble coherence of approximately
0.97.

As one last example, Fig. 15a and 15b show the updated to-
pography and periodical deformation amplitude of the Rosslyn
Twin Towers, respectively. Clearly the amplitude of thermal
dilation and contraction is highly correlated with building
height. Note that the tower on the left has smaller point
density on the left-hand side of the facade due to its convex
shape as seen from the radar wavefront. Fig. 16 demonstrates
another typical case of layover effect in urban areas which is

the facade-ground (or facade-lower-infrastructure) interaction.
The periodical deformation amplitude of the higher and lower
scatterers were estimated to be approximately 5.0 and 2.0 mm,
respectively.

The next section reports a preliminary comparison of sliding
and staring spotlight TomoSAR using TerraSAR-X data. The
comparison is based on a limited number of acquisitions and
therefore restricted to two small typical urban areas.

V. PRELIMINARY COMPARISON OF SLIDING AND STARING
SPOTLIGHT TOMOSAR

Due to data unavailability, a direct comparative study of
both modes was not possible for Washington D.C. Instead,
we drew the comparison with two small descending interfero-
metric stacks of the City of Las Vegas. Each stack contains 12
images which were acquired alternately from October, 2014 to
February, 2015 during the TanDEM-X Science Phase [31]. For
each mode, 11 interferograms were generated with a similar
baseline distribution as in Fig. 7.

Two small areas were selected for the comparison of sliding
and staring spotlight TomoSAR. One of them is a relatively flat
area of approximately 0.01 km2. The same area of interest was
cropped in both datasets using ground control points. Fig. 17
shows the mean intensity map in each mode. In the staring
spotlight case, point-like targets appear more focused, which
indicates an increase of SCR. As a result, the contrast between
areas of different degrees of smoothness becomes larger, i.e.,
the boundaries of the rectangular surfaces in the middle of
the image are much easier to recognize. The reconstructed
TomoSAR point cloud is shown in Fig. 18. An increase in the
number of points in the staring spotlight mode is obvious.
Indeed, the point density in the staring spotlight case is
approximately 5.5 times as high, see Tab. II.

The assessment of the relative height accuracy is explained
as follows. Since this area is relatively flat (as confirmed by
Fig. 18), we fitted a plane with robust measure through each
point cloud and considered it as partial ground truth. Note
that this also took the local slope into account. Subsequently,
we calculated the distance of each scatterer to the fitted plane
and projected it into the vertical direction. In this context, we
refer to the median absolute deviation of height estimate errors
relative to this fitted plane as relative height accuracy.

Let us denote the vectors containing the geographic coor-
dinates of all m scatterers as x̃, ỹ, z̃ ∈ Rm, respectively. We
seek a plane parametrized by ã, b̃, c̃, d̃ ∈ R such that,

ãx̃+ b̃ỹ + c̃z̃ + d̃ ≈ 0, (8)

for each scatterer at the coordinates x̃ ∈ x̃, ỹ ∈ ỹ, z̃ ∈ z̃.
Without loss of generality, let us assume that c̃ = 1. The
plane fitting problem can be formulated as

minimize
x

‖Ax− b‖1, (9)

where A :=
(
x̃ ỹ 1

)
∈ Rm×3, 1 is an m-dimensional

vector of ones, x :=
(
ã b̃ d̃

)T ∈ R3, and b := −z̃. The `1
loss function is known for its robustness against outliers [32].
Let x∗ denote an optimal solution and n :=

(
x∗1 x∗2 1

)T
be

a corresponding plane normal, the signed distance of scatterers
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(a) Updated topography h [m]

(b) Linear deformation rate v [mm/year]

Fig. 8. TomoSAR results of Washington, D.C. with 41 TerraSAR-X staring spotlight acquisitions.
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(c) Periodical deformation amplitude a [mm]

Fig. 8. TomoSAR results of Washington, D.C. with 41 TerraSAR-X staring spotlight acquisitions (continued).

Fig. 9. 6% of the original point cloud of the Watergate complex that is overlaid on Google Earth 3-D photo-realistic building model and color-coded by
updated topography h [m].
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Fig. 10. 6% of the original point cloud of the John F. Kennedy Center for the Performing Arts that is overlaid on Google Earth 3-D photo-realistic building
model and color-coded by updated topography h [m].

Fig. 11. 6% of the original point cloud of the Theodore Roosevelt Bridge that is overlaid on Google Earth 3-D photo-realistic building model and color-coded
by periodical deformation amplitude a [mm].

to the fitted plane is given by (Ax∗+z̃)/‖n‖2. Due to the large
scale of problem (9), i.e., m > 105 as shown in Tab. II, generic
conic solvers may not be able to solve it efficiently. Based on
the alternating direction method of multipliers (ADMM) [33],
we developed a fast solver with super-linear convergence rate,
see Algorithm 1, where z and y are respectively auxiliary
primal and dual variables, ρ > 0 is a penalty parameter for a
smoothness term in the augmented Lagrangian (fixed to 1 in
this paper), and prox`1,λ(w) := (w−λ)+−(−w−λ)+ is the
elementwise soft thresholding operator [34], where (u)+ :=
max(u, 0) replaces the negative entries with zeros.

Algorithm 1 ADMM-based algorithm for solving (9)
1: Input: A, b, ρ
2: Initialize z← 0, y← 0
3: Until stopping criterion is satisfied, Do
4: x← (ATA)−1

(
AT(b + z− 1

ρy)
)

5: z← prox`1,1/ρ(Ax− b + 1
ρy)

6: y← y + Ax− b− z
7: Output: x

Fig. 19 depicts the errors of height estimates relative to
the fitted plane. Although both normalized histograms are
centered around zero, the height estimate errors in the staring
spotlight mode exhibit less deviation. According to Tab. III,
the relative height accuracy (defined as the median absolute
deviation of height estimate errors) in the sliding spotlight case
is approximately 1.7 times as high.

The other area of approximately 0.11 km2 contains two
high-rise buildings and its surroundings. The regular patterns
of building facades appear sharper in the staring spotlight
mode (see Fig. 20). The reconstructed point clouds are il-
lustrated in Fig. 21 for single and double scatterers, respec-
tively. As expected, the staring spotlight mode densified the
corresponding point cloud in both single- and double-scatterer
cases. In total, the point density in the staring spotlight case is
approximately 5.1 times as high, see Tab. IV. With respect to
the ratio of the number of single scatterers to the number of
double scatterers, we recorded a slight decrease approximately
from 6.9 (sliding) to 6.0 (staring), i.e., no significant difference
was observed.
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Fig. 12. Phase history of InSAR measurements and TomoSAR reconstruction
of double scatterers subject to layover in Fig. 11. The higher and lower
scatterers are marked as red and blue, respectively.

TABLE II
STATISTICS OF THE POINT CLOUDS IN FIG. 18

Sliding Staring Ratio2

Total no. of scatterers 26037 142085 5.46

Scatterer density [million/km2] 2.47 13.46 5.46

TABLE III
STATISTICS OF THE HEIGHT ESTIMATE ERRORS IN FIG. 19

Sliding Staring Ratio2

Median [m] 0.00 0.00 n.a.
Mean [m] 0.01 0.01 n.a.
Median absolute deviation [m] 0.94 0.54 1.74

Standard deviation [m] 1.12 0.76 1.47

TABLE IV
STATISTICS OF THE POINT CLOUDS IN FIG. 21

Sliding Staring Ratio2

No. of single scatterers 148646 740656 4.98

No. of double scatterers 21576 124546 5.77

Total no. of scatterers 170222 865202 5.08

Single-to-double-scatterer ratio 6.89 5.95 1.16

Scatterer density [million/km2] 1.56 7.91 5.08

VI. CONCLUSION

In this paper, we studied the characteristics of the
TerraSAR-X staring spotlight mode and its impact on multi-
baseline InSAR techniques, in particular, PSI and TomoSAR.
The difference in the time-variant Doppler spectra of the
sliding and staring spotlight modes was analyzed in concept
in order to demonstrate the azimuth resolution versus scene
extent trade-off. The usage of the TerraSAR-X annotation

2The ratio was calculated by dividing the larger by the smaller value.

(a) Linear deformation rate v [mm/year]

(b) Periodical deformation amplitude a [mm]

Fig. 13. 4% of the original point cloud of the Washington Marriott Marquis
hotel that is overlaid on Google Earth 3-D photo-realistic building model.

component containing the Doppler centroid in focused image
time was proposed to skirt the time conversion issue. The
TomoSAR processing chain was revised in order to incorporate
sidelobe detection, off-grid correction and outlier rejection. A
first practical demonstration was made with an interferometric
stack of 41 images of Washington, D.C. The whole scene
extent was processed to estimate topography update of point-
like scatterers and their deformation parameters. Besides, the
results of several typical urban areas were visualized and
interpreted. A preliminary comparison between sliding and
staring spotlight TomoSAR was drawn in the end with two
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Fig. 14. Phase history of InSAR measurements and TomoSAR reconstruction
of double scatterers subject to layover in Fig. 13. The higher and lower
scatterers are marked as red and blue, respectively.

small interferometric stacks of the City of Las Vegas.
In section I, we argued that by means of the staring spotlight

mode, 1) more point-like targets would be separable in the
azimuth-range plane; 2) each target would have a higher SCR.
As a result, the 4-D point cloud would be not only denser but
also more accurate. In this work, we observed that, 1) the
density of the staring spotlight point cloud is approximately
5.1–5.5 times as high; 2) the relative height accuracy of the
staring spotlight point cloud is approximately 1.7 times as
high.

Multiple-snapshot TomoSAR approaches, e.g., using an
adaptive neighborhood identified within a spatial search win-
dow [35], [36], or incorporating additional geospatial infor-
mation of building footprints [37], could also benefit from
the staring spotlight mode. In the former case, the enhanced
azimuth resolution would increase the number of pixels in
the homogeneous area; in the latter, the iso-height clusters of
a facade to be jointly reconstructed would expand. On the
whole, it would lead to a larger number of snapshots and in
turn to a better estimation accuracy.

APPENDIX

As previously mentioned in section II, fDC is provided
in timage on a 3-by-3 grid as a TerraSAR-X annotation
component [13]. This grid is defined as the Cartesian prod-
uct of the sets {start timage, center timage, stop timage} and
{near range, mid range, far range}, as depicted in Fig. 22.
This information could be employed to bypass time conversion
from traw to timage, and to consider second-order variations of
fDC along range. Note that this grid is also provided for each
burst of any ScanSAR SSC product.
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Fig. 16. Phase history of InSAR measurements and TomoSAR reconstruction
of double scatterers subject to layover in Fig. 15. The higher and lower
scatterers are marked as red and blue, respectively.

(a) Sliding

(b) Staring

Fig. 17. Mean intensity map of a relatively flat area in the (a) sliding and
(b) staring spotlight modes.
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(b) Staring
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h [m]
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images in the (a) sliding and (b) staring spotlight modes, respectively.
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Fig. 19. Normalized histogram of height estimate errors of the point clouds
in Fig. 18 relative to a fitted plane.

(a) Sliding (b) Staring

Fig. 20. Mean intensity map of Hilton Grand Vacations on the Las Vegas
Strip and its surroundings in the (a) sliding and (b) staring spotlight modes.
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