Tutl

TECHNISCHE UNIVERSITAT MUNCHEN

FAKULTAT FUR INFORMATIK

Proving Noninterference in Multi-Agent
Systems

Alexander Christian Miiller

0

TECHNISCHE UNIVERSITAT MUNCHEN
FAKULTAT FUR INFORMATIK
LEHRSTUHL FUR SPRACHEN UND BESCHREIBUNGSSTRUKTUREN

Proving Noninterference in Multi-Agent
Systems

Alexander Christian Miiller

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat)

genehmigten Dissertation.

Vorsitzender:
Prof. Tobias Nipkow, Ph. D.

Priifer der Dissertation:

1. Prof. Dr. Helmut Seidl

2. Prof. Dr. Francisco Javier Esparza Estaun

Die Dissertation wurde am 18.02.2020 bei der Technischen Universitit Miinchen
eingereicht und durch die Fakultét fiir Informatik am 25.05.2020 angenommen.

I confirm that this thesis is my own work and I have documented all sources and
material used.

Munich, 18.02.2020 Alexander Christian Miiller

Acknowledgements

Foremost, I want to express sincere gratitude to my advisor Helmut Seidl. Without his
continued support and the many, many hours of productive discussions none of the
work in this thesis would have been possible. I also thank my mentor Javier Esparza,
who always had an open ear for my troubles, welcomed me into his group and provided
a new home for the practical course we invented. Furthermore, I want to thank my
co-author Bernd Finkbeiner from the university of Saarbriicken where I was not only
invited several times, but even became a part of his group towards the end of my thesis.
During the several trips to Saarbriicken, I was always warmly welcomed and we had
fruitful discussions where many of the proofs in this work originated.

A special thanks goes to all my colleagues from TUM: This includes my co-authors
Maté Kovécs and Eugen Zalinescu and all the awesome colleagues from both chairs 17
and 12, who always made me feel a member of both chairs and who I spent many a
coffee break with.

Beyond my research, I ended up dedicating my time toward the ICPC community,
both teaching courses as well as organizing multiple years worth of programming
contests and training camps. For the great memories and fun times I thank everyone
involved, in particular Stefan Toman, Gregor Schwarz, Chris Pinkau, Moritz Fuchs,
Philipp Meyer and Kirill Martynov.

I also want to thank my friend and office-mate Philipp Hoffmann, who provided
valuable feedback on most of my papers as well as this thesis, co-wrote many fun
problems for the ICPC and spent more than a dozen weeks travelling around the world
with me to multiple conferences, programming contests and/or just for fun.

Last but not least, I want to thank my parents for their moral support and the certainty
to always have a worry-free place to come home to as well as my friends and flatmates
for the many enjoyable days distracting me from university.

iii

Abstract

In this thesis, we show how to specify and verify safety as well as secrecy in workflow
systems with arbitrarily many participating agents.

As the underlying formal model we rely on First-order Transition Systems, which
allow us to describe the states of multi-agent systems with an unbounded number of
participants by means of First-order Predicates. In order to specify secrecy properties
for First-order Transition Systems, we introduce First-order HyperLTL, as the First-order
extension of (propositional) HyperLTL. HyperLTL is a formal temporal logic which is
able to express complex information flow requirements.

To verify these properties, we provide several approaches. Our first approach is to
encode both the system and the property ¢ to be verified into First-order HyperLTL
satisfiablity, which then is reduced to satisfiability of First-order LTL. This allows us
to use First-order satisfiability tools like Z3 to prove the absence of counterexamples
of a bounded length as well as use First-order LTL satisfiability tools to verify that ¢
holds. We identify classes of First-order Transition Systems for which our methods are
able to effectively decide if ¢ holds. For cases where our algorithms are incomplete,
we prove that the problem is undecidable in general. This approach is complemented
by a second method which is applicable to arbitrary First-order Transition Systems,
and tailored for the verification of Noninterference in presence of declassification and
specifications of the agents’ capabilities. In this approach, as much of the specification
as possible is encoded into the transition system. This simplifies the temporal .property
to be verified and allows us to verify it by means of inductive invariants. Again, rich
sub-classes are identified where effective verification algorithms can be provided. For
arbitrary Noninterference properties and First-order Transition Systems we introduce
approximation methods and are still able to prove interesting systems correct.

In order to go beyond verification we extend our setting to First-order Safety Games.
Our goal is to automatically construct strategies which enforce safety or noninterference.
We succeed in doing so in non-trivial cases by means of approximative Second Order
existential quantifier elimination.

The methods developed in this thesis have been implemented into software — the
resulting tool NIWO is a fully automated solver for verifying and inferring properties of
workflow systems automatically as well as for synthesizing safe strategies.

Zusammenfassung

In dieser Arbeit modellieren wir Sicherheits- sowie Geheimhaltungseigenschaften von
Workflow-Systemen mit einer unbeschrankten Anzahl von beteiligten Agenten.

Als zugrunde liegendes formales Modell benutzen wir pridikatenlogische Transition-
ssysteme (First-order Transition Systems), die es uns erlauben, die Zustdnde eines Multi-
Agenten-Systems mithilfe von Pradikaten erster Stufe zu beschreiben. Um Geheimhal-
tungseigenschaften fiir Pradikatenlogische Transitionssysteme zu formalisieren benutzen
wir First-order HyperLTL, die pradikatenlogische Erweiterung von (propositionalem) Hy-
perLTL. HyperLTL ist eine formale temporale Logik, die in der Lage ist komplexe
Anforderungen an den Informationsfluss auszudrticken.

Um diese Eigenschaften zu verifizieren, benutzen wir verschiedene Anséitze: Unser
erster Ansatz besteht darin, sowohl das System als auch die zu verifizierende Eigenschaft
in First-order HyperLTL Erfiillbarkeit zu codieren und diese dann auf die Erfiillbarkeit
von First-order LTL zu reduzieren. Dies erlaubt uns mithilfe von Werkzeugen wie Z3 die
Abwesenheit von Gegenbeispielen begrenzter Lange nachzuweisen, sowie mithilfe von
Werkzeugen fiir First-order LTL zu iiberpriifen, ob die gegebene Eigenschaft auf allen
unbeschrankten Ausfiithrungspfaden gilt. Wir identifizieren Klassen von préadikatenl-
ogischen Transitionssystemen, fiir die unsere Methoden in der Lage sind, effektiv zu
entscheiden, ob eine gegebene Eigenschaft gilt. Fiir Fille, in denen unsere Algorithmen
unvollstindig sind, beweisen wir, dass das Problem generell unentscheidbar ist. Dieser
Ansatz wird durch einen zweiten Ansatz ergédnzt der fiir allgemeine pradikatenlogische
Transitionssysteme anwendbar ist. Dieser konzentriert sich auf die Verifikation der
Sicherheitsrichtlinie Noninterference unter Berticksichtigung von Deklassifikation. Bei
diesem Ansatz wird so viel von der Spezifikation wie moglich innerhalb des Transi-
tionssystems selbst kodiert. Das erlaubt uns die nun stukturell einfachere Eigenschaft
mithilfe von induktiven Invarianten zu verifizieren. Auch hier identifizieren wir Klassen
von Transitionssystemen, fiir die das Verifikationsproblem entscheidbar ist. Fiir all-
gemeine First-order Transitionssysteme benutzen wir Ndherungsverfahren um noch
moglichst viele interessante Systeme verifizieren zu konnen.

Zusatzlich zur reinen Verifikation erweitern wir unser Modell zu First-order Safety
Games. Hierbei gilt es nicht nur herauszufinden ob eine bestimmte Eigenschaft gilt,
sondern dariiber hinaus automatisiert eine Strategie zu konstruieren, die die gewtiinschte
Eigenschaft sicherstellt. Dies gelingt uns in nicht-trivialen Féllen durch die anndhernde
Elimination von Second Order Existenzquantoren.

Die in dieser Arbeit entwickelten Methoden wurden implementiert. Das Ergebnis
ist NIWO — ein vollautomatischer Solver zur Verifizierung von Eigenschaften von
Workflow-Systemen sowie zur Synthese sicherer Strategien.

vi

Contents vii
Contents
Chapter 1 Introduction 1
1.1 StructureofthisThesis 5
1.2 Preceding Publications 7
Chapter 2 Preliminaries 9
2.1 Sorted First-order Logic 11
22 Introduced Concepts 16
Chapter 3 First-order Transition Systems 17
3.1 The Workflow Language 19
3.2 First-order Transition Systems 22
3.3 Alternative Models 31
3.4 Introduced Concepts, 33
35 Conclusion e 33
Chapter 4 Temporal Security Properties 35
4.1 First-order Linear Temporal Logic 37
42 First-order HyperLTL 41
4.3 Noninterference o v v v i e e 43
44 Related Specification Languages 47
45 Introduced Concepts 48
4.6 Conclusion e e 48
Chapter 5 Verification of Temporal Properties 49
51 Bounded Symbolic Model Checking 51
52 Symbolic Model Checking 55
53 Introduced Concepts 64
54 Conclusion e e e 65
Chapter 6 Invariants for FO Transition Systems 67
6.1 Encoding Agent Models and Declassification 70
6.2 Verificationof Invariants 76
6.3 Inferring Inductive Invariants 0. 79
6.4 Invariant Inference for Monadic FO Transition Systems 82
6.5 Universal Formulas as Abstract Domain 88
6.6 Stratified Guarded FO Transition Systems 93
6.7 Universal Invariants for Unrestricted FO Transition Systems 94
6.8 Application to Noninterference 98
6.9 Forcing Stratification for General FO Transition System 103
6.10 Alternative First-order Logic based approaches 104
6.11 Introduced Concepts, 105
6.12 Conclusion e e e 106
Chapter 7 First-order Safety Games 107

Contents

7.1 First-order Safety Games
7.2 Noninterference for FOGames
7.3 Monadic FO Safety Games
74 Inductive Invariants for FO Safety Games
7.5 Hilbert’s Choice Operator for Second Order Quantifiers
7.6 Approximation and Refinement
7.7 Restricting Strategies L o0 L.
7.8 Alternative synthesis approaches
7.9 Introduced Concepts
710 Conclusion e e e e
Chapter 8 NIWO, FO Transition System solver
8.1 Architecture e
8.2 Experimental Evaluation
8.3 Conclusion e
Chapter 9 Conclusion
9.1 Future Work e
Bibliography

137
139
146
150

153
156

159

viii

CHAPTER].

Introduction

Contents

1.1 Structure of this Thesis
12 Preceding Publications

1 Introduction

Web-based workflow management systems allow diverse groups of users to collaborate
efficiently on complex tasks. This has led to their wide-spread use throughout the daily
lives of people from many different fields. For example, conference management systems
like EasyChair let authors, reviewers, and program committees collaborate on the
organization of a scientific conference; health management systems like HealthVault let
family members, doctors, and other health care providers collaborate on the management
of a patient’s care. Shopping sites like Amazon or Ebay let merchants, customers, as
well as various other agents responsible for payment, customer service, and shipping,
collaborate on the purchase and delivery of products.

Since the information maintained in such systems is often confidential, these systems
must carefully manage who has access to what information in a particular stage of
the workflow. For the designer of the system, this is a very hard task that has to be
verified rigorously, since both programming errors as well as conceptual errors can
easily happen.

As a running example, we will use the reviewing process inside a scientific conference
management system akin to EasyChair. Here, members of the program committee (PC
members) must first declare with which submissions they are in conflict of interest.
Then the organizers of the conference assign the members of the PC to the submissions
so that every submission gets reviews from multiple different PC members. After the
reviews have been written, all PC members that are assigned to the same paper discuss
about their reviews and eventually decide together wether to accept (and publish) the
submission. Naturally, PC members should only see reviews and discussions of papers
with which they have declared no conflict of interest. Authors eventually get access to
reviews of their papers, but only when the process has reached the official notification
stage, and without identifying information about the reviewers.

Example 1.1.

During submission of the first paper of the work in this thesis [39], one of the
authors was also a member of the program committee and had to review a different
paper p. Someone else, who also reviewed the same paper p unfortunately mixed
up his reviews and accidentally pasted his review and discussion of paper [39]
into the discussion of paper p — allowing us to learn about the internal discussion
related to our work. By modeling this process beforehand, such an assignment
could have been prevented.

To ensure that these kinds of information leaks can not happen in a finished system,
the scientific community has come up with many different analysis methods and tools
that can analyze software in a semi- or fully automated way. The approaches range from
high-level conceptual approaches like attack trees [65] to low-level formal proofs using
proof assistants like Isabelle [76] or Coq [25] to reason about the specific code of the
system. An example for the latter approach is CoCon [56], a conference management
which comes with confidentiality guarantees which have been formalized and proven in

4 Chapter 1. Introduction

Isabelle and then used to generate correct code for the system. However, these proofs
have been hand-written and are specific to CoCon, so can not easily be reused for
different systems.

In this thesis, we introduce how to formally specify secrecy requirements in workflow
systems with arbitrarily many participating agents. These requirements include declassi-
fication conditions, which specify under which conditions specific agents are declassified
to learn about the information. For the example of a conference management system,
it might be alright for a PC member to learn about the reviews of a specific paper as
long as the PC member did not specify a conflict of interest with this specific paper. In
addition, secrecy policies require an agent capability model that specifies which parts of
the state of the system can be observed by any specific agent — and that all decisions of
an agent only depend on information actually available to this agent. These agents might
be real people interacting via their browser or different automated systems employed by
payment providers or publishers, each with their own goals, knowledge and possible
interactions.

We then show how to automatically prove if a high-level model of the given workflow
system adheres to the secrecy requirements or not. If already the high-level model
of the workflow system exhibits information leaks, there is no way for the actual
implementation not to leak information as well. Thus, we are able to spot mistakes
already in the conceptual phase of a new system, without having to analyze the code
itself.

This approach is called model checking [28] and has been used very successfully to prove
that a given finite system is correct [55, 10]. The particular challenge with verifying web-
based workflow systems however, is that here is no fixed set of agents participating in
the workflow. Clearly, we would not like to reason about the correctness of a conference
management system for every concrete instance of a particular conference, a particular
program committee and a particular set of submissions and reports. Instead, we would
like to prove a given system only once — for any possible instantiation and any number
of PC members, submitted papers and reports. In this thesis, we thus develop methods
to handle the setting of an unbounded universe.

1.1 Structure of this Thesis 5

1.1 Structure of this Thesis

In Chapter 2, we will set the stage for the rest of the thesis and recall some basic notation
and semantics of First-order logics that we will use heavily throughout the rest of the
thesis. From there, we will motivate and introduce First-order Transition Systems (FO
Transition Systems) as a formal model of parameterized multi-agent workflow systems
in Chapter 3. We show how to embed the examples we mention into this model, discuss
alternatives to our modeling approach and show how to embed some of the alternative
models into FO Transition System.

Chapter 4 then shows how to specify secrecy policies for FO Transition Systems,
specifically Noninterference. To do so, we recall Linear Temporal Logic and its First-
order variant, as well as introduce First-order HyperLTL, an extension that allows us to
reason about multiple executions of a given system. We then give a formal definition of
Noninterference with added declassification conditions as well as an observation model
of the participating agents in First-order HyperLTL.

In Chapter 5, we then show how to apply techniques and ideas from the area of model
checking to automatically verify that a given FO Transition System satisfies a First-order
Hyperproperty for the restricted class of quantifier-free transition systems and apply
our findings to the special case of Noninterference properties. We also show that this
approach can not be extended to general FO Transition Systems and prove the problem
undecidable.

Chapter 6 then continues to investigate incomplete methods that can still solve the
general case in practice. We consider simplified setting of invariants for FO Transition
Systems, and show how to cast Noninterference as such. We show how to verify
that a given invariant is inductive, and provide methods on how to infer an inductive
strengthening if it is not. For this, we use the abstract domain of purely universal
First-order formulas. We identify classes of transition systems where invariant inference
is decidable and and show how to handle the general case — which necessarily leads to
an incomplete method, but which works well in practice. We then apply the results to
Noninterference and compare our results to the state of the art of alternative verification
methods for parameterized systems.

Chapter 7 then extends the setting to First-order Safety Games. These are transition
systems where some decisions by the environment are not assumed to be picked
malevolently, but rather benevolently. This leads us to the synthesis problem, which
asks “Is there a strategy we can use to ensure that the given system is well-behaved?”
We show how to formalize this question and indicate how Second Order Quantifier
elimination can be used to solve it. In addition, this allows us to extract a strategy to
ensure safety. We then adapt the methods of Chapter 6 to the setting of games and
further improve the progress guarantees of the incomplete verification algorithm.

After laying the theoretical groundwork, Chapter 8 introduces NIWO, our fully
automated solver for First-order Transition Systems and Games based on the methods
of Chapters 5 to 7 and evaluate its performance on the examples mentioned throughout
the thesis.

Finally, Chapter 9 concludes, summarizes the thesis and gives an outlook to future
work.

6 Chapter 1. Introduction

The different chapters tackle rather diverse techniques and approaches. Accordingly,
each chapter will feature its own section about related approaches and models, which
will be discussed at the end of the respective chapter.

1.2 Preceding Publications 7

1.2 Preceding Publications

This thesis includes the content of the following four scientific publications:

[39] Bernd Finkbeiner, Helmut Seidl, and Christian Miiller. “Specifying and Verifying
Secrecy in Workflows with Arbitrarily Many Agents”. In: Automated Technology for
Verification and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan, October
17-20, 2016, Proceedings. Ed. by Cyrille Artho, Axel Legay, and Doron Peled. Vol. 9938.
Lecture Notes in Computer Science. 2016, pp. 157-173. 1sBN: 978-3-319-46519-7. por:
10.1007/978-3-319-46520-3\ _11

[37] Bernd Finkbeiner, Christian Miiller, Helmut Seidl, and Eugen Zalinescu. “Verifying
Security Policies in Multi-agent Workflows with Loops”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017. Ed. by Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu. ACM, 2017, pp. 633-645. 1sBN: 978-1-4503-4946-8. por:
10.1145/3133956.3134080

[69] Christian Miiller, Helmut Seidl, and Eugen Zalinescu. “Inductive Invariants for
Noninterference in Multi-agent Workflows”. In: 31st IEEE Computer Security Foundations
Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018. IEEE Computer Society,
2018, pp. 247-261. 1sBN: 978-1-5386-6680-7. DOI: 10.1109/CSF.2018.00025

[82] Helmut Seidl, Christian Miiller, and Bernd Finkbeiner. “How to Win First-Order
Safety Games”. In: Verification, Model Checking, and Abstract Interpretation - 21st Interna-
tional Conference, VMCAI 2020, New Orleans, LA, USA, January 16-21, 2020, Proceedings.
Ed. by Dirk Beyer and Damien Zufferey. Vol. 11990. Lecture Notes in Computer Science.
Springer, 2020, pp. 426—448. 1sBN: 978-3-030-39321-2. por: 10.1007/978-3-030-39322-
9_20

Our automated solver NIWO has been published as a software artifact together with [82]:

[81] Helmut Seidl, Christian Miiller, and Bernd Finkbeiner. How to Win First Order
Safety Games - Software Artifact. Oct. 2019. por: 10.5281/zenodo . 3514277

Chapters 2 and 3 introduce the general model of multi-agent systems upon which all
papers are based. Chapter 4 introduces the temporal specification for Noninterference as
discussed in [37, 69]. Chapter 5 is based on the results of [39, 37] and introduces model
checking techniques. Chapter 6 is based on the results of [69] and uses invariants to
prove safety properties. Chapter 7 generalizes the model to include synthesis questions
and is based on [82]. Chapter 8 describes the architecture and experimental results of
our software as described in [37, 69, 82].

https://doi.org/10.1007/978-3-319-46520-3_11
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1109/CSF.2018.00025
https://doi.org/10.1007/978-3-030-39322-9_20
https://doi.org/10.1007/978-3-030-39322-9_20
https://doi.org/10.5281/zenodo.3514277

CHAPTER 2

Preliminaries

Contents

21 Sorted First-order Logic
22 Introduced Concepts.

2.1 Sorted First-order Logic 11

2 Preliminaries

As stated in the introduction, we care about workflow management systems like confer-
ence management systems. Any description of these should not depend on the actual
papers submitted or the members of the PC chair. Rather, it should define a template
that can be instantiated for any given number of participating reviewers, submitted
papers or posts in the discussion forums.

Formally, if we want to describe these systems using logic, we need to do so without
specifying the specific universe for which they are instantiated. For this purpose,
propositional logic is not enough. Instead, we will use First-order Logic throughout this
thesis as it is a powerful tool that allows us to use predicates and quantifiers to describe
system states and transitions between them rather than referring to (finitely many)
propositional facts only.

2.1 Sorted First-order Logic

First-order Logic (FO Logic), also known as First-order Predicate Logic, is an assertion
language that can form statements about the predicates of objects as well as relations
between objects.

Example 2.1.

Sentences may include quantification, which is used to make universal statements
applying to several individuals at once. An example is:

Vx. Human(x) — Mortal(x)

which says “All individuals x that are human are also mortal”. Sometimes, we want
quantifiers to only range over specific individuals. For this, we use sorts that are
specified together with the quantifier:

Vx: Human. Mortal (x)
Quantifiers can also be nested to yield more complex sentences:
Vs: Subject. 3x: Student. Interested(x, s)

which says “For each subject s, there exists a student x that is interested in studying
said subject s.”

To build formulas, we need to know which predicates exist and which sorts their
parameters need to be. This information is given by a signature. A signature X~ =
(S,C,R,ar) consists of a non-empty and finite set of sorts S, finite and disjoint sets C
and R of function symbols and relation symbols (or predicate symbols). We assign to
each function or relation symbol an arity, given by function ar : CUR — S*, where

12 Chapter 2. Preliminaries

S* denotes the set of finite sequences of sorts. For a relation R, the sequence of sorts
ar(R) specifies the sequence of sorts the parameters of R should follow. For functions
f, the last sort in ar(f) specifies the sort of the returned value, while the rest specifies
the parameter types. Functions with no parameters are called constant, functions and
relations with a single parameter are called unary or monadic and functions and relations
with two parameters are called binary. In this thesis, we will not consider functions
beyond constants, thus |ar(c)| =1 for any ¢ € C.

For each sort s, we let V; be a countably infinite set of variable symbols. We let
V := Uses Vs be the set of all variables of all possible sorts.

Example 2.2.
A signature for formulas about a university setting is for example £ = (S,C, R, ar)
with

S= {Student, Professor, Subject },

C= {Dean},

R = {Studies, Teaches},

Dean : Professor
ar = { Studies: (Student, Subject)

Teaches : (Professor, Subject)

This enables us to build formulas over the relations Studies and Teaches and quantify
over individuals or objects who are of type Student, Professor or Subject. We
additionally have a constant Dean for the dean of the faculty who is of type
Professor.

Sentences of Sorted First-order Logic are produced by the following grammar:

¢ = Jv:s.e|@|leVel|t=t|R(t,...)

where s ranges over S, t, ' range over V U C and are of the same sort, R ranges over R
and for ar(R) = sg. .. s, the t; are of the correct sorts, i.e. t; is of sort s; for all i. We also
let sort(t) denote the sort of term t.

Here, the operators —, V stand for boolean negation and disjunction while 3 is called
existential quantification. Additionally, we use abbreviations for universal quantification
as well as the standard Boolean connectives conjunction, implication and equivalence:

Vx:s.¢ = —dx:s. —g
P1A@2 = 2(0g1V o)
1= @2 = @1V @2

P1L< Q2 = 1> 2N P2 = 1

P14 92 = (g1 ¢2)

We also abbreviate sequences of the same quantifier to quantification over sequences,
e.g. dx1: A;. dx: A, is abbreviated to dx1: A, x2: A;.

The set of free variables of a formula ¢, that is, those that are not in the scope of some
quantifier in ¢, is denoted by fv(¢). For aterm t € VUC, we let fo(t) := {t} if t € V and
fo(t) := @ otherwise. A formula without free variables is called closed. Closed formulas

2.1 Sorted First-order Logic 13

might still use constants from C. We may drop the sort in Jx:s. ¢ when it is irrelevant
or clear from the context and simply write Jx. ¢. To omit parentheses, we assume that
unary connectives bind stronger than binary ones and quantifiers bind weaker than
boolean connectives.

We also define renaming for formulas. For a formula ¢, we denote by go[y / x] the
formula ¢ where all occurrences of x have been replaced by y. We will typically use this
notation to rename free variables.

Example 2.3.

Let ¢ be the formula 3z.R(x,y,z). Then ¢[y/x] is 3z.R(y, y, z).

2.1.1 Semantics

Given a signature we know which sorts, relations and constants exist in our setting.
However, we still do not know which specific individuals or objects exist and how
to interpret the relations between them. For this, we need structures. A particular
structure provides us with information about which objects exist and how to interpret
the relations and constants in any given formula. Given a structure and a formula we
can then evaluate the formula to find out if it holds in this particular structure.

A structure s over the signature X~ = (S,C, R, ar) consists of a (finite or infinite) universe
(domain) Us # @ for every sort s from S and an interpretation R® C U, x - - - x Uy, for
each constant or relation R from C U R of arity (s1,...,st). We let U be the union of all
universes, i.e. U := (Jseg Us.

In addition to constants, a formula can contain free variables. These are interpreted
by a valuation. A valuation is a mapping v : V — U with x and v(x) of the same sort for
any x € V. Thus, a valuation is used to map variable names to a particular element of
the universe (of the correct sort), as given by a structure.

We now introduce a bit of notation to manipulate valuations. In the following, v is
a valuation, ¥ = (x1,...,xy) is a tuple of variables with x; € V;, and d = (dy,...,d,)
is a tuple of universe elements with d; € U,, both for some sort s; for each i. We
write V[— d] for the valuation that maps each x; to d; and leaves the other variables
valuation unaltered. By v(%) we denote the tuple (v(x1),...,v(x,)). We extend this
notation by applying a valuation v also to constant symbols ¢ € C, with v(c) = ¢°. An
update of a valuation of the first-order variables is defined as follows: v[x — a](x) = a
and v|x — a](y) = v(y) for x # y.

Let s be a structure over the signature ¥, ¢ a formula over X and v a valuation. Now
that the signature X tells us which sorts and relations exist, and s provides a universe
for each sort and interpretations for all relations, we can evaluate a closed formula ¢
over X on the structure s. We define the relation s, v |= ¢ (“¢ holds on structure s and
valuation v”) inductively as follows:

4

ssveEt="t iff v(t) =v(¥)

s,v = R(F) iff v(f) e R®

s,V E P iff s,vEY

svEypvy if s,vlEyporsviEy
s,vEdx:s.yp iff s,v[x—d] =, for some d € U

14 Chapter 2. Preliminaries

A FO Logic formula ¢ is said to be satisfiable iff there exists a structure s and a
valuation v s.t. s,v = ¢, i.e. a formula is satisfiable if it is true for some instantiation
of the universes, relations and free variables. We say a closed formula ¢ holds on a
structure s (also written S |= ¢) iff 5, |= ¢.

Example 2.4.
For the university signature above from Example 2.2, a possible structure s consists
of:
Ustydent = {Philipp, Christian, Salomon},
Uprofessor = {Esparza, Seidl, Bungartz},
Usupject = {Automata, AbstractInterpretation},
Dean® = Bungartz,
(Philipp, Automata),
Studies® = (Salomon, Automata),
(Christian, AbstractInterpretation)
. { (Esparza, Automata), }
Teaches® = ' '
(Seidl, AbstractInterpretation)

On this structure s, the closed formula
Vs : Student. 3x : Subject. Studies(s, x)
holds, as every student studies at least one subject.

We will sometimes consider that formulas are in negation normal form, which is
obtained by pushing negation inside until it appears only in front of atomic formulas.
When considering this form, the abbreviated operators A, V are seen as primitives. A
formula is in prenex normal form if it is written as a sequence of quantifiers followed by a
quantifier-free part. The quantifier rank qr(¢) of a formula ¢ is the length of the sequence
of quantifiers of ¢ in prenex normal form.

2.1.2 Fragments

For background on FO logic and known decidable subclasses, we refer to the text-
book [20].

We let 3*FO Logic, V*FO Logic, 3*V*FO Logic, and V*3*FO Logic denote the frag-
ments of FO Logic consisting of those formulas whose prenex normal form equivalent
has the quantifier prefix of the respective form. We also call formulas in V*FO Logic
purely universal. The 3*V*FO Logic fragment has also been called the Bernays-Schonfinkel
Ramsey (BSR) fragment or effectively propositional logic (EPR). It contains exactly the
formulas of First-order Logic that have a quantifier prefix of 3*V* and do not contain
function symbols that take parameters. Satisfiability of formulas in BSR is known to be
decidable [20, 77].

2.1 Sorted First-order Logic 15

2.1.3 Universal FO formulas

To reason about purely universal FO formulas, we often prefer to consider them in normal
form. In particular, this allows us to expose all occurrences of literals of a particular
relation A:

Lemma 2.1. Every universal FO formula ¢ possibly containing occurrences of a relation A is
equivalent to a formula

ENA(V§.FV AY) A (Vi .GV =AY) A (Vg7 .HV AV —A7') (2.1)
where E, F, G, H are universal formulas without A-literals.
The proof is by rewriting the formula:

Proof. W.lo.g., we assume that ¢ = Vx.¢" where ¢’ is quantifier-free and in conjunctive
normal form. Let E, F/, G/, H' be the conjunctions of all clauses in ¢’ containing no
occurrence of A, only positive, only negative and both positive and negative occurrences
of A.

Each clause of the form ¢’ V Az V...V Az, (wWhere ¢’ does not contain A-literals) is
equivalent to

V.V (N Zi #)V AY

where z; # ij abbreviates the disjunction \/]r':1 zjj # §j — given that z; = zj1 ... Zj;.

Likewise, each clause of the form ¢’ V - Az; V...V = Az, (where again ¢’ does not
contain A-literals) is equivalent to

V7.V (N z A7)V AT

Finally, each clause of the form ¢’V =Az; V...V Az V ~AZ] V... = AzZ] (where ¢’ does
not contain A-literals) is equivalent to

Vg <V (N Z E)V (N 2 £ 7)) VAGY AT

Applying these equivalences to the clauses in the conjunctions in F/, G/, H', respectively,
we arrive at conjunctions of clauses which all contain just the A-literal Aj, the A-literal
—Ay' or AV - Ay, respectively. From these, the formulas F, G and H can be constructed
by distributivity. O

In this transformation, we introduce disequalities between variables, and fresh aux-
iliary variables 7 and 7’ where the sequence 7’ is only required if both positive and
negative literals of relation A occur within the same clause. In case these are missing,
we say that the formula is in simple normal form.

Definition 2.2. A FO formula ¢ possibly containing occurrences of a relation A is in simple
normal form, if it can be written as:

EA (V§.FV Aj) A (V7 .GV —AY) (2.2)
where E, F, G are universal formulas without A-literals.

The given normal form for formulas is closely related to the Eliminationshauptform
proposed by Behmann [15] for monadic formulas — with the notable difference that we
allow clauses containing occurrences both of positive and negative A-literals.

16

Chapter 2. Preliminaries

2.2 Introduced Concepts

S S
R, x

v[x > d|
sV

Quantifiers

Boolean connectives

Variables for domain elements

Variables for tuples of domain elements

Variable x of sort T

Variable for predicates

Variable for formulas

Free variables of ¢

Quantifier rank (depth) of ¢

Variable for signatures, consisting of sets of sorts, constants,
relations and an arity function

Set of predicates

Set of constants

Set of sorts (types)

Arity of relations (predicates),functions

Set of variable symbols of sort s

Set of all variable symbols

Domain of s, set of elements in the universe of sort s
Universe, union of all domains

Sort of term ¢t

Variable for structures, providing universe and interpretations
of relations and constants for a signature

Interpretation of predicate R, variable or constant x in struc-
ture s

Variable for valuations

Update the value of ¥ in valuation v to d

¢ holds on structure s and valuation v

CHAPTER 3

First-order Transition Systems

Contents
3.1 The Workflow Language 19
3.2 First-order Transition Systems 22
3.3 Alternative Models 31
3.4 Introduced Concepts. 33
35 Conclusion 33

17

3.1 The Workflow Language 19

3 First-order Transition Systems

In this chapter, we introduce our model of multi-agent systems in which multiple actors
or agents act in parallel and with differing knowledge to affect parts of the global state.
A workflow system describes a template of a system, that any particular set of agents
can then execute together. In the real world, this template can then be implemented in
software, e.g. as a website the actors can interact with.

In Section 3.1, we define a modeling language for workflow systems that we use to
model the interaction parts of real-world systems such as the mentioned conference
management system or network protocols, where the actors are themselves automated
systems.

To formally reason about workflow systems we introduce the underlying formal
model of First-order Transition Systems in Section 3.2, together with an embedding of the
specification language for workflow systems (Section 3.2.2) as well as an embedding of
the RML language from [75] (Section 3.2.4) into FO Transition Systems.

3.1 The Workflow Language

We use workflow systems to model the interactions of multiple agents with a system,
where agent interactions are recorded by relations. Here, we define a language to specify
workflows. Updates of the relations describing the state are organized into blocks. These
describe operations that a subset of the agents can choose to execute to change the
contents of the relations. The most basic construct in the description of workflows is
a parameterized guarded update operation to some relation. Such an update is meant
to simultaneously be executed for all tuples satisfying the given guard. Some of these
updates may also be optional, i.e. may also be omitted for some of the tuples that satisfy
the guard. A block is made of several statements which add (or remove) specific tuples
from a given relation depending on a guard clause.

Example 3.1.

A block consisting of one statement that says “Everyone that does not have a
conflict of interest with a given paper may be assigned to review that paper.” is
specified as follows:

forall x: PCMember, p: Paper may. —~Conflict(x, p) — Assign += (x, p)

Workflows are defined over signatures © = (5,C, R, ar), with R = Rsate U Rinput
(with Ristare and Rinpur being disjoint sets of symbols). Symbols in R are possible relation
symbols, where the symbols in R denote state relations which are updatable and
the symbols in R, denote non-updatable input relations that contain input from the
environment to the workflow. S is the set of sorts individual variables can range over,

20 Chapter 3. First-order Transition Systems

C is a set of constant terms and ar the respective arity function. A workflow is then
produced by the following grammar:

w = block;w | € |
loop (*) {w } | choose w or w // workflow program
block forall x : sg, ..., xi : sg.{stmts}

forall xo : Sp, ..., X : Sg. may {stmts} // block

¢ = R+=(ty,...,ty);stmts

¢ > R—=(t,...,ty);stmts

€ // updates

stmts

Here, terms t4,...,t, are either agent variables xo, ..., x; of sorts sy, ...,sr, where
x; ranges over variables in Vs or constant values in C. R ranges over the predicate
symbols in R and ¢ ranges over first-order formulas over the signature . For a
statement ¢ — R £=(t1,...,t;), we require that R € Rsae and fo(¢@) U{ty,..., 1} C X,
where ¥ is the sequence of variables appearing in the forall construct of the block that
contains the statement. We also require the sorts of (1, ..., f;) to match the sorts of the
relation to be updated, i.e. (sort(t1),...,sort(ty)) = ar(R).

The constructs loop (*) and choose specify the control flow. Loops, as given by
loop (*) may be executed arbitrarily often before terminating (even 0 times), or not
terminate at all. Nondeterministic choice constructs choose execute either the left or the
right branch. For update statements, R denotes the predicate symbol to be updated and
@ is the guard clause that needs to be met before performing the update. If the guard is
not met, no update occurs. In order to specify deterministic/nondeterministic behavior,
we use two different kinds of statements. In a normal block, all agents execute the block,
i.e., the listed sequence of guarded updates. In a may block, only a subset of tuples of
agents executes the block. This serves the intuition that agents may choose if they want
to be included in the update or not (for example by clicking a button on a webpage).

Example 3.2.

Workflows can be used to model possible interactions between agents and a central
authority to form a coherent system. As a very simple example, here is a possible
hierarchical information flow model from a university setting:

forall p: Professor, s: Student, g: Grade
Oracle(p, s, §) — Grading += (p,s,g)
forall p: Professor, t: TA, s: Student, g: Grade may.
isSupervisor(p,t) A visitsTutorialBy(s,t) A Grading(p,s,Q)
— Msg1 += (t,5,8)
forall t: TA, s: Student, g: Grade may.
Msgi(t,s,8) = Msgo += (s,8)

N Ol WD -

Here, input relations to the system (R;yp.:) are Oracle (the exam grading process),
isSupervisor and visitsTutorialBy. In the first step, professors enters grades from
the exam grading process into the system. Professors can then choose to send
messages to their own teaching assistants (TAs) and give them the grades of
students in their group. This is recorded in the tuples of the relation Msg; which

3.1 The Workflow Language 21

1 // PC members may declare conflicts

2 forall x: PCMember, p: Paper may. true — Conf += (x, p)

3 // PC members are assigned to papers

4 forall x: PCMember, p: Paper may. —Conf(x, p) — Assign += (x, p)
5 // PC members write reviews for papers

6 forall x: PCMember, p: Paper, r: Report.

7 Assign(x, p) A Oracle(x, p,r) — Review += (x, p, 1)

8 // PC members discuss about the papers

9 loop (*) {

10 // PC members read all other reviews

11 forall x: PCMember, p: Paper, r: Report, y: PCMember may.
12 Assign(x, p) A Review(y, p,r) — Read += (x,p,r)
13 // PC members may rethink their reviews

14 forall x: PCMember, p: PCMember, r: Report may.

15 Assign(x, p) A Oracle(x, p,r) — Review += (x,p, 1)
16 }

Figure 3.1: EasyChair-like workflow.

consist of the receiving TA and a pair of (student, grade). In the third step, the TAs
can then pass the grades on to the students. This is again recorded in a relation,
this time called Msg,. It consists of the informed student and the grade he was
given. Depending on the choices of the professors and TAs in the end result, every
single student and his grade could be included in Msg, or any particular subset of
students.

Example 3.3.

As a modestly involved running example, we introduce a workflow to model the
paper reviewing and review updating of a conference management example like
EasyChair in Figure 3.1.

In this workflow, all PC members are agents who interact with papers, reviews
and with other PC members. In a first step, they can declare that they have a
conflict of interest with some of the papers (line 2). Then, papers are assigned to
reviewers as long as they have not declared a conflict with the respective papers
(line 4). Reviewers are then required to write an initial review of their assigned
papers (lines 6-7). Afterwards, the discussion phase starts. Here, all reviewers of
a paper are shown all the reviews other people wrote for the same paper (lines
11-12). They can then alter their review based on the information they have seen
(lines 14-15). This discussion phase continues for multiple turns until the PC chair
ends the phase.

In this thesis, we will provide techniques to prove multi-agent workflows and similar
systems have specific desirable properties. We will now give a formal semantics to our
multi-agent workflows in terms of First-order signatures and evolving structures.

22 Chapter 3. First-order Transition Systems

3.2 First-order Transition Systems

To give multi-agent systems like the one shown in Example 3.3 precise semantics, we
tirst define the formal model of First-order Transition Systems. Afterwards, we show how
to embed multi-agent systems in workflow syntax into this model.

Assume that we are given a signature ¥ = (S,C, R, ar) with finite set R = Rstare U
Rinput of predicates, C of constants together with a set S of variable sorts and an arity
function ar.

A First-order (FO) Transition System S (over X) consists of a control-flow graph
(V,E,vg) underlying S where V is a finite set of program points, vy € V is the start
point and E is a finite set of edges between vertices in V. Each edge of the graph is of
the form (v, 0, v') where 6 signifies how a first-order structure for program point ¢’ is
determined in terms of a first-order structure at program point v. Thus, 6 is defined
as a mapping which provides for each state predicate R € Ry of arity 7, a first-order
formula 0(Ry) for a dedicated well-sorted sequence of fresh FO variables 7 = y1 ... ;.
Each formula 6(Rj7) may use FO quantification, equality or disequality literals as well as
predicates from Rstare. Additionally, we allow occurrences of dedicated input predicates
from Riypy:- An important feature of input predicates (in contrast to state predicates) is
that their interpretation is not constrained and its interpretations may vary over time.
Thus, querying the same input relation multiple times may produce a different result
every time.

A FO Transition System also includes an assertion Init over the relations in R and
constants C that specifies which initial structures are valid starting points from which to
execute the FO Transition System.

Example 3.4.

For the example given in Example 3.3, in every loop iteration, a different set of
people may choose to update their reviews. Thus, both the interpretation of the
may construct as well as the interpretation of the relation Oracle may change each
iteration.

For convenience, we denote a substitution 6 of predicates R; ... R, with formulas
@1...¢, by
0 ={Rij1:=¢1 ... Ryl := @}
where each 7; is a list of pairwise distinct variables signifying the parameters of R; and

thus may occur freely in ¢;. We also will use Rj += ¢ as a shorthand for Ry :== Ry V ¢
as well as Ry —= ¢ as a shorthand for Ry := Ry A —¢.

Example 3.5.

The FO Transition System corresponding to the workflow specification from
Figure 3.1 is given in Figure 3.2. The corresponding signature ¥ = (S,C, R, ar) is
shown in Figure 3.3.

Here, the state predicates in Rt are Conflict, Assign, Review and Read, while

3.2 First-order Transition Systems

©

Conflict(x, p) := Choice;(x, p)

@

Assign(x, p) = Choicey(x, p) A ~Conflict(x, p)

©)

Review(x, p,r) = Assign(x, p) A Oracle(x, p,r)

)

Read(x, p,r) += Assign(x, p) A 3y. Choices(x, p,t,y) A Review(y, p,)

Review(x, p, r) += Assign(x, p) A Oracle(x, p,r) A Choices(x, p, 1)

Figure 3.2: FO transition system for the running example

S = {PCMember, Paper, Report},
C= {
Restate = {Conflict, Assign, Review, Read},
Rinput = {Choicey, Choice, Choices, Choices, Oracle},

(Conflict : (PCMember, Paper),

Assign : (PCMember, Paper),

Review : (PCMember, Paper, Report),

Read : (PCMember, Paper, Report),

ar = Choice; : (PCMember, Paper),

Choices : (PCMember, Paper),

Choices : (PCMember, Paper, Report, PCMember),

Choicey : (PCMember, Paper, Report),

Oracle : (PCMember, Paper, Report)

Figure 3.3: Signature of the running example

24 Chapter 3. First-order Transition Systems

the input predicates Ry, consist of Choicey, ..., Choicey and Oracle. As there are
no global constants, C is empty.

For the edge from node 2 to node 3, § maps Review to the formula Assign(y1,y2) A
Choicey(y1,Y2,y3) and each other predicate R from Rsq to itself (applied to a suit-
able list of formal parameters). Thus, 6 maps, e.g., Conflict to Conflict(y1,y2). For
the edge from node 3 to 4, the given formula introduces existential quantification
on y, as not all free variables in the corresponding workflow guard are bound by
the tuple to be added to Review.

No node is explicitly marked as final node. We model termination of the
workflow by going to state 5, from which the only outgoing edge does not change
the state anymore.

A path in a FO Transition System is a path (sequence of edges) ey, ey, . .. through its
corresponding control flow graph. The set of paths of a FO Transition System S is called
Paths(S). We do not distinguish between finite and infinite paths in this thesis to ease
notation. Embedding finite paths can be done as in Example 3.5 by adding a stuttering
state that repeats the final state forever.

States and Transitions Let U be a universe specifying domains for all sorts in S. A state
structure s (over U) contains interpretations for constants and state relations C U Rstate
reached in some location v € V during an execution of the FO Transition System. To
fully determine the successor structure of s, interpretations of the input predicates are
needed. Thus, state structure s together with an input structure w (over U) (containing
interpretations for all relations in R ;) determine the successor structure s'. Formally,
for a structure s and an edge (v,0,?’) of the FO Transition System, there is a transition
from (v,s) to (¢/,s') iff there exists an input structure w such that for each predicate
R € Rstate Of arity (s1...s,) together with a vector 7 = y; ...y, (of sorts ar(R)) and an
element 7 € U, X ... x U,

s, v[j—] E Ry iff s ® w,v[j —] = 0(RY)

holds. Additionally, s and s’ need to have rigid constant interpretations, i.e. ¢ = ¢
for all c € C. Here, the operator “@” is meant to combine the two structures into a
single structure containing interpretations for both state predicates Rt as well as input
predicates Rinput-

We call any pair (v,s) constructed in this way a state of the transition system and
the set of all pairs ((v,s), (¢/,s’)) constitute the transition relation Ay, of S (relative to
universe U and valuation v). We call a state (v,s) initial if v = vy and s satisfies the
initial condition, i.e. s, v |= Init. A trace is a possibly infinite sequence

(vo,50), (v1,51) - -

such that (v, sp) is initial and for each i = 0,1,..., ((v;,5i), (vi+1,Si+1)) € Ay holds.
We denote the set of all traces of a transition system S as Traces(S). The path 7t(7) of a
trace T = (v, S0), (v1,51) - . - is the projection to the sequence of taken edges, i.e. it is the
sequence ey, €1, . . . connecting the sequence of nodes vy, vy, In this thesis, we assume
that this sequence is unique, i.e. between two nodes of V there exists at most one edge in
E. This does not lose generality, as it is always possible to insert an auxiliary node on
one of the edges.

3.2 First-order Transition Systems 25

We let o(n) denote the n-th element in a path o, and let o[n,00] = o(n)o(n+1)...
denote the n-th suffix of o while [0, n] denotes the n-th prefix of . We also lift the suffix
operation from paths to traces and define T[n, oo| be the n-suffix of a trace T and 7[0, 1]
the n-th prefix.

Example 3.6.

Let us instantiate the Easychair example from Figure 3.2 for the universe U with

UpcMember = {x 1, X2 }
uPaper = {Plr pZ}
uReport = {rl }

A possible structure s attainable at node 2 could have

Conflict® = {(x1,p1)}

Assign® = {(x1,p2), (x2,p1), (x2,p2) }
Review® = @
Read® = O

For the input structure w with

Oracle” = {(x2, p2,11)}

there is a transition to node 3 and a structure s’ which is similar to s, but updated
the relation Review to

Review® = {(x2,p2,11)}

with Conflict and Assign unchanged and Read still empty.

Fragments In this thesis, we sometimes consider simpler fragments of the full class of
FO Transition Systems. We call a FO Transition System acyclic iff the underlying control
flow graph is acyclic. In particular, all traces of an acyclic FO Transition System are finite.
We call a FO Transition System quantifier-free iff for all edges (v, 6,v’), all formulas in 6
used to update the state are quantifier-free.

Example 3.7.

The example shown in Example 3.5 is neither acyclic nor quantifier-free (because of
the existential quantifier in the edge between nodes 3 and 4), but the FO Transition
System version of the university example shown in Example 3.2 is both acyclic as
well as quantifier-free.

3.2.1 Guards

First-order Transition Systems do not directly provide guards in the semantics. However,
the formalism is rich enough to simulate guarded behavior: We add a fresh nullary
predicate error with initial value false to Rt that is meant to track if the current trace
has violated any guards. Given an edge (1,0, v) in the original system that should be
guarded by a FO formula ¢, we transform it into an edge (1, 6’, v) in the new system

26 Chapter 3. First-order Transition Systems

where 6 and 6’ use the same transformations for all relations in R, except error which
6’ maps to error V =¢. Then, for any execution that violated any of the guards, error will
be true from some point onward, which can be checked by verification conditions.

3.2.2 Embedding Workflows into First-order Transition Systems

The workflow language provides statements, e.g., of the form

forall x : PCMember, p : Paper may. —~Conflict(x, p) — Assign += (x, p)

which is meant to add the pair (x, p) to the relation Assign whenever the condition
—Conflict(x, p) is satisfied and some implicit choice predicate Choice(x, p) is satisfied
whose elements are selected by the respective agent x. In this section, we will give
precise semantics to workflows by embedding them into FO Transition Systems.

In the formalism of FO transition systems the substitution 6 corresponding to this
statement is the identity for all predicates R different from Assign and maps Assign to
the formula

Assign(yy,y2) V Choice(y1,y2) A =Conflict(y1,y2)

where Choice € Ry and all other relations are in Rstate-
Workflows start in an initial state where all relations in R, are empty, but with no
assumptions on the input predicates. Thus, the initial condition Init is

N\ V7.-Ry

ReRsmte

where 7 is a well-sorted tuple of correct arity for all R.

The control structures of workflows loop (*) and choose are used to specify the control
flow graph of the workflow. It consists of edges (u, b, v) where u, v are nodes and b is a
workflow block.

The corresponding FO Transition System uses the same graph structure and converts
each edge (u,b,v) to an edge (1,6, v). We now present how to define the substitution 6.
We consider first a may block b, of the form

forall x:3 may. stmts

Since a may block executes only for a subset of all agents, we introduce the auxiliary
predicate Choice; (where i is the index of block b) which collects all tuples for which the
block should be executed. For each R € R0, we let

R(y) if R not updated
7) V 3%:5. 6 A Choice;(X) N (= 1) if 7 added to R
R(7) A —(3x:5. 6 A Choice;(x) A (§ = 1)) if i deleted from R

where block b’s statement that updates R has the form 6§ — R £=1, i is the index
of the block b in the linearisation of the workflow, and it is assumed that x Ny = @.
The definition of 6(Rj) when b is a non-may block is similar, except that the Choice;(X)
conjuncts are omitted.

If the same relation is modified multiple times in a block, the updates take place
sequentially. This is expressed by building the formulas 6(Rj) inductively, similarly

3.2 First-order Transition Systems 27

as above: 0(Rj) up to statement j is obtained by replacing literals Ry by 6(Ry) up to
statement j — 1.

Example 3.8.

The execution semantics of the second block of the workflow from Example 3.3

forall x: PCMember, p: Paper may. —~Conf(x, p) — Assign += (x, p)

is given by the following mapping:

Assign(yy,y2) = Assign(yr,y2) V
(3x: PCMember, p: Paper. Choiceq(x, p) A
=Conflict(x, p) ANy1 =X Ay2 = p))
Conflict(y1,y2) = Conflict(y1,y2)

The first formula of the above mapping can be rewritten into the logically equiva-
lent formula

Assign(x, p) = Assign(x, p) V Choicei (x, p) N —~Conflict(x, p)

by substituting x and p by y; and y; respectively, and then renaming y; and
y2 back to x and p. We note that this formula matches well the syntax of the
second block in Example 3.3. The mentioned simplification cannot be performed
in general, but only for a class of workflows, see Section 3.2.3. Following this
transformation, the FO Transition System in Figure 3.2 is the embedding of the
workflow from Example 3.3.

Since the interpretations of the Choice; predicate symbols used in the 6(Rj) formulas
is to be chosen by the participating agents, these are one part of the input relations
Rinput- In addition, there is also external input, which is not provided by the agents
themselves, which is also part of the input relations Ry;py;-

Example 3.9.

For the Easychair example from Example 3.3, the internal input relations for may
blocks are {Choice;, Choice,, Choices, Choices } while the external inputs are {Oracle}.
Together, they form Rjpu:-

A forall ¥ may block with statements of the form
@i — Ri =1,
can be seen as an abbreviation of a non-may block with statements of the form
Choice(%) N\ ¢; — R; £=1i;

for some predicate symbol Choice ¢ Rtate. Note also that for an atom Oracle(f) occurring
in some guard 6;, the arity of Oracle need not be |%|. We use the abbreviated may form
to emphasize the subtle differences between the two kinds of non-workflow relations.

28 Chapter 3. First-order Transition Systems

3.2.3 Non-omitting Workflows

We call a workflow non-omitting iff for each of its blocks

1 forall x:5 [may].

2 1 — Ry £=1iq;
3

4 ¢n — Ry £=1ily;

we have fo(il;) = ¥ and ¢; is quantifier-free, for each i € {1,...,n}.

For a non-omitting workflow w, we can replace all existentially quantified variables
inside all formulas 6(Ry) by their respective values, and remove the existential quan-
tifiers. Thus, if for all block b, all guards of b are quantifier-free, all update formulas
6(Ry) become quantifier-free for all R € Rge. Thus, non-omitting workflows with
quantifier-free guards translate to quantifier-free FO Transition System.

3.24 Embedding RML into First-order Transition Systems

Generally, there is a growing interest in verifying infinite-state or parametric systems
via a formalization in First-order Logic. An alternative formalization of such systems
is the RML language introduced in [75], which has been used to model and check a
variety of parameterized systems, most notably the Paxos network protocol [74]. RML is
similar to the workflow language considered here in that its only data structure are (in
this case finite) relations. It also contains control structures like nondeterministic choice,
nondeterministic assignment, and an unbounded while loop while * do that is similar to
the loop (*) construct used in workflows. The local state is stored in first-order variables,
tirst-order predicates and functions where typed update commands are provided to
change the local state. The main difference between the workflow language and RML
is that RML statements always manipulate just a single tuple in a predicate, while
workflow blocks allow the manipulation of all tuples matching a particular formula.

In this section we show that our formalism of FO Transition Systems is general enough
to also encode RML. In many cases FO transition systems are even more concise and
allow for single statements where RML would need a loop construct.

Example 3.10.

Consider the RML program shown in Figure 3.4. The first five lines specify a
signature X that consists of two relations R and S over a single sort where R
is binary and S is unary. It then declares variables x and y which can be used
throughout the program. The program then executes, consisting of a single loop
that inserts some subset of tuples (x,y) into R where S(y) holds.

A faithful encoding achieving the same result with a FO Transition System
over signature X is shown in Figure 3.5. The additional predicate A is an input
predicate in R, that specifies for which (x,y) the RML loop should be executed.

Example 3.11.

For illustration, in Figure 3.6 we show a (a simplified version of) the running

3.2 First-order Transition Systems

29

sort s
relation R:s,s
relation S:s
variable x:s
variable y:s

while % do {
X =%
y = >(-,‘
assume S(v);
R.insert(x, y);

O 0 NI ON Ul b WO N =

[
N — O

Figure 3.4: Example of an RML program

R(x,y) = R(x,y) V S(y) N A(x,)

Figure 3.5: Encoding of a simple RML program

30 Chapter 3. First-order Transition Systems

// n sends a message with its own id to m
msg(id,m) == msg(id,m) V In. id(id,n) N next(n,m)

// check all sent messages
// did someone get his own id?
leader(n) := leader(n) \V 3id. msg(id,n) N id(id,n)

// send message on if it was higher than own id
msg(id,m) = msg(id,m) V 3In. msg(id,n) N\
Jid’. id(id’ ,n) N\ —(id < id") A next(n,m)

Figure 3.6: Leader Election example

example from [75] given in the syntax of First-order Transition Systems.

It shows a network protocol for leader election for a set of nodes, organized in a
ring topology. The ring is represented by the relation next with messages passed
between different nodes, stored in the message relation msg. To elect a leader, all
nodes send their own id to the next node in the ring. Whenever a node receives
a message, it checks if it received its own id. If it did, it declares itself the leader.
Otherwise, if it received an id higher than its own, it sends it on to the next node
in the ring. All required properties for <, next and id are either purely universal
formulas or purely existential and can be stated in Init.

The property that we are interested in is that at no point, there are two nodes
that declared themselves as leaders — which can be stated by a universal formula.

RML is designed in such a way that all substitutions preserve Bernays-Schonfinkel
formulas. Nonetheless, the language is Turing-complete [75]. In contrast to FO Transition
Systems, it does not support input predicates that change over time.

All its features can also be encoded faithfully into FO Transition System without input
predicates. To allow FO transition systems to only change relations by single tuples,
we introduce an additional monadic relation X into Ry for every variable name x
used in the RML program as well as the guard relation error mentioned before. We then
translate the statement

into the sequence of transitions shown in Figure 3.7.

Now X(x) can be used in subsequent statements and constrains x to be a singular
individual variable and all guards are in 3*FO Logic.

FO transition systems do not directly allow for functions f with arbitrary arity. These,
however, can be encoded as relations R £ where the last component is the value of the
function together with some universal axioms. To enable this, functions in RML come

3.3 Alternative Models 31

error := error V Axq1, x2.x1 7% X2 A X(x1) A X(x2)

Figure 3.7: RML havoc statement as a FO Transition System

with a stratification that disallows nestings of function applications when the sort of
the result is the same as one of the parameters, which excludes cyclic applications
of functions. assume and assert statements, which are not directly supported by FO
Transition Systems, can still be simulated by the same mechanism we used to encode
guards.

3.3 Alternative Models

In terms of practical verification efforts, there has been a lot of recent interest in proving
secrecy in various variants of parametric systems, oftentimes via a formalization in
First-order Logic. In this chapter, we have argued for our formalism of FO Transition
Systems. In the literature there are already several variants of multi-agent systems, each
with their own pros and cons.

One such tool that we have already seen in Section 3.2.4 is the programming language
RML [75], which we argue can be encoded into FO Transition Systems and thus profits
from our results. Another recent verification approach has been made for the VeriCon
system [72], which has been proposed for describing and verifying the semantics of
controllers in software-defined networks. Both are based on evolving states of First-order
relations and are thus close in spirit to FO Transition Systems. After presenting our
verification results in Chapters 5 and 6, we will compare the technical results more
closely.

Multi-agent systems are not always explicitly based on First-order Logic. A fairly
recent line of work in that line is based on population protocols, where an unbounded
number of memoryless agents move around a graph — every interaction they can
take dictated by the current state they are in. For a survey, we refer to [8] as well
as [19]. A population protocol can be seen as a particular class of FO Transition System
where all involved relations are monadic and correspond to the states of the graph.
However, FO Transition Systems allows to model structured processes rather than
focusing on interactions between the participating agents. As we will show in Chapter 4,
FO Transition Systems give more fine-grained control over the possible observations as
well as the decisions of the participating agents.

Work on infinite-state systems also goes back a lot further. For example, a rich

32 Chapter 3. First-order Transition Systems

body of work has been done on abstract state machines (ASMs) [44], i.e., state machines
whose states are first-order structures. ASMs have been used to give comprehensive
specifications of programming languages such as Prolog, C, and Java, and design
languages, like UML and SDL (cf. [21]). A number of tools for the verification and
validation of ASMs are available [22]. Known decidability results for ASMs are, however,
based on strong restrictions such as sequential nullary ASMs [84]. As we will show in the
upcoming chapters, FO Transition Systems seem to show more promise for automated
analysis.

In Al, First-order Logic has a long tradition for representing potentially changing
states of the environment [23], f.e. reachability problems that arise in robot planning.
An example is GOLOG [62], which is a programming language based on a first-order
language designed for representing dynamically changing systems. A GOLOG program
specifies the behavior of the agents in the system. The program is then evaluated with a
theorem prover, and thus assertions made in the program can be checked for validity.

Another type of multi-agent systems is represented by business processes. They are
often described by BPMN diagrams [32] and formalized by Petri nets. A business process
is a collection of activities, and a workflow thereof represents the flow of data items
between activities. Activities are performed by users, who may need to synchronize
on certain actions, but otherwise execute activities asynchronously. This is in contrast
to our formalism, where steps are executed by a set of agents in parallel. Information
flow in business processes has been considered, e.g., in [13]. The MASK framework for
possibilistic information flow security [64] and a variant of the unwinding technique
from [42] is used to prove that specifications satisfying particular constraints are safe.
To our understanding, the approach is again not easily amenable to automation.

If we turn to web-based workflow management systems, there have been many
different approaches of certifying secrecy for specific applications. For example, for
the ConfiChair conference management system it was proven that the system provider
cannot learn the contents of papers [7]. For CoCon, another conference management
system, it was proven that various groups of users, such as authors, reviewers, and PC
members cannot deduce certain content, such as reviews, unless certain declassification
triggers, such as being a PC member without a conflict of interest, are met [57]. For the
verification of security in an eHealth system, Bhardwaj and Prasad [17] assume that all
agents are known at analysis time. Based on this information, the authors construct a

dedicated security lattice and then apply techniques from universal information flow [51,
5].

These examples show that there is a lot of interest in automated and easily applicable
tools that certify secrecy for such systems but fully automated approaches are still
limited in the current state of the art.

3.4 Introduced Concepts 33

3.4 Introduced Concepts

u,v,v Variable for locations in the control flow graph

N Variable for First-order Transition Systems

Rstate State predicates, updated by the FO Transition System
Rinput Input predicates, given by the outside world

6 Variable for substitutions

0(¢) Application of a substitution to a formula

Ry=¢ Shorthand for a substitution replacing literals R by ¢

Ry +=¢, R —= ¢ Shorthands for R := Ry V ¢ and R := Ry A\ —¢

SOw Combination of state structure s and input structure w
Ayy of S Transition relation of S relative to universe U and valuation v
Paths(S) Set of paths through the control flow graph of S

o Variable for paths

o(n) n-th element of ¢

a0, n] Path/Trace prefix from 0 to n

a[n, oo] Path/Trace suffix starting from n

(v,5) State of a FO Transition System in node v with structure s
(v0,0), - - - Trace of a FO Transition System through states (v, So) - . -
Traces(S) Set of traces of S

T Variable for traces

7(7) Projection of a trace to its path

3.5 Conclusion

In this chapter, we have introduced a syntax for multi-agent workflow systems and have
given them a formal semantics. For this, we have defined First-order Transition Systems
which use First-order Logic formulas to describe how a system evolves over time. Given
a particular universe consisting of elements of various sorts, the FO Transition System
can be instantiated and executed to compute specific states where the relations are given
specific interpretations over the set of elements of the universe. However, to prove that a
given FO Transition System has specific properties, it is not enough to instantiate it for
any number of fixed universes. Rather, we need to prove that all possible instantiations
satisfy the property.

We have discussed how different languages and syntax features like multi-agent
workflows, RML [73] or guards can be expressed by FO Transition Systems and intro-
duced the classes of acyclic FO Transition System as well as quantifier-free FO Transition
Systems, which can be written using entirely quantifier-free substitution formulas.

CHAPTER 4

Temporal Security Properties

Contents
41 First-order Linear Temporal Logic 37
42 First-order HyperLTL 41
43 Noninterference 43
4.4 Related Specification Languages 47
45 Introduced Concepts. 48
46 Conclusion e 48

35

4.1 First-order Linear Temporal Logic 37

4 Temporal Security Properties

In the last chapter, we introduced the formal model we use to express multi-agent
workflow systems. We will now show how to formulate safety properties and secrecy
requirements for FO Transition Systems. In our case, these are temporal properties such
as “At every point in time during the execution of the transition system, formula ¢
holds.” or “At some point in the future, formula ¢ will hold.”.

Historically, temporal properties are expressed in temporal logics like Linear Temporal
Logic (LTL) or CTL*. These logics are propositional. In FO Transition Systems, the global
state is stored in relations which may be of unbounded size, which makes propositional
logics ill suited to reason about FO Transition Systems.

Instead, we use First-order Linear Temporal Logic (FOLTL), an extension of Linear
Temporal Logic (LTL) with First-order Quantifiers [48, 59]. We give a short introduction
to FOLTL in Section 4.1. Our goal is to specify secrecy policies such as Noninterference.
These are more complicated than linear temporal safety properties and are generally
formalized as hyperproperties — properties that compare two or more possible executions
of the given system.

To express these policies for FO Transition Systems, we extend First-order LTL to
First-order HyperLTL in Section 4.2 and show how to embed this new logic back
into First-order LTL. We then use First-order HyperLTL to formulate a version of
Noninterference for FO Transition Systems with optional Declassification conditions and
assumptions on the behavior of the participating agents in Section 4.3.

4.1 First-order Linear Temporal Logic

First-order Linear Temporal Logic (FOLTL) is an extension of standard Linear Temporal
Logic with First-order Quantifiers. It has been studied in [48, 59] and describes how
quantified properties evolve over time. For an overview, we refer to [47, Chapter 11].

Just as standard Linear Temporal Logic, FOLTL is used for statements over a timeline
consisting of discrete timesteps. Instead of the atomic propositions used in LTL, FOLTL
uses formulas in First-order Logic to make statements about specific points in time and
uses temporal operators to connect them to a statement about the states that form a
timeline.

Example 4.1.

First-order LTL connects First-order Logic and Linear Temporal Logic to form
temporal first-order properties. Example properties in FOLTL include:

F G Vx: Student, s: Subject. Finished_Studying(x,s)

which specifies that from some point onward, every student will have finished
studying all subjects (at which point he graduates). Temporal operators and

38 Chapter 4. Temporal Security Properties

quantifiers can be nested freely to express more complicated properties:
dx: Student. FVy: Student. (x # y) — Knows(x,y)

This property expresses that there is a specific student x which will eventually get
to know every other student.

FOLTL formulas over a signature £ = (S,C, R, ar) are given by the grammar

pu=t=t|R(ty,....t) | 7| oVe|Ixis.@|Xe|pUep

where s ranges over S, t, / range over }V UC and are of the same sort, R ranges of R and
for ar(R) = sq .. .sk the t; are of the correct sorts, i.e. t; is of sort s; for all i.

The symbols X and U denote the Next and Until LTL operators with the intuition that
X ¢ means that ¢ should hold exactly one timestep from now, while ¢; U ¢, holds if ¢,
holds in every timestep until at some point in time ¢, holds. As syntactic sugar, we
again use the abbreviated operators from FO Logic A, —, <+ as well as the universal
quantifier Vx : s. Additionally, we use the derived temporal operators F (eventually), G
(globally), W (weak until) and R (release):

Fo = trueU¢
Go = -F-g
PWer = (¢1Ug2) VG
P1Rp2 = (=91 U—yn)

where frue := (¢ = ¢) for some ¢ € C.

4.1.1 First-order LTL semantics

A temporal structure over signature X is a sequence 5 = (so,s1,...) of structures over %
such that all structures s;, with i > 0, have the same universe for all sorts (Us)ses, and
rigid constant interpretations, i.e. ¢* = ¢*, forallc € C and i > 0.

Let 5 be a temporal structure over the signature X, with 5 = (sg,s1,...), ¢ a formula
over X, and v a valuation. We define the relation 5,v = ¢ inductively as follows:

sviEt=+t iff v(t)=v(V)

S, viER(F) iff v(f) € R®

5,vE - iff 5vEyY

sviEypVvy iff svEYorsviEY

SviEdx.y iff Svix—d] =y, forsomed e U
5,vEXy iff 5[1,00],v =

s, viEypUy iff forsomej >0, 5[j, 0], v = ¢/, and

S5k, 00],v =1, forall k with 0 < k < j

A FOLTL formula ¢ is said to be satisfiable iff there exists a temporal structure 5 and
a valuation v s.t. 5,v |= ¢. It is said to be finitely satisfiable iff there exists a temporal
structure 5 over a finite universe U and a valuation v s.t. 5, v |= ¢. To omit parentheses,
we assume that temporal operators bind stronger than quantifiers but weaker than the
other boolean connectives. In analogue to First-order Logic, we also consider formulas
in negation normal form, where R becomes a primitive operator instead of a derived
one.

4.1 First-order Linear Temporal Logic 39

Example 4.2.

A simple safety property for the running conference management example from
Example 3.3, we want to check that no papers are assigned to any PC member who
declared a conflict of interest with that particular paper. This can be formalized as

G —3x: PCMember, p: Paper. (Conflict(x, p) A Assign(x, p))

4.1.2 First-order LTL Decidability

Since FOLTL subsumes First-order Logic (FO Logic), FOLTL is also undecidable in
general. In this thesis, we consider formulas of a Bernays-Schonfinkel-Ramsey-like
fragment of FOLTL, which we name 3*FOLTL.

To define 3*FOLTL we will consider the projection of a sorted FOLTL formula on a
sort s, defined as the FOLTL formula obtained by removing all quantifiers and terms
of sorts different from s. We refer to [1, Definition 17] for the formal definition of the
projection, and only illustrate it here with an example:

Example 4.3.

Given the formula
dx:A.Vy:B.3z:A.~(x =z) AP(x,y) NGQ(y, 2)
its projections I14, I1g on the sorts A and B are the two formulas
Mg :3x.Fz.=(x=2) APy (x) AGQq(z) TIg:Vy.Pi(y) AGQa(y)

The 3*FOLTL fragment of sorted FOLTL consists of those closed formulas ¢ in
negation normal form such that, for each sort s, the projection of ¢ on s is a formula of
the form

/
dx1, .., Xk @

with k > 0 and ¢ a FOLTL formula containing no existential quantifiers. This definition
extends the definition of the Bernays-Schonfinkel-Ramsey-like fragments in [1, 70]
from FO Logic to FOLTL,! and of the Bernays-Schonfinkel-Ramsey-like fragment in [59]
from unsorted FOLTL? to sorted FOLTL. Note that the previous example formula in
Example 4.3 is in 3*FOLTL.

To bring an arbitrary FOLTL formula into the mentioned form, we can use the
standard transformations that put a FO Logic formula into prenex normal form, as
well as the following equivalences to move existential quantifiers outside of temporal
operators:

pUIx.yp =3Ix.(pUy) and (Ix.p)Re =3dx.(¢Re),

assuming that x does not occur free in ¢. Note that in particular we have that F 3x.¢ =
dx.F ¢. However, the previous equivalences cannot be generalized. For instance,

1The decidable FO Logic fragments in [1, 70] are larger than the projection of the 3*FOLTL fragment to
sorted FO Logic, as they also consider function symbols.
2Unsorted FOLTL can be seen as sorted FOLTL with exactly one sort.

40 Chapter 4. Temporal Security Properties

existential quantifiers cannot, in general, be moved over the G operator. Intuitively,
G Jx. ¢ means that “for all time points t, there exists an x such that ¢ holds at t”. Thus,
in contrast to FO Logic, not all FOLTL formulas can be put in prenex normal form.

Theorem 4.1 (3*FOLTL Decidability). The following statements hold:

1. Checking satisfiability of a formula in 3*FOLTL is equivalent to checking finite satisfiabil-
ity of the same formula.

2. A*FOLTL is decidable.

Proof. This proof follows the reasoning for decidability of the Bernays-Schonfinkel-
Ramsey fragment of FO Logic, see e.g. [20].
Consider a closed formula ¢ in 3*FOLTL. It has the form

Q1X12 S571... Qkxk:sk. l/)

where k > 0, Qy,...,Qx is a sequence of quantifiers, and ¢ is an FOLTL formula in
negation normal form containing no existential quantifiers. We group the sequence
Q1, ..., Qk of quantifiers into maximal subsequences of the form 3*V*. We let n be the
number of such subsequences, and let i; be obtained from ¢ be removing the first i
groups of quantifiers, for 0 < i < n. Note that ¢g = ¢ and ¢, = .

We iteratively transform the formula ¢y into the formulas ¥; to ¢,,. We also build
the sets Dé of constant symbols of sort s, for each sort s and each i with 1 < i < n.
Consider step i, with 1 < i < n. For each sort s, we pick a set Cé of constant symbols
whose cardinality is given by the number of existential quantifiers over the sort s in the
i-th subsequence, and such that C: N C, = @ for any 0 < j < i. We let D! = C: U DI},
where D! is a singleton containing some constant of sort s. For each sort s, and each
variable x of sort s bound by an existential quantifier from the i-th group, we remove
the existential quantifier and we instantiate x in ¥; by a corresponding constant from
Cé. In this way, all existentially quantified variables in 1; are instantiated. Next, starting
from the top-most universal quantifier in 1p;, we iteratively replace every subformula of
the form Vy:s. a by the finite conjunction over elements of D, namely, A ;¢ pi «[d/y]. Let
;11 be the formula obtained in this manner. Finally, we replace all subformulas of the
form Vy:s.a in ¢, (recall that ¢y may have universal quantifiers) by the finite conjunction
over elements of D!, as above. Let ' be the formula obtained in this manner. It is
easy to see that ¢ is satisfiable iff ¢’ is satisfiable. Furthermore, it is also clear that ¢’ is
satisfiable iff it is finitely satisfiable, as we can pick Us = D{ as the (Herbrand) universes.
Note that by construction the universe Us is non-empty even when there is no existential
quantifier over the sort s; in this case Cé = @, for all i with 1 < i < n. This ends the
proof of the first statement of the theorem.

For the second statement of the theorem, note that ¢’ contains no quantifiers and its
literals do not contain variables. We transform ¢’ into an LTL formula by taking the
disjunction over all combinations of equivalence relations over D} (for each sort s) of
the formulas obtained by replacing each predicate R(d, ..., d,) in ¢’ with the atomic
propositions Rz __4), where d} is the representative of the equivalence class to which d;
belongs. Furthermore, equalities a = b are replaced by true if a and b are in the same
equivalence class and by false otherwise. Clearly, the thus obtained formula is equi-
satisfiable with ¢’. We can now conclude by noting that LTL satisfiability is decidable,
see e.g. [83]. O

4.2 First-order HyperLTL 41

We also note that there are very few decidability results concerning FOLTL. Besides
the 3*FOLTL fragment, the only other decidable fragment we are aware of is the monodic
fragment [48], which requires that temporal subformulas have at most one free variable.
As will become clear in the next section, this restriction is too strong for our purposes:
we cannot encode FO transition systems by FOLTL formulas in this fragment.

4.2 First-order HyperLTL

HyperLTL [29] is a recent extension of linear-time temporal logic (LTL) with trace variables
and trace quantifiers. HyperLTL can relate multiple execution traces and is thus well
suited to express not only trace properties, but security policies like Noninterference or
Observational Determinism [42], which are often hyperproperties [30].

Since HyperLTL was introduced as a propositional logic, it cannot express properties
about systems with an unbounded number of agents. We now present First-order
HyperLTL, which extends propositional HyperLTL with first-order quantifiers. In the
following, we will refer to First-order HyperLTL simply as FO HyperLTL.

Example 4.4.

In the secrecy policy called “Observational Determinism” [92], the inputs and
outputs of any given program are classified as low or high security with respect to
the clearance level of some particular user with the intention that that user is able
to observe the low security inputs/outputs but can not observe the high security
ones.

The property states that, on any two program executions, if the low inputs are
always the same, then the low outputs are also always the same. That is, from
the point of view of a particular user, the observable behavior of the program
is only determined by the observable inputs this particular user is cleared for.
This property can be formalized by a FO HyperLTL formula quantifying over two
paths 7r,7t":

Vi, i (GVx. In(x) ¢ Ly (x)) = (GVy.Ox(y) <> Ox(y)),

where I(x) denotes that x is a low input to the program, while O(y) denotes that
y is a low output.

4.2.1 First-order HyperLTL syntax.

Let X = (S,C, R, ar) be a signature, and let IT be a set of trace variables disjoint from the
set V of first-order variables. We call Ry = {R; | R € R, € I1} the set of indexed
predicates. Let X' = (S,C, Ry, ar’) be the signature with ar’(R;) = ar(R), forany R € R
and T € I

FO HyperLTL extends FOLTL as follows. FO HyperLTL formulas over ¥ and II are
generated by the following grammar:

pu=3m 9| ple

42 Chapter 4. Temporal Security Properties

where 71 € Il is a trace variable and ¢ is a FOLTL formula over ¥’. Universal trace
quantification is defined as V7r.¢p = —~37r.—~¢. FO HyperLTL formulas thus start with a
prefix of trace quantifiers consisting of at least one quantifier and then continue with a
subformula that contains only first-order quantifiers, no trace quantifiers.

4.2.2 First-order HyperLTL semantics

The semantics of an FO HyperLTL formula is given with respect to a set 7 of temporal
structures, a valuation « : V — U of the first-order variables, and a valuation g : IT — T
of the trace variables.

The satisfaction of a FO HyperLTL formula ¢, denoted by T, a, B |= ¢, is then defined
as follows:

Twp=e iff palg,
T By iff Tap iy,
T,a,p =3¢ iff T,a Blmr— 3] =1, forsomese T,

where ¢ is a FO HyperLTL formula, while ¢ is a FOLTL formula. Formulas ¢ are
FOLTL formulas over indexed predicates R, where 7T is a trace variable. We evaluate ¢
as an ordinary FOLTL formula over a combined temporal structure f that interprets an
indexed predicate R, by the interpretation of R in the temporal structure that § assigns

to the trace variable 77, i.e. RE = RE(™): for all timepoints 1.

A FO HyperLTL formula without free first-order and trace variables is called closed. A
closed FO HyperLTL formula i is satisfiable iff there exists a set 7 of temporal structures
and valuations « and B s.t. T,a, B |= . A closed formula ¢ holds for a FO transition
system S, denoted by S |= ¢, iff T, a, B |= ¢ for the empty assignments « and § and the
set 7 = Traces(S) of traces of the transition system.

Example 4.5.

In the running conference management example from Example 3.5, there exists a
trace where from some point on, all papers are reviewed. Thus, this FO HyperLTL
property holds for the corresponding transition system S, i.e.

S |= 3n. FGVp: Paper. 3x: PCMember, r: Report. Review(x, p,r)

FO HyperLTL formulas in which all trace quantifiers are universal are called universal
formulas. Satisfaction of any FOLTL formula ¢ can be embedded into FO HyperLTL
satisfaction as V7t. ¢, where @ is ¢ where all relation symbols have been indexed with
.

We refer to [29] for the formalization in HyperLTL of other hyperproperties.

4.2.3 First-order HyperLTL Decidability

Analogously to the FOLTL case we will consider a decidable fragment of FO HyperLTL,
namely 3%V} 3*FOLTL, which consists of all formulas of the form 37y, Vrry ... 7(2. [
with k > 0, £ > 0, and ¢ a FOLTL formula in 3*FOLTL.

We first remark that by seeing trace variables as first-order variables of a new sort T
— the trace sort, FO HyperLTL formulas can be faithfully encoded by FOLTL formulas.

4.3 Noninterference 43

By this we mean that, for any closed FO HyperLTL formula 1, there is a closed FOLTL
formula ¢ such that we can translate models of 1 into models of ¢ and vice-versa. The
formula ¢ is obtained by replacing trace quantification Q7 with first-order quantification
Qm: T, for Q € {3,V}, and predicates R (i1) with predicates R'(7,). Note that ¢ and
¢ are formulas over slightly different signatures. The translation between models
is straightforward. For instance, if 5 is a temporal structure that satisfies ¢, then
the corresponding set 7 of temporal structures that satisfies 1 consists of temporal
structures obtained by projecting a predicate’s interpretation on the predicate’s non-trace
arguments, for each of the values of the trace universe Ur of 5,i.e. T = {5; | t € Ur}
and R% = {a | (t,a) € R}, foreachR € R, t € Uy, and i € N.

As a consequence of the previous discussion, and as a corollary of Theorem 4.1, we
obtain the following results.

Theorem 4.2. The following statements hold:
1. Every FO HyperLTL formula can be translated into an equi-satisfiable FOLTL formula.
2. Every 33,V 3*FOLTL formula can be translated into an equi-satisfiable 3*FOLTL formula.
3. Satisfiability of formulas in 33V 3*FOLTL is decidable.

Having introduced the logics we are going to use, we will now turn to the question of
how to encode desirable secrecy properties of FO Transition System into FO HyperLTL.

4.3 Noninterference

There is a vast body of work on information flow policies and associated verification
techniques. We mention Goguen and Meseguer’s seminal work on noninterference [42],
Zdancewic and Myer’s observational determinism [92], Sutherland’s nondeducability [85],
and Halpern and O’Neill’s secrecy maintenance [45] as representative examples. See
Kanav et al. [57] for a recent overview with a detailed discussion of the most relevant
notions for the verification of multi-agent systems.

Most secrecy properties are based on a classification of the inputs and outputs of a
system into either low, meaning not confidential, or high, meaning highly confidential.
In this thesis, we concentrate on the property of noninterference: A system has the
noninterference property if in any pair of traces where the low inputs are the same, the
low outputs are the same as well, regardless of the high inputs.

When we are interested in the noninterference property of a single agent, it is possible
to model the low and high inputs and the low and high outputs of the system (as seen
by the agent) using separate predicates, for example, as I, I, O;, Oy, respectively. The
basic ingredient to noninterference is observational determinism, which is expressed as
the HyperLTL formula

VT[.VT[/. G(Illﬂ < 11,71/) — G (Ollﬂ < Ollﬂ/),

which states that all traces 7t and 77’ that have the same low input I; at all times, must
also have the same low output O; at all times. This formula compares two traces of the

44 Chapter 4. Temporal Security Properties

given system and can be refuted by giving two finite prefixes of traces of the system
that do not satisfy this property. Thus, it is called a 2-hypersafety property [29].

To adapt this property to the setting of FO Transition Systems, we need to specify
how an agent interacts with the modeled system and reason about his knowledge and
possible interactions. In a FO Transition System, the inputs or outputs of different
agents may be collected in the same predicate. Formally, we classify all sorts into
agent sorts and data sorts. Moreover, we assume that the arity (sq,s2,...) of every
relation R € Rstate U Ryory U Ripigr, is non-nullary and is such that s; is an agent sort. This
restriction, while not strictly necessary, allows us to present the results in a much cleaner
way.

Example 4.6.

In the running conference management example from Example 3.5, members of
the PC can use a conference management system to specify conflicts, read the
reviews/reports that other members have provided, provide their own reviews,
etc. As an example property, we will formalize that no member of the PC gains
any information about papers that he declared a conflict of interest with. In this
case, the low outputs observed by a PC member x consist of the pairs (x,p,r)
for some paper p in the Read relation and of the tuples (x, p,r) for some Review
relation. Low input is provided by the agents in the form of tuples of the Choice
predicates that begin with x. Additionally, the system has high input in the form
of the Oracle predicate which is used to produce the reviews.

Generalizing from the example, we assume there is one or more predicates of the form
O;(x,7), modeling low output observed by the agents from the system, and one or more
predicates of the form I;(x,) modeling low inputs provided by the agents to the system.
An output is observable by agent x whenever x occurs in the first position of the tuple.
Likewise, an input is controllable by agent x whenever x occurs in the first position of the
tuple. The remaining components of the tuple are denoted by the vector 7 = y1,1>,
For our examples, we will use predicates named Choice to indicate controllable input
relations.

4.3.1 Declassification

Declassification [79] becomes necessary when the functionality of the system makes it
unavoidable that some information is leaked. In the conference management example,
a PC member x is supposed to read the reviews of the papers assigned to x. This is
legitimate as long as x has not declared a conflict of interest with those papers. We
assume that, in addition to the input and output predicates, there is a declassification
condition Dy, xij, which indicates that agent x is allowed to learn about the high input
I,j. We call a first-order transition system noninterferent with respect to traces 7,7, iff
for any agent a, his observations do not depend on the non-declassified inputs which
are classified as “high” for a in any way. It is expressed as the FO HyperLTL formula

noninterferent _ , = Va. Gsame_high_inputs __,(a) — Gsame_observations ,(a)

4.3 Noninterference 45

where the individual parts are

same_observations, /(a) = Agrer..,. (VZ.Rraz <> Ryaz)
same_high_inputs,, .. (a) = Aicr,,, Yz (D1razV Dypaz — (Ixz < IpZ))

It expresses that on all pairs of traces where the low inputs are the same and, additionally,
the high inputs are the same whenever the declassification condition is true on one of
the traces, the low outputs must be the same.

Example 4.7.

In the conference management example, the input relation Oracle is used to
produce reviews. It contains tuples of the form

Oracle(x: PCMember, p: Paper, r: Report)

In our example, any agent 4 is allowed to learn about reviews for papers he has
not declared conflict of interest with. Thus,

DOmcle(a/ X, P, 7’) = _‘COTlﬂiCt(a, p)

We can specify the information flow policy that an agent should not receive
information regarding conflicting papers as a noninterference property:

L _ Vx,p,r. (—Conflict_(a,p)V —Conflict_,(a, p))
same_figh_inputs.. . (a) = — (Oraclex(x, p,r) < Oracley (x,p, 7))
Vp. Conflict_(a, p) <> Conflict_,(a,p) A

Vp. Assign_(a, p) <> Assign_,(a, p) N

Vp,r. Review,(a, p,r) <> Review (a, p,r) N
Vp,r. Readr(a,p,r) <> Read i (a, p,7)

same_observations, (a) =

For this particular example, we are interested in information leaking via the Read
relation, so for this case, we can simplify same_observations to only some specific
relations.

same_observations, ,(a) = Vp,r. Readr(a, p,r) <> Read (a, p,7)

4.3.2 Causality assumptions on agents

In the conference management example from Example 3.3, it is easy to see that no PC
member can directly read the reviews of papers where a conflict of interest has been
declared: the PC member can only read a review if the PC member was assigned to
the paper, which, in turn, can only happen if no conflict of interest was declared. It is
much more difficult to rule out an indirect flow of information via reviews posted by
another PC member. So far, neither the description of the FO Transition System, nor the
HyperLTL specification would prevent other PC members to add arbitrarily add any
review to the Read relation, even if it contains information the PC member has no access
to. To enforce that agents can only spread the knowledge they actually have access to,

46 Chapter 4. Temporal Security Properties

we must make assumptions about the possible behaviors of the other agents. For any
agent, we consider two kinds of possible behavior — Agents that either stubbornly make
the same choices, independently of their observations; or they let their choices depend
on previous observations, which we call acting causally.

Stubborn agents. A radical restriction on the behavior of the other agents is to require
that they always, stubbornly, produce the same input, independently of their own
observations. An agent a acts stubbornly on traces 7, 7t’ if his inputs never differ:

stubborny ,1(a) = Gsame_low_inputsn,n/(a)

with
same_low_inputs, ,(a) = Aeg,, (V2. [z0Z < Iyaz)

Causal agents. A more natural restriction on the behavior of the other agents is to
require that they act causally, i.e., they only provide different inputs if they, themselves,
have previously observed a difference in the states of the two traces. This forces agents
to be deterministic — choosing to always give the same low input whenever they made
the same observations. The causality of an agent a w.r.t. traces 77, 77’ is formally described
by:
causaly o (a) = same_low_inputs, ., (a) W —same_observations ,(a)

The property states that, for all agents a the inputs provided on two traces are the same
— but only until a difference in the outputs observed by a occurs. This does not restrain
the behavior of agents after they got access to a single bit of differentiating information.
From then on, it allows them to actively spread information to anyone.

Example 4.8.

In the conference management example, stubbornness for traces 7, 77’ uses the
HyperLTL formula

Vp. Choicey,(a, p) <+ Choicey /(a, p) N
same_low_inputs . ,(a) == Vp. Choices(a,p) <> Choices 1(a, p) A
Vp,r. Choices (a, p,r) <> Choices /(a, p,r) A

The requirement of causality for 7, 7’ additionally uses same_observations as given
in Example 4.7.

Since causality does not constrain behavior after a difference has been observed, any
agent acting stubbornly also fits the requirements to act causally, i.e. the causality
assumption allows for more behaviors. Therefore, the most general agent model is when
each agent is causal, while the most restrictive model is when each agent is stubborn.

We thus instantiate a formula agent_model ., to use in the complete formalization of
noninterference for first-order transition systems. It can be instantiated with one of the
following formulas:

agent_ modelgT K .= =3ay,...,4a. (/\i»‘:1 causaly 7 (a;)) A
(Va. (NE_qa # a;) — stubborny (a))
agent_ model() = Va. stubborn (a) = agent_ model; n),

(&

agent_ modeln

= Va. causal ;1 (a)

4.4 Related Specification Languages 47

where k > 0.

To wrap up, Noninterference with Declassification and Agent model (NDA) for First-order
Transition Systems expresses that — given that all agents act according to their behavior
assumptions — no agent (indirectly) observes differences in the high input on two traces
7t and 71’ in the transition system. It is expressed by the FO HyperLTL formula

V7, 7' agent_model, ., — noninterferent 4.1)

4.3.3 Control Flow

In this thesis, we assume that the control flow is chosen by external factors. This
could be because a certain time has passed or the conference organizers determine that
discussions about papers have come to a close. This also implies that the current location
in the control flow graph does not depend on any secret information.

We further assume the current location in the control flow graph is not observable by
any agent. This simplifies reasoning as we only have to compare the relation contents. In
case we want agents to be able to observe the current location, it is possible to add fresh
relations R of arity 1 for each location v of the underlying graph. Then, for each edge
(u,0,v), we transform it to an edge (u,6’,v) where 6’ behaves like 6, but additionally
moves all agents from relation R, to R, by setting

Ry (x) := false
Ry(x) := true

Using this transformation, all agents can always observe the current node of the control
flow graph.

4.4 Related Specification Languages

Our approach is based on a First-order extension of the temporal logic HyperLTL [29].
HyperLTL has been applied in the verification of hardware systems, such as an Ethernet
controller [38]. Expressing trace properties with sorted FOLTL has been initiated already
in the work of Manna and Pnueli [63] and logic-based approaches are now standard
in the verification of such properties. However, our extension First-order HyperLTL
is to our knowledge the first temporal logic suited for the specification of information
flow in systems with arbitrarily many participating agents. Logic-based approaches for
non-trace properties are less common and include the ones based on epistemic temporal
logics [36], SecLTL [33] or the polyadic modal p-calculus [6]

48 Chapter 4. Temporal Security Properties

4.5 Introduced Concepts

X,F,G,U,W,R Temporal Operators

5 Variable for temporal structures

SVE ¢ Temporal formula ¢ holds on temporal structure § and valua-
tion v

V. ¢,dm. ¢ Quantification over traces

T Variable for traces

R Predicate R on trace 7

T
T,a,Bl=v Temporal Hyperproperty ¢ holds on set of temporal struc-
tures 7 with first-order valuation « and trace valuation j
SEvy holds on FO Transition System S
Rnigh» Riow Partition of R, into predicates which contain secret infor-
mation and which do not

4.6 Conclusion

In this chapter we discussed the temporal logics First-order LTL and First-order Hyper-
LTL. We used FOLTL to specify temporal safety and liveness properties for FO Transition
Systems and showed that the fragment 3*FOLTL is decidable. We then extended it to
FO HyperLTL, an extension of FOLTL with path quantifiers that allows us to specify
secrecy policies for FO Transition Systems. We proved that FO HyperLTL can be embed-
ded back into FOLTL and lifted our results on decidability to FO HyperLTL. We then
used FO HyperLTL to formalize Noninterference together with state-based Declassifica-
tion conditions. To model the knowledge that agents possess and the interactions they
can take we added one of several agent models: Agents can either behave stubbornly
and only pass on information that they got explicitly communicated via the system or
they can act causally where they try to spread information as soon as they are able to
distinguish between different scenarios.

CHAPTER 5

Verification of

Temporal Properties

Contents
51 Bounded Symbolic Model Checking 51
52 Symbolic Model Checking 55
53 Introduced Concepts. 64
54 Conclusion e 65

49

5.1 Bounded Symbolic Model Checking 51

5 Verification of Temporal Properties

In the last decades, a lot of research has been done on the verification problem for
finite-state systems and their temporal properties. A prominent line of research has
introduced Model Checking, which explores the state space of a given system and proves
that all possible executions adhere to a specification, often given in Linear Temporal
Logic. For an overview, we refer to [9]. This line of research has been a huge success
and is now being incorporated into the design process of software and hardware across
the world [26].

In this chapter, we present approaches on how to verify that a given FO Transition
System satisfies a given temporal hyperproperty in FO HyperLTL by applying ideas
and approaches from the area of Model Checking.

We consider the two main flavors of Model Checking: Bounded Model Checking —
which is based on exploring executions of a given system up to a given bounded length
and is often based on SAT-Solving [18], as well as Symbolic Model Checking, which
systematically explores all states of the given finite-state system and is often based on
Binary Decision Diagrams [3]. Both variants have had tremendous success and have
spawned strong tool support in the form of PRISM [60], SPIN [50] and others.

In this chapter, we adapt both variants to our setting of FO Transition Systems. In
Section 5.1, we present an approach based on Bounded Symbolic Model Checking, which
takes into account all traces of the given FO Transition System that do not exceed a
given length. This is achieved by encoding a bounded version of the Transition System
as well as a bounded version of the property to be verified into First-order Satisfiability.
In Section 5.2, we overcome the limitation of bounded traces and present an approach
for general Symbolic Model Checking. Here, we encode the complete FO Transition
System as well as the property to be verified into First-order LTL Satisfiability. We then
identify that the verification of Noninterference stays decidable for quantifier-free FO
Transition Systems and prove undecidability in case this restriction is violated.

5.1 Bounded Symbolic Model Checking

We start by presenting a bounded verification for FO Transition Systems based on
the ideas from Bounded Model Checking. Bounded Model Checking is based on the
exploration of traces of a system up to a fixed bound. For finite-state systems, this can
be encoded into satisfiability queries on propositional logic formulas. As the state of a
FO Transition System is encoded in FO Logic, we will use FO satisfiability instead of
propositional satisfiability. Thus, our approach reduces the violation of an FO HyperLTL
specification formula on the prefix of a trace of the given FO Transition System to the
satisfiability of a formula in FO Logic. Since the state space of a particular FO Transition
System is still unbounded, we thus arrive at a bounded symbolic model checking
approach — bounded in the length of the trace, but symbolic in the exploration of the
state space.

52 Chapter 5. Verification of Temporal Properties

5.1.1 Bounded Satisfaction

Bounded model checking is based on a restricted notion of FO HyperLTL satisfaction
where only trace prefixes of length 7, for some fixed bound # are considered. Let 7 be
a set of traces, « : V — U a valuation of the free first-order variables, and g: Il — T a
valuation of the trace variables.

The n-bounded satisfaction of a HyperLTL formula ¢, denoted by T ,a, B =" ¢, is then
defined as follows:

T,a,p="3m.p iff T,a Blm— 5 "¢, forsomese T,

T,0,BE" ¢ iff T,a,B "9,

T,a,B =" Ry iff s, o = Ry,

T,0,BE" 1V iff T,a,BE"¢@ro0rT,aBE" ¢

T,0,pE"3x.¢ iff JaeU ajx—a],pE"e,

T,a,pE"Xg iff 7,a,pB[l,00] E" ! ¢, forn >0,

T,a,BE"Xg iff 1,

T,a0,BE" 91 Ugy iff Ji>0: T,a Bli,o] " ¢ and
YoO<j<i: T,apBlj,] E" 7 ¢, forn >0,

T pE gUg iff T,a,Bli,] E g2,

where ¢, ¢1, and ¢, are FO HyperLTL formulas, and the structure s contains the inter-
pretations of all predicates R in the first structure of the trace named by the variable 7
in the trace valuation B, i.e. RS, = R(B(™)o,

A closed formula ¢ is n-bounded satisfied by a FO Transition System &, denoted by
S =" ¢, iff Traces(S),a, p =" ¢ for the empty assignments « and B. For acyclic FO
Transition Systems, satisfaction and bounded satisfaction coincide.

Theorem 5.1. Let S be a FO Transition System where all paths are of length at most n. For all
HyperLTL formulas , it holds that S = ¢ iff S =" ¢.

5.1.2 Bounded Model Checking

We now translate a FO Transition System S together with a given FO HyperLTL formula
¢ with only universal trace quantifiers for a given bound # into a formula ‘Yg,—\lp of
First-order Logic such that Tg,mp is satisfiable iff S £" . Since ¢ is universal, its
negation is of the form 3y, ..., 7. ¢, where ¢ does not contain any trace quantifiers.
In ¥y _,, we use for every predicate R € R several copies Ry, one per trace variable
€ {m,..., ¢} and time point /, 0 < I < n. The formula Y5 o = [ST" A o] is
a conjunction of two formulas in FO logic, the first being the unfolding [S]" of the
transition system & and the second being the unfolding [¢]j of the FO HyperLTL
formula ¢.

For a FO Transition System S and a bound #n > 0 let Paths” be the (finite) set of paths
of S of length exactly n. For formulas ¢ such as the initial condition Init or the update
formula 6(Ry) to a relation R, we use ¢,; to mean ¢ where all relations P have been
replaced with P, ;. The unfolding [S]" of the transition system is defined as follows:

n—1

[S1" = /\ /\ Initzo A /\ /\ Rrj1 ¢ (R91>7T,l

(v0,00,01),++-/(Vy—1,0n—1,0n) EPaths™ (S) me{my,..., mx } 1=0 RE€ERstate

5.1 Bounded Symbolic Model Checking 53

As discussed in Section 4.3.3, this definition of unfolding uses the same path through S
to instantiate all trace variables and does not use an exponential blowup by comparing
different paths. This relates to the fact that the control flow in a FO Transition Systems
is assumed to be under external control.

For a FO HyperLTL formula ¢ without trace quantifiers and a bound n > 0, the
unfolding [¢]} is defined as follows:

[—ol} = eI},

[¥]} = ¥

[p1 A@2]] = [oa]i Alg2df,

[Bx. o} = 3x [ol},

[X ol} = [[90]]74:11 forn >0,

[X ¢ = 1

[pr U@l = [ga! V (Ioal] AlgrU o]} forn >0,
[prUe]) =[]

where ¢, ¢1, and ¢, are FO HyperLTL formulas, 1 is a formula in FO logic over indexed
predicates P; » and 1 is the same formula with all occurrences of an indexed predicate
P; » replaced by the predicate P; ;, i.e. we use the interpretation of predicate P; on trace
7T at timepoint /.

Theorem 5.2. For a FO Transition System S, a FO HyperLTL formula ¢ and a bound n > 0,
it holds that S =" iff [S]" A —[@l is unsatisfiable.

Combining Theorems 5.1 and 5.2, we obtain the corollary that bounded model
checking is a complete verification technique for acyclic FO Transition Systems.

Corollary 5.3. Let S be an acyclic FO Transition System with paths of length at most n. For
all FO HyperLTL formulas 1, it holds that S |= iff [S]" A =[] is unsatisfiable.

5.1.3 Decidability

We now identify cases where the satisfiability of the predicate logic formulas constructed
by the verification method of the previous section are decidable.

Theorem 5.4. Consider a FO HyperLTL property ¢ on a quantifier-free FO Transition System
S with a given bound of n under the assumption that all agents behave stubborn. Assume that

V7T, ..., 7T agent_model(s) — @

denotes a FO HyperLTL formula where ¢l is a sorted Bernays-Schonfinkel formula, i.e., the
prenex form of ' has a quantifier sequence of the form 3*V*. Then it is decidable whether
SE"Vm,...,m. agent_model(s) — .

Proof. To deal with the assumption about the agent model, we transform the unfold-
ing [S]§ to include the restrictions on it. As all agents are stubborn, the low input
predicates Choice; ; are equivalent for j = 1,...,r. Accordingly, we may replace all
Choice; (51, - - -, s) with Choice; 7, (s1, ..., s¢) in p without changing the satisfiability of
u under the assumption of agent_model (). This allows us to remove the agent model
from the verification condition.

54 Chapter 5. Verification of Temporal Properties

It remains to check if S =, ¢, which is done by checking the satisfiability of [S]" A
—[¢]§. Since S is quantifier-free, all formulas 6(Rj) along any path are quantifier-
free. Thus, the unfolding [S]" is also quantifier-free. The satisfiability of =[] is also
decidable — which thus implies the the theorem. O

Theorem 5.4 can be extended to more general classes of FO Transition Systems, given
that the predicates an,l occur only positively or only negatively in ¢'. Noninterference
amounts to stating that (under certain conditions) no distinction is observable between
some Ry, ; and an/,l. Logically, indistinguishability is expressed by equivalence, which
thus results in both positive and negative occurrences of the predicates in question.
However, this is useful for the encoding of the guards, as the fresh error relation only
occurs positively.

Theorem 5.5. Consider a FO HyperLTL property ¢ on a quantifier-free FO Transition System
S with a bound n under the assumption that all agents behave causal. Assume that

V7T, ..., T agent_model(c) =@

is a temporal formula where the prenex form of ¢ = [~¢]f is purely existential. Then it is
decidable whether S ="V, ..., 7. agent_model(c) — @.

Proof. The argument for causal agents is somewhat more complicated and accordingly
leads to decidability only for a smaller fragment of HyperLTL formulas. Removal of the
temporal operators and skolemization of the formula agent_model (©) describing causality
yields a conjunction of clauses of the form

S(x, fi(x),..., fr(x))V Choice; , (x,2) V =Choice; ;(x, Z) (5.1)

or
S(x, fi(x),..., fr(x))V —Choice; r, (x,2) V Choice;;(x, z) (5.2)

for j1,j» < j, where the disjunction S refers to predicates which depend on Choice;
predicates from Ry, for i’ < i only. In order to perform ordered resolution, we put
an ordering upon predicates so that Choice; , receives a higher priority than Choicei/,n]_,
if i’ <iorifi =i, j < j. Moreover all predicates in S have lower priorities than the
Choice predicates. Accordingly, the highest priority literal in each clause of agent_model (©)
contains all free variables of the clause.

Let us first consider the case r = 2. Then resolution of two clauses with a positive
and negative occurrence of the same highest-priority literal will result in a tautology
and therefore is useless. According to our assumption on ¢, the clauses obtained from
[—¢]j are all closed. Resolution of such a clause with a clause of agent_model (“)for some
Choice; , will again return a closed formula. We obtain a set of new closed clauses with
occurrences of predicates Choiceir,nj/, i’ < i, only. As a consequence, for every i, there is a

bounded number of new clauses derivable by means of clauses from agent_model ©) with
highest priority predicate Choice; ,,. Altogether, we therefore obtain only a bounded
number of closed clauses which are derivable by means of ordered resolution. Hence, it
is decidable whether a contradiction is derivable or not. This concludes the proof.

The argument for » > 2 is similar, only that resolution of any two such clauses
originating from agent_model® with j; # j, upon the literal Choice; ,(x,z)) will again

5.2 Symbolic Model Checking 55

result in a clause of the given form. In particular, no further literals are introduced.
Therefore, saturation of agent_model(c) by ordered resolution will eventually terminate.
Then the argument for termination proceeds analogously to the case r = 2 where
agent_model ©) i replaced with the saturation of agent_model(c). O

Theorem 5.5 can be extended to formulas ¢ where ¢’ obtained from [—¢]j is a
Bernays-Schonfinkel formula at least in restricted cases.

Consider the clauses of the form Equations (5.1) and (5.2) as obtained from agent_model ()
after skolemization. In case that the disjunction S is empty, we call the corresponding
clause simple, otherwise complex. Now assume that complex clauses from the saturation
of agent_model) are always resolved with clauses (originating from the skolemization of
¥’) upon a closed literal. Then the same argument as in the proof of Theorem 5.5 applies
to show that saturation by resolution will eventually terminate.

Applying these results to the Noninterference formula from the previous chapter, we

get:

Corollary 5.6. Given a quantifier-free FO Transition System S and a bound n it is decid-
able whether Noninterference with Declassification and Agent Model holds on all traces of S
up to length n, given that all declassification conditions are quantifier-free for agent models
agent_model) as well as agent_model'©).,

We have now presented a sound verification approach for quantifier-free FO Transition
Systems based on Bounded Model Checking that is able to prove Noninterference proper-
ties for traces of bounded length. For FO Transition System that are both quantifier-free
and acyclic, this technique is complete, as all traces are of bounded length.

In the next section, we have a look at cyclic FO Transition System that inherently
exhibit traces of unbounded length and present a technique that is still able to prove
that all traces of the system satisfy a given property.

5.2 Symbolic Model Checking

In this section, we will introduce methods for symbolic model checking for FO Transition
Systems.

For finite-state systems, symbolic Model Checking encodes the state space of the
system into propositional logic and often uses binary decision diagrams or similar
technology to reason about reachable parts of the state space. To apply this approach
to our setting of states in FO Logic, we instead use FOLTL to encode the state space.
Compared to the bounded approach, instead of unrolling the transition relation, we
will encode the complete semantics of a given FO Transition System into FOLTL, which
allows us to encode possibly infinite traces and prove safety for all traces, not just the
set of bounded prefixes of traces.

5.2.1 Formalizing FO Transition Systems in FOLTL

Control Flow Given a FO Transition System S, we consider its underlying control flow
graph. Let (V, E) be the CFG of S. We abuse notation, and we use a fresh proposition

56 Chapter 5. Verification of Temporal Properties

(i.e. nullary predicate) v to express whether the current state is in node v € V. We
denote by R, the set of these predicate symbols. The transition relation of the control
flow graph of S is then expressed by the formula:

ctg(S) =G (/\u—)X(\/ U))

ueV vesuce(u)

where succ(u) is the set of the successors of the node u in the CFG. Furthermore, a trace
can never be in two states at once:

sanity(S): =G (A —(uAv))
u, eV, u#tv

Termination In our case, traces need not be finite, and thus the execution of S need
not terminate. As discussed, terminating behavior could be imposed by adding a fresh
node v, whose only outgoing edge is a self-loop which does not change any relation in
Ristate- Then by requiring that vg,, is eventually reached the trace effectively terminates
by repeating the last state forever. The FOLTL formula ensuring this is F vg,,. We do
not impose this requirement here.

Initial state Every trace executes sequentially, starting in the initial node vy of the
CFG of S. There, the initial condition Init of S holds. Formally, this is expressed by the
following formula:

init(S) = vg A Init

The sanity requirement then forces all other v, different from vy to be false.

State Transformation An edge in the execution of a trace determines the new state of
all relations in Rstare. We formalize this execution by characterizing with an FOLTL for-
mula the interpretation of a predicate at the next time point based on the interpretation
of the relations at the current time point.

For an edge e = (u,6,v) and every relation symbol R € Rga, R(7) holds after
execution of e iff 6(Ry) holds before the execution of e, with || = |ar(R)|. A single edge
(u,0,v) is then represented by the following formula:

execs(u,0,0) == (uAXv) = N\ (V7.(XRy) < 0(Rp))
RERstate
The execution semantics of the FO Transition System is then captured by the following
formula:
exec(8):=G /\ execs(u,6,v).
(u,0,0)€E

where E is the set of edges of S.

Complete Specification The complete specification ts(S) of the FO Transition System
is a conjunction of the several parts described previously — the control flow graph, the
initial state, and the semantics of the transitions between time points.

ts(S) := cfg(S) A sanity(S) A init(S) A exec(S)

Note that the formula ts(S) is expressed over the signature ¥’ obtained from X by
extending it with relation symbols v € R.

By construction, for any given FO Transition System S over a signature X, its traces
Traces(S) consist of all temporal structures 5 over ¥’ that satisfy ts(S). We have:

5.2 Symbolic Model Checking 57

Theorem 5.7. Given a FO Transition System S, a FOLTL formula ¢ s can be built in polynomial
time so that for every FOLTL formula ¢, it holds that S |= ¢ iff s — ¢ is valid.

In fact, as such ¢s we may choose the formula ts(S).

5.2.2 FOLTL Model Checking

For a quantifier-free FO Transition System S, all update formulas are quantifier-free.
For an initial condition Init which is in I*FOLTL, It follows that the formula ts(S) can
be brought into the 3*FOLTL fragment. Additionally, ts(S) contains no existential
quantifiers and all its universal quantifiers are either not under a temporal operator (in
the case of the init(S) subformula) or under the G temporal operator (in the case of
the exec(S) subformula). Therefore the simplified ts(S) formula can be put in prenex
normal form having a quantifier prefix consisting of only universal quantifiers. As a
side remark, this means that —ts(S) can also be brought into 3*FOLTL.

Theorem 5.8. It is decidable for a quantifier-free FO Transition System S and a formula ¢ in
I*FOLTL whether or not S |= —¢ holds.

This means that if the set of all bad behaviors can be expressed by a formula ¢ in
J*FOLTL, then absence of bad behaviors can be checked for quantifier-free FO Transition
Systems. The theorem follows from Theorems 5.7 and 5.8. Indeed, it is sufficient to
check whether ts(S) A ¢ is unsatisfiable. This can be done, since both conjuncts can be
brought into 3*FOLTL, and thus the conjunction itself too.

The following theorem shows that the decidability result from Theorem 5.8 cannot be
lifted to arbitrary FO Transition Systems.

Theorem 5.9. It is undecidable for a general FO Transition System S and a formula ¢ in
I*FOLTL whether or not S |= —¢ holds.

Proof. We prove the theorem by reducing the periodic tiling problem to our setting. The
tiling problem was first mentioned in [87] and has first been shown undecidable
by Berger in [16]. Its closely related variant, the periodic tiling problems has also
been proven undecidable by multiple authors — for an overview see [54]. We now
briefly recall the definition of the problem.

Given a set of k tile types T = {T; | 0 < i < k} as well as horizontal and vertical
compatibility relations x-comp C T x T and y-comp C T x T, a tiling is a function
f(x,y) :IN x N — T such that whenever two tiles are adjacent, they have to respect the
compatibility relations:

Vx,y. x-comp(f(x,y), f(x +1,y)),
Vx,y. y-comp(f(x,y), f(x,y +1)).

A tiling is periodic if there exist horizontal and vertical periods p, and p, such that

Vx,y. f(x,y) = f(x+pxy),
v,y f(x,y) = f(x, ¥+ py)-

58 Chapter 5. Verification of Temporal Properties

The periodic tiling problem is to find out for a given set of tile types and its compatibility
relations, if there exists a periodic tiling. !

We will now proceed to show how to encode this problem into a FO Transition System.
To find a periodic tiling, it is enough to find the periods py, p,, and the values f(x,y)
for 0 < x < py and 0 < y < py, such that they are also compatible at borders:

Vy. x-comp(f(px,), f(0,y)),
Vx. y-comp(f(x, py), f(x,0)).

We thus interpret a periodic tiling as a table with rows referring to points on the y-axis
and columns referring to points on the x-axis.

We build next a FO Transition System S and a formula ¢ such that S |= ¢ iff there is
a periodic tiling for (T, x-comp, y-comp). We use the following signature:

Y = ({A}, {afirst, 1ot }, {Q, Adj, Reach, Ty, . .., T{_1 },ar)

Intuitively, time points refer to the rows of the tiling, while agents refer to its columns.
We explain next the role of the constant and relation symbols. The k unary relations
T, with 0 < i < k, are used to encode the tiling function as follows: if T/ (a;) holds at
time point ¢, for some particular agent a;, then the tiling function is f(t,j) = T;. How
the agent a; is determined is explained later. There are two constant agents 4, and
a1+ which are used to name the first and last row of the tiling. The nullary relation Q
encodes the last column of the tiling. The predicate Adj(x, x") expresses that the row
named by x’ is directly below the row named by x. Only Reach is a state relation and
initially (i.e. at time point 0) it is empty. There is a single sort, the agent sort A.

We let S be the following FO Transition System. It is used to compute all reachable
parts of the adjacency relation Adj starting from the initial agent ag:

Reach(x) = (x = ags)

Reach(x) +=3x’. Adj(x’,x) A Reach(x")

The initial condition Init of S is Vx. ~Reach(x). To encode the rest of the tiling require-
ments, we use a conjunction of 3*FOLTL formulas, where i, j implicitly range over the
elements in {0,..., k—1}:
All agents always have exactly one tile assigned at each point in time (Equations (5.3)
and (5.4)).
GVx. \/ Tj(x) (5.3)
1

IThe original formulation used just a single period p in both directions. We use independent periods to
have less complicated constructions. We note that given a periodic tiling ¢t with periods pyx and py it
is easy to construct a periodic tiling t' with p} = p; = (px * py). The original problem also did not
consider compatibility relations, but edges of the same color. Again this makes our constructions easier
and is easily transformed into a solution of the original setting.

5.2 Symbolic Model Checking 59

GVx. N\ Ti(x) — —=Tj(x) (5.4)
i#]

A time point will be reached state where Q holds (Equation (5.5)) and it will only hold
once (Equation (5.6)).

XFQ (5.5)

G(Q = XG-Q) (5.6)

Two adjacent time points need to be assigned x-compatible tiles (Equation (5.7)). Also,
the right border of the tiling should be x-compatible to the left, i.e. the time point where
Q holds should be compatible to the starting time point (Equation (5.8)).

Vx. G (\ Ti (x) AXTj(x)) (5.7)
i,j: x-comp(T;, T;)

V. \/ T/(x) ANF (QAT(x)) (5.8)
ij: x—comp(Ti,T"j)

Two adjacent agents need to be assigned y-compatible tiles (Equation (5.9)). The last
agent should be reachable from the first via Adj relations. We cannot express this fact in
pure 3*FOLTL, so we will use the relation Reach computed by the FO Transition System
(Equation (5.10)). The last agent should also be y-compatible to the first (Equation (5.11)).

GVx,x'. (FAdj(x,x")) — \V Ti(x) AT (x') (5.9)
i,j: y-comp(T;, T;)

F ReaCh(alast) (5.10)

G (\/ Ti/(alast) N T]{(aﬁrst)) (5.11)
ij:y-comp (T, T;)

Let ¢ be the conjunction of Equations (5.3) to (5.11). Note that ¢ can be brought in
F*FOLTL. We show next that S |= ¢ iff there is a periodic tiling for (T, x-comp, y-comp).
Let 5 € Traces(S) such that § = ¢. We construct a tiling as follows. Since § satisfies the
formula (5.10) as well as the formulas exec encoding the semantics of the first two edges
of S, it follows that there is a sequence (to,...,t,) of time points with n > 0 and fp = 0,
and a sequence (4ay, ..., a,) of elements of the universe such that ag = Afirsts An = Algst,
Reach(a;) holds at time point ¢;, for all i with 0 < i < n, and Adj(a;,a;;1) holds at time
point ¢;, for all i with 0 <i < n. Then, we set p, to the time point where Q holds and
pyton. For0 <t < pyand 0 <j < py, let f(t,]) be T; iff T(a;) holds at time point ¢.
Then f satisfies the compatibility relations and any given tiling can be transformed into
a model of ¢. O

60 Chapter 5. Verification of Temporal Properties

5.2.3 From FOLTL properties to Hyperproperties

The results for FOLTL carry over to the FO HyperLTL case, where decidability is given
for the case of quantifier-free FO Transition System, but absent for the general case.

Theorem 5.10. Let S be a FO Transition System and { a FO HyperLTL formula. Then the
following statements hold.

1. An FOLTL formula i’ can be constructed in polynomial time so that S |= = iff ' is
unsatisfiable.

2. If S is quantifier-free with a purely universal initial condition and ¢ is in 3V 3*FOLTL,
then it is decidable whether or not S = —ip holds.

Proof. Assume ¢ has the form Qi1 ... Qi7tk. @, where the trace quantifiers are parti-
tioned into a set E of existential quantifiers and a set A of universal quantifiers. Then
S = —¢ is equivalent with the validity of the following FO HyperLTL formula

Qu7ry ... Q7T (N tS(S)m> N ((/\ tS(S)m> — ﬁfP)r

QicE QicA
where ts(S) is ts(S) with each predicate symbol R replaced by the predicate sym-
bol R, and Q is 3 if Q is V and vice-versa. The formula ¢’ is then the FOLTL encoding
of the following FO HyperLTL formula

le...ank.(A ts(S)m.) - ((A ts(S)m)A(p).

Q;eA Q,€E

From Theorem 4.2, to prove the second statement, it is sufficient to show that the
previous FO HyperLTL formula, which we call ¢1, can be brought in the 37V} 3*FOLTL.
By assumption, we have that the trace quantifier prefix of ¢, is of the form 3} V} and
that ¢ is in the 3*FOLTL fragment. Also, since S is quantifier-free, then both ts(S) and
—ts(S) can be brought in the 3*FOLTL fragment, as remarked in Section 3.2.3. Thus all
conjuncts in the following FOLTL formula can be brought in the 3*FOLTL fragment

(A ﬁts(S)m>\/<< A ts(S)m)/\q))

QicA Q;€E

This means that the formula itself can be put into 3*FOLTL and thus ¢ can be brought
into 35 V5 3*FOLTL . O

5.24 From HyperLTL to Noninterference

As we have seen in Section 4.3, Noninterference is best formulated as a 2-hypersafety
property [30], that is, a property of pairs of traces.

In our application, the sequence of edges traversed by an execution of the transition
system is determined externally, i.e., independent of any oracle or choice predicate. For
instance for the case of the conference management system, it is up to the PC chair to
decide when a particular stage is complete and which next stage to execute. This means
that we are only interested in the noninterference property where the considered two

5.2 Symbolic Model Checking 61

traces follow the same control flow path, but may differ in the sequences of attained
states. This assumption is formalized by the following formula:

same_paths_ _, :== G /\ (A
UERCfg

A FO Transition System S has the NDA property, iff

i d
(5.12)
Thus, our approach to certify NDA for S consists of showing the (un)satisfiability of
Equation (5.12).

v, . (ts(S Jn Ats(S) Asame_paths, ., N agent_modelnﬂ/> — noninterferent

Declassification In general, all external input relations Ij, € Ry, come with a de-
classification condition Dy, xjj. The declassification conditions appear in the formula
same_high_inputs under negation inside a universal quantifier, so to bring the complete
formula into 33,V 3*FOLTL, declassification conditions should use existential quantifiers
only.

Agent Models For the different agent models, the causal agent model agent_model(c)
subsumes the stubborn agent model and is less constraining on the behavior of the
individual agents, which leads to more intricate information flow violations. However,
the formula agent_model® := Va.causal(a) is not expressible in 3*FOLTL, as it has an
V3 quantifier structure. In case, however, that we consider a fixed upper bound on the
number of causal agents, the corresponding formula agent_model (%) is in the 3*FOLTL
fragment.

Example 5.1.

(c2)

For at most two agents, agent_model'"*’ is the following formula:

day, ay. causal(ay) A causal(az) AVa. (a # a1) A (a # az) — stubborn(a)
which can be brought into 3,V 3*FOLTL.

Considering an upper bound on the number of causal agents is a realistic setting, as it
allows to verify the system for attacks by coalitions up to a given size. We obtain that
NDA can be checked for quantifier-free FO Transition Systems with a bounded number
of causal agents.

Theorem 5.11. For any quantifier-free FO Transition System with a purely universal initial
condition, it is decidable to check whether it satisfies Noninterference with Declassification for a
finite number of causal agents and an unbounded number of stubborn agents, as long as for each
formula Dy, expressing a declassification condition, the negation normal form of ~Dj, contains
no existential quantifier.

Given the discussed assumptions on declassification and initial condition, we can now
check that the negation of Noninterference can indeed be brought into 3,V 3*FOLTL.
Then, as S is quantifier-free, the result follows directly from by Theorem 5.10.

In Theorem 5.5, we have shown that for acyclic FO Transition System, it is possible to
check NDA even when all agents behave in a causal way. This is no longer the case for
FO Transition Systems containing loops:

62 Chapter 5. Verification of Temporal Properties

Theorem 5.12. The problem of checking for a given quantifier-free FO Transition System S
whether it satisfies Noninterference with Declassification for an unbounded number of causal
agents is undecidable, even if for all formulas Dy, expressing a declassification condition, the
negation normal form of Dy, contains no existential quantifier.

Proof. As in the proof for Theorem 5.9, we present a reduction from the periodic tiling
problem. We will consider a FO Transition System S over a signature X with

Y = ({A}, {asst}, {Q, Oracle, Obs, Adj, Ty, . .., Ty_1 },ar)

where A, Afirsts Q, and T}, ..., T]Ll are as in proof for Theorem 5.9, and they fulfill the
same purposes. The Adj symbols denote again a vertical adjacency relation, but here it
is not filled with input data, but rather computed stepwise by the transition system. The
relations denoted by Oracle and Obs contain an initial secret that differs on both traces
and spreads along the adjacency relation Adj. The symbols Q, T), ..., T|_; denote again
high-input relations containing input data with a declassification of true (i.e. they are
always equal in both traces). We use the following FO Transition System with the initial
condition Va, b. ~Adj(a,b):

Obs(x) = (x = agst) A Oracle(x)

Adj(b,a) == Choicey(a, b)

We add the rest of the tiling requirements to the declassification condition of Oracle,
so that there only is an information flow violation in case that all formulas hold.

As we again use time as the x-axis, we reuse Equations (5.3) to (5.8). We also use
aj,s¢ as one representative agent of the bottom-most row, so we reuse Equation (5.11) to
specify that aj,s is compatible to ag,s. This time ay,; is not part of the signature, but we
will call the outermost agent of the non-interference condition a,s, so all declassification
conditions can use the variable.

Two adjacent agents need to be assigned y-comp tiles (Equation (5.13)).

Va,b. (FAdj(b,a)) = G \/ T(a) AT|(b) (5.13)
y-comp(i,j)

The last agent should be reachable from the first via Adj relations. This is expressed
by specifying that a,;; can observe different tuples on traces 7, 77’ (the non-interference
property.). Let ¢ be the conjunction of equations Equations (5.3) to (5.8) and (5.13). Let
the declassification conditions be:

Doracle = —, Dg = true, DTi/ = true

We then verify the Noninterference property given above.
There exists a satisfying model for the negation of the Noninterference property
of S iff there is a periodic tiling for (T, x-comp, y-comp). If a;,; observes different

5.2 Symbolic Model Checking 63

Table 5.1: A counterexample to non-interference.

!/

block | relation || 7 s
(e1) | Conflict (a1, p1)
(e2) | Assign (a1, p2), (a2, p2), (a2, p1)

az, p1, 721)
az, p2, sz) (ﬂzl P2, 7’22)
ai,az, p2, 7’22) (ﬂ1, az, p2, 722)

: (
(e3) | Review (as
(
(64) Read (LZQ, ar, p2,7’22> (Elz, an, pz, 1’22)
(a2
(
(
(

az,az, P1,721)
az, p2, 721)

ay,az, p2,121)
az,az, p2, 7’21)

(es) | Review

(eq) | Read

low outputs (tuples in Adj), then either he is the same agent as aj,5; and y-compatible
to himself or there exists a chain of causal agents spreading the tuples along Adj to
Ajgst- SINCe dgrg is the only one able to read Oracle, every possible differences can only
originate in Obs. Thus, there is a chain of y-compatible causal agents 4; starting with
agrst that reaches a;,¢. We can construct the tiling from any satisfying model in exactly
the same way as in the proof of Theorem 5.9. O

Example 5.2.

Coming back to the conference management example Example 3.3, we check
if the transition system satisfies noninterference. The specific example is not
quantifier-free, so we adapt it slightly by adding the author of the review to be
read into the Review relation, which is now 4-ary. We also omit the terminating
state, as we do not enforce termination of the FO Transition System. The adapted
example is shown in Figure 5.1.

When all agents are stubborn, we find that the system satisfies noninterference.
This indicates that there is no way for any agent to learn confidential information
without having a conspirator helping him.

The result is different when there is at least one causal agent. Assume two PC
members a; and a, where a7 is stubborn and a5 is causal. The non-interference
property is stated for a;. There are two papers p; and p,. First, a; declares a
conflict with py, so in the rest of the workflow he should not be able to observe a
difference between two executions of the workflow, regardless of which reviews p;
receives. Both agents get assigned to p,. In addition, a, gets assigned to p; and
writes a review for it. At this point, a; can observe at least one review for p1, so he
can deviate his behavior on the two executions. The next step is the discussion
phase. In the first step, a, reads all reviews of p;. In the next step, a2 adjusts his
reviews of p, to mirror the reviews of p;. Then, in the next iteration, a; will read
the differing reviews of p, and learn about the result of p1, the paper he initially
declared a conflict with.

Table 5.1 formalizes the counterexample. It shows the tuples that are added to
the updated relation after the execution of each edge. The reviews for p, cannot

64

Chapter 5. Verification of Temporal Properties

©

e1 | Conflict(x, p) := Choice;(x, p)

@

ez | Assign(x, p) := Choicex(x, p) A —Conflict(x, p)

@

es | Review(x, p,r) := Assign(x, p) A\ Oracle(x, p,r)

>

€5\ es|Read(x,y,p,r) += Assign(x, p) A Choices(x, p,r,y) A Review(y, p,r)

4
Review(x, p,r) += Assign(x, p) A Choices(x, p,7)

Figure 5.1: Quantifier-free version of Example 3.3

differ (in the two traces) directly after the execution of the edge (e3) since the
declassification condition states that tuples in Oracle can only differ when they
are of the form (x, p1, 7). However, as a4, can observe his own reviews for pj, his
choices can start to differ after (e3) is executed; concretely, they will differ when
edge (e5) is executed. In the last two rows, any value for r (except 1) would
result in a counter-example; we use 751 to suggest that 4, could simply replace its
review for p, with the review for p;. This attack represents someone copy-pasting
his review for the wrong paper into one of his reviews, which is exactly the attack
we mentioned in the introduction in Example 1.1.

To combat this attack, the example should be changed to only allow disjunct
reviewing groups — whenever a reviewer r is assigned to a paper p, no one else
that has a conflict with the other assigned papers of r can be assigned to p.

5.3

Introduced Concepts

T,a,B="¢ Temporal Hyperproperty ¢ holds on the first n steps of the
set of traces 7 with first-order valuation « and trace valuation
B (n-bounded satisfaction)

SE"y 1 holds on S with all traces bounded to n steps
Ry, Relation R on trace 7t at timepoint /
[S]" Formula representing the n-bounded unfolding of FO Transi-

tion System &
[yvls Formula for the n-bounded unfolding of FOLTL formula ¢

5.4 Conclusion 65

5.4 Conclusion

In this chapter we have seen how to apply the widespread approach of model checking
to the setting of quantifier-free FO Transition Systems. We have developed variants of
both bounded model checking as well as symbolic model checking that can be applied
to prove that a given quantifier-free FO Transition System satisfies the specification or
find counter-examples that show why it does not. We have extended our methods to the
setting of Hyperproperties and applied them to show that a quantifier-free FO Transition
System satisfies Noninterference for all agent models. An interesting distinction is that
bounded model checking is still decidable for the agent model where all agents behave
in a causal way, while symbolic model checking which takes all traces into account is
undecidable. This is due to the possibly infinite chains that could be created by agents
passing information to each other.

For the case where the given FO Transition System is not quantifier-free, we have
shown that the problem is undecidable in general, even for the specific property of
Noninterference.

CHAPTER

Invariants for

FO Transition Systems

Contents
6.1 Encoding Agent Models and Declassification 70
6.2 Verification of Invariants L. 76
6.3 Inferring Inductive Invariants 79
6.4 Invariant Inference for Monadic FO Transition Systems 82
6.5 Universal Formulas as Abstract Domain 88
6.6 Stratified Guarded FO Transition Systems 93
6.7 Universal Invariants for Unrestricted FO Transition Systems 94
6.8 Application to Noninterference 98
6.9 Forcing Stratification for General FO Transition System 103
6.10 Alternative First-order Logic based approaches 104
6.11 Introduced Concepts. 105
6.12 Conclusion 106

67

69

6 Invariants for FO Transition Systems

In Chapter 5, we have developed techniques for the verification of quantifier-free FO
Transition Systems. Many practically useful models, though, are not quantifier-free, like
the unmodified Easychair example from Example 3.5, where y is existentially quantified
in the tuple Read(y, p,r) in the update formula. In general, statements which use
auxiliary variables for expressing guards, naturally introduce quantifiers. A simple and
common example is a workflow statement that computes the transitive closure R of
some relation E when put inside a loop:

1 forall x,y,z. E(x,y) A R(y,z) = R += (x,2)

Converting this block into the setting of FO Transition Systems, we get an edge with
6 = {R(x,z) :=3Jy. E(x,y) AR(y,2)}

Therefore, in this chapter we want to go beyond the results from Chapter 5, and
develop automated proof strategies for more general FO Transition Systems. We have
already shown that for quantifier-free FO Transition Systems and an unbounded number
of causal agents, Noninterference with Declassification is undecidable, while for general
FO Transition Systems undecidability already occurs for the simpler agent model of
stubborn agents. In that sense, the results of Chapter 5 are tight. In this chapter, we
nonetheless aim at lifting this restriction, and provide methods for analyzing general
FO Transition Systems with unboundedly many agents, causal or stubborn.

Due to the undecidability results, any verification approach is necessarily incomplete
and/or introduces further restrictions. We therefore concentrate on NDA in particular
(instead of more general temporal hyper-properties) with declassification conditions
depending on the current state only. To do so, we will use invariants — annotations that
tell us specific facts that always hold at specific locations of the FO Transition System.
Invariants have been very successfully used for verification problems where general
undecidability prohibits other approaches. Examples of this include reasoning about
object-oriented code [11], pointer analysis or multi-threaded behavior [41].

In the following section, we will present approaches on how to use invariants to prove
that a given general FO Transition System satisfies Noninterference.

In Section 6.1 we show that pairs of execution traces complying with the assumptions
on agent behavior and with the declassification conditions can be encoded into a single
transformed FO Transition System. The specification of Noninterference then boils
down to checking that all observations of a particular agent coincide on the two traces.
Indistinguishability of such traces can then be cast as a universal invariant, i.e., a mapping
from locations of a given FO Transition System to universally quantified formulas.

In Section 6.2, we show that proving that a given FO Transition System satisfies an
invariant can be done by providing a strengthening of the invariant which is inductive.
We find that it is decidable whether an assignment of formulas to the nodes of a control
flow graph of the resulting FO Transition System is inductive or not — whenever
all formulas in question are universal, and the weakest precondition calculation for
each control flow edge only introduces non-nested occurrences of quantifiers. This

70 Chapter 6. Invariants for FO Transition Systems

provides us with a means for proving noninterference with declassification for general
FO Transition Systems.

Checking an invariant for being inductive, is one thing; inferring an inductive invariant
which is sufficiently strong for proving the initial invariant, is another. In Section 6.3, we
show how the latter can be cast as finding a solution to a constraint system for weakest
preconditions of the invariant to be verified [31].

In Section 6.4, we discuss the fragment of monadic FO Transition Systems, where
every predicate has at most one argument of an unbounded sort. We show that
inductivity is always decidable and under which conditions inductive invariants can
successfully be inferred. For cases outside these conditions, we prove undecidability.
In Section 6.5, we go in a different direction and instead restrict ourselves to purely
universal invariants rather than monadic ones. Again, we find that inductivity can
always be decided. Moreover, the inferred invariant always stays purely universal for
the class of guarded FO Transition Systems. When combined with the class of stratified
FO Transition Systems, we show Section 6.6 show that weakest inductive strenghtenings
can always be inferred. In combination we find that universal invariants for stratified
and guarded FO Transition Systems are decidable. In Section 6.7, we generalize our
methods to unrestricted FO Transition Systems. To do so, we introduce abstraction
techniques that are able to deal with the undecidable formulas appearing during the
computation. Still, the underlying lattice for solving the constraint system can have
infinitely descending chains — implying that our methods may not always terminate.
We then identify cases in which termination can be guaranteed. To solve as many cases
as possible, we compute the weakest inductive invariant, i.e., the inductive invariant
making the least assumptions at each location of the FO Transition System. Finally, we
apply our findings to Noninterference in Section 6.8.

6.1 Encoding Agent Models and Declassification

The key issue of NDA is to verify that only the same observations are possible — on
every trace satisfying the given sanity requirements. The structure of this property
is rather complex — including trace quantifiers, temporal operators as well as impli-
cations of nested quantifiers for both agent model and declassification condition. In
contrast to the model checking approaches in Chapter 5, we propose here not to in-
clude these assumptions on agent behavior and declassification into the specification of
Noninterference.

Instead, we will transform the given FO Transition System S so that the resulting
FO Transition System now tracks pairs of execution traces of S that comply with both
the assumptions on agents and declassification. This simplifies the property that we
want to prove by removing all trace quantifiers, all temporal operators as well as the
nested quantifiers. Proving that a FO Transition System satisfies NDA then amounts
to verifying that a purely universal formula holds in every state of the transformed FO
Transition System.

6.1 Encoding Agent Models and Declassification 71

6.1.1 Encoding of Causal Agents and Declassification

Here, we instantiate this idea for causal agents. To encode the sanity requirements into
the FO Transition System, we introduce a fresh agent variable 2, whose point of view
we use to encode the declassification constraints. Assume we are given a FO Transition
System S and a variable a4, corresponding to the agent of concern for noninterference for
the agent model agent_model(c). We then construct the new FO Transition System T8
as follows.

Encoding pairs of traces Consider traces

T = (vo,%0), (v1,51), - - -

v = (vo,8p), (v1,87), - - -

of the given FO Transition System over signature ~ = (S,C, R,ar) and universe U,
which agree in their control flow paths, i.e., 7(t) = 7(7'). To consider both traces
in parallel, we combine them into a single trace T ® 7’ that combines the structures
attained in 7 and 7. In order to differentiate between the two parts of the state space
attained in T ® 7/, we introduce a copy R’ = {R’ | R € R} of the predicates in R and
assume that the states s/ are expressed by means of the predicates in R’. Thus, T is now
still over the same signature ¥, while 7/ is now over the signature X' = (S,C, R’,ar’)
where ar’(R’") = ar(R). Since the names of the relations in 7 and 7’ are now distinct,
we can combine pairs of structures s;, s} into a single structure s; ® s over the signature
Y =(5,C,RUR/,arUar’) and universe U. Applying this combination along the two
traces, we get

In essence, T ® T’ is now a trace of the self-composition of the transition system [12].

Example 6.1.

Consider again the conference management example from Example 3.5, Let 7, 7/
be the two prefixes of traces:

T =
= (0,55),(1,87),...

where all structures range over the universe U with

UpcMember = {x 1, X2 }
uPaper = {Plf p2 }
uReport = {rl }

Since both sy and s;, are initial, the interpretations of all relations empty because of
the initial condition Init. In the first step, authors declare conflicts of interest with
some papers so let

Conflict® = {(x1,p1)}
ConﬂicifSi = {(x1,p1), (x1,p2)}

with all other relations still empty on both s; and s}. Then s; ® s} is over the same
universe U but a modified signature which contains both the relation Conflict and

72 Chapter 6. Invariants for FO Transition Systems

Conflict’ (as well as two versions of all other relations) with

Conflict$17%1) = {(x1,p1)}
Conflict 190 = {(x1, p1), (x1, p2)}

Thus, T ® T/ contains the interpretations of all relations in T as well the interpreta-
tions of all relations in 7/, but renames the latter ones to avoid name clashes.

We can now embed properties from FO HyperLTL universally quantifying over traces
7, 7' into FOLTL by replacing every occurrence of a relation R; by R and R, by R’ for
any relation R in the desired property.

6.1.2 Constructing a composed FO Transition System

In the last section we showed how to combine two separate traces into a single trace.
The set of all combined traces can then be used to embed FO HyperLTL properties back
into FOLTL. In this section we construct a single FO Transition System whose traces are
the combined traces of the initial transition system. We do this by similarly changing
the signature to include copies of all relations and transforming the edges of the given
FO Transition System to always update both copies of a relation at the same time.

Let R’ denote the set of primed predicates R’ corresponding to the predicates R from
R used by S. For a first-order formula ¢ with predicates from R, let [¢]" denote the
formula obtained from ¢ by replacing each predicate R € R with the corresponding
predicate R" in R’. Then each edge (u,6,v) of S gives rise to an edge (1, 6, v) in T8,
We will use Gflc) to handle the updates to both copies of the state relations from R as
well as update auxiliary information corresponding to the agent model. To define the
individual formulas G,EC) (R¥7), we make a case distinction depending on which relation
symbols appear in ORyj.

Parallel Updates For an update 0(Rj) in S that only uses predicate symbols from

Rstate, We produce an update in 7;(6)8 that updates both R and R’ using the unprimed

and primed copies of the relations in Rg.. Thus the updates in 9éc) are:

Declassification Since the transformed system 7;(6) S has explicit access to both copies

of the relations, it is possible to directly handle to declassification requirements in E(C)S
and simplify the property. For update formulas 0(Rj) that use a high input relation I,

from Ry, we want o (Ry) to update R and R’ in such a way that the declassification
conditions are respected. This is the case if I, and I ;l coincide for all tuples where Dy,
holds in one of the traces. The explicit update formulas in G,EC) are
Ry = 6(Ry)
Ry = (Dy,ax V [Dy,)'ax) A [6(Ry
- (Dyazx Vv [Dy,)ax) A [0(R))

6.1 Encoding Agent Models and Declassification 73

where ¥ is the tuple in 0(Ry) that is applied to I,. In case ¥ uses quantified variables
from 6(Ry), these have to be pulled outwards so that their scope includes the case
distinction.

[0(R7)]" is 0(Ry) in which all relation symbols except I have been replaced with their
primed counterparts. This ensures that if declassification holds, the updates to R and R’
both use the predicate I;, while in the other case, they use I;, and I;l respectively. The
parameter a of the declassification formula is considered as a constant in the transformed
FO Transition System E(C)S . For update formulas that use more than one high input
relation, the transformation is similar and uses a case distinction over which subset of
declassification conditions holds to update R’.

Causality The remaining case is when an update formula 6(Rj) uses an agent-

controlled low input predicate I; from Rjy,. In ﬁ(c) S, agents should be forced to
act causally, i.e. they should only be able to take different choices when they have al-
ready observed a difference in the considered traces. In order to capture this constraint,
we introduce a new unary predicate Informed(x), which is used to record all agents x
that have already made observations depending on secret information — so their choices
may diverge.

We then use a similar case distinction as in the transformation for declassification,
only this time we check if the first agent mentioned in the input relation is informed.
The corresponding update formulas in GC({C) are

Ry = 6(Ry)
Ry = Informed(x) A [0(Ry)]" V
- Informed(x) A [0(Ry)]”

where x is the first agent of the tuple that is applied to I;. Again, if x is a quantified
variable in 6(Ry), the quantifier has to be moved outwards to include the case distinction
in its scope. Here, [#(Ry)]” is 0(Ry) in which all relation symbols except I; have been
replaced with their primed counterparts. This ensures that for agents that are not part
of Informed, the unprimed version I; is used in both traces, which ensures that the
controllable inputs do not differ on the two traces.

To ensure that the new predicate Informed is updated correctly, we check for any pair
of relations R and R’ that might differ observably after the current step. Let R, be the
set of relations updated in 6, i.e. all relations R where 6(Ry) is different from Rj.

Informed(x) += \/ 3. 0\ Ry 4 0\ R'xy
RERW,,}

Example 6.2.

Consider the edge e = (2,6, 3) from Example 3.3 with
0 = {Review(x, p,r) = Assign(x, p) A Oracle(x,p,r)}

where the declassification condition for Oracle allows PC members to gain infor-
mation about any paper they do not have declared a conflict of interest with:

DOmclc(a/ X, p, T) = _‘COHﬂiCi’(a, p)

74 Chapter 6. Invariants for FO Transition Systems

Then the transformation ﬁ(c)e yields an edge (2, Oﬁ(f), 3) with GL(IC) being:
Review(x,p,r) = Assign(x,p) A Oracle(x, p,r)
Review' (x,p,r) = Assign’(x,p) A

(—Conflict(a, p) V —Conflict'(a, p)) A Oracle(x, p,7) V
(Conflict(a, p) A Conflict'(a, p)) A Oracle' (x, p,r)

Informed (x) += dp,r. Héc)Review(x, p,r) & 9£C)Review’(x, p,r)

Here, the update for Review always uses the unprimed relation Oracle. The update
for Review' does a case distinction if D, holds for a2 on one of the two versions
of Conflict. If it does, the tuples in Oracle are not confidential, so the update for
Review' uses the same relation Oracle. If it does not, the update for Review' uses
the unconstrained relation Oracle’.

In case an update formula uses both kinds of input predicates, we use a combined
case distinction over the declassification for the high predicates and the informedness
for the low predicates.

The transformation for stubborn agents, denoted 7;(5)8, is similar, but for update
formulas using a low input predicate I; from Ry, it omits the fresh predicate Informed
and uses the unprimed copy I; for both updates. For illustrative purposes, we show
7;(5) S in Figure 6.1 for the conference management example S from in Example 3.5.

The transformed FO Transition System 7;(0)5 (or E(S)S) captures all pairs of traces
of S that satisfy the causal (or stubborn) agent model together with declassification,
relative to a.

For agent_model (¢K), we introduce k constants a; . . . 4 into the FO Transition System
and use a slight adaptation of the updates to the informedness predicate of 7;(6)8
to ensure that only agents a;...a; are added to the Informed relation. This yields
transformation ﬁ(c’k).

Theorem 6.1. Let S be a FO Transition System. Then for each m € {s,c, (¢, k) | k € N} and
for every FOLTL formula using indexed predicates from Rstare possibly mentioning a, the
following statements are equivalent:

o S |= v, 7. agent_model™ — Va. (Gsame_high_inputs(a)) — p(a)

« TS | [y(a))

where [(a)]’ replaces indexed predicates R by R and R, by R’ to yield a FOLTL formula
using predicates from Rtate U Rstate -

The proof is by establishing a simulation relation between states s ® s’ attained
during a pair of traces of S satisfying agent_model(m) A G same_high_inputs(a), and states
§ attained during a corresponding trace of 7;(7”)8 .

Applying any one of these transformations eases the task of proving Noninterference
for a given FO Transition System immensely. Since the transformation takes care of the
assumptions on the agent model and declassification conditions, the only property left
to prove on the transformed FO Transition System is indistinguishability for a.

6.1 Encoding Agent Models and Declassification 75

©®

Conflict(x, p) := Choice;(x, p)
Conflict' (x, p) == Choice; (x, p)

@

Assign(x, p) = Choicey(x, p) N\ ~Conflict(x, p)
Assign’(x, p) == Choicey(x, p) A ~Conflict' (x, p)

2
%eview(x, p,r) == Assign(x, p) A Oracle(x, p, 1)
Review' (x, p, 1) = Assign’ (x, p) A
(—Conflict(x, p) V —Conflict' (x, p)) A Oracle(x, p,7) V

((Conflict(x, p) A Conflict' (x, p)) A Oracle'(x, p, r))
)
Read(x, p,r) += Assign(x, p) A Jy. Choices(x, p,r,y) A Review(y, p,)
Read'(x, p,r) += Assign’ (x, p) A Jy. Choices(x, p,7,y) A Review' (y, p, 1)

4
Review(x, p,r) += Assign(x, p) A\ Choices(x, p, 1)
Review' (x, p, 1) += Assign’(x, p) A Choicey(x, p, r)

Figure 6.1: Self-composition of the FO transition system from Example 3.5

76 Chapter 6. Invariants for FO Transition Systems

Corollary 6.2. A given FO Transition System S satisfies NDA for agent model m € {s, c, (¢, k) |
k € N} iff
G A\ Vi Ray < Ray
RERstate
holds on 7:,("1)3 for a fresh agent constant a.

This allows us to remove the agent model and multi-trace aspects from the formula
and focus on the analysis of a (now slightly more complicated) FO Transition System for
a purely universal property with a very simple temporal structure.

6.2 Verification of Invariants

We have now transformed NDA into a universal invariant on the transformed FO
Transition System. In following sections we will now focus on the problem of proving
that a universal invariant holds for a given FO Transition System. In this section, we
show that for any given universal invariant, we can prove or disprove inductiveness.

Weakest Preconditions For a given FO Transition System S over signature ¥ we define
a weakest precondition operator. It takes a formula ¥ in FO Logic over X and a path 7
and gives us a formula specifying the minimum assumptions that need to hold at the
beginning of 77 so that ¢ holds at the end. For every (finite) path 77 in the control-flow
graph of a FO Transition System S ending in program point v, and some property 1, we
define the weakest precondition [71] "¢ of ¥ by induction on the length of 7: If 7 = ¢,
then [71] "¢ = ¢. Otherwise, 7 = ert’ for some edge e = (u,0,v'). Then

7]y = VA.8([7])

where A, is the set of input relations I from Rinpur where literals Ix are introduced by
the application of 6.

For an edge e = (u,0,v), the weakest precondition [e] " ¢ of ¢ along e thus is obtained
from ¢ by replacing each occurrence of an atomic formula Rz in i by the formula 6(Rz).
If 6 uses input predicates, that substitution may have introduced occurrences of predi-
cates from Ry,; which are then quantified using universal Second Order Quantification.
We now formalize the intuition behind the [-] T operator.

Lemma 6.3. Let v be a valuation of the first-order constants in C, let T be a finite trace
in FO Transition System S starting in (vo,s) and ending in (v',s"). Then s',v |= ¢ iff
s,v = e (0] ().

The proof is by repeated application of the weakest precondition operator. This gives
us the weakest formula that has to hold at vy so that ¢ holds at v'.

Invariants An invariant is an assignment ¥ which maps each location u of the FO
Transition System to a closed first-order formula ¥[u] over predicates in Rsare. An
invariant ¥ is valid (also called ¥ holds) for a given FO Transition System S iff ¥ [u] holds
whenever u is reached on a trace of S. Formally, ¥ holds iff for all traces (vo, so) - .. (1,5)
of S (with universe U and constant valuation v),

s,v = ¥[u]

6.2 Verification of Invariants 77

An invariant ¥ of S is called inductive iff for every edge (u,6,v) of S
Flu] = [(u,0,0)]" (¥[o])

holds. Intuitively, an inductive invariant always carries enough information to prove
that it still holds after the next step.

To prove a general invariant valid, it is necessary to reason about the possibly infinite
set of reachable states. To prove an inductive invariant valid, it is enough to show that it
holds in every initial state. This is the case iff

Init — ¥ [vo]

Thus, an initial strategy to prove that a general invariant holds is by first proving that it
is inductive and then showing that it holds in every initial state.

Example 6.3.

For our running conference management example from Example 3.3, the initial
condition specifies that all relations R in R are empty, i.e.,

/\RERstate vy'_‘Ry

where we assume that the sorts of the sequence of variables i matches the arity of
the corresponding predicate R. An example invariant specifies that a PC member
should never be assigned to a paper she declared conflict of interest with. This
particular assertion should hold everywhere, so we have for every u

Y(u] = Vx, p, r.—(Conflict(x, p) N\ Assign(x, p,r)) (6.1)
For the edge e = (1, 6,2) from Example 3.3 with
0 = {Assign(x, p) = Choicez(x, p) N —=Conflict(x, p)}
and formula ¥ [2] = Vx, p. =(Conflict(x, p) A Assign(x, p)), we have that
[e] "¥[2] = VChoicey. Vx, p. —(Conflict(x, p) A Choices(x, p) A —Conflict(x, p))

which can be simplified to
[¥[2] =T

Since ¥[1] — [e] "¥[2] = true, we have proven that whenever e is executed from
a state satisfying ¥[1], it always leads to a state where ¥[2] holds. Since this
implication holds not only for the edge from location 1 to location 2 but for all
other edges as well, ¥ is inductive.

It is particularly convenient when for all paths 7, [7] " introduces no alternating
first-order quantifiers. In the context of a specific invariant ¥ and FO Transition System
S, a predicate is called positive iff it occurs only positively in ¥ as well as all substitution
formulas of S.

78 Chapter 6. Invariants for FO Transition Systems

Definition 6.4 (Guard-Restricted FO Transition System). We call a FO Transition System
S guard-restricted if all substitution formulas 6(R) are in the 3*FO Logic fragment. In the
context of a specific invariant ¥ containing positive predicates, 6(R) is allowed to be in the
alternation-free fragment of FOL.

Guard-restrictedness holds for our running examples and is preserved by the transfor-
mation for stubborn agents introduced in Section 6.1 (assuming that all declassification
conditions are in 3*FO Logic). Therefore, it is a reasonable assumption in our context.
This leads us to our first decidability result for guard-restricted FO Transition Systems:

Theorem 6.5. Let S be a guard-restricted FO Transition System and Y a universal invariant.
1t is decidable whether or not Y is inductive and valid.

We remark that the restriction to guard-restricted FO Transition Systems can be lifted
by means of the abstraction techniques provided in the next section — leading to an
incomplete verification method for universal invariants on unrestricted FO Transition
Systems.

Proof. The proof works by showing that all formulas fall into a decidable fragment of
FO Logic, namely the Bernays-Schonfinkel-Ramsey fragment. Equivalently, we check
whether Init A =¥[ug] as well as ¥[u] A =[e] ' (¥[v]) are unsatisfiable, for each edge e
of the FO Transition System. We focus on the latter formula, as the other case is
similar. Since S is guard-restricted and ¥[v] is a universal formula, [e] " (¥[v]) is of the
form VA,.Vij.ip where i has only existential first-order quantifiers, i.e., is contained in
3*FO Logic. Therefore, —[e] " (¥[v]) is given by

HAeay_.—!l,D

where —p is in V*FO Logic. Since the only second-order quantifiers in ¥[u] A —=[e] T (¥[])
are the existential quantifiers for the variables in A,, satisfiability of this formula is
equivalent with satisfiability of a first-order-formula consisting of two conjuncts, one in
V*FO Logic (namely, ¥[u]) and the other in 3*V*FO Logic. Both fragments are decidable,
so their unsatisfiability can be effectively checked [20]. O

6.2.1 Guard-restrictedness in presence of guards

In Section 3.2.1, we showed how to encode guards into the semantics of a given FO
Transition System S. We did so by introducing a fresh predicate error which took care
of evaluating the guards and added —error to the initial condition Init. Let S’ be the
resulting FO Transition System including the updates to error.

Example 6.4.

For an edge e = (1,0, v) that should only be taken if a guard g is enabled, we
replace 6 by an updated 6’ where 6(Rj) = 8(Rj)’ for all relations R except error
with

error == error V —6(g)

6.3 Inferring Inductive Invariants 79

Consider an invariant ¥ on §. We are then only interested if ¥ holds for S for the
traces of S that satisfy all guards they encounter. Let the invariant ¥’ on S’ be

Y [u] := —error — ¥[u]

Then ¥’ holds on &’ iff ¥ holds on all traces of S satisfying all appearing guards.
Corollary 6.6 extends the setting of Theorem 6.5 to FO Transition Systems with guards
and shows that guards in V*FO Logic or 3*FO Logic do not break guard-restrictedness.

Corollary 6.6. Let S be a guard-restricted FO Transition System and ¥ a universal invariant.
Let S’ be S extended with guards in the alternation-free fragment of FO logic and let ¥'[u] be
—error — ¥ [u| for all u. Then S' is also guard-restricted and it is decidable whether or not ¥’
is inductive and valid for S'.

Proof. The newly introduced predicate error is fresh, i.e. it does not appear in ¥. Thus,
error is positive in S’ and guard-restrictedness allows updates to error in the alternation-
free fragment of FO logic. O

To summarize, in this section we have developed a proof strategy for purely universal
safety properties on guard-restricted FO Transition Systems:

1. Formulate the property as a universal invariant Y.
2. Check that ¥ is inductive and valid.

After transforming the initial system S to account for the agent model and declassifica-
tion conditions, NDA becomes a purely universal safety property of the transformed
FO Transition System E(C)S and can be cast as a universal invariant for step (1). In
Corollary 6.6 we have proven that step (2) is decidable for guard-restricted FO Transition
Systems. Thus, this approach yields a fully automated way to prove NDA for guard-
restricted FO Transition Systems. The approach is incomplete, since valid universal
invariants need not necessarily be inductive, but already gives us a useful approach to
prove properties of non-quantifier-free FO Transition Systems.

In the following sections, we will build on this approach and extend it to situations
where the invariant is not naturally inductive.

6.3 Inferring Inductive Invariants

Unfortunately, not every invariant is naturally inductive. Thus, in this section we show
how to automatically infer a strengthening of a given invariant that is inductive. Assume
that we want to verify an invariant I for an arbitrary FO Transition System S, i.e., verify
that I holds whenever the location u of S is reached. Then a certificate can be obtained
from an inductive invariant ¥ of S so that

1. ¥[u| — I[u] for all program points u; and

2. Init = ¥[vy] for the start point vy of S.

80 Chapter 6. Invariants for FO Transition Systems

In case that I[u] = ¢ for all u, we then have verified that G ¢ holds for the given FO
Transition System S.

Example 6.5.

For the conference management example from Example 3.5, consider the invariant
I that assigns to each location:

Vx: PCMember, p: Paper, r: Report. =(Review(x, p,r) A Conflict(x, p))

It specifies that at no point in time should somebody be able to review a paper
that he declared a conflict of interest with.

This particular invariant is not inductive: Without any additional information on
the contents of the Assign relation, the invariant can not guarantee that the edge
(2,6,3) with

0(Review(x, p,r)) = Assign(x, p) A Oracle(x, p, 1)

does not add tuples to the Review predicate that might violate I. There is however
a strengthening ¥ of I that assigns to each location:

Vx: PCMember, p: Paper. —(Assign(x, p) A Conflict(x, p)) A
Vx: PCMember, p: Paper, r: Report. =(Review(x, p,r) A Conflict(x, p))

In contrast to I, ¥ is inductive, in particular ¥[2] implies [(2,6,3)]" (¥[3]). ¥ is
also valid, since it holds when Assign, Conflict and Review are empty predicates.
Thus, Y is an inductive strengthening of I and can be used as a certificate to prove
that I holds for the example FO Transition System.

However, the required inductive invariant ¥ (if it exists) may be complicated and
not easy to guess. Therefore, we are interested in automatic methods to construct such
certificates. In light of requirement (1), it suffices to determine the weakest inductive
invariant ¥ satisfying requirement (2). Given that this invariant exists and is computable,
then invariant I can be certified by means of an inductive invariant iff Init — ¥[vg].

In order to determine Y, we put up the following constraint system C:

X[u] — Iu] (6.2)
X[u] — [e] " (X[v]) foredgee= (u,6,v) of S (6.3)

where the unknown X|u| represents the potential formula assigned to program point .
By definition, any assignment X satisfying all constraints (6.3) is inductive where
requirement (1) for X is expressed by the constraint (6.2).

Solutions for constraint system C can be computed by a fixpoint approach. To make
this explicit, we define the assignment ¥") for each 1 > 0 of program points u to
formulas by

YO u] = Ifu

YO = PO A A ool (T V) fornso0 Y

6.3 Inferring Inductive Invariants 81

In case that computing ¥") with increasing values of / indeed reaches a fixpoint, we
found a solution for X — which in turn allows us to prove the initial invariant I. Any
solution for X is then an inductive strengthening of the invariant I. Checking if I holds
can then be simplified to checking implications just for the starting point.

Theorem 6.7. For a FO Transition System S and invariant I on S, I holds iff Init — ¥(") [vy)]
holds for all h > 0.

The proof is by induction on the lengths / of considered paths and captures the notion
that ¥(") includes the weakest precondition of the invariant along all paths of length at
most h. Formally, we verify that

¥ (o] = A{[n]"I | 7 path starting ato, || < h}

forall h > 0.

In general, it is however not guaranteed that fixpoint iteration to compute a solution
C will always terminate. However, there are classes FO Transition Systems for which
termination is guaranteed: For example, for the special case of acyclic FO Transition
Systems, the constraint system C will eventually stabilize.

Theorem 6.8. For an acyclic FO Transition System S and an invariant I on S, there exists
some m > 0 such that ¥") = ¥ "+%) holds for each k > 0. Thus, Nj=o ¥ [u] = ¥ [u] for
all u.

Since in acyclic FO Transition Systems all paths are of finite length and there are only
finitely many paths, all conjunctions of ¥")[u] for all locations u are finite conjunctions,
so ¥(") can be computed.

Interestingly, we also find that if the weakest inductive invariant is FO definable, the
iteration is also guaranteed to terminate. We have:

Theorem 6.9. Assume that for all program points u and h > 0, ¥ [u] is FO definable as well
as the infinite conjunction \j>g ¥ [u]. Then there exists some m > 0 such that ¥ (") = ¢ (m+k)
holds for each k > 0. Thus, N Y™ [u] = ¥ [u] for all u.

Proof. Let ¢, denote the first-order formula which is equivalent Ay~ ¥ [u]. In partic-
ular, this means that ¢, — () [u] for each h > 0. On the other hand, we know that
Ap=o ¥ [u] implies @,. Since ¢, as well as each ¥")[u] are assumed to be FO definable,
it follows from Godel’s compactness theorem for FO logic that there is a finite subset
] € N such that Aj¢; Y [u] implies ¢,. Let m be the maximal element in J. Then,
Niej Y [u] = ¥ [u] since the ¥ ") [u] form a sequence of formulas that are decreasing,
i.e. each formula implies its successor. In summary, we have proven that ¢, is equivalent
to ¥ [u]. O

This refines our approach on how to prove a given universal safety property:
1. Formulate the property as a universal invariant I.

2. Compute any fixpoint of the strengthening ¥ ().

3. Check that ¥ is inductive and valid.

82 Chapter 6. Invariants for FO Transition Systems

The challenges of this approach are two-fold: First, for unrestricted FO Transition
Systems, formulas ¥(") may introduce arbitrarily complex quantifier structures which
need not stay decidable — even for guard-restricted FO Transition Systems. Second,
¥ (") might not necessarily have a fixpoint expressible by a finite formula.

In the next sections, we will explore how to overcome these two challenges. To tackle
the first challenge, we examine fragments of FO Transition Systems where all formulas
appearing during the computation of C naturally stay decidable in Sections 6.4 and 6.5.
For the second challenge, we then introduce the fragment of stratified FO Transition
Systems where fixpoints for ¥(*) always exist and can be computed in Section 6.6. We
then turn to abstraction techniques that allow us to tackle unrestricted FO Transition
Systems in Section 6.7.

6.4 Invariant Inference for Monadic FO Transition Systems

Assuming that the universe is finite and bounded in size by some h > 0, then FO
Transition Systems reduce to a finite propositional transition systems by encoding the
state of all relations into a state of the finite transition system. So at least in principle,
checking if a given invariant holds is always decidable.

A more complicated scenario arises already when each predicate has at most one
argument which takes elements of an unbounded sort (but may have arbitrary many
parameters of sorts of bounded size).

Example 6.6.

In the conference management example shown in Example 3.3, a possible scenario
would be to assume that PC members and papers constitute disjoint sorts of
bounded cardinalities, while the number of (versions of) reviews is unbounded.

By encoding tuples of elements from finite sorts into predicate names, we obtain FO
games where all predicates are either nullary or monadic. FO Transition Systems where
all state and input predicates are monadic are called monadic FO Transition Systems.

Example 6.7.

For the conference management example, let us consider at most 2 papers p1, p2
and at most 2 PC members x1, x2, but unboundedly many reviews. The predicate
Review containing tuples (x, p,r) for a PC member x, a paper p and a report r
would be encoded with 4 new monadic predicates

Reviewy, p, (1), Reviewy, ,, (1), Reviewy, p, (r), Reviewy, p, (1)

Monadic FO logic is remarkable since satisfiability of formulas in monadic logic is
always decidable, and monadic SO quantifiers can always be eliminated [15, 90].

Due to Theorem 6.8 we therefore conclude for acyclic monadic FO Transition Systems
that checking if an invariant (of arbitrary quantifier structure) holds is decidable:

6.4 Invariant Inference for Monadic FO Transition Systems 83

Theorem 6.10. For a given finite, monadic FO Transition System S and an invariant I on S, it
is decidable if I holds on S.

For monadic FO Transition Systems which are not finite, the situation is more involved.
Monadic FO Transition Systems turn out to be close in expressive power to multi-counter
machines, for which reachability is undecidable [49, 78].

Theorem 6.11. For monadic FO Transition Systems and a universal invariant I, it is undecidable
if I holds when there are input relations in Riupy as well as substitutions with equalities or
disequalities.

The proof is by using monadic predicates to simulate the counters of a multi-counter
machine. The part about equalities follows from the observation that in this simulation,
it is necessary to add new, unique elements to the predicate representing the counter.

Proof. We prove the statement by showing how to construct a monadic transition system
S such that a multi-counter automaton M has a run, starting with empty counters and
reaching some designated state term iff S is not safe. The states g € {1,...,n} of M
are encoded into flags fi,..., f, where f; and f, = term correspond to the initial and
final states, respectively. The invariant [is given by —term. Each counter ¢; of M is
represented by a monadic predicate P;. Incrementing the counter means to add exactly
one element to P;. In order to do so, we set all flags f; to false whenever the simulation
was faulty. Accordingly, we use as initial condition

fin /\]'>1 _‘fj AN; Vx.—P;x

Consider a step of M which changes state f; to fy and increments counter c¢;. The
simulation is split into two steps, where the first step uses an input predicate A to add
some elements to P; and the second step checks that exactly one element was added.
The first step uses the substitution:

Py — PyV Ay,

fiN(3x.AxN=Px) ifl" =T
foo= {false if 1" £7,
Py — Py

where P’ is meant to record the values of the predicate P; before the transition. By
this transition, some flag f;» is set only when the new predicate P; has received some
new element. By the subsequent second transition, we check if the predicate A in the
previous step, has more than one element outside P;. If it does, we set all f;» to false.

Py — Py,
fir = fir AVx1x2.Pix; V —P'x1 V Pixp V =P xp V xp = xp
Py +— false

Decrementing a counter can be simulated analogously. Since counters can also be
checked for 0 by checking emptiness of the corresponding predicate, we find that the
FO Transition System & is safe iff either the simulation of the counters was erroneous or
it is is not possible to reach term. Accordingly, Theorem 6.11 follows. O

84 Chapter 6. Invariants for FO Transition Systems

Together with Theorem 6.9, this implies that the infinite conjunction of preconditions
from Section 6.3 is not always FO definable — otherwise decidability would follow.

Interestingly, if a given monadic FO Transition System does not contain both input
relations and equalities/disequalities, its safety can in fact be effectively decided. To
prove this, let us first consider monadic FO Transition Systems without input predicates
(i-e. Rinput = ©) where both equalities and disequalities are allowed. Then, an invariant
holds iff there is no universe and control-flow such that the invariant is violated at some
point. For this case, we show that the intersection of preconditions from Section 6.3
necessarily stabilizes.

Theorem 6.12. Assume that S is a monadic FO Transition System, possibly containing equalities
and/or disequalities with Riypys = ©. Further, let [be an invariant for S. Then for some h > 0,
Y1) =¥+ Therefore, it is decidable if T holds for S.

Theorem 6.12 relies on the observation that when applying substitutions alone, i.e.,
without additional SO quantification, the number of equalities and disequalities in
which a FO variable is involved, remains bounded. For the proof of Theorem 6.12, we
rely on a technique similar to the Counting Quantifier Normal Form (CQNF) as introduced
by Behmann in [15] and picked up in [89]. A counting quantifier 3="x.¢(x) expresses
that at least n individuals exist for which ¢ holds, i.e.

Elznx.go =3Iy .. X Ar<icn @i/ X A Nicj<n Xi # Xj

A main theorem of [89] is: A monadic FO formula ¢ is said to be in liberal counting
quantifier normal form (liberal CQNF) iff ¢ is a Boolean combination of basic formulas of
the form:

e I2"x. A Li(x)
1<i<m
where n > 1, m > 0, and the L;(x) are pairwise different and pairwise non-

complementary positive or negative literals with unary predicates applied to the
individual variable x, and dis-equalities x # a for free variables a,

¢ nullary predicates P,
e P(x), where P is a unary predicate and x is a global variable,
e x = x/, where x, x’ are global variables.

@ is in strict counting quantifier normal form (strict CQNF) if it is in liberal CQNF and
additionally does not have dis-equalities of bound FO variables with free FO variables.
We remark that the notion of strict CQNF has been called just CQNF in [89]. We have:

Theorem 6.13 (CQNF for Monadic FO Formulas [89, 15]). From each monadic FO formula
¢ equivalent FO formulas ¢1, ¢ can be constructed such that

1. @y is in liberal CQNF;
2. @y is in strict CQNF;

3. all FO variables and predicates in ¢1, @2 also occur in ¢. O

6.4 Invariant Inference for Monadic FO Transition Systems 85

We remark that the construction of ¢; in liberal CQNF follows the same lines as the
construction of ¢, where only the step of eliminating dis-equalities between bound
variables and free variables is omitted.

Example 6.8.

We illustrate the transformation into strict CQNF:
dy. Ix. px Ax #y =
Jy. (3=1x. px) A ((3%2x. px) V —py)
(3=1x. px) A ((322x. px) V Ty.—py) =
(F=1x. px) A ((372x. px) Vv 3=1y.—py)

For a monadic FO formula ¢ in liberal or strict CQNE, the quantifier rank qr(¢) equals
the maximal k such that 3% occurs in ¢. Likewise, for a substitution 8 where all images
of predicates are in strict CQNF, gr(0) equals the maximal rank of a formula in the image
of 0. For the rest of this subsection, we assume that for all substitutions, all formulas
in their images are in strict CQNF. We now state our results for such substitutions on
monadic FO formulas in CQNF.

Lemma 6.14. Given a monadic FO formula ¢ in liberal CQNF and a substitution 6, the
quantifier rank of 6(¢) in liberal CQNF is at most the maximum of qr(¢) and qr(6).

Proof. Since ¢ is in liberal CQNF and 6(R) for (R € Rar) are all in strict CQNF, none of
them contain equalities between bound variables, and all quantifier scopes 3=¥x. contain
only literals that mention x. While in ¢ these scopes may contain inequalities x # a for
free variables g4, this is not allowed in the 6(R). In particular, there are no dis-equalities
between y and a bound FO variable. Thus, we can write §(R) in the form

Ir
V ¥r,i(y) AR,V PR
j=1

where each ¢ ;(y) is a quantifier-free boolean combination of literals applied to y,
equalities or dis-equalities of y with further free variables, and all 1/)}{,]', P do not contain
y. Applying 6 to a literal L(a), where a is a free variable, does not introduce new nested
quantifiers. Now consider a quantified basic formula

372 (AL Li(x) A (N2 ~Li(x)) A D(x)

of ¢ where D(x) is a conjunction of disequalities with free variables of ¢. Application
of 6 yields a formula which is a boolean combination of

* basic formulas from 6 without occurrences of y since these can be extracted out of
the scope of any quantifier of ¢;

* basic formulas from ¢ without occurrences of predicates;
* basic formulas arising of the CQNF of a formula

N ¥ryi [x/91) A —~ypr,ilx/y] A D(x)
j=1

86 Chapter 6. Invariants for FO Transition Systems

for some predicates R;, R and indices i;,i. By construction, each formula g, ; [x/y]
as well as formula - ;[x/y] is quantifier-free. Therefore, it is equivalent to a
boolean combination of basic formulas of rank at most k.

Altogether, the rank of 6(¢) is thus bounded by the maximum of the ranks of ¢ and
0. O

Lemma 6.15. For any monadic FO formula ¢ in liberal CQNF and a sequence of substitutions
0o, ..., 0, in strict CQNE, it holds that

qr(6o - .- 0x(p)) < max(qr(¢),qr(6o), ..., qr(60n))

The proof follows from the repeated application of Lemma 6.14. Now that we proved
the intermediate steps, we can prove the initial Theorem 6.12.

Proof of Theorem 6.12. For all h > 0 and nodes v, ¥")[0] is a conjunction of sequences of
substitutions 6 from E applied to some FO formula I[0']. Thus, gr(¥"[0]) is at most

max({qr(0) | (v,0,v") € E} U {gr(I[']) | v € V'})

Let r be this maximum. For a given set of constants, there are only finitely many
formulas of fixed quantifier rank (up to logical equivalence). Thus, fixpoint computation
as given necessarily terminates. According to the proof of Theorem 7.24, a FO Transition
System S is safe iff for all 1 > 0, Init — ¥(")[0]. Therefore, Theorem 6.12 follows. []

Furthermore, decidability is also retained for invariant I that only contain disequalities,
if no equalities between bound variables are introduced during the weakest precondition
computation.

Theorem 6.16. Assume that S is a monadic FO Transition System and let I be an invariant for
S. Then if

1. there are no disequalities between bound variables in I and

2. in all (positive or negative) equalities x = y or x # y in Init and substitutions 6 at least
one of x,y is a constant (from C),

it is decidable whether I holds for S.

The proof is based on the following observation: Assume that C is a set of cardinality
d, and formulas ¢1, ¢, are closed (but might use constants from C). If ¢1, ¢, contain no
disequalities between bound variables, then ¢, ¢, are equivalent for all models and all
valuations v iff they are equivalent for models and valuations with multiplicity exceeding
d. Here, the multiplicity u(s) of a model s is the minimal cardinality of a non-empty
equivalence class of U w.r.t. indistinguishability. We call two elements u, 1’ of the universe
U indistinguishable in a model s iff (s, {x — u} = Rx) <> (s, {x — u'} = Rx) for all
relations R. Then, when computing ¥"), we can instead use an abstraction by formulas
without equalities, which we show to be a weakest strengthening.

Lemma 6.17. Let ¢ be a closed FO formula possibly containing equalities or disequalities
between bound variables. We construct a closed formula @ with neither positive nor negative
equalities between bound variables such that the following holds:

6.4 Invariant Inference for Monadic FO Transition Systems 87

1. (pﬁ — @;

2. If y — @ holds for any other monadic formula 1 without (dis-)equalities between bound
variables, then P — ¢~

3. There exists some d > 0 such that for a model s of multiplicity at least d and a valuation p,

s etiffsp e

If the assumptions of Lemma 6.17 are met, ¢* is called the weakest strengthening of ¢ by
formulas without equalities.

Proof. Assume that ¢ is in prenex normal form and that the quantifier-free part ¢’ is
in disjunctive normal form. By transitivity of equality, we may assume that in each
monomial m of ¢’ for each occurring equality x = y one of the following properties
holds:

* both x, y are free variables; or
* x is free and y occurs in the quantifier prefix; or

* neither x nor y are free, x is different from y and the leftmost variable in the
quantifier prefix which is transitively equal to y.

Next, m is rewritten in such a way that additionally no variable y on a right side of an
equality is existentially quantified. As a result, each remaining right side of an equality
literal is either free in ¢’ (in which case the left side is also free) or universally quantified.
Now consider any model s such that j(s) > d for some d > 0 exceeding the number
of free variables plus the length of the quantifier prefix of ¢. Then we verify for each
universally quantified variable y (by induction on the number of universally quantified
variables occurring in a quantifier prefix Qz), that s,p = Vy Qz.¢' iff s,p = Yy Qz.¢"
where ¢” is obtained from ¢’ by replacing each occurrence of an equality x = y with
x ~cy,defined as \/,ccx =cAy =c.

Accordingly, we construct ¢* from ¢ by replacing all equalities x = y where y is
universally quantified with x ~¢ y. Then goti satisfies statements (1) and (3). In order
to prove statement (2), we first observe that ¢y — ¢ also holds for all models s with
p(s) > d for all values of d exceeding the cardinality of C. By property (3), we therefore
have that ¢y — ¢* in all models s and all valuations p where y(s) is sufficiently large.
Since (dis-)equalities in ¢ and in ¢ are not applied to pairs of bound variables, the
assertion follows. O

We conclude:

Corollary 6.18. Assume that ¢, ¢' are monadic FO formulas with positive occurrences of
equality only. Then

L (pA¢')t =g A(¢')t, and
2. (VA.@)! = (VA.¢")f

With this, we can now prove the initial Theorem 6.12.

88 Chapter 6. Invariants for FO Transition Systems

Proof of Theorem 6.12. Let ¥") denote the h-th iteration of the weakest precondition (6.4)
as defined in Section 6.3. Due to SO Quantifier Elimination as in [15], each formula
¥("M[0] is equivalent to a monadic FO formula. If neither I nor 6 contain equalities,
¥ (") [v] has positive occurrences of equalities only.

The sequence ¥")[v] for h > 0 still need not stabilize as more and more FO variables
may be introduced. Let "I’(()h) denote the h-th iteration of the abstraction of the weakest
precondition:

¥l = Ifo]
Wl = ¥ A
A (YALCESV[06))f forh >0
(v,0,0')€E

where the abstraction operator (-)? returns the weakest strengthening by means of a
monadic FO formula without equality. Recall from Corollary 6.18 that the abstraction
operator commutes with conjunctions. Also, we have that (VA,.p)* = (VA..¢")? for
each monadic FO formula with positive occurrences of equality only. By induction

on i, we find that ‘I’(()h) [0] = (¥ [0])* holds for all 1 > 0. Since Init does not contain

equalities, we therefore have for all & > 0, that Init — ¥ [vg] iff Init — ‘I’(()h) [0g]. Since
(up to equivalence) the number of monadic formulas without equalities or disequalities

is finite, the sequence ‘I’(()h) for h > 0 eventually stabilizes. This means that there is some

h' > 0 such that for each program point v, ‘I’(()h,) [v] = ‘I’(()hlﬂ) [v]. Thus, FO Transition
System S is safe iff Init — ‘I’(()h,) [vo]. Since the implication is decidable, the theorem

follows. O

The monadic version of the running example mentioned in Example 6.6 does use
input relations, but no equality or disequality literals and thus stays indeed decidable.

In this section we have shown that for monadic FO Transition Systems, all formulas
appearing during the computation of the strengthening of an invariant I are indeed
decidable. This allows us to always decide if the current strengthening is inductive, even
for invariants of arbitrary quantifier structure.

However, already for monadic FO Transition Systems computation of the fixpoint
may fail, as we have proven monadic FO Transition Systems undecidable in general. We
then examined two classes of monadic FO Transition Systems that do not introduce an
unbounded number of equality literals between quantified variables and showed that
for these, indeed every invariant I that holds can be strengthened to a valid inductive
invariant, yielding an effective decision procedure to check if I holds for a given monadic
FO Transition System.

6.5 Universal Formulas as Abstract Domain

For general, non-monadic FO Transition Systems, the formulas appearing during the
fixpoint iteration might still contain arbitrary FO quantifiers and thus easily be undecid-
able. To still be able to show inductivity, we thus have to restrict our approach in some
way. In this section, instead of restricting ourselves to monadic predicates, we instead

6.5 Universal Formulas as Abstract Domain 89

restrict ourselves to the domain of universal First-order formulas: We require that all
invariants are purely universal formulas. Again, we are interested in the question: Can
an invariant I be certified by such a universal inductive invariant?

6.5.1 Eliminating Universal Second-Order Quantification

Consider an edge ¢ occurring in a FO Transition System S which introduces input
literals of some input predicate from R;,,,;. Then the weakest precondition operator
[e] " introduces universal quantification over the input predicate. To be able to perform
the invariant strengthening given in Section 6.3, we want to eliminate the universal
quantifier to end up back in the fragment of purely universal FO formulas.

In the following, we provide methods for eliminating such second order quantifiers.
Fact 6.5.1. The clause
VA. AZy V...V Az, V —AZ) V...V Az, (6.5)
for sequences z;, Z;. of variables is equivalent to

Zi = _; (6.6)

r
= 1

S

1j

where the equality between sequences of variables equals the conjunction of the
equalities between corresponding variables.

Proof. Let us fix some values for the occurring first-order variables. First assume that
the formula (6.6) holds (w.r.t. that variable assignment). Then there are some i, j so that
the conjunction of equalities z; = Z; holds. Then Az; V ﬁAZ} is equivalent to true for
every predicate A. Therefore, formula (6.5) holds as well.

For the reverse implication, assume that (6.6) does not hold for the given variable
assignment. Then for all i, j, the sequences z;, z} are different. Then some predicate A
exists so that Az; is false for all i, and Az‘;- is true for all j. For that particular predicate
A and the given variable assignment, the clause Az; V...V Az, V 2AzZ] V...V ~A'Z,
is false. Therefore, formula (6.5) evaluates to false as well, thus proving the reverse
implication. O

Universal quantification generally satisfies the following laws:

VA. Q1N Q2= (VA(pl) AN (VA(pz) (6.7)
VA. 1V @2 = @1V (VA. @) if A does not occur in ¢4 (6.8)

Therefore, fact 6.5.1 gives rise to an effective second-order quantifier elimination in case
none of the A-literals are applied to existentially quantified variables. In particular,
universal second order quantifiers can always be eliminated from purely universal
formulas.

90 Chapter 6. Invariants for FO Transition Systems

Example 6.9.

VA.Y.x,y,z. R(x,y) NA(x,y) V -A(y,z) V = A(x,z)
=Vx,y,z. R(x,y) A\VA. A(x,y) vV -A(y,z) V ~A(x,z)
=Vx,y,z. R(x, y) N(x =yANy=zVx=xANy=2z)
=Vx,y,z. R(x,y) N\y =z

Theorem 6.19. Assume that is a quantifier-free formula. Then a quantifier-free formula '
can be constructed so that ¢’ <> VY A. 4 holds.

Proof. Assume, w.l.o.g., that ¢ is in conjunctive normal form. Since universal quantifica-
tion distributes over conjunctions, we may apply quantifier elimination to each clause ¢
of ¢ separately. Any given clause c can be written as ¢ V c; where ¢; does not contain
occurrences of A and c; collects all literals with predicate A. Then VA. ¢ is equivalent
to ¢ V ¢} where ¢} is determined from ¢, according to fact 6.5.1. This completes the
construction.]

Example 6.10.

Consider the invariant I = Vx, p, r.—(Conflict(x, p) A Review(x, p,r)) and substi-
tution 6 from the edge between program points 2 and 3 in Figure 3.2, given
by

0 = { Review(x,p,r) := Assign(x, p) A Oracle(x,p,r) }

Since 6(I) contains only negative occurrences of Oracle, SO universal quantifier
elimination is particularly simple:

VAsz. (I0) = Vx,p,r. VOracle. =Conflict(x, p) V —Assign(x, p) V =Oracle(x, p, 1)
= Vx, p,r. ~Conflict(x, p) V ~Assign(x, p)

The proposed procedure for second-order quantifier elimination is not new (Isabelle,
e.g., easily verifies fact 6.5.1). Implicitly, our procedure can be considered as a particular
instance of the ScaN algorithm [71, 40]. When multiple predicates are universally
quantified, some of them may even be eliminated without introducing new equalities
into the inner formula.

In addition to just eliminating universal SO quantifiers from a purely universal
formula, sometimes it is possible to eliminate universal SO quantifiers together with
the existential FO quantifiers introduced during a step of the fixpoint iteration from
Section 6.3.

Theorem 6.20. Consider a universal formula y with an arbitrary amount of free variables of
the form:

-

Il
=

(321'. Ayizi N\ (Pl) \%

<=

(A%} V)

~.
Il
—_

6.5 Universal Formulas as Abstract Domain 91

for some n,m € IN where the ¢;, q);. are FO formulas. Then 1 is equivalent to

V V(¢}V gilzi/z) A (5 = 7))

i=1j=1

where x is split into % ij L. where z!. is a suffix of x of length |z;| and % is the remaining prefix.

ij

Proof. The split of)?; changes depending on the length of Z;, so that the substitutions
and equalities always talk about vectors of variables of the same length, even for varying
lengths of the vectors of the existentially quantified variables z;. Thus, all 7; are of the
same length as all yl and all z; are of the same length as all z . We prove the equivalence
of the negations of both formulas.

1. We start by showing that

A N\ 95V —eilzi /2 V (5 # 7))
i=1j=1
%

A. (\ Vzi. =i V = AGizi) A
i=1

(N Axi A =g))
j=1

Given a model M and a variable assignment v for the free variables for the first
formula, we proceed by building a relation A that satisfies the second formula in
the same universe. Let A be the relation where Ay;,z;; = T for all 77;; with the Zj,
being the interpretations of the ij in M and L otherwise. Then A is a witness for
the existential SO quantifier and M, v together with A is a model satisfying the
second formula since it is L for all 7; as they are necessarily different from the ygj.

2. We now turn to the reverse implication. For that, we transform the second formula
by rewriting it to a conjunction over both i and j:

AN\ A\ Vzi(-Agizi A Agzi) v
i=1j=1
(~A7iZi A —¢}) V
(Agzi; A=) V

(mpi A ﬁ(Pj)
Then for a given i < n and j < m, if neither —|q)1[-/Z;] nor ﬁgo hold, the only

possibility to satisfy this formula is if the first d1s]unct holds. ThlS can only be the
case if 7; #]7§]- which proves the implication.

92 Chapter 6. Invariants for FO Transition Systems

6.5.2 Guarded FO Transition System

We can now lift Theorem 6.20 to apply to substitutions in FO Transition System. For
this, we define a class of substitutions that always lead to formulas where Theorem 6.20
can be applied.

Definition 6.21. A substitution 6 in a FO Transition System S is called guarded or strictly
guarded iff 6 modifies at most one predicate R € Resae and 0(R) is of one of the forms:

Update: Ry := RyV3IZ.AjZA¢ (6.9)
Reset: Ry = @V3IZ.AGZAY (6.10)

where formulas ¢,y are quantifier-free formulas in FO Logic and A is an input predicate
L. Just as for quard-restrictedness, in the presence of a specific invariant 1, we can weaken the
definition for updates of positive predicates R in I, for which formulas ¢ can be in the purely
universal fragment V*FO Logic instead.

An FO Transition System is called guarded iff every update formula 6(Ry) occurring at some
edge is guarded.

For guarded fragments, the existential quantifiers introduced during the computation
of the weakest precondition can always be eliminated together with the Second Order
quantifiers. Thus, computing the weakest precondition of a universal formula always
yields a universal formula:

Corollary 6.22. Consider a closed purely universal FO formula Y and a guarded substitution
0. Let Aq,..., Ay be the set of relations guarding the existential quantifiers in 6. Then
VAi,..., Ax. 0(Y) =Y for some purely universal FO formula ¥’

Proof. The proof follows from Theorem 6.20. Consider a clause of the CNF of ¥ and one
specific universally quantified relation A. Then VA. 6(¥) consists of conjunctions of the

form:
HV

Vi HZi.Ay_iZi NV

Vi VZ.n ATz V g
where i ranges only over the R; where R; is different from R;i and contains an occurrence
of A. All other literals (possibly containing R; literals as well as second order variables)
are bundled into the terms H, ¢; and go;-. Then the universal quantifier VA can be pushed
inwards and Theorem 6.20 can be applied. O

Guarded FO Transition Systems ensure that universal inductive invariants can be
effectively computed and are expressive enough to decide if a given universal invariant
is valid.

Theorem 6.23. Let S be a guarded FO Transition System and let ¥ be a purely universal FO

invariant. Assume that for some h
y(h) — glhtl)

Then ¥ ") is an inductive invariant certifying ¥ and ¥ is valid iff Init — ¥ [1y).

1This is closely related to the guarded fragment of FO Logic, for which decidability is known. For an
overview, we refer to [1]. In our case, the distinction that A has to be an input predicate is important, as
this means it will always be eliminated during the computation of the weakest precondition of 6.

6.6 Stratified Guarded FO Transition Systems 93

The proof is by showing that all introduced quantifiers during the computation of
¥ can be eliminated due to Theorem 6.20 or Theorem 6.19. If we could additionally
infer that the fixpoint iteration stabilizes, Theorem 6.23 would directly lead to a decision
procedure. However, stabilization does not directly follow from guardedness.

6.6 Stratified Guarded FO Transition Systems

Many systems are designed with hierarchical information flow in mind. For the running
example from Example 3.5, information always flows from the Review to the Read
relation, never in the opposite direction. To capture this intuition, we introduce a notion
of stratification to reason about directed information flow. We will then show that for
universal invariants on stratified and guarded FO Transition Systems, the constraint
system C inferring an inductive invariant always possess a finite FO logic fixpoint.

A stratification of the set Ry of predicates of the FO Transition System S is an
(injective) mapping A : Rsute — IN which assigns a stratum to each predicate where the
lowest stratum is 0. A FO Transition System S is called stratified if for every substitution
6 occurring at some edge 6(Ryj) is a boolean combination of Ry or formulas ¢ where for
all occurring predicates R’ from R appearing in ¢, A(R’) < A(R) holds.

Example 6.11.

The conference management example shown in Example 3.5 is stratified and
guarded. A possible stratification A is

A(Conflict) = 0
A(Assign) 1
A(Review) = 2
A(Read) = 3

The given stratification captures the intuition that information always flows from
a lower level to a higher level and does not spread along cycles of unbounded
length. For example, no information flows from the Assign relation back to the
Conflict relation.

Consider again a FO Transition System S together with a purely universal FO assertion
¥, and let ¥") be defined as in Section 6.3. Together with the fragment of guarded FO
Transition Systems, a stratification ensures that ¥(") always stabilizes:

Theorem 6.24. Consider a FO transition system S where all substitutions are guarded and
stratified. Then for every universal invariant Y, the weakest inductive invariant is again
universal and can effectively be computed.

Proof. In this proof, we use the notation @ > Vx. ¢ for a universal FO formula ®, a clause
¢, and a list ¥ of distinct variables so that for the prenex CNF Vz.c; A ... Acy, of @, ¢
occurs among the Cjs and x is the subsequence of variables in Z which occur in c2. We
rely on the lemma:

24¢ is a clause of ®”

94 Chapter 6. Invariants for FO Transition Systems

Lemma 6.25. Assume that c is a clause and 6 a stratified reset or stratified guarded update
with input predicate A which substitutes a predicate R with A(R) = s. Let ¢’ be a clause with
VA.0(c) > Vx.c" where X is the list of newly introduced variables in c¢’. Then either ¢ = ¢’ and
X is empty, or the number of literals at level s of ¢’ is less than the corresponding number of c.

Proof. Assume that the clause c is of the form
cV Ry V...VRy,V=RF V-V =Ry,

where cy does not contain the predicate R. If 6 is a reset, all literals containing R are
eliminated. Therefore, the assertion of the lemma trivially holds. Since 0 is a guarded
update it is of the form Rj := Ry V 3z.(Ajz A ¢). Then by Theorem 6.20,

VA.8(Rig) «— coVVili 7Ry A (Vi (7 = 7)) V ~9[7;/7))
—> /\Ig[l,m] VZ]. (CQ V vj%] ﬁR]?; V
Vies Viea Wi = 7;) vV —9l7;/ 9,2/ 2])
where Z; is a fresh list of FO variables of the same length as z, and Z; is the concatenation
of all lists zj,j € J. In particular for | = @, zj is empty and the corresponding clause

equals c. If on the other hand | # @, the number of negated literals occurring in the
clause has decreased. O

By Lemma 6.25, the number of literals at level s therefore either decreases, or the
clause stays the same. Let © denote a finite set of stratified guarded substitutions
where all updates in © are strictly guarded, and let ¢y denote any clause. Consider a
sequence (6, V¥;.c¢),t > 1, where for all t > 1, 6; € © with some input predicate A;,
and Y Ay. (6¢c;—1) © V. c; holds. We claim that then there is some t' > 1 so that ¢y = ¢
and X is empty for all t" > ¢'.

In order to prove that claim, we introduce for t > 1, the vector v; = (vyr,...,011) € INL
where L is the maximal level of a predicate in R, and v ; is the number of literals
with predicates of level i. By lemma 6.25, it holds for all t > 0, that either ¢; = ¢;+1 and
Zy is empty, or v; > v;41 w.r.t. the lexicographic order on INE. Since the lexicographical
ordering on IN* is well-founded, the claim follows. We conclude that the set of quantified
clauses Vz.c with ¥(") [u] 5 Vz.c for any u and 4, is finite. From that, the statement of
the theorem follows. O

The running conference management example from Example 3.5 is both stratified and
guarded. Thus, Theorem 6.24 applies and proves that universal invariants are in fact
decidable for this particular case. Stratification captures the intuition of a hierarchical
model well and, combined with guardedness, allows the use of quantifiers in the
substitution formulas of the FO Transition System while still yielding a decidability
result for universal invariants. In Section 6.8, we will pick up these results and apply
them to certify Noninterference.

6.7 Universal Invariants for Unrestricted FO Transition Systems

Even with the developments of the previous sections, some FO Transition System are
still outside of our known decidable fragments. In this section, we propose abstractions,

6.7 Universal Invariants for Unrestricted FO Transition Systems 95

which will still allow us to apply our techniques for the domain of universal invariants.

In order to come up with practical means for unrestricted FO Transition Systems,
where we intend to solve the constraint system C from Section 6.3, it becomes necessary
to be able to deal with arbitrary existential FO quantifiers introduced during the fixpoint
iteration. To do so, we introduce an abstraction technique of existential FO quantifiers.
This will allow us to further simplify the right-hand sides in the constraint system C
and enable us to stay in the domain of universal invariants.

6.7.1 Approximating First-order Existential Quantification

Consider an edge (u,6,v) occurring in a FO Transition System S. Then the substitution
f may introduce fresh existential as well as fresh universal quantifiers. Since we are
interested in universal inductive invariants only, our goal is to systematically remove
the occurring existential quantifiers. We find:

Theorem 6.26. For every closed formula 1, a formula * can be constructed using universal
quantification only so that the following two properties are satisfied:

1. % —

2. If ¢ is in V*3*FO Logic, then ¢ — * holds for every closed universal formula ¢ such
that ¢ — .

In light of the second statement of Theorem 6.26, the formula lptt can be seen as
the uniquely determined weakest strengthening of formulas ¥ in V*3*FO Logic to a
universal formula. The formula 1 is called the universal abstraction of .

Proof. We construct ¢ by replacing all existential quantifiers by a disjunction over all
constants and universally quantified variables which are in scope. Induction on the
structure of ¢ shows that ¢* implies ¢. Statement (2) then follows by spelling out what
it means for ¢ A — to be unsatisfiable.

W.lo.g., let us assume that ¥ is in negation normal form (i.e., using conjunction
and disjunction as only boolean connectives, and negation only applied to atomic
propositions), and that nested universally bound variables are distinct.

We proceed by induction on the structure of ¢: For that, we introduce a transformation
H%« on subformulas of , for a set X’ of variables intended to be those free variables
in the current subformula which are universally quantified in 1. Then ¢* is defined as
[lp]ﬁc The transformation []ﬁX, is defined as follows:

(Vx4]X/ = vap]X/u{x}
[Ty]X/ = Viex[¢'% [x/y]
(1 V ol x = [l v (92l
Al = [olk ALl
[y] = ¢ otherwise

We claim that ¢* implies ¢. For that, we prove for each finite subset X’ of variables
X" and each subformula ¢/, that [¢’]gi/ — 1 holds. The proof is by induction on the
structure of ¢’. The only interesting case is when ¢’ is of the form Jy. ¢”. By induction

96 Chapter 6. Invariants for FO Transition Systems

hypothesis, [¢”]§(, — 9" holds. Thus, also [¢"]g(, [x/y] — Jy.¢" holds for each x € X'.
From that the claim follows for ¢’.

For statement (2), consider any formula ¢ with ¢ — 1. Then ¢ A =1 is unsatisfiable.
Let ¢ equal Vxq,...,x..3y1,...,ys.¢’ with ¢ quantifier-free. Then

Ixg .o xp (@ AVYL .y

must be unsatisfiable. Since that formula is equisatisfiable with

dxy .. % (@A /\f]:1 ... 11:1 = [xi, /Y1, -, Xi] Ys))
this implies that also ¢ A —~(¢*) is unsatisfiable. Consequently, ¢ — 1* holds. O
Applying Theorem 6.26 to the setting of FO Transition Systems, we find:

Corollary 6.27. Assume that e is an edge in a FO Transition System S so that [e] " (') is of
the form YAy, ..., A1. ¢ for some formula ¢" in V*3*FO Logic. Then for all formulas ¢, it
follows that ¥ — [e] " (¢') iff v — VA, ..., Ar.(¢")* holds.

Proof. Tt suffices to prove that ¢ A ¢ is unsatisfiable iff ¢ A (¢)? is unsatisfiable. That,
however, follows from Theorem 6.26. O

6.7.2 Fixpoint Iteration with Abstraction

Now that we can construct the weakest universal strengthening of any given formula, we
turn back to the problem of inferring inductive invariants for FO Transition Systems.

Now given a FO Transition System S, we first introduce an abstract weakest precondition
operator [e]*'¥ of a formula ¥ along an edge e that functions similarly to the weakest
precondition operator [[e] "'¥, but yields the weakest universal strengthening instead.

For every (finite) path 7t in the control-flow graph of S ending in program point v,
and some property 1, we define the abstract weakest precondition [7t]*y of ¥: If T =€,
then [r] Ty = ¢*. Otherwise, 7 = ent’ for some edge ¢ = (u,6,7'). Then

[Py = VA.(0([1y))*

where A, is the set of input relations I from Rinpur where literals Ix are introduced
by the application of 0. According to Corollary 6.27, for a given edge e and universal
formula ¥ [e]*Y¥ is the weakest universal strengthening of [e] "Y.

Then given a universal invariant I, we introduce the abstracted constraint system C*. It
is very similar to the initial constraint system C from Section 6.3 for inferring invariants,
but uses the abstract weakest precondition to stay in the realm of universal formulas.

X[u] — I[u] (6.11)
X[u] — [e]*(X[v]) for edge e = (u,0,v) of S (6.12)

According to our assumptions, every I[u] is a universal formula using the state
predicates from Rt from S only. By applying the abstraction of existentials, followed
by second-order quantifier elimination, each evaluation of a right-hand side of C on
a given assignment returns a universal first-order formula. Again, for h > 0, let y(h)

6.7 Universal Invariants for Unrestricted FO Transition Systems 97

denote the assignment of program points to formulas which is attained after & rounds
of fixpoint iteration, i.e., for h > 0,

YOlu] = I[u 6.13
¥ = D[] A Arupmeon el (FO V) forh >0 ©1)
For an edge (u,0,v), let §1/) denote the substitution corresponding to (1,6, v) where the
predicate variables A, are substituted with the predicates A; (of appropriate arity). We
will use the indexed versions to rename input predicates A to fresh numbered predicates
Aj to avoid name clashes if the same input predicate is used multiple times.

Due to the abstraction, all appearing second-order quantifiers during the fixpoint
iteration can be eliminated due to Theorem 6.19. Thus the only reason why fixpoint
iteration for constraint system C* may not terminate, is that an ever growing number of
first-order universally quantified variables is introduced. We obtain:

Theorem 6.28. Let S be a FO Transition System and let I be an initial invariant on S.
Assume further that during the fixpoint iteration for the constraint system C* only finitely many
universally quantified first-order variables are introduced. Then the iteration terminates with an
assignment ¥ such that the following holds:

1. Y is a universal inductive invariant of S with ¥ [u] — I[u] for all program points u of S.
2. If § is guard-restricted, then ¥ is the weakest assignment with property (1).

The first statement follows by definition of the abstract weakest precondition operator,
while the second statement follows from Corollary 6.27, applied at every iteration step.

Again, Theorem 6.28 can be extended to include guards as per Corollary 6.6. The set
of universal formulas (modulo semantic equivalence) forms a lattice, when implication
is seen as the ordering relation C. W.r.t. this ordering, the greatest and least elements T
and L are represented by the formulas true and false, respectively. Likewise, the greatest
lower bound of a finite set of formulas is given by their conjunction. The lattice is,
however, not a complete lattice, i.e., not all sets of formulas necessarily have a greatest
lower bound. In particular, it may have infinite decreasing chains — at least if there are
two or more binary predicates E and T. As an example, consider the formulas

Cr = (E(X(), x1) VANAN E(xk,l, xk)) — T(X(), Xk)
Pk = VX0, oo, Xk CON ... A Ck

for k > 1, where ¢ forces T to at least contain the k-fold composition of relation E. All
formulas ¢y are pairwise inequivalent, while at the same time ¢;1 — @ for all k > 1
holds. In general, it is thus not guaranteed that a greatest solution (corresponding to
the weakest inductive invariant) exists. On the bright side, Theorem 6.9 still applies
and yields that in case the weakest inductive invariant is definable in FO Logic, fixpoint
iteration as solution strategy for C* will be able to compute it and finally terminate.

For unrestricted FO Transition Systems, this means that even though it might be
undecidable to check any given universal invariant for inductivity, our fixpoint approach
of computing C* allows us to infer a universal invariant that is inductive by construction
iff one exists.

98 Chapter 6. Invariants for FO Transition Systems

6.8 Application to Noninterference

Over the last few sections, we developed various techniques to prove a given invariant
I for different classes of FO Transition Systems. We will now apply them to the initial
setting of proving that a given FO Transition System satisfies Noninterference.

6.8.1 Stubborn Agents

Let us consider stubborn agents only and a FO Transition System S that is stratified.
For a given input predicate classified as high security I, € Ry,gn, inserting the declassi-
fication conditions Dj, into substitutions using I, might contradict the strata given in
A. Let R, be the set of relations R where S contains a substitution 6 where I, appears
in 6(Ry). If for all relations R" appearing in Dj, A(R") < max({A(R) | R € Ry,}), we
say that the declassification condition Dj, adheres to A. If all declassification conditions
adhere to a stratification of S, the transformed FO Transition System 7;(5)8 which takes
care of stubbornness of agents and declassification relative to a is again stratified.
Accordingly, we obtain:

Lemma 6.29. Consider a FO Transition System S which is stratified w.r.t. stratification A,
where all declassification conditions are quantifier-free and adhere to A as well as an agent

variable a. Then 7;(5)8 is again stratified.

Lemma 6.30. Consider a FO Transition System S which is guard-restricted and where all

declassification conditions are quantifier-free together with an agent variable a. Then ’7;(5) Sis
again guard-restricted.

Unfortunately, due to the updates using the declassification conditions, 7:1(5)8 does
not retain guardedness as defined in Definition 6.21, even if S is guarded. However,
in a follow-up work to this thesis [68], we show that it is indeed possible to extend
the notion of guardedness so that it is retained under a very similar transformation
for stubborn agents, which splits simultaneous assignments to happen consecutively.
Together with Lemma 6.29, this leads to decidability of NDA for stratified and guarded
transition systems for agent_model(s),

6.8.2 Bounded number of causal agents

Let us next consider the situation when only a fixed bounded number of agents behaves
causally, while all others behave stubbornly. Assume that at most k > 0 behave causally,
while all other agents are stubborn. Our goal is again to modify the FO Transition
System in order to take care of the agent model and declassification. In case of at most k
causal agents, the informedness predicate may receive only finitely many values. These
finite values therefore can be encoded into locations of the transformed FO Transition
System. Updates to informedness then show up as guards on control flow edges, which
are encoded using a fresh predicate error.

Let y1,...,yx denote a sequence of k distinct fresh variables. Consider an edge
e=(u,0,v)of S. LetY,Y' C {y1,...,yx}, Y C Y/, denote the subsets of agents which are

6.8 Application to Noninterference 99

informed before and after executing the edge, respectively. Let R be the set of relations
updated by 6. 7}(32,6 is defined analogously to 7 ()¢ — with the major difference that
now a guard is introduced to take care of the required update of informedness. In case e
does not use the informedness predicate, all updates to relations R € R and their copies
R’ in 7}(2,6 are as in 7;(C)e (for some agent a). In case e uses the informedness predicate,

(i.e. 0 uses predicates A, from Ry), ,TY(’C}/E = (u,0’,v) where for each substitution
Ry := ¢ in 6, §’ contains

PI'A(x gY)VI[g]"A(x€Y)
where [¢]" is ¢ where all state relations R € Rt have been replaced by their primed
counterpart R’, but leaves input relations I € Ry, unprimed. [¢]” is the analogue where
both state relations as well as input relations are replaced by their primed counterpart.
The expressions x ¢ Y and x € Y are shortcuts for Ay cyx # y; and V, ey x = yi,
respectively.

In both cases, we add an additional update to error that takes care of the required
update of informedness.

error :==errorV. \/ y; €Y' Ny; YA N\ VZ.0'Ryz < 0'R'y;z
j=1.k RER

The new FO Transition System 7 (¢S then consists of all locations (1, Y) for locations

u of § and set of informed agents Y and all control flow edges

((w,Y), Ty (1,60,0), (0,Y"))

for edges (u,0,v) of Sand Y,Y' C {y1,...,yx} with Y C Y. The size of the resulting
FO Transition System has increased by a factor of 2¥. All occurrences of the predicate
Informed, on the other hand, have disappeared. The correctness of the transformation
can be proven along the same lines as Theorem 6.1. The resulting FO Transition System

ﬁ(c’k)S is now stratified iff S is stratified. We obtain:

Lemma 6.31. Consider a FO Transition System S which is stratified w.r.t. stratification A,
where all declassification conditions are quantifier-free and adhere to A as well as an agent

variable a. Then E(C’k) S is stratified.

Lemma 6.32. Consider a FO Transition System S which is guard-restricted and where all

declassification conditions are quantifier-free together with an agent variable a. Then ﬁ(c’k)S is
guard-restricted.

Again, the declassification conditions and updates fall outside the fragment of guarded
FO Transition Systems but we conjecture that the widened results for guarded FO
Transition Systems from [68] apply, leading to decidability of NDA for stratified and
guarded FO Transition Systems for agent_model(c’k) for any fixed k.

6.8.3 Causal Agents

We would like to apply the same strategy to certify noninterference also for an un-
bounded number of causal agents. This time, the informedness predicate is not con-
strained to a fixed amount of agents, so the previous transformation does not work
again.

100 Chapter 6. Invariants for FO Transition Systems

Again, we introduce a variant of the transformation 7;@ that additionally allows
to construct a stratification if the initial FO Transition System S is stratified. Let
At Rstate — IN be a stratification for S where no relation R in R is assigned the
stratum 0 and all declassification conditions adhere to A. We then build a transformation
7'((34)3 from 7:1(6)8 that retains stratification. The construction follows the same idea as

the initial transformation 7;(C). However, in 7;(6), the updates to the predicate Informed
break stratification, since they are used in every update and are themselves updated
from other predicates, which forms a loop. The enhanced transformation T(Sf)a) uses
the fact that updates to Informed are always monotonic, i.e. that no agent will ever be

removed from Informed. This allows us to encode the updates to Informed by using the
environment predicates instead of the state predicates.

In addition to Informed, ’7'((;21) will use a fresh unary input predicate Iy and a flag
error. For all updates to state predicates R € Rstare U Rstare’, the update in ’7'((;21)8 will be

the same as in 7:1(6)8 . The difference is in how we update the informedness predicate:

Instead of checking the contents of all predicates in 7;(6)8, we will instead update
Informed with the contents of the fresh input predicate I;;s. Since the predicate [is
chosen by the environment, we also introduce guards to track that [;;; only contains
agents that can actually observe differences between the two runs of S. As before, we
encode the guards by a fresh, positive predicate error.

Consider an edge (u,6,v) in S updating state predicates R; to Ry:

Riy = ¢1
Ry == ok
It gives rise to two edges (u,61,1), (I,05,v) for a fresh location in 7'((;,21)8, where 6]

updates the same R; ... Ry and 6) takes care of the update to informedness and the
guard (by updating the error flag error). Thus, 6] := T9(u,6,v) and 6, is:

Informed(x) +=ILjp(x) _
error += 3x Lins(x) AN}k VT Rixg <> Rixy

Example 6.12.

Consider the edge (1,6,2) for Example 3.5 with 6 being
Assign(x, p) = Choicey(x, p) A ~Conflict(x, p)

together with a stratification A. Then 7'(&6)“) (1,6,2) is (1,61,6), (6,05,2) (for a fresh

location 6) with the substitutions being

Assign(x,p) = Choicey(x, p) N ~Conflict(x, p)
0] = oy . . —Informed(x) A Choicey(x, p) V
Assign'(x,p) = ~Conflict'(x, p) A (Informed(x) A Choicey(x, p))
o Informed(x) += L-nf(x)
27 error += 3. Ly (x) AVp. Assign(x, p) <> Assign’(x, p)

For nullary predicates, error += ¢ is still an abbreviation for error := error V ¢.

6.8 Application to Noninterference 101

Then 7'(52) with the additional assumption that error is false (see Section 3.2.1 for the

general encoding of guards) exhibits the same traces as TS does.

Lemma 6.33. For a given FO Transition System S, for all traces 7t in Traces(ﬁ(c)S), there

exists a trace 1t in Traces(T(gfl)S) s.t. 7t is a subsequence of 7T'.

Proof. A trace 7 in T8 correctly keeps track of the predicate Informed using the
negation of the error conditions in ’T S For any given step in 77, let S denote the set

of newly informed agents. Since I; is an input predicate, there exists a trace in 7'(/\,a)
where I;;¢ is chosen as S.

The other direction however, does not hold. Since I;;;s can be chosen arbitrarily, 7'((;31)8
allows for more traces, f.e. never adding any agent to Informed or immediately adding
every participating agent (and adding all those x to error in the process). O

Lemma 6.34. Fora given FO Transition System S, and an invariant I of 7;(C) S, 1 is valid for
S if I is valid for T oS where I'lu] :== —error — I[u] for all u.

W.lo.g. let A be such that no relation R in R is assigned the stratum 0. Let N
be a natural number that is higher than all other strata appearing in A. From this,
we construct a stratification A, for T)S We set Ac(R) = A(R") = A(R) for all
state relations Rsmte of S. Addltlonally, c(error) = N and A, (Informed) = 0. Then all
substitutions of T()S follow the stratification A, and thus T S is stratified. In case
S is guard- -restricted, all updates to error are alternat1on free Smce error is fresh, it is
positive w.r.t. invariants on S which ensures that T oS is guard-restricted whenever S
is.

Lemma 6.35. Consider a FO Transition System S which is stratified w.r.t. stratification A,
where all declassification conditions are quantifier-free and adhere to A as well as an agent

variable a. Then 7;(;)8 is again stratified.

Lemma 6.36. Consider a FO Transition System S which is guard-restricted and where all

declassification conditions are quantifier-free together with an agent variable a. Then T, /S is
again guard-restricted.

Again, stratification is retained for the agent model of only causal agents. However,
this transformation depends on the existential quantifier in the update of the error
predicate, which falls outside of all known versions of the guarded fragment of FO
Transition Systems. This matches the undecidability results shown in Chapter 5 for an
unbounded number of causal agents. Still, our approach remains optimal within the
realm of universal invariants.

6.8.4 Abstraction for Noninterference

As shown in the previous sections Sections 6.8.1 to 6.8.3, guard-restrictedness and
stratification is retained by the transformations for Noninterference. This allows us to
apply the abstracted fixpoint iteration from Section 6.7.2 to certify Noninterference for
guard-restricted FO Transition Systems.

102 Chapter 6. Invariants for FO Transition Systems

Theorem 6.37. Consider a FO Transition System S with an initial condition Init in the Bernays-
Schonfinkel-Ramsey fragment where all agents participating in S behave according to some agent
model (m) in {(s), (¢, k), (c)} for some k € IN. Assume that all declassification conditions are
quantifier-free. Let a be an agent variable and I an assignment of the locations of S to universal
formulas using predicates from Rspe U Rstate and free variable a.

Assume further that the abstract fixpoint iteration stabilizes for 7:1(7")8 and assignment I with
some ¥ ") for some h. Then

1. Y[u] — I[u] for all locations u of S.

2. If S is guard-restricted, the invariant ¥\") is the weakest universal invariant with this
property.

The proof follows from Theorem 6.28.

Corollary 6.38. Consider a guard-restricted FO Transition System S with an initial condition
Init in the Bernays-Schonfinkel-Ramsey fragment where all agents behave according to some
agent model (m) (in {(s), (c, k), (c)} for some k € IN) and where abstract fixpoint iteration
according to C* terminates. Then it is decidable if there exists a universal inductive invariant
certifying NDA for S under agent model (m).

This enables us to deal with the running conference management example and many
other practically relevant cases.

Example 6.13.

The running conference management example from Figure 5.1 is both guard-
restricted and stratified. The declassification for Oracle is —~Conflict(x, p) and
adheres to the stratification given in Example 6.11 (which sets A(Conflict) <
A(Assign) < A(Review) < A(Read)). As was already found in Chapter 5, this
particular FO Transition System does not satisfy Noninterference.

However, the results for guard-restricted FO Transition System allow us to prove
a fixed version safe. To exclude the counterexample shown in Table 5.1, we fix the
paper assignment to only allow a group of people with the same set of conflicts
to review the same paper. The fixed version is shown in Figure 6.2, where we
inserted a fresh node 2’ and edge from 2 to 2’ to subtract problematic tuples from
the Assign relation. The shown example is outside of the classes that could be
handled by the approaches of Chapter 5, but is both stratified and guard-restricted
and can thus be handled by the invariant approach from Corollary 6.38 and is
indeed proven safe by a universal invariant for an unbounded number of causal
agents.

For general, unrestricted FO Transition Systems, our methods can still be applied
and yield an incomplete method that, if it terminates, can prove NDA for any of the
given agent models. In case there is a universal inductive FO invariant implying NDA,
Theorem 6.9 still shows that the algorithm is guaranteed to terminate.

6.9 Forcing Stratification for General FO Transition System 103

©

Conflict(x, p) := Choice;(x, p)

@

Assign(x, p) = Choicey(x, p) A\ ~Conflict(x, p)

@

Assign(y, p) —= 3x,q. Conflict(x,q) N Assign(x, p) A\ —~Conflict(y, q)

2/

Review(x, p, r) = Assign(x, p) A Oracle(x, p,)

Read(x, p,r) += Assign(x, p) A 3y. Choices(x, p,t,y) A Review(y, p,)

Review(x, p, r) += Assign(x, p) A\ Choices(x, p,)

Figure 6.2: Fixed version of the running example

6.9 Forcing Stratification for General FO Transition System

In general, FO Transition Systems need not be stratified. However, we find that it is

possible to adapt the approach to deal with non-stratified 7;(6)8 from Section 6.8.3 to
enforce stratification for general FO Transition System at the cost of adding additional
input relations and further abstraction.

Consider a general FO Transition System S. From it, we construct a new FO Transition
System TS that will be stratified, but no longer guard-restricted (even if S was guard-
restricted). 75 S will use the same control flow graph and state relations R, as S.
However, in addition to the input predicates R;p,; from S, we add input predicates
Ig for all R € Rse with the same arity as R, as well as a fresh 0-ary predicate error to
encode guards. Consider an edge (1,6, v) in S updating state relations R; to Ry:

Riy = ¢1
Ry = ox
It gives rise to an edge (u,6’,v) in T°""S updating the same R; as well as error:
Ry = IRJ
Ry = Irjy

error = errorV N\i—1 x3V. I.7 # @i

104 Chapter 6. Invariants for FO Transition Systems

The difference between the setting for this transformation and the transformation 7'(5\621)
for already stratified FO Transition System is that not all relations R need to change
monotonically. Here, we need to completely replace R, instead of only adding new
tuples to it. This changes the necessary update condition for error, which now features a
— implying that even for ¢; in 3*FO Logic, 6(error) contains quantifier alternations
and now falls outside the class of guarded as well as guard-restricted FO Transition
System.

Still, 75" S exhibits the same traces S does — under the condition that —error holds
along the traces of 7°S. The only relation in Rt where state relations appear in
update formulas 0(Rj) now is error. We set A(error) = 2 and A(R) = 1 for all other
relations R € R \ {error}. Then, TS is stratified w.r.t A.

Theorem 6.39. Consider a FO Transition System S and an invariant I of S.
Then TS is stratified.

In comparison to the construction we used to enforce stratification for the relation
Informed in the transformed transition system, this construction loses the precision
guarantee and does not preserve guardedness or guard-restrictedness. Still, it allows to
transform a general FO Transition System into a stratified FO Transition System with
the same traces — at the cost of lost precision during the computation.

6.10 Alternative First-order Logic based approaches

As mentioned in Section 3.3, the programming language RML [75], which we argue can
be encoded into FO Transition Systems in Section 3.2.4, is another formal model based on
evolving states of First-order relations which is fairly close to our FO Transition Systems.
Verification for RML is implemented in the Ivy tool. As in our work, the language
restricts its statements in such a way that checking whether universal invariants are
inductive reduces to checking the satisfiability of an 3*V*FO Logic formula and finds
similar results to the results of Section 6.2. Since the interpretation of all external relations
is fixed in the beginning, there is no need for Second Order Quantifier elimination. In
addition to checking invariants for inductiveness, their work focuses on the automated
extraction and visualization of counterexamples to a given universal invariant. In
Chapter 7, we will show how to extract similar counterexamples for FO Transition
Systems. In contrast to our approaches based on weakest preconditions, Ivy uses
UPDR [58] to infer inductive invariants which provides weaker termination guarantees.

Another model with work on automatic verification is the VeriCon system [72], which
has been proposed for describing and verifying the semantics of controllers in software-
defined networks. The semantics of the underlying language is again specified in terms
of First-order relations. Their goal is to prove various kinds of network invariants
(topology invariants, safety invariants and transition invariants), which are checked with
the automated theorem prover Z3 and iteratively strengthened similar to the methods
shown in Section 6.3. In [73], the difficulty of inferring universal inductive invariants is
investigated for classes of transition systems whose transition relation is expressed by FO
logic formulas over theories of data structures. The authors show that inferring universal

6.11 Introduced Concepts 105

inductive invariants is decidable when the transition relation is expressed by formulas
with unary predicates and a single binary predicate restricted by the theory of linked lists
and becomes undecidable as soon as the binary symbol is not restricted by background
theory. By excluding the binary predicate, this result is closely related to our result for
transition systems with monadic predicates, equality and disequality, but neither .A- nor
B-predicates. In our work, the termination argument relies on also imposing constraints
on the structure of the transition system, rather than on the formulas alone. In [58],
an inference method is provided for universal invariants s an extension of Bradley’s
PDR/IC3 algorithm for inference of propositional invariants [24]. The method is applied
to variants of FO transition systems within a fragment of FO logic which enjoys the finite
model property and is decidable. Whenever it terminates, it either returns a universal
invariant which is inductive or a counter-example. From a counter-example, they obtain
a minimal universal formula to exclude that example together with a family of related
examples — which they use for strengthening the candidate invariant. This should be
contrasted to our approach where in each iteration, the candidate invariant is more
agressively strengthened — while still preserving optimality w.r.t. universal formulas.
In Chapter 7, we will show a slight variation of the counter-example search that even
excludes all counter-examples up to a given size in one go.

6.11 Introduced Concepts

Composition of trace T and 7’ (with disjoing predicate names

in T and 7').

TmS Self-composed FO Transition System from S that includes
agent model (m) with respect to fresh agent a.

7;(,6)8 Self-composed FO Transition System from S that includes
agent model (c) with respect to fresh agent a and retains
stratification A.

Te S Transformed FO Transition System from S that is always

stratified.

[7]T¢ Weakest precondition of ¢ along the path 7.

I Variable for invariants (assignment of locations of a FO Tran-
sition System to formulas).

Y Variable for inductive strengthenings of invariants.

) Inductive strengthening of an invariant by & steps using fix-
point iteration.

¢* Universal abstraction of ¢ (purely universal formula imply-

ing).

106 Chapter 6. Invariants for FO Transition Systems

6.12 Conclusion

The goal of this chapter was to provide methods for verifying the property of Nonin-
terference for more general FO Transition Systems than the rather restricted fragment
of quantifier-free FO Transition Systems. We proceeded in two steps. First, we sim-
plified the NDA property by encoding execution of two traces together with both the
agent model and declassification conditions into the FO Transition System itself. This
allowed us to use inductive universal invariants to prove the now structurally simpler
Noninterference property.

We applied our methods to more and more general classes of FO Transition Systems
and described where our methods lead to decidability or to relative completeness.

For the case of monadic FO Transition Systems, we gave a complete characterization
into decidable and undecidable fragments for invariants of arbitrary quantifier structure.
For more general classes of FO Transition Systems and invariants, we found it useful to
abstract arbitrary formulas by universal formulas. Together with a method for second-
order quantifier elimination which results in purely universal formulas for guarded FO
Transition Systems, this allowed us to not only check a given invariant for inductivity
but even infer an inductive invariants in general FO Transition Systems. For the class of
stratified and guarded FO Transition Systems we succeeded to prove termination of our
approach and could compute the best, i.e., weakest universal invariant which is inductive.
This leads to decidability of invariants for guarded and stratified FO Transition Systems
and to relative completeness of NDA for guard-restricted FO Transition Systems.

CHAPTER

First-order Safety Games

Contents
7.1 First-order Safety Games 110
7.2 Noninterference for FOGames 116
7.3 Monadic FO Safety Games 118
74 Inductive Invariants for FO Safety Games 122
7.5 Hilbert’s Choice Operator for Second Order Quantifiers 124
7.6 Approximation and Refinement 129
7.7 Restricting Strategies 134
7.8 Alternative synthesis approaches 135
79 Introduced Concepts. 136
710 Conclusion 136

107

109

7 First-order Safety Games

In the preceding chapters we assumed all input to be under external, potentially
malicious control. In the real world however, not all input relations are necessarily
chosen maliciously. Rather, sometimes we are interested in finding out which of our
possible choices for some predicates lead to a correct system. In terms of our examples:

1. Given the leader election protocol shown in Example 3.11, can we automatically
find which messages to send on along the ring so that the protocol is correct in the
end?

2. Given the conference management system from Example 3.5, can we help the PC
chair by automatically finding a paper assignment so that no PC member will be
able to obtain illegitimate information about any of the reports?

In this chapter, we study an extension of FO Transition Systems where some of the
input predicates are chosen with the intention to uphold the desired properties of the
system rather than violate them. These question are studied extensively for traditional
finite-state transition systems and are known as the problem of synthesis (see e.g. [28,
chapter 27]).

Example 7.1.

Figure 7.1 shows a slightly simplified version of the network leader election
protocol from Example 3.11, introduced as a running example in [75] — turned
into a First-order Safety Game. The topology of the network, here a ring, is
given by the predicates next and <, which are appropriately axiomatized. The
participating agents communicate via messages through the predicate msg but are
only allowed to send messages to the next agent in the ring topology. In the first
step, agents can send any message (determined via the input predicate B) to their
neighbor. Afterwards they check if they have received a message containing their
own id. If so, they declare themselves leader and add themselves to the leader
relation. Then, a subset of processes determined by the input predicate A decides
to send any id to their next neighbor that they have received which is not exceeded
by their own.

At no point more than one process should have declared itself leader — regard-
less of the size of the ring. This property is enforced, e.g., if the initial message to
be sent is given by the id of the sending process itself, i.e., B(a,i,b) is given by the
literal (i = a).

In the following sections, we will handle these questions and discuss how to automat-
ically infer strategies that tell the benevolent actors how to choose their input predicates
in such a way that the overall system becomes safe. In Section 7.1, we introduce the
formal setting and show how to extend FO Transition Systems to FO Safety Games. We
introduce how strategies work in this scenario and relate them to Second Order Logic.
In Section 7.2, we discuss how Noninterference translates to the FO Safety Game setting
and lift the self-composition construction for Noninterference from Section 6.1 to FO

110 Chapter 7. First-order Safety Games

©

msg(a,i,b) = next(a,b) A B(a,i,b)

)

leader(b) := Ja.msg(a,b,b)

2
msg(a,i,b) = A(a) A next(a,b) A Jc.msg(c,i,a) Na <i

Figure 7.1: FO Safety Game for the leader election example

Safety Games. This leads us to invariant inference for FO Safety Games. We proceed as
in the last chapter and first examine in which cases the problem is decidable. We first
discuss how invariants can be used to solve monadic FO Safety Games in Section 7.3
before turning to more general classes of FO Safety Games. In Section 7.4, we show
under which conditions inductivity of invariants can still be shown. We then show how
to use an inductive invariant to extract winning strategies in Section 7.5. In Section 7.6,
we again resort to approximation to infer inductive invariants and extract winning
strategies for more general FO Safety Games and improve on the guarantees of the
approximative approach for FO Transition Systems. Finally, we discuss how to use the
extracted winning strategies in the context of Noninterference in Section 7.7.

7.1 First-order Safety Games

We now introduce the model of FO Safety Games — 2-player games where reachability
player A aims at violating a given invariant I while safety player B tries to establish I as
an invariant. To do so, we extend the definition of FO Transition Systems and give each
player control of some of the input predicates. Accordingly, we partition the set of input
predicates Ry, into subsets R 4 and Rpg. While player B controls the valuation of the
predicates in R, player A has control over the valuations of predicates in R 4 as well
as over the universe and the exact initial state. This includes the valuation of the state
predicates as well as the constants in C.

Example 7.2.

A FO Safety Game version of the Easychair running example is shown in Figure 7.2.
Player A, representing the set of malicious agents, has control over the conflict
relation and the contents of the reviews, while player B represents the PC chair
and is given control only over the assignment of papers to reviewers. Thus

7.1 First-order Safety Games 111

0
Conflict(x, p) := A1(x, p)

@

Assign(x, p) == Bi(x, p)

@

Review(x, p,r) = Assign(x, p) A\ Az(x, p, 1)

)

Read(x, p,r) += Ty.Assign(x, p) A Review(y, p, r)

4
Review(x, p,r) += Assign(x, p) A\ As(x, p, 1)

Figure 7.2: FO Safety Game Example

RA = {A1,A2,A3} and RB = {Bl}.

For notational convenience, we assume that each substitution 6 in the control-flow
graph contains at most one input predicate, and that all these are distinct!. We also
consider a partition of the set E of edges into the subsets E 4 and Ez where the substitu-
tions at edges from E 4 may use state predicates from Rt and an input predicate from
R 4, while edges Eg may use state predicates and an input predicate from Rz. Edges
without input predicate are by default assigned to player A and are thus part of E 4.
Edges in E 4 or Eg will also be called .A-edges or B-edges, respectively.

For a particular universe U and valuation v, a trace T starting in some (v, s) with
s,v |= Init is considered a play. Player A wins a given play 7 if the given invariant is
violated in some state of the play, i.e. s, v = I[v] for some state (v,s) in 7. If the invariant
holds in every state of T, player B wins 7.

A strategy o for player B is a mapping which for any given B-edge e = (u, 0, v) with
input predicate B, of some arity r, universe U, valuation v, play 7 reaching u with state
(u,s), returns a relation B C U" to be used as interpretation for the input predicate
B.. Thus, o provides a choice of the input predicate under the control of player B for
each universe, the history of the play and the upcoming edge in the graph. ¢ is called
positional or memoryless if it does not depend on the entire history of the play, but only
on the current state of the play, i.e. if it depends on the universe U, the valuation v, the
state s and the upcoming B-edge e only.

A play T conforms to a strategy o for safety player B if all interpretations of input

n general, edges may use multiple input predicates of the same type. This can be simulated by a
sequence of edges that stores the contents of the input relations in fresh auxiliary state predicates
from Rt one by one, before realizing the substitution of the initial edge by means of the auxiliary
predicates. This enforces that the game is a two-player perfect information game, as otherwise the
choices of both players would be hidden and affect the game state at the same time, leading to a game
with partial information.

112 Chapter 7. First-order Safety Games

relations under the control of safety player B occurring in 7 are chosen according to ¢.
The strategy o is winning for B if B wins all plays that conform to . A FO Safety Game
can be won by player B iff there exists a winning strategy for B. In this case, the game is

safe.

Example 7.3.

In the conference management FO Safety Game shown in Figure 7.2, player A
wants to reach a state where the safety invariant from Example 6.3 is violated: a
state where someone reads a review to his own paper before the official release.
Formally, for all states u, the invariant I[u] is

Vx, p, r.—(Conflict(x, p) A Read(x, p,r))

She has control over the predicates A1, A and A3z and in turn provides the values
for the predicates Conflict and Review and also determines how often the loop body
is iterated. Player B only has control over predicate B; which is used to determine
the value of predicate Assign. This particular game is safe, and player B has several
winning strategies including e.g.,

Bi(x,p) = —Conflict(x,p) or
Bi(x,p) = false

The second choice is rather trivial. The first choice, on the other hand, which
happens to be the weakest possible, represents a meaningful strategy.

These definitions are very similar to their counterparts in propositional games — we
mention parity games [43] which are already being used in propositional verification
and synthesis settings. The game-theoretic aspects of FO Safety Games are similar to
their propositional counterparts: They are also 2-player games with perfect information
that are positionally determined.

Theorem 7.1. If there exists a winning strategy for player B, then there also exists a winning
strategy that is positional.

For a fixed universe, a FO Safety Game game can be encoded into a propositional
game. Since every propositional game is positionally determined, the FO Safety Game
can be won by a combination strategy that does a case distinction over every possible
universe:

Proof. Once a universe U is fixed, together with a valuation v of the globally free
variables, a FO Safety Game G turns into a reachability game G;;, where the positions
are given by all pairs (v,s) € V x Statesy; (controlled by reachability player .A) together
with all pairs (s,e) € Statesy x E controlled by safety player B if e € Ep and by A
otherwise. For an edge e = (v,6,7’) in G, Gy, contains all edges (v,s) — (s, e), together
with all edges (s,e) — (v, s’) where s’ is a successor state of s w.r.t. e and v.

Let Inity;, denote the set of all positions (vo,s) where s, v [= Init, and Ij;, the set of all
positions (v,s) where s, v |= I[v] together with all positions (s,e) where s, v |= I[v] for
te = v. Then Gyj, is safe iff safety player B has a strategy oy, to force each play started
in some position Inity;, to stay within the set I;;,. Assuming the axiom of choice for set

7.1 First-order Safety Games 113

theory, the set of positions can be well-ordered. Therefore, the strategy oy, for safety
player B can be chosen positionally, see, e.g., Lemma 2.12 of [66]. Putting all positional
strategies 017, for safety player B together, we obtain a single positional strategy for
safety player B in . O

For propositional games, strategies only have a finite state space: They map one of
the states of the transition system to one of the finitely many actions enabled at this
state. For FO Safety Games, strategies are more complicated objects: They can depend
on the unbounded size and structure of the universe and all possible instantiations of
predicates. This makes representation of strategies very hard in general. In this thesis,
we are thus interested in strategies that can be represented in FO Logic. This has the
benefit that the strategy can be included into the FO Safety Game itself: Given a FO
definable strategy ¢, we can replace all occurrences of an input predicate B from Rp
with the FO Logic formula ¢ (B) and get a FO Transition System that follows the game’s
semantics for the particular strategy o.

Theorem 7.1 shows that memoryless strategies suffice to win any FO Safety Game.
However, it does not prove whether any safe FO Safety Game allows for a winning
strategy which is both memoryless and can also be expressed in FO logic. On the
contrary — in general, strategies expressible in FO Logic are not enough to win all safe
FO Safety Games.

Theorem 7.2. There exist safe FO Safety Games where no winning strategy is expressible in
FO logic.

Proof. Consider a game with Rsre = {E,R1,R2}, R4 = {A1, A2} and R = {B1},
performing three steps in sequence:

E(x,y) = Ai(xy);
Ri(x,y) = Bi(x,y);
Ra(x,y) = Aaxy)

In this example, reachability player A chooses an arbitrary relation E, then safety player
B chooses R; and player A chooses R,. The invariant I ensures that at the endpoint
both R; and R; are at least the transitive closure of E and R; is smaller or equal to R;:

—closure(Ry, E) V closure(Ry, E) AVx,y.R1(x,y) = Ra(x,y)
where closure(R, E) is given by
Vx,y.R(x,y) <+ E(x,y) V3z.R(x,z) NE(z,y)

The only winning strategy for safety player B (computing R;) is to select the smallest
relation satisfying I, which is exactly the transitive closure of E. In this case, no matter
what reachability player A chooses for Ry, safety player B wins. This winning strategy
is however not expressible in FO logic: There is no FO Logic formula that defines the
transitive closure of a given relation [53]. O

Despite this negative result, we would like to come up with effective means of computing
safe strategies, given that FO definable strategies exist. For this, similar to our approach
for FO Transition Systems shown in Chapter 6, we use a weakest precondition operator to

114 Chapter 7. First-order Safety Games

characterize the reachable state space along a given path. The difference in the weakest
precondition operators for FO Transition Systems and FO Safety Games is the handling
of B-edges that are not present in FO Transition Systems. Again, for each path 7 in the
control-flow graph of a first-order safety game G ending in program point v, and some
property ¥, we define the weakest precondition [77] "% of ¥ by induction on the length
of 7.

If T = ¢, then [r] 'Y = Y. Otherwise, T = ent’ for some edge ¢ = (v1,0,v'). Then

(2] = VAO([]TY) ife A-edge
T 3B O([T]TY) if e B-edge

Then, for any path through a FO Safety Game G chosen by player A, we can use the
weakest precondition to decide if player B can enforce that a given invariant holds.

Lemma 7.3. Let 7t be a path and Init some initial condition and Y an assertion about the
endpoint of 7t. Safety player B has a strategy that upholds Y for all plays that follow 7t iff
Init — [7r] Y.

Proof. We proceed by induction on the length of . If m = ¢, then safety player B
wins all games in universes U with valuations v starting in states s with s, v = Init iff
Init — ¥, and the invariant holds. Now assume that 7w = e’ where e = (u,0,0v). Let
Y’ = [7']"Y. By inductive hypothesis, safety player B has a winning strategy for 7’
with initial condition ¥’. This means that she can force to arrive at the end point in
some state s such that s, v = ¥, given that she can start in some state s’ with s’,v = ¥".
By case distinction on whether edge e is an A- or a B-edge, this is the case whenever
the play starts in some s with s, v |= Init.

For the reverse direction, assume that for every universe U and valuation v chosen
by reachability player A, safety player B can force to arrive at the end point of 77 by
means of the strategy oy, in a state s such that s,v |= ¥ whenever the play starts in
some state sy with so, v = Init. Assume that sy is an initial state with sp, v |= Init. Again,
we perform a case distinction on the first edge e. First assume that e is a B-edge. Let B
denote the relation selected by strategy oy, for e. We construct the successor state s;
corresponding to edge e and relation B. Since safety player B can win the game on 7’
when starting in s;, we conclude by inductive hypothesis that s1, v |= ¥’. This means
that so & {B, — B1},v = ¥'0 and therefore so,v |= 3B,.¥'6. If e is an .A-edge, then
for every choice A of reachability player A, we obtain a successor state s; such that by
inductive hypothesis, s;,v = ¥'. This means that for all A, so ® {A, — A}, v = ¥'0
and therefore also sg, v = VA,.¥'0. In both cases, so,v |= [¢] " ([77']"Y) and the claim
follows. O

Now that we know how to deal with single paths, we can generalize this notion to
multiple paths. Similar to the initial constraint system for FO Safety Games shown
in Section 6.3, we directly intersect the weakest preconditions of all paths starting in
a particular node. Let G denote a game and I an invariant on G. Exactly as for FO
Transition Systems in Section 6.3, we use the weakest precondition operator to strengthen
I: For h > 0, we define the assignment ¥*) of program points v to formulas by

YO = I[u]

YO = PO A A uaopeann [l (¥ V) fornso0 D

7.1 First-order Safety Games 115

Just as for FO Transition Systems, this strengthening of the initial invariant contains the
preconditions along all possible paths of G which means the game is safe iff every initial
state is inside the strengthening:

Theorem 7.4. A FO safety game G is safe iff Init — ¥ ") [vg] holds for all h > 0.
Proof. By induction, we verify that
¥ (o] = A{[n]"I | 7 path starting ato, || < h}

for all h > 0. Accordingly, safety player wins on all games of length at most / starting at
vo iff Init — ¢ [vo] holds. From that, the assertion of the lemma follows.]

The characterization of safety due to Theorem 7.4 is precise — but may require to
construct infinitely many ¥*).

Whenever, though, the safety game G is finite, i.e., the underlying control-flow graph
of G is acyclic, then G is safe iff Init — ¥(")[vy] where I equals the length of the longest
path in the control-flow graph of G starting in vg. As a result, we get that finite first-order
safety games are as powerful as Second Order logic.

Theorem 7.5. Deciding a finite FO safety game with predicates from Rstase is inter-reducible to
satisfiability of SO formulas with predicates from Rstate.

Proof. By using the characterization ¥") For the reverse implication, consider an arbi-
trary closed formula ¢ in SO Logic. W.l.o.g., assume that ¢ has no function symbols
and is in prenex normal form where no SO Quantifier falls into the scope of a FO
quantifier [61]. Thus, ¢ is of the form Q;C; ... Q,Cy. ¢ where all Q,, are SO quantifiers
and 1 is a relational formula in FO logic.

We then construct a FO safety game G. The set Ry of relations consists of all
relations that occur freely in ¢ together with copies R/ of all quantified relations C;. The
control-flow graph consists of n 4+ 1 nodes vy, ..., v,, together with edges (v;_1,6;, v;)
fori =1,...,n. Thus, the maximal length of any path is exactly n — the number of SO
quantifiers in ¢.

An edge e; = (v;_1,6;,v;) is used to simulate the quantifier Q;C;. The substitution
0; is the identity on all predicates from Rse €xcept R; which is mapped to C;. If Q;
is a universal quantifier, C; will be in R 4, and e; will be an A-edge. Similarly, if Q; is
existential, C; will be in Ry and ¢; will be a B-edge. Assume that ¢’ is obtained from

P by replacing every relation R; with R!. As FO invariant I, we then use I[v;] = true
fori=0,...,n—1and I[v,] = ¢'. Then ¥")[v,] = ¢ for all m > n. Accordingly for
Init = true, player B can win the game iff ¢ is universally true. O

Theorem 7.5 implies that a FO definable winning strategy for safety player B (if it
exists) can be constructed whenever the SO quantifiers introduced by the choices of
the respective players can be eliminated. Theorem 7.5, though, gives no clue on how to
decide whether or not safety player B has a winning strategy and if so, whether it can
be effectively represented.

116 Chapter 7. First-order Safety Games

7.2 Noninterference for FO Games

In the previous chapters, we have concerned ourselves with checking if a given FO Tran-
sition System satisfies Noninterference with Declassification and Agent Model. We now
consider the same problem for FO Safety Games, where our goal now is to synthesize
FO formulas for dedicated predicates so that altogether a given noninterference property
is guaranteed.

Example 7.4.

For the FO Safety Game version of the conference management system in Figure 7.2,
no PC member should learn anything about the reports provided for papers for
which she has declared conflict of interest. Thus our goal is to devise a strategy
for predicate B; for the edge between program points 1 and 2 that will be used as
the paper assignment which enforces this property.

As for FO Transition System, we again assume that for every predicate R of rank at
least 1, agent a observes the set of all tuples Z so that Raz holds. Analogously, we assume
that there is a set Ry, of input predicates predicates under the control of player A
whose values are meant to be disclosed only to privileged agents. These have an attached
declassification condition Dy, for relations Ij, in Ry, which specifies the set of tuples i
where the value of Oy may be disclosed to a.

For any agent model m € {s,c, (¢, k) | k € N}, we extend the composition transfor-

mations 7;("1) to FO Safety Games. They apply the same structural transformations for
games and leave fresh copies of input predicates under the same control as the original
predicate: for an input A-predicate A, the fresh copy A’ will also be under the control
of player A.

The transformations encode the agent models and all declassification conditions,

simplifying the safety property ¢3 to be verified for TG to:
AreRr.,,, VZ-Raz <> R'az (7.2)

where we assume that the length of the sequence of variables aZ matches the rank of

the corresponding predicate R. We use the same notation and let 7;('”)(_3 denote the FO
Safety Game obtained from G in this way.

Example 7.5.

In the FO Safety Game version of the conference management example from
Figure 7.2, we are interested in a particular agent a. The predicate A, which
provides reports for papers, constitutes a predicate whose tuples are only disclosed
to agent a if they speak about papers with which a has no conflict. Thus,

Ip,a = —Conflict(a,y1)

The transformed FO Safety Game 7;(5)9 that encodes declassification conditions
for an agent model of only stubborn agents is shown in Figure 7.3.

7.2 Noninterference for FO Games 117

©

Conflict(x, p) == A1(x, p)
Conflict'(x,p) == A1(x, p)

leview(x, p,r) = Assign(x,p) A Aa(x, p, 1)
Review'(x, p,r) = Assign’ (x,p) A
—Conflict(a, p) A —Conflict' (a, p) A Aa(x, p,7) V
((Conflict(a, p) V Conflict' (a, p)) A AS(x, p, 7)))
3)
Read(x, p,r) += 3y.Assign(x, p) A\ Review(y, p, 1)
Read'(x, p,r) += 3y.Assign’(x, p) A Review' (y, p,r)

4
Review(x, p, r) += Assign(x, p) N As(x, p,r)
Review' (x, p,r) += Assign’(x, p) A As(x, p,7)

Figure 7.3: Selfcomposition with respect to stubborn agents of the conference manage-
ment FO Safety Game from Example 7.2

In case that player B has no choice to make, a slight adaptation of Theorem 6.1 implies

that 7™ G satisfies the invariant (7.2) for all program points u iff ¢, holds for G. This
correspondence can be extended to an FO safety game G where the set of B predicates
‘R 5 is non-empty. However, the transformation 7;@ e of an edge e using a B-predicate B
now uses two B-predicate B and B’. We must ensure that the FO formulas describing
the winning strategy ¢ of the self-composition can be translated back into a meaningful
strategy for G. A sufficient condition that allows this is when for each B € R, 0(B)
depends only on predicates R € R for which R and R’ are equivalent. Then the
encoding of the agent model enforces that the same strategy can be used for B and B’
as no difference has been observed by anyone yet. More generally, assume that we are
given a set R, for each program point u where

Viy.Ry <> R’y (R e Ry) (7.3)

holds whenever program point u is reached. Then the strategy o for 7;(’”)g is admissible
if for each edge (u,6,v) containing some B € R, 0(B) contains predicates from R € R,
only. Due to (7.3), the formulas ¢(B) and [0(B)]’ then are equivalent. Therefore, we
obtain:

118 Chapter 7. First-order Safety Games

Theorem 7.6. Let G be a FO Safety Game with initial condition Init and subset R, C Restate of
predicates for each program point u of G. Assume that o is a strategy so that for each predicate
B occurring at some edge (1,0,v), the FO formula Bo only uses predicates from R.,. Then for

each agent model m € {s,c} Let 7;("1)9 denote the corresponding FO Safety Game with respect
to agent model m and declassification predicates Dy, , and assume that for each program point u,

property (7.3) holds whenever u is reached by 7;(’”)90. Then the following two statements are
equivalent:

1. Go satisfies the noninterference property @q;

2. T."Go satisfies the safety property ¢j.

In particular, each admissible winning strategy for the FO safety game 7;('") G gives rise to a
strategy for G that enforces noninterference.

Finding a strategy that enforces noninterference, thus turns into the synthesis problem
for a FO Safety Game— with the extra obligation that potential winning strategies only
access subsets of admissible predicates only.

Example 7.6.

In the conference management workflow from Figure 7.2 with stubborn agents, a
strategy is required at the edge from program point 1 to program point 2. At that
point, no secret has yet been encountered. Therefore, all predicates are admissible
— implying that any winning strategy for the FO safety game in Figure 6.1 can be
translated back to a strategy which enforces noninterference in G. In particular, we
obtain (via E(S)Q) that any FO formula ¢, guarantees noninterference for which
P, — —Conflict(y1,y2) holds.

Subsequently, we concentrate on techniques for dealing with FO Safety Games without
imposing restrictions onto the construction of strategies (beyond FO definability), and
defer the discussion of the extension to the general case to Section 7.7.

7.3 Monadic FO Safety Games

Analogously to the case of FO Transition Systems, assuming that the universe is finite
and bounded in size by some i1 > 0, FO Safety Games reduce to finite games (of
tremendous size, though). Thus, checking invariants as well as the construction of a
winning strategy (in case that the game is safe) is effectively possible (and all strategies
can be expressed in FO Logic). So here, we again look at systems where all predicates
have at most one parameter from an unbounded sort — turning the FO Safety Game
into a monadic FO Safety Game.

Due to the results of Theorem 7.5 for finite FO Safety Games, we therefore conclude
for finite monadic FO Safety Games that safety is decidable. Moreover, in case the game
is safe, a positional winning strategy for safety player B can be effectively computed.

For the general case, the results for monadic FO Transition Systems from Theorem 6.11
carry over, which means that the following cases are undecidable:

7.3 Monadic FO Safety Games 119

Theorem 7.7. For monadic safety games, safety is undecidable when one of the following
conditions is met:

1. there are both A-edges as well as B-edges; >
2. there are A-edges and substitutions with equalities or disequalities;
3. there are B-edges and substitutions with equalities or disequalities.

The proof of statement (2) is the same as for monadic FO Transition System and uses
monadic predicates to simulate the counters of a multi-counter machine. Statements (1)
and (3) follow from the observation that equality or disequality literals can be replaced
by relations under the control of one of the players.

Proof. The proof is very similar to the simulation in the proof of Theorem 6.11. Statement
(2) follows directly from the previous proof. In the given simulation, the updates to
f1r using equalities in the second step can be replaced by means of a step by player B
together with the substitution:

Pixl V _|P/X1\/
fl// — fl” AVx1x0. | Pixy V —P'xpV
Bx1 V —\BXZ

Therefore, statement (1) also follows. A disequality would have served the same purpose
if deviation from the correct simulation would have been tracked by means of an error
flag. This kind of simulation is exemplified for the proof of statement (3).

For statement (3), we introduce a dedicated error flag error and sharpen the invariant
to

—error A (V;Zl1 fiVv /\}1:1 =fi)

The error flag is initially assumed to be false, and used to force safety player B to choose
sets B with appropriate properties. Thus, we use

—error A fi A Njs1 —fj AN Ve Pix

as initial condition. For the actual simulation, we use a single program point together
with edges for each transition of the counter machine. Incrementing counter ¢; (combined
with state transition from g; to gy), e.g., is simulated by an edge with the substitution 6’:

Py +— PyVBy,
fi il =r
for = { false 1" A1,
error +— error\V (Vx.—Bx V Pix) V
(33(1)(2. _|(BX1 AN ﬂP,-xl) vV
—(Bxa A =Pix2) V X1 # X2)

Due to —error in the invariant, safety player B is forced to choose a set B which adds
exactly one element to P;, while the subformula A\; —f; forces reachability player A to
choose edges according to the state transitions of the multi-counter machine. O

2This statement has been also communicated to us by Igor Walukiewicz

120 Chapter 7. First-order Safety Games

The monadic version of the running example in Figure 7.2 does use A-edges as well
as B-edges. > However, by substituting any strategy without equalities and disequalities
for player B, the given strategy can still be proven winning by solving the transformed
FO Transition System, which is decidable.

7.3.1 Decidable monadic FO Safety Games

Luckily, not all monadic FO Safety Games are undecidable. In this section we will prove
that all safety games that fall outside the fragment mentioned in Theorem 7.7 indeed
stay decidable.

For games where no predicate is under the control of either player, the results for FO
Transition Systems from Theorem 6.12 carry over.

Theorem 7.8. Assume that G is a monadic safety game, possibly containing equalities and/or
disequalities with R 4 = R = @. Then for some h > 0, ¥} = ¥+1), Therefore, safety of G
is decidable.

Since Rp is empty, this proof is the same as the proof for Theorem 6.12 and relies on
our variant of the counting quantifier normal form. We remark that the given finite upper
bound r to the ranks of all formulas ¥")[v] together with the finite model property [20]
implies that reachability player A can win iff A can win in a a universe of size at most
7/2[Rsatel where 7' is the maximum of r and the rank of Init.

For invariants I that only contain disequalities, the results from Theorem 6.16 apply
that retain decidability if no equalities between bound variables are introduced during
the weakest precondition computation. This can only be guaranteed if safety player B
does not have control over any predicates. *

Theorem 7.9. Assume that G is a monadic safety game without B-edges (i.e. Rp = @) and
1. there are no disequalities between bound variables in I,

2. in all (positive or negative) equalities x = y or x # y in Init and substitutions 0 at least
one of x,y is from C.

Then it is decidable whether G is safe.

Again, as Rp is empty, this proof is the same as for monadic FO Transition Systems
given for Theorem 6.16 and relies on the multiplicity of the encountered formulas.

In a mirrored setting, decidability is retained for invariants that only contain positive
equalities if there are no disequalities introduced during the weakest precondition
computation. This is only the case when R 4 = @, i.e., reachability player A selects
universe and control-flow path and safety player B chooses interpretations of predicates
in Rp. As a consequence, we obtain:

Theorem 7.10. Assume that G is a monadic safety game without A-edges where

1. there are no equalities between bound variables in I,

3Assuming that the number of PC members and papers is bounded, while the number of (versions of)
reviews is unbounded.

4The simulation of multi-counter machines in the proofs of Theorem 7.7 shows how predicates under the
control of player B can be used to introduce equalities through SO existential quantifier elimination.

7.3 Monadic FO Safety Games 121

2. in all (positive or negative) equalities x = y in Init and substitutions 6 at least one of x,y
is from C.

Then it is decidable whether G is safe.

The proof is analogous to the proof of Theorem 6.16 where the abstraction of equalities
now is replaced with an abstraction of disequalities, and Corollary 6.18 is replaced with
a similar Corollary 7.12 dealing with disequalities.

In analogy to FO Transition System with invariants containing equalities, we provide
a weakest strengthening of monadic FO formulas now containing positive occurrences
of disequalities only. Let ¢ denote a closed monadic formula in negation normal form
with no positive occurrences of equalities between bound variables. We define ¢f now
as the formula obtained from ¢ by replacing each literal x # y (x, y bound variables)
with

(Vrer Rx A =Ry V =Rx ARy) V
(Veecx =cAy #eVx#cAy=c)

Then, ¢* — ¢ holds, and we claim:

(7.4)

Lemma 7.11. Let ¢ be any monadic FO formula without equalities or disequalities between
bound variables such that — @ holds. Then also ¥ — @* holds.

Proof. We proceed by induction on the structure of ¢. Clearly, the assertion holds
whenever ¢ does not contain disequalities between bound variables. Assume that ¢ is
the literal x # y for bound variables x,y. Assume that ¢y — (x # y), but ¢ does not
imply formula (7.4). This means that there is a model M and an assignment p such
that M,p = ¢ A Arer R ARy V “Rx A =Ry A Aeec(x #cVy =c)AN(x =cVy #c)
holds. W.lo.g., M is minimal, i.e., elements which cannot be distinguished by means of
predicates in R or constant interpretations from C, are equal. But then M, p = (x # y)
— in contradiction to the assumption.

Now assume that ¢ = @1 A @2. Then ¢ = q)g A qog. Let ¢ imply ¢. Then ¢ — ¢; for
each i. Therefore, by induction hypothesis, ¢ — 1/)}i for all i. As a consequence, P — @F.

Now assume that ¢ = ¢1 V ¢p. Then ¢f = q)ﬁ \Y% q)g. If ¢ implies ¢, then for each
model M variable assignment p, there is some i so that M, p = 1 — ¢;. Assume for a
contradiction that ¢ A — (gaﬁ \Y% q)g) is satisfiable. Then there is some model M, assignment
p so that M, p =9 A —|q)ﬁ1 A —wpg. In particular, there is some 7 so that M, p = ¢; A —mp% A
—|q)g. By inductive hypothesis, q)gi — ¢; holds. We conclude that M, p = ¢; A ~¢1 A —¢2
holds — contradiction. Similar arguments also apply to existential and universal
quantification in ¢. As a consequence, ¢ — ¢* holds. O

Corollary 7.12. Assume that ¢, ¢’ are monadic FO formulas without positive occurrences of
equalities between bound variables. Then

L (9N g) =g A(¢), and
2. (3B.g)* = (3B.¢")*

Proof of Theorem 7.10. This proof now works the same way as the proof of Theorem 6.12.

With the different abstraction, we still get the main result proving that there are only
(h)

finitely many monadic formulas that might appear during the computation of ¥;”,
which leads to eventual termination. O

122 Chapter 7. First-order Safety Games

Just as for FO Transition Systems, 2-player monadic FO safety games are undecidable
in general. However, for games where one of the players does not choose interpretations
for any relation, decidability can be salvaged if the safety condition has acceptable
equality /disequality literals only and neither Init, nor the transition relation introduce
further equality /disequality literals between bound variables.

7.4 Inductive Invariants for FO Safety Games

Even though the general problem of verification is hard for monadic FO games, invariant
inference provided us with powerful incomplete algorithms that are able to prove many
general FO Transition Systems safe. We will now lift our methods of inferring inductive
invariants to the setting of FO Safety Games. Here, just finding an inductive invariant
is not enough to prove a given game safe. Additionally, a winning strategy must be
provided or automatically extracted.

We recall that an invariant ¥ is called inductive iff for all edges e = (u,6,v) of a given
FO Safety Game G

¥u] = [(1,0,0)] (¥[o])

In contrast to FO Safety Games, the weakest precondition may now contain Second
Order Quantifiers over predicates in R 4 or Rp. Just as for FO Transition Systems,
inductive invariants allow to certify safety of FO Safety Games:

Lemma 7.13. Assume that ¥ is an inductive invariant for FO Safety Game G, and ¥ [v] — I[v]
for all nodes v. Then G is safe whenever Init — ¥[vg] holds.

For monadic FO Safety Games, this allows us to check if any given invariant is inductive
— and if it is, extract a winning strategy from it:

Theorem 7.14. Assume that G is a monadic FO Safety Game with initial condition Init and
invariant 1. Assume further that Y is a monadic FO invariant, i.e., maps each program point to
a monadic formula. Then the following holds:

1. It is decidable whether Init — ¥[vg] as well as ¥[v] — I[v] holds for each program point
0,

2. 1t is decidable whether Y is inductive, and if so, an FO definable strategy o can be
constructed which upholds Y.

Thus, a monadic FO Safety Game can be proven safe just by providing an appropriate
monadic FO invariant ¥: the winning strategy itself can be effectively computed.

For a general FO Safety Game G, the resulting Second Order formulas might become
undecidable. However, any FO Safety Game G can be proven safe by the following
approach:

1. Come up with a candidate invariant ¥ so that
e Y[v] — I[v] for all nodes v, and

* Init — ¥[vo] hold;

7.4 Inductive Invariants for FO Safety Games 123

2. Come up with a strategy ¢ which assigns some FO formula to each predicate in
Ra;

3. Prove that ¥ is inductive for the FO transition system Go which is obtained from
G by substituting each occurrence of B with ¢(B) for all B € Rp.

To simplify the invariant inference for FO Transition Systems, we turned to the domain
of purely universal formulas, where the candidate invariant ¥ consists of universal FO
formulas only, while I and Init are in the Bernays-Schonfinkel-Ramsey fragment. In that
case, verification conditions from (1) are decidable and allow us to effectively check
inductivity of a given universal invariant. For FO Safety Games, a similar restriction
proves useful: We find that universal invariants together with a universal strategy can
be proven inductive:

Theorem 7.15. Let G denote a FO Safety Game where each substitution 6 occurring at edges
of the control-flow graph uses non-nested FO quantifiers only. Let Y denote a universal FO
invariant for G, i.e., ¥ [v] is a universal FO formula for each node v. Assume that no B € Rp
occurs in the scope of an existential FO quantifier, and o is a strategy which provides a universal
FO formula for each B € Rp. Then it is decidable whether or not ¥ is inductive for Go.

Theorem 7.15 states that (under mild restrictions on the substitutions occurring at B-
edges), the candidate invariant ¥ can be checked for inductiveness — at least when a
positional strategy for player B is provided which is expressed by means of universal
FO formulas. This collapses G into a FO Transition System by replacing all occurrences
of predicates under the control of player 5. Then Theorem 6.5 is applicable and shows
that the verification conditions all fall into the BSR fragment of First-order Logic.

The question remains how for a given invariant I a suitable inductive invariant can
be inferred that certifies I. For FO Transition Systems, we solved this by iteratively
computing the sequence ¥}, > 0 as in (7.1) which, in general, may never reach a
fixpoint, but terminates for several classes of FO Transition Systems. The same approach
can be applied to FO Safety Games and Theorem 6.9 tells us that fixpoint iteration will
always terminate if the fixpoint formula is definable in FO logic. For the case of monadic
FO Safety Games, this means that the corresponding infinite conjunction is not always
FO definable — otherwise decidability would follow.

In general, not every invariant I can be strengthened to an inductive ¥ and universal
strategies need not be sufficient to win a universal safety game. Nonetheless, there
is a variety of non-trivial cases where existential SO quantifiers can be effectively
eliminated together with an explicit construction of the corresponding strategy, e.g.,
by SO quantifier elimination algorithms SCAN or DLS* (see the overview in [40]). In
addition, Theorem 7.15 tells us that for proving inductiveness, it is not necessary to
perform exact quantifier elimination. Instead, it may suffice to provide an appropriate
strengthening. Techniques for such approximate SO existential quantifier elimination are
provided in Section 7.5 and applied in Section 7.6.

124 Chapter 7. First-order Safety Games

7.5 Hilbert’s Choice Operator for Second Order Quantifiers

As we have seen in Section 7.4, checking whether a universal FO invariant is inductive
can be reduced to SO quantifier elimination. While universal SO quantification can
always be removed from formulas with only universal FO quantifiers according to
fact 6.5.1, this is not necessarily the case for existential SO quantification. As already
observed by Ackermann in [2], the formula

dB.Ba A ~Bb AVx,y.mBx V —Rxy V Bj

expresses that b is not reachable from a via the edge relation R and is not expressible in
FO logic. This negative result, though, does not exclude that in a variety of meaningful
cases equivalent FO formulas can be constructed. In this section, we recall basic facts
about SO existential quantifier elimination together with the notion of a SO Hilbert choice
operator.

This operator will allow us to extract specific FO definitions for the existentially
quantified input predicates. For purely universal FO formulas, we introduce a sequence
of candidate substitutions for approximating this operator. We also show that for these
formulas, the construction of a SO Hilbert choice operator and thus the construction
of a winning strategy for safety player B from an inductive universal FO invariant, is
reducible to SO existential quantifier elimination itself. For an in-depth treatment on SO
existential quantifier elimination, we refer to [40].

Let ¢ denote some universally quantified formula, possibly containing a predicate B
of arity r. Let § = y1 ...y, and 7' = y] ...y, be well-sorted sequences of fresh variables.
We remark that any formula ¢ with free variables from can be seen as a definition of B:

¢[¢/B] — 3B.¢

holds for any such . Here, this SO substitution means that every literal Bz and every
literal ~BZ’ is replaced with ¢[z/7] and —¢ [z’ /'], respectively. Let Hp , denote the set
of all FO formulas ¢ such that ¢ holds when using ¢ as a definition for all B literals:
This is exactly the set of all formulas ¢ s.t. 3B.¢ is equivalent to ¢[/B]. Given B and ¢,
a general construction of some FO formula ¢ € Hp , is an instance of Hilbert’s (Second
Order) choice operator. If one exists, we write iy = Hg(¢).

The strongest solution to fix the paper assignment in the conference management
example from Example 7.2 is that the PC chair decides not to assign papers to any PC
member. While guaranteeing safety, this choice is not very useful in practice. The weakest
choice on the other hand, provides us here with a decent strategy as it allows for more
behaviours. In the following we therefore will aim at constructing as weak strategies as
possible. This follows the intuition that safety player B wants to ensure safety while still
allowing as many possible scenarios as possible.

7.5.1 Ackermannian FO Safety Games

There are several classes of Second Order formulas that allow for Second Order Quanti-
tier Elimination. For example, in purely universal formulas in simple normal form as
defined in Equation (2.1), existential SO quantifiers can be eliminated:

7.5 Hilbert’s Choice Operator for Second Order Quantifiers 125

Lemma 7.16 (Ackermann’s lemma [2]). Assume that ¢ is in simple normal form, i.e. ¢ =
E A (Yy.FV Bj) A (V§.G V —B). Then we have:

1. 3B.gp = EA (Vi.EV G);
2. For every FO formula ¢, 3B.¢ <> ¢[¢/B| iff (EA—-F) = ¢pand p — (mEV G). O

According to Lemma 7.16, formulas in simple normal form admit a SO Hilbert choice
operator, which we define as

Hp(p) = EVG (7.5)

By this definition, Hp(¢) equals the weakest formula ¢ for which 3B.¢ is equivalent to
¢ly/B].

Example 7.7.

Consider the invariant I from Example 6.3 that specifies the safety property that no
PC member can ever read a review for a paper he declared Conflict with. Formally
I[u] for all u is

I[u] = Vx, p, r.—(Conflict(x, p) A Read(x,p,r)) (7.6)
The weakest precondition w.r.t. the second statement amounts to:
3By.Vx, p.—Conflict(x, p) V =By (x, p) = true

where we can choose for By any formula i (with free variables x, p) which implies
—Conflict(x, p). Following our earlier definition Hp, = —Conflict(x, p).

Ackermann’s Lemma gives rise to a nontrivial class of safety games where existential
SO quantifier elimination succeeds. We call B € R ackermannian in the quantifier-free
substitution 6 iff the for every predicate R € Rgqre, the CNF of 6(R) does not contain
clauses with both positive and negative B literals.

Theorem 7.17. Assume we are given a FO Safety Game G where all substitutions contain
non-nested quantifiers only, and a universal inductive invariant Y. Assume further that the
following holds:

1. All predicates B under the control of safety player B occur in quantifier-free substitutions
only and are ackermannian;

2. For every B-edge e = (u,0,v), every clause of ¥[v] contains at most one literal with a
predicate R where 0(R) has a predicate from R .

Then the weakest FO strategy for safety player B can be effectively computed for which ¥ is
inductive.

The proof is by showing that all Second Order quantifiers introduced by the weakest
precondition operator can be eliminated according to Lemma 7.16.

126 Chapter 7. First-order Safety Games

Example 7.8.

Consider the leader election protocol from Example 7.1, together with the inductive
invariant from [75]. The complete specification can be found in our suite of
examples [67]. Therein, the predicate B is ackermannian, and msg appears once
in two different clauses of the invariant. Thus by Theorem 7.17, the weakest
safe strategy for player B can be effectively computed. Our solver, described in
Chapter 8 finds it to be

B(a,i,b) := —E V —mnext(a,b) V < v (i 2 n Vb i) A >

Vn. (—between(b,i,n) Vi > n)

where E axiomatizes the ring architecture, i.e., the predicate between as the transi-
tive closure of next together with the predicate <. The given strategy is weaker
than the intuitive (and also safe) strategy of (i = a), and allows for more behaviors
— for example it allows a to send messages that are greater than its own id in case
they are not greater than the ids of nodes along the way from b back to a. It also
allows any i in case that b is not the next node in the ring, since messages are only
sent if this is the case.

7.5.2 Iterative Approximation of Hilbert’s Second Order Choice Operator

In general, though, existential SO quantifier elimination must be applied to universally
quantified formulas which cannot be brought into simple normal form. To deal with
general formulas, we provide a sequence of candidates for the Hilbert choice operator
which provide the weakest Hilbert choice operator — whenever it is FO definable.
Consider a predicate B in a purely universal formula ¢ in normal form (2.1), i.e. ¢ =

EA (Vy.FVBy) A (Vy'.GV —By') A (Viy .HV By V —Bif)

Therein, the sub-formula H can be understood as a binary predicate between the
variables i’ and § which may be composed, iterated, post-applied to predicates on i’
and pre-applied to predicates on §. The number of compositions of H is governed by
the structure of B. We define the formula H*, k > 0 with free variables from 7, i to be
an approximation of the last clause of ¢ after elimination of the predicate B.

H = g#7
H* = Vg§.H* Yy /¥]VH[j /9] fork>0

We remark that by this definition,
H = v H' /9] v H [51/7]
for all k,I > 0. Furthermore, we define the formulas:
GoH" = Vy.Gly/¥]Vv HF
GoHfoF = V§.(GoH"VF[f /]

By applying k distinct copies of H in this way, we can approximate an equivalent formula
to @ with the predicate B eliminated:

7.5 Hilbert’s Choice Operator for Second Order Quantifiers 127

Lemma 7.18. 1. Forall k > 0, 3B.¢g implies EA G o H* o F;

2. If 3B.¢ implies some FO formula @, then for some k > 0, E A N_ G o H' o F implies
JB.¢;

3. If 3B.¢ is equivalent to some FO formula, then it is equivalent to E A N_y G o H' o F for
some k > 0. O

Starting from G and iteratively composing with H, provides us with a sequence of
candidate SO Hilbert choice operators. Let

T = —EVAL(GoH)[7/7] (7.7)

for k > 0. The candidate 7, takes all ifold compositions of H with i < k into account.
Then the following holds:

Lemma 7.19. For every k > 0,
1. @[vyx/B] implies 3B.¢;
2. Yes1 = Y and if vy — vk + 1, then ¢[yx/B] = 3B.¢.

Proof. The first statement follows by definition. For a proof of the second statement,
assume that 7, = 7441. This means that AX_ (—=EV G) o H' = /\Iljié(ﬂE V G) o HF1,
We therefore conclude that in particular A*_y(=EV G) o H = N'_y(=E V G) o H' for all
k < r — implying that 3B.9 = E A A’_, G o H' o F holds. Furthermore, we calculate:

¢ln/Bl = EA(N_V7.(-EV GoH[7/§]V F)A
(V7'.GV = Nio(=EV G) o H)A |
(Vg -HV No(=EV G) o H'[§/7'] V ~(Ni_o(=E V G) 0 HY))

Let us first concentrate on the third clause. Since (=E V G) o H* = —=E V G, the negated
conjunction has E A =G as a disjunct. Therefore, the conjunction of that clause with E is
equivalent to E. For the fourth clause, we calculate:

Vi.HV No(mEV Go H![7/7] = NA_,GoH*!
= NS (ZEVG)oH'
— ANo(mEVG)oH

Accordingly, the fourth clause also must necessarily be equal to true. We conclude that

¢ln/B] = EAN_Vy.GoH'[§/7]VF
= dB.¢
which is the statement we wanted to show. O

As a result, the 7y, form a decreasing sequence of candidate strategies for safety player
B. We remark, though, that the condition /\i-‘:1 GoH' = /\fill G o H! from statement (2)
of Lemma 7.19, is sufficient but not necessary for 3B.¢’ to be FO definable.

The scenario becomes considerably easier whenever the variables from 7 and 7’ never
appear together in any literal. For this case, we prove that the number of times H has to
be applied remains bounded:

128 Chapter 7. First-order Safety Games

Lemma 7.20. Assume that H in the definition 2.1 is of the form
H = A (HV H]’ Vv Gj) (7.8)

for some n > 1 where all formulas H; only contain free variables from g, H]/ only variables from

¥’ and G; none of those. Then
n—+r

AW =\ H

j=0
forall v > 0.

Proof. For each k > 1, we have that

H" = A, (H; VH VGV
Vici G v Vi H [yz/y] Hj.., [5:/9))

where for each i = 1,...,k, j; € {1,...,n}. Thus, /\» HF is the conjunction of all
formulas Hj, v H} Vv i (eRY Vgi.‘H]’.i [7:/7'1V H,,, [yl/y]) V Gj, for some r < k. Now
assume for a contradiction, /\;@02 HI # /\;.jol H/ holds. Then there is a clause

C:H\/H/ , vV Gj

]n+2

V”“(G]zvvyl L9/ 91V Hi, 9:/9))

which is not implied by /\]’-ljo1 H/. On the other hand, there is a sequence jj ... j,11
positions r < ' exist so that j, = j... It follows that we can construct

/ _ !
¢ = HjVH VG]M

f %(G]l Vv H 5/)V],H [7:/7]) v
\/:H_r}(G], V V. H, [7:/7'] v]1+1 [7:/7])

By construction, ¢’ = ¢. Moreover, ¢’ occurs in the conjunction /\}erZ HI. Accordingly,

/\7;02 H/ = ¢ — in contradiction to our assertion. O

We close this section by noting that there is a SO Hilbert choice operator which can be
expressed in SO logic itself. The following theorem is related to Corollary 6.20 of [40],
but avoids the explicit use of fixpoint operators in the logic.

Theorem 7.21. The weakest Hilbert choice operator Hp¢ for the universal formula (2.1) is
definable by the SO formula:

—EV 3B.BjA (Vy.GV =By') A (Vgy'.HV BjV —By)

Proof. Our goal is to prove that 3B.¢ implies the formula ¢[Hp¢/B]. We consider each
conjunct of ¢ in turn.

Vy.FVHpp = Vy3IB.FV (ByA
(Vy'.GV —=Bi/') A (Vyy'.HV By V —Bi'))
< Vy.3B.(FVBjy) A
(Vy'.G Vv —By') A (Vyy'.HV By V =BY’)
< 3dB.Yy.(FVBjy) A
(Vy'.GV =Bi/') A
= dB.g

(Vyy'.HV By V =By)

7.6 Approximation and Refinement 129

Viy.GV-Hpgp = ViyVB.GV-Bj V
(37'.By’ A —G) V (3g7.—~H A —~Bj A\ BY')
= VBVy.GV-By Vv
(37'.=~G A Bif") Vv (377 .—~H A —~Bj A\ BY')
= T

Vg HV HppV ~Hpely' /7]
= Vyy.HV
(3B.By A (Vy'.GV —=Bj') A (Viyy’.HV By VvV —By')) V
(VB.—By' vV =(Vy'.G Vv —-By') V =(VYyy'.H V Bj vV =Bi'))
«— Vyy’ VB.HV
By A (Vy'.GV =By) A (Vyy'.HV BjV —By') V
—By' VvV =(Vy' .GV =By') VvV =(Vyy.HV By V —BY)
= Vyy'.VB.HV BjV —Bj V
-By' vV =(Vy'.GV =By') vV =(Vyy .HV By V =BY’)
= T

Altogether therefore, p[Hpp] = IB.¢, and the assertion follows. O

The weakest Hilbert choice operator itself can thus be obtained by SO existential
quantifier elimination.

In this section we provided a method to extract the weakest universal FO definition
for existentially quantified Second Order variables in a given universal formula. For
ackermannian FO Safety Games, we showed that the weakest universal strategy can
always be computed (if it exists). For FO Safety Games outside this class, we gave a
tixpoint approach that will construct a FO universal formula if one exists, but might
diverge in case it does not. Additionally, we gave a simple syntactic criterion that implies
termination of the fixpoint approach.

For a given FO Safety Game G together with an inductive universal invariant, this
approach allows us to automatically extract the weakest universal strategy for safety
player B that upholds the given invariant.

7.6 Approximation and Refinement

While in general safety of FO safety games is undecidable, this does not exclude that
in meaningful cases, safety can in fact be proven or dis-proven. In this section, we
show how FO safety games can be approximated by simpler FO safety games and,
furthermore, how to refine a given abstraction when safety of the game can neither
be proven nor disproven with the current abstraction. For disproving safety, we rely
on finite counter-examples, i.e., finite paths in the control-flow graph together with
states from finite universes. In comparison to the iteration we established to prove FO
Transition Systems safe, we will now generalize the iteration from Chapter 6 to FO
Safety Games and provide additional guarantees during the iteration. Namely, we will
look at proofs for invariants that are inductive in all universes up to a fixed size.

As we already stated for positional determinacy, a FO safety game G played in a fixed
finite universe U is effectively propositional. Accordingly, it is decidable whether or not

130 Chapter 7. First-order Safety Games

safety player B has a winning strategy for U. In particular:

Lemma 7.22. For every t > 0, it is decidable whether safety player B wins all plays in universes
of size at most t.

Proof. 1t is possible to enumerate all universes up to size t and solve the game for each
one individually. However, instead of enumerating all universes up to size ¢, we can
solve the game symbolically. In order to do so, we consider the domain closure axiom D;
(considered for example in [88]) for a finite set C:

1
Dy = Vxi...x41.Vig V;;H Xi = Xxj N\ (7.9)
t—1\ st _ t _
Neee Vi V]':i+1 Xi=xjV vj:l Xj=¢

which expresses that the universe has at most t elements. It allows to transform each
SO formula ¢ into a quantifier-free formula B;[¢] with free FO variables from C and
7 = Y1...yt such that

¢ A Dt <> (37.B¢[9] A Dy) (7.10)

where the formula
Di = AxecVic1x =y, (7.11)

states that each constant from C may only take one of the values provided by 7. The
transformation B; replaces each universal FO quantification in ¢ by a conjunction and
each existential FO quantification by a disjunction where the fresh variables v, ..., y:
represent the possibly distinct elements of the universe.> As a consequence, all SO
quantifiers can be eliminated as well.

By means of the transformation B;, we obtain from the iteration in Section 7.1 a
fixpoint computation where all encountered formulas are quantifier-free and use the
FO constants from G as well as the FO variables from y. Up to equivalence, the number
of such formulas is finite. Therefore, the obtained iteration effectively terminates with

. w(h . .
some assignment ‘PE). It remains to verify whether

Vy.—'[_)t V —|Bt[|nit] V ?Eh)
holds. O

Equation (7.10) inspires us to a general definition. We call closed formulas ¢, ¢ equivalent
up to universe size t > 0 iff
@ A D; <> ¢' A Dy

In this case, we also write ¢ =; ¢'. The following three statements are equivalent:
1. ¢ = ¢;
2. Bt[go] A\ Dt < Bt[go’] VAN Dt;

3. For each universe U of cardinality at most ¢, every model s over universe U for the
predicates in Rqte and every variable assignment v for the constant interpretations
inC,s,vEgiffs, v ¢.

5Tn the presence of sorts s ...s,, for the sake of the proof we encode them into predicates Sy...Sy
beforehand.

7.6 Approximation and Refinement 131

For universes of bounded size, the sequence of candidates for Hilberts Choice Operator
given in Section 7.5 is precise:

Lemma 7.23. Let ¢ denote some universal FO formula in normal form (2.1), let B be a predicate
symbol of arity r, and let 7y be defined as in Section 7.5.2. Then

@[vx/B] =t 3B.g
whenever k > " holds.

Proof. Consider the predicate H with free variables from y,y’. Let U be a universe of
cardinality at most . Let s be a model over U and v an assignment of the free FO
variables of ¢ to U. Then w.r.t. s and v, H can be considered as a relation H;;y C U" x U".
Therefore, s, v |= Vyy'.H* <+ H*1 holds. If ¢ is in normal form (2.1), then

s,v = ¢ln/B]
= EAMoFA(YY.GV) A .
(V' .(Aig G o H o H) V V =(AfLg G o HY))

= E AN ’)/k oF AN
(V' -(NZ1 Go HY) vV ~(AfLy G o HY))
= EA Yk © F
< dB.¢g
and the assertion follows. O

Let us re-consider the case where we are given a candidate invariant ¥ which we want
to prove inductive and, if so, construct a winning strategy for safety player B. Assume
further that all substitutions at .A-edges have non-nested FO quantifiers only, and all
substitutions at B-edges are quantifier-free. According to Theorem 7.15, it can effectively
be decided for each A-edge e = (v,0,7’) that ¥[v] — VA.(‘¥[0']6) holds.

It remains to verify the corresponding conditions for each B-edge e = (v,0,7').
Lemma 7.22 together with Lemma 7.23 allow us to search for a winning strategy by
counter-example guided abstraction refinement (CEGAR) (see, e.g., [27]). For that, we
establish the following iteration.

(0) Set t := ty for some initial threshold ¢y > 0.

(1) Check whether ¥[v] — 3B.(¥[¢']0) for all universes of cardinality at most ¢. If not,
output not inductive and stop.

(2) Construct 7, for ¥[¢']0 as in Section 7.5.2 for k = t". By construction, 7 is a
universal FO formula. Therefore, it can be effectively checked whether ¥[v] —
(¥[v']0)[vx/B] holds.

If so, output inductive and also return 7 as strategy for player B. If not, ¥[v] A
—=(¥[0']0)[yx/B] is satisfiable where, by Lemma 7.23, the cardinality # of the
universe required by the counter-example, necessarily exceeds t. Then set t := t’
and proceed with step (1).

Thus, we have obtained a practical means to verify or refute inductivity of a given FO
universal candidate invariant.

132 Chapter 7. First-order Safety Games

In general, it is more involved to infer the inductive invariant itself. In order to come
up with a practical approach that works for general FO safety games G, we again rely on
abstraction, i.e., strengthening of formulas. In contrast to FO Transition Systems, here we
need to abstract both FO as well as SO existential quantifiers.

Theorem 7.24. Let t > Q0 and § = y1 ...y For every SO formula ¢, a universal FO formula
Ttl@] can be constructed with additional free FO variables from §j such that

1. Vy.(Ti[e] — ¢); and
2. ¢ = 35.T¢g).

Proof. W.l.o.g., assume that ¢ is in prenex as well as in negation normal form. The fresh
variables from y are meant to represent the elements of a universe U of size at most h.

We remark that the transformation B; cannot be used as it does not satisfy requirement
(1). The best universal abstraction ¢* from Section 6.7.2 can be used and yields a correct
algorithm. It does not come with guarantees up to a specific universe size t, and does
not satisfy requirement (2). Here, we will thus use a slightly different approximation for
existential quantifiers: Instead of replacing them with a disjunction over all universally
quantified variables in scope, we replace them by a disjunction over the domain elements
Yi...Yr.

For SO quantification, we inductively assume that the body has already been trans-
formed into a universal FO formula. Universal SO quantification therefore can be
exactly eliminated, while for existential SO quantification we substitute the appropriate
approximation of the corresponding Hilbert choice operator. We define:

T¢[Px] = Px Ti[-Px] = -Px
Tix=yl = x=y Tix#yl = x#y
Telo1 V@2l = Tilga] V Tielgo]

Tilpr A @2] = Tilo1] A Tilga]

Ti3x.¢1] = FxTilei] TiVx.@1] = Yx.Ti[g1]

where for universal FO formulas ¢’
Frg' = Vi ¢'lyj/x]

This strengthening can be further weakened by considering in the disjunction not only
the y;, but also all constants as well as all universally quantified variables x" in whose
scope the current subformula occurs, just as for the universal abstraction we used in
Section 6.7.2.

For ¢ = VA.p1, we first bring T¢[¢1] into prenex normal form and thereafter, the
quantifier-free part into conjunctive normal form. Since the resulting formula has
no existential quantifiers, precise quantifier elimination according to fact 6.5.1 can be
applied to compute 7;[¢]. For a SO variable B of arity r and universal FO formula ¢’ in
normal form (2.1), we use the corresponding y:

3B.¢' = Ti[¢'[7+/ B]]

where for ¢', vy is defined as in Section 7.5.2 with k = #". This completes the construction.

7.6 Approximation and Refinement 133

Since ¢ was in negation normal form, we verify by induction on the structure of ¢
that Vy.7:[¢] — ¢, i.e., statement (1) holds. Now let U denote a universe of cardinality
t' <t andlety : {y1,...,y:} — U be an interpretation of the y; such that the image of 7
has cardinality #'. Assume that s is a structure that satisfies ¢ (i.e. s,v |= ¢ for the empty
valuation v). Due to statement (1) it suffices for a proof of statement (2) to verify that
then s, v & 7 = T;[¢] holds as well. Again, the proof is by induction on the structure of
¢ where for SO existential quantifiers, we rely on Lemma 7.23. O

While the transformation B; affected both existential and universal quantifiers, the
transformation 7; now only affects existential quantification and is precise on universal
quantifiers. Thereby, the first-order part of the transformation 7; is a variation of
the approximation of FO existential quantifiers for FO Transition Systems given in
Theorem 6.26. Compared to the version for FO Transition Systems, 7; is an extension to
SO quantification and comes with a precision guarantee for universes up to cardinality
t.

Based on the abstraction of existential quantifiers, we now define the strengthened

(h)

iteration ¥, by:
¥V = m)
¥[] = 0]

[7.12
. orrer, VA TE Vol 712
(

A Nee(opoces FBe ¥V [0/]6 for h > 0

For all 1 > 0 and all program points v, ‘I’t(h) is a universal FO formula. Moreover, ‘I’gh)

can be used to automatically infer strategies and invariants that prove safety up to a
given bound for any general FO Safety Game G.

Lemma 7.25. For all h > 0 and all program points v,
1. ‘I’gh) [v] can effectively be computed;
2. Whether or not ‘th)[v] — ‘I’fhﬂ)[v] is decidable;
3. T[] = ¥ [o];
4. vy ¥ o] — ¥®[o].
When the strengthened iteration ‘Yt(h) with universal FO formulas stabilizes, we obtain

a sufficient condition for safety player B to win the game, and moreover, obtain a
positional strategy how to do so. More precisely, we have:

Theorem 7.26. Assume that the initial condition Init is an FO formula in the BSR fragment.
Assume that for some h > 0, ‘I’Eh) = ‘I’Ehﬂ).

1. If Vy.Init — ‘Pgh) [v0] then the game is safe, and a winning FO strateQy for safety player
B can effectively be computed.

2. Assume that Init — ¥ [vg] holds in all universes up to size t, but Vy.Init — ‘Pgh) [00]
does not hold. Let U be any universe for which there is a counter example s,v with

s,V = Init A Ely.ﬂ‘I’Eh) [vo]. Then the cardinality of U exceeds t.

134 Chapter 7. First-order Safety Games

() ‘{’Ehﬂ) for some h > 0 is met whenever the infinite con-

Here, the assumption ¥, =
junction Ay~ ‘Pgh) [v] is FO-definable for all program points v, as shown in Theorem 6.9.

Based on Theorem 7.26, we provide a counter-example guided abstraction refinement
loop for proving an arbitrary FO safety game G safe, as well as computing a winning

strategy for safety player B (in case G is safe):

(0) Start with some threshold ¢ := .

(1) Check whether whether the game is safe for universes up to t. If not, output unsafe
and stop.

(2) Perform the abstract fixpoint iteration (7.12). Assume that for some 1 > 0, ‘I’Eh) =

‘I’Ehﬂ). Then check whether Vy.=Init Vv ‘I’Eh) [vo] holds. If so, output safe, extract
strategy according to Theorem 7.26, and stop.

Otherwise, construct a model which satisfies Jy.Init A ﬂ‘I’fh) [v0]. Assume that the
universe of that counter example has cardinality #'. Due to Theorem 7.26, t' > ¢
holds. Therefore, set t := ' and proceed to step (1).

In comparison to the fixpoint iteration we used in Chapter 6, this is an improved
variant which features progress guarantees up to a given universe size. In addition, it
is able to deal with both FO Transition Systems and FO Safety Games and produces
counter examples in case the invariant can be proven to not be inductive.

7.7 Restricting Strategies

Not in all cases is it possible to use all state relations to compute the strategy for safety
player B. In Section 4.3, we indicated that Noninterference for a FO Safety Game G
can be reduced to safety, provided that the winning strategy for the selfcomposition of
G can be translated back to G itself. Intuitively, self~composition for the verification of
noninterference introduces primed versions R’ for each predicate R where the difference
between R’ and R originates from accesses to different versions of secret input predicates.
Accordingly, noninterference in the resulting system amounts to proving that R and
R’ always coincide. Winning strategies for the resulting safety game are only useful,
however, if they can be realized by means of corresponding strategies of the original
system T (before duplication of predicates). We suggested in Section 4.3 to restrict
strategies to admissible predicates only, i.e., those predicates whose values are guaranteed
not to differ from their primed counterparts. For the running conference management
example, all predicates were in fact admissible, allowing us to circumvent the problem
entirely. However, this does not always have to be the case.

Assume that we are given a FO Safety Game G, an inductive invariant ¥, and a subset
R, of admissible predicates for each program point u. (For the case of Noninterference
R, will contain the predicates R where both copies are guaranteed to have the same
contents.)

For all edges (1,6, v) not containing predicates from R, ¥[u] — ¥[v]6 already holds
(as ¥ is inductive). Our task is now to come up with a FO definable strategy o (B,) for

7.8 Alternative synthesis approaches 135

each program points u where player 5 has a choice at an outgoing edge e, where only
predicates from R, are allowed for the formula o(B,).

In case that a strategy exists that only uses admissible predicates, for each B-edge
(u,0,v) with occurrence of some predicate B € Rp

IBYR ¢ R, ¥[u] — (¥[0]6) (7.13)

is universally true. We will use this fact to compute such a strategy ¢ by first removing
all occurrences of non-admissible predicates from the implication and then applying the
algorithm for existential SO quantifier quantifier elimination to obtain a strategy Bc as a
FO formula speaking only about admissible predicates.

Formula (7.13) implies that 3B.YR' ¢ R,.¥[u] — (¥[v]0) is equivalent to VR’ ¢
Ru.Y[u] — (¥[v]0)[Bo/B]). Therefore, if ¥[u] — (¥[v]0)[Bo/B] is universally true for
each B-edge (u,0,v), 0 is a strategy guaranteeing that ¥ is inductive. Otherwise, the
invariant ¥ can iteratively be strengthened as in (7.1).

Given the candidate invariant ¥, the construction of an admissible FO strategy now
performs two kinds of SO quantifier elimination in a row:

¢ First, the non-admissible predicates are removed by means of universal SO quanti-
fier elimination;

¢ Second, the single existential SO quantifier is eliminated in order to construct the
strategy.

This modification can be readily plugged into the fixpoint iteration from (7.1) and thus
into the CEGAR loop from Section 7.6.

7.8 Alternative synthesis approaches

For synthesizing controllers for systems with an infinite state space, several approaches
have been introduced that automatically construct, from a symbolic description of a
given concrete game, a finite-state abstract game [46, 4, 14, 34, 86]. The main method
to obtain the abstract state space is predicate abstraction, which partitions the states
according to the truth values of a set of predicates. States that satisfy the same predicates
are indistinguishable in the abstract game. The abstraction is iteratively refined by
introducing new predicates. Applications include the control of real-time systems [34]
and the synthesis of drivers for I/O devices [86]. In comparison, our approach provides a
general modeling framework of First-order Safety Games to unify different applications
of synthesis for infinite-state systems.

None of these works, however, give similar decidability results or provide a CEGAR
loop as in Section 7.6, which not only computes winning strategies for safety player 5,
but also provides progress guarantees for a general class of FO Safety Game.

136 Chapter 7. First-order Safety Games

7.9 Introduced Concepts

g Variable for a FO Safety Game

A Reachability Player of a FO Safety Game trying to break the
invariant

B Safety Player of a FO Safety Game trying to uphold the invari-
ant

Ra, Ri Input predicates under the control of A, B

E 4 Ep Edges using input predicates from R 4, Rz

T Variable for plays, FO Safety Game equivalent of traces

o Variable for strategies, usually associated to safety player B

o is winning Safety Player B wins all plays conforming to o

g is safe There exists a winning strategy o for safety player B that
always upholds the invariant I in FO Safety Game G

Hpe Second Order Hilbert Choice operator, giving a witness for
JB.¢

7.10 Conclusion

We have introduced First-order Safety Games as an extension of FO Transition System
that allow for input predicates that are chosen with the intention to uphold the safety
objective rather than violate it. This allows us to tackle interesting synthesis questions for
FO systems. For example, this allows us to automatically infer a safe paper assignment
for the running conference management example.

Just as their propositional counterparts, FO Safety Games are positionally determined
and we showed that already acyclic FO Safety Games are just as powerful as Second
Order Logic. We then examined the case where all occurring predicates are monadic or
nullary and provided a complete classification into decidable and undecidable cases.
For the non-monadic case, we again concentrated on universal FO safety properties.
We provided techniques for certifying safety and designed candidates for synthesizing
First-order definitions of predicates as strategies that enforce the given safety objective.
We showed that for the class of ackermannian FO Safety Games, strategies can always
be automatically synthesized. We moved on to the general case, where we showed in
which cases universal invariants can be checked for inductivity, as well as in which
cases universal invariants can be automatically inferred — making the game effectively
decidable. We then introduced an abstraction refinement technique that can prove a
given safety game safe, while constructing a strategy to ensure this safety as well as
provide meaningful counterexamples. During the computation, it provides guarantees
up to a given universe size, while certifying overall safety whenever it terminates.

To tailor the synthesis solutions to the case of noninterference and other scenarios
where only parts of the state space can be used to construct the strategy, we extended
our approach so that only strategies were considered that refer to admissible predicates.

CHAPTER 8

NIWO,

FO Transition System solver

Contents
8.1 Architecture. 139
8.2 Experimental Evaluation 146
83 Conclusion 150

137

8.1 Architecture 139

8 NIWO, FO Transition System solver

We have implemented the proposed techniques into the tool NIWO. NIWO is a fully
automated, complete implementation of the symbolic model checking approach men-
tioned in Chapter 5 and the invariant inference approach in Chapter 6 for general FO
Transition Systems. It also features initial support for FO Safety Games as provided in
Chapter 7.

It is written entirely in ScaLA and uses Z3 as a backend for satisfiability of formulas
in FO Logic. It offers command line interfaces for both pipelines, and either produces
FOLTL/LTL formulas for symbolic model checking or infers inductive invariants for FO
Transition Systems. NIWO is open source, licensed under the MIT license and can be
found at [67].

8.1 Architecture

Formulas Formula manipulation is at the core of NIWO, since many of our abstraction
techniques rely on involved algorithms transforming formulas. For FO Logic this
includes conversions to conjunctive or disjunctive normal form, prenex normal form or
negation normal form as well as structural substitutions of literals by formulas, checking
if particular subformulas exist, instantiating quantifiers for a fixed universe, abstracting
existential quantifiers and others. This is captured by the Formula class of NIWO which
(together with the algorithms in the FOTransformers and the FormulaFunctions object)
easily allow for simplification and manipulation. NIWO includes its own bottom-up
rewriting simplification engine, but it can also use the Z3 backend to simplify a given
formula. For checking satisfiability of a formula, NIWO passes it to the Z3 backend.
For formulas in the Bernays-Schonfinkel-Ramsey fragment we use the built-in support
of Z3, while for temporal formulas we either use an encoding of timestamps into the
natural numbers and ask Z3 to solve the resulting formula using the theory of linear
integer arithmetic or (as detailed during the symbolic model checking description) pass
it to the dedicated LTL satisfiability solver AALTA.

Input formats NIWO is able to parse and handle both a textual representation of a
FO Transition Systems together with an invariant as well as a workflow as presented in
Section 3.1 together with a specification of Noninterference. An example of an input
tile specifying a workflow is shown in Figure 8.1, closely resembling the syntax for
multi-agent workflows introduced in Chapter 3. Most UTF-8 symbols used in the
examples like the boolean operators “=", “A”, “V” or “—" can either be written with
their corresponding symbols or in their more common Ascir forms “!”, “&&”, “||” and
“->”. The additional target block is optional and specifies that for this example, we are
only interested in Noninterference violations based on observations of agents in the
relation Read. To parameterize the declassification conditions with the free agent a of
the Noninterference property, use the first component of the target block (if it exists).

An example of a FO Safety Game as input is shown in Figure 8.2. While for workflows,

140 Chapter 8. NIWO, FO Transition System solver

1 Workflow

2

3 forallmay x:A,p:P

4 True — Conf += (x,p)

5 forallmay x:A,p:P

6 —Conf(x,p) — Assign += (x,p)

7 forall x:A,p:P,r:R

8 (Assign(x,p) A Oracle(x,p,r)) — Review += (x,p,r)

9 loop {

10 forallmay xa:A,xb:A,p:P,r:R (Assign(xa,p) A Review(xb,p,r)) — Read +=
(xa,xb,p,r)

11 forallmay x:A,p:P,r:R (Assign(x,p)) — Review += (x,p,r)
12)

13

14 Declassify

15

16 Oracle(x:A,p:P,r:R): ~Conf(xat:A,p:P)

17

18 Target

19

20 Read(xat:A, xbt:A, pt:P, rt:R)

Figure 8.1: Example input file: easychair_stubborn.wfspec

the signature is computed implicitly and relations are classified as state or input relations
based on their name, the input format for FO Transition Systems makes this notion
explicit and expects an explicit signature as the first block. The invariant is then given
explicitly and is applied to all nodes of the given system. Additionally, the user can give
the initial condition Init for the predicates AxiomPredicates explicitly, while the other state
predicates are assumed to be empty. This is useful to describe constant input relations
that do not change over time and have certain properties. For the leader election proof
examples, for example, these contain the assumptions about the ring topology.

These are represented by the case classes InvariantSpec and NISpec respectively. An
InvariantSpec then consists of the FO Transition System as a TransitionSystem object,
the initial conditions as well as the invariant. A NISpec consists of the corresponding
Workflow, the version of the agent model and the declassification conditions.

Both the TransitionSystem as well as the Workflow have a similar structure. They consist
of a Signature and a list of control structures (blocks) representing the control flow graph
of the system. In Figure 8.3, we show which classes and traits exist to represent the
different blocks. Both the loop construct as well as the nondeterministic choice construct
are aggregates of their respective block type and may be nested. Both concrete variants
of a SimpleBlock are made up of statements. The SimpleWFBlock represents one of the
two possible workflow blocks ForallWFBlock and ForallMayWFBlock corresponding to
the same concepts from the definition of workflows. Both are made up of statements
that either add tuples to a specific relation, subtract tuples from it or set the relation to a

8.1 Architecture 141

Signature
EmptyPredicates: Conf(x:A, p:P), Assign(x:A,p:P), Review(x:A,p:P,r:R),
Read(x:A,p:P,r:R)
AxiomPredicates: —
As: Al(x:A,p:P), A2(x:A,p:P,r:R), A3(x:A,p:P,r:R)
Bs: BI(x:A,p:P)
Constants: —

Transition System

// player A predicate for Conf

Conf(x,p) := Al(x,p)

// player B predicate for Assign

Assign(x,p) := B1(x,p)

Review(x,p,r) := (Assign(x,p) N\ =Conf(x,p) N A2(x,p,1))

loop {
Read(x,p,r) = 3y:A. (Assign(x,p) N\ Review(y,p,r))
Review(x,p,r) := (Assign(x,p) N\ =Conf(x,p) A A3(x,p,1))

}

Invariant
Vx:A,p:P,r:R. =(Conf(x,p) N\ Read(x,p,r))

Figure 8.2: Example input file: easychair_singletrace.tsspec

142 Chapter 8. NIWO, FO Transition System solver

specific set of tuples. These match the semantics of the workflow blocks:

forall x:5 [may]. ¢ = R £=17

A SimpleTSBlock represents an edge in a FO Transition System and consists of updates
setting a relation to a specific set of tuples, characterized by a formula. These are exactly
the several formulas 6(R7) in an edge of the FO Transition System.

The traits Block,Loop,NondetChoice and SimpleBlock are unifying traits that allow us
to write algorithms that deal with both concrete types of blocks. This allows us to use
destructuring pattern matching to distinguish if a given object is f.e. a loop — which will
be true for both WFLoop and TSLoop. To ensure that this works seamlessly all mentioned
block types use self-recursive type parameters to enable pattern matching on both the
concrete type of block as well as the different abstract types.

Symbolic Model Checking Pipeline In symbolic model checking mode, NIWO im-
plements the approach described in Chapter 5. The pipeline is shown in Figure 8.4. To
do so, it can be called using the LTLCLI command line interface with the parameter of
the *.wfspec file to be checked. It should contain a workflow specification. The file is then
parsed by the WorkflowParser into a NISpec. The encoding in LTL is then orchestrated
by the MainLTLWorkflows object, which encodes the NISpec into FO HyperLTL via the
Properties object. It then further compiles it to the satisfiability of an LTL query as
described in Chapter 5 using the FOTransformers object. The resulting FOLTL and LTL
formulas are then written to disk, where they can be fed into any LTL satisfiability
solver — for example into AALTA by the measure.sh script. Additionally, NIWO outputs
the quantified FOLTL used to create the LTL file, some metrics about the formulas as
well as a pretty-printed version of the LTL formula in the form of a *.ppltl file.

Invariant Inference Pipeline The inference pipeline is slightly more involved. It is
shown in Figure 8.5. Here, both workflow specification as well as transition system
specification files can be read and will be fed into the respective parser, resulting in
either a NISpec (in the case of a workflow) or a more general InvariantSpec (in case
the input is already a transition system). In case the input is a NISpec, we apply the
conversion shown in Section 6.1 to encode the workflow, together with the agent model
and declassification conditions into a FO Transition System, and encapsulate it (together
with its invariant) into a InvariantSpec.

In both cases, we now deal with an InvariantSpec, which is passed to the GraphBuilder
object to be parsed into a TSGraph, a scala-graph graph with edges labeled with SimpleTS-
Block. From here on, the InvariantChecker executes the inference algorithm described
in Chapter 6. It checks for edges where the labeling of graph nodes to their invariant
formula is not inductive using Z3. It then strengthens the respective edge using the
abstractions discussed earlier and then repeats the process until either

1. the candidate invariant becomes inductive;
2. or the label formula at the initial node is no longer implied by Init.

In both cases, it produces dot files detailing the process as well as the resulting invariant
and metrics about the input in separate files.

143

syo01q Sunyuasardar syreny pue sasse[)) :¢'g NI

8.1 Architecture

_|

\V4

APo1dAM

_ POIgIMACINITRI0]
| oporgdmireiod

|_ Porgserdung _ _ Porgamerdung

_ _ d
doosL | _ 00TAIM
2210yD19PUONSL | | 2010yD19PUONIM
V
[poigsy
sodA], yporg weysAg uonisuery, sodAT, oorg Mo IoM
VAV, VAV, VAV,
_ yoorgardurg _ _ doo _ _ 3010)ISPUON] _

sadAT, yoorg 1pensqy

Chapter 8. NIWO, FO Transition System solver

144

NIWO Symbolic Model Checking Pipeline

WorkflowParser

String | | NISpec

LTLCLI

Properties FOTransformers
Formula Formula
NISpec| | inFoLTL) | | (in LTL)
NISpec
MainLTLWork{lows

=

file.wfspec

file.foltl &
file.ppltl &
file.metrics

Figure 8.4: Symbolic Model Checking Pipeline

g
-

file.1tl

LTL Satisfiability Solver
(Aalta)

— SAT/UNSAT

145

JOp°, JUeLIRAUT O

B

aurpadi souarayuy juerreau] :g'g aIn3Ly

SOLI}OUL' Y
29 SJURLIRAUT [

E

oadssyary
/oadsym-ary

B

8.1 Architecture

(yuerreauy sAanonpuy)

30q0} [emuzo‘apoN]den sadgyuerreauy

‘Gurpoougydern TPy IUELIEAU] ¢ [TDueLIRAU]
. ydernoy
-3 d

(a8pa sty 105 SuruayiSuang) urpoougyders oadgIN
e[nuLIog sadgyuerreauy Suing
G (d1qeysnes padAYP 3q 03) sadgyuerreauy
B[NULIO] /20dgIN
SUOTIIPUOIDI] 0dSde7 I9}IPAUODSG L 19sIR JUIdISAQUOTISUeI],
/ I9SIe JMOTJNION

<

a8py aanpnpur JoN
IVSNN/IVS | |1sonbay dV €Z

EL

aurpdi] sduarsyur JueLeAu] OMIN

146 Chapter 8. NIWO, FO Transition System solver

Synthesis Pipeline Based upon the invariant inference pipeline, NIWO implements a
basic implementation of FO Safety Games and is able to extract strategies for ackerman-
nian predicates as described in Chapter 7.

Metrics NIWO is made up of 4200 class lines of code (cloc) in mostly functional style
ScaLa code spread over 39 files (documented by roughly 1100 lines of comments) and
bundled with a test suite of 2000 cloc in 29 files that test all functionalities NIWO offers.
It comes with a suite of 80 example and test input files.

8.2 Experimental Evaluation

We evaluated NIWO on examples of multi-agent systems, among these the examples
mentioned throughout this thesis, as well as synthetic examples to evaluate scalability
issues.

We used several examples including the following: Notebook is an event-based model
of a notebook-like data structure where several people can write messages, but everyone
can only read his own data. It is proven safe by our implementation, even in the
presence of causal agents. Leader Election, Safety is the leader election example shown
in Chapter 7. The safety property states that at no point there are two different nodes
declaring themselves leader. Conference, Safety uses the safety property that no author
should be able to read reviews to his own paper, while all other conference examples
use the Noninterference property developed in the previous chapters. Conference is the
example conference management from Example 3.3, where our implementation finds
the counterexample described in Section 5.2.3. Conference, acceptance is a slight variation
that forgoes reviews and replaces it by an acceptance relation. Since it is very similar
to the initial conference example, we use it to showcase the impact of small changes to
the workflow to the verification problem. Conference, acyclic is an acyclic version of the
conference management example which exhibits a very similar attack.

Conference, safe as well as Conference, acyclic, safe are versions of the conference man-
agement example that fix the paper assignment so that the counterexample is no longer
possible. The resulting FO Transition System is safe and is proven safe by NIWO.

Conference, acyclic (game), Conference (game) and Leader Election (game) are FO Safety
Game variants of the transition systems where the paper assignment step (in the
conference case) or the initial message to be sent (in the leader election case) are replaced
by a B predicate. They are the FO Safety Games shown in Chapter 7.

All experiments were carried out on a desktop machine using an Intel i7-3820 clocked
at 3.60 GHz with 15.7 GiB of RAM and running Debian with a timeout of 20 minutes. A
test suite bundled with a prebuilt version of NIWO can be found at [81].

8.2.1 Symbolic Model Checking

The results of the experiments for NIWO using the symbolic model checking pipeline
are shown in Table 8.1.

In addition to the realistic examples we used synthetic examples to illustrate the
scalability of the approach in several dimensions. The Fixed-Arity-X examples show the

SG0ZT | OISFI 1611 (1'9°99'9"2) oyesun || g () resned G-Tesne)-pajios
~ S96T | 691€ 868 (I'¥7'S) ofesun || § (¢) Tesned g-[esneD-pajios
3 S/¥'T ¥811 8/¢ (I'e?d) oesun || ¢ () resned Z-Tesne)-pajiog

S TE'G6T | 8£€9 696 9) oesun || 9 () resned Z-Tesne)

S¢L9T | €8¢1 82/ (@ oyes 9 uroqqnis g-Tesne)

$ 609 G08T VA ®) oyesun || § (1) resned [-[esne)

S¢C'8 6C11 799 (2) oyes id uroqqnis [-[esne)

S/68 | 6141 0961 (T 1) oyes 0T | wroqqmys 0T-A311y-3uIsesdul-peIog

SO0F0 | 699 0€9 (I'T'r'tn oyes g uroqqnis G-Ary-3urseadu]-paios

s 600 04 10€ (I'1'1) oyes ¢ uroqqnis ¢-A311y-3UISeaIdUl-pa3iog

S €00 €91 08T (') ofes 14 uioqqnis Z-A311y-3urseadur-payiog

S - 7681C 16y #) oyes i uroqqns 7-A3ry-3urseaiduy

S 029 90¢T 10€ (©) oyes ¢ uroqqnis ¢-Ajry-3urseanuy

S80°0 | €€ 081 (2) ojes z uI0qqnys Z-Ayry-Surseanouy

S 16074 | 8061 6129 (@ oyes 0C | uroqqmis oFes-0z-AyIy-pax]

S €8'8GT | 86011 656€ (@ oJes Gl | uroqqnis oyes-G1-AJIy-poxL]

S0F'ee | €8¢S 74y (@ oyes 0l | uroqqmis oyes-[-AJLIy-poxt]

S G891 | ¥S061 €2L9 (@ dyesun || oz | uroqqnis 0z-A3ry-paxig

S60¢ | FIIIL €96€ (@) ojesun || GT | uIoqqnis ST-A3ry-poxiyg

S68°0 | 66¢S 8761 (2) ojesun || 0T | uIoqqns 01-A311y-pax1g

S§TT | LTLe 80% (T’e’e) ofesun || ¢ () Tesned Ayisroatup)
g ST100 | 20T qog (I'D) ojes € uIoqqnis Ayiszaatun
g s16F% | 911F 157 (I'eH) oyesun || § (1) resned SUBLSLIREMIEICIH)
m SG/0 869 697 (10 oJes 74 uroqqnis OIDAdE “9OURISJU0))
s S€9Gy | /8IS 00Z (%) dresun || g (1) Tesned aoueydadoe “‘aduaIajuo))
m S /¥ 6801 879 (10 ojes g uroqqnis aoueydadde “‘aduarajuo))
m S9816 | 148 00£ (TT?) ojesun || g (1) resned SOUBIBFUO0D
£ S0SC | 6801 879 (I'T1'2) ayes g uroqqnis 3OUIJUOD)
& ST6T | €66 60€ (T€) oes 14 (1) resned 00q210N
= SQI'0 | O¥C 99¢ (I'1) oyes [uroqqnis 300qa10N
% awItL, 9715 1171 | 9215 11104 | 9715 9s10atun | 3nsay || 9z15 | ppow juafy | awreN]

uonen[eag urpay) [PPON OqUIAS :1°g d[dE],

148 Chapter 8. NIWO, FO Transition System solver

1 Workflow

2

3 forallmay i:A True — R += (i)

4 forallmay i:A,j:B (R(i)) = S += (i,))

5 forallmay i:A,j:Bk:C (S(i,j)) = T += (i,jk)

6 forallmay i:A,j:B,k:C,I:D (T(i,j,k)) — U += (i,j,k1)
7 forallmay i:A,j:B,k:C,I:D,m:E (U(i,j k1)) = V += (i,j,k1,m)
8

9 Target

10

11 V(u:A,v:B,w:C,x:D,y:E)

Figure 8.6: Sorted-Increasing-Arity-5.wfspec

behavior when increasing the number of relations. These cases contain X relations that
are successive copies of each other starting from some secret input. The Fixed-Arity-X-safe
examples are similar, but are devoid of counterexamples. The Sorted-Increasing-Arity-X
and Increasing-Arity-X examples show the impact of using sorts. To exemplify, Sorted-
Increasing-Arity-5 is shown in Figure 8.6. They contain X relations of arities 1,...,X,
respectively. For every relation of arity 7, a tuple containing the first n — 1 variables has
to be present in the relation with arity n — 1. For the Increasing-Arity cases, all variables
refer to the same sort, whereas in the Sorted-Increasing-Arity variant, every relation of
arity n uses n different sorts. causal-X and Sorted-causal-X cases showcase the scalability
with the number of causal agents that are part of the attack. These cases are set up in a
way that a successful attack needs to consist of at least X causal agents.

The size column gives the number of edges of the graph of the resulting FO Transition
System. The agent model column gives the considered agent model, i.e. “stubborn”
means agent_model(s) while “causal (k)” means agent_model (k) (there are at most k agents
that act causally with all others behaving stubbornly). The FO Transition System is safe
iff the LTL formula was proven unsatisfiable by AALTA and unsafe otherwise. The next
column gives the sizes of the considered universes. For example, to show that Conference
is safe with respect to one causal agent, it is enough to consider universes containing 4
reviewers, 2 papers and 2 reviews (one per paper), respectively. The universes’ sizes are
given as a tuple, for instance (4, 2,2). The size of both the FOLTL and LTL formulas is
the number of nodes in the formulas abstract syntax tree. The last column is the time
(in seconds) that it takes AALTA to check the satisfiability of the LTL formula (averaged
over 10 runs).

The implementation is able to handle all examples based on real applications in less
than 100 seconds. Even though the size of the resulting formula is exponential in the
number of agents in the universe, AALTA was still able to check the satisfiability of
formulas consisting of thousands of LTL operators in reasonable time. As expected of a
satisfiability solver, giving a counterexample for a formula is almost always faster than
proving it unsatisfiable for formulas of comparable complexities.

The Fixed-Arity cases show that workflows handle an increasing number of relations
with the same arity quite well. Here, adding another relation increases the size of the

8.2 Experimental Evaluation 149

formula by a small factor, since the size of the needed universe stays the same - only
the universally quantified encoding of the control flow graph grows. Increasing the
necessary arity of the relations increases the minimum size of the universe - as shown
by the Increasing-Arity cases. In case that all necessary agents are of the same sort, the
formula grows exponentially, whereas it grows a lot slower in case that increasing the
arity introduces a new sort. Since in those cases the size of the needed universe is
exactly one agent per sort, the resulting LTL formula is even smaller than the FOLTL
specification. The biggest factor in increasing the state space of the workflow, however,
is the number of necessary causal agents as shown by the two variants of the Causal-X
cases. Since every causal agent that we consider adds another copy of all of the agents
needed to verify the workflow for only stubborn agents, adding the first causal agent
doubles the minimum amount of agents in the universe. Since the size of the LTL
formula is exponential in the number of agents, adding more causal agents causes the
size of the resulting LTL formula to grow rapidly.

8.2.2 Invariant Inference

The results of the experiments using the invariant inference pipeline are shown in
Table 8.2. NIWO is able to prove safe all our examples that do not exhibit attacks.
Interestingly, even though termination is not guaranteed for causal agents or for general
FO Transition Systems, our tool still terminated on all examples we considered.

The first columns give the size of the encoded FO Transition System (the number
of edges the transition system consists of), and the considered agent model. Here,
“causal” means agent_model(c), specifying that all agents may act causally. The result
is marked as proven safe iff our tool could iteratively find a strengthened universal
inductive invariant that implies NDA. It is marked proven inductive if NIWO could prove
the FO Transition System safe when starting from an initial invariant. It is marked as
proven counterexample in case NIWO has proven the system unsafe for a specific universe
and it is marked proven not inductive if NIWO terminated but had to strengthen the
invariant until it was no longer implied by the initial condition. The number of times
the invariant was strengthened is recorded in the column “Inference Steps”. The size
of the largest invariant (column “Largest Inv.”) is the number of nodes in the abstract
syntax tree of the largest formula assigned to any node. The last column reports the
time (in milliseconds) for checking validity (averaged over 10 runs).

As expected of a modern satisfiability solver, Z3 was able to check the satisfiability of
all formulas easily even though the size of the resulting boolean formula is exponential in
the maximum universal quantifiers per block and the number of inference steps needed.
For stubborn agents, all examples terminated after at most 2.5 seconds. For causal
agents, the number of inference steps increased and invariants became significantly
larger. Still, all examples terminated within at most 10 seconds.

To infer an inductive invariant and a safe strategy for causal agents, multiple iterates
of the fixpoint iteration from Section 6.3 must be computed. Each iteration requires
formulas to be brought into conjunctive normal form — possibly increasing formula
size drastically. To cope with that increase, formula simplification turns out not to
be sufficient. We try two different approaches to overcome this challenge: First, we
provide the solver with parts of the inductive invariant, so fewer strengthening steps
were needed. Given the initial direction, inference terminates much faster and provides

150 Chapter 8. NIWO, FO Transition System solver

us with a useful strategy. For the second approach, we do not supply a strengthened
invariant, but accelerate fixpoint iteration by further strengthening of formulas. In that
way, we enforce termination while still verifying safety.

Compared to the symbolic model checking pipeline, the inference pipeline it is much
more focused on invariants and in general is not guaranteed to terminate. However, not
only did it terminate on all our examples, it also did so a lot faster than the symbolic
model checking pipeline did, even for the more general agent model where all agents
act causally, which could not even be handled by the symbolic model checking pipeline.

8.2.3 Synthesis

As an extension to the inference pipeline, we also tested NIWO on FO Safety Game
versions of our benchmarks to see which strategies would be extracted. The results are
shown in Table 8.3. For ackermannian predicates like the leader election example from
Chapter 7 NIWO finds the weakest universal strategy upholding the invariant, while for
non-ackermannian predicates, it resorts to further abstraction.

For Conference, Safety, the extracted strategy is exactly what we expect — not assigning
authors to their own papers. The strategy for the leader election example is shown in
Example 7.8 and is the weakest possible universal strategy.

For FO Safety Games with a complex inferred invariant like NDA for the full con-
ference management example, NIWO is still able to prove the game safe and extract a
strategy even without any given initial invariant. In comparison, though, the extracted
strategy becomes a lot stronger than needed, due to the abstraction happening during
the inference algorithm. For Conference (game) without any initial invariant to guide
the approximative approach, NIWO is only able to extract the empty assignment as
a safe strategy. For benchmarks where an initial (almost) inductive invariant is given,
i.e. Leader Election (game), initial invariant as well as Conference (game), initial invariant,
NIWO terminates quicker with fewer inference steps and the extracted strategy is more
useful in practice. Leader Election (game), initial invariant is the example mentioned in
Example 7.8, where the extracted safe strategy is in fact a superset of the safe strategy
used in the non-game benchmark Leader Election.

8.3 Conclusion

In this chapter, we have presented NIWO, a fully automated solver for FO Transition
Systems and FO Safety Games. It implements the symbolic model checking pipeline for
FO Transition Systems developed in Chapter 5 by creating the necessary LTL formulas
which are then solved by the LTL satisfiability solver AALTA. It also implements the
invariant inference pipeline for FO Transition Systems shown in Chapter 6 and extended
to FO Safety Games in Chapter 7, which infers universal inductive invariants to prove
that a given safety property holds.

We have evaluated NIWO on all examples shown in this thesis. Our experiments
indicate that we are able to prove real-world examples safe. We are also able to
extract meaningful strategies that assure safety (given an initial invariant, which is not
necessarily inductive).

151

8.3 Conclusion

SwI 6GEC | 0608 7 o A3ayens ayes Suons punoy | 11 resned uorjewrrxoxdde “(swred) sousiayuo))
s 09%¢ | <01 7 14 A3a1en)s ayes punoy 1L [esned jueLIeAUn [egul ‘(weS) sdusIsuo)
sw /189 | 0S8 7 ¥ A3a1e1)s ayes punoy 9 uwroqqnis (oured) aduarayuo))
sw 66T | /€T 7 ¥ A3a1en)s ayes punoy Q resned (oured) orpoAde “@dudIayU0))
| swope |z [0 | £3syens ayes punoy E - | Juerreaur repur ‘(dureS) uondsg 1opeaT |
| swogs | o K | £8s7ens ayes punoy EE 4 £3a5eg ‘(dured) aouaIdzu0) |
7 owIty, 7 ‘AUJ 3sa81e] 7 sdayg souarayuy : sy 7 d71g 7 [PPOIN 7 QwreN ;
uonenyeaq SISOYIUASG :¢'g d[qeL,
sw 09%Z | 201 Z aanpnpur uaaoxd €1 [esned 9Jes “9dULIdJU0))
sw ¢G0T | 602 9 ayes uaaoxd / uroqqnis 9Jes “9dULIdJU0))
sw 117 | - / ardurexazeyunod uanoid | 11 [esned ISISATUN PIXTJ ‘DOUDIJUOD)
swI $762 | S19C / aAdONpuUI jJou usaoxd 11 resned 9DUSIJUO))
sw /F€ | 0TC g ayes uanoxd 9 uroqqnis 9DUAIOJUO))
SwI 767 | S8TF ¥ ayes uanoxd 01 resned aJes “dI[DAde ‘9dUaIdJU0))
sw gze | L¥C ¥ ayes uaroxd o uroqqnis 3yes “OI[OAdE “9OUdIdJUO0))
swr /eGT | 0491 ¢ aATIdONpUI Jou udA0xd Q resned OI[DAdE “9OUDIdJUO))
sw gee | 641 ¢ dyes uanoxd ¥ uroqqnis OI[DAdE “9OUDIdJUO))
swice	zx [0	aponpur usaoxd E - uonOa[y 1pea]				
sweoz	os E	ayes uanoxd [9 - £3dyeg “90UR195U0)				
suy	aup3sa8req	sdeyg sousiapuy		ynsay	9715	PPOIN sue

uorjen[eAy 9dUIdJU] JULLIPAU] :7'Q d[qe],

CHAPTER 9

Conclusion

Contents
9.1 FutureWork 156

153

155

9 Conclusion

In this work, we provided techniques to model and analyze multi-agent systems with
unbounded numbers of possible participants. These techniques can be applied to prove
safety or noninterference of real-world distributed systems like web-based conference
management systems, online banking tools, ad-hoc networks, network protocols, etc..

To formally reason about these systems, we introduced the formal model of First-order
Transition Systems and showed how to translate several existing modeling languages
into this model. We then showed how to formalize properties and hyper-properties of
FO Transition Systems. In particular, we extended HyperLTL to First-order HyperLTL, a
powerful temporal logic we use to specify temporal Hyperproperties of FO Transition
Systems like Noninterference. For this, we formalized the behavior of the participating
agents into the two specific agent models of stubborn and causal agents and discussed
how these agent models affect the overall system.

We then developed approaches to verify a given FO Transition System. For temporal
Hyperproperties, we gave both a bounded symbolic model checking approach as well
as a symbolic model checking approach by coding both the transition system and the
property into FO HyperLTL. Both these approaches can be applied to prove (bounded)
safety for quantifier-free FO Transition Systems. For FO Transition Systems that are
not quantifier-free, we have proven undecidability even for the specific property of
Noninterference.

We then provided more specialized methods for restricted forms of Noninterference
based on the encoding of declassification and agent models into the transition system
itself, thus effectively reducing Noninterference to a safety property of the resulting
system. For the latter, we then applied techniques based on inductive invariants. We
exemplified our methods on various versions of parts of conference management systems.
We also identified classes of FO Transition Systems where this approach yields a decision
procedure. In particular, we discussed the decidable cases of monadic and guarded FO
Transition Systems. For examples outside these classes, we provided a fixpoint iteration
approach that can prove safety of a given system in case the algorithm terminates. We
also showed that the iteration always terminates for stratified guarded FO Transition
Systems.

Afterwards, we extended our analysis approaches to synthesis questions on First-order
Safety Games. We have shown in which cases we are not only able to prove a given system
safe, but also which concrete strategy the actors under our control can use to ensure
safety. This strategy can always be precisely synthesized for ackermannian FO Safety
Games. For general FO Safety Games, our methods are able to synthesize a strategy in
case that we are given an inductive invariant, and a FO definable strategy exists. We
also improved the fixpoint iteration to a CEGAR loop for FO Safety Games that provides
guarantees up to a specific universe size and also generates counter-examples in case
the system does not satisfy the property.

In addition to the theoretical foundations of FO Transition Systems and FO Safety
Games, we reported on NIWO, a fully automated analysis tool for FO Transition Systems
and FO Safety Games and showed that it performs well on the examples discussed
throughout this thesis.

156 Chapter 9. Conclusion

In summary, we developed the theory of FO Transition Systems and FO Safety
Games to model information flow questions for multi-agent systems, proved under
which assumptions the problem becomes decidable and applied practical and effective
algorithms to solve bounded symbolic model checking, symbolic model checking and
synthesis questions.

9.1 Future Work

In this work, we have provided a general framework to verify safety as well as Noninter-
ference properties of multi-agent systems. In future work, we would like to extend our
methods to more complex properties that can not be encoded by purely universal First-
order formulas. We would like to tackle more complex temporal properties that include
liveness and/or fairness constraints. Additionally, it might be possible to augment our
analysis by background theories like integers and cardinality constraints. This would,
for example, allow us to extend our methods to questions of quantitative information
flow [52, 91] or planning [35].

As we detailed in Chapter 7, a counter-example guided approach can be used to solve
both FO transition systems and games. The version described in this thesis provides
progress guarantees on the size of the considered universe. In comparison, it would also
be interesting to use abstraction and/or interpolation to generalize the counterexamples
to exclude structurally similar counterexamples regardless of universe size. This would
not improve the guarantees of the algorithm but improve practical runtimes.

There also remain many open questions about FO Safety Games. In general, it would
be interesting to further explore FO Safety Games and their connection to both synthesis
in propositional transition systems as well as Second Order Logic. This could lead to
techniques for bounded synthesis [80].

We provided the decidable fragment of ackermannian FO Safety Games, but there
might be more general fragments for which (approximative) Second Order Quantifier
Elimination succeeds, even if the computed strategy might not be the weakest possible
one. In addition, even if Quantifier Elimination is not guaranteed to succeed, we would
be interested in variants of the known semi-algorithms for Quantifier Elimination like
DLS* [40] that could provide us with candidate strategies.

For FO Transition Systems, we have shown that decidability can be retained for the
fragment of stratified guarded FO Transition Systems. We would like to know whether a
similar fragment can be found for FO Safety Games and whether the known decidability
results can be extended.

The implementation of our automated analysis and synthesis tool NIWO is rather
mature. Still, it would be interesting to experiment with different fixpoint algorithms in
order to fight the bottleneck of exploding formula sizes. It would also be useful to add
more input formats that can be expressed by FO Transition Systems. This includes the
ability to specify guards as well as first-order variables, as well as the ability to parse
additional specification languages like RML [73].

List of Figures 157

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7

51

6.1
6.2

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6

List

51

8.1
8.2
8.3

EasyChair-like workflow. 21
FO transition system for the running example 23
Signature of the running example 23
Example of an RML program 29
Encoding of a simple RML program 29
Leader Electionexample 30
RML havoc statement as a FO Transition System 31
Quantifier-free version of Example 3.3 64
Self-composition of the FO transition system from Example 3.5 75
Fixed version of the running example 103
FO Safety Game for the leader election example 110
FO Safety Game Example 111
Selfcomposition with respect to stubborn agents of the conference man-

agement FO Safety Game from Example 7.2 117
Example input file: easychair_stubborn.wfspec 140
Example input file: easychair_singletrace.tsspec 141
Classes and traits representing blocks 143
Symbolic Model Checking Pipeline 144
Invariant Inference Pipeline 145
Sorted-Increasing-Arity-5.wfspec L L oL 148

of Tables

A counterexample to non-interference.. 63
Symbolic Model Checking Evaluation 147
Invariant Inference Evaluation 151
Synthesis Evaluation 151

Bibliography

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

Aharon Abadi, Alexander Rabinovich, and Mooly Sagiv. “Decidable fragments of
many-sorted logic”. In: Journal of Symbolic Computation 45.2 (2010), pp. 153-172.

Wilhelm Ackermann. “Untersuchungen tiber das Eliminationsproblem der mathe-
matischen Logik”. In: Mathematische Annalen 110 (1935), pp. 390-413.

Sheldon B. Akers. “Binary decision diagrams”. In: IEEE Transactions on computers 6
(1978), pp. 509-516.

Luca de Alfaro and Pritam Roy. “Solving Games Via Three-Valued Abstraction
Refinement”. In: Proc. CONCUR. Vol. 4703. Springer-Verlag, 2007, pp. 74-89.

Torben Amtoft and Anindya Banerjee. “Information Flow Analysis in Logical
Form”. In: Proc. SAS 2004. Ed. by Roberto Giacobazzi. Springer, 2004, pp. 100-115.

Henrik Reif Andersen. A Polyadic Modal u-Calculus. Tech. rep. Danmarks Tekniske
Universitet, 1994.

Myrto Arapinis, Sergiu Bursuc, and Mark Ryan. “Privacy Supporting Cloud
Computing: ConfiChair, a Case Study”. In: Proc. POST 2012. Springer Verlag, 2012,
pp- 89-108.

James Aspnes and Eric Ruppert. “An introduction to population protocols”. In:
Middleware for Network Eccentric and Mobile Applications. Springer, 2009, pp. 97-120.
Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

Thomas Ball and Sriram K Rajamani. “The SLAM toolkit”. In: International Confer-
ence on Computer Aided Verification. Springer. 2001, pp. 260-264.

Michael Barnett, Robert DeLine, Manuel Fihndrich, K Rustan M Leino, and
Wolfram Schulte. “Verification of Object-Oriented Programs with Invariants.” In:
Journal of Object Technology 3.6 (2004), pp. 27-56.

Gilles Barthe, Pedro R D’Argenio, and Tamara Rezk. “Secure information flow
by self-composition”. In: Proceedings. 17th IEEE Computer Security Foundations
Workshop, 2004. IEEE. 2004, pp. 100-114.

Thomas Bauereifs and Dieter Hutter. “Information flow control for workflow
management systems”. In: it - Information Technology 56.6 (2014), pp. 294-299.

Thomas Bauereifs, Armando Pesenti Gritti, Andrei Popescu, and Franco Raimondi.
CoSMeDis: A Distributed Social Media Platform with Formally Verified Confidentiality
Guarantees. to appear in Security and Privacy 2017. 2017.

159

Bibliography

(28]

[29]

Heinrich Behmann. “Beitrdge zur Algebra der Logik, insbesondere zum Entschei-
dungsproblem”. In: Mathematische Annalen 86.3-4 (1922), pp. 163—-229.

Robert Berger. The undecidability of the domino problem. 66. American Mathematical
Soc., 1966.

C. Bhardwaj and S. Prasad. “Parametric information flow control in ehealth”.
In: Proceedings HealthCom 2015. Oct. 2015, pp. 102-107. por: 10.1109/HealthCom.
2015.7454481.

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan
Zhu, et al. “Bounded model checking.” In: Advances in computers 58.11 (2003),
pp. 117-148.

Michael Blondin, Javier Esparza, Stefan Jaax, and Antonin Kucera. “Black Ninjas in
the Dark: Formal Analysis of Population Protocols.” In: LICS. Ed. by Anuj Dawar
and Erich Gradel. ACM, 2018, pp. 1-10. por: 10.1145/3209108.

Egon Borger, Erich Gradel, and Yuri Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer, 1997.

Egon Borger and Robert Stark. “History and Survey of ASM Research”. In: Abstract
State Machines: A Method for High-Level System Design and Analysis. Springer, 2003,
pp- 343-367. 1sBN: 978-3-642-18216-7.

Egon Borger and Robert Stark. “Tool Support for ASMs”. In: Abstract State Machines:
A Method for High-Level System Design and Analysis. Springer, 2003, pp. 313-342.
ISBN: 978-3-642-18216-7.

Ronald] Brachman, Hector] Levesque, and Raymond Reiter. Knowledge representa-
tion. MIT press, 1992.

Aaron R Bradley. “SAT-based model checking without unrolling”. In: International
Workshop on Verification, Model Checking, and Abstract Interpretation. Springer. 2011,
pp- 70-87.

Adam Chlipala. Certified programming with dependent types: a pragmatic introduction
to the Coq proof assistant. MIT Press, 2013.

Alessandro Cimatti. “Industrial applications of model checking”. In: Summer School
on Modeling and Verification of Parallel Processes. Springer. 2000, pp. 153-168.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Counterexample-guided abstraction refinement”. In: International Conference on
Computer Aided Verification. Springer. 2000, pp. 154-169.

Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick Bloem.
Handbook of model checking. Vol. 10. Springer, 2018.

Michael Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe, and César Sanchez. “Temporal Logics for Hyperproperties”. In:
Proc. of POST. 2014.

Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”. In: Journal of
Computer Security 18.6 (2010), pp. 1157-1210.

Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. “Logical Abstract Do-

mains and Interpretations”. In: The Future of Software Engineering. Springer, 2011,
pp- 48-71. por: 10.1007/978-3-642-15187-3_3.

https://doi.org/10.1109/HealthCom.2015.7454481
https://doi.org/10.1109/HealthCom.2015.7454481
https://doi.org/10.1145/3209108
https://doi.org/10.1007/978-3-642-15187-3_3

Bibliography 161

[32] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. “Semantics and analysis
of business process models in BPMN". In: Information and Software technology 50.12
(2008), pp- 1281-1294.

[33] R.Dimitrova, B. Finkbeiner, M. Kovécs, M. N. Rabe, and H. Seidl. “Model Checking
Information Flow in Reactive Systems”. In: Proc. VMCAI'12. 2012, pp. 169-185.

[34] Rayna Dimitrova and Bernd Finkbeiner. “Counterexample-Guided Synthesis of
Observation Predicates”. In: Formal Modeling and Analysis of Timed Systems. Ed.
by Marcin Jurdziniski and Dejan Nickovi¢. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 107-122. 1sBN: 978-3-642-33365-1.

[35] Kutluhan Erol, Dana S Nau, and Venkatramana S Subrahmanian. “Complexity,
decidability and undecidability results for domain-independent planning”. In:
Artificial intelligence 76.1-2 (1995), pp. 75-88.

[36] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT
Press, 1995.

[37] Bernd Finkbeiner, Christian Miiller, Helmut Seidl, and Eugen Zalinescu. “Verifying
Security Policies in Multi-agent Workflows with Loops”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017. Ed. by Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu. ACM, 2017, pp. 633-645. 1sBN: 978-1-4503-
4946-8. por: 10.1145/3133956.3134080.

[38] Bernd Finkbeiner, Markus N. Rabe, and César Sdnchez. “Algorithms for Model
Checking HyperLTL and HyperCTL*”. In: Computer Aided Verification. Springer.
2015, pp. 30-48.

[39] Bernd Finkbeiner, Helmut Seidl, and Christian Miiller. “Specifying and Verifying
Secrecy in Workflows with Arbitrarily Many Agents”. In: Automated Technology
for Verification and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan,
October 17-20, 2016, Proceedings. Ed. by Cyrille Artho, Axel Legay, and Doron
Peled. Vol. 9938. Lecture Notes in Computer Science. 2016, pp. 157-173. 1SBN:
978-3-319-46519-7. por: 10.1007/978-3-319-46520-3\ _11.

[40] Dov M Gabbay, R Schmidt, and Andrzej Szalas. Second Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. College Publications, 2008.

[41] Pranav Garg, Christof Loding, P Madhusudan, and Daniel Neider. “ICE: A robust
framework for learning invariants”. In: International Conference on Computer Aided
Verification. Springer. 2014, pp. 69-87.

[42]]. A. Goguen and J. Meseguer. “Security Policies and Security Models”. In: IEEE
Symp. on Security and Privacy. 1982, pp. 11-20.

[43] Erich Gradel and Wolfgang Thomas. Automata, logics, and infinite games: a guide to
current research. Vol. 2500. Springer Science & Business Media, 2002.

[44] Yuri Gurevich. “Evolving algebras 1993: Lipari guide”. In: arXiv preprint arXiv:1808.06255
(2018).

[45] Joseph Y. Halpern and Kevin R. O’Neill. “Secrecy in Multiagent Systems”. In:
ACM Trans. Inf. Syst. Secur. 12.1 (Oct. 2008), 5:1-5:47. 1ssN: 1094-9224.

https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1007/978-3-319-46520-3_11

162

Bibliography

[46]

[47]

[54]

[55]

[56]

T.A. Henzinger, R. Jhala, and R. Majumdar. “Counterexample-guided control”. In:
Proc. ICALP’03. Vol. 2719. LNCS. Springer, 2003, pp. 886-902.

Ian Hodkinson and Mark Reynolds. “11 Temporal logic”. In: Studies in logic and
practical reasoning. Vol. 3. Elsevier, 2007, pp. 655-720.

Ian M. Hodkinson, Frank Wolter, and Michael Zakharyaschev. “Decidable frag-
ment of first order temporal logics”. In: Ann. Pure Appl. Logic 106.1-3 (2000), pp. 85—
134.

Markus Holzer, Martin Kutrib, and Andreas Malcher. “Complexity of multi-head
finite automata: Origins and directions”. In: Theoretical Computer Science 412.1-2
(2011), pp. 83-96.

Gerard] Holzmann. The SPIN model checker: Primer and reference manual. Vol. 1003.
Addison-Wesley Reading, 2004.

Sebastian Hunt and David Sands. “On flow-sensitive security types”. In: Proc.
POPL 2006. Ed. by]. Gregory Morrisett and Simon L. Peyton Jones. 2006, pp. 79—
90.

J. W. Gray III. “Toward a mathematical foundation for information flow security”.
In: Proceedings IEEE Symp. on Security and Privacy. May 1991, pp. 210-34.

Neil Immerman, Alex Rabinovich, Tom Reps, Mooly Sagiv, and Greta Yorsh. “The
boundary between decidability and undecidability for transitive-closure logics”.
In: International Workshop on Computer Science Logic. Springer. 2004, pp. 160-174.

Emmanuel Jeandel. “The periodic domino problem revisited”. In: Theoretical
Computer Science 411.44-46 (2010), pp. 4010—4016.

Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mangharam.
“Modeling and verification of a dual chamber implantable pacemaker”. In: Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2012, pp. 188-203.

Sudeep Kanav, Peter Lammich, and Andrei Popescu. “A Conference Management
System with Verified Document Confidentiality”. In: Computer Aided Verification.
Ed. by Armin Biere and Roderick Bloem. Cham: Springer International Publishing,
2014, pp. 167-183. 1sBN: 978-3-319-08867-9.

Sudeep Kanav, Peter Lammich, and Andrei Popescu. “A Conference Management
System with Verified Document Confidentiality”. In: CAV 2014. Springer Verlag,
2014, pp. 167-183. 1sBN: 978-3-319-08867-9.

Aleksandr Karbyshev, Nikolaj Bjerner, Shachar Itzhaky, Noam Rinetzky, and
Sharon Shoham. “Property-directed inference of universal invariants or proving
their absence”. In: Journal of the ACM (JACM) 64.1 (2017), p. 7.

Denis Kuperberg, Julien Brunel, and David Chemouil. “On Finite Domains in
First-Order Linear Temporal Logic”. In: Int. Symposium on Automated Technology for
Verification and Analysis. Springer. 2016, pp. 211-226.

Marta Kwiatkowska, Gethin Norman, and David Parker. “PRISM: Probabilistic
symbolic model checker”. In: International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation. Springer. 2002, pp. 200-204.

Bibliography 163

[61] Daniel Leivant. “Higher order logic”. In: Handbook of Logic in Artificial Intelligence
and Logic Programming, Volume2, Deduction Methodologies. Ed. by Dov M. Gabbay,
Christopher J. Hogger,]. A. Robinson, and Jorg H. Siekmann. Oxford University
Press, 1994, pp. 229-322.

[62] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard
B. Scherl. “GOLOG: A logic programming language for dynamic domains”. In:
The Journal of Logic Programming 31.1 (1997), pp. 59-83. 1ssN: 0743-1066. DOI: https:
//doi.org/10.1016/S0743-1066 (96)00121-5.

[63] Zohar Manna and Amir Pnueli. “Verification of Concurrent Programs: The Tem-
poral Framework”. In: The Correctness Problem in Computer Science. Ed. by Robert S.
Boyer and] Strother Moore. Academic Press, London, 1981, pp. 215-273.

[64] Heiko Mantel. “Possibilistic Definitions of Security — An Assembly Kit”. In: Proc.
of the 13th IEEE Computer Security Foundations Workshop (CSFW). IEEE Computer
Society, July 2000, pp. 185-199.

[65] Heiko Mantel and Christian Probst. “On the Meaning and Purpose of Attack
Trees”. In: Proceedings of the 32nd IEEE Computer Security Foundations Symposium
(CSF). 2019, pp. 184-199.

[66] René Mazala. “Infinite Games”. In: Automata, Logics, and Infinite Games. Ed. by Erich
Gréadel, Wolfgang Thomas, and Thomas Wilke. LNCS 2500, Springer, Heidelberg,
pp- 23-38.

[67] Christian Miiller. NIWO - First Order Transition System Solver. https://versioncontrolseidl.
in.tum.de/mueller/loopingworkflows. 2017.

[68] Christian Miiller and Helmut Seidl. “Stratified Guarded First Order Transition
Systems”. In: Static Analysis - 27th International Symposium, SAS 2020, November
18-20, 2020, Proceedings. to appear. 2020.

[69] Christian Miiller, Helmut Seidl, and Eugen Zalinescu. “Inductive Invariants for
Noninterference in Multi-agent Workflows”. In: 31st IEEE Computer Security Founda-
tions Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018. IEEE Computer
Society, 2018, pp. 247-261. 1sBN: 978-1-5386-6680-7. po1: 10.1109/CSF.2018.00025.

[70] Timothy Nelson, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi.
“Toward a More Complete Alloy”. In: Proc. of the 3rd Int. Conf. on Abstract State
Machines, Alloy, B, VDM, and Z (ABZ 2012). Vol. 7316. Lecture Notes in Computer
Science. Springer, 2012, pp. 136-149.

[71] Hans Jirgen Ohlbach. “SCAN - Elimination of Predicate Quantifiers”. In: Proc.
of the 13th Int. Conf. on Automated Deduction - CADE-13. 1996, pp. 161-165. por:
10.1007/3-540-61511-3_77.

[72] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Ori Lahav, Mooly Sagiv,
and Sharon Shoham. “Decentralizing SDN policies”. In: ACM SIGPLAN Notices.
Vol. 50. 1. ACM. 2015, pp. 663-676.

[73] Oded Padon, Neil Inmerman, Sharon Shoham, Aleksandr Karbyshev, and Mooly
Sagiv. “Decidability of inferring inductive invariants”. In: Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM. 2016, pp. 217-231.

https://doi.org/https://doi.org/10.1016/S0743-1066(96)00121-5
https://doi.org/https://doi.org/10.1016/S0743-1066(96)00121-5
https://versioncontrolseidl.in.tum.de/mueller/loopingworkflows
https://versioncontrolseidl.in.tum.de/mueller/loopingworkflows
https://doi.org/10.1109/CSF.2018.00025
https://doi.org/10.1007/3-540-61511-3_77

164

Bibliography

[74]

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. “Paxos made EPR:
decidable reasoning about distributed protocols”. In: PACMPL 1.00PSLA (2017),
108:1-108:31. por: 10.1145/3140568.

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon
Shoham. “Ivy: safety verification by interactive generalization”. In: Proc. of the 37th
ACM SIGPLAN Conf. on Programming Language Design and Implementation, PLDI
2016. 2016, pp. 614-630. por: 10.1145/2908080.2908118.

Lawrence C Paulson. Isabelle: A generic theorem prover. Vol. 828. Springer Science &
Business Media, 1994.

Frank P Ramsey. “On a problem of formal logic”. In: Classic Papers in Combinatorics.
Springer, 2009, pp. 1-24.

Arnold L Rosenberg. “On multi-head finite automata”. In: IBM Journal of Research
and Development 10.5 (1966), pp. 388-394.

A. Sabelfeld and D. Sands. “Dimensions and Principles of Declassification”. In:
Proceedings CSFW’05. IEEE Computer Society, 2005, pp. 255-269. 1sBN: 0-7695-2340-
4.

Sven Schewe and Bernd Finkbeiner. “Bounded synthesis”. In: International Sympo-
sium on Automated Technology for Verification and Analysis. Springer. 2007, pp. 474—
488.

Helmut Seidl, Christian Miiller, and Bernd Finkbeiner. How to Win First Order
Safety Games - Software Artifact. Oct. 2019. po1: 10.5281/zenodo.3514277.

Helmut Seidl, Christian Miiller, and Bernd Finkbeiner. “How to Win First-Order
Safety Games”. In: Verification, Model Checking, and Abstract Interpretation - 21st
International Conference, VMCAI 2020, New Orleans, LA, USA, January 16-21, 2020,
Proceedings. Ed. by Dirk Beyer and Damien Zufferey. Vol. 11990. Lecture Notes
in Computer Science. Springer, 2020, pp. 426—448. 1sBN: 978-3-030-39321-2. por:
10.1007/978-3-030-39322-9_20

A. P. Sistla and E. M. Clarke. “The Complexity of Propositional Linear Temporal
Logics”. In: J. ACM 32.3 (July 1985), pp. 733-749.

Marc Spielmann. “Abstract state machines: verification problems and complexity”.
PhD thesis. RWTH Aachen University, Germany, 2000.

David Sutherland. “A model of information”. In: Proc. 9th National Computer
Security Conference. DTIC Document. 1986, pp. 175-183.

A. Walker and L. Ryzhyk. “Predicate abstraction for reactive synthesis”. In: 2014
Formal Methods in Computer-Aided Design (FMCAD). Oct. 2014, pp. 219-226. por:
10.1109/FMCAD.2014.6987617.

Hao Wang. “Dominoes and the AEA case of the decision problem”. In: Computation,
Logic, Philosophy. Springer, 1990, pp. 218-245.

https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.5281/zenodo.3514277
https://doi.org/10.1007/978-3-030-39322-9_20
https://doi.org/10.1109/FMCAD.2014.6987617

Bibliography 165

[88]

Christoph Wernhard. “Approximating Resultants of Existential Second-Order
Quantifier Elimination upon Universal Relational First-Order Formulas”. In: Pro-
ceedings of the Workshop on Second-Order Quantifier Elimination and Related Topics
(SOQE 2017), Dresden, Germany, December 6-8, 2017. Ed. by Patrick Koopmann,
Sebastian Rudolph, Renate A. Schmidt, and Christoph Wernhard. Vol. 2013. CEUR
Workshop Proceedings. CEUR-WS.org, 2017, pp. 82-98.

Christoph Wernhard. “Heinrich Behmann’s Contributions to Second-Order Quan-
tifier Elimination from the View of Computational Logic”. In: arXiv preprint
arXiv:1712.06868 (2017).

Christoph Wernhard. “Second-order quantifier elimination on relational monadic
formulas—A basic method and some less expected applications”. In: International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods.
Springer. 2015, pp. 253-269.

H. Yasuoka and T. Terauchi. “On bounding problems of quantitative information
flow”. In: Proceedings ESORICS’10. Springer, 2010, pp. 357-372. 1sBN: 3-642-15496-4.

S. Zdancewic and A. C. Myers. “Observational Determinism for Concurrent
Program Security”. In: Proceedings CSFW’03. 2003.

	Introduction
	Structure of this Thesis
	Preceding Publications

	Preliminaries
	Sorted First-order Logic
	Introduced Concepts

	First-order Transition Systems
	The Workflow Language
	First-order Transition Systems
	Alternative Models
	Introduced Concepts
	Conclusion

	Temporal Security Properties
	First-order Linear Temporal Logic
	First-order HyperLTL
	Noninterference
	Related Specification Languages
	Introduced Concepts
	Conclusion

	Verification of Temporal Properties
	Bounded Symbolic Model Checking
	Symbolic Model Checking
	Introduced Concepts
	Conclusion

	Invariants for FO Transition Systems
	Encoding Agent Models and Declassification
	Verification of Invariants
	Inferring Inductive Invariants
	Invariant Inference for Monadic FO Transition Systems
	Universal Formulas as Abstract Domain
	Stratified Guarded FO Transition Systems
	Universal Invariants for Unrestricted FO Transition Systems
	Application to Noninterference
	Forcing Stratification for General FO Transition System
	Alternative First-order Logic based approaches
	Introduced Concepts
	Conclusion

	First-order Safety Games
	First-order Safety Games
	Noninterference for FO Games
	Monadic FO Safety Games
	Inductive Invariants for FO Safety Games
	Hilbert's Choice Operator for Second Order Quantifiers
	Approximation and Refinement
	Restricting Strategies
	Alternative synthesis approaches
	Introduced Concepts
	Conclusion

	NIWO, FO Transition System solver
	Architecture
	Experimental Evaluation
	Conclusion

	Conclusion
	Future Work

	Bibliography

