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Abstract— The aim of this paper is to present a methodology
for the objective characterization of the driving behavior
of automated vehicles. By determining the driving behavior,
it is possible to adapt future test cases specifically to the
capabilities of the system to be tested and thus to identify
particularly informative, challenging and therefore potentially
critical scenarios. These are of major importance because the
safety validation of automated vehicles by using field tests only
is no longer economically feasible. Initial results show that the
number of relevant scenarios for the evaluation of automated
vehicles can be significantly reduced with the developed method,
which contributes to overcome this dilemma.

[. INTRODUCTION

Due to the infinite number of possible traffic scenarios, the
evaluation of the safety of automated vehicles (AVs) is com-
plex and time-consuming. Particularly in the homologation
of AVs, a minimum number of expressive tests should be
selected. One way to reduce the total number of scenarios to
be tested is to objectively characterize the driving behavior
of AVs. If, for example, the automated driving function
generally drives close behind a leading vehicle and brakes
late in the event of a vehicle cutting-in in front of the
ego-vehicle, then these characteristics should be taken into
account when creating challenging scenarios.

In order to efficiently determine the test scenarios for the
characterization of driving behavior, a systematic approach
will be developed. In addition to technical literature, the
basis is also the Driving License Directive and driving
safety training courses. For each scenario, Key Performance
Indicators (KPIs) are defined for evaluating driving behavior.
In addition, the parameters of the scenario to be varied, such
as the curve radius, are determined. The scenarios can be
carried out using simulations or test site tests. On the basis
of the test results, the capabilities of the automated vehicle
can be objectively evaluated by the KPIs defined a priori.
If KPIs exceed defined values, a behavior characteristic can
be automatically deduced and this information can be taken
into account in all future test cases.
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This contribution therefore presents a novel approach
for an objective driving behavior characterization of AVs,
with which relevant and particularly challenging scenarios
for the system to be tested can be identified. The overall
methodology of the author to identify relevant scenarios for
the type approval of automated vehicles is presented in [1].
In addition to the paper presented here, a further part of the
overall method is described in [2].

The article is structured as follows: Section II introduces
important definitions and previous work in the field of
generating challenging scenarios and determining the driv-
ing behavior. Section III describes in detail the developed
procedure. Section IV shows the results of an exemplary
application of the newly developed approach. The results are
then critically discussed in Section V. A summary (Section
VI) including an outlook for future work concludes the
article.

II. RELATED WORK

The following section defines basic vocabulary, gives an
overview of current approaches to define challenging test
cases for automated vehicles and provides a summary of
data sources used in this publication to determine the driving
behavior. At the end of this section, the research question is
defined.

A. Definitions

Scene and scenario In this paper we use the definition of
ULBRICH ET AL. [3] for the terms scene and sce-
nario. According to this definition, a scene describes
a snapshot of the environment including all entities.
A scenario, on the other hand, is the chronological
sequence of several scenes, starting with a start scene.

Furthermore, MENZEL ET AL. [4] divides scenarios into
the following three categories:

Functional scenario Functional scenarios represent the first
and most abstract level of scenarios. The description of
the scenarios is on a linguistic level.

Logical scenario If functional scenarios are described in
detail and in the physical state-space, one speaks of
logical scenarios. The parameters of logical scenarios
can be defined with a five-layer-model from BAGSCHIK
ET AL. [5].

Concrete scenario If the parameters of a logical scenario
have exactly one fixed value assigned to them, the
scenario is concrete.



In addition, we define a test case within the scope of this
publication as follows:

Test case A concrete scenario in combination with the eval-
uation criteria (KPI) for this scenario results in the test
case.

Starting from a logical scenario, an infinite number of
concrete scenarios can be derived. For the assessment of AV,
particularly critical concrete scenarios are of interest. Based
on [1], a distinction is made between challenging and critical
scenarios. These two categories are a subset of the relevant
scenarios. A graphical explanation is shown in Fig. 1. The
area highlighted in light gray thereby represents the infinite
number of concrete scenarios that can be derived from a
logical scenario.

Relevant scenario All scenarios that contribute to the as-
sessment of AVs and exceed a minimum exposure -
which is not yet established - are considered relevant.
Relevant scenarios do not have to be very challenging,
such as the beginning of a speed limit. This is relevant
for certification, as an AV must comply with existing
traffic rules. Very simple scenarios can be considered
irrelevant, such as driving on a straight highway without
surrounding traffic and in good weather conditions.

Challenging scenario The parameters from the five-layer-
model [5] can be defined in such a way that the resulting
concrete scenario becomes particularly challenging for
the System Under Test (SUT). This can be achieved, for
example, by defining difficult road geometries, weather
conditions or by defining particularly complex trajec-
tories of surrounding traffic participants. Whether a
scenario is challenging can be assessed before the test
case is executed.

Logical scenario

Test case execution

Logical scenario

P Relevant I Critical

Fig. 1: From one logical scenario an infinite number of
concrete scenarios can be derived (light gray area). Sub-sets
of the infinite concrete scenarios are relevant, challenging
and critical scenarios. Whether a challenging scenario be-
comes a critical scenario depends on the performance of the
system. Defining particularly challenging scenarios increases
the probability that a critical scenario will occur.

Challenging

Critical scenario In this paper, criticality is defined as the
proximity to an accident. To measure criticality, we can
use indicators such as Time-To-Collision (TTC) [6]. If
a very short reaction time of the SUT is required in
a scenario (e.g. there is suddenly a stationary object in
front of the ego-vehicle), then it can be concluded before
the test case is executed that it is a critical scenario.
These types of critical scenarios are relatively straight-
forward to define and therefore not considered further in
this publication. Regardless of system performance, the
scenario has a certain degree of criticality. Scenarios that
start in a non-critical state (i.e. TTC above threshold!)
and end in a critical state (i.e. TTC below threshold)
due to incorrect system decisions in the course of the
scenario are more difficult to identify and therefore
of great importance in the context of this publication.
These are dependent on the performance of the system
and can therefore only be detected after or during test
case execution.

Consequently, when evaluating AVs, a special focus must
be given to those scenarios in which insufficient system
performance arises and thus a critical scenario occurs. Since
these are difficult to identify a priori, challenging scenar-
ios are defined. Under the assumption that the probability
of a critical scenario occurring increases with particularly
challenging scenarios, a methodical approach to identify
challenging scenarios is important.

B. Approaches to define challenging test cases

One way of selecting challenging scenarios is to use
accident databases [8], [9]. However, the current accident
databases contain only human-caused accidents, i.e. they
are challenging and also critical scenarios for humans. The
degree to which these test cases are also challenging for
automated vehicles cannot be determined a priori. Neverthe-
less, these scenarios can be used in the safety argumentation
for the potential of accident prevention in current accidents.
Further approaches based on real driving data can be found
in [10], [11]. Extreme value theory is used to determine the
most difficult test cases and their probability of occurrence.

Other approaches are based on the generation of challeng-
ing scenarios through simulation executions and optimization
using a fitness function [12]-[14]. The fitness function can
contain elements such as criticality [13] or special difficulties
[15], [16]. For example, KLISCHAT [15] uses the reachable
sets [16] of other road users to reduce the drivable area
for the SUT. Another approach for defining challenging
scenarios is the application of intelligent sampling techniques
[17].

In summary, there is a lack of system-specific selection of
challenging scenarios. Therefore, the driving behavior of the
SUT is included in this publication. The next section shows
the basic literature for determining driving behavior.

IBased on literature, VAN DER HORST AND HOGEMA [7] define the
threshold between uncritical and critical at TTC=1.5s.



C. Driving behavior

In order to determine the driving behavior of automated
vehicles, objective KPIs and characteristic situations in
which a characteristic response of the SUT can be clearly
observed are required. If one combines the characteristic
response and KPI, the driving behavior can be determined
automatically and objectively. In the following, existing
approaches from literature are shown for both subject areas.

1) Key Performance Indicators (KPIs): Many publica-
tions deal with key performance indicators for assessing
driving behavior. While some focus exclusively on the human
being as the driver of the vehicle [18], others consider
the constellation in which the driver is supported by driver
assistance systems [19]. HOLZINGER [20], [21] focuses par-
ticularly on driver assistance systems in his two publications.
HOLZINGER defines KPIs for the automated longitudinal
control by an Adaptive Cruise Control (ACC), for the auto-
mated lateral control by a Lane Keeping Assist (LKA) and
additionally KPIs for the evaluation of an automated lane
change.

If very aggressive or defensive behavior is also regarded as
driving behavior, then KPIs are also required to determine
the driving style [22]-[24]. Frequently used KPIs are lon-
gitudinal and lateral acceleration during driving [23], [25].
However, defensive or aggressive driving behavior is strongly
dependent on the respective situation, so that the definition
of thresholds for the KPIs is carried out situation-specifically
[24].

2) Characteristic situations (functional scenarios): Char-
acteristic driving situations can be available in the form
of functional (simple, short description of the situation) or
logical (description including parameters and their ranges)
scenarios. A characteristic driving situation in longitudinal
control is, for example, the stopping of the preceding vehicle
[21]. Further driving situations can be taken from ERSOY
[26, p. 174] and [27], [28].

Not only classical literature, but also other sources such
as the (German) Driving License Directive and Driving
Safety Trainings are suitable as a database for characteris-
tic situations. The German Driving License Directive [29],
together with the Driving License Questionnaire [30] for
the theoretical examination, contain, among other things,
situations that are unlikely to occur in real traffic but that are
important for the basic safe driving of a vehicle. By using
simulation, these situations can be verified for AVs. During
driving safety training, the behavior of the driver in extreme
situations is evaluated. In the case of AVs, this can also be
transferred to the simulation and thus the driving behavior
of the driving function in particularly critical situations can
be evaluated.

D. Research question

An infinite number of scenarios can be defined for the
safety assessment of AVs. An exact determination of the
safety level of the vehicle is therefore impossible. In order
to be able to make a precise statement about the safety
of the system with as few test cases as possible, there are

already various approaches in the literature to define /identify
scenarios that are as challenging and critical as possible.
None of the existing approaches includes system-specific
driving behavior. Therefore, the following question should
be answered in this publication: How can we determine the
driving behavior of an AV and then use this information to
define system-specific challenging scenarios for the evalua-
tion of the vehicle’s safety?

III. METHODOLOGY

This chapter describes the method developed to identify
weak points in the driving behavior of an automated vehicle
on the basis of a driving behavior characterization and to use
this information to design all further vehicle tests to be more
challenging and therefore potentially critical.

A. Overall approach

A summary of the methodology can be found in Fig. 2
and is briefly explained below. From the state of the art,
specific functional scenarios can be derived that can be
used to evaluate driving behavior. Parameters with which the
scenario can be described are assigned to these. Thus, the
functional scenarios become logical scenarios. All concrete
scenarios derived from the identical logical scenario have
the same KPIs, which are used to evaluate the result later.
Therefore, the corresponding KPIs are already assigned to
the logical scenarios. Subsequently, the subdivision into the
corresponding application purpose takes place based on the
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Fig. 2: Overview of the methodology developed. On the left
side you can see the sections explaining the corresponding
step of the procedure in detail. In addition, a summary of
the overall concept can be found in Section III-A.



Operational Design Domain (ODD) of the vehicle to be
tested. By varying the parameters, concrete scenarios are
obtained which, together with the KPIs, represent the test
cases. The results from simulation and/or test site tests are
then evaluated using the KPIs. Based on the KPI values,
weak spots in the driving behavior of the vehicle are identi-
fied. These can be taken into account when defining future
concrete scenarios and thus contribute to the identification
of system-specific challenging test cases for the SUT. The
following sections describe the individual steps in detail.

B. Functional scenarios

Technical literature, the Driving License Directive and
scenarios from driving safety training courses are used to
define the functional scenarios. In order to get more struc-
ture into the concept, the scenarios are differentiated into
lateral and longitudinal control according to the distinction
frequently used in vehicle dynamics. The primary driving
task within the scenario is decisive for the classification. For
example, the speed (longitudinal control) can vary during
an overtaking maneuver, but the primary driving task is to
change the lane twice. Therefore, the overtaking maneuver
is assigned to lateral control. In addition, the scenarios are
classified according to which acceleration occurs primarily
during the scenario. A periodic, a transient, a constant or no
acceleration can occur. When driving through a curve, for
example, a constant lateral acceleration is to be assumed,
which is why the scenario “’driving through a curve” is to be
assigned to lateral control with constant acceleration. Table I
summarizes the classification applied.

C. Adding parameters and KPIs

To define logical scenarios, parameters and their ranges
must be assigned to the functional scenarios of Section III-
B. To perform this task in a structured way, the five-layer
model of BAGSCHIK [5] (see Section II-A) is used. Various
parameters are relevant for the individual functional scenar-
ios. In addition, the required range of a parameter can vary
from scenario to scenario. Since the relevant parameters in
the scenarios are different, default values are defined for each
parameter. This means that if a parameter is not specified
for a scenario, it assumes the default value. An example

TABLE I: Distinction of the scenarios into longitudinal and
lateral control. Further subdivision according to the primary
acceleration type occurring during the scenario. A distinction
is made between no, a constant, a transient and a periodic
acceleration. The table shows the number of identified sce-
narios for each category. A description of all scenarios can
be found in [31].

Number of scenarios

Null Constant Transient Periodical

Longitudinal 18 29 5 1
Lateral 0 9 13 2

TABLE II: The KPIs are divided into six groups according
to the corresponding physical quantities. The table shows the
number of defined KPIs per category and one corresponding
KPI as an example.

Based on Number of KPIs Example
Distance 6 Distance to center of ego lane
Velocity 2 Maximum lateral velocity
Acceleration 10 Maximum lateral acceleration
Angle 3 Yaw angle
Time 3 Time-To-Collision (TTC)
Oscillation around
Frequency 2

the center of the lane

is the scenario “driving through a curve” in which, among
other parameters, the desired speed and the curve radius
are defined with corresponding ranges. The longitudinal and
lateral gradients of the road are irrelevant in this scenario,
which is why they are not explicitly defined and therefore
assume the default value. In our example, the default value
for these two parameters is zero. A total of 34 parameters are
defined for the description of all functional scenarios from
Section III-B.

The KPIs are assigned to the logical scenarios because
each concrete scenario derived from the same logical sce-
nario is evaluated against the same KPIs. The KPIs are based
on physical measures and are divided into six groups. Table II
gives an overview of the groups, the number of KPIs within
each group and a KPI as an example.

D. Assignment to SUT’s ODD

Systems with automation level 3 or 4 (according to [32])
have a limited ODD within the operation of the system
is intended. The defined scenarios from Section III-B are
assigned to the ODDs city center, country road and highway.
Scenarios that do not address a specific ODD are assigned to
the “general” category. In addition, individual scenarios can
also be assigned to two ODDs. Table IIT shows the number
of scenarios per category.

E. Test cases

After the relevant logical scenarios have been reduced
using the ODD of the SUT, the concrete scenarios or, in
combination with the KPIs, the test cases can be determined
using a parameter variation. All relevant parameters are
discretized for this purpose. There are parameters, such as the
value of the speed limit, which already exist in discrete form.
All other parameters can have any value within their range

TABLE III: The defined scenarios are subdivided according
to four different Operational Design Domains (ODD). The
table shows the number of scenarios per category.

Operational Design Domain (ODD)

General City center  Country road  Highway

38 26 3 10




and must therefore be discretized. A compromise between
fine and rough discretization must be found when selecting
the discretization steps. A rough discretization leads to a
small number of test cases, which is positive in terms of
cost and time. However, if the number of scenarios is too
small, it is no longer possible to determine whether it is a
general driving characteristic of the SUT or a unique event. A
very fine discretization, on the other hand, leads to general
statements about the driving behavior of the SUT, but the
number of concrete scenarios n.s increases drastically with
the discrete values per parameter ng, (see Equation 1).

N
nes = | [ avai (1)
i=1

The number of parameters in Equation 1 is depicted as V.

E. Test case execution and assessment

The execution of the defined test cases can be carried out
with the aid of simulations or on the proving ground. Due
to the high cost and time involved in test site testing, more
and more simulations are being used. To use the simulation,
the concrete scenarios defined in Section III-E are converted
into the corresponding format of the simulation program.
Often the combination of OpenDRIVE and OpenSCENARIO
is used. In OpenDRIVE, the road network (road level, traffic
infrastructure, temporary manipulation of the first two layers)
is defined, which corresponds to the first three layers of
BAGSCHIK’s five-layer model. OpenSCENARIO represents
layers 4 and 5 with moving objects and environmental
conditions. Subsequently, the simulation of the concrete
scenario can be executed in the simulation environment.
The creation and validation of the required models for
vehicle, environment, traffic and driver are not part of the
presented methodology and are assumed to be given. The test
case execution returns the trajectory of the SUT as output.
Together with information already defined a priori, such
as the trajectories of the surrounding traffic, the scenario-
specific KPIs can be calculated and compared with maximum
acceptable values or reference values from literature, norms
and standards.

G. Determination of driving behavior characteristics

Once all KPIs have been determined, characteristics of the
system can be determined. Some characteristics can be used
to reveal and address weaknesses in the driving behavior of
the SUT. The definition of characteristics is based on expert
knowledge and is done manually. This is commonly carried
out according to the procedure: If a KPI exceeds a limit
value or is within a certain range, this characteristic occurs.
A combination of several KPIs is also possible. By using
different parameter variations, it can be ensured that this is
actually a characteristic of the driving behavior of the SUT
and not a randomly discovered single event.

H. Adaption of future scenarios

The aim of the methodology presented is to increase the
efficiency in defining challenging scenarios for testing AVs.
The characteristics derived from expert knowledge in Section
ITI-G are automatically taken into account in the definition of
further scenarios. For example, an SUT can always initiate
the overtaking process at a similar TTC or a similar distance
to the front vehicle. This TTC value is therefore a charac-
teristic value for this system. This information can be used
to specifically test the behavior of the SUT in all subsequent
scenarios with surrounding traffic in which a lane change can
just (or no longer) be performed at the characteristic TTC or
distance.

IV. RESULTS

This chapter presents exemplary generated results. Here,
the scenario “driving through a curve” is described in detail
and the procedure is presented step by step. It is examined
whether the automated vehicle shows characteristic behavior
when driving through a curve. The focus is on lateral control
with transient acceleration (see Table I) during entering and
exiting the curve. The simulations were performed with
the commercial simulation tool IPG CarMaker®. A simple
dummy function for lateral control was used as a driving
function. Table IV shows an overview of the considered
scenario, the parameters and the used KPI. The ranges for
the curve radii and the velocities are in accordance with
category EKL 2 of the German guideline for the construction
of country roads [33]. For simplicity, the clothoid parameter
is not considered. The width of the vehicle wy., as well as the
width of the lane w),,e are chosen as default values which are
Wyeh = 1.82m and wiane = 3.50 m, respectively. As KPI, the
deviation from the center of the lane is considered and not,
for example, the distance to the boundary of the lane, because
the former can be used to compare the behavior at different
lane widths. On motorways in Germany, lanes with widths
of 3.25m, 3.50m or 3.75m can normally occur (without
construction sites), which results in a different distance to
the lane boundary with identical driving behavior.

TABLE 1IV: Overview of the scenario “driving through a
curve”.

Section ~ Name of step Description
111-B Functional scenario Driving through a curve
Curve radius R
11-C Parameters Desired velocity vset
Direction of curve cgirection
R € [400,1000] in m
1I-C Parameter ranges vset € [60,100]in km h—!
Cdirection {left: ’I”ight}
HI-C KPI Deviation from the_
center of the lane in m
11-D SUT’s ODD Country road
1I1-E Parameter discretization ie‘mifg?)ilmsfgsl steps
III-F Test case execution IPG CarMaker
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(b) Deviation of the center point of the vehicle to the center
line of the ego-lane. If the vehicle drives more left in its own
lane, i.e. closer to the center line of the road, the deviation
is positive. For the left-hand curve under consideration, a
negative deviation thus means a deviation towards the outside
of the curve. The black vertical lines represent the beginning
and the end of the curve respectively.
Fig. 3: The course of the curve and the deviation from the
center of the lane for a left curve with radius R = 600 m at
a desired velocity of vgy = 90 km h—1L.

Test case assessment: The evaluation of the simulated test
cases is based on the predefined KPI. In the example under
consideration, this is the deviation of the vehicle’s center
point from the center line of the ego-lane. If the vehicle
drives exactly in the middle of its own lane, the deviation is
zero. If the vehicle drives more left in its own lane, i.e. closer
to the center line of the road, the deviation is positive. The
deviation is negative if the vehicle drives more on the right
side of its own lane, i.e. closer to the outside of the road.
Fig. 3 shows the course of the curve and the deviation from
the lane center line for a left curve with radius R = 600 m
at a desired velocity of ve = 90kmh™!.

Derivation of driving behavior characteristics: The exem-
plary results in Fig. 3 show by means of the exemplary driv-
ing function that the vehicle drives to the outside of the curve
before entering a left-hand corner and then in the further
course it clearly cuts the curve. This is a single observation
that has to be checked for the overall operating area. If the
observation occurs in a large number of concrete scenarios,
one can consider a characteristic in the driving behavior of
the AV. For the example given here, the parameters direction
of curve Cgirection, curve radius R and velocity vg are used
to determine whether a characteristic behavior is involved.
Fig. 4 compares a left and a right turn with identical radius
R and velocity vg.

Since there is no significant difference between left and
right curves, it must still be checked whether the observed
behavior also occurs over the entire operating range of curve
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Fig. 4: Comparison of the system behavior between a left
and a right curve with an identical radius of R = 800m at
identical speed of vg = 70km h~!. The system shows the
same driving behavior, a clearly visible curve cutting, in both
left and right-hand curves. Due to the comparable behavior,
only the left-hand curve will be considered in the following.
The black vertical lines represent the beginning and the end
of the curve respectively.

radius and speed. In Fig. 5, the maximum deviation from the
lane center line towards the inside of the turn at the curve
entrance of a left turn is plotted over the whole range of the
two parameters. In the left-hand curve, we look at the peak at
the curve entrance towards the inside of the curve, because in
right-hand traffic this is the side of the oncoming traffic and
therefore the potential for critical situations is the highest.
For right-hand curves, the peak before the curve entrance
towards the outside of the curve is of particular importance.
Analogously, this applies to the behavior at the curve exit.

Adaption of future scenarios: Since challenging test cases
with particularly high significance are required for the
evaluation and especially for the certification of AVs, the
characteristics discovered can be included in the definition
of further challenging test cases for the system to be tested.
For the considered SUT, obstacles and objects shortly after
entering the curve are particularly challenging on the inside
of the curve and this can be explicitly taken into account with
the help of the methodology presented. A further advantage
is the reduction of possible parameter variations, because the
position of the object can be optimally determined for all
other curve scenarios. Assuming ten discrete positions of an
object, the number of possible parameter combinations for
concrete scenarios can be reduced to 10 % of the initial value
according to Equation 1, because this parameter no longer
needs to be varied.
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Fig. 5: Maximal deviation of the center point of the vehicle
to the center line of the ego-lane shortly after the entrance
of a left turn. The SUT shows an identical performance over
the entire speed range and over all curve radii. In all concrete
scenarios, there is a positive deviation, i.e. the SUT drives
much closer to the inside of the curve in all tested left-hand
curves shortly after the curve entrance.

V. DISCUSSION

The procedure was implemented as a prototype, tested
on the basis of exemplary scenarios and the functionality
was confirmed on the basis of these scenarios. However, a
complete characterization of the driving behavior has not yet
been carried out. Following a complete characterization, an
evaluation of the defined scenarios can be carried out as to
which of these have a strong significance. In the future, it
will be possible to focus on these scenarios and thus make
the procedure more efficient.

The developed methodology has the limitation that a
successful application cannot be guaranteed for all vehicles.
This can occur if the vehicle to be tested does not show
any noticeable behavior. If, however, the vehicle shows
certain characteristics, the approach presented here can make
a valuable contribution to finding challenging test cases
efficiently. Even if no noticeable characteristics are detected,
the procedure presented can generate additional value for
the market launch of automated vehicles. Due to the use
of driving situations from the theoretical driving test, an
increase in acceptance in society can be expected if mastered
successfully.

VI. CONCLUSION

This contribution addresses a novel method for identifying
system-specific challenging and therefore potentially critical
scenarios for the safety assessment of automated vehicles.
This is achieved by the developed method, which takes
characteristics of the driving behavior of the vehicle under
test into account for the definition of future test cases.
For this purpose, relevant parameters, their ranges and key
performance indicators required for the evaluation of the

scenarios are defined on the basis of functional scenarios.
After selecting the scenarios according to the operational
design domain of the automated vehicle, continuous param-
eters are discretized and concrete scenarios are generated
by parameter variation. After the tests have been performed
and evaluated using the defined key performance indicators,
the characteristic driving behavior of the system can be
derived. An example of this is the distance or time interval
at which the ego-vehicle begins to overtake a slow-moving
vehicle or at which side distance objects are overtaken. Based
on this information, all future test cases can be adapted
so that the defined scenarios represent the highest possible
challenge for the system. While this publication focused on
the development of the methodology and the prototypical
application, the driving behavior characterization will have
to be carried out in detail in future work.
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