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Finite-Volume limiter on the simulation of tsunamis. Goal is to obtain a method of high-order conver- 

gence in deep water areas while being able to handle wetting & drying at coast lines. Several adjust- 

ments of the original ADER-DG method are presented to preserve characteristics like the well-balanced 

property. We evaluate and confirm developed concepts by a series of numerical tests and present them 

in the context of reconstructed tsunamis. 
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. Introduction 

High-order discretization methods are a highly valuable coun-

erpart to current high performance computing (HPC) architec-

ures. They increase the achieved accuracy per invested degree of

reedom, while also rising arithmetic intensity. Especially the lat-

er makes high-order methods more convenient for modern HPC

rchitectures, as bandwidth and latency of main memory is falling

ehind the peak performance of multiple compute cores. In this

aper, we adapt a high-order discontinuous Galerkin discretization

or the Shallow Water equations (SWE) to make it suitable for the

imulation of tsunamis. 

There are several criteria posed for a proper numerical scheme

o model tsunamis. For example the well-balanced property de-

ands that resting lake scenarios need to be kept exactly constant

s tsunamis in a wide domain are only small perturbations of such

olutions. The most crucial and on the other hand problematic as-

ect is modeling inundation in coastal areas. For Finite-Volume

ethods (FV) this problem is well explored and sufficiently solved

y elaborate and effective limiting schemes like the set of aug-

ented Riemann solvers by D. George [1] or HLLE approximate

iemann Solvers as [2] by Delis, which are well-balanced and hold

esirable properties like positivity preservation. For Discontinuous

alerkin (DG) methods however there only exists a sparse number
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f methods, for example the second order Runge Kutta DG (RK-DG)

ethod by Vater et al. [3] based on a Barth Jespersen type limiter,

r the RK-DG approach of high-order, by Bunya [4] . 

A different approach is the Arbitrary High-Order Discontinuous

alerkin (ADER-DG) method proposed by Dumbser et al. in [5] .

t follows the main paradigm of reaching high-order convergence

lement-locally . The scheme solves integration in time without

onsidering influences along element interfaces and then reverts

hat abstraction by preforming a single correction step. To solve

nown high-order issues as Gibbs phenomenon a corresponding a-

osteriori sub-cell limiter was present by Dumbser et al. in [6] . This

imiter differs from known methods in an important aspect. Lim-

ting is not performed by manipulating the computed solution but

y detecting and revoking problematic DG solution candidates and

ecomputing them with a Finite-Volume scheme. 

Our paper can be seen as the description of a distinct and ad-

usted application of the ADER-DG method with its novel limiter

n the SWE. Different from already performed applications of the

ethod on SWE as in [7] by Dumbser et al., we tailor the specifi-

ation of ADER-DG and the limiting scheme to fulfill constraints

iven by tsunami simulation. Wetting & drying, which only few

igh-order methods are able to resolve, is performed by the corre-

ponding limiter. This allows us to solve demanding problems and

eal applications as the reconstruction of tsunamis, which we will

resent in the last chapter. 

The use of high-order ADER-DG is also motivated by the al-

eady mentioned trend of recent HPC architectures towards rela-

ively higher computational power compared to memory speed. By
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.compfluid.2018.01.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2018.01.031&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rannabau@in.tum.de
mailto:michael.dumbser@unitn.it
mailto:bader@in.tum.de
https://doi.org/10.1016/j.compfluid.2018.01.031
http://creativecommons.org/licenses/by-nc-nd/4.0/


300 L. Rannabauer et al. / Computers and Fluids 173 (2018) 299–306 

Fig. 1. Layer concept in sam(oa) 2 : Single traversals (in green) are hidden behind a hook concept (in orange), providing interfaces for operations on elements, boundaries, 

faces and more. The concrete implementation of ADER-DG (in red & blue) allows a numerical scheme of high-order, only needing two traversals of the grid. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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being element local ADER-DG and its limiter allows to keep arith-

metic intensity high. Together with using memory efficient grid

traversal schemes that exploit space-filling curves, which we use in

the encapsulating framework sam(oa) 2 [8] , ADER-DG holds one big

advantage compared to RK-DG: The time integrator of ADER-DG

can be computed in a single traversal. In contrast RK-DG methods

have to evaluate every intermediate k-stage of the semi-discrete

scheme. As every stage depends on the previous, the whole grid

has to be traversed again, for a RK method of order N we require

at least N traversals. 

In Section 2 we will summarize the sam(oa) 2 framework with

its layer concept. The high-order ADER-DG scheme with its DG-

Predictor and Corrector step will be presented in Section 3 . Here

we will also show how we achieve a well-balanced numerical

scheme by evolving the source term. Section 4 will present our

usage and customization of the a-posteriori FV limiter to resolve

wetting & drying shorelines. The last two Sections 5 and 6 verify

our concepts by a series of numerical tests and show application

examples on reconstructed tsunamis. 

2. The sam(oa) 2 framework 

Code base for the implementation of our numerical scheme

is the sam(oa) 2 framework developed by Meister et al. [9] . The

framework is capable of shared and distributed memory paralleli-

sation and adaptive mesh refinement (AMR) along wave fronts.

Spatial discretization is strictly done by triangular meshes, where

refinement and coarsening are achieved by newest vertex bisection

[10] . The resulting mesh is always equivalent to a binary refine-

ment tree and can be traversed by Sierpinski space filling curves

(SSFC). To support the iterative formulation of FV and DG methods

sam(oa) 2 manages persistent and temporary data and shares data

between single elements over edges and nodes, where numerical

fluxes or information for limiting schemes are computed and ex-

changed. SSFCs produce the key property that edges and nodes

in the whole domain are accessed the last time in reverse order

as they were accessed the first time. By this stack like behaviour

redundant data accesses can easily be avoided. The iteration can

be implemented in a cache-efficient way. For more information on

SSFCs we refer to [11] . 

The interface of sam(oa) 2 for element-oriented discretization

schemes, such as FV or DG methods, is built on a set of func-

tion hooks which hide the details of mesh traversals and provide

the model developer with an element oriented interface to realize

simulations of two dimensional systems of hyperbolic PDEs. The

concept and our utilization is displayed in Fig. 1 . The element-local

nature of ADER-DG and its limiter allows us to implement a single

time step by traversing the whole grid only two times. Elementary

steps that will be described in Section 3 are the Corrector and Lim-
ting step , and the DG-Predictor , both marked by red boxes. As both

f these steps require information from neighbouring elements of

he respective other, we need to calculate them in two separate

raversals. For AMR we are able to hide the calculation of the DG-

redictor step behind the mesh refining traversal. 

. Well-balanced numerical scheme 

Our numerical scheme relies on the ADER-DG method proposed

n [5] by Dumbser et al. Compared to DG approaches, as in [12] by

iraldo et al. or [13] by Xing et al., where the semi-discrete scheme

s integrated in time by the Runge–Kutta (RK) method, ADER-DG

ses a unique element-local predictor-corrector pattern. 

.1. Shallow water equations 

The system of Partial Differential Equations (PDEs) we use to

odel oceanic waves are the well known two-dimensional Shallow

ater Equations (SWE) in conservative formulation, 

 t + ∇ · F ( Q ) − S ( Q ) = 0 . (1)

Here (∇ · F ( Q )) i = 

∑ 

j 

δF i j 

δx j 
denotes the divergence operator. Re-

arded physical quantities Q are water depth h as vertical distance

etween water level and bottom, and discharges in x and y direc-

ion, hu and h v as product of water depth and velocity. Flux F ( Q )
nd source S ( Q ) terms are defined as: 

Q = 

( 

h 

hu 

h v 

) 

, S ( Q ) = 

( 

0 

ghb x 
ghb y 

) 

, 

 ( Q ) = 

( 

hu h v 
1 
2 

gh + hu 

2 hu v 
hu v 1 

2 
gh + h v 2 

) 

. (2)

While the flux term considers conservation of mass and mo-

entum, and hydrostatic pressure with gravitational acceleration

 , the source term models the bottom topography or bathymetry

 . Other influences like bottom friction or Coriolis force are omit-

ed. 

.2. The ADER-DG method 

In this section we summarize the mathematical theory behind

he ADER-DG method and show what choices we made for its con-

rete implementation. For a detailed introduction we refer to the

riginal paper by Dumbser et al. [5] . 



L. Rannabauer et al. / Computers and Fluids 173 (2018) 299–306 301 

3

 

∫
 

C  

o  

T  

p  

m

 

e  

t  

t  

r  

r  

e

 

f

 

 

 

 

 

 

 

 

 

 

3

 

o  

t  

f  

v  

a  

r∫

a  

d

 

t  

f  

p

 

t  

A  

m  

R  

b  

i

3

 

p  

a  

h  

t  

p  

i  

o  

t∫

 

g  

t∫

 

d  

t  

i

4

 

D  

l  

s  

n

 

s  

d

4

 

r

 

 

 

 

 

 

 

 

 

 

 

w  

i  

C  

D  

i

 

d  
.2.1. DG-predictor step 

Integration in time is solved by a special weak form of the PDE.

 t n +1 

t n 

∫ 
T 

φT 
( p t + ∇ · F ( p ) − S ( p ) ) d xy d t = 0 (3)

ompared to other DG approaches, the weak from is built on a set

f test functions φ = ( φi ) i ∈ N defined on prisms in space and time,

 × [ t n , t n +1 ] . As the convergence rate is determined only by the

olynomial degree of the spatial and temporal approximation, the

ethod’s order is called as “arbitrary high”. 

Eq. (3) results in a non-linear equation system that can be

volved into an element-local fix-point iteration, which is proven

o converge for a suitable CFL condition. The initial condition of

he iteration only depends on the numerical solution at the cur-

ent time step t n . Result is the so-called DG-Predictor p which rep-

esents the element-local evolution of the PDE without considering

ffects of fluxes over the element boundaries. 

In our method we implemented this iteration according to the

ollowing specification: 

• As basis functions we choose the alpha optimized nodal La-

grange polynomials on triangles φ = ( φi ) i ∈ N , described by Hes-

taven et al. in [14] . To obtain a basis on space-time prisms we

build the tensor with the one dimensional Legendre Gauss Lo-

batto polynomials. 
• By using the interpolation rule given by the set of Lagrange

polynomials, occurring flux and source integrals can be trans-

formed into matrix–matrix multiplications. The whole iterative

method is developed into a quadrature free formulation. These

matrices are similar to known mass and stiffness matrices, now

defined in space-time. 
• We repeat the iterative scheme until the relative change is

lower than 10 −14 . 

.2.2. The corrector step 

As the DG-Predictor only represents an element-local evolution

f the PDE, fluxes over boundaries need to be taken into account

o get a valid time stepping scheme. This Corrector step is derived

rom a weak form on spatial test functions, considering the pre-

iously calculated predictor step. After integration by parts of the

pproximation in time and the flux term in space its formulation

esults in 

 

T 

φT φ d xy ( � q n +1 − �
 q n ) + 

3 ∑ 

i =1 

∫ t n +1 

t n 

∫ 
δT i 

φT 
D 

−( p, p i ) n i d xyd t 

−
∫ t n +1 

t n 

∫ 
T 

∇ · φT 
F ( p ) − φT 

S ( p ) d xyd t = 0 (4) 

nd gives us a full time marching scheme for the degrees of free-

om 

�
 q n . 

Fluxes between neighbouring elements are now considered, as

he numerical solution to the Riemann problem on the space-time

ace, denoted by D 

−( p, p i ) n i , is approximated. The solution de-

ends on both neighbouring predictors p . 

In our implementation we followed the same concepts of in-

erpolation and quadrature as described in the previous chapter.

s we assume that discontinuities are limited and the ADER-DG

ethod will only be applied in smooth cases we chose a simple

usanov Flux to solve the Riemann problem. We point to possi-

ly more efficient solvers like newly developed HLLE solvers, e.g.

n [15] by Leveque et al. 

.2.3. Well-balanced property through source decomposition 

One of the main requirements on our numerical scheme is the

reservation of equilibrial states. For tsunami simulation, the lake

t rest scenario, which models an initial constant water level H =
 + b = const. and zero velocities u = v = 0 should stay constant in

ime, independent of the bottom topography. This well-balanced

roperty is in fact where the analytic source term of Eq. (2) orig-

nates from. In their original form the quadrature free formulation

f (3) and (4) both violate this constraint and artificial waves arise

hat might obscure the observed tsunami. 
 t n +1 

t n 

∫ 
T 

∇ · φT φ F ( � p ) − φT φ S ( � p ) dxy dt � = 0 (5) 

To keep the scheme well-balanced, we evolve the source inte-

ral into a representation similar to the flux integral. By using in-

egration by parts, 
 t n +1 

t n 

∫ 
T 

φT S ( p ) dxy d t ≈
∫ t n +1 

t n 

∫ 
T 

φT φ
(
0 , −g � hH x , −g � hH y 

)
d xy d t 

+ 

∫ t n +1 

t n 

∫ 
δT 

φT φ
(

0 , 
1 

2 

g � h 

2 · n 2 , 
1 

2 

g � h 

2 · n 3 

)
dxy dt 

+ 

∫ t n +1 

t n 

∫ 
T/δT 

φT 
x φ

(
0 , 

1 

2 

g � h 

2 , 0 

)
dxy dt 

+ 

∫ t n +1 

t n 

∫ 
T/δT 

φT 
y φ

(
0 , 0 , 

1 

2 

g � h 

2 

)
dxy dt. (6) 

The second, third and fourth term are always equivalent to hy-

rostatic pressure in the discrete formulation of the flux term. In

he implementation we can thus omit them. Remaining terms van-

sh for resting domains, the numerical solution stays constant. 

. Wetting & Drying by an a-posteriori Finite-Volume limiter 

The recently developed a-posteriori Finite-Volume limiter by

umbser et al., presented in [6] , extensively differs from known

imiting schemes as slope limiters, presented in [14] . Problematic

olutions are not manipulated but discarded and replaced by a

ewly computed FV solution. 

We utilize this limiter to solve the two main issues of tsunami

imulation with high-order schemes: Oscillations and wetting &

rying. 

.1. The a-posteriori Finite-Volume limiter scheme 

The original description of the limiter, from [6] can be summa-

ized by the following work flow: 

1. Computation of a Candidate Solution. Using the ADER-DG

method compute for each cell a candidate solution 

∗q n +1 at

time t n +1 . 

2. Detecting troubled Cells. The candidate solution gets tested

by two conditions: Whether the cell fulfills physical constraints

and the so called discrete maximum principle . If this is not the

case the DG solution is considered as failed. 

3. Correcting troubled cells. When a cell is problematic, the can-

didate solution is discarded. Solutions at time t n for triangle

T and all its adjacent neighbors T i are converted to FV patch

representations v n and v (n,i ) . The Finite-Volume solution at the

next time step v n +1 is computed using a robust scheme. 

4. Reconstructing the DG-Solution. The final approximation q n +1 

at time t n +1 is reconstructed from the new computed FV solu-

tion v n +1 . For untroubled cells the candidate solution is taken. 

Finite-Volume patches are chosen to have an order of 2 N + 1 ,

here N is the polynomial degree of the DG approximation. This

s the smallest possible cell size that does not violate the CFL-

ondition for the prescribed DG time step size. Patches for ADER-

G methods of polynomial degree one, two and four can be seen

n Fig. 2 

The discrete maximum principle is described in detail in [6] . It

etects oscillations by assuming that the solution in a cell must
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Fig. 2. Finite-Volume patches for ADER-DG-1, ADER-DG-2 and ADER-DG-4. 

Fig. 3. Reconstructed DG solution on the left from a Finite-Volume patch holding a 

discontinuity on the right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. L1-Errors for the convergence scenario. All methods show high-order con- 

vergence of O(h n +0 . 5 ) . 
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lie between the maxima and minima of itself and all its neigh-

bours at the previous time step. This algorithm provides a sim-

plified method which again follows element-locality as it only re-

quires values of the previous time step that can be exchanged dur-

ing the solution of the Riemann problem. Price for the simplicity

is the risk of false detection, as accelerations through source terms

violate the principle. 

Projection from DG approximation to FV patch is done by aver-

aging the polynomial over all sub-cells s i , 

v n = 

(
1 

| s i | 
∫ 

s i 

q n dxy 

)
i =1 .. (2 N+1) 

. (7)

By precomputing averages of all basis polynomials, projection can

be reduced to a simple matrix–matrix multiplication. 

Reconstruction of the DG polynomial at the next time step q n +1 

from values of a FV patch v n +1 is performed by solving a con-

strained optimization problem. The reconstructed polynomial q n +1 

is supposed to hold the average value for each sub-cell s i , ∥∥∥∥
(

1 

| s i | 
∫ 

s i 

q n +1 dxy − v n +1 
i 

)
i 

∥∥∥∥
2 

= min . (8)

To keep conservation laws on single elements it is compulsory

that the approximation keeps the volume on the whole triangle, 

∫ 
T 

q n +1 dxy 
! = 

(2 N+1) 2 ∑ 

i =1 

| s i | · v n +1 
i 

. (9)

By finding the derivative of the constrained least squares prob-

lem and solving for its unique root the DG polynomial is recon-

structed. Precomputing the inverse of the resulting equation sys-

tem reduces the process to a matrix–matrix multiplication. Fig. 3

shows the reconstruction of a polynomial of degree 4, the FV patch

on the right models a discontinuity, the reconstructed polynomial

can’t represent that state exactly. 

4.2. Application of the limiter on wetting & drying cells 

While it is a key part of tsunami simulations, wetting & dry-

ing (in general also known as positivity preservation ) in high-order

DG methods is still an unresolved task. The limiting scheme al-

lows us to use solutions to this problem which are only defined for

FV methods: By using the augmented Riemann solver, by George
1] within the FV limiter, we are able to model wetting and drying

oasts and keep the high-order scheme in open-ocean areas. 

Our implemented version of the limiter varies from the original

ormulation [6] in a few aspects: 

• As physical constraint we set a constant water height threshold

below which we consider cells as dry or becoming dry. 
• Cells that are dried after correction by the FV method are not

reconstructed as we assume only a small fraction of cells would

be flooded in the next time step. We therefore don’t compute

candidate solutions for these cells. 
• As reconstruction is a non-linear process, artificial waves might

occur in the case of a constant water level with non-constant

bathymetry. To keep constant water levels we always recon-

struct water level first and then obtain water height by sub-

tracting the bathymetry. A detailed discussion on this topic can

be found in [16] 

When simulating tsunamis we expect the majority of modeled

and to remain dry. Preselecting dry cells saves the calculation of

he ADER-DG scheme for those and directly applies the FV method.

. Numerical tests 

In this chapter we will present a series of numerical tests to

alidate our method. 

.1. Basic convergence order test 

Due to the lack of two dimensional smooth analytic solutions

e prove high-order convergence of our scheme by taking the one

imensional solution from [17] and transforming it on all lines x −
 = const. for arbitrary constants. 

h (x, t) = 

(
x −1 + e −t 

)
· g 

u (x, t) = x 

b(x, t) = 

(
−0 . 5 · x 2 

g 
+ 

−g 

x 

) (10)

To avoid effects from boundary conditions only cells within a

ufficiently small inner area of the domain are considered. Fig. 4

hows the absolute L 1 -Error approximated by a suitable quadra-

ure rule for mesh sizes from 2 0 to 2 7 . ADER-DG-n denotes the

DER-DG method using degree n polynomials for spatial and tem-

oral approximations. Ideal error graphs are hinted by a dotted plot

n the respective color. Results show that our scheme reaches the

xpected numerical high-order convergence of O(h n +0 . 5 ) down to

achine precision for ADER-DG-4. 
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Fig. 5. L1-Errors for the limited all rarefaction solution. 

Table 1 

Fraction of limited cells for ADER-DG-1,ADER-DG-2 and 

ADER-DG-4 in the all rarefaction scenario. 

Mesh Size ADER-DG-1 ADER-DG-2 ADER-DG-4 

2 3 0.35 0.42 0.35 

2 5 0.16 0.23 0.14 

2 7 0.05 0.07 0.04 

2 8 0.04 0.03 0.02 
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.2. Well-balanced property 

To prove the well-balanced property of our numerical scheme

e follow the lake at rest scenario from [18] . Bathymetry is mod-

lled by an exponential function b . 

log (b(x, y )) = x 2 + 2 · xy + y 2 (11)

ater height is set to h (x, y ) = 5 − b(x, y ) , initial velocities are

ero. Domain is the unit square around (0, 0). Meshed by a grid

ize of 2 6 we thus have around 7.5 × 10 5 elements. We choose a

imulation time of 25 s which is around 10 0 0 time steps for ADER-

G-4. L 1 -errors of ADER-DG-1,ADER-DG-2 and ADER-DG-4 show

hat the methods keeps the resting lake solution sufficiently ac-

urate: 

ADER-DG-1 ADER-DG-2 ADER-DG-4 

4.25 −15 6.28e −15 3.60e −13 

.3. Discontinuous test 

To show how effective our limiter is in the case of a traveling

iscontinuity, we tested our method for several mesh sizes against

he all rarefaction benchmark from [15] , with initial conditions 

 0 (x ) = 1 

 0 (x ) = 

{
−0 . 5 , for x < 0 

0 . 5 , for x > 0 . 
(12) 

e again rotate the one dimensional analytic solution into the two

imensional space by projecting it on lines x − y = const. The L 1 -

rror is computed at t = 0 . 1 . In the unlimited case our methods

DER-DG-1 to ADER-DG-4 diverge as expected due to Gibbs phe-

omenon. For the limited case, errors are shown in Fig. 5 . All three

ethods converge linearly. The average fraction of limited cells in

 single time step for several mesh sizes are shown in Table 1 , and

ead to the conclusion that the number approximately depends lin-

arly on the mesh size. 

This test shows one of the strengths of this limiter. While the

etection algorithm for oscillations is very basic compared to other

stablished limiters, it still only limits a small fraction of elements

o hold convergence of the method. 
.4. Oscillating lake 

The oscillating lake scenario, as proposed in [19] , states a de-

anding benchmark for wetting & drying algorithms. The analytic

olution to this problem is known, and given by the periodic for-

ulation: 

 (x, y, t) = max (0 , 0 . 05 · ( 2 · x cos (ωt) + 2 · y sin (ωt) ) 

+ 0 . 075 − b(x, y )) 

 (x, y, t) = 0 . 5 · ω sin (ωt) 

v (x, y, t) = 0 . 5 · ω cos (ωt) 

b(x, y ) = 0 . 1 · (x 2 + y 2 ) , (13) 

here ω = 

√ 

0 . 2 · g . By periodicity of the trigonometric terms the

olution is equivalent for all t ≡ ˆ t mod 2 π/ω, ̂  t ∈ [0 , 2 π/ω) . For

ur method this states a highly critical benchmark as the wet-

rying front continuously moves through the domain. Our method

as to adapt this moving front accurately to avoid drying cells in

he DG case. The numerical solution by an ADER-DG-4 method is

hown in Fig. 6 , where the critical water height below which we

witch to the Finite-Volume method is set to 0.001. The upper row

hows the movement of the water height for 4 distinct time steps

n one period. First and last picture show the solution at simula-

ion time 0 and 2 πω and are equivalent as in the analytic solution.

he lower row shows whether the simulation is done by ADER-DG

r on a Finite-Volume patch. We see that the area simulated by

DER-DG method moves with the water droplet through the do-

ain. Both methods are in step and work harmonic as the solu-

ion remains equivalent after one period. To validate convergence,

 series of tests was run. Snapshots of the simulation after five pe-

iods of the analytic solution were taken. The L 1 error norm by

sed degree of freedom for ADER-DG 1 to 4 can be seen in Fig. 7

nd prove numerical convergence. To compare results the native

V method, used in the limiting scheme, with Euler time stepping

nd augmented Riemann solver is displayed. The comparison con-

rms our assumption: ADER-DG with FV limiter results in higher

ccuracy than a plain FV method. 

. Simulation of tsunami events 

Main application area of our method is the simulation of

sunamis. In this chapter we present the reconstruction of two re-

ent events, the Tohoku tsunami originating in the Japan trench of

011 and the Sumatra tsunami in the Indian Ocean of 2004. Waves

re generated by tracking the vertical displacement of bathymetry

ver time and translating the change directly to water height. This

ethod neglects horizontal accelerations due to movement of the

opography. While the initial ocean-floor displacement of the To-

oku tsunami is modelled by Okada’s method [20] and provided

y Galvez et al. [21] , input for the Sumatra tsunami is the re-

ult of a dynamic rupture Earthquake simulation as described in

22] by Uphoff et al. Bottom topography in both cases is given by

he GEPCO data set ( http://www.gebco.net ), which provides data

ith a detail of 30 ′ (roughly 900 m). 

Along coasts we choose a threshold of 1km below which we

witch to FV patches. This relatively high threshold has one main

eason: Numerical results will only be compared to observations

n the open ocean. Test showed that the threshold can be set

own to the width of the largest element along the shoreline. Af-

er that point the iterative DG-Predictor scheme might diverge due

o an unbound flux function. 

An exemplary plot can be seen in Fig. 11 , where the bathymetry

s diffusely hinted in the background. Gray areas indicate that

V patches are used to simulate land and coast regions, while

he blue area indicates the ADER-DG method in the wide ocean.

he ADER-DG-4 solution of the Tohoku tsunami itself can be seen

http://www.gebco.net
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Fig. 6. Oscillating Lake simulated with ADER-DG-4. Top row of pictures shows the water height for time steps 0, 1 
2 
πω, πω , 3 

2 
πω , 2 πω . Lower row shows if the ADER-DG 

or FV method is used in the respective area. 

Fig. 7. L1-Error for the oscillating lake scenario. 

Fig. 8. Comparison of real buoy data to numerical results for the Tohoku tsunami. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Comparison between recorded satellite and numerical data for the Sumatra 

tsunami after 120 min. 

Fig. 10. Tohoku tsunami after 60 min. 

b  

d  

i  

t  

o  

b

7

 

s  
after 60 min in Fig. 10 . To verify the accuracy of our numeri-

cal method, results are compared to measurements of sea surface

height anomalies (ssha) by two buoys in front of the Japan coast

of the day of the event. Both comparisons can be seen in Fig. 8

and show that the amplitude of the wave is reconstructed accu-

rately, also on the temporal axis numerical results fit. As Okada’s

method reconstructs the initial earthquake from a known tsunami

we expect accuracy on these levels. 

Both events are simulated with adaptive mesh refinement along

wave fronts, where our only criterion to detect those is the change

relative in water height compared to the size of cell. Calm areas

are coarsened again. An exemplary plot of the Sumatra tsunami

with the refined grid can be seen in Fig. 13 . Fig. 12 shows the ac-

tual tsunami after 60 min. Only recorded data available is tracked
y the satellite Jason-1 at approximately 2 h after the event. The

ata set is a snapshot of a path through the tsunami. The compar-

son can be seen in Fig. 9 . As initial data is not reconstructed from

he tsunami itself numerical results show high dissipation. On the

ther hand results resemble the shape of the actual tsunami, as

oth peaks as well as the depth are hit. 

. Conclusion 

We presented the application of an ADER-DG method on the

imulation of tsunami waves. Our implementation is based on
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Fig. 11. Method plot for the Tohoku tsunami after 60 min. Blue areas indicate the 

ADER-DG method, grey FV patches. Shown in the background is the bathymetry of 

the area. 

Fig. 12. Sumatra tsunami after 120 min. The black line indicates the traversed route 

of the satellite while taking the snapshot of Fig. 9 . 

t  

D  

m  

o  

c  

t  

s  

t

Fig. 13. Sumatra tsunami after 60 min. The current adaptive grid is shown in blue 

and shows high refinement in areas of perturbations. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 
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he sam(oa) 2 framework. We described modifications of the ADER-

G method to guarantee the well-balanced property, and imple-

entation of the a-posteriori FV limiter which allows our high

rder scheme to resolve wetting & drying shorelines. Numeri-

al tests verified our assumptions on high-order convergence and

he well-balanced property. A comparison to a simple FV method

howed the advantage in accuracy for practical use cases: two ac-

ual tsunami reconstructions were presented. 
Considering the numerical results of Section 5 , our method of-

ers an option to simulate tsunamis with high-order convergence

n open-ocean areas, while still being able to resolve coastlines.

ith the framework sam(oa) 2 our method has a powerful funda-

ent for future large production runs on HPC systems. From the

se of higher order, we also expect to leave the memory-bound

egime of performance (compare [23] ). As the computational in-

ensive parts of our method are based on small dense matrix–

atrix multiplications we see a high potential of optimization of

ode-level performance. Such an optimization will be necessary to

how a comprehensive comparison of time-to-solution with other

stablished methods. 
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