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Abstract

Barrett’s oesophagus surveillance biopsies represent a significant share of the daily workload for a busy histopathology depart-
ment. Given the emphasis on endoscopic detection and dysplasia grading, it is easy to forget that the benefits of these screening
programs remain unproven. The majority of patients are at low risk of progression to oesophageal adenocarcinoma, and periodic
surveillance of these patients is burdensome and costly. Here, we investigate the parallels in the development of Barrett’s
oesophagus and other scenarios of wound healing in the intestine. There is now increased recognition of the full range of
glandular phenotypes that can be found in patients’ surveillance biopsies, and emerging evidence suggests parallel pathways
to oesophageal adenocarcinoma. Greater understanding of the conditions that favour progression to cancer in the distal oesoph-
agus will allow us to focus resources on patients at increased risk.
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Introduction

“It is hard to make a patient without complaints feel
better.”

Oesophageal adenocarcinoma surveillance (‘Barrett’s screen-
ing’) encapsulates some of the best and some of the worst that
early cancer detection programs have to offer. The initiation of
these surveillance programs has been prompted by the in-
crease in oesophageal adenocarcinoma incidence over the last
40 years [1, 2]. Although squamous cell carcinoma remains
the predominant malignant condition affecting the oesopha-
gus in many developing nations around the globe, in the west,
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oesophageal adenocarcinoma has increased by about 5% an-
nually since the 1970s [3]. The majority of oesophageal ade-
nocarcinoma patients still present at advanced stages of dis-
ease, and overall 5-year survival consequently remains poor at
around 15%. Given these figures, there is a clear and immi-
nent need for diagnostic tools that will help us find patients at
increased risk.

Barrett’s oesophagus (BO) is the most proximate risk factor
for oesophageal adenocarcinoma development. The condition
is defined as the metaplastic replacement of squamous epithe-
lium with columnar epithelium in the distal oesophagus in
response to acid-biliary reflux. Importantly, the increase in
oesophageal adenocarcinoma incidence is paralleled by an
apparent rise in BO prevalence, further supporting the concept
that BO is the key precursor lesion to oesophageal adenocar-
cinoma [4]. However, determining the exact population prev-
alence of BO is less straightforward than it may seem at first.
This is principally because heartburn complaints are common
in the general population and there is only a weak association
between the reported presence of heartburn and the develop-
ment of BO [5]. An inherited predisposition plays some part in
Barrett’s development as indicated by GWAS studies that
compared Barrett’s patients and normal controls. These stud-
ies have revealed that BO occurs more commonly in individ-
uals carrying one (or more) of a small set of genetic risk
polymorphisms [6]. This suggests that an inherited predispo-
sition can determine the tissue response to acid-biliary reflux.
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Intriguingly, some of these polymorphisms are found in genes
involved in oesophageal embryonic development. This illus-
trates the complex multifactorial actiology of Barrett’s devel-
opment, wherein an environmental factor precipitates the de-
velopment of a precursor lesion in individuals carrying genetic
risk alleles.

A further factor that complicates the assessment of the true
population prevalence of BO is the simple fact that the formal
definition of the condition varies between nations. The
European Society for Gastrointestinal Endoscopy (ESGE)
and American Gastroenterology Association (AGA) guide-
lines both require that intestinal metaplasia be documented
on oesophageal biopsy, because intestinal metaplasia is seen
as a sine qua non for cancer progression [7]. By contrast, the
British Society for Gastroenterology (BSG) guidelines stipu-
late that BO is primarily an endoscopic diagnosis [8].
Although this difference may seem trivial, in practice, this
may mean that a given patient is eligible for Barrett’s surveil-
lance in London, whereas this same patient, after relocating to
Amsterdam, would no longer be eligible for surveillance.

For these reasons, population estimates of BO vary between
1 and 5% [9]. Even if the true estimate is closer to the lower
bound, then there is still a large reservoir of individuals at some
risk of oesophageal adenocarcinoma. However, despite the
aforementioned relative annual increase in oesophageal adeno-
carcinoma incidence, the absolute risk remains low and retro-
spective population-based studies have demonstrated a progres-
sion rate of around 0.10-0.13% per patient per year [10, 11]. In
other words, within a random sample of 50,000 individuals,
around 500 of these individuals will have BO (1% prevalence),
and of these 500 individuals, only 1 will develop oesophageal
adenocarcinoma in a given year. These figures indicate that the
majority of patients with BO have a long-term benign condition.
In fact, because of shared co-morbidities (male gender, obesity),
the absolute risk of dying of cardiovascular disease is much
greater than the risk of dying of oesophageal adenocarcinoma
in patients with BO [12]. Even if we put important consider-
ations of finite resource allocation and healthcare spending aside,
given these numbers, we should carefully consider whether in-
clusion of patients in Barrett’s surveillance programs does in-
deed strike a fair balance between the protection afforded by
early endoscopic diagnosis and the risks and negative quality-
of-life impact of cancer screening [13].

Lack of evidence in favour of Barrett’s
surveillance

What then is the evidence that Barrett’s surveillance reduces
oesophageal cancer mortality? Surprisingly, the evidence for
this is thin at best. In fact, some studies have concluded that
there is no evidence that Barrett’s surveillance reduces cancer
mortality. For example, in a case-control study carried out by
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the group of Doug Corley on the efficacy of Barrett’s surveil-
lance endoscopy, the authors showed that there was no asso-
ciation between exposure to upper gastro-intestinal endoscopy
and oesophageal cancer death [14]. Indeed, patients who had
died from oesophageal adenocarcinoma were just as likely to
have undergone surveillance endoscopy as control patients.
Now, because this was a community-based study, there were
many confounders the authors could not control for. However,
the absence of any protective effect of endoscopy is stunning.
The evidence in favour of surveillance endoscopy comes
mainly from case-control studies wherein Barrett’s patients
included in screening programs were compared with appro-
priate controls. As might be expected, inclusion in a screening
program correlates with detection of cancer at earlier stages,
which is less likely to have spread beyond the oesophagus,
and this translates to longer overall survival times for patients
who were diagnosed with oesophageal adenocarcinoma
whilst on a surveillance program [15]. However, these uncon-
trolled studies are susceptible to many biases, including
length-time and lead-time biases.

In short, there is no direct evidence that Barrett’s surveillance
on balance reduces oesophageal cancer mortality. Much of this
uncertainty likely relates to the fact that BO remains an
underdiagnosed condition. Indeed, most patients with newly di-
agnosed oesophageal adenocarcinoma have no history of either
BO or heartburn complaints [3]. The clinical return and cost-
benefit to society of Barrett’s surveillance have, for all of these
reasons, come under increased scrutiny. It is hoped that trials such
as the British BOSS (Barrett’s Oesophagus Surveillance Study)
and the German BarrettNET studies, wherein a total of over 5000
Barrett’s patients will be followed for over 10 years to investigate
all-cause and disease-specific mortality between patients who
have been randomly allocated to two-year endoscopic surveil-
lance or conservative clinical follow-up, will finally provide us
with guidance on this issue. However, the trial’s sample size and
length of follow-up are a clear indication of the complexity and
magnitude of this endeavour.

Pathologists play a significant role in this debate over the
efficacy and efficiency of Barrett’s surveillance. A significant
share of the daily workload for a busy department can consist
of oesophageal screening biopsies. At the same time, pres-
sures on the pathology workforce have never been higher with
staffing levels not increasing at the same level as the demand
[16]. Given the minimal reported benefit of current surveil-
lance practices for oesophageal adenocarcinoma, it is clear
that we must find ways that allow patient selection with great-
er precision and at reduced cost [17, 18].

The Barrett’s metaplastic mosaic

The seemingly straightforward histopathologic definition of
BO as a metaplastic condition whereby the native squamous
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epithelium of the distal oesophagus is replaced with columnar
epithelium belies an altogether far more complex microscopic
picture. In fact, rather than a single phenotype, patients’ biop-
sies show a range of columnar phenotypes. It is important to
stress that despite the traditional emphasis on the cellular com-
position of the epithelium per se, the Barrett’s segment is
organised, like all mucosal layers of the gastro-intestinal tract,
into a quasi-repetitive arrangement of glands. Every gland is
maintained by a unique population of stem cells, and every
gland is therefore a singularly evolving unit within the muco-
sal sheet [19]. These metaplastic glandular units come in a
variety of appearances, but, importantly, (1) the morphology
of the various types of glandular units is invariant within and
between patients, and (2) the morphology of these metaplastic
gland types often mimics gland types found elsewhere in the
gastro-intestinal tract, either natively or in pathologic condi-
tions. With these ground rules in mind, we will first cover the
various gland phenotypes found in the mature Barrett’s seg-
ment, before discussing what we know regarding the dynam-
ics of these gland phenotypes.

The gland phenotype canonically associated with BO dis-
plays a mixed epithelial lining consisting of scattered goblet
cells against a background of columnar cells with mucinous
properties indistinguishable from gastric foveolar cells [20]
(Fig. 1). This dual mixed gastric and intestinal patterns of

epithelial differentiation are reflected in its mucin core peptide
and trefoil factor (TFF) expression pattern with goblet cells
producing the intestinal type mucin MUC2 as well as trefoil
factor 3 (TFF3), whilst foveolar cells produce the gastric type
mucin MUCS5AC and trefoil factor 1 (TFF1) [22]. These
MUC proteins contain abundant oligosaccharide side-chains,
which allow these proteins to bind copious amounts of water
after secretion into the gut lumen. These MUC proteins further
self-aggregate, which creates a thick visco-elastic gel that
coats the underlying epithelium [23]. This peculiar pattern of
mixed gastric and intestinal lineage differentiations has been
widely described as ‘specialised epithelium’ or ‘specialised
metaplasia’, or, in the vernacular of pathology reports, ‘intes-
tinal metaplasia’. Note that in less recent publications, this
may have been referred to as type II or type III incomplete
intestinal metaplasia; however, this histochemical subtyping is
now considered obsolete [24].

Important to this discussion is the functional organisation
of this canonical Barrett’s gland. Unlike crypts in the small
intestine and the colon, where stem cells reside strictly at the
base of the gland and move up along the crypt (and villus) as
these cells differentiate and mature, in Barrett’s glands, the
stem cell compartment is located about one third up the height
of the gland, and mature cell lineages show a bidirectional
flow from this stem cell compartment both towards the lumen

Specialised Barrett’s epithelium
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Fig. 1 The canonical Barrett’s gland. Overview of the canonical Barrett’s
gland, left H&E and right cartoon. Details are given in the text. The
Barrett’s gland demonstrates bidirectional flux from a stem cell
compartment about one third up from the base of the gland. The

mucous base produces bicarbonate and MUC6/TFF2 (marked by
arrows), whilst the superficial crypt compartment is lined by goblet
cells (marked by MUC2/TFF3) and foveolar cells (marked by
MUCSAC and TFF1) (Reprinted with permission from [21])
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as well as towards the base of the gland. This was shown in an
experiment wherein oesophageal adenocarcinoma patients
scheduled for oesophageal resection were infused with a thy-
midine analogue (IdU) at varying time points before surgery
[22]. Tracing the distribution of this indelible label in daughter
cell populations confirmed bidirectional migration within
these Barrett’s glands and showed that cellular migration to-
wards the glandular base compartment of the gland occurred
much slower than towards the superficial crypt compartment
of the gland; whereas the label had been all but lost from the
superficial crypt population in little over a week, non-dividing
IdU-positive cells were detected up to 10 weeks after label
infusion in the gland base population. This mucous base of
the Barrett’s gland is lined by a population of columnar cells
that produce not only MUCS, but also bicarbonate (HCO3").
This buffers the caustic refluxate and, together with the mu-
cinous gel blanketing the metaplastic mucosa, protects the
lining of the distal oesophagus. This functional
compartmentalisation is relevant to a complete understanding
of the unique functional properties of the canonical Barrett’s
gland [21].

Expression of the LGRS stem cell marker about one third
up the height of the gland further supports this as the loca-
tion of the stem cell niche [22]. LGR5 mRNA is localised at
the junction of the MUCSAC+/TFF1+ cells and the
MUCG6+/TFF2+ cells, the origin of the bidirectional cell flux
and site of maximum proliferative activity (as shown by Ki-
67 immunohistochemistry). These observations, thus, pro-
vide an initial framework for understanding the cellular
makeup and functional properties of the canonical Barrett’s
gland. Note that this bidirectional compartmentalization is
by no means unique in the gastro-intestinal tract and strong-
ly resembles the basic architecture of the pyloric gland in the
gastric antrum.

There are a small number of other gland types, which to-
gether constitute the metaplastic mosaic of the columnar oe-
sophagus (Fig. 2). The best studied of these is the cardiac
gland (also transitional gland or non-goblet columnar gland).
In essence, the epithelial lining and bidirectional architecture
of'the cardiac-type gland are identical to those of the canonical
Barrett’s gland described above, save for an absence of goblet
cells in these glands. This makes these glands the simplest, in
terms of differentiated epithelial cell types, of all the Barrett’s
gland types, showing only MUCS5AC/TFF1 foveolar cells
along the superficial crypt compartment and MUC6/TFF2
cells along the mucous base. These glands have been quite
extensively studied, as this is the gland type most commonly
found in biopsies of patients with short-segment BO and in
biopsies from patients with columnar metaplasia of the
neodistal oesophagus following oesophageal resection.
Together, this suggests that this gland type may be the earliest
recognisable (‘early responder’) gland type in developing BO.
It is also a gland that is indistinguishable in terms of glandular
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architecture and cellular makeup from reparative glands
known as pseudo-pyloric metaplasia found in, for example,
terminal ileitis in Crohn’s disease.

The remaining gland types are variations on a theme.
The cardiac-type gland may show oxyntic differentiation
in the form of scattered parietal cells at which point the
gland is essentially comparable to similar glands found in
the transitional mucosa of the gastric incisura or gastric
pylorus (Note that contrary to common belief, parietal cells
are not restricted to corpus-type mucosa and are abundant-
ly found in normal human pyloric mucosa [25].). Mature
chief cells may also be found in these glands, which show
the complete complement of cell types normally found in
the gastric body and fundus, although the irregular packing
of these glands clearly indicates that this is non-native,
post-inflammatory mucosa. Indeed, in many cases, these
glands can be found in the context of unambiguous land-
marks of the anatomic oesophagus such as submucosal
gland complexes, strongly suggesting that these fundic-
type glands developed as part of the metaplastic mosaic.
Whether these metaplastic oxyntic glands develop from
cardiac glands and, if so, whether these represent true stem
cell-derived metaplasias or are a manifestation of variable
levels of oxyntic gland differentiation are important areas
of future research, since these suggest malleable levels of
differentiation of these archetypal gastric glands with im-
portant implications for the temporal dynamics of glandu-
lar metaplasia in the atrophic stomach.

Finally, glands showing mature intestinal differentiation
may be seen, which show Paneth cells at the base of the gland
and enterocytes along the superficial crypt compartment.
These are the only glands completely lacking gastric mucin
core proteins and are also the rarest of all the gland types
described above, although patients with abundant Paneth cell
differentiation may occasionally be seen.

What is the origin of Barrett’s cancer?

The phenotype of Barrett’s mucosa is therefore truly protean,
consisting of a range of glandular phenotypes of intestinal and
gastric differentiations. Whether intestinal differentiation is
required for tumour progression has long remained a matter
of debate [8]. Over the years, a great deal of evidence has been
generated to support either position. For example, epidemio-
logical studies employing histopathology registry data have
suggested that the cancer progression rate is higher in patients
with intestinal metaplasia on oesophageal biopsy than in pa-
tients without goblet cells [10], although other epidemiologi-
cal studies have failed to find evidence for this claim [26]. Yet
other groups have directly examined the rate of molecular
abnormalities in non-dysplastic Barrett’s epithelium with and
without intestinal metaplasia and reported that the rate of
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Fig. 2 Gland phenotypes in the metaplastic mosaic of Barrett’s
oesophagus. Barrett’s biopsies show a defined spectrum of glandular
phenotypes ranging from oxyntic glands, comparable to those in the
corpus of the stomach, to glands with mature intestinal differentiation
with enterocytes and Paneth cells. These latter glands are
indistinguishable from complete intestinal metaplasia in the human

molecular alterations is greater in intestinal metaplasia than in
non-intestinalised epithelium. Again, however, independent
studies have failed to confirm this [27, 28]. In an effort to trace
the origins of Barrett’s adenocarcinoma, Kaiyo Takubo and
co-workers examined the adjacent epithelium in a series of
minute Barrett’s cancers, some as small as 3 mm [29]. He
showed that most of these lesions were surrounded by non-
intestinalised epithelium strongly suggesting that these can-
cers could originate without direct intestinalised precursor.
Critics of this carefully executed study retorted that Takubo
had not examined the entire specimen and that some cancers
may have simply obliterated their intestinalised precursors. In
a follow-up study, Junko Aida examined a new series of

Non-goblet

Barrett’s gland

Barrett’s gland with Paneth cells

land

\
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stomach. Other gland types (oxynto-cardiac glands, simple mucous
glands and canonical Barrett’s glands as in Fig. 1) fall in between these
extremes. Together, these five gland phenotypes represent five stages
along the spectrum from oxyntic gastric to intestinal differentiation
(Reprinted with permission from [21])

minute cancers, this time meticulously sectioning at regular
intervals through the entire specimen [30]. The authors essen-
tially replicated the original findings, although, obviously, this
could not refute the first point of critique that these minute
cancers may have obliterated its metaplastic precursor lesion.

We recently provided the first direct evidence for oesoph-
ageal adenocarcinoma derivation from non-intestinalised epi-
thelium [31]. To this end, we snap-froze a complete strip of
Barrett’s mucosa running from the squamocolumnar junction
to the proximal stomach as a Swiss roll. This strip was obtain-
ed from a resection specimen showing a small nodular
Barrett’s adenocarcinoma at the squamocolumnar junction.
By retracing the ancestry of the malignant clone to the
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neighbouring metaplastic epithelium using CCO lineage trac-
ing (explained in Fig. 3), we found that this cancer actually
originated in metaplastic cardia-type epithelium, which indeed
lacked goblet cells and CDX2 expression. The non-dysplastic
cardia epithelium shared a number of pathogenic mutations
with the nodular cancer, including a mono-allelic TP53 muta-
tion. This last result provides unambiguous evidence that
pathogenic TP53 mutations can accumulate and clonally ex-
pand in cardia-type epithelium.

These data were obtained from a single patient, and further
evidence will require follow-up work in a larger cohort.
However, this result unequivocally shows that intestinal
metaplasia is not the sole precursor to cancer in the

Fig. 3 Lineage tracing through a
mitochrondrial CCO mutations. a
CCO lineage tracing makes use of
somatic mutations which occur in
the mitochondrial respiratory
chain. The respiratory chain
maintains the electrochemical
proton gradient across the inner
mitochrondrial membrane.
Somatic mutations in the
mitochondrial DNA (mtDNA)
may functionally inactivate
proteins of the electron transport
chain. This results in the loss of
substrate conversion in the
enzyme histochemical
cytochrome ¢ oxidase reaction.
mtDNA is circular; wild-type b

Overview

metaplastic distal oesophagus. In fact, recent studies have
suggested that progression to cancer may occur less often in
patients with higher goblet cell counts [32, 33]. This suggests
that goblet cell differentiation may in fact profect against
neoplastic transformation. Together, these lines of evidence
point to parallel lines of progression in the distal oesophagus.
Work carried out by the group of Gregory Lauwers has re-
vealed that many early neoplastic Barrett’s lesions can be
separated, based on their expression of aforementioned gas-
tric (MUCSAC, MUCS6) and intestinal markers (CDX2,
MUC?2 and CD10), into either gastric- or intestinal-type dys-
plasia [34]. Whether these differences indeed reflect separate
molecular pathways to oesophageal adenocarcinoma and,

Circular
mtDNA

Reference sequence

T G A < < < A T

Sample sequence

T G A T < < A T

copies are shown as blue rings
whilst mutant copies are shown as
red rings. Through drift, the
number of mutant copies can
increase within the cell and this
can be detected by sequencing the
mtDNA genome. b Example of
CCO lineage tracing on
snapfrozen Barrett’s mucosa. The
top panel shows an H&E-stained
consecutive section as a
reference. A clone is detected
which displays the loss of CCO
substrate conversion in blue
(lower panel). Wild-type

Conventional H&E

epithelium retains substrate
conversion enzyme activity and is
labelled brown (DAB substrate
precipitation). Notice how the
clone expands within the mucosa.
This epithelial clone lacks
intestinal differentiation and was
also shown to carry a mono-allelic
p53 mutation (see also [31]).
Arrows indicate CCO-deficient
epithelium, and arrowheads
indicate CCO-proficient
epithelium

CCO enzyme histochem
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importantly, whether these dysplasias have a different clinical
outcome will require further study. In conclusion, evidence is
now slowly building that cancer progression in BO is not
restricted to the intestinal lineage.

Phenotypic dynamics of Barrett’s across time
and space

Above, we have seen that Barrett’s mucosa is not a single
epithelial entity but actually comprises a mosaic of glandular
phenotypes, both intestinal and gastric in nature. Barrett’s bi-
opsy specimens commonly show a diverse admixture of these
phenotypes. Remarkably, the distribution of these gland phe-
notypes appears to show recurrent patterns, both in time and in
spatial localization along the Barrett’s segment. Spatially,
intestinalised phenotypes are found more proximal at the
squamocolumnar junction, whereas cardiac and
oxyntocardiac gland phenotypes are proportionally more
common around the gastro-oesophageal junction [35-37].
For example, Harrison and co-workers found that intestinal
differentiation was almost twice as commonly found in prox-
imal biopsies near the squamocolumnar junction when com-
pared to the most distal biopsies taken around the GOJ with a
clear stepwise gradient in between [35]. It appears that the
density of glands containing intestinal differentiation corre-
lates with the pH gradient along the distal oesophagus; the
less acidic the local average pH (i.e. closer to the
squamocolumnar junction), the higher the proportion of
glands with goblet cell differentiation. The significance of this
spatial distribution of gland phenotypes is currently unclear.
We have suggested that this distribution in gland types may be
a reflection of local selection for phenotypes most adept at
surviving in the harsh Malthusian environment of the acid-
biliary refluxate-exposed distal oesophagus [21]. The central
driver of this local ecology may be the soluble component of
bile acids, which act as a detergent and solubilise lipid cell
membranes through micelle formation. Classic studies on the
solubility of bile salts show that it depends on luminal pH.
Bile salt solubility is the greatest at intermediate pH ranges
seen most proximally, whereas bile acids are insoluble and
therefore incapable of forming micelles at pH ranges in the
distal oesophagus [38]. Relatedly, in vitro studies have shown
that solubilised duodenal bile salts are a strong inducer of
CDX2 expression and goblet cell differentiation [39, 40].
The pH gradient along the Barrett’s segment may thus in turn
set up a proximo-distal gradient of bile solubility, and this may
explain the relative proportion of specific gland phenotypes
along the length of the oesophagus.

Temporal analysis of gland phenotype distribution is com-
plicated by the simple fact that in most patients the Barrett’s
segment remains completely static over time and does not
expand (or contract) despite years, or in some cases decades,

of endoscopic follow-up, even in the context of ongoing oe-
sophageal exposure to acid-biliary reflux [41]. However, a
select population wherein columnar metaplasia of the
(remnant) distal oesophagus does develop de novo has pa-
tients that have undergone cardia-oesophagectomy because
of oesophageal cancer. In these patients, normal sphincter
function is lost which may provoke gastro-oesophageal reflux,
and consequently, in about half of these patients, columnar
mucosa develops in the remnant distal oesophagus.
Longitudinal studies show that the length of columnar mucosa
increases over time, and histopathologic analysis demon-
strates that the glandular phenotype changes over time from
purely cardiac-type mucosa to canonical Barrett’s glands with
intestinal differentiation [42]. These observations suggest that
the earliest glandular phenotype that develops in the reflux-
damaged distal oesophagus is the simple cardiac-type gland,
which may evolve over time to show intestinalisation or fur-
ther gastric differentiation. Supporting this contention are
studies which show that some cardiac-type glands may show
early intestinalisation with submaximal expression of Villin
and CDX2 [43]. Muc2 is generally only expressed when gob-
let cells are morphologically evident. Finally, we have recent-
ly shown the clonal ancestry of canonical specialised Barrett’s
glands and non-intestinalised cardiac-type glands, showing
that indeed, these various phenotypes do not develop indepen-
dently but are the result of phenotypic variation within glands
that derive from a common ancestor [31].

This observation of a temporal phenotypic progression
from cardiac-type glands to intestinalised epithelium is reca-
pitulated in a recent mouse model of BO [44]. In this trans-
genic mouse model, IL-1beta is overexpressed in the oesoph-
ageal and squamous forestomach epithelia. The transgenic
mice first exhibited spontaneous oesophagitis and then
progressed to Barrett metaplasia at the gastro-oesophageal
junction. Indeed, the addition of bile acids to the drinking
water (0.2% deoxycholic acid) accelerated the onset of intes-
tinal metaplasia. Taken together, these data strongly suggest
that the earliest morphologic manifestation of glandular dif-
ferentiation in the distal oesophagus is the simple cardiac-type
gland, which may evolve over time to show either specialised
intestinal differentiation or specialised gastric oxyntic and
chief cell differentiation.

What is the tissue origin of Barrett’s
oesophagus?

What if we ask what drives the columnar transformation of the
distal oesophagus when acid-biliary reflux first hits the naive
squamous mucosa of the distal oesophagus? This is a question
of great contention and one on which opinion is sharply divid-
ed. Several models have been proposed so far, but the two
models that have (arguably) been studied the most are a direct
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squamous-to-columnar transdifferentiation model and a
repeated-wounding model with expansion of glandular progen-
itors from the proximal cardia. The transdifferentiation model
proposes that squamous stem cells chronically exposed to the
corrosive effects of acid-biliary reflux slowly change their dif-
ferentiation lineage by downregulating the native squamous
expression program in favour of a columnar cell expression
program through the upregulation of lineage-determining fac-
tors such as SOX9 [39, 40]. Recent support for this model
comes from a trial wherein reflux patients successfully treated
with proton pump inhibitors were asked to discontinue acid
suppression for 2 weeks [45]. Even within this relatively short
timeframe, all patients showed progressive complaints, some
with severe erosive (Los Angeles grade C) reflux oesophagitis,
indicating that this is a pertinent model to study this disease.
Biopsies from non-eroded areas showed severe squamous lym-
phocytic infiltration, suggesting that these inflammatory events
mediate important aetiologic events.

On the other hand, the chronic-wounding model proposes
that with continuous micro-trauma due to caustic reflux, small
patches of squamous epithelium are eroded, which are filled in
through a normal wound-healing process (Fig. 4). According
to this model, the local inflammatory wounding response
drives proliferation of nearby progenitors to cover the epithe-
lial defect. If wounding occurs at the squamocolumnar junc-
tion, then this will elicit proliferation of adjacent squamous
and columnar progenitors. Although this is essentially a ste-
reotypical wound-healing response, the reflux micro-
environment will drive secondary selection for phenotypes
best adapted to this ecology thus favouring mucin-producing
columnar progenitors. With recurrent bouts of reflux and ul-
ceration, the columnar epithelium expands, progressively re-
placing the distal oesophageal squamous epithelium.

Whether cyclic wounding and expansion occur within a
short timeframe or progresses over many months or years is
currently unclear. It may well be that progressive widening of
the lower oesophageal sphincter due to slowly increasing ab-
dominal pressure and increased reflux indeed progressively
erodes the distal oesophageal epithelium over many years.
There is some (indirect) evidence for this in patient studies
[47]. For example, in carefully executed studies analysing
oesophageal reflux in patients using detailed pH and manom-
etry measurements across the lower oesophageal sphincter,
McColl and co-workers found that in patients with a large
waist circumference, acid reflux extended more proximally
in the lower oesophageal sphincter and, importantly, this cor-
related with a wider zone of cardiac-type columnar mucosa.
Indeed, and somewhat anecdotally, it appears that in rare pa-
tients, the histologic squamocolumnar junction can actually
move distally, covering the gastric cardia. James Going and
co-workers describe exactly this phenomenon in a patient with
longstanding atrophic gastritis in the context of pernicious
anaemia who underwent gastrectomy because of an incipient
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gastric cancer. The resection specimen clearly showed a collar
of squamous epithelium, which occupied the anatomic cardia
[48]. Given the atrophic gastritis, the most parsimonious ex-
planation is that in this case, due to continuous erosion of the
friable gastric mucosa, the squamous epithelium outcompeted
native glands in the proximal stomach.

Wound healing and ecologic adaptation

Chronic mucosal erosion and wound healing in response to
micro-trauma are central to the model for Barrett’s development
discussed above. What is, in some ways, unique about Barrett’s
is that it occurs at a junction of epithelial phenotypes. Similar
competitive processes can be seen at other epithelial junctions
such as the anorectal junction. Mucosal trauma is the common
denominator of a wide range of clinical conditions ranging from
inflammatory bowel disease (IBD), to NSAID-provoked ulcer-
ation, and Clostridium difficile infection. Although the inciting
agent is different in every case (and in some of these cases, such
as IBD, remains fundamentally unknown), the wound-healing
response that follows mucosal ulceration occurs in a stereotyp-
ical manner. As in any epithelial tissue, the first phase of mu-
cosal wound healing following ulceration is the formation of
granulation tissue and the deposition of a small film of fibrinous
exudate to protect the underlying tissues. This granulation tis-
sue is then covered by an initial layer of undifferentiated repar-
ative epithelium, which lacks functional properties such as mu-
cin differentiation. The next phase is specific to the glandular
epithelium of the gastro-intestinal tract and involves the lateral
ingrowth of adjacent glands through gland budding or fission
[49]. Gland fission occurs until the mucosal defect has been
functionally repaired, leaving a mucosal ‘scar’ in the form of
gland distortion and fibrosis.

Although the data from patients can be informative with
regards to the various contexts wherein mucosal wound repair
plays a key role, functional dissection of these processes is
best done in animal models. Like homeostatic stem cell regu-
lation, wound repair is also an evolutionarily conserved pro-
cess. Most recently, models have also been established which
allow repeated observation through an endoscopic biopsy-
wounding protocol. Miyoshi created wounds in mouse colon
with 1-mm? endoscopic biopsies, which allowed clear time
points to visualise existing crypts repairing the defect [50].
Wnt5a, a non-canonical Wnt ligand, was one factor required
for restoration of homeostasis. After mucosal injury, a flat-
tened layer of non-proliferative epithelial cells (wound-
associated epithelium) emanated from crypts adjacent to the
wound and migrated over the wound bed. Next, crypts adja-
cent to the wound formed lateral, open extensions like chan-
nels towards the centre of the wound bed. These resembled
crypts but had a proliferative, undifferentiated cell population,
suggesting areas of new crypt formation. Wnt5a-positive
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Fig. 4 Chronic wounding and repair drive Barrett’s development. a
Overview of a Barrett’s segment in the distal oesophagus. b
Squamocolumnar junction in an oesophageal resection specimen shows

stromal cells were found near these wound channels in the
area of mucosal injury. Wnt5a-positive cells were also located
adjacent to non-proliferative wound channel epithelial cells.

phenotype
) N ’ S

Repeated
ulceration

nflammation

a mono-layer of undifferentiated epithelium. ¢ Expansion of Barrett’s
mucosa through repeated cycles of wounding and repair (details in the
main text) (Reprinted with permission from [46])

Wnt5a-positive mesenchymal cells may therefore induce new
crypt formation by potentiating TGF-f3 signalling and locally
inhibiting proliferation of the stem/progenitor cell population
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within the wound channel. These animal studies reaffirm the
central role for the gland as a unit of tissue homeostasis in the
gastro-intestinal tract. In Barrett’s, these processes occur with-
in a micro-environment which allows the selective expansion
of glandular epithelial progenitors. Lineage-tracing studies
will be essential in documenting the origin of these glandular
epithelial progenitors.

Conclusion

Here, we have dealt mostly with normal tissue homeostasis in
the hostile acid-biliary reflux environment of BO. The diver-
sity of glandular phenotypes represents a rich untapped source
of information, which may reveal important clues about
Barrett’s histogenesis. Unravelling the principal environmen-
tal drivers of glandular expansion will require detailed studies
on tissue morphology and ecology (e.g. bile acid concentra-
tion, pH manometry) along the segment. Chemoprevention
studies in BO have suggested that the inflammatory environ-
ment can have a key impact on neoplastic evolution [51-53].
Understanding the ecological conditions that drive malignant
evolution in Barrett’s may help us avoid burdensome and
costly surveillance in patients at low risk of transformation
[17] and intervene in patients at increased risk [54].
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