
Reliability-based safeguarding of automated traffic
systems by means of "fail-operational" capable on-

board architectures

Johannes Heinrich
Institut für Qualitäts- und

Zuverlässigkeitsmanagement GmbH
Wuppertal, Germany

heinrich@iqz-wuppertal.de

Dr.-Ing. Fabian Plinke
Institut für Qualitäts- und

Zuverlässigkeitsmanagement GmbH
Hamburg, Germany

plinke@iqz-wuppertal.de

Prof. Dr.-Ing. Andreas Braasch
Institut für Qualitäts- und

Zuverlässigkeitsmanagement GmbH
Wuppertal, Germany

braasch@iqz-wuppertal.de

Abstract— Fully automated and autonomous vehicles place
new demands on reliability, availability and safety. Eliminating
the driver as a fallback path in the event of technical
breakdowns or failures, forces a self-driving vehicle to operate
safely even in the event of a fault, in order to reach a risk-
minimum state. Similarly, minor disturbances, such as software
crashes or failures, must be compensated for safety terms in real
time. These requirements are realized through redundancy-
based, fail-operational on-board architectures. In the event of
an error, a fault-tolerant subsystem can be switched on or off in
order to obtain a (possibly degraded) operability. In aviation,
such system designs have been standardized and steadily
developed for the use of complex, software-based flight control
systems. The article gives an overview of the technical
requirements of the aviation and automotive industries, as well
as the presentation of aviation methods and principles and their
transfer to the automotive development. This includes methods
for fault detection, fault tolerance, strategies for continued
operation, live repair, degradation and the safe shutdown of the
system into a state of minimal risk. This procedure has not been
implemented in the current automotive development because
the responsibility for driving the vehicle lies always with the
driver. A quantitative assessment of reliability, availability and
safety – considering the above system properties – can be
performed using multi-stage simulation models, which are also
presented in this paper. The goal is the statistical validation of
an economic system design while complying with the safety
requirements as established by common standards and rules in
the automotive sector (for example ISO 26262, SOTIF via ISO /
PAS 21448, etc.).

Keywords—availability increase due to fail-operational
architectures, reliability of complex hard- and software
architectures, multi-level simulation models

I. INTRODUCTION
The development of automated and autonomous systems is
currently being heavily promoted across many industries,
producing new results at regular intervals. A large share of
this lies within the automotive industry, but also industries
such as the railway industry or the process engineering
research in these areas and try to use new technologies for
themselves.
One aspect which, in addition to the pure technical
implementation of the systems, represents a major challenge
is the safe design of the systems and the safety proof to be
provided. As a result of the elimination of humans as a control
level and the assumption of control by software, the demands
placed on the systems regarding safety and availability
increase.

In particular, the handling of failures and the associated fault-
tolerant design of the system have a major role. The person
who, in the case of an error, e.g. in the car, has to intervene,
is no longer tangible, so that this fallback path must be
replaced.
In this paper, on the one hand, chapter 2 presents concepts on
how to increase the reliability of a system by means of
redundancy, on the other hand, with the help of the Monitor-
Control principle a possibility is shown with which the safe
operation of the system can be ensured. In addition, Chapter
2 explains the possibility of degradation strategies that can be
used to deactivate unnecessary functions in the event of a
failure, so that sufficient capacity is available for safety-
relevant functions. Chapter 3 presents first the problems that
arise as a result of the increasing share of software and the
dynamic distribution of functions in safety and reliability
proofing in automated and autonomous systems. On this
basis, based on the Monte Carlo Simulation, a model is
presented with which software-loaded dynamic system
architectures can be analysed with regard to adapted
evaluation criteria. The possibility of automatically
classifying failures in a vehicle and, accordingly,
autonomously treating them does not currently exist in the
field of automotive. A model from the field of aerospace is
presented in Chapter 4 which addresses this topic and shows
first approaches.

II. REQUIREMENTS FOR SAFETY-RELEVANT SYSTEM
ARCHITECTURES
The safety and reliability concept of future automated and
autonomous systems must be renewed due to the loss of a
human person. Today’s systems are often designed by using
the fail-safe-principle, where a person can immediately take
over the control of the system in case of a failure that lead to
a function shutdown. Besides that, the person acts as a
controller in terms of automated functions and must intervene
in the event of a wrongdoing. For example, a driver has to
monitor an automated car up to SAE Level 2 “Partial
Automation” [1] and is responsible for the action of the
system. Therefore, there is no need for fallback modes in
terms of the system design to maintain or supervise the
function. Automated driving functions of Level 3
“Conditional Automation” do not need a driver in the loop,
but the driver has to be available as a fallback, e.g. in case of
failure, after a takeover time. The system therefore has to
remain capable of manoeuvring in the event of a fault within
a defined time interval, it must be temporary fail-operational.

In case of Level 4 “High Automation” and Level 5 “Full
Automation” the driver does not need to be in the loop and be
available as a fallback, so there are special fault tolerance
requirements for the system architecture due to the fail-
operational-principle.
Besides the fault tolerance the system has to supervise itself
in terms of safety-relevant actions, no accidents, especially
with human damage, due to a malfunction can be tolerated.
Because of the described challenges in automated and
autonomous systems suitable strategies must be used in order
to guarantee the maximum of the safe state probability
(availability of safety). A possible approach is to use the
aerospace principles for Monitor-Control and redundancies.

A self-resolving system must be monitored in real-time.
Pilots are monitoring the system in an aircraft. However,
autonomous systems must be using redundancy to implement
a Monitor-Control-Principle (Fig. 1).

Fig. 1 General Monitor-Control architecture

A difference in the reliability and safety redundancy need to
be considered. Simple parallel system increases the reliability
but in order to use a redundancy with a Monitor-Control-
Principle a m-out-of-n, n-out-of-n-systems or serial system
with a voter is required, the parallel system can only detect a
failure, but cannot determine which component causes the
failure and which component is doing right.

The implementation of redundancy is more complicated and
leads to an increase of redundant and partly dissimilar
systems. However, on the one hand, economic aspects and,
on the other hand, also structural aspects have to be
considered in order to find a suitable solution.
In case of failures, where the system needs to access a safe
failure state, the availability of base function needs to be
ensured (probably without requirements to the redundancy,
etc.). Therefore degradation strategies must be defined in
order to use the available resources efficiently (Fig. 2).

Fig. 2 Exemplary degradation concept

On the basis of these strategies, in the event of an failure,
functions that are not necessary in the present situation can
be switched off and the freed-up resources used for safety-
relevant applications. For example, it would be possible to
hijack a control unit which is used for functions in the area of
infotainment in the event of failure of a control unit having a
safety-relevant driving function and to be able to continue
operating the function on it. Maintaining the safe onward
journey would have priority. For the realization of such a
concept it is necessary that the functions are provided with
different priorities, which can change depending on altered
use cases.

From the view of reliability engineering different paradigms
are considered: reliability, availability, safety and the
parameters are assessed for deviations. So far, the classical
quality management often only determines reliability
parameters and assigns them to safety critical scenarios.

III. SAFETY AND RELIABILITY PROOF
Another challenge of automated and autonomous systems are
the safety and reliability proof.
The classic reliability system structures for the conventional
mechanical and electrical dominated systems cannot describe
the whole picture of mainly software-based infrastructures
[2]. The main reason for that is the dynamic of the software
application and their failures and repair. After a software
failure the components can be switched off, restarted or the
whole application can be moved to another processor,
resulting in a new repair and failure behavior that must be
methodically defined. A new start of an application, a flash
of an image or external repair processes via WLAN or mobile
networks are examples that must be considered for the
analysis. As a result of these boundary conditions, the
parameter of availability of dynamic repairable systems is
becoming increasingly important.
In quantified methods for reliability analysis the possibility
for considering repair rates and repair behavior are already
possible. However, describing the repair behavior for
components realistically cannot be considered by classical
methods, yet. The implementation of strategies, e.g. Markov-
Processes or Petri-networks is mathematically challenging or
even in some cases impossible.

Through the increasing realization of functions by means of
software and the existence of redundant structures a
temporary or permanent shift of a whole function
implemented in software to a different hardware is possible
and necessary [3]. The result is a change of the system
structure during operation, which is adapting its tasks and
modes according to fixed rules. A reliability optimization
problem is created, which must consider the technical and
economic efficiency of the system’s design. Furthermore,
safety requirements can depend on different use cases.
Different requirements for the computing power of an
automated or autonomous function exist depending on the
size of existing influencing factors and the resulting
complexity of the function. The system must be technically
flexible to adapt to different requirement and environments.
A solution is that dynamic system structures are introduced
that can adapt their structure automatically according to the
use case. For the reliability engineering multi-layered
calculation on different levels must be done and summarized.
This point poses another challenge to the reliability and safety
analyses, since such dynamics combined with the repair
behavior of the software can hardly be represented and
calculated analytically.
This section presents an approach to handle the above-
mentioned challenges in terms of safety and reliability proof.
A possible solution to represent the boundary conditions is to
use the Monte Carlo Simulation (MCS) [4] [5] [6] [7]
whereby the systems can be modelled very flexible.
The simulation is based on state diagrams in which the system
is mapped with regard to active and failed hardware and
software. The system, which is calculated by way of example
in this paper, is shown in Fig. 3.

Fig. 3 Reliability block diagram of a duo-duplex architecture

The system in itself corresponds to a simple parallel system,
e.g. from two control units. Each of these control units has
two software units for function fulfillment. In order to be able
to view these software units in the calculation, they are shown
in a series connection with the hardware components from a
functional point of view, as both the hardware and the
software must be functional in order to function properly.
Since two software blocks are active on each hardware, they
are displayed as a parallel circuit behind the hardware,
creating a duo-duplex system. The associated state diagram
of the system is shown in Fig. 4.

Fig. 4 State diagram of a hard- and software architecture

The state-diagram differs between irreparable hardware
failures (horizontal direction) and reparable software failures
and repairs (vertical direction). This means that should the
system be in state 1.4 (system failed) due to four software
errors, it may work again through restarting a software. If the
system is in state 3 due to two hardware failures, the system
has failed completely and must be fixed, e.g. in a workshop.
For every transition from one state to another special rules
can be implemented, for example different kinds of parallel
failure and repair modes, depending transitions (Fig. 5) or
superordinate rules.

Fig. 5 Parallel and dependent failure and repair modes

Compared to analytical procedures, e.g. Markov processes,
much more flexible modelling is possible here. For example,
the limitation to the exponential distribution can be bypassed
by the simulation so that distribution functions such as the
Weibull distribution or lognormal distribution can be used.
Moreover, it is possible to adjust the transition rates so that
even a dynamic system can be mapped.
By the means of the state diagrams, it is possible to assign
key performance indicators (KPI) to the different states in
Fig. 4, for example safety (green states), availability (green
and yellow states) and reliability (green and yellow states,
until the system reaches a red state, after that the reliability
equals zero).
In this paper the KPI’s are defined with regards to the
explained challenges for the software-based safety-critical
systems. The advanced definitions are as follows:

Reliability
The reliability Z(t) in this paper specifies the probability, that
the system has not failed. For each iteration a failure time
tfailure;i is determined. This point in time describes the first
occurrence of a failed system state, e.g. state 1.4, 2.2 or 3 in
Fig. 4. Initially, each iteration starts with Zi(t0) = 1. As long
as the system has not reached a failed state Zi(t < tfailure;i) = 1.
As soon as the system reaches a failed state, the reliability is
defined as Zi(t ≥ tfailure;i) = 0. The estimation of the reliability
Ẑ(t) of the system considering all iterations n is displayed in
(1).

𝑍𝑍�(𝑡𝑡) ≅ 𝑃𝑃(𝑍𝑍(𝑡𝑡) = 1) =
∑ 𝑍𝑍𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (1)

Availability
The duration that the system spends in available states is
calculated to determine the availability. States in which the
system isn’t in a failed state are considered as available states,
e.g. state 1 in Fig. 4. The availability Ai(t) of t for one iteration
is the ratio of t that the system spends in available states. The
calculation of the availability Ai(t) is in (2)

 Ai(t) = ta,i

t
, (2)

with ta;i: duration until t, that the system spends in available
states.
The estimation of the availability A�(t) for several iterations is
the arithmetic mean of all iterations n considering all
calculated availabilities A1(t) till An(t) (3).

𝐴̂𝐴(t) ≅ ∑ Ai
n
i=1 (t)

n
. (3)

Safety
The duration that the system spends in safe states is calculated
to determine the safety. Safe states are characterized by the
fulfilment of fault tolerance and the Monitor-Control-
Principle, i.e. there is at least one redundant component that
can compare the result of the own calculation with another
component, or which could transfer the system in a safe
condition. Thus, in the paper the safety is a subset of the
availability. The safety Si(t) of t for on iteration is the ratio of
t that the system spends in safe states. The calculation of the
availability Si(t) is in (4)

Si(t) = ts,i
t

, (4)

with ts;i: duration until t, that the system spends in safe states.
The estimation of the safety S�(t) for several iterations is the
arithmetic mean of all iterations n considering all calculated
safeties S1(t) till Sn(t) (5).

𝑆̂𝑆(t) ≅ ∑ Si
n
i=1 (t)
n

. (5)

The repeated simulation generates a large number of status
profiles. Fig. 6 shows two simulated exemplary status
profiles depending on the available redundancy.

Fig. 6 Status profiles of two iterations

Based on the MCS though the huge amount of status profiles
a probability can be calculated that the system is in state X at
time t. Combining the probability with the defined state KPI’s
temporal profiles for safety, availability and reliability can be
derived. If different system architectures are examined by
means of the MCS, quantitative statements about these
systems can be affected. Fig. 7 shows an example of the
course of the three KPI’s over a time of 12 months.

Fig. 7 Diagrams of safety, availability and reliability

As can be seen, the graph of the safety and availability keep
a very high level of 99,7% of safety and 99,8% of availability
after 12 months. Neglecting a repair after a system failure, the
reliability decreases more and is after a period of 12 month at
a value of about 86%. The course of safety and availability
are very similar. This is because both parameters are based
on the state probabilities of states 1, 1.1, 1.2 and 2. In the case
of availability, however, the state probabilities of 1.3 and 2.1
are added.

IV. FAILURE MANAGEMENT
An important issue for automated and autonomous systems is
to distinguish between systems whose control in the case of
an error can be taken back by a person after an acceptance
period, e.g. by a driver in the vehicle of Level 3 or via a
remote connection by a person in a control center, and
systems in which a takeover by a human is not easily possible
and the system must continue to operate autonomously in the
event of a fault, e.g. space systems that can’t be easily
controlled remotely due to space communication issues.

In the case of the first-mentioned systems, it is sufficient to
ensure a temporary functioning until someone else takes
control. In systems in which the control can’t be transferred
to a person in a simple way, continuous functioning in the
event of a failure must be ensured with regard to a previously
defined fault tolerance. Therefore, an intelligent fault
management system is necessary that can identify different
types of failures and decide how to handle the failures, either
by an independent processing or by a processing via remote.

For space applications, where immediately no person is part
of the control loop, the Fault Detection, Isolation and
Recovery (FDIR) principle exists [8] [9]. Based on this it is
possible to classify faults and to take appropriate measures.
As shown in Fig. 8 the classification is split up in levels 0 to
4, in which the criticality of a failure increases from level 0
to level 4.

Fig. 8 Fault diagnosis and management architecture for
satellite/spacecraft [9]

If failures of levels 0 to 3 occur, the system can recover itself
autonomously. Depending on the severity of the failure, it
will be detected and fixed at different levels of the system
within variable reaction times. Failures of Level 0 are
detected and fixed in each unit of the system by local
correction, independent of other units. Level 1 failures must
be detected outside the unit and fixed due to a subsystem,
which consists out of several units, by switching a unit to its
redundant one. If a failure from level 0 or 1 cannot be fixed
the failure is categorized in level 2 and has to be fixed more
globally at subsystem or platform level. Failures of level 3 are
usually software or processor module failures that can be
recovered by switching to a redundant processor module. In
case of level 4, there are hardware failures or multiple level 2
or 3 failures, the system can no longer handle it
autonomously. In case of a satellite it is transferred into a safe
mode and the ground station has to intervene and control the
system.
This method shows a way how different kinds of failures can
lead to different behaviour and that the system can handle
most of the failures autonomously by itself, only in very
critical scenarios (level 4) a person is needed to deal with the
failures and to control the system.

V. CONCLUSION
This paper presents concepts that can be used to move from
today's fail-safe concepts in automobiles to fail-operational
systems. In particular, for the introduction of automated
driving functions from Level 4 fail-operational systems are
inevitable because it can no longer be assumed that a driver
is available as a fallback level in the vehicle. For this purpose,
redundancy concepts for reliability enhancement were
presented, which, in conjunction with the Monitor-Control
principle, can also ensure an increase in the safety of the
systems. In addition, an approach for the evaluation of
software-loaded dynamic system structures was presented.
The further development of automated and autonomous
technologies automatically leads to new demands in the field
of reliability analysis. Classic electric and electronic systems
are getting ever more complex functionalities and related
deterministic and non-deterministic software building blocks.
Generalizations of complex system designs that allow a
safety and reliability calculation using classical methods are
no longer sufficient. The approach of a state-based Monte
Carlo Simulation with extended rules enables a reliability,
availability and safety analysis of complex systems. Not so
much the individual example is interesting here as the
possibilities of modeling, with which a large number of
required parameters or other KPIs can be determined. Finally,
the FDIR approach was introduced, with which aeronautical
and aerospace autonomous fault classification is carried out.
Such an approach is not yet available in an automobile, to
avoid a check of the system by a remote controller for every
kind of failure is the use of such a principle, however,
recommended.
The concepts for safe and reliable system architectures
presented in this article are only the basis for future activities.
In the development of automated and autonomous driving
functions the aspects safety and reliability will quickly
compete with the question of economy. At this point, it is
important to develop well-established and intelligent
redundancy structures, which on the one hand meet the
normative requirements with regard to safety, e.g. from the
field of ISO 26262, but on the other hand also allow it to
produce a financially attractive product for the consumer.
The presented simulation model for the safety and reliability
proof is currently still in continuous development. The aim
here is to be able to map and analyze the systems as detailed
as possible in order to ensure a realistic evaluation of the
systems. Currently, the systems are modeled manually using
a computer algebra software, which makes the mapping and
analysis of the systems currently quite costly. In the future, a
tool will be available for this, with which the systems can be
modeled on one surface and a subsequent evaluation can be
carried out automatically.

VI. REFERENCES
[1] SAE J3016: Taxonomy and Definitions for Terms Related to Driving

Automation Systems for On-Road Motor Vehicles. SAE International,
15.06.2018.

[2] Rieker, T.: Modellierung der Zuverlässigkeit technischer Systeme mit
stochastischen Netzverfahren, Dissertation Universität Stuttgart, 2018.

[3] Raksch, C.: Eine Methode zur optimalen Redundanzallokation im
Vorentwurf fehlertoleranter Flugzeugsysteme, Dissertation,
Technische Universität Hamburg-Harburg, 2013.

[3] Rehage, D.: Zustandsmodellierung und Zuverlässigkeitsanalyse
fehlertoleranter Systemarchitekturen auf Basis von Integrierter
Modularer Avionik. Dissertation, Technische Universität Hamburg-
Harburg, Schriftenreihe Flugzeug-Systemtechnik Band 1/2009, Shaker
Verlag, Aachen ,2009, ISBN: 978-3-8322-8650-7.

[4] Heinrich, J.; Horeis, T.; Plinke, F.: Zustandsbasierte
Verfügbarkeitsanalyse von Hard- und Softwarearchitekturen mittels
Monte-Carlo-Simulation. Tagung Technische Zuverlässigkeit 2019,
Nürtingen, VDI-Berichte 2345, VDI-Verlag GmbH, Düsseldorf, 2019,
ISBN: 978-3-18-092345-1.

[5] Plinke, F.: Beitrag zur Weiterentwicklung der
zuverlässigkeitstechnischen Sensitivitäts- und Ausfallanalyse mittels
Monte-Carlo-Simulation. Dissertation, Bergische Universität
Wuppertal, 2015.

[6] Zio, E.: The Monte Carlo Simulation Method for System Reliability
and Risk Analysis. Springer Verlag London, 2013, ISBN: 978-1-4471-
4587-5.

[7] Meyna, A.; Pauli, B.: Taschenbuch der Zuverlässigkeitstechnik:
Quantitative Bewertungsverfahren. 2nd edition, Carl Hanser Verlag,
Munich, 2010, ISBN: 978-3-446-41966-7.

[8] Jalilian, S.; Salar Kaleji, F.; Kazimov, T.: Fault Detection, Isolation and
Recovery (FDIR) in Satellite Onboard Software.
https://ict.az/uploads/konfrans/soft_eng/87.pdf, invoked: 19.07.2019,
Azerbaijan, 2017.

[9] Zolghadri, A., Henry, D.; Cieslak, J.; Efimov, D; Goupil, P.: Fault
Diagnosis and Fault-Tolerant Control and Guidance for Aerospace
Vehicles – From Theory to Application. Springer-Verlag London,
2014, ISBN: 978-1-4471-5312-2.

	I. Introduction
	II. Requirements for safety-relevant system architectures
	III. Safety and reliability proof
	IV. Failure management
	V. Conclusion
	VI. References

