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Abstract

Deep learning has achieved extraordinary success in a wide range of tasks in computer
vision field over the past years. Remote sensing data present different properties as
compared to natural images/videos, due to their unique imaging technique, shooting
angle, etc. For instance, hyperspectral images usually have hundreds of spectral bands,
offering additional information, and the size of objects (e.g., vehicles) in remote sensing
images is quite limited, which brings challenges for detection or segmentation tasks.

This thesis focuses on two kinds of remote sensing data, namely hyper/multi-spectral
and high-resolution images, and explores several methods to try to find answers to the
following questions:

e In comparison with natural images or videos in computer vision, the unique asset
of hyper/multi-spectral data is their rich spectral information. But what this
“additional” information brings for learning a network? And how do we take full
advantage of these spectral bands?

e Remote sensing images at high resolution have pretty different characteristics,
bringing challenges for several tasks, for example, small object segmentation. Can
we devise tailored networks for such tasks?

e Deep networks have produced stunning results in a variety of perception tasks,
e.g., image classification, object detection, and semantic segmentation. While the
capacity to reason about relations over space is vital for intelligent species. Can a
network /module with the capacity of reasoning benefit to parsing remote sensing
data?

To this end, a couple of networks are devised to figure out what a network learns from
hyperspectral images and how to efficiently use spectral bands. In addition, a multi-
task learning network is investigated for the instance segmentation of vehicles from
aerial images and videos. Finally, relational reasoning modules are designed to improve
semantic segmentation of aerial images.
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Zusammenfassung

Deep Learning hat in den letzten Jahren bei einer Vielzahl von Aufgaben im Bereich der
Computer Vision auflergewohnliche Erfolge erzielt. Fernerkundungsdaten weisen auf-
grund ihrer einzigartigen Bildgebungstechnik, ihres Aufnahmewinkels usw. verschiedene
Eigenschaften im Vergleich zu natiirlichen Bildern/Videos auf. Beispielsweise haben hy-
perspektrale Bilder in der Regel Hunderte von Spektralbandern, die zusatzliche Informa-
tionen bieten, und die Grofle von Objekten (z.B. Fahrzeuge) in Fernerkundungsbildern
ist sehr begrenzt, was Herausforderungen fiir Erkennungs- oder Segmentierungsaufgaben
mit sich bringt.

Diese Arbeit konzentriert sich auf zwei Arten von Fernerkundungsdaten, namlich hyper-
spektrale, multispektrale und hochauflésende Bilder, und untersucht mehrere Methoden,
um zu versuchen, Antworten auf die folgenden Fragen zu finden:

e Im Vergleich zu natiirlichen Bildern oder Videos im Computer-Vision-Bereich sind
die einzigartigen Vorteile von Hyper/Multispektral-Daten ihre reichen Spektral-
informationen. Aber was bringt diese “zusétzliche” Information fiir das Lernen
eines Netzwerks? Und wie konnen wir die Vorteile dieser Spektralbéander voll
ausschopfen?

e Fernerkundungsbilder mit hoher Auflésung haben sehr unterschiedliche Eigen-
schaften und stellen eine Herausforderung fiir verschiedene Aufgaben dar, z.B. die
Segmentierung kleiner Objekte. Kénnen wir fiir solche Aufgaben mafigeschneiderte
Netzwerke aufbauen?

o Tiefe Netzwerke haben bei einer Vielzahl von Wahrnehmungsaufgaben, wie z.B.
Bildklassifizierung, Objekterkennung und semantische Segmentierung, erstaunliche
Ergebnisse erbracht. Wahrend die Fahigkeit, iiber Beziehungen iiber den Wel-
traum nachzudenken, fiir intelligente Arten lebenswichtig ist. Kann ein Netzw-
erk/Modul mit der Fahigkeit zum Schlussfolgern das Parsen von Fernerkundungs-
daten unterstiitzen?

Zu diesem Zweck werden einige Netzwerke entwickelt, um herauszufinden, was ein Net-
zwerk aus hyperspektralen Bildern lernt und wie man Spektralbander effizient nutzt.
Dariiber hinaus wird ein multitasking-fahiges Lernnetzwerk untersucht, zum Beispiel
die Segmentierung von Fahrzeugen aus Luftbildern und Videos. Schliellich werden



relationale Argumentationsmodule entwickelt, um die semantische Segmentierung von
Luftbildern zu verbessern.
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1 Introduction

Nowadays we are in an era of big remote sensing data. Everyday huge volumes of
spaceborne and airborne data are being produced by many different sensors, and these
remotely sensed data can be used to understand how people and objects are organized
in space. However, the increasingly availability of remote sensing data has raised a
question: how to automatically and efficiently interpret these data?

1.1 Objectives

This thesis focuses on two types of optical data, namely hyper/multi-spectral imagery
and high resolution remote sensing data, and aims to make use of deep networks to
handle several tasks about these data. More specifically, the following problems are
concerns of this thesis.

e Problem 1: What do rich spectra of hyper/multi-spectral imagery bring
for deep networks?

Compared to natural images or videos in computer vision, the unique asset of hyper/multi-
spectral data is their rich spectral information. Therefore, an intuitive question is what

this “additional” information brings for applications using deep networks. And how do

we take full advantage of these spectral bands?

e Problem 2: Object detection and semantic segmentation in high reso-
lution aerial images

Remote sensing images at high resolution have pretty different characteristics in compar-
ison with hyper/multi-spectral data and natural images, bringing challenges for several
tasks, to name a few, vehicle detection and semantic segmentation in aerial images.
Hence there is a need to devise tailored networks for these tasks.

e Problem 3: Can remote sensing data analysis benefit from reasoning
learning?

Deep networks have produced stunning results in a variety of visual perception remote
sensing tasks, e.g., image classification, scene recognition, object detection, and semantic
segmentation. While the capacity to reason about relations among entities over space is



1 Introduction

vital for intelligent species. An interesting question is: can the interpretation of remote
sensing data benefit from the idea of reasoning learning?

1.2

Thesis Organization

This is a cumulative dissertation where the above mentioned three problems are ad-
dressed in the following articles:

Lichao Mou, Pedram Ghamisi, and Xiao Xiang Zhu. Deep recurrent neural net-
works for hyperspectral image classification. ITEEE Transactions on Geoscience
and Remote Sensing, vol. 55, no. 7, pp. 3639-3655, 2017.

Lichao Mou, Pedram Ghamisi, and Xiao Xiang Zhu. Unsupervised spectral-spatial
feature learning via deep residual conv-deconv network for hyperspectral image
classification. IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no.
1, pp. 391-406, 2018.

Lichao Mou, Lorenzo Bruzzone, and Xiao Xiang Zhu. Learning spectral-spatial-
temporal features via a recurrent convolutional neural network for change detection
in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing,
vol. 57, no. 2, pp. 924-935, 2019.

Lichao Mou and Xiao Xiang Zhu. Learning to pay attention on spectral domain:
A spectral attention module-based convolutional network for hyperspectral image
classification. IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no.
1, pp. 110-122, 2020.

Lichao Mou and Xiao Xiang Zhu. Vehicle instance segmentation from aerial image
and video using a multi-task learning residual fully convolutional network. IFEFE
Transactions on Geoscience and Remote Sensing, vol. 56, no. 11, pp. 6699-6711,
2018.

Lichao Mou, Yuansheng Hua, and Xiao Xiang Zhu. A relation-augmented fully
convolutional network for semantic segmentation in aerial scenes. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.



2 A Glance at The Data

Before diving into methodologies, this chapter briefly introduces the data this thesis
uses.

2.1 Hyper/Multi-Spectral Imagery and Challenges

A hyper/multi-spectral image is produced by an imaging equipment that is capable of
capturing image data within particular wavelengths across the electromagnetic spectrum.
A filter or an instrument that is sensitive to specific wavelengths can be used to separate
different spectral channels. The wavelengths of a hyper/multi-spectral image usually
expand the visible light range. Hence by using hyper/multi-spectral images, one can
extract additional information that the human eye fails to capture with its receptors for
red, green, and blue.

The main difference between hyperspectral data and multispectral data is the number
of wavebands being imaged and how narrow the bands are. In general, multispectral
images have 4 to 13 discrete border bands, while hyperspectral data usually consist of
much narrower bands and have hundreds or even thousands of bands. Below is the
information of several hyper/multi-spectral sensors/programs, which image the datasets
used in the study of this thesis.

e ROSIS (Reflective Optics System Imaging Spectrometer): ROSIS was a com-
pact airborne imaging spectrometer, which had been developed jointly by Dornier
Satellite Systems (DSS, former MBB), GKSS Research Centre (Institute of Hy-
drophysics) and German Aerospace Center (DLR, Institute of Optoelectronics)
based on an original design for a flight on ESA’s EURECA platform. It is de-
signed to cover a spectral range from 430 to 860 nm, and the number of bands is
115.

e AVIRIS (Airborne Visible/Infrared Imaging Spectrometer): AVIRIS is an imaging
spectrometer instrument developed by the Jet Propulsion Laboratory (JPL) for
Earth remote sensing. It delivers images in 224 contiguous spectral bands with
wavelengths from 400 to 2500 nm.

e Landsat: Landsat is a long-running program for the acquisition of multispectral
images of the Earth. Taking the Landsat-8 satellite as an example, it produces 11
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images with the following bands:

Band 1: Coastal aerosol (0.43-0.45 pm)

Band 2: Blue (0.45-0.51 pm)

Band 3: Green (0.53-0.59 pm)

Band 4: Red (0.64-0.67 um)

Band 5: Near infrared NIR (0.85-0.88 pm)

Band 6: Short-wave Infrared SWIR 1 (1.57-1.65 pm)
Band 7: Short-wave Infrared SWIR 2 (2.11-2.29 pum)
Band 8: Panchromatic (0.50-0.68 pm)

Band 9: Cirrus (1.36-1.38 um)

Band 10: Thermal Infrared TIRS 1 (10.60-11.19 pm)
Band 11: Thermal Infrared TIRS 2 (11.50-12.51 pm)

Each band has a spatial resolution of 30 m/pixel with the exception of bands 8,
10, and 11. Band 8 has a spatial resolution of 15 m/pixel. Band 10 and 11 have
spatial resolutions of 100 m/pixel.

Although abundant spectral bands help in differentiating various materials, in pactice
hyperspectral remote sensing images have intrinsic intra-class variations (samples in
the same category may have different spectral signatures) and inter-class similarities
(samples in different classes may share similar spectral signatures), which is an obstacle
for the purpose of interpretation. Figure 2.1 shows average spectra of different classes
on the Indian Pines agricultural site in northwestern Indiana, United States. It can be
seen that average spectra of several categories are quite similar.

Corn-min
== Corn
== Grass-pasture

\
= Hay-windrowed

== Qats
== Soybean-notill

- | -
L]
o \ Wheat
‘_‘9 = Woods

== Stone-steel-towers

0

430 Spectrum (nm) 2500

Figure 2.1: Illustration of inter-class similarities. [site: the Indian Pines agricultural site in
northwestern Indiana, United States; sensor: AVIRIS.]



2.2 High Resolution Aerial Imagery and Challenges
2.2 High Resolution Aerial Imagery and Challenges

In comparison with hyper/multi-spectral images, high resolution aerial images (GSD
5-30 cm) present quite different properties, bringing challenges for aerial image parsing,
such as object detection and semantic segmentation. On the one hand, high resolution
data deliver intricate spatial details (e.g., roof tiles, road markings, shadows, windows
of vehicles, and branches of trees) emerge, which leads to big appearance differences
within an object category. Figure 2.2 shows some examples of these challenges. One
the other hand, available spectral information of such high resolution aerial images is
less, as the spectral resolution of high spatial resolution sensors is usually limited to four
(R-G-B-IR) or three bands (R-G-B).

Figure 2.2: Illustration of challenges in high resolution aerial images for semantic segmentation
tasks. From left to right: shadows, tree branches, big appearance variations within
roofs, and roads.






3 State-of-the-Art

This chapter reviews existing works related to this thesis.

3.1 Deep Learning for Hyper/Multi-Spectral Image
Analysis

Here several widely used networks and their applications in hyper/multi-spectral image
analysis will be introduced.

3.1.1 Early Models

o Models

The first attempt in deep learning for hyper/multi-spectral data analysis is to make use
of traditional autoencoder, Restricted Boltzmann Machine (RBM), Deep Belief Network
(DBN), and their variations. These models are both unsupervised and used to learn bet-
ter feature representations than the raw data themselves. For instance, an autoencoder
takes an input and first maps it to a latent feature space via a nonlinear encoder. Then
the encoded features are used to reconstruct the input by a decoder, which is actually a
reverse mapping. Finally, by reducing the Euclidean distance between the input and the
reconstructed one, the autoencoder model can be trained. Unlike the autoencoder, an
RBM is a generative stochastic model. The goal of an RBM is to recreate the input as
accurately as possible. This is also the case for the autoencoder. During a forward pass,
the input is modified by weights and biases and is used to activate the hidden layer. In
the next pass, the activation from the hidden layer is modified by weights and biases and
sent back to the input layer for activation. More specifically, the RBM model optimizes
the following energy function:

1
E(v,h) = §vTv —(aTv +bTh +vTWh), (3.1)

where v and h are visible and hidden units, respectively, @ and b are the corresponding
learnable bias weights, and W is a trainable weight matrix. The feature representation
capacity of a single RBM is limited, while this capacity is greatly enhanced when more
RBMs are stacked, forming a DBN.
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Figure 3.1 exhibits a schematic comparison of an autoencoder model and an RBM model.

y.......

Auto-encoder

Figure 3.1: A schematic comparison of an autoencoder (left) and an RBM (right).

e Applications in Remote Sensing

In the field of hyper/multi-spectral image classification, the authors of [1] train a stacked
autoencoder to extract hierarchical features from images for the purpose of classification.
Subsequently, a DBN is evaluated in [2] in terms of unsupervised feature learning for
hyperspectral image classification. In [3], the authors make use of a sparse autoencoder
model to achieve unsupervised feature learning, and the learned features are subsequently
fed into a support vector machine (SVM) to classify hyperspectral images.

Besides classification tasks, [4] designs a cascade antoencoder consisting a marginalized
denoising autoencoder and a non-negative sparse autoencoder to address the problem of
hyperspectral image unmixing. For the same task, the authors of [5] first learn a conven-
tional stacked autoencoder on hyperspectral data as a pretrained model and then employ
a variational autoencoder to jointly estimate endmembers and abundance fractions.

In addition, some detection tasks in hyper/multi-spectral images such as change de-
tection [6-14] and anomaly detection [15] also benefit from the unsupervised feature
learning mechanism of these models.

3.1.2 Convolutional Neural Networks (CNNs)

e Models

Since hyper/multi-spectral image analysis mainly involves CNNs for image classification
in computer vision, several important CNN architectures are introduced first.

AlexNet [16]: In 2012, AlexNet significantly outperformed all other competitors and
won the ImageNet challenge by achieving a top-5 error of 15.3%. In contrast, the second
place, which is not a CNN-based method, only got a top-5 error of 26.2%. The general
architecture of AlexNet, as shown in Figure 3.2 is similar to the classic LeNet-5 but
considerably larger. The success of AlexNet has got much attention in the computer
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vision community and inspired researchers to take a serious look at deep learning for
vision tasks. The main marks of AlexNet are as follows:

1. It is composed of 5 convolutional layers and 3 fully connected layers.

2. It introduces rectified linear unit (ReLU) as activation function, which now be-
comes the most widely used activation function in CNNs.

3. It is trained simultaneously on two Nvidia Geforce GTX 580 GPUs.
4. It implements Dropout layers to avoid the problem of overfitting.

5. Tt employs data augmentation techniques to greatly increase the number of training

samples.
ENN
3 -
192 204t 2048 dense
13
EN X1
I
. 13 dense dense
1000
192 128 Max L L
: 204
Max 28 Max pooling * 2048
pooling pooling

Figure 3.2: The architecture of AlexNet [16].

VGGNet [17]: The VGG networks, including VGG-16 and VGG-19, were introduced
in 2014 and exhibit a deeper yet simpler CNN architecture. It was the runner-up at the
ImageNet challenge in 2014 but now becomes one of the most preferred choices in the
community for extracting features from images. It has addressed one important aspect
of CNN architecture design — depth. Below are main points of VGGNet.

1. It uses convolutional filters with a very small receptive field of 3 x 3.
2. The spatial resolution is preserved in the same convolution block.

GoogLeNet (Inception) [18]: In 2014, GoogLeNet (a.k.a. Inception v1) was proposed
and won the ImageNet Challenge with a top-5 error of 6.67%. It is independently
developed in parallel to VGGNet. GooglLeNet introduces the following significant ideas.

1. It proposes a novel block, termed as inception module, as a basic unit to comprise
a network. In an inception module, a series of convolutions at different scales are
performed and subsequently aggregated.

2. The insight of GoogLeNet is that a large, powerful network can be done by in-
creasing network width (number of units at each level) instead of only depth.

The architecture of GoogleNet is illustrated in Figure 3.3.
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canfeafeggigd

Figure 3.3: The architecture of GoogLeNet [18].

ResNet [19]: ResNet won the ImageNet challenge in 2015 with a top-5 error of 3.6%
and set new records in both classification, detection, and localization through a single
network architecture. Also the paper of ResNet won the best paper award of CVPR
2016. At that time, researches thought that building a larger CNN by increasing the
number of layers would improve the accuracy of networks. But there are two problems,
namely the vanishing gradient problem and the degradation problem. The former can
be solved by regularization techniques like batch normalization, but the latter is hard
to handle. ResNet was proposed to address the degradation problem (deeper networks
lead to higher training errors). Figure 3.4 illustrates the architecture of ResNet, and the
main contributions of ResNet are as follows:

1. It proves that optimizing a residual mapping H(z) = F(x) — = is easier than
optimizing an original, unreferenced mapping F'(x).

2. It creates a residual block, which is a basic unit of ResNet, by adding shortcut
connections in an original convolutional block.

3. It enables the development of much deeper networks (hundreds of layers as opposed
to tens of layers), e.g., ResNet-152.

v, 64, /2

8

34-layer residual
m
7x7 co

Figure 3.4: The architecture of ResNet [19].

DenseNet [20]: The idea behind DenseNet is: it may be useful to reference feature
maps from earlier in the network. The paper of DenseNet received the best paper award
of CVPR 2017. Overall, the architecture of DenseNet (see Figure 3.5) looks similar to
that of ResNet, but has two important differences:

1. It concatenates feature maps instead of adding up them as ResNet does.

2. It adds skip connection from every previous layer.

10
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3. Its layers are quite narrow, e.g., 12 filters per layer. In this way, it uses 3x less
parameters as compared to ResNet for the similar number of layers.

Figure 3.5: The architecture of DenseNet [20].

SENet [21]: An ensemble of SENets (Squeeze-and-Excitation Networks) with standard
multi-scale and multi-crop fusion strategies obtained a top-5 error of 2.3% at ImageNet

challenge in 2017. SENet cares about channel dependencies. The main points of SENet
are as follows:

1. It proves that not all feature maps contribute equally, and the representation capac-

ity of a network can be improved by emphasizing useful channels and suppressing
less informative ones.

2. To this end, it designs a SE-block, which can be used in a plug-and-play fashion
with any standard architectures.

C3D [22]: C3D was proposed for video classification tasks and uses 3D convolutions on
video volumes. The contributions of C3D are:

1. It repurposes 3D CNNs as feature extractors.
2. It extensively searches for the best 3D convolutional kernel and architecture.
3. It makes use of deconvolutional layers to interpret model decisions.

The following figure shows the architecture of C3D network.

Convla
64

Conv2a
128

Conv3a || Conv3b
256 256

Conv4a || Conv4b
5112 5.2

Conv5a || Conv5b
512 512

fce || fc7
4096| (4096

(PoolT ]

[(Pool2 ]

[(Pool3 ]

[Podia]

[Pool5 ]

[softmax]

Figure 3.6: The architecture of C3D network [22].

e Applications in Remote Sensing

11
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In the field of hyper/multi-spectral image analysis, CNNs are first used for classification
tasks. The first try can be found in [23], where the authors train a very simple 1D
CNN, which has only one convolutional layer, for hyperspectral image classification.
Later, [24] employs a 2D CNN to extract both spatial and spectral information, and
then the learned spectral-spatial features are fed into a multilayer perceptron (MLP)
to perform the actual classification. The authors of [25] compare 1D CNN and 2D
CNN in a practical application, crop type classification, and summarize that in terms of
quantitative accuracy, 2D CNN is better, but the former easily leads to oversmoothed
classification maps where small objects are usually misclassified.

2D CNNs have now become the mainstream for hyper/multi-spectral data analysis, as
they can take full advantage of spectral-spatial information, and over the last years, the
development of 2D CNN architectures in computer vision provides insights for this di-
rection. For example, in [26], the authors are inspired by the idea of ResNet and present
a spectral residual block and a spatial residual block in order to learn useful features
from both spectral domain and spatial context. The authors of [27] introduce a residual
learning-based Conv-Deconv network for the purpose of unsupervised spectral-spatial
feature learning. [28] studies feature fusion in a ResNet for hyperspectral classification.
More specifically, the authors first build a ResNet with three residual blocks and then fuse
outputs of these three blocks, in order to obtain a better feature representation. Follow-
ing the idea of DenseNet, the authors of [29] evaluate the performance of a DenseNet in
hyperspectral image classification tasks. [30] constructs a densely connected CNN with
3D convolutional layers instead of 2D ones to extract spectral-spatial features. In [31],
the authors present a modified DenseNet for hyperspectral data classification tasks, in
which 3D atrous convolutional layers are used to learn features at different scales, and
then the learned feature maps are densely connected in a DenseNet framework.

Hyper/multi-spectral images actually have a 3D data structure. Hence 3D CNNs, which
have been widely used in video analysis tasks [32—44], give researchers an incentive. For
3D CNNs in video tasks, the third dimension is the time axis, while it refers to spectral
bands in hyper/multi-spectral data analysis. The essential difference between 2D and
3D convolutions is that 2D convolutions use the same weights for the whole depth of the
stack of spectral maps (multiple channels) and result in a single feature map, whereas
3D convolutions use 3D filters and produce a 3D volume as a result of the convolution,
thus preserving spectral information. In [45], the authors evaluate a 3D CNN on the task
of hyperspectral image classification. As compared to other networks, the used 3D CNN
requires fewer parameters to achieve similar performance. The authors of [46] present a
3D CNN with a simple regularization.

To avoid overfitting, [47] jointly uses a dimension reduction method and a 2D CNN for
spectral-spatial feature extraction. In [48], the authors first exploit a computational
intelligence (particle swarm optimization) method to choose informative spectral bands
and then train a 2D CNN using the selected bands. In [49], to properly train a CNN
with limited ground truth data, the authors devise a CNN that takes as input a pair of
hyperspectral pixels. By doing so, the amount of training data is greatly augmented.
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Regarding unsupervised feature learning via CNNs, [50] presents a CNN to address
the problem of unsupervised spectral-spatial feature extraction and estimate network
weights via a sparse learning approach in a greedy layer-wise fashion. [51] proposes
a residual learning-based fully conv-deconv network, aiming at unsupervised spectral-
spatial feature learning in an end-to-end manner.

Better classification network architectures from computer vision (e.g., ResNet [19] and
DenseNet [20]) also provide new insights for hyperspectral image classification [51-53].
Moreover, the integration of networks and other traditional machine learning models,
e.g., conditional random field (CRF) and active learning, has also got attention re-
cently [54,55].

3.1.3 Recurrent Neural Networks (RNNs)

o Models

Recurrent neural networks (RNNs) extend feedforward networks with loops in connec-
tions, being able to process sequential data. So far there have been three kinds of widely
used RNN architectures.

Fully connected RNN: This is the traditional RNN model, and its equations are as

follows:
0 ift=0
hy = e (3.2)
@(ht—1,2;) otherwise
where x; is the input at the ¢-th time step of a sequential data © = (@1, x2, - ,x7).

h;_1 denotes the hidden state computed at time ¢t — 1 and is fed back into the network at
the next time step to calculate h;. ¢ is a nonlinear activation function, e.g., a hyperbolic
tangent function or sigmoid function. In a fully connected RNN; the following equation
is usually used to update the recurrent hidden state as shown in Eq. (3.2).

h; = (p(WﬂEt + Uht_l) , (33)

where W and U are learnable weight matrices.

The fully connected RNN model suffers from short-term memory. If an input sequential
data is long enough, it cannot efficiently carry information from earlier time steps to
later ones and hence may leave out important information from the beginning. This
is mainly because during the backpropagation procedure of the network, the vanishing
gradient problem emerges.

LSTM (Long short-term memory) [56]: To address the problem of the traditional
RNN model, LSTM was proposed. LSTM is a special type of recurrent hidden unit,
which is able to learn long-term dependencies. As compared to a fully connected RNN
that overwrites its memory at each time step in a fairly uncontrolled way, an LSTM-
based RNN transforms its memory in the following way: by using specific learning

13
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mechanisms for which pieces of information to remember, which to update, and which
to pay attention to. This helps it keep track of information over longer periods of time.
To describe the LSTM model mathematically, it first creates three gates, namely an
output gate, an input gate, and a forget gate, as follows:

O = U(Woia:t + Wohht—l + Wocct) , (34)
1 = o(Wiizy + Wiphy_1 + Wicei—1) (3.5)
ft = O'(Wfimt + thhtfl + chctfl) . (36)

where the W matrices are trainable weights. ¢ is termed as memory cell. At each time
step, it can be updated by adding new contents via the input gate and discarding parts
of the present memory contents via the forget gate:

C; = tanh(WCiwt + Wchht—l) . (3.7)

iy = o(Wyizy + Wiphy—1 + Wicei—1) . (3.8)
Finally, the activation of the network at the current time step can be computed as
follows:

h; = o tanh(¢;) . (3.9)

The following figure shows the graphic model of LSTM.

-
'

xkt X

Figure 3.7: Graphic model of LSTM.

GRU (Gated recurrent unit) [57]: GRU is pretty similar to LSTM but has fewer
parameters due to its simpler architecture. In comparison with LSTM, GRU gets rid
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3.1 Deep Learning for Hyper/Multi-Spectral Image Analysis

of the memory cell and directly exposes the whole hidden state at each time. More
specifically, it defines two gates, a reset gate and an update gate:

T = O'(Wriilit + thht—l) 5 (310)

U = U(Wm;wt + Wuhht—l) R (3.11)

where the four W matrices are weight matrices. Then the activation at time step ¢ can
be calculated by a linear interpolation between the previous activation and a candidate
activation: l~1,t: )

ht = (1 — 'U't)htfl + utht s (3.12)

iLt = tanh(U(rt ® htfl) + Wﬂ?t) . (313)

Figure 3.8 shows the architecture of PSPNet.

Figure 3.8: The architecture of GRU.

e Applications in Remote Sensing

Since RNNs are natural candidates for processing sequences [58-71], in remote sensing,
they are mainly used in analyzing sequential remote sensing data. The first attempt in
this direction can be found in [72], where the authors employ an LSTM-based RNN for
detecting changes in bi-temporal multispectral images. Moreover, a transfer experiment
is carried out to study the generalization capacity of a trained RNN-based change de-
tection model. Later, by taking the spectrum as an ordered sequence, [73] makes use
of a RNN to model the band-to-band variability and spectral correlation of hyperspec-
tral data for the sake of classification. The authors of [74] train an LSTM-based RNN
to classify crops from multi-temporal multispectral images. In change detection or the
classification of multi-temporal image sequence, RNNs easily lead to noisy classification
maps due to their lack of spatial content. To address this issue, [75] propose a recurrent
convolutional neural network, which is composed of a convolutional sub-network and
a recurrent sub-network, to learn a spectral-spatial-temporal feature representation for
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change detection tasks. In [76], the authors construct a similar network using convolu-
tional recurrent layers for the purpose of classifying crops with multi-temporal data. The
authors of [77] employ a temporal memory mechanism in a CNN to build a recurrent
neural network structure, in order to predict clouds day and night in multi-temporal
multispectral images.

Note that recurrent relation does not have to be over time, it can be over space for
example. [78] is an example, where the authors make use of a fully connected RNN to
model relationships between a given pixel and its neighbors, i.e., spatial relations.

3.2 Deep Learning for High-Resolution Aerial Images

This subsection mainly focuses on deep learning for semantic segmentation and intro-
duces several classic semantic segmentation network architectures and applications in
remote sensing.

e Models

FCN (Fully convolutional network) [79]: FCN is the first to develop an end-to-end
trainable network for semantic segmentation tasks. More specifically, it convolution-
alizes fully connected layers in a classification CNN (e.g., VGG-16) with kernels fully
covering the whole spatial domain. Since now there is no longer the fully connected
layer, the network can take images of arbitrary sizes. Then feature maps from different
layers are upsampled using bilinearly initialized deconvolutions. Figure 3.9 illustrates
the architecture of FCN. Below are a couple of key features of FCN:

1. It shows an excellent example for knowledge transfer from modern classification
CNNs to performing dense prediction tasks like semantic segmentation.

2. It merges features from different stages in a classification CNN, which vary in
coarseness of semantic information.

3. The upsampling of low-resolution feature maps is done by deconvolution.

SegNet [80]: Instead of reusing features learned in a classification CNN (called encoder)
as in FCN, SegNet makes use of a decoder to learn segmentation maps with a desired
full-resolution from low-resolution, high-level feature maps. SegNet has the following
main points:

1. It employs unpooling to upsample feature maps in the decoder, in order to use and
keep high frequency details as far as possible.

2. It doesn’t use original fully connected layers in the encoder.

U-Net [81]: U-Net was initially proposed for medical image segmentation, but it has
been successfully applied to a wide range of vision applications. As to its architecture
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forward /inference

backward /learning

Figure 3.9: The architecture of FCN [79].

(see Figure 3.10), U-Net concatenates feature maps of the encoder to upsampled feature
maps in the decoder at each stage to form a ladder-like structure.

DeepLabvl/v2/v3 [82]: Deeplabvl/v2 exploits dilated convolutions to enlarge the
receptive field of the encoder. Moreover, the output is fed into a fully connected con-
ditional random feild (CRF) model to produce final segmentation results. Deeplabv3
revisits the Deeplab framework and proposes to combine cascaded and parallel dilated
convolutions modules.

PSPNet [83]: PSPNet (Pyramid Scene Parsing Network) also uses dilated convolutions
by modifying the backbone ResNet architecture and has the following key features:

1. It introduces an auxillary loss at intermediate layers.

2. It devises a spatial pyramid pooling at top of the encoder to aggregate global
context.

Figure 3.11 shows the architecture of PSPNet.
e Applications

Inspired by successes in the computer vision community [84-95], many researches are
focusing on applying deep learning-based methods for semantic segmentation of aerial
images. As an early trial [96], Sherrah employs a fully convolutional network (FCN) [79],
which is pre-trained on natural images, and fine-tunes it on high resolution aerial images
for predicting semantic labels of each pixel. Marmanis et al. [97] takes not only color im-
ages but also digital surface models (DSMs) data into account and employs a late fusion
approach with two structurally identical, parallel FCNs, to fuse semantic information
contained in both sources. Similarly, Audebert et al. [98] make use of SegNet [80,99]
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Figure 3.10: The architecture of U-Net [81].

with a residual correction to fuse optical images and DSM for semantic segmentation
of high resolution aerial images. Later, in [100], Audebert et al. demonstrate that late
fusion enables CNNs to recover errors stemming from ambiguous data while early fusion
improves the efficiency of learning features jointly. However, fusing multimodal remote
sensing data in an early fashion may suffer from higher sensitivity to missing data. In
order to effectively fuse intermediate features, Maggiori et al. [101] introduce a multi-
layer perceptron (MLP) on top of a base FCN and achieve satisfactory segmentation
results. Moreover, in [102], Kellenberger et al. observe that spatial arrangements of
many cities are similar, and such distributions can be learned from OSM data. Inspired
by this observation, they cluster OSM building footprints over studied cities into differ-
ent groups, which are then used to estimate prior distributions of each class. Afterwards,
a conditional random field (CRF) is employed to combine learned spatial class prior and
a CNN network for the final prediction.

In addition to focusing on multimodal data fusion, some studies deploy their efforts
on exploiting semantic boundaries between different classes for semantic segmentation.
Marmanis et al. [103] propose a two-step model, which consists of 1) learning a CNN for
predicting edge likelihoods at multiple scales from color-infrared (CIR) and height data
separately and 2) training another segmentation network with predicted boundaries as
an extra input channel for the final semantic segmentation. The intuition behind this
work is that using predicted boundaries helps to achieve sharper segmentation maps.
In [104], Volpi and Tuia employ a multi-task CNN to predict not only semantic labels but
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Figure 3.11: The architecture of PSPNet [83].

also class boundaries, which are then used to partition images into hierarchical regions.
Among them, consistent regions are parsed with a CRF to reduce the complexity of
output segmentation maps.

Besides, researches such as [105] and [106] pay attention to the precise identification of
small objects. Specifically, Kampffmeyer et al. [105] train an FCN with the cross-entropy
loss function weighted with median frequency balancing, which is proposed by Eigen and
Fergus [107] for quantifying the uncertainty at a pixel level, and achieve good accuracy for
all objects, especially small ones. Audebert et al. [106] propose a deep-learning-based
“segment-before-detect” method for semantic segmentation and subsequent classifica-
tion of several types of vehicles in high-resolution remote sensing images. The use of
SegNet [80] in this method is capable of producing pixel-wise annotations for vehicle
semantic mapping. In addition, several recent works in the semantic segmentation of
high-resolution aerial imaging also involve vehicle segmentation.

Furthermore, several researches are conducted on studying the properties of segmen-
tation networks. In [108], Volpi and Tuia perform a comparison between SegNet and
a standard CNN, where patch classification is conducted. In [109] Marcos et al. pro-
pose a segmentation network architecture called rotation equivariant vector field network
(RotEqNet) to encode rotation equivariance in the network itself. By doing so, the net-
work can be confronted with a simpler task, than has to learn specific weights to address
rotated versions of the same object class. In [110], Shivangi et al. assume that changes in
height often rely on those in classes. Based on this assumption, they extend the seman-
tic segmentation to a multi-task problem, and use a CNN to jointly conduct semantic
segmentation and height estimation. Experimental results prove that the model perfor-
mance of semantic segmentation has been increased compared to a single-task model.
Considering that dense labels are time- and labor-consuming, Maggiolo et al. [111] pro-
pose a method, which consists of CRF, CNN, and clustering concepts, to improve the
performance of CNN architectures when scribbled annotations are given. As demon-
strated in the result, improvements can be seen on the overall accuracy and precision,
while the recall is slightly reduced. To address this, they suggest that more advanced
clustering methods can be considered in further researches. Wurm et al. [112] analyze
transfer learning capabilities of FCNs for semantic segmentation of different satellite im-
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ages. They trained a model on high-resolution satellite images from QuickBird and then
transfer this model to low resolution images from Sentinel-2 and TerraSAR-X. Experi-
ments demonstrate that the transfer learning can significantly improve the performance
on Sentinel-2 data.

3.3 Attention Mechanism in Deep Learning

When training a network, sometimes we expect it to be able to focus on important
parts of an image instead of the whole image. One way of accomplishing this is through
attention mechanisms. In machine learning, “attention” refers to a group of techniques
that help a “model-in-training” notice important things more effectively.

The gating mechanism, which is similar to the attention mechanism, has been widely used
in modeling and processing temporal sequences. E.g., long short-term memory (LSTM)-
based networks [56,113] harness three gates to cope with vanishing gradients. Similarly,
a gated recurrent unit (GRU) [114,115] is designed to implement the modulation of
information flow through the gating mechanism.

In natural language processing (NLP), [116] applies the attention mechanism to images
to generate captions. A given image is first encoded by a CNN to extract features.
Then an LSTM decoder consumes the convolution features to produce descriptive words
one by one, where the weights are learned through attention. The visualization of the
attention weights demonstrates which regions of the image the model is paying attention
to so as to output a certain word. This work first proposes the distinction between “soft”
vs. “hard” attention, based on whether the attention has access to the entire image or
only a patch. In [117], the authors propose the “global” and “local” attention. The
former is similar to the soft attention, while the latter is an interesting blend between
hard and soft, an improvement over the hard attention to make it differentiable: the
model first predicts a single aligned position for the current target word and a window
centered around the source position is then used to compute a context vector.

In addition, several recent works in computer vision have shown the benefit of introducing
the gating mechanism to vision problems. To name a few, [118] proposes a gating
mechanism that is capable of dynamically balancing contributions of the current event
and its surrounding contexts in their model for dense video captioning tasks. In [21],
the authors build a gated block for image classification tasks and demonstrate its good
performance on large-scale image recognition. [119] addresses person re-identification
tasks through utilizing a network module based on a soft gating mechanism, which
enables the network to concentrate on significant local regions of an input image pair
adaptively.
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Figure 3.12: An attention-based network for image captioning [116].

3.4 Relational Reasoning Networks

A relation reasoning network is an artificial neural network component with a structure
that can reason about relations among objects. An example category of such relations
is spatial relations (above, below, left, right, in front of, behind).

Recently, the authors of [120] propose a relational reasoning network for the problem
of visual question answering (an example in remote sensing can be found in [121]), and
this network achieves a super-human performance. The architecture of this relational
reasoning network can be seen in Figure 3.13. Later, [122] proposes a temporal relation
network to enable multi-scale temporal relational reasoning in networks for video clas-
sification tasks. In [123], the authors propose an object relation module, which allows
modeling relationships among sets of objects, for object detection tasks. Our work is
motivated by the recent success of these works, but we focus on modeling spatial and
channel relations in a CNN for semantic segmentation.
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Figure 3.13: The architecture of relational reasoning network in [120].

21






4 Summary of the Work

4.1 Perception: Modeling Hyperspectral Data from a
Sequential Perspective

4.1.1 Motivation

Hyperspectral data can be seen as a set of orderly and continuing spectra sequences in
the spectral space. Analyzing hyperspectral imagery from a sequential perspective has
not been addressed so far. Our motivation in this work is to explore the representation
of hyperspectral pixels via the sequential perspective. The RNN exploits a recurrent
procedure to characterize spectral correlation and band-to-band variability, where the
network parameters are determined by training with available samples. In this context,
we propose a novel RNN with a specially designed activation function and modified GRU
to solve the multiclass classification for hyperspectral imagery.

Hyperspectral Image

Classification Map
\ Y|

LX)

000000
!

I 'nput Layer [ Recurrent Layer + Batch Normalization + PRetanh [l Fully Connected Layer [l Softmax Layer

Figure 4.1: Overview of the RNN for hyperspectral image classification.

4.1.2 Methodology

In the main procedure of the proposed recurrent network, as illustrated in Figure 4.1,
the input of the network is a hyperspectral pixel x, where the k-th spectral band is
denoted as z*. The output is a label that indicates the category the pixel belongs to.

23



4 Summary of the Work

The entire classification map can be obtained by applying the network to all pixels in
the image. The flowchart of our RNN can be summarized as follows:

1. First, the value of the existing spectral band z* is fed into the input layer.

2. Then, the recurrent layer receives z* and calculates the hidden state information
for the current band; it also restores that information in the meantime.

3. Subsequently, the value of the next band z*t! is input to the recurrent layer
simultaneously with the state information of z*, and the activation at spectral
band k + 1 is computed by a linear interpolation between proposal activation and
the activation of the previous band k.

4. Finally, the RNN predicts the label of the input hyperspectral pixel by looping
through the entire hyperspectral pixel sequence.

Two important factors affect the performance of RNN: the activation function and the
structure of the recurrent unit. In the next section, we will discuss our innovative
contributions on these two factors in detail.

Parametric Rectified tanh (PRetanh). We introduce a newly defined activation
function — parametric rectified tanh (PRetanh). It is defined as

tanh(h; if hy >0
F(hgy = § b , (41)
)\i tanh(hi) if hl < 0

where h; is the input of the nonlinear activation f on the i-th channel and 0 < A\; <1 is
a coefficient that can control the range of the negative part. The subscript ¢ means that
PRetanh can be varied in different channels. When \; = 0, it turns to

f(hi) = max(0, f(h;)) = max(0, tanh(h;)) . (4.2)

When J; is a learnable parameter, we refer to Eq. (4.1) as a parametric rectified hyper-
bolic tangent function. Eq. (4.1) is equivalent to

f(hi) = max(0, tanh(h;)) + A; min(0, tanh(h;)) . (4.3)

In our method, the PRetanh parameter A; is adaptively learned jointly with the whole
neural network model. We expect that end-to-end training can lead to more specialized
activations. Note that one extra parameter is introduced in PRetanh. The total number
of extra parameters for each layer is equal to the number of channels, which is negligible
when taking into account the number of weights of the whole network. Therefore, we
anticipate no extra risk of overfitting with the same number of training samples. In
addition, a channel-shared variant version of PRetanh can be considered:

f(h;) = max(0, tanh(h;)) + A min(0, tanh(h;)), (4.4)
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where all channels of one layer share the same coefficient A. In this case, only a single
extra parameter is introduced for each layer.

Gated Recurrent Unit with PReLU. A gated recurrent unit can cause a recurrent
unit to adaptively capture the dependencies of different spectral bands. Similar to the
LSTM unit, the gated recurrent unit has gate units that control the flow of information
inside the unit without including separate memory cells.

The activation h,’f of the i-th gated recurrent unit at spectral band k is computed by a
linear interpolation between the proposal activation p? and the activation of the previous
spectral band hf‘l:

hk ufpf +(1- uf)hffl , (4.5)

’l‘ =
where uf is an update gate that determines how much the unit updates its activation or
content. The update gate uf can be calculated as follows:
uf = o(wyz® + Woh* 1), | (4.6)

where w,; is the input-update weight vector and W, represents the update-hidden
weight matrix.

Similarly to LSTM, the gated recurrent unit takes a linear sum between the newly
computed state and the present state. However, it lacks a mechanism to control what
part of the state information will be exposed, rather exposing the whole state value at
each spectral band.

The proposal activation pf is computed using the value of the existing spectral band
and the activation of the previous band, which reflects the updated information of the
recurrent hidden state. It is calculated with PRetanh and batch normalization as follows:

Pk = Fg(wyia® + Wop(ek @ B1)), (4.7)
where r* is a set of reset gates, wy,; denotes the proposal-input weight vector, and W,
represents the reset-hidden weight matrix. Moreover, f(-) and g(-) represent PRetanh
and batch normalization, respectively. When the reset gate rf is fully off, i.e., rf is 0,
it will completely discard the activation of the hidden layer at previous spectral bands
hffl and only use the value of the existing spectral band z*. When open (rf close to
1), in contrast, the reset gate will partially keep the information of the previous step.

Let p¥ = wp;a® + W, (r* © h*71). Eq. (4.7) can then be transformed as

pk _ Bk
pf = max((), tanh(aiu + Bz))
Var[p¥]
) A (4.8)
¥ — E[p}]

+ A; min(0, tanh(oy

\/\m + Bi)) ,
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The reset gate rf is computed similarly to the update gate:
¥ = o(wp® + W, h* 1), (4.9)

where w,; and W,.;, are the reset-input weight vector and the reset-hidden weight matrix,
respectively.

Figure 4.2 shows the graphic model of the gated recurrent unit though time.

Figure 4.2: Graphic model of a GRU through time.

4.1.3 Results

Dataset. Pavia University dataset is acquired by reflective optics system imaging spec-
trometer (ROSIS). The image is of 610 x 340 pixels covering the Engineering School at
the University of Pavia, which was collected under the HySens project managed by the
German Aerospace Agency (DLR). The ROSIS-03 sensor comprises 115 spectral chan-
nels ranging from 430 to 860 nm. In this data set, 12 noisy channels have been removed
and the remaining 103 spectral channels are investigated in this paper. The spatial
resolution is 1.3 m per pixel. The available training samples of this data set cover nine
classes of interests.

Quantitative Evaluation. Table 4.1 shows the quantitative comparison with other
methods.

For more experimental results and technical details, please refer to Appendix A.
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Table 4.1: The Classification Accuracies of Different Techniques in Percentages for Pavia Uni-
versity. The Best Accuracy in Each Row Is Shown in Bold.

Class Name RF SVM CNN LSTM GRU GRU-PRetanh

Asphalt 80.85  80.80 83.73 T77.45  78.42 84.45
Meadows 55.29  66.78 65.70 61.83  69.17 85.24
Gravel 52.93 73.18 67.03 64.60 47.83 54.31
Trees 98.79 95.17 94.03 97.98  97.16 95.17
Metal Sheets 99.26  99.55  99.41  99.18 97.84 99.93
Bare Soil 7876 9290 96.30 91.19 85.86 80.99
Bitumen 84.36 90.08 93.83 90.90 86.84 88.35
Bricks 91.58 91.20 93.56 92.29 94.27 88.62
Shadows 98.20  93.77  99.79 9747 9493 99.89
OA 71.37 7882 79.27 7592 77.70 84.99
AA 82.23 87.05 88.15 8588  83.59 86.33
Kappa 0.6484 0.7358 0.7423 0.7028 0.7201 0.8048

4.2 Perception: Unsupervised Feature Learning with
Abundant Bands

4.2.1 Motivation

Despite the big success of the supervised CNNs or RNNs, they have at least one potential
drawback detailed as follows: there is a need for a good supply of labeled training samples
to be used for supervised training. However, these are difficult to collect, and there are
diminishing returns of making the labeled data set larger and larger. In other words,
the supervised CNNs generally suffer from either small number of training samples or
imbalanced data sets.

Hence, unsupervised spectral-spatial feature learning, which has a quick access to arbi-
trary amounts of unlabeled data, is conceptually of high interest. In general, the main
purpose of unsupervised feature learning is to extract useful features from unlabeled
data, to detect and remove input redundancies, and to preserve only essential aspects of
the data in robust and discriminative representations. In a pioneer work moving from
the supervised CNN to unsupervised CNN, Romero et al. [124] proposed an unsuper-
vised convolutional network for learning spectral-spatial features using sparse learning to
estimate the weights of the network. However, this model was trained in a greedy layer-
wise fashion, i.e., it is not an end-to-end network. In this chapter, we aim to propose an
end-to-end network for unsupervised spectral-spatial feature learning of hyperspectral
imagery.
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4.2.2 Methodology

Denote by (x, h,y) random variables representing a 3D hyperspectral patch, its encoded
feature representation, and the reconstructed output. The joint probability distribution
p(x,y) can be described as follows:

p(x,y) = p(x)p(y|z) (4.10)

where p(x) is the distribution of 3D hyperspectral patches and p(y|x) is the distribu-
tion of reconstructed outputs given the hyperspectral patches. Thus the conditional
probability distribution p(y|z) can be written as

p(ylz) = p(y, hlz) = p(y|h)p(h|z), (4.11)

where p(h|x) indicates the distribution of the encoded feature representations given the
input hyperspectral patches. As a special case, y may be a deterministic function of
x. Ideally we would like to find p(h|x) and p(y|h), but direct application of Bayesian
theory is not feasible. We, therefore, in this work resort to an estimate function f(x)
which minimizes the following mean squared error objective:

Eqllz — f(2)|3- (4.12)

The minimizer of this loss is the conditional expectation:

A~

f(@o) = Ey[y|h] + Eplh|z = ], (4.13)
that is the expected reconstructed output given a hyperspectral patch.

Given a set of unlabeled 3D hyperspectral patches {x;}, we learn the weights © of a
network f(z;®) to minimize a Monte-Carlo estimate of the loss (4.12):

o= i i — flxi; ©)|3. 4.14
argménzijllw f(xi; )|z (4.14)

This means that we train the network to reproduce the input results in learning high-level
abstract features in an unsupervised manner.

Here, we propose a fully Conv-Deconv network (cf. Figure 4.3) in which the desired
output is the input data itself. The proposed network architecture is composed of two
parts, i.e., the convolutional sub-network and deconvolutional sub-network. The for-
mer corresponds to an encoder that transforms the input 3D hyperspectral patch x; to
abstract feature representation h;, whereas the latter plays the role of a decoder that re-
produces the initial input data from the encoded feature. Each layer in the convolutional
sub-network has a corresponding decoder layer in the deconvolutional sub-network.

But a problem arises when we attempt to directly train such a network. Although
the network starts greatly reducing errors on both the training and validation samples
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Figure 4.3: We propose a network architecture which learns to extract spectral-spatial fea-
tures by reconstructing the initial input 3D hyperspectral patches, being trained
end-to-end. There are no fully connected layers and hence it is fully Conv-Deconv
network. The proposed network architecture is composed of two parts, i.e., con-
volutional sub-network and deconvolutional sub-network. The former corresponds
to a encoder that transforms the input 3D hyperspectral patches to abstract fea-
ture representations, whereas the latter plays the role of decoder that reproduces
the initial input data from the encoded features. Each layer in the convolutional
sub-network has a corresponding decoder layer in the deconvolutional sub-network.

during the first few epochs, it rapidly converges to a fairly high value, which means the
learning of the network is significantly slowed down and eventually gets stuck into a
local minimum. This indicates that such network architecture is not easy to optimize.
We think the obstacles to train the proposed fully Conv-Deconv network are as follows:

1. In the Conv-Deconv network, the exact copy of the input high dimensional 3D
hyperspectral patch has to go through all layers until it reaches the output layer.
With many weight layers, this becomes an end-to-end relation requiring very long-
term memory. For this reason, the notorious vanishing gradient problem can be
critical, which handicaps the learning process of the network.

2. The unpooling operation in the deconvolutional sub-network increases the spatial
resolution of feature maps by simply adding zeros, which ignores the location of
the maximum value in the receptive field of pooling layer, leading to loss of edge
information during the decoding procedure. Without this detailed information, it
is difficult for the optimizer to lead the network to better solutions.

To address the aforementioned problems, in this subsection, we refine the proposed
fully Conv-Deconv network architecture by incorporating residual learning and a new
unpooling operation that can use memorized max-pooling indices from the corresponding
encoded feature maps and enables reconstruction to be more accurate. The new network
architecture is shown in Figure 4.4.

The proposed Conv-Deconv network with residual learning is a modularized network
architecture that stacks residual blocks. Similarly to the convolutional blocks, a residual
block consists of several convolutional layers with the same feature map size and the
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same number of filters. However, it performs the following calculation:
w1 =yg(¢) + F(P1;0y), (4.15)

i1 = fe1) - (4.16)

Here, ¢; indicates the feature maps that are fed into the [-th residual block and satisfies
¢o = x where @ is the input 3D hyperspectral patch. @; = {®; ;|1 < k < K} represents
a collection of weights associated with the [-th residual block, and K denotes that there
are K convolutional layers in a residual block. Moreover, F is the residual function
and is generally achieved by few stacked convolutional layers. The function f indicates
the activation function such as a linear activation function or ReLU, and f works after
element-wise addition. The function g is fixed to an identity mapping: g(¢;) = ¢.

If f adopts a linear activation function and also acts as an identity mapping, i.e.,
¢1+1 = 1, we can obtain the output of the [-th residual block by putting Eq. (4.15) into
Eq. (4.16):

P11 = &1+ F(P1;0)). (4.17)

In contrast, a convolutional block only performs the following computation:

i1 = H(p;©1). (4.18)

Recursively like
G112 =¢i11 + F (D415 Or41)

(4.19)
=@+ F(é1;01) + F(d141;©141)
etc., we will get the following recurrence formula:
L—1
b=+ F(¢:;0s), (4.20)
1=l

for any shallower block [ and any deeper block L.

As exhibited in Eq. (4.20), the network with residual learning has some interesting and
nice properties: 1) The feature maps ¢y, of any deeper residual block L can be considered
to be adding the feature maps ¢; of any shallower block [ and a residual function in a
form of Zf;ll F, representing that the network is in a residual fashion and is capable
of learning some new features between any blocks [ and L; and 2) with both the g and
f being identity mappings, i.e., g(¢;) = ¢; and f(p;) = ¢, a network with residual
learning creates a direct path for propagating information through the entire network,
which can effectively avoid the vanishing gradient problem. These two respects are in
contrast to the Conv-Deconv network equipped with common convolutional blocks in
which the feature maps ¢, are a set of matrix products, namely, HiL:_Ol O, pyo.
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Convolutional Sub-network (Encoder) i Deconvolutional Sub-network (Decoder)

Residual Block 1 Residual Block 2 Residual Block 3 Residual Block 4 Residual Block 5 Residual Block 6
........

| Max-pooling Indices b

Figure 4.4: We refine the proposed fully Conv-Deconv network architecture by incorporating
residual learning and a more appropriate unpooling operation, which can use memo-
rized max-pooling indices from the corresponding encoded feature maps and enables
reconstruction to be more accurate.
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4.2.3 Results

Quantitative Evaluation. Table 4.2 shows the quantitative comparison with other
methods on the Pavia University dataset.

Table 4.2: The Classification Accuracies of Different Techniques in Percentage for Pavia Uni-
versity. The Best Accuracy in Each Row Is Shown in Bold.

Class Name RF SVM 1D-CNN 2D-CNN SICNN Ours

Asphalt 80.94 84.84 83.73 69.25 84.21 78.99
Meadows 55.91  67.09 65.70 93.39 91.10 97.16
Gravel 53.26  72.13 67.03 63.13 64.36 61.46
Trees 98.76  95.72 94.03 94.39 95.53 95.76
Metal Sheets  99.11  99.48 99.41 100 97.70 97.77
Bare Soil 79.26  93.30 96.30 49.06 56.53 59.46
Bitumen 83.76  91.88 93.83 72.26 77.29 79.5

Bricks 91.06  92.56 93.56 94.32 95.57  96.82
Shadows 98.10 9747 99.79 93.77 96.20 92.40
OA 71.66  79.88 79.28 82.66 85.25 87.39
AA 82.24  88.27 88.15 81.06 84.28 84.37

Kappa 0.6517 0.7487  0.7423 0.7688 0.8041 0.8308

For more experimental results and technical details, please refer to Appendix B.
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4.3 Perception: Spectral-Spatial-Temporal Feature
Learning for Multitemporal Analysis

4.3.1 Motivation

As an important branch of deep learning family, a recurrent neural network (RNN) is
a natural candidate to tackle the temporal connection between multitemporal sequence
data in change detection tasks. Recently, Lyu et al. [72] make use of an end-to-end
RNN to solve the multi/hyper-spectral image change detection task, since RNN is well
known to be good at processing sequential data. In their framework, a long short-term
memory (LSTM)-based RNN is employed to learn a joint spectral-temporal feature rep-
resentation from a bi-temporal image sequence. In addition, the authors also show the
versatility of their network by applying it to detect multi-class changes and pointing out
a good transferability for change detection in an “unseen” scene without fine-tuning,.
The authors of [74] follow a similar idea, where an RNN based on LSTM units is used to
extract dynamic spectral-temporal features but, in contrast to the change detection sce-
nario, their goal is to address land cover classification of multitemporal image sequences.
However, we observe that RNNs always result in noisy scatter points in change detection
maps. This is mainly because RNNs do not take spatial information into account. In this
chapter, we learn joint spectral-spatial-temporal features using an end-to-end network
for change detection.

T1 image binary change detection

conv. layers of T1 branch

unrolled recurrent layer

“
conv. layers of T2 branch
ﬂi“/ﬁl ﬂ

)
3 convolutional sub-network recurrent sub-network fc layers

T2 image multi-class change detection

19he| 5}
xewyjos / piowbis

Figure 4.5: Overview of the proposed recurrent convolutional neural network for change detec-
tion.

4.3.2 Methodology

The architecture of the proposed recurrent convolutional neural network (ReCNN), as
shown in Figure 4.5, is made up of three components, including a convolutional sub-
network, a recurrent sub-network, and fully connected layers, from bottom to top.
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To acquire a joint spectral-spatial-temporal feature representation for change detection,
at the bottom of our network, convolutional layers automatically extract feature maps
from each input. On top of the convolutional sub-network, a recurrent sub-network takes
the feature representations produced by convolutional layers as inputs to exploit the
temporal dependency in the bi-temporal images. The third part is two fully connected
layers widely used in classification problems. Although ReCNN is composed of different
kinds of network architectures (i.e., CNN, RNN, and fully connected network) it can be
trained end-to-end by back-propagation with one loss function, due to the differential
properties of all these components.

Let XT* and X2 represent a pair of multispectral images acquired over the same ge-
ographical area at two different times T) and T, respectively. Let ! and 2 be two
patches taken from the exact same location in two images. y is a label that indicates
the category (i.e., changed, unchanged, or change-type) that the pair of patches belongs
to. The flowchart of the proposed ReCNN can be summarized as follows:

1. First, the 3D multispectral patch ! is fed into 7 branch of the convolutional
sub-network, which transforms it to an abstract feature vector f71.

2. Then, the recurrent sub-network receives f! and calculates the hidden state in-
formation for the current input; it also restores that information in the meantime.

3. Subsequently, 2 is input to the Ty branch for extracting spectral-spatial feature
fT2 it is fed into the recurrent layer simultaneously with the state information of
f™1 and the activation at time Th is computed by a linear interpolation between
existing value and the activation of the previous time 77.

4. Finally, fully connected layers of the ReCNN predict the label of the input bi-
temporal multispectral patches by looping through the entire sequence.

The entire change detection map can be obtained by applying the network to all pixels
in the image.

Spectral-Spatial Feature Extraction via the Convolutional Sub-Network. We
make use of dilated convolution to construct convolutional layers in the network because,
for our task, it is able to offer a slightly better performance than a traditional convo-
lution operation. The dilated convolution [82] was originally designed for the efficient
computation of the undecimated wavelet transform in the “algorithme a trous” scheme.
This algorithm makes it possible to calculate responses of any layer at any desirable res-
olution and can be applied post-hoc, once a network has been trained. Let F : Z? — R
be a discrete function. Let Q. = [—r,7]2 N Z? and let k : . — R be a discrete filter of
size (2r+1)2. The traditional discrete convolution operation * can be defined as follows:

(Fxk)(p)= > F(s)k(t). (4.21)

s+t=p
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Figure 4.6: Graphic models of fully connected RNN, LSTM, and GRU. In LSTM, o, f, 4, ¢,
and c are output gates, forget gates, input gates, new memory cell contents, and
memory cells, respectively. In GRU, the reset and update gates are denoted by r
and u, and h and h are the candidate activation and final activation.

This operation can be generalized. Let [ be a dilation rate and let %; be defined as

(Fak)p)= 3 Fls)k(t). (4.22)

s+lt=p

We will refer to *; as a dilated convolution or an I-dilated convolution.

The usage of dilated convolution in our network allows us to exponentially enlarge the
field of view with linearly increasing number of parameters, providing a significant pa-
rameter reduction while increasing the effective field of view. Note that recent studies
found that a large field of view actually plays an important role in pattern recognition
tasks. This can be easily understood by an analogy that states the fact that humans
usually confirm the category of a pixel by referring to its surrounding context region.

Modeling Temporal Dependency by the Recurrent Sub-Network. RNNs can
exhibit dynamic temporal behavior, which is in line with our purpose; i.e., modeling
temporal dependency between the T and T5 data. Hence three types of RNN archi-
tectures, namely, fully connected RNN, LSTM, and GRU, are used to construct the
recurrent sub-network in our network (cf. Figure 4.6).

4.3.3 Results

Dataset. Taizhou dataset consists of two images covering the city of Taizhou, China,
in March 2000 and February 2003, with a WGS-84 projection and a coordinate range of
31°14’56N-31°27'39N, 120°02'24E-121°07'45E. These two images both consist of 400 x
400 pixels, and changes between them mainly involve city expansion. The available
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Table 4.3: Accuracy Comparison of Binary Change Detection on the Taizhou Dataset.

Taizhou City
OA Kappa Unchanged Changed

CVA 83.82  0.3202 97.38 27.10
PCA 94.63 0.8181 99.79 74.51
MAD 94.62 0.8168 98.47 78.52
IRMAD 95.14  0.8313 99.35 77.53
CNN 96.03  0.8667 98.97 83.75
RNN 96.50  0.8884 97.58 91.96
ReCNN-FC 98.35 0.9470 98.94 95.86
ReCNN-GRU  98.67  0.9571 99.23 96.30
ReCNN-LSTM 98.73 0.9592 99.20 96.77

manually annotated samples of this data set for multi-class change detection cover four
classes of interest; i.e., unchanged area, city change/expansion (bare soils, grasslands,
or cultivated fields to buildings or roads), soil change (cultivated field to bare soil), and
water change (non-water regions to water regions).

Quantitative Evaluation. Table 4.3 shows the quantitative comparison with other
methods.

For more experimental results and technical details, please refer to Appendix C.

4.4 Perception: Not All Spectral Bands Are Equal

4.4.1 Motivation

The unique asset of hyperspectral images is their rich spectral content in comparison with
high-resolution aerial images and natural images in the computer vision field. Although
there exist already a number of works that have focused on using CNNs for hyperspectral
data classification, we notice that in the community, the following questions have not
been well addressed by now.

1. Do all spectral bands contribute equally to a CNN for classification tasks?

2. If no, how to task-drivenly find informative bands that can help hyperspectral data
classification in an end-to-end network?

3. Is it possible to improve classification results of a CNN by emphasising informative
bands and suppressing less useful ones in the network?

These questions give us an incentive to devise a novel network called spectral attention
module-based convolutional network for hyperspectral image classification. Inspired by
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recent advances in the attention mechanism of networks [21,118,119], which enables
feature interactions contribute differently to predictions, we design a channel attention
mechanism for analyzing the significance of different spectral bands and recalibrating
them. More importantly, the significance analysis is automatically learned from tasks
and hyperspectral data in an end-to-end network without any human domain knowledge.

4.4.2 Methodology

The spectral attention module in our model transforms a patch @ of a hyperspectral
image into a new representation z via the following mapping:

F:z—z, (4.23)

where x, z € REXWXC,

Our aim is to strengthen the representational capacity of a spectral-spatial classification
network through explicitly modeling the significance of spectral bands. Therefore, we
instantiate F' as

z=x0g, (4.24)

where ® is a channel-wise multiplication operation, and g € R® represents a set of
spectral gates applied to individual spectral bands of the patch x.

The motivation behind Eq. (4.24) is that we wish to make use of a gating mechanism to
recalibrate strengths of different spectral bands of the input, i.e., selectively emphasise
useful bands and suppress less informative ones, for image classification problems.

Figure 4.7 illustrates the architecture of the spectral attention module-equipped convo-
lutional network.

Now we need a way to aggregate the spectral-spatial information of & across spatial
domain to produce a collection of spectral gates g.

Convolution operation is an ideal candidate, as 1) it is able to spatially shrink the
input patch and 2) its differential property allows end-to-end learning. In general, a
convolutional filter operates with a local receptive field (e.g., 3 x 3 in VGG-16 network),
which leads to the fact that the output is not capable of utilizing contextual information
outside of this region. This is a severe issue for our case because the spectral gates g
in our model are expected to be derived from the whole spectral-spatial information.
To tackle this problem, we distill global spatial information into the spectral gates by
using global convolution. Formally, let f = [f1, f2, - , fc]| denote a set of convolutional
filters and their sizes are both H x W, where f. refers to the c-th filter. Thus the c-th
spectral gate g. can be calculated as follows:

C
gczm*fc:Zwi*fé, (4.25)
i=1
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Figure 4.7: Overall architecture of the proposed gating mechanism, spectral attention module,
for hyperspectral classification problems. We would like to exploit this module to
learn and recalibrate strengths of different spectral bands, i.e., selectively emphasise
useful bands and suppress less informative ones, for image classification problems.
To this end, we first learn a set of spectral gates by using global convolution and
then apply them to individual spectral bands.

where * represents convolution, and f! and x; are separately the i-th channels of the
c-th filter and x. Taking into account that the field of view of the global convolution is
equal to the spatial size of &, g. is actually calculated by the inner product of x; and f;
(both z; and f! are vectorized into columns), i.e., Eq. (4.25) can be rewritten as follows:

C
ge = Z x;, f1) Zmch (4.26)
i=1

From Eq. (4.26), the spectral gates g can be considered as a series of global descriptors,
which are capable of representing spectral-spatial features of .

Thus according to Eq. (4.24), we can associate the c-th spectral gate g. with the c-th
spectral band of x to obtain the recalibrated z. via

C
Ze = mCZm?ﬁ (4.27)
i=1

So far, we can obtain an initial spectral attention module (as shown in Eq. (4.27)), but
there still exist three issues we should address:

e Given complex spectral-spatial properties of hyperspectral images, we wish the
spectral gates in this module are capable of learning a non-linear mapping, instead
of a linear one, from the input.

e The attention module should model a non-mutually-exclusive relationship between
spectral bands, as we would like to ensure that multiple bands can be emphasised
at the same time (unlike one-hot activation in softmax).

37



4 Summary of the Work

notill
Corn-min
== Corn
== Grass-pasture

== Hay-windrowed
== Qats
== Soybean-notill

== Woods

== Stone-steel-towers

430 Spectrum (nm) 2500

Figure 4.8: Average reflectance spectrum of each class and learned spectral gates on the Indian
Pines data set. From this figure, we can observe that the spectral attention module
mainly pays attention on spectral bands that provide visual cues to distinguish
different categories.

e The gates should be bounded (e.g., between 0 and 1), easily differentiable, and
monotonic (good for convex optimization).

To meet these three requirements, we modify spectral gates in the initial spectral atten-
tion module as follows:

1
9ec =

1+ exp(—x *

p( ; fe) (4.28)
= C N .
L+ exp(— i, =) fY)
Hence the final version of the spectral attention module can be written as

1

Ze== (4.29)

c — .
1+ exp(— 0, T f1)

Figure 4.8 shows the learned gates on the Indian Pines dataset. From this figure, we
can observe that the spectral attention module mainly pays attention on spectral bands
that provide visual cues to distinguish different categories.

4.4.3 Results

Quantitative Evaluation. Table 4.4 shows the quantitative comparison with other
methods on the Pavia University dataset. Prior to training models, we normalize each
channel of the hyperspectral data to the range between 0 and 1.

For more experimental results and technical details, please refer to Appendix D.
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Table 4.4: Accuracy Comparisons for the Pavia University Scene. Bold numbers indicate the
best performance.

Class Name RF SVM CCF SICNN 2D-CNN SpecAttenNet

Asphalt 81.54 8237  86.59 84.21 83.85 86.71
Meadows 55.39  67.87  72.33 91.10 96.09 98.47
Gravel 53.07  69.18 T71.75 64.36 81.47 77.47
Trees 98.76  98.37 99.09  95.53 96.12 96.83
Metal Sheets 99.11  99.41 99.78  97.70 98.74 98.81
Bare Soil 79.10 93.64 97.26  56.53 49.79 53.11
Bitumen 84.36 91.20 91.88 77.29 79.32 77.82
Bricks 91.39 9259 9492  95.57 88.89 94.43
Shadows 9747  96.94 98.73  96.20 94.19 96.30
OA 71.53  79.89  83.36 85.25 86.93 89.14
AA 82.24 8795 90.26  84.28 85.38 86.66
Kappa 0.6504 0.7491 0.7905 0.8041 0.8242 0.8535

4.5 Perception: Multitask Learning Network for Vehicle
Instance Segment

4.5.1 Motivation

The last decade has witnessed dramatic progress in modern remote sensing technologies
— along with the launch of small and cheap commercial high-resolution satellites and
the now widespread availability of unmanned aerial vehicles (UAVs) — which facilitates
a diversity of applications, such as urban management, monitoring of land changes,
and traffic monitoring. Among these applications, object extraction from very high-
resolution remote sensing images/videos has gained increasing attention in the remote
sensing community in recent years, particularly vehicle extraction, due to successful civil
applications. Vehicle extraction, however, is still a challenging task, mainly because it is
easily affected by several factors, e.g., vehicle appearance variation, the effects of shadow,
illumination, a complicated and cluttered background, etc. Existing vehicle extraction
approaches can be roughly divided into two categories: vehicle detection and vehicle
semantic segmentation.

The existence of “touching” vehicles in a remote sensing image makes it quite hard for
most vehicle semantic segmentation methods to separate objects individually, while in
most cases, we need to know not only which pixels belong to vehicles (vehicle semantic
segmentation problem) but also the exact number of vehicles (vehicle detection task).
This drives us to examine instance-oriented vehicle segmentation. Vehicle instance seg-
mentation seeks to identify the semantic class of each pixel (i.e., vehicle or non-vehicle)
as well as associate each pixel with a physical instance of a vehicle. This is contrasted
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Figure 4.9: An illustration of different vehicle extraction methods. From left to right and
top to bottom: input image, vehicle detection, semantic segmentation, and vehicle
instance segmentation. The challenge of vehicle instance segmentation is that some
vehicles are segmented incorrectly. While most pixels belonging to the category are

identified correctly, they are not correctly separated into instances (see arrows in
the lower left image).
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to vehicle semantic segmentation, which is only concerned with the above-mentioned
first task. In this work, we are interested in vehicle instance segmentation in a complex,
cluttered, and challenging background from aerial images and videos.

4.5.2 Methodology

We formulate the vehicle instance segmentation task by two subproblems, namely vehi-
cle detection and semantic segmentation. The training set is denoted by {(x;, yi, z:)},
where ¢ = 1,2,--- , N and N is the number of training samples. Since we consider
each image independently, the subscript ¢ is dropped hereafter for notational simplicity.
x ={xj,j =1,2,---,|x|} represents a raw input image, y = {y;,7 = 1,2,--- ,|z|,y; €
{0,1}} denotes its corresponding manually annotated pixel-wise segmentation mask, and
z={rk,k=0,1,--- , K} is the instance label, where r; indicates a set of pixels inside
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Figure 4.10: Overall architecture of the proposed semantic boundary-aware ResFCN. We pro-
pose to use such a unified multi-task learning network for vehicle instance segmen-
tation, which creates two separate, yet identical branches to jointly optimize two
complementary tasks, namely, vehicle semantic segmentation and semantic bound-
ary detection. The latter subproblem is beneficial for differentiating “touching”
vehicles and further improving the instance segmentation performance.

the k-th region!. K is the total number of vehicle instances in the image, and 7g is
the background area. When k takes other values, it denotes the corresponding vehicle
instance. Note that instance labels only count vehicle instances, thus they are commuta-
tive. Our aim is to segment vehicles while ensuring that all instances are differentiated.
In this work, we approximate vehicle detection by semantic boundary detection?. We
generate semantic boundary labels b through z to train a boundary detector, in which
b=1{b;,7=1,2,--- ,|x|,b; € {0,1}} and b; equals 1 when it belongs to boundaries.

Here we make use of a ResFCN to produce good likelihood maps of vehicles. It is, how-
ever, still difficult to differentiate vehicles with a very close distance by only leveraging
the probability of vehicles, due to the ambiguity in “touching” regions. This is rooted
in the loss of spatial details caused by max-pooling layers (downsampling) along with
feature abstraction. The semantic boundaries of vehicles provide good complementary
cues that can be used for separating instances.

Some approaches in computer vision and remote sensing have been explored for modeling
segmentation and boundary prediction jointly in a combinatorial framework. For exam-
ple, Kirillov et al. [125] propose InstanceCut, which represents instance segmentation by
two modalities, namely a semantic segmentation and all instance-boundaries. The for-
mer is computed from a CNN for semantic segmentation, and the latter is derived from

'Regions in the image satisfy r, N7y = @, Vk # t and Ury, = ©, in where Q is the whole image region.
2Semantic boundary detection is to detect the boundaries of each object instance in the images. Com-
pared to edge detection, it focuses more on the association of boundaries and their object instances.
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a instance-aware edge detector. But this approach does not address end-to-end learning.
In the remote sensing community, Marmanis et al. [126] propose a two-step model that
learns a CNN to separately output edge likelihoods at multiple scales from color-infrared
(CIR) and height data. Then, the boundaries detected with each source are added as
an extra channel to each source, and a network is trained for semantic segmentation
purposes. The intuition behind this work is that using predicted boundaries helps to
achieve sharper segmentation maps. In contrast, we train one end-to-end network that
takes as input color images and predicts segmentation maps and object boundaries, in
order to augment the performance of segmentation at instance level.

To this end, we train a deep semantic boundary-aware ResFCN for effective vehicle in-
stance segmentation (i.e., segmenting the vehicles and splitting clustered instances into
individual ones). Fig. 4.10 shows an overview of the proposed network. Specifically,
we formulate it as a unified multi-task learning network architecture by exploring the
complementary information (i.e., vehicle region and semantic boundaries), instead of
treating the vehicle segmentation problem as an independent and single task, which can
simultaneously learn the detections of vehicle regions and corresponding semantic bound-
aries. As shown in Fig. 4.10, the feature representations extracted from multiple residual
blocks are upsampled with two separate, yet identical branches to predict the semantic
segmentation masks of vehicles and semantic boundaries, respectively. In each branch,
the mask is estimated by the ResFCN with multi-level contextual features. Since we
have only two categories (foreground/vehicles vs. background and semantic boundaries
vs. non-boundaries), sigmoid and binary cross-entropy loss are used to train these two
branches. Formally, the network training can be formulated as a pixel-level binary classi-
fication problem regarding ground truth segmentation masks, including vehicle instances
and semantic boundaries, as shown in the following:

L(x; W) = Ls(x; Wiy, W) + ALp(x; W, Wy) , (4.30)
where

Lo==Y [ylogoy(z) + (1 —y)log(l - oy(x))],
vee (4.31)
Ly == [blogay(x) + (1 - b)log(1 — op(x))] .

TET

Ls(x; Wy, Wy) and Ly(z; Wy, W) denote losses for estimating vehicle regions and se-
mantic boundaries, respectively. ¢ indicates the sigmoid function. We train the network
using this joint loss, and the final instance segmentation map is produced by the first
branch of the network in test phase. Vehicle instances are obtained by computing con-
nected regions in the predicted segmentation map. Inside a region, pixels belong to the
same vehicle; while different regions mean different instances. Our motivation is that
jointly estimating segmentation and boundary map in a multi-task network with such a
joint loss can offer a better segmentation result at instance level for aerial images. Note
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that we do not make use of any post-processing operations, such as fusing the segmenta-
tion and boundary map, as we want to directly evaluate the performance of this network
architecture.

Note that the multi-task learning network is optimized in an end-to-end fashion. This
joint multi-task training procedure has several merits. First, in the application of vehicle
instance segmentation, the multi-task learning network architecture is able to provide
complementary semantic boundary information, which is helpful in differentiating the
clustered vehicles, improving the instance-level segmentation performance. Second, the
discriminative capability of the network’s intermediate feature representations can be
improved by this architecture because of multiple regularizations on correlated tasks.
Therefore, it can increase the robustness of instance segmentation performance.

4.5.3 Results

Dataset. The task of vehicle instance segmentation currently lacks a compelling and
challenging benchmark dataset to produce quantitative measurements and to compare
with other approaches. While the ISPRS Potsdam dataset has clearly boosted research
in semantic segmentation of high-resolution aerial imagery, it is not as challenging as
certain practical scenes, such as a busy parking lot, where vehicles are often parked so
close that it is quite hard to separate them, particularly from an aerial view. To this
end, in this work, we propose our new challenging Busy Parking Lot UAV Video dataset
that we built for the vehicle instance segmentation task. The UAV video was acquired
by a camera onboard a UAV covering the parking lot of Woburn Mall, in Woburn,
Massachusetts, USA. The video comprises 1920 x 1080 pixels with a spatial resolution
of about 15 cm per pixel at 24 frames per second and with a length of 60 seconds. We
have manually annotated pixel-wise instance segmentation masks for 5 frames (at 1, 15,
30, 45, and 59 seconds); i.e., the annotation is dense in space and sparse in time to allow
for the evaluation of methods with this long sequence. The Busy Parking Lot dataset
is challenging because it presents a high range of variations, with a diversity of vehicle
colors, effects of shadow, several slightly blurred regions, and vehicles that are parked
too close. We train networks on the ISPRS Potsdam dataset and then perform vehicle
instance segmentation using the trained networks on this video dataset.

Quantitative Evaluation. Table 4.3 shows the quantitative comparison with other
methods.

For more experimental results and technical details, please refer to Appendix E.
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Table 4.5: Segmentation Results of Different Methods on Busy Parking Lot UAV Video Dataset
(Instance-level Dice Similarity Coeflicient)

Model 1s 15s 30s 45s 59s
Inception-FCN 26.81 26.06 25.68 22.89 23.77
B-Inception-FCN  32.37 33.07 33.34 30.44 31.26
Xception-FCN 7274 72774 7285 7247 71.31
B-Xception-FCN  77.31 77.50 77.22 77.13 76.32
ResFCN 71.17 7147 7176 68.82  72.73
B-ResFCN 78.84 7733 79.13 T77.83 79.39

4.6 Reasoning: Relational Reasoning in Networks for
Semantic Segmentation

4.6.1 Motivation

Although with more complicated and deeper networks and more labeled samples, there is
a technical hurdle in the application of CNNs to semantic image segmentation—modeling
contextual information.

It has been well recognized in the computer vision community for years that contextual
information, or relation, is capable of offering important cues for semantic segmentation
tasks. For instance, spatial relations can be considered semantic similarity relationships
among regions in an image. In addition, spatial relations also involve compatibility and
incompatibility relationships, i.e., a vehicle is likely to be driven or parked on pavements.
Unfortunately, only convolution layers cannot model such spatial relations due to their
local valid receptive field?.

Nevertheless, under some circumstances, spatial relations are of paramount importance,
particularly when a region in an image exhibits significant visual ambiguities. To ad-
dress this issue, several attempts have been made to introduce spatial relations into
networks by using either graphical models or spatial propagation networks. However,
these methods seek to capture global spatial relations implicitly with a chain propagation
way, whose effectiveness depends heavily on the learning effect of long-term memoriza-
tion. Consequently, these models may not work well in some cases like aerial scenes, in
which long-range spatial relations often exist (cf. Figure 4.11). Hence, explicit model-
ing of long-range relations may provide additional crucial information but still remains
underexplored for semantic segmentation.

3Feature maps from deep CNNs like ResNet usually have large receptive fields due to deep architectures,
whereas the study of [127] has shown that CNNs are apt to extract information mainly from smaller
regions in receptive fields, which are called valid receptive fields.
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Figure 4.11: Illustration of long-range spatial relations in an aerial image. Appearance similar-
ity or semantic compatibility between patches within a local region (red-red and
red—green) and patches in remote regions (red—yellow and red-blue) underlines
our global relation modeling.

4.6.2 Methodology

The proposed network takes VGG-16 as a backbone to extract multi-level features.
Outputs of the third, forth, and fifth layers are fed into the channel and spatial relation
modules for generating relation-augmented features. These features are subsequently fed
into respective convolutional layers with 1 x 1 filters to squash the number of channels
to the number of categories. Finally, the convolved feature maps are upsampled to a
desired full resolution and element-wise added to generate final segmentation maps.

Spatial Relation Module. In order to capture global spatial relations, we employ
a spatial relation module, where the spatial relation is defined as a composite function
with the following equation:

SR(xi, z;) = fs, (g0, (xi, xj)) - (4.32)

Denote by X € REXH*W 3 random variable representing a set of feature maps. x; and
x; are two feature-map vectors, identified by spatial positions indices 7 and j. The size
of ¢; and x; is C' x 1 x 1. To model a compact relationship between them, we make use
of an embedding dot product as gg, instead of a multilayer perceptron (MLP), and the
latter is commonly used in relational reasoning modules [120,122]. Particularly, gg, is
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Figure 4.12: Diagrams of spatial relation module.

defined as follows:
9o, (mia mj) = us(mi)TUs(mj) 5 (4'33)

where u,(x;) = Wy, x; and vg(x;) = Wy, x;. Wy, and W, are weight matrices and can
be learned during the training phase. Considering computational efficiency, we realize
Eq. (4.33) in matrix format with the following steps:

1. Feature maps X are fed into two convolutional layers with 1 x 1 filters to generate
us(X) and vs(X), respectively.

2. Then uys(X) and vs(X) are reshaped (and transposed) into HW x C and C'x HW,
correspondingly.

3. Eventually, the matrix multiplication of us(X) and vs(X) is conducted to produce
a HW x HW matrix, which is further reshaped to form a spatial relation feature
of size HW x H x W.

It is worth nothing that the spatial relation feature is not further synthesized (, summed
up), as fine-grained contextual characteristics are essential in semantic segmentation
tasks. Afterwards, we select the ReLU function as f4, to eliminate negative spatial
relations.

However, relying barely on spatial relations leads to a partial judgment. Therefore, we
further blend the spatial relation feature and original feature maps X as follows:

X, =[X,SR(X)]. (4.34)
Here we simply use a concatenation operation, i.e., [+, -], to enhance original features with

spatial relations. By doing so, output features are abundant in global spatial relations,
while high-level semantic features are also preserved.

Figure 4.12 shows the diagrams of the spatial relation module.
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Figure 4.13: Diagrams of channel relation module.

Channel Relation Module. Although the spatial relation module is capable of captur-
ing global contextual dependencies for identifying various objects, misdiagnoses happen
when objects share similar distribution patterns but vary in channel dimensionality. In
addition, a recent work [21] has shown the benefit of enhancing channel encoding in a
CNN for image classification tasks. Therefore, we propose a channel relation module to
model channel relations, which can be used to enhance feature discriminabilities in the
channel domain. Similar to the spatial relation module, we define the channel relation
as a composite function with the following equation:

CR(X), X¢) = f¢c(gec(Xp’Xq))7 (4.35)

where the input is a set of feature maps X = {X1, X, -, X}, and X, as well as X,
represents the p-th and the g-th channels of X. Embedding dot product is employed to
be gp,, defined as

90.(Xp, Xq) = UC(GAP(XP))TUC(GAP(Xq)) ) (4.36)

for capturing global relationships between feature map pairs, where GAP(-) denotes the
global average pooling function. Notably, considering that the preservation of spatial
structural information distracts the analysis of channel inter-dependencies, we adopt
averages of X, and X, as channel descriptors before performing dot product. More
specifically, we feed feature maps into a global average pooling layer for generating a set
of channel descriptors of size C' x 1 x 1, and then exploit two convolutional layers with
1 x 1 filters to produce u.(X) and v.(X), respectively. Afterwards, an outer product is
performed to generate a C' x C' channel relation feature, where the element located at
(p, ¢) indicates gg,(Xp, Xq).

Furthermore, we emphasize class-relevant channel relations as well as suppress irrelevant
channel dependencies by adopting a softmax function as fy., formulated as

exp(go. (Xp, Xq))
Zle exp(ge. (Xp, Xq)) 7

Joc(90.(Xp, Xq)) = (4.37)
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where we take X, as an example. Consequently, a discriminative channel relation map
CR(X) can be obtained, where each element represents the corresponding pairwise chan-
nel relation.

To integrate CR(X) and original feature maps X, we reshape X into a matrix of Cx HW
and employ a matrix multiplication as follows:

X.=XTCR(X). (4.38)

With this design, the input features are enhanced with channel relations and embedded
with not only initial discriminative channel properties but also global inter-channel cor-
relations. Eventually, X is reshaped to C' x H x W and fed into subsequent procedures.

Integration of Relation Modules. In order to jointly enjoy benefits from spatial
and channel relation modules, we further aggregate features X, and X, to generate
spatial and channel relation-augmented features. We investigate two integration pat-
terns, namely serial integration and parallel integration, to blend X, and X.. For the
former, we append the spatial relation module to the channel relation module and infer
X from X, instead of X, as presented in Eq. (4.32) and Eq. (4.38). For the latter, spa-
tial relation-augmented features and channel relation-augmented features are obtained
simultaneously and then aggregated by performing concatenation.

Figure 4.13 shows the diagrams of the channel relation module.

4.6.3 Results

Dataset. Vaihingen dataset? is composed of 33 aerial images collected over a 1.38 km?
area of the city, Vaihingen, with a spatial resolution of 9 cm. The average size of each
image is 2494 x 2064 pixels, and each of them has three bands, corresponding to near
infrared (NIR), red (R), and green (G) wavelengths. Notably, DSMs, which indicate
the height of all object surfaces in an image, are also provided as complementary data.
Among these images, 16 of them are manually annotated with pixel-wise labels, and each
pixel is classified into one of six land cover classes. We select 11 images for training, and
the remaining five images (image IDs: 11, 15, 28, 30, 34) are used to test our model.

Quantitative Evaluation. Table 4.1 shows the quantitative comparison with other
methods.

For more experimental results and technical details, please refer to Appendix F.

‘http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
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Table 4.6: Experimental Results on the Vaihingen Dataset
Model Name ‘ Imp. surf. Build. Low veg. Tree Car mean Fy

SVL+CRF 86.10 90.90 77.60 84.90  59.90 79.90 84.70
RF+dCRF 86.90 92.00 78.3 86.90  29.00 74.60 85.90
CNN-FPL - - - - - 83.58 87.83
FCN 88.67 92.83 76.32 86.67 74.21 83.74 86.51
FCN-dCRF 88.80 92.99 76.58 86.78  T1.75 83.38 86.65
SCNN 88.21 91.80 7717 87.23  78.60 84.40 86.43
Dilated FCN 90.19 94.49 77.69 87.24  76.77 85.28 87.70
FCN-FR 91.69 95.24 79.44 88.12  78.42 86.58 88.92
PSPNet 89.92 94.36 78.19 87.12 7297 84.51 87.62
RotEqgNet 89.50 94.80 77.50 86.50  72.60 84.18 87.50
RA-FCN-srm 91.01 94.86 80.01 88.74 87.16 88.36 89.03
P-RA-FCN 91.46 95.02 80.40 88.56 87.08 88.50 89.18
S-RA-FCN 91.47 94.97 80.63  88.57 87.05 88.54  89.23
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5 Conclusion

5.1 Summary

This thesis explores several deep networks for tackling common perception tasks in
the remote sensing community, such as hyperspectral image classification and semantic
segmentation of high resolution aerial images. More specifically,

for hyperspectral image analysis,

e a modified GRU-based RNN model was proposed to analyze hyperspectral pixels
form a novel perspective, i.e., taking them as sequential data instead of vectors in
most existing machine learning methods;

e an end-to-end trainable residual conv-deconv network was proposed for unsuper-
vised spectral-spatial feature learning, and an interesting finding is some learned
filters in the first convolutional block in such unsupervised learning networks have
high-level semantics, which makes “free” object detection possible in hyperspectral
images;

e a recurrent convolutional neural network was presented to learn a joint spectral-
spatial-temporal feature representation for sequence analysis tasks in remote sens-
ing like change detection;

e for studying if different bands contribute unequally, a spectral attentional module
was devised, and it can improve the performance of a CNN by recalibrating spectral
bands according to learned attentions to them:;

and for the instance segmentation of vehicles in high resolution aerial images and videos,

e a unified multitask learning CNN was proposed to jointly two complementary sub-
tasks, i.e., segmenting vehicle masks and estimating vehicle boundaries.

From perception to reasoning,

e this thesis explores a relational reasoning module-equipped FCN, where both spa-
tial and channel relations are reasoned about for information propagation in aerial
image semantic segmentation tasks.
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5 Conclusion

These studies address the questions raised in Section 1.1. For the first question, i.e., what
do rich spectra of hyper/multi-spectral imagery bring for deep networks, the findings are:

e On one hand, we can benefit from the rich spectral information offered by hyper-

multi-spectral images. For example, some filters learned in the first convolutional
block of an unsupervised conv-deconv network have high-level or object-level se-
mantics, which is different from the knowledge in computer vision, where we believe
lower layers of a CNN can only learn fairly simple conceptions, e.g., lines with dif-
ferent directions, parts of object boundaries, and various color patterns, and only
deeper layers can learn high-level semantics. This special property makes it possi-
ble to learn “free” object-specific detectors using hyper/multi-spectral data.

On the other hand, for a specific task, we do not need all spectral bands. In other
words, not all spectral bands contribute equally to a CNN for classification tasks
for example. CNNs usually pay more attention to a part of spectral bands (which
we call informative bands) and ignore others. And according to experiments,
networks tend to select spectral bands with high information entropy. This is in
line with studies in hyperspectral band selection, in which information entropy is
an important measurement.

Finally RNN is a good model for processing spectral sequence and time sequence
data. But recently, self-attention models show better performance than RNN mod-
els in many fields. For instance, in NLP, there is even a trend replacing RNNs with
self-attention models. For multi-temporal data analysis in the remote sensing com-
munity, it is not clear at the moment. More studies in this direction are expected.

For the second question, i.e., object detection and semantic segmentation in high reso-
lution aerial images, I have the following opinions:
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e Touching objects, e.g., close cars in a busy parking lot, are one of hard situations

in instance segmentation of remote sensing images. A multi-task learning-based
segmentation network is an effective solution. But its inference time is a little
bit slow, which cannot meet the requirement of real-time applications. A rotative
object detection framework may be an efficient solution, particularly for objects
with regular shapes (e.g., cars), by predicting rotative bounding boxes to perfectly
fit shapes of objects. This method is much faster than semantic segmentation-
based approaches.

Modeling both short- and long-range relations or dependencies are important for
semantic segmentation in remote sensing images. While most existing solutions,
e.g., introducing graphic models into networks, do not work well in aerial images.
Relational reasoning and self-attention models seem promising solutions because
they can explicitly model global relations in images. But one drawback of these
methods is they need huge computation and memory costs. How to significantly
reduce such costs is important for applying these models to practical, large-scale
applications.



5.2 Outlook

For the third question, i.e., can remote sensing data analysis benefit from reasoning
learning, I have explored in the sixth work in this thesis, and for more discussions refer
to the next section.

5.2 Outlook

Over the past years deep networks have brought a real revolution in remote sensing,
producing stunning results in a variety of different applications. For instance, deep
network-based remote sensing image classification, object detection, and semantic seg-
mentation systems can now be trained to recognize hundreds of different land cover and
land use categories, which sometimes are difficult to distinguish even for humans. Albeit
these are indeed impressive advancements, there is no doubt that many problems that
are really at the core of Al for Earth observation are far from being solved. This is
particularly true for those tasks that involve reasoning, such as induction, deduction,
spatial and temporal reasoning, and structure inference. Here I give three examples:
spatial reasoning in remote sensing images, temporal reasoning for understanding aerial
video data, and multimodal fusion network architecture reasoning.

e So far the automatic interpretation of high-resolution aerial and satellite images
has mainly focused on identifying land cover/land use and objects in images —
learning to predict their presence (i.e., image classification) and spatial locations
(i.e., object detection or semantic segmentation). These object-centric methods
have matured significantly in recent years, and most of these gains are a result of
making use of deep learning techniques, such as CNNs and RNNs. However, unlike
humans, current vision systems for high-resolution remote sensing image analysis
represent images as collections of semantic objects and fail to reason about complex
spatial relations among them which may be essential for visual understanding. An
example is to accurately search “buildings” near a “river”. Most current remote
sensing image retrieval systems simply search for images containing both “building”
and “river” while ignoring their spatial relations (in this case “near”). Therefore, a
critical question now is: how do we incorporate both spatial and semantic reasoning
effectively to build next-generation intelligent vision systems for Earth observation?

e Along with the launch of small and cheap commercial satellites (e.g., the SkySat-
constellation of Terra Bella) and the widespread availability of unmanned aerial
vehicles (UAVs), space-borne and high-resolution airborne videos are now acces-
sible at a reasonable cost. In comparison with static images, the unique asset of
these remotely sensed videos is their rich temporal content, which can be exploited
for a wide range of dynamic Earth observation problems (e.g., human activity
recognition, event detection, and real-time traffic and disaster monitoring). How-
ever, so far the automatic parsing of such videos has received scant attention in the
remote sensing community and still remains underexplored. On the other hand,
understanding such complex video data usually needs long-range temporal reason-
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ing, which allows a model to analyze the current situation relative to the past and
formulate hypotheses on what may happen next. Unfortunately, most existing
deep learning models either lack the capability of modeling long-range temporal
relations, e.g., CNNs, or capture these relations implicitly in a chain propagation
way, whose effectiveness depends heavily on the learning effect of long-term memo-
rization, e.g., RNNs. Hence, enabling explicit temporal reasoning in networks may
provide additional crucial information for such video analysis tasks.

e Earth observation data are often multimodal, for example, from optical (multi- and
hyperspectral) to Lidar and from synthetic aperture radar (SAR) to video data,
where their imaging geometry and content are completely different. Data and in-
formation fusion using these complementary data sources in a synergistic way for
Earth observation tasks is conceptually of high interest and has been an active
research topic in recent years. A crucial problem in data fusion is to develop ap-
propriate architectures to jointly extract information from multimodal data taken
from different perspectives and even different imaging modalities. Existing deep
learning models for remote sensing data fusion depend upon hand-designed archi-
tectures, e.g., Siamese network and multi-stream architecture. However, fusing
modalities using these hand-crafted network architectures is not necessarily the
most optimal way. Therefore, an important research question is: can optimal mul-
timodal network architectures be automatically reasoned about for the purpose of
data fusion?

The study of spatial reasoning in remote sensing images could benefit to a wide range
of applications, to name a few, a smarter image retrieval system that can understand
both semantics and spatial relations among objects, image captioning, and VQA system
for remote sensing data. On the other hand, explorations in temporal reasoning can
benefit for tasks like dynamic event recognition and reasoning in UAV videos, anomaly
detection in time series data, and future prediction using remote sensing data.

Uncertainty is one of the most common challenges among different areas of remote sens-
ing and still remains under-explored. Everyday voluminous data are being produced by
various remote sensing sensors and applications. However, one needs quantitative uncer-
tainty information associated with the data to extract information and distill knowledge
from the data. Uncertainty quantification is also a critical scientific effort for both data
producers and end users, as the process will provide revealing error characteristics to
guide further improvements in data production and rational use of the data. On the
other hand, quantifying uncertainty associated with predictions of deep networks is crit-
ical for their deployment and use in practical remote sensing applications. For instance,
in land use/cover classification and change detection, deep networks have to be able not
only to predict accurately, but also to quantify how certain they are with respect to pre-
dictions. Hence uncertainty estimation in deep networks for remote sensing applications
is very important.
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Furthermore, the combination of prior knowledge and deep networks would also be a
promising direction. Deep networks are capable of learning powerful feature represen-
tations, and these models can be trained in a fully integrated way. However, training
deep networks is difficult when we face the small sample size problem (which is com-
monly seen in remote sensing applications). Injecting prior knowledge into the networks
is a principled way to significantly reduce the amount of required training instances, as
the models do not need to induce the knowledge from the data itself. For example, a
possible way to effectively train deep networks with limited data samples is to encode
some structures in network architectures: these structures are able to encode some avail-
able domain prior knowledge in networks without relying on massive amount of data to
extrapolate it.
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Lichao Mou, Student Member, IEEE, Pedram Ghamisi, Member, IEEE,
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Abstract—In recent years, vector-based machine learning
algorithms, such as random forests, support vector machines,
and 1-D convolutional neural networks, have shown promising
results in hyperspectral image classification. Such methodolo-
gies, nevertheless, can lead to information loss in representing
hyperspectral pixels, which intrinsically have a sequence-based
data structure. A recurrent neural network (RNN), an important
branch of the deep learning family, is mainly designed to handle
sequential data. Can sequence-based RNN be an effective method
of hyperspectral image classification? In this paper, we propose a
novel RNN model that can effectively analyze hyperspectral pixels
as sequential data and then determine information categories
via network reasoning. As far as we know, this is the first time
that an RNN framework has been proposed for hyperspectral
image classification. Specifically, our RNN makes use of a
newly proposed activation function, parametric rectified tanh
(PRetanh), for hyperspectral sequential data analysis instead of
the popular tanh or rectified linear unit. The proposed activation
function makes it possible to use fairly high learning rates
without the risk of divergence during the training procedure.
Moreover, a modified gated recurrent unit, which uses PRetanh
for hidden representation, is adopted to construct the recurrent
layer in our network to efficiently process hyperspectral data and
reduce the total number of parameters. Experimental results
on three airborne hyperspectral images suggest competitive
performance in the proposed mode. In addition, the proposed
network architecture opens a new window for future research,
showcasing the huge potential of deep recurrent networks for
hyperspectral data analysis.

Index Terms— Convolutional neural network (CNN), deep
learning, gated recurrent unit (GRU), hyperspectral image clas-
sification, long short-term memory (LSTM), recurrent neural
network (RNN).

I. INTRODUCTION
N THE past few decades, the analysis of hyperspectral
imagery acquired by remote sensors has attracted consider-
able attention in the remote sensing community, as such data
are characterized in hundreds of continuous observation bands
throughout the electromagnetic spectrum with high spectral
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resolution [1]. With this rich spectral information, different
land cover categories can potentially be precisely differenti-
ated. To benefit from this type of data, supervised hyperspec-
tral image classification plays a significant role and has been
investigated in many applications, including urban develop-
ment [2]-[5], the monitoring of land changes [6]-[9], scene
interpretation [10]-[13], and resource management [14], [15].

Numerous types of supervised classification models have
been discussed in the literature, including decision trees [16],
random forests [17], [18], and support vector machines
(SVMs) [19], [20]. Among them, the random forest [18]
develops multiple trees from randomly sampled subspaces
of input hyperspectral pixel vectors and then combines the
outputs via voting or a maximum a posteriori rule. In contrast,
SVM, a supervised machine learning technique, has achieved
great success in various applications and is considered a stable
and efficient algorithm for hyperspectral image classification
tasks. An SVM seeks to separate two-class data by learning an
optimal decision hyperplane that can best separate the training
samples in a kernel-included high dimensional feature space.
Some strategies, such as one-against-all and one-against-one,
enable the use of original binary SVM for multiclass clas-
sification. In addition, some extensions of the SVM model
in hyperspectral image classification have been presented to
improve the classification performance [21], [22].

When the ratio of the number of available training samples
and the number of spectral bands is unbalanced, theoreti-
cal and practical problems may arise and the hyperspectral
image classification becomes an ill-posed problem. For exam-
ple, while keeping the number of available training samples
constant, the classification accuracy will decrease when the
dimension of input feature vectors becomes large [23], [24].

In recent years, deep learning has made promising achieve-
ments in the machine learning field [25]-[29]. It attempts to
learn hierarchical representations from raw data and is capable
of learning simple concepts first and then successfully building
up more complex concepts by merging the simpler ones.
In remote sensing, convolutional neural networks (CNNs)
have been shown to be successful for hyperspectral data
classification [30]-[32]. Hu et al. [30] presented a CNN
that contains an input layer, a convolutional layer, a max-
pooling layer, a fully connected layer, and an output layer
for hyperspectral image classification. The CNN has been
employed to classify hyperspectral data directly in the spectral
domain. Makantasis et al. [31] presented a deep learning-
based classification method that hierarchically constructs high-
level features automatically. In particular, their model exploits

0196-2892 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
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a CNN to encode the spectral and spatial information of
pixels and a multilayer perceptron to conduct the classification
task. Chen et al. [32] proposed a regularized 3-D CNN-based
feature extraction model to extract efficient spectral-spatial
features for hyperspectral image classification. In addition,
Chen et al. [33] proposed a hybrid framework based on stacked
autoencoders for the classification of the hyperspectral data.

All of the supervised models for hyperspectral images

described earlier are vector-based methodologies.! It should
be noted that these vector-based approaches can lead to infor-
mation loss when representing hyperspectral pixels, which
intrinsically have a sequence-based data structure. To the best
of our knowledge, almost all advanced spectral classifiers, such
as SVM, random forest, and CNN-based classification, are
vector-based approaches, which consider hyperspectral data to
be a collection of pixel vectors and perform the classification
procedure in feature space: each pixel is considered a point in
an orderless d-dimensional feature space in which d represents
the number of dimensions (bands) [1]. However, hyperspectral
data can be seen as a set of orderly and continuing spec-
tra sequences in the spectral space. Analyzing hyperspectral
imagery from a sequential perspective has not been addressed
so far. Our motivation in this paper is to explore the represen-
tation of hyperspectral pixels via the sequential perspective
instead of classifying hyperspectral data in the feature space.

In this paper, we make use of a recurrent neural net-

work (RNN) to characterize the sequential property of
a hyperspectral pixel vector for the classification task.
An RNN [34]-[36] is a network that uses recurrent connec-
tions between neural activations at consecutive time steps;
such a network uses hidden layers or memory cells to
learn the states that model the underlying dynamics of the
input sequence for sequential data over time. RNNs have
gained significant attention for solving many challenging
problems involving sequential data analysis, such as lan-
guage modeling [37], machine translation [38], and speech
recognition [39], [40]. Since the temporal variability of a
sequential signal, such as a language sentence, is similar to the
spectral variability of a hyperspectral pixel, the same idea can
be applied to hyperspectral pixel vectors. The RNN exploits
a recurrent procedure to characterize spectral correlation and
band-to-band variability, where the network parameters are
determined by training with available samples. In this context,
we propose a novel RNN with a specially designed activation
function and modified gated recurrent unit (GRU) to solve the
multiclass classification for hyperspectral imagery. This paper
contributes to the literature in three major respects.

1) We represent and process the pixels of hyperspectral
images via a sequential perspective instead of taking
them as feature vectors to capture the intrinsic sequence-
based data structure of hyperspectral pixels. This enables
us to take full advantage of the sequential property of
hyperspectral data, e.g., spectral correlation and band-
to-band variability.

Here, vector-based approaches refer to those that consider the input to be
vectors. Although CNN-based models consider the inherent relationship of the
inputs during the process, such models are still categorized as vector-based
models in this paper.
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2) An RNN with GRUs is proposed for a hyperspectral
image classification task. To the best of our knowledge,
this is the first use of the recurrent network model for
the problem of hyperspectral image classification.

3) We introduce a new activation function, parametric
rectified tanh (PRetanh), which generalizes the rectified
unit for the deep RNN and then modifies the proposed
activations of GRUs. With this new activation function,
fairly high learning rates can be used to train the network
without the risk of divergence.

The remainder of this paper is organized as follows.
An introduction to RNNs is briefly given in Section II. The
details of the proposed RNN architecture for hyperspectral
image classification, including a novel activation function and
modified GRU, are described in Section III. The network
setup, experimental results, and a comparison with state-
of-the-art approaches are provided in Section IV. Finally,
Section V concludes this paper.

II. BACKGROUND ON RECURRENT NEURAL NETWORKS

An RNN [34], [35] is a class of artificial neural network
that extends the conventional feedforward neural network with
loops in connections. Unlike a feedforward neural network,
an RNN is able to process the sequential inputs by having a
recurrent hidden state whose activation at each step depends
on that of the previous step. In this manner, the network can
exhibit dynamic temporal behavior.

Given a sequence data X = (X1, X2, ...,Xr), where x; is
the data at ith time step, an RNN updates its recurrent hidden

state h, by
Oa ifr=0
h; = ) (1)
o(h,_1,x,), otherwise

where ¢ is a nonlinear function, such as a logistic sigmoid
function or hyperbolic tangent function. Optionally, the RNN
may have an output y = (yi,¥2,...,yr). For some tasks,
such as hyperspectral image classification, we need only one
output, i.e., yr.

In the traditional RNN model, the update rule of the
recurrent hidden state in (1) is usually implemented as follows:

h; = p(Wx; 4+ Uh,_) (2)

where W and U are the coefficient matrices for the input at
the present step and for the activation of recurrent hidden units
at the previous step, respectively.

In fact, an RNN can model a probability distribution over
the next element of the sequence data, given its present
state h;, by capturing a distribution over sequence data of vari-
able length. Let p(x1, X2, ..., X7) be the sequence probability,
which can be decomposed into

SXr-1). (3)

Then, each conditional probability distribution can be mod-
eled with a recurrent network

- X—1) = ¢(hy) “

p(X1,X2, ..., X7) = p(x1) - - p(X7|X], ..

p(xl|xl"'
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where h; is obtained from (1) and (4). Our motivation in this
paper is apparent here: a hyperspectral pixel acts as sequential
data instead of a feature vector, and so a recurrent network
can be adopted to model the spectral sequence.

As an important branch of the deep learning family, RNNs
have recently shown promising results in many machine learn-
ing and computer vision tasks. However, it has been observed
that it is difficult to train the RNNs to deal with long-term
sequential data, as the gradients tend to vanish. To address this
issue, one common approach is to design a more sophisticated
recurrent unit.

Long short-term memory (LSTM) [41], [42] is a special
type of recurrent hidden unit, capable of learning long-term
dependences. LSTM was initially introduced in [41]. Since
then, a number of minor modifications to the original version
have been made [42], [43]. A recurrent layer with traditional
recurrent hidden units is shown in (2), which simply calculates
a weighted linear sum of inputs and then applies a nonlinear
function. In contrast, an LSTM-based recurrent layer creates
a memory cell ¢; at step ¢. The activation of the LSTM units
can be computed by

h; = o, tanh(c,) )

where tanh(-) is the hyperbolic tangent function and o, is the
output gate that determines the part of the memory content
that will be exposed. The output gate is updated by

o, = 0 (Wyix; + Worh, 1 + Woeey) (6)

where o (-) is a logistic sigmoid function and W terms denote
weight matrices; e.g., W,; is the input—output weight matrix
and W, represents the memory-output weight matrix.

The memory cell ¢; is updated by adding new content of
memory cell ¢; and discarding part of the present memory
content

¢ =i, 06+ Oc— @)

where © is an elementwise multiplication, and the new content
of memory cell ¢; is obtained by

¢; = tanh(W¢;x; + Werhy_p). (®)

Input gate i, modulates the extent to which the new memory
information is added to the memory cell. The degree to which
content of the existing memory cell is forgotten is decided by
the forget gate f;. The equations that calculate these two gates
are as follows:

i = o(Wiix; + Wih 1 + Wiee, 1) )
fi = c(Wyix; + Wephi—1 + Weee, ). (10)

Fig. 1 shows the graph model of LSTM.

ITI. PROPOSED RECURRENT NETWORK FOR
HYPERSPECTRAL IMAGE CLASSIFICATION

In the main procedure of the proposed recurrent network,
as shown in Fig. 2, the input of the network is a hyperspectral
pixel x, where the kth spectral band is denoted as x*. The
output is a label that indicates the category the pixel belongs
to. The entire classification map can be obtained by applying
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Fig. 1. Graphic model of LSTM. i, f, o, and c are the input gate, forget gate,
output gate, and memory cell, respectively. The new memory cell content is
denoted by c.

the network to all pixels in the image. The flowchart of our
RNN can be summarized as follows.

1) First, the value of the existing spectral band x* is fed
into the input layer.

2) Then, the recurrent layer receives x* and calculates the
hidden state information for the current band; it also
restores that information in the meantime.

3) Subsequently, the value of the next band x is input
to the recurrent layer simultaneously with the state
information of x¥, and the activation at spectral band
k + 1 is computed by a linear interpolation between
proposal activation and the activation of the previous
band k.

4) Finally, the RNN predicts the label of the input hyper-
spectral pixel by looping through the entire hyperspectral
pixel sequence.

Two important factors affect the performance of RNN:
the activation function and the structure of the recurrent
unit. In Section III-A and Section III-B, we will discuss our
innovative contributions on these two factors in detail.

k+1

A. Parametric Rectified tanh

Recently, rectified linear activation functions, such as the
rectified linear unit (ReLU) [25], have become a common
approach to training deep convolutional networks. They have
been proposed to alleviate the vanishing gradient problem and
speed up the learning process by identifying positive values;
however, this leads to a nonbounded output. We have utilized
the proposed activation function instead of the existing ones
for several reasons.

1) To train an RNN in our task, the vanishing gradient
problem is not a concern, as modern recurrent network
models, such as LSTM and GRU, have already been
designed to tackle this issue. By using gates, LSTMs
and the GRUs help preserve the errors that can be back-
propagated through sequence and layers. By maintaining
a more constant error, they allow recurrent networks
to continue to learn over many bands of hyperspectral
pixels without the risk of the vanishing gradient.

2) In our experiments, the recurrent network often runs into
numerical problems when a rectified linear function like
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Fig. 2. Overview of our pipeline. First, the value of existing spectral band xk is fed into the input layer. Then, the recurrent layer receives x¥ and calculates
the hidden state information for the current band; it also restores that information in the meantime. Next, the value of the next band k1 g input to the
recurrent layer simultaneously with the state information of xk, and the activation at spectral band k + 1 is computed by a linear interpolation between
proposal activation and the activation of previous band k. Finally, the RNN can predict the label of the input hyperspectral pixel by looping through the entire

hyperspectral pixel sequence.

ReLU is used as an activation functions for the network
output, given that gradients often need to be truncated
often (and ReLU cannot dampen them like the bounded
activation functions, such as tanh).

3) Traditional bounded activation functions, such as sig-
moid and tanh, are always likely to generate some
nonzero values, resulting in dense representations, while
sparse representations seem to be better than dense
representations in terms of representation learning.

Thus, to train a valid recurrent network for the hyperspectral

image classification, we designed the new activation function
PRetanh, which has two major advantages: 1) producing a
bounded output and 2) promoting sparsity adaptively.

Definition: In this section, we introduce a newly defined

activation function—PRetanh. It is defined as

tanh(h;),  if hi > 0

. (11
Ai tanh(hi), if h; <0

f(hi) =
where h; is the input of the nonlinear activation f on the ith
channel and 0 < A; < 1 is a coefficient that can control the
range of the negative part. The subscript i means that PRetanh
can be varied in different channels. When 4; = 0, it turns to

f(hi) = max(0, f(h;)) = max(0, tanh(h;)). (12)

When 4; is a learnable parameter, we refer to (11) as a
parametric rectified hyperbolic tangent function. Fig. 3 shows
the shapes of tanh and PRetanh. Equation (11) is equivalent to

f(h;) = max(0, tanh(h;)) + 4; min(0, tanh(k;)). (13)

In our method, the PRetanh parameter 1; is adaptively
learned jointly with the whole neural network model. We
expect that end-to-end training can lead to more specialized
activations. Note that extra parameters are introduced in PRe-
tanh. The total number of extra parameters for each layer is
equal to the number of channels, which is negligible when

taking into account the number of weights of the whole net-
work. Therefore, we anticipate no extra risk of overfitting with
the same number of training samples. In addition, a channel-
shared variant version of PRetanh can be considered

f(hi) = max(0, tanh(h;)) + A min(0, tanh(h;))  (14)

where all channels of one layer share the same coefficient 1.
In this case, only a single extra parameter is introduced for
each layer.

Optimization: With respect to the training of PRetanh,
we use the backpropagation algorithm and simultaneously
optimize the parameters of PRetanh with the neural networks.
Suppose we have an objective function L that we wish to
minimize, and the update rule of parameter 4; is derived by
the chain rule

oL _Z oL of (h;)
0 I of (h;) 04

The term (0L)/(df (h;)) is the gradient backpropagated
from the deeper layer of PRetanh. The summation ), is
applied in all positions of the feature maps. Specifically, the
gradient of activation is given by

5)

of (hi) |0, if hj >0 (16)
oAi  |tanh(h;), if hj <O.
Equation (16) can be rewritten as follows:
of (h;
% — min(0, tanh(k;)). (17)
i

Moreover, for the channel-shared variant version, the
gradient of A is as follows:

oL oL of (hi)
L th of (hi) 04

where Y, sums over all channels of the layer.

(18)
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£(h) = tanh(h)

Fig. 3.

The momentum method is commonly used to help accel-
erate stochastic gradient descent in the relevant direction and
dampens oscillations by adding a fraction y of the update
parameter. Here, we adopt the momentum method when
updating parameter Z;. The updating rule is

oL

02
where # is the learning rate and y is the momentum. Note
that we do not use weight decay, i.e., {» regularization, for
updating 1;, since a weight decay term tends to push the
rectified parameters 4; to zero.

Analysis: The two major advantages lie in obtaining adap-
tively sparse and bounded output. Sparsity arises when 4; = 0
and h; < 0. The more such units exist in a layer, the more
sparse the resulting representations will be. The traditional
tanh, in contrast, is always likely to generate some nonzero
values, resulting in dense representations, while sparse rep-
resentations seem to be better than dense representations.
In addition, unlike the popular ReLU [25], which restricts the
form of the negative part, we do not apply any constraints or
regularization to it. As a result, the parameter 1; that controls
sparsity can be learned freely as the network trains. The other
merit of PRetanh, the bounded output, is important from a
practical perspective, because it means that the activations of
the recurrent network will not blow up. The bounded output
can reduce the probability of change in the distribution of
internal nodes of deep networks to some extent, which allows
fairly high learning rates to be used without the risk of diver-
gence. In Section IV, it will be demonstrated that, compared
with ReLU, using PRetanh as the activation function can
effectively overcome the divergence of the recurrent network
for hyperspectral image classification in the course of training.

Nevertheless, since PRetanh is affected by tanh, it likely
moves many inputs into the saturated regime of the non-
linearity, and slows down the convergence. This effect is
amplified as the recurrent network depth increases. In practice,
the saturation problem and the resulting vanishing gradients
are usually addressed by a carefully chosen initialization and
the use of small learning rates. If, however, the distribution
of inputs could be ensured to remain more stable as the
training goes on, the optimizer would be less likely to fall
into the saturation regime. In this paper, we combine a batch
normalization technique with PRetanh to avoid the vanishing
gradient problem.

ALi =y Ali+7 (19)

£(h) = A tanh(h)

(From left to right) tanh, ReLU, and PRetanh. For PRetanh, the coefficient A of the negative part is not constant and is adaptively learned.

For a layer with D  dimensional output
h = (hy,hy,...,hp), we normalize the ith channel as
follows:

~  h; —E[h]

hi = — 20

i Nali (20)
where E[h;] = ﬁzyzlhfj ) s the expectation,
H = {hfl)“‘(N)} represents the set of values of h; over

a mini training batch, and Var[h;] is the variance. We also
need to scale and shift the normalized values; otherwise,
just normalizing a layer would limit the layer in terms of
what it can represent. Therefore, the normalized input 4; is
transformed into

g(hi) = aihi + fi
where o and S are parameters learned along with the original
network parameters. Finally, batch normalization makes it pos-

sible to use PRetanh nonlinearities by preventing the network
from getting stuck in the saturated modes.

21

B. Recurrent Unit

Recently, more and more empirical results have demon-
strated that RNNs are not just powerful in theory [42],
[44], [45] but can also be reliably learned in practice for
processing long-term sequential data [36], [46], [47]. One
interesting observation is that a few of these successes were
obtained with the traditional RNN model. Rather, they used
an RNN with sophisticated recurrent hidden units like LSTM,
because such structures are capable of alleviating the vanishing
gradient problem. However, available training samples for
remote sensing image classification are often limited, forcing
researchers to control the total number of trainable parameters
of the network as much as possible. We, therefore, design a
novel GRU with PReLU, which is able to deal with long-
term sequential data like hyperspectral sequences and is more
suitable for a small number of training samples, since it has
fewer parameters than LSTM.

1) LSTM for Hyperspectral Image Classification: For a
hyperspectral image classification task, given a hyperspectral
pixel sequence x = (xl,xz,...,xK), a traditional RNN
framework [34] calculates the hidden vector sequence h =
(h', b2, ... hX) by iterating the following equation from
k=1t K:

h* = p(wipxk + Wi h=! 4+ by) (22)
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where w;;, denotes the input-hidden weight vector, Wy, rep-
resents the context weight matrix of the hidden layer, by is
the hidden bias vector, and ¢ (-) is the hidden layer activation
function. Finally, the predicted label y can be computed as
follows:

y = Wyh% +b, (23)

where W, is the output-hidden weight matrix and b, is the
bias vector of output layer.

In this paper, we want to use an RNN to characterize
the spectral correlation and band-to-band variability when
mapping between input pixel sequences and output labels.
Unfortunately, for standard recurrent network architecture, the
range of spectral contexts that can be accessed in practice
is quite limited. The problem is that the influence of a given
input on the hidden layer and, therefore, on the network output
either decays or blows up exponentially as it cycles around the
recurrent connections of the network. This effect is a common
challenge in designing and training deep RNNs and is known
as the vanishing gradient problem [48].

To process long-term sequences, which is crucial to the
task, as hyperspectral imagery usually includes hundreds of
spectral bands, LSTMs were proposed to address the vanishing
gradient problem. LSTMs [42] introduce the gate concept
and memory cell to help preserve the error that can be
backpropagated through steps and layers. By maintaining a
more constant error, they allow recurrent networks to continue
to learn over many steps (over 1000) and thereby enable us to
utilize a large range of spectral contexts, e.g., to link the first
and last spectral bands remotely.

2) Gated Recurrent Unit With PReLU: However, LSTMs
lead to more parameters, which need to be learned. And,
as discussed earlier, the limited number of training samples
drives a need to restrict the number of parameters, to avoid
overfitting.

Therefore, a deep RNN with modified GRUs tailored for
hyperspectral sequence analysis is proposed for hyperspectral
image classification. GRUs [44], [45] have fewer parameters
than LSTMs, and can also effectively process a long-term
spectral sequence. Moreover, PReLU is introduced to our
modified GRUs, allowing us to use fairly high learning rates
without the risk of divergence.

A GRU can cause a recurrent unit to adaptively capture
the dependences of different spectral bands. Similar to the
LSTM unit, the GRU has gate units that control the flow of
information inside the unit without including separate memory
cells.

The activation hf‘ of the ith GRU at spectral band k is
computed by a linear interpolation between the proposal acti-
vation pf.‘ and the activation of the previous spectral band hf‘ -1

k k k kY g k—1
h = uipi + (1 — u;)h} (24)
where u{-‘ is an update gate that determines how much the unit
updates its activation or content. The update gate uf‘ can be
calculated as follows:

uk = g (wyix* + Wbk, (25)
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where w,; is the input-update weight vector and W, repre-
sents the update-hidden weight matrix.

Similarly to LSTM, the GRU takes a linear sum between the
newly computed state and the present state. However, it lacks
a mechanism to control what part of the state information
will be exposed, rather exposing the whole state value at each
spectral band.

The proposal activation pff is computed using the value of
the existing spectral band and the activation of the previous
band, which reflects the updated information of the recurrent
hidden state. It is calculated with PRetanh and batch normal-
ization as follows:

PE = flewpix® + Wy (cF 0 b)), (26)

where r¥ is a set of reset gates, w pi denotes the proposal-input
weight vector, and W, represents the reset-hidden weight
matrix. Moreover, f(-) and g(-) represent PRetanh and batch
normalization, respectively. When the reset gate r!‘ is fully
OFF, i.e., r{‘ is 0, it will completely discard the activation of
the hidden layer at previous spectral bands hg‘f1 and only
use the value of the existing spectral band x*. When open
(rl-k close to 1), in contrast, the reset gate will partially keep
the information of the previous step.

Let ﬁf‘ = w,,ixk +W,, ko hk_l). Equation (26) can then
be transformed as

N ok
p¥ =max | 0, tanh o 2P Elpr] + Bi
Var 1]
b —E[pi]

+ A;min | O, tanh | a;

+Bi 27)

Ak
Var [ py]
The reset gate rl-k is computed similar to the update gate

rkE = o (Wrix® + Wbk, (28)
where w,; and W, are the reset-input weight vector and the
reset-hidden weight matrix, respectively.

Fig. 4 shows the graphic model of the GRU through time.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Description

1) Pavia University: This data set is acquired by reflective
optics system imaging spectrometer (ROSIS). The image is
of 610 x 340 pixels covering the Engineering School at the
University of Pavia, which was collected under the HySens
project managed by the German Aerospace Agency (DLR).
The ROSIS-03 sensor comprises 115 spectral channels ranging
from 430 to 860 nm. In this data set, 12 noisy channels have
been removed and the remaining 103 spectral channels are
investigated in this paper. The spatial resolution is 1.3 m per
pixel. The available training samples of this data set cover
nine classes of interests. Table I provides information about
different classes and their corresponding training and test
samples.
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Fig. 4. Graphic model of a GRU through time. The reset and update gates are denoted by r and u, respectively, and p and i are the proposal activation and

the final activation.

TABLE 1
NUMBER OF TRAINING AND TEST SAMPLES USED
IN THE PAVIA UNIVERSITY DATA SET

Class No.  Class Name  Training Test
1 Asphalt 548 6631
2 Meadows 540 18649
3 Gravel 392 2099
4 Trees 524 3064
5 Metal sheets 265 1345
6 Bare Soil 532 5029
7 Bitumen 375 1330
8 Bricks 514 3682
9 Shadows 231 947

TOTAL 3921 42776
TABLE 11

NUMBER OF TRAINING AND TEST SAMPLES
USED IN THE HOUSTON DATA SET

Class No. Class Name Training Test
1 Grass Healthy 198 1053
2 Grass Stressed 190 1064
3 Grass Synthetic 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

TOTAL 2832 12197

2) Houston Data: The second data set was acquired over
the University of Houston campus and its neighboring urban
area. It was collected with an ITRES-CASI 1500 sensor on
June 23, 2012 between 17:37:10 and 17:39:50 UTC. The aver-
age altitude of the sensor was about 1676 m, which results in
2.5-m spatial resolution data consisting of 349 by 1905 pixels.
The hyperspectral imagery consists of 144 spectral bands
ranging from 380 to 1050 nm and was processed (radiometric
correction, attitude processing, GPS processing, geocorrec-
tion, and so on) to yield the final geocorrected image cube
representing the sensor spectral radiance. Table II provides

TABLE III
NUMBER OF TRAINING AND TEST SAMPLES USED
IN THE INDIAN PINES DATA SET

Class No. Class Name Training  Test
1 Alfalfa 50 1384
2 Corn-notill 50 784
3 Corn-min 50 184
4 Corn 50 447
5 Grass-pasture 50 697
6 Grass-trees 50 439
7 Grass-pasture-mowed 50 918
8 Hay-windrowed 50 2418
9 Oats 50 564

10 Soybean-notill 50 162
11 Soybean-mintill 50 1244
12 Soybean-clean 50 330
13 Wheat 50 45
14 Woods 15 39
15 Buildings-grass-trees 15 11
16 Stone-steel-towers 15 5
TOTAL 695 9671

information about all 15 classes of this data set with their
corresponding training and test samples.

3) Indian Pines Data: The third data set was gathered by
an airborne visible/infrared imaging spectrometer sensor over
the Indian Pines agricultural site in Northwestern Indiana in
June 1992, and presents 16 classes, mostly related to land
covers. The data set consists of 145 by 145 pixels with
a spatial resolution of 20 m per pixel and 10-nm spectral
resolution over the range of 400-2500 nm. In this paper, we
made use of 200 bands, after removing 20 bands affected
by atmosphere absorption. The number of training and test
samples is displayed in Table III.

B. General Information

To evaluate the performance of different models for hyper-
spectral image classification, we use the following evaluation
criteria.

1) Overall Accuracy (OA): This index shows the number of
hyperspectral pixels that are classified correctly, divided
by the number of test samples.

2) Average Accuracy (AA): This measure is the average
value of the classification accuracies of all classes.
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Fig. 5. Learning curves for a recurrent network with ReLU, one with tanh and one with the proposed PRetanh on the training samples of (a) Pavia University
data set and (b) Houston data set. As shown in these figures, with PRetanh, we can make use of a fairly high learning rate, e.g., 1.0 instead of a relatively low
default 0.002, to train the recurrent network for hyperspectral image classification without the risk of divergence. Meanwhile, it can be seen that the ReLU
can cause the recurrent network to diverge when a fairly high learning rate is used. Here, we use the Adadelta optimization algorithm.

TABLE IV
CLASSIFICATION ACCURACIES OF DIFFERENT TECHNIQUES IN PERCENTAGES FOR PAVIA UNIVERSITY.
THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD

Class No.  Class Name RF-200 SVM-RBF CNN  RNN-LSTM RNN-GRU-tanh RNN-GRU-PRetanh

i Asphalt 80.85 80.80 83.73 7745 7842 84.45

2 Meadows 55.29 66.78 65.70 61.83 69.17 85.24

3 Gravel 52.93 73.18 67.03 64.60 47.83 5431

4 Trees 98.79 95.17 94.03 97.98 97.16 95.17

5 Metal Sheets  99.26 99.55 99.41 99.18 97.84 99.93

6 Bare Soil 78.76 92.90 96.30 91.19 85.86 80.99

7 Bitumen 84.36 90.08 93.83 90.90 86.84 88.35

8 Bricks 91.58 91.20 93.56 92.29 94.27 88.62

9 Shadows 98.20 93.77 99.79 97.47 94.93 99.89
OA - 7137 7882 8051 77.99 80.70 88.85
AA - 82.23 87.05 88.15 85.88 83.59 86.33
Kappa - 0.6484 07358  0.7423 0.7028 0.7201 0.8048

3) Kappa Coefficient: This metric is a statistical mea-
surement of agreement between the final classification
map and the ground-truth map. It is the percentage
agreement corrected by the level of agreement that could
be expected due to chance alone. It is generally thought
to be a more robust measure than a simple percent
agreement calculation, since k takes into account the
agreement occurring by chance [1].

If the number of samples for each category is identical,
OA and AA are equal. However, the category distribution
suffers from an imbalanced phenomenon in practice. Adopting
OA alone is not precise, since rare categories are commonly
ignored. Therefore, AA is also utilized to evaluate the perfor-
mance of different classification models. Strong differences
between the OA and AA may indicate that a specific class is
incorrectly classified with a high proportion.

To validate the effectiveness of the proposed RNN-based
classification framework, it is compared with the most widely
used vector-based classification models, SVM and random
forest. The SVM with an RBF kernel was implemented using
the libsvm package.> Fivefold cross-validation is taken into

2https://www.csie.ntu.edu.tw/~cj1in/1ibsvm/

account to tune the hyperplane parameters. Furthermore, in
this paper, experiments using other popular activation func-
tions (i.e., tanh and ReLLU) and recurrent units (i.e., LSTM)
are also carried out to verify the validity of the proposed
network. To conduct a fair comparison, PRetanh/tanh/ReLLU
models are trained using the same total number of epochs, and
the same network architecture is adopted. The learning rates
are also switched after running the same number of epochs.
The methods included in the comparison are summarized as
follows.

1) RF-200: Random forest with 200 trees.

2) SVM-RBF: RBF kernel SVM with cross validation.

3) CNN: The architecture of the CNN is set as in [30],
and contains an input layer, a convolution layer, a max-
pooling layer, a fully connected layer, and an output
layer. The number of convolutional kernels is 20 for all
three data sets. The length of each convolution kernel
and pooling size is 11 and 3, respectively. Furthermore,
100 hidden units are included in the fully connected
layer.

4) RNN-LSTM: RNN with LSTM recurrent units.
We follow the implementation of LSTM as used
in [42].
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TABLE V
CLASSIFICATION ACCURACIES OF TEST SAMPLES ON THE HOUSTON DATA SET. THE BEST ACCURACY IN EACH ROwW IS SHOWN IN BOLD

Class No. Class Name RF-200 SVM-RBF CNN RNN-LSTM  RNN-GRU-tahn = RNN-GRU-PRetanh
1 Grass Healthy 82.62 81.96 81.20 81.86 82.43 82.53
2 Grass Stressed 83.36 80.55 83.55 81.20 82.42 83.36
3 Grass Synthetic 98.02 99.80 99.41 99.41 97.23 100
4 Tree 91.76 92.23 91.57 90.06 89.30 90.53
5 Soil 97.06 97.63 94.79 93.09 78.22 97.82
6 Water 99.30 95.10 95.10 96.50 95.10 93.01
7 Residential 75.37 76.59 63.53 73.41 70.43 75.37
8 Commercial 32.95 35.52 42.64 34.09 32.57 42.36
9 Road 67.14 70.44 58.17 62.61 70.25 77.62
10 Highway 43.73 60.04 41.80 39.96 43.24 57.63
11 Railway 70.11 76.57 75.71 60.44 69.07 77.42
12 Parking Lot 1 54.95 73.10 84.15 65.42 50.72 69.74
13 Parking Lot 2 59.65 68.77 40.00 58.95 58.25 66.32
14 Tennis Court 99.19 100 98.79 96.76 97.98 100
15 Running Track 97.67 98.10 97.89 88.37 96.83 95.98
OA - 72.93 77.09 85.42 85.41 85.73 89.85
AA - 76.86 80.43 76.55 74.81 74.27 80.65
Kappa - 0.7091 0.7536 0.7200 0.6889 0.6785 0.7606
TABLE VI

ACCURACY COMPARISON FOR THE INDIAN PINES DATA SET. THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD

Class No. Class Name RF-200 SVM-RBF  CNN RNN-LSTM  RNN-GRU-tahn = RNN-GRU-PRetanh

1 Alfalfa 54.84 60.77 56.79 46.03 68.93 70.59

2 Corn-notill 58.42 77.68 52.17 61.73 40.94 70.28

3 Corn-min 82.61 79.35 85.33 86.96 78.80 81.52

4 Corn 85.91 91.05 87.92 87.02 87.92 90.16

5 Grass-pasture 80.49 84.36 85.22 86.66 87.52 91.97

6 Grass-trees 94.76 92.03 97.49 97.49 97.27 96.13

7 Grass-pasture-mowed 77.34 69.61 74.62 59.69 82.79 84.75

8 Hay-windrowed 59.43 59.31 67.99 64.89 50.58 59.64

9 Oats 63.48 79.61 58.87 60.46 79.43 86.17

10 Soybean-notill 95.06 97.53 98.77 98.77 98.77 99.38
11 Soybean-mintill 88.26 85.21 87.62 75.32 84.73 84.97

12 Soybean-clean 54.85 63.64 72.42 71.82 61.21 77.58

13 Wheat 97.78 100 93.33 91.11 88.89 95.56

14 Woods 58.97 87.18 71.79 79.49 79.49 84.62
15 Buildings-grass-trees 81.82 90.91 90.91 90.91 90.91 90.91
16 Stone-steel-towers 100 100 100 100 100 100

OA - 69.79 72.78 84.18 80.52 85.71 88.63

AA - 77.13 82.39 80.08 78.65 79.89 85.26

Kappa - 0.6589 0.6931 0.6852 0.6372 0.6633 0.7366

5) RNN-GRU-tanh: RNN with GRUs that use tanh as the
activation function.

6) RNN-GRU-ReLU: ReLU is adopted to activate the
output of recurrent units.

7) RNN-GRU-PRetanh: Our final network uses the
proposed PRetanh activation function for the hidden
representation of GRUs.

To make the proposed approach fully comparable with
other supervised classifiers, we used the standard sets of
training and test samples for the data sets. For instance,
we used the training and test sets of the 2013 GRSS
Fusion Contest for the classification of the Houston
data.

The RNN was trained with the Adadelta algorithm, and all
the suggested default parameters except the learning rate were
used for all of the following experiments. We made use of a
fairly high learning rate of 1.0 instead of the relatively low
default of 0.002 to train the network. The proposed network

model uses a single recurrent layer that adopts our modified
GRUs of size 64 with sigmoid gate activation and PRetanh
activation functions for hidden representations. The output
layer uses softmax activation and then outputs a one-hot vector
for hyperspectral image classification. All weight matrices
in our RNN and bias vectors are initialized with a uniform
distribution, and the values of these weight matrices and bias
vectors are initialized in the range [—0.1,0.1]. Then, all the
weights can be updated during the training procedure. In both
hyperspectral data sets, we randomly chose 10% of the training
samples as the validation set. That is, during the training, we
used 90% of the training samples to learn the parameters,
including the weight matrices W, bias vectors b, the parame-
ters o and S of batch normalization, and the coefficients 4 of
PRetanh, and used the remaining 10% of the training samples
as validation to tune the superparameters, such as the number
of recurrent units in the recurrent layer. All test samples were
used to evaluate the final performance of the trained recurrent
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Fig. 6. Classification results obtained by different methods for the Pavia University scene. (a) Composite image of hyperspectral data. (b) Training data.
(c) Ground-truth reference. (d) RF-200. (e) SVM-RBFE. (f) CNN. (g) RNN-LSTM. (h) RNN-GRU-tanh. (i) RNN-GRU-PRetanh.

network. It is noteworthy that the Indian Pines data are a small ~we not only use a dropout with a probability of 0.5 on the
and unbalanced data set, which is challenging for training a output of recurrent layer but also utilize a dropout of 0.2
valid supervised recurrent network. To address this concern, on the weight matrices of the network, which indicates the
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Fig. 7. Classification results obtained by different methods for the Houston scene. (From top to bottom) True-color composite of the hyperspectral data
(wavelength R: 640.7 nm, G: 550.2 nm, and B: 459.6 nm), training data, ground-truth reference, RF-200, SVM-RBF, CNN, RNN-LSTM, RNN-GRU-tanh,
and RNN-GRU-PRetanh.

fraction of the input units to drop for input gates and recurrent  activation functions, which involves tanh, ReLU, and the
connections. proposed PRetanh. The comparison of the LSTM unit and

The experiments are organized into three parts. The first GRU is also discussed in this part. In the second experiment,
one aims primarily at analyzing the behavior of different the effectiveness of an RNN that is based on the sequential
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Fig. 8. Confusion matrix of different methods for the Pavia University data set. (a) RF-200. (b) SVM-RBE. (c) CNN. (d) RNN-LSTM. (e) RNN-GRU-tanh.

(f) RNN-GRU-PRetanh.

perspective of a hyperspectral pixel is compared with the
traditional vector-based models, such as random forest, SVM,
and 1-D CNN. In the last part, we discuss processing time.

C. Analysis of the Network

1) Comparisons Between ReLU, tanh, and PRetanh: The
activation function is a basic building block of a neural
network, because it enables the network to detect nonlinear
features in the data. Here, we investigate and compare the
behaviors of three activation functions, ReLU, tanh, and
PRetanh. Fig. 5 compares the convergence performance of
RNN-GRU-ReLU, RNN-GRU-tanh, and RNN-GRU-PRetanh
on both the Pavia University and Houston data. All activation
functions can make the recurrent network converge except
ReLU. Moreover, compared with tanh, the proposed PRetanh
activation function starts reducing error earlier and finally
reduces the loss to a lower value, which means that the net-
work can converge to a better solution. In particular, PRetanh
can obtain the error value of 0.272 on the Pavia University
data set after 100 epochs, while the traditional tanh activation
function can only achieve 0.334. As Fig. 5(a) shows, the RNN
with ReLU as the activation function falls into divergence,
which means that we cannot obtain a valid network. For the

Houston data set, the recurrent network with the proposed
PRetanh can quickly converge to the error of 0.401 after
100 iterations. In the same conditions, tanh can only yield
0.603. ReLLU, however, cannot cause the recurrent network
to converge. We also compare the classification accuracies
of RNN-GRU-tanh and RNN-GRU-PRetanh. As shown in
Tables IV-VI, compared with tanh, the network with the
proposed PRetanh activation function increases the accuracy
significantly by 8.15% of OA, 2.74% of AA, and 0.0847 of the
Kappa coefficient, respectively, on the Pavia University data
set. For the Houston data set, the accuracy increments on OA,
AA, and Kappa coefficient are 4.12%, 6.38%, and 0.0821,
respectively. On the Indian Pines data set, our network is
able to achieve the accuracy increments of 2.92%, 5.37%, and
0.0733 for OA, AA, and the Kappa coefficient, respectively.

2) Comparison of Recurrent Unit Architecture: The most
prominent trait shared between LSTM and GRU is that there
is an additive loop of their update from k — 1 to k, which is
lacking in the conventional feedforward neural networks, such
as CNNs. In contrast, compared with the traditional recurrent
unit like (2), both LSTM and GRU keep the existing content
and add the new content on top of it [see (7) and (24)]. These
two units, however, have a number of differences as well.
LSTM uses three gates and a cell, an input gate, an output
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(d) (e)

Fig. 9.

Zoomed-in view confusion matrix of different methods for the Houston data set. (a) RF-200. (b) SVM-RBF. (¢) CNN. (d) RNN-LSTM.

(e) RNN-GRU-tanh. (f) RNN-GRU-PRetanh. To show the result more clearly, we show only class #6 to class #13, which are easily misclassified in the

Houston data set.

TABLE VII
NUMBER OF TOTAL TRAINABLE PARAMETERS
IN DIFFERENT RECURRENT LAYERS

Data set LST™M GRU-tanh ~ GRU-PRetanh
Pavia University (64 units)  16.50 K 1238 K 1257 K
Houston (128 units) 65.00 K 48.75 K 49.13 K
Indian Pines (128 units) 79.27 K 63.02 K 63.15 K

gate, a forget gate, and a memory cell, to control the exposure
of memory content, while the GRU only employs two gates
to control the information flow. In this way, the total number
of parameters in the GRU is reduced by about 25%, which
makes it the recurrent unit of choice in the recurrent layer for
the hyperspectral image classification task. Table VII shows
the number of total trainable parameters in different recurrent
layers.

Tables IV-VI list the results obtained by our experi-
ments. For all three data sets, the RNN-GRU-PRetanh outper-
forms the LSTM-based network (RNN-LSTM) on all indexes.
Specifically, the RNN-GRU-PRetanh increases the accuracy
significantly by 10.86% of OA, 0.45% of AA, and 0.1020
of Kappa, respectively, on the Pavia University data set;

by 4.44% of OA, 5.84% of AA, and 0.0717 of the Kappa
coefficient, respectively, on the Houston data set; and by 8.11%
of OA, 6.61% of AA, and 0.0994 of the Kappa coefficient,
respectively, on the Indian Pines data set.

D. Vector-Based Methods Versus Our Recurrent Network

The classification maps of the Pavia University data set
obtained by the conventional vector-based models and our
network are shown in Fig. 6, and the corresponding accu-
racy indexes are presented in Table IV. An analysis of the
classification accuracies indicates that the SVM with RBF
kernel (SVM-RBF) outperforms the random forest model,
mainly because the kernel SVM generally handles nonlinear
inputs more efficiently than the random forest model. It can be
seen that the proposed recurrent network RNN-GRU-PRetanh
outperforms the SVM-RBF and CNN in terms of OA and the
Kappa coefficient. Compared with SVM-RBF and CNN, the
proposed RNN-GRU-PRetanh increases the OA by 10.03%
and 8.34%, respectively. Moreover, the proposed network
achieves the best accuracies on some specific classes of the
Pavia University data, such as asphalt, meadows, metal sheets,
and shadows. For instance, the accuracy of the meadows
category obtained by RNN-GRU-PRetanh reaches 85.24%,
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Fig. 10.
and B: 8). (b) Training data.
(i) RNN-GRU-PRetanh.

(¢) Ground-truth reference.

and the proposed network can achieve almost 100% on the
shadows class.

Fig. 7 shows the classification maps on the Houston data
set; the comparison of accuracies between the random forest,
SVM-RBF, and RNN-GRU-PRetanh can be found in Table V.
The proposed RNN-GRU-PRetanh achieves significantly bet-
ter scores for OA, AA, and the Kappa coefficient compared
with all other methods. Misclassification in this data set
lies in similar objects, such as Road-Highway-Railway and
Grass Healthy-Grass Stressed-Grass Synthetic. The proposed
RNN-GRU-PRetanh achieves the best AA of 70.89% on
Road-Highway-Railway, as well as the best AA of 88.63%
on Grass Healthy-Grass Stressed-Grass Synthetic. Confusion
matrices for the Pavia University data set and the Houston
data set can be found in Figs. 8§ and 9, respectively. Note
that, for the Houston data set, because of the relatively large

Classification results obtained by different methods for the Indian
(d) RF-200.

Pines scene. (a) True-color composite (bands R: 26, G: 14,
() SVM-RBE. (f) CNN. (g) RNN-LSTM. (h) RNN-GRU-tanh.

number of classes, only selected materials that have high
misclassification rates are illustrated. In general, the proposed
RNN-GRU-PRetanh also tends to show superior performance
in distinguishing similar materials.

The classification maps and accuracy assessment for the
Indian Pines data set are shown in Fig. 10 and Table VI
It can be seen that the proposed RNN-GRU-PRetanh yields
substantially more accurate results than the other meth-
ods. Specifically, compared with SVM-RBF and CNN, the
improvements in OA achieved by the proposed recurrent
network are 15.85% and 4.45%, respectively, and the incre-
ments of AA obtained by RNN-GRU-PRetanh are 2.87% and
5.18%, respectively. Fig. 11 also shows that SVM-RBF and
CNN are not very effective for discrimination between sim-
ilar classes such as Grass-Pasture and Grass-Pasture-Mowed
because of their similar spectral reflectance. The classification
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Fig. 11.
(f) RNN-GRU-PRetanh.

TABLE VIII
STATISTICS OF TRAINING TIME (min)

Data set RF-200 SVM-RBF CNN  Ours

Pavia University 1.2 17.0 333 774

Houston 0.9 15.6 39.3 88.8

Indian Pines 0.4 1.0 8.2 19.9
TABLE IX

STATISTICS OF TESTING EFFICIENCY (pixels/s)

Methods
EFFICIENCY

RF-200
2,042.43

SVM-RBF
2,034.96

CNN
9,427.27

Ours
8,396.76

of these similar land covers is improved with the proposed
recurrent network.

E. Processing Time

Processing time of different methods is compared in this
section. All the experiments are conducted on a personal
computer equipped with an Intel Core I5 with 2.20 GHz. The
training times of different approaches are shown in Table VIII.
It is not surprising that deep neural network-based methods,
including CNN and RNN, require a longer training time com-
pared with other traditional vector-based classification models,
such as random forest and SVM. Fortunately, such differences
remain within one to two orders of magnitude. Between CNN
and RNN, RNN requires more yet a tolerable training time, as
it involves additional channel-by-channel updates. However,
one advantage of deep neural networks is that they are fast
in testing (see Table IX), which is very important in practice.

Confusion matrix of different methods for the Indian Pines data set. (a) RF-200. (b) SVM-RBFE. (c) CNN. (d) RNN-LSTM. (e) RNN-GRU-tanh.

Also, thanks to the rapid development of hardware technology,
especially of GPU, deep neural networks’ drawback of a long
training time is becoming less and less decisive.

V. CONCLUSION

In this paper, we propose a novel RNN model for hyper-
spectral image classification, inspired by our observation
that hyperspectral pixels can be regarded as sequential data.
Specifically, we proposed a newly designed activation function
PRetanh for hyperspectral data processing in RNN, providing
an opportunity to use fairly high learning rates without the risk
of getting stuck in the divergence. Furthermore, a modified
GRU with PRetanh was developed to effectively analyze
hyperspectral data. For hyperspectral image classification, our
proposed recurrent network was shown to provide statistically
higher accuracy than SVM-RBF and CNN. The proposed
model considers the intrinsic sequential data structure of a
hyperspectral pixel for the first time, representing a novel
methodology for better understanding, modeling, and process-
ing of hyperspectral data.

In the future, further experiments will be conducted to
fully substantiate the features of deep RNN for hyperspectral
image processing, providing more accurate analysis for remote
sensing applications, such as transfer learning for remote
sensing big data analysis and change detection. In addition,
this paper only concentrates on modeling hyperspectral pixels
in the spectral domain. An end-to-end convolutional-RNN
will be considered for spatial-spectral hyperspectral image
classification in the future. We believe that such a spatial-
spectral network architecture can further improve classification
accuracy.
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Corrections to “Deep Recurrent Neural Networks for
Hyperspectral Image Classification™
Lichao Mou, Student Member, IEEE, Pedram Ghamisi, Member, IEEE, and Xiao Xiang Zhu, Senior Member, IEEE

Here, we correct some errors caused by a programming bug (a data
type error) in overall accuracies (OAs) reported in [1]. The corrected
OAs are underlined and shown in bold in Tables I-III.

In addition, we also correct the OAs in the text as follows.

1) Page 3650, right column, line 9: 8.15% of OA should be
changed to 7.29% of OA.

2) Page 3650, right column, line 12: 4.12% should be corrected
to 7.67%.

3) Page 3650, right column, line 14: 2.92% should be corrected
to 6.53%.

4) Page 3651, left column, line 13: 10.86% of OA should be
changed to 9.07% of OA.

5) Page 3651, right column, line 1: 4.44% of OA should be
corrected to 6.74% of OA.

6) Page 3651, right column, line 2: 8.11% of OA should be
changed to 8.62% of OA.

7) Page 3651, right column, line 17&18: 10.03% and 8.34%
should be changed to 6.17% and 5.72%.

8) Page 3652, right column, line 11: 15.85% and 4.45% should
be corrected to 3.89% and 4.27%.
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THE CLASSIFICATION ACCURACIES OF DIFFERENT TECHNIQUES IN PERCENTAGES FOR PAVIA UNIVERSITY

TABLEI

Class No.  Class Name RF-200  SVM-RBF ~ CNN  RNN-LSTM  RNN-GRU-tanh = RNN-GRU-PRetanh

1 Asphalt 80.85 80.80 83.73 77.45 78.42 84.45

2 Meadows 55.29 66.78 65.70 61.83 69.17 85.24

3 Gravel 52.93 73.18 67.03 64.60 47.83 54.31

4 Trees 98.79 95.17 94.03 97.98 97.16 95.17

5 Metal Sheets 99.26 99.55 99.41 99.18 97.84 99.93

6 Bare Soil 78.76 92.90 96.30 91.19 85.86 80.99

7 Bitumen 84.36 90.08 93.83 90.90 86.84 88.35

8 Bricks 91.58 91.20 93.56 92.29 94.27 88.62

9 Shadows 98.20 93.77 99.79 97.47 94.93 99.89
OA - 71.37 78.82 79.27 75.92 77.70 84.99
AA - 82.23 87.05 88.15 85.88 83.59 86.33
Kappa - 0.6484 0.7358 0.7423 0.7028 0.7201 0.8048
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CLASSIFICATION ACCURACIES OF TEST SAMPLES ON THE HOUSTON DATA SET

TABLEII

Class No. Class Name RF-200  SVM-RBF CNN  RNN-LSTM RNN-GRU-tahn = RNN-GRU-PRetanh
1 Grass Healthy 82.62 81.96 81.20 81.86 82.43 82.53
2 Grass Stressed 83.36 80.55 83.55 81.20 82.42 83.36
3 Grass Synthetic 98.02 99.80 99.41 99.41 97.23 100
4 Tree 91.76 92.23 91.57 90.06 89.30 90.53
5 Soil 97.06 97.63 94.79 93.09 78.22 97.82
6 Water 99.30 95.10 95.10 96.50 95.10 93.01
7 Residential 75.37 76.59 63.53 73.41 70.43 75.37
8 Commercial 32.95 35.52 42.64 34.09 32.57 42.36
9 Road 67.14 70.44 58.17 62.61 70.25 77.62
10 Highway 43.73 60.04 41.80 39.96 43.24 57.63
11 Railway 70.11 76.57 75.71 60.44 69.07 77.42
12 Parking Lot 1 54.95 73.10 84.15 65.42 50.72 69.74
13 Parking Lot 2 59.65 68.77 40.00 58.95 58.25 66.32
14 Tennis Court 99.19 100 98.79 96.76 97.98 100
15 Running Track 97.67 98.10 97.89 88.37 96.83 95.98
OA - 72.93 77.09 74.05 71.05 70.12 71.79
AA - 76.86 80.43 76.55 74.81 74.27 80.65
Kappa - 0.7091 0.7536 0.7200 0.6889 0.6785 0.7606
TABLE III
ACCURACY COMPARISON FOR THE INDIAN PINES DATA SET
Class No. Class Name RF-200  SVM-RBF CNN  RNN-LSTM RNN-GRU-tahn = RNN-GRU-PRetanh
1 Alfalfa 54.84 60.77 56.79 46.03 68.93 70.59
2 Corn-notill 58.42 77.68 52.17 61.73 40.94 70.28
3 Corn-min 82.61 79.35 85.33 86.96 78.80 81.52
4 Corn 85.91 91.05 87.92 87.02 87.92 90.16
5 Grass-pasture 80.49 84.36 85.22 86.66 87.52 91.97
6 Grass-trees 94.76 92.03 97.49 97.49 97.27 96.13
7 Grass-pasture-mowed 77.34 69.61 74.62 59.69 82.79 84.75
8 Hay-windrowed 59.43 59.31 67.99 64.89 50.58 59.64
9 Oats 63.48 79.61 58.87 60.46 79.43 86.17
10 Soybean-notill 95.06 97.53 98.77 98.77 98.77 99.38
11 Soybean-mintill 88.26 85.21 87.62 75.32 84.73 84.97
12 Soybean-clean 54.85 63.64 72.42 71.82 61.21 77.58
13 Wheat 97.78 100 93.33 91.11 88.89 95.56
14 Woods 58.97 87.18 71.79 79.49 79.49 84.62
15 Buildings-grass-trees 81.82 90.91 90.91 90.91 90.91 90.91
16 Stone-steel-towers 100 100 100 100 100 100
OA - 69.79 72.78 72.40 68.05 70.14 76.67
AA - 77.13 82.39 80.08 78.65 79.89 85.26
Kappa - 0.6589 0.6931 0.6852 0.6372 0.6633 0.7366
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Unsupervised Spectral-Spatial Feature Learning via
Deep Residual Conv—Deconv Network for
Hyperspectral Image Classification
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Abstract— Supervised approaches classify input data using a
set of representative samples for each class, known as training
samples. The collection of such samples is expensive and time
demanding. Hence, unsupervised feature learning, which has
a quick access to arbitrary amounts of unlabeled data, is
conceptually of high interest. In this paper, we propose a
novel network architecture, fully Conv-Deconv network, for
unsupervised spectral-spatial feature learning of hyperspectral
images, which is able to be trained in an end-to-end manner.
Specifically, our network is based on the so-called encoder—
decoder paradigm, i.e., the input 3-D hyperspectral patch is
first transformed into a typically lower dimensional space via
a convolutional subnetwork (encoder), and then expanded to
reproduce the initial data by a deconvolutional subnetwork
(decoder). However, during the experiment, we found that such
a network is not easy to be optimized. To address this problem,
we refine the proposed network architecture by incorporating:
1) residual learning and 2) a new unpooling operation that can
use memorized max-pooling indexes. Moreover, to understand
the ‘“black box,” we make an in-depth study of the learned feature
maps in the experimental analysis. A very interesting discovery
is that some specific ‘“neurons” in the first residual block of
the proposed network own good description power for semantic
visual patterns in the object level, which provide an opportunity
to achieve “free” object detection. This paper, for the first
time in the remote sensing community, proposes an end-to-end
fully Conv-Deconv network for unsupervised spectral-spatial
feature learning. Moreover, this paper also introduces an
in-depth investigation of learned features. Experimental results
on two widely used hyperspectral data, Indian Pines and Pavia
University, demonstrate competitive performance obtained by the
proposed methodology compared with other studied approaches.

Index Terms— Convolutional network, deconvolutional net-
work, hyperspectral image classification, residual learning,
unsupervised spectral-spatial feature learning.
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I. INTRODUCTION

ALONG with the development of different earth observa-
tion missions, hyperspectral imagery has been accessible
at a reasonable cost over the last decade. Since hyperspectral
images are characterized in hundreds of continuous
observation bands, throughout the electromagnetic spectrum
with high spectral resolution, such data have attracted
considerable attention in the remote sensing community [1].
On the other hand, the analysis of hyperspectral images is of
high importance in many practical applications, such as urban
development [2]-[5], monitoring of land changes [6]-[9],
and resource management [10], [11]. To benefit from these
types of data, supervised hyperspectral image classification
is among the most active research areas in hyperspectral
analysis.

There is a vast literature on supervised classification models
such as decision trees [12], random forests [13], [14], and sup-
port vector machines (SVMs) [15], [16]. A random forest [14]
is an ensemble learning approach that operates by constructing
several decision trees in the training course and outputting
the classes of the input hyperspectral pixels via integration of
predictions of the individual trees. In contrast, as a significant
branch of the supervised machine learning algorithm, SVMs
have achieved a great success in various applications due to
the fact that they can handle high-dimensional data with a
limited number of training samples. SVM works by map-
ping data to a kernel-included high-dimensional feature space
seeking an optimal decision hyperplane that can best separate
data samples, when data points are not linearly separable.
SVM, therefore, has been considered to be an effective and
stable algorithm for hyperspectral image classification task.
In addition, some extensions of the SVM model [17], [18]
have been proposed for hyperspectral data analysis to improve
discrimination capability of the classifier. However, random
forests and SVMs are attributed as “shallow” models, which
means that their ability to deal with nonlinear data, e.g.,
hyperspectral data demonstrate dense nonlinearity, is limited
compared with the “deep” ones.

With the investigation of hyperspectral image classifica-
tion, a major finding is that various atmospheric scattering
conditions, complicated light scattering mechanisms, inter-
class similarity, and intraclass variability result in hyper-
spectral imaging procedure being inherently nonlinear [19].
It is believed that, compared with the “shallow” models,

0196-2892 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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deep learning architectures are able to extract high-level,
hierarchical, and abstract features, which are generally more
robust to the nonlinear input data. So far, some studies in
the community have focused on making use of deep learning
models for hyperspectral image classification. For instance,
Chen et al. [20] employed a stacked auto-encoder to extract
hierarchical features from the spectral domain of hyperspectral
images for the purpose of classification. In [21], a restricted
Boltzmann machine (RBM) and its extension, deep belief net-
work (DBN), were introduced for the classification of hyper-
spectral data by learning spectral-based features. Tao et al. [22]
presented a multiscale sparse stacked auto-encoder to learn
an effective feature representation from unlabeled data, and
then the learned features were fed into a linear SVM for
hyperspectral data classification. Very recently, Mou et al. [23]
proposed a novel recurrent neural network with a new activa-
tion function and a modified gated recurrent unit for hyper-
spectral image classification, which can effectively analyze
hyperspectral pixels as sequential data and then determine
information categories via network reasoning.

Most of the aforementioned networks, e.g., auto-encoder,
RBM, and DBN, are both early and fairly simple 1-D deep
learning architectures totally equipped with fully connected
layers. Consequently, there are a lot of trainable parameters
that need to be estimated, which is an undesirable case given
that available labeled training samples for remote sensing
image classification are often limited [24]. Moreover, it should
be noted that the processing mechanism of the 1-D networks
and the vector-based feature alignment can lead to the loss of
structure information for hyperspectral imagery, as it has an
intrinsic 2-D data structure in the spatial domain.

Convolutional neural network (CNN), an important branch
of the deep learning family, has been attracting attention, due
to the fact that they are capable of automatically discovering
relevant contextual 2-D spatial features in image categorization
tasks. In addition, a CNN makes use of local connections
to deal with spatial dependencies via sharing weights, and
thus can significantly reduce the number of parameters of
the network in comparison with the conventional 1-D fully
connected neural networks. CNNs have already outperformed
other methodologies in various domains of machine learning
and computer vision such as large-scale natural image recogni-
tion [25]-[28], object detection [29], [30], and scene interpre-
tation [31]-[35]. Very recently, a few supervised CNN-based
models have been proposed for spectral-spatial classification
of hyperspectral remote sensing images. Chen et al. [36]
introduced a supervised ¢, regularized 3-D CNN-based feature
extraction model to extract efficient spectral-spatial features
for the purpose of classification. Ghamisi et al. [19] proposed
a self-improving CNN (SICNN) model, which combined a
CNN with a fractional order Darwinian particle swarm opti-
mization (FODPSO) algorithm to iteratively select the most
informative bands suitable for training the designed CNN.
Makantasis et al. [37] exploited a CNN to encode spectral
and spatial information of input hyperspectral data followed
by a multilayer perceptron to conduct the hyperspectral image
classification task. Zhao and Du [38] proposed a spectral—
spatial feature-based classification framework, which jointly

makes use of a local discriminant embedding-based dimension
reduction algorithm and a CNN for the purpose of land cover
classification. Aptoula er al. [39] fed attribute profile features
instead of original hyperspectral data into a CNN, which led
to a performance improvement.

Those CNNss trained in a supervised manner via backpropa-
gation, which improved the state-of-the-art performance on the
hyperspectral image classification task. Despite the big success
of the supervised CNNs, they have at least one potential
drawback detailed as follows: there is a need for a good
supply of labeled training samples to be used for supervised
training. However, these are difficult to collect, and there are
diminishing returns of making the labeled data set larger and
larger. In other words, the supervised CNNs generally suffer
from either small number of training samples or imbalanced
data sets.

Hence, unsupervised spectral-spatial feature learning, which
has a quick access to arbitrary amounts of unlabeled data, is
conceptually of high interest. In general, the main purpose
of unsupervised feature learning is to extract useful features
from unlabeled data, to detect and remove input redundancies,
and to preserve only essential aspects of the data in robust and
discriminative representations. In a pioneer work moving from
the supervised CNN to unsupervised CNN, Romero et al. [40]
proposed an unsupervised convolutional network for learning
spectral—spatial features using sparse learning to estimate the
weights of the network. However, this model was trained in a
greedy layer-wise fashion, i.e., it is not an end-to-end network.
In this paper, we aim to propose an end-to-end network,
fully Conv—Deconv network, for unsupervised spectral—spatial
feature learning of hyperspectral imagery. Basically, our net-
work architecture is based on the so-called encoder—decoder
paradigm. Specifically, the input is first transformed into a
typically lower dimensional space via a convolutional subnet-
work (encoder), and then expanded to reproduce the initial
data by a deconvolutional subnetwork (decoder). Moreover, the
trained unsupervised Conv-Deconv network can be adapted
to the classification of hyperspectral data by cutting off the
deconvolutional subnetwork, replacing the loss function, and
fine-tuning it to the new task, i.e., adjusting the weights using
backpropagation. With this approach, typically much smaller
training sets are sufficient. In detail, our work contributes to
the literature in three major aspects.

1) We propose an end-to-end deep Conv-Deconv neural
network, which is composed of a convolutional
subnetwork and a deconvolutional subnetwork with a
specially designed unpooling layer. Learning such a
2-D encoder—decoder-based network for unsupervised
spectral-spatial feature learning of hyperspectral data
has not been investigated yet to the best of our
knowledge.

2) Since our network is fairly deep, it might easily
converge to an inappropriate solution if small learning
rates are used. On the other hand, simply boosting
convergence with high learning rates leads to exploding
the gradient problem. In this paper, we resolve this issue
by introducing residual learning in our Conv-Deconv
network. To the best of our knowledge, this is the first
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use of residual learning to train networks for remote
sensing data analysis.

3) Our unsupervised network is able to preserve the
neighborhood relations and spatial locality of
3-D hyperspectral cubes in its latent high-level
feature representations, while the conventional 1-D
fully connected unsupervised network architectures
such as auto-encoder, RBM, and DBN do not scale
well to realistic-sized high-dimensional hyperspectral
data in terms of computational complexity.

4) To understand the “black box” of the proposed network,
we make an in-depth investigation. We found that some
specific “neurons” in the first residual block of the
network are capable of precisely capturing semantic
visual patterns in object level, which makes it possible
to achieve a high-quality unsupervised object detection
capability for hyperspectral images.

The rest of this paper is organized as follows. An introduc-
tion to the traditional unsupervised network architectures is
briefly given in Section II. The details of the proposed fully
Conv-Deconv network with residual learning for unsupervised
spectral-spatial feature extraction of hyperspectral data are
described in Section III. The network setup, network analysis,
experimental results, and a comparison with state-of-the-art
approaches are provided in Section IV. Finally, Section V
concludes this paper.

II. PRELIMINARIES

Several types of traditional 1-D unsupervised network
architectures have been leveraged for feature learning of hyper-
spectral data. In this section, we recall the basic principles of
such models.

A. Auto-Encoder

An auto-encoder [41] takes an input x € R? and first maps
it to a latent representation & € RM via a nonlinear mapping

h = f(©x +pB) )

where © is a weight matrix to be estimated during the training
course, 3 is a bias vector, and f stands for a nonlinear function
such as the logistic sigmoid function and hyperbolic tangent
function. The encoded feature representation . is then used to
reconstruct the input x by a reverse mapping

y=f(@h+p) 2)

where ©’ is usually constrained to be the form of ® = @7,
using the same weight for encoding the input and decoding
the latent representation. The reconstruction error is defined
as the Euclidian distance between x and y that is constrained
to approximate the input data x, i.e., making ||x — y||% — 0.
The parameters of the auto-encoder are generally optimized
by stochastic gradient descent (SGD) [42]. Fig. 1 illustrates
the structure of the auto-encoder.

B. Sparse Auto-Encoder

The conventional auto-encoder relies on the dimension of
the latent representation k& being smaller than that of input x,

pv, h)=

1/Z exp(-E(v, h))

i
......‘v

RBM

xQ..QOQ.

Auto-encoder

Fig. 1.  Two classical unsupervised network architectures. (Left) Auto-
encoder. (Right) RBM.

i.e., M < D, which means it tends to learn a low-dimensional
compressed representation. However, when M > D, one
can still discover an interesting structure, by enforcing a
sparsity constraint on the hidden units. Formally, given a set of
unlabeled data X = {x', x2, ..., x"}, training a sparse auto-
encoder is to find the optlmal parameters by minimizing the
following loss function:

N M

E— NZ T,y ©,8) + 1> KL(plj))

i=1 j=1

3)

where J(x!, y'; ®, B) is an average sum-of-squares error
term, which represents the reconstruction error between
the input x’ and its reconstruction y'. KL(p|p j) is the
Kullback-Leibler (KL) divergence between a Bernoulli random
variable with mean p and a Bernoulli random variable with
mean p;. KL divergence is a standard function for measuring
how similar two distributions are, and it can be described as
follows:

: -
KL(pllp)) = plog 5+ (1 = p)log —2-.  (4)

Pj —Pj
In the sparse auto-encoder model, KL divergence is called
sparsity penalty term that provides the sparsity constraint, and
A controls the weight of the sparsity penalty term. Similar to
the auto-encoder, the optimization of a sparse auto-encoder
can be achieved via the backpropagation and SGD [42].

C. RBM and DBN

Unlike the deterministic network architectures such as auto-
encoder or sparse auto-encoder, an RBM is a stochastic
undirected graphical model consisted of a visible layer and a
hidden layer, and it has symmetric connections between these
two layers, and no connecting exists within the hidden layer
or the input layer. The energy function of an RBM can be
defined as follows:

1
E(x,h) = 5% Ty —(W"Wx +c"x+b"h) (5)

where W, ¢, and b are the weights of the RBM model. The
joint probability distribution of the RBM is defined as

px,h) = (6)

where Z is a normalization constant. The form of the RBM
makes the conditional probability distribution computationally
feasible, when x or A is fixed. The structure of the RBM is
depicted in Fig. 1.

1
~ exp(—E(x, b))
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Fig. 2. We propose a network architecture that learns to extract spectral-spatial features by reconstructing the initial input 3-D hyperspectral patches, being
trained end to end. There are no fully connected layers, and hence it is a fully Conv—Deconv network. The proposed network architecture is composed of
two parts, i.e., convolutional subnetwork and deconvolutional subnetwork. The former corresponds to an encoder that transforms the input 3-D hyperspectral
patches to abstract feature representations, whereas the latter plays the role of decoder that reproduces the initial input data from the encoded features. Each
layer in the convolutional subnetwork has a corresponding decoder layer in the deconvolutional subnetwork.

The feature representation ability of a single RBM is
limited. However, its real power emerges when a couple of
RBMs are stacked, forming a DBN [43]. Hinton et al. [43]
proposed a greedy approach that trains RBM in each layer to
efficiently train a DBN.

III. METHODOLOGY

CNNs have shown to be very successful on a range of
visual recognition tasks [25]-[27], [29]-[33]. Such tasks,
in common, can be posed as discriminative supervised learning
problems, and hence, can be resolved by CNNs, which are
well known to be effective at learning input—output relations
given an adequate number of labeled data sets. Normally,
a task solved by making use of CNNs involves learning
mappings from concrete raw images to some sort of condensed
abstract outputs, such as category. Here, we are interested in
training an end-to-end neural network to extract features in
an unsupervised fashion, which means we need to leverage a
network to solve a concrete-to-concrete problem instead of the
traditional concrete-to-abstract one. This brings up a question
in mind: what is a good network architecture for our purpose?

A. Initial Conv—Deconv Network Architecture

1) Analysis and Modeling: Denote by (x, h,y) random
variables representing a 3-D hyperspectral patch, its encoded
feature representation, and the reconstructed output. The joint
probability distribution p(x, y) can be described as follows:

plx,y)=px)p(ylx) (7

where p(x) is the distribution of 3-D hyperspectral patches
and p(y|x) is the distribution of reconstructed outputs given
the hyperspectral patches. Thus, the conditional probability
distribution p(y|x) can be written as

p(y1x) = p(y, hlx) = p(ylh)p(h|x) (8)

where p(h|x) indicates the distribution of the encoded feature
representations given the input hyperspectral patches. As a
special case, y may be a deterministic function of x. Ideally,
we would like to find p(k|x) and p(y|h), but direct applica-
tion of Bayesian theory is not feasible. We, therefore, in this

paper resort to an estimate function f(x) that minimizes the
following mean squared error objective:

Exllx — f£(x)3. )

The minimizer of this loss is the conditional expectation

A

S (x0) = Ey[ylh] + Ep[hlx = xo] (10)

that is the expected reconstructed output given a hyperspectral
patch.

Given a set of unlabeled 3-D hyperspectral patches {x;},
we learn the weights © of a network f(x; @) to minimize a
Monte Carlo estimate of the loss (9)

6 — wzminY" I, — £xi: O3 i
argméngllxl fxi; ©)l3 (In

This means that we train the network to reproduce the
input results in learning high-level abstract features in an
unsupervised manner.

In this paper, we propose a fully Conv—Deconv network
(see Fig. 2) in which the desired output is the input data
itself. The proposed network architecture is composed of two
parts, i.e., the convolutional subnetwork and deconvolutional
subnetwork. The former corresponds to an encoder that trans-
forms the input 3-D hyperspectral patch x; to abstract feature
representation k;, whereas the latter plays the role of a decoder
that reproduces the initial input data from the encoded feature.
Each layer in the convolutional subnetwork has a correspond-
ing decoder layer in the deconvolutional subnetwork.

2) Convolutional Subnetwork: The design of the architec-
ture of the convolutional subnetwork is mainly inspired by the
philosophy of the VGG Nets [26]. The input hyperspectral
patch is fed into a stack of convolutional layers, where we
leverage convolutional filters with a very small receptive field
of 3 x 3, rather than making use of larger ones, such as
5 x 5 or 7 x 7. The reason is that 3 x 3 convolutional
filters are the smallest kernels to seize patterns in different
directions, such as center, up/down, and left/right, but still
have an advantage: the usage of small convolutional filters
will increase the nonlinearities inside the network and thus
make the network more discriminative.
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In addition, the convolutional stride in the convolutional
subnetwork is fixed to 1 pixel; the spatial padding of con-
volutional layer input is such that the spatial resolution of
feature maps is preserved after convolution, in other words,
the padding is 1 pixel for the used 3 x 3 convolutional
layers. Spatial pooling is achieved by carrying out several
max-pooling layers, which follow some of the convolutional
layers. In particular, max pooling is performed over 3 x 3 pixel
windows with stride 3.

In a nutshell, the convolutional layers in the convolutional
subnetwork consist of 3 x 3 filters and follow the following
two rules: 1) the convolutional layers in each convolutional
block are with the same feature map size and have the same
number of filters and 2) the number of channels of the feature
maps increases in the deeper convolutional blocks, roughly
doubling after each max-pooling layer, which is meant to
preserve the time complexity per layer as far as possible. All
layers in the convolutional subnetwork are equipped with a
rectified linear unit (ReLU) [25] as activation function. ReLU
is one of several keys to the recent success of deep neural
networks and can be defined as f(x) = max(0, x). Compared
with the conventional activation functions, such as sigmoid
and hyperbolic tangent function, the usage of ReLU can
expedite convergence of the training course and result in better
solutions.

3) Deconvolutional Subnetwork: The convolutional subnet-
work is in charge of extracting high-level abstract spectral—
spatial feature representation of the input 3-D hyperspectral
patch, by interleaving convolutional layers and max-pooling
layers, i.e., spatially shrinking the feature maps layer by layer.
Pooling is necessary to allow agglomerating information over
large areas of feature maps and, more fundamentally, to make
the network computationally feasible. However, pooling leads
to reduced resolution of the feature maps; hence, in order to
reconstruct the initial input data, we need to find a way to
refine this coarse pooled representation.

Our approach to this refinement is to construct a deconvo-
Iutional subnetwork. The main ingredient is deconvolutional
operation, which performs reverse operation of the convo-
lutional subnetwork and reconstructs the original input data
from the abstract feature representation. The deconvolutional
operation consists of unpooling and convolution. In order to
map the encoded feature to a high-dimensional hyperspectral
cube, we need unpooling to unpool the feature maps, i.e., to
increase their spatial span, as opposed to the pooling (spatially
shrinking the feature maps) implemented by the convolutional
subnetwork. More specifically, the unpooling [44], [45] is
performed by simply replacing each entry of a feature map
by an s x s block with the entry value in the top-left corner
and zeros elsewhere (see Fig. 3). With this operation, the
height and the width of the feature maps are increased s
times. In this network, we made use of s = 3, as the
size of the receptive field in the max-pooling layers of the
convolutional subnetwork is 3 x 3. When a convolutional
block is preceded by an unpooling layer, we can thus think
of the combination of unpooling and convolutional block
as the inverse operation of “convolutional block + pooling”
performed in the convolutional subnetwork.

1112 14 |8 16

3x3 Max-pooling

3x3 Unpooling

Fig. 3. Illustration of (Left) max pooling and (Right) unpooling as used in
the fully Conv-Deconv network described in Section III-A.
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Fig. 4. Learning curves for the initial fully Conv—Deconv network on

the Indian Pines data set and the Pavia University data set. Although the
network starts greatly reducing errors on both the training and validation
samples during the first few epochs, it rapidly converges to a fairly high
value, which means the learning of the network is significantly slowed down
and eventually gets stuck into a local minimum. This indicates that such a
network architecture is not easy to optimize.

The configuration of convolutional blocks in the decon-
volutional subnetwork is the same with the convolutional
subnetwork, namely, 3 x 3 receptive field, 1 pixel padding,
and ReLU as activation function.

B. Refined Network Architecture

1) Difficulty of Training Conv—Deconv Network: In
Section III-A, we have systematically built a reasonable net-
work architecture for our task, but a problem will arise when
we attempt to train the network. As can be seen in Fig. 4,
although the network starts greatly reducing errors on both
the training and validation samples during the first few epochs,
it rapidly converges to a fairly high value, which means the
learning of the network is significantly slowed down and
eventually gets stuck into a local minimum. This indicates that
such network architecture is not easy to optimize. We think
the obstacles to train the proposed fully Conv—Deconv network
are as follows.

1) In the Conv—Deconv network, the exact copy of the input
high-dimensional 3-D hyperspectral patch has to go
through all layers until it reaches the output layer. With
many weight layers, this becomes an end-to-end relation
requiring very long-term memory. For this reason, the
notorious vanishing gradient problem [46], [47] can
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We refine the proposed fully Conv—Deconv network architecture by incorporating residual learning and a more appropriate unpooling operation,

which can use memorized max-pooling indices from the corresponding encoded feature maps and enables reconstruction to be more accurate.

be critical, which handicaps the learning process of the
network.

2) The unpooling operation [44], [45] in the deconvolu-
tional subnetwork increases the spatial resolution of
feature maps by simply adding zeros, which ignores the
location of the maximum value in the receptive field
of pooling layer, leading to loss of edge information
during the decoding procedure. Without this detailed
information, it is difficult for the optimizer to lead the
network to better solutions.

To address the aforementioned problems, in this section,
we refine the proposed fully Conv—Deconv network architec-
ture by incorporating residual learning and a new unpooling
operation that can use memorized max-pooling indices from
the corresponding encoded feature maps and enables recon-
struction to be more accurate. The new network architecture
is shown in Fig. 5.

2) Conv—Deconv Network With Residual Learning: Resid-
ual learning has recently shown appealing performance in
the concrete-to-abstract deep network architectures on many
challenging visual tasks, such as image classification [27], [48]
and object detection [27]. One main merit offered using the
residual learning is that it helps in handling the vanishing
gradient problem and degradation problem [27]. In this paper,
we are interested in introducing the residual learning to the
proposed concrete-to-concrete Conv—Deconv network in order
to resolve the network training problem.

The proposed Conv—Deconv network with residual learning
is a modularized network architecture that stacks residual
blocks. Similar to the convolutional blocks, a residual block
consists of several convolutional layers that are with the same
feature map size and have the same number of filters. However,
it performs the following calculation:

o = g(d) + F(dr; O))
b1 = flon).

Here, ¢; indicates the feature maps that are fed into the
Ith residual block and satisfies ¢p = x where x is the input
3-D hyperspectral patch. @; = {@; |1 < k < K} represents a
collection of weights associated with the /th residual block,
and K denotes that there are K convolutional layers in a
residual block. Moreover, F is the residual function and
is generally achieved by few stacked convolutional layers,

12)
(13)

e.g., a convolutional block described in Section III-A. The
function f indicates the activation function such as a linear
activation function or ReLU, and f works after element-wise
addition. The function g is fixed to an identity mapping:
g(d) = o1

If f adopts a linear activation function and also acts as an
identity mapping, i.e., ¢;+1 = ¢;, we can obtain the output of
the /th residual block by putting (12) into (13)

b1 =@+ F(P; 9)).

In contrast, a convolutional block only performs the
following computation:

(14)

G141 = Hidr: O1). (15)
Recursively, like
di+2 = i1 + F(brv1; Opy)
= ¢ + F(p; ©1) + F(@i11; Or11) (16)
we will get the following recurrence formula:
L—1
b=+ > F(¢i; ©)) (17)

i=l
for any shallower block / and any deeper block L.

As exhibited in (17), the network with residual learning has

some interesting and nice properties.

1) The feature maps ¢;, of any deeper residual block L can
be considered to be adding the feature maps ¢; of any
shallower block [ and a residual function in a form of
le‘z_ll F, representing that the network is in a residual
fashion and is capable of learning some new features
between any blocks / and L.

2) With both the g and f being identity mappings, i.e.,
g(d) = ¢; and f(¢;) = ¢i, a network with residual
learning creates a direct path for propagating information
through the entire network, which can effectively avoid
the vanishing gradient problem.

These two respects are in contrast to the Conv—Deconv
network equipped with common convolutional blocks
(see Section III-A) in which the feature maps ¢; are a set
of matrix products, namely, HiL;()l O;¢.

The content discussed above illustrates the forward propa-

gation procedure of the Conv—Deconv network with residual
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Fig. 6. Comparison between the convolutional block and the residual block.
Here, ¢; denotes the input and ¢4 is any desired output. The convolutional
block hopes that two convolutional layers are able to fit ¢4 by directly
learning a mapping H. In contrast, the two convolutional layers are expected
to learn a residual function F to let ¢y 1 = F(¢;) + ¢; in the residual block.

learning. However, how the residual learning can help us
to effectively train the proposed deep network? To answer
this question, we need to dive into the backward propagation
process. Denoted by E indicating the loss function, according
to the chain rule of backpropagation, we can obtain

OE _ OE 0¢, _ OE L

0
= 14+ — F(pi; O; 18
+8¢1; (¢:0)]. (18)

o1 OopL o O¢L
Equation (18) implies that the gradient (0E/0¢y;) can be
decomposed into two additive terms: a term of (0E/d¢.) that
directly propagates information without concerning any weight
layers and another term of (0E/d¢r)((0/0¢r) ZlL;,l F) that
propagates through the weight layers. The former term ensures
that the information can be propagated back to any shallower
residual block [ directly. In addition, since (6/0¢;) Z,L;zl F
basically cannot always be —1 for all training data in a batch,
it is almost impossible that (18) is canceled out for a mini-
batch. This implies that the gradient information of a layer in
the network does not vanish even while the trainable weights
are arbitrarily small, which is the key to make the deep
network feasible for the purpose of training and to answer the
question mentioned above. Given the activation function of the
last layer is sigmoid, on the contrary, the initial Conv—Deconv
network easily suffers from the vanishing gradient problem,
which leads the learning procedure is slowed down or even
stopped. Fig. 6 shows a comparison between the convolutional
block [Fig. 6 (left)] and the residual block [Fig. 6 (right)].
3) More Accurate Unpooling: To acquire more appropri-
ate unpooled feature maps and more precise reconstruction
output, the max-pooling indices computed in the max-pooling
layers of the corresponding encoder can be used to perform
nonlinear upsampling of the feature maps. And, reusing the
max-pooling indices in the deconvolutional subnetwork has
several practical merits, including that it is able to improve
boundary delineation and eliminates the need for learning to
upsample. The unpooled feature maps produced by this form
of unpooling are sparse. Then, the unpooled feature maps are
convolved with trainable filters to generate dense feature maps.
Goroshin et al. [49] recently presented a soft version of max
and argmax operations that can take not only the maximum
value in the receptive field of a max-pooling layer but also

(-1,0) (0,0)
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Max-pooling Indices
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Fig. 7. Tllustration of the unpooling operation in the refined Conv—Deconv
network (see Section III-B), using max-pooling indices that are capable of
recording the location of the maximum value in each local pooling region
during pooling in the convolutional subnetwork.

the corresponding index of that value. In particular, these two
operations can be computed as follows:

exp(az(i, j))

o explazl)) -
v=" li,j] S exp(azl 1)) argm‘?xz(l,J) (20)

1%

where (i, j) stands for the spatial location index in the
receptive field of a max-pooling layer and takes normalized
values from —1 to 1, and z(i, j) presents the value of the
given location on a feature map. V is the receptive field. Note
that a is a hyperparameter that controls soft pooling such that
the lager the a, the closer the soft pooling approaches max
pooling. With the max and arg max operations, the max-poling
indices can be obtained in every pooling layer.

Then we make use of interpolation in the unpooling layers
of the deconvolutional subnetwork by handling the values
conveyed by the max-pooling indices (see Fig. 7). The use of
max-pooling indices enables location information to be more
accurately represented and thus enables the feature maps to
capture fine details about the input 3-D hyperspectral patch.

C. Usage of Learned Features for Classification by
Fine-Tuning the Network

Once the Conv-Deconv network is trained, the convolu-
tional subnetwork, i.e., the encoder, can be regarded as an
effective feature extractor. The key idea, here, is that the
internal layers of the convolutional subnetwork can act as
a generic extractor of spectral-spatial representation, which,
first, can be trained by learning an identity mapping in the
encoder—decoder architecture and then reused on other target
tasks like classification. With this fine-tuning, we do not have
to use a large number of labeled data to train a valid network
for the purpose of supervised classification. In contrast, taking
into consideration the fact that the total number of trainable
parameters of a deep 2-D convolutional network is huge, a
direct learning of so many parameters from the limited number
of training samples is problematic. For fine-tuning, we cut
off the deconvolutional subnetwork, introduce a new fully
connected layer with softmax as a classifier, and fine-tune this
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Fig. 8. Tllustration of fine-tuning.
TABLE I

NUMBER OF TRAINING AND TEST SAMPLES USED
IN THE INDIAN PINES DATA SET

Class No. Class Name Training  Test
1 Alfalfa 50 1384
2 Corn-notill 50 784
3 Corn-min 50 184
4 Corn 50 447
5 Grass-pasture 50 697
6 Grass-trees 50 439
7 Grass-pasture-mowed 50 918
8 Hay-windrowed 50 2418
9 Oats 50 564
10 Soybean-notill 50 162
11 Soybean-mintill 50 1244
12 Soybean-clean 50 330
13 Wheat 50 45
14 Woods 15 39
15 Buildings-grass-trees 15 11
16 Stone-steel-towers 15 5

TOTAL 695 9671

new layer with limited labeled training samples, making the
network significantly easier to be trained for the classification
task. Fig. 8 illustrates this process.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Data Description

1) Indian Pines: This data set was acquired over the
Indian Pines agricultural site in northwestern Indiana. It was
collected with an airborne visible/infrared imaging spec-
trometer (AVIRIS) sensor in June 1992. The AVIRIS sensor
comprises 220 spectral channels ranging from 400 to 2500 nm.
In this data set, 20 bands affected by atmosphere absorption
have been removed, and the remaining 200 spectral bands
are investigated in this paper. The data set consists of
145 x 145 pixels, and the spatial resolution is 20 m/pixel.
The available training samples of this data set cover 16 classes
of interests. Table I provides information about different
classes and their corresponding training and test samples.

2) Pavia University: The second data set was captured by
reflective optics system imaging spectrometer (ROSIS) cov-
ering the Engineering School at the University of Pavia, and
presents nine classes, mostly related to land covers. The image
is of 610 x 340 pixels with a spatial resolution of 1.3 m/pixel
and was collected under the HySens project managed by the
German Aerospace Center. The hyperspectral imagery consists
of 115 spectral channels ranging from 430 to 860 nm. In this

TABLE I

NUMBER OF TRAINING AND TEST SAMPLES USED
IN THE PAVIA UNIVERSITY DATA SET

Class No.  Class Name  Training Test
1 Asphalt 548 6631
2 Meadows 540 18649
3 Gravel 392 2099
4 Trees 524 3064
5 Metal sheets 265 1345
6 Bare Soil 532 5029
7 Bitumen 375 1330
8 Bricks 514 3682
9 Shadows 231 947

TOTAL 3921 42776

paper, we made use of 103 spectral channels, after removing
12 noisy bands. Table II provides information about all nine
classes of this data set with their corresponding training and
test samples.

B. General Information

To evaluate the performance of different approaches for
hyperspectral image classification, the following evaluation
criteria are used.

1) Overall Accuracy (OA): This measure represents the
number of samples that are classified correctly, divided
by the number of test samples.

2) Average Accuracy (AA): This index shows the average
value of the classification accuracies of all categories.

3) Kappa Coefficient: This metric is a statistical measure-
ment that provides information regarding the amount
of agreement between the ground truth map and the
final classification map. It is the percentage agreement
corrected by the level of agreement, which could be
expected due to the chance alone. In general, it is
considered to be a more robust index than a simple
percent agreement calculation, since k takes into account
the agreement occurring by chance [1].

In addition, in order to evaluate the significance of the
classification accuracies obtained by different approaches, a
statistical test is conducted. Since the samples that were used
for two different classification approaches are not independent,
we evaluate the significance of two classification results with
McNemar’s test, which is given by [50]

I J12 = fa
SRS TR Y

where f;; is the number of correctly classified samples in clas-
sification i and incorrectly in classification j. McNemar’s test
is based on the standardized normal test statistic and therefore,
the null hypothesis, which is “no significant difference,” is
rejected at the widely used p = 0.05 (|z] > 1.96) level of
significance.

To validate the effectiveness of the proposed network archi-
tecture for the purpose of hyperspectral image classification,
the novel classification method is compared with the most
widely used supervised models, random forest [13], [14] and
SVMs [15], [16]. In addition, in this paper, the experiments
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making use of other supervised deep learning methods such
as 1-D CNN and 2-D CNN are also carried out to verify the
validity of the proposed network. The approaches included in
the comparison are summarized as follows.

1) RF-200: Random forest with 200 trees.

2) SVM-RBF: SVMs with an RBF kernel are implemented
using the libsvm package.! Furthermore, fivefold cross-
validation is taken into account to tune the hyperplane
parameters.

3) I-D CNN: The network architecture of the 1-D CNN is
designed as in [51] and includes an input layer, convo-
Iutional layer, max-pooling layer, fully connected layer,
and output layer. The number of the convolutional filters
is 20 for all data sets. The length of each convolutional
filter and the pooling size are 11 and 3, respectively.
Moreover, 100 hidden units are contained in the fully
connected layer.

4) 2-D CNN: We follow the architecture of the 2-D CNN as
used in [36]. It contains three convolutional layers that
are equipped with 4 x 4,5 x 5, and 4 x 4 convolutional
filters, respectively. The convolutional layers—apart
from the last one—are followed by the max-pooling
layers. In addition, the numbers of the convolutional
filters for the convolutional layers are 32, 64, and 128,
respectively.

5) SICNN: An SICNN model solves the curse of dimen-
sionality and the lack of available training samples by
iteratively selecting the most informative bands suitable
for the designed network via FODPSO [19].

6) Initial Conv—Deconv Network: The fully Conv—Deconv
network with the plain convolutional blocks and the
unpooling operation implemented in [44] and [45]
(see Section III-A).

7) Residual Conv—Deconv Network: Our final network
architecture makes use of the residual blocks and a more
accurate unpooling operation. Section III-B shows the
details.

Note that, to make the proposed approach fully comparable
with other supervised classifiers in the literature, we used the
standard sets of training and test samples for the data sets.

The fully Conv-Deconv network was trained using the
Adam algorithm [52], and all the suggested default parameters
were used for all the following experiments. The number
of convolutional filters increases toward deeper layers of the
convolutional subnetworks: 64 for the first residual block,
128 for the following block, and 256 for the last one. This
rule is turned over for the deconvolutional subnetwork. All
the convolutional layers are with ReLU as nonlinear activation
function except the last layer that uses sigmoid activation.
All weight matrices in the network and bias vectors are
initialized with a uniform distribution, and the values of
these weight matrices and bias vectors are initialized in the
range [—0.1, 0.1]. The number of unlabeled data samples used
for training the Conv—Deconv network on both Indian Pines
and Pavia University is 10000. These unlabeled samples are
randomly selected from the whole images. Prior to training the

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/

Conv—Deconv network, we normalize the hyperspectral data in
the range of 0—1. Then, all the weights can be updated during
the training procedure. Once the training of Conv—Deconv
network is complete, we can start to fine-tune the network
for hyperspectral data classification. We made use of SGD
with a fairly low learning rate of 0.0001 in order to fine-
tune the network. For fine-tuning, in both hyperspectral data
sets, we randomly chose 10% of the training samples as the
validation set. That is, during fine-tuning, we used 90% of the
training samples to learn the parameters and the remaining
10% of the training samples as validation to tune the super-
parameters, such as the numbers of convolutional filters in
the convolutional layers. All test samples are used to evaluate
the final performance of the learned spectral-spatial feature
representations and the fine-tuned network for classification.

The experiments are organized into three parts. The first
part aims primarily at evaluating the learning procedures of the
initial Conv—Deconv network and the residual Conv—Deconv
network. Moreover, the learned feature maps are also shown
and discussed in this part. In the second part, the effectiveness
of the proposed network is compared with other state-of-
the-art models such as random forest, SVM, 1-D CNN, and
2-D CNN. In the last part, we comment on the processing
time.

C. Analysis of the Conv—Deconv Networks

1) Learning Curves: We first investigate the behavior of the
initial Conv—Deconv network and the residual Conv—Deconv
network during the training process, before we present the
performance of the networks for the classification task. The
qualities of the trained networks can be reflected by learning
curves. As shown in Fig. 9, the initial Conv—Deconv network
starts reducing error earlier on both the training samples
and the validation samples but finally reduces the loss to a
relatively high value, which means the learning of the network
is apparently slowed down and the network converges to a
local minimum in the end. In contrast, with residual learning,
the residual Conv—Deconv network shows strong convergence
ability. In particular, the residual Conv—Deconv network can
obtain the training error value of 0.000276 on the Indian
Pines data set after 30 epochs, while the initial Conv—Deconv
network can achieve only 0.0767. For the Pavia University data
set, the residual Conv—Deconv network can quickly converge
to the error of 0.000238 after 30 iterations. In the same con-
dition, the initial Conv—Deconv network can yield only 0.120.
Furthermore, since we do not observe the overfitting problem
in Fig. 9, the trained residual Conv—Deconv network can be
thought as a good model for the follow-up fine-tuning stage.

2) Feature Visualization and Analysis: In order to under-
stand the “black box’ of the Conv—Deconv network, we show
and analyze the learned feature maps. Specifically, we use the
Pavia University data set to perform an in-depth study of the
learned feature representation. Note that we do not have any
fully connected layer in the residual Conv—Deconv network,
which allows the trained network to take hyperspectral images
of arbitrary size as input. Fig. 10 shows feature visualizations
from the first residual block of the residual Conv-Deconv
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Fig. 9. Learning curves for the initial Conv—Deconv network and the residual Conv—Deconv network on the training samples and the validation samples
of (a) Indian Pines data set and (b) Pavia University data set. With residual learning and the new unpooling operation, we can lead the network to a better
solution. Here, we use the Adam optimizer with a default learning rate of 0.001.

Y

Fig. 10. Feature visualizations from the first residual block of the residual Conv—Deconv network once training is complete on the Pavia University data
set. Each group contains two feature maps, including (Left) residual feature F(¢h; @;) and (Right) output feature map ¢;4. We randomly demonstrate
20 out of 64 learned feature map groups, revealing different structures that are activated by various convolutional filters.

network once training is complete. Each group in Fig. 10 the residual block. We randomly show 20 out of 64 learned
contains two feature maps, i.e., the residual feature F(¢p;; ®;) feature map groups, revealing the different structures that
[Fig. 10 (left)] and the output feature ¢;4; [Fig. 10 (right)] of are activated by various convolutional filters. For instance,
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#121

#08

(b)

Fig. 11. (a) Eight out of 128 output feature maps of the second residual
block. (b) Twelve out of 256 output feature maps of the third residual block.

in group #47, the visualization of output feature map reveals
that this particular feature focuses on the spectrum of metal
sheets in the scene, while the output feature map in group #52
inhibits the expression of the same class. And, as shown
in group #37, the residual feature tends to activate the
shadow areas in the feature map. Since these feature maps
are produced by the corresponding convolutional filters, it is
believed that the convolutional filters learned by our residual
Conv-Deconv network are capable of extracting some specific
spectral-spatial patterns from different perspectives. We also
show the output feature maps of the second and the third
residual blocks in Fig. 11. It can be seen that the deeper the
residual block is, the more abstract the learned feature maps
will be naturally.

3) Object Detection: A very interesting thing arises when
we analyze the learned feature maps. Although our residual
Conv-Deconv network has not been explicitly designed for the
task of object detection, we have observed strong evidence
of object detection for the hyperspectral image provided by
the network at the test stage. In particular, we found that
target objects can be localized by the activated or suppressed
pixels in some specific learned feature maps of the first
residual block. For example, we can determine the objects
consisted of metal sheets in the Pavia University data set
through finding the hyperspectral pixels that are suppressed by
the convolutional filter #52. Similarly, the vegetation covers,
including meadows and trees, are able to be identified in

(b)

Fig. 12.  Object detection maps of selective convolutional filters from the
first residual block of the proposed residual Conv—Deconv network, in which
some “neurons” own good description power for semantic visual patterns in
the object level. For example, the feature maps activated by the convolutional
filters #52 and #03 in the first residual block can be used to precisely
capture (a) metal sheets and (b) vegetative covers, respectively. Specifically,
we achieve detection by simply setting a global threshold, which is computed
by minimizing the intraclass variance of the black and white pixels in the
considered feature map [53].

the scene by searching the nonactivated pixels in the output
feature map #03. To qualitatively assess the object detection
results acquired by the proposed approach, examples of such
object detection maps are given in Fig. 12. This visualization
clearly demonstrates that some “neurons” in the first residual
block of the proposed residual Conv—Deconv network know
the locations of the target objects within the hyperspectral
image and own good description power for semantic visual
patterns in the object level. Addressing the detection task
seems within reach. Moreover, it is worth noting that compared
with the conventional supervised object detectors that need a
number of labeled ground truth data, object detection achieved
by this method is free and totally unsupervised. Also, as
shown in Fig. 12, the quality of such object detection maps
is quite good. These maps are with very good edge details,
and even very small objects (e.g., cars on the road in the
Pavia University scene) can be detected. In a nutshell, our
study has shown that the convolutional filters in the proposed
residual Conv—Deconv network for the task of unsupervised
spectral-spatial feature learning possess strong selectiveness
on patterns corresponding to object categories. Particularly,
the feature maps obtained by some specific “neurons” at the
first residual block of the network record the spectral-spatial
representation of visual pattern of a specific object.

D. Fine-Tuned Network for Hyperspectral
Image Classification

To further investigate the spectral-spatial features learned
by the residual Conv-—Deconv network, we evaluated the
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Fig. 13.

Classification results obtained by different methods for the Indian Pines scene. (a) True-color composite (bands R: 26, G: 14, B: 8). (b) Training

samples. (c) Test samples. (d) RF-200. (¢) SVM-RBE. (f) 1-D CNN. (g) 2-D CNN. (h) SICNN. (i) Fine-tuned residual Conv—Deconv network.

performance of the fine-tuned network for the hyperspectral
data classification task and provided a comparison with the
state-of-the-art approaches.

The classification maps of the Indian Pines data set obtained
by the widely used classifiers (e.g., random forest and SVM),
supervised CNNs, and our method are shown in Fig. 13, and
the corresponding accuracy indexes are presented in Table III.
Analysis of the classification accuracy indexes indicates that
the SVM with RBF kernel (SVM-RBF) outperforms the
random forest classifier, mainly because the kernel SVM
generally deals with nonlinear inputs more effectively than
the random forest model. The proposed fine-tuned residual
Conv-Deconv network achieves better scores for OA and
kappa coefficient compared with all other methods. In compar-
ison with SVM-RBF, 1-D CNN, and 2-D CNN, the proposed
network increases the OA by 12.98%, 13.36%, and 15.97%,
respectively. In addition, the numbers of test samples for

different classes of Indian Pines are considerably imbalanced.
Hence, the consideration of the OA alone cannot precisely
evaluate the usefulness of the classifier, since small classes
are commonly ignored. In this case, AA and kappa coefficient
can be used to evaluate the performance of different classi-
fication models more accurately. Strong difference between
the OA and AA or kappa coefficient may means that some
classes are incorrectly classified with a high proportion. With
respect to these two measures, compared with SVM-RBF,
1-D CNN, and 2-D CNN, the improvements in AA achieved
by the proposed network are 9.89%, 12.20%, and 7.58%,
respectively, and the increments of kappa coefficient obtained
by the fine-tuned residual Conv-Deconv Net are 0.1454,
0.1533, and 0.1406, respectively. Note that the OA and kappa
coefficient of 2-D CNN are significantly lower than those of
other approaches, as directly training such 2-D network gen-
erally suffers from a small and imbalanced data set, while the
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TABLE IIT
ACCURACY COMPARISON FOR THE INDIAN PINES DATA SET. THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD

Class No. Class Name RF-200 SVM-RBF 1D CNN 2D CNN SICNN Res. Conv-Deconv Net
1 Alfalfa 55.71 60.77 56.79 66.98 79.84 74.86
2 Corn-notill 58.29 77.68 52.17 80.87 92.47 95.28
3 Corn-min 80.98 79.35 85.33 95.65 99.46 100
4 Corn 84.79 91.05 87.92 91.95 93.29 95.08
5 Grass-pasture 79.77 84.36 85.22 86.94 92.68 96.56
6 Grass-trees 95.90 92.03 97.49 97.95 96.58 99.09
7 Grass-pasture-mowed 76.58 69.61 74.62 67.86 86.82 84.42
8 Hay-windrowed 60.17 59.31 67.99 34.57 69.52 74.57
9 Oats 63.12 79.61 58.87 80.85 83.69 80.14
10 Soybean-notill 95.68 97.53 98.77 100 100 100
11 Soybean-mintill 88.75 85.21 87.62 88.18 96.70 95.74
12 Soybean-clean 53.33 63.64 72.42 91.52 96.97 96.06
13 Wheat 97.78 100 93.33 100 100 100
14 Woods 56.41 87.18 71.79 71.79 94.87 84.62
15 Buildings-grass-trees 81.82 90.91 90.91 100 100 100
16 Stone-steel-towers 100 100 100 100 100 100

OA - 69.92 72.78 72.40 69.79 85.13 85.76

AA - 76.82 82.39 80.08 84.70 92.68 92.28

Kappa - 0.6605 0.6931 0.6852 0.6979 0.8313 0.8385
TABLE IV

CLASSIFICATION ACCURACIES OF DIFFERENT TECHNIQUES IN PERCENTAGE FOR PAVIA UNIVERSITY.
THE BEST ACCURACY IN EACH ROW Is SHOWN IN BOLD

Class No. Class Name RF-200 SVM-RBF IDCNN 2D CNN SICNN Res. Conv-Deconv Net
1 Asphalt 80.94 84.84 83.73 69.25 84.21 78.99
2 Meadows 55.91 67.09 65.70 93.39 91.10 97.16
3 Gravel 53.26 72.13 67.03 63.13 64.36 61.46
4 Trees 98.76 95.72 94.03 94.39 95.53 95.76
5 Metal Sheets 99.11 99.48 99.41 100 97.70 97.77
6 Bare Soil 79.26 93.30 96.30 49.06 56.53 59.46
7 Bitumen 83.76 91.88 93.83 72.26 77.29 79.5
8 Bricks 91.06 92.56 93.56 94.32 95.57 96.82
9 Shadows 98.10 97.47 99.79 93.77 96.20 92.40
OA - 71.66 79.88 79.28 82.66 85.25 87.39
AA - 82.24 88.27 88.15 81.06 84.28 84.37
Kappa - 0.6517 0.7487 0.7423 0.7688 0.8041 0.8308

proposed strategy, to a large extent, is capable of overcoming
this shortcoming. Moreover, SICNN also performs well on the
Indian Pines data set, since the specially designed mechanism
can effectively solve the curse of dimensionality and the lack
of available training samples. But, it is worth noting that our
method for feature learning is unsupervised, while 1-D CNN,
2-DCNN, and SICNN are supervised networks. Taking this
into account, the performance of our approach is competitive
and satisfactory. The proposed approach achieves the best
accuracies on most of classes of the Indian Pines data set. For
instance, the accuracy of the grass-pasture category obtained
by fine-tuned residual Conv—Deconv network reaches 96.56%,
and the proposed network can achieve 100% on the corn-min
class.

Fig. 14 shows the classification maps using the Pavia
University data set; the comparison of accuracies between
the random forest, SVM-RBF, supervised CNNs, and our
approach can be found in Table IV. It can be seen that
the proposed fine-tuned residual Conv-Deconv network
outperforms the others in terms of OA and kappa coefficient.
Misclassification in this data set lies in similar objects, such as
Meadow-Trees. The proposed network achieves the best AA
of 96.46% on Meadow-Trees. Similarly, the misclassification

problem in the Indian pines data set is also improved. For
example, the AA of Corn-notill, Corn-min, and Corn obtained
by the fine-tuned residual Conv—Deconv network is 96.79%,
which is higher than that of SVM-RBF (82.69%), 1-D CNN
(75.14%), 2-D CNN (89.49%), and SICNN (95.07%).
Furthermore, in Figs. 13 and 14, it is obvious that the spectral
classification methods (random forest, SVM, and 1-D CNN)
always result in noisy scatter points in the classification
maps, while the spectral-spatial approaches (2-D CNN,
SICNN, and fine-tuned residual Conv-Deconv network)
address this problem by eliminating noisy scattered points of
misclassification.

In addition to comparing the proposed approach with the
traditional classifiers (random forest and SVM) and other deep
networks, some mathematical morphology-based methods
like the morphological profile (MP) [54] are also considered
in comparison due to their capacity to extract spatial
features. Fauvel et al. [55] summarized some frequently
used spectral-spatial features. Benediktsson er al. [56]
proposed an extended MP (EMP) using principal component
analysis (PCA) for hyperspectral image classification. The
EMP-PCA [56] is able to achieve the OA of 77.7%, AA of
82.5%, and kappa coefficient of 0.71 on the Pavia University
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Fig. 14.
University scene. (a) Composite image of hyperspectral data. (b) Training
data. (c) Ground truth reference. (d) RF-200. (e) SVM-RBE. (f) 1-D CNN.
(g) 2-D CNN. (h) SICNN. (i) Fine-tuned residual Conv—-Deconv network.

Classification results obtained by different methods for the Pavia

data set. Fauvel et al. [57] attempted to make use of kernel
PCA to produce EMP, in which state-of-the-art performance
on the Pavia University scene can be obtained with the OA
of 96.3%, AA of 95.7%, and kappa coefficient of 0.95. For
more mathematical morphology-based approaches, please
refer to [55].

Table V gives information about the results of McNemar’s
test to evaluate the significance of the difference between
the classification accuracies of the proposed network and the
other investigated approaches. With reference to Table V, the
improvements of OAs achieved by the proposed methods are
statistically significant in comparison with the other studied
methods. It is worth noting that the SICNN performs simi-
larly to the proposed approach on the Indian Pines data set

TABLE V

ASSESSMENT OF THE SIGNIFICANCE OF THE CLASSIFICATION
ACCURACIES OF THE PROPOSED METHOD COMPARED WITH
THE OTHER INVESTIGATED APPROACHES FOR BOTH THE
INDIAN PINES AND PAVIA UNIVERSITY DATA SETS

Data set RF-200 SVM-RBF IDCNN 2D CNN SICNN

Tndian Pines 28.056 24.995 24440 32463 1747

Pavia University ~ 56.949 29.128 31362 31464 12.029
TABLE VI

STATISTICS OF TRAINING TIME (MINUTES)

Data set Res. Conv-Deconv Net  Fine-tuned network
Indian Pines 20.3 3.1
Pavia University 34.8 6.9

(the value is 1.747), as the SICNN exploits band selection
before feeding the data into the CNN, which greatly reduces
the total number of parameters of the network and thus
improves the accuracy.

E. Processing Time

For both training and testing steps of the residual
Conv-Deconv network and the fine-tuned network, we have
used an NVIDIA GTX Titan GPU. The other approaches,
i.e., random forest, SVM-RBF, and 1-D CNN, are computed
on a CPU with a personal computer equipped with an Intel
Core I5 with 2.20 GHz. The training times of the residual
Conv—Deconv network and the fine-tuned network are shown
in Table VI. With the help of GPU, the training times of the
proposed networks are acceptable.

V. CONCLUSION

In this paper, we proposed a novel end-to-end fully
Conv—Deconv network architecture for unsupervised spectral—
spatial feature extraction of hyperspectral images. In particular,
the proposed network is composed of two parts, namely, the
convolutional subnetwork and deconvolutional subnetwork.
They are responsible for transforming an input 3-D hyperspec-
tral patch to abstract feature representation and reproducing
the initial input data from the encoded feature, respectively.
Furthermore, residual learning and a new unpooling operation
that can make use of max-pooling indexes are introduced to
our network architecture in order to overcome the training
problem caused by vanishing gradient. A very interesting
observation can be found when we analyze the learned feature
maps. Although the proposed network has not been explicitly
designed for the task of object detection, we have observed that
target object can be localized by the activated or suppressed
pixels in some specific learned feature maps of the first resid-
ual block, which makes it possible to achieve the unsupervised
object detection in hyperspectral images. Experimental results
also demonstrate that the features learned by the proposed
unsupervised network can be used for the hyperspectral image
classification task, and the obtained classification results are
competitive compared with the other supervised approaches.

In the future, further experiments and studies will be con-
ducted to fully understand the “block box” of the proposed
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fully Conv—Deconv network with residual learning, providing
more accurate analysis for remote sensing applications such as
unsupervised object detection with the help of learned feature
maps. In addition, the input to the proposed Conv-Deconv
network is the raw hyperspectral data, and a possible future
work is to explore the capability of the proposed approach
using APs and extinction profiles that extract spatial informa-
tion in a robust and adaptive way.
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Learning Spectral-Spatial-Temporal Features via
a Recurrent Convolutional Neural Network for
Change Detection in Multispectral Imagery

Lichao Mou, Student Member, IEEE, 1.orenzo Bruzzone
and Xiao Xiang Zhu™,

Abstract— Change detection is one of the central problems
in earth observation and was extensively investigated over recent
decades. In this paper, we propose a novel recurrent convolutional
neural network (ReCNN) architecture, which is trained to learn
a joint spectral-spatial-temporal feature representation in a
unified framework for change detection in multispectral images.
To this end, we bring together a convolutional neural network
and a recurrent neural network into one end-to-end network.
The former is able to generate rich spectral-spatial feature
representations, while the latter effectively analyzes temporal
dependence in bitemporal images. In comparison with previous
approaches to change detection, the proposed network archi-
tecture possesses three distinctive properties: 1) it is end-to-end
trainable, in contrast to most existing methods whose components
are separately trained or computed; 2) it naturally harnesses
spatial information that has been proven to be beneficial to
change detection task; and 3) it is capable of adaptively learning
the temporal dependence between multitemporal images, unlike
most of the algorithms that use fairly simple operation like image
differencing or stacking. As far as we know, this is the first time
that a recurrent convolutional network architecture has been
proposed for multitemporal remote sensing image analysis. The
proposed network is validated on real multispectral data sets.
Both visual and quantitative analyses of the experimental results
demonstrate competitive performance in the proposed mode.

Index Terms— Change detection, long short-term memory
(LSTM), multitemporal image analysis, recurrent convolutional
neural network (ReCNN).

I. INTRODUCTION
ITH the development of remote sensing technology,
every day, massive amounts of remotely sensed data
are produced from a rich number of spaceborne and airborne
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sensors; e.g., the Landsat 8 satellite is capable of imaging the
entire Earth every 16 days in an 8-day offset from Landsat 7,
and every 10 days, the Sentinel-2 mission can provide a global
coverage of Earth’s land surface. For the Sentinel-2 mission
alone, to date about 3.4 PB of data have been acquired.
Triggered by these exciting existing and future observation
capabilities, methodological research on the multitemporal
data analysis is of great importance [1], [2]. Change detection
is very crucial in the field of multitemporal image analysis,
as it is able to identify land use or land cover differences in
the same geographical area across a period of time and can
be used in a large number of applications, to name a few,
urban expansion, disaster assessment, resource management,
and monitoring dynamics of land use [3]—[5].

In the literature, many methods have been proposed to
better identify land cover changes [1]. Among them, a widely
used model is based on image algebra approaches. A classic
one is change vector analysis (CVA) proposed by Malila [6].
CVA is designed to analyze possible multiple changes in
pairs of multispectral pixels of bitemporal images. Bovolo and
Bruzzone [7] propose a formal definition and a theoretical
study of CVA in the polar domain. Later some extensions of
the CVA model have been proposed, e.g., compressed CVA
(CZVA) [8]. CVA is used together with unsupervised threshold
selection techniques based on different possible models of
the data distribution. For example, the Rayleigh-Rice mixture
density model [9] has been recently used in the framework of
the expectation—maximization algorithm.

In addition, some image transformation-based models have
been proposed in change detection to improve detection
performance. These approaches mainly aim at learning a
new, transformed feature representation from the original
spectral domain, in order to suppress unchanged regions
and highlight the presence of changes in the new feature
space. For example, principal component analysis (PCA),
Gram-Schmidt transformation, multivariate alteration detec-
tion (MAD), slow feature analysis (SFA), sparse learning,
and deep belief network (DBN) use transformation algorithms
in change detection methods [10]-[15]. PCA is one of the
best-known subspace learning algorithms and can be used on
both difference images and stacked images [10], [16]. The
goal of Gram—Schmidt transformation is to reduce data cor-
relation. MAD makes an attempt at maximizing the variance

0196-2892 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but
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of independently transformed variables [12] and is invariant
to linear scaling of the input data. SFA [13] is able to extract
the most temporally invariant component from multitemporal
images to transform data into a new feature space and, in this
space, differences in unchanged pixels are suppressed so that
changed regions can be better separated. Erturk er al. [14]
apply sparse learning on stacked multitemporal images and
expect that resulting sparse solutions do not vary greatly
between the multitemporal data. Gong et al. [15] learn feature
representations of two images with DBNs. Feature vectors
issued from the two image acquisitions are stacked and used to
learn a representation, where changes stand out more clearly.
Using such feature representation, changes are more easily
detected by image differencing.

Another important branch of change detection methods is
based on classification approaches. For example, Bruzzone
and Serpico [17] propose a supervised nonparametric model,
based on the compound classification rule for minimum error,
to detect land cover transitions between two remote sensing
images acquired at different times. The main idea of this
approach is to consider the temporal correlation between
images in the classification without requiring complex training
data. Bruzzone et al. [18] use the Bayes rule for minimum
error in the compound classification framework for detect-
ing land cover transitions between pairs multisource images
gathered at two different dates. Bruzzone and Cossu [19]
propose a multiclassifier architecture, which is composed of
an ensemble of partially unsupervised classifiers, to detect
changes or update land cover maps. Later, Bruzzone et al. [20]
develop an effective system that employs an ensemble of non-
parametric multitemporal classifiers to address the problem of
detecting land cover transitions in multitemporal images. All
these techniques consider different tradeoffs between modeling
the temporal correlation in the training of the system and
requiring complex training data.

One crucial issue in change detection is modeling the
temporal correlation between bitemporal images. Various
atmospheric scattering conditions, complicated light scattering
mechanisms, and intraclass variability lead to change detec-
tion is inherently nonlinear. Thus sophisticated, task-driven,
learning-based methods are desirable.

Deep neural networks have recently been shown to be
very successful in a variety of computer vision and remote
sensing tasks [21]. They can also provide the opportunity
for change detection, where one would like to extract joint
spectral-temporal features from a bitemporal image sequence
in an end-to-end manner. In this respect, as an important
branch of deep learning family, a recurrent neural net-
work (RNN) is a natural candidate to tackle the temporal
connection between multitemporal sequence data in change
detection tasks. Recently, Lyu et al. [22] make use of an
end-to-end RNN to solve the multispectral /hyperspectral
image change detection task, since RNN is well known to
be good at processing sequential data. In their framework,
a long short-term memory (LSTM)-based RNN is employed
to learn a joint spectral-temporal feature representation from
a bitemporal image sequence. In addition, we also show the
versatility of their network by applying it to detect multiclass

changes and pointing out a good transferability for change
detection in an “unseen” scene without fine-tuning. Russwurm
and Korner [23] follow a similar idea, where an RNN based
on LSTM units is used to extract dynamic spectral-temporal
features but, in contrast to the change detection scenario,
their goal is to address the land cover classification of the
multitemporal image sequence.

In this paper, we would like to learn joint spectral-spatial—
temporal features using an end-to-end network for change
detection, which is named as a recurrent convolutional neural
network (ReCNN), since it combines convolutional neural
network (CNN) and RNN. Although both CNN [24]-[36]
and RNN [22], [23], [37]-[39] are well-established tech-
niques for remote sensing applications, to the best of our
knowledge, we are the first to combine them for multitem-
poral data analysis in the remote sensing community. Note
that integrating CNN and RNN in an end-to-end manner
has also been explored in hyperspectral image classifica-
tion [40], where the network is only used for extracting
spectral information to build a spectral classifier for the
classification purpose. In our work, the CNN part transforms
the input, a pair of 3-D multispectral patches, to an abstract
spectral-spatial feature representation, whereas the RNN part
is not only employed for modeling temporal dependence,
but is also used for predicting the final label (i.e., changed,
unchanged, or change type). In other words, the features
from the proposed ReCNN encapsulate information related
to spectral, spatial, and temporal components in bitemporal
images, making them useful for a holistic change detection
task. For multitemporal image analysis, the proposed ReCNN

contributes to the literature in three major aspects.
1) It is able to extract a spectral-spatial-temporal feature

representation of multitemporal data through learning
with a structured deep architecture.

2) It has the same property of 2-D CNN used for multispec-
tral /hyperspectral data classification on learning infor-
mative spectral-spatial feature representations directly
from multispectral data, requiring neither hand-crafted
visual features nor preprocessing steps.

3) It has the same characteristic of RNN, being capable of
modeling the temporal correlation between bitemporal
images using a sophisticated and task-driven approach
to the extraction of temporal features in an end-to-end
architecture, and finally producing labels for the image

sequence.
The remainder of this paper is organized as follows.

After the introductory Section I detailing change detection,
Section II is dedicated to the details of the proposed recurrent
convolutional network. Section III then provides data set infor-
mation, network setup, experimental results, and discussion.
Finally, Section IV concludes this paper.

II. METHODOLOGY
A. Network Architecture

The architecture of the proposed ReCNN, as shown
in Fig. 1, is made up of three components, including a
convolutional subnetwork, a recurrent subnetwork, and fully
connected layers, from bottom to top.
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Overview of the proposed ReCNN. At the bottom of our network, convolutional layers automatically extract feature maps from each input. On top

of the convolutional subnetwork, a recurrent subnetwork takes the feature representations produced by convolutional layers as inputs to exploit the temporal
dependence in the bitemporal images. To show how the single recurrent layer deals with bitemporal inputs, we show the unrolled form of the recurrent
subnetwork. The third part is two fully connected layers widely used in classification problems. Although ReCNN is composed of different kinds of network
architectures, i.e., CNN, RNN, and fully connected network, it can be trained end to end by backpropagation with one loss function, due to the differential

property of all these components.

To acquire a joint spectral—spatial-temporal feature repre-
sentation for change detection, at the bottom of our network,
convolutional layers automatically extract feature maps from
each input. On top of the convolutional subnetwork, a recur-
rent subnetwork takes the feature representations produced
by convolutional layers as inputs to exploit the temporal
dependence in the bitemporal images. The third part is two
fully connected layers widely used in classification problems.
Although ReCNN is composed of different kinds of network
architectures (i.e., CNN, RNN, and fully connected network),
it can be trained end to end by backpropagation with one
loss function, due to the differential properties of all these
components.

Let XT' and X2 represent a pair of multispectral images
acquired over the same geographical area at two different times
Ty and T», respectively. Let x7! and x”2 be two patches taken
from the exact same location in two images. y is a label that
indicates the category (i.e., changed, unchanged, or change
type) that the pair of patches belongs to. The flowchart of the
proposed ReCNN can be summarized as follows.

1) First, the 3-D multispectral patch x” is fed into T}
branch of the convolutional subnetwork, which trans-
forms it to an abstract feature vector f1.

2) Then, the recurrent subnetwork receives f 71 and calcu-
lates the hidden state information for the current input;
it also restores that information in the meantime.

3) Subsequently, x’2 is input to 7> branch for extracting
spectral—spatial feature f72, it is fed into the recurrent
layer simultaneously with the state information of f71,
and the activation at time 7> is computed by a linear
interpolation between existing value and the activation
of the previous time 77.

4) Finally, fully connected layers of the ReCNN predict
the label of the input bitemporal multispectral patches
by looping through the entire sequence.

The entire change detection map can be obtained by apply-

ing the network to all pixels in the image.

B. Spectral-Spatial Feature Extraction via
the Convolutional Subnetwork

As we have mentioned, the spectral-spatial information
is of great importance for change detection. Some of the
previous widely used unsupervised image algebra-based and
image transformation-based methods cannot totally capture
task specialized features which may be discriminative for a
specific change detection task. Features directly learned from
data and driven by tasks are supposed to be better [21]. This
advantage leads to our usage of a trainable feature generator.

Though trainable, early and fairly simple 1-D neural net-
work models, such as DBN [15] and multilayer percep-
tron (MLP), suffer from huge amount of learnable parameters,
since those architectures are totally equipped with fully con-
nected layers, which is an undesirable case given that available
annotated training samples for change detection are often very
limited. Moreover, another disadvantage of such networks is
that they treat the multispectral data as vectors, ignoring the
2-D property of imagery in the spatial domain.

CNNs, which are a significant branch of deep learning,
have been attracting attention, due to the fact that they
are capable of automatically discovering relevant contextual
2-D spatial features as well as spectral features for multi-
spectral/hyperspectral data. In addition, a CNN makes use
of local connections to deal with spatial dependencies via
sharing weights, and thus can significantly reduce the number
of parameters of the network in comparison with the conven-
tional 1-D fully connected neural networks, e.g., DBN and
MLP. Recently, CNNs used for hyperspectral image classi-
fication have proven their effectiveness in extracting useful
spectral—spatial features [28], [41]. Triggered by this, adopting
a CNN in our architecture is natural.

However, a direct use of CNNs commonly used in typical
recognition tasks, e.g., AlexNet [42], VGG Nets [43], and
GoogLeNet [44], is not possible in our task, as we believe
that a simpler network architecture is more appropriate for our
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traditional convolution

Fig. 2.

dilated convolution

Tllustration of (Left) traditional convolution operation and (Right) two-dilated convolution. Traditional convolution corresponds to dilated convolution

with dilation rate 1. Employing dilated convolution operation enlarges the network’s field of view.

problem due to the following reasons. First, change detection
aims to distinguish only several classes (two for binary change
detection), which requires much less model complexity than
general visual recognition problems in computer vision, such
as ImageNet classification with 1000 categories. Second, since
the spatial resolution of multispectral imagery is limited, it is
desirable to make input size small, which reduces the depth of
the network naturally. Third, a smaller network is obviously
more efficient in change detection problems, where testing
may be performed in a large-scale area. Finally, the above-
mentioned networks are not suitable to be used on multispec-
tral images with a large number of spectral channels.

The convolutional subnetwork receives a sequence of 5 x 5
multispectral patches as the input and has two separate, yet
identical convolutional branches (i.e., T} branch and 7 branch
(cf. Fig. 1) which process x7! and x 2 in parallel, respectively.
The learned features are fed into the following recurrent sub-
network. Using this two-branch architecture, the convolutional
RNN is constrained to first learn meaningful spectral-spatial
representations of input patches, and to combine them on a
higher level for modeling temporal dependence. More specif-
ically, we make use of convolutional filters with a very small
receptive field of 3 x 3, rather than using larger ones such
as 5 x 5. Moreover, we do not adopt max-pooling after
convolution or spatial padding for convolutional layers. The
depth of the convolutional subnetwork is such that the output
size of the last layer is 1 x 1.

Regarding convolution, we make use of dilated convolution
to construct convolutional layers in the network because, for
our task, it is able to offer a slightly better performance than a
traditional convolution operation. The dilated convolution [45]
was originally designed for the efficient computation of the
undecimated wavelet transform in the ‘“algorithme a trous”
scheme [46]. This algorithm makes it possible to calculate
responses of any layer at any desirable resolution and can
be applied post hoc, once a network has been trained. Let
F : 7% — R be a discrete function. Let Q, = [—r, r]* N Z2
and let k : Q, — R be a discrete filter of size (2r 4+ 1)2. The
traditional discrete convolution operation * can be defined as
follows:

(Fxk)(p)= > F)kQ). (1)
s+t=p

This operation can be generalized. Let [ be a dilation rate
and let x; be defined as

(Fx k) (p)= > F)kQ). )

s+it=p

We will refer to *; as a dilated convolution or an
[-dilated convolution. Fig. 2 shows differences between the
conventional convolution and the dilated convolution.

The usage of dilated convolution in our network allows us to
exponentially enlarge the field of view with a linearly increas-
ing number of parameters, providing a significant parameter
reduction while increasing effective field of view. Note that a
very recent study [47] found that large field of view actually
plays an important role. This can be easily understood by
an analogy that states the fact that humans usually confirm
the category of a pixel by referring to its surrounding context
region.

C. Modeling Temporal Dependence by the
Recurrent Subnetwork

The impressive success of recent deep learning systems has
been predominantly achieved by feedforward neural network
architectures such as CNN. In such networks, we implicitly
assume that all inputs are independent of each other. However,
for tasks that involve processing time sequence (e.g., change
detection), that is not a good assumption. RNNs are a kind
of neural networks that extend the conventional feedforward
neural networks with loops in connections. Unlike a feedfor-
ward network, an RNN is capable of dealing with dependent,
sequential inputs by having a recurrent hidden state whose
activation at each time step depends on that of the previous
time. By doing so, the network can exhibit dynamic temporal
behavior, which is in line with our purpose, i.e., modeling
temporal dependence between the 77 and 7, data. To this
end, three types of RNN architectures, namely, fully connected
RNN, LSTM, and gated recurrent unit (GRU), are used to
construct the recurrent subnetwork in our ReCNN.

1) Fully Connected RNN: Given feature vectors
fM and f learned from the convolutional subnetwork,
a fully connected RNN updates its recurrent hidden state i, by

0 ifr=0
h[ = T .
o(h:—1, f'') otherwise

where ¢ is a nonlinear activation function, such as a hyperbolic
tangent function or logistic sigmoid function. The recurrent
layer will output a sequence h = (hp, hy). For our task,
we only need the last one as input to the fully connected
layers for predicting label.

In the fully connected RNN model, the update of the
recurrent hidden state in (3) is implemented as

hy = p(Uh;— + WfT) )

3
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where U and W are the coefficient matrices for the activation
of recurrent hidden units at the previous time step and for the
input at the present time, respectively.

Fully connected RNN is the concisest RNN model, and it
can reflect the essence of RNNs, i.e., an RNN is capable of
modeling a probability distribution over the next element of
the sequence data, given its present state h;, by capturing
a distribution over sequence data. Let p(f’!, f2) be the
sequence probability, which can be decomposed into

P ) = p(FP(FRIF™). )

Then, the conditional probability distribution can be mod-
eled with an RNN

p(f21 1) = p(hy) (6)

where h; is obtained from (3). More specifically, the RNN
tries to model the conditional dependence between a patch at
T and its corresponding one at 7> in the following manner:

p(f2f1) = p(Uhy + WFT)
=oWUpWfy+ wrh). (7)

In this way, a conditional probability distribution p, which
is beneficial to our change detection tasks, can be modeled by
optimizing W and U during task-guided network training. Our
motivation in this paper is apparent here: bitemporal images
act as true sequential data instead of a simple difference
image or stacked image and, therefore, an RNN can be used
to model the temporal dependence.

2) LSTM: LSTM is a special type of recurrent hidden
unit and was initially proposed by Hochreiter and Schmid-
huber [48]. Since then, a couple of minor modifications to
the original version have been made. In this paper, we follow
the implementation of LSTM as used in [49]. As shown
in (3), recurrent hidden units in a fully connected RNN simply
compute a weight sum of inputs and then apply a nonlinear
function. In contrast, an LSTM-based recurrent layer maintains
a series of memory cells ¢; at time step 7. The activation of
LSTM units can be calculated by

h; = o, tanh(c;) ()

where tanh(-) is the hyperbolic tangent function and o; is
the output gates that control the amount of memory content
exposure. The output gates are updated by

0r = (Wi f11 + Wophy—y + Wyeer) 9)

where the W terms represent coefficient matrices; for exam-
ple, W,; and W, are the input—output weight matrix and
memory-output weight matrix, respectively.

The memory cells ¢, are updated by partially discarding
the present memory contents and adding new contents of the

memory cells ¢;
=006+ fiOc_1 (10)

where © is an elementwise multiplication. The new memory
contents are

é = tanh(We; 1t + Weph,_1) (11)

where W,; is input-memory weight matrix and W, represents
hidden-memory coefficient matrix.

The i; and f; are the input gates and forget gates, respec-
tively. The former modulates the extent to which the new
memory information is added to the memory cell, whereas
the latter controls the degree to which contents of the existing
memory cells are forgotten. Specifically, gates are computed
as follows:

ir = (Wi fT' + Winhi 1 + Wice,_1) (12)
fi=cWeifT + Wephi—y + Wreei—1). (13)

3) GRU: Similar to LSTM, a GRU makes use of a linear
sum between the existing state and the newly computed state.
It, however, directly exposes whole state values at each time
step, instead of controlling what part of the state information
will be exposed.

The activation h; of GRUs at time step r is a linear
interpolation between the previous activation h;—; and the
candidate activation izt

he = (1 —u)h—y + uh, (14)

where the update gates u; determine how much GRUs update
their activations or contents. Update gates can be computed by

u, =0 (Wi f1 + Waphi—1) (15)

where W,; and W,;, are the input-update coefficient matrix
and hidden-update weight matrix, respectively.

The candidate activation h; is computed similar to that of
the fully connected RNN [cf. (3)] and as follows:

h; = tanh(U(r; © hy—y) + WfTH) (16)

where r; is the set of reset gates. When reset gates are
totally OFF (i.e., r; is 0), GRUs will completely forget the
activation of the recurrent layer at previous time and only
receive existing input. When open, reset gates will partially
keep the information of the previously computed state. Reset
gates are calculated similar to update gates

re =0 Wy f" +Wyh,_y) (17)

where W,; is the input-reset weight matrix and W, represents
the hidden-reset coefficient matrix.

Fig. 3 shows graphic models of fully connected RNN,
LSTM, and GRU through time.

D. Network Training

The network training is based on the TensorFlow frame-
work. We chose Nesterov Adam [50], [51] as the optimizer
to train the network since, for this task, it shows much
faster convergence than standard stochastic gradient descent
with momentum [52] or Adam [53]. We fixed almost all
of parameters of Nesterov Adam as recommended in [50]:
b1 =09, fo = 0.999, ¢ = 1e—08, and a schedule decay
of 0.004, making use of a fairly small learning rate of 2e—04.
All network weights are initialized with a Glorot uniform
initializer [54] that draws samples from a uniform distribution.
We utilize sigmoid and softmax as activation functions of the
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Fig. 4. Loss curves of ReCNN on the Taizhou data set for (a) binary change detection and (b) multiclass change detection tasks.

last fully connected layer for the binary and multiclass change
detections, respectively. For the final loss, cross-entropy is
chosen, which can be described as follows:

E=—Y yilog
i

where y; is the predicted probability value for class i. We use
fairly small minibatches of 64 patch pairs. Moreover, we train
the network for 800 epochs. There are no regularization
techniques used in network training. We do not perform data
augmentation before training the network. Finally, we train
our network on a single NVIDIA GeForce GTX TITAN with
12 GB of GPU memory.

Fig. 4 shows loss curves of the proposed network during
the training phase.

(18)

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Description

The performance of the proposed network is evaluated on
two data sets, which were acquired by the Landsat Enhanced
Thematic Mapper Plus (ETM+) sensor with six bands and a
spatial resolution of 30 m. Before feeding data into models,
digital numbers of the original data were converted into
absolute radiance (i.e., all of the data sets used in the experi-
ments were normalized into a range of [0, 1]).

1) Taizhou Data: This data set consists of two images
covering the city of Taizhou, China, in March 2000 and
February 2003, with a WGS-84 projection and a coordinate
range of 31°14'56N-31°27'39N, 120°02'24E-121°07'45E.
These two images both consist of 400 x 400 pixels, and
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Fig. 6. Eppalock lake data set.

TABLE I
NUMBER OF TRAINING AND TEST SAMPLES IN THE TAIZHOU DATA SET

Class Name Training  Test

Changed region 500 4055

Binary Unchanged region 500 16961

TOTAL 1000 21016

Unchanged region 500 16961

City expansion 500 2875

Multiple Soil change 500 104
Water change 500 75

TOTAL 2000 20015

the changes between them mainly involve city expansion.
The available manually annotated samples of this data set
for multiclass change detection cover four classes of interest
(cf. Fig. 5), i.e., unchanged area, city change/expansion (bare
soils, grasslands, or cultivated fields to buildings, or roads),
soil change (cultivated field to bare soil), and water change
(nonwater regions to water regions). Table I provides infor-
mation about different classes and their corresponding training
and test samples.

2) Eppalock Lake: The second data set was acquired over
the Eppalock lake, Victoria, Australia, in February 1991 and
March 2009, with a WGS-84 projection and a coordinate
range of 36°49'10S-37°00'52S, 144°27'52E-144°37'35E.
Both images in this data set are 602 x 631 pixels. Similar to the

binarychange detection GT multi-class change detection GT

water change

True-color composites of the 7 and 7> images in the Taizhou data set as well as GTs.

L5 SR By 3 £ '\\:3‘ & o s x WA 2 3
binary change detection GT multi-class change detection GT

water loss

TABLE II
NUMBER OF TRAINING AND TEST SAMPLES IN
THE EPPALOCK LAKE DATA SET

Class Name Training  Test
Changed region 500 3380
Binary Unchanged region 500 4515
TOTAL 1000 7895
Unchanged region 300 4715
Water loss 300 2817
Multiple Soil change 300 341
City change 50 72
TOTAL 950 7945

Taizhou data, four multiclass change types are considered in
the Eppalock lake scene, and they are unchanged region, city
change (buildings or roads to bare soils, grasslands, or cul-
tivated fields), water loss (water regions to bare soils), and
soil change (vegetative covers or artificial buildings to bare
soils). Fig. 6 shows tow true-color composite images and their
corresponding reference samples. The number of training and
test samples is displayed in Table II.

B. General Information

To evaluate the performance of different change detection
algorithms, we utilize the following evaluation criteria.
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TABLE IIT
ACCURACY COMPARISON OF BINARY CHANGE DETECTION ON THE TWO EXPERIMENTAL DATA SETS

Taizhou City

Eppalock Lake

OA Kappa  Unchanged  Changed OA Kappa  Unchanged Changed
CVA [7] 83.82  0.3202 97.38 27.10 81.28  0.6353 69.24 97.37
PCA [10] 94.63  0.8181 99.79 74.51 74.68  0.5044 64.98 87.63
MAD [12] 94.62  0.8168 98.47 78.52 91.10  0.8138 99.14 80.36
IRMAD [55] 95.14  0.8313 99.35 77.53 91.27 0.8174 99.49 80.30
CNN[56] 9603 08667 9897 83.75 95.00 0.8975  97.34 91.89
RNN [22] 96.50  0.8884 97.58 91.96 95.21 0.9018 97.03 92.78
ReCNN-FC 98.35  0.9470 98.94 95.86 98.40  0.9674 98.56 98.20
ReCNN-GRU 98.67 0.9571 99.23 96.30 98.64 0.9723 99.22 97.87
ReCNN-LSTM  98.73  0.9592 99.20 96.77 98.67 0.9728 98.83 98.46
1) Overall accuracy (OA): This index shows the number of
bitemporal pixels that are classified correctly, divided by 67.5K
wv
the number of test samples. 3
2) Kappa coefficient: This metric is a statistical measure- g 50.6K
ment of agreement between the final change detection s
map and the ground-truth (GT) map. It is the percentage %
agreement corrected by the level of agreement that could 5
be expected due to change alone. In general, it is thought £ 16.9K
to be a more robust measure than a simple percent Z
agreement computation, as k takes into account the .
agreement occurring by chance.
£s RO %,
’?¢¢ 1, 4

To validate the effectiveness of the proposed ReCNN model,
it is compared with the most widely used change detection
methods. These methods are summarized as follows.

1) CVA [7], which is an effective unsupervised approach
for multispectral image change detection tasks.

PCA [10], which is simple in computation and can be
applied to real-time applications.

MAD [12], which is a classical image transformation-
based unsupervised algorithm for bitemporal multispec-
tral image change detection.

Iteratively reweighted MAD (IRMAD) [55], which
is an extension to MAD by introducing an iterative
scheme.

Decision tree (DT), which is a nonparametric supervised
learning method used for classification and regression.
Its goal is to create a model that predicts the value of a
target variable by learning simple decision rules inferred
from data features.

Support vector machine (SVM), which works by map-
ping data to a kernel-included high-dimensional feature
space seeking an optimal decision hyperplane that can
best separate data samples, when data points are not
linearly separable. Here, we use an SVM with radial
basis function (RBF) kernel. The optimal hyperplane
parameters C (parameter that controls the amount of
penalty during the SVM optimization) and y (spread
of the RBF kernel) have been traced in the range of
C =102,107",...,10* and y = 273,272,... 2%
using fivefold cross validation.

CNN [56], a deep learning-based method, has proven
successful in pattern recognition problems of hyperspec-
tral imagery.

2)

3)

4)

5)

6)

7)

Fig. 7. Comparisons of different RNN architectures in terms of model size.
Here, 128 recurrent units are used in each architecture.

8) RNN [22], a deep learning-based method, has recently
shown promising performance in classification and
change detection.

ReCNN-FC, which uses fully connected RNN as recur-
rent subnetwork in ReCNN model.

ReCNN-GRU, which uses GRU architecture in the
recurrent subnetwork.

ReCNN-LSTM, which is the ReCNN model with LSTM
as recurrent component.

Among these methods, CVA, PCA, MAD, IRMAD, and
RNN are used in binary change detection experiments, and
DT, SVM, and RNN are compared to the proposed net-
work in multiclass change detection experiments. Moreover,
k-means algorithm is used to automatically select threshold
for unsupervised methods in the binary change detection task.

9)
10)

1)

C. Analysis of Recurrent Subnetwork: Comparisons
Between Fully Connected RNN, LSTM, and GRU

The most prominent trait shared between fully connected
RNN, LSTM, and GRU is that there exists an additive loop
of their update from 77 to 77, which is lacking in the conven-
tional feedforward neural networks such as CNNs. In contrast,
compared to the fully connected RNN like (4), both LSTM
and GRU keep the current content and add the new content
on top of it [cf. (10) and (14)]. These two RNN architectures,
however, have a number of differences as well. LSTM makes
use of three gates and a cell, namely, an input gate, forget
gate, output gate, and memory cell, to control the exposure
of memory content; whereas GRU only utilizes two gates to
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TABLE IV
ACCURACY COMPARISON OF MULTICLASS CHANGE DETECTION ON THE TWO EXPERIMENTAL DATA SETS

OA Kappa  Unchanged City change  Soil change = Water change/loss

Decision Tree ~ 85.19  0.5846 84.64 88.49 82.69 86.67

SVM 9390  0.7927 94.69 89.32 9231 93.33

Taizhou City CNN [56] 94.82  0.8155 96.56 85.11 88.46 82.67
RNN [22] 9548  0.8374 97.04 86.92 85.58 85.33

ReCNN-FC  97.37  0.9039 97.95 94.12 95.19 92.00

ReCNN-GRU 9752 0.9097 98.05 94.54 95.19 96.00

ReCNN-LSTM  98.04  0.9279 98.36 96.31 94.23 97.33

Decision Tree ~ 87.56  0.7811 81.31 41.67 89.15 99.01

SVM 9586  0.9228 94.46 7222 97.65 98.58

Eopalock Lake CNN [56] 9549  0.9156 94.27 20.83 97.95 99.15
PP RNN [22] 96.34  0.9392 95.55 41.67 96.48 99.04
ReCNN-FC 9845  0.9705 98.01 80.56 100 99.47

ReCNN-GRU 9849  0.9712 98.24 79.17 100 99.22

ReCNN-LSTM 9870  0.9752 98.49 84.72 100 99.25
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Fig. 8. Change-detection maps generated by the proposed ReCNN-LSTM model.
control the information flow. Therefore, the total number of Tables III and IV list binary and multiclass change detec-

parameters in GRU is reduced by about 25% compared to tion results obtained in our experiments, respectively. For
that in LSTM. Fig. 7 shows the number of total trainable both data sets, ReCNN-LSTM outperforms ReCNN-FC and
parameters in different RNN architectures. ReCNN-GRU on all indexes (i.e., OA and Kappa coefficient).
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For example, in the binary change detection, ReCNN-LSTM
increases the accuracy by 0.38% of OA and 0.0122 of Kappa
on the Taizhou data set, in comparison with ReCNN-FC; by
0.06% of OA and 0.0021 of Kappa on the same data set,
compared to ReCNN-GRU. However, we can see that on
these data sets, all three variations of the proposed ReCNN
perform closely to each other. On the other hand, the proposed
networks with gating RNN architectures as the recurrent
subnetwork (ReCNN-LSTM and ReCNN-GRU) slightly out-
performs the more traditional ReCNN-FC on both of data sets
and change detection tasks.

D. Analysis of Spatial Component: RNN versus
ReCNN-LSTM

In the case of spectral-spatial-temporal change detection,
the proposed recurrent convolutional network is able to sig-
nificantly improve the spectral-temporal-based RNN model.
As shown in Table III, compared to RNN, ReCNN-LSTM
increases the accuracy of binary change detection considerably
by 2.23% of OA and 0.0708 of Kappa coefficient, respectively,
on the Taizhou data set. For the Eppalock lake scene, the accu-
racy increments on OA and Kappa coefficient are 3.46% and
0.071, respectively. Table IV compares the performance of
RNN and ReCNN-LSTM in terms of multiclass change detec-
tion task. The latter can improve the former by 2.56% of OA
and 0.0905 of Kappa coefficient, respectively, on the Taizhou
scene; by 2.36% of OA and 0.036 of Kappa, respectively,
on the Eppalock lake data. These results reveal the fact that
the usage of the spatial cue in our model can construct a more
powerful spectral-spatial-temporal change detector.

Furthermore, as shown in Fig. 9, it is obvious that the
spectral-temporal change detection method (RNN) always
results in noisy scatter points in the change detection map.
However, our spectral-spatial-temporal model ReCNN-LSTM
addresses this problem by eliminating noisy scattered points
of wrong detection.

E. Comparison With Other Approaches

The OAs and Kappa coefficients of all competitors and the
proposed networks on binary change detection task can be
found in Table III. The classical change detection algorithms,
CVA, PCA, MAD, and IRMAD, all achieve a good perfor-
mance, especially IRMAD, which has the best performance
among them. Compared to IRMAD, improvements in OA
and Kappa coefficient achieved by ReCNN-LSTM are 3.59%
and 0.1279, respectively, on the Taizhou data set, and incre-
ments of OA and Kappa obtained by ReCNN-LSTM on the
Eppalock lake scene are 7.4% and 0.1554, respectively. How-
ever, the cost of such accuracy improvements is that we have
to manually label some training data for supervised learning.

Table IV presents accuracy indexes on multiclass change
detection task. Analysis of the detection accuracies indicates
that SVM with RBF kernel outperforms DT, mainly because
the kernel SVM generally handles nonlinear inputs more
efficiently than DT. It can be seen that the proposed recurrent
convolutional network ReCNN-LSTM outperforms SVM and
RNN in terms of OA and Kappa coefficient on both the

[ unchanged region
I city expansion
N soil change

water change

Fig. 9. Comparison between spectral-temporal model (RNN) and spectral—
spatial-temporal method (ReCNN-LSTM) on a region of the Taizhou city.
(Left to Right and Top to Bottom): 77 image, 7, image, GT, change
detection map obtained from RNN, and change detection map produced by
ReCNN-LSTM. It can be clearly seen that there are a number of noisy scatter
points of wrong detection (see ellipses in the bottom left image) in the
change detection map of RNN. While our spectral-spatial-temporal model
ReCNN-LSTM addresses this problem by eliminating those points.

Taizhou and Eppalock lake data. Compared to SVM and
RNN, ReCNN-LSTM increases OA by 4.14% and 2.56%,
respectively, on the Taizhou data set; by 2.84% and 2.36%,
respectively, on the Eppalock lake data.

Fig. 8 shows change detection results of the Taizhou city
and Eppalock lake obtained by our model.

IV. CONCLUSION

In this paper, we have proposed a novel neural network
architecture, called ReCNN, which integrates the merits of
both CNN and RNN. ReCNN is capable of extracting joint
spectral-spatial-temporal features from bitemporal multispec-
tral images and predicts change types. Moreover, it is end-to-
end trainable. All these properties make ReCNN an excellent
approach for multitemporal remote sensing data analysis.

The experiments on real multispectral images demonstrate
that ReCNN achieves competitive performance, compared
with conventional change detection models as well as spectral—
temporal-based RNN algorithm. This confirms the advantages
of the proposed recurrent convolutional network. In addition,
ReCNN is a general framework; therefore, it can be applied
to other domains and problems (such as multitemporal hyper
spectral/multispectral data classification) that involve sequence
prediction in remote sensing sequence data. Moreover, it is
worth noting that the proposed network architecture has the
potential to be extended and used to multisource change detec-
tion tasks. Because compared to CNN, Siamese convolutional
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network, and RNN, the separate yet identical convolutional
branches of our network allow the network to learn different
data-driven feature representations from different types of data
which are usually considered to lie on various data manifolds.

Future works will focus on new architectures based on
ReCNN, for example, a semisupervised ReCNN that can
also use arbitrary amounts of unlabeled data for training—
typically a small amount of labeled data with a large amount
of unlabeled data.
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Abstract—Over the past few years, hyperspectral image
classification using convolutional neural networks (CNNs) has
progressed significantly. In spite of their effectiveness, given that
hyperspectral images are of high dimensionality, CNNs can be
hindered by their modeling of all spectral bands with the same
weight, as probably not all bands are equally informative and
predictive. Moreover, the usage of useless spectral bands in CNNs
may even introduce noises and weaken the performance of net-
works. For the sake of boosting the representational capacity of
CNN:s for spectral-spatial hyperspectral data classification, in this
work, we improve networks by discriminating the significance of
different spectral bands. We design a network unit, which is
termed as the spectral attention module, that makes use of a
gating mechanism to adaptively recalibrate spectral bands by
selectively emphasizing informative bands and suppressing less
useful ones. We theoretically analyze and discuss why such a
spectral attention module helps in a CNN for hyperspectral
image classification. We demonstrate using extensive experiments
that in comparison with state-of-the-art approaches, the spec-
tral attention module-based convolutional networks are able to
offer competitive results. Furthermore, this work sheds light on
how a CNN interacts with spectral bands for the purpose of
classification.

Index Terms— Attention module, convolutional neural network
(CNN), gating mechanism, hyperspectral image classification.

I. INTRODUCTION

YPERSPECTRAL images encompass hundreds of con-

tinuous observation spectral bands, which are capable of
precisely differentiating various materials of interest. Hence,
in the remote sensing community, hyperspectral images have
already been considered a vital data source for object identi-
fication and classification tasks.
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Consequently, numerous kinds of classification approaches,
especially supervised models have been developed for hyper-
spectral data classification, as found in the literature. Among
them, random forest [1]-[3] and support vector machine
(SVM) [4]-[8] are two examples of supervised classification
approaches, which have been exploited for solving varied
and numerous classification problems. Random forests are
basically a kind of ensemble bagging or averaging algorithm.
It creates a set of decision trees using random subsamples
of training data and then aggregates their predictions via a
maximum a posterior (MAP) rule or voting to decide final
classes of test samples. On the other hand, an SVM seeks
for a hyperplane that is able to sort two-class data by the
largest margin. However, the random forest and SVM are
characterized as “shallow” models [9] as compared to deep
networks which are able to extract hierarchical, deep feature
representations.

Deep learning, which is mainly characterized by deep
networks, has been quite successful in solving a wide range
of problems (e.g., natural language processing [10]-[12],
computer vision [13]-[25], and remote sensing [26]).
In the hyperspectral community, some studies have been
published recently on the use of convolutional neural
networks (CNNs) [27]-[42] as well as recurrent neural net-
works (RNNs) [43]-[49] for pattern recognition tasks. For
instance, Kussul et al. [27] addressed the classification prob-
lem of crop types by making use of 1-D and 2-D CNNs
and found that the 2-D CNN is superior to the 1-D CNN,
but several tiny objects in the classification map of the
2-D CNN are a little oversmoothed and misclassified. In [28],
Song et al. studied feature fusion in a residual learning-based
2-D CNN, aiming to build a more discriminative network for
hyperspectral data classification tasks. Following the recent
developments in 3-D CNN for video analysis [50], where
the third dimensionality is usually the time axis, 3-D CNNs
have also been studied in hyperspectral data classification.
Chen et al. [29] introduced a ¢, regularized 3-D CNN for
learning spectral-spatial features, while [30] followed a similar
idea for the purpose of classification. Paoletti et al. [51]
introduced an improved 3-D CNN consisting of 5 layers
which make use of all the spatial-spectral information on the
hyperspectral image.

To avoid overfitting, Zhao and Du [32] jointly used a dimen-
sion reduction method and a 2-D CNN for spectral-spatial
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feature extraction. Ghamisi et al. [33] first exploited a compu-
tational intelligence (particle swarm optimization) method to
choose informative spectral bands and then train a 2-D CNN
using the selected bands. In [34], to properly train a CNN
with limited ground truth data, the authors devised a pixel-
pair CNN that takes as input a pair of hyperspectral pixels.
By doing so, the amount of training data is greatly augmented.
Furthermore, in order to access a huge amount of unlabeled
hyperspectral data, unsupervised feature learning via a CNN
is of great interest. Romero et al. [35] presented a CNN to
address the problem of unsupervised spectral-spatial feature
extraction and estimated network weights via a sparse learning
approach in a greedy layer-wise fashion. Mou et al. [37]
proposed a residual learning-based fully conv-deconv network,
aiming at unsupervised spectral-spatial feature learning in an
end-to-end manner. Better classification network architecture
from computer vision (e.g., ResNet [17], DenseNet [18], and
CapsuleNet [52]) also provides new insights into hyperspectral
image classification [37]-[39], [53]. Moreover, the integration
of networks and other traditional machine learning models,
e.g., conditional random field (CRF) and active learning, has
also received attention recently [54], [55].

The unique asset of hyperspectral images is their rich spec-
tral content in comparison with high-resolution aerial images
and natural images in the computer vision field. Although
there already exist a number of works that have focused on
using CNNs for hyperspectral data classification, we notice
that in the community, the following questions have not been
well addressed until now.

1) Do all spectral bands contribute equally to @ CNN for

classification tasks?

2) If no, how to task-drivenly find informative bands
that can help hyperspectral data classification in an
end-to-end network?

3) Is it possible to improve classification results of a CNN
by emphasizing informative bands and suppressing less
useful ones in the network?

These questions give us an incentive to devise a
novel network called spectral attention module-based con-
volutional network for hyperspectral image classification.
Inspired by recent advances in the attention mechanism of
networks [56]-[58], which enables feature interactions to
contribute differently to predictions, we design a channel
attention mechanism for analyzing the significance of differ-
ent spectral bands and recalibrating them. More importantly,
the significance analysis is automatically learned from tasks
and hyperspectral data in an end-to-end network without any
human domain knowledge. Experiments show that the use
of the proposed spectral attention module in a CNN for
hyperspectral data classification serves two benefits: it not
only offers better performance but also provides an insight
into which spectral bands contribute more to predictions. This
work’s contributions are threefold.

1) We propose a learnable spectral attention module that
explicitly allows the spectral manipulation of hyper-
spectral data within a CNN. This attention module
exploits the global spectral-spatial context for producing
a series of spectral gates which reflects the significance
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of spectral bands. The recalibrated spectral information
using these spectral gates can effectively improve the
classification results.

2) We analyze and discuss why the proposed spectral
attention module is able to offer better classification
results from a theoretical perspective by diving into the
backward propagation of the network. As far as we
know, learning and analyzing such a spectral attention-
based network for hyperspectral image classification
have not been done yet.

3) We conduct experiments on four benchmark data sets.
The empirical results demonstrate that our spectral atten-
tion module-based convolutional network is capable of
offering competitive classification results, particularly
in the situation of high dimensionality and inadequate
training data.

The remainder of this article is organized as follows.
After detailing hyperspectral image classification using CNNs
in Section I, Section II introduces the proposed spectral atten-
tion module-based convolutional network. Section III verifies
the proposed approach and presents the corresponding analysis
and discussion. Finally, Section IV concludes the article.

II. METHODOLOGY
A. Problem Formulation

The spectral attention module in our model transforms a
patch x of a hyperspectral image into a new representation z
via the following mapping:

F:x >z (1

where x, z € RF*XWxC,

Our aim is to strengthen the representational capac-
ity of a spectral-spatial classification network through
explicitly modeling the significance of spectral bands. There-
fore, we instantiate F as

z2=x0¢g 2)

where © is a channel-wise multiplication operation and
g € RC represents a set of spectral gates applied to individual
spectral bands of the patch x.

The motivation behind (2) is that we wish to make use of a
gating mechanism to recalibrate the strength of different spec-
tral bands of the input, i.e., selectively emphasize useful bands
and suppress less informative ones, for image classification
problems.

Fig. 1 illustrates the architecture of the spectral attention
module-equipped convolutional network.

B. Modeling of Spectral Attention Module

The gating mechanism has been widely used in model-
ing and processing temporal sequences. For example, long
short-term memory (LSTM)-based networks [59], [60] har-
ness three gates to cope with vanishing gradients. Similarly,
a gated recurrent unit (GRU) [61], [62] is designed to imple-
ment the modulation of information flow through the gating
mechanism.
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C spectral gates
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class #c

C recalibrated bands

Fig. 1.

The overall architecture of the proposed gating mechanism, spectral attention module, for hyperspectral classification problems. We would like to

exploit this module to learn and recalibrate strengths of different spectral bands, i.e., selectively emphasize useful bands and suppress less informative ones,
for image classification problems. To this end, we first learn a set of spectral gates by using global convolution and then apply them to individual spectral
bands. Moreover, in Section II-C, we theoretically analyze and discuss why the proposed spectral attention module can help a spectral-spatial classification

network (e.g., a 2-D CNN) for hyperspectral image classification tasks.

In addition, several recent works in computer vision have
shown the benefit of introducing the gating mechanism to
vision problems. To name a few, Wang et al. [56] proposed
a gating mechanism that is capable of dynamically balancing
contributions of the current event and its surrounding contexts
in their model for dense video captioning tasks. Hu et al. [58]
built a gated block for image classification tasks and demon-
strated its good performance on large-scale image recognition.
Liu et al. [57] addressed person re-identification tasks through
utilizing a network module based on a soft gating mechanism,
which enables the network to concentrate on significant local
regions of an input image pair adaptively. In remote sensing,
a very recently published, parallel work related to this article
can be found in [63], where the authors introduced a visual
attention technique that first calculates a mask and then applies
it to features produced by a ResNet for hyperspectral data
classification tasks.

Here, we would like to design our own gating mechanism,
spectral attention module, for analyzing the significance of dif-
ferent spectral bands and recalibrating them. Besides, we hope
this module is task-driven and can be adaptively learned in an
end-to-end spectral-spatial classification network. To this end,
we need a way to aggregate the spectral-spatial information
of x across the spatial domain to produce a collection of
spectral gates g.

The convolution operation is an ideal candidate, as 1) it is
able to spatially shrink the input patch and 2) its differential
property allows end-to-end learning. In general, a convolu-
tional filter operates with a local receptive field (e.g., 3 x 3
in VGG-16 network), which leads to the fact that the output
is not capable of utilizing contextual information outside of
this region. This is a severe issue for our case because the
spectral gates g in our model are expected to be derived from
the whole spectral-spatial information. To tackle this problem,
we distill global spatial information into the spectral gates by
using global convolution. Formally, let f = [f{, f2, -, fcl
denote a set of convolutional filters and their sizes are

both H x W, where f. refers to the c-th filter. Thus, the
c-th spectral gate g. can be calculated as follows:

C
ge=xxf.=> xi*fl 3)

i=1

where * represents convolution and f ’C and x; are separately
the i-th channels of the c-th filter and x. Taking into account
that the field of view of global convolution is equal to the
spatial size of x, g is actually calculated by the inner product
of x; and f ’C (both x; and f ’C are vectorized into columns),
i.e., (3) can be rewritten as follows:

c c
ge=> (xi. fi)y=D x] fi. “)
i=1 i=1
From (4), the spectral gates g can be considered as a
series of global descriptors, which are capable of representing
spectral-spatial features of x.
Thus, according to (2), we can associate the c-th spectral
gate g, with the c-th spectral band of x to obtain the
recalibrated z. via

c
.
ze=xc Y x| fi. (5)
i=1
So far, we can obtain an initial spectral attention module
[as shown in (5)], but there still exist three issues which we
should address:

1) Given the complex spectral-spatial properties of hyper-
spectral images, we wish that the spectral gates in this
module are capable of learning a nonlinear mapping,
instead of a linear one, from the input.

2) The attention module should model a nonmutually
exclusive relationship between spectral bands, as we
would like to ensure that multiple bands can be empha-
sized at the same time (unlike one-hot activation in
softmax).
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spectral values

spectral values

Fig. 2.
spectral gates.

3) The gates should be bounded (e.g., between 0 and 1),
easily differentiable, and monotonic (good for convex
optimization).

To meet these three requirements, we modify spectral gates

in the initial spectral attention module as follows:

1

I+ exp(—x * f,)
1

e (L3 )

8c =

(6)

Hence, the final version of the spectral attention module can
be written as

1
¢ C T
1 4 exp (— D1 X; fc)

@)

Ze =X

Fig. 2 is an example showing how the proposed spectral
attention module works in a CNN.

C. Why Does the Spectral Attention Module Work?

In our experiments, we observed that a 2-D CNN with
our spectral attention module can offer better classification
results. However, how exactly does this attention module help
a spectral-spatial classification network for hyperspectral data
classification? We dive into the backward propagation of the
network to seek the answer to this question.

For notional simplicity, we subsequently drop the subscript ¢
and rewrite the final expression of the spectral attention
module as follows:

1

O T o) ®

normalized original spectral
bands

recalibrated spectral bands

-
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bands

less usefy,) bangs learned spectral gates

pred: Bricks

bands

Example showing how the proposed spectral attention module in a CNN correct a wrong prediction (gravel) to a right one (bricks) via learned

Thus, the gradient of the spectral attention module can be
written as

1
1 +exp(—x * f)

+x®V(

Vz=Vx0©

1
1+ exp(—x * f)) ' ©)

It can be seen that the term Vx is weighted by the spectral
gates (1/1 +exp(—x x f)). This has the following interesting
properties.

1) On the one hand, the existence of Vx ensures that
the gradient information on spectral-spatial features can
be backpropagated directly, which helps to prevent the
vanishing gradient problem.

2) On the other hand, for spectral bands where the spectral
gates are close to O (less useful bands), the gradient
propagation vanished; on the contrary, for values that
are close to 1, gradients (of informative bands) directly
propagated from z to x.

For the first point, a similar effect can be found in residual
learning. He et al. [17] introduced the residual learning
into CNNs for large-scale image classification tasks and
exhibited significantly improved network training character-
istics, e.g., allowing network depths that were previously
unattainable. Formally, denote by y a random variable rep-
resenting the output of a residual block. It can then be
expressed as

y=x+F(x;w) (10)

where F is a residual function and usually implemented by a
couple of stacked convolutional layers. Moreover, w represents
learnable weights of this residual block. The gradient of a
residual block can be calculated as

Vy = Vx + V(F(x; w)). (11)
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TABLE I
CONFIGURATION OF A SPECTRAL ATTENTION MODULE-BASED CONVOLUTIONAL NETWORK FOR THE PAVIA UNIVERSITY DATA SET

Layer Input Shape Output Shape  #Filters  Connected to Configuration

spec. attn. module (16, 16, 103) (16, 16, 103) 103 input 16x 16 kernel

convl-1 (16,16,103) (16,16, 32) 32 spec. attn. module 3 X 3 kernel, stride 1, padding 1, bn, relu
convl-2 (16, 16, 32) (16, 16, 32) 32 convl-1 3 x 3 kernel, stride 1, padding 1, bn, relu
maxpool (16,16, 32) (8,8,32) - convl-2 pool size 2 x 2, stride 2

conv2-1 (8,8,32) (8,8,64) 64 maxpool 3 x 3 kernel, stride 1, padding 1, bn, relu
conv2-2 (8,8,64) (8,8,64) 64 conv2-1 3 x 3 kernel, stride 1, padding 1, bn, relu
maxpool2 (8,8,64) (4,4,64) - conv2-2 pool size 2 x 2, stride 2

conv3-1 (4,4,64) (4,4,128) 128 maxpool2 3 x 3 kernel, stride 1, padding 1, bn, relu
conv3-2 (4,4,128) (4,4,128) 128 conv3-1 3 X 3 kernel, stride 1, padding 1, bn, relu
maxpool3 (4,4,128) (2,2,128) - conv3-2 pool size 2 x 2, stride 2

gap (2,2,128) (1,1,128) - maxpool3 pool size 2 x 2

fel (1,1,128) (1024,) - gap 1024 units, relu

fc2 (1024,) 9,) - fel 9 units, softmax

From (11), we can see that Vy is a sum of the gradient of
the input Vx and the gradient V(F(x; w)), and as mentioned
above, the term Vx is a key to avoiding the vanishing gradient
problem. This is the same for the first property of our spectral
attention module.

Instead of Vx in (9), Vx in (11) is not weighted — in other
words, gradients of all spectral bands are indiscriminately
backpropagated; in contrast, the spectral attention module has
a selection mechanism regarding the significance of different
spectral bands from the perspective of gradient.

D. Network Training

We insert the spectral attention module into a 2-D CNN
(between the input and the first convolutional layer) and
then train the whole network. Note that the spectral attention
module and other layers are trained simultaneously. We use
the TensorFlow framework to implement and train networks.
All network weights are initialized by a Glorot uniform initial-
izer [64]. The Nesterov Adam [65] algorithm is chosen to opti-
mize networks, as for our experiments, compared to stochastic
gradient descent (SGD) with momentum [66] or Adam [67],
it is able to provide much faster convergence. Almost all
parameters of this optimizer are set as recommended in [65].
We utilize a relatively small learning rate of 2e—04. Finally,
we train networks on an NVIDIA Tesla P100 16 GB GPU.
Table I exhibits an example of a CNN with the proposed
attention module.

III. EXPERIMENTS AND ANALYSIS
A. Data Description

1) Indian Pines Hyperspectral Data Set: The first data were
collected by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor over Northwest Indiana, USA, 1992.
It includes 145 x 145 pixels with a 20 m/pixel spatial res-
olution and 200 spectral bands covering from 400 to 2500 nm
after removing 20 water absorption channels (220, 150-163,
and 104-108). The ground truth includes 16 classes of interest,
which are mostly various crops in different growth phases and

TABLE 11
AMOUNTS OF TRAINING AND TEST DATA ON THE INDIAN PINES SCENE

Class No. Class Name Training  Test
1 Corn-notill 50 1384
2 Corn-min 50 784
3 Corn 50 184
4 Grass-pasture 50 447
5 Grass-trees 50 697
6 Hay-windrowed 50 439
7 Soybean-notill 50 918
8 Soybean-mintill 50 2418
9 Soybean-clean 50 564

10 Wheat 50 162
11 Woods 50 1244
12 Buildings-grass-trees 50 330
13 Stone-steel-towers 50 45
14 Alfalfa 15 39
15 Grass-pasture-mowed 15 11
16 Oats 15 5
TOTAL 695 9671

are detailed in Table II. Since these 16 classes have similar
spectral signatures, the precise classification of this scene is
hard. The true-color composite image and the available ground
truth data can be found in Fig. 3 (black color in the ground
truth indicates unknown samples).

2) Pavia University Hyperspectral Data Set: The second
data set was acquired over the city of Pavia, Italy, 2002 by
an airborne instrument — Reflective Optics Spectrographic
Imaging System (ROSIS). The aircraft was operated by the
German Aerospace Center (DLR) within the context of Euro-
pean Union funded HySens project. The data set is made up
of 640 x 340 pixels with a 1.3 m/pixel spatial resolution
and 103 bands covering from 430 to 860 nm after removing
12 noisy channels. Besides unknown pixels, 9 classes are
manually annotated in the reference data. Fig. 4 displays
a composite image of this data set and its reference map.
Table IIT offers information on all 9 categories.

3) Salinas Hyperspectral Data Set: The third data set was
also gathered by the AVIRIS sensor over the region of Salinas
Valley, CA, USA and with a 3.7-m/pixel spatial resolution.
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Fig. 3.

Classification maps of different approaches for the Indian Pines data set. (Left to right) True-color composite image, training set, test set, RF-200,

SVM-RBF, CCF-200, SICNN, 2-D CNN, and SpecAttenNet. Best zoomed-in view.

Fig. 4. Classification maps of different approaches for the Pavia University data set. (Left to right) Composite image, training samples, ground truth, RF-200,
SVM-RBF, CCF-200, SICNN, 2-D CNN, and SpecAttenNet. Best zoomed-in view.

TABLE III

AMOUNTS OF TRAINING AND TEST DATA
ON THE PAVIA UNIVERSITY DATA SET

Class No.  Class Name  Training Test
1 Asphalt 548 6631
2 Meadows 540 18649
3 Gravel 392 2099
4 Trees 524 3064
5 Metal sheets 265 1345
6 Bare Soil 532 5029
7 Bitumen 375 1330
8 Bricks 514 3682
9 Shadows 231 947

TOTAL 3921 42776

The Salinas scene is composed of 224 spectral bands and
512 x 217 pixels. Like the Indian Pines data set, 20 water
absorption bands (224, 154-167, and 108-112) of the Salinas
scene have been discarded. The data set presents 16 classes
related to vegetables, vineyard fields, and bare soils. Table IV
shows the amounts of training and test data on this data set.

4) Houston Hyperspectral Data Set: The fourth data
set was acquired over the University of Houston campus
and its neighboring urban area. It was collected with an
ITRES-CASI 1500 sensor on June 23, 2012 between
17:37:10 and 17:39:50 UTC. The average altitude of the sensor
was about 1676 m, which results in 2.5-m spatial resolution
data consisting of 349 by 1905 pixels. The hyperspectral
imagery consists of 144 spectral bands ranging from 380 to
1050 nm and was processed (radiometric correction, attitude
processing, GPS processing, geo-correction, and so on) to
yield the final geo-corrected image cube representing the
sensor spectral radiance. Table V provides information about
all 15 classes of this data set with their corresponding training
and test samples. This data set was kindly made available by
the Image Analysis and Data Fusion Technical Committee of
IEEE GRSS in 2012.

TABLE IV
AMOUNTS OF TRAINING AND TEST DATA ON THE SALINAS DATA

Class No. Class Name Training Test
1 Brocoli_green_weeds_1 50 1959
2 Brocoli_green_weeds_2 50 3676
3 Fallow 50 1926
4 Fallow_rough_plow 50 1344
5 Fallow_smooth 50 2628
6 Stubble 50 3909
7 Celery 50 3529
8 Grapes_untrained 50 11221
9 Soil_vinyard_develop 50 6153

10 Corn_senesced_green_weeds 50 3228
11 Lettuce_romaine_4wk 50 1018
12 Lettuce_romaine_5wk 50 1877
13 Lettuce_romaine_6wk 50 866
14 Lettuce_romaine_7wk 50 1020
15 Vinyard_untrained 50 7218
16 Vinyard_vertical_trellis 50 1757
TOTAL 800 53329

B. Experiment Setup

To quantitatively compare different models for hyperspectral
data classification tasks from various aspects, the following
measurements are considered.

1) Overall Accuracy (OA): This criterion is calculated
as the fraction of test samples that are differentiated
correctly.

2) Per-Class Accuracy: To assess the performance with
respect to each category in a data set, we also compute
per-class accuracy. This measurement is particularly
useful when class labels are not uniformly distributed.

3) Average Accuracy (AA): This criterion is computed as
the average of all per-class accuracies.

4) Kappa Coefficient: This statistic criterion is a robustness
measurement with the degree of agreement.

Furthermore, we make use of a statistical test to vali-
date the significance of classification accuracies produced by
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TABLE V
AMOUNTS OF TRAINING AND TEST DATA ON THE HOUSTON DATA SET

Class No. Class Name Training Test
1 Grass Healthy 198 1053
2 Grass Stressed 190 1064
3 Grass Synthetic 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473
TOTAL 2832 12197

various methods. Given that samples used for two classifi-
cation models are not independent, McNemar’s test can be
harnessed to estimate the significance of the difference in two
classification maps, and the McNemar’s test can be performed
by

= fiz — fa
' iz + fa

where f;; is the amount of data correctly recognized by
method i and incorrectly recognized by j. McNemar’s test
is a statistical test for paired nominal data, and we can
use McNemar’s test to compare the predicted accuracies of
two models. In McNemar’s test, the null hypothesis, which
means none of the two models performs better than the other,
is rejected at p = 0.05 (|z| > 1.96), which indicates the
significance level.
Below are methods included in our comparison.

1) RF-200: A random forest composed of 200 decision
trees.

2) SVM-RBF: An SVM! having the widely used radial
basis function (RBF) kernel. We make use of five-fold
cross validation to search optimal hyper-parameters y
(spread of the RBF kernel) and C (controlling the
magnitude of penalization during the model optimiza-
tion) in the range of y = 273,272 ... 2% and C =
1072,107%, ..., 10%

3) CCF-200: A canonical correlation forest (CCF)? [68],
[69] with 200 trees.

4) SICNN: A CNN model, which makes an attempt at
solving the curse of dimensionality by first utilizing a
computational intelligence (particle swarm optimization)
algorithm to choose informative spectral bands and
then training a 2-D CNN using the selected bands.
The used network is made up of three convolutional
layers. The first two convolutional layers are followed
by max-pooling layers and their fields of view are

12)

Uhttps://www.csie.ntu.edu.tw/~cjlin/libsvm/
2https://github.com/twgr/ccfs

4 x4 and 5 x 35, respectively. The last convolutional
layer is equipped with 4 x 4 filters. Moreover, 32, 64,
and 128 convolutional filters are used separately for
those three convolutional layers. For more details, refer
to [33].

5) 2-D CNN: To demonstrate the superiority of the pro-
posed method, we perform an ablation study, i.e., design-
ing a 2-D CNN which has no spectral attention module,
but other parts are the same as the proposed network
(cf. Table I). The exact architecture of the 2-D CNN is
a VGG-like network, in which we utilize three convo-
lutional blocks and 3 x 3 filters for all the blocks. Spa-
tial shrinkage is operated by three max-pooling layers
following the convolutional blocks. Each convolutional
block in this 2-D CNN has two convolutional layers, and
32, 64, and 128 filters are used for convolutional layers
of those three blocks, respectively. Overall, we keep
the architecture of 2-D CNN and that of the following
network consistent.

6) SpecAttenNet: The proposed spectral attention module-
based convolutional network (cf. Table I).

Note that, in order to make our model completely com-
parable with other investigated approaches, we use standard
training and test sets for the Indian Pines, Pavia University,
and Houston data sets. For the Salinas scene, training sam-
ples are generated by a simple random sampling. In both
hyperspectral data sets, 10% samples of the training set are
randomly selected as validation samples. In other words, in the
network training phase, we use 90% samples of the training
set to iteratively update and optimize network weights and
the remaining ones as validation to tune hyperparameters of
networks. Prior to training, we normalize each channel of the
hyperspectral data to the range between 0 and 1. In addition,
network architecture for these data sets is the same.

C. Ablation Study

To validate the effectiveness of the proposed module,
we perform ablation experiments. As we have mentioned
above, the competitor 2-D CNN is a network that has no
spectral attention module, but other parts are the same as
the proposed SpecAttenNet. From Tables VI-IX, we can
see that SpecAttenNet outperforms 2-D CNN on all indexes
on all four data sets. Specifically, SpecAttenNet increases
accuracies significantly by 7.46% of OA, 4.75% of AA,
and 0.0849 of Kappa coefficient on the Indian Pines data
set; by 2.21% of OA, 1.28% of AA, and 0.0293 of Kappa
coefficient on the Pavia University data set; by 2.76% of OA,
2.87% of AA, and 0.0303 of Kappa coefficient on the Salinas
scene; and by 3.1% of OA, 4.93% of AA, and 0.0333 of Kappa
coefficient on the Houston scene. This shows that recalibrated
spectral bands obtained by our gating mechanism become
more separable for a spectral-spatial classification network,
as informative bands have been emphasized, and less useful
ones have been suppressed.

D. Results and Discussion

Tables VI-IX give information about per-class accuracies,
OAs, AAs, and kappa coefficients obtained by various spectral
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ACCURACY COMPARISONS FOR THE INDIAN PINES SCENE. BOLD NUMBERS INDICATE THE BEST PERFORMANCE

TABLE VI

Class No. Class Name RF-200 SVM-RBF CCF-200 SICNN 2D CNN  SpecAttenNet
1 Alfalfa 56.65 71.39 76.37 79.84 54.71 90.46
2 Corn-notill 55.48 71.05 77.93 92.47 96.94 92.22
3 Corn-min 82.07 86.96 94.57 99.46 99.46 100
4 Corn 85.23 91.72 94.41 93.29 96.87 93.96
5 Grass-pasture 80.20 85.80 91.39 92.68 94.12 95.55
6 Grass-trees 94.99 93.85 97.04 96.58 96.81 99.77
7 Grass-pasture-mowed 77.02 75.38 90.96 86.82 91.29 89.65
8 Hay-windrowed 57.94 59.88 69.48 69.52 93.05 88.79
9 Oats 62.94 76.24 89.01 83.69 87.59 85.64
10 Soybean-notill 95.06 96.91 98.77 100 100 100
11 Soybean-mintill 88.67 79.58 93.73 96.70 68.57 96.22
12 Soybean-clean 53.33 74.84 74.55 96.97 88.48 98.79
13 Wheat 97.78 97.78 100 100 100 100
14 Woods 56.41 79.49 97.44 94.87 82.05 94.87
15 Buildings-grass-trees 81.82 100 90.91 100 100 100
16 Stone-steel-towers 100 100 100 100 100 100
OA - 69.31 74.24 82.87 85.13 84.76 92.22
AA - 76.60 83.80 89.78 92.68 90.62 95.37
Kappa - 0.6538 0.7093 0.8059 0.8313 0.8261 0.9110
TABLE VII

ACCURACY COMPARISONS FOR THE PAVIA UNIVERSITY SCENE. BOLD NUMBERS INDICATE THE BEST PERFORMANCE

Class No.  Class Name  RF-200 SVM-RBF CCF-200 SICNN 2D CNN  SpecAttenNet

1 Asphalt 81.54 82.37 86.59 84.21 83.85 86.71

2 Meadows 55.39 67.87 72.33 91.10 96.09 98.47

3 Gravel 53.07 69.18 71.75 64.36 81.47 77.47

4 Trees 98.76 98.37 99.09 95.53 96.12 96.83

5 Metal Sheets 99.11 99.41 99.78 97.70 98.74 98.81

6 Bare Soil 79.10 93.64 97.26 56.53 49.79 53.11

7 Bitumen 84.36 91.20 91.88 77.29 79.32 77.82

8 Bricks 91.39 92.59 94.92 95.57 88.89 94.43

9 Shadows 97.47 96.94 98.73 96.20 94.19 96.30
OA - 71.53 79.89 83.36 85.25 86.93 89.14
AA - 82.24 87.95 90.26 84.28 85.38 86.66
Kappa - 0.6504 0.7491 0.7905 0.8041 0.8242 0.8535

TABLE VIII

ACCURACY COMPARISONS FOR THE SALINAS DATA. BOLD NUMBERS INDICATE THE BEST PERFORMANCE

Class No. Class Name RF-200 SVM-RBF CCF-200 2D CNN  SpecAttenNet

1 Brocoli_green_weeds_1 99.29 98.98 99.49 71.57 94.84

2 Brocoli_green_weeds_2 99.21 99.67 99.95 99.86 99.97

3 Fallow 97.72 98.70 99.43 88.89 99.64

4 Fallow_rough_plow 97.62 97.77 99.33 98.14 98.88

5 Fallow_smooth 97.95 98.33 98.82 98.17 99.81

6 Stubble 99.41 99.72 99.80 100 99.69

7 Celery 99.23 99.46 99.66 97.00 99.69

8 Grapes_untrained 61.92 70.37 67.56 70.79 84.34

9 Soil_vinyard_develop 98.70 98.59 99.19 99.45 98.39
10 Corn_senesced_green_weeds 85.56 93.74 93.80 96.19 95.14
11 Lettuce_romaine_4wk 91.75 94.70 95.87 96.37 98.82
12 Lettuce_romaine_5wk 98.24 99.89 99.95 100 99.63

13 Lettuce_romaine_6wk 97.69 97.81 98.15 100 100

14 Lettuce_romaine_7wk 92.25 97.35 96.86 98.33 99.90
15 Vinyard_untrained 70.32 71.53 80.77 91.22 79.36
16 Vinyard_vertical_trellis 96.98 98.18 98.18 93.00 96.93
OA - 86.02 88.82 89.72 90.25 93.01
AA - 92.74 94.67 95.43 93.69 96.56
Kappa - 0.8450 0.8757 0.8858 0.8918 0.9221

and spectral-spatial classification methods on the four data
sets. For spectral classification approaches, CCF-200 outper-
forms RF-200 and SVM-RBE. With respect to the obtained
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classification results, deep networks, including SICNN,
2-D CNN, and the proposed SpecAttenNet show better per-
formance than “shallow” models (i.e., random forest, SVM,
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TABLE IX
ACCURACY COMPARISONS FOR THE HOUSTON SCENE. BOLD NUMBERS INDICATE THE BEST PERFORMANCE

Class No. Class Name RF-200 SVM-RBF CCF-200 2D CNN  SpecAttenNet
1 Healthy grass 82.53 82.24 83.10 82.91 78.63
2 Stressed grass 83.46 83.18 83.46 100 85.81
3 Synthetic grass 97.82 99.80 100 75.05 94.65
4 Trees 91.38 92.05 91.48 89.49 97.82
5 Soil 96.59 98.58 98.67 99.53 100
6 Water 98.60 99.30 99.30 93.71 89.51
7 Residential 74.81 78.92 87.59 76.12 79.10
8 Commercial 32.48 48.81 46.34 71.32 78.92
9 Road 69.41 77.90 73.84 80.64 87.72
10 Highway 43.73 62.07 66.41 53.96 70.37
11 Railway 69.83 81.31 84.63 76.57 74.67
12 Parking Lot 1 53.70 81.75 85.98 88.86 76.08
13 Parking Lot 2 61.40 71.23 73.68 85.96 90.53
14 Tennis Court 99.19 100 98.79 81.38 98.38
15 Running Track 97.89 97.04 98.10 68.50 95.77
OA - 72.86 80.80 82.15 81.40 84.50
AA - 76.85 83.61 84.76 81.60 86.53
Kappa - 0.7085 0.7933 0.8069 0.7985 0.8318
TABLE X

ASSESSMENTS OF THE SIGNIFICANCE OF CLASSIFICATION ACCURACIES
OF THE PROPOSED METHOD COMPARED TO OTHER INVESTIGATED
APPROACHES FOR THE FOUR DATA SETS.

Data Set RF-200 SVM-RBF CCF-200 SICNN 2D CNN
Indian Pines 40.953 35.169 21.278 19.280 19.255
Pavia University ~ 64.010 36.743 24.161 22.904 16.895
Salinas 2.021 25.101 22.943 - 31.336
Houston 27.389 9.720 6.742 - 8.377

and CCF) in regard to OA and kappa coefficient, mainly
because: 1) they are capable of extracting hierarchical, deep
feature representations; 2) spatial information can be fully
exploited in them. These two properties make the deep net-
works more robust in finding appropriate decision boundaries
and enable the models to handle nonlinearly separable data
more efficiently.

On the other hand, in comparison with SICNN that selects
the most informative spectral bands as inputs of a CNN using a
band selection approach, SpecAttenNet is capable of achieving
accuracy increments of 7.09%, 2.69%, and 0.0797 for OA,
AA, and Kappa coefficient, respectively, on the Indian Pines
scene. Regarding the Pavia University scene, the accuracy
increments on OA, AA, and Kappa coefficient are, respec-
tively, 3.89%, 2.38%, and 0.0494. This observation reveals that
compared to conventional band selection methods, our data-
and task-driven spectral attention mechanism can offer better
results.

Table X demonstrates the results of McNemar’s test,
in which we compute our method and other competitors
in terms of the significance of the difference between their
classification results. We can see that on both data sets,
the improvement of accuracies yielded by our approach
is statistically significant as compared with other methods.
Figs. 3-5 show classification maps produced by RF-200,
SVM-RBF, CCF-200, SICNN, 2-D CNN, and SpecAtten-
Net on three scenes. As displayed in these figures, spectral
classifiers (i.e., random forest, SVM, and CCF) lead to salt

Fig. 5.
set. From left to right: true-color composite of the hyperspectral image,
reference data, RF-200, SVM-RBF, CCF-200, 2-D CNN, and SpecAttenNet.
Best zoomed-in view.

Classification maps of different approaches for the Salinas data

and pepper noised classification maps, while this issue is
addressed in spectral-spatial classification networks (SICNN,
2-D CNN, and SpecAttenNet) by removing noisy scattered
points of misclassification.

Moreover, we observe that the use of the spectral atten-
tion module alleviates the problem of misclassification. For
instance, misclassification in the Indian Pines data set lies
in similar objects (with extremely similar spectral character-
istics), such as Alfalfa and Hay-windrowed. SpecAttenNet
achieves the best average accuracy of 89.625% on these
two classes, while the second best average accuracy is
only 74.68%, as obtained by SICNN.

E. Analysis of the Spectral Attention Module

One challenge in hyperspectral data classification is that
due to complex light scattering mechanism, some pixels of
a hyperspectral image, which belong to the same land
cover class, have different spectral signatures. Therefore,
an approach that is capable of making spectral signals of
those pixels that are more similar should be able to offer
a more accurate classification result. Here, to quantitatively
verify the effectiveness of the spectral attention module,
an index called within-class similarity measures is used. The
within-class similarity measure is defined as the trace of the
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Fig. 6. Visualization of original samples and recalibrated ones by the spectral attention module of the Pavia University data set by t-SNE [70]. Different
colors represent different categories. As shown in this figure, after the attention module, samples of some classes (e.g., class 2 and class 6) gather together
and come into several groups, which means outputs of the module are more useful for tasks like classification. This is mainly because by making use of the
proposed gating mechanism, bands that provide discriminative information are emphasized, while the others are suppressed.
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Fig. 7. Average reflectance spectrum and average spectral gates of each class on the Pavia University data set.

within-class scatter matrix, which can be calculated as follows: and N, denotes the amount of test data belonging to the

Su = i — P 13y c-th category.
1 zz(x M = e (13) Table XI reports calculated within-class similarity mea-

c je .
where = sures of features before and after the spectral attention
1 module in our network on both data sets. We can observe
"o = A le- (14) that recalibrated spectra (i.e., outputs of the spectral atten-
c .

icc tion module) in the same category have higher similarity.
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TABLE XI

WITHIN-CLASS SIMILARITY MEASURES OF FEATURES BEFORE AND
AFTER THE SPECTRAL ATTENTION MODULE ON THE INDIAN PINES,
PAVIA UNIVERSITY, AND SALINAS DATA SETS.

SMALLER IS BETTER

Data Set Before  After
Indian Pines 17.089  9.403
Pavia University ~ 2.289  1.058
Salinas 2240  0.198

Hence, the results demonstrate that the recalibrated spectra
are more discriminative.

Furthermore, we use t-SNE [70] technique to visualize spec-
tra before and after this module on the Pavia University scene
in Fig. 6. As shown in this figure, after the attention module,
samples of some classes (e.g., class 2 and class 6) gather
together and come into several groups, which means outputs
of the module are more useful for tasks like classification.
This is mainly because by making use of the proposed gating
mechanism, bands that provide discriminative information are
emphasized, while others are suppressed.

Since the designed spectral attention mechanism is data- and
task-driven, according to (3), different inputs have different
spectral gates. For each class, we calculate the average of
spectral gates of test samples belonging to this class and
name it average spectral gate. Fig. 7 exhibits the average
reflectance spectrum and the average spectral gate learned by
our attention module of each class on the Pavia University
scene. As shown in this figure, classes with similar spectral
signatures (e.g., Gravel and Bricks) have extremely similar
spectral gates, while these similar classes can be differentiated
in detail; for example, we can see that activations of some
gates on the Gravel class and the Bricks class are different.
In Fig. 8, we also display the average reflectance spectrum
of each class and learned spectral gates on the Indian Pines
data set. Note that since spectral gates of all test samples
learned on this scene are almost the same, we visualize the
average spectral gate of all samples instead of each class.

2500

Average reflectance spectrum of each class and learned spectral gates on the Indian Pines data set.

Interestingly, the learned spectral gate on this data set is
nearly completely binary and quite different from the gates
on the Pavia University scene. From Fig. 8, we can observe
that the spectral attention module mainly pays attention on
spectral bands that provide visual cues to distinguish different
categories.

IV. CONCLUSION

This work proposed a simple, yet effective end-to-end train-
able spectral attention module to make a spectral-spatial clas-
sification CNN learn a channel attention mechanism, i.e., how
to pay attention on the spectral domain, for hyperspectral
image classification. Our spectral attention module enhances
the network by learning the importance of spectral bands with
a gating mechanism and performing a dynamic band-wise
recalibration, which improves not only the representational
capacity but also the interpretability of the network. Extensive
experiments validate the effectiveness of our network.

In the future, we will carry out further research and try
to figure out the band importance induced by the spectral
attention module, which may be helpful to related fields, e.g.,
band selection and hyperspectral data classification network
pruning for model compression.
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Vehicle Instance Segmentation From Aerial Image
and Video Using a Multitask Learning Residual
Fully Convolutional Network

Lichao Mou, Student Member, IEEE, and Xiao Xiang Zhu"', Senior Member, IEEE

Abstract— Object detection and semantic segmentation are two
main themes in object retrieval from high-resolution remote
sensing images, which have recently achieved remarkable per-
formance by surfing the wave of deep learning and, more
notably, convolutional neural networks. In this paper, we are
interested in a novel, more challenging problem of vehicle
instance segmentation, which entails identifying, at a pixel level,
where the vehicles appear as well as associating each pixel with
a physical instance of a vehicle. In contrast, vehicle detection
and semantic segmentation each only concern one of the two.
We propose to tackle this problem with a semantic boundary-
aware multitask learning network. More specifically, we utilize
the philosophy of residual learning to construct a fully convolu-
tional network that is capable of harnessing multilevel contextual
feature representations learned from different residual blocks.
We theoretically analyze and discuss why residual networks
can produce better probability maps for pixelwise segmentation
tasks. Then, based on this network architecture, we propose a
unified multitask learning network that can simultaneously learn
two complementary tasks, namely, segmenting vehicle regions
and detecting semantic boundaries. The latter subproblem is
helpful for differentiating “touching” vehicles that are usually
not correctly separated into instances. Currently, data sets with
a pixelwise annotation for vehicle extraction are the ISPRS
data set and the IEEE GRSS DFC2015 data set over Zee-
brugge, which specializes in a semantic segmentation. Therefore,
we built a new, more challenging data set for vehicle instance
segmentation, called the Busy Parking Lot Unmanned Aerial
Vehicle Video data set, and we make our data set available at
http://www.sipeo.bgu.tum.de/downloads so that it can be used to
benchmark future vehicle instance segmentation algorithms.

Index Terms— Boundary-aware multitask learning network,
fully convolutional network (FCN), high-resolution remote sens-
ing image/video, instance semantic segmentation, residual neural
network (ResNet), vehicle detection.
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I. INTRODUCTION

HE last decade has witnessed dramatic progress in mod-

ern remote sensing technologies—along with the launch
of small and cheap commercial high-resolution satellites
and the now widespread availability of unmanned aerial
vehicles (UAVs)—which facilitates a diversity of applica-
tions, such as urban management [1]-[4], monitoring of
land changes [S]-[8], and traffic monitoring [9], [10]. Among
these applications, object extraction from very high-resolution
remote sensing images/videos has gained increasing attention
in the remote sensing community in recent years, particu-
larly vehicle extraction, due to successful civil applications.
Vehicle extraction, however, is still a challenging task, mainly
because it is easily affected by several factors, e.g., vehicle
appearance variation, the effects of shadow, illumination, and a
complicated and cluttered background. Existing vehicle extrac-
tionapproaches can be roughly divided into two categories:
vehicle detection and vehicle semantic segmentation.

A. Vehicle Detection

The goal of vehicle detection is to detect all instances of
vehicles and localize them in the image, typically in the form
of bounding boxes with confidence scores. Traditionally, this
topic was addressed by works that use low-level, hand-crafted
visual features [e.g., color histogram, texture feature, scale-
invariant feature transform (SIFT), and histogram of oriented
gradients (HOG)] and classifiers. For example, Shao et al. [11]
incorporate multiple visual features, local binary patterns,
HOG, and opponent histogram for vehicle detection from
high-resolution aerial images. Moranduzzo and Melgani [12]
first use SIFT to detect the interest points of vehicles and
then train a support vector machine (SVM) to classify these
interest points into vehicle and nonvehicle categories based
on the SIFT descriptors. They later present an approach [13]
that performs filtering operations in the horizontal and vertical
directions to extract HOG features and yield vehicle detection
after the computation of a similarity measure, using a catalog
of vehicles as a reference. Liu and Mattyus [14] make use
of an integral channel concept with Haar-like features and an
AdaBoost classifier in a soft-cascade structure to achieve fast
and robust vehicle detection.

The aforementioned approaches mainly rely on the hand-
crafted features for constructing a classification system.

0196-2892 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Tllustration of different vehicle extraction methods. (From left to right
and top to bottom) Input image, vehicle detection, semantic segmentation, and
vehicle instance segmentation. The challenge of vehicle instance segmentation
is that some vehicles are segmented incorrectly. While most pixels belonging
to the category are identified correctly, they are not correctly separated into
instances (see arrows in the bottom-left image).

Recently, as an important branch of the deep learning fam-
ily, the convolutional neural network (CNN) has become
the method of choice in many computer vision and remote
sensing problems [15]-[19] (e.g., object detection) due to its
ability to automatically extract midlevel and high-level abstract
features from raw images for pattern recognition purposes.
Chen et al. [20] propose a vehicle detection model, called
the hybrid deep neural network, which consists of a sliding
window technique and CNN. The main insight behind their
model is to divide the feature maps of the last convolutional
layer into different scales, allowing for the extraction of
multiscale features for vehicle detection. Ammour et al. [21]
segment an input image into homogeneous superpixels that
can be considered as vehicle candidate regions, making use
of a pretrained deep CNN to extract features, and train a
linear SVM to classify these candidate regions into vehicle
and nonvehicle classes.

B. Vehicle Semantic Segmentation

Vehicle semantic segmentation aims to label each pixel in
an image as belonging to the vehicle class or other cate-
gories (e.g., building, tree, and low vegetation). In comparison
with vehicle detection, it can give more accurate pixelwise
extraction results. More recently, progress in deep CNNi,
particularly fully convolutional networks (FCNs), makes it
possible to achieve end-to-end vehicle semantic segmenta-
tion. For instance, Audebert et al. [22] propose a deep-
learning-based ‘“‘segment-before-detect” method for semantic
segmentation and subsequent classification of several types of
vehicles in high-resolution remote sensing images. The use
of SegNet [23] in this method is capable of producing pix-
elwise annotations for vehicle semantic mapping. In addition,
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several recent works in the semantic segmentation of high-
resolution aerial imaging also involve vehicle segmentation.
Kampffmeyer et al. [24] focus on the class imbalance which
often represents a problem for semantic segmentation in
remote sensing images, since small objects (e.g., vehicles) are
less prioritized in an effort to achieve a good overall accu-
racy (OA). To address this problem, they train FCNs using the
cross-entropy loss function weighted with median frequency
balancing, which is proposed by Eigen and Fergus [25].

C. Is Semantic Segmentation Good Enough for
Vehicle Extraction?

The existence of “touching” vehicles in a remote sensing
image makes it quite hard for most vehicle semantic seg-
mentation methods to separate objects individually, while in
most cases, we need to know not only which pixels belong to
vehicles (vehicle semantic segmentation problem) but also the
exact number of vehicles (vehicle detection task). This drives
us to examine an instance-oriented vehicle segmentation.

The vehicle instance segmentation seeks to identify the
semantic class of each pixel (i.e., vehicle or nonvehicle) as well
as associate each pixel with a physical instance of a vehicle.
This is contrasted with the vehicle semantic segmentation
which is only concerned with the above-mentioned first task.
Fig. 1 shows differences among vehicle detection, semantic
segmentation, and instance segmentation. In this paper, we are
interested in the vehicle instance segmentation in a complex,
cluttered, and challenging background from aerial images and
videos. Moreover, since deep networks have recently been very
successful in a variety of remote sensing applications, from
hyperspectral/multispectral image analysis to interpretation of
high-resolution aerial images to multimodal data fusion [15],
in this paper, we would like to use an end-to-end network
to achieve the vehicle instance segmentation. This paper
contributes to the literature in three major respects.

1) So far, most studies in the remote sensing community
have focused on the object detection and semantic
segmentation in high-resolution remote sensing imagery.
The instance segmentation has rarely been addressed.
In a pioneer work moving from semantic segmentation
to instance segmentation, Audebert et al. [22] developed
a three-stage segment-before-detect framework. In this
paper, we try to address the vehicle instance segmenta-
tion problem by an end-to-end learning framework.

2) In order to facilitate progress in the field of vehi-
cle instance segmentation in high-resolution aerial
images/videos, we provide a new, challenging data set
that presents a high range of variation—with a diversity
of vehicle appearances, the effects of shadow, a cluttered
background, and extremely close vehicle distances—
for producing quantitative measurements and comparing
among approaches.

3) We present a semantic boundary-aware unified mul-
titask learning FCN, which is end-to-end trainable,
for vehicle instance segmentation. Inspired by several
recent works [26]-[28], we exploit residual neural net-
work (ResNet) [29] to construct the feature extractor
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of the whole network. In this paper, we theoretically
analyze and discuss why residual networks can produce
better probability maps for pixelwise prediction tasks.
The proposed multitask learning network creates two
separate, yet identical branches to jointly optimize two
complementary tasks—namely, vehicle semantic seg-
mentation and semantic boundary detection. The latter
subproblem is beneficial for differentiating vehicles with
an extremely close distance and further improving the
instance segmentation performance.

The remainder of this paper is organized as follows. After
Section I, detailing vehicle extraction from high-resolution
remote sensing imagery, we enter Section II, dedicated to
the details of the proposed semantic boundary-aware multitask
learning network for vehicle instance segmentation. Section III
then provides the data set information, the network setup, and
the experimental results and discussion. Finally, Section IV
concludes this paper.

II. METHODOLOGY

We formulate the vehicle instance segmentation task by two
subproblems, namely, vehicle detection and semantic segmen-
tation. The training set is denoted by {(x;, yi,zi)}, where
i=1,2,...,N and N is the number of training samples.
Since we consider each image independently, the subscript
i is dropped hereafter for notational simplicity. x = {x;,
Jj = 1,2,...,|x|} represents a raw input image, y = {y;,
J = L2,...,]x],y; € {0,1}} denotes its corresponding
manually annotated pixelwise segmentation mask, and z =
{rr,k =0,1,..., K} is the instance label, where r; indicates
a set of pixels inside the kth region.! K is the total number
of vehicle instances in the image, and ro is the background
area. When k takes other values, it denotes the corresponding
vehicle instance. Note that the instance labels only count
vehicle instances, and thus, they are commutative. Our aim
is to segment vehicles while ensuring that all instances are
differentiated. In this paper, we approximate the vehicle detec-
tion by the semantic boundary detection.>? We generate the
semantic boundary labels b through z to train a boundary
detector, in which b = {b;,j = 1,2,...,|x],b; € {0,1}}
and b; equals 1 when it belongs to boundaries.

In this section, we describe our proposed semantic
boundary-aware multitask learning network for accurate vehi-
cle instance segmentation in detail. We start by introducing
the FCN architecture for end-to-end semantic segmentation
in Section II-A. Furthermore, we propose to exploit multi-
level contextual feature representations, generated by different
stages of a residual network, to construct a residual FCN
(ResFCN) for producing better likelihood maps of vehicle
regions or semantic boundaries (see Section II-B). Then,
in Section II-C, we elaborate the semantic boundary-aware
unified multitask learning network drawn from the ResFCN
for effective instance segmentation by jointly optimizing the
complementary tasks.

IRegions in the image satisfy ry Nr, = &, Vk # ¢ and Ury, = Q, where Q
is the whole image region.

2The semantic boundary detection is to detect the boundaries of each object
instance in the images. Compared with edge detection, it focuses more on the
association of boundaries and their object instances.
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A. Fully Convolutional Network for Semantic Segmentation

Long et al. [30] first proposed the FCN architecture for
semantic segmentation tasks which is both efficient and
effective. Later, some extensions of the FCN model have
been proposed to improve a semantic segmentation perfor-
mance. To name a few, Chen et al. [31] removed some
of the max-pooling operations and, accordingly, introduced
atrous/dilated convolutions in their network, which can expand
the field of view without increasing the number of parameters.
As postprocessing, a dense conditional random field (CRF)
was trained separately to refine the estimated category score
maps for further improvement. Zhang et al. [32] introduced a
new form of network that combines FCN- and CRF-based
probabilistic graphical modeling to simulate a mean-field
approximate inference for the CRF with Gaussian pairwise
potentials as the recurrent neural network.

B. Residual Fully Convolutional Network

Here, we first explain how to construct a ResFCN according
to the existing works in the literature, mainly, the ResNet [29]
and FCN [30]. Then, we theoretically analyze why ResFCN
is able to offer better performance than other FCNs based on
the traditional feedforward network architectures (e.g., VGG
Nets [33]).

Network Design: Several recent studies in computer
vision [26]-[28] have shown that ResNet [29] is capable of
offering better features for pixelwise prediction tasks, such as
semantic segmentation [26], [27] and depth estimation [28].
We, therefore, make use of ResNet to construct the segmen-
tation network in this paper. We initialize a ResFCN from
the original version of ResNet [29], instead of the newly
presented preactivation version [34]. Unlike [30], we directly
remove the fully connected layers from the original ResNet
but do not convolutionalize these layers so as to make one
prediction per spatial location. Moreover, we keep the 7 x 7
convolutional layer and 3 x 3 max-pooling layer, which can
enlarge the field of view for feature representations. One of
the recent trends in a network architecture design is stacking
convolutional layers with small convolution kernels (e.g., 3 x 3
and 1 x 1) in the entire network, because the stacked small
kernels are more efficient than a large filter, given the same
computational complexity. However, a recent study [35] found
that the large filter also plays an important role when classifica-
tion and localization tasks are performed simultaneously. This
can be easily understood through the analogy of individuals
commonly confirming the category of a pixel by referring to
its surrounding context region.

By now, the output feature maps are only 1/32 the res-
olution of their original input image, which is apparently
too low to precisely differentiate individual pixels. To deal
with this problem, Long et al. [30] made use of backward-
strided convolutions that upsample the feature maps and
output score masks. The motivation behind this is that the
convolutional layers and max-pooling layers focus on extract-
ing high-level abstract features, whereas the backward-strided
convolutions estimate the score masks in a pixelwise way.
Ghiasi and Fowlkes [36] proposed a multiresolution recon-
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Fig. 2.

Network architecture of the ResFCN we use, as illustrated in Section II-B. We incorporate the multilevel contextual features from the last 32 x 32,

16 x 16, and 8 x 8 layers of a classification ResNet since making use of information from fairly early fine-grained layers is beneficial to segmenting small
objects such as vehicles. To get the desired full resolution output, we use 1 x 1 convolutional layers followed by upsampling operations to upsample back to
the spatial resolution of the input image. Then, predictions from different residual blocks are fused together with a summing operation.

struction architecture based on a Laplacian pyramid that uses
skip connections from higher resolution feature maps and
multiplicative gating to successively refine segment boundaries
reconstructed from lower resolution maps. Inspired by the
existing works, in this paper, we exploit multilevel contextual
feature representations that include information from different
residual blocks (i.e., different levels of contextual information).
Fig. 2 shows the illustration of the ResFCN architecture we
use with multilevel contextual features. More specifically,
we incorporate feature representations from the last 32 x 32,
16 x 16, and 8 x 8 layers of the original ResNet, since making
use of information from fairly early fine-grained layers is
beneficial to segmenting small objects such as vehicles. To get
the desired full resolution output, we used a 1 x 1 convolutional
layer, which adaptively squashes the number of channels down
to the number of labels (1 for binary classification), takes
advantage of the upsampling operation to upsample back to the
spatial resolution of the input image, and makes predictions
based on the contextual cues from the given fields of view.
Then, these predictions are fused together with a summing
operation, and the final segmentation results are generated after
sigmoid classification.

Why Residual Learning? Until recently, the majority of
feedforward networks, such as AlexNet [37] and VGG
Nets [33], were made up of a linear sequence of layers.
x,—1 and x, are denoted as the input and output of the nth
layer/block, respectively, and each layer in such a network
learns the mapping function F

X, =F(xp-1; Op) 1

where ©,, is the parameters of the nth layer. This kind of
network is also often referred to as a traditional feedforward
network.

According to a study by He et al. [29], simply deepening
traditional feedforward networks usually leads to an increase
in training and test errors (i.e., so-called degradation problem).

A residual learning-based network is composed of a sequence
of residual blocks and exhibits significantly improved training
characteristics, providing the opportunity to make network
depths that were previously unattainable. The output x, of
the nth residual block in a ResNet can be computed as

Xn = HXn-1; On) + x4-1 2
where H(x,—_1; ®,) is the residual, which is parametrized
by ©,. The core insight of ResNet is that the addition of
a shortcut connection from the input x,_; to the output x,
bypasses two or more convolutional layers by performing
identity mapping and is then added together with the output of
stacked convolutions. By doing so, H only computes a residual
instead of computing the output x,, directly.

In the experiments, we found that the ResFCN can offer a
better performance than the other FCNs based on the tradi-
tional feedforward network architecture, such as VGG-FCN.
What is the reason behind this? To answer this question,
we need to go deeper. According to the characteristics of the
ResFCN, we can easily get the following recurrence formula:

m—1

Xp= Y Hxi; 1) + %41

i=n—1

3)

for any deeper residual block m and any shallower residual
block n. Equation (3) shows that the ResFCN creates a direct
path for propagating information of shallow layers (i.e., x,_1)
through the entire network. Several recent studies [38], [39]
that attempt to reveal what were learned by CNNs show
that the deeper layers exploit filters to grasp global high-
level information, while the shallower layers capture low-level
details, such as object boundaries and edges, which are of great
importance in small object detection/segmentation. In addi-
tion, when we dive into the backward propagation process,
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Fig. 3. Overall architecture of the proposed semantic B-ResFCN. We propose to use such a unified multitask learning network for vehicle instance segmentation
which creates two separate, yet identical branches to jointly optimize two complementary tasks, namely, vehicle semantic segmentation and semantic boundary
detection. The latter subproblem is beneficial for differentiating “touching” vehicles and further improving the instance segmentation performance.

according to the chain rule of backpropagation, we can obtain
o€ 0E Oxy

0Xp—1 T oxm 0Xp—1
o o
=—1 E H(x;; ©; 4
£ + EP (x; itr1) “4)

i=n—1

where £ is the loss function of the network. As exhibited
in (4), the gradient (0€/(0x,—1)) can be decomposed into two
additive terms: the term (6€/(0x,,))((8/(0xn—1)) ;":_nl_ 1 H)
that passes information through the weight layers, and the term
(0€/(0x,,)) that directly propagates without concerning any
weight layers. The latter term ensures that the information
can also be directly propagated back to any shallower residual
block n.

In brief, the properties of the forward and backward prop-
agation procedures of the ResFCN make it possible to shuttle
the low-level visual information directly across the network,
which is quite helpful for our vehicle (small object) instance
segmentation tasks.

C. Semantic Boundary-Aware ResFCN

By exploiting the multilevel contextual features, the Res-
FCN is capable of producing good likelihood maps of vehicles.
However, it is still difficult to differentiate vehicles with a
very close distance by only leveraging the probability of
vehicles due to the ambiguity in the “touching” regions. This
is rooted in the loss of spatial details caused by max-pooling
layers (downsampling) along with the feature abstraction. The
semantic boundaries of vehicles provide good complementary
cues that can be used for separating the instances.

Some approaches in computer vision and remote sensing
have been explored for modeling segmentation and boundary
prediction jointly in a combinatorial framework. For example,
Kirillov et al. [40] propose InstanceCut which represents

instance segmentation by two modalities, namely, a semantic
segmentation and all instance boundaries. The former is com-
puted from a CNN for semantic segmentation, and the latter
is derived from an instance-aware edge detector. However,
this approach does not address end-to-end learning. In the
remote sensing community, Marmanis et al. [41] propose a
two-step model that learns a CNN to separately output edge
likelihoods at multiple scales from color-infrared and height
data. Then, the boundaries detected with each source are added
as an extra channel to each source, and a network is trained
for semantic segmentation purposes. The intuition behind this
paper is that using predicted boundaries helps to achieve
sharper segmentation maps. In contrast, we train one end-
to-end network that takes as input color images and predicts
segmentation maps and object boundaries in order to augment
the performance of segmentation at the instance level.

To this end, we train a deep semantic boundary-aware Res-
FCN (B-ResFCN) for effective vehicle instance segmentation
(i.e., segmenting the vehicles and splitting clustered instances
into individual ones). Fig. 3 shows an overview of the proposed
network. Specifically, we formulate it as a unified multitask
learning network architecture by exploring the complementary
information (i.e., vehicle region and semantic boundaries),
instead of treating the vehicle segmentation problem as an
independent and single task, which can simultaneously learn
the detections of vehicle regions and corresponding semantic
boundaries. As shown in Fig. 3, the feature representations
extracted from multiple residual blocks are upsampled with
two separate, yet identical branches to predict the semantic
segmentation masks of vehicles and semantic boundaries,
respectively. In each branch, the mask is estimated by the
ResFCN with multilevel contextual features, as illustrated
in Section II-B. Since we have only two categories (fore-
ground/vehicles versus background and semantic boundaries
versus nonboundaries), sigmoid and binary cross-entropy loss



6704

are used to train these two branches. Formally, the network
training can be formulated as a pixel-level binary classification
problem regarding ground-truth segmentation masks, including
vehicle instances and semantic boundaries, as shown in the
following:

Lx; W) = Lo(x; Wy, W) + ALp (x5 Wy, W) o)
where
Ly ==Y [vlogay(x) + (1 = y) log(l — o, (x)]
Ly == [blogay(x) + (1 — b)log(l — op(x))]. (6)

Ls(x; Wy, Wy) and Lp(x; W,, W) denote the losses for
estimating vehicle regions and semantic boundaries, respec-
tively. We train the network using this joint loss, and the final
instance segmentation map is produced by the first branch of
the network in the test phase. Vehicle instances are obtained by
computing the connected regions in the predicted segmentation
map. Inside a region, pixels belong to the same vehicle, while
different regions mean different instances. Our motivation is
that jointly estimating segmentation and boundary map in a
multitask network with such a joint loss can offer a better
segmentation result at the instance level for aerial images. Note
that we do not make use of any postprocessing operations, such
as fusing the segmentation and boundary map, as we want to
directly evaluate the performance of this network architecture.

Note that the multitask learning network is optimized in
an end-to-end fashion. This joint multitask training procedure
has several merits. First, in the application of vehicle instance
segmentation, the multitask learning network architecture
is able to provide the complementary semantic boundary
information, which is helpful in differentiating the clustered
vehicles, improving the instance-level segmentation perfor-
mance. Second, the discriminative capability of the network’s
intermediate feature representations can be improved by this
architecture because of multiple regularizations on correlated
tasks. Therefore, it can increase the robustness of instance
segmentation performance.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Data Sets

1) ISPRS Potsdam: The ISPRS Potsdam Semantic Labeling
data set [42] is an open benchmark data set provided online.?
The data set consists of 38 orthorectified aerial IRRGB images
(6000 x 6000 pixels) with a 5-cm spatial resolution and the cor-
responding DSMs generated by dense image matching, taken
over the city of Potsdam, Germany. A comprehensive manually
annotated pixelwise segmentation mask is provided as the
ground truth for 24 tiles that are available for training and
validation. The other 14 remain unreleased and are kept with
the challenge organizers for testing purposes. We randomly
selected five tiles (image number: 2_12,5_12,7_7,7_8,7_9)
from 24 training images and used them as the test set in our
experiments (see Fig. 4). The resolution is downsampled to

3http://Www2.isplrs.org/commissions/c<)mm3/wg4/2d-sem-label-potsdam.
html
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segmentation as well as three zoomed-in areas.

Image #5_12 from the ISPRS Potsdam data set for vehicle instance

15 cm/pixels to match the subsequent video data set. The
input to the networks contains only red, green, and blue
channels, and all the results reported on this data set refer to
the aforementioned test set. Table I provides the details about
this data set for our experiments.

2) Busy Parking Lot: The task of vehicle instance segmen-
tation currently lacks a compelling and challenging benchmark
data set to produce quantitative measurements and to compare
with other approaches. While the ISPRS Potsdam data set has
clearly boosted research in semantic segmentation of high-
resolution aerial imagery, it is not as challenging as certain
practical scenes, such as a busy parking lot, where vehicles
are often parked so close that it is quite hard to separate them,
particularly from an aerial view. To this end, in this paper,
we propose our new challenging Busy Parking Lot UAV Video
data set that we built for the vehicle instance segmentation
task. The UAV video was acquired by a camera onboard,
a UAV covering the parking lot of Woburn Mall, Woburn,
MA, USA.* The video comprises 1920 x 1080 pixels with a
spatial resolution of about 15 cm per pixel at 24 frames/s and a
length of 60 s. We have manually annotated pixelwise instance
segmentation masks for 5 frames (at 1, 15, 30, 45, and 59 s),
i.e., the annotation is dense in space and sparse in time to
allow for the evaluation of methods with this long sequence
(see Fig. 6). The Busy Parking Lot data set is challenging
because it presents a high range of variations with a diversity
of vehicle colors, the effects of shadow, several slightly blurred
regions, and vehicles that are parked too close. We train the
networks on the ISPRS Potsdam data set and then perform
vehicle instance segmentation using the trained networks on
this video data set. Details regarding this data set are shown
in Table II.

B. Training Details

The network training is based on the TensorFlow frame-
work. We choose Nesterov Adam [43], [44] as the optimizer
to train the network, since for this task, it shows much faster

“https://www.youtube.com/watch?v=yojapmOkIfg
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TABLE 1
VEHICLE COUNTS AND NUMBER OF VEHICLE PIXELS IN THE ISPRS POTSDAM DATA SET

.. Test Set
Training Set — 45— 1377 78 779
Vehicle Count 3433 23 27 00 300 305
Number of Pixels 1,184,780 36236 122332 76892 77,669 74404
TABLE II

VEHICLE COUNTS AND NUMBER OF VEHICLE PIXELS IN THE BUSY PARKING LOT UAV VIDEO DATA SET

Frame@1s Frame@15s Frame@30s Frame@45s Frame@59s
Vehicle Count 511 492 502 484 479
Number of Pixels 257,462 235,560 240,607 235,448 226,697

100
Pixel-wise F1 scores
mm Instance-level F1 scores
98 4
96 4
94.85
93.95

941 9343 372 93.44 93.44

92 1

Q0

0.01 0.1 1

Fig. 5. Sensitivity analysis for the parameter A on the ISPRS Potsdam
data set.

convergence than the standard stochastic gradient descent with
momentum [45] or Adam [46]. We fixed almost all of the
parameters of Nesterov Aadam as recommended in [43]:
p1 =09, fr = 0.999, ¢ = 1e—08, and a schedule decay
of 0.004, making use of a fairly small learning rate of 2e—04.
All weights in the newly added layers are initialized with
a Glorot uniform initializer [47] that draws samples from a
uniform distribution. In our experiments, we note that the
pixelwise F1 score of the network is less sensitive to the
parameter A and the instance-level performance is relatively
sensitive to A. Based on the sensitivity analysis (see Fig. 5),
we set it as 0.1.

The networks are trained on the training set of the ISPRS
Potsdam data set to predict instance segmentation maps. The
training set has only 931 unique 256 x 256 patches. We make
use of the data augmentation technique to increase the number
of training samples. The RGB patches and the corresponding
pixelwise ground truth are transformed by horizontally and
vertically flipping three quarters of the patches. By doing so,
the number of training samples increases to 14 896. To monitor
overfitting during training, we randomly select 10% of the
training samples as the validation set, i.e., splitting the training
set into 13406 training and 1490 validation pairs. We train
the network for 50 epochs and make use of early stopping to
avoid overfitting. Moreover, we use fairly small mini-batches
of eight image pairs because, in a sense, every pixel is a
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Fig. 6. Frame@]Is from the proposed Busy Parking Lot UAV Video data set
for vehicle instance segmentation. (Bottom) Four zoomed-in areas.

training sample. We train our network on a single NVIDIA
GeForce GTX TITAN with 12 GB of GPU memory, which
takes about 2 h.

C. Qualitative Evaluation

Some vehicle instance segmentation results are shown
in Fig. 7 (test set of the ISPRS Potsdam data set) and
Fig. 9 (the Busy Parking Lot data set), respectively, in order
to qualitatively illustrate the efficacy of our model. First,
we compare various CNN variants used for FCN architecture
to determine which one is the best suited for our task.
In Fig. 7, we qualitatively investigate the accuracy of the
predicted instance segmentation maps using FCN architec-
ture with leading CNN variants, namely, VGG-FCN [33],
Inception-FCN [48], Xception-FCN [49], and ResFCN on the
ISPRS Potsdam data set. We implement VGG-FCN, Inception-
FCN, and Xception-FCN by fusing the output feature maps
of the last three convolutional blocks as we do for ResFCN
(see Section II-B). From the segmentation results, we can
see an improvement in quality from VGG-FCN to ResFCN.
Moreover, on the Busy Parking Lot data set, the ResFCN
also demonstrates a fairly strong ability to generalize to an
“unseen” scene outside the training data set (see Fig. 9).
However, there are some vehicles that cannot be separated in
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TABLE III

PIXEL-LEVEL OAs AND F1-SCORES FOR THE CAR CLASS ON THE
ISPRS POTSDAM DATA SET

Model OA OA (eroded) F1 score F1 score (eroded)
ResFCN 99.79 99.89 93.43 95.66
B-ResFCN  99.79 99.89 93.44 95.87

both segmentation results produced using the aforementioned
networks due to the extremely close vehicle distance. The
situation is further deteriorated when the imagery suffers from
the effects of shadow, as the cases shown in the zoomed-
in areas of Fig. 9. On the other hand, to identify the role
of the semantic boundary component of the proposed unified
multitask learning network architecture, we also performed
an ablation study to compare the performance of networks
relying on the prediction of vehicles. In comparison with
the ResFCN, the semantic B-ResFCN is able to separate
those “touching” cars clearly, which qualitatively highlights
the superiority of a semantic boundary-aware network by
exploring the complementary information under a unified
multitask learning network architecture. Fig. 8 shows a couple
of example segmentations using the proposed B-ResFCN on
several frames of the Busy Parking Lot data set.

D. Quantitative Evaluation

To verify the effectiveness of networks used, we reported
the pixel-level OAs and F1 scores of the car class on our
test set of the ISPRS Potsdam data set in Table III and
compared with the state-of-the-art methods. These metrics
are calculated on a full reference and an alternative ground
truth obtained by eroding the boundaries of objects by a

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 11, NOVEMBER 2018

Xception-FCN ResFCN ResFCN-Boundary

Instance segmentation results of the ISPRS Potsdam data set. (From left to right) Ground truth, VGG-FCN, Inception-FCN, Xception-FCN, ResFCN,
and B-ResFCN (different colors denote the individual vehicle objects). The three areas are derived from Fig. 4.

circular disk of 3 pixel radius. The current state-of-the-art
CASIA2 (in the leaderboard http://www2.isprs.org/potsdam-
2d-semantic-labeling.html) obtains the F1 score of 96.2%
for the vehicle segmentation on the held-out test set (which
is different from the validation set we use) using IRRG.
Our B-ResFCN is competitive with the F1 score of 95.87%
obtained by using the RGB information only on our own test
set. This indicates that the trained network can be though as a
good, competitive model for the follow-up experiments. Note
that the pixelwise OA and F1 score can only evaluate the
segmentation performance at a pixel level instead of instance
level. Therefore, they are actually not suitable for our task.

To quantitatively evaluate the performance of different
approaches for vehicle segmentation at the instance level,
the evaluation criteria we use are instance-level F1 score,
precision, recall, and Dice similarity coefficient. The first
three criteria consider the performance of vehicle detection,
and the last validates the performance of the instance-level
segmentation.

1) Detection: For the vehicle detection evaluation, the met-
ric instance-level F1 score? is employed, which is the harmonic
mean of instance-level precision P and recall R, defined as

2PR No No

F1= 5 P= ,R:

(N

where Nyp, Nip, and Ny, are the number of true positives, false
positives, and false negatives, respectively. Here, the ground
truth for each segmented vehicle is the object in the manually

SNote that the instance-level F1 score is different from the pixelwise
F1 score used by the ISPRS semantic labeling evaluation
(http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html).
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Fig. 8.

labeled segmentation mask that has a maximum overlap with
the segmented vehicle. When calculating Ny, and Ngp, a seg-
mented vehicle that intersects with at least 50% of its ground
truth is considered as a true positive; otherwise, it is regarded
as a false positive. For Ny,, a false negative indicates a ground-
truth object that has less than 50% of its area overlapped by
its corresponding segmented vehicle or has no corresponding
segmented vehicle.

Example segmentations using the proposed B-ResFCN in several frames of the Busy Parking Lot data set.

The detection results of different networks on the ISPRS
Potsdam data set and the Busy Parking Lot scene are shown
in Tables IV and V, respectively. Among the networks with-
out a semantic boundary component, the ResFCN surpasses
all other models (VGG-FCN, Inception-FCN, and Xception-
FCN), highlighting the strength of residual learning-based
FCN architecture with the multilevel contextual feature repre-
sentations in our task. The network with the semantic boundary
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Fig. 9.
B-ResFCN (different colors denote the individual vehicles). The four areas are derived from Fig. 6.
TABLE IV

DETECTION RESULTS OF DIFFERENT NETWORKS ON THE ISPRS POTSDAM SEMANTIC LABELING DATA SET
(INSTANCE-LEVEL F1 SCORE, PRECISION, AND RECALL)

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 11, NOVEMBER 2018

Instance segmentation maps of the Busy Parking Lot data set. (From left to right) Ground truth, Inception-FCN, Xception-FCN, ResFCN, and

Model 212 512 77 7_8 79
F1 P R F1 P R F1 P R F1 P R F1 P R
VGG-FCN 66.04 70.00 62.50 57.00 6145 53.14 5921 6195 56770 5721 66.84 50.00 61.31 6591 57.31
B-VGG-FCN 7027 6842 7222 69.85 6742 7247 71.03 6847 7379 6796 6686 69.09 6647 60.96 73.08
Inception-FCN 5191 5545 48.80 31.65 3742 2742 40.00 4341 37.08 2779 31.70 2474 40.87 4502 3742
B-Inception-FCN  55.15  50.61 60.58 46.14 47.42 4492 5381 5291 5475 4347 4245 4454 5074 4749 5447
Xception-FCN 96.92 9821 9565 8355 8l.11 86.14 9333 9459 92.11 92.05 93.10 91.01 9392 9659 9140
B-Xception-FCN  97.00 100 94.17 8840 88.60 88.19 93.65 9647 91.00 9358 9754 8994 9463 9750 91.92
ResFCN 97.93 100 9593 83.88 80.84 87.15 9472 96.86 92.67 95.62 9793 9342 9525 9623 94.30
B-ResFCN 98.31 100 96.67 88.57 87.08 90.11 9643 97.12 9574 9519 97883 9264 9576 97.83 93.77
TABLE V
DETECTION RESULTS OF DIFFERENT METHODS ON THE PROPOSED BUSY PARKING LOT UAV VIDEO DATA SET
(INSTANCE-LEVEL F1 SCORE, PRECISION, AND RECALL)
Model Frame@1s Frame@15s Frame@30s Frame@45s Frame@59s
F1 P R F1 P R F1 P R F1 P R F1 P R
Inception-FCN 1548 60.00 8.89 15.67 51.09 9.25 13.92 4343 8.29 11.56 4198 6.71 775 3929 430
B-Inception-FCN  17.74  62.50 10.34 19.84 58.72 1194 1871 51.69 1142 17.84 5534 1063 1063 51.67 593
Xception-FCN 8725 8682 87.69 8727 8528 89.36 86.58 84.14 89.16 87.10 84.82 89.50 75.65 7412 77.25
B-Xception-FCN  91.43 89.72 9320 90.15 86.80 93.78 90.12 87.69 92.70 90.35 87.64 93.22 8830 8424 9277
ResFCN 88.73 89.71 87777 8943 89.76 89.10 9043 91.38 89.50 88.81 83.69 83.92 87.10 9023 84.17
B-ResFCN 9329 9516 91.50 92,55 91.52 93.61 93.62 94.02 9322 93.06 9433 91.83 9454 9528 93.81

component—i.e., B-ResFCN—achieved the best results on
most test images of the ISPRS Potsdam scene and surpassed
the others by a significant margin on the Busy Parking Lot data

set, demonstrating the effectiveness of the semantic boundary-
aware multitask learning network in this instance segmentation
problem. From Tables IV and V, we observe that all the
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TABLE VI

SEGMENTATION RESULTS OF DIFFERENT METHODS ON THE BUSY PARKING LOT UAV VIDEO DATA SET
(INSTANCE-LEVEL DICE SIMILARITY COEFFICIENT)

Model Frame@1ls Frame@15s Frame@30s Frame@45s Frame@59s
Inception-FCN 26.81 26.06 25.68 22.89 23.77
B-Inception-FCN 32.37 33.07 33.34 30.44 31.26
Xception-FCN 72.74 72.74 72.85 72.47 71.31
B-Xception-FCN 77.31 77.50 77.22 77.13 76.32
ResFCN 71.17 71.47 71.76 68.82 72.73
B-ResFCN 78.84 77.33 79.13 77.83 79.39

TABLE VII

networks yield a fairly lower instance-level F1, precision,
and recall on the Busy Parking Lot data set than on the
ISPRS Potsdam data set. This mainly comes from the different
difficulty levels of the two data sets. Specifically, high-density
parking, strong light conditions, critical effects of shadow, and
a slightly blurry image quality lead to the fact that networks
have achieved a more inferior performance on the proposed
data set than on the Potsdam scene.

2) Segmentation: The Dice similarity coefficient is often
used to evaluate a segmentation performance. Given a set
of pixels V denoted as a segmented vehicle and a set of
pixels G annotated as a ground-truth object, the Dice similarity
coefficient is defined as

D(V,G)=2(VNG)/(VI+IG. ()

However, this is not suitable for segmentation evaluation on
individual objects (i.e., instance segmentation). Instead, in this
paper, an instance-level Dice similarity coefficient is defined
and employed as

Ny Ng
1 L
Dins(V,G)=§ E wiD(V;,Gi)+E @;D(V;,Gj)
i=1 j=1

€)

where V;, G;, G j» and f/j are the ith segmented vehicle,
the ground-truth object that maximally overlaps V;, the jth
ground-truth object, and the segmented vehicle that maximally
overlaps G j» respectively. Ny and N denote the total number
of segmented vehicles and ground-truth objects, respectively.
Furthermore, w; and @; are coefficients and can be calculated
as
w; = 7]\|]:/l| . &)j = 7}\|IGG/|‘“ . (10)
k=1 |Vk| Zk:] |Gk|
Tables VI and VII show the segmentation results of different
approaches on the Potsdam scene and Busy Parking Lot data
set, respectively. We can see that our B-ResFCN achieves
the best performance on these two data sets. Compared with
the ResFCN, there is a 1.16% increment in terms of the
instance-level Dice similarity coefficient on the Potsdam data
set and a 7.31% improvement on the Busy Parking Lot scene.
From the figures in Tables VI and VII, we can see that
the networks offer a more inferior performance on the Busy
Parking Lot data set than on the Potsdam scene. This is also
in line with our intention of proposing a more challenging
benchmark data set for the vehicle instance segmentation

SEGMENTATION RESULTS OF DIFFERENT METHODS ON THE ISPRS
POTSDAM SEMANTIC LABELING DATA SET (INSTANCE-LEVEL
DICE SIMILARITY COEFFICIENT)

Model 212 512 77 78 79
VGG-FCN 58.88 45779 53.13 51.09 5425
B-VGG-FCN 71.48 6448 7454 7043 69.47
Inception-FCN 52779 3437 3715 35.08 4422
B-Inception-FCN ~ 55.26  35.69 46.76 37.33 47.14
Xception-FCN 90.05 73.05 84.84 8458 86.54
B-Xception-FCN 9144 7547 85.12 88.64 87.95
ResFCN 91.97 77.68 89.10 89.78  89.65
B-ResFCN 93.80 77.72 90.61 91.19 90.66

problem. In addition, it is worth noting that basically all the
networks with boundary components can offer better instance
segmentations compared with those without boundary. This
means that multitask learning is useful for different CNN
variants in our task.

IV. CONCLUSION

In this paper, we propose a semantic boundary-aware unified
multitask learning ResFCN in order to handle a novel problem
(i.e., vehicle instance segmentation). In particular, the pro-
posed network harnesses the multilevel contextual features
learned from different residual blocks in a residual network
architecture to produce better pixelwise likelihood maps.
We theoretically analyze the reason behind this. Furthermore,
our network creates two separate, yet identical branches to
simultaneously predict the semantic segmentation masks of
vehicles and semantic boundaries. The joint learning of these
two problems is beneficial for separating “touching” vehicles
which are often not correctly differentiated into instances. The
network is validated using a large high-resolution aerial image
data set, ISPRS Potsdam Semantic Labeling data set, and the
proposed Busy Parking Lot UAV Video data set. To quantita-
tively evaluate the performance of different approaches for the
vehicle instance segmentation, we advocate using an instance-
level F1 score, precision, recall, and Dice similarity coefficient
as evaluation criteria, instead of traditional pixelwise OA
and F1 score for semantic segmentation. Both visual and
quantitative analyses of the experimental results demonstrate
the effectiveness of our approach.
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Abstract

Most current semantic segmentation approaches fall
back on deep convolutional neural networks (CNNs). How-
ever, their use of convolution operations with local recep-
tive fields causes failures in modeling contextual spatial re-
lations. Prior works have sought to address this issue by
using graphical models or spatial propagation modules in
networks. But such models often fail to capture long-range
spatial relationships between entities, which leads to spa-
tially fragmented predictions. Moreover, recent works have
demonstrated that channel-wise information also acts a piv-
otal part in CNNs. In this work, we introduce two sim-
ple yet effective network units, the spatial relation module
and the channel relation module, to learn and reason about
global relationships between any two spatial positions or
Sfeature maps, and then produce relation-augmented feature
representations. The spatial and channel relation modules
are general and extensible, and can be used in a plug-and-
play fashion with the existing fully convolutional network
(FCN) framework. We evaluate relation module-equipped
networks on semantic segmentation tasks using two aerial
image datasets, which fundamentally depend on long-range
spatial relational reasoning. The networks achieve very
competitive results, bringing signicant improvements over
baselines.

1. Introduction

Semantic segmentation of an image involves a prob-
lem of inferring every pixel in the image with the se-
mantic category of the object to which it belongs. The
emergence of deep convolutional neural networks (CNNs)
[19, 33, 12, 16, 1, 40] and massive amounts of labeled data
has brought significant progress in this direction. How-
ever, although with more complicated and deeper networks
and more labeled samples, there is a technical hurdle in
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Figure 1: Illustration of long-range spatial relations in an
aerial image. Appearance similarity or semantic compati-
bility between patches within a local region (red-red and
red—green) and patches in remote regions (red—yellow and
red—blue) underlines our global relation modeling.

the application of CNNs to semantic image segmentation—
contextual information.

It has been well recognized in the computer vision com-
munity for years that contextual information, or relation, is
capable of offering important cues for semantic segmenta-
tion tasks [11, 39]. For instance, spatial relations can be
considered semantic similarity relationships among regions
in an image. In addition, spatial relations also involve com-
patibility and incompatibility relationships, i.e., a vehicle is
likely to be driven or parked on pavements, and a piece of
lawn is unlikely to appear on the roof of a building. Unfor-
tunately, only convolution layers cannot model such spatial
relations due to their local valid receptive field'.

Nevertheless, under some circumstances, spatial rela-

!Feature maps from deep CNNs like ResNet usually have large recep-
tive fields due to deep architectures, whereas the study of [43] has shown
that CNNs are apt to extract information mainly from smaller regions in
receptive fields, which are called valid receptive fields.



tions are of paramount importance, particularly when a re-
gion in an image exhibits significant visual ambiguities. To
address this issue, several attempts have been made to intro-
duce spatial relations into networks by using either graphi-
cal models or spatial propagation networks. However, these
methods seek to capture global spatial relations implicitly
with a chain propagation way, whose effectiveness depends
heavily on the learning effect of long-term memorization.
Consequently, these models may not work well in some
cases like aerial scenes (see Figure 5 and Figure 6), in
which long-range spatial relations often exist (cf. Figure 1).
Hence, explicit modeling of long-range relations may pro-
vide additional crucial information but still remains under-
explored for semantic segmentation.

This work is inspired by the recent success of relation
networks in visual question answering [31], object detec-
tion [13], and activity recognition in videos [42]. Being able
to reason about relationships between entities is momentous
for intelligent decision-making. A relation network is capa-
ble of inferring relationships between an individual entity
(e.g., a patch in an image) and a set of other entities (e.g.,
all patches in the image) by agglomerating information. The
relations vary at both long-range and short-range scales and
are learned automatically, driven by tasks. Moreover, a re-
lation network can model dependencies between entities,
without making excessive assumptions on their feature dis-
tributions and locations.

In this work, our goal is to increase the representation
capacity of a fully convolutional network (FCN) for seman-
tic segmentation in aerial scenes by using relation modules:
describing relationships between observations in convolved
images and producing relation-augmented feature represen-
tations. Given that convolutions operate by blending spa-
tial and cross-channel information together, we capture re-
lations in both spatial and channel domains. More specifi-
cally, two plug-and-play modules—a spatial relation mod-
ule and a channel relation module—are appended on top
of feature maps of an FCN to learn different aspects of
relations and then generate spatial relation-augmented and
channel relation-augmented features, respectively, for se-
mantic segmentation. By doing so, relationships between
any two spatial positions or feature maps can be modeled
and used to further enhance feature representations. Fur-
thermore, we study empirically two ways of integrating two
relation modules—serial and parallel.

Contributions. This work’s contributions are threefold.

* We propose a simple yet effective and interpretable
relation-augmented network that enables spatial and
channel relational reasoning in networks for semantic
segmentation on aerial imagery.

* A spatial relation module and a channel relation mod-
ule are devised to explicitly model global relations,

which are subsequently harnessed to produce spatial-
and channel-augmented features.

¢ We validate the effectiveness of our relation modules
through extensive ablation studies.

2. Related Work

Semantic segmentation of aerial imagery. Earlier stud-
ies [35] have focused on extracting useful low-level, hand-
crafted visual features and/or modeling mid-level semantic
features on local portions of images ([17, 26, 38, 27, 28, 44,
15] employ deep CNNs and have made a great leap towards
end-to-end aerial image parsing. In addition, there are
numerous contests aiming at semantic segmentation from
overhead imagery recently, e.g., Kaggle?, SpaceNet®, and
DeepGlobal*.

Graphical models. There are many graphical model-based
methods being employed to achieve better semantic seg-
mentation results. For example, the work in [5] makes use
of a CRF as post-processing to improve the performance
of semantic segmentation. [41] and [22] further make the
CRF module differentiable and integrate it as a joint-trained
part within networks. Moreover, low-level visual cues, e.g.,
object contours, have also been considered structure infor-
mation [3, 4]. These approaches, however, are sensitive to
changes in appearance and expensive due to iterative infer-
ence processes required.

Spatial propagation networks. Learning spatial propaga-
tion with networks for semantic segmentation have attracted
high interests in recent years. In [25], the authors try to pre-
dict entities of an affinity matrix directly by learning a CNN,
which presents a good segmentation performance, while the
affinity is followed by a nondifferentiable solver for spectral
embedding, which results in the fact that the whole model
cannot be trained end-to-end. The authors of [20] train a
CNN model to learn a task-dependent affinity matrix by
converting the modeling of affinity to learning a local lin-
ear spatial propagation. Several recent works [18, 21, 6]
focus on the extension of this work. In [2, 29], spatial rela-
tions are modeled and reinforced via interlayer propagation.
[2] proposes an Inside-Outside Net (ION) where four inde-
pendent recurrent networks that move in four directions are
used to pass information along rows or columns. [29] uti-
lizes four slice-by-slice convolutions within feature maps,
enabling message passings between neighboring rows and
columns in a layer. The spatial propagation of these meth-
ods is serial in nature, and thus each position could only
receive information from its neighbors.

2https://www.kaggle.com/c/
dstl-satellite-imagery-feature-detection

3https://spacenetchallenge.github.io/

4http: //deepglobe.org/challenge.html
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Figure 2: An overview of the relation module-equipped fully convolutional network.

Relation networks. Recently, the authors of [31] propose a
relational reasoning network for the problem of visual ques-
tion answering, and this network achieves a super-human
performance. Later, [42] proposes a temporal relation net-
work to enable multi-scale temporal relational reasoning in
networks for video classification tasks. In [13], the authors
propose an object relation module, which allows model-
ing relationships among sets of objects, for object detection
tasks. Our work is motivated by the recent success of these
works, but we focus on modeling spatial and channel rela-
tions in a CNN for semantic segmentation.

Unlike graphical model-based [9, 37] and spatial propa-
gation network-based methods, we explicitly take spatial re-
lations and channel relations into account, so that semantic
image segmentation could benet from short- and long-range
relational reasoning.

3. Our Approach

In this section, an overview of the proposed relational
context-aware network is given to present a comprehensive
picture. Afterwards, two key components, the spatial re-
lation module and the channel relation module, are intro-
duced, respectively. Finally, we describe the strategy of in-
tegrating these modules for semantic segmentation.

3.1. Overview

As illustrated in Fig. 2, the proposed network takes
VGG-16 [34] as a backbone to extract multi-level features.
Outputs of conv3, conv4, and conv5 are fed into the chan-
nel and spatial relation modules (see Figure 2) for generat-
ing relation-augmented features. These features are subse-
quently fed into respective convolutional layers with 1 x 1
filters to squash the number of channels to the number of
categories. Finally, the convolved feature maps are upsam-
pled to a desired full resolution and element-wise added to
generate final segmentation maps.

3.2. Spatial Relation Module

In order to capture global spatial relations, we employ a
spatial relation module, where the spatial relation is defined
as a composite function with the following equation:

SR(zi, ;) = fo.(90.(zi, x;)) - 1)

Denote by X € REXH*W 3 random variable represent-
ing a set of feature maps. x; and x; are two feature-map
vectors and identified by spatial positions indices ¢ and j.
The size of «; and ; is C' x 1 x 1. To model a compact re-
lationship between these two feature-map vectors, we make
use of an embedding dot production as gg_ instead of a mul-
tilayer perceptron (MLP), and the latter is commonly used
in relational reasoning modules [31, 42]. Particularly, gg, is
defined as follows:

9o, (zi, ;) = us(z;) vs(x5) )

where us(x;) = W, x; and vs(x;) = Wy x;. W,
and W,,_ are weight matrices and can be learned during the
training phase. Considering computational efficiency, we
realize Eq. (2) in matrix format with the following steps:

1. Feature maps X are fed into two convolutional layers
with 1 x 1 filters to generate us(X) and vs(X), re-
spectively.

2. Then us(X) and vs(X) are reshaped (and transposed)
into HW x C and C x HW, correspondingly.

3. Eventually, the matrix multiplication of us(X) and
v5(X) is conducted to produce a HW x HW matrix,
which is further reshaped to form a spatial relation fea-
ture of size HW x H x W.

It is worth nothing that the spatial relation feature is not
further synthesized (e.g., summed up), as fine-grained con-
textual characteristics are essential in semantic segmenta-
tion tasks. Afterwards, we select the ReLU function as f,
to eliminate negative spatial relations.

However, relying barely on spatial relations leads to a
partial judgment. Therefore, we further blend the spatial
relation feature and original feature maps X as follows:

X, = [X,SR(X)]. 3



Here we simply use a concatenation operation, i.e., [, ],
to enhance original features with spatial relations. By doing
so, output features are abundant in global spatial relations,
while high-level semantic features are also preserved.

3.3. Channel Relation Module

Although the spatial relation module is capable of cap-
turing global contextual dependencies for identifying vari-
ous objects, misdiagnoses happen when objects share simi-
lar distribution patterns but vary in channel dimensionality.
In addition, a recent work [14] has shown the benefit of en-
hancing channel encoding in a CNN for image classification
tasks. Therefore, we propose a channel relation module to
model channel relations, which can be used to enhance fea-
ture discriminabilities in the channel domain. Similar to the
spatial relation module, we define the channel relation as a
composite function with the following equation:

CR(XP7 Xq) = fo. (ge. (va Xq)) ) @

where the input is a set of feature maps X =
{X1, X5, - ,Xc}, and X, as well as X, represents the
p-th and the g-th channels of X . Embedding dot production
is employed to be g, , defined as

9o.(Xp, Xq) = UC(GAP(XP))TUC(GAP(XQ()) N E))

for capturing global relationships between feature map
pairs, where GAP(-) denotes the global average pooling
function. Notably, considering that the preservation of spa-
tial structural information distracts the analysis of chan-
nel inter-dependencies, we adopt averages of X, and X,
as channel descriptors before performing dot production.
More specifically, we feed feature maps into a global aver-
age pooling layer for generating a set of channel descriptors
of size C' x 1 x 1, and then exploit two convolutional layers
with 1 x 1 filters to produce u.(X ) and v.(X), respectively.
Afterwards, an outer production is performed to generate a
C x C channel relation feature, where the element located
at (p, ¢) indicates gg, (X p, X,).

Furthermore, we emphasize class-relevant channel rela-
tions as well as suppress irrelevant channel dependencies by
adopting a softmax function as f,_, formulated as

X, X,)) - eXP(goc(Xp’Xq)) ,
Foc(90.(Xp, Xq)) Yo exp(g0, (X, X))

where we take X, as an example. Consequently, a discrimi-
native channel relation map CR(X) can be obtained, where
each element represents the corresponding pairwise channel
relation.

To integrate CR(X) and original feature maps X, we
reshape X into a matrix of C' x HW and employ a matrix
multiplication as follows:

(6

X, = XTCR(X). @)
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Fig 3: Diagrams of (a) spatial relation module and (b) chan-
nel relation module.

With this design, the input features are enhanced with
channel relations and embedded with not only initial dis-
criminative channel properties but also global inter-channel
correlations. Eventually, X is reshaped to C'x H x W and
fed into subsequent procedures.

3.4. Integration of Relation Modules

In order to jointly enjoy benefits from spatial and chan-
nel relation modules, we further aggregate features X ¢ and
X to generate spatial and channel relation-augmented fea-
tures. As shown in Fig. 4, we investigate two integration
patterns, namely serial integration and parallel integration,
to blend X, and X .. For the former, we append the spa-
tial relation module to the channel relation module and in-
fer X, from X, instead of X, as presented in Eq. (1) and
Eq. (7). For the latter, spatial relation-augmented features
and channel relation-augmented features are obtained si-
multaneously and then aggregated by performing concate-
nation. Influences of different strategies are discussed in
Section 4.2.

4. Experiments

To verify the effectiveness of long-range relation mod-
eling in our network, aerial image datasets are used in ex-
periments. This is because aerial images are taken from
nadir view, and the spatial distribution/relation of objects in
these images is diverse and complicated, as shown in Fig-
ure 1. Thus, we perform experiments on two aerial image
semantic segmentation datasets, i.e., ISPRS Vaihingen and
Potsdam datasets, and results are discussed in subsequent
sections.
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4.1. Experimental Setup

Datasets. The Vaihingen dataset® is composed of 33 aerial
images collected over a 1.38 km? area of the city, Vaihin-
gen, with a spatial resolution of 9 cm. The average size of
each image is 2494 x 2064 pixels, and each of them has
three bands, corresponding to near infrared (NIR), red (R),
and green (G) wavelengths. Notably, DSMs, which indi-
cate the height of all object surfaces in an image, are also
provided as complementary data. Among these images, 16
of them are manually annotated with pixel-wise labels, and
each pixel is classified into one of six land cover classes.
Following the setup in [24, 36, 32, 27], we select 11 images
for training, and the remaining five images (image IDs: 11,
15, 28, 30, 34) are used to test our model.

The Potsdam dataset® consists of 38 high resolution
aerial images, which covers an area of 3.42 km2, and each
aerial image is captured in four channels (NIR, R, G, and
blue (B)). The size of all images is 6000 x 6000 pixels,
which are annotated with pixels-level labels of six classes
as the Vaihingen dataset. The spatial resolution is 5 cm, and
coregistered DSMs are available as well. To train and eval-
uate networks, we utilize 10 images for training and build
the test set with the remaining images (image IDs: 02_11,
02-12, 04-10, 05-11, 06-07, 07-08, 07-10), which follows
the setup in [24, 32].

Implementation. The proposed network is initialized with
separate strategies with respect to two dominant compo-
nents: the feature extraction module is initialized with
CNNss pre-trained on ImageNet dataset [7], while convolu-
tional layers in relation modules are initialized with a Glorot
uniform initializer. Notably, weights in the feature extrac-
tion module are trainable and fine-tuned during the training
phase.

Regarding the used optimizer, we choose Nestrov

Shttp://www2.isprs.org/commissions/comm3/wg4/
2d-sem-label-vaihingen.html

Shttp://www2.isprs.org/commissions/comm3/wg4d/
2d-sem-label-potsdam.html

Table 1: Ablation Study on the Vaihingen Dataset.

Model Name | crm  srm | mean Fy | OA
Baseline FCN [23] 83.74 86.51
RA-FCN-crm v 87.24 88.38
RA-FCN-srm v 88.36 89.03
P-RA-FCN v v 88.50 89.18
S-RA-FCN v v 88.54 89.23
I RA-FCN indicates the proposed relation-augmented
FCN.

2 crm indicates the channel relation module.

3 srm indicates the spatial relation module.

4 P-RA-FCN indicates that crm and srm are appended
on top of the backbone in parallel.

> S-RA-FCN indicates that crm is followed by srm.

Adam [8] and set parameters of the optimizer as recom-
mended: 51 = 0.9, B3 = 0.999, and € = 1e—08. The learn-
ing rate is initialized as 2e—04 and decayed by 0.1 when
validation loss is saturated. The loss of our network is sim-
ply defined as categorical cross-entropy. We implement the
network on TensorFlow and train it on one NVIDIA Tesla
P100 16GB GPU for 250k iterations. The size of the train-
ing batch is 5, and we stop training when the validation loss
fails to decrease.

Evaluation metric. To evaluate the performance of net-
works, we calculate F; score with the following formula:

precision - recall

Fr=(1+4p% B=1, (8

" 32 - precision + recall’
for each category. Furthermore, mean F} score is computed
by averaging all F} scores to assess models impartially. No-
tably, a large Fj score suggests a better result. Besides,
mean IoU (mloU) and overall accuracy (OA) that indicates
overall pixel accuracy, are also calculated for a comprehen-
sive comparison with different models.

4.2. An Ablation Study for Relation Modules

In our network, spatial and channel relation modules are
employed to explore global relations in both spatial and
channel domains. To validate the effectiveness of these
modules, we perform ablation experiments (cf. Table 1).
Particularly, instead of being utilized simultaneously, spa-
tial and channel relation modules are embedded on top of
the backbone (i.e., VGG-16), respectively. Besides, we also
discuss different integration strategies (i.e., parallel and se-
rial) of relation modules in Table 1.

The ablation experiments are conducted on the Vaihin-
gen dataset. As can be seen in Table 1, relation modules
bring a significant improvement as compared to the base-
line FCN (VGG-16), and various integration schemes lead



Table 2: Experimental Results on the Vaihingen Dataset

Model Name ‘ Imp. surf. Build. Lowveg. Tree ‘ mean Fj ‘ mloU ‘ OA
SVL-boosting+CRF* [10] 86.10 90.90 77.60 84.90 59.90 79.90 - 84.70
RF+dCRF* [30] 86.90 92.00 78.3 86.90 29.00 74.60 - 85.90
CNN-FPL* [36] - - - - - 83.58 - 87.83
FCN [23] 88.67 92.83 76.32 86.67 74.21 83.74 72.69 | 86.51
FCN-dCRF [5] 88.80 92.99 76.58 86.78 71.75 83.38 72.28 | 86.65
SCNN [29] 88.21 91.80 77.17 87.23 78.60 84.40 73.73 | 86.43
Dilated FCN [5] 90.19 94.49 77.69 87.24 76.77 85.28 - 87.70
FCN-FR* [24] 91.69 95.24 79.44 88.12 78.42 86.58 - 88.92
PSPNet (VGG16) [40] 89.92 94.36 78.19 87.12 7297 84.51 73.97 | 87.62
RotEqNet* [27] 89.50 94.80 77.50 86.50 72.60 84.18 - 87.50
RA-FCN-srm 91.01 94.86 80.01 88.74 87.16 88.36 79.48 | 89.03
P-RA-FCN 91.46 95.02 80.40 88.56 87.08 88.50 79.72 | 89.18
S-RA-FCN 91.47 94.97 80.63 88.57 87.05 88.54 79.76 | 89.23

TN

Image nDSM Ground Truth

FCN-dCRF SCNN RA-FCN-srm RA-FCN

Figure 5: Examples of segmentation results on the Vaihingen dataset. Legend—white: impervious surfaces, blue: buildings,

cyan: low vegetation, green: trees, . cars.

S

to a slight influence on the performance of our network. In
detailed, the use of only the channel relation module yields
a result of 87.24% in the mean F; score, which brings
a 3.50% improvement. Meanwhile, RA-FCN with only
the spatial relation module outperforms the baseline by a
4.62% gain in the mean F} score. In addition, we note that
squeeze-and-excitation module [14] can also model depen-
dencies between channels. However, in our experiments,
the proposed channel relation module performs better.

Moreover, by taking advantage of spatial relation-

augmented and channel relation-augmented features si-
multaneously, the performance of our network is further
boosted up. The parallel integration of relation modules
brings increments of 1.26% and 0.14% in the mean F} score
with respect to RA-FCN-crm and RA-FCN-srm. Besides, a
serial aggregation strategy is discussed, and results demon-
strate that it behaves superiorly as compared to other mod-
els. To be more specific, such design achieves the highest
mean F} score, 88.54%, as well as the highest overall accu-
racy, 89.23%. To conclude, spatial- and channel-augmented



Table 3: Numerical Results on the Potsdam Dataset

Model Name ‘ Imp. surf. Build. Lowveg. Tree Car  Clutter ‘ mean F ‘ mloU ‘ OA
FCN [23] 88.61 93.29 83.29 79.83 93.02 69.77 84.63 78.34 | 85.59
FCN-dCRF [5] 88.62 93.29 83.29 79.83 93.03 69.79 84.64 78.35 | 85.60
SCNN [29] 88.37 92.32 83.68 80.94 91.17 68.86 84.22 77.72 | 85.57
Dilated FCN* [5] 86.52 90.78 83.01 7841 90.42 68.67 82.94 - 84.14
FCN-FR* [24] 89.31 94.37 84.83 81.10 93,56 76.54 86.62 - 87.02
RA-FCN-srm 90.48 93.74 85.67 83.10 9434 74.02 86.89 81.23 | 87.61
P-RA-FCN 90.92 94.20 86.64 83.00 9444 77.88 87.85 81.85 | 88.30
S-RA-FCN 91.33 94.70 86.81 83.47 9452 77.27 88.01 82.38 | 88.59

Image nDSM Ground Truth

FCN-dCRF SCNN RA-FCN-srm RA-FCN

Figure 6: Examples of segmentation results on the Potsdam dataset. Legend—white: impervious surfaces, blue: buildings,

cyan: low vegetation, : trees,

features extracted from relation modules carry out not only
high-level semantics but also global relations in spatial and
channel dimensionalities, which reinforces the performance
of a network for semantic segmentation in aerial scenes.

4.3. Comparing with Existing Works

For a comprehensive evaluation, we compare our model
with six existing methods, including FCN [23], FCN with
fully connected CRF (FCN-dCRF) [5], spatial propagation
CNN (SCNN) [29], FCN with atrous convolution (Dilated
FCN) [5], FCN with feature rearrangement (FCN-FR) [24],
CNN with full patch labeling by learned upsampling (CNN-
FPL) [36], RotEgNet [27], PSPNet with VGG16 as back-
bone [40], and several traditional methods [10, 30].

Numerical results on the Vaihingen dataset are shown in

: cars, red: clutter/background.

Table 2. It is demonstrated that RA-FCN outperforms other
methods in terms of mean F; score, mean IoU, and overall
accuracy. Specifically, comparisons with FCN-dCRF and
SCNN, where RA-FCN-srm obtains increments of 4.98%
and 3.69% in mean F} score, respectively, validate the high
performance of the spatial relation module in our network.
Besides, compared to FCN-FR, RA-FCN reaches improve-
ments of 1.96% and 1.57% in mean I score and overall ac-
curacy, which indicates the effectiveness of integrating the
spatial relation module and channel relation module. Fur-
thermore, per-class Fj scores are calculated to assess the
performance of recognizing different objects. It is notewor-
thy that our method remarkably surpasses other competi-
tors in identifying scattered cars for its capacity of capturing
long-range spatial relation.



FCN-dCRF

SCNN

RA-FCN

Fig 7: Example segmentation results of an image in the test set on Potsdam dataset (90, 000 m?). Legend—white: impervious

surfaces, blue: buildings, cyan: low vegetation, green: trees,

4.4. Qualitative Results

Fig. 5 shows a few examples of segmentation results.
The second row demonstrates that networks with local re-
ceptive fields or relying on fully connected CRFs and spatial
propagation modules fail to recognize impervious surfaces
between two buildings, whereas our models make relatively
accurate predictions. This is mainly because in this scene,
the appearance of impervious surfaces is highly similar to
that of the right building, which leads to a misjudgment of
rival models. Thanks to the spatial relation module, RA-
FCN-srm or RA-FCN is able to effectively capture useful
visual cues from more remote regions in the image for an
accurate inference. Besides, examples in the third row il-
lustrate that RA-FCN is capable of identifying dispersively
distributed objects as expected.

4.5. Results on the Potsdam Dataset

In order to further validate the effectiveness of our net-
work, we conduct experiments on the Potsdam dataset, and
numerical results are shown in Table 3. The spatial relation
module contributes to improvements of 2.25% and 2.67% in
the mean F} score with respect to FCN-dCRF and SCNN,
and the serial integration of both relation modules brings in-
crements of 1.39% and 1.54% in the mean F) score, mean

: cars, red: clutter/background. Zoom in for details.

ToU, and overall accuracy, respectively.

Moreover, qualitative results are presented in Figure 6.
As shown in the first row, although low vegetation regions
comprise intricate local contextual information and are li-
able to be misidentified, RA-FCN obtains more accurate re-
sults in comparison with other methods due to its remark-
able capacity of exploiting global relations to solve visual
ambiguities. The fourth row illustrates that outliers, i.e., the
misclassified part of the building, can be eliminated by RA-
FCN, while it is not easy for other competitors. To provide a
thorough view of the performance of our network, we also
exhibit a large-scale aerial scene as well as semantic seg-
mentation results in Figure 7.

5. Conclusion

In this paper, we have introduced two effective network
modules, namely the spatial relation module and the chan-
nel relation module, to enable relational reasoning in net-
works for semantic segmentation in aerial scenes. The com-
prehensive ablation experiments on aerial datasets where
long-range spatial relations exist suggest that both relation
modules have learned global relation information between
objects and feature maps. However, our understanding of
how these relation modules work for segmentation prob-
lems is preliminary and left as future works.
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