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Abstract— Fully automated and autonomous vehicles place 
new demands on reliability, availability and safety. Eliminating 
the driver as a fallback path in the event of technical 
breakdowns or failures, forces a self-driving vehicle to operate 
safely even in the event of a fault, in order to reach a risk-
minimum state. Similarly, minor disturbances, such as software 
crashes or failures, must be compensated for safety terms in real 
time. These requirements are realized through redundancy-
based, fail-operational on-board architectures. In the event of 
an error, a fault-tolerant subsystem can be switched on or off in 
order to obtain a (possibly degraded) operability. In aviation, 
such system designs have been standardized and steadily 
developed for the use of complex, software-based flight control 
systems. The article gives an overview of the technical 
requirements of the aviation and automotive industries, as well 
as the presentation of aviation methods and principles and their 
transfer to the automotive development. This includes methods 
for fault detection, fault tolerance, strategies for continued 
operation, live repair, degradation and the safe shutdown of the 
system into a state of minimal risk. This procedure has not been 
implemented in the current automotive development because 
the responsibility for driving the vehicle lies always with the 
driver. A quantitative assessment of reliability, availability and 
safety – considering the above system properties – can be 
performed using multi-stage simulation models, which are also 
presented in this paper. The goal is the statistical validation of 
an economic system design while complying with the safety 
requirements as established by common standards and rules in 
the automotive sector (for example ISO 26262, SOTIF via ISO / 
PAS 21448, etc.). 

Keywords—availability increase due to fail-operational 
architectures, reliability of complex hard- and software 
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I. INTRODUCTION 
The development of automated and autonomous systems is 
currently being heavily promoted across many industries, 
producing new results at regular intervals. A large share of 
this lies within the automotive industry, but also industries 
such as the railway industry or the process engineering 
research in these areas and try to use new technologies for 
themselves. 
One aspect which, in addition to the pure technical 
implementation of the systems, represents a major challenge 
is the safe design of the systems and the safety proof to be 
provided. As a result of the elimination of humans as a control 
level and the assumption of control by software, the demands 
placed on the systems regarding safety and availability 
increase. 

In particular, the handling of failures and the associated fault-
tolerant design of the system have a major role. The person 
who, in the case of an error, e.g. in the car, has to intervene, 
is no longer tangible, so that this fallback path must be 
replaced. 
In this paper, on the one hand, chapter 2 presents concepts on 
how to increase the reliability of a system by means of 
redundancy, on the other hand, with the help of the Monitor-
Control principle a possibility is shown with which the safe 
operation of the system can be ensured. In addition, Chapter 
2 explains the possibility of degradation strategies that can be 
used to deactivate unnecessary functions in the event of a 
failure, so that sufficient capacity is available for safety-
relevant functions. Chapter 3 presents first the problems that 
arise as a result of the increasing share of software and the 
dynamic distribution of functions in safety and reliability 
proofing in automated and autonomous systems. On this 
basis, based on the Monte Carlo Simulation, a model is 
presented with which software-loaded dynamic system 
architectures can be analysed with regard to adapted 
evaluation criteria. The possibility of automatically 
classifying failures in a vehicle and, accordingly, 
autonomously treating them does not currently exist in the 
field of automotive. A model from the field of aerospace is 
presented in Chapter 4 which addresses this topic and shows 
first approaches. 

II. REQUIREMENTS FOR SAFETY-RELEVANT SYSTEM 
ARCHITECTURES 
The safety and reliability concept of future automated and 
autonomous systems must be renewed due to the loss of a 
human person. Today’s systems are often designed by using 
the fail-safe-principle, where a person can immediately take 
over the control of the system in case of a failure that lead to 
a function shutdown. Besides that, the person acts as a 
controller in terms of automated functions and must intervene 
in the event of a wrongdoing. For example, a driver has to 
monitor an automated car up to SAE Level 2 “Partial 
Automation” [1] and is responsible for the action of the 
system. Therefore, there is no need for fallback modes in 
terms of the system design to maintain or supervise the 
function. Automated driving functions of Level 3 
“Conditional Automation” do not need a driver in the loop, 
but the driver has to be available as a fallback, e.g. in case of 
failure, after a takeover time. The system therefore has to 
remain capable of manoeuvring in the event of a fault within 
a defined time interval, it must be temporary fail-operational. 



In case of Level 4 “High Automation” and Level 5 “Full 
Automation” the driver does not need to be in the loop and be 
available as a fallback, so there are special fault tolerance 
requirements for the system architecture due to the fail-
operational-principle. 
Besides the fault tolerance the system has to supervise itself 
in terms of safety-relevant actions, no accidents, especially 
with human damage, due to a malfunction can be tolerated. 
Because of the described challenges in automated and 
autonomous systems suitable strategies must be used in order 
to guarantee the maximum of the safe state probability 
(availability of safety). A possible approach is to use the 
aerospace principles for Monitor-Control and redundancies.  
 
A self-resolving system must be monitored in real-time. 
Pilots are monitoring the system in an aircraft. However, 
autonomous systems must be using redundancy to implement 
a Monitor-Control-Principle (Fig. 1).  
 

 
Fig. 1 General Monitor-Control architecture 

A difference in the reliability and safety redundancy need to 
be considered. Simple parallel system increases the reliability 
but in order to use a redundancy with a Monitor-Control-
Principle a m-out-of-n, n-out-of-n-systems or serial system 
with a voter is required, the parallel system can only detect a 
failure, but cannot determine which component causes the 
failure and which component is doing right. 
 
The implementation of redundancy is more complicated and 
leads to an increase of redundant and partly dissimilar 
systems. However, on the one hand, economic aspects and, 
on the other hand, also structural aspects have to be 
considered in order to find a suitable solution. 
In case of failures, where the system needs to access a safe 
failure state, the availability of base function needs to be 
ensured (probably without requirements to the redundancy, 
etc.). Therefore degradation strategies must be defined in 
order to use the available resources efficiently ( Fig. 2).  
 

 
Fig. 2 Exemplary degradation concept 

On the basis of these strategies, in the event of an failure, 
functions that are not necessary in the present situation can 
be switched off and the freed-up resources used for safety-
relevant applications. For example, it would be possible to 
hijack a control unit which is used for functions in the area of 
infotainment in the event of failure of a control unit having a 
safety-relevant driving function and to be able to continue 
operating the function on it. Maintaining the safe onward 
journey would have priority. For the realization of such a 
concept it is necessary that the functions are provided with 
different priorities, which can change depending on altered 
use cases. 
 
From the view of reliability engineering different paradigms 
are considered: reliability, availability, safety and the 
parameters are assessed for deviations. So far, the classical 
quality management often only determines reliability 
parameters and assigns them to safety critical scenarios. 

III. SAFETY AND RELIABILITY PROOF 
Another challenge of automated and autonomous systems are 
the safety and reliability proof. 
The classic reliability system structures for the conventional 
mechanical and electrical dominated systems cannot describe 
the whole picture of mainly software-based infrastructures 
[2]. The main reason for that is the dynamic of the software 
application and their failures and repair. After a software 
failure the components can be switched off, restarted or the 
whole application can be moved to another processor, 
resulting in a new repair and failure behavior that must be 
methodically defined. A new start of an application, a flash 
of an image or external repair processes via WLAN or mobile 
networks are examples that must be considered for the 
analysis. As a result of these boundary conditions, the 
parameter of availability of dynamic repairable systems is 
becoming increasingly important. 
In quantified methods for reliability analysis the possibility 
for considering repair rates and repair behavior are already 
possible. However, describing the repair behavior for 
components realistically cannot be considered by classical 
methods, yet. The implementation of strategies, e.g. Markov-
Processes or Petri-networks is mathematically challenging or 
even in some cases impossible. 



Through the increasing realization of functions by means of 
software and the existence of redundant structures a 
temporary or permanent shift of a whole function 
implemented in software to a different hardware is possible 
and necessary [3]. The result is a change of the system 
structure during operation, which is adapting its tasks and 
modes according to fixed rules. A reliability optimization 
problem is created, which must consider the technical and 
economic efficiency of the system’s design. Furthermore, 
safety requirements can depend on different use cases. 
Different requirements for the computing power of an 
automated or autonomous function exist depending on the 
size of existing influencing factors and the resulting 
complexity of the function. The system must be technically 
flexible to adapt to different requirement and environments. 
A solution is that dynamic system structures are introduced 
that can adapt their structure automatically according to the 
use case. For the reliability engineering multi-layered 
calculation on different levels must be done and summarized.  
This point poses another challenge to the reliability and safety 
analyses, since such dynamics combined with the repair 
behavior of the software can hardly be represented and 
calculated analytically. 
This section presents an approach to handle the above-
mentioned challenges in terms of safety and reliability proof. 
A possible solution to represent the boundary conditions is to 
use the Monte Carlo Simulation (MCS) [4] [5] [6] [7] 
whereby the systems can be modelled very flexible. 
The simulation is based on state diagrams in which the system 
is mapped with regard to active and failed hardware and 
software. The system, which is calculated by way of example 
in this paper, is shown in Fig. 3. 
 

 
Fig. 3 Reliability block diagram of a duo-duplex architecture 

The system in itself corresponds to a simple parallel system, 
e.g. from two control units. Each of these control units has 
two software units for function fulfillment. In order to be able 
to view these software units in the calculation, they are shown 
in a series connection with the hardware components from a 
functional point of view, as both the hardware and the 
software must be functional in order to function properly. 
Since two software blocks are active on each hardware, they 
are displayed as a parallel circuit behind the hardware, 
creating a duo-duplex system. The associated state diagram 
of the system is shown in Fig. 4.  
 

 
Fig. 4 State diagram of a hard- and software architecture 

The state-diagram differs between irreparable hardware 
failures (horizontal direction) and reparable software failures 
and repairs (vertical direction). This means that should the 
system be in state 1.4 (system failed) due to four software 
errors, it may work again through restarting a software. If the 
system is in state 3 due to two hardware failures, the system 
has failed completely and must be fixed, e.g. in a workshop. 
For every transition from one state to another special rules 
can be implemented, for example different kinds of parallel 
failure and repair modes, depending transitions (Fig. 5) or 
superordinate rules.  
 

 
Fig. 5 Parallel and dependent failure and repair modes 

Compared to analytical procedures, e.g. Markov processes, 
much more flexible modelling is possible here. For example, 
the limitation to the exponential distribution can be bypassed 
by the simulation so that distribution functions such as the 
Weibull distribution or lognormal distribution can be used. 
Moreover, it is possible to adjust the transition rates so that 
even a dynamic system can be mapped. 
By the means of the state diagrams, it is possible to assign 
key performance indicators (KPI) to the different states in 
Fig. 4, for example safety (green states), availability (green 
and yellow states) and reliability (green and yellow states, 
until the system reaches a red state, after that the reliability 
equals zero). 
In this paper the KPI’s are defined with regards to the 
explained challenges for the software-based safety-critical 
systems. The advanced definitions are as follows: 
 



Reliability 
The reliability Z(t) in this paper specifies the probability, that 
the system has not failed. For each iteration a failure time 
tfailure;i is determined. This point in time describes the first 
occurrence of a failed system state, e.g. state 1.4, 2.2 or 3 in 
Fig. 4. Initially, each iteration starts with Zi(t0) = 1. As long 
as the system has not reached a failed state Zi(t < tfailure;i) = 1. 
As soon as the system reaches a failed state, the reliability is 
defined as Zi(t ≥ tfailure;i) = 0. The estimation of the reliability 
Ẑ(t) of the system considering all iterations n is displayed in 
(1). 
 

𝑍𝑍�(𝑡𝑡) ≅ 𝑃𝑃(𝑍𝑍(𝑡𝑡) = 1) =
∑ 𝑍𝑍𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
       (1) 

 
Availability 
The duration that the system spends in available states is 
calculated to determine the availability. States in which the 
system isn’t in a failed state are considered as available states, 
e.g. state 1 in Fig. 4. The availability Ai(t) of t for one iteration 
is the ratio of t that the system spends in available states. The 
calculation of the availability Ai(t) is in (2)  
 
   Ai(t) = ta,i

t
,        (2) 

 
with ta;i: duration until t, that the system spends in available 
states. 
The estimation of the availability A�(t) for several iterations is 
the arithmetic mean of all iterations n considering all 
calculated availabilities A1(t) till An(t) (3). 
 

𝐴̂𝐴(t) ≅ ∑ Ai
n
i=1 (t)

n
.        (3) 

 
Safety 
The duration that the system spends in safe states is calculated 
to determine the safety. Safe states are characterized by the 
fulfilment of fault tolerance and the Monitor-Control-
Principle, i.e. there is at least one redundant component that 
can compare the result of the own calculation with another 
component, or which could transfer the system in a safe 
condition. Thus, in the paper the safety is a subset of the 
availability. The safety Si(t) of t for on iteration is the ratio of 
t that the system spends in safe states. The calculation of the 
availability Si(t) is in (4)  
 

Si(t) = ts,i
t

,         (4) 
 
with ts;i: duration until t, that the system spends in safe states. 
The estimation of the safety S�(t) for several iterations is the 
arithmetic mean of all iterations n considering all calculated 
safeties S1(t) till Sn(t) (5). 
 

𝑆̂𝑆(t) ≅ ∑ Si
n
i=1 (t)
n

.        (5) 
 
The repeated simulation generates a large number of status 
profiles. Fig. 6 shows two simulated exemplary status 
profiles depending on the available redundancy. 
 

 
Fig. 6 Status profiles of two iterations 

Based on the MCS though the huge amount of status profiles 
a probability can be calculated that the system is in state X at 
time t. Combining the probability with the defined state KPI’s 
temporal profiles for safety, availability and reliability can be 
derived. If different system architectures are examined by 
means of the MCS, quantitative statements about these 
systems can be affected. Fig. 7 shows an example of the 
course of the three KPI’s over a time of 12 months. 
 



 
Fig. 7 Diagrams of safety, availability and reliability 

As can be seen, the graph of the safety and availability keep 
a very high level of 99,7% of safety and 99,8% of availability 
after 12 months. Neglecting a repair after a system failure, the 
reliability decreases more and is after a period of 12 month at 
a value of about 86%. The course of safety and availability 
are very similar. This is because both parameters are based 
on the state probabilities of states 1, 1.1, 1.2 and 2. In the case 
of availability, however, the state probabilities of 1.3 and 2.1 
are added. 
 

IV. FAILURE MANAGEMENT 
An important issue for automated and autonomous systems is 
to distinguish between systems whose control in the case of 
an error can be taken back by a person after an acceptance 
period, e.g. by a driver in the vehicle of Level 3 or via a 
remote connection by a person in a control center, and 
systems in which a takeover by a human is not easily possible 
and the system must continue to operate autonomously in the 
event of a fault, e.g. space systems that can’t be easily 
controlled remotely due to space communication issues. 

In the case of the first-mentioned systems, it is sufficient to 
ensure a temporary functioning until someone else takes 
control. In systems in which the control can’t be transferred 
to a person in a simple way, continuous functioning in the 
event of a failure must be ensured with regard to a previously 
defined fault tolerance. Therefore, an intelligent fault 
management system is necessary that can identify different 
types of failures and decide how to handle the failures, either 
by an independent processing or by a processing via remote. 
 
For space applications, where immediately no person is part 
of the control loop, the Fault Detection, Isolation and 
Recovery (FDIR) principle exists [8] [9]. Based on this it is 
possible to classify faults and to take appropriate measures. 
As shown in Fig. 8 the classification is split up in levels 0 to 
4, in which the criticality of a failure increases from level 0 
to level 4. 
 

 
Fig. 8 Fault diagnosis and management architecture for 
satellite/spacecraft [9] 

If failures of levels 0 to 3 occur, the system can recover itself 
autonomously. Depending on the severity of the failure, it 
will be detected and fixed at different levels of the system 
within variable reaction times. Failures of Level 0 are 
detected and fixed in each unit of the system by local 
correction, independent of other units. Level 1 failures must 
be detected outside the unit and fixed due to a subsystem, 
which consists out of several units, by switching a unit to its 
redundant one. If a failure from level 0 or 1 cannot be fixed 
the failure is categorized in level 2 and has to be fixed more 
globally at subsystem or platform level. Failures of level 3 are 
usually software or processor module failures that can be 
recovered by switching to a redundant processor module. In 
case of level 4, there are hardware failures or multiple level 2 
or 3 failures, the system can no longer handle it 
autonomously. In case of a satellite it is transferred into a safe 
mode and the ground station has to intervene and control the 
system. 
This method shows a way how different kinds of failures can 
lead to different behaviour and that the system can handle 
most of the failures autonomously by itself, only in very 
critical scenarios (level 4) a person is needed to deal with the 
failures and to control the system. 
  



V. CONCLUSION 
This paper presents concepts that can be used to move from 
today's fail-safe concepts in automobiles to fail-operational 
systems. In particular, for the introduction of automated 
driving functions from Level 4 fail-operational systems are 
inevitable because it can no longer be assumed that a driver 
is available as a fallback level in the vehicle. For this purpose, 
redundancy concepts for reliability enhancement were 
presented, which, in conjunction with the Monitor-Control 
principle, can also ensure an increase in the safety of the 
systems. In addition, an approach for the evaluation of 
software-loaded dynamic system structures was presented. 
The further development of automated and autonomous 
technologies automatically leads to new demands in the field 
of reliability analysis. Classic electric and electronic systems 
are getting ever more complex functionalities and related 
deterministic and non-deterministic software building blocks. 
Generalizations of complex system designs that allow a 
safety and reliability calculation using classical methods are 
no longer sufficient. The approach of a state-based Monte 
Carlo Simulation with extended rules enables a reliability, 
availability and safety analysis of complex systems. Not so 
much the individual example is interesting here as the 
possibilities of modeling, with which a large number of 
required parameters or other KPIs can be determined. Finally, 
the FDIR approach was introduced, with which aeronautical 
and aerospace autonomous fault classification is carried out. 
Such an approach is not yet available in an automobile, to 
avoid a check of the system by a remote controller for every 
kind of failure is the use of such a principle, however, 
recommended. 
The concepts for safe and reliable system architectures 
presented in this article are only the basis for future activities. 
In the development of automated and autonomous driving 
functions the aspects safety and reliability will quickly 
compete with the question of economy. At this point, it is 
important to develop well-established and intelligent 
redundancy structures, which on the one hand meet the 
normative requirements with regard to safety, e.g. from the 
field of ISO 26262, but on the other hand also allow it to 
produce a financially attractive product for the consumer. 
The presented simulation model for the safety and reliability 
proof is currently still in continuous development. The aim 
here is to be able to map and analyze the systems as detailed 
as possible in order to ensure a realistic evaluation of the 
systems. Currently, the systems are modeled manually using 
a computer algebra software, which makes the mapping and 
analysis of the systems currently quite costly. In the future, a 
tool will be available for this, with which the systems can be 
modeled on one surface and a subsequent evaluation can be 
carried out automatically. 
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