
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Nachrichtentechnik

Algorithms for Distribution Matching

Patrick Schulte

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor–Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Thomas Eibert
Prüfer der Dissertation: 1. Prof. Dr. sc. techn. Gerhard Kramer

2. Prof. Frans M.J. Willems, Ph.D
3. Prof. Erik Agrell, Ph.D.

Die Dissertation wurde am 20.11.2019 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 10.03.2020 angenom-
men.

iii

Preface
This thesis is based on work conducted at the Institute for Communications Engineering
(LNT) at the Technical University of Munich (TUM) during the past years. I would like
to express my gratitude to some people that lead my on this special journey
First of all, I thank Gerhard Kramer for accepting me as a doctoral student. Gerhard

impressed me as a scientist with the incredible speed he picks up new ideas and develops
them; as an author to break down concepts to its core and to formulate ideas clearly;
and as a person with his view and vision of the academic world.
I thank Frans Willems and Erik Agrell to be my second and third examinor, and

Thomas Eibert for chairing the examination.
Then, I would like to thank Georg Böcherer who gave me direction already during

my Master’s and has become a dear friend. Our paths will rejoin soon. With Fabian
and Georg, I spent countless memorable moments including listening to the soundtrack
"Conquest of Paradise" when preparing for the final of the Bell Labs Prize.
René Essiambre and Gerhard gave me the chance to work at the Bell Labs in Crawford

Hill for one summer. I learned a lot about the capacity of the optical fiber, but also
about the history of communication, and eventually I could connect names to faces.
The LNT consists of many different characters that all contribute in their way to a

great atmosphere. It is this what made our time special.
Finally I would like to thank my family, in particular parents, my sister, and Sophie

who supported me during my time as a student.

München, May 2020 Patrick Schulte

v

Contents

1 Introduction 1

2 Preliminaries 5

2.1 General Definitions . 5

2.2 Information Theory . 7

2.3 Counting . 9

2.4 Enumerative Coding . 11

2.4.1 Decoding . 11

2.4.2 Encoding . 12

2.5 Divide-and-Conquer Enumerative Coding 13

2.6 Arithmetic Coding . 13

2.6.1 Encoding . 14

2.6.2 Decoding . 18

2.7 Information Theoretic Transmission Problem 21

2.8 Coded Modulation . 22

3 Probabilistic Shaping and PAS 27

3.1 Energy Perspective . 27

3.1.1 Continuous Constellations . 27

3.1.2 Discrete Constellation . 30

3.2 Probabilistic Amplitude Shaping . 36

3.2.1 Underlying Principles . 36

vi Contents

3.2.2 Encoding . 36

4 Fixed Length Distribution Matching Algorithms 39

4.1 Distribution Matching . 39

4.2 Divergence Optimal Distribution Matching 43

4.2.1 Codebook Construction . 43

4.2.2 Analysis . 44

4.2.3 Algorithm - Weight Functions . 49

4.2.4 Algorithm - Generating Functions 52

4.2.5 Algorithm - Enumerative Coding 54

4.2.6 Algorithm - Divide-and-Conquer Enumerative Coding 55

4.2.7 Code Trellis . 58

4.3 Constant Composition Distribution Matching 59

4.3.1 Codebook construction . 59

4.3.2 Analysis . 61

4.3.3 Code Trellis . 67

4.3.4 Algorithm - Enumerative Coding 68

4.3.5 Algorithm - Divide-and-Conquer Enumerative Coding 69

4.3.6 Algorithm - Arithmetic Coding 73

4.4 Product Distribution Matching . 76

4.4.1 Approach . 76

4.4.2 PA is a product distribution . 78

4.4.3 PA is not a product distribution 79

4.4.4 Extended Product Distribution Matching 81

5 Joint Decoding of Shaping and Error Control Codes 85

5.1 BCJR Algorithm for CC codes . 87

5.2 Joint Decoder . 87

5.2.1 Symbol-Based Decoder . 87

Contents vii

5.2.2 Bit-Based Decoder . 88

5.2.3 Improved Bit-Based Decoder . 89

5.2.4 Computational Complexity Comparison 90

5.3 Simulation Results . 91

6 Conclusions 93

ix

Abstract
Algorithms for distribution matching are considered that approximate discrete memory-
less sources by transforming a sequence of coin-flipping bits to a sequence of independent
and identically distributed symbols with a desired distribution. Two fixed-to-fixed length
code book constructions are studied. The code classes are constant composition codes,
i.e., codes that consist only of permutations of one word, and codes that approximate dis-
crete memoryless sources best in terms of informational divergence. An introduction to
sequential enumerative coding, divide-and-conquer enumerative coding and arithmetic
coding is given. These are well studied source coding techniques that can implement the
code classes.
Distribution matchers are a building block of probabilistic amplitude shaping which

is a coded modulation technique for bandwidth efficient communication. Distribution
matchers in combination with probabilistic amplitude shaping offer a new degree of
freedom to adapt the transmission rate and they permit to obtain a shaping gain on top
of the coding gain. The shaping gain over the additive white Gaussian noise channel is
up to 1.53 dB. Limitations of the shaping gain are shown for block based distribution
matchers with finite block lengths and with amplitude shift keying.
Constant composition code books suffer from a rate loss because there is redundancy

in the code book. This rate loss is severe for short block lengths and the improve-
ment to conventional transmission schemes is lost. Two ways are presented to improve
the performance of probabilistic amplitude shaping with constant composition distri-
bution matching. First, product distribution matching uses multiple binary constant
composition distribution matchers in parallel to reduce the rate loss. Two algorithms
are proposed to approximate non-product distributions by using multiple distribution
matchers. Second, rather than removing redundancy, the decoder can make use of ad-
ditional code constraints. Low density parity check codes can be made aware of the
resulting code word distribution using supplementary check nodes.

Contents xi

Zusammenfassung
Diese Arbeit beschäftigt sich mit Algorithmen zur Verteilungsanpassung, welche gleich-

verteile Bitsequenzen in Sequenzen unabhängiger und identisch verteilter Symbole mit
einer gewünschten Verteilung umwandeln. Eine Untergruppe dieser Algorithmen bliden
Sequenzen fester Länge auf Sequenzen fester Länge ab. Es werden zwei Code Kon-
struktionen dieser Art untersucht. Der erste Code besteht nur aus Permutationen eines
Wortes und somit bleibt die empirische Verteilung über einen Block erhalten. Der zweite
Code nähert die Zielverteilung im Sinn der Kullback-Leibler-Divergenz am Besten an.
Nach einer Einführung in arithmetischer Quellcodierung und Enumerative Coding wer-
den diese zum einkodieren und dekodieren verwendet.
Diese Algorithmen sind ein Voraussetzung für Probabilistic Amplitude Shaping, einer

neuen Technik für bandbreiteneffiziente, codierte Modulation. Die Kombination dieser
Technologien verfügt über eine neue Stellschraube zur Ratenanpassung und ermöglicht
eine Einsparung an Sendeleistung um bis zu 1.53 dB für den additiven Gaußschen Kanal.
Es werden Grenzen der möglichen Einsparung für endliche Blocklängen ermittelt unter
der Bedingung, dass eine digitale Amplitudenmodulation verwendet wird.
Die Codes, welche nur aus Permutationen bestehen weisen einen Ratenverlust auf

und sind aus diesem Grund weniger effizient. Es werden zwei Möglichkeiten präsentiert,
mit diesem Ratenverlust umzugehen. Die erste Möglichkeit ist, die Verteilungsanpasser
für Produktverteilungen in mehrere separate Verteilungsanpasser aufzuteilen. Hierdurch
kann der Verlust stark verringert werden. Für allgemeine Verteilungen werden zwei Al-
gorithmen vorgestellt, die eine Separierung ermöglichen. Bei der zweite Möglichkeit wird
die Redundanz am Dekodierer als zusäztliche Einschränkung des Fehlerkorrigierenden
Codes verstanden. Der Tanner Graph eines Low-Density-Parity-Check Code wird am
Dekodierer mit zusätzlichen Knoten versehen, welche die Verteilung der Symbole prüfen.

1
Introduction

In [1] Shannon defines the channel capacity as the maximum mutual information between
a transmitter and receiver pair evaluated over all possible information sources, i.e., the
channel input probabilities. Most channels have a non-uniform distribution as a solution
to this problem. For instance, the additive white Gaussian noise (AWGN) channel
requires a Gaussian code book to approach capacity.
In [2] the authors give a historical background on telephone line modems from the

1950s up to 1984. Coded modulation had just become available in commercial modems.
At this time they (re)introduce the concept of non-uniform probabilities on constella-
tions of higher order modulation, and state that “Some sort of mapping [...] must be
made into the [...] N -dimensional vectors [...] which have least energy among all such
vectors”. They are rather pessimistic about the complexity of such an algorithm. Also,
the considerations do not include forward error correction (FEC) at this point. We call
non-equiprobable signaling probabilistic shaping.
With the development of trellis coded modulation (TCM) [3] in 1982 and shell mapping

in the 1990s [4–7], there arrived means to implement FEC codes, higher order modulation
and probabilistic shaping together as done in the ITU-T V.34 modem standard [8].
However, to support multiple transmission rates one must adapt the FEC code for
each rate which complicates chip design. In modern communication applications, the
support of multiple rates in one chip is important. This is reflected by the increasing
combinations of modulations and FEC codes from DVB-S2 [9] with 53 modulation-
coding combinations (modcods) to DVB-S2X [10] with 116 modcods. Each combination
defines a transmission rate.
Böcherer [11] modified the Bliss-scheme [12] that was designed for magnetic recording

and combined it in a clever way with higher order modulation to implement proba-
bilistic shaping. This scheme requires a so called distribution matcher (DM) which is
a non-linear precoder that transforms uniformly distributed bit sequences into symbol

2 Chapter 1 Introduction

sequences with a non-uniform distribution.
DMs are also known as shaping codes [13] and prefix-free DMs were proposed in [2,

Sec. IV.A]. In [6, 14] Huffman codes are used for matching. Optimal variable-to-fixed
and fixed-to-variable length DMs are proposed in [15] and [16], respectively. The code
books of the matchers in [6, 14–16] must be generated offline and stored, but this is
infeasible for the large code word lengths that are needed to achieve the maximum
rate. This problem is solved in [17, 18] where arithmetic coding generates code words
on the fly. The DMs proposed in [17,18] are asymptotically optimal. However, all these
approaches [6,14–18] are variable length, which leads to varying transmission rate, large
buffer sizes, error propagation and synchronization problems [6, Sec. I]. Block codes (or
fixed-to-fixed (f2f) length codes) do not have these issues. Amjad [19, Sec. 4.8] suggests
to concatenate short codes and the authors of [20] employ a FEC decoder to build an f2f
length matcher. The dematchers, i.e., the inverse operation at the receiver side of [19,20]
cannot always recover the input sequence with zero error. Hence, systematic errors are
introduced that cannot be corrected by the error correction code or by retransmission.
The thesis [21] proposes adaptive arithmetic distribution matching (AADM) that is an
invertible f2f length DM that generates entropy typical sequences, but the algorithm is
computationally complex. The above list of algorithms is not complete and there have
been many new solutions invented in the past four years.
There is a strong connection between source coding and DM that is reflected by the

tools used to implement DMs. In Chapter 2 we review enumerative coding and arithmetic
coding that we use later for implementing DM classes. Furthermore, we introduce the
problem of energy efficient signaling from the information theoretic point of view and
we show how current coded modulation (CM) systems work.
Chapter 3 reviews shaping from the energy perspective and motivates the energy

gains that we can expect for higher order modulation. The discussion is based on the
geometry of constellations in higher dimensions, i.e., we compare n-D cubes and n-
balls. There are also results for finite block lengths and constraints on amplitude shift
keying (ASK) constellations. We next review probabilistic amplitude shaping (PAS)
as a CM scheme that can achieve those gains. Here, we point out that PAS requires
only simple modifications of a CM system described in Chapter 2. We mainly require
a systematic FEC encoder and constrain how the code words are mapped to symbols.
Apart from that, the only new component is the DM.
The main part of the thesis is Chapters 4 and 5. In Chapter 4 we introduce the

optimal DM with respect to informational divergence, which was suggested by Amjad
in [19]. We show that the unnormalized divergence scales logarithmically in the block
length. This behavior does not harm energy efficient transmission systems. We then
connect informational divergence with a per letter weight function and show for which
distributions a feasible implementation exists. The optimal code book consists of the
sequences of least weight. The proposed algorithmic solutions use enumerative coding
and shell mapping to index the optimal code books.
We next consider constant composition distribution matching (CCDM). CCDM uses

3

permutations of one code word. At first glance, one might expect that this approach
cannot compete with the optimal solution in terms of rate. However, we show that
CCDM achieves the same rate as the optimal code book asymptotically in the block
length. In the algorithmic part we suggest how to index the code book of CCDM with
enumerative coding in a sequential and divide-and-conquer manner and with arithmetic
coding. The advantage of arithmetic coding is that it works for long blocks where CCDM
is competitive. The algorithm was suggested and analyzed for finite arithmetic precision
by Ramabadran in [22] for binary codes, and for arbitrary alphabets by Pikus [23].
For short blocks, CCDM exhibits poor performance, especially for large modulation

formats. We therefore introduce product distribution matching (PDM) which separates
product distributions into multiple DMs of smaller alphabets. For distributions that
are not product distributions we provide an optimization algorithm to find product
distributions that are close in terms of informational divergence. In [24] Fehenberger
reproduces the behavior of one CCDM with large alphabet size using multiple binary
CCDMs. A second approach to handle CCDM for short block lengths is presented in
Chapter 5.
In [25] a solution for list decoding was presented. List decoders compute a list of code

words sorted by probability, followed by supplementary tests to check if the constant
composition (CC) constraint is fulfilled. List decoding is a common technique to improve
the decoding performance of polar codes combined with cyclic redundancy check (CRC)
codes [26]. We may accomplish list decoding for low-density parity-check (LDPC) codes
by adding supplementary check nodes to the LDPC code’s Tanner graph. This way, we
make the decoder aware of the CCDM code book and the decoder can use the redundancy
to improve the error rates.
In Chapter 5, we describe an iterative joint decoder for shaping and LDPC codes.

We introduce two kinds of CC constraint nodes, i.e., bit-based and symbol-based nodes.
Symbol-based CC constraint nodes verify the constraint imposed by the CCDM, while
bit-based CC constraint nodes independently check the CC constraint on each shaped
bit-level. Symbol-based CC nodes process symbol log-likelihoods (LLs) and therefore
require a conversion from log-likelihood ratios (LLRs) to symbol LLs. Simulations show
a gain of about 0.5 dB over the PAS decoder [11] for length 192 5G LDPC codes [27] at
a spectral efficiency of 1.5 bit per channel use.

2
Preliminaries

2.1 General Definitions

We write matrices in uppercase bold letters X, sets in caligraphic letters X , random
variables with uppercase sans-serif letters X, and their realizations with lowercase letters
x.
The cardinality of a set X , i.e., the number of its elements is written as |X |, and the

Cartesian product of two sets X , Y is

X × Y = {(x, y)|x ∈ X , y ∈ Y}. (2.1)

The n-fold product set X n is

X n = X × X × · · · × X︸ ︷︷ ︸
n−times

. (2.2)

Let X be a discrete random variable with probability mass function (pmf) PX defined
on a set X , i.e., we have

PX(a) ≥ 0 ∀a ∈ X and
∑

a∈X
PX(a) = 1. (2.3)

The support of a pmf is the subset of the sample space for which the pmf is positive:

supp(PX) := {x|x ∈ X , PX(x) > 0} . (2.4)

6 Chapter 2 Preliminaries

Let PXY be a joint distribution of two random variables on a set X × Y , i.e., we have

PXY(a, b) ≥ 0 ∀(a, b) ∈ X × Y and
∑

(a,b)∈X×Y
PXY(a, b) = 1. (2.5)

The marginal distribution is
PX(a) =

∑

b∈Y
PXY(a, b). (2.6)

The conditional distribution is

PX|Y(a|b) = PXY(a, b)
PY(b) (2.7)

if
PY(b) > 0. (2.8)

We call two random variables independent if their joint distribution is the product dis-
tribution

PXY(a, b) = PX(a) · PY(b) ∀a, b ∈ X ,Y . (2.9)
Independence implies that the conditional distribution simplifies to the marginal distri-
bution

PX|Y(a|b) = PXY(a, b)
PY(b) = PX(a) · PY(b)

PY(b) = PX(a). (2.10)

The expectation value of a real-valued function defined on X is defined as

E [f(X)] =
∑

a∈suppPX

PX(a) · f (a) . (2.11)

The mean or first moment is
µ = E [X] . (2.12)

The empirical average of n realizations of xi is defined as

x̄n = 1
n

n∑

i=1
xi. (2.13)

The weak law of large numbers states that

lim
n→∞ x̄n = µ (2.14)

if the xi, i = 1, . . . , n, are independent realizations of X. The variance (or second central
moment) is defined as the expected squared deviation from the mean

Var [X] = E
[
(X − µ)2

]
= E

[
X2
]
− µ2. (2.15)

2.2 Information Theory 7

We call a discrete random variable X uniformly distributed if

PX(a) = 1
|X | ∀a ∈ X . (2.16)

The Bernoulli distributed random variable X ∼Bernoulli(p) has a discrete distribution
with

Pr(X = 0) = p = 1− Pr(X = 1). (2.17)
A Bernoulli(1/2) distributed binary random variable is uniformly distributed.
We denote an n-dimensional vector of random variables as An = A1A2 . . .An with

realization an = a1a2 . . . an. If the dimension of a vector(or length of a string, or length
of a finite sequence) is known or not important in the context we write it as a bold
letter a. The concatenation of two vectors or sequences an, bk is written as [an, bk]. A
subsequence from the i-th element of the sequence an to the j-th element of an is written
as aji .

2.2 Information Theory

An event is a subset of the sample space. We write events {x} where x is an element
of the sample space simply as x. If an event x occurs with positive probability, then its
self-information is defined as

ι (PX(x)) = − log2(PX(x)) (2.18)

measured in bits. As probability takes on values between 0 and 1, self-information is
always non-negative.
The entropy of a random variable X is the expectation of the self-information of X,

i.e.,

H (X) = E [ι (PX(X))] = E [− log2 (PX(X))] =
∑

x∈supp(PX)
−PX(x) log2 (PX(x)) (2.19)

where supp(PX) ⊆ X is the support of PX, i.e., the subset of x in X with positive
probability. With slight abuse of notation we also write

H (PX) = H (X) (2.20)

and H (p) for binary entropies.
As self-information is non-negative, the entropy is also non-negative. We can bound

entropy by
0

(i)
≤ H (X)

(ii)
≤ log2 (|X |) (2.21)

8 Chapter 2 Preliminaries

with equality in (i) if and only if PX(a) = 1 for some a ∈ X and in (ii) if and only if X
is uniformly distributed on X . Entropy is a measure for uncertainty about the outcome
before performing the random experiment.

A source with memory generates symbol sequences x1, x2, . . . , xn that are not inde-
pendent of each other. Any joint distribution PXn can be written as

PXn(xn) =
n∏

i=1
PXi|Xi−1(xi|xi−1) (2.22)

after applying (2.7) n-times.

The marginal distribution of the i-th symbol is denoted by PXi . The letter distribution
PX̄ of a length n block is defined as

PX̄(a) = 1
n

n∑

i=1
PXi(a). (2.23)

A discrete memoryless source (DMS) generates identically distributed symbols that
are independent. For a DMS, equation (2.22) simplifies with (2.10) to

PXn(xn) =
n∏

i=1
PX(xi). (2.24)

To emphasize the joint independence of the Xi we define

P n
X (xn) :=

n∏

i=1
PX(xi). (2.25)

The informational divergence, also known as the Kullback-Leibler divergence of two
distributions PX and PY on X is defined as

D (PX‖PY) = E
[
log2

(
PX(X)
PY(X)

)]
=

∑

a∈supp(PX)
PX(a) log2

(
PX(a)
PY(a)

)
. (2.26)

We refer to it simply as divergence. We have

D (PX‖PY) ≥ 0 (2.27)

with equality if and only if PX = PY. Note that D (PX‖PY) 6= D (PY‖PX) in general and
that log2 (PX(a)/PY(a)) might be negative for some a. For binary probability distribu-
tions PX = [p, 1− p] and PY = [q, 1− q] we may write

D (p‖q) := D (PX‖PY) . (2.28)

2.3 Counting 9

If X1 and X2 are independent random variables, and so are Y1 and Y2, then we have

D (PX1X2‖PY1Y2) = D (PX1‖PY1) + D (PX2‖PY2) . (2.29)

The mutual information (MI) of two random variables X and Y with joint pmf PXY is

I (X; Y) = D (PXY‖PX × PY) (2.30)

where
(PX × PY)(xy) := PX(x) · PY(y). (2.31)

We may also define mutual information via entropies, i.e., we have

I (X; Y) = H (X)−H (X|Y) = H (Y)−H (Y|X) . (2.32)

The normalized informational divergence is greater than or equal to the corresponding
divergence of the letter distribution because of the convexity of divergence [28, Theo-
rem 2.7.2]

D (PXn‖P n
Y)

n
≥ D (PX̄‖PY) . (2.33)

Lemma 2.1 (Bound on Entropy Difference). Let 0 < p < 1 and 0 < p− ε < p. Then

H (p)−H (p− ε) ≤ ε log2
1− p+ ε

p− ε . (2.34)

Proof: The bound follows from

H (p)−H (p− ε) = ε log2
1− p+ ε

p− ε − D (p‖p− ε) (2.35)

and the non-negativity of divergence.

2.3 Counting
The empirical distribution PĀ,an(α) of the sequence an ∈ An is

PĀ,an(α) := nα(an)
n

(2.36)

where nα(an) = |{i : ai = α}| is the number of times the symbol α ∈ A appears in
an. We call n − n0(an) the weight of an. The authors of [29, Sec. 2.1] call PÂ,an(·) the
type of an. An n-type is a type based on a length-n sequence. Note that the n-types
partition the alphabet An into equivalence classes, called the type sets. We denote the
type set that contains all sequences of length n with empirical distribution PA by T nPA .

10 Chapter 2 Preliminaries

For binary sequences of length n, the cardinality of a type set T nPA with PA(0) = n0/n
and PA(1) = n1/n is

∣∣∣T nPA

∣∣∣ =
(
n

n0

)
=
(
n

n1

)
= n!
n0! · n1! . (2.37)

For a q-ary alphabet A = {0, 1, . . . , q − 1} we obtain the multinomial expression

∣∣∣T nPA

∣∣∣ =
(

n

n0, n1, . . . , nq−1

)
= n!
n0! · n1! · . . . · nq−1! . (2.38)

Lemma 2.2 (Bounds on binomial coefficients). If 0 < p < 1 and np is integer, then

2nH(p)
√

8np(1− p)
≤
(
n

np

)
≤ 2nH(p)
√

2πnp(1− p)
. (2.39)

Proof: The proof follows by applying Stirling’s approximation twice, see [30, Ch. 4.7].

Lemma 2.3 (Bounds on multinomial coefficients). Let n1, n2, . . . , nq be positive integers
and n = ∑q

i=1 ni. Then PA(i) = pi = ni
n
∀i ∈ {1, . . . , q} is a pmf and we have

2nH(PA)
√

8q−1

n

∏q
i=1 ni

≤
(

n

n1, n2, . . . , nq

)
≤ 2nH(PA)
√

(2π)q−1

n

∏q
i=1 ni

. (2.40)

Proof: The proof follows by splitting the multinomial into binomials by recursively
applying
(

n

n1, n2, . . . , nq

)
= n!
n1! . . . nq!

= n!
n1!(n− n1)!

(n− n1)!
n2! . . . nq!

=
(
n

n1

)(
n− n1

n2, . . . , nq

)
(2.41)

and then using Lemma 2.2 for each binomial. The grouping rule for entropy [28, Problem
2.27]

H ([p1, p2, . . . , pq]) = H ([p1, 1− p1]) + (1− p1)H ([p2, . . . , pq]) (2.42)
relates the binary entropies.

Lemma 2.4 (Bounds on partial sums of binomial coefficients [31]). If 0 ≤ p < 1/2 and
np is integer, then (

n

np

)
αβ ≤

np∑

i=0

(
n

i

)
≤
(
n

np

)
α (2.43)

with
α = 1− p+ 1/n

1− 2p+ 1/n (2.44)

2.4 Enumerative Coding 11

and
β = n(1− 2p)2

1 + n(1− 2p)2 . (2.45)

Lemma 2.5 (Sum of binomial coefficients weighted with distance from the center [32,
p. 166]). For every positive integer n and non-negative integer k, k ≤ n, we have

k∑

i=0

(
n

i

)(
n

2 − i
)

= k + 1
2

(
n

k + 1

)
.

2.4 Enumerative Coding
Enumerative coding was introduced as a general encoding scheme by Cover [33]. The
technique was implicitly used by Schalkwijk [34] and Lynch [35] for special cases. The
idea of enumerative coding is to enumerate sequences an in any subset C of An in lex-
icographical order, i.e., a sequence an is ranked before a sequence bn if the first letter
that differs comes first in some ordering than the respective letter of the sequence bn.
An ordering could be the numeric value or the order of the alphabet. In the original
paper [33], permutations of one word and binary sequences up to a certain weight are
encoded using enumerative coding. Lossless compression of a DMS with using enumer-
ative coding is a challenge because a lossless block code for a DMS implies that C = An
where A = suppPA. However, we can add a prefix that tells the sequence type, after
which follows the index. Thus, we use a variable length code because the index has
variable length. This idea is related to universal codes. Enumerative coding can be used
for lossy source coding, i.e., if the sequence is an element of C then we transmit its index.
If the sequence is not an element of C then we transmit a supplementary error message.
Consider the toy example that a source emits only binary sequences of length 8 and

these sequences consist of exactly one "1" and seven "0"s. Enumerative coding suggests
to transmit the index where the "1" occurs instead of transmitting the entire sequence.
The receiver can map the index back to the original sequence.

2.4.1 Decoding
The core of enumerative coding is knowing how many sequences an there are in the code
book C with an arbitrary prefix bk, i.e., how many sequences an ∈ C start with the letters
bk. We overload the counting notation by defining

nbk(C) = |{an ∈ C : ak1 = bk}|. (2.46)

Throughout this thesis we use encoding and decoding to mean that we encode an index
N to the respective code word an of a code book C and decode a code word to the
respective index. In the decoding step we count how many sequences there are that

12 Chapter 2 Preliminaries

come first in lexicographical order. Given that we are aware of all nbk(C), the index N
of a sequence an is given by

N =
n∑

k=1

∑

α<ak

n[ak−1,α](C). (2.47)

In (2.47) we start with the first letter and proceed to the last letter. The first outer
summand calculates how many sequences start with a smaller letter than a1. Those
sequences come first in order. The second summand collects all sequences that start
with a1 and continue with a letter that is lower in order than a2. We continue in this
way for all indices. Note that we assign 0 to the first sequence in order, because we
count how many sequences are below.

Example 2.1 (decoding 5-ary digits). In this example, we use enumerative coding to
convert a length 4 sequence of 5-ary digits, i.e., A = {0, 1, 2, 3, 4}, into its integer value
(base 10). We first need to identify how many sequences start with a suffix bk. Fortu-
nately, in this case nbk depends only on the length of the suffix k. For example, a length
3 suffix implies that we can still choose one digit freely, i.e., there are 5 possibilities.
There are always 25 possibilities for a length 2 suffix.
For the sequence [1, 3, 0, 0] there are four outer summands in (2.47). The first evaluates

to 125, since there are 53 sequences of length 4 that start with a 0. The second one is
n[1,0] + n[1,1] + n[1,2] = 75. The last two summands are zero because there is no letter in
the order below 0. Hence, the sequence [1, 3, 0, 0] is mapped to the index N = 200.

2.4.2 Encoding
For encoding, i.e., finding the sequence an in the N -th position of the lexicographically
ordered list, we use Algorithm 2.1.

Algorithm 2.1 Enumerative Coding: Encoder
Require: N , nb(C) ∀ Prefixes b

find a1 such that:∑
α<a1 n[α](C) ≤ N <

∑
α≤a1 n[α](C)

N = N −∑α<a1 n[α](C)
for i = 2, 3, . . . , n do
find aj such that:∑

α<ai n[ai−1
1 ,α](C) ≤ N <

∑
α≤ai n[ai−1,α](C)

N = N −∑α<aj n[aj−1
1 ,α](C).

end for
return an

2.5 Divide-and-Conquer Enumerative Coding 13

Example 2.2 (encoding to 5-ary digits). We want to encode the index 200. Consider
the first step. nα is always 125, i.e., for a1 we fulfill the requirement for the letter "1"
since 125 ≤ 200 < 250. After the update, N equals 75. For k = 2, the nα is always 25
and for a2 = 3 we have 75 ≤ 75 < 100, and the new N is 0. The remaining indices are
both 0 since N = 0. Hence, the index 200 is mapped to the sequence [1, 3, 0, 0]

The above examples are very simple because nbk depends on k only. For more com-
plicated sets we must either store the nbk or compute them on the fly.

2.5 Divide-and-Conquer Enumerative Coding
For some indexing problems one can find a divide-and-conquer strategy that requires
less memory resources but can be computationally more complex than the sequential
approach. As the name suggests, we divide the problem into two easier problems that will
again be subdivided until the solution is easy, and we then back-compute the solution.
Shell mapping (SM) is an example of divide-and-conquer enumerative coding that we
discuss in Sec. 4.2.6. At this point we do not describe general encoding and decoding
algorithms but rather instantiate them for concrete problems later. We again consider
the example of finding the index of a 5-ary sequence to show the benefits of a divide and
conquer approach.

Example 2.3 (decoding 5-ary digits with divide and conquer principle). Consider again
the sequence [1, 3, 0, 0]. We divide the sequence into two sequences [1, 3] and [0, 0] and
ask for their position in lexicographical ordering. With a supplementary dividing step
we obtain [1], [3], [0], [0], with the obvious indices 1, 3, 0 and 0. From this point on, we
move back in the tree and calculate the index of the combined sequence. The index of
[x,y] is 5 times the index of the first sequence [x] plus the index of the second sequence
[y]. We obtain 8 and 0 for the problems [1, 3] and [0, 0], respectively. In the last step we
combine the solutions again; this time we multiply the solution of the left-hand side with
25, since the prefix now has length 2. In the end we obtain 200 again. We summarize
the decoding process in Fig. 2.1.

In enumerative coding we required nbk(C) of all prefixes bk. Now, we must know only
the prefixes where k is a power of 2. However, for some problems we are restricted to
block lengths that are powers of two to make use of this advantage.

2.6 Arithmetic Coding
Arithmetic coding is a source coding technique and in [36, Chap. 1.2] we find a brief
history of its main ideas that date back to the early days of information theory [1, Sec. 8].
Despite its early development, arithmetic coding became famous in the 1970s when the
algorithm was formulated with finite precision arithmetic [37,38].

14 Chapter 2 Preliminaries

[1,3,0,0]

[1,3]

[1] [3]

[0,0]

[0] [0]

8 · 25 + 0 = 200

1 · 5 + 3 = 8

1 3

0 · 5 + 0 = 0

0 0

Figure 2.1: Illustration of a divide-and-conquer approach. The algorithm finds the index
of the sequence [1, 3, 0, 0] in the lexicographical ordered list.

Arithmetic coding divides the interval [0, 1) into subintervals according to the cumula-
tive mass function (cmf) of the source model. [0, 1) is a half-open interval, which means
that it contains all points greater than or equal to 0 and less than 1. The source symbols
are read sequentially and the interval is updated after each source symbol. After several
refinement steps we obtain an interval [sl, su) and we look for the shortest binary fixed
point number c = 0.b1b2 . . . bk such that [c, c+2−k) ⊆ [sl, su). We call [c, c+2−k) the code
interval. The bits b1, . . . bk are then transmitted. Note that for larger source intervals it
is easier to find a large code interval that can be represented by few bits b1, . . . , bk. On
the decoder side we are aware of b1, . . . , bk and try to find the interval [sl, su).
Similar to enumerative coding, we are interested in inverting the source coding prob-

lem, i.e., we start with Bernoulli(1/2) distributed bits and try to map them to a sequence
of symbols with a non-uniform distribution. In the following, we describe the methods
developed in [18,21,39,40].

2.6.1 Encoding
For encoding and decoding we use the following terminology.

. There are source intervals and code intervals that represent probabilities on the
source side and on the code side, respectively.

. When we refine an interval, this means that we partition an interval according to
a cmf and select one of those partitions as a new interval.

. The sequence of symbols that we use to refine an interval is the assigned sequence.

. An interval [a, b) identifies an interval [c, d) if [a, b) ⊆ [c, d).

2.6 Arithmetic Coding 15

Initialize Read Bit
Update
SrcIn-
terval

Find
Output

and
Rescale

Find
Candi-

dates and
Rescale

Finalize

Source symbol available

Figure 2.2: On-the-fly arithmetic encoding algorithm.

. We call a code interval [c, d) a code candidate if it overlaps with the source interval
[a, b), i.e., [a, b) ∩ [c, d) is not empty.

The arithmetic encoder consists of an initialization step, a loop and an finalization step.
The initialization provides a source and code interval that both span from 0 to 1. In the
loop the algorithm first reads a new bit and then refines the source interval. In case the
source interval identifies a code interval, the assigned code symbols are a prefix of the
code word. When we refine an interval, all partitions remain inside the original interval.
Therefore every refinement of the source interval remains within the source interval and
consequently remains in the code interval. This means that sequences assigned to a
code word candidate start with the same prefix and this common prefix grows during
the process of encoding. Consequently, this sure prefix may be sent or written to an
output buffer. We are no longer interested in the other code sequences that are not a
prefix of the code and scale the intervals such that the borders of the sure prefix now
correspond to 0 and 1. Let l be the lower border and u the upper border, then the linear
scaling is defined as

x→ x̂ = x− l
u− l . (2.48)

In case the source interval does not identify a code interval, there is no output and no
scaling.
There are source code sequences that lead to source intervals that do not identify a

code symbol but toggle around a border. We therefore introduce a further method that
guarantees scaling after a certain number of new input bits. We call the method ’Check
for Lower Level Candidates and Rescale’ in Fig. 2.2 and illustrate it in Fig. 2.3.
Consider two neighboring code candidates [l1;m1) and [m1;u1) and a source interval

[sl; su) with

[sl; su) ⊆ [l1;u1) (2.49)
[sl; su) * [m1;u1) (2.50)
[sl; su) * [l1;m1). (2.51)

Consider the q-ary target distribution PX with X = {0, 1, . . . q − 1}. Then, PX(0) and
PX(q− 1) are the probabilities of the first symbol and the q-th symbol, respectively. We

16 Chapter 2 Preliminaries

Sx

sl

su

Cx

m1

1

u1

0

l1

Sx+1

sl

su

Cx+1

11

u1

10
u2

01
m1

l1
00
l2

Sx+1

sl

su

Cx+2

10

u2

l2

01

m1

Figure 2.3: Toggling the input if lower level subintervals are promising.

calculate the borders of the next level for the toggle case as

u2 = m1 + P (0) · (u1 −m1)
l2 = m1 − P (q − 1) · (m1 − l1).

We allow a scaling to

[l1, u2) if [sl; su) ⊆ [l1;u2) (2.52)
[l2, u1) if [sl; su) ⊆ [l2;u1) (2.53)
[l2, u2) if [sl; su) ⊆ [l2;u2) (2.54)

where (2.54) is a combination of (2.52) and (2.53). This way we guarantee scaling after
a certain number of input symbols.
The finalization step makes sure that the code interval identifies a source interval, i.e.,

the code interval is a subset of the source interval and therefore shorter. This way the
decoder can retrieve also the last bits. The size of an interval represents the probability of
its assigned sequence. Due to the finalization step we know that P n

X (an) must be smaller
than 2−k, where k is the number of read input bits. Note that k varies. We implicitly
assume that those bits are Bernoulli(1/2) distributed and the self-information of the
source sequence is − log2(2−k) = k. Let an be the output of the arithmetic encoder. We
have

2−k ≥ P n
X (an) (2.55)

⇒ k ≤ ι (P n
X (an)) . (2.56)

Baur and Böcherer bounded the ratio of source interval size to code interval size
in [18, Proposition 1] .

2.6 Arithmetic Coding 17

Lemma 2.6. The ratio of the interval sizes is bounded as

1 ≤ 2−k
P n

X (an) ≤
1

PX(0) · PX(1) . (2.57)

where an is the output of the DM. We can easily generalize the bound to non-binary
pmfs.
Lemma 2.7. The ratio of source interval size to code interval size for non-binary target
distributions is bounded as

1 ≤ 2−k
P n

X (an) ≤
(

min
α∈supp(PX)

PX(α) · max
α∈supp(PX)

PX(α)
)−1

. (2.58)

The proof follows the same steps as in [18, Proposition 1]. Furthermore, we can insert
(2.57) into the definition of divergence and obtain for the binary case

D (PZ‖P n
X) ≤ log2

(
1

PX(0) · PX(1)

)
(2.59)

and for the non-binary case

D (PZ‖P n
X) ≤ − log2

(
min

α∈supp(PX)
PX(α) · max

α∈supp(PX)
PX(α)

)
. (2.60)

The random variable Z captures the dyadic distribution that stems from the varying
number of input bits.
Example 2.4 (arithmetic encoding algorithm). Let the input bits be Bernoulli(1/2)
distributed and let the target distribution be PX(0) = 1 − PX(1) = 0.4. Consider
encoding the binary sequence ’10’. The initialization step provides two intervals. The
source interval is [0, 1) and code interval is split into two subintervals [0, 0.4) and [0.4, 1).
In the first execution of the loop we read the first bit, which is ’1’. This bit corresponds
to the upper half of the source interval. Consequently, the source interval will be refined
to [0.5, 1). We now check for a possible output symbol. [0.5, 1) clearly is a subinterval of
[0.4, 1), so we are sure that the first code symbol must be 1. We can thus output the first
symbol. We call this property online encoding. As the other candidate is not interesting
anymore, we scale according to (2.48). The borders of the code interval assigned to ’1’
map to 0 and 1 again. The resulting intervals are [1

6 , 1) and [0, 1) for the source interval
and code interval, respectively. Conditions (2.52) to (2.54) are not fulfilled, so there is
no lower level scaling.
The second loop starts. The second bit is 0, so the source interval refines to [1

6 ,
7
12)

while the code interval is again subdivided into [0, 0.4) and [0.4, 1).
This source interval does not identify a new code symbol yet, because it is neither

a subinterval of [0, 0.4) nor of [0.4, 1). We have read the whole input sequence and

18 Chapter 2 Preliminaries

S1

1

C1

1

0

S2

10

C2

11

10

Figure 2.4: Encoding ’10’ with target distribution PY ∼ Bernoulli(0.4).

need to finalize the code word. The code word needs to identify the source interval
[1
6 ,

7
12). Otherwise the source sequence cannot be fully decoded. We therefore start the

finalization step. Fig. 2.5 illustrates this example.
We refine the code intervals according to the target distributions and obtain new

borders at 0.16 and 0.64. There is still no clear identification, but we obtain two candi-
dates ’110’ and ’101’ that remain interesting. ’111’ and ’100’ and descendents can not
be chosen anymore. In this example we perform a linear scaling such that these two
remaining candidates range from 0 to 1. We refine and there are two sequences ’1100’
and ’1011’ identifying the source interval. As ’1011’ is the larger interval, and therefore
more probable, we choose this output.

S2

10

C2

11

10

S3

10

C3

111

110

101

100

S4

10

C4

1101

1100

1011

1010

Figure 2.5: Finalizing ’10’ with target distribution PY ∼ Bernoulli(0.4) .

2.6.2 Decoding
The general mechanism of the decoder emulates the encoder, see Fig. 2.6. For encoding
before the finalization step we tried to identify code intervals by refining a source interval.
We now do the opposite. The decoder receives code symbols, and each code symbol
refines the code interval. We know that the source interval defined by the source sequence

2.6 Arithmetic Coding 19

Initialize

Read Code Symbol

Update Code Interval

Identify Source Symbols

Update Source Interval

Find Output And Rescale

Find Candidates And Rescale

Preview Code Symbol

Exit
Update Symbol
Counter and
Code Intervals

not all source
symbols identified

no scaling
performed

all source
symbols
identified

scaling
performed

Encoder

Figure 2.6: On-the-fly arithmetic decoding scheme.

is located in this code interval, because the finalization of the encoding process took care
of that property.
However, decoding turns out to be more complex than the encoding part because of

the linear scaling. We need to take care that the scalings calculate the same borders
because rounding errors accumulate. For this reason we put parts of the encoder inside
the decoder. The encoder worked with a source interval and a code interval. The decoder
needs a supplementary interval that we call code candidates.
We start reading the first code symbols and update the code interval. If the code

interval identifies source symbols, then we feed this information directly into an encoder
that checks for possible scaling operations. If we did not identify enough source symbols

20 Chapter 2 Preliminaries

for a scaling, then we read upcoming code symbols that refine the code interval again.
We go back to identifying source symbols. If there was a scaling performed, then we
obtain new candidates and candidate borders that we feed back to the start of the
procedure.
To put it into a nutshell: We refine a code interval until it identifies enough source

symbols to imitate the behavior of the encoder. If the encoder performs a scaling, then
we reset the code interval to the state of the encoder and restart the procedure.
Example 2.4 shows how to encode the sequence ’10’ in 4 steps to ’1011’. The reverse

operation takes 7 steps.

C1 S1 K1

1

0

1

0

1

C2 S2 K2

10

0

1

0

1

C3 S3 K3

101

0

1

0

1

C4 S4 K4

1011

0

1

0

1

C5 S5 K5

10
0

1

0

1

C6 S6 K6

101
0

1

0

1

C7 S7 K7

1010 0

1

0

1

Figure 2.7: Decoding ’1011’. Ci, Si, Ki label the code interval, source interval and code
candidate at the i-th step, respectively.

Example 2.5 (Arithmetic Decoding). All steps of the decoding process are illustrated in
Fig. 2.7. C1, S1, K1 show the state of the code interval, source interval and current code
candidates after initializing and reading the first code symbol. The first code symbol is
’1’. Consequently the interesting interval is [0.4, 1). There is no source symbol we could
identify and we therefore refine. Also for the next two steps there is only refinement
of the code interval. The second bit is ’0’ and the resulting code interval is [0.4, 0.64).
’1’ leads to [0.496, 0.64). S2, S3, K2 and K3 remain unchanged. The fourth symbol

2.7 Information Theoretic Transmission Problem 21

defines the interval [0.5536, 0.64) which is a subset of [0.5, 1). We can write out the
source symbol ’1’. We put this input back into the encoder-simulator and observe that
the encoder identifies the first code word, because the source interval [0.5, 1) is a subset
of the code candidate [0.4, 1). The encoder performs a scaling according to (2.48) with
u = 1, l = 0.5. The source interval transforms from [0.5, 1) to [1/6, 1). We also write
the state of the encoder-simulator back to the code interval. Note that the input pointer
resets to the second symbol. C5, S5, K5 show this new state after reading again the
second source symbol. One can see from the figure that the next source bit must be ’0’.
However, the algorithm suggests to refine until the source symbol is clearly identified.
This is achieved after reading the fourth symbol, and we are done. As the length of the
source sequence is fixed, we know that we have decoded the complete sequence and stop
the algorithm.

2.7 Information Theoretic Transmission Problem
Energy Efficient Communication

We are interested in reliable communication at high rates over a noisy channel. Informa-
tion theory suggests to maximize the mutual information [1], i.e, the channel capacity
is

C = max
PX

I (X; Y) (2.61)

where X is the channel input and Y is the channel output. Equation (2.61) is not
necessarily a complete description of the transmission problem because we often need to
add constraints to X, e.g., a power constraint.

Channel model. To solve problem (2.61) we need access to PY|X(y|x). For AWGN chan-
nels, we have

Y = X + Z (2.62)
where Z is Gaussian noise with zero mean and variance σ2

N . For AWGN channels
we must include a power constraint to obtain meaningful results.

Transceiver design. The transceiver chooses the signal set and is limited due to quanti-
zation, among other considerations. This may lead to further constraints on the
input distribution and its support. We detail the transceiver in Sec. 2.8.

The above list is not a complete description. Eventually, we compute a constrained
capacity-achieving input distribution directly from the solution of (2.61) by using the
Blahut-Arimoto algorithm [41,42].
For energy efficient communication, suppose that PX is the capacity-achieving input

distribution of a discrete memoryless channel (DMC) with capacity C. Let Ỹn be the

22 Chapter 2 Preliminaries

Source

Forward
Error

Correction
Encoder

Modulation Channel Demodulation

Forward
Error

Correction
Decoder

Sink

Figure 2.8: Transmission chain from source to sink.

channel output for an input X̃n. If I(X̃n; Ỹn) is the mutual information between the input
and output sequences, then we have [15, eq. (23)]

C − D (PX̃n‖P n
X)

n
≤ I(X̃n; Ỹn)

n
≤ C. (2.63)

Hence, a small normalized divergence guarantees a mutual information close to capacity.

Stealth Communication

For stealth communication, suppose that an adversary wants to detect a transmission
over a DMC, i.e., the adversary is interested in the activity rather than the content.
Suppose that PY is the distribution the adversary expects to observe at the channel
output when no transmission occurs, and suppose that PX is a distribution for which
the channel responds with exactly this output distribution. Let again Ỹn be the channel
output for an input X̃n. In [43, Sec. IV & Lemma 1], the authors showed that if

D (PỸn‖P n
Y)→ 0 (2.64)

as n→∞, then the best an adversary can do is to guess without observing Ỹn. By the
data processing inequality [28, Theorem 2.8.1], we have [43]

D (PX̃n‖P n
X) ≥ D (PỸn‖P n

Y) . (2.65)

That is, zero unnormalized divergence guarantees stealth.

2.8 Coded Modulation
We use a simplified model for a transceiver consisting of the following components. The
main purpose is to show how PAS changes the transceiver.

Source

The source emits Bernoulli(1/2) distributed bits. This is a good model for compressed
sources and also a fair point to start if we do not know the source statistics.

2.8 Coded Modulation 23

systematic FEC encoder

P

Figure 2.9: Block diagram of a systematic FEC encoder of the form G = [I|P].

Forward error correction encoder

A noisy channel changes the transmitted symbols. A FEC code translates a message
into a vector in a higher dimensional space and increases the “distance” between mes-
sages. We can interpret this as adding redundancy because we use a larger space than
necessary to represent the message. The increased distance helps the decoder to recover
the message. We are interested in binary linear block codes, i.e., we can represent the
encoding as a matrix vector multiplication u ·G in the binary field GF(2), where the
vector u is the message and the matrix G is a generator matrix of the code. Note that
the generator matrix is not unique and there exists (except for pathological cases) a
systematic encoding such that the message is preserved in the code word, i.e., there are
columns that are all zero except for one entry that is ’1’. We consider generator matrices
of the form

G = [I|P] (2.66)
which is the concatenation of an identity matrix I and a parity matrix P . We depict
the systematic encoding in Fig. 2.9.

Modulation

A modulator is a mapping from binary strings to either the real numbers (1-D) or the
complex plane (2-D). We call the image of the mapping a constellation and each element
of the image a constellation point. If the number of constellation points per dimension
is greater than 2 then we use the term higher order modulation.
We differentiate between:

. ASK and quadrature amplitude modulation (QAM) constellations, i.e., constella-
tions on a uniformly spaced grid, and other constellations. For uniformly spaced
constellations all signal points are similarly reliable and therefore their energy plays
a differentiating role.

24 Chapter 2 Preliminaries

. Multi-ring constellations and non-uniform constellations (NUCs) [9,10] are promi-
nent in satellite communications. Some NUCs are known as geometric shap-
ing [44, 45]. Here, more signal points are close to the origin, which reduces the
average energy. At the same time these constellations are less reliable because the
points are closer together.

In this thesis we are interested in QAM and ASK constellations. AM -ASK constellation
is a 1-D constellation that consists of M equally spaced points around the origin, i.e.,

{−(M − 1), . . .− 3,−1, 1, 3, . . . , (M − 1)}

where M is even. We call M the modulation order.
A M -QAM constellation is a 2-D constellation on a square grid and can be expressed

as the Cartesian product of two
√
M -ASK constellations if

√
M is an integer. We do

not consider the case where
√
M is not an integer.

Practical systems usually use constellation orders M that are powers of 2 because we
use log2M bits to address M constellation points. We call the mapping from bits to
constellation points a labeling. In Fig. 2.10 we see 8-ASK and 64-QAM constellations
with binary reflected Gray code (BRGC) labelings.

Demodulation

A demodulator transforms the received, noisy symbols from the channel into likelihoods
according to a channel model. A symbol metric [46] or multi-level [47,48] demodulation
for higher order modulation can be complex. There are many simplifications such as
bitwise demapping [49].

Forward error correction decoder

The FEC decoder tries to find the most likely code word according to the channel
observations. This problem is difficult and decoders use structure in the code to simplify
decoding, e.g., to find a possibly suboptimal solution with reasonable computational
complexity.

2.8 Coded Modulation 25

in-phase

quadrature

000101 001101

000111 001111

001001

000110 001110

001011

001010

000100

000001

001100

000011

001000

000010

000000

010101 011101

010111 011111

011001

010110 011110

011011

011010

010100

010001

011100

010011

011000

010010

010000

100101101101

100111101111

101001

100110101110

101011

101010

100100

100001

101100

100011

101000

100010

100000

110101111101

110111111111

111001

110110111110

111011

111010

110100

110001

111100

110011

111000

110010

110000

quadrant 00

quadrant 01

quadrant 10

quadrant 11

0
001 011 010 000101111110100

Figure 2.10: 8-ASK and 64-QAM constellations with BRGC labelings.

3
Probabilistic Shaping
and Probabilistic Amplitude
Shaping
In this chapter we motivate the shaping gain from an energy perspective for the AWGN
channel. We then introduce PAS [11] to combine FEC, modulation and shaping. DM
is an important building block of PAS and we define its interface and desired properties
in the last section.

3.1 Energy Perspective

3.1.1 Continuous Constellations
We investigate a simplified model of CM to develop intuition for DM. Consider a
transmission block of length n and an equal spacing between transmission symbols per
dimension. With a growing constellation order M per dimension we approximate a
continuous constellation.
Consider the n-cube (also known as the n-dimensional hypercube) with support vol-

ume V and density ρ (number of points per volume unit). The density is zero outside
the support and constant at ρ0 inside the support. The integral over the support should
capture the number of constellation points, i.e., for the n-cube we have

Mn =
∫

V
ρ0 dV (3.1)

Note that eq. (3.1) is valid for any support. We define the bit rate m̄ to express the

28 Chapter 3 Probabilistic Shaping and PAS

average number of bits transmitted per dimension, i.e., we have

m̄ = log2

(∫

V
ρ0 dV

)
/n. (3.2)

For the n-cube this evaluates to log2M .

When we scale each dimension of an n-D constellation by a factor ∆ greater than
one the volume increases by ∆n while the number of transmission points remains the
same. Thus, the new density is ρ∆ = ρ0/∆n. This scaling corresponds to increasing the
transmission power by a factor of ∆2.

Note that introducing a FEC code changes the density by reducing the number of
points inside a support. This effect is rather different than scaling because the FEC
code changes the geometry including the number of nearest neighbors. The density
model does not capture the coding gain because it loses information about the geometry.
The following arguments also hold when the geometric structure of the points does not
change, i.e., we use the same code.

Probabilistic shaping can form power efficient constellations. The most power efficient
shape of equally spaced points is an n-ball. We want to compare the average energy of
an n-ball and an n-cube with same volume and density.

The volume of an n-cube with side length A is

VC = An (3.3)

and its energy is

EC =
∫ A

2

−A2

∫ A
2

−A2
. . .
∫ A

2

−A2

(
x2

1 + x2
2 + . . .+ x2

n

)
dxn . . . dx2 dx1. (3.4)

where the xi are the Cartesian coordinates. We obtain

EC = n · 1
12A

n+2 = n · 1
12A

2VC . (3.5)

The volume of an n-ball with n = 2k, k an integer, is

VB =
∫

V
1dV = (3.6)

=
∫ 2π

0

∫ π

0
. . .
∫ π

0

∫ R

0
rn−1 sinn−2(φ1) . . . sin(φn−2)drdφ1 . . . dφn−1 (3.7)

= πn/2

(n/2)!R
n. (3.8)

3.1 Energy Perspective 29

To calculate the energy, we integrate over the squared distance to the origin r2, i.e.,

EB =
∫

V
r2 dV = R2 n

n+ 2VB. (3.9)

n-cubes and n-balls have the same volume if

1 = VC
VB

= An

π(n/2)
(n/2)! R

n
⇒ A

R
=

√
π

n

√
(n/2)!

. (3.10)

We may approximate the denominator using Stirling’s approximation and obtain

A

R
≈
√

2πe
n
·2n√πn. (3.11)

Comparing the energy for the same volume, we obtain

EC
EB

=
1
12nA

2

R2 n
n+2

=
1
12(n+ 2)π
n/2
√

(n/2)!
≈

1
6πe
n
√
πn

n+ 2
n

. (3.12)

For large n, we can drop the second factor and the root in (3.12) because they converge
to 1. We obtain the well known shaping gain [6, 50]

EC
EB

= πe

6 ≈ 1.53dB. (3.13)

For this calculation we assumed a constant density inside the volume. A FEC code
decreases the number of points and if a constant density is maintained we can obtain a
shaping gain on top of the FEC gain.
Equations (3.12) and (3.10) give insight about the shaping gain in the finite length

regime. In Fig. 3.1 we show the shaping gain EC/EB for continuous constellations in
dB vs. the number of dimensions used for shaping. The shaping gain increases rather
quickly as the number of dimensions grows. However, we need to form a perfect ball
over about 800 dimensions for a shaping gain of 1.5 dB.

Example 3.1 (Continuous shaping gain - 2D). We consider a simple example, i.e.,
continuous shaping in 2D. Let us normalize the volume (area) to 1, which results in a
square with length A = 1 and a circle of radius R = 1√

π
. The energy of the square is 1/6

and the energy of the circle is 1
2π . The ratio of energies evaluates to EC

EB
= π

3 ≈ 1.0472.
We are allowed to scale the constellation by a factor of

√
EC
EB

=
√

π
3 ≈ 1.0233 which

corresponds to 0.2dB from unshaped to shaped in 2 dimensions. Fig. 3.2a visualizes the
continuous 2 dimensional constellations.

From (3.10) we can already see a disadvantage of n-balls in comparison with n-cubes.

30 Chapter 3 Probabilistic Shaping and PAS

100 101 102 103 104 105
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

dimensions n

sh
ap

in
g

ga
in

10
lo

g 1
0

E
C

E
B

[d
B]

continuous constellation
asymp. limit

Figure 3.1: Shaping gain vs. block length.

If we compare the radius of an n-ball with the side length of an n-cube for a fixed rate,
we see that the side length of the cube does not increase while the radius of the ball
increases with

√
n, see Fig. 3.3. In other words, the range of each dimension is smaller

for the n-cube than for the n-ball. At the same time, the longest diagonal of the cube
grows with the same speed in the number of dimensions n. For a system design we prefer
that the range of the constellation does not grow. Fig. 3.2 illustrates the growth of the
radius in comparison to the side length of a cube and the shaping gain. Fig. 3.2a shows
the proportions for the case n = 2 and Fig. 3.2b for n = 10000. We see a projection on
two dimensions. The n-cube collapses to the square and the n-ball and the dark circle,
respectively. We choose a projection where 9998 dimensions of the n-cube collapse. The
light circle depicts the projection of a scaled n-ball with the same energy as the n-cube.
In Fig. 3.2a the square and the darker circle have the same area. There is nearly no
visible difference. In Fig. 3.2b we can clearly see the shaping gain from the dark circle
to the light circle. Fig 3.3 shows the side length, the longest diagonal of an n-cube and
the radius of an n-bsall with same volume.

3.1.2 Discrete Constellation
Continuous constellations give an intuition where the shaping gain stems from and they
allow to estimate gains for practical systems. We now consider ASK constellations X
and higher dimensional ASK constellations X n. An M -ASK constellation X consists of
the points

X = {−M + 1,−M + 3, . . . ,M − 1} (3.14)

3.1 Energy Perspective 31

(a) 2D (b) 10000D projection on 2D

Figure 3.2: Shaping gain and dimension effects in higher dimensions.
(a) The square and the inner, dark circle have the same area. The outer,
light circle is scaled such that it has the same average energy as the square.
Since the circles are hard to distinguish, the shaping gain is small.
(b) This is a projection of the a 10000-cube, and two 10000-balls onto 2
dimensions. The cube and the dark n-ball have same volume. The outer,
light ball is scaled such that it has the same average energy as the cube. The
projection is chosen such that 9998 dimensions of the cube collapse.

100 101 102 103 104

100

101

102

dimensions n

le
ng

th
[a

.u
.]

side length n-cube
longest diagonal n-cube
radius n-ball
radius n-ball approximation

Figure 3.3: Side length() and longest diagonal () within an n-cube in comparison
to the radius of an n-ball () with same volume. The approximation of
the n-ball radius () fits quite well for dimensions larger than 8.

32 Chapter 3 Probabilistic Shaping and PAS

Figure 3.4: The upper diagrams depict 36, 64 and 256-QAM constellations. The second
row shows constellations that have 36, 64 and 256 constellation points of
lowest energy, i.e., smallest distance to the origin in the same grid. Observe
that for 36 points the constellations are identical.

where M is an even integer. We can address this constellation with m = log2 |X | bits.
Consider an n-D constellation X ′ that is defined on the same grid as an n-D ASK

constellation X n, i.e., X ′ ⊆ X n. We call the constellation X the base constellation of
X ′ and we call the order of X the base constellation order MB. Consider, e.g., the
bottom right constellations in Fig. 3.4. The base constellation is 18-ASK and the base
constellation order is 18.
For discrete, n-D constellations X ′, the average constellation bit rate becomes

m̄ = log2 |X ′|
n

. (3.15)

The average energy per symbol and dimension is

EX′ = 1
n |X ′|

∑

xn∈X ′

n∑

i=1
x2
i . (3.16)

For a M -ASK constellation this expression simplifies to

EX = 1
M

M∑

i=1
(2i− 1)2 = 1

3[4M2 − 1]. (3.17)

3.1 Energy Perspective 33

We anticipate two problems for energy efficient discrete constellations.

Problem 1 In the continuous case, the radius of an n-ball with same volume and density
(and therefore rate) as an n-cube grows for higher dimensions, while the side-length
of the cube is constant. At the same time we need to use many dimensions for a
reasonably high shaping gain. A growing radius in the continuous case corresponds
to an increasing number of signal points per dimension for discrete constellations,
i.e., to transmit on average m̄ bits we need a MB-ASK base constellation with
log2(MB) � m̄ for high dimensions. This implies a more complex decoder. In
Fig. 3.2b the side length of a 10000-cube is about 24 times smaller than the diam-
eter of a ball with same volume. However, the longest diagonal exceeds the ball
diameter by a factor greater than 2. We show numerical results how a restriction
of the basic constellation order affects the shaping gain for short and long blocks.

Problem 2 Continuous constellations may approximate higher order modulation quite
well. However, for small constellations the grid is rather coarse and it can be
difficult to see a gain at all. Fig. 3.4 shows 36, 64 and 256 QAM constellations
and a power efficient modulation on the same grid. 256 QAM resembles a circle
because it is fine enough, but the effect on 64 QAM is rather limited. For 36 QAM
there is no better rearrangement, i.e., the constellations are identical and there is
no shaping gain. Intuitively, for longer blocks we expect a positive effect because
the number of corner points increases and the diagonals grow.

Figures 3.5, 3.6 and 3.7 show the energy ratio EX/EX′ in dB where EX is the energy
of an M -ASK constellation and EX′ is the energy of a shaped constellation. The shaped
constellations consist of the Mn least energy points of an n-D grid with MB-ASK base
constellation and MB > M . We added the energy ratio EB/EC of the continuous
constellations (3.12) as references, and paid attention that the largest base constellation
MB does not restrict the energy ratio in the region shown, i.e., performance does not
improve for a larger MB. Today’s systems use constellation orders that are powers of
2. Consequently, we consider only integer values for m̄ in the comparison. Shaped
constellations require m̄ · n to be an integer value , i.e., we can choose m̄ more flexibly
than for ASK constellations.
Observe that restricting the base constellation may lead to a significant loss inEX′/EX .

However, a base constellation ofMB ≈ 2 ·M gives close to optimal performance for block
lengths up to 300.
We address Problem 2 in Fig. 3.8, where the base constellation is not restricted and we

display m̄ from 2 to 5. Note that EX′/EX depends on the constellation order and a higher
constellation allows a higher shaping gain. Still, there is a gain for low constellation
orders. For m̄ = 2 the result is not smooth which stems from the discrete nature of the
optimization problem.

34 Chapter 3 Probabilistic Shaping and PAS

100 101 102 103
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

dimensions n

sh
ap

in
g

ga
in

lo
g 1

0
E

X

E
X

′
[d

B]

m̄ = 3, MB = 16
m̄ = 3, MB = 14
m̄ = 3, MB = 12
m̄ = 3, MB = 10
asymp. limit
continuous constellation

Figure 3.5: Shaping gain of a discrete constellation with rate m̄ = 3 per dimension
over an 8-ASK constellation using a base constellation order MB of 10 to 16
points.

100 101 102 103
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

dimensions n

sh
ap

in
g

ga
in

lo
g 1

0
E

X

E
X

′
[d

B]

m̄ = 4, MB = 18
m̄ = 4, MB = 20
m̄ = 4, MB = 22
m̄ = 4, MB = 30
m̄ = 4, MB = 32
asymp. limit
continuous constellation

Figure 3.6: Shaping gain of a discrete constellation with rate m̄ = 4 per dimension over
a 16-ASK constellation using a base constellation MB of 16 to 32 points.

3.1 Energy Perspective 35

100 101 102 103
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

dimensions n

sh
ap

in
g

ga
in

lo
g 1

0
E

X
E

X
′

[d
B]

m̄ = 5, MB = 34
m̄ = 5, MB = 40
m̄ = 5, MB = 50
m̄ = 5, MB = 60
m̄ = 5, MB = 80
asymp. limit
continuous constellation

Figure 3.7: Shaping gain of a discrete constellation with rate m̄ = 5 per dimension over
a 32-ASK constellation using a base constellation MB of 34 to 80 points.

100 101 102 103
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

dimensions n

sh
ap

in
g

ga
in

lo
g 1

0
E

X

E
X

′
[d

B]

m̄ = 5
m̄ = 4
m̄ = 3
m̄ = 2
asymp. limit
continuous constellation

Figure 3.8: Shaping gain of discrete constellations with different average modulation
rates.

36 Chapter 3 Probabilistic Shaping and PAS

3.2 Probabilistic Amplitude Shaping
In [11] Böcherer et al. introduce a transceiver architecture called PAS that separates
FEC and shaping. Shaping requires a DM.

3.2.1 Underlying Principles
Probability Factorization

The optimal input distribution for the AWGN channel has a symmetry because the en-
ergy of a constellation point is independent of its sign and the constellation is symmetric
around the origin. Therefore it is possible to write the optimal input distribution as the
product distribution

PX(x) = PA(a) · PS(s) (3.18)
where S is a binary random variable that is Bernoulli(1/2) distributed and a ∈ A with
|A| = |X |/2. Thus we can obtain the optimal input distribution in two steps. First,
a random variable A selects one of the pairs (x1, x2) of symbols that have the same
probability so that PX(x1) + PX(x2) = 2PX(x1) and then S selects one symbol of this
pair. A and S are independent. This description is rather abstract but in the AWGN case
with ASK modulation, there is a nice description for S and A: we interpret them as the
amplitude and sign of a constellation point, i.e., X = S · A with realizations s ∈ {−1, 1}
and a ∈ {1, 3, . . .M − 1}. Note that this is not the only possible description, e.g., for
4-ASK we could choose s ∈ {−1, 1} and a ∈ {−1, 3} rather than a ∈ {1, 3}.

Uniform Check Bit Assumption

In Sec. 2.8 we defined the encoding of linear codes as a vector-matrix multiplication.
For the special case of systematic encoding, we have

c = u ·G = u · [I|P] (3.19)

where P is usually rather dense. In [51, Sec. 7.1.3] it is shown that the distribution of the
parity bits becomes uniform for an increasing number of nonzero entries in the columns
of P . This does not necessarily hold in the pathological case of having deterministic
bits in u. The multiplication with the identity matrix I copies u into the first part of
c, see also Fig. 2.9.

3.2.2 Encoding
For the encoding scheme, we go through the components of a CM scheme from the
desired output towards the source(s).
Consider a transmission block of n of M -ASK constellation points, i.e., we need m =

log2M bits to label a constellation point. We use a labeling that differs for symbols

3.2 Probabilistic Amplitude Shaping 37

PA bA

P

b−1
X

n
amplitudes

n(m − 1)
bit

n
bit

n
constellation

points

Figure 3.9: PAS encoder from the amplitude and bit perspective of one block. The
labeling function bA translates n amplitudes into n(m− 1) bits. The parity
bits that are computed in P complete the amplitude bits.

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bA

bU bU bU bU bP bP bP

. . .

. . .

. . .

. . .

. . .

m
−

1
am

pl
itu

de
bi

ts

n symbols

1
sig

n
bi

t
� Uniform Source bits � Parity bits

Figure 3.10: Collection of bits that represent one transmission block of n constellation
symbols. m− 1 bits represent one amplitude and one bit represents a sign.
In extended PAS, some sign bits stem from the FEC encoder and some
stem from a source PU. In normal PAS, all sign bits are parity bits. While
the sign bits can be permuted, the amplitude bits within one column are
bound together.

38 Chapter 3 Probabilistic Shaping and PAS

with the same amplitude only in the first bit that we the call sign bit. A labeling that
fulfills this requirement is the BRGC [52]. This way we obtain two labeling functions,
one for amplitudes and one for constellation points

bA : a 7→ bA(a) ∈ {0, 1}m−1 (3.20)
bX : x 7→ bX(x) ∈ {0, 1}m. (3.21)

We call their inverse functions b−1
A , b−1

X symbol mappers.
For transmitting n M -ASK symbols, we can choose n · m bits, or n amplitudes

and n signs. In an uncoded scenario, i.e., without FEC, we need two DMSs. The
first source produces amplitudes with probability PA and the second DMS PU emits
Bernoulli(1/2) bits. The binary representations of one amplitude and one sign bit form
one constellation point with the use of the symbol mapper b−1

X . In a coded scenario,
we can replace Bernoulli(1/2) distributed bits from the source PU either completely (see
PAS [11, Sec. IV]) or partially (see extended PAS [11, Sec. IV-D]) by the parity bits
from the systematic FEC encoder. In Fig. 3.9 we can see the encoding process of PAS
for a whole block. Fig. 3.10 shows how the parity bits and the amplitudes are arranged
for extended PAS. More detailed descriptions of PAS can be found, e.g., in [11,53,54].
It remains to clarify how to obtain a DMS with distribution PA from Bernoulli(1/2)

bits. We develop theory and algorithms to accomplish this in the next chapter.

4
Fixed Length Distribution Matching
Algorithms

4.1 Distribution Matching
In Sec. 2.7, equations (2.63) and (2.61) show the main goal of DMs, i.e., to approximate
a distribution and to transmit data at maximum rate. A DM transforms sequences of
independent, uniformly distributed symbols into sequences that approximate a DMS
with a target distribution. A dematcher performs the inverse operation and recovers the
input symbols from the output sequence.
Let us examine the architecture. The interface is shown in Fig. 4.1, where a sequence

of uniformly distributed bits Bk is transformed into a sequence Ãn. We model the Bk bits
as uniformly independent and identically distributed (iid) because this is a reasonable
assumption after source coding. We want an invertible transformation on the image such
that we can recover the original bit-sequence without error. We do not allow an internal
source of randomness at the matcher, and therefore we consider one-to-one variable
length mappings.
Optimal variable-to-fixed (v2f)- and fixed-to-variable (f2v)-length DMs are proposed

in [6, 14–16]. The code books of these DMs must be generated offline and stored. Since
this is infeasible for large code word lengths, algorithms were proposed that use arith-
metic coding to calculate the code book online [17,18]. All these approaches have either
variable input or variable output lengths, which can lead to varying transmission rate,
large buffer sizes, error propagation, and synchronization problems [6, Sec. I].
Fixed-to-fixed (f2f)-length DMs do not suffer from these problems. The authors of [19,

Sec. 4.8] and [20] therefore suggest to use block codes to build a f2f-length DM. However,
these schemes include many-to-one mappings and hence cannot always recover the input
sequence without error. To overcome these problems, f2f-length one-to-one DMs were

40 Chapter 4 Fixed Length Distribution Matching Algorithms

Bk Matcher Ãn Dematcher Bk

PA An

PÃn

Figure 4.1: Matching input block Bk = (B1, . . . ,Bk) to output symbols Ãn = (Ã1, . . . , Ãn)
and reconstructing the original sequence at the dematcher. The DM should
emulate a DMS with distribution PA.

proposed.
In [21] and [55] arithmetic coding is used to index entropy-typical and letter-typical

sequences, respectively. Both approaches are complex, especially for larger alphabets.
The DMs proposed in [56,57] are similar to [55], and include a variable length code that
preselects a type. The DMs of [58, 59] use enumerative coding to index a codebook of
minimal energy sequences. This approach is limited to short block lengths because of
memory consumption. This problem is addressed in [60] by using floating point arith-
metic instead of integer arithmetic in a smart way. The performance loss is negligible.
In [61] the complexity issue of DMs is solved for short blocks with concatenated small
and medium sized look-up tables (LUTs). The DM proposed in [62] consists of variable
length trees and a framing method that guarantees the f2f length property.
In [63] a combination of DM and FEC is proposed and further analysed in [64]. The

method is based on polar codes [65,66] and is not restricted to symmetric distributions,
i.e., it can be used for on-off keying (OOK), see [67]. This method can be used as a
f2f-length one-to-one DM as well.
Depending on the DM type we have different expressions for divergence.

A fixed-to-fixed length DM is most constrained and most practical. For this class we
have divergence expressions such as

D (PÃn‖P n
A) =

∑

c∈C

1
|C| log2

1/ |C|
P n

A (c) . (4.1)

All code words in the code book appear with same probability and the only choice
is to decide if a word is in the code book or not. This also means that we have no
further possibility to make the logarithm go to zero for all code words.

A variable-to-fixed length DM offers new degrees of freedom where the target prob-
ability P n

A (c) of a code word c can be reflected by the number of bits `(c) that

4.1 Distribution Matching 41

represent this code word. We have

D (PÃn‖P n
A) =

∑

c∈C
2−`(c) log2

2−`(c)

P n
A (c) . (4.2)

Note that the code word lengths must fulfill the Kraft inequality with equality,
and that we can generate only dyadic distributions this way.

A fixed-to-variable length DM has divergence expressions of the form

D (PÃn‖P n
A) =

∑

c∈C

1
|C| log2

1
|C|

P
`(c)
A (c)

(4.3)

where `(c) is the variable length of the code word. Again, we select only uniform
probabilities.

Resolution coding: In contrast to distribution matching, resolution coding [68] does
not require a dyadic input distribution because we can map mc input sequences
to the sequence c. This increases the flexibility even further, i.e., we obtain a
divergence expression such as

D (PÃn‖P n
A) =

∑

c∈C
mc2−`max log2

mc2−`max

P n
A (c) (4.4)

where mc2−`max can basically build any pmf. For an overview of resolution coding
and algorithms, we refer to [19].

Distribution Matching and Source Coding

Lossless source coding reduces the expected length of sequences that are the output of a
DMS with non-uniform pmf PA. The resulting bit stream is approximately Bernoulli(1/2)
distributed. In [6, 14] Huffman codes are used for matching. The decoder of the source
coding scheme is used as an encoder and vice versa. This way, a Bernoulli(1/2) bit-stream
is encoded into symbols that are approximately distributed according to PA. However,
distribution matching has more degrees of freedom than the inversion of lossless source
coding. Note that:

. An inverted lossless source code is invertible on the image. However, the image
must be the full space of words, otherwise it would be lossy.

. A DM needs to be invertible on its image and the image can be a subspace of the
whole space. This gives more possibilities to design a coding scheme. This is also
the reason why there cannot be a f2f length lossless source coding scheme.

42 Chapter 4 Fixed Length Distribution Matching Algorithms

Fixed Length Distribution Matching

A one-to-one f2f DM is an invertible function f from words of length k to words of
length n. We denote the inverse function by f−1. The mapping imitates a desired
distribution PA by mapping k Bernoulli(1/2) distributed bits Bk to length n strings
Ãn = f(Bk) ∈ An. We refer to the image of a DM as the code book C := f({0, 1}k)
and its elements as code words. As bit sequences of length k uniquely index the code
words in the code book, and every bit sequence has probability 2−k, every code word
has probability 1/|C| = 2−k. Consequently, the explicit mapping from input to output
does not affect divergence, only the code book matters. The pmf of code word c is thus

PC(c) = 1
|C| · 1(c ∈ C) (4.5)

where 1(·) evaluates to one if the argument is true and zero otherwise. The concept of
one-to-one f2f distribution matching is illustrated in Fig. 4.1.

Definition 4.1. A matching rate R = k/n is achievable for a distribution PA if for any
ε > 0 and sufficiently large n there is an invertible mapping f : {0, 1}k → An for which

D (PC‖P n
A)

n
≤ ε. (4.6)

The following proposition in [69] relates the rate R and (4.6).

Proposition 4.1 (Converse, [69, Proposition 8]). There exists a positive-valued function
δ with

δ(ε) ε→0−→ 0 (4.7)
such that (4.6) implies

k

n
≤ PA
PB

+ δ(ε). (4.8)

Proposition 4.1 bounds the maximum rate that can be achieved under condition (4.6).
Since H (PB) = 1, for vanishing informational divergence we have (see [69])

R = k

n
≤ H (PA) (4.9)

for any achievable rate R.
The divergence between the approximated source and the target source can be written

as follows:

D (PC‖P n
A) = nH (PĀ)− k + nD (PĀ‖PA) (4.10)

where PĀ is the empirical distribution that we obtain when we draw randomly one
symbol from the code book, i.e., it is the marginal distribution over all code words and

4.2 Divergence Optimal Distribution Matching 43

along all indices of the code words:

PĀ(a) = 1
|C|

∑

αn∈C

na(αn)
n

. (4.11)

We call PĀ the letter distribution of the code book C.
For system design we want to compare different algorithms or code books. In [70], we

suggest to consider the difference between the entropy of the letter distribution and the
DM rate, i.e.,

H (PĀ)− k

n
= D (PC‖PĀ) . (4.12)

Here, we have an operational meaning for the divergence. We sometimes call this differ-
ence of entropy and rate the rate loss Rloss [71].

4.2 Divergence Optimal Distribution Matching
In this section we derive the optimal DM and show its limitations in terms of divergence
for large block lengths. We then give two algorithms to index the respective code books.
One of them is SM, which is why we use the term shell-mapping distribution matching
(SMDM)

4.2.1 Codebook Construction
In [19, Sec. 4.4.1] a minimum divergence code book construction for a fixed-length DM
is proposed. We rewrite the divergence as

D (PC‖P n
A) =

∑

an∈C

1
|C| log2

1
|C|

P n
A (an) (4.13)

=− log2 |C|+
1
|C|

∑

an∈C
log2

1
P n

A (an) (4.14)

=− log2 |C|+
1
|C|

∑

an∈C
ι (P n

A (an)) (4.15)

=− log2 |C|+
1
|C|

∑

an∈C

n∑

i=1
ι (PA(ai)) . (4.16)

From this form we can write the problem of finding a code book with fixed cardinality
M of least divergence as follows:

ĈM = argmin
C⊆An
|C|=M

D (PÃn‖P n
A) (4.17)

44 Chapter 4 Fixed Length Distribution Matching Algorithms

= argmin
C⊆An
|C|=M

∑

an∈C
ι (P n

A (an)) (4.18)

where equality in (4.18) holds because we shifted the objective by log2 |C| and scaled
it by |C|. Problem (4.18) is solved in [19] by selecting M code words with the least
self-information.

Example 4.1. Consider a binary alphabet A = {0, 1} with p = PA(1) = 1− PA(0) and
p < 1/2. Since p < 1/2, P n

A (an) is monotonically decreasing in the Hamming weight
of an. Consequently, the code book construction should include the all-zero code word.
Next, code words with a single one and n − 1 zeros are included, and so on. It follows
that the probability of the letter 1 in the code book PĀ(1) = pC grows monotonically in
the code book size |C|. It remains to determine the optimal code book size |C|, which
can be done by a line search [19].

In order find the optimal code book

Ĉ = argmin
C⊆An

D (PÃn‖P n
A) (4.19)

= argmin
M


argmin
C⊆An
|C|=M

D (PC‖P n
A)


 (4.20)

we need to search through the solutions ĈM of (4.18) for different code book sizes around
M ≈ 2nH(PA) [19] which is not difficult.

4.2.2 Analysis
We now characterize the optimal code books.

Lemma 4.2. The best code book consists of all code words up to a certain self-
information.

Proof: Suppose C consists of all words an with self-information ι (P n
A (an)) up to Î

and ` code words with self-information exactly I and I > Î. We split the code book into
two disjoint parts C ′ and C ′′ with all code words of self-information up to Î and those `
code words with self-information I, respectively. We rewrite the divergence as

D (PC‖P n
A) =− log2(|C ′|+ |C ′′|) + 1

|C ′|+ |C ′′|
∑

an∈C′
ι (P n

A (an))
︸ ︷︷ ︸

Ī·|C′|

(4.21)

+ 1
|C ′|+ |C ′′|

∑

an∈C′′
ι (P n

A (an))
︸ ︷︷ ︸

I

(4.22)

4.2 Divergence Optimal Distribution Matching 45

=− log2(|C ′|+ `) + |C ′|
|C ′|+ `

Ī + `

|C ′|+ `
I (4.23)

where Ī is an average self-information and therefore Ī < I. We define a function
D (PC‖P n

A)′ for which we assume that ` is a continuous variable. Note that D (PC‖P n
A)′

and D (PC‖P n
A) are equal for integer `. The first and second derivatives with respect to

` are

∂

∂`
D (PC‖P n

A)′ = − 1
ln(2)(|C ′|+ `) + |C ′|

(|C ′|+ `)2 ∆I (4.24)

∂2

∂`2D (PC‖P n
A)′ = 1

ln(2)(|C ′|+ `)2 − 2∆I |C ′|
(|C ′|+ `)3 (4.25)

with ∆I = I − Ī > 0. The first derivative evaluates to zero only at

`0 =|C ′|(ln(2)∆I − 1) (4.26)

which means that there is only one extreme point. Note that `0 can be negative but is
larger than −|C ′|. The second derivative at `0 evaluates to

∂2

∂`2D (PC‖P n
A)
∣∣∣∣
`=`0

=− 1
ln(2)3|C ′|2∆I2 (4.27)

which is negative and therefore this auxiliary divergence has one turning point at `0 that
is a maximum.
We look for the integer ˆ̀ ∈ {0, 1, . . . , `max} that minimizes D (PC‖P n

A) where `max is
the number of length n code words that have self-information I. We need to distinguish
three cases.

. `0 ∈ [0, `max]:
D (PC‖P n

A) increases on {0, . . . , b`0c} and decreases on {d`0e, . . . , `max}.

. `0 < 0:
D (PC‖P n

A) is monotonically increasing on {0, 1, . . . , `max} since the first derivative
evaluates to zero for one point only and this turning point is a maximum.

. `0 > `max:
D (PC‖P n

A) is monotonically decreasing on {0, 1, . . . , `max} since the first derivative
evaluates to zero for one point only and this turning point is a maximum.

All cases are depicted in Fig. 4.2 and in all cases we have ˆ̀ = 0 or ˆ̀ = `max. Thus, for
code books of size |C| ∈ {|C ′|, . . . , |C ′|+`max} the minimal divergence code book is a code
book containing all code words up to Î or I. Since this holds for every self-information
Î, the proof is complete.

46 Chapter 4 Fixed Length Distribution Matching Algorithms

0 `max

D (UC‖P n
A)

×
`0

(a) `0 ∈ [0, `max]

0 `max

D (UC‖P n
A)

×
`0

(b) `0 < 0

0 `max

D (UC‖P n
A)

×
`0

(c) `0 > `max

Figure 4.2: Three cases showing how `0 can be located in the interval [0, `max].

Note that this proof is valid for any alphabet A. It turns out that the optimal binary
code book is the union of κ type sets with the lowest weight. While it is rather intuitive
that we choose type sets with lowest weight, it is surprising that we would use only
complete type sets. For an output of n binary symbols there are thus only n+ 1 optimal
code books for all target distributions with PA(1) < 0.5. This result seems surprising,
as in the binary case the average typeset cardinality grows exponentially in the block
length n while the number of type sets grows only linearly with n (cf. Lemma 2.2).
In Fig. 4.3 we draw the divergence of a probability induced by a code book versus a
target probability. Small inverted peaks appear in the graph where the code word type
changes. Those points are highlighted with gray dashed lines.
From this point on we consider only binary output alphabets, i.e., A = {0, 1} and we

consider only code books C that are unions of type sets. For binary sequences, we write
Cκ for the union of all type sets up to weight κ, i.e.,

|Cκ| =
κ∑

i=0

(
n

i

)

which is sometimes called a Hamming Ball.
The probability pCκ to draw a 1 from the code book Cκ is

pCκ =
∑κ
i=0

(
n
i

)
i

∑κ
i=0

(
n
i

)
n

(4.28)

which corresponds to the probability of 1 of the respective letter distribution. pCκ in-
creases monotonically in κ.

Lemma 4.3. For every positive integer n and every non-negative integer κ, κ < n/2,
we have

0 ≤ κ

n
− pCκ ≤

1− κ/n
n(1− 2k/n) + 1

2n2(1− 2κ/n)2 . (4.29)

4.2 Divergence Optimal Distribution Matching 47

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
0

0.1

0.2

0.3

0.4

0.5

Codebook size

no
rm

al
iz

ed
di

ve
rg

en
ce

[b
it]

PA(1) = 0.20
PA(1) = 0.30
code word weight changes

Figure 4.3: Normalized divergence of code book to binary target distribution vs. code
book size for two target distributions. The dashed lines indicate where the
weight of added code words changes. The code word length is n = 13.

Proof: Since pCκ is the average weight of the code words in Cκ, the lower bound
follows immediately. For the upper bound, we write

pCκ =
∑κ
i=0

(
n
i

)
i

∑κ
j=0

(
n
j

)
n

= 1
2 −

∑κ
i=0

(
n
i

)
(n2 − i)

∑κ
j=0

(
n
j

)
n

. (4.30)

Using Lemma 2.5, we can simplify this to

pCκ = 1
2 −

κ+1
2

(
n
κ+1

)

∑κ
j=0

(
n
j

)
n

= 1
2 −

n−κ
2

(
n
κ

)

∑κ
j=0

(
n
j

)
n

= 1
2 −

(1
2 −

κ

2n

) (
n
κ

)

∑κ
j=0

(
n
j

) . (4.31)

Let q := κ/n < 1
2 so that κ = nq. We insert the lower bound of Lemma 2.4 to obtain

pCκ = 1
2 −

(1
2 −

q

2

) (
n
nq

)

∑nq
j=0

(
n
j

)

≥ 1
2 −

(1
2 −

q

2

) 1− 2q + 1/n
1− q + 1/n

(
1 + 1

n(1− 2q)2

)

48 Chapter 4 Fixed Length Distribution Matching Algorithms

≥ 1
2 −

(1
2 −

q

2

) 1− 2q + 1/n
1− q

(
1 + 1

n(1− 2q)2

)

= q − 1− q
n(1− 2q) −

1
2n2(1− 2q)2 (4.32)

which establishes the upper bound of (4.29).

We next show that the optimal code book leads to a divergence that grows at least
logarithmically in n. Let

κ̂ = κ̂(n) := argmin
κ∈{0,...,n}

D (UCκ‖P n
A) (4.33)

for a given n and a given target distribution PA. With (4.10) we have

D (UCκ̂‖P n
A) = log2

1
|Cκ̂|

+ nH (pCκ̂) + nD (pCκ̂‖p) . (4.34)

In Sec. 4.3.2 we show that the unnormalized divergence of a suboptimal DM grows
logarithmically in n. Thus, the unnormalized divergence of the optimal code book cannot
grow faster than logarithmically in n, and we have D (pCκ̂‖p)→ 0 with n→∞. Pinsker’s
inequality thus implies |pCκ̂ − p| → 0. From Lemma 4.3 we know that |pCκ̂ − κ̂/n| → 0
and hence |κ̂/n− p| → 0 by the triangle inequality.

For every κ/n, κ/n < 1
2 , we obtain the following upper bound from Lemmas 2.2 and

2.4:
|Cκ| ≤

(
n

κ

)
n− κ+ 1
n− 2κ+ 1 ≤

2nH(κ/n)(n− κ+ 1)√
2πnκ

n
n−κ
n

(n− 2κ+ 1)
. (4.35)

Consequently, for any code book with κ/n < 1
2 we have

D (UCκ‖P n
A)

≥ log2
1
|Cκ|

+ nH (pCκ)

≥ − log2


 2nH(κ/n)(n− κ+ 1)√

2πnκ
n
n−κ
n

(n− 2κ+ 1)


+ nH (pCκ)

= 1
2 log2 n− n(H (κ/n)−H (pCκ))

+ 1
2 log2

(
2π κ

n
(1− κ

n
)(1− 2κ

n
+ 1

n
)2

(1− κ
n

+ 1
n
)2

)
. (4.36)

For small n, κ̂/n may be greater than 1/2; but since κ̂/n → p < 1/2, the above bound
holds also for the optimal code book for n sufficiently large.

4.2 Divergence Optimal Distribution Matching 49

Now define ε(n) = 1−κ̂/n
n(1−2κ̂/n) + 1

2n2(1−2κ̂/n)2 . Lemmas 2.1 and 4.3 give

nH
(
κ̂

n

)
− nH (pCκ̂) ≤

(
1− κ̂/n
1− 2κ̂/n + 1

2n(1− 2κ̂/n)2

)
log2

1− κ̂
n

+ ε(n)
κ̂
n
− ε(n)

. (4.37)

Combining the results (4.36) and (4.37), we obtain a lower bound on the unnormalized
divergence for n sufficiently large such that q̂ := κ̂/n remains smaller than 1/2:

D (UCκ̂‖P n
A)

≥ 1
2 log2 n

−
(

1− q̂
1− 2q̂ + 1

2n(1− 2q̂)2

)
log2

1− q̂ + ε(n)
q̂ − ε(n)

+ 1
2 log2

(
2πq̂(1− q̂)(1− 2q̂ + 1

n
)2

(1− q̂ + 1
n
)2

)
. (4.38)

To show that the unnormalized divergence grows logarithmically in n, we evalu-
ate (4.38) in the limit n→∞. Specifically, since q̂ → p and ε(n)→ 0 with n→∞, we
have

lim inf
n→∞

(
D (UCκ̂‖P n

A)− 1
2 log2 n

)
≥ 1

2 log2

(
2πp(1− 2p)2

1− p

)
− 1− p

(1− 2p) log2
1− p
p

.

(4.39)

Thus, the divergence grows at least logarithmically in n.

4.2.3 Algorithm - Weight Functions

We subdivide the algorithm into three parts: weight functions, generating functions and
ordering algorithms. The weight function W (·) assigns to each letter a in the alphabet
A a non-negative, integer weight, i.e.,

W : A → N0. (4.40)

The weight of a sequence is the sum over the per letter weights, i.e.,

Wn : An → N0 (4.41)

Wn(an) =
n∑

i=1
W (ai). (4.42)

50 Chapter 4 Fixed Length Distribution Matching Algorithms

In Sec. 4.2.5 and Sec. 4.2.6 we discuss a sequential and a divide-and-conquer algorithm
that can order sequences an ∈ An from lowest to highest weight. This ordering is
in general not unique because two sequences may have the same weight, e.g., if they
are permutations of each other. The order among sequences of the same weight is
arbitrary. There are many ways to implement the ordering, e.g., using the divide-and-
conquer principle [50] or sequential (enumerative) encoding [72]. The divide-and-conquer
algorithm is well known as SM. The SM encoder maps an integer I to the I-th sequence
of the ordered list. Hence, the SM encoder is a function

fSM : {0, 1, . . . , |A|n − 1} → An. (4.43)

If we restrict the domain of fSM to the integers {0, 1, . . . ,M − 1}, we refer to the image
as

CSM,M = fSM({0, 1, . . . ,M − 1}). (4.44)
Note that CSM,M is a solution to the problem

CSM,M = argmin
C⊆An
|C|=M

∑

an∈C

n∑

i=1
W (ai) (4.45)

which means that SM finds the set Ĉ of M sequences an of smallest weight ∑n
i=1W (ai).

Interface All ordering algorithms require as inputs the code book cardinality M , the
output length n, and the weight function W . We consider a binary input DM, so we
choose M = 2k where k is the input block length in bits. The input bits are interpreted
as an unsigned integer in the range of {0, . . . , 2k − 1}. The SM output corresponds to
the output of a DM

fSM,k : {0, 1}k → An. (4.46)

Divergence Optimal Weight Functions

Proposition 4.4. A minimum divergence f2f length DM with a target output proba-
bility PA is a shell mapper with weight function

Ŵ (a) = ι (PA(a)) (4.47)

Proof. The SM algorithm solves problem (4.45). When we use the self-information as a
weight function, we solve problem (4.18). With a search over the input length, we can
find the best DM independent of the code book size. �

Example 4.2. Dyadic distributions have the form

PA(a) = 2−`a (4.48)

4.2 Divergence Optimal Distribution Matching 51

where `a is a positive integer for all a ∈ supp(PA). The weight function (4.47) is

W (a) = `a a ∈ supp(PA). (4.49)

Remark: A non-negative, integer weight function is desirable for implementation.
Weight functions constructed with (4.47) do not generally have integer Ŵ (a). In the
following, we show which practically relevant distributions also yield non-negative integer
valued weight functions with (4.47).

Proposition 4.5. Consider a finite support discrete distribution that can be expressed
as

PA(a) = e−vΩ(a)
∑
ξ∈supp(PA) e−vΩ(ξ) , ∀a ∈ supp(PA) (4.50)

with v is positive and Ω is any function

Ω : supp(PA)→ N0. (4.51)

Then Ω is a non-negative integer weight function.

Proof. Inserting (4.50) into (4.47) we obtain

Ŵ (a) = vΩ(a) log2(e) + log2
∑

ξ∈supp(PA)
e−vΩ(ξ).

Any translation and positive scaling can be applied on the objective function without
changing the code book. We obtain the integer weight function

W (a) = Ω(a) a ∈ supp(PA). (4.52)

�
Example 4.3. The half Maxwell-Boltzmann (MB) distribution is defined as

PA(a) = e−va
2

∑
ξ∈supp(PA) e−vξ

2 (4.53)

with supp(PA) = {1, 3, 5, . . . , 2η − 1} = A and positive v ∈ R+ and η ∈ N. Comparing
with (4.50) we identify the weight function

W (a) = a2 a ∈ supp(PA) (4.54)

which corresponds to the energy of a constellation point. For implementation we may
want to use

W (a) = (a2 − 1)/8 a ∈ supp(PA) (4.55)
because we decrease the maximum weight that we need to track and have integer weights.

52 Chapter 4 Fixed Length Distribution Matching Algorithms

Corollary 4.6. We obtain sequences of least power by minimizing divergence to MB
distributions.

This result has a special beauty. One finds that MB distributions are close to optimal
for maximizing the single letter mutual information on discrete signal points for the
AWGN channel. If we now minimize the informational divergence of our f2f length DM
to a memoryless source with MB distribution, we find that sequences of least energy
accomplish this goal.
The weight function (4.54) is independent of the parameter v. Consequently, according

to (4.18) a shell mapper with this weight function implements a minimum divergence DM
with fixed code book size 2m for all half MB distributions. If our goal is to approximate
(half) MB distributions and to vary the rate, we fix the weight function and output
length and choose the input length m accordingly. This significantly facilitates rate
adaptation. Rate adaptation is also easy for distribution families we obtain from (4.50)
for a fixed function Ω and varying v.

Letter Frequencies PĀ

A soft-input soft-output decoder requires the letter distribution (4.11) in order to cal-
culate the priors on the constellation symbols [11, Sec. VI-B]. The letter distribution
depends on both the weight function and how to order sequences of equal weight. Fis-
cher suggests in [73] an algorithm to calculate the letter distribution. The algorithm
uses the partial histogram, i.e., the letter distribution for code books that consist of all
sequences up to a certain weight.

4.2.4 Algorithm - Generating Functions
Generating functions build the combinatorial core for some algorithms that order se-
quences according to a weight function. A general introduction to generating functions
can be found in [74]. We use generating functions to reduce sequences to their weight
and to track how many code words of an arbitrary weight a code book contains [75].
Furthermore, generating functions are useful to compute how code word weights evolve
if we increase the code word length. The generating function for all code words of length
n of a code book C and cost function W (·) is the polynomial

Gn(z) =
∑

an∈C
zWn(an) (4.56)

where the subscript n of Gn indicates the length of the considered functions and the
weight function is left implicit.

Example 4.4. Let A = {α, β, γ, δ} and W (α) = 0, W (β) = W (γ) = 1 and W (δ) = 3.

4.2 Divergence Optimal Distribution Matching 53

Weight Sequences Occurrences
0 αα 1
1 αβ, αγ, βα, γα 4
2 ββ, βγ, γβ, γγ 4
3 αδ, δα 2
4 βδ, γδ, δβ, δγ 4
5 - 0
6 δδ 1

Table 4.1: Sequences of Example 4.5 ordered by weight.

The generating function for length one words, i.e., C = A is

G1(z) = 1 + 2z1 + z3. (4.57)

An alternative representation is

Gn(z) =
∑

w∈Wn

bwz
w (4.58)

whereWn is the set of weights that a length n sequence may have assuming some weight
function W (·). We denote the operation of extracting the coefficient bw of zw by

[zw]G(z) = bw. (4.59)

We assume integer weights for ease of implementation. The generating function for all
length 2 code words G2(z) can be calculated from the length 1 generating function G1(z)
by

[zw]G2(z) =
w∑

k=0
[zk]G1(z) · [zw−k]G1(z) (4.60)

which is a convolution of the coefficients. This corresponds to G2(z) = G1(z) ·G1(z) or
in general

Gn(z) = (G1(z))n. (4.61)

Example 4.5. Consider the generating function G1 of Example 4.4. In Table 4.1 we
order all sequences A2 according to their weight. The calculation according to (4.61) is
straight forward and gives

G2(z) = (1 + 2z1 + z3)2 = 1 + 4z1 + 4z2 + 2z3 + 4z4 + z6. (4.62)

54 Chapter 4 Fixed Length Distribution Matching Algorithms

4.2.5 Algorithm - Enumerative Coding
The rules for ordering sequences according to a per letter weight function with enumer-
ative coding are

1. a sequence c comes before a sequence d if the weight of c is smaller than the weight
of d.

2. if the sequences c and d have the same weight, then c comes before d if c is first
in lexicographical ordering.

Decoding

The decoder f−1
SM,k receives a sequence an and outputs the binary encoded index N in the

ordered list of code words. The encoding and decoding algorithms reflect the ordering
rules. Both require two steps for encoding and decoding. In the first step we find
the number N1 of code words of length n that have a smaller weight than the present
sequence. In the second step we sequentially process the sequence and determine the
number N2 of code words with same weight that come first in lexicographical ordering.
The decoded index is N = N1 +N2.
We use generating functions to determine the number of sequences that have weight

less than the sequence an, i.e., we have

N1 =
Wn(an)−1∑

w=0
[zw]Gn(z). (4.63)

Recall that the coefficient [zw]Gn(z) corresponds to the number of sequences of length
n with weight w according to the weight function W .
The number N2 of sequences with weight W (an) that come first in lexicographical

ordering can be determined using equation (2.47). The number of sequences with prefix
bi, total weightW (an) and length n is the number of sequences that have weightW (an)−
W (bi) and length n− i, i.e., we have

nbi(Cw) = [zWn(an)−Wi(bi)]Gn−i(z). (4.64)

Encoding

The encoder finds the N -th entry in a list ordered according to the above rules. First,
the encoder needs to find the total weight of the sequence, i.e., it finds w such that

w−1∑

ω=0
[zω]Gn(z) ≤ N <

w∑

ω=0
[zω]Gn(z). (4.65)

4.2 Divergence Optimal Distribution Matching 55

We then run the encoder according to Algorithm 2.1 with nbi(Cw) defined in (4.64)
with Wn(an) = w and index N2 = N −N1 = N −∑w−1

ω=0 [zω]Gn(z).

4.2.6 Algorithm - Divide-and-Conquer Enumerative Coding
For the divide-and-conquer approach we consider the following ordering that is also
described in [50, 76]. Consider two length n sequences c and d. The sequence c is first
in order if

1. The weight Wn(c) is smaller than the weight Wn(d).

2. The weights are the same and the first half of c comes first by applying the ordering
recursively on the first part.

3. The first halves are identical and the second half of c comes first by applying the
ordering rule recursively.

For the implementation below, we require n to be a power of 2. However, the divide-
and-conquer approach can also be applied when splitting a sequences into sequences of
different size. If we choose that the length of the first part of c and d is always 1, we
recover the sequential approach of enumerative coding.

Decoding

The decoder maps a sequence an to the index N(an). The index is the sum of the
number N̂ of sequences that come first because of a lower weight and the number Ñ(an)
of sequences that come first because of a recursively defined ordering. The first step
of decoding is the same as for the sequential algorithm, i.e., it finds the number N̂ of
sequences with weight below Wn(an). We have

N̂ =
Wn(an)−1∑

w=0
[zw]Gn(z). (4.66)

The ordering is defined recursively and we divide the sequence into subsequences until
dthere are only sequences of length 1 left. For length 1 sequences it is easy to remember
the number Ñ(a) of sequences that have same weight as a and come first in order. It is
usually 0 unless there are multiple letters with the same weight. In this case we need to
be aware of an ordering among those letters and we can store Ĩ(a) in a LUT.
In the next step, the algorithm continues with the composition (conquer) of two simple

problems, i.e., to compute N([c1, c2]), when N(c1) and N(c2) are known. The conquer
operation of two subsequences c1 and c2, both of length ν, follows again closely to the
ordering rules. The second rule can be split up into two parts:

N1 : number of sequences that have smaller weight in the first part

56 Chapter 4 Fixed Length Distribution Matching Algorithms

N2 : number of sequences that have the same weight in the first part and the first part
comes first in order.

The algorithm calculates N1 with the knowledge of the weights of the first and second
halves, Wν(c1) and Wν(c2), respectively. We have

N1 =
Wν(c1)−1∑

w=0
[zw]Gν(z) · [zWν(c1)+Wν(c2)−w]Gν(z). (4.67)

For calculating N2 the algorithm must know the order of the first half Ñ(c1). This was
computed in the last step, i.e., we have

N2 = Ñ(c1) · [zWν(c2)]Gν(z). (4.68)

We know how many sequences of weightWν(c1) come below c1 by solving the subproblem
Ñ(c1) and we multiply this number with the number of possible combinations in the
second half, i.e., the number of sequences with weight Wν(c2) of length ν.
The number N3 of sequences that come first according to the third rule is equal to

the number of sequences that have equal weight as the second part and come first, i.e.,
we have

N3 = Ñ(c2). (4.69)
The position Ñ([c1, c2]) of the whole sequence [c1, c2] within the sequences of same
weight is

Ñ([c1, c2]) = N1 +N2 +N3. (4.70)

Example 4.6. Consider the sequence [α, γ, β, δ], the weight functionW (α) = 0, w(β) =
W (γ) = 1, W (δ) = 3 from example 4.5, and suppose that β comes before γ in order.
For G1(z), G2(z) and G4(z) we have

G1(z) =1 + 2z + z3 (4.71)
G2(z) =1 + 4z + 4z2 + 2z3 + 4z4 + z6 (4.72)
G4(z) =1 + 8z + 24z2 + 36z3 + 40z4 + 48z5 + 38z6 + 24z7 + 24z8 + 4z9 + 8z10 + z12.

(4.73)

The sequence weight is 5, and there are 1 + 8 + 24 + 36 + 40 = 109 sequences of length
4 with weight 0 to 4. The algorithm starts with the length 1 sequences and we obtain

Ñ(α) = 0 (4.74)
Ñ(β) = 0 (4.75)
Ñ(γ) = 1 (4.76)
Ñ(δ) = 0 (4.77)

4.2 Divergence Optimal Distribution Matching 57

[α, γ, β, δ]

N1 =
0∑

w=0
[zw]G2(z) · [z5−w]G2(z) = 1 · 0 = 0

N2 = Ñ([α, γ]) · [z4]G2(z) = 1 · 4 = 4
N3 = Ñ([β, δ]) = 0

[α, γ]

N1 = 0 N2 = 0 N3 = 1

[α]

Ñ = 0

Ñ([α]) = 0

[γ]

Ñ = 1

Ñ([γ]) = 1

Ñ([α, γ]) = 1

[β, δ]

N1 = 0 N2 = 0 N3 = 0

[β]

Ñ = 0

Ñ([β]) = 0

[δ]

Ñ = 0

Ñ([δ]) = 0

Ñ([β, γ]) = 0

N([α, γ, β, δ]) = Ñ([α, γ, β, δ]) + N̂ = 4 + 109 = 113

Figure 4.4: Decoding the sequence [α, γ, β, δ] with its subproblems in a tree.

58 Chapter 4 Fixed Length Distribution Matching Algorithms

because only γ has a predecessor with the same weight.
The first summand N1 of Ñ([α, γ]) is zero because the sum of (4.67) does not contain

summands. As Ñ(α) is zero, also N2 of (4.68) is zero. N3 evaluates to 1 and therefore
Ñ([α, γ]) evaluates to 1. For Ñ([β, δ]), N1 is zero. The sum of (4.67) has only the
summand [z0]G1(z) · [z4]G1(z) which is 0 because there is no letter that has weight 4.
As Ñ(β) and Ñ(δ) are zero, N2 and N3 evaluate to 0. Ñ([α, γ]) evaluates to 0. In the
last step we determine Ñ([α, γ, β, δ]). The sum again consists of one summand, i.e.,
[z0]G2(z) · [z5]G2(z), which is 0 again, because the coefficient of z5 does not exist. We
cannot find a length 2 sequence that has weight 5 with the respective weight function.
N2 evaluates to 4 because there are 4 sequences of length 2 that have weight 4. We can
easily check that those are all sequences that βs and γs on all positions. N3 is again 0.
We obtain N([α, γ, β, δ]) = Ñ([α, γ, β, δ]) + N̂([α, γ, β, δ]) = 4 + 109 = 113. All steps
are summarized in Fig. 4.4.

Encoding

The encoder finds the N -th entry an of the ordered list. Like in the sequential approach,
the encoder first finds the total weight of the sequence, i.e., it finds w such that

w−1∑

ω=0
[zω]Gn(z) ≤ N <

w∑

ω=0
[zω]Gn(z). (4.78)

Analogously to the decoding, we can split the index into N = N̂(an) + Ñ(an), where
N̂(an) is the number of sequences that come below an because they have lower weight and
Ñ(an) is the lexicographical ordering among sequences of same weight. The recursive
part of the algorithm breaks information about the index Ñ(c) within sequences of same
weight w and length n into the same information about the first and second half of the
sequence c. The recursion ends for sequences of length 1, where we can use a LUT. For
a detailed description of the recursive part, see Algorithm 4.1.

4.2.7 Code Trellis
The code trellis of a code book that contains all code words up to weight Wmax was
introduced in [77]. We define a trellis state as tuple (w, n′) with w ∈ {0, . . . ,Wmax} and
n′ ∈ {0, . . . , n}; w tracks the weight and n the length of the code words. The start of
the trellis is the state (0, 0). Two trellis states (w1, n

′
1) and (w2, n

′
2) are connected via

the letter α if n′2 = n′1 + 1, w2 = w1 + W (α) and there exists a path from (w1, n
′
1) to

(0, 0). An example trellis can be found in Fig. 4.5.
Note that the trellis contains all code words up to weight Wmax. SMDM with a

binary interface indexes only in rare cases all words up to weightWmax, and usually only
a subset. From the trellis of code words up to weight Wmax we can easily construct the
trellis of code words with weight exactly Wmax. We remove states and labels to states

4.3 Constant Composition Distribution Matching 59

Algorithm 4.1 Divide-and-Conquer Encoder: Recursion
Require: Ñ(c), w, n

End of recursion:
if n == 1 then
return letter of weight w that has Ñ(c) predecessors

end if
Recursion step:
ν = n/2
find w1 such that:

w1−1∑

ω=0
[zω]Gν(z) · [zw−ω]Gν(z) ≤ Ñ(c) <

w1∑

ω=0
[zω]Gν(z) · [zw−ω]Gν(z). (4.79)

w2 = W (c)− w1
N1 = ∑w1−1

ω=0 [zω]Gν(z) · [zw−ω]Gν(z)
Ñ(c1) =

⌊
(Ñ(c)−N1)/[zw2]Gν(z)

⌋

N2
(4.68)= Ñ(c1) · [zw2]Gν(z)

N3 = Ñ(c)−N1 −N2

Ñ(c2) (4.69)= N3
return [Recursion(Ñ(c1), w1, ν), Recursion(Ñ(c2), w2, ν)]

that do not have a path that end in the state (Wmax, n). An example can be found in
Fig. 4.6.

4.3 Constant Composition Distribution Matching

4.3.1 Codebook construction
Recall from (2.36) that the empirical distribution of a vector c of length n is defined as

PĀ,c(a) = na(c)
n

(4.80)

where na(c) = |{i : ci = a}| is the number of times symbol a appears in c. The authors
of [29, Sec. 2.1] call PĀ,c the type of c. An n-type is a type based on a length n sequence.
The type vector tc expresses how often each letter of the alphabet appears, i.e.,

tc = [nα1(c), nα2(c), . . .] ∀αi ∈ A. (4.81)

A code book Cccdm ⊆ An is called a constant composition code if all code words are of
the same type, i.e., na(c) does not depend on the code word c. We will write na in place

60 Chapter 4 Fixed Length Distribution Matching Algorithms

w
Wmax

0

n′0 n

α

β

γ

Figure 4.5: Trellis of a shell mapping code book with weight W (α) = 0,W (β) =
1,W (γ) = 3, maximum weight Wmax = 5 and length n = 6.

w
Wmax

0

n′0 n

α

β

γ

Figure 4.6: Trellis of a code book code words of weight Wmax = 5 only and length n = 6.
The weight function is W (α) = 0,W (β) = 1,W (γ) = 3.

4.3 Constant Composition Distribution Matching 61

of na(c) for a constant composition code.
We use a constant composition code with na ≈ PA(a)n where PA is the target proba-

bility. As all na need to be integers and add up to n, there are multiple possibilities to
choose the na. We use the allocation that solves

PĀ = argmin
PĀ′

D (PĀ′‖PA) (4.82)

s.t.: PĀ′ is n-type. (4.83)

The solution of (4.82) can be found efficiently by [78, Algorithm 2]. This allocation
provides a clear rule for choosing the na and is convenient for analysis. Suppose that the
output length n is fixed and our system allows us to choose the input length k according
to our target distribution. Let T nPĀ

be the set of vectors of type PĀ, i.e., we have

T nPĀ
=
{

v

∣∣∣∣ v ∈ An, na(v)
n

= PĀ(a) ∀a ∈ A
}
. (4.84)

For an invertible matcher we need at least as many code words as input blocks. Thus, the
input block length must not exceed log2 |T nPĀ

|. We set the input length to k = blog2 |T nPĀ
|c

and we define the encoding function

fccdm : {0, 1}k → T nPĀ
. (4.85)

The actual mapping fccdm can be implemented efficiently by arithmetic coding, as we
will show in Sec. 4.3.6. We also detail how to use enumerative coding in Sec. 4.3.4 and
Sec. 4.3.5. The constant composition code book is now given by the image of fccdm, i.e.,

Cccdm = fccdm({0, 1}k). (4.86)

Since fccdm is invertible, the code book size is |Cccdm| = 2k. Note that the exact code
book does not need to be known and the codebook may differ for different algorithms.

4.3.2 Analysis

We show that fccdm asymptotically achieves all rates satisfying (4.9). We can bound the
input length k by

k =
⌊
log2 |T nPĀ

|
⌋
≥ log2 |T nPĀ

| − 1 (4.87)
and

k =
⌊
log2 |T nPĀ

|
⌋
≤ log2 |T nPĀ

|. (4.88)

62 Chapter 4 Fixed Length Distribution Matching Algorithms

By Lemma 2.3, we have

2nH(PĀ)
√

8q−1

n

∏q
i=1 PĀ(i)n

≤ |T nPĀ
| ≤ 2nH(PĀ)

√
(2π)q−1

n

∏q
i=1 PĀ(i)n

(4.89)

where q enumerates the support of PĀ and according the definition of PĀ implies that
nPĀ is always integer.

k ≥ nH (PĀ)− 3
2(q − 1) + 1

2 log2

(
n

∏q
i=1 PĀ(i)n

)
− 1 (4.90)

k ≤ nH (PĀ)− q − 1
2 log2 2π + 1

2 log2

(
n

∏q
i=1 PĀ(i)n

)
. (4.91)

Recall that the matcher output distribution is PÃn . We have

D (PÃn‖P n
A) =

∑

an∈Cccdm⊆T nPĀ

2−k log2
2−k

P n
A (an)

P n
Ā (an)
P n

Ā (an)

= D
(
PÃn‖P n

Ā

)
+

∑

an∈Cccdm⊆T nPĀ

2−k log2
P n

Ā (an)
P n

A (an)

= D
(
PÃn‖P n

Ā

)
+ |Cccdm|2−k

∑

a∈A
na log2

PĀ(a)
PA(a)

= D
(
PÃn‖P n

Ā

)

︸ ︷︷ ︸
Term 1

+nD (PĀ‖PA)
︸ ︷︷ ︸

Term 2

. (4.92)

For Term 1 we obtain

D
(
PÃn‖P n

Ā

)
=

∑

an∈Cccdm⊆T nP̄A

2−k log2
2−k

∏
i∈A

PĀ(i)ni

=
∑

Cccdm

2−k log2
2−m

2−nH(Ā)

= nH(Ā)− k. (4.93)

We can bound Term 1 from above and below using (4.90) and (4.91) in (4.93)

D
(
PÃn‖P n

Ā

)
≤ 3

2(q − 1) + q − 1
2 log2(n) + 1

2 log2

(q∏

i=1
PĀ(i)

)
+ 1 (4.94)

D
(
PÃn‖P n

Ā

)
≥ q − 1

2 log2 2π + q − 1
2 log2(n) + 1

2 log2

(q∏

i=1
PĀ(i)

)
. (4.95)

4.3 Constant Composition Distribution Matching 63

Term 1 scales logarithmically with block length n and a pre-log factor of (q − 1)/2.

Using (4.93) in (4.92) and dividing by n we have

D (PÃn‖P n
A)

n
= H(Ā)−R + D (PĀ‖PA) . (4.96)

The choice (4.82) of PĀ minimizes the third term on the right-hand side of (4.96) and
guarantees (see [78, Proposition 4]) that

D (PĀ‖PA) < log2


1 + q

min
a∈suppPA

PA(a)n2


 . (4.97)

If we fix the target distribution PA, even nD (PĀ‖PA) goes to zero if n goes to infinity.
Consequently, the unnormalized divergence of (4.92) grows logarithmically in n.

We know that Term 2 vanishes as the block length approaches infinity, i.e., we have

lim
n→∞D (PĀ‖PA) = 0. (4.98)

We now relate the input and output lengths to understand the asymptotic behavior of
the rate. For the rate, we obtain the upper and lower bounds

R = k

n

(4.88)
≤

log2 |T nPĀ
|

n
(4.89)
≤ H (PĀ)− (q − 1)

2n log2 2π −
∑

a∈suppPĀ

log2 PĀ(a)
2n − log2(n)

2n (q − 1) (4.99)

and

R = k

n

(4.87)
≥

log2 |T nPĀ
|

n
− 1
n

(4.89)
≥ H (PĀ)− (q − 1)

2n log2 8−
∑

a∈suppPĀ

log2 PĀ(a)
2n − q − 1

2n log2(n)− 1
n

(4.100)

and in the asymptotic case
lim
n→∞R = H (PĀ) . (4.101)

From (4.98) and [69, Proposition 6] we know that H (PĀ) → H (A), and by (4.98) and
(4.101) in (4.96), the normalized divergence approaches zero for n→∞.

64 Chapter 4 Fixed Length Distribution Matching Algorithms

101 102 103 104
1

1.2

1.4

1.6

1.8

2

blocklength n

ra
te

[b
its

/s
ym

bo
l]

CCDM
H (PA)
Lower bound on CCDM rate
Upper bound on CCDM rate

Figure 4.7: Rates of CCDM versus output blocklengths for
PA = (0.0722, 0.1654, 0.3209, 0.4415).

101 102 103 104

10−3

10−2

10−1

100

blocklength n

no
rm

al
iz

ed
di

ve
rg

en
ce

[b
its

/s
ym

bo
l] Normalized divergence

CCDM
SMDM (optimal)
AADM, R = H(PA) [21]

Figure 4.8: Normalized divergence of CCDM versus output blocklengths for PA =
(0.0722, 0.1654, 0.3209, 0.4415). For comparison, the performance of SMDM
that is optimal for block codes, and AADM [21] is displayed. Because of
limited computational resources, we show the performance of SMDM only
up to a blocklengths of n = 1000.

4.3 Constant Composition Distribution Matching 65

CCDM and SMDM Comparison

Divergence

Consider the output alphabet A = {1, 3, 5, 7}, rate R = 1.75 and an MB distribution.
The desired distribution is

PA = (0.0722, 0.1654, 0.3209, 0.4415).

Fig. 4.7 and Fig. 4.8 show the rates and normalized divergences of CCDM and SMDM,
respectively. Note that SMDM is an optimal distribution matcher for the rate R = 1.75.
The empirical performance of AADM [21] is also displayed. For optimal f2f and AADM,
the rate is fixed to H(PA) bits per symbol. Fig. 4.8 shows that CCDM needs about 160
symbols to reach an informational divergence of 0.06 bits per symbol, which is about 4
times the blocklengths of SMDM. Fig. 4.7 also shows the lower and upper bounds (4.9)
and (4.100), respectively.

Rate Adaptation

Rate adaptation for SMDM is straightforward for distributions of the form (4.50). The
number of bits that are interpreted as the index of the ordered list can be easily adapted,
and therefore the rate can be easily adapted. The granularity of rate adaption is 1/n,
where n is the output length. This granularity is the best possible. However, n cannot
be chosen arbitrarily large. CCDM can achieve a very high granularity because the
number of types grows polynomially in block length which corresponds to the number
of supported rates. For long block lengths CCDM supports virtually any rate.

Coded Results

We compare the performance of SMDM and CCDM for PAS in a coded scenario. We
target an SE of 1.5 bits per channel use with an 8-ASK constellation. We employ LDPC
codes from the recent 5G eMBB standard [27] with blocklengths 192, 384 and 768 bits,
i.e., 64, 128 and 256 8-ASK constellation points. Note that a 64-QAM constellation can
be constructed as the Cartesian product of two (bipolar) 8-ASK constellations, where
the latter has four different amplitude values. Consequently we can implicitly consider
the sequence of 32, 64 and 128 64-QAM constellation points. The uniform reference
curve uses a rate Rc = 1/2 code, whereas the shaped scenarios use a rate Rc = 3/4 code.
Both DM approaches have a 4-ary output alphabet to generate the shaped amplitude
sequences for the real and imaginary parts. We need 64, 128 and 256 amplitudes.
The target distribution in both cases is the MB family. The CCDMs operate with
output blocklengths matched to the code length. The SMDMs use a block length of 32
independent of the code length. This way we keep the algorithmic requirements small.
For the block length n = 64 the PAS with CCDM performance (blue curve) is similar

66 Chapter 4 Fixed Length Distribution Matching Algorithms

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.510−4

10−3

10−2

10−1

100

0.59 dB

SNR [dB]

FE
R

PAS with CCDM
PAS with SMDM
uniform

Figure 4.9: Finite length performance for uniform and shaped signaling using CCDM
and SMDM. We target a spectral efficiency (SE) of 1.5 bits per dimension
with 5G LDPC codes of blocklengths 192. CCDM and SMDM use block
lengths n = 64 and n = 32, respectively.

9 9.5 10 10.5 11 11.5 12 12.5 13 13.510−4

10−3

10−2

10−1

100

SNR [dB]

FE
R

PAS with CCDM
PAS with SMDM
uniform

Figure 4.10: Finite length performance for uniform and shaped signaling using CCDM
and SMDM. We target a SE of 1.5 bits per dimension with 5G LDPC codes
of blocklengths 384. CCDM and SMDM use block lengths n = 128 and
n = 32, respectively.

4.3 Constant Composition Distribution Matching 67

9 9.5 10 10.5 11 11.5 12 12.510−4

10−3

10−2

10−1

100

SNR [dB]

FE
R

PAS with CCDM
PAS with SMDM
uniform

Figure 4.11: Finite length performance for uniform and shaped signaling using CCDM
and SMDM. We target a SE of 1.5 bits per dimension with 5G LDPC codes
of block length 768. CCDM and SMDM use block lengths n = 256 and
n = 32, respectively.

to the uniform reference (green curve) in Fig. 4.9. The constant composition constraint
of CCDM thus causes a significant rate loss for small output blocklengths. In contrast,
SMDM operates with an output block length of n = 32 (i.e., two SMDM are used in
parallel) but gains 0.59dB in power efficiency at a frame error rate of 10−3. For longer
block lengths, i.e., n = 128 and n = 256 CCDM reaches the performance of SMDM or
is even better, see Fig. 4.10 and Fig. 4.11. This is due to the restriction of the block
length of SMDM to 32.

4.3.3 Code Trellis

The construction of the CC trellis borrows ideas from [34]. The trellis states are tuples

S = {0, 1, · · · , nα1} × {0, 1, · · · , nα2} × · · · {0, 1, · · · , nα|A|}. (4.102)

The number of states in the trellis is

|S| =
∏

α∈A
(nα + 1) (4.103)

68 Chapter 4 Fixed Length Distribution Matching Algorithms

(0,0,0)

(0,0,1)

(0,1,0)

(0,1,1)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

(2,0,0)

(2,0,1)

(2,1,0)

(2,1,1)

(3,0,0)

(3,0,1)

(3,1,0)

(3,1,1)

Figure 4.12: Constant composition code trellis for type t = (3, 1, 1). This trellis consists
of 16 states and 28 branches and represents 20 different CC code words or
paths.

and the number of edges is

E =
∑

α∈A
nα

∏

α′ 6=α
(nα′ + 1). (4.104)

The initial and final states are (0, · · · , 0) and (nα1 , · · · , nα|A|), respectively. State s ∈ S
is connected to an earlier state s′ ∈ S via symbol αq if all entries are identical except
for the q-th entry of s that is augmented by one.

Example 4.7. Consider a CC code on the alphabet A = {α1, α2, α3} and with type
t = (3, 1, 1). The trellis is depicted in Fig. 4.12. It consists of |{0, 1, 2, 3}| · |{0, 1}| ·
|{0, 1}| = 16 states. The colored path corresponds to the sequence [α1α2α1α3α1]. It
includes three increment-steps of α1, one increment-step of α2, and one increment-step
of α3, and therefore matches the sequence type.

Note that this code trellis includes the complete set Tt of sequences of type t, however
Cccdm is usually only a subset.

4.3.4 Algorithm - Enumerative Coding
For the implementation of a CC code book with enumerative coding, we need to deter-
mine how many code words in the code book start with a prefix bi. We use algorithms
based on (2.47). The prefix bi tells how often each letter in the alphabet occurred and we
can calculate which letters are still missing. It remains to determine how many distinct
permutations of the remaining letters are still possible, i.e., we have

nbi(T nPA) = (n− i)!
∏
α∈A(PĀ(α) · n− nα(bi))! . (4.105)

If any of the differences PĀ(α) · n− nα(bi) is negative, then bi is not a valid prefix of the
code word and the expression evaluates to zero.

4.3 Constant Composition Distribution Matching 69

4.3.5 Algorithm - Divide-and-Conquer Enumerative Coding
To implement a CC code book we introduce the ordering of code words within a type.
We assume an order among the letters in the alphabet A. Each type set has a base
word which is the first word in lexicographical ordering. This code word can be easily
constructed by concatenating nα times the letter α with nβ times the letter β and so
on with α < β < . . . according to the order. We write b′(c) to get the base word of the
type set that the sequence c belongs to.
Consider two sequences c and d. c is first in order if
1. The base word of the first half of c comes before the base word of the first half of

d in lexicographical order.

2. The base word of the first halves of c and d are the same and the first halves are
not identical. The first half of c comes before the first half d according to these
rules.

3. The first halves of c and d are identical and the second half of c comes before the
second half d according to these rules.

In these cases we write c < d.
For the implementation below, we require n to be a power of 2.

Decoding

We derive the number N(c) of sequences of the same type that come before a length n
sequence c according to the above rules. In this section we write c1 for the first half of
c and c2 for the second half.
The number N1 of sequences that are below a sequence c according to the first rule is

N1 =
∑

b<b′(c1)

(
n/2
tb

)(
n/2

tc − tb

)
(4.106)

where the summation is over all base words b < b′(c1), i.e., all base words that come
before the base word of c1 in lexicographical ordering. The first multinomial evaluates
how many permutations there are of the base word b and the second multinomial eval-
uates the number of permutations for the remaining letters such that the type of c is
correct. The second multinomial may not exist and becomes 0 in this case.
The number N2 of sequences that are below a sequence c according to the second rule

is
N2 = N(c1) ·

(
n/2
tc2

)
. (4.107)

The number N3 of sequences that are below a sequence c according to the third rule is

N3 = N(c2). (4.108)

70 Chapter 4 Fixed Length Distribution Matching Algorithms

The decoded position N(c) in the list or rather the number of sequences that come first
is

N(c) = N1 +N2 +N3 (4.109)
where the summands N2 and N3 are defined recursively. We reach the stop criteria for
length two. Solving the problem for a length two sequence [a1, a2] is easy because there
are only a few possible cases. If both letters a1 and a2 are the same there is no other
permutation, i.e., N([a1, a2]) = 0. If a1 < a2 then the permutation [a2, a1] is a successor
and N([a1, a2]) = 0 and if a1 > a2 then N([a1, a2]) = 1 must hold.

Example 4.8 (Decoding of a CC sequence with divide-and-conquer enumerative cod-
ing). Consider the sequence c = [1, 2, 0, 0, 1, 0, 1, 0] and its type vector tc = [4, 3, 1]. This
sequence is divided into four sequences of length two, i.e., N([1, 2]), N([0, 0]), N([1, 0])
and N([1, 0]). N([1, 2]) and N([0, 0]) both evaluate to zero, because [2, 1] is second in
lexicographical order and [0, 0] does not have a permutation. N([1, 0]) evaluates to 1
because the permutation [0, 1] is first in order. With this information, we can compute
N2 and N3 of N(1, 2, 0, 0) and N([1, 0, 1, 0]). N2 and N3 of N([1, 2, 0, 0]) both evaluate
to 0, and N2 and N3 of N([1, 0, 1, 0]) evaluate to 2 and 1, respectively. For the sequence
[1, 2, 0, 0] we consider first the base of [1, 2], which is [1, 2] itself. Base words that come
first are [0, 2], [0, 1] and [0, 0]. Note that [1, 1] is not included in the list because this
sequence violates the type constraint of [1, 2, 0, 0]. N1 then evaluates to

N1 =
∑

b∈{[0,0],[0,1],[0,2]}

(
2
tb

)(
2

t− tb

)
(4.110)

=
(

2
2, 0, 0

)(
2

0, 1, 1

)
+
(

2
1, 1, 0

)(
1

1, 0, 1

)
+
(

2
1, 0, 1

)(
2

1, 2, 0

)
(4.111)

= 2 + 4 + 4 = 10. (4.112)

In a similar way we calculate that N1 of N([1, 0, 1, 0]) is 4. In the final step we calculate
N2 and N3 from the previous results. The first part of the word is [1, 2, 0, 0]. The base
word of [1, 2, 0, 0] is [0, 0, 1, 2] and base words that come first and do not violate the
type vector tc are [0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 2] and [0, 0, 1, 1]. N1 of the base problem
evaluates to

N1 =
∑

b∈{[0,0,0,0],[0,0,0,1],
[0,0,0,2],[0,0,1,1]}

(
4
tb

)(
4

t− tb

)
(4.113)

=
(

4
4, 0, 0

)(
4

0, 3, 1

)
+
(

4
3, 1, 0

)(
4

1, 2, 1

)
+
(

4
3, 0, 1

)(
4

1, 3, 0

)
+
(

4
2, 2, 0

)(
4

2, 1, 1

)

(4.114)
= 4 + 48 + 16 + 72 = 140. (4.115)

4.3 Constant Composition Distribution Matching 71

[1, 2, 0, 0, 1, 0, 1, 0]

N1 =
∑

b∈{[0,0,0,0],[0,0,0,1],
[0,0,0,2],[0,0,1,1]}

(
4
tb

)(
4

t − tb

)
= 140

N2 = N([1, 2, 0, 0]) ·
(

4
2, 2, 0

)
= 60

N3 = N([1, 0, 1, 0]) = 4

[1, 2, 0, 0]

N1 =
∑

b∈{[0,0],
[0,1],[0,2]}

(
2
tb

)(
2

t − tb

)
= 10

N2 = N([1, 2]) ·
(

2
2, 0, 0

)
= 0

N3 = N([0, 0]) = 0

[1, 2]

N1 = 0

N([1, 2]) = 0

[0, 0]

N1 = 0

N([0, 0]) = 0

N([1, 2, 0, 0]) = 10

[1, 0, 1, 0]

N1 =
∑

b∈{[0,0]}

(
2
tb

)(
2

t − tb

)
= 1

N2 = N([1, 0]) ·
(

2
1, 1, 0

)
= 2

N3 = N([1, 0]) = 1

[1, 0]

N1 = 1

N([1, 0]) = 1

[1, 0]

N1 = 1

N([1, 0]) = 1

N([1, 0, 1, 0]) = 4

N(1, 2, 0, 0, 1, 0, 1, 0) = 204

Figure 4.13: Decoding of the sequence [1, 2, 0, 0, 1, 0, 1, 0] in the tree structure.

72 Chapter 4 Fixed Length Distribution Matching Algorithms

One can easily check that N([1, 0, 1, 0]) evaluates to 4. For N([1, 2, 0, 0, 1, 0, 1, 0]) we
obtain N2 = 60 and N3 = 4 which means that N([1, 2, 0, 0, 1, 0, 1, 0]) = 204. The steps
are shown in Fig. 4.13.

Encoding

Encoding follows a similar strategy as decoding. During decoding we are aware of the
types and want to calculate how many sequences there are before in the ordered list,
while encoding tries to find the types of subsequences knowing how many sequences
came before in the ordered list. Thus N(c) is split into three parts N1, N2, N3 and the
algorithm determines the type of the first and second parts. At a length of 1, the type
directly specifies the letter.

1. Find the base word b′ such that
∑

b<b′

(
n/2
tb

)(
n/2

tc − tb

)
≤ N(c) <

∑

b≤b′

(
n/2
tb

)(
n/2

tc − tb

)
. (4.116)

2. This base vector b′ determines the type of the first part of the sequence and
therefore also of the second part.

3. Furthermore we can calculate N1 of the decoding step and obtain the index of the
first and second half via

N(c1) =


N(c)−N1(

n/2
tc2

)

 (4.117)

N(c2) = N(c)−N1 −N(c1) ·
(
n/2
tc2

)
. (4.118)

4. Apply rules 1 to 3 until we have length 2 sequences. The type vector indicates at
most two different letters a1 and a2 with a1 ≤ a2. If N(c) = 0 then return [a1, a2],
else [a2, a1].

Example 4.9. We want to encode the integer 204 into the type set of the type vector
[4, 3, 1]. We try to find the base word such that (4.116) is fulfilled. Possible base words
that do not violate the CC constraint are

b′ ∈ {[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 2], [0, 0, 1, 1],
[0, 0, 1, 2], [0, 1, 1, 1], [0, 1, 1, 2], [1, 1, 1, 2]}

4.3 Constant Composition Distribution Matching 73

N(c) = 204, tc = [4, 3, 1]
b′ = [0, 0, 2, 1], N1 = 140, N2 = 60, N3 = 4

N(c) = 5, tc = [2, 1, 1]

b′ = [0, 1, 1], N1 = 5, N2 = 0, N3 = 0

N(c) = 0,
tc = [0, 1, 1]

⇒[1, 2]
[2, 1]

N(c) = 0,
tc = [2, 0, 0]

⇒ [0, 0]

N(c) = 4, tc = [2, 2, 0]

b′ = [1, 1, 0], N1 = 1, N2 = 2, N3 = 1

N(c) = 1,
tc = [1, 1, 0]

[0, 1]
⇒[1, 0]

N(c) = 1,
tc = [1, 1, 0]

[0, 1]
⇒[1, 0]

Figure 4.14: Encoding of the index N(c) = 204 and type vector tc = [4, 3, 1] with its
subproblems in a tree.

and they have [1, 4, 4, 6, 12, 4, 12, 4] permutations. We find for b′ = [0, 0, 1, 2] that (4.116)
holds true, i.e., we have

∑

b<b′

(
n/2
tb

)(
n/2

tc − tb

)
= 140 ≤ N(c) < 212 =

∑

b≤b′

(
n/2
tb

)(
n/2

tc − tb

)
. (4.119)

Consequently the type vector of the second part is [4, 3, 1] − [2, 1, 1] = [2, 2, 0]. Using
equations (4.117) and (4.118) we obtain for the fist part N(c1) = b64/12c = 5 and for
the second part N(c2) = 64 − 60 = 4. We call the recursive algorithm for the first
subsequence with N(c) = 5 and tc = [2, 1, 1]. For the first part of this sequence, all base
words of length 2 fulfill the type constraint, i.e., we have

b′ ∈ {[0, 0], [0, 1], [0, 2], [1, 2]}. (4.120)

For b′ = [1, 2] we find that (4.116) holds true and N1 = 5. This implies that the base
word of the second part is [2, 1, 1]− [0, 1, 1] = [2, 0, 0] and N(c1) = N(c2) = 0. Therefore
the concatenation of base words [1, 2], [0, 0] gives the solution. The algorithm runs the
recursion with N(c) = 4 and tc = [2, 2, 0] and finds c = [1, 0, 1, 0]. The structure of the
algorithm is summarized with all intermediate steps in Fig. 4.14.

4.3.6 Algorithm - Arithmetic Coding
We use arithmetic coding to index sequences efficiently. In [22] an m-out-of-n coding
scheme was introduced that uses the same technique. Our arithmetic encoder associates

74 Chapter 4 Fixed Length Distribution Matching Algorithms

0011
1/6

0101
2/6

0110
3/6

1001
4/6

1010
5/6

1100
6/6

00
1/4

01
2/4

10
3/4

11
4/4

{0, 1}m T n
P̄A

Cccadm

Figure 4.15: Diagram of a constant composition arithmetic encoder with PĀ(0) =
PĀ(1) = 0.5, m = 2 and n = 4.

an interval to each input sequence in {0, 1}m and it associates an interval to each output
sequence, see Fig. 4.15 for an example.
The size of an interval is equal to the probability of the corresponding sequence ac-

cording to the input and output models, respectively. For the input model we choose an
iid Bernoulli(1/2) process. We describe the output model by a random vector

Ān = Ā1Ā2 . . . Ān (4.121)

with marginals PĀi = PĀ and the uniform distribution

PĀn(an) = 1
|T nPĀ
| ∀a

n ∈ T nPĀ
.

The intervals are ordered lexicographically. All input and output intervals range from 0
to 1 because all probabilities add up to 1.

Example 4.10. Fig. 4.15 shows input and output intervals with output length n = 4
and PĀ(0) = PĀ(1) = 0.5. There are 4 equally probable input sequences and 6 equally
probable output sequences. The intervals on the input side are [0, 0.25), [0.25, 0.5),
[0.5, 0.75) and [0.75, 1). The intervals on the output side are [0, 1

6), [1
6 ,

2
6), [2

6 ,
3
6), [3

6 ,
4
6),

[4
6 ,

5
6) and [5

6 , 1).1

The arithmetic encoder can link an output sequence to an input sequence if the lower
border of the output interval is inside the input interval. In the example (Fig. 4.15) 00
may link to both 0101 and 0011, while for 01 only a link to 0110 is possible. There are at
most two possible choices because by (4.87) the input interval size is less than twice the
output interval size. At the same time there is at least one choice, because by equation
(4.88) the input interval is at least as big as the output interval. Both choices are valid

1Please note that in this case no DM is needed. However, this indexing problem is of interest in its
own right.

4.3 Constant Composition Distribution Matching 75

00(11)
1
6

010(1)
2
6

011(0)
3
6

100(1)
4
6

101(0)
5
6

11(00)
6
6

00(11)
1
6

01

3
6

10

5
6

11(00)
6
6

0

0.5

1

1

Figure 4.16: Refinement of the output intervals. Round brackets indicate symbols that
must follow with probability one.

and we can perform an inverse operation. In our implementation, the encoder decides
for the output sequence with the lowest interval border. As a result, the code book Cccdm
of Example 4.10 is {0011, 0110, 1001, 1100}. In general Cccdm has cardinality 2m with
2m ≤ |T nPĀ

| < 2m+1 according to (4.87) and (4.88). There are also other mappings that
lead to a unique mapping. It is not possible to index the whole set T nPĀ

unless 2m = |T nPĀ
|.

The analysis of the code (Sec. 4.3.2) is valid for all code books Cccdm ⊆ T nPĀ
. The actual

subset is implicitly defined by the arithmetic encoder.
We now discuss an online algorithm that processes the input sequentially. Initially,

the input interval spans from 0 to 1. As the input model is Bernoulli(1/2) we split the
interval into two equally sized intervals and continue with the upper interval in case the
first input bit is ’1’; otherwise we continue with the lower interval. After the next input
bit arrives we repeat the last step. After m input bits we reach a size 2−m interval. After
every refinement of the input interval the algorithm checks for a sure prefix of the output
sequence, e.g., in Fig. 4.15 we see that if the input starts with 1 then the output must
start with 1. Every time we extend the sure prefix by a new symbol, we must calculate
the probability of the next symbol given the sure prefix. That means we determine the
output intervals within the sure interval of the prefix. The model for calculating the
conditioned probabilities is based on drawing without replacement. There is a bag with
n symbols of k discriminable kinds. na denotes how many symbols of kind a are initially
in the bag and n′a is the current number. The probability to draw a symbol of type a is
n′a/n. If we pick a symbol a then both n and n′a decrement by 1.

Example 4.11. Fig. 4.16 shows a refinement of the output intervals. Initially there
are 2 ’0’s and 2 ’1’s in the bag. The distribution of the first drawn symbol is PĀ1(0) =
PĀ1(1) = 1

2 . When drawing a ’0’, there are 3 symbols remaining: one ’0’ and two ’1’s.
Thus, the probability for a ’0’ reduces to 1/3 while the probability of ’1’ is 2/3. If two
’0’s were picked, two ’1’s must follow. This way we ensure that the encoder output is
of the desired type. Observe that the probabilities of the next symbol depend on the
previous symbols, e.g., we have

PĀ2|Ā1(0|0) 6= PĀ2|Ā1(0|1) (4.122)

76 Chapter 4 Fixed Length Distribution Matching Algorithms

in general. However, PĀn(an) = ∏n
i=1 PĀi|Āi−1(ai|ai−1) is constant on T nPĀ

as we show in
the following proposition.
Proposition 4.7. After n refinements of the output interval the model used for the
refinement step stated above creates equally spaced (equally probable) intervals that are
labeled with all sequences in T nPĀ

.
Proof. All symbols in the bag are chosen at some point. Consequently only sequences
in T nPĀ

may appear. All possibilities associated with the chosen string are products of
fractions n′a/n, where n takes on all values from the initial value to 1 because every
symbol is drawn at some point. Thus for each string we obtain for its probability an
expression that is independent of the realization itself:

PĀn(an) = na=0! · · ·na=k−1!
n! = 1

|T nPĀ
| ∀a

n ∈ T nPĀ
. (4.123)

�

Numerical problems for representing the input interval and the output interval occur
after a certain number of input bits. For this reason we introduce a rescaling each time
a new output symbol is known. We explain this next.

Scaling input and output intervals

After we identify a sure prefix, we are no longer interested in code sequences that do not
have that prefix. We scale the input and output interval such that the output interval
is [0,1). Fig. 4.17 illustrates the mapping of intervals (in1, out1) to (in2, out2). The
refinement for the second symbol works as described in Example 4.11. If the second
input bit is 0, we know that 10 must be a prefix of the output. The resulting scaling is
shown in Fig. 4.17 as (in2, out2) to (in3, out3). A more detailed explanation of scaling
for arithmetic coding can be found for instance in [79, Chap. 4]. We provide an online
implementation of CCDM in [80].

4.4 Product Distribution Matching
This section is based mainly on ideas presented in [70,81]. A similar idea was presented
in [82].

4.4.1 Approach
Consider an M -ary target distribution PA that can be decomposed into a product of
distributions, i.e.,

PA(bA(b1, b2, ..., bm)) =
m∏

i

PBi(bi) (4.124)

4.4 Product Distribution Matching 77

in1

1∗

0∗

out1

1∗

0∗

in2

10

11

out2

11(00)

10∗

in3

10

out3

101(0)

100(1)

Figure 4.17: Scaling of input and output intervals in case the input interval is a subset
of an output interval. The latter interval corresponds to [0, 1) after scaling.
A star indicates that this is just a prefix of the complete word. Round
brackets indicate symbols that must follow with probability one.

D
em

ul
tip

le
xe

r

M
ap

pe
r

DM1

DM2

DMm

/

/

/

k1

k2

km

/

/

/

n

n

n

/
k

/
n

Figure 4.18: Schematic for PDM with m component DMs. A block of k bits is split into
parallel blocks of sizes k1 to km. The DMs output m shaped sequences of
length n. A mapper recombines the sequences to one length n sequence.

78 Chapter 4 Fixed Length Distribution Matching Algorithms

where bi ∈ Ai,
∏m
i=1 |Ai| = M and bA(·) is an invertible mapping of m symbols to an

M -ary symbol. In this case, one can split one DM into multiple independent component
DMs and use the mapping to generate those symbols.

Example 4.12. Consider the distribution PA(0) = PA(1) = 0.3 and PA(2) = PA(3) = 0.2
with blocks of length 10. A CCDM uses permutations of the sequence [0, 0, 0, 1, 1, 1, 2, 2, 3, 3]
to approximate the distribution PA. There are

∣∣∣T 10
PA

∣∣∣ = 25200 such sequences. An alter-
native approach is to use two binary CCDMs with distributions PB1 ∼ Bernoulli(3/5)
and PB2 ∼ Bernoulli(1/2) and the mapping

bA(0, 0) = 0 (4.125)
bA(0, 1) = 1 (4.126)
bA(1, 0) = 2 (4.127)
bA(1, 1) = 3. (4.128)

The number of sequences that that we can address with the PDM is
(

10
5

)
·
(

10
4

)
= 52920. (4.129)

This means that we can choose from about 2 times more sequences and therefore possibly
use one bit more for indexing. The reason for the increased number of sequences is that
not only permutations of

[0, 0, 0, 1, 1, 1, 2, 2, 3, 3]
can be indexed, but also permutations of

[0, 0, 0, 0, 0, 1, 3, 3, 3, 3]
[0, 0, 0, 0, 1, 1, 3, 3, 3, 2]
[0, 0, 1, 1, 1, 1, 3, 2, 2, 2]
[0, 1, 1, 1, 1, 1, 2, 2, 2, 2].

4.4.2 PA is a product distribution

We derive a simple bound on the performance of PDM in comparison to CCDM for
binary DMs. In this case all distributions PBi in (4.124) are Bernoulli(pi) distributed.
Suppose that we can index all permutations, i.e., we use an enumerative technique for
the DMs. Then the number of bits that we can transmit within one block for CCDM
and PDM are the respective

kccdm = log2(T nPA) (4.130)

4.4 Product Distribution Matching 79

kpdm = k1 + k2 + . . . km =
m∑

i=1
log2(T nPBi

). (4.131)

In Sec. 4.3.2 we derived bounds on the input length kccdm:

nH (PA)− (M − 1)
2 log2(n)− 3

2(M − 1)− 1
2

M∑

i=1
log2(PA(i))) (4.132)

≤ kccdm

≤ nH (PA)− (M − 1)
2 log2(n)− (M − 1)

2 log2(2π)− 1
2

M∑

i=1
log2(PA(i)). (4.133)

Using Lemma 2.2 we find for kpdm that

n
m∑

i=1
(H (pi))−

1
2(m log2(8n) +

m∑

i=1
log2(pi(1− pi))) (4.134)

≤ kpdm

≤ n
m∑

i=1
(H (pi))−

1
2(m log2(2πn) +

m∑

i=1
log2(pi(1− pi))). (4.135)

We can thus bound the difference ∆k = kpdm − kccdm from above and below by

(M − 1)−m
2 log2(n) + 3(M − 1)−m log2 2π

2 + M/2− 1
2

m∑

i=1
log2(pi(1− pi)) (4.136)

≤ ∆k = kpdm − kccdm ≤ (4.137)
(M − 1)−m

2 log2(n) + (M − 1) log2 2π − 3m
2 + M/2− 1

2

m∑

i=1
log2(pi(1− pi)). (4.138)

This means that the extra information that we can transmit with a PDM as compared
to CCDM grows logarithmically in block length n. Furthermore, the factor in front of
the logarithm grows with the alphabet size. We can see this behavior in Fig. 4.19 and
Fig. 4.20.

4.4.3 PA is not a product distribution

Target distributions are in general not product distributions. If we want to use PDM
anyway, we need to approximate the distribution, i.e., find a mapping function bA(·) and
the distributions PBi that minimize informational divergence

argmin
PBi i∈{1,...m}

bA

D (PB1 × PB2 × . . .× PBm‖PA) . (4.139)

80 Chapter 4 Fixed Length Distribution Matching Algorithms

1500 3000 6000 12000 2400080

90

100

110

120

130

140

150

block length n

di
ffe

re
nc

e
in

in
pu

t
le
ng

th
∆

k

∆k lower bound
∆k upper bound
∆k

Figure 4.19: Difference of input length kpdm − kccdm for the product distribution
A ∼ Bernoulli(1/3) · Bernoulli(1/4) · Bernoulli(2/5) · Bernoulli(2/5) ·
Bernoulli(1/5) and 5 DMs. The x-axis has a logarithmic scale.

103 104 105
10−3

10−2

10−1

blocklength n

H
(P

A
)−

R
dm

PDM m = 5
PDM m = 4
PDM m = 3
PDM m = 2
CCDM

Figure 4.20: Rate loss of PDM. The target distribution is the 32-ary product distribution
PA = Bernoulli(1/3) · Bernoulli(1/4) · Bernoulli(2/5) · Bernoulli(2/5) ·
Bernoulli(1/5) . The number of component DMs is m. One component
DM uses the alphabet size 32/2m−1, all other component DMs are binary.
The case m = 1 recovers the CCDM.

4.4 Product Distribution Matching 81

We restrict attention toM -ary alphabets (and support) whereM is a power of 2, and to
binary component DMs. We want to find a good solution that first searches for locally
good distributions and then optimizes the mapping function bA. We iterate both steps.
The update rule for the mapping function is:

1. Sort the support of PA in descending order in a list L1.

2. Sort the support of the product distribution in descending order in a list L2.

3. Let the mapping bA assign the i-th entry of L2 to the i-th entry of L1.

For the update rule of the distributions we propose two possibilities.

Inverted Divergence Parameters: Problem (4.139) is easy to solve if we swap the
parameters of the divergence operation because the product distributions decouple.
In this case, the update rule for the i-th binary pmf PBi is

PBi(0) =
∑

bj∈{0,1},j 6=i
bi=0

PA(bA(bm)) (4.140)

which means that we add over all letters in the alphabet that are 0 at the i-th
position of their binary representation.

Coordinate Descent: When we set the partial derivative of divergence (4.139) of the
i-th distribution to zero, we obtain the solution

PBi(0) = exp(W)
1 + exp(W) (4.141)

with

W =
∑

bj∈{0,1},j 6=i
bi=1

∏

j 6=i
PBj(bj) log2 PA(bA(bm))−

∑

bj∈{0,1},j 6=i
bi=0

∏

j 6=i
PBj(bj) log2 PA(bA(bm)).

(4.142)

In Fig. 4.21 we compare the divergence of both approaches when we approximate a one-
sided MB distribution. Both approaches lead to a similar divergence that is acceptable
for energy efficient communication.

4.4.4 Extended Product Distribution Matching
Consider parallel channels with different qualities. [70] specifies a simple extension of PAS
that performs shaping for parallel channels. PDM offers a solution for this problem. For
example, consider two different channels and suppose we desire a length n sequence for
binary and 4-ary alphabets. The PDM needs one binary DM for a first and two binary

82 Chapter 4 Fixed Length Distribution Matching Algorithms

4 8 16 32 64

1 · 10−2

8 · 10−3

6 · 10−3

4 · 10−3

alphabet size M

di
ve

rg
en

ce

inverted parameters
coordinate descent

Figure 4.21: Divergence D (PĀ‖PA) of PDM when PA is an MB distribution with
H (PA) = log2(M)− 1. M is the size of the support of PA.

DMs for a second sequence. As illustrated in Fig. 4.22, we can use one DM with output
length 2n for both sequences and need one extra for the second sequence with output
length n. The potential benefit of this approach is twofold: first, using PDM can reduce
the rate loss, and second, replacing two DMs of lengths n by one single DM of length 2n
should reduce the rate loss even further. Fig. 4.23 shows this extended PDM scheme. It
provides the same interface to PAS as the naive approach that uses L individual DMs.
Using one DM for two distributions imposes restrictions on the distribution families

that can be generated. We next argue how extended PDM can generate families of
Gaussian-like distributions. The maximum constellation size is 2m and we choose the
m − 1 DM output distributions so that a natural based binary code (NBBC) mapper
generates a Gaussian-like distribution. By grouping 2j neighboring signal points to-
gether, the distribution of these signal point groups is still Gaussian-like, and is given
by the product distribution generated by the first m − 1 − j DMs. This suggests that
by using only m − 1 DMs, we can simultaneously generate Gaussian-like distributions
on 4, 8, . . . , 2m-ASK constellations. An example is shown in Fig. 4.22.

4.4 Product Distribution Matching 83

Bit-Mapper (A) Bit-Mapper (B)

n bits

2n bits
DM1

DM1

Figure 4.22: Simultaneously generating two Gaussian-like amplitude distributions for
alphabet sizes 2 and 4 by reusing a DM.

D
E

M
U

X

M
ap

pe
r

B
an

k

DM1

DM2

DMm

/

/

/

k1

k2

km

Bk1

Bk2

Bkm

n1 + . . . + nm

n2 + . . . + nm

nm

/
k

Bk

/
n1

|A| = 2

/
n2

|A| = 4

/
nm

|A| = 2m

Layered DM

Figure 4.23: Extended PDM encodes k bits into amplitude sequences of predefined
lengths. Internally, the extended PDM uses m binary component DMs
and 2m is the largest supported alphabet.

5
Joint Decoding of Shaping and
Error Control Codes
In Sec. 3.2 we gave a short introduction to PAS [11] and saw that DMs are an integral part
of PAS. In Sec. 4.3.2 CCDM introduces dependencies over all symbols in a block, and a
per symbol demodulator cannot consider these dependencies. For very long blocks, the
PAS rate is not affected by these dependencies, but systems with short length DMs suffer
in transmission rate [71]. In [57,58,60,82], DMs with smaller rate-loss are proposed. In
[83] the dependencies introduced by an extremely short 4-D shell mapping (SMDM) [58,
60] are resolved by a 4-D demodulator. The authors of [25] use polar codes with list
decoding and check if the code word candidates fulfill the CC constraint.
PAS uses a systematic FEC encoder to preserve a constrained sequence which is

similar to the Bliss scheme [12] for a part of the symbol sequence. To improve the Bliss
scheme’s performance, [84] and [85] use a supplementary soft input soft output (SISO)
decoder and iterate with the usual FEC decoder. We adopt this approach for PAS
and let the LDPC decoder iterate with a SISO CC code decoder based on the forward
backward (BCJR) algorithm to improve performance. For this purpose, we introduce the
trellis of a CC code. The resulting decoder is a generalized LDPC (GLDPC) decoder [86]
with a non-linear constraint.
Next, we briefly specify some components of the PAS transceiver that are important

for joint decoding.

Channel Model For transmission we consider M -ASK over the AWGN channel, i.e.,
the output symbols of the channel are

Y = X + Z (5.1)

where Z is a Gaussian random variable with zero mean and variance σ2. The

86 Chapter 5 Joint Decoding of Shaping and Error Control Codes

signal-to-noise ratio (SNR) is

SNR = E [X2]
σ2 . (5.2)

Labeling Function An invertible labeling function bX converts m bits to an M -ASK
symbol. We use a BRGC [52] where b1 decides the symbol’s sign, i.e., we have

βA(b2, · · · , bm) = |β(0, b2, · · · , bm)| = |β(1, b2, · · · , bm)|. (5.3)

The notation bi,j refers to the j-th bit of the i-th symbol xi. We write B to refer
to all bits bi,j, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Demodulation We consider a symbol-wise demodulator that is aware of the signal
statistics PA, PBj . The LLs L̃i(x) of the i-th transmitted symbol are

L̃i(x) = log(pY|X(Yi|Xi = x) · PX(x)),∀x ∈ X . (5.4)

The demodulator calculates the bit-wise LLs

L̃i,j(b) = log(pY|Bj(Yi|Bi,j = b) · PBj(b)),∀b ∈ {0, 1}. (5.5)

Thus, one symbol-channel splits into m parallel bit-channels [11]. The LLR of the
j-th bit in the i-th transmitted symbol is

Li,j = L̃i,j(0)− L̃i,j(1). (5.6)

For convenience, we collect LLs and LLRs in the matrices L̃ and L, respectively.
The (i, j)-th entry of the LL matrix L̃ corresponds to L̃i(xj). The (i, j)-th entry
of the LLR matrix L corresponds to Li,j.

LDPC Codes and Belief Propagation (BP) Decoding A (n, k) LDPC code [87]
is a binary linear block code described by an r×n parity-check matrix H with en-
tries hi,j, i = 1, 2, . . . , r, j = 1, 2, . . . , n, where r ≥ n−k. LDPC codes can be visu-
alized through a bipartite graph also known as the Tanner graph G. This graph con-
sists of a set V = {V1, V2, · · · , Vn} of n variable nodes, a set C = {C1, C2, · · · , Cr}
of r check nodes and a set E = {ej,i} of edges. The check node Cj is connected
to the variable node Vi through the edge ej,i if the entry hi,j of the parity-check
matrix is one.

An LDPC BP decoder operates on LLRs [11]. Based on the channel observations
LCH, the LDPC decoder outputs the APP LLRs:

LAPP = LCH + LE,LDPC (5.7)

5.1 BCJR Algorithm for CC codes 87

CCBCJR λ LDPC

λ−1

LCHt

LE,k LAPP,k

L̃APP,k

Figure 5.1: Symbol-based decoder.

where LE,LDPC denotes the extrinsic information.

5.1 Forward-Backward Algorithm for Constant
Composition Codes

The BCJR algorithm [88], also known as the forward-backward algorithm, is a SISO
algorithm that calculates the a posteriori symbol probabilities

PAPP(ai) = P (ai|L̃) (5.8)

where L̃ is a vector of LLs and ai is the i-th transmitted symbol. From these probabilities,
we can compute the extrinsic LLs L̃E [88]. For binary codes, the input interface may be
LLRs, because we can convert easily from LLRs to LLs and vice versa. The constant
composition BCJR (CCBCJR) decoder builds the code trellis from the type vector t,
i.e., it is a function

CCBCJR : L̃× t 7→ L̃
E
. (5.9)

5.2 Joint Decoder
We study how the decoder can exploit CC code properties to decrease the error proba-
bility.

5.2.1 Symbol-Based Decoder

The symbol-based decoder consists of a CCBCJR decoder and a LDPC decoder that
exchange messages iteratively, see Fig. 5.1. The BCJR decoder has a symbol based
interface, while the LDPC decoder has a bit based interface. The demodulator provides
the LLs of the symbols and bit levels. The symbol-wise LLs are passed to the CCBCJR
decoder. The LDPC decoder and the CCBCJR decoder iterate extrinsic information
LE. We use functions β and β−1 to convert from symbol based LLs to bit based LLRs

88 Chapter 5 Joint Decoding of Shaping and Error Control Codes

amplitude
bits

sign bits

+ + + + + +

CCBCJR2 CCBCJR3 CCBCJR4

Figure 5.2: Tanner graph of naive bit-based decoder form = 4 and n = 3. The amplitude
bit variable nodes are connected to the respective BCJR node. The sign bit
variable nodes are not connected to a BCJR node.

and vice versa. The function β converts LL into LLRs via

Li,j = log




∑
x:β−1

j (x)=0
exp

(
L̃i(x)

)

∑
x:β−1

j (x)=1
exp

(
L̃i(x)

)



. (5.10)

The function β−1 converts from bit-based LLRs to symbol-based LLs. For simplicity,
we assume for a fixed i that the Bi,j, j = 1, 2, . . . ,m, are pairwise independent given Yi.
The conversion is then

L̃i(x) = log



m∏

j=2

exp(Li,j · (1− 2β−1
A,j(x)))

1 + exp(Li,j · (1− 2β−1
A,j(x)))


 . (5.11)

Note that 1− 2β−1
A,j(x) is 1 for the bit 0 and -1 for the bit 1.

5.2.2 Bit-Based Decoder

The number of states and edges in the CCBCJR decoder increases exponentially with
the alphabet size and polynomially in n. One idea to decrease complexity is to replace
one |A|-ary CCBCJR decoder by log2 |A| binary CCBCJR decoders. Additionally, the
conversion functions β, β−1 become obsolete.
Consider a transmission sequence xn with type constraint t on the amplitudes and

its binary representation B ∈ {0, 1}n×m according to the labeling function β, where the
entry bi,j corresponds to the j-th bit of the i-th symbol. Let b

|
j = b1,j, b2,j, · · · bn,j be

the j-th column of B, i.e., the j-th bit-level of the binary representation of the symbol
sequence. Since xn has a type t constraint on the amplitudes only, the sign bits are
unconstrained. All other bit levels j, 2 ≤ j ≤ m are constrained. We derive the type
constraint for each bit-level depending on the type t of the sequence xn and the labeling
function β. The number of zeros in bit-level j is equal to the number of amplitudes in

5.2 Joint Decoder 89

β(x)

x

111
-7

110
-5

100
-3

101
-1

001
1

000
3

010
5

011
7

Figure 5.3: 8-QAM constellation with BRGC labeling β.

the sequence xn whose binary representation is zero in the j-th position, i.e., we have

nb(b|j) =
∑

α∈A, β−1
j (α)=b

nα(amp(xn)) (5.12)

where amp(xn) is the element-wise absolute value of xn, b ∈ {0, 1}, and 2 ≤ j ≤ m.
Thus for one amplitude type constraint t, we obtain m − 1 bit constraints t2, · · · , tm,
where the index denotes the respective bit-level with

tj =
[
n0(b|j), n1(b|j)

]
. (5.13)

Example 5.1. Consider a sequence xn with amplitude constraint t = [37, 20, 6, 1], i.e.,
37 ones, 20 threes, 6 fives and 1 sevens, and the BRGC labeling β as shown in Fig. 5.3.
We find n1(b|2) = 7 because the second bit of the labeling β is ’1’ for amplitudes 5 and
7 and they appear 6 times and once, respectively. The corresponding bit types t2 and
t3 are

t2 = [57, 7] (5.14)
t3 = [26, 38] . (5.15)

For decoding, we add m− 1 BCJR nodes into the Tanner graph, as shown in Fig. 5.2.
Note that the bit-based CCBCJR decoders run independently. Their combined trellises
allow sequences that do not fulfill the type constraint t.

5.2.3 Improved Bit-Based Decoder

Each of the m−1 BCJR nodes is connected to n/m nodes. This suggests that the girth,
i.e., the shortest cycle in the graph, is small. Loopy BP for small-girth was investigated
in [89] and may lead to oscillations. There are two basic approaches to deal with this
issue. First, we may filter the beliefs and thereby attenuate oscillations. Second, we could
introduce multiple short length CC constraints on a bit-level, i.e., introduce lower degree
CCBCJR nodes which increases both the girth and the rate-loss. Here, we consider only
the first approach.
The LDPC decoder outputs the a posteriori LLRs LAPP

j . Based on the channel obser-
vation, the type vector tj and a posteriori information, the j-th BCJR decoder CCBCJRj

generates the extrinsic information LE
j . The outputs of them−1 CCBCJRs are collected

90 Chapter 5 Joint Decoding of Shaping and Error Control Codes

101 102 103101

102

103

104

105

106

107

108

× 12.64

Codeword Length

N
um

be
r

of
Ed

ge
s

symbol based BCJR
binary based BCJRs

(192,96) 5G LPDC code

Figure 5.4: Number of branches to compute for the bit-based and symbol-based BCJR
algorithms. The empirical distribution is [37, 20, 6, 1]/64. We interpret (5.17)
and (5.18) as continuous functions. At an output length of 64 symbols, the
symbol-based BCJR algorithm needs about 12.5 times more states than the
binary-based BCJR algorithm. We compare with the number of branches of
an iterative LDPC decoder using the BCJR algorithm.

in the matrix LE. L and LE are then processed by the function

g
(
LCH,LE,LAPP, k

)
≈ LCH +

(
µ ·LE,k−1 + (1− µ) ·LE,k

)

︸ ︷︷ ︸
prior information

(5.16)

with k ≥ 1 and µ ∈ [0, 1]. After a number of iterations, the LDPC decoder outputs
new a posteriori information, which is sent back to the CCBCJR decoders. The optimal
parameter µ is found by grid search.

5.2.4 Computational Complexity Comparison

For the computational complexity analysis, we focus on the number E of edges in the
code trellises, since the BCJR complexity is Θ(E)1 [90]. This analysis depends on the
trellis representation of the CC code.

1We write f(x) = Θ(g(x)) to express that f(x) is bounded starting from x0 on from below by g(x)
times a positive constant k1 and from above by g(x) times a positive constant k2.

5.3 Simulation Results 91

Symbol-Based Decoder

For a type t = [n1, · · · , nM/2] constraint, we have

Esymb =
M/2∑

i=1
ni
∏

j 6=i
(nj + 1) (5.17)

branches. An increasing alphabet size even for the same block length may result in a
large increase in the number of states and therefore the computational complexity. For
a given empirical distribution, the number of states scales with the power of the support
of the empirical distribution.

Bit-Based Decoder

For the bit-based decoder, we split one amplitude type constraint t into m − 1 bit
constraints t2, · · · , tm. The number of edges is then

Ebit =
m∑

j=2
2n0(b|j)n1(b|j) + n0(b|j) + n1(b|j). (5.18)

In Fig. 5.4 we show the number of branches vs. the code word length for the empirical
distribution [37, 20, 6, 1]/64. We also add the number of branches that are evaluated
during one iteration of LDPC decoding of an (192,96) 5G LDPC code, i.e., we compute
the number of branches of all single parity check and repetition nodes. Single parity
check and repetition nodes have 4 times and 2 times the number of branches as their
degree edges, respectively.

5.3 Simulation Results
We compare the performance of PAS with the bit-level decoder proposed in [11] with
the symbol-based and the heuristically improved bit-based decoders with supplementary
CC constrained nodes. We target a spectral efficiency of 1.5 bits per channel use with
the 8-ASK constellation.
For encoding, we use a DM with type t = [37, 20, 6, 1] from Example 5.1 and a rate

3/4 code from the 5G eMBB standard [27] with block length 192. The reference LDPC
decoder [11] is biased with the empirical distribution of the FEC input. The symbol-
based decoder uses t and the bit-based decoder has two CCBCJRs with t2 = [7, 57] and
t3 = [38, 26].
Simulation results in Fig. 5.5 show that the LDPC decoder with a linear combination

of LE,LDPC,k−1 and LE,k outperforms the LDPC decoder with LE,k as prior information
only. We include the performance of a (192,96) 5G LDPC code with an optimized
interleaver as a non-shaped baseline with the same spectral efficiency. The bit-based

92 Chapter 5 Joint Decoding of Shaping and Error Control Codes

11 11.5 12 12.5 13 13.5 1410−5

10−4

10−3

10−2

10−1

100

SNR in dB

FE
R

reference decoder [11]
symbol-based decoder
improved bit-based decoder, µ = 0.2
random coding bound [91]
(192,96) 5G code, uniform signaling

Figure 5.5: FER of the different strategies for 24 outer-iterations and 100 inner-
iterations. We collected 100 erroneous frames per simulation point. The
scheme is implemented by using 8−ASK with code rate 3/4 and block length
n = 192. The rate-loss Rloss is about 0.145 bit/symbol.

decoding strategy gains 0.5dB in the simulation setup as compared to the LDPC decoder
in [11].

6
Conclusions
We have studied distribution matchers (DMs) for energy efficient coded modulation
(CM) and in particular probabilistic amplitude shaping (PAS). We summarize the main
contributions of this thesis:

Chapter 3 focused on low energy sequences and showed achievable shaping gains for
fixed-to-fixed length distribution matchers with finite block length. In particular,
constraints on the order of an ASK modulation lead to a degradation of the shaping
gain and the shaping improves for high transmission rates.

Chapter 4 introduced DMs formally and explained differences of variable length and
fixed length DMs. Two DMs were introduced, i.e., constant composition DM
(CCDM) and divergence optimal fixed length DM (SMDM). SMDMs approximate
an independent and identically distributed (iid) target source with logarithmically
growing divergence in the block length. We observed that divergence grows loga-
rithmically for CCDM as well, but the constant term is worse so that CCDM is
recommended only for long block lengths.

For fixed-to-fixed length DMs with the same code book, the divergence is inde-
pendent of the mapping from messages to code words. It was shown how to use
enumerative coding and shell mapping to index the optimal code book. In both
cases generating functions build the foundation of the algorithms. Enumerative
coding and a divide-and-conquer method are also used to instantiate CCDMs.
Moreover, arithmetic coding is an elegant method to map messages to code words
that permits encoding long block lengths. Since CCDM has a poor performance
for short block lengths, product distribution matching (PDM) was proposed as a
method that uses multiple binary DMs to approximate a distribution with large
support. For product distributions, the pre-log factor of divergence can be reduced

94 Chapter 6 Conclusions

significantly. For non-product distributions, two algorithms are proposed that ap-
proximate these distributions. Unfortunately, asymptotically, the divergence grows
linearly in the block length.

Chapter 5 tackles the performance of CCDM at the receiver side. The CCDM code
book is interpreted as a supplementary code that can assist in the decoding process
by adding a further node to the Tanner graph of an LDPC code. This additional
node is computationally complex, hence, it is split into multiple binary nodes which
reduces complexity significantly. A heuristically improved decoder gains up to 0.5
dB in transmit power as compared to a decoder that uses only a bias that reflects
the amplitude distribution.

All presented methods, except PDM that approximates non-product distributions,
have a vanishing normalized divergence to the target distribution for long blocks. This
was required for energy efficient communications. The PDM that approximates non-
product dsitributions has a penalty that depends on the target distribution and is neg-
ligible for energy efficient communications. However, for stealth communication, even
the the optimal distribution matcher (SMDM) is infeasible because divergence grows
logarithmically and therefore the communication channel can be discovered. It remains
to relax some restrictions of the DMs such that they remain practical, but their diver-
gence decreases. We suggest to allow many-to-one mappings into disjoint sets with a
supplementary source of randomness that does not carry information.

95

Bibliography
[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,

vol. 27, pp. 379–423 and 623–656, Jul. and Oct. 1948.

[2] J. Forney, G., R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient mod-
ulation for band-limited channels,” IEEE J. Sel. Areas Commun., vol. 2, no. 5, pp.
632–647, Sep. 1984.

[3] G. Ungerböck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf.
Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.

[4] A. K. Khandani and P. Kabal, “Shaping multidimensional signal spaces. I. Optimum
shaping, shell mapping,” IEEE Trans. Inf. Theory, vol. 39, no. 6, pp. 1799–1808,
1993.

[5] ——, “Shaping multidimensional signal spaces. ii. shell-addressed constellations,”
IEEE Trans. Inf. Theory, vol. 39, no. 6, pp. 1809–1819, 1993.

[6] F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian
channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929, May 1993.

[7] P. Fortier, A. Ruiz, and J. M. Cioffi, “Multidimensional signal sets through the
shell construction for parallel channels,” IEEE Trans. Commun., vol. 40, no. 3, pp.
500–512, 1992.

[8] ITU, “A modem operating at data signalling rates of up to 33 600 bit/s for use on the
general switched telephone network and on leased point-to-point 2-wire telephone-
type circuits,” 1998.

[9] Digital Video Broadcasting (DVB); 2nd Generation Framing Structure, Channel
Coding and Modulation Systems for Broadcasting, Interactive Services, News Gath-
ering and Other Broadband Satellite Applications (DVB-S2), European Telecom-
mun. Standards Inst. (ETSI) Std. EN 302 307, Rev. 1.2.1, 2009.

[10] Digital Video Broadcasting (DVB); Second generation framing structure, channel
coding and modulation systems for Broadcasting, Interactive Services, News Gath-
ering and other broadband satellite applications; Part 2: DVB-S2 Extensions (DVB-
S2X), European Telecommun. Standards Inst. (ETSI) Std. EN 302 307-2, Rev. 1.1.1,
2014.

96 Bibliography

[11] G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-
density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12,
pp. 4651–4665, Dec. 2015.

[12] W. G. Bliss, “Circuitry for performing error correction calculations on baseband
encoded data to eliminate error propagation,” IBM Techn. Discl. Bull., no. 23,
Mar. 1981.

[13] A. R. Calderbank and L. H. Ozarow, “Nonequiprobable signaling on the gaussian
channel,” IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 726–740, Jul. 1990.

[14] G. Ungerböck, “Huffman shaping,” in Codes, Graphs, and Systems, R. Blahut and
R. Koetter, Eds. Springer, 2002, ch. 17, pp. 299–313.

[15] G. Böcherer and R. Mathar, “Matching dyadic distributions to channels,” in Proc.
Data Compression Conf., Mar. 2011, pp. 23–32.

[16] R. A. Amjad and G. Böcherer, “Fixed-to-variable length distribution matching,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2013.

[17] N. Cai, S.-W. Ho, and R. Yeung, “Probabilistic capacity and optimal coding for
asynchronous channel,” in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2007, pp.
54–59.

[18] S. Baur and G. Böcherer, “Arithmetic distribution matching,” in Proc. Int. ITG
Conf. Syst. Commun. Coding, Hamburg, Germany, Feb. 2015, pp. 1–6.

[19] R. A. Amjad, “Algorithms for simulation of discrete memoryless sources,” Master’s
thesis, Technical University of Munich, Institute for Communications Engineering,
2013.

[20] M. Mondelli, S. H. Hassani, and R. Urbanke, “How to achieve the capacity of asym-
metric channels,” in Proc. Allerton Conf. Commun., Contr., Comput., Monticello,
IL, USA, Sep. 2014, pp. 789–796.

[21] P. Schulte, “Zero error fixed length distribution matching,” Master’s thesis, Tech-
nical University of Munich, Institute for Communications Engineering, 2014.

[22] T. V. Ramabadran, “A coding scheme for m-out-of-n codes,” IEEE Trans. Com-
mun., vol. 38, no. 8, pp. 1156–1163, Aug. 1990.

[23] M. Pikus, W. Xu, and G. Kramer, “Finite-precision implementation of arithmetic
coding based distribution matchers,” arXiv preprint arXiv:1907.12066, 2019.

[24] T. Fehenberger, D. S. Millar, T. Koike-Akino, K. Kojima, and K. Parsons, “Parallel-
amplitude architecture and subset ranking for fast distribution matching,” arXiv
preprint arXiv:1902.08556, 2019.

Bibliography 97

[25] P. Yuan, G. Böcherer, P. Schulte, G. Kramer, R. Böhnke, and W. Xu, “Error
detection using symbol distribution in a system with distribution matching and
probabilistic amplitude shaping,” German EP Application, 10 31, 2016.

[26] K. Niu and K. Chen, “Crc-aided decoding of polar codes,” IEEE Commun. Lett.,
vol. 16, no. 10, pp. 1668–1671, 2012.

[27] T. Richardson and S. Kudekar, “Design of Low-Density Parity Check Codes for 5G
New Radio,” IEEE Commun. Mag., vol. 56, no. 3, pp. 28–34, Mar. 2018.

[28] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. John
Wiley & Sons, Inc., 2006.

[29] I. Csiszár and P. C. Shields, “Information theory and statistics: A tutorial,” Foun-
dations and Trends® in Commun. Inf. Theory, vol. 1, no. 4, pp. 417–528, 2004.

[30] R. B. Ash, Information Theory. New York: Dover, 1965.

[31] R. R. Bahadur, “Some approximations to the binomial distribution function,” Ann.
Math. Statistics, pp. 43–54, 1960.

[32] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd ed.
AIP, 1989.

[33] T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory, vol. 19, no. 1,
pp. 73–77, Jan. 1973.

[34] J. Schalkwijk, “An algorithm for source coding,” IEEE Trans. Inf. Theory, vol. 18,
no. 3, pp. 395–399, May 1972.

[35] T. J. Lynch, “Sequence time coding for data compression,” Proc. IEEE, vol. 54,
no. 10, pp. 1490–1491, 1966.

[36] J. Sayir, “On coding by probability transformation,” Ph.D. dissertation, ETH
Zürich, 1999.

[37] R. C. Pasco, “Source coding algorithms for fast data compression,” Ph.D. disserta-
tion, Stanford University CA, 1976.

[38] J. J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM Journal
of research and development, vol. 20, no. 3, pp. 198–203, May 1976.

[39] M. Hoshi et al., “Interval algorithm for homophonic coding,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 1021–1031, 2001.

98 Bibliography

[40] J. Honda and H. Yamamoto, “Variable-to-fixed length homophonic coding with a
modified shannon-fano-elias code,” in Proc. Int. Symp. Inf. Theory and its Applicat.
(ISITA). IEEE, Oct. 2016, pp. 11–15.

[41] R. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE
Trans. Inf. Theory, vol. 18, no. 4, pp. 460–473, Jul. 1972.

[42] S. Arimoto, “An algorithm for computing the capacity of arbitrary discrete memo-
ryless channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 14–20, Jan. 1972.

[43] J. Hou and G. Kramer, “Effective secrecy: Reliability, confusion and stealth,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2014, pp. 601–605.

[44] F. Steiner and G. Böcherer, “Comparison of geometric and probabilistic shaping
with application to ATSC 3.0,” in Proc. Int. ITG Conf. Syst. Commun. Coding.
VDE, Feb. 2017, pp. 1–6.

[45] Physical Layer Protocol, Advanced Television Systems Committee, Washington,
DC, USA, Dec. 2016.

[46] A. Martinez, A. Guillén i Fàbregas, G. Caire, and F. Willems, “Bit-interleaved
coded modulation revisited: A mismatched decoding perspective,” IEEE Trans.
Inf. Theory, vol. 55, no. 6, pp. 2756–2765, Jun. 2009.

[47] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes: theoretical
concepts and practical design rules,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp.
1361–1391, Jul. 1999.

[48] H. Imai and S. Hirakawa, “A new multilevel coding method using error-correcting
codes,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 371–377, May 1977.

[49] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun.,
vol. 40, no. 5, pp. 873–884, May 1992.

[50] R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmission. John
Wiley & Sons, Inc., 2002.

[51] G. Böcherer, “Capacity-achieving probabilistic shaping for noisy and noiseless
channels,” Ph.D. dissertation, RWTH Aachen University, 2012. [Online]. Available:
http://www.georg-boecherer.de/capacityAchievingShaping.pdf

[52] F. Gray, “Pulse code communication,” U.S. Patent 2 632 058, 1953.

[53] F. Buchali, F. Steiner, G. Böcherer, L. Schmalen, P. Schulte, and W. Idler, “Rate
adaptation and reach increase by probabilistically shaped 64-QAM: An experimen-
tal demonstration,” J. Lightw. Technol., vol. 34, no. 8, Apr. 2016.

Bibliography 99

[54] J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical fiber com-
munications,” J. Lightw. Technol., vol. 37, no. 6, pp. 1590–1607, Feb. 2019.

[55] M. Pikus and W. Xu, “Arithmetic coding based multi-composition codes for bit-
level distribution matching,” arXiv preprint arXiv:1904.01819, 2019.

[56] T. Fehenberger, D. Millar, T. Koike-Akino, K. Kojima, and K. Parsons, “Partition-
based distribution matching,” arXiv preprint, 2018.

[57] T. Fehenberger, D. S. Millar, T. Koike-Akino, K. Kojima, and K. Parsons,
“Multiset-partition distribution matching,” IEEE Trans. Commun., vol. 67, no. 3,
pp. 1885–1893, Nov. 2018.

[58] Y. C. Gültekin, W. J. van Houtum, S. Şerbetli, and F. M. Willems, “Constellation
shaping for IEEE 802.11,” in 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, Oct. 2017,
pp. 1–7.

[59] Y. C. Gültekin, W. van Houtum, and F. Willems, “On constellation shaping for
short block lengths,” in Proc. Symp. Inf. Theory Signal Process. Benelux, Jun.
2018, pp. 1–11.

[60] Y. C. Gültekin, F. M. Willems, W. J. van Houtum, and S. Şerbetli, “Approximate
enumerative sphere shaping,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT). IEEE,
Aug. 2018, pp. 676–680.

[61] T. Yoshida, M. Karlsson, and E. Agrell, “Hierarchical distribution matching for
probabilistically shaped coded modulation,” J. Lightw. Technol., vol. 37, no. 6, pp.
1579–1589, Jan. 2019.

[62] J. Cho, “Prefix-free code distribution matching for probabilistic constellation shap-
ing,” IEEE Trans. Commun., 2019, early access.

[63] J. Honda and H. Yamamoto, “Polar coding without alphabet extension for asym-
metric models,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp.
7829–7838, Dec. 2013.

[64] O. İşcan, R. Böhnke, and W. Xu, “Shaped polar codes for higher order modulation,”
IEEE Communications Letters, vol. 22, no. 2, pp. 252–255, Oct. 2017.

[65] N. Stolte, “Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung,”
Ph.D. dissertation, TU Darmstadt, 2002.

[66] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory,
vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

100 Bibliography

[67] T. Wiegart, F. Steiner, P. Schulte, and P. Yuan, “Shaped on-off keying using polar
codes,” IEEE Communications Letters, vol. 23, no. 11, pp. 1922–1926, Nov. 2019.

[68] T. S. Han and S. Verdu, “Approximation theory of output statistics,” IEEE Trans.
Inf. Theory, vol. 39, no. 3, pp. 752–772, Jan. 1993.

[69] G. Böcherer and R. A. Amjad, “Informational divergence and entropy rate on rooted
trees with probabilities,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aug. 2014,
pp. 176–180.

[70] F. Steiner, P. Schulte, and G. Böcherer, “Approaching waterfilling capacity of par-
allel channels by higher order modulation and probabilistic amplitude shaping,” in
Proc. IEEE Conf. on Inf. Sci. and Sys., May 2018, pp. 1–6.

[71] G. Böcherer, P. Schulte, and F. Steiner, “High throughput probabilistic shaping
with product distribution matching,” arXiv preprint, 2017. [Online]. Available:
http://arxiv.org/abs/1702.07510

[72] R. Laroia, N. Farvardin, and S. A. Tretter, “On optimal shaping of multidimensional
constellations,” IEEE Trans. Inf. Theory, vol. 40, no. 4, pp. 1044–1056, Jul. 1994.

[73] R. F. H. Fischer, “Calculation of shell frequency distributions obtained with shell-
mapping schemes,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1631–1639, Jul.
1999.

[74] P. Flajolet and R. Sedgewick, Analytic combinatorics. Cambridge University Press,
2009.

[75] G. R. Lang and F. M. Longstaff, “A Leech lattice modem,” IEEE J. Sel. Areas
Commun., vol. 7, no. 6, pp. 968–973, Aug. 1989.

[76] S. A. Tretter, Constellation Shaping, Nonlinear Precoding, and Trellis Coding for
Voiceband Telephone Channel Modems: With Emphasis on ITU-T Recommenda-
tion. Springer Science & Business Media, 2012, vol. 34.

[77] F. Willems and J. Wuijts, “A pragmatic approach to shaped coded modulation,”
in Proc. IEEE Symp. Commun. Veh. Technol. Benelux, 1993.

[78] G. Böcherer and B. C. Geiger, “Optimal quantization for distribution synthesis,”
IEEE Trans. Inf. Theory, vol. 62, no. 11, pp. 6162–6172, Nov. 2016.

[79] K. Sayood, Introduction to data compression. Elsevier, 2006.

[80] P. Schulte, F. Steiner, and G. Böcherer, “shapecomm WebDM: Online constant
composition distribution matcher,” http://dm.shapecomm.de, Jul. 2017.

Bibliography 101

[81] G. Böcherer, F. Steiner, and P. Schulte, “Methods of converting or reconverting a
data signal and method and system for data transmission and/or data reception,”
German EP Application EP3 306 821A1, 10 5, 2016.

[82] M. Pikus and W. Xu, “Bit-level probabilistically shaped coded modulation,” IEEE
Commun. Lett., vol. 21, no. 9, pp. 1929–1932, Sep. 2017.

[83] F. Steiner, F. Da Ros, M. P. Yankov, G. Böcherer, P. Schulte, S. Forchhammer, and
G. Kramer, “Experimental verification of rate flexibility and probabilistic shaping
by 4D signaling,” in Proc. Optical Fiber Commun. Conf., 2018, paper M4E3.

[84] J. L. Fan and J. M. Cioffi, “Constrained coding techniques for soft iterative de-
coders,” in IEEE Global Telecommun. Conf. (GLOBECOM), vol. 1. Rio de
Janeireo, Brazil: IEEE, Dec. 1999, pp. 723–727.

[85] A. P. Hekstra, “Use of a d-constraint during LDPC decoding in a Bliss scheme,”
arXiv preprint arXiv:0707.3925, 2007.

[86] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. The-
ory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[87] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8,
no. 1, pp. 21–28, Jan. 1962.

[88] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate (corresp.),” IEEE Trans. Inf. Theory, vol. 20, no. 2,
pp. 284–287, Mar. 1974.

[89] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approx-
imate inference: An empirical study,” in Proc. Conf. on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., 1999, pp. 467–475.

[90] R. J. McEliece, “On the BCJR trellis for linear block codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 4, pp. 1072–1092, Jul. 1996.

[91] G. Liva and F. Steiner, “pretty-good-codes.org: Online library of good channel
codes,” http://pretty-good-codes.org, Oct. 2017.

