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Abstract—Automotive radar measurements are prone to noisy
sensor readings due to artifacts, such as false detections, clutter,
and aliasing. Simulation models of sensors that are deployed
in virtual testing pipelines must demonstrate a high degree of
fidelity. Capturing artifacts correctly can be seen as a criteria
for the trustworthiness of the model. In this work, we outline a
comprehensive overview of different types of artifacts in radar
along with their characteristics. Next, we allocate their formation
process in the radar signal processing chain from which we
draw implications about their correct modeling. We also present
mathematical models that describe the artifacts along with their
implementation in a radar simulation model.

Index Terms—Radar Sensor Model, Autonomous Driving, Vir-
tual Validation

I. INTRODUCTION

Virtual testing of autonomous driving requires simulation
models of perception sensors, which include radar, camera,
lidar, and ultrasonic. While being seen as a key sensor for
autonomous driving, unprocessed radar sensor measurements
are initially difficult to interpret. Prominent examples that
appear frequently in radar include mirror reflections and
measurement errors caused by limited resolution, clutter, and
aliasing. This paper generalizes such effects as measurement
artifacts that occur inherently in radar due to the underlying
physical measurement principle, sensor performance character-
istics, and wave propagation phenomena. The task of sensor
modeling is understood as derivation of mathematical models of
a sensor’s measurement principle and sensor simulation can be
seen as synthesizing (i.e. rendering) sensor measurements from
a virtual scene. Therefore, meaningful virtual testing requires
that the radar’s sensing characteristics are captured precisely
in a sensor model. In this paper, we are interested in studying
different kinds of mechanisms that cause heterogeneous types
of errors in the measurements of a radar sensor, along with
their characteristic properties. The paper is organized as
follows: First, the term artifacts is defined and different
categories are exemplified with radar signal processing theory
and observations from real world measurements. The second
part contextualizes the derived categories of artifacts in the
radar signal processing pipeline and discusses a comprehensive
sensor data modeling level where all artifacts are captured.
Here, the focus lies on deriving a data level suitable for
modeling, that comprises all derived categories of artifacts
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Fig. 1: Three cases of false detections originating from
reflections of off guardrails. The actual target vehicle Dy
spawns three mirror detections, Dijq, Dj; and Dg; that are
caused due to indirect-direct (id), indirect-indirect (ii), and
direct-indirect (di) propagation.

and the integration into the recently reported Fourier tracing
approach [1] is demonstrated. Lastly, it is shown how sensor
artifacts are implemented in a radar sensor simulation model.

II. ARTIFACTS IN RADAR AND THEIR CHARACTERISTICS

Initially, the occurrence of a measurement error such as a
mirror reflection is labeled as false target of false-positive or
false-negative type. We expand the notation of false target
as a more general result of unavoidable distortions in radar
measurements, for which we define an artifact as follows:

Definition (Radar Artifact). An artifact in a radar measurement
is a noticeable distortion in the sensor readings that is
unavoidable by the sensor measurement principle and its system
design.

Due to their distinct similarities, discrimination of artifact
detections' against real and relevant detections is difficult and
makes correctly interpreting radar sensor readings within one
measurement cycle a challenging task.

In particular those artifacts, which are linked to ambiguous-
ness, do cause false measurements in cases where the correct
hypothesis can no longer be inferred from the available data.

!Unless stated otherwise, we use the term detection for referring to a single
measurement point that is reported from the radar and farget to denote the
actual, relevant object.



Following the definition above, six categories of artifacts that
inherently differ in their physical origin are derived. While
artifact categories are distinguishable from one another, they
require unique approaches for their correct modeling.

A. Mirror Reflections

With respect to their reflection properties for mm-wavelength
in automotive radar, many surfaces are known to cause
mirror reflections and settle false detections.When radar waves
propagate, they can reflect off of pavement, road infrastructure
(e.g. guardrails), or traffic participants, including the ego vehicle.
This so-called multipath propagation alters the measurements
of a radar. Multipath propagation is well studied for the two-
dimensional case under the assumption of quasi-optical radar
wave behavior [2], [3] and automated detection schemes are
exist [3], [4]. Four feasible combinations of direct and indirect
paths exist, three of which produce false-positive detections.
These are illustrated in figure 1. In the depicted setup the
detections D;q and Dy; share the same radial distance to the
sensor, but mirror detections show different lateral distances
to the sensor S, i.e. dig < dg;, dgi < dy, and dy; = d;.

Multipath propagation in three dimensions considers for
example reflections off of pavement and guardrails and renders
in this case five additional propagation paths, each causing
multiple instances of (false-positive) detections. Extending the
number of reflective surfaces, for instance when in a tunnel,
additional cases are produced. The ego vehicle may also be
seen as a reflecting surface and therefore as a potential source
for repeated reflections (i.e. the wave, reflected off of the target
vehicle, reflects off of the ego vehicle, bounces to the target,
and back to the sensor).

Multipath reflections affect velocity measurements in ad-
dition to distance measurements. Recall that the Doppler
frequency fp is proportional to the temporal change of a
signal’s path length between sender and receiver, denoted as
eTx,Rx:
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A distortion of the relative velocity assigned to a detection,
measured by Doppler shift, occurs when there is a difference
in the time derivatives of the direct and indirect path length.

B. Aliasing

The sampling theorem in radar sensors with widespread
chirp-sequence modulation requires very high data rates that
put high demands on the computational resources for data
processing. Therefore, in practical radar system design, one
relaxes the sampling theorem at the cost of introducing
aliasing effects, leading to ambiguous measurements in angle
and relative velocity. Prominent countermeasures to their
elimination include resolution during tracking [5] and the
observation of sequential ambiguous measurements [6]. Neither
method can guarantee a correct resolution; any unresolved
ambiguities remain as artifacts.

1) Relative Velocity: For obtaining the (radial) velocity
of detections in chirp-sequence modulation, a fast Fourier
transform (FFT) along each chirp is calculated and a second
FFT operating over the sequence of all chirps produces
phase information proportional to the relative velocity in
radial direction. For unambiguous information, the maximum
phase shift cannot exceed m, resulting in a maximum un-
ambiguous Doppler measurement range of \/4At.,, where
A and Aty indicate the wavelength and duration between
each chirp. Because large unambiguous measurement ranges
would require overlong measurement times, variable chirp
repetition frequencies [7] or multiple frequency shift keying
modulation [8] bypass this problem. Both methods require a
set of subsequent measurements to resolve ambiguities, such
that a single measurement is meaningless.

2) Angular Measurement: Although the maximum mea-
surable azimuth angle is 7 for an antenna array consisting
of at least two patch antennas, the array’s resolution and
unambiguous measurement interval remain as design parame-
ters. Maximizing both requires large aperture sizes with small
spacing between antenna elements. Compact antenna designs
are desirable for packaging reasons, but come at the expense
of introducing ambiguities in the angular measurement. Similar
to the relative velocity, aliasing effects occur when the angle
extends the maximum unambiguously measurable angle, as
outlined in [9].

C. Limitation of resolution

All sensors have limited accuracy. A radar’s measurement
resolution is limited by the modulation bandwidth, antenna
design, and measurement time as well as the window functions
in the FFTs, see [7]. Obtaining range, range-rate, and azimuth
angle with a radar is essentially the problem of estimating peak-
frequencies in the periodogram. Its resolution limits translate
directly to the corresponding resolution limits for range, radial
velocity, and angle and are given in table I:

TABLE I: Radar resolution parameters and unambiguous
measurement intervals

Range r Range rate 7 Sine of azimuth ¢
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It can be seen that resolution parameters are dictated by
the system design of the radar, such as modulation bandwidth
A ferr, measurement time 7y, and number of antennas /4 with
spacing AT" normalized w.r.t. the wavelength. ¢ denotes speed
of light, and I; the number of sampling points per chirp. As
a result of limited resolution, the measurements will show
inaccuracies. An obvious case of an artifact caused by limited
resolution occurs when multiple targets are located within one
resolution cell. They are not separable in the data and appear as
one detection. Another example for a limited resolution artifact
is an incorrect height estimate by a radar sensor that does
not measure elevation angle. This causes traversable objects,



such as bridges crossing the street or highly reflective objects
on the ground, such as manhole covers, to be regarded as
obstacles in the measuring plane. The overall limitation of
the resolutions can be partially improved by approaches to
high-resolution frequency estimation [10] and by obtaining
additional information by observing the received signal over
time [11].

D. Clutter / Measurement Noise

Clutter detections occur when the detection threshold is
randomly exceeded, but such detections are not associated with
persistent targets. In addition to spurious, weak reflections from
the terrain, electronic noise in the sensor can cause spontaneous
detections that settle as clutter. Earlier work reported that
the occurrence of clutter is well described by a Poisson
distribution [12]. However, while clutter is primarily associated
with unwanted detections and can initially be assumed to be
noise, it has been shown that the information transmitted in
terrain disturbances can be used for mapping and localization
purposes [13].

E. Non-ideal signal processing

Non-ideal behavior of high frequency (HF) components can
causes adulteration of measurements. Artifacts of this kind are
characterized by a dedicated formation process which justifies a
separate category. Examples are nonlinearities in the electronic
components as well as phase noise. Consider the mixer in
the radar, that is often realized with Schottky diodes. The
mixed signal can be found after a Taylor series expansion:
While higher frequency components are suppressed by low-
pass filters, the harmonics of the mixed signal’s product can
cause distractions if its attenuation is not sufficiently high.
As a consequence, for a large and highly reflective target
the radar will report a second target at the double distance,
similar to a repeated path reflection, i.e. double reflection at
the ego vehicle. In chirp sequence modulation, the frequency
chirp ramps are assumed as perfectly linear. Nonlinearities
will cause a widening of the range peaks proportional to the
respective range bins. Phase noise results in a widening of
spectral peaks and therefore, a less accurate estimate of the
peak position. FMCW radars can influence each other due to
interference [14]. The resulting false targets are also allocated
to signal processing and methods for detection and mitigation
exist [15], [16].

F. Object tracking artifacts

Object tracking is the task of continuously estimating target
states based on (noisy) sensor readings. Tracking filters often
consume single detections that are combined into objects.
The object list reported by automotive radar sensors includes
filtering procedures, i.e. removing unwanted measurements
and estimating the movement of targets. Tracking filters such
as Kalman filters calculate estimates of target motion based
on probability functions derived from measurements. They
are based on assumptions about sensor measurements that are
formalized in hypothesis and tracked over time. Temporal

data aggregation allows for more accurate state estimates
to be calculated rather than using a single measurement.
In particular, during transient phases of the filter, where
objects are spawning or disappearing, its state estimate has
high variance and cannot be considered trustworthy. The
gradual exchange of measurement information with estimation
information causes the output of tracking filters to only partially
reflect actual sensor measurements. Therefore, false-positive
and false-negative information reported by object tracking
filters exemplify a separate category of artifacts. Sensor fusion
procedures at the object level typically aim to combine available
measurements from several sensors in such a way that the
respective state or existence uncertainty is minimized [17].
Figure 2 depicts object trajectories observed during traveling
for approx. 1.8 km on a motorway.
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Fig. 2: Trajectory of a target vehicle and the associated object
tracking artifacts that were observed while driving on the
motorway. A few appear geometrically correct on the topmost
lane (mirror reflection off of guardrail), others do not.

The trajectory of the target vehicle is obtained with RTK
level accuracy (i.e. < 5 cm). When driving along the motorway,
which consists of two lanes with railings on each side in
light traffic, it can be seen that the target vehicle produces a
series of other objects marked artifacts in the figure. Mirror
objects occasionally appear in their geometrically correct
position on the topmost track, but a number of objects
exhibit incorrect behavior, with counter intuitive trajectories
characterized by abrupt interruption. This is due to how the
tracker combines available measurements in a way that satisfies
certain hypotheses about object motion. Once an updated
measurement no longer meets the assumptions under the
selected hypothesis, it disappears. However, no statement can
be made as to whether the target is principally rendered in the
measurement and only the tracker discards it.

III. CONTEXTUALIZING ARTIFACTS IN THE RADAR SIGNAL
PROCESSING PIPELINE

The artifacts shown differ both in their physical origin
and in their appearance in the measurements. This section
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Fig. 3: Overview of a typical radar signal processing chain. The appearance of the channel is captured in the output data of the
ADC. After spectral analysis and prior to thresholding, raw sensor data is available. Further signal processing generates single
detections that are processed by algorithm, depending on the sensing task at hand. The figure shows the data processing chain
for an object list and mapping, but other applications for radar data are also possible.

contextualizes artifacts in the radar signal processing pipeline,
which is illustrated in figure 3. A radar sensor system consists of
the sensor hardware and the sensor software components. The
hardware part of the radar comprises the HF (high frequency)
frontend, which contains the antenna as well as analog com-
ponents for signal generation. The software part processes the
digital signal that is available after the ADC (analog-to-digital
converter). As already mentioned, the spectral analysis, which
consists of subsequent FFTs, calculates the range-doppler-beam
spectrum. In conventional signal processing, adaptive threshold
algorithms, often variants of the CFAR algorithm, are now
applied to the spectral data and peak values can be further
processed to higher resolutions by interpolation or estimation.
The so-called detections are now fed into the algorithm intended
for the sensor task, such as object detection and tracking or
occupancy estimation. Recently, algorithms that are applied to
non-threshold data have been introduced and aim to be more
robust against false-negative measurements and are presented
for object tracking [18] and occupancy inference [19].

At this point, three observations are made: First, it can be
seen that the appearance of a particular scenery (called channel)
to the radar is fully conveyed in the signal that is available from
the ADC. The spectral analysis allows for transforming the
signal into physically meaningful spectral data with frequency
resolutions according to table I. Second, all artifacts other than

tracking artifacts can be found in the spectral data because
their physical origin is in earlier processing steps. For example,
there is a clear correlation between mirror detections and wave
propagation as well as limited resolution and sensor hardware
(e.g. antenna or modulation parameters). Third, the application
of a detection threshold and interpolation/estimation algorithms
has an irreversible character, as measured information is either
removed or replaced by estimated information. In both cases
one cannot distinguish between an artifact that was already
present in the raw data and one introduced by interpolation and
estimation calculations. Motivated by the fact that the (spectral)
data prior to a threshold conveys (spectral) power values at a
bin level in each measurement dimension, raw data contains
the most comprehensive level of measured information. By
capturing all presented categories of artifacts, except tracking
artefacts, it is considered as the raw data interface in a radar
sensor and as its corresponding simulation model. Therefore,
we define raw data as follows:

Definition (Raw Data). Raw data is a lossless representation of
machine-interpretable and physical meaningful sensor readings.
It is required that unambiguous (non-aliased) sensor readings
in at least one physical domain can be calculated, based on a
finite set of subsequent raw sensor data samples along with
knowledge about additional sensor parameters. Raw data is
exposed to artifacts in the respective sensor technology.



In the radar literature, the term raw data has several
interpretations: It is often regarded as single detections, or
targets (these two terms are often used synonymously to
each other) that are available after the application of an
adaptive threshold value to the power spectra. In this context,
it serves as a counterpart to a point cloud in lidar sensors with
relative velocity as additional information in each measurement
data point. This type of data is also referred to as target
lists [12], [20]-[22], radar detections [23], [24], and radar point
clouds [25]. Additionally, the terms feature data [26], [27] as
well as low level data [28], [29] are used in the context of sensor
fusion. The latter emphasizes that no feature extraction from
raw data is performed, but leaves it unclear to what extent data
rate reduction (e.g. thresholding), interpolation, or ambiguity
resolution has been performed. It can no longer be guaranteed
that information that is required for correctly handling artifacts,
such as resolving ambiguities, is still available. In conclusion,
after application of a threshold, data does no longer qualify as
raw data, because of the information loss.

IV. MODELING

There are two methods for modeling the presented artifacts,
either phenomenological or causal (also called physical mod-
eling approach). The former is usually based on heuristics,
which are enriched by findings from the observation of real
measurements, from which physical laws are deduced. The
effect of an artifact (e.g. a mirror object) can easily be added
to synthetic data and the response of the system under test
can be evaluated. For example, a mirror object caused by
the presence of guardrails can be realized either by a trigger
logic formalized in fixed rules ("if there is a guard rail in
the visible area, you create mirror detections taking into
account the current geometric conditions."). This method is
computationally inexpensive, but is limited to applications
where the interest is to study the behavior of the sensor signal
and data processing pipeline or the function during the presence
of a particular artifact. Artifacts generated by such hand-crafted
rules may only have a limited degree of physical correctness
and hypotheses that build upon plausibility checks can easily
distinguish synthetic data from such a sensor model.

In a causal modeling approach, the goal is to implement the
actual process of artifact development into the sensor model.
It shows its strength in the ability to scale to complex virtual
scenes and simultaneously render artifacts mathematically and
physically correct. However, it increases the complexity of the
sensor model: For example, the virtual world needs to comprise
greater richness of detail in terms of material assignments for
correctly calculating reflection paths. Also, more insight into
the sensor hardware (e.g. resolution parameters) is required.
Artifacts that are linked to the software (such as tracking
artifacts) are naturally captured in the algorithm itself and
show up as a consequence of the consumed data. Therefore,
they do not require dedicated modeling steps as the algorithm
will ideally show the same behavior when stimulated with real
or synthetic data. In the following, we focus on modeling of

artifacts due to mirror reflections and limitation of resolution
and briefly discuss clutter detections and noise.

A. Mirror reflections: Doppler alteration

Consider the scenario illustrated in figure 4.

Fig. 4: Multitarget scenario under multipath propagation where
each object travels with a different velocity.
The relative velocity from the ego vehicle’s perspective that
is obtained at the sensor reads:
ki

- 1 1
Urel,ego = ivegowa + 5 VegoWTx + E Vri- Iy

: _ @)
=1

where w refers to the directions of the propagation paths for
transmission and reception at the ego vehicle. v ; is the speed
vector of the respective target 7 and n; is the normal vector at
an incident surface i, of which a total of k; interactions exist
on the path between sender and receiver. Quantities accented
with ~ denote simulated or calculated quantities. Note that
n is the normal vector on a surface and corresponds to the
bisectrix between the incidence and emergent angle. For the
two-dimensional case with indirect-indirect signal path (see
figure 1), the temporal change in path length causes the relative
velocity w.r.t. to the ego vehicle of the mirror detection under
incident angle o (assuming pure horizontal reflections) as

3)

In case of direct-indirect signal path and vice versa, the relative
velocity w.r.t. the ego vehicle reads

Vrelego = €0S() * (Vego — VT) -

- 1 1 a
Urel,ego = 5008(&) . Uego + ivego -+ cos (5) s UT. (4)

The theory is briefly verified in a real-world measurement,
where a target vehicle is followed by the ego vehicle with a
radar sensor. Both cars are equipped with positioning devices
at RTK level accuracy and travel on a two-lane motorway
with a guardrail on the left side. Light traffic conditions allow
to analyze the mirror detections that are spawned due to the
presence of the guardrail over a time period of 3 s. Because the
mirror detection appear on the left side, the receiving signal
comes from an indirect path. Figure 5 displays the relative
velocities for the real target and the mirror detections. In
addition, the theoretical models for alteration of relative velocity
under multipath (see eq. 4) for indirect-indirect (denoted as
Urelii and indirect-direct vy jq) are shown.

It can be observed, that the mirror detections show a similar
relative velocity which is in accordance to the indirect-indirect
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Fig. 5: Distribution of relative velocity measurements of a real
target and mirror detections due to reflections off of a guardrail
on a motorway.

model. The indirect-direct model, in contrast, shows less
relative velocity for the mirror detections, that is not confirmed
by the measurement. Deviations towards higher velocities of
the mirror detections can be explained by sidewards reflections
occurring at the target’s spinning wheels that show different
relative velocities compared to reflections off of the vehicle
body. The heading angle v is displayed for verification purposes
and its variation of < 1° justifies the assumption of a negligible
lateral offset.

For studying the case of repeated reflection at the ego vehicle,
a large truck is initially positioned in front of the radar-equipped
ego car. In this configuration, eq. 4 would indicate that the
relative velocity of the mirror detections would be double the
actual relative velocity at double the distance, see figure 6a. The
theory is well confirmed, as shown in figure 6b, where the real
target can be seen around doppler bin 496. The mirror object is
located at double the doppler counting down from 512 to 480.
The number of range bins is also doubled. This artifact can
further be replicated in synthesized data with Fourier tracing
simulation, as depicted in figure 6c.

However, one has to note that verification by measurements
of multipath propagation in higher dimensions poses a large
challenge: In particular during dynamic scenes in real-world,
influencing factors cannot be separated and propagation paths
are exposed to a time-varying environment. This complicates
extracting steady states for which the theory above holds.

B. Aliasing

Modeling of aliasing effects is demonstrated for the Doppler
domain. A radar varies the ramp duration between adjacent

chirps within a measurement sequence (At.,, see table I).

In the studied scenario, the relative speed between the ego

and the target vehicle exceeds the clear relative speed range.

Consequently, the actual relative speed (which is > 100 km/h)
can no longer be derived from a single measurement. This case
is depicted in figure 7, comparing measurement and simulation
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Fig. 6: Radar measurement and simulation of the double-
reflection scenario. The mirror detections show double the
relative velocity and double the range compared to the actual
target.

results. The vertical line denotes the static return from the side
strip and the detections appears as elliptically shaped entries
around range-bin 90.

C. Limitation of resolution

The vector-projection method [30] arose as a promising
technique for modeling limited resolution in range, range
rate, and azimuth. The key idea is to apply a smearing
filter on a (sharp) reflection point, similar to a point spread
function. In a previous work by the authors, the Fourier tracing
approach [1], which builds on this principle, has demonstrated
its ability to synthesize raw radar data from a virtual scene:
With the resolution cells of the sensor as design parameters,
artifacts associated with limited resolution and separability
are realistically modeled with justifiable effort. A ray tracing
engine approximates electromagnetic mm-waves under the
assumption of geometric optics and facilitates the modeling of
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Fig. 7: Comparison of measurement and simulation at two
consecutive time steps of a single target scenario that exceeds
the unambiguous relative velocity interval.

artifacts related to wave propagation, such as mirror detections.

Applying the Fourier scanning algorithm to elevated objects,
such as bridges, generates apparently realistic results, see
figure 8.

D. Clutter / Measurement Noise

Recall that clutter is understood as a random detection, i.e.

detections that are present in the current, but not in the previous
measurement cycle. In an experiment, a radar is facing towards
a feature-poor and all-static terrain. The grassland area is

studied from five different positions (denoted Grassland 1 to 5).

For reference, an additional measurement is carried out where
the sensor observes a different area with a set of static objects,
such as cars. Now, only range bins that have not been reported

as occupied in the previous measurement cycle are studied.

This allows to consider only non-persistent detections that may
be considered as clutter. Figure 9 shows the distribution of
the clutter detections and it shows the probability that at least
one detection is reported for a range bin during a given period
of time. In particular for higher range bins (larger distances
from the radar), this probability may be well approximated by
a uniform distribution. Therefore, suche clutter detections may
be modeled as uniformly distributed peaks across the studied
spectra.

1
(b) Simulation (c) Scenario illustration

(a) Measurement

Fig. 8: Measurement and simulation of a range-beam map of
a scenario with a bridge representing an elevated object.
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Fig. 9: Probability distribution of clutter detections in range
bins during observing a static scenario for a period of time.

Measurement noise characteristics are investigated in an
experiment in which cube corner reflectors of different sizes
are positioned at distances between 15m and 75m in front
of a radar. The stationary scenario was observed for a period
of 60s and the power values at the corresponding range bin,
in which the cube corner is located, are investigated. A 2
test with 5 % significance level shows that the distribution of
power measures meets the assumption of a normal distribution
as model for measurement noise for point targets, such as cube
corner reflectors. It should be noted that this does not claim
to describe amplitude variations of extended targets (e.g. cars)
at different aspect angles. This phenomenon is investigated in
earlier works of the authors [31].

V. CONCLUSION

This paper presents a sound definition of different radar
sensor artifacts and corresponding modeling approaches. Mea-
surements showing various sensor artifacts were carried out



in real world test drives, as well as specially developed
measurement campaigns on a test site. Mathematical models for
artifacts are introduced and their explanatory power is proven by
comparison with measurements. Simulations verify the correct
implementation in a sensor model. It should be emphasized
that the above list of artifacts does not claim to be exhaustive,
but represents those artifacts which are most dominant and
easy to observe in radar measurements. Therefore, it can be
considered as the minimum set of effects that a reasonable
radar sensor model should provide. We explicitly stress the fact
that the occurrence of an artifact does not imply an unwanted
measurement. For example, radar sensors are able to pick
up reflections from occluded objects. These reflections fulfill
our definition of artifacts, but provide additional information
for a holistic understanding of the scene. Nevertheless, these
reflections are also exposed to the distortions shown due to
multipath propagation effects.

Further investigations will focus on a more detailed quantifi-
cation of artifacts that are linked to non-ideal signal processing,
as well as their corresponding modeling methods. The limits
of the fidelity of the proposed modelling methods also need
to be further examined. In safety validation with the scenario-
based testing approach, a detailed notation of what revolves
around the logical description of a scenario exist [32]. It lacks,
however, consideration of machine perception related aspects
in order to include sensor artifacts, as the ones presented in
this paper. Further work should therefore focus on expanding
the scenario description language with sensor specific aspects.
The scenarios representing specified artifacts considered in this
paper can serve as a starting point.
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