
Ingenieurfakultät Bau Geo Umwelt
Lehrstuhl für Computation in Engineering

Image-based finite element analysis

László Kudela, M.Sc.

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der
Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktor-Ingenieurs
genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Fabian Duddeck
Prüfer der Dissertation: 1. Prof. Dr. rer. nat. Ernst Rank

2. Prof. Dr.-Ing. Uwe Stilla
3. Prof. Zohar Yosibash, D.Sc

Die Dissertation wurde am 03.02.2020 bei der Technischen Universität München
eingereicht und durch die Ingenieurfakultät Bau Geo Umwelt am 12.03.2020
angenommen.

Abstract
This thesis demonstrates the steps which are needed to be taken to construct a finite element
model for objects that do not possess a digital CAD representation. Usually, this process
comprises the following main steps: shape acquisition, geometry recovery, mesh generation,
application of boundary conditions and material parameters, and finite element analysis. This
work revisits the steps of this measurement-to-analysis pipeline, exploring various techniques
to deal with the difficulties associated to the individual stages or even circumvent them com-
pletely.
The complete pipeline is demonstrated through an application that aims at constructing

finite element meshes for tubular objects that are immersed in a refractive medium. To this
end, a modified bundle adjustment formulation is presented that allows to account for the
distortion caused by the refractive effects.
Furthermore, it is shown how the potentially difficult step of mesh generation can be avoided

by employing a high-order immersed boundary technique, the Finite Cell Method (FCM). One
challenging aspect of the FCM is that elements of the background mesh that are cut by the
physical boundary give rise to discontinuous integrands. Within this context, a numerical
integration technique is presented that allows for computing such discontinuous integrals in
an efficient yet accurate manner. Two- and three-dimensional examples demonstrate that these
methods yield more accurate results than traditional approaches but remain computationally
cheaper.
Finally, it is shown how the Finite Cell Method can be combined with point cloud-based

geometric representations. This way, structural analysis becomes possible directly on the
data measured in the shape acquisition step, allowing for significant simplifications in the
measurement-to-analysis pipeline. For this application, a solution strategy to the issue of
weak enforcement of boundary conditions on point-based surfaces is outlined. The concept is
demonstrated through numerical examples computed on historical structures.

Zusammenfassung
Diese Arbeit untersucht, wie Finite-Elemente-Modelle von Objekten erzeugt werden können,
die keine CAD-Darstellung besitzen. In der Regel werden hierzu folgende Schritte durch-
laufen: Formerfassung, Wiederherstellung der Geometrie, Netzgenerierung, Aufbringung der
Randbedingungen und Eingabe der Materialparameter sowie die Finite-Elemente-Analyse.
Dieser Prozess von der Messung bis zur Berechnung wird in der vorliegenden Arbeit neu be-

trachtet. Dabei werden verschiedene Methoden erforscht, um Schwierigkeiten bei der Durch-
führung einzelner Schritte zu bewältigen oder sogar vollständig zu umgehen. Das komplette
Vorgehen wird anhand eines Anwendungsbeispiels demonstriert, in dem Finite-Elemente-Netze
für rohrförmige Objekte erzeugt werden sollen, die in einem lichtbrechenden Medium eingelegt
sind. Zu diesem Zweck wird eine modifizierte Formulierung der Bündelausgleichung vorgestellt,
mit der die Verzerrungen infolge der Brechungseffekte berücksichtigt werden können.
Darüber hinaus wird gezeigt, wie der potenziell schwierige Schritt der Netzgenerierung durch

den Einsatz einer Embedded Domain Methode hoher Ordnung, der Finite-Zellen-Methode
(FCM), vermieden werden kann. Ein herausfordernder Aspekt der FCM ist, dass Elemente
des Hintergrundnetzes diskontinuierliche Integranden aufweisen. In diesem Zusammenhang
wird eine numerische Integrationstechnik vorgestellt, die eine effiziente und dennoch genaue
Berechnung solcher diskontinuierlichen Integrale ermöglicht. Mithilfe zwei- und dreidimension-
aler Beispiele wird gezeigt, dass diese Methoden genauere Ergebnisse liefern als traditionelle
Ansätze und mit einem geringeren Rechenaufwand verbunden sind.
Schließlich wird gezeigt, wie die Finite-Zellen-Methode mit punktwolkenbasierten ge-

ometrischen Modellen kombiniert werden kann. Auf diese Weise ist es möglich, Struktur-
analysen unmittelbar auf der Grundlage von Daten durchzuführen, die bei der Formerfassung
gemessen werden. Der Prozess von der Messung zur Berechnung lässt sich dadurch erheblich
vereinfachen. In diesem Kontext wird eine Lösungsstrategie für das Problem der schwachen
Aufbringung von Randbedingungen auf punktbasierten Oberflächen dargestellt. Die Anwen-
dung des Konzepts der punktwolkenbasierten Strukturanalyse auf historische Strukturen wird
anhand numerischer Beispiele demonstriert.

Acknowledgments
This thesis was created during my time as a PhD student at the Chair for Computation in
Engineering at the Technical University of Munich, in the years from 2013 to 2019. Many
people supported me on the way towards completing this work. In the following, I would like
to gratefully acknowledge their contribution.
I thank my supervisor, Prof. Ernst Rank for his trust in me, patience, and the continuous

support he provided during all these years. I especially thank him for the supportive working
environment he created at the chair, where everyone is given the room and opportunity to
grow freely, at their own pace.
I thank Prof. Zohar Yosibash and Prof. Uwe Stilla for being the reviewers of my thesis and

Prof. Fabian Duddeck for chairing my examination.
I thank Dr. Stefan Kollmannsberger for keeping his door always open and being ready

to listen and discuss. His support on both scientific and non-scientific matters contributed
greatly towards the completion of this thesis.
The initial phase of my PhD was partially financed by the German-Israeli Foundation for

Scientific Research and Development under grant no. GIF-1189-89.2/2012. This financial
support is gratefully acknowledged. In the scope of this project, I had the pleasure to work
together with the members of the experimental biomechanics laboratory at the Ben Gurion
University of the Negev, Israel. I thank Prof. Zohar Yosibash for the hospitality during my
visits in Beersheba. I’ve always felt welcome and had a great time visiting his group. I also
owe my thanks to Prof. Yosibash for all the discussions we had during these years and for
all the valuable insights he provided me. I gratefully acknowledge the effort of the people of
the lab who designed and operated the experimental device of Section 3.4.4. In particular, I
would like to thank Ofry Yossef, Avihai Uzan and Itay Manor for their effort in preparing the
test samples and for the numerous photos they recorded for me using the device during the
years 2013-2017.
I want to thank all the people who I had the pleasure to meet and work together with

from the Chair for Computation in Engineering and Chair of Computational Modeling and
Simulation. They made the 3rd floor of building no. 1 of the TUM a place where I was always
happy to arrive in the morning.
In particular, I am grateful to have shared an office for a bit more than six years with my

friend and colleague, Mohamed Elhaddad. I enjoyed all the discussions and activities we had
in this time, in the office and outside of the university as well. I also thank Mohamed for
proofreading this thesis.
I want to thank my family: my parents and my brothers for their unconditional support

and accepting my decisions during my whole life.
Finally, I want to thank my girlfriend Emese for her loving understanding during the past

years.

László Kudela
Munich, October 2020

:wq

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Structure, contributions . 3

2 The Finite Element and Finite Cell Methods 5
2.1 Fundamentals of the Finite Element Method 5

2.1.1 Galerkin method . 5
2.1.2 Linear finite elements . 8
2.1.3 The p-Version of the FEM . 11
2.1.4 Coordinate transformations, the blending function method 12
2.1.5 NURBS representation of parametric curves and surfaces 15
2.1.6 Numerical quadrature . 18

2.2 The Finite Cell Method . 18
2.2.1 Formulation . 19
2.2.2 Quadrature schemes . 21

2.2.2.1 Spacetrees . 21
2.2.2.2 Moment fitting-based schemes 23
2.2.2.3 Conforming integration meshes in 2D 24
2.2.2.4 Smart octrees - Conforming integration meshes in 3D 28

2.2.3 Numerical examples . 34
2.2.3.1 Integration in 2D . 34
2.2.3.2 Integration in 3D . 43

3 Image-based shape measurement and mesh generation 59
3.1 Overview of digital shape acquisition techniques 59

3.1.1 Tactile methods . 60
3.1.2 Non-contact methods . 60

3.2 Photogrammetric acquisition of surface points 61
3.2.1 Overview of the imaging process . 61
3.2.2 Multiple-view geometry . 65
3.2.3 Bundle adjustment . 69

3.2.3.1 Constrained bundle adjustment 69
3.2.3.2 Bundle adjustment in refractive environments 71

3.2.4 Multi-view stereo reconstruction . 75
3.3 Geometric model recovery from point clouds 76

3.3.1 Recovery by geometric primitive identification 76

ii Contents

3.3.2 From primitives to best-fit surfaces . 78
3.3.3 Methods based on implicit function fitting 82

3.4 Application: mesh generation on a tubular geometry 86
3.4.1 Effects of refraction . 86
3.4.2 Tubular object in synthetic images . 92
3.4.3 Tubular objects represented on real images 95
3.4.4 Tubular object with a branch represented on real images 100

4 The Finite Cell Method combined with oriented point clouds 103
4.1 The role of geometric representations . 103
4.2 Point membership tests on oriented point clouds 104

4.2.1 Connection to Voronoi diagrams . 105
4.3 Treatment of outliers . 105
4.4 Treatment of missing parts . 107

4.4.1 The effect of holes on point-membership classification 107
4.4.2 Remedy strategies for holes . 108
4.4.3 A two-step indicator function recovery for the FCM 108

4.5 Neumann boundary conditions . 115
4.6 Examples . 118

4.6.1 2D studies . 118
4.6.1.1 Perforated plate with circular hole 118
4.6.1.2 Perforated plate with elliptical hole under internal pressure . . 119

4.6.2 3D examples . 121
4.6.2.1 Athlete . 121
4.6.2.2 The cistern of the Hagia Thekla Basilica in Turkey 123
4.6.2.3 Tower measured by an UAV 128

5 Summary and outlook 135

Bibliography 137

List of Figures iii

List of Figures

1.1 The main steps of the measurement-to-analysis pipeline. 3

2.1 Conceptual sketch of a linear elastic problem on the domain Ω, with nd = 2. . 6
2.2 A reference element and a two-dimensional quadrilateral mesh. 8
2.3 Examples of hierarchical basis functions with p = 2 and p = 3. 12
2.4 Node and edge numberings of a quadrilateral element. 12
2.5 Examples of shape functions for a quadrilateral element 13
2.6 Blended quadrilateral with one curved side . 14
2.7 B-Spline basis functions of order p = 2. 16
2.8 A B-Spline curve and its control points with p = 2. 16
2.9 NURBS curves with p = 2 and a varying weight for one control point. 17
2.10 The core concept of the FCM. 20
2.11 Spacetree-based integration domains for different maximum subdivision depths. 22
2.12 Standard octree generation. 22
2.13 The concept of mappings for quadtree depth k = 1 23
2.14 The general flow of conforming 2D integration mesh generation. 25
2.15 The process of determining the orientation of the diagonal cut line. 25
2.16 Non-convex boundary cuts the cell . 26
2.17 A boundary intersects a cell edge twice . 26
2.18 Resolution strategy for kinks. 27
2.19 Example of knot subdivision . 28
2.20 Smart octree generation . 29
2.21 Identification of active diagonals. 30
2.22 Sharp edge resolution with smart octrees. 30
2.23 Sharp corner resolution with smart octrees. 31
2.24 Fallback option of the smart octree algorithm. 31
2.25 More than two coplanar edges (green color) meeting at a BREP vertex (purple). 32
2.26 More than three non-coplanar edges (green) meeting at a BREP vertex (purple). 32
2.27 Example on the restriction of number of edges meeting at a BREP corner. . . 33
2.28 Order elevation in the smart octree algorithm. 34
2.29 Setting of the moving circle example . 34
2.30 Decomposition example: moving circle . 35
2.31 Geometry setup for the violin partitioning example 36
2.32 Result of partitioning on the violin example 37
2.33 A detailed view of the f-hole . 38
2.34 Error in energy norm with and without knotspan subdivision 38

iv List of Figures

2.35 Comparison of the time required for generating different integration meshes for
the violin example . 39

2.36 Perforated plate problem . 40
2.37 Integration meshes and a finite element mesh for the perforated plate example 40
2.38 Comparison of the convergence characteristics of the blended integration to

other integration methods . 41
2.39 Comparison of the time required for integrating the stiffness matrix for p = 1..15 43
2.40 Example of a smart octree with planar faces 44
2.41 Smart octree genertion with non-smooth boundary inside the cells 44
2.42 Convergence of the error in volume w.r.t. the number of quadrature points per

integration cell. 45
2.43 Smart octrees generated on different background meshes. 46
2.44 Smart octree with non linear faces. 48
2.45 Detailed view on two smart octree cells with nonlinear faces. 48
2.46 Comparison of the time required for generating different integration meshes for

the stacked cylinders. 49
2.47 Convergence of the error in volume w.r.t. the number of quadrature points per

integration cell, cylinder example. 50
2.48 Comparison of the octree method and the smart octree method on the basis of

the total number of quadrature points. 51
2.49 Comparison of the total integration time of different integration approaches for

the stacked cylinder example. 51
2.50 Geometric domain of the hollow sphere example. 53
2.51 Integration cells on an octant of a hollow sphere. 53
2.52 Error in energy norm w.r.t. the number of degrees of freedom for the hollow

sphere example. 54
2.53 Error in energy norm w.r.t the number of quadrature points for the hollow

sphere example . 55
2.54 Connecting rod: geometry, boundary conditions and finite cell mesh 56
2.55 Smart octree generated on the connecting rod. 57
2.56 Detailed view of the smart octree, only showing octants that lie inside the

domain of computation. 57
2.57 Von Mises stress contours. 58

3.1 Pinhole camera model. 62
3.2 Transformation between world- and camera coordinates. 64
3.3 Two cameras with centers C and C ′ viewing the same point X 66
3.4 Geometric setup for constrained bundle adjustment. 70
3.5 Bundle- and object-invariant interfaces in multimedia photogrammetry. 72
3.6 Back-projection of individual rays in a multi-media environment. 73
3.7 Schematic of the AFRT algorithm. 74
3.8 Iso-curves of the point distance (PDM) error term. 80
3.9 Iso-curves of the tangent distance (TDM) error term. 81
3.10 Iso-curves of the approximated squared distance function at pk. 81
3.11 Conceptual sketch of the active surface fitting algorithm in 2D. 83

List of Figures v

3.12 From images to a boundary-conforming finite element mesh, for tubular geome-
tries. 87

3.13 Test example setup with a single camera and a checkerboard pattern immersed
in a cylindrical water container. 87

3.14 Reprojection errors due to refractive effects for the checkerboard example. . . . 88
3.15 Root mean squared reprojection error for different camera distances for the

checkerboard example. 89
3.16 Multi-camera setup of the checkerboard test example. 90
3.17 Ground truth points and structure points found by bundle adjustment using

perspective projection, for the multi-view checkerboard example. 90
3.18 Number of AFRT iterations across the image coordinates for the checkerboard

example. 91
3.19 Reference geometryM used in the verification example. 93
3.20 Different object poses used in the synthetic example. 94
3.21 Synthetic images of pose A. 94
3.22 Laboratory setup of the verification example. 96
3.23 Images taken of the object immersed in water, under different rotation angles

θ of the camera. 97
3.24 Point clouds resulting from the real image set and the respective histograms of

signed distance errors. 98
3.25 Initial estimate and fitted surface. 99
3.26 Surface mesh: quadratic quadrilateral elements. 99
3.27 Volumetric mesh: quadratic and quartic hexahedra. 99
3.28 Tubular geometry with a branch. 100
3.29 Image taken of the branched geometry in the experimental system. 100
3.30 Point cloud resulting from bundle adjustment, and the ground truth geometry. 101
3.31 The RANSAC algorithm separates the point cloud according to the underlying

cylindrical models that describe its topology. 101
3.32 B-Spline surfaces fitted onto the points separated by the RANSAC step. . . . 102
3.33 Mesh of quadratic hexahedral finite elements, generated on the surfaces result-

ing from the surface fitting. 102

4.1 Point membership classification on oriented point clouds. 104
4.2 The connection between Voronoi diagrams and point-membership tests on point

clouds . 106
4.3 The effect of a single outlier on point-membership tests. 107
4.4 The effect of holes on nearest neighbor-based point membership classification. 109
4.5 Poisson surface reconstruction: the process of generating a smooth divergence

field from the discrete sample data. 111
4.6 Poisson surface reconstruction: indicator field and inside-outside state. 112
4.7 Difference of the indicator functions recovered by the Poisson method and the

nearest neighbor-based point membership classification. 114
4.8 Detail selection for the two-step indicator function recovery procedure. 115
4.9 CSG tree built by combining the indicator functions defined by the Poisson

method and the nearest neighbor-based algorithm. 116
4.10 Regularized Dirac delta functions for different length scales. 117

vi List of Figures

4.11 Computing the distance dSΓ(x) towards the point set SΓ. 118
4.12 Rectangular plate with a circular hole. 119
4.13 Rectangular plate with circular hole: convergence of error for increasing cloud

densities and different maximum levels of quadtree subdivision k. 120
4.14 Rectangular plate with elliptical hole under internal pressure. 120
4.15 Convergence of the error in energy norm when boundary conditions are applied

using the regularized delta function. 121
4.16 Statue example: input pictures and the resulting cloud. 122
4.17 Statue example: discretization and stresses. 122
4.18 The cistern of Hagia Thekla Basilica. 124
4.19 Cistern example. 125
4.20 Refined computational grid around the two columns. 126
4.21 Cistern example: principal stress distribution. 127
4.22 Cistern example: comparison of the maximum principal stresses computed by

the FCM and a commercial FEM software. 128
4.23 Column 3 removed using a CSG tree with a boolean difference operation. . . . 129
4.24 Cistern example: principal stress distribution without Column 3. 129
4.25 Cistern example: principal stress trajectories on the intact structure. 130
4.26 Cistern example: principal stress trajectories on the structure without column 3.131
4.27 Hocheppan Castle and the tower located on the north side of the site. 132
4.28 Tower ruin at the Hocheppan Castle: point cloud and principal stresses com-

puted by the FCM. 133

List of Tables vii

List of Tables

3.1 Summary of error values for the checkerboard example. 91
3.2 Comparison of bundle adjustments for different poses of the verification geometry. 95
3.3 Comparison of the results of standard bundle adjustment and its modified ver-

sion for the real image set. 97

1

Chapter 1

Introduction

For many decades, the Finite Element Method (FEM) has been serving engineers and scientists
in their quest towards getting better insight into a wide variety of physical phenomena. Thanks
to the increasing availability and efficiency of computational resources, the FEM has become
able to deal with problems of scales that were probably seen as unreachable at the time of its
introduction. Although it was initially developed to solve problems in structural mechanics,
continuous research in the field has made it possible to apply the method in other areas of
science and engineering as well: fluid mechanics, acoustics, biomechanics, just to name a few.
Regardless of the field of application or the problem size, a fundamental step in most appli-

cations of the method is the decomposition of the geometry of interest into an interconnected
network of finite elements. Designing reliable and efficient meshing algorithms is a science
(some would even say “art”) of its own, attracting nearly as much research interest as the FEM
itself. Such algorithms need to deal with increasingly complex geometric models, involve as
little human interaction as possible but still produce an analysis-suitable finite element mesh.
In most applications, the geometry to be meshed is given to the mesh generator in the form

of a digital CAD model. When such CAD models are designed, numerical analysis is not the
only aspect that is kept in mind: there is a big variety of downstream applications that all
derive their representation from a geometric model or a set of models. They form the basis
for the manufacturing process, product documentations, maintenance planning, photorealistic
renderings and other elements from the product life cycle management circle. Therefore,
prior to conducting a finite element analysis on a geometric model, the CAD file needs to be
brought in a form which is suitable for mesh generation. This step is hard to automate and is
consequently often performed manually. In certain scenarios the effort invested in preparing
an analysis-suitable geometric model and the subsequent meshing step may require more effort
than the actual numerical analysis itself [1]. Due to these reasons, the question of bridging
the gap between geometric modeling and numerical analysis has attracted a lot of research
interest in computational mechanics recently.

1.1 Motivation
Apart from simulations starting from a CAD model, there is a strong trend towards applica-
tions of the FEM where the mesh is derived from alternative geometric representations. Typ-
ically, this is the case in the context of biomechanical simulations, where models are recorded

2 1. Introduction

by medical imaging techniques, such as qCT scans. These methods require special algorithms
to recover a geometric model and eventually a finite element mesh from the imaging data –
see e.g. [2] for a conceptual overview of these multi-step pipelines.
For some physical structures, volumetric imaging is not the most cost efficient approach

to record the shape of interest. It is especially large objects that do not allow for a direct
application of CT scanning. Nonetheless, it can be of importance to be able to compute the
structural behavior of large objects – e.g. in the field of cultural heritage preservation, as
there are often no digital CAD models available for historical structures. Moreover, even if
there are schematic drawings, the actual shape of the object may differ from them, especially
if the structure is exposed to damaging effects such as erosion, floods, earthquakes, or wars. In
these cases, other shape measurement techniques need to be employed. The two most popular
methods for this purpose are terrestrial laser scanning and close range photogrammetry-based
reconstructions. Especially photogrammetry has gained a lot of attention recently, due to
the inexpensiveness of the required equipment and because of the rapid development of the
computational resources as well as the associated algorithms that allow for efficient, almost
real-time reconstructions [3].
The methods of laser scanning and photogrammetry both reproduce the shape of the ge-

ometry of interest in the form of point clouds: a set of points representing the surface of the
object. Such point clouds are not directly suited for numerical analysis. In order to transform
the recorded data into an analysis-suitable model, it needs to pass through several stages,
similar to the necessary procedure for models stemming from volumetric imaging.
Usually, these measurement-to-analysis procedures are characterized by the following main

steps (Figure 1.1):

1. Shape acquisition
A 3D shape measurement technique is employed to capture the shape of the domain of
interest, resulting in a point cloud representing the surface of the object.

2. Surface reconstruction
A geometric model is derived from the point cloud information using geometric segmen-
tation and surface fitting methods. The resulting model is stored using standardized
geometric representation techniques, such as STL, STEP, or IGES files.

3. Mesh generation
The CAD model from the previous step is discretized into a finite element mesh.

4. Finite Element Analysis
The mesh is handed over to a finite element solver together with the corresponding
material properties and structural constraints.

Numerous applications implement the steps above – see e.g. [5–9] for examples in the
preservation of historical structures.
Research in different fields of computational science and engineering has resulted in well-

established approaches that allow to perform these steps one-by-one. Still, their deep inte-
gration into a seamless chain is not trivial, as it requires the interplay of various algorithms.
Other than the problems inherent to the data transfer between different implementations, an
even bigger challenge is posed by generating a finite element mesh from the geometric model
reconstructed in the second step. The fine details recovered by modern surface reconstruc-
tion algorithms (e.g.[10–12]) are not necessarily the details that need to be carried over to a
finite element mesh, where the process of refinement is usually governed by the physics of the

1.2. Structure, contributions 3

Shape acquisition

Surface reconstruction

Mesh generation

Finite element analysis

Finite cell method

Figure 1.1: The main steps of the measurement-to-analysis pipeline [4]. The main stages of
usual approaches are on the left side, they are discussed in Chapters 2 and 3. The right side
shows an alternative solution proposed within Chapter 4.

problem rather than aesthetic aspects. While a geometric defeaturing step may be applied
to remove physically uninteresting details, manipulating the geometry carries the danger of
introducing flaws in the geometric model, resulting in an invalid, “dirty” geometry that cannot
be meshed directly [13, 14].

1.2 Structure, contributions
The goal of this work is to explore and demonstrate the techniques that can be employed to
circumvent the difficulties that are encountered when performing numerical analysis based on
digital shape measurements. Accordingly, the structure of the thesis follows the main building
blocks of the measurement-to-analysis pipeline of Figure 1.1.
Chapter 2 gives a short introduction to the Finite Element Method and demonstrates an

4 1. Introduction

alternative approach, the Finite Cell Method (FCM) which can be employed in order to avoid
the difficult task of mesh generation. One challenge which is often faced within the context of
the FCM is the question of accurate numerical integration. Within the chapter, an alterna-
tive numerical integration strategy (integration by smart octrees) is introduced which aims at
circumventing this problem in an accurate but efficient manner. It will be demonstrated by nu-
merical examples how the proposed integration strategy compares to conventional techniques
employed within the FCM.
Chapter 3 discusses digital shape measurement techniques, with a special focus on image-

based 3D reconstructions. Within the chapter, a modified bundle adjustment approach is
described that can be employed when the recording device is moved around an object which
is immersed in a refractive medium. The proposed method will be demonstrated by numerical
examples on synthetic and real images.
Having demonstrated the basic building blocks of the standard measurement-to-analysis

pipeline, Chapter 4 discusses how the FCM can be combined with the data coming from dig-
ital shape measurements, i.e. oriented point clouds. The members of the point cloud and the
vectors associated to them provide the bare minimum geometric information that is needed
by the FCM, allowing for structural analyses of objects directly on their cloud representa-
tion. This way, the tedious tasks of recovering a geometric model and generating a boundary
conforming mesh can be avoided, allowing for significant simplifications in the measurement-
to-analysis pipeline, as represented on the right side of Figure 1.1. The capabilities of the
method will be shown through various examples from the field of cultural heritage preserva-
tion.
The contributions presented within this thesis have been published in several scientific arti-

cles:

• The two-dimensional numerical integration method was introduced in [15], with a more
thorough discussion on the computational effort of the algorithm presented in [16].

• Smart octrees, the extension of the algorithm to three dimensions was described in [17].
• The modified bundle adjustment algorithm aiming at the meshing of tubular objects

immersed in refractive media was introduced in [18].
• The combination of the Finite Cell Method and point cloud-based geometry representa-

tions was presented in [4].

Throughout the thesis, the following footnotes are used to reference the original publications
and literal transposition. a b c d

aThe following chapter/section/paragraph is based on [16]. The main scientific research as well as the
textual elaboration of the publication was performed by the author of this work.

bThe following chapter/section/paragraph is based on [17]. The main scientific research as well as the
textual elaboration of the publication was performed by the author of this work.

cThe following chapter/section/paragraph is based on [18]. The main scientific research as well as the
textual elaboration of the publication was performed by the author of this work.

dThe following chapter/section/paragraph is based on [4]. The main scientific research as well as the textual
elaboration of the publication was performed by the author of this work.

5

Chapter 2

The Finite Element and Finite Cell
Methods

The aim of this chapter is to outline the fundamental ideas of the Finite Element and Finite Cell
Methods. The first part of the chapter focuses on the formulation of the standard, boundary
conforming finite elements and their p-extension. The second part outlines the key concepts of
the Finite Cell Method, with a special focus on numerical quadratures and their effect on the
efficiency and accuracy of the method. In this context, an enhanced quadrature technique—
the method of smart-octrees—is introduced, showing that the accuracy of the FCM can be
drastically improved for geometric models with explicit, high-order surface information. The
closing remarks of the chapter point out the role of geometric representations for the FEM and
FCM. This motivates the next chapter that addresses the question of how to derive an analysis-
suitable numerical model from geometries that do not possess a geometric representation in
the form of a CAD file.

2.1 Fundamentals of the Finite Element Method

In the following, the formulation of the finite element method is summarized for problems of
linear elasticity.

2.1.1 Galerkin method

Let nd(= 1, 2 or 3) denote the number of space dimensions of the problem under consideration,
a physical body represented by the domain Ω (e.g. as shown for nd = 2 in Figure 2.1), and
the boundary ∂Ω is divided into two parts ΓN and ΓD such that ΓN ∩ ΓD = ∅. Assuming that
the material of the body is linear elastic, the physical behavior of the structure is formally

6 2. The Finite Element and Finite Cell Methods

Ω∂Ω

t ΓN

ΓD

Figure 2.1: Conceptual sketch of a linear elastic problem on the domain Ω, with nd = 2.

described by the following boundary value problem in its strong form:

Given b : Ω→ Rnd , t̂ : ΓN → Rnd , û : ΓD → Rnd , find u : Ω→ Rnd such that
∇ · σ + b = 0 ∀x ∈ Ω

σ = C : ε ∀x ∈ Ω

ε = 1
2

[
∇u+ (∇u)T

]
∀x ∈ Ω

σ · n = t̂ ∀x ∈ ΓN

u = û ∀x ∈ ΓD,

(2.1)

where σ and ε denote the stress and strain tensor, respectively. Further, C is the linear elastic
constitutive tensor, t̂, û and b are the prescribed displacement, traction and body load vectors,
and n is the outward-pointing unit normal vector on the boundary ∂Ω. The formulation of
the finite element method starts with transforming the strong form into a weak formulation:

Given b : Ω→ Rnd , t̂ : ΓN → Rnd , û : ΓD → Rnd , find u ∈ S
such that for all v ∈ V

a(u,v) = f(v),

with a(u,v) =
∫
Ω

ε(v) : C : ε(u)dΩ

and f(v) =
∫
Ω

v · bdΩ +
∫
ΓN

v · t̂dΓ.

(2.2)

In the above statement, the solution function u and the weighting function v are prescribed to
be found in the Sobolev space of first order H1(Ω). Further, u and v comply to the Dirichlet
boundary conditions and their homogeneous counterparts:

S =
{
ui ∈ H1(Ω) : ui = ûi ∀x ∈ ΓD

}
V =

{
vi ∈ H1(Ω) : vi = 0 ∀x ∈ ΓD

}
.

(2.3)

2.1. Fundamentals of the Finite Element Method 7

The transformation of the strong form into its weak counterpart can be accomplished by
various techniques, e.g. the principle of virtual work, the method of weighted residuals or the
minimization of the total potential energy.
While the equations of the weak form possess a rather simple structure, their analytical solu-

tion is only possible in simple cases. Therefore, the finite element method seeks to cast Equa-
tion 2.2 into a discretized representation that allows for a numerical approximation of the
solution. For standard engineering applications, the most popular discretization technique is
based on Galerkin’s method, which is summarized in the following.
The first step in the formulation of the method is to construct finite dimensional approxi-

mations of the function spaces S and V , denoted by Sh and Vh, such that:

Vh ⊂ V
Sh ⊂ S.

(2.4)

Then, the solution function ũh is sought:

Find ũh ∈ Sh such that for all vh ∈ Vh

a(ũh,vh) = f(vh).
(2.5)

Following Equation 2.3, if û 6= 0 anywhere along ΓD, the spaces Sh and Vh cannot be
equal, as the members of S and V need to satisfy the essential boundary conditions and their
homogeneous counterparts, respectively. To remove this restriction, the solution function uh
can be shifted by a given function gh ∈ Sh to satisfy the essential boundary conditions, such
that ũh = uh + gh, with uh ∈ Vh. This allows for casting Equation 2.5 into the following
form:

Find uh ∈ Vh such that for all vh ∈ Vh

a(uh,vh) = f(vh)− a(gh,vh).
(2.6)

As Vh is finite dimensional, any member vh ∈ Vh can be written as a linear combination of
given functions N = {N0, N1, ..., Nn}:

vh =
n∑
i=0

Nici, (2.7)

where the coefficients denoted by ci are often called degrees of freedom. Following Einstein’s
summation convention, the above equation can be equivalently written as:

vh = Nici, and similarly,
uh = Njdj.

(2.8)

Collecting the ci and dj coefficients into the vectors c and d and substituting Equation 2.8
into Equation 2.6, the latter can be cast in the following form:

Find d ∈ Rn such that for all c ∈ Rn

a(Njdj, Nici) = f(Nici).
(2.9)

8 2. The Finite Element and Finite Cell Methods

Ωe ψe

r

s

x0

x1

x2

x3y

x

Figure 2.2: A reference element and a two-dimensional quadrilateral mesh.

Due to the linearity of a(·, ·) and f(·), the coefficients can be factored out:

cidja(Nj, Ni)− cif(Ni) = 0
↓

ci (a(Nj, Ni)dj − f(Ni)) = 0.
(2.10)

As the above has to hold for any arbitrary choice of c, the term inside the brackets has to be
zero:

a(Ni, Nj)dj − f(Ni) = 0. (2.11)

Thus the unknown coefficients d can be found by solving the following system of linear equa-
tions:

Kd = f , (2.12)

with

Kij = a(Ni, Nj), and
fi = f(Ni).

(2.13)

The matrix K and vector f are often called stiffness matrix and force vector in the context of
computational mechanics.

2.1.2 Linear finite elements

In order to construct the space Vh, the finite element method decomposes the domain Ω into
a set of non-overlapping subdomains, called elements. The collection of elements is denoted
as mesh and the process of subdividing the domain Ω into elements is called mesh generation.
Typically, the elements of a finite element mesh possess simple geometric shapes, such as
triangles, quadrilaterals, tetrahedra, prisms and hexahedra. While this element-wise definition
is easy to implement, it allows for resolving highly complex geometric domains at the same
time. Figure 2.2 depicts a two dimensional finite element mesh consisting of quadrilateral
elements.

2.1. Fundamentals of the Finite Element Method 9

The corners of the elements are called nodes, the connecting lines between the nodes edges,
and a closed loop of edges forms a wire. A wire encloses the face of the element, which in
the 2D case forms the element domain Ωe. On its own domain, each element uses standard
shape functions to interpolate the unknown degrees of freedom. The simplest standard shape
functions linearly interpolate between the nodes of a single element.
As an example, consider a quadrilateral element in two dimensions. The domain of the

element is given in its local coordinates (r, s), with r ∈ [−1, 1] and s ∈ [−1, 1]. Let ui with
i = {1, 2, 3, 4} denote the unknown displacements at the four nodes of the element. Then, the
displacement field internal to the domain of the element is given by:

u(r, s) =
4∑
i=1

N e
i ui, (2.14)

with:

N e
i (r, s) = 1

4(1 + ri)(1 + si), (2.15)

where ri and si denote the local coordinates of node i. The bijective map ψe : (r, s) →
(x, y) depicted in Figure 2.2 establishes the coordinate transformation between the element’s
local domain and the physical domain Ω. Using ψe, the locally defined shape functions from
Equation 2.14 are mapped to the global space as:

Ni(x, y) = N e ◦ ψ−1
e . (2.16)

Linear shape functions for three dimensional hexahedra are constructed analogously. Here,
the local space of the element consists of three directions (r, s, t) with the displacement field
and the shape functions defined as:

u(r, s, t) =
8∑
i=1

N e
i ui,

N e
i (r, s, t) = 1

8(1 + ri)(1 + si)(1 + ti).
(2.17)

The assembly of these local functions allows for the construction of the global shape functions
Ni of Equation 2.7. Let ũ denote the vector of unknown displacements within one element,
e.g. in three dimensions defined as:

ũ = [u1, ...un, v1, ..., vn, w1, ...wn] , (2.18)

where n is the number of shape functions of the element. (For linear hexahedra, n = 8). Then,
the displacement field within one element can be written as:

u = Nũ, (2.19)

where the shape functions are collected in the shape function matrix N :

N =

N1 ... Nn 0 ... 0 0 ... 0
0 ... 0 N1 ... Nn 0 ... 0
0 ... 0 0 ... 0 N1 ... Nn

 . (2.20)

10 2. The Finite Element and Finite Cell Methods

Having formulated the displacement field in terms of the shape function matrix N and the
degrees of freedom ũ, the strain within the element can be written as:

ε = Bũ, (2.21)

where B is the strain-displacement operator:

B =



∂N1
∂x

... ∂Nn

∂x
0 ... 0 0 ... 0

0 ... 0 ∂N1
∂y

... ∂Nn

∂y
0 ... 0

0 ... 0 0 ... 0 ∂N1
∂y

... ∂Nn

∂y
∂N1
∂y

... ∂Nn

∂y
∂Nn

∂x
... ∂Nn

∂x
0 ... 0

∂N1
∂z

... ∂Nn

∂z
0 ... 0 ∂Nn

∂x
... ∂Nn

∂x

0 ... 0 ∂Nn

∂z
... ∂Nn

∂z
∂N1
∂y

... ∂Nn

∂y


. (2.22)

It follows that the stiffness matrix K and the force vector f is formed by assembling the
individual contributions of the respective quantities of each element in the mesh:

K =
nelem

A
e=0

ke

f =
nelem

A
e=0

f e,
(2.23)

where A denotes the assembly operator, ke and f e denote the elemental stiffness matrix and
force vector associates to the individual elements. The definitions of ke and f e for three-
dimensional linear elastostatic problems read:

ke =
∫
Ωe

B>CB dΩe

f e =
∫
Ωe

N>b dΩe +
∫
Γe
N

N>t̂ dΓeN.
(2.24)

In order to compute the derivatives of the shape functions with respect to the global coordi-
nates (x, y, z), the chain rule is applied:[

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

]
=
[
∂Ni

∂r
∂Ni

∂s
∂Ni

∂t

]
J−1 (2.25)

where J−1 is the inverse of the Jacobian of the mapping ψe:

J =

∂x∂r ∂x
∂s

∂x
∂t

∂y
∂r

∂y
∂s

∂y
∂t

∂z
∂r

∂z
∂s

∂z
∂t

 . (2.26)

Usually, integration is performed over the local coordinates (r, s, t) of the respective elements,
using change of variables. For the element stiffness matrix ke, integration over the reference
domain takes on the form:

ke =
1∫

−1

1∫
−1

1∫
−1

B>CB |J | drdsdt, (2.27)

where |J | denotes the determinant of the Jacobian matrix.

2.1. Fundamentals of the Finite Element Method 11

2.1.3 The p-Version of the FEM
The 2D and 3D linear shape functions of Equations 2.15 and 2.17 are one of the most frequent
bases that are applied in practice. However, the approximation power of the Finite Element
Method may be drastically increased if higher order polynomials are used. Especially in regions
where the solution is expected to be smooth, elevating the order of the elements provides an
economical alternative to mesh refinement for improved solution accuracy. A popular choice
is to use Lagrange polynomials as basis functions, see e.g. in [19, 20].
Another possibility is to use higher order hierarchical basis functions. For the one-

dimensional case, the bases for an order p element are defined as [21, 22]:

N1(r) = 1
2(1− r)

N2(r) = 1
2(1 + r)

Ni(r) = Φi−1(r), i = 3...p− 1.

(2.28)

Here the first two functions are the standard linear bases introduced in Equations 2.15 and 2.17,
while the function Φi(r) is defined as:

Φi(ξ) =
√

2i− 1
2

∫ ξ

−1
Lj−1(x) dx = 1√

4j − 2
(Lj(ξ)− Lj−2(ξ)) , (2.29)

where the Lj(ξ)’s are the Legendre polynomials, generated by the recursion formula:

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x), (2.30)

with

L0(x) = 1,
L1(x) = x.

(2.31)

Figure 2.3 depicts hierarchical bases for p = 2 and p = 3.
The basis functions for quadrilateral and hexahedra are constructed by taking the tensor

product of the 1D basis functions. For quadrilaterals, this gives rise to the following groups
of shape functions (Figure 2.5):

• Nodal modes are the standard bilinear basis functions introduced in Equation 2.15. Fol-
lowing the numbering convention for quadrilaterals on Figure 2.4, the nodal mode asso-
ciated to node 1 is:

Nn1(r, s) = 1
2(1− r)(1− s) (2.32)

• Edge modes are non-zero on exactly one edge and vanish on all other edges. The i-th
edge mode associated to edge 1 is:

N e1
i (r, s) = 1

2(1− s)Φi(r) (2.33)

12 2. The Finite Element and Finite Cell Methods

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

r

N1 N2

N3

(a) p = 2

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

r

N1 N2

N3

N4

(b) p = 3

Figure 2.3: Examples of hierarchical basis functions with p = 2 and p = 3.

• Face modes are zero at the nodes and edges of the element, and are non-zero only on
the internal parts.

N int
i,j = Φi(r)Φj(s) (2.34)

For hexahedral elements, the same concept of modes apply. In this case, one additional
group of modes appear: internal modes, i.e. shape functions that are non-zero only inside the
volume enclosed by the element.

2.1.4 Coordinate transformations, the blending function method
The function Ψe associated to each element in the mesh defines the mapping between the local
coordinates (r, s) of the element and physical coordinates (x, y). For standard, linear quadri-
lateral finite elements, this mapping is constructed by bi-linearly interpolating the positions
of the nodes of the element:

ΨLIN
e =

4∑
i=1

Nixi, (2.35)

n1 n2

n3 n4

e1

e2

e3

e4
r

s

Figure 2.4: Node and edge numberings of a quadrilateral element.

2.1. Fundamentals of the Finite Element Method 13

−1

0

1 −1

0

1

0.00

0.25

0.50

0.75

1.00

r s

(a) Nodal mode at node 1

−1

0

1 −1

0

1

−0.6

−0.4

−0.2

0.0

r s

(b) Edge mode at edge 1

−1

0

1 −1

0

1

0.0

0.1

0.2

0.3

r s

(c) Face mode N int
2,2 = Φ2(r)Φ2(s)

Figure 2.5: Examples of shape functions for a quadrilateral element

14 2. The Finite Element and Finite Cell Methods

rr

ss

(−1, −1) (1, −1)

(−1, 1)(1, 1)

e1

e2

e3

e4

x

y

x1

x2

x3

x4

E2(s)

Ψe(r, s)

Figure 2.6: Blended quadrilateral with one curved side

where the xi’s represent the corner nodes (Figure 2.2).
Clearly, if the boundaries of the physical domain (denoted by ∂Ω) are curved, elements

that use this form of mapping can only represent ∂Ω in an approximate sense. While the
error of this geometric approximation may be reduced by decreasing the element size (i.e. by
mesh refinement), the increase in the number of elements will also increase the size of the
equation system to be solved. For p-FEM, an accurate and potentially high-order geometric
representation becomes even more important in order to fully leverage the approximation
power lying in the high-order discretization of the solution. One method that enables Ψe to
represent curved boundaries in an exact sense is the blending function method, introduced
in [23].
To demonstrate the method, consider the quadrilateral element with one curved edge e2,

depicted in Figure 2.6. Let E2(s) : [−1, 1]→ R2 denote the parametric mapping of the curve
associated to the edge, with E2(−1) = x2 and E2(1) = x3, i.e. the endpoints of the curve
coincide with the respective nodes of the element. Then, the mapping Ψe(r, s) : [−1, 1]2 → R2

between the local space of the element and the physical space is:

Ψe(r, s) = 1
4

[
(1− r)(1− s)x1 + (1 + r)(1− s)x2

+(1 + r)(1 + s)x3 + (1− r)(1 + s)x4

]
+ f 2(s),

(2.36)

with

f 2(s) = 1
2(1 + r)

[
E2(s)− 1

2 ((1− s)x2 + (1 + s)x3)
]
. (2.37)

The term f 2(s) is the difference between the curveE2 and the straight line x2 → x3, multiplied
with a linear term that is one at r = 1 and vanishes at r = −1. This concept can be extended to

2.1. Fundamentals of the Finite Element Method 15

quadrilaterals where all the sides are curved. After adding the terms for the three remaining
edges to Equation 2.36 and rearranging, the complete definition of a blended quadrilateral
reads:

Ψe(r, s) = 1
2

[
(1− s)E1(r) + (1 + r)E2(s)

+(1 + s)E3(r) + (1− r)E4(s)
]
−

4∑
i=1

Nixi.
(2.38)

2.1.5 NURBS representation of parametric curves and surfaces
The definition of the blending function interpolation from Equation 2.38 requires the bounding
curves to be represented in parametric form. An especially popular parametric representation
for curves is given by non-uniform rational B-splines, shortly NURBS. An in-depth discussion
of NURBS curves and surfaces is found in [24]. A NURBS curve is defined by the following:

• A polynomial order p.
• A vector of m ascending real numbers U = [u1, u2, ..., um], with ui ∈ R, called the knot

vector.
• A vector of n control points π = [P 1,P 1, ...,P n], with P i ∈ Rnd . Here, nd is the

dimensionality of the embedding space.
• A vector of n weights for the control points w = [w1, w2, ..., wn], with wi ∈ R. One

weight is associated to each control point.

The knot vector U together with a polynomial order p defines n = m− p− 1 basis functions
of order p, with the following recursive definition:

Bi,0(u) =
{

1 if u ∈]ui, ui+1]
0 otherwise,

Bi,p(u) = u− ui
ui+p − ui

Bi,p−1(u) + ui+p+1 − u
ui+p+1 − ui+1

Bi+1,p−1(u).
(2.39)

An example with p = 2 and U =
[
0, 0, 0, 1

5 ,
2
5 ,

3
5 ,

4
5 , 1, 1, 1

]
is depicted in Figure 2.7. The bases

possess the following important properties:

• A basis function Ni,p is non-zero only in the interval [ui, ui+p+1].
• At any point in the interval [u1, um], the sum of the non zero basis functions is one, also

known as the partition of unity property.
• Inside a knot span [ui, ui+1], the basis functions are C∞ continuous.
• If a knot ui in the vector U is repeated k times (i.e. it has a multiplicity of k), the basis

functions at ui are Cp−k continuous.

Now, a B-Spline curve can be constructed by a linear combination of the control points and
the basis functions:

C(u) =
n∑
i=1

Bi,p(u)P i. (2.40)

16 2. The Finite Element and Finite Cell Methods

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

B1

B2

B3 B4 B5

B6

B7

u

Figure 2.7: B-Spline basis functions of order p = 2 with knot vector U =
[0, 0, 0, 1

5 ,
2
5 ,

3
5 ,

4
5 , 1, 1, 1].

0 2 4 6 8 10

−2

−1

0

1

2

3

P 1

P 2 P 3

P 4 P 5

P 6 P 7

x

y

Figure 2.8: A B-Spline curve and its control points with p = 2.

Figure 2.8 depicts an example of a B-Spline curve of order p = 2, knot vector U =
[0, 0, 0, 1

5 ,
2
5 ,

3
5 ,

4
5 , 1, 1, 1] and the following control points:

P 1 =
[
0 0

]>
P 2 =

[
1 3

]>
P 3 =

[
5 3

]>
P 4 =

[
3 −2

]>
P 5 =

[
9 2

]>
P 6 =

[
7 2

]>
P 7 =

[
10 2

]>
.

(2.41)

Even though B-Spline curves provide enough flexibility to model a broad set of curves that

2.1. Fundamentals of the Finite Element Method 17

0 2 4 6 8 10

−2

−1

0

1

2

3

P 1

P 2 P 3

P 4 P 5

P 6 P 7

w6 = 1

w6 = 0.1

w6 = 10

x

y

Figure 2.9: NURBS curves with p = 2 and a varying weight for P 6.

may appear in engineering practice, they are not capable of providing an exact representation
of all geometric shapes. For example, a class of curves that cannot be represented by B-Splines
are conic sections: circles, ellipses or hyperbolas. In order to be able to represent these shapes
exactly, the definition in Equation 2.40 is extended by assigning a weighting factor wi to each
control point on the curve. Then, Equation 2.40 is modified to:

C(u) =

n∑
i=1

Bi,p(u)wiP i

n∑
i=1

Bi,p(u)wi
, (2.42)

which is a rational curve, hence the name non-uniform rational B-spline. Increasing the
weighting factor wi associated to a single control point will cause the curve to be pulled
toward P i on the interval [ui, ui+p+1], or conversely, decreasing wi will push the curve away
from P i. Figure 2.9 depicts a NURBS with control points and knot vector as defined in 2.41,
and a weight vector where all the weights are unity except for w6, which is varied in the range
0.1...10.
Apart from curves, NURBS are able to represent higher dimensional manifolds as well.

Surfaces, for example, can be constructed by taking the tensor product of one dimensional
bases. For this case, a surface is defined by:

• Two polynomial orders pu and pv for the basis functions along the two parametric direc-
tions u and v.

• Two knot vectors U and V for the basis functions along the two parametric directions u
and v.

• A grid of control points P ij, where i = 1...n, j = 1...m, with n and m being the number
of basis functions along the directions u and v, respectively.

• A grid of weights wij.

18 2. The Finite Element and Finite Cell Methods

Then, the NURBS surface is defined as:

S(u, v) =

n∑
i=1

m∑
j=1

Ni,pu(u)Nj,pv(v)wijP ij

n∑
i=1

m∑
j=1

Ni,pu(u)Nj,pv(v)wij
. (2.43)

2.1.6 Numerical quadrature
In general, integrating the expression of the element stiffness matrix in Equation 2.27 is not
possible analytically. Instead, the finite element method employs numerical quadrature rules
for integration. The most widely used rule for this purpose is the Gauss-Legendre (GL)
quadrature. Given a function f(r) : I → R to be integrated on the domain I = [−1, 1] ⊂ R,
the GL rule transforms the integral into a weighted sum of function evaluations at specified
locations:

1∫
−1

f(r)dr ≈
n∑
i=1

f(ri)wi, (2.44)

where the ri-s are the function evaluation locations (abscissas) dictated by the quadrature
rule, and the wi-s are the associated weights. A quadrature rule of Gauss-Legendre type with
n abscissas is capable of exactly integrating a polynomial of degree 2n− 1.
Two- or three-dimensional integrals can be evaluated by applying the quadrature rule for

the respective dimensions in a nested manner:

1∫
−1

1∫
−1

f(r, s) drds =
n∑
i=1

m∑
j=1

f(ri, sj)wiwj

1∫
−1

1∫
−1

1∫
−1

f(r, s, t) drdsdt =
n∑
i=1

m∑
j=1

l∑
k=1

f(ri, sj, tk)wiwjwk.

(2.45)

Here, the function f(...) is evaluated n×m, or n×m×l times, for the 2D and 3D cases, respec-
tively. It is noted here that the number of quadrature points in each coordinate direction need
not to be equal. This is especially true for the p-version of the Finite Element Method, where
the order of shape functions may be chosen differently along the local coordinate directions of
the respective elements. These anisotropic discretizations benefit from a quadrature rule with
a varying number of points, as the total number of function evaluations can be decreased,
while the error of the integration can be kept minimal. In this work, only the case with equal
number of points per direction is considered.

2.2 The Finite Cell Method
One of the main steps of conducting a finite element simulation is the partitioning of the
domain of interest Ωphy into elements, called mesh generation. Mesh generation is a challenging

2.2. The Finite Cell Method 19

Ωphy

Ωfict

+ =

α = 0

α = 1

Ω∪

t ΓN

ΓD

Figure 2.10: The core concept of the FCM. The physical domain Ωphy is extended by the
fictitious domain Ωfict. Their union, the embedding domain Ω∪ can be meshed easily. The
influence of the fictitious domain is penalized by the scaling factor α [4].

task, with at least as much research invested in understanding the problems and solutions
regarding the process as there is research conducted on the finite element method itself. Some
good resources about mesh generation are e.g. [25–27]. A mesh generator for high-order FEM,
where the resulting elements utilize the blending function interpolation can be found in [28].
Despite the vast choice of methods available, meshing remains a challenging task even today.

The preparation of the geometric model and the subsequent step of mesh generation may
account for as much as 80% of the complete analysis time [1]. Thus, recent years’ research
interest in the computational mechanics community has turned towards alternative approaches
which aim at avoiding this difficult (and thus expensive) step. One of these methods is the
Finite Cell Method (FCM) a high-order immersed boundary technique, first introduced in [29].
The FCM extends the boundaries of the domain of interest Ωphy by a so-called fictitious

domain Ωfict such that the union of the two forms an embedding domain Ω∪. Usually, the
embedding domain is formed such that it coincides with the bounding box of the original
physical domain. Such box-like geometries can be meshed very easily into a regular grid
of rectangular (or right-angled hexahedral) finite elements. To remain consistent with the
original problem, the material properties in the fictitious domain are multiplied with a scaling
factor α, chosen in the range of α = 10−12...10−6. The weak stiffness introduced by α ensures
that the strain energy in the fictitious domain remains very close to zero, therefore it does not
have a significant contribution to the overall solution. The solution field found in Ωphy thus
remains a very good approximation to the solution of the original problem.
In the following subsections, the formulation of the method is outlined, as well as a brief

overview of the challenges that might be encountered when implementing the FCM. A detailed
discussion of the matter may be found in [22, 30].

2.2.1 Formulation
Figure 2.10 illustrates the core idea of the FCM. The boundaries of the physical domain
of interest Ωphy are extended by a fictitious part Ωfict. Their union Ωphy ∪ Ωfict forms the
embedding domain Ω∪. As Ω∪ possesses a simple, box-like geometry, it can easily be meshed
into a structured grid of rectangular finite elements in 2D and cuboids in 3D. To extinguish
the influence of Ωfict, the material parameters are multiplied with an indicator function α(x) :

20 2. The Finite Element and Finite Cell Methods

Rnd → R, defined as:

α(x) =
{

1 ∀x ∈ Ωphy

10−q ∀x ∈ Ωfict.
(2.46)

Then, the weak form of Equation 2.2 is written as:

Given b : Ω∪ → Rnd , t̂ : ΓN → Rnd , û : ΓD → Rnd , find u ∈ S
such that for all v ∈ V

a(u,v) = f(v),

with a(u,v) =
∫

Ω∪

ε(v) : α(x)C : ε(u) dΩ

and f(v) =
∫

Ω∪

v · α(x)b dΩ +
∫
ΓN

v · t̂ dΓ.

(2.47)

This weak formulation is the auxiliary problem to the classical weak form of Equation 2.2.
To bring Equation 2.47 into a discrete form, the same methodology is applied as for standard
finite elements outlined in Section 2.1.2. In this process, shape functions are assigned to the
quadrilateral (or cuboidal) elements of the regular mesh generated on Ω∪. As the boundaries
of these elements do not necessarily coincide with the geometric boundaries of the physical do-
main Ωphy, the elements of the background mesh are referred to as cells, in order to distinguish
them from standard finite elements.
So far, various choices of shape functions in combination with the FCM have been investi-

gated. In the original version of the method, integrated Legendre polynomials were employed,
showing exponential rates of convergence [29, 31]. Instead of conventional C0 bases, an alter-
native is to use B-Spline basis functions [32, 33], where the “cells” in the grid are defined by
the knot spans of the respective bases.
Because the boundaries of the finite cell mesh do not coincide with the boundaries of the

original physical domain, implementing the finite cell method poses a set of challenges that
need to be addressed:

1. Boundary conditions
Homogeneous Neumann boundary conditions are automatically satisfied by setting α to
zero or to a very small value in Ωfict. Non-homogeneous Neumann boundary conditions
can be applied by evaluating the contour integral of Equation 2.47 over ΓN. However,
in contrast to standard finite elements, it is generally not possible to realize Dirichlet
boundary conditions by directly constraining the degrees of freedom associated to the
boundaries of the element, since the elements do not coincide with the boundaries of
the physical domain. Therefore, these essential boundary conditions are applied in the
weak sense, i.e. by using the penalty method [34], Lagrange multipliers [35], or Nitsche’s
method [36].

2. Local refinement
Localized phenomena in the governing physics of the problem requires the refinement
of the discretization. This is the case for singular problems due to re-entrant corners,
material interfaces, or highly localized physical processes. The inherent problem of mesh

2.2. The Finite Cell Method 21

refinement is the need to ensure compatibility between element boundaries: without
further treatment, no hanging nodes and edges are allowed to appear in the mesh.
Traditional methods employ refinement templates that aim at refining the mesh towards
singular points in 2D, however, their implementation is quite delicate in three dimensions,
especially when the aim is to resolve edge singularities. To avoid the challenges associated
to refinements and hanging nodes, a popular approach is to use a hierarchy of recursively
refined overlay meshes, see in [37, 38] and [39].

3. Conditioning of the linear system of equations
Finite cells that are barely cut by the domain boundary and contain only a small portion
of Ωphy will lead to a high condition number of the resulting system of equations. This
causes slower convergence when using an iterative solver, which would be essential for
solving larger systems. Increasing the value of αmay help in stabilizing the system, but it
comes at the cost of introducing a higher modeling error in the finite cell approximation.
Various techniques exist to overcome this problem, the most promising one being the
Symmetric Incomplete Permuted Inverse Cholesky (SIPIC) preconditioner introduced
in [40].

4. Integration of cut cells
In those cells that are cut by the boundary, the scaling factor α(x) introduces a discon-
tinuity in the integrands of the element stiffness matrices. Standard integration schemes
employed in finite elements are not able to deal with such discontinuities. Therefore,
the FCM needs to employ specially constructed quadrature rules to achieve optimal con-
vergence rates. In the remaining parts of this chapter, possible solution strategies for
dealing with discontinuous integrands are outlined.

2.2.2 Quadrature schemes
Due to the discontinuity that is introduced by penalizing the constitutive matrix C, the
Gaussian quadrature loses its accuracy in the cut cells, leading to sub-optimal convergence
rates [29, 31, 41]. To overcome this problem, various alternative methods have been suggested
in the literature. The following sections summarize these approaches.

2.2.2.1 Spacetrees

The most widely used method to improve the accuracy of the numerical integration uses a
composed Gaussian quadrature rule combined with a spacetree subdivision of the cells that are
cut by the domain boundaries. In two dimensions, this means that every cut cell is recursively
subdivided into 4 equal integration subcells until a predefined depth k is reached (Figure 2.11).
This way, the resulting set of integration subcells – the integration mesh – is adaptively refined
towards the interface. Consequently, this subdivision method localizes the discontinuity to the
smallest leaves of the spacetree.
In the three-dimensional case, the octree algorithm bisects each cut cell into eight octants.

In this procedure, 19 new internal nodes are created, which can be categorized as follows (refer
to Figure 2.12):

• By bisecting every edge of the cell, twelve edge nodes are created.
• Similarly to the edge nodes, six face nodes are created in the center of each face.

22 2. The Finite Element and Finite Cell Methods

k = 0 k = 1

k = 2 k = 3 k = 4

Figure 2.11: Spacetree-based integration domains for different values of maximum subdivision
depth k. Red dots represent integration points that lie in Ωphy, blue crosses are in Ωfict [4].

• A mid-node is created in the center of the cell.

Figure 2.12: Octree generation: The edge nodes (red), face nodes (blue) and the mid-node
(purple) are connected to each other, forming eight octants [17].

Once the spacetree is constructed, the quadrature points are distributed in the parameter
space of each resulting integration cell and then mapped to the parameter space of the finite
cell. Then, the Jacobian term in Equation 2.27 is the product of the mappings ψ(r, s) and
ψ̃(r̃, s̃), where the terms with ∼ denote the local coordinates of the integration cell and the
mapping from the parameter space of the integration cell to the parameter space of the finite
cell. The concept of the mappings is depicted in Figure 2.13.
The only information that spacetree methods need to extract from the geometric model is

whether a cell is cut by the interface. This can be achieved by performing inside-outside tests
on dedicated seed points, distributed on the domain of the cell. Because this information can
be extracted virtually from any geometric model, the octree approach can be applied to a
wide set of applications, such as voxel-based domains [42], implicit geometries [43] and BREP

2.2. The Finite Cell Method 23

x

y

r

s

r̃

s̃

ψ(r, s)

ψ̃(r̃, s̃)

Figure 2.13: The concept of mappings for quadtree depth k = 1 [16].

models [44]. The clear advantage of spacetree methods lies in their robustness, because–
regardless of how the interface intersects the cell–the subcells are always created as explained
before.
However, the disadvantage of the spacetree-based approaches is that they are not necessarily

accurate and efficient at the same time. Because they leave the more detailed information
provided by the geometric model unexploited, the accurate integration may demand many
levels of subdivision. This can lead to an excessive number of integration cells, making the
method less efficient.

2.2.2.2 Moment fitting-based schemes

Quadtrees and octrees manipulate the integration domains by decomposition and leave the
integration rule unchanged on the leaves of the integration tree. It is also possible to keep the
integration domain unchanged and modify the quadrature rule such that it is “tailored” to
each cut cell. An example for this idea is the moment fitting method, introduced for implicit
geometries in [45] and applied to the finite cell method in [46, 47].
The basic idea of moment fitting is to find a set of integration points {ri} and associated

weights {wi} such that they exactly integrate the high-order polynomials that are the entries
in the element stiffness matrices. The points and weights can be found by solving:

n∑
i=1

fj(ri)wi =
∫
Ωe

fj(r)dΩ, (2.48)

where the fj’s are m independent basis functions. This can be written in matrix form:f1(r1) · · · f1(rn)
...

fm(r1) · · · fm(rn)


w1

...
wn

 =


∫
Ωe
f1(r)dΩ

...∫
Ωe
fn(r)dΩ

 . (2.49)

To set up this equation system, the volume integrals on the right hand side need to be eval-
uated. While one possibility is to apply spacetree decomposition, the other option is to use
the divergence theorem and turn integration over volumes into integration over contours, see
in [45]. The advantage of this lies therein that the contours required for integration are usually
readily available for BREP or STL models.
The difficulty that arises with moment fitting is that Equation 2.49 is non-linear with respect

to the integration point positions ri. This property makes the method less appealing for

24 2. The Finite Element and Finite Cell Methods

computing quadrature rules for the FCM, especially if the finite cell mesh contains many
cut cells. The non-linearity of the problem can be removed by fixing the quadrature point
locations, and only computing the unknown weights. Even with this modification, every cut
cell practically requires the solution of an equation system, rendering the method relatively
expensive when applied on a large number of cut cells.
A modification presented in [48] resolves this issue by using Lagrange polynomials for the

basis functions:

fj(r) = lj(r) =
pd∏
k=1
k 6=j

r − rGL
k

rGL
j − rGL

k

, (2.50)

where pd is the order of quadrature and rGL
k is the position of the k-th quadrature point from

the standard Gauss-Legendre quadrature rule. It follows from the Kronecker delta property
of Lagrange polynomials that if the positions of the quadrature points are fixed to lie exactly
at the rk’s, the matrix in Equation 2.49 becomes diagonal, and the weights can be computed
directly:

wi =
∫
Ωe

lj(r)dΩ. (2.51)

Due to these modifications, the need to solve the linear system of equations in Equation 2.49
can be completely avoided.

2.2.2.3 Conforming integration meshes in 2Da

A different way to avoid the problems associated to spacetree subdivisions is to decompose
the cut cells into subcells with boundaries that coincide with the interface ∂Ω, resulting in
a boundary-conforming integration mesh. This approach has attracted an increasing interest
in recent years, not only in the context of FCM, but also in other areas of computational
mechanics, such as eXtended Finite Elements, isogeometric analysis of trimmed surfaces, or
meshless methods. In contrast to the spacetree-based integration, subcells provided by these
methods account for the more detailed information available from the geometric model.
The main challenge of boundary-conforming subdivisions is the high number of possible

intersection patterns which can appear in cut elements. For two-dimensional applications
various algorithmic approaches have been developed to deal with this problem robustly and
efficiently. For XFEM, a suitable method is described in [49]. Here, the cut cells are subdivided
into non-overlapping quadrilaterals and triangles—and subcell mappings are defined using
Lagrangian shape functions, leading to a better approximation of the boundary. Also in
the context of XFEM, [50] presents a method that delivers triangles and mappings known
from Nurbs-Enhanced Finite Elements (NEFEM [51]). For the FCM, a particularly effective
decomposition algorithm was presented in [16], which is described in the following.
The approach is based on the observation that if a cut cell is divided into two halves along

one of its diagonals, the two resulting triangles can always be decomposed topologically into a
triangle and a quadrilateral. This idea is depicted in Figure 2.14. To identify how the diagonal
line has to be created, the algorithm performs an inside-outside test on the four corner vertices

2.2. The Finite Cell Method 25

Figure 2.14: The general flow of the proposed algorithm. Every cut cell is subdivided into two
triangles along a diagonal line. The triangles are further cut by the boundary into a triangle
and a quadrilateral [16].

∂Ω

∂Ω

Figure 2.15: The process of determining the orientation of the diagonal cut line (drawn in
dashed style). Black and white dots represent corners lying on opposite sides of the domain
boundary ∂Ω. One pair of corners with opposite inside-outside is joined [16].

26 2. The Finite Element and Finite Cell Methods

of the cell. If two opposite vertices have opposite states, the diagonal line is formed by joining
them, as depicted in Figure 2.15.
After the line is created, the intersection points between the boundary and the diagonal

line as well as the cell edges are computed. The boundary is then trimmed at these points
of intersection. Finally, the resulting trimmed curves are used to form curved triangles and
quadrilaterals defined using the blending function method of Section 2.1.4.

Degenerate cuts

If a non-convex boundary cuts the cell, there can be several intersection points between this
boundary and the diagonal line (Figure 2.16). Therefore, no triangular decomposition can
be made. Likewise, if the boundary has no intersection with the diagonal line, there is no
straightforward decomposition that matches the procedure described before (Figure 2.17).
This second kind of special configuration is detected by evaluating the inside-outside state of
dedicated seed points on the domain of the cell. Thus, the special case in Figure 2.17 may be
missed if the resolution of these seed points is not fine enough. If a special configuration is
detected, the algorithm performs a quadtree subdivision and runs the triangulated decompo-
sition on the leaf cells of the tree. This is done recursively, until the generic case of Figure 2.14
can be constructed. This quadtree based fallback option is depicted in Figures 2.16 and 2.17.

Non-convex boundary
cuts the cell

The cell is subdivided
into four subcells

General case is constructed
in the subcells

Figure 2.16: Non-convex boundary cuts the cell

Boundary has two inter-
sections with a cell edge

The cell is subdivided
into four subcells

General case is constructed
in the subcells

Figure 2.17: A boundary intersects a cell edge twice [16].

2.2. The Finite Cell Method 27

Figure 2.18: Resolution strategy for kinks: the diagonal line is replaced by two connected
segments [16].

Kinks and corners

In many cases, the boundary of the domain is not composed of one continuous curve, but is
a set of connected curve segments. These points usually represent discontinuous jumps in the
curve derivatives and have to be taken into account by the decomposition algorithm in order
to maintain the precision of the integration.
Therefore, if more than one curve is detected in a cell, the diagonal line is replaced by two

linear segments. The point in which these segments are connected is the location of the kink
in the cell. The extraction of the kink from a BREP model is a straightforward operation.
The case when two curves meet at a sharp edge is depicted in Figure 2.18.

Piecewise definition of the boundary

As Equation 2.38 suggests, the nature of the parametric description of the bounding curves
has a strong influence on the mapping ψ̃(r̃, s̃) and thus on the Jacobian determinant of the
integration cell. If any of the bounding curves of the integration cell is defined piecewise,
the Jacobian determinant in the integrand of the element stiffness matrix (Equation 2.27) be-
comes non-smooth as well. Because the Gaussian quadrature is able to cope with polynomials
but not with functions that are defined piecewise, this has to be taken into account by the
decomposition algorithm.
Having piecewise defined curves as boundary description is a very frequent case, as many

geometries in engineering computations use B-Splines or NURBS. The parameter space of
these curves is divided into a set of subintervals and the parametric equation of the curve
changes at the breakpoint between neighboring subintervals. In the context of B-Splines or
NURBS, these breakpoints are often referred to as knots.
In 1D, integrating piecewise polynomials numerically is performed by employing composed

integration, based on the sum of the integrals on the separate intervals the curve is defined
on. In order to perform exact numerical integration, this concept has to be applied to 2D:
instead of integrating subintervals, the integration has to be carried out on subregions, where
the boundaries of the regions are defined by the locations of the breakpoints.
As an example, consider a blended integration cell with eb(s) being a piecewise-defined,

curved boundary (Figure 2.19) that has one breakpoint at s = −0.5.
Because the definition of eb(s) changes at s = −0.5, the Jacobian determinant of the blended

mapping is discontinuous, too. Thus, the integration cell has to be further subdivided along
the s = −0.5 isoparametric line. Integration then takes place on these subcells separately, and

28 2. The Finite Element and Finite Cell Methods

eb(η)

X1

X2

X3X4

η =
−0.5

η

ξ

Q1

Q2

Figure 2.19: Example of knot subdivision [16].

the complete integral is computed by the sum of the integrals on the subcells.
In general, the triangulated subdivision algorithm is followed by an additional decomposi-

tion: all cells that are bounded by piecewise defined curves are further subdivided along the
breakpoints of the curves.
As it will be pointed out later, this breakpoint-wise subdivision is a necessary step in order

to be able to compute highly accurate integrals of subcells bounded by piecewise curves.

2.2.2.4 Smart octrees - Conforming integration meshes in 3Db

While the previously outlined approach is able to deliver an accurate and robust integration
for two-dimensional discontinuous functions, its extension to three dimensions is not straight-
forward. The challenge is not only the drastically increased number of intersection cases, but
also the necessity to account for the kinks and sharp edges of the geometric model that lie in-
side a cut element. For implicitly defined geometries, [52] presents an algorithm to decompose
the three-dimensional cut elements into non-overlapping tetrahedra and prisms. Similarly to
the 2D case, the integration subcells use Lagrangian functions as mapping functions. Other
three-dimensional approaches rely on predefined intersection templates: In the framework of
the Cartesian grid Finite Element Method (cgFEM [53]), [54] introduces a method using the
basic intersection patterns of the marching cubes algorithm [55] as templates, employing the
NEFEM concept for the mapping functions. When sharp features are present in the cell, the
method generates specific sets of tetrahedra using a Delaunay procedure.
In the following, an algorithm is presented which:

• generates boundary-conforming integration cells,
• does not rely on predefined template solutions,
• resolves sharp features of the BREP model.

To break down the complexity of the problem, the algorithm follows a two-step approach.
The first step resolves the intersection topology by subdividing each cut cell into eight octants
and moving the 19 internal nodes of the octree so that they lie exactly on the boundary ∂Ω.
If the geometric model contains parametric entities that are defined by nonlinear mapping
functions, the second step reparametrizes the trilinear subcells in such a way that they conform

2.2. The Finite Cell Method 29

to the curved interface. The following two sections serve to explain the two steps of the
algorithm in detail.

First step - decomposition into trilinear subdomains

As discussed before, similar to the octree procedure, the first step delivers 8 subcells. Now,
the octants are arranged such that none of the octants have vertices on different sides of the
domain interface. The essential key to achieve this purpose is to realize that the position
of the 19 internal nodes is not fixed. Instead, they can be shifted along their corresponding
edge, face or volume without changing the topology of the geometric objects. This allows to
separate the octants into the two domains Ωphy and Ωfict by moving the internal nodes onto
the interface as follows (refer to Figure 2.20):

• If any of the 12 edges is intersected by the domain ∂Ω, it is identified as an active edge.
On active edges, the corresponding edge node is moved to the point of intersection. If
an edge is inactive, its edge node stays in the center.

• If any of the 6 faces is bounded by an active edge, the face is identified as an active face.
On active faces, the face node is moved onto the intersection curve between ∂Ω and the
face. If the face is inactive, its face node remains in its center.

• The mid-node of the cut cell is moved onto ∂Ω.

(a) (b) (c)

Figure 2.20: Smart octree generation. All edge nodes (yellow), face nodes (red) and the mid-
node (blue) is shown in (a). The nodes on active edges, faces and the mid-node are moved
onto the interface (b). For simplicity, (c) shows only two resulting subcells. The corners of
the red bilinear quadrilateral lie on the interface [17].

Computing the intersection point between the active edges and the interface is a relatively
easy task, as it only requires an evaluation of the curve-surface intersections.
Concerning active faces, the location of the corresponding face point is determined as follows.

First, the four corners of the active face are checked whether they lie in Ωphy or in Ωfict. If two
opposite corners lie on the opposite sides of the interface, the diagonal line connecting them
is an active diagonal. When the active diagonal is identified, the face node is moved to the
point of intersection between the diagonal and the interface. This curve-surface intersection
problem is significantly easier to solve than computing an explicit intersection curve between
the cell face and the interface.

30 2. The Finite Element and Finite Cell Methods

Similarly, the mid-node is moved onto the interface by identifying one of the active diagonals
in the cell and computing its intersection with the interface. Figure 2.21 depicts an example
of moving a face node and a mid-node based on the active diagonal.

: corners in Ωphy

: corners in Ωfict

: face node

: mid-node

Figure 2.21: Active diagonals are identified by checking whether opposite corners lie on opposite
sides of the interface. Face nodes and mid-nodes are created by intersecting the corresponding
active diagonal with the interface [17].

So far, the outlined approach requires the interface inside the cell to be smooth and free of
edges and sharp corners. In the following, the algorithm is extended to also account for these
situations.
First, consider the case of a sharp edge intersecting the cell. Let c(t) denote the parametric

mapping that represents this edge. In order to resolve this feature, the face nodes are computed
as the intersection between c(t) and the corresponding face of the cell. These intersection
points are characterized by the parameter values t1 and t2. Knowing these two values, the
mid-node is computed as c(1/2 · (t1 + t2)). Figure 2.22 shows how sharp edges are resolved in
cases where the edge enters and exits the cell on two opposite faces.
If two or more sharp edges meet at a vertex v inside the cell, the algorithm moves the mid-

node to the location of v. The edge and face nodes are computed as outlined before. This is
depicted in Figure 2.23.

Topologically exceptional cuts

The outlined algorithm requires that every edge, face and cell has a single associated internal
point v. If this criterion is not fulfilled, the cut case is called topologically exceptional. Cases like
this can be detected by checking whether the curve-surface intersection results in more internal
points than expected. The topologically exceptional cases are reduced into simple cases by
subdividing the cut cells into equal octants. This refinement step is repeated recursively until
the criterion of single internal nodes per edge/face/cell is fulfilled in the octants. The resolution
of a typical topologically special case is depicted in Figure 2.24. The refinement step is also
applied for cells where the decomposition would result in negative Jacobian determinants for
example in cases of concave integration subcells. If a topologically exceptional case persists
after a maximum number kmax of octree refinement steps, the fallback strategy is to compute
integrals by classical octree. In the following, typical examples are given for situations where
refinement steps or the fallback strategy might be needed.
Because only one sharp corner can be resolved by moving the mid-node of the cell to its
location and only one sharp edge can exit the cell per cell-face, there are restrictions on the

2.2. The Finite Cell Method 31

(a) (b) (c)

Figure 2.22: Edge resolution. Active nodes that take part in the formation of one subcell with
a sharp edge (in green color) are shown in (a). The face nodes are the intersection points
between the edge (green color) and the corresponding faces. Two subcells are shown in (b),
while the complete subdivision is shown in (b) [17].

(a) (b) (c)

Figure 2.23: Sharp corner resolution. Three sharp edges (dark green color) meet in a sharp
corner, as shown in (a). The mid-node of the cell is moved onto the sharp corner, while the
sharp edges (green color) are dealt with as shown in Figure 2.22. One subcell is shown in (b)
and the complete subdivision is shown in (c) [17].

(a) (b) (c)

Figure 2.24: The algorithm performs an octree subdivision if the cut case cannot be resolved in
one step: (a) topologically complex cut in the cell, (b) the cell is subdivided in to eight octants,
(c) base smart octree case in one of the octants [17].

32 2. The Finite Element and Finite Cell Methods

sharp geometric entities interior to the cell. While the “one sharp corner” restriction can be
resolved by a recursive application of the refinement step, the restriction on the number of edges
exiting the cell requires further considerations. If more than two coplanar or more than three
non-coplanar sharp edges meet at the mid-node, additional angle conditions have to be fulfilled
in order to guarantee that they exit the cell, or its octree-like refined cells through different
faces. The examples in Figures 2.25 and 2.26 demonstrate these situations. Furthermore,
because there are only six face nodes—each of them connected to the mid-node—there can
be a maximum of six sharp edges meeting at the center node of the cell. This cannot be
resolved even by a recursive octree refinement, as the example in Figure 2.27 demonstrates. In
these situations, the fallback strategy is applied, integrating on the classical octree cells. The
application of the refinement step and the fallback strategy are major factors contributing
to the robustness of the algorithm, because both of them are based on the—per definition
robust—octree method. As demonstrated by the practical example in Section 2.2.3.2, in the
majority of the cells no refinement is necessary and only a negligible amount of cells reach the
refinement level where the fallback strategy is needed. Even if it is applied, the introduced
integration error is small, as it is generally restricted to very small parts of the domain of
computation. In our practical examples, we choose kmax between 3 and 5, as a compromise
between computational effort and accuracy of the numerical integration.

α

(a) (b) (c)

Figure 2.25: More than two coplanar edges (green color) meeting at a BREP vertex (purple).
If the angle α between them is sufficiently high (a), they exit the cell through different faces
(blue nodes). If α decreases, the edges intersect the same face (b). In this case, the refinement
step has to be applied until the basic smart octree case can be recovered (c) [17].

Relation to finite element mesh generation techniques

It is important to note here that the method differs significantly from conventional finite
element mesh generators, because its aim is to generate subdomains for numerical integration
purposes. Therefore it is not constrained by those criteria that other meshing algorithms have
to fulfill. For the task of numerical integration, the aspect ratio or “quality” of the generated
cells plays a less important role. Furthermore, the integration mesh allows for hanging nodes
and edges, which can become tedious to handle in FEM, and therefore are not allowed in
classical finite element meshes.

2.2. The Finite Cell Method 33

α

(a) (b) (c)

Figure 2.26: More than three non-coplanar edges (green) meeting at a BREP vertex (purple).
If the angle α between them is sufficiently high (a), they exit the cell through different faces
(blue nodes). If the angle is too small (b), the refinement step is applied to reduce the cut case
into a basic smart octree case (c) [17].

(a) (b) (c)

Figure 2.27: Example on the restriction of number of edges meeting at a BREP corner. In
(a), six sharp edges (green) meeting at the irregular node (purple) exit the cell through different
faces (blue nodes). In (b), a seventh edge (light blue) ends at the irregular node. This case
cannot be reduced into a basic smart octree case even by an octree refinement (c) [17].

34 2. The Finite Element and Finite Cell Methods

Second step: elevating the order of linear subdomains

As described in the previous paragraphs, the first step of the smart octree algorithm partitions
the cut cell into eight octants, whereby ∂Ω is approximated linearly. In this way, the complex-
ity of the intersection pattern is resolved. Thus, the internal domain interface is guaranteed to
be smooth in each octant. This alone leads to an improved domain integration when combined
with composed quadrature. Further improvements are possible when the parametric entities of
the geometric model are of high order. In this case, the trilinear subcells can be reparametrized
to conform with the curved boundaries of Ωphy. This is the aim of the second step of the smart
octree approach. To this end, the linear version of the transfinite interpolation approach [23]
is employed. This method—also known as blending function interpolation [56]— defines a
mapping between a reference cube and a hexahedron bounded by curved parametric surfaces
and edges.
The blending function method requires the high order information of Ωphy. To this end, a
local reparametrization of the surface is employed, based on interpolating a set of sampling
points, similar to the method explained in [52].
The locations of the sampling points are chosen according to the parametric collocation points
computed by Babuška and Chen [57]. The sampling points are projected on Ωphy and interpo-
lated using Lagrangian functions, as depicted in Figure 2.28. The faces of the resulting curved
hexahedra approximate the high-order geometric boundaries with a higher accuracy.

(a) (b) (c)

Figure 2.28: If a cell is cut by a high-order surface (a), the order of a linear quadrilateral
(blue) is elevated to conform with the section of the curved surface (red). Interpolation points
are sampled on the quadrilateral (blue dots) and mapped on the real surface (b). These points
are interpolated, resulting in an approximating quadrilateral (c) [17].

2.2.3 Numerical examples

This section demonstrates the decomposition methods of Sections 2.2.2.3 and 2.2.2.4.

2.2. The Finite Cell Method 35

2

2

Ωphy

Ωfic

1

2

3

8

β

Figure 2.29: Setting of the moving circle example [16].

2.2.3.1 Integration in 2Da

Consider a square-shaped domain with a circular hole inside, the center of which moves on a
circular path (Figure 2.29). The boundary of the circular hole is composed of 4 arcs. In every
time step, a different geometrical setting has to be partitioned. This way, it can be assessed,
how the 2D algorithm resolves with non-regular configurations. As Figure 2.30 depicts, every
cut cell is decomposed into two pairs of quadrilaterals and triangles. In cells where neighboring
arcs join, the diagonal cutting line is drawn according to the meeting point of the curves. It
is worth observing how the degenerate case is resolved by the quadtree decomposition in
Figure 2.30c.

Integration test

The precision of the entire subdivision algorithm is assessed on a geometric setup that contains
all the special cases of Figures 2.16 and 2.17. To this end, an “integration patch test” is
introduced, with the following idea: the value of the scaling factor is chosen to be α = 1 both
on Ωphy (with a possibly complex geometry) and Ωphy. Because the scaling factor is the same
in both domains, the discontinuity in the cells vanishes and the numerical problem simplifies
to a 2D finite element computation on a rectangular domain with a quadrilateral mesh. If this
domain is subjected to constant strains, the linear shape functions spanned on the quadrilateral
mesh have to be able to represent the solution exactly, because the completeness condition is
satisfied [19, 20]. Note that the integrands of the element stiffness matrices (Equation 2.27)
are still computed on the subcells resulting from the decomposition algorithm. Therefore, any
possible difference between the numerical and the analytical solution is a sign that there is
an error in the integration. To quantify these differences in a global sense, the numerical and
analytical strain energy are compared using the following error measure:

e =

√
|uex − unum|

uex
, (2.52)

where uex and unum are the exact and numerical values of the strain energy, respectively.

36 2. The Finite Element and Finite Cell Methods

(a) β = 0◦ (b) β = 45◦

(c) β = 202.5◦ (d) β = 270◦

Figure 2.30: Decomposition example: moving circle [16].

As an example, consider the geometric setting depicted in Figure 2.31. The boundaries of
Ωphy represent the cover plate of a violin, including the f-holes. The boundary of the violin -
including the f-holes - are represented by cubic B-Spline curves. On this domain, the Laplace
equation

∆Φ = 0 (2.53)

is solved with Dirichlet boundary conditions applied on the top and bottom of the mesh grid,
such that the field value Φ = 0 on ΓD1 and Φ = h on ΓD2 , where h is the height of Ωfict. As
a result, the gradient of the field value ∂Φ

∂x
is equal to one throughout the whole domain. The

boundaries denoted by ΓN are defined as free Neumann boundaries. Because the solution is
linear, the polynomial order of the shape functions is chosen to be p = 1.
Figure 2.32a illustrates the results of the decomposition without applying breakpoint-wise

subdivision, while the resulting integration mesh with breakpoint subdivision is depicted in
Figure 2.32b.
The analytical value of the strain energy is

uex = 1
2

∫
Ω

(
∂Φ
∂x

)2

dΩ = 1
2wh, (2.54)

2.2. The Finite Cell Method 37

w = 80

h = 120

Ωfic

Ωfic

Ωphy

ΓN
ΓN

ΓD1

ΓD2

Figure 2.31: Geometry setup for the violin partitioning example [16].

38 2. The Finite Element and Finite Cell Methods

(a) Without knotspan subdivision (b) With knotspan subdivision

Figure 2.32: Result of partitioning on the violin example [16].

Figure 2.33: A detailed view of the f-hole [16].

2.2. The Finite Cell Method 39

where w denotes the width of the domain. Figure 2.34 shows the error in the strain energy
depending on the number of quadrature points distributed per parametric direction in each
cell.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1 2 3 4 5 6 7

E
rr

o
r

in
en

er
g
y

n
o
rm

With breakpoint subdiv.

Without breakpoint subdiv

No. of quadrature points in one parametric direction

Figure 2.34: Error in energy norm with and without knotspan subdivision [16].

If the breakpoints are not taken into account as explained on page 27, the error remains
higher regardless of how many integration points are distributed in the cells. However, if the
integration cells are subdivided along the breakpoints of the bounding curves, the error in the
energy norm converges to machine precision.
Here, it is worth noting that the total number of integration points is influenced by the

parametric definition of the curves to a great extent. This means that if there are many
breakpoints present in the boundary curves, there will also be a lot of breakpoint-wise subdi-
vision performed. Therefore a high number of quadrature points is generated which results in
high overall runtime.
In order to determine whether a cell is cut, both the blended and the quadtree based ap-

proaches require the evaluation of the inside-outside state of dedicated seed points. However,
due to its recursive nature, the quadtree based technique has to evaluate the point member-
ship in every cell of every level of subdivision. Thus, for higher subdivision levels the quadtree
based integration mesh generation becomes significantly more expensive than the proposed
algorithm. This is also confirmed by the comparison in Figure 2.35.

2D integration for the FCM

In the following, the combination of the 2D integration algorithm and the FCM is demon-
strated. To this end, consider the plane stress problem that was already analyzed in the
context of FCM [29], with the geometric setting depicted in Figure 2.36. The material of
the perforated plate is steel, with the properties E = 2.069 · 105[MPa], ν = 0.29[−]. The

40 2. The Finite Element and Finite Cell Methods

0

50

100

150

200

250

300

350

400

450
N

or
m

al
iz

ed
ti

m
e

[%
]

Blended integration

Quadtree

k = 1 k = 2 k = 3 k = 4

Figure 2.35: Comparison of the time required for generating different integration meshes for
the violin example [16].

Γ1

Γ2

Γ3

Γ4

4

4

100

x

y

Figure 2.36: Perforated plate problem [16].

2.2. The Finite Cell Method 41

plate is vertically loaded by 100[MPa]. Symmetry conditions are applied on Γ1 and Γ4. The
boundaries of the hole and Γ2 are treated as free boundaries. The domain is discretized into
2 × 2 finite cells. The polynomial degree of the shape functions is increased from p = 1 to
p = 15. The reference strain energy of the problem is U = 0.7021812127, obtained by an
“overkill” p-FEM solution from [29].
The integration is performed on blended integration cells and on quadtree cells with depths
k = 4 and k = 5. For comparison, the same problem is solved by means of linear finite
elements (h-FEM) with different element sizes. For the quadtree integration cells and the
linear finite elements the number of quadrature points is chosen to be (p + 1)2. To account
for the high order boundaries of the blended integration mesh, (p+ 4)2 integration points are
distributed in the curved integration cells. Figure 2.37 depicts the integration cell meshes and
a mesh of linear finite elements. The error in the strain energy (Equation 2.54) is plotted in
Figure 2.38a.

(a) Quadtree integration mesh
k = 4

(b) Blended integration mesh (c) Mesh of 246 linear quadrilater-
als

Figure 2.37: Integration meshes and a finite element mesh for the perforated plate example [16].

Both the quadtree and the blended integration show exponential convergence, similar to
p-FEM. However, the curve representing the quadtree integration levels off at an error of
approximately 10−2[−].
At this point the integration error dominates over the discretization error which renders a

further increase of the polynomial degree pointless. The integration error can be reduced by
adding more levels of refinement to the spacetree subdivision - however, the low approximation
of the integration does not allow for exponential convergence in the asymptotic range. In
comparison, the blended integration that uses the parametric description of the boundaries
shows exponential convergence also in the asymptotic sense.
It is worth noting that the curves corresponding to the spacetree-based integration does

not represent a monotonic convergence behavior. Instead, they tend to oscillate around the
level-off value. The reason for this lies therein that for a fixed spacetree depth, increasing the
integration order changes the ratio of quadrature points that are inside or outside. Depending
on this ratio, the spacetree-based integration may over- or underestimate the integral, leading
to the oscillation.

42 2. The Finite Element and Finite Cell Methods

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

R
el

a
ti

v
e

er
ro

r
in

en
er

g
y

n
o
rm

Number of degrees of freedom

Blended integration
Quadtree, k=4
Quadtree, k=5

h-FEM

(a) Convergence w.r.t. no. of degrees of freedom

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
2

10
3

10
4

10
5

R
el

a
ti

v
e

er
ro

r
in

en
er

g
y

n
o
rm

Number of quadrature points

Blended integration
Quadtree, k=4
Quadtree, k=5

h-FEM

(b) Convergence w.r.t. no. of quadrature points for p = 1..15

Figure 2.38: Comparison of the convergence characteristics of different methods [16].

2.2. The Finite Cell Method 43

Discussion

The number of quadrature points has a major influence on the overall computational cost of
a numerical simulation. Therefore, the relationship between the number of integration points
and the relative error in strain energy is an important aspect when it comes to assessing the
performance of the different approaches. This relationship is depicted in Figure 2.38b.
Apart from the better convergence characteristics, the other advantage of the blended subcell

integration lies in the total number of Gauss points distributed on the domain. For the same
error in the strain energy, the blended integration cells require approximately one order of
magnitude less Gauss points than a quadtree integration mesh with a depth of k = 4. If the
depth of the quadtree is increased to k = 5, the point at which the convergence curve levels off
is slightly shifted to a lower value. However, this gain in precision comes with the cost of high
computational overhead. As an example, consider a relative error of 10−4 in the energy norm,
where the k = 5 quadtree integration mesh needs approximately 40000 quadrature points. In
contrast, the blended mesh needs approximately 2500 integration points to reach the same
error.
A comparison in terms of the time required to compute the stiffness matrix -including the

generation of the integration mesh- is plotted in Figure 2.39. The quadtree based computa-
tion becomes more expensive than the blended one for two reasons. The first reason is due
to the extra inside-outside tests required by the quadtree with high levels of k (refer to Sec-
tion 2.2.3.1). Secondly, the high number of quadrature points leads to an excessive number of
matrix-matrix product evaluations in Equation 2.24.
Both the blended and quadtree methods show better convergence characteristics in compar-

ison to the standard h-FEM on the basis of the number of degrees of freedom (Figure 2.38a).
Comparing the number of integration points of the different approaches reveals that up to
approximately 1000 integration points the error in the strain energy of the h-FEM solution is
smaller than the error of the blended integration. This point is located where the curve of the
h-FEM error intersects the curve of the blended integration error on 2.38b. For the quadtree
methods, this intersection with the h-FEM error curve lies in regions of higher number of
Gauss points.
Here, it should be noted that although the h-FEM is at least as precise as the blended subcell

integration up to this intersection point, it requires considerably more degrees of freedom than
the FCM approach.

2.2.3.2 Integration in 3Db

The following section demonstrates how the 3D integration algorithm performs in combination
with composed numerical quadrature. The first part of the section will focus on accurately
computing volume integrals on BREP domains.

Integration test on models with sharp boundaries

This first example aims at demonstrating that the trilinear subcells obtained after the first step
of the algorithm can accurately and robustly resolve edges and vertices in the structure. For
this purpose, Ωphy is considered as the two concentrically stacked cubes depicted in Figure 2.40.
The domain is extended by Ωfict, forming a bounding box Ω∪. A structured background

mesh is generated on the geometry of Ω∪, with 4×4×5 cells. Note that the bounding box was

44 2. The Finite Element and Finite Cell Methods

1

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

N
or

m
al

iz
ed

ti
m

e
fo

r
in

te
gr

at
io

n
[-

]

Number of degrees of freedom

Blended integration
Quadtree, k=4
Quadtree, k=5

Figure 2.39: Comparison of the time required for integrating the stiffness matrix for p =
1..15 [16].

(a) (b) (c)

Figure 2.40: Example with planar faces: (a) Ωphy with background mesh, (b) octree with k = 3,
(c) smart octree [17].

2.2. The Finite Cell Method 45

intentionally chosen such that the classical octree refinement never catches the boundaries of
the domain exactly. Let f(x) = 1,∀x ∈ Ωphy and g(x) = 0,∀x ∈ Ωfict. Then, the following
integral value is sought:∫

Ω∪

F (x) =
∫

Ωphy

1dΩ +
∫

Ωfict

0dΩ = VΩphy , (2.55)

where VΩphy is the volume of Ωphy. As the geometry of Ωphy is simple, its exact volume can
be computed analytically. Octree integration meshes with levels k = 2, 3, 4 are generated
on the background mesh, as well as a smart octree mesh. Figure 2.40 shows these different
integration meshes. Figure 2.41 shows two cut cells containing an edge and a vertex, as well
as their resolution. As the geometry is bounded by planar faces, it is sufficient to compute
the integral on the subcells provided by the first step of the algorithm.

(a) (b)

Figure 2.41: Non-smooth boundary inside the cells: (a) single vertex, (b) sharp edge [17].

To assess the accuracy of the different spatial subdivision approaches, Gauss-Legendre
quadrature is applied in the integration cells with stepwise increasing integration order by
distributing n × n × n integration points in each cell, with n = 1..5. The methods are com-
pared using the following error measure:

e = |Vex − Vnum|
Vex

, (2.56)

where Vex is the exact domain integral (for this case VΩphy) and Vnum is the numerically
computed one, using different integration meshes.
Because the smart octree algorithm separates the domain of the piecewise constant integrand
into subdomains where the integrand is constant, Vnum is expected to be exact when the order
of the quadrature is sufficient for accurately integrating the Jacobian determinant ||J || of the
subcells. In this example, the subcells are defined by trilinear mappings, which is why ||J || is
at most a quadratic function in every parametric direction. Consequently, Vnum is expected
to be exact if at least 2× 2× 2 quadrature points are applied in each cell. This expectation is
confirmed by the error curve of the smart octree approach depicted in Figure 2.42, where the
curve reaches machine precision at the point that corresponds to 2× 2× 2 integration points
per cell. In contrast, the error for the octree approaches is orders of magnitude larger, even

46 2. The Finite Element and Finite Cell Methods

for higher integration orders. This is due to the approximating nature of the spacetree. Thus,
in case Ωphy is bounded by planar surfaces, the smart octree method can clearly outperform
the conventional spacetree approaches.

100 101 102
10−17

10−13

10−9

10−5

10−1

Number of quadrature points per integration cell

R
el
at
iv
e
er
ro
r
in

vo
lu
m
e
[-]

Octree, k = 2
Octree, k = 3
Octree, k = 4
Smart octree

Figure 2.42: Convergence of the error in volume w.r.t. the number of quadrature points per
integration cell. The order of the integration is increased stepwise by distributing, n × n × n
quadrature points in every integration cell with n = 1..5 [17].

These results show that the first step of the algorithm can robustly resolve sharp boundary
features in the domain.
The octree-like refinement step ensures that the topologically special cases are reduced into
simple ones. Therefore, regardless of how coarse the initial background mesh is chosen, the
method keeps on subdividing the cells into equal octants until the geometry can be resolved by
the smart octree approach. This means that the initial size of the elements in the background
mesh is of minor importance when computing the volume integrals. To demonstrate this,
the volume of the stacked cubes is computed using the smart octree approach on different
background meshes. There are three initial configurations considered: the bounding box of
the geometry is partitioned into n×n×n elements, with n = 1, 2, 3, 4, as shown in Figure 2.43.
For all the investigated cases, the error in volume reached numerical precision with 2× 2× 2
quadrature points per integration cell, as it was shown in Figure 2.42.
The previous example demonstrated that the first step of the algorithm reliably resolves non-

smooth geometric features of the domain boundary. The following example will show that, in
the second step of the algorithm, also general domains bounded by curved geometries can be
integrated with high accuracy. For this purpose, the geometry is changed to two concentrically
stacked cylinders, as depicted in Figure 2.44. Like before, the domain is embedded into Ω∪,
and a background mesh of 3×3×4 cells is generated. In this example, the integrand functions
are chosen as:

f(x) = 1
1000

[
(x− 10) · (x+ 30) · (y − 5) · (y + 20) · cos

(z
5

)2
]

g(x) = 0.
(2.57)

The function f(x) is constructed such that it does not behave symmetrically with respect
to the features of the geometric model. Further, because it contains a trigonometric term, it

2.2. The Finite Cell Method 47

(a) (b)

(c) (d)

Figure 2.43: Smart octrees generated on different background meshes: (a) single element, (d)
4 × 4 × 4 elements, (c) 3 × 3 × 3 elements, (d) 4 × 4 × 4 elements. The edges of the initial
mesh are marked with thick lines [17].

48 2. The Finite Element and Finite Cell Methods

cannot be integrated exactly by Gaussian quadrature. Therefore, instead of exact integration,
the error in the volumetric integral is expected to converge towards zero when increasing the
number of quadrature points. The lower and upper cylinder has a height of 50 and 25, while
their radius is equal to their respective height. The cylinders are aligned parallel to the z
axis of the coordinate system, and the center point of the bottom circular face is located at
(0, 0, 0). Integrating the expression in equation 2.57 on this geometric configuration yields the
reference solution:

Vex = 7975541.475533795 (2.58)

(a) (b) (c)

Figure 2.44: Example with nonlinear faces: (a) Ωphy and background mesh, (b) octree with
k = 3, (c) smart octree [17].

Because some boundaries of Ωphy are curved surfaces, the order elevation as explained on
page 33 is employed. The polynomial order of the curved faces is chosen as pB = 2, 4, 8.
Figure 2.45 depicts a cell with a smooth cutting boundary and a cell with a topologically
exceptional cut featuring sharp edges.
A comparison of the time required to generate the different integration meshes is depicted in

Figure 2.46. As it is demonstrated in the figure, the standard octree algorithm becomes more
expensive than the smart octree method from a subdivision depth k = 3. Apart from the
standard point membership classification, the smart octree approach also needs to perform
ray-surface intersections for the identification of the active nodes. As the octree approach

2.2. The Finite Cell Method 49

(a) (b)

Figure 2.45: Detailed view on two cells: (a) smooth boundary inside the cell, (b) topologically
special case with sharp edges [17].

k = 1 k = 2 k = 3 k = 4 k = 5

10−1

100

101

Smart octree

Depth of octree

N
or
m
al
iz
ed

tim
e

[−
]

Figure 2.46: Comparison of the time required for generating different integration meshes for
the stacked cylinders [17].

50 2. The Finite Element and Finite Cell Methods

does not need this information from the geometric model, it remains cheaper for low levels
of octree subdivision. However, in order to determine whether a subdivision is needed, the
octree method has to evaluate the inside-outside state of seed points on every new level of
subdivision. As a consequence, the generation of classical octree-based integration meshes
becomes significantly more expensive than the proposed algorithm for higher levels of sub-
division. Similarly to the previous study, the order of integration is increased stepwise by
distributing n×n×n quadrature points per subcell, with n = 1 . . . 9. The error in the volume
integral defined by equation 2.55 is plotted in Figure 2.47.

100 101 102 10310−11

10−8

10−5

10−2

101

Number of quadrature points per integration cell

R
el
at
iv
e
er
ro
r
in

vo
lu
m
e
in
te
gr
al

[%
]

Octree, k = 2
Octree, k = 3
Octree, k = 4

(a) Octree with different maximum levels of subdivision k

100 101 102 10310−11

10−8

10−5

10−2

101

Number of quadrature points per integration cell

R
el
at
iv
e
er
ro
r
in

vo
lu
m
e
in
te
gr
al

[%
]

Smart octree, pB = 2
Smart octree, pB = 4
Smart octree, pB = 8

(b) Smart octree with different orders of surface approximation pB

Figure 2.47: Convergence of the error in volume w.r.t. the number of quadrature points per
integration cell, for the cylindrical example. The order of the integration is stepwise increased
by distributing n× n× n quadrature points in every integration cell, with n = 1..9 [17].

Concerning the octree approach, increasing the maximum depth k does not lead to a clear

2.2. The Finite Cell Method 51

improvement in the accuracy. Because the octree-based integration cells on the lowest level
are still cut by the domain boundary, the quadrature points distributed on these cells are
located on both sides of the interface. When increasing the number of integration points in
the subcells, the ratio of quadrature points of the cell lying in Ωfict and Ωphy changes, which
leads to the oscillations of the convergence curves of the octree approach. It is noted here that
this phenomenon could be avoided if a local triangulation is applied on the lowest subdivision
level as explained in [58].
The integration error of the smart octree approach, however, can be controlled by the poly-

nomial order of the surface approximation, pB. As expected, depending on the order of the
mapping, the convergence curves level off at a certain value. Here, the order of the numerical
integration becomes comparable to the order of the surface approximation. Clearly, as pB
increases, more and more quadrature points are needed for reaching the minimum error level.
However, the smart octree approach does not show the oscillatory behavior observed in the
case of the octree approach and allows to reach smaller errors at the same time. Its advantage
over the octree method becomes even more apparent when comparing them on the basis of the
total number of quadrature points employed for the integration. This relationship is plotted
in Figure 2.48. Here, it can be observed that the smart octree-based integration allows for
much lower error values, with orders of magnitude less integration points compared to the
octree method.

103 104 105 106

10−5

10−3

10−1

101

103

Total number of quadrature points

R
el
at
iv
e
er
ro
r
in

vo
lu
m
e
in
te
gr
al

[%
]

Octree, k = 3
Smart octree, pB = 4

Figure 2.48: Comparison of the classical octree method and the smart octree approach on the
basis of the total number of quadrature points, for the cylindrical example. The order of the
integration is increased stepwise by distributing n×n×n quadrature points in every integration
cell, with n = 1..9 [17].

The overall effort of computing the domain integral is strongly linked to the total number
of quadrature points, because the integrand has to be evaluated at each of them. Therefore,
if their number is reduced, the number of function evaluations decreases, which brings a
reduction in the time required to evaluate the domain integral as well. This is demonstrated in
Figure 2.49, where the total integration time (including the setup of the integration subcells)
of the octree and smart octree approaches are compared. Due to the significantly smaller

52 2. The Finite Element and Finite Cell Methods

number of integration points, the proposed method computes the domain integral with orders
of magnitude less time than the standard octree technique.
Note that for the case with pB = 8, the error curves level off at 10−10. This is not a limitation

of the smart octree algorithm, but is connected to the precision of the underlying geometric
kernel that performs the intersection and point projection operations.

100 101 102

10−10

10−8

10−6

10−4

10−2

100

102

Normalized time of integration [−]

R
el
at
iv
e
er
ro
r
in

vo
lu
m
e
in
te
gr
al

[%
]

Smart octree, pB = 2
Smart octree, pB = 4
Smart octree, pB = 8
Octree, k = 2
Octree, k = 3
Octree, k = 4

Figure 2.49: Comparison of the total integration time of different integration approaches for
the stacked cylinder example. The order of the integration is increased stepwise by distributing
n× n× n quadrature points in every integration cell, with n = 1..9 [17].

Smart octree in combination with the Finite Cell Method

The previous examples showed that the smart octree approach is well suited to approximate
the volume of complex-shaped domains. The next examples will demonstrate that the same
idea can also be applied to solve partial differential equations numerically on a non-conforming
discretization. For this purpose, the introduced smart octree technique is combined with the
FCM.
The first example aims at assessing the proposed combination of methods by means of

an analytical benchmark. For this purpose, an octant of a hollow sphere is considered (see
Figure 2.50). On this domain Ωphy we solve the Poisson equation:

∆u− f = 0, (2.59)

where u is an unknown field value. Homogeneous Neumann boundary conditions are applied
on every surface of ∂Ωphy and the source term f is chosen as:

f = 192 · r
125 + 48

5 · r −
216
25 , (2.60)

2.2. The Finite Cell Method 53

with

r =
√
x2 + y2 + z2. (2.61)

The analytical solution reads:

u = −16 · r3

125 + 36 · r2

25 − 24 · r
5 + 5. (2.62)

Further, the exact value of the internal energy is:

Uex = 12π
7 . (2.63)

xy
z

2.5
2.5

Figure 2.50: Geometric domain of the hollow sphere example [17].

The embedding domain Ω∪ is discretized into 3× 3× 3 finite cells. Both steps of the smart
octree algorithm are applied on the finite cell mesh, with varying levels of geometry approxi-
mation (pB = 2, 4, 8). The resulting mesh of 230 integration cells is depicted in Figure 2.51.
The polynomial order of the shape functions in the finite cells is increased from 1 to 7. The

number of integration points per subcell is chosen as (p+ 1)3 and (p+ 3)3 for the octree and
the smart octree integration meshes, respectively. The reason for more points distributed in
the case of the smart octree is that the quadrature has to account for the high-order mapping
functions of the curved subcells, as demonstrated by the example on page 46. The accuracy
of the methods is assessed by computing the relative error in the energy norm:

e =

√
|Uex − Unum|

Uex
, (2.64)

where Unum is the numerically computed value of the internal energy.
Figure 2.52 depicts the error in energy norm with respect to the number of degrees of free-

dom. Both partitioning methods show exponential convergence, similar to p-FEM. However,

54 2. The Finite Element and Finite Cell Methods

Figure 2.51: Integration cells on an octant of a hollow sphere [17].

102 103 104

10−4

10−3

10−2

10−1

100

Number of degrees of freedom

R
el
at
iv
e
er
ro
r
in

en
er
gy

no
rm

[-]

Octree, k = 2
Octree, k = 3
Smart octree, pB = 2
Smart octree, pB = 4
Smart octree, pB = 8

Figure 2.52: Error in energy norm w.r.t. the number of degrees of freedom for the hollow
sphere example [17].

2.2. The Finite Cell Method 55

all the convergence curves level off at a certain error value. At the point of leveling-off, the
integration error starts to dominate over the discretization error, which renders a further
increase of the ansatz orders pointless.
Concerning the octree approach, the integration error can be reduced by adding more levels

of refinement, as shown by the curves representing the octree with k = 2 and k = 3 refine-
ment levels. For the smart octree approach, the accuracy can be improved by increasing the
polynomial order of the geometry approximation. In comparison to the octree approaches,
this yields a significant reduction in the error.
The advantage of the smart octree-based integration becomes even more pronounced when

considering the relationship of the error and the total number of quadrature points. As de-
picted in Figure 2.53, starting from an error level of ∼ 10−2 the smart octree-based integration
needs about one order of magnitude less integration points than the octree approach. This
leads to a significantly reduced computational effort for the simulation.

104 105 106

10−4

10−3

10−2

10−1

100

Total number of quadrature points

R
el
at
iv
e
er
ro
r
in

en
er
gy

no
rm

[-]

Octree, k = 2
Octree, k = 3
Smart octree, pB = 2
Smart octree, pB = 4
Smart octree, pB = 8

Figure 2.53: Error in energy norm w.r.t the number of quadrature points for the hollow sphere
example [17].

The final example demonstrates that the method is also capable of resolving non-trivial
engineering geometries. To this end, a connecting rod from a piston engine is considered [59], as
depicted in Figure 2.54. The part is embedded by a fictitious domain which is discretized into
10×24×5 finite cells. The polynomial order of the shape functions is p = 5. The constitutive
relationship is assumed to be linear elastic. Constant pressure boundary condition is applied
on the upper cylindrical hole and homogeneous Dirichlet boundary conditions constrain the
two lower cylindrical holes (see Figure 2.54). On this configuration, an integration mesh was
generated by the smart octree method, with a maximum subdivision depth kmax = 4. The
octree refinement step was applied for 15% of the cells and the maximum refinement depth
kmax of the octree subdivision was reached in 1% of the cells in the background mesh. In
this small portion of cells the fallback strategy was applied, computing the integral on the
leaves of the standard octree. The error of volume computed on the generated integration
mesh is in the range of 0.1% when compared to the value computed by the commercial BREP
software Rhinoceros, which computes the volume on a fine tessellation of the geometric model,
employing the divergence theorem.

56 2. The Finite Element and Finite Cell Methods

The integration mesh generated by the smart octree partitioner is depicted in Figure 2.55.
Figure 2.56 provides a detailed illustration of the subcells lying inside the geometric domain.
Figure 2.57 shows the deformed geometry as well as the von Mises stresses. When compared
to a reference value of the strain energy which was obtained by an “overkill” FCM solution,
the associated error in energy norm is in the range of 10%. This value is in the expected order
of magnitude, because there is no local refinement of the mesh defining the shape functions
around singularities along the edges representing reentrant corners.

2.2. The Finite Cell Method 57

(a)

(b)

Figure 2.54: Connecting rod: (a) geometry and boundary conditions, (b) finite cell mesh. The
surfaces of Neumann and Dirichlet boundary conditions are shown in dark blue and red color,
respectively [17].

58 2. The Finite Element and Finite Cell Methods

Figure 2.55: Smart octree generated on the connecting rod [17].

Figure 2.56: Detailed view of the smart octree, only showing octants that lie inside the domain
of computation [17].

2.2. The Finite Cell Method 59

Figure 2.57: Von Mises stress contours [17].

60 2. The Finite Element and Finite Cell Methods

61

Chapter 3

Image-based shape measurement and
mesh generation

As seen in Chapter 2, both the FEM and the FCM rely on the availability of a digital geometric
model, either for mesh generation or for the construction of the indicator function α(x).
Although in most cases there is a digital model coming from a computer aided design software,
there are application fields where such CAD models are not directly available. This situation
typically arises when the geometries of interest represent “natural” shapes, e.g. biomechanical
structures, landscapes, or cultural heritage artifacts, such as historical buildings and statues.
In this context, the object under consideration needs to be digitized and converted into a CAD
model.
The aim of this chapter is to give an overview over the possible approaches for solving

this task. The first part focuses on shape acquisition techniques, which serve the purpose of
recording the surface of an object of interest in the form of point clouds. Thereby, special
attention is given to photo-based techniques. After outlining the essential ideas of these
methods, two special cases are discussed: a formulation for shape acquisition from pictures
recorded by moving a camera on a circular path, and a specialization of this formulation for the
setting when the object of interest is immersed into a liquid with known refractive coefficients.
The second part discusses the common steps taken to convert a point cloud into a geometric
model and finally a finite element mesh.

3.1 Overview of digital shape acquisition techniques
The primary goal of digital shape acquisition is to measure the actual shape of a physical
object, providing metrological information such as size, form, location and orientation [60].
This is achieved by collecting data about the surface at certain points or regions. The acquired
data, a “series of closely separated points on the surface” [61] is usually stored by a set of
three-dimensional coordinates, point clouds, allowing for further processing by computers.
Different possibilities are available to acquire the shape of a physical object. In essence,

every shape acquisition method relies on some mechanism or phenomenon for interacting with
the surface or volume of the object of interest. Depending on the physical principle that
governs this interaction, data acquisition methods can be divided into two main categories:
tactile and non-contact methods [62].

62 3. Image-based shape measurement and mesh generation

3.1.1 Tactile methods
In tactile methods, the measurement principle is based on mechanical contact. To determine
the shape of the object to be measured, a touch-sensitive probe is moved along the surface
of interest using mechanical arms. When the object is touched by the probe, the position of
the probe tip is determined by reading the data from the sensors mounted in the joints of
the moving arms. By performing this process repeatedly, the dimensions and the shape of
the object can be determined. A widely applied implementation of the contact-based shape
measurement technique is the coordinate measuring machine (CMM), see e.g. [63].
Not all kinds of shapes can be measured by CMMs efficiently: the motion of the probe tip is

limited by the mechanical constraints of the moving arms, which might cause the measurement
of concave surfaces to be especially challenging [62]. Further, as the probe tip needs to be
moved along the surface of interest point-by-point, the measurement speed of CMMs is low
compared to non-contact devices [64].

3.1.2 Non-contact methods
The limitations of CMMs can be overcome by non-contact approaches. These methods usually
rely on measuring and processing the intensity of energy carried by a physical wave that is
either reflected by or transmitted through the object of interest.
Acoustic sensors use sound waves as the primary carrier of energy. Members in this category

include sonar imagery, e.g. for the mapping of seafloors [65], medical ultrasound imaging [66],
and ultrasonic non-destructive testing [67]. In these methods, the distance of an object point
to the sensor is usually derived from the time required for a pulse of sound wave to bounce
back from the object.
If energy is transmitted by means of electromagnetic waves, a further distinction can be

made depending on whether the processing of the recorded signal uses the reflected waves
coming from the surface of the object of interest, or transmitted ones, where the governing
phenomena occur when the wave passes through the volume of the structure. Examples for
volumetric imaging based on transmitted electromagnetic waves include X-rays and CT-scans.
If the recorded signal is predominantly composed of reflected electromagnetic waves with

wavelengths in the spectrum of visible light, the shape measurement technique belongs to the
category of optical shape measurement methods.
Optical shape measurements record the intensity of light rays reflected by the object on a

digital sensor, and process the recorded information further to recover the shape of the surface
interest. The wide range of available 3D optical shape measurement methods and their further
categorization is beyond the scope of this work. A discussion on further distinguishing aspects
and categories of these approaches can be found in e.g. [68].
In the remaining parts of the thesis, attention is focused on methods that rely on recovering

points on the object surface by optical triangulation [69]. Triangulation refers to the process
of deriving the 3D location of a point in space using trigonometric calculations on triangles
formed by two known points and the unknown point to be computed.
Laser triangulators are widely used optical measurement devices that rely on the triangu-

lation principle. They use an active illumination component, a laser source, to sweep a plane
of light across the object to illuminate its surface. During the movement of the light plane,
the scene is observed by a light-sensitive sensor from an offset viewpoint. The intersection

3.2. Photogrammetric acquisition of surface points 63

of the light plane with the object of interest forms a space curve whose projection on the
camera sensor is recorded. Knowing the positions of the active light source and the camera,
optical triangulation allows to infer the 3D location of the individual pixels on the recorded
stripes [70].
To sweep the light plane across the scene, the optical system forming the light sheet needs

to be moved. This motion limits the speed of scanning by laser triangulation. To decrease the
time required for scanning, structured light scanners can be employed. The working principle
of these sensors is also based on the principle of optical triangulation. However, instead of a
single light sheet, they project two-dimensional patterns of non-coherent light onto the object.
Thus, the light plane is replaced by a bundle of planes covering a larger surface area. In
order to guarantee that the individual planes and their projections can be uniquely identified,
different projection patterns have been developed, see [71, 72].
Laser triangulation and structured light scanning fall in the category of active optical shape

acquisition methods, as they use an external light source to illuminate the surface of the
object. However, not all optical scanning methods necessarily require an active illumination
of the object surface. The most prominent examples for such passive approaches are based on
stereo vision. Here, the light source is replaced by another CCD sensor, such that the scene
is simultaneously viewed from two different viewpoints. Due to the distance between the two
sensors, the projection of a point on the first camera is different from its projection on the
second camera. The difference between the locations–the disparity–allows for recovering the
distance of the point to the sensors. As stereo vision records the object from two viewpoints,
only a partial reconstruction of the object is possible. To recover more complete models, the
idea of stereo vision can be extended to configurations with multiple viewpoints, leading to
multi-view stereo methods. These allow for a more complete recovery of 3D models, from
multiple images.

3.2 Photogrammetric acquisition of surface points
In the following, the process of acquiring 3D points of an object from 2D images is reviewed.
Starting from the basic properties and mathematical models associated to the imaging process,
the principal formulation of multi-view stereo reconstruction is recalled. This is followed by
an introduction to the bundle adjustment formulation, an important concept in structure-
from-motion, i.e. simultaneously recovering camera positions and structure points from image
correspondences. Having formulated the bundle adjustment algorithm, two extensions of the
approach are introduced: a constrained formulation allowing for reconstructing objects that
were recorded under a circular motion of the camera, and a modified bundle adjustment
formulation that can be employed for scenes that were recorded in refractive environments.
The aim of this section is to provide a short introduction into these topics. For an in-depth
discussion, the reader is referred to one of the textbooks in this field, such as [73] or [74].

3.2.1 Overview of the imaging process
When taking a picture with a camera, a 2D projection of the 3D world is formed. In this
process, depth information, i.e. the distance between the camera and the points seen by the
camera is lost. The imaging process is usually modeled as a central projection, in which a

64 3. Image-based shape measurement and mesh generation

X

X

Y

ZC

x

x

y

f

Principal axis

Image plane

Center of projection

Figure 3.1: Pinhole camera model. The center of projection is represented by the point C and
the image plane is located at Z = f . The projection of the 3D point X is determined by the
point of intersection between the image plane and the ray connecting X and C.

ray is drawn from a 3D world point towards a fixed point in space attached to the camera,
the center of projection. This ray intersects the so-called image plane at a single location,
which will form the image of the 3D point. This model corresponds to the simple camera
configuration where light rays from the world are passing through the lens of the camera and
land on a light-sensitive film or digital sensor.
The mathematical machinery that helps to formulate and eventually revert the imaging

process is given by the tools of projective geometry. The simplest optical system which is used
for modeling the projective behavior of cameras is the pinhole camera model.
Let the center of projection be located at the origin of the Euclidean coordinate system,

and the plane defined at Z = f be the image plane. Here, f denotes the focal distance of the
camera. Using the pinhole camera model, the projection of a point X = [X, Y, Z]T in the 3D
world coordinate system onto the image plane is the point of intersection between the image
plane and the line that joins X with the center of projection. This projective relationship is
depicted in Figure 3.1.
By similar triangles, one finds that projection of X on the image plane is given by:

X

Y

Z

→

fX

Z
fY

Z
f

 . (3.1)

Omitting the last element yields the 2D coordinates of the projected point:
X

Y

Z

→

fX

Z
fY

Z

 , (3.2)

which describes the mapping from world (R3) to image (R2) coordinates. The center of
projection is often referred to as camera center or optical center. The ray starting from

3.2. Photogrammetric acquisition of surface points 65

the camera center perpendicular to the image plane (the Z axis in Figure 3.1) is called the
principal axis or optical axis. The point where the principal axis intersects the image plane is
the principal point.
The relation in Equation 3.2 can be expressed using homogeneous coordinates using a matrix-

vector product:

xy
1

 =

fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 (3.3)

Using the notation

P =

f 0 0 0
0 f 0 0
0 0 1 0

 X =


X
Y
Z
1

 x =

xy
1

 , (3.4)

Equation 3.3 can be expressed as:

x = PX. (3.5)

The matrix in the expression above may be written as:

P = diag(f, f, 1) [I|0] , (3.6)

where diag(f, f, 1) represents a diagonal matrix, and [I|0] is a 4× 3 matrix, divided into two
blocks, the 3 × 3 identity matrix and a 3 × 1 column vector, which, in this case is the zero
vector. The matrix P is referred to as the camera projection matrix.
Equation 3.3 assumes that the origin of the image coordinate system coincides with the

principal point. However, this is not necessarily always the case, especially for images recorded
on CCD sensors. In this situation, the origin of the image coordinate system is typically defined
at the upper left corner of the image, with the x and y axes pointing right and downwards,
respectively. To account for the offset between the origin of the coordinate system and the
principal point, the third column in the matrix P carries the principal point offset px and py
values:

P =

f 0 px 0
0 f py 0
0 0 1 0

 . (3.7)

It follows that the projection matrix can be written as P = K [I|0], where the matrix K is:

K =

f 0 px
0 f py
0 0 1

 . (3.8)

The matrix above contains the intrinsic properties of the camera and is thus usually referred
to as the camera intrinsic matrix. The expression for the projection matrix in Equation 3.7

66 3. Image-based shape measurement and mesh generation

xCAM

yCAM

zCAM

X

Y

Z

O

C

R, t

Figure 3.2: Transformation between world- and camera coordinates.

holds under the assumption that the world and image coordinates have equal scales in both
axial directions. In the case of CCD cameras, however, a recorded image is usually stored
in pixel coordinates. Therefore, in order to map the image from the world coordinates to
pixel coordinates, the intrinsic matrix needs to be multiplied by an additional diagonal matrix
diag (mx,my, 1). Here, the parameters mx and my represent the number of pixels per unit
distance in image coordinates in the x and y directions, respectively. In the most general form,
the intrinsic matrix of a CCD camera reads as [73]:

K =

αx s x0
0 αy y0
0 0 1

 , (3.9)

where αx = fmx and αy = fmy are the focal distances in the x and y directions expressed in
pixel units, and, similarly, x0 = mxpx and y0 = mypy are the pixel coordinates of the principal
point. Finally, s is the so-called skew factor, which is zero for most normal cameras.
In general, points in the 3D space are expressed in the world coordinate system, whose

origin is not located at the principal point, and its axes are not necessarily parallel with the
axes of the coordinate system fixed to the camera. Therefore, before the projective action
of the camera represented by the matrix K is applied, points need to be transformed from
the world coordinate system to the coordinate system attached to the principal point. This
transformation can be expressed by a rotation followed by a translation. The overall setup of
this a transformation is depicted in Figure 3.2.
Given a point X in world coordinates, its representation XC in camera coordinates can be

computed by:

XC =
[
R −RC
0 1

]
, (3.10)

where R is a 3 × 3 rotation matrix representing the orientation of the camera in world
coordinates, and C is the location of the camera center in world coordinates. Often, the
camera center is not represented explicitly, but the following replacement is applied:

t = −RC. (3.11)

3.2. Photogrammetric acquisition of surface points 67

It follows that the projection matrix of Equation 3.5 for a CCD camera located at C with
an orientation R can be expressed as:

P = K [R|t] . (3.12)

While the intrinsic matrix K contains the internal properties of the camera that are invari-
ant under any translation or rotation, the term between the square brackets expresses those
parameters that are dictated by such positional quantities. Therefore, the parameters R and
C are usually referred to as external parameters or exterior orientation. For similar reasons,
the matrix [R|t] is called the camera extrinsic matrix.
The projection matrix P is of size 3×4 and condenses all the extrinsic and intrinsic properties

into a single matrix representing a homogeneous transformation. It has 11 degrees of freedom,
which is the same number as the degrees of freedom of a 3×4 matrix defined up to an arbitrary
scale.

3.2.2 Multiple-view geometry
Multiple-view geometry (MVG) is the subject where relations between coordinates of feature
points in different views are studied [75]. The main aim of MVG is to study the theory and
methods relating to the structure and motion problem which is formulated in the following.

The structure and motion problem

Given a sequence of images with corresponding feature points xij taken by a set of perspective
cameras, such that:

xij = P iXj, (3.13)

determine the camera matrices P i, and the 3D points Xj, under different assumptions on the
camera intrinsics and extrinsics.
In this problem statement, recovering the camera matrices is essentially equivalent to re-

covering the motion of the camera, while recovering the 3D points is equivalent to recovering
the structure that the camera records during its motion. Hence the name of the problem: the
structure and motion problem.
A basic building block of multiple-view geometry is the concept of epipolar geometry, a

formalism that places constraints on the observations of structure points on different cameras.
In this context, consider the images x and x′ of the same point X on two different cameras,
as depicted in 3.3. Obviously, the rays originating from the respective camera centers passing
through x and x′ intersect at X. More importantly, the two rays are coplanar, and lie on
the plane π that is defined by the two camera centers and the point X. Supposing now that
only x is known, the constraint on the location of x′ is dictated by π. This plane is always
determined by the ray passing through x and the line connecting the two camera centers–the
baseline. As previously discussed, x′ needs to lie on π, and therefore it has to be located
on the intersection line l′ between π and the second image plane. This line is also called
the epipolar line corresponding to x, which is the projection of the ray originating from the
first camera associated to x onto the second image plane. The terminology associated to the
epipolar geometry is depicted in Figure 3.3. The meaning of the different terms is:

68 3. Image-based shape measurement and mesh generation

X

x x
′

C C
′

epipolar plane epipolar line

e e
′

Figure 3.3: Two cameras with centers C and C ′ viewing the same point X. The epipolar
plane is defined by the two camera centers and X.

• The epipoles e is the projection of the second camera center onto the image plane of the
first camera. The other epipole e′ is defined similarly.

• An epipolar plane is a plane containing the baseline, i.e. the line connecting the two
camera centers. The set of epipolar planes forms a 1-parameter family.

• An epipolar line is the intersection of an epipolar plane with the image plane.

Given two camera views, there exists a 3× 3 matrix F , called the fundamental matrix, such
that for any corresponding pair of points x and x′, the following holds [73]:

x′TFx = 0. (3.14)

The importance of Equation 3.14 lies therein, that it provides a way to characterize the
relationship between two camera views without explicitly using their projection matrices.
Instead, the relationship between the views can be expressed in terms of corresponding image
points. Therefore, the fundamental matrix can be computed from image correspondences
alone. The fundamental matrix possesses the following properties:

• If F represents the fundamental matrix for a pair of cameras {P ,P ′}, the fundamental
matrix of the same cameras in the opposite order {P ′,P } is F T.

• Given a point x in the ”left” image, the corresponding epipolar line in the ”right” image
is given by l′ = Fx. Conversely, the epipolar line in the ”left” image for the point x′ in
the ”right” image is l = F Tx′.

• The epipoles on the left and right views satisfy e′F = 0 and F Te = 0, respectively.

Given two cameras represented by the projection matrices {P ,P ′}, the fundamental matrix
can be computed as:

F = [e′]×P
′P+, (3.15)

3.2. Photogrammetric acquisition of surface points 69

where P+ is the pseudo-inverse of P , and e′ = P ′C.
While the formula above gives a way to compute the fundamental matrix from given camera

projection matrices, it is equally important to be able to derive projection matrices from a
given fundamental matrix. Even though a pair of camera matrices uniquely determines a
fundamental matrix, this mapping is not one-to-one, as pairs of camera matrices that differ by
a projective transformation result in the same fundamental matrix. Therefore, given F , the
respective camera matrices can be only determined up to a projective transformation. The
camera matrices corresponding to a given fundamental matrix F may be chosen as [73]:

P = [I|0]
P ′ =

[
[e′]× F |e

′] . (3.16)

Therefore, if the fundamental matrix is known for a pair of cameras, their projection matrices
can be recovered, up to a projective transformation.
For image-based reconstructions, it is important to compute the fundamental matrix from

image point correspondences. To compute the fundamental matrix, at least 7 matching points
are required. Denoting matching points by x = [x, y, 1] and x′ = [x′, y′, 1] and considering
that x′TFx = 0, every point correspondence x↔ x′ gives rise to one equation in the unknown
entries of F . For one pair of corresponding points, the expansion of x′TFx = 0 is:

xx′f11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0. (3.17)

From this, when considering n matching pairs, a system of linear equations is obtained:x1x
′
1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

...
xnx

′
n x′nyn x′n y′nxn y′nyn y′n xn yn 1

f = 0, (3.18)

where f represents the entries of the fundamental matrix collected in a column vector in row-
major order. For the computation of F the additional constraint det(F) = 0 may be used,
i.e. its singularity property. Methods that solve the equation above under the singularity
constraint can be found in [73].
Once the pair of camera projection matrices is known, the unknown structure points can

be computed from the intersection of the back-projected rays associated to matching image
features. The problem of recovering 3D point positions based on correspondences and known
camera matrices is known as the triangulation problem. Triangulation is a well-studied question
in the multi-view geometry literature, where various approaches are presented to tackle this
problem, see e.g. [73, 74].
Given two views with camera matrices {P ,P ′} and corresponding points x↔ x′, there are

essentially three main techniques for computing the location of the original 3D point X:

• Minimization of the 3D error, i.e. finding the mid-point on the shortest line between the
two back-projected rays originating from x and x′, see [74].

• Minimization of the algebraic error: the two perspective projections x = PX and
x′ = P ′X give rise to four equations on the three unknown entries of X. The resulting
overdetermined system of equations can be solved by the Direct Linear Transformation
(DLT) method, as discussed in [73].

70 3. Image-based shape measurement and mesh generation

• Minimization of the reprojection error: this method starts from the observation that
corresponding points must lie on the same epipolar plane, which is a plane from the
1-parameter family of epipolar planes. Further, the corresponding epipolar lines also
form a 1-parameter family. Thus, the task of finding the 3D point X that minimizes
the reprojection error can be formulated as a single-parameter minimization problem. It
turns out that the minimum can be found by solving for the real roots of a polynomial
of order 6. More details on this approach can be found in [76].

Having formulated the most important ingredients of two-view reconstructions, the main
steps of the solution process of the two-view structure and motion problem can be summarized
as follows:

1. Starting from two views, compute corresponding image points xi ↔ x′i.
2. From the image correspondences, compute the fundamental matrix.
3. Compute the camera matrices from the fundamental matrix.
4. Compute the 3D points X from the correspondences and camera matrices by triangu-

lation.

In order to establish xi ↔ x′i correspondences, special points of interest, keypoints need to
be extracted from the input images. This task is usually performed by feature extractors.
Corners, sharp edges, highly textured regions classify as good keypoints. Feature extraction
algorithms thus very often work on gradients of image intensities. Examples for feature ex-
traction algorithms are the Harris corner detector [77], the scale-invariant feature transform
(SIFT) [78], speeded up robust features (SURF) [79] and Oriented FAST and Rotated BRIEF
(ORB) [80]. Very often, the feature detection and matching algorithm that is responsible for
computing the correspondences returns false positives. These matches do not represent points
that stem from the same 3D feature in reality. Such outlier points may draw the computation
of the fundamental matrix towards a wrong solution. However, the detection and matching
process usually provides much more than 7 matches per image pair. Furthermore, it can be
assumed that the majority of the matching pairs represent true correspondences. To deal with
the effect of the outliers, the computation of the fundamental matrix may be embedded in a
RANSAC-based statistical fitting scheme, allowing for filtering out the effects of the wrong
matches, as outlined in [75].
For the case of n-view reconstructions, the two-view process can be extended. In this

setting, feature matches need to be determined amongst all the images taking part in the
reconstruction. Once matches are available, an initial pair of views is selected. For the initial
pair, the projection matrices and the corresponding structure points can be recovered following
the two-view reconstruction steps described before. Then, additional views are added to the
reconstruction in an iterative manner. In this process, for an additional view i + 1, the pose
towards the already existing reconstruction on i views is determined. To this end, the matches
that correspond to 3D points that are already parts of the reconstructed scene are considered.
Based on this, the projection matrix of P i+1 of the additional camera can be determined in
a procedure similar to the computation of the fundamental matrix. By repeating this process
until there is no remaining image to be added to the scene, the camera projection matrices
are recovered for each view.
The general process of recovering the camera poses from a sequence of images is an exten-

sively studied topic in the computer vision literature. Many shortcuts may be taken if prior

3.2. Photogrammetric acquisition of surface points 71

knowledge is available on the motion of the camera. For example, if images stem from a
video sequence, it is a reasonable assumption that a feature appears only in nearby frames,
which simplifies the searching process of feature matching. Examples of structure-from-motion
algorithms working on image sequences may be found in e.g. [81–84].

3.2.3 Bundle adjustment
Following the steps explained in the previous section, the n-view structure and motion problem
is solved, that is, the unknown structure points Xj and projection matrices P i are found.
Thus, ideally, the recovered quantities satisfy:

x̃ij = xij = P iXj, (3.19)

where x̃ij is the observed position of the structure point Xj in the i-th image. In the usual
case, however, the equation above is not satisfied exactly, due to the presence of measurement
noise. The geometric error that corresponds to the distance between the projection of Xj and
its observation x̃ij is referred to as the reprojection error, defined as:

d(x̃ij ,xij) = d(x̃ij ,P iXj), (3.20)

where d(., .) denotes the Euclidean distance. In order to obtain a better reconstruction of
the structure and the cameras, we wish to find a configuration of the projection matrices and
structure points that minimizes the sum of the squares of the reprojection errors:

min
P i,Xj

∑
i

∑
j

d(x̃ij,P iXj)2. (3.21)

This non-linear least-squares problem is known in the image processing literature as the bundle
adjustment problem [85], as it aims at adjusting the bundle of rays from each camera center
towards the structure points.
As discussed before, every camera has 11 degrees of freedom, while every structure point

contributes with 3 parameters to the bundle adjustment problem. Thus, the total number
of parameters to be minimized is 11m + 3n, where m is the number of views and n is the
number of structure points. Clearly, this results in a rather large minimization problem. For
example, for a set of 30 views with 1,000 points/view the number of design parameters is
over 90,000. Therefore, a direct solution becomes computationally infeasible. Fortunately, the
special structure of the minimization problem can be exploited, reducing the computational
effort tremendously. The key insight here is that an observation x̃ij only depends on one
structure point Xj and a single camera P i. It follows that most of the partial derivatives
involved in the normal equations of the minimization problem are zero, which results in sparse
Jacobian and Hessian matrices. Efficient solution techniques based on this sparse formulation
can be found in [73, 74, 86]. The most popular algorithm of choice is the sparse variant of the
Levenberg-Marquardt algorithm, also known as the Damped Least Squares method.

3.2.3.1 Constrained bundle adjustment

In certain cases, the number of parameters involved in bundle adjustment can be reduced, if
prior knowledge about the scene structure is available. This situation arises for example if

72 3. Image-based shape measurement and mesh generation

η

dθ

I0, θ0
I1, θ1

S

M

Figure 3.4: Geometric setup for constrained bundle adjustment. The camera moves around the
object of interestM along a prescribed circular path. The rectangular box in the vicinity of the
object represents objects that do not belong toM and may interfere with the reconstruction [18].

the camera is moved around the object of interest on an exact circular path, as depicted in
Figure 3.4. In this case, the constraint on the movement of the camera allows to cast the
extrinsic parameters into a more convenient form with less degrees of freedom, following the
idea in [87].
Here, each camera is associated to a unique rotation angle θi around a common rotation

axis, defined by a vector η and a translation vector d. The rotation axis η is represented in
spherical coordinates:

η = [sin(α) cos(β), sin(α) sin(β), cos(α)] ,
α ∈ [0, π] , β ∈ [0, 2π] .

(3.22)

This way, there are 5 degrees of freedom associated to the circular path and the position
of each camera is determined by a single degree of freedom: its angle around the rotation
axis. Thus, the entire motion of the camera can be described by a total of 5 + n unknowns
M = {d, α, β, θ0, ..., θn}. If the camera intrinsics do not change during the motion, the total
number of parameters involved in the minimization problem is 10 + n.
Here, the intrinsic part of the camera projection matrix takes 5 parameters, while the camera

motion, which determines the extrinsic part of the projection is represented by 5 + n param-
eters, as discussed above. It follows that the bundle adjustment problem involving a single
camera that moves on a circular path around the object of interest takes the following form:

min
K,d,α,β,θiXj

∑
i

∑
j

d(x̃ij,P iXj), (3.23)

where the projection matrix P i is constructed from the camera intrinsicsK and the parameters
describing the motion around the circular axis.

3.2.3.2 Bundle adjustment in refractive environments

As long as the assumption is satisfied that light rays propagate along a straight path between
the camera and the object of interest, the concepts of projective geometry discussed so far

3.2. Photogrammetric acquisition of surface points 73

object

n0

n0

n1

n1

n2

C1

C2

(a) Bundle invariant interface

object

n0 n1 n2

C1

C2

(b) Object invariant interface

Figure 3.5: Bundle- and object-invariant interfaces in multimedia photogrammetry. For the
bundle invariant case, the position of the refractive interface remains fixed with respect to the
camera. In the object invariant case, the refractive interface remains fixed with respect to the
object.

hold. In some applications of image-based measurements, however, these assumptions cannot
be used anymore. Generally, if light traverses through media with differing optical properties,
the refraction phenomena occurring on the interfaces between different optical domains causes
individual light rays to alter their directions. Photogrammetric measurements that involve
the tracing of light rays passing through several optical media are referred to as multimedia
photogrammetry [88]. Depending on the relative movement between the camera, the object
and the refractive interface, two main categories of multimedia photogrammetry exist [89]:

1. Bundle invariant interfaces: refractive interfaces that do not change their position
relative to the bundle of rays during the image acquisition process. This is usually
the case in the context of underwater photogrammetry, where cameras are placed in a
water-proof, pressurized housing.

2. Object invariant interfaces: refractive interfaces which do not change their position
with respect to the world coordinate system during the image acquisition process. These
interfaces typically occur if the object of interest is located in a closed, inaccessible area,
allowing for observation from the outside.

In both cases, light rays incident on the image plane coming from the object undergo two
refractions: one refraction on the water-glass interface and a subsequent one on the glass-air
interface.
Typical applicaton areas of underwater photogrammetry involving bundle invariant inter-

faces are e.g. archaeology [90], marine biology [91] or measurements in seafloor geology [92].
Object invariant interfaces appear e.g., in the characterization of the movement of fluids

74 3. Image-based shape measurement and mesh generation

observed by cameras located outside of the observation vessel [93]. Accounting for object
invariant interfaces is also required by some experimental methods for the study of the me-
chanical behavior of soft human tissues in an in vitro environment. In these experiments, it is
important to be able to mimic the conditions that are present in the normal biological context
of the investigated tissues. This usually requires the sample to be immersed in a physiological
fluid. An example with such requirements is the study of the active biomechanical response
of human arteries. Thus, the presence of the interface between the physiological fluid and the
camera needs to be taken into account by the reconstruction algorithm.
Multi-media photogrammetry and the study of the influence of refractive interfaces have been

the subject of extensive research in recent years. In the context of underwater photogrammetry,
where the camera is immersed in a liquid medium, the main question is how to account
for the distortion effects due to the camera housing [94–96]. Other applications aim at the
reconstruction of the refractive interface itself, e.g. when measuring the shape of transparent
or reflective surfaces [97, 98].
The behavior of an individual light ray passing through an optical interface that separates

two media with different optical properties is governed by the law of refraction or Snell’s law.
If a light ray with the direction vector r0 intersects an optical interface with an outward facing
unit normal vector n, the direction of the refracted ray r1 is determined by [99]:

r1 = n01r0 +
[
−n01n · r0 −

√
1− n2

01
[
1− (−n · r0)2]]n, (3.24)

where n01 = n0/n1 is the ratio of the refractive indices of the incident and transmitted media.
Given a camera’s intrinsic and extrinsic matricesK and [R|t], an observation x on the image

plane and the position and orientation of the refractive interface, Equation 3.24 can be used
to determine the course of a single back projected ray. Further, if a scene is recorded by two or
more cameras, and a pair of corresponding points x↔ x′ is given, the back-projected rays by
Equation 3.24 can be intersected to find the structure point X, which forms the multi-media
equivalent of the triangulation procedure. This concept is also depicted in Figure 3.6.
In contrast to the ray tracing process that employs Equation 3.24 to trace the path of back-

projected rays, the opposite problem, i.e. the projection of a point X from world coordinates
onto the image plane of a camera cannot be computed directly. This is because no initial
direction for the ray path can be given when starting from a point in world coordinates.
However, the path of the ray can be computed in an iterative manner, following the alternating
forward ray tracing (AFRT) algorithm, see in [100, 101]. The basic concepts of AFRT are
outlined in the following, complemented by Figure 3.7.
Consider a scene with a refractive interface S and a feature point Xj to be projected onto a

camera with the projection center XC . The AFRT procedure starts with an initial ray which
is determined by connecting XC and Xj:

rk0 = Xj −XC

||Xj −XC ||
, (3.25)

with k = 1 in the first iteration. Evaluating Equation 3.24 at the intersection point between
the initial ray and the interface Xk

S = rk0 ∩ S yields the direction of the refracted ray rk1.
Next, a ray with direction −rk1 is traced from Xj towards the interface S. This gives a new

3.2. Photogrammetric acquisition of surface points 75

n0 n1 n2

C1

C2

X

x
1

1

x
2

1

x
1

2

x
2

2

Figure 3.6: Back-projection of individual rays in a multi-media environment. The law of
refraction in Equation 3.24 is evaluated at every intersection point xji between the light ray
coming from the camera and the refractive interface, where i denotes the light ray coming
from the camera Ci and j is the j-th intersection point with the refractive interface. The back
projection of matching points is used to triangulate the structure point X.

intersection point X′k
S . If the distance ∆Xk = ||Xk

S −X′k
S || is larger than a tolerance value ε,

the procedure is reiterated with:

rk+1
0 = Xk+1

S −XC

||Xk+1
S −XC ||

, (3.26)

where Xk+1
S is defined by the projection of 1

2
(
Xk
S + X′k

S

)
onto S. The iteration terminates

when ∆Xk < ε. Finally, the projection of Xkend
S onto the image plane by Equation 3.5 yields

xji .
In order to incorporate the AFRT algorithm in the bundle adjustment formulation, the

projective action of the AFRT on the feature point Xj for the i-th image will be denoted as:

xji = PAFRT (Xj,K, η,d, θi, σ) , (3.27)

where the vector σ represents the set of parameters that describes the geometry of the interface.
If, for example, the shape of the interface is cylindrical, σ contains its orientation, location,
radius, and the corresponding refractive coefficients.
Under the assumption that the camera motion is cylindrical, the constrained refractive

bundle adjustment problem takes on the following form:

min
Xj ,η,d,K,θi,σ

∑
i

∑
j

(
x̃ji − PAFRT (Xj,K, η,d, θi, σ)

)2
. (3.28)

Note that here the projective relationship of Equation 3.23 is replaced by the AFRT procedure.

76 3. Image-based shape measurement and mesh generation

XC

Xj

n0 n1

rk0

rk1

S

n Xk
S

(a) The refracted direction rk
1 is computed at Xk

S .

XC

Xj

n0 n1

rk0

rk1

S

Xk
S

X′k
S

−rk1

(b) The ray −rk
1 is traced towards S, resulting in X′k

S .

Figure 3.7: Schematic of the AFRT algorithm. (Figure from [18], following the description
in [100]).

3.2. Photogrammetric acquisition of surface points 77

3.2.4 Multi-view stereo reconstruction

The so-far discussed concepts allow for recovering the motion, i.e. the camera positions at the
time the images were acquired, and the structure, the 3D points in world coordinates that
are back-triangulated from matching observations. Matching observations usually stem from
regions that are characterized by high gradients of image intensity: corners, edges, highly
textured areas. Therefore, the structure-from-motion step usually yields a cloud of points
that is not necessarily dense enough in every region of the recorded object. These sparse
point clouds may not be sufficient for many downstream applications, such as photorealistic
rendering, virtual reality, or reverse engineering. In order to recover even more points, multiple-
view stereo algorithms may be used. These approaches start from the 3D points recovered
during the structure-from-motion step and perform an expansion step which results in a point
cloud with orders of magnitude more points, usually referred to as a dense cloud.
The most fundamental method to recover a dense cloud from a set of oriented images is

based on sliding a window along the one dimensional epipolar line looking for a pair of regions
between images with a high correlation. Once a matching pair of windows has been found
between two views, the 3D position of the originating portion of the body of interest can be
back-triangulated using the methods discussed before [73, 74].
A more efficient variant of dense multi-view reconstruction is based on region-growing, start-

ing from a set of seed points distributed on the images. Usually, corners or highly textured
regions are chosen as seeds. One example following these ideas is the algorithm explained
in [102]. Here, the initial matches over the recorded images are stored in a seed set. The
measure that defines the ”quality” of a match is computed using the zero-mean normalized
cross correlation (ZNCC) between matching regions of an image pair. The initial matches are
sorted in the seed set according to their ZNCC score. At every iteration of the algorithm, the
top-most match is removed from the seed set, and potential matching candidates are sought
for in the local neighborhoods of the match. A local neighborhood is usually a square window
of 5 × 5 - 10 × 10 pixels in size. Matching candidates with a ZNCC score over a certain
threshold get stored in the seed set and become seeds themselves. Finally, the seed set is
sorted again according to the ZNCC score of the elements stored within.
An improved version of the region growing algorithm for dense multi-view reconstruction is

given in [103]. Instead of treating the model to be reconstructed as a set of single points, it
assumes that the model is composed of a set of quadrilateral patches. In contrast to a point
that only has a spatial position, a patch is characterized by its position and its normal vector,
that is, it possesses an orientation in the 3D world. Because of the normal vector, patches
carry more geometric information than single points. To exploit this additional information,
the NCC score is not computed between rectangular windows on image pairs, but over the
projections of rectangular patches that are projected onto the image planes. The algorithm
implements 3D dense reconstruction in three steps: match, expand, filter. In the matching
step, points of interest on the input images are found. Then, the points of interest are used
to establish a network of matches across multiple images. The identified matches are used to
generate a set of initial patches. The expansion step works similarly as discussed before for the
simpler algorithm. In this process, the initial patches are expanded by expansion candidates,
as long as a candidate is consistent with the original patch. A candidate patch is accepted if
it lies in the neighborhood of the original patch and their normal vectors are sufficiently close.
Finally, the filtering step removes erroneous matches and makes sure that only those patches

78 3. Image-based shape measurement and mesh generation

are kept that satisfy some visibility criteria.
One advantage of using this algorithm is that it provides not only simple positions but also

normal vectors associated to the points in the resulting point clouds. The obvious advantage
of this extra geometric information is that oriented point clouds can produce better renderings
than unoriented ones, and many surface reconstruction algorithms are based on exploiting the
extra geometric information that normal vectors carry. Moreover, as will be shown in Section 4,
point clouds equipped with normal information can also be used directly for numerical analysis,
when combined with the Finite Cell Method.

3.3 Geometric model recovery from point clouds

The shape reconstruction methods discussed so far—especially multi-view reconstructions and
laser scanning—reproduce the geometry of interest in a discrete manner: a set of points, a
point cloud is generated which constitutes a discrete sampling of the continuous boundaries
of the object. While point clouds are well-suited for quick dimensional inspections or visual-
ization purposes [104], the requirements posed by many downstream applications lie beyond
the capabilities of these discrete representations. Many applications require surface models
for texturing and photorealistic renderings. Examples in this category include virtual reality
models built upon three-dimensional recordings of cultural heritage sites [105] or geometric
models of statues and other cultural heritage artifacts [106]. Recovering surfaces from point
clouds is also a necessary step if one aims to perform numerical analysis: typically, a finite
element mesh generator expects a CAD model in BREP or STL format. Thus, in order to
make point clouds compatible with applications in numerical analysis, the key challenge is to
transform the underlying surface information carried by the points into a geometric model.
This question has long been in the center of attention in the field of reverse engineering and

computer graphics, resulting in solutions that tackle the problem using various considerations.
Generally, the approaches pursuing the goal of recovering a surface model from a point cloud
can be divided into two main categories: recovery by geometric primitive identification and
implicit function fitting.

3.3.1 Recovery by geometric primitive identification

To the first category belong methods that rely on the observation that the majority of objects
encountered in the everyday engineering practice can be approximately represented by a com-
bination of simple geometric shapes, such as planes, spheres, cylinders, tori, etc. Therefore,
these approaches start with a geometric primitive identification technique which segments the
point cloud into subsets that can be classified as these base shapes. Following this segmen-
tation step, a topology recovery method is applied to establish the associative relationships
between the identified primitives. Finally, having identified the primitive shapes and their
topological associations, a surface model is created and stored in a standard CAD format. An
example for this approach can be found in [107], where the CAD representation of buildings is
derived from point clouds recorded by terrestrial laser scanning. To this end, artificial neural
networks are employed to identify the individual “building elements”, such as walls, columns
or doors.

3.3. Geometric model recovery from point clouds 79

The basic terminology and challenges associated to primitive segmentation methods can be
found in [62]. In this work, the authors divide the segmentation problem into two main classes:
edge-based and face-based methods. For edge-based methods, the reconstruction approach
first identifies boundaries between neighboring primitive surfaces by looking for sharp edges
in the input point cloud. Then, individual surfaces can be found by the implicit segmentation
provided by the sharp edge data. On the other hand, face-based approaches work in an
opposite manner: they infer regions in the cloud with similar properties, thereby identifying
connected regions representing the same primitive surfaces. Once these surfaces are identified,
computing their intersection allows to recover their bounding sharp edges. In [62], the authors
propose a region-growing approach to implement a face-based segmentation technique.
Alternatives to region growing methods are techniques based on direct segmentation, where

clusters of regions are identified by testing against hypotheses about the characteristics of the
underlying surfaces of separate regions. See, e.g. [108] for a method that works directly on
point clouds, and [109] for an example that works on a triangulation. The challenging aspect
of these methods is that they may not necessarily work if measurement noise is present. In
such cases, the outlier points may draw the segmentation algorithms towards false positives.
Outliers may be identified as actual parts of the recovered surfaces, or, even worse, they may
alter the identified type of the primitive which is recovered during the segmentation process.
To overcome these problems, [110] proposed to employ the random sample consensus

(RANSAC) algorithm. RANSAC, introduced in [111] is an iterative, voting-based approach
that aims at fitting mathematical models onto scattered data in the presence of outliers. The
algorithm extracts shape primitives from the point cloud by randomly drawing minimal point
sets from the point data that are sufficient to define minimal shape primitives. A minimal
point set is the amount of points that is required to uniquely define a given geometric prim-
itive: e.g. 3 points define the location and orientation of a plane. In every iteration of the
algorithm, the candidate shapes defined by the minimal sets are tested against the remaining
points in the cloud to see how many of them are well approximated by the primitive. The
measure that is used to characterize how well the remainder of points is approximated by the
primitive is called the score of the shape. After a pre-defined amount of trials, the shape
which possesses the highest score is extracted from the cloud and the algorithm continues on
the remaining data. In the work of [110], five basic geometric shapes are considered: plane,
sphere, cylinder, torus and cone. In this work, to speed up the convergence of the RANSAC
algorithm while maintaining a maximal detection probability, the authors propose an octree-
based sampling strategy, which starts from the observation that those samples that belong to
the same geometric primitive are more likely to be located close to each other. While this
method seems to work for clouds that contain only simple primitives, a similar, voting-based
approach is presented in [112], able to recognize 3D free-form objects in point clouds.
The identified primitives may be used in further processing steps to achieve completion of

missing parts, as explained in e.g. [113] or [114].
While the set of shape types that can be recovered this way is restricted to basic geometric

primitives, these methods can be easily extended to more complex objects. To this end, the
primitives are converted from their analytical representation into B-Spline or NURBS surface
descriptions, which is then used as an initial guess for a subsequent surface fitting procedure,
e.g. surface fitting by least squares. In this process, care needs to be taken that the geometric
model is kept in a valid state. This means that the fitting algorithms need to ensure that the
data structure containing the topological relationships is always updated if a change in the

80 3. Image-based shape measurement and mesh generation

topology occurs during the fitting process.
While primitive identification approaches rely on the observation that many engineering

geometries are composed of basic geometric primitives, such as planes, spheres, tori, etc.
the type of the primitives is not the only shape prior that may be exploited during the
reconstruction process. For example, very often, CAD models are not only composed of
such primitives, but the relationship between these geometric components also tends to follow
certain patterns, such as coplanarity, orthogonality, concentricity, etc. These relationship
priors can also be exploited at the time of the reconstruction.
In facade models for example, the Manhattan world (MW) assumption can be used: all

planar primitives in a cloud belong to one of three mutually orthogonal planes, see e.g the
method in [115], or [116] for a comprehensive survey of other methods in urban reconstruction.
Other than simple MW assumptions, further relationships between the primitives such as
parallelism, orthogonality and equal angles may be detected and enforced in order to help
recovering the underlying geometry from the point cloud scene. This is the approach taken by
the method explained in [117], which, starting from a RANSAC identification step, enforces
the above constraints to attenuate the effects of structured measurement noise, such as scan
misalignment.
The segmentation and subsequent reconstruction of urban environments can be further

improved when prior knowledge is available about the objects and object-relationships that are
expected to appear in a given scene. For example, [118] presents a methodology for monitoring
the progress of construction sites by combining spatio-temporal Building Information Modeling
(BIM) data and point clouds acquired by photogrammetric techniques. Another promising
direction of research concerning the identification and classification of urban objects is provided
by machine learning techniques: see e.g. in [119] for an approach that works on aerial images
or in [120] for a classification algorithm working with point clouds.
The approaches listed in this section represent only a small part of all the methods that are

available for recovering a geometric model starting from primitive identification techniques.
For a more extensive survey, see the overview provided in [121].

3.3.2 From primitives to best-fit surfaces

There are structures that are difficult to be described by a combination of basic geometric
primitives. Such non-standard models often arise when the shape of interest is ”natural”:
rock formations, landscapes, sculptures, objects stemming from medical imaging techniques
are models whose geometries are usually much more complex than (a combination of) spheres,
cones, tori, etc... Such general shapes can be best modeled by free-form surfaces and curves,
such as B-Splines and NURBS, see Section 2.1.5. Fitting B-Spline curves and surfaces onto
point clouds is a well-studied problem in the literature, and a complete discussion of this topic
lies beyond the scope of this thesis. Here, only the key ideas are listed - the interested reader
may refer to the overview found in [122].
The problem of fitting a parametric planar B-Spline curve onto a point cloud is formulated

as follows. Let pk ∈ R2, k = 1...m be a set of unorganized points onto which a parametric
spline curve C(t) shall be fitted. Following Section 2.1.5, the B-Spline curve is represented as

3.3. Geometric model recovery from point clouds 81

a linear combination of control points P i and the associated basis functions Ni(t) [24]:

C(t) =
n∑
i=0

Ni(t)P i. (3.29)

Without loss of generality, it is assumed that the B-Spline curve is parametrized such that
t ∈ [0, 1]. The goal of the curve fitting procedure is to find the set of control points that
minimizes:

f = 1
2

m∑
k=0
||C(tk)− pk||2, (3.30)

where each tk ∈ [0, 1] is a parametric location associated to one point pk in the input point
cloud. Substituting Equation 3.29 into the expression above yields:

f = 1
2

m∑
k=0

∣∣∣∣∣
∣∣∣∣∣
m∑
i=0

Nj(tk)P i − pk

∣∣∣∣∣
∣∣∣∣∣
2

. (3.31)

The set of control points that minimizes the cost function above is found by setting the
derivative with respect to the control points’ position to zero.

∂f

∂P j

=
m∑
k=0

(
n∑
i=0

Ni(tk)P i − pk

)
Nj(tk) = 0, i = 0...m,

= −
m∑
k=0

pkNj(tk) +
m∑
k=0

n∑
i=0

Ni(tk)Nj(tk)P i,

(3.32)

which yields 2 × n or 3 × n equations for the n control points in 2D and 3D, respectively.
Equation 3.32 can be written more compactly as:

AA>P = Ap, (3.33)

where the coefficient matrix A collects the shape functions evaluated at the tk locations:

A = [aik] = [Ni(tk)] . (3.34)

The solution of the equation above yields the set of control points that minimize the cost
function of 3.31. In practice, the fitting procedure requires that an initial approximation of
the curve C(t) is available, in order to be able to compute the error term ||C(tk)− pk||. Even
if this initial guess is available, the parametric locations tk still need to be chosen. A commonly
employed approach is to compute the closest projection of the point pk onto the curve C(t)
yielding a parametric value tk for every point pk.
As the error term in Equation 3.31 is based directly on the distance between the curve and the

points to be fitted, this procedure is commonly referred to as Point Distance Minimization
(PDM). Thanks to its simplicity, it is a frequently employed approach for fitting B-Spline
curves as well as surfaces onto a set of unstructured points, see, e.g. [123, 124]. However, the
PDM method suffers from some drawbacks, e.g. slow convergence, making it not the most
optimal solution when it comes to fitting curves or surfaces, see [122].

82 3. Image-based shape measurement and mesh generation

C(tk)

p
k

d

Figure 3.8: Iso-curves of the point distance (PDM) error term.

To avoid the difficulties associated to the PDM-based minimization, a frequently employed
approach is to use a different error term, which takes into account more information about the
local geometry of the curve to be fitted. This technique is called tangent distance minimization
(TDM), and its error term is formulated as follows [125]:

f = 1
2

m∑
k=0
|(C(tk)− pk)N k|, (3.35)

whereN k is the unit normal vector of the curve C(t) in the current iteration, evaluated at the
parameter tk. While this formulation involves more geometric information about the curve
geometry than a simple point-to-point measure, it still remains a poor approximation of the
surface, creating instabilities in the curve fitting process in regions with high curvature.
To resolve this problem, the following observation about the iso-contours of the PDM and

TDM approaches come to help: for the PDM approach, the error term is constant for any pk
satisfying ePD,k = ||Nj(tk)P i − pk||2 = c. The contour of such curve corresponds to a circle,
as depicted in Figure 3.8. In contrast, the iso-contour for the TDM-based fitting is defined
by |(Nj(tk)P i − pk)N k| = c, representing a pair of parallel lines, which can be regarded as
the contour of a degenerate ellipse (Figure 3.9). The intuitive observation is that if the PDM
approach with the circular iso-contours leads to slow convergence, while the TDM with the
parallel lines produces fast, but unstable convergence, an optimal error term should be one
whose iso-contours lie between the two, represented by ellipses. An error term that creates
elliptical iso-curves of errors is provided naturally by a curvature-based approximation of the
squared distance function, as described in [126].
Given a curve C(t) in R2, the squared distance function assigns to each point p ∈ R2 the

squared distance from p to C(t). Let X be the closest point on the curve C(t) to the point p.
Let ρ denote the radius of curvature of the curve at the point X . In the local Frenet frame of
the curve at X , the center of curvature is located at (0, ρ), while the coordinates of the point
p are given by (0, d), where d denotes the distance between p and X . In the Frenet frame,
the second order approximant of the squared distance function is given by:

Fd(x1, x2) = d

d− ρ
x2

1 + x2
2, (3.36)

3.3. Geometric model recovery from point clouds 83

C(tk)

p
k

d

Figure 3.9: Iso-curves of the tangent distance (TDM) error term.

X

x1

x2

pk

d

Figure 3.10: Iso-curves of the approximated squared distance function at pk.

where x1 and x2 are the coordinates measured along the coordinate axes of the local Frenet
frame. An example for the approximant of the squared distance function is plotted in Fig-
ure 3.10. The concept of quadratic approximants may be used for curve fitting as described
in [126]. In the following, a summary of this procedure is given.
Given a model shape M which needs to be approximated by a parametric B-Spline curve

C(t), the process first generates a set of sample points on the curve at the current iteration,
called active curve points, denoted by {sk}, k = 1...M . Then, for every sk, the closest point
on the target shapeM is evaluated. For every active point together with its closest point on
M, the approximate squared distance function can be computed, denoted by F k

d . The surface
fitting problem amounts to finding a displacement vector ci for every control point P i, such
that the sum of F k

d ‘s is minimized:

F =
M∑
k=0

F k
d

(
n∑
i=0

Ni(tk) (Pi + ci)
)
. (3.37)

It was shown in [126] that minimizing F amounts to solving a system of linear equations:

2Ac + b = 0, (3.38)

84 3. Image-based shape measurement and mesh generation

where the vector c (of size 2n × 1) collects the displacement vectors of the control points:
c = [c1, c2, ..., cn]T . The next iteration starts with an updated surface whose control points
are shifted by the values in c, and the procedure is repeated until the root mean squared
approximation error is less than a tolerance value. For point clouds, the curvature of the
underlying surface can be estimated by applying the method of osculating jets [127] on the
k-neighborhood of the closest point to xk. One step of this process is depicted in Figure 3.11.
For surfaces, the fitting procedure can be executed similarly. In order to compute the

quadratic approximant of the squared distance function in this case, [126] provides the follow-
ing formula:

F k
d (x1, x2, x3) = d

d− ρ1
x2

1 + d

d− ρ2
x2

2 + x2
3, (3.39)

where ρ1 and ρ2 denote the radius of curvatures associated to the principal curvatures of the
surface evaluated at the closest point.

3.3.3 Methods based on implicit function fitting
The second major class of geometry recovery techniques formulates the reconstruction problem
in terms of level-set surfaces. Geometric models defined by level-set surfaces are particularly
popular in the field of computer graphics [128]. Unlike recovery methods that are based on
primitive identification, these procedures do not require the handling of topological changes
occurring during the fitting process. Instead, their formulation allows for representing mod-
els of almost arbitrary geometric and topological complexity, without having to handle the
associative relationships between the geometric elements that compose the model. Usually,
surface recovery following implicit function fitting follows a two-step procedure. In the first
step, a scalar function Φ(x) : R → R3 is sought, whose level set ∂M = {x ∈ R3|Φ(x) = Φc}
approximates the surface which is represented by the input point cloud. Then, in the second
step, a contouring method is employed to extract a tessellation – usually consisting of triangles
– from the level-set surface of the first stage.
Different approaches have emerged to formulate the problem of finding Φ(x). The first

important method in this class is the pioneering approach of [129]. This method seeks to find
Φ(x) by computing the signed projection of every point x ∈ R3 onto the tangent plane defined
by the closest point and the associated normal vector in the point cloud. While this method
is easy to implement, it produces noisy and unreliable output if the normals in the cloud are
not consistently oriented or when the sampling density is not uniform.
Subsequent approaches aim at overcoming this problem by not only considering the closest

point but also its local neighborhood. The most notable methods relying on surface informa-
tion extracted from local neighborhoods are based on the method of Moving Least Squares
(MLS). MLS approaches reconstruct Φ(x) by fitting a multivariate polynomial onto the closest
neighborhood of x in a weighted least-squares sense. The techniques described in [130, 131]
use low-degree bivariate polynomials defined on the local reference frame computed by prin-
cipal component analysis. Subsequently, the projection of x onto the MLS surface can be
defined as the closest point on the local polynomial approximation. Finally, the MLS surface
is implicitly defined as the stationary set of the projection operator.
The use of polynomials is not absolutely necessary to represent the local approximant of the

surface in the MLS framework. As shown in [132, 133], it is sufficient if a planar approximation

3.3. Geometric model recovery from point clouds 85

sk

P 0

P 1

P 2

M

(a) For an active point sk, the approximant of the squared distance
function is computed by finding pk and its k-neighborhood.

sk

P 0

P 1

P 2

c1

P 1 + c1

M

(b) After solving Equation 3.38, the control point P1 is shifted by
the vector c1.

Figure 3.11: Conceptual sketch of the active surface fitting algorithm in 2D. The circular black
dots represent the point cloud XMj , while the solid black curve depicts the active curve which
is iteratively deformed towards XMj . This concept stems from [126].

86 3. Image-based shape measurement and mesh generation

is employed instead of polynomials. In terms of MLS fitting, this means that the tangent plane
is computed by a weighted average of neighboring tangent planes found in some neighborhood
of the query point x.
While MLS-like approaches take a local view of the problem by looking only on individual

points and their neighborhoods, there are formulations that operate on a global level. Histori-
cally, the first notable method following this idea is the method of [134], based on radial basis
functions (RBFs). RBF methods, popular in the context of scattered data interpolation, aim
at reconstructing the level-set surface by taking a linear combination of radially symmetric
basis functions, φ(x)’s. Then, the implicit function Φ is expressed as:

Φ(x) = g(x) +
∑
j

λjφ(||x− qj||), (3.40)

where g(x) is a globally supported, low-degree polynomial and the basis functions φ(x) are
centered at the nodes qj. In order to find the unknown λj coefficients, the function is prescribed
to take on the value 0 at the locations of the points in the point cloud S. Furthermore, to
avoid the trivial solution where Φ(x) is zero everywhere, additional off-surface constraints are
imposed. Usually, these constraints are created by shifting the original points in the cloud in
the direction of the normal vectors by a small distance ε. Solving the resulting dense system
of linear equations yields the value of the unknown coefficients λj. Once the values of the
coefficients are found, the surface of interest is recovered as the zero level set of the global
function Φ(x).
The need for applying off-surface constraints can be overcome by additionally requiring that

the gradient of Φ(x) interpolates the normal vectors ni given at the data points pi, as described
in [135]. An application of this approach for 3D reconstructions can be found in [136].
The other popular category of global approaches in the context of reconstruction by implicit

functions is based on recovering the indicator function itself. These volumetric labeling meth-
ods rely on the key observation that the indicator function can be found by ensuring that
its gradient matches the normal vectors that are given at the locations of the points in the
point cloud S. Thus, these methods find an indicator function that minimizes the following
functional:∫

Ω

||∇Φ(x)− n||2dΩ. (3.41)

Applying the Euler-Lagrange equation, this minimization problem can be cast in the form of
a standard Poisson equation, i.e. the minimizer of Equation 3.41 satisfies:

∆Φ(x) = ∇ · n. (3.42)

This Poisson problem may be solved in the frequency domain, by taking the Fourier transform
of both sides of the equation, as discussed in [137]. The Fourier transform approach is restricted
to regular grids, thereby limiting the spatial resolution of the reconstructed surface. This
limitation can be overcome by solving the Poisson problem using a hierarchical formulation
known from the Finite Element Method and a multigrid solver, as explained in [10]. This
approach is widely popular in state-of-the art 3D surface reconstructions, and will be discussed
in more detail in Section 4.4.3.

3.3. Geometric model recovery from point clouds 87

To avoid oversmoothing, the Poisson formulation can be extended by incorporating addi-
tional positional constraints in the energy functional of Equation 3.41, resulting in the screened
Poisson problem [11]:

∫
Ω

||∇Φ(x)− n||2dΩ + λ
∑
pi∈S

Φ2(pi), (3.43)

where a higher value of the parameter λ draws the zero level-set of Φ closer to the input points
in the cloud S. This can reduce the amount of oversmoothing, but, on the other hand, choosing
a value of λ that is too high may result in overfitting, just like in the case of interpolatory
methods.
One complication that occurs when employing Poisson-based reconstruction methods is the

observation that the gradient of the indicator function ∇Φ(x) cannot be defined in the tradi-
tional sense at the sample points, as Φ(x) exhibits a discontinuity at these locations. Therefore,
these methods essentially aim to recover a low-pass-filtered version of the indicator function.
As also noted in [10], this smoothing filter needs to be chosen carefully. Moreover, in case of
non-uniformly sampled points, the width of the smoothing kernel needs to be adapted, which
introduces and additional complexity in the implementation of these methods.
A related technique that aims at circumventing this problem formulates the reconstruction

problem in terms of recovering a smooth signed distance function Φ(x) which is negative inside
and positive outside the object. However, contrary to interpolatory approaches and similar to
the Poisson-based methods, this goal is achieved by minimizing the following energy:

λ0
∑
i

Φ(pi)2 + λ1
∑
i

||∇Φ(pi)− ni)||2 + λ2

∫
Ω

||HΦ(x)||2dΩ, (3.44)

where HΦ(x) denotes the Hessian, a 3× 3 matrix containing the second-order partial deriva-
tives of the signed distance function Φ(x), and the norm of this matrix is its Frobenius norm.
Then, Equation 3.44 is discretized by finite differences, to find the unknown function Φ(x).
As a result of this formulation the gradient of Φ(x) tends to be constant away from the data
points, where the Hessian term dominates. In the vicinity of the data points, however, where
the contribution of the first two parts of the energy is stronger, the function approximates the
signed distance function.
In the final step of implicit reconstruction approaches, the level-set surface is converted

into a tessellation by a contouring algorithm. Usually, this contouring step is performed by
the marching cubes method introduced in [55]. To enhance the efficiency of marching cubes,
its octree-based modifications may be employed, such as the methods found in [138–140].
The application of marching cubes might result in loss of geometry information: thin or sharp
features may get lost in the contouring process. To avoid these complications, the extensions of
the original marching cubes algorithm such as extended marching cubes [141] or dual marching
cubes [142] variants may be employed. A survey on the marching cubes algorithm and its
extensions can be found in [143].

88 3. Image-based shape measurement and mesh generation

3.4 Application: mesh generation on a tubular
geometryc

In the following, it is presented how the techniques described previously in this chapter can be
employed to generate a mesh of high order hexahedral finite elements on a tubular geometry,
starting from images that were taken on a circular path around the object of interest. The
chain of steps which are followed by the method within this section follow the stages depicted
in Figure 3.12.
One application area of the method is to be seen in experimental studies of the mechanical
behavior of soft human tissues in an in vitro environment. In these experiments, it is impor-
tant to be able to mimic the conditions that are present in the normal biological context of
the investigated tissues. This usually requires the sample to be immersed in a physiological
fluid. An example with such requirements is the study of the active biomechanical response of
human arteries. These measurements are challenging for traditional image-based reconstruc-
tion methods, because the assumption that light rays propagate along a straight path becomes
invalid. Thus, the presence of the interface between the physiological fluid and the camera
needs to be taken into account by the reconstruction algorithm.
The goal of generating a high order finite element mesh is motivated by the superior approx-
imation properties of the high order finite element method (p-FEM) compared to standard
finite elements. Instead of linear shape functions, p-FEM employs high order polynomials to
approximate the solution of physical problems described by partial differential equations [22].
Especially for smooth problems, p-FEM delivers very accurate results with drastically less
degrees of freedom compared to linear FEM. The advantages of p-FEM can be fully exploited
if it is combined with a high-order discretization of surfaces and volumes.
Using a high-order representation of the geometry is not only useful when the computation

is done by the p-FEM, but also in the case of other numerical discretization techniques, like
the method of Isogeometric Analysis. For IGA, the last, mesh generation step in Figure 3.12
may be omitted, as the method uses the shape functions of the geometric model directly for
the discretization of the solution space.

3.4.1 Effects of refraction

Before demonstrating the entire mesh generation procedure, the importance of including the
refractive effects in the bundle adjustment formulation is demonstrated. To this end, we
consider a scenario where a planar object of size 25mm×19mm with a checkerboard pattern is
immersed in a cylindrical container filled with water. The image of the checkerboard is recorded
on a single camera using a ray-tracer software. The imaging setup is depicted in Figure 3.13.
The positions of the individual checkerboard corners on the synthetically generated images
are detected using the checkerboard detector algorithm of OpenCV [144]. Let XG

j denote
the coordinates of checkerboard corners in world coordinates, x̃j the image coordinates of
the detected corners, xPj and xAFRTj the projection of the checkerboard corners onto the
image plane of the camera using standard perspective projection and the AFRT algorithm,
respectively. The norm of the reprojection error for an individual corner with perspective

3.4. Application: mesh generation on a tubular geometry 89

Input pictures Point cloud Topology Geometry Mesh

Modified bundle
adjustment

Outlier removal,
initial cylinder

Iterative surface
fitting

Mesh generation

Figure 3.12: From images to a boundary-conforming finite element mesh, for tubular geome-
tries [18].

d = 360mm

r = 50mm

x

z

y

K,R, t

Figure 3.13: Setup of the test example with a single camera and a checkerboard pattern im-
mersed in a cylindrical water container [18].

90 3. Image-based shape measurement and mesh generation

0 200 400 600 800 1000

u

0

100

200

300

400

500

600

700

v

0

64

128

R
ep

ro
je

ct
io

n
er

ro
r

[p
x]

Figure 3.14: Reprojection errors due to refractive effects for the checkerboard example. The
error is small around the camera center and increases towards the image boundaries. Both
coordinate axes are in pixel units [18].

projection can be defined as:

ej =
∣∣∣∣x̃j − xPj

∣∣∣∣
2 . (3.45)

The reprojection error of the AFRT algorithm can be computed similarly. Figure 3.14 shows
the error of the standard perspective projection in the image coordinate space. In this imag-
ing configuration, the light rays associated to the pixels around the image center enter the
refractive medium almost orthogonally, which means that they are not subject to significant
refraction and their direction remains almost unchanged. Therefore, the error associated to
the pixels around the center of the image is low, as also shown in the figure. For image points
that are further away from the imaging center, however, the refractive effects dominate the
error. Compared to the values obtained by the AFRT algorithm, which remain in the sub-pixel
accuracy range, this error can be orders of magnitudes higher.
This example emphasizes that if the refractive effects are not accounted for, the value of the
objective function in the bundle adjustment problem (Equation 3.21) remains high – even if
the exact values of the structure points XG

j and the camera parameters K,Ri, ti are substi-
tuted into the equation. Moreover, the minimum of the objective function does not occur at
these set of parameters at all. Instead, the non-linear least squares solver that is used to solve
the bundle adjustment problem is drawn to a minimum, which is physically wrong.
To demonstrate this effect, we consider a simplified bundle adjustment problem of the imaging
setup of Figure 3.13. In this case, the camera is allowed to move only along the z axis, while
all the other parameters – including the structure points – are fixed. For different distance

3.4. Application: mesh generation on a tubular geometry 91

250 300 350 400 450 500

d[mm]

0

20

40

60

80

100

e R
M

S
[p
x
]

Perspective projection
AFRT projection

Figure 3.15: Root mean squared reprojection error for different camera distances for the
checkerboard example. With standard perspective projection, the minimum occurs at the in-
correct distance d = 300 mm. The AFRT algorithm delivers a well-defined minimum at
d = 360mm, which corresponds to the reference configuration [18].

values d, the root mean squared (RMS) error of the reprojection is computed as:

ePRMS =
√

1
n

∑
j

(
x̃j − xPj

)2
, (3.46)

where n denotes the number of checkerboard corners. The root mean squared error for the
AFRT projection can be computed similarly. Figure 3.15 shows the RMS error for different
distance values. As expected, when using the AFRT algorithm, the minimum of the RMS error
occurs when d is equal to the camera distance used in the ray tracing software. In contrast,
the standard perspective projection attains its minimum at a different distance value d, which
does not correspond to the real location of the camera. A similar effect can be observed
if the camera parameters are kept fixed and the structure points Xj are allowed to move.
To this end, the setup of Figure 3.13 is extended by two additional cameras, as depicted in
Figure 3.16. If the AFRT algorithm in the bundle adjustment problem, the resulting minimizer
set of structure points matches the reference points XG

j with high accuracy. In contrast, if the
refractive effects are disregarded, the structure points differ significantly from the reference
configuration, as depicted in Figure 3.17. Table 3.1 summarizes the errors with respect to
the ground truth geometry along the main directions of the world coordinate system as well
as the root mean square of the reprojection error obtained from the solution of the bundle
adjustment problem. Note that even though the values of the reprojection errors are in the
same order of magnitude, there is a large difference in the error of the structure points. This
implies that neglecting the refraction of light in the bundle adjustment formulation leads to

92 3. Image-based shape measurement and mesh generation

x
z

y
15◦

Figure 3.16: Multi-camera setup of the checkerboard test example [18].

x

−10−50510
y

−10 −5 0 5 10

z

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Ground truth
Perspective bundle adjustment

Figure 3.17: Ground truth points and structure points found by bundle adjustment using per-
spective projection, for the multi-view checkerboard example [18].

3.4. Application: mesh generation on a tubular geometry 93

Method ∆XRMS ∆YRMS ∆ZRMS ∆XRMS eRMS

Perspective projection 0.601mm 0.8052mm 0.3193mm 0.609mm 0.59 px
AFRT projection 0.0055mm 0.0090mm 0.0052mm 0.0068mm 0.84 px

Table 3.1: Summary of error values for the checkerboard example. Even though the reprojection
error eRMS is in the same order of magnitude for both methods, there is a significant difference
in the error of the structure points [18].

0 200 400 600 800 1000

u

0

100

200

300

400

500

600

700

v

0

2

4

6

8

10

12

14

16

N
um

be
r

of
A

F
R

T
it

er
at

io
ns

Figure 3.18: Number of AFRT iterations across the image coordinates for the checkerboard
example. Both coordinate axes are in pixel units [18].

an error both in the estimated structure points as well as in the estimated camera positions.
Another important aspect that needs to be considered when using the AFRT algorithm is the
increase in time needed to solve the bundle adjustment problem. With standard perspective
projection, the image of a structure point on the image plane can be computed directly by
evaluating Equation 3.5. The AFRT procedure, however, requires an evaluation of the ray-
surface intersections and the law of refraction across many iterations. Obviously, the higher
the refractive effects, the more AFRT iterations are required. For the checkerboard example,
this relationship is depicted in Figure 3.18. As expected, the rays that are associated to pixels
around the image center – where refraction plays a minor role – require less computation. For
pixels that are further away from the center, the required number of iterations increases, which
directly affects the overall runtime of the bundle adjustment problem. These considerations
need to be taken into account when deciding how the object is to be positioned inside the
fluid container. Concerning tubular structures, this usually means that the orientation of the
structure should be chosen such that it is aligned with the principal axis of the cylindrical
container.

94 3. Image-based shape measurement and mesh generation

3.4.2 Tubular object in synthetic images
This section demonstrates the reconstruction of a tubular object on a set of pictures obtained
from a ray tracer software. In this setup, an objectM (depicted in Figure 3.19†) is immersed
in a liquid with known optical properties. The geometry was constructed by sweeping a circle
along a parametric generator curve defined by:

g(t) =
[
t, sin

(
2π
30 t
)
, 0
]T
, t ∈ [0, 30] . (3.47)

In the sweeping process, the radius of the circle is increased linearly along the generator curve,
such that r(t = 0) = 1 and r(t = 30) = 3. The shape of the refractive interface is cylindrical,
with a radius R = 50mm and the camera moves along a circular path around the object as
shown in Figure 3.4. To investigate how the method behaves for various object poses, the
reference geometry was placed inside the water container in three different configurations,
which are depicted in Figure 3.20. In these configurations, the angle between the principal
axis of the object and the vertical direction is 0◦, 45◦ and 90◦, respectively. The center and
the axis of the camera path was deliberately chosen in such a way that it does not coincide
with the location and the axis of the refractive interface, nor with the object. Figure 3.21
shows examples of the captured images for pose A at different camera positions.
The solution of the bundle adjustment problem of Equation 3.28 yields a set of parameters

that minimize the sum of the squares of the reprojection errors for all feature points over all
images. To measure how accurately the bundle adjustment method is able to fit the model
parameters to the observations, we look at the root mean square of the reprojection errors:

eRMS =
√

1
n

∑
i

∑
j

(
x̃ji − PAFRT (Xj,K,n,d, θi, σ)

)2
, (3.48)

where n denotes the total number of residuals. Secondly, knowing the geometry ofM allows
to investigate the accuracy of the optimized set of structure points {Xi}, by computing the
signed distance of each Xi with respect to the modelM, denoted by d(Xi,M). To calculate
the signed distance, the closest orthogonal projection of every Xi ontoM is computed. This
way, the mean signed distance with respect to the ground truth is calculated as:

eM = 1
N

∑
i

d(Xi,M). (3.49)

In order to compare the method to the standard bundle adjustment, the reconstruction of
the artificially generated images was also performed without taking the refractive effects into
account, and allowing the cameras to move arbitrarily.
Table 3.3 summarizes the results for the different configurations. Concerning the number
of points and the precision of the resulting point cloud, pose A outperforms the two other
settings. On the other hand, similarly to pose C, it requires more iterations in the solution
process than pose B. The reason for this is that the projection of the object in the first and
third configuration only covers a rather narrow region on the captured images as the camera

†The reference geometry was designed and manufactured by Ofry Yossef at the Experimental Biomechanics
Lab of the Ben-Gurion University of the Negev, Israel. This support is gratefully acknowledged.

3.4. Application: mesh generation on a tubular geometry 95

2mm

6mm

30mm

g(t)

Figure 3.19: Reference geometryM used in the verification example [18].

96 3. Image-based shape measurement and mesh generation

(a) Pose A (b) Pose B (c) Pose C

Figure 3.20: Different object poses used in the synthetic example [18].

(a) (b) (c)

Figure 3.21: Synthetic images of pose A. The object was immersed in water and the pictures
were recorded under different rotations θ of the camera: (a) θ = 0◦, (b) θ = 108◦, (c) θ =
228◦ [18].

3.4. Application: mesh generation on a tubular geometry 97

Modified bundle adjustment
Pose eRMS eM # points # residuals # iterations Avg. # AFRT

iterations Time per residual

A 0.3987 px 0.0059mm 14467 197428 27 18 2.56 · 10−5 s
B 0.2575 px 0.026mm 14011 148042 16 21 2.76 · 10−5 s
C 0.306 px 0.1575mm 9185 101672 27 23 3.42 · 10−5 s

Standard bundle adjustment
A 0.2551 px 0.8701mm 14399 196276 35 − 5.72 · 10−7 s
B 0.7366 px 0.6772mm 13917 143854 13 − 5.73 · 10−7 s
C 0.702 px 0.430603mm 9185 101672 13 − 5.62 · 10−7 s

Table 3.2: Comparison of bundle adjustments for different poses of the verification geome-
try [18].

rotates, leaving most of the image area unexploited. As demonstrated by the checkerboard
example in Section 3.4.1, the least amount of AFRT iterations is needed if the object is
oriented along the principal axis of the water container. In contrast, if the object is oriented
perpendicularly – as in the case of pose C – the number of iterations of the AFRT algorithm
increases. This also correlates with the average cost of evaluating a single residual.
Similarly to the checkerboard example in Section 3.4.1, when the refractive effects are
neglected, the average mean distance of the resulting structure points {Xi} is rather high,
even though the standard bundle adjustment yields a set of parameters that minimize the
reprojection errors to a sub-pixel accuracy. This is due to the fact that in the standard case,
the standard bundle adjustment finds a set of parameters that minimizes the cost function
of Equation 3.21, but this optimal set of parameters does not represent the real structure at
all. In contrast, the structure points resulting from the modified bundle adjustment approach
– which takes the refractive effects into account – are orders of magnitude closer to the
ground truth shape M, while the reprojection errors are in the same order of magnitude.
This high difference in the mean signed distances can be observed both for the synthetically
generated images and for those recorded in the real setting, as will be shown in the next section.

3.4.3 Tubular objects represented on real images
For comparison, the experiment of the previous section was repeated in a real setting. In this
case, the geometry was manufactured using a 3D printer and it was immersed into a cylindrical
water container, according to pose A from the previous section. To enhance the quality of the
surface texture, the model was sprayed with black ink using an airbrush. The resulting dot-
like pattern covers approximately 40% of the surface. A camera was moved around the object
using an automatic device (Figure 3.22†), allowing for accurate angular positioning and keeping
the radius of the camera’s path constant. This automatic device is part of an experimental
apparatus built for the purpose of investigating the active biomechanical behavior of human

†The experimental device was designed and constructed at the Experimental Biomechanics Lab of the
Ben Gurion University of the Negev, Israel. The image was taken by Avihai Uzan. This effort is greatly
acknowledged.

98 3. Image-based shape measurement and mesh generation

Rotating armBlack background

Container Object

Camera

Figure 3.22: Laboratory setup of the verification example. The camera is mounted on an arm
that rotates around a cylindrical container. To avoid unwanted background features, a black
sheet of light-absorbing material is mounted on an arm opposite to the camera. The 3D printed
reference object is placed inside the container [18].

3.4. Application: mesh generation on a tubular geometry 99

(a) (b) (c)

Figure 3.23: Images taken of the object immersed in water, under different rotation angles θ
of the camera: (a) θ = 0◦, (b) θ = 108◦, (c) θ = 228◦ [18].

Method eRMS eM # points
Standard B.A. 0.2551 px 0.8701 mm 7727
Modified B.A. 0.3987 px 0.0059 mm 8800

Table 3.3: Comparison of the results of standard bundle adjustment and its modified version
for the real image set.

arteries. A detailed description of these experiments and the apparatus can be found in [145].
Prior to the experiment, the intrinsic parameters were calibrated using the method of [146].
With an increment of 10.8◦ in the angular position of the camera, 22 images of the object were
captured. Examples of the images taken in the real setting are depicted in Figure 3.23†. The
results of the modified bundle adjustment on the real image data are summarized in Table 3.3.
Similar to the examples with the synthetic images, the root mean squared of the reprojection
error is in the same order of magnitude for both methods. However, the modified bundle
adjustment formulation yields points that lie orders of magnitudes closer to the ground truth
geometry. The point sets and histograms of the signed distance errors for this scenario are
depicted in Figure 3.24.
As shown in Figure 3.24, the resulting point set {Xi} contains points that belong to the

experimental environment. These outlier points are filtered out using the RANSAC algorithm.
Apart from the remaining inlier points

{
XMi

}
, RANSAC also provides the parameters of the

cylinder which is the best fit to these points.
Concerning the points computed by the modified bundle adjustment method, the estimated
diameter given by the RANSAC algorithm is 2.47763 mm. This value corresponds to a dif-
ference of 1% compared to the average radius of the reference geometryM. In contrast, the
points resulting from the standard bundle adjustment have a diameter of 3.40295 mm, which

†These images were taken by Ofry Yossef at the Experimental Biomechanics Lab of the Ben Gurion Uni-
versity of the Negev, Israel. This effort is greatly acknowledged.

100 3. Image-based shape measurement and mesh generation

 0

 100

 200

 300

 400

 500

 600

 700

-1.11 0.00 1.86

N
u
m

b
er

 o
f

p
o
in

ts

Signed distance w.r.t. reference geometry [mm]

(a) Standard bundle adjustment

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

-0.52 0.00 0.37

N
u
m

b
er

 o
f

p
o
in

ts

Signed distance w.r.t. reference geometry [mm]

(b) Modified bundle adjustment

Figure 3.24: Point clouds resulting from the real image set and the respective histograms of
signed distance errors, for (a) standard bundle adjustment and (b) modified bundle adjust-
ment [18].

3.4. Application: mesh generation on a tubular geometry 101

(a) Inlier points and best-fit cylinder (b) Surface fitted onto the inlier points

Figure 3.25: Initial estimate and fitted surface [18].

Figure 3.26: Surface mesh: quadratic quadrilateral elements [18].

means a difference of 40%.
The best-fit cylinder is used as the initial estimate for the active surface fitting algorithm
of [126], described in Section 3.3.2. Starting from an initial 300 points, the number of active
surface points is increased by 100 in every iteration, and the iteration is repeated until the
root mean squared distance of the active surface with respect to the point cloud falls below
0.01 mm. The resulting surface SM(u, v) is a tensor product B-Spline surface approximating
M. This surface is stored as a boundary representation model (BRep) for the final step. The
initial estimate and the result of the surface fitting algorithm are depicted in Figure 3.25. In
the final step of the reconstruction procedure, a mesh of curved hexahedral finite elements is
created by employing the method of [28]. Figure 3.26 shows an example mesh with quadratic
elements. For this mesh, the average signed distance of the interpolation points with respect
to the reference geometryM is 0.009 mm.
To obtain a volumetric mesh of high order finite elements, the quadrilateral elements are

swept in the direction of the local surface normals of SM(u, v). In this example, the thickness
of the geometry was chosen to be a constant of t = 0.5 mm throughout the entire domain.
Examples of quadratic and quartic hexahedral elements are depicted in Figure 3.27.

Figure 3.27: Volumetric mesh: quadratic and quartic hexahedra [18].

102 3. Image-based shape measurement and mesh generation

3.4.4 Tubular object with a branch represented on real images
As a final demonstration of the entire mesh generation procedure, we consider a branched
geometry – represented by the intersection of two tubular objects, as depicted in Figure 3.28.
The length of the object is 150mm, an order of magnitude bigger than in the previous example.
The texture of the object was enhanced by spraying black ink on its surface. Similar to the
previous example, the object was placed in a cylindrical water container, and 36 pictures were
recorded by moving the camera around it along a circular path. As an example, Figure 3.29
depicts one of the images captured by the camera. As the first step in the procedure, a point
cloud is generated using the modified bundle adjustment formulation. The resulting points
are depicted in Figure 3.30. The average distance of the resulting 10626 structure points to
the ground truth geometry is 0.19mm.

Figure 3.28: Tubular geometry with a branch [18].

Figure 3.29: Image taken of the branched geometry in the experimental system [18].

After solving the modified bundle adjustment problem, the RANSAC algorithm identifies
the two main cylindrical components in the cloud. The points are separated according to the
cylindrical model they belong to. The resulting cylinders represent the topology of the object,
as shown in Figure 3.31 as well. The two cylinders resulting from the RANSAC algorithm are
converted to separate B-Spline surfaces and used as initial guesses for the iterative procedure
of Section 3.3.2. This process finds the best-fit surface to the separated points. The resulting
surfaces are intersected and joined together to form the final geometric model, which is depicted
in Figure 3.32.
Finally, a high order finite element mesh is generated on the surface using the algorithm

of [28]. An example mesh with quadratic hexahedral elements is depicted in Figure 3.33. The

3.4. Application: mesh generation on a tubular geometry 103

Figure 3.30: Point cloud resulting from bundle adjustment, and the ground truth geometry [18].

Figure 3.31: The RANSAC algorithm separates the point cloud according to the underlying
cylindrical models that describe its topology [18].

104 3. Image-based shape measurement and mesh generation

Figure 3.32: B-Spline surfaces fitted onto the points separated by the RANSAC step [18].

nodes lie within 0.25mm of the ground truth geometry, the bounding box of which measures
approximately 150mm.

Figure 3.33: Mesh of quadratic hexahedral finite elements, generated on the surfaces resulting
from the surface fitting [18].

105

Chapter 4

The Finite Cell Method combined
with oriented point clouds

4.1 The role of geometric representations
The Finite Cell Method has been applied in combination with a large variety geometric rep-
resentations. If the geometric model provides detailed, high order surface information (which
is the case for geometries stored in IGES or STEP file formats), the accurate decomposition
algorithm described in Section 2.2.2.4 may be applied, which delivers highly accurate integrals
with an almost minimal number of integration points. However, even if no explicit surface
information is available in the geometric model, (which is the case for voxel models for ex-
ample), numerical integration can still be performed by using the spacetree decomposition of
Section 2.2.2.1. As seen there, in order to generate a spacetree, it is sufficient if the algorithm
can determine whether a cell is cut by the boundary of the physical domain or not. To this
end, computing the inside-outside state of a set of test points and comparing them pairwise
is necessary. Furthermore, at every integration point, the indicator function α needs to be
evaluated, which also requires a point-membership classification from the geometric model.
Following these considerations, it can be seen that in its simplest implementation, the only

requirement of the finite cell method from a geometric model is the ability to determine the
inside-outside state: given a point x ∈ Rd in space, does this point belong to the physical
or the fictitious part of the domain? As long as a geometric model is able to provide such
point-membership tests, it is possible to conduct a finite cell analysis.
The point clouds that result from the shape measurement procedures of Chapter 3 do not

only contain points, but also the normal vectors at these points. These normals carry infor-
mation about the orientation of the local tangent planes of the object of interest. While this
normal information is an essential ingredient of many surface reconstruction algorithms (see in
Section 3.3), it can also be used to carry out the point membership test, which is sufficient for
the finite cell method. This allows for taking a major shortcut in the measurement-to-analysis
pipeline: instead of having to recover a geometric model and a boundary-conforming finite
element mesh, the finite cell method can be used to compute the structural behavior directly
on domains defined by oriented point clouds. This idea is explored in the following parts of
this chapter, demonstrating how the method can be applied on geometries encountered in
standard engineering practice.

106 4. The Finite Cell Method combined with oriented point clouds

Ω+

i

Ω−

i

pi, ni

Figure 4.1: Point membership classification on oriented point clouds. The domain is repre-
sented by a set of points pi and associated normals ni. Every such pair locally separates the
space along a hyperplane into two half-spaces: Ω−i and Ω+

i [4].

4.2 Point membership tests on oriented point cloudsd

In point cloud-based simulations, the domain Ωphy is represented by a set of sample points pi
and their associated normal vectors ni. If no outliers are present, the set of pairs S = {pi,ni}
represent a discrete sampling of the boundary ∂Ωphy of the domain.
Each element in S defines a hyperplane that separates the space in two half spaces: the open

half-space Ω−i lying on the side of the hyperplane where the normal vector ni points, and the
closed half-space Ω+

i lying on the other side. This concept is depicted in Figure 4.1. For every
x ∈ Ω+

i , the following holds:

(pi − x) · ni ≥ 0. (4.1)

Therefore, a simple way to estimate whether a quadrature point q lies inside or outside the
domain is to find the pi and the associated ni in S that lies closest to q and evaluate the scalar
product of Equation 4.1. While the heuristic nature of this approach may give the impression
that it only works for simple shapes, the practical examples in Section 4.6 on more complex
geometries show that the recovered indicator function is suited for performing a finite cell
analysis in these cases as well. The algorithm requires an efficient nearest neighbor query. To
this end, the k-d tree implementation of the C++ library nanoflann [147] is used, while the
clouds themselves are represented by the data structures of the Point Cloud Library [148].
The point membership classification method is summarized in Algorithm 1.
Conceptually, this approach is a simplified version of the method explained in [129]. In this

work, the authors propose to reconstruct the surface of an object represented by an unorganized
set of points by extracting the zero level-set of a signed geometric distance function. The sign
of the distance function is determined by evaluating the scalar product of Equation 4.1, and its
absolute value by computing the distance to the closest point. The difference of Algorithm 1
to the method proposed therein is that for the finite cell method, only the inside-outside state
of a query point is required. Thus, for the purpose of an FCM simulation, only the sign of
the signed distance function is relevant, while its absolute value, which would be needed for a
subsequent surface recovery step, can be disregarded.

4.3. Treatment of outliers 107

Algorithm 1: Point membership test for oriented point clouds
1 function isPointInside (q, S) ;
Input : Quadrature point q and oriented point cloud S = {pi,ni}
Output: Boolean true if q lies inside the domain represented by S, false otherwise

2 pi,ni = getClosestPointInCloud(q, S);
3 v = pi − q;
4 d = v · ni;
5 if d ≥ 0 then
6 return true;
7 end
8 return false;

4.2.1 Connection to Voronoi diagrams

Starting from the points pi in the input point cloud, the embedding space Rd can be partitioned
into disjoint regions, each denoted by V(pi), such that every x ∈ V(pi) lies closer to pi than
to any other point pj ∈ S, j 6= i. The disjoint regions V(pi) are called Voronoi cells. The
set of Voronoi cells partitions the embedding space into n regions, usually referred to as the
Voronoi diagram V(S) for the set S of n points [149, 150].
As shown in Figure 4.2a, the hyperplane defined by the pair {pi,ni} splits the corresponding

Voronoi cell V(pi) into two halves, Ω−Vi
and Ω+

Vi
:

Ω−Vi
= {x ∈ Rd|x ∈ V(pi) ∧ (pi − x) · ni < 0}

Ω+
Vi

= {x ∈ Rd|x ∈ V(pi) ∧ (pi − x) · ni ≥ 0}.
(4.2)

If a query point q ∈ Rn is located in a Voronoi cell V(pi), its inside-outside state is de-
termined by the point pi ∈ S and the associated normal vector ni. As the Voronoi diagram
partitions Rd into disjoint regions, there is a single Voronoi cell that any q can be associated
to. It follows that the physical domain Ωphy recovered by Algorithm 1 is the union of the
inside part of all the Voronoi cells in V(S):

Ωphy =
n⋃
i=0

Ω+
Vi
, (4.3)

where n denotes the number of points in the point cloud. This concept is illustrated in
Figure 4.2b.

4.3 Treatment of outliers
Sometimes, the cloud acquired by the shape measurement process carries outliers. As defined
in [151], outliers are “observations that deviate so much from other observations as to arouse
suspicion that it was generated by a different mechanism.” The detection and treatment of
outliers is a well-studied problem in the literature and lies beyond the scope of this thesis,
see e.g. the methods in [151–157]. These algorithms can be applied in a pre-processing step

108 4. The Finite Cell Method combined with oriented point clouds

Ω+

Vi

Ω−

Vi

V(p
i
)

{p
i
, ni}

(a) Voronoi diagram showing one cell V(pi) split in
halves.

Ωphy

Ωfict

(b) Inside-outside state computed by Algorithm 1

Figure 4.2: The connection between Algorithm 1 and Voronoi diagrams. Every Voronoi cell
V(pi) is split into two halves according to the hyperplane defined by {pi,ni}. The union of
the inside part of all the Voronoi cells is Ωphy, that Algorithm 1 recovers.

in order to recover a clean cloud where the majority of the outliers have been removed. The
cleaning procedure is an essential step also in the traditional measurement-to-analysis pipeline,
as most of the geometry recovery algorithms rely on a clean input cloud.

While the cleaning process is able to remove the bulk of the outliers, if isolated outliers
remain in the cloud, they may have an effect on the point-membership classification process
of Algorithm 1. To demonstrate this, Figure 4.3a shows the inside-outside state recovered
from a point cloud consisting of 90 points and an outlier in the upper right quadrant of the
domain. As seen in the figure, the presence of the outlier causes a region in the domain to
be falsely detected as “inside”. To deal with isolated outliers, the point membership test of
Algorithm 1 is modified by testing in the n-neighborhood of the query point. In this process,
instead of checking against a single closest point, the n nearest points of q are found and the
point membership with respect to each of them is computed. If q lies inside with respect to
the majority of the points in the n neighborhood, its membership is determined as inside,
otherwise outside. Following this idea, Figure 4.3b depicts the inside-outside state recovered
using 3 nearest neighbor queries. The choice of n for the number of nearest neighbor queries is a
parameter that needs to be determined prior to the simulation. In the examples of Section 4.6,
the parameter is chosen in the range n = 5...50.

4.4. Treatment of missing parts 109

(a) Inside-outside testing using a single nearest
neighbor

(b) Inside-outside testing using 3 nearest neighbors

Figure 4.3: The effect of a single outlier (red point) on point-membership tests. The black and
white regions represent parts detected as inside and outside, respectively [4].

4.4 Treatment of missing parts

4.4.1 The effect of holes on point-membership classification
In some cases, the employed shape measurement technique may not be able to recover the
surfaces of the object of interest completely. If this situation arises, the resulting point cloud
has some missing parts. Such holes are frequently encountered if there is no direct line of sight
from the recording device to some regions of the object; when a part of the surface is occluded,
it will not be represented in the point cloud [106]. Missing parts may also appear for surfaces
with certain physical properties, such as highly transparent or reflective objects. Further, for
image-based multi-view stereo reconstructions, the lack of adequate surface texture may result
in severe undersampling of the surfaces, which can also be regarded as holes.
The presence of holes poses a challenge for the point-membership classification algorithm

of Section 4.2. To model this scenario, Figures 4.4c and 4.4b depict two reduced versions
S∗ of the cloud S in Figure 4.4a, such that S = S∗ ∪ Sh, where Sh represents the set of
missing points that the (hypothetical) shape measurement process was unable to recover. In
the absence of Sh, the shape of the recovered indicator function is determined by the positions
and orientations of the remaining points S∗. More precisely, the Voronoi diagram V(S) changes
such that the Voronoi cells associated to Sh are replaced by cells that are generated on the
remaining points. Therefore, the shape of the interface in the region of the missing points will
be determined by the orientation of the points associated to the new Voronoi cells.
If the shape of the missing region is almost planar, the recovered indicator function does

not change substantially. This is because the normal vector of low-curvature regions is almost
constant, hence the plane determined by the normals at the remaining points in the vicinity of

110 4. The Finite Cell Method combined with oriented point clouds

the hole can closely approximate the missing part, as also depicted in Figure 4.4b. However, if
the missing part stems from a region of high curvature, the recovered indicator function shows
high errors with respect to the original geometry. In this case, the recovered planar interface
is not able to represent the region of high curvature, but rather creates a pattern which makes
the impression that the indicator function was ”flowing out”, see Figure 4.4c.

4.4.2 Remedy strategies for holes
The literature discusses various approaches to deal with missing parts in the scanned data.
There are methods that aim at augmenting the cloud with new points at the holes. As demon-
strated in [158], this can be done in a two-step procedure. First, holes and their boundaries
are identified, then an algebraic surface is fitted onto the identified regions, extending the
shape of the point cloud in accordance with the shape of the vicinity of the boundary. If
prior knowledge about the geometry of the object of interest is available (e.g. in the form of
a triangulation), a similar two-step approach can be applied to first identify the holes, then
smoothly deform the shape prior towards the scanned point cloud data by minimizing the
deformation energy, as explained in [159].
Other methods integrate hole filling in the geometry recovery step: a gap that represents

a hole is conceptually the same as the space between adjacent points in the cloud. Thus,
these methods essentially fill holes during the reconstruction. Approaches that belong to this
category are based on alpha-shapes [160, 161], balls [162] or crusts [163, 164]. If the object to
be scanned is known to be watertight, those reconstruction methods that are based on fitting
an implicit function are able to bridge the gaps that represent the hole [134, 165, 10, 11, 166,
167, 12].
Other approaches aim at filling the holes on the triangulation recovered by the surface fitting

procedure. In this process, similar to the methods that operate directly on point clouds, holes
are identified then subsequently patched, as explained in [168, 169].
When the amount of missing data is significantly high, holes may be filled by extracting

higher-level information from the point cloud, such as skeletons [170–172] or shape primi-
tives [113, 117].

4.4.3 A two-step indicator function recovery for the FCM
The approaches outlined in the previous section provide ready-to-use solutions to the challenge
of missing parts in the measured point cloud. Obviously, the choice of what approach to use
depends on the requirements posed by the application. From the perspective of the FCM-
based measurement-to-analysis pipeline proposed within this chapter, the resolution strategy
addressing the problem of holes should:

1. require as little manual interaction as possible,
2. work robustly for small- and large-sized holes,
3. fill holes, but preserve fine geometric details at the same time.

A natural candidate that satisfies the above requirements is the widely-known Poisson surface
reconstruction method. In the following, the main ideas of the approach are summarized. For
a complete discussion, refer to [10, 11].

4.4. Treatment of missing parts 111

(a) Complete point cloud

(b) Missing points in a region with low curvature

(c) Missing points in a region with high curvature

Figure 4.4: The effect of holes on nearest neighbor-based point membership classification. Left
column: point clouds, with gray points representing missing parts. Right column: Voronoi
diagrams and the recovered indicator function. The Voronoi cells of the removed points are
replaced by larger cells whose shape is determined by the remaining points at the vicinity of the
hole. If points are missing in areas of low curvature, the indicator function is not influenced
significantly. When points are missing in high curvature regions, the indicator functions “flows
out”.

112 4. The Finite Cell Method combined with oriented point clouds

The key insight of the method is that the oriented points in the cloud can be thought of as
discrete samples of the gradient of the regularized equivalent of the indicator function, i.e. the
function that is one inside the physical domain and zero outside, with a smooth transition in
a narrow region between these two states. Therefore, the Poisson surface reconstruction finds
a function Φ(x) : Rd → R, such that its gradient at the location of the sample points matches
the normal vectors associated to the samples. Following these considerations, the function Φ
can be found by minimizing:

min
Φ

∫
Ω

||∇Φ− n||2dΩ. (4.4)

Applying the Euler-Lagrange equation [173], the functional in the equation above is stationary
if the following equation holds:

∆Φ = ∇ · n. (4.5)

The continuous function Φ(x) : R3 → R that solves this Poisson equation is a smooth
approximation of the indicator function, while its zero level-set is an approximation of the
boundary of the geometric domain represented by the input points. To extract this level-set,
the marching cubes technique [55] is employed.
In the original publication of the Poisson reconstruction method, homogeneous Dirichlet

boundary conditions were specified at all boundaries of the computational domain, with an
extension to Neumann boundary conditions presented in [11].
The right hand side of Equation 4.5 requires a smooth vector field in order to apply the

divergence operator. Therefore, the discrete normal vectors need to be extended to a smooth
representation. To this end, the following procedure is applied:

1. Starting from the initial point cloud S, a quadtree (in 3D, octree) O with maximum
depth D is generated, such that every point sample falls into a leaf node at depth D
(Figure 4.5a).

2. To every node o ∈ O in the tree, a basis function Fo(x) is assigned, centered at o and
scaled by the size of o:

Fo(x) = F

(
x− co
wo

)
, (4.6)

where co and wo denote the center and the width of the octree node, respectively. In [10],
the function F of Equation 4.6 is a unit integral, bivariate (in 3D, trivariate) quadratic
B-Spline (Figure 4.5b).

3. The vector field n(x) is created by taking a linear combination of the nodal bases:

n(x) =
∑
o∈OD

Fo(x)no, (4.7)

where OD are all the quadtree (in 3D, octree) nodes at depth D, and no is defined as:

no =
∑

(pi,ni)∈S

Fo(pi)ni, (4.8)

which is necessary to avoid clamping the samples to the centers of the octree nodes
(Figure 4.5c).

4.4. Treatment of missing parts 113

4. Having obtained the smooth vector field ni, its divergence is computed and used as the
right hand side in Equation 4.5 (Figure 4.5d).

(a) Input point cloud with normal vectors and
a quadtree O of depth 4.

(b) Single cubic B-Spline basis assigned to one
quadtree node o ∈ O.

(c) Smooth vector field n . (d) Divergence field ∇ · n .

Figure 4.5: Poisson surface reconstruction following [10]: the process of generating a smooth
divergence field from the discrete sample data

Having formulated ∇ · n, the Poisson problem of Equation 4.5 can be solved by means of
the Finite Element Method. In this setting, various choices of finite element basis functions
are available to discretize the indicator function Φ. As an example, Figures 4.6a-4.6c depict Φ
computed on the point clouds of Figure 4.4, using integrated Legendre polynomials of order
p = 4.
Another choice for a basis can be found in the original publication of the Poisson surface

reconstruction, where the same nodal B-Spline basis functions are used for discretizing the
solution as for manufacturing the smooth vector field. The multiresolution structure of this

114 4. The Finite Cell Method combined with oriented point clouds

basis allows for applying a multigrid-like solution strategy to obtain an efficient solution of
the resulting linear system of equations [10].

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Poisson surface reconstruction: (a)-(c) recovered indicator field Φ, (d)-(f) the
corresponding field of inside-outside state computed on the point clouds of Figure 4.4.

The iso-value for recovering the level-set surface of the indicator function can be found by
taking the average value of Φ evaluated at the sample positions:

∂M = {x ∈ R3|Φ(x) = Φc}, (4.9)

with

Φc = 1
|S|
∑
p∈S

Φ(p). (4.10)

To convert ∂M to a triangulation, the marching squares (in 3D, marching cubes) algorithm
can be used, which usually saves the resulting surface triangulation in an STL file. While this
final step of geometry recovery is necessary if the geometric model is to be further processed
(e.g. by a finite element mesh generator), it is not needed in the context of the finite cell
method. The key insight here is that in order to determine whether a point lies inside or

4.4. Treatment of missing parts 115

outside the geometric model, it suffices to evaluate Φ and compare its value to the level
set value Φc of Equation 4.10. Therefore, the scaling factor α(x) of Equation 2.46 can be
determined as follows:

α(x) =
{

1 if Φ(x) ≤ Φc,

0 otherwise.
(4.11)

Computing the inside-outside state this way allows for conducting finite cell computations
without recovering a surface triangulation of the geometric model. This method possesses the
following three advantages:

• The inherent problems of data exchange between different implementations can be
avoided.

• Querying the scalar field is a much faster operation than computing inside-outside tests
on surface triangulations.

• The problems associated to point membership tests on non-watertight triangulations can
be avoided.

As observed in Figures 4.6d-4.6f, the Poisson method reconstructs an indicator function that
does not show the problematic ”flow-out” effects seen in Figure 4.4.
At this point, the impression is that using Poisson surface reconstruction is always preferable

to the nearest-neighbor based inside outside tests of Section 4.2. While the Poisson approach
is one of the most popular methods of choice in computer graphics, where the main focus is
on recovering visually pleasing surface models, one needs to pay attention to other aspects
when performing structural analysis with the finite element method and its derivatives, such
as the finite cell method. In this context, it is important to have an accurate representation of
the geometry in those regions where rapid variations in the stress field are expected. On the
other hand, to avoid high analysis costs, it is very often desirable to disregard mechanically
irrelevant parts in a finite element model. Indeed, a geometric defeaturing step prior to finite
element mesh generation is a common procedure in everyday engineering practice [174, 175].
Because the Poisson method is based on a least-squares fit formulation, the resulting interface

does not necessarily pass through the given points in the cloud. Instead, certain details may
get lost, as shown in Figure 4.7b. To increase the amount of details kept by the method, either
a higher octree depthD for the construction of the vector field n can be chosen, or a refinement
of the finite element basis that approximates the solution of Equation 4.5 is needed, on the
expense of higher computational costs. In contrast, when the nearest neighbor-based point
membership-classification is employed, the interface is forced by definition to pass through the
given points in the point cloud, retaining even the smallest details, see Figure 4.7c.
To combine the advantageous properties of the Poisson method and the nearest neighbor-

based point membership classification, it is feasible for FCM simulations to define the indicator
function in a two-step procedure:

1. Bulk field recovery. In this step, the indicator field of the potentially incomplete point
cloud is computed using Poisson surface reconstruction. This makes sure that substantial
missing parts are closed, providing a watertight indicator field.

2. Fine detail definition. At the regions around the fine details the nearest neighbor-based
point membership classification is used. This step makes sure that the details that may
get lost during the first step are preserved.

116 4. The Finite Cell Method combined with oriented point clouds

(a) Point cloud and indicator function.

(b) Indicator function recovered by the
Poisson method, D = 4.

(c) Indicator function recovered by the nearest
neighbor-based method.

Figure 4.7: Difference of the indicator functions recovered by the Poisson method and the
nearest neighbor-based point membership classification. While the overall shape of the indicator
functions look similar, the amount of details recovered by the two methods are different.

This way, the computational costs associated to the Poisson reconstruction can be kept
at a minimum, as the method only needs to be employed to recover the ”bulk” part of the
indicator field. However, fine details are retained in the cloud due to the application of the
nearest-neighbor based inside-outside testing.

In practice, the two-step definition of the indicator function can be implemented by com-
bining the result of the Poisson method and the nearest neighbor-based approach into a CSG
tree. To this end, in a pre-processing step, the mechanically interesting parts of the input
point cloud S are selected. Let S1 ⊂ S be one such part and B1 its axis aligned bounding box.

The indicator function α1(x) can be computed on S1 with Algorithm 1. Further, using
the Poisson method, αP (x) can be defined on the whole cloud, following Equation 4.11. To

4.5. Neumann boundary conditions 117

S

S1

B1

Figure 4.8: Detail selection for the two-step indicator function recovery procedure. The orange
part S1 is selected from the overall point cloud S, depicted in blue color. In the bounding
box B1 of S1, the nearest neighbor-based point membership classification procedure is used. In
other parts of the domain, the Poisson reconstruction computes the indicator function.

combine α1(x) and αP (x) together, the following auxiliary domains are defined:

A1 = α1 ∩B1

A2 = αP −B1,
(4.12)

where ∩ and − denote the Boolean intersection and difference operations, respectively. Finally,
the indicator function of the complete domain, including the fine details are defined as:

Ω = A1 ∪ A2, (4.13)

where ∪ is the Boolean union operator. The CSG tree defined in this manner is demonstrated
in Figure 4.9.

4.5 Neumann boundary conditionsd

To apply boundary conditions in the weak sense, the contour integral in Equation 2.47 needs
to be evaluated. For surface models, this is a relatively easy procedure, as they usually possess
or can be converted into tessellations. Then, the integral over ΓN is computed as the sum of
the integrals over the individual simplices in the tessellation.
However, for point-based geometries, no such tessellations exist. Although there are methods

that are able to recover a triangulation from point cloud descriptions, their application would
require to perform the same steps as the standard steps of the measurement-to-analysis pipeline
in Figure 1.1.
An alternative formulation which allows for applying boundary conditions directly on point

cloud-based surface representations is needed. One possible solution to this challenge is to
convert the contour integral into a domain integral by using the sifting property of the Dirac

118 4. The Finite Cell Method combined with oriented point clouds

Ω

A1 A2

α1 αP B1B1

∩ −

∪

Figure 4.9: CSG tree built by combining the indicator functions defined by the Poisson method
and the nearest neighbor-based algorithm, on the cloud S of Figure 4.8. The bulk part of the
domain is recovered by the former, while the fine details by the latter.

delta distribution [176]:∫
Γ

f(x)dΓ =
∫
Ω

f(x)δ(x)dΩ, (4.14)

with

δ(x) =
{
∞ ∀x ∈ Γ
0 otherwise.

(4.15)

In numerical applications, the regularized variant of the Dirac delta distribution is employed.
There are different choices available for the regularization, see e.g. [177, 178]. In our examples,

4.5. Neumann boundary conditions 119

we employ the following 1D formulation:

δ(x) ≈ δε(x) =
{

1
2ε
(
1 + cos

(
πx
ε

))
if |x| ≤ ε,

0 otherwise,
(4.16)

where ε is a length scale parameter controlling the width of the regularization. Figure 4.10
depicts δε for different choices of ε.

−1.0 −0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

δ(
x
)

ǫ = 1.0

ǫ = 0.5

ǫ = 0.25

Figure 4.10: Regularized Dirac delta functions for different length scales [4].

To extend the delta function to more dimensions, the distance function dΓ(x) : Rn → R
is needed, that, for a given x ∈ Rn returns the distance of x to the contour Γ. Then, the
multi-dimensional regularized delta function, associated to the contour Γ can be written as:

δΓ(x) = δε(dΓ(x)). (4.17)

In the point-cloud setting, Γ is represented by the point set SΓ ⊂ S. Instead of computing the
distance to the closest point pi, we compute the planar approximation of the n-neighborhood
of pi by principal component analysis and evaluate the distance toward this approximant, as
depicted in Figure 4.11.
Finally, the contour integral for the Neumann boundary condition in Equation 2.47 is for-

mulated as:∫
ΓN

v · t̃dA ≈
∫

Ω∪

δε (dSΓ (x))
(
v · t̃

)
dΩ (4.18)

It is noted here that the transformation of boundary condition integrals into a domain integral
using the delta function is an already existing concept in the context of FCM. Similar to point-
cloud descriptions, phase-field models do not possess tessellations as well. In this case, the
approach outlined in this section can be applied to compute Neumann boundary conditions
as well as Dirichlet boundary conditions formulated in the weak sense. For more details, refer
to [179, 180].

120 4. The Finite Cell Method combined with oriented point clouds

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x

y
x

dSΓ
(x)

Figure 4.11: Computing the distance dSΓ(x) towards the point set SΓ. For a given query point
x, the nearest point p∗ and its n-neighborhood {pi} , i = 1...n is found, depicted as gray dots.
Here, n = 6. Then, the distance towards the planar approximant on {pi} is computed. The
resulting delta field is shown on the left side [4].

4.6 Examplesd

This section demonstrates the proposed point cloud-based FCM approach with numerical
examples in two and three dimensions. First, we study an example with a known reference so-
lution, where all the boundary conditions are aligned with the finite cell boundaries. This way,
the modeling errors due to the approximate application of Neumann BC-s (Equation 4.18) can
be ruled out. Thereafter, an example where the performance of applying Neumann boundary
conditions on non-conforming interfaces (as explained in Section 4.5) is tested. Finally, the
point cloud-based FCM method is demonstrated on real-life, three dimensional examples of
historical structures.

4.6.1 2D studies

4.6.1.1 Perforated plate with circular hole

Figure 4.12a depicts a rectangular plate with a circular hole in the center. The plate is
subjected to a constant traction along Γ4, while symmetry boundary conditions are applied
on Γ1 and Γ2. The Young’s modulus and the Poisson’s ratio of the material are E = 2.069 ·
105[MPa] and ν = 0.29, respectively. Considering plane stress physics, the reference strain
energy obtained by an overkill FEM analysis is Uref = 0.7021812127 [29]. For the FCM, the
embedding domain is discretized into 2×2 elements, and a value of α = 10−12 is applied to scale
the material parameters in the fictitious domain. The polynomial order of the shape functions
is p = 12. The continuous curve representing the circular hole is replaced by an oriented point
cloud consisting of n points, where n is gradually increased in the range of n = 4...4096. Refer
to Figure 4.12b for an example of such cloud. The accuracy of the analysis is measured using
the following error norm:

e = |Uref − Unum|
Uref

, (4.19)

4.6. Examples 121

4

4 Γ1

Γ2

Γ3

Γ4

100[MPa]

Ωphy

Ωfict

(a) Geometry and boundary conditions.

Ωphy

Ωfict

(b) The inner boundary replaced by an oriented point
cloud of 16 points.

Figure 4.12: Rectangular plate with a circular hole [4].

where Unum is the strain energy computed on the discrete point cloud representation of the
circular hole.
The discretization of the circular interface into an oriented point cloud can be thought of as

a replacement of the boundary by an n-sided polygon. This introduces a modeling error when
integrating the term over Ωphy in Equation 2.47, as the integration is not performed over an
exact circle but rather over its polygonal approximation. Therefore, the error is expected to
converge at the same rate as the area of an n-sided polygon converges towards the area of its
inscribed circle, i.e. quadratically.
This expectation is confirmed by the error plots on Figure 4.13. The figure depicts the

evolution of the error for increasing cloud densities, for different maximum levels of quadtree
subdivision k = {4, 6, 8}. Initially, the polygonal approximation dominates the error and the
curves show quadratic convergence. Eventually, depending on the value of k, the convergence
curves level off into a plateau. In the plateau region, the error due to the quadtree-based
integration overtakes the polygonal discretization error: even though the interface is modeled
by higher resolutions, the integration scheme is not able to resolve this increase in geometric
accuracy.

4.6.1.2 Perforated plate with elliptical hole under internal pressure

In this example, the circular interface from the previous section is replaced by an elliptical
curve (Figure 4.14). To investigate the effects of applying Neumann boundary conditions as
described in Section 4.5, the elliptical hole is discretized into an oriented point cloud along
which a constant internal pressure of 1[MPa] is applied. The reference value for the strain
energy computed by p-FEM is U = 44.28375067893. The domain is discretized into a regular

122 4. The Finite Cell Method combined with oriented point clouds

100 101 102 103 104

Number of points

10−6

10−5

10−4

10−3

10−2

10−1

100

e

β = −2.0

k = 4

k = 6

k = 8

Figure 4.13: Rectangular plate with circular hole: convergence of error for increasing cloud
densities and different maximum levels of quadtree subdivision k [4].

grid of 6 × 6 finite cells, where the polynomial order of the shape functions varies in the
range p = 1...10. The regularization parameter of the Dirac delta function in Equation 4.16
is chosen as ε = 0.0625. The diffuse region obtained this way (see Figure 4.11) is integrated
using composed Gaussian quadrature of order 10 combined with a quadtree-based subdivision
of maximum level k = 8. While this integration depth seems to be excessively large for
practical applications, it should be noted here that in the usual case the size of the surfaces
where weak boundary conditions need to be applied is significantly smaller than the overall
sizes of the geometries of interest. Therefore, applying the boundary conditions in this manner
does not lead to a significant performance penalty.
To rule out the errors associated to the discontinuity in the indicator function α(x), the

stiffness matrix is integrated using the exact integration technique described in [16]. This
way, the error due to the approximate application of the Neumann boundary condition is
examined exclusively.

14

14

7

3.5Γ1

Γ2

Γ3

Ωphy

Ωphy

Figure 4.14: Rectangular plate with elliptical hole under internal pressure [4].

Figure 4.15 depicts the convergence of the error in the energy norm, for different point cloud

4.6. Examples 123

densities. As the figure shows, the expected exponential rate of convergence can be attained
in the pre-asymptotic range. However, similar to the study conducted in Section 4.6.1.1,
the convergence curves level off into a plateau, depending on the density of the point cloud.
As higher cloud densities are able to represent the underlying elliptical contour with higher
accuracy, the level-off location shifts towards lower errors for increasing number of points in
the cloud. It is noted here, however, that even a relatively low density (1000 points) is able
to produce an error in the range of 1%, which is sufficient for most engineering applications.

101 102 103 104

Number of degrees of freedom

10−1

100

101

102

R
el

at
iv

e
er

ro
r

in
en

er
gy

no
rm

[%
]

Number of points in the point cloud

n = 102

n = 103

n = 104

n = 105

n = 106

Figure 4.15: Convergence of the error in energy norm when boundary conditions are applied
using the regularized delta function. The polynomial order of shape functions is varied in the
range p = 1..10. The regularization parameter of the delta function is ε = 0.0625 [4].

4.6.2 3D examples
In the following, the proposed point cloud-based FCM approach is demonstrated on three-
dimensional structures represented by oriented point clouds.

4.6.2.1 Athlete

Figure 4.16a shows a statue from the museum Glyptothek located in Munich, Germany. The
object was recorded using a cell phone camera from 36 different views. These input images
were processed by the popular structure-from-motion toolbox VisualSFM [181], and the multi-
view reconstruction algorithm of [103], as demonstrated in Figure 4.16b. The resulting point
cloud is depicted in Figure 4.16c. The point cloud was embedded in a regular mesh of 325
finite cells with polynomial order p = 5, as shown in Figure 4.17a. Linear elastic material
behavior is assumed, and the structure is loaded under its self-weight. The scaling factor α
for the FCM was chosen as 10−6. Homogeneous Dirichlet boundary conditions were applied
on the bottom faces of the finite cell mesh, in order to rigidly fix the statue to the ground.
The resulting stress field is depicted in Figure 4.17b, while a detailed view on a cross-section

of the left foot is shown in Figure 4.17c. As seen in the Figure, the peak stress occurs at

124 4. The Finite Cell Method combined with oriented point clouds

(a) Example input pic-
ture

(b) Recovered point cloud and camera positions (c) Point cloud and the
associated normal vec-
tors

Figure 4.16: Statue example: input pictures and the resulting cloud [4].

(a) Point cloud embedded into a
regular mesh of finite cells

(b) von-Mises stresses through-
out the structure

(c) A detailed view on a
section of the left foot

Figure 4.17: Statue example: discretization and stresses [4].

4.6. Examples 125

the “ankle” region, which possesses the smallest cross-section over the entire structure. This
phenomenon is in good accordance with other observations from the study of the structural
behavior of stone statues: numerical computations conducted on “David” from Michelangelo
showed a similar stress distribution, with the peak occurring in the ankle area [6]. Interestingly,
other areas of increased stresses also appear such as the area around the neck as well as areas
in the upper thigh. Other intuitive candidates for high stresses, such as the left arms and
shoulders can be disregarded.
While this example illustrates the main steps of the proposed point cloud based FCM

pipeline, without further knowledge about the material parameters, the computed results
merely allow for a qualitative assessment of the stress distribution in the statue. The next
example addresses this question on a structure where the material properties are known.

4.6.2.2 The cistern of the Hagia Thekla Basilica in Turkey

The archaeological site at Hagia Thekla (Meryemlik) was a major pilgrimage site in late
antiquity [182]. There are numerous structures of different types in the site, which can be
identified above ground by sight.
The cistern of the Thekla Basilica is part of the water storage and distribution system of

the main church of the site and its sacred area enclosed by walls. It has a rectangular plan
measuring approximately 12 × 14.6 meters in the interior. The interior space is divided into
three aisles by two rows of columns (Figures 4.18b and 4.18a†). The columns in each row
are connected by arches. Three barrel vaults cover the interior running in the north-south
direction. The columns supporting the upper structure are made of a pink calcareous stone
and originally had a diameter of approximately 45 cm. The columns have double capitals made
of limestone. It is not possible to make observations about the condition of the column bases
and the floor, due to the thick layer of earth accumulated inside the cistern over centuries.
The outer walls are built with a multi-leaf masonry construction system. The outer facing
of the walls are made of big limestone blocks, while the inner faces are constructed with
brick and mortar. As seen in Figure 4.18a, the cross-sections of the columns have decreased
remarkably. The exterior surfaces are flaking due to physicochemical effects; the erosion
continues. In addition to surface erosion with a non-uniform pattern, there are deep cavities
on the columns. One of the columns (Column 3) has already collapsed and was replaced by a
concrete column in the 1960’s.
The shape of the decayed column surfaces and cavities are difficult to record using manual

measurement procedures. Therefore, the structure was measured using a high definition sur-
veying scanner as demonstrated in [8]. During the field campaign, the instrument was set up
at a number of positions around each column at a distance of a few meters. Thus, a maximum
point density of approx. 5 mm was ensured to represent the highly decayed columns. More
details on the measurement process can be found in [8]. Figure 4.19a depicts the measured
point cloud, consisting of 107 points.
The most vulnerable elements of the structure are the columns. As stress concentrations

are expected at the cavities on the surfaces of the columns, a reduction of the discretization
error by a refinement of the computational grid is needed. For reasons of efficiency, it is
important to refine the grid only around the columns, where the stress field is expected to

†The illustrations of the figure and the point cloud of the temple were provided by Umut Almac, this
contribution is greatly appreciated.

126 4. The Finite Cell Method combined with oriented point clouds

(a) Interior view.

(b) Plan and cross section.

Figure 4.18: The cistern of Hagia Thekla Basilica [4].

4.6. Examples 127

(a) Point cloud

(b) The geometry embedded into a finite cell mesh

Figure 4.19: Cistern example [4].

128 4. The Finite Cell Method combined with oriented point clouds

(a) Column 2 (b) Column 4

Figure 4.20: Refined computational grid around the two columns [4].

change rapidly. For the FEM and the FCM, such local refinement techniques have been well-
studied recently. In our applications, we employ the multi-level hp-adaptivity technique of [38].
In the refinement procedure, those cells that are intersected by the points representing column
2 and 4 are recursively subdivided into eight equal subcells, until a subdivision depth of 4 is
reached. A cross sectional view of the refined mesh is depicted in Figure 4.20.
The material properties were defined to be linear elastic and isotropic, with an elastic mod-

ulus and a Poisson’s ratio of E = 2 · 104MPa and ν = 0.2, respectively. The specific gravity
of the material was set to 27 kN/m3. These parameters were obtained from measurements
conducted on stone specimens collected from the vaults, walls and columns of the structure. In
the fictitious domain, the material was given a stiffness of 2 MPa. The foundation of the struc-
ture was rigidly fixed to the ground. The maximum principal stress distribution computed by
the FCM is depicted in Figure 4.21.
As expected, the highest compressive stresses occur in the columns. The stress values are

in the range of 2...6 MPa, while the peak value occurs at the connection between the columns
and their capitals. This is in good agreement with the values computed in [8], following
the traditional measurement-to-analysis procedure. A comparison of principal stresses along
column 2 is given on Figure 4.22.
Because the only requirement toward the geometric model is that it needs to be able to

provide point-membership information, the finite cell method opens up a convenient way to
investigate the effects of geometric changes, such as the removal of a specific column. Within
the FCM, it is easily possible to integrate different geometric models following the idea of
Constructive Solid Geometry (CSG) modeling [43]. In CSG, 3D objects can be created by
combining geometric primitives into a tree structure, using boolean operations. To determine
if a point lies within the model or not, the tree structure is traversed from the root towards
the leaves, combining the inside-outside state according to the boolean operations at each
level. Following this idea, we investigate the effect of removing Column 3 from Ωphy: using

4.6. Examples 129

(a) Complete structure

(b) Principal stresses in Column 2 (c) Principal stresses in Column 4

Figure 4.21: Cistern example: principal stress distribution [4].

130 4. The Finite Cell Method combined with oriented point clouds

Figure 4.22: Cistern example: comparison of the maximum principal stresses computed by
the FCM (left) and a commercial FEM software (right). The picture on the right is taken
from [8] [4].

boolean difference, the bounding box of the points representing the column is subtracted from
the point cloud, as Figure 4.23 depicts.
The principal stress distribution in this scenario is depicted in Figure 4.24. As shown on

the figure, the removal of the column causes a redistribution of the loads onto the neighboring
supports, leading to an increase in the principal stresses in columns 2 and 4. The redistribu-
tion phenomenon can be demonstrated by comparing the principal stress trajectories in the
configurations with and without the column, as depicted in Figure 4.25. Due to the removal
of the column, a new “arc” forms between the two neighboring columns. This arc is in com-
pression and carries the redistributed load. The newly formed stress state answers why did
no structural failure occur when column 3 collapsed: as stone is able to carry substantially
higher loads in compression than in tension and the arc of principal stresses is predominantly
in compression, the structure was able to endure the collapse.

4.6.2.3 Tower measured by an UAV

Image-based shape measurement algorithms are not limited to pictures stemming from hand-
held devices. Recent developments in the technology of unmanned air vehicles (UAV) have
made it possible to record high-quality pictures of objects of virtually any size for a low cost.
For an overview of UAV-based remote sensing methods, refer to [183].
In the context of cultural heritage preservation, aerial images have proven to be especially

useful in bridging the disparate scales that are present when scanning archaeological sites [184].
As shown in [185, 186], a carefully conducted acquisition process can provide point clouds that
are accurate up to a few centimeters, even if the overall scale of the measured site is in the
order of hundreds of meters. The combination of UAV-based remote sensing and traditional
terrestrial measurement approaches (e.g. laser scanning) even allows for reconstructing mul-
tiresolution models of scales ranging from the geographical level to the level resolving the

4.6. Examples 131

1 2 3 4

A B

\

A \ B

Figure 4.23: Column 3 removed using a CSG tree with a boolean difference operation. The
column numbers are displayed under the point cloud [4].

(a) Principal stresses in Column 2 (b) Principal stresses in Column 4

Figure 4.24: Cistern example: principal stress distribution without Column 3 [4].

132 4. The Finite Cell Method combined with oriented point clouds

Figure 4.25: Cistern example: principal stress trajectories on the intact structure [4].

4.6. Examples 133

Figure 4.26: Cistern example: principal stress trajectories on the structure without column
3 [4].

134 4. The Finite Cell Method combined with oriented point clouds

Figure 4.27: Hocheppan Castle and the tower located on the north side of the site [4].

finest architectural details [187].
While the geometric models recovered in this manner are predominantly used for documenta-

tion, conservation planning or entertainment such as virtual reality exhibitions (see e.g. [105]),
the measured point clouds are also perfectly suited for numerical analysis by the Finite Cell
Method. In the following, this idea is demonstrated on the ruin of a medieval tower of the
Hocheppan Castle, located in South Tyrol, Italy. The castle and its surroundings as well as
the tower are depicted in Figure 4.27.
To recover the shape of the tower, a DJI Phantom 4 drone was flown around the structure.

During the 30 minutes long flight, 120 pictures were recorded from different heights and angles.
As seen on the right side of Figure 4.27, the side of the ruin opposite to the collapsed parts is
surrounded by trees. In order to get a better view from these sides as well, 15-20 additional
photos were made by a hand-held camera. The recorded images were processed by the open
source SfM software COLMAP [188, 189], followed by a multi-view stereo triangulation using
Furukawa’s PMVS [103] algorithm. The resulting point cloud consisting of 3 million points is
depicted in Figure 4.28a.
To compute the stress state that is present in the structure under its self weight, the point

cloud was immersed in a regular mesh of 12 × 12 × 12 finite cells of order p = 3. The
material was assumed to be linear elastic, with an elastic modulus and Poisson’s ratio of
E = 2 · 1010 Pa and ν = 0.2, respectively. The scaling parameter in the fictitious domain was
chosen as α = 1 · 10−8. The foundation of the tower was fixed to the ground rigidly and the
structure was loaded under its self-weight, with a specific gravity of 27kN

m3 . Conducting a finite
element analysis for this setup results in the stress state depicted in Figure 4.28b.
Without precise knowledge about the characteristics of the materials used for the construc-

tion of the tower, it is only possible to assess the validity of the results qualitatively. As
expected, the gravitational loads lead to an overall steady increase in the principal stresses to-
wards the bottom of the structure. The openings along the walls act as ”stress concentrators”,
causing local peaks in the field of principal stresses.
In order to get a better understanding about the structural health of the tower ruin, more

detailed analyses could be conducted in the future, addressing several aspects that were not
in the scope of this thesis. These points are summarized in the next section.

4.6. Examples 135

(a) Point cloud

(b) Principal stresses

Figure 4.28: Tower ruin at the Hocheppan Castle: point cloud and principal stresses computed
by the FCM [4].

136 4. The Finite Cell Method combined with oriented point clouds

137

Chapter 5

Summary and outlook

The Finite Element Method is one of the most important tools in everyday engineering prac-
tice, used to predict the behavior of physical phenomena governed by partial differential equa-
tions. One reason for the high popularity of the method is that it can deal with almost
arbitrarily complex geometric models, as long as said models can be meshed, i.e. decomposed
into an interconnected network of finite elements. The challenge that one faces very often
when conducting a finite element simulation is that many geometric models are not directly
suited for mesh generation. There can be various reasons for this difficulty. Firstly, because
geometric models form the basis of many downstream applications in product life cycle man-
agement, they are not designed primarily with numerical analysis in mind. Therefore, models
may contain topological defects, missing parts, or unnecessary details, which are acceptable
from the design aspect, but not for numerical analysis. Secondly, product design and numer-
ical analysis are usually not performed within a single software. Instead, different tools are
used for individual simulation tasks. Transferring the data between representations of such
tools may remove important details of the geometric model or introduce unwanted artefacts.
Finally, some of the structures to be analyzed may not possess a CAD representation at all.
This is the case for natural shapes (landscapes or rock formations), or objects of cultural
heritage preservation, such as statues, old buildings and monuments.
Nevertheless, it is of high importance to assess the structural health of objects without a

CAD representation. To construct a finite element model in these cases, the shape of interest
needs to be measured by some shape measurement technique. The output of this process
is usually a point cloud, a set of discrete points representing the structure’s surface. In the
standard case, this point cloud data is processed through several stages to derive a finite
element model.
This measurement-to-analysis pipeline relies on the interplay of various algorithms from

computational science and engineering. The problem lying in this dependency is two-fold: the
process is hard to automate, and the analyst performing the finite element computation needs
to be experienced with many softwares and be aware of the respective pitfalls associated to
the individual steps.
This thesis explored and demonstrated the steps and shortcuts that may be taken when

performing the steps of the measurement-to-analysis pipeline, in particular the following:

• The step of generating a finite element mesh can be avoided by employing a high-order
immersed boundary technique, the Finite Cell Method. As this method computes on

138 5. Summary and outlook

a non-boundary-conforming background mesh, it is of high importance to evaluate ac-
curately the discontinuous integrals that arise in those elements which are cut by the
boundary. In Chapter 2, an efficient and accurate method for numerical integration in
two- and three-dimensions was presented. It was shown that the method is capable of
delivering results with higher accuracy than traditional approaches with less computa-
tional effort.

• The usual assumption when gathering the shapes from pictures is that no refraction oc-
curs between the recording device and the object. Chapter 3 presented an approach that
includes the effects of refraction in the corresponding bundle adjustment formulation. It
was demonstrated how the method can be applied for reconstructing objects immersed
in a water container.

• A particularly effective shortcut can be taken when combining point cloud-based ge-
ometry descriptions with the Finite Cell Method. As shown in Chapter 2, the only
information that the FCM needs from a geometric model is inside-outside state: given
a point in space, does this point lie in the physical domain or in the surroundings?
Chapter 4 demonstrated that this information can be extracted from oriented point
clouds, allowing for direct finite cell analysis of point cloud-based geometric models.
This way, the potentially complicated step of geometry recovery and mesh generation
can be completely avoided, establishing a seamless connection between shape measure-
ments and structural analysis. The chapter also addressed possible solution strategies
to the question of applying boundary conditions on point-based surfaces.

The results and observations of this work open the door for further research in various
directions, such as:

• The method of smart octrees was primarily designed for efficient integration of BRep
models. There are however other geometric representations where the application of
the method could be investigated. One possible direction of further research could be to
apply the method on constructive solid geometries, or implicit geometry representations,
such as level set functions. The challenging aspect within this application area is that
these models do not contain explicit information about sharp edges or vertices, the
identification of which is indispensable when the goal is to perform accurate domain
decomposition.

• Another direction concerning the method of smart octrees is to investigate its com-
bination with moment fitting. Here, smart octrees could be employed to evaluate the
domain integral on the right hand side of the equation for the weights, see Equation 2.49.
This way, the smart octree method would ensure that domain integrands are evaluated
accurately, while moment fitting would allow for a further reduction of the number of
quadrature points.

• The examples in Chapter 4 relied on the assumption that the material of the objects is
homogeneous and linear elastic. For historical structures, dealing with non-homogeneous
material distributions should be investigated. As reconstruction from pictures or by laser
scanning delivers only surface information, this extension would require the coupling of
these measurement approaches to methods known from non-destructive testing.

• For more accurate results, cracks, if visible on the structure, should be incorporated in
the finite cell model.

139

• The method presented for dealing with boundary conditions on point-based surfaces was
explored only for Neumann boundary conditions. A natural extension of this would be
to investigate the application of Dirichlet boundary conditions formulated in the weak
sense, e.g. by the penalty method or Nitsche’s formulation.

140 5. Summary and outlook

BIBLIOGRAPHY 141

Bibliography

[1] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric analysis: Towards Inte-
gration of CAD and FEM. New York: John Wiley & Sons, 2009.

[2] Y. Zhang, “Challenges and advances in image-based geometric modeling and mesh gen-
eration,” in Image-Based Geometric Modeling and Mesh Generation (Y. J. Zhang, ed.),
pp. 1–10, Dordrecht: Springer Netherlands, 2013.

[3] K. Kolev, T. Brox, and D. Cremers, “Fast joint estimation of silhouettes and dense 3D
geometry from multiple images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 3, pp. 493–505, 2012.

[4] L. Kudela, S. Kollmannsberger, U. Almac, and E. Rank, “Direct structural analysis of
domains defined by point clouds,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 358, p. 112581, 2020.

[5] I. Kalisperakis, C. Stentoumis, L. Grammatikopoulos, M. E. Dasiou, and I. N. Psy-
charis, “Precise 3D recording for finite element analysis,” in Proceedings of the 2015
International Congress on Digital Heritage, vol. 2, pp. 121–124, IEEE, 2015.

[6] A. Borri and A. Grazini, “Diagnostic analysis of the lesions and stability of Michelan-
gelo’s David,” Journal of Cultural Heritage, vol. 7, no. 4, pp. 273–285, 2006.

[7] B. Riveiro, J. Caamaño, P. Arias, and E. Sanz, “Photogrammetric 3D modelling and
mechanical analysis of masonry arches: An approach based on a discontinuous model of
voussoirs,” Automation in Construction, vol. 20, no. 4, pp. 380–388, 2011.

[8] U. Almac, I. P. Pekmezci, and M. Ahunbay, “Numerical analysis of historic structural
elements using 3D point cloud data,” The Open Construction and Building Technology
Journal, vol. 10, no. 1, 2016.

[9] G. Castellazzi, A. M. D’Altri, G. Bitelli, I. Selvaggi, and A. Lambertini, “From laser
scanning to finite element analysis of complex buildings by using a semi-automatic pro-
cedure,” Sensors, vol. 15, no. 8, pp. 18360–18380, 2015.

[10] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Proceed-
ings of the fourth Eurographics symposium on Geometry processing, vol. 7, p. 61–70,
Eurographics Association, 2006.

[11] M. Kazhdan and H. Hoppe, “Screened Poisson surface reconstruction,” ACM Transac-
tions on Graphics (ToG), vol. 32, no. 3, p. 29, 2013.

142 BIBLIOGRAPHY

[12] F. Calakli and G. Taubin, “SSD: Smooth signed distance surface reconstruction,” in
Computer Graphics Forum, vol. 30, pp. 1993–2002, Wiley Online Library, 2011.

[13] M. W. Beall, J. Walsh, and M. S. Shephard, “Accessing CAD Geometry for Mesh Gen-
eration,” in 12th International Meshing Roundtable, Sandia National Laboratories, 2003.

[14] B. Wassermann, S. Kollmannsberger, S. Yin, L. Kudela, and E. Rank, “Integrating
cad and numerical analysis: ’dirty geometry’ handling using the finite cell method,”
Computer Methods in Applied Mechanics and Engineering, vol. 351, pp. 808–835, 2019.

[15] L. Kudela, “Highly accurate subcell integration in the context of the finite cell method,”
Master’s thesis, Technical University of Munich, 2013.

[16] L. Kudela, N. Zander, T. Bog, S. Kollmannsberger, and E. Rank, “Efficient and accu-
rate numerical quadrature for immersed boundary methods,” Advanced Modeling and
Simulation in Engineering Sciences, vol. 2, no. 1, p. 10, 2015.

[17] L. Kudela, N. Zander, S. Kollmannsberger, and E. Rank, “Smart octrees: Accurately
integrating discontinuous functions in 3D,” Computer Methods in Applied Mechanics
and Engineering, vol. 306, pp. 406–426, 2016.

[18] L. Kudela, F. Frischmann, O. E. Yossef, S. Kollmannsberger, Z. Yosibash, and E. Rank,
“Image-based mesh generation of tubular geometries under circular motion in refractive
environments,” Machine Vision and Applications, vol. 29, no. 5, pp. 719–733, 2018.

[19] O. C. Zienkiewicz, R. L. Taylor, O. C. Zienkiewicz, and R. L. Taylor, The finite element
method, vol. 36. McGraw-Hill London, 1977.

[20] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Mineola, New York: Dover Publications, 2000.

[21] B. Szabó and I. Babuška, Finite element analysis. John Wiley & Sons, 1991.

[22] A. Düster, E. Rank, and B. Szabó, “The p-version of the finite element and finite cell
methods,” Encyclopedia of Computational Mechanics Second Edition, pp. 1–35, 2017.

[23] W. J. Gordon and C. A. Hall, “Transfinite element methods: blending-function interpo-
lation over arbitrary curved element domains,” Numerische Mathematik, vol. 21, no. 2,
pp. 109–129, 1973.

[24] L. Piegl and W. Tiller, The NURBS book. Springer Science & Business Media, 2012.

[25] K. Ho-Le, “Finite element mesh generation methods: a review and classification,”
Computer-Aided Design, vol. 20, no. 1, pp. 27–38, 1988.

[26] J. F. Thompson, B. K. Soni, and N. P. Weatherill, Handbook of grid generation. CRC
press, 1998.

[27] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-
in pre-and post-processing facilities,” International Journal for Numerical Methods in
Engineering, vol. 79, no. 11, pp. 1309–1331, 2009.

BIBLIOGRAPHY 143

[28] C. Sorger, F. Frischmann, S. Kollmannsberger, and E. Rank, “TUM.GeoFrame: au-
tomated high-order hexahedral mesh generation for shell-like structures,” Engineering
with Computers, vol. 30, no. 1, pp. 41–56, 2014.

[29] J. Parvizian, A. Düster, and E. Rank, “Finite cell method,” Computational Mechanics,
vol. 41, no. 1, pp. 121–133, 2007.

[30] D. Schillinger and M. Ruess, “The finite cell method: a review in the context of higher-
order structural analysis of CAD and image-based geometric models,” Archives of Com-
putational Methods in Engineering, vol. 22, no. 3, pp. 391–455, 2015.

[31] A. Düster, J. Parvizian, Z. Yang, and E. Rank, “The finite cell method for three-
dimensional problems of solid mechanics,” Computer Methods in Applied Mechanics and
Engineering, vol. 197, no. 45-48, pp. 3768–3782, 2008.

[32] D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, and E. Rank, “Small and
large deformation analysis with the p- and B-spline versions of the finite cell method,”
Computational Mechanics, vol. 50, no. 4, pp. 445–478, 2012.

[33] M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, and E. Rank, “Weakly enforced
essential boundary conditions for NURBS-embedded and trimmed NURBS geometries
on the basis of the finite cell method,” International Journal for Numerical Methods in
Engineering, vol. 95, no. 10, pp. 811–846, 2013.

[34] I. Babuška, “The finite element method with penalty,” Mathematics of Computation,
vol. 27, no. 122, pp. 221–228, 1973.

[35] B. Flemisch and B. I. Wohlmuth, “Stable Lagrange multipliers for quadrilateral meshes
of curved interfaces in 3D,” Computer Methods in Applied Mechanics and Engineering,
vol. 196, no. 8, pp. 1589–1602, 2007.

[36] A. Embar, J. Dolbow, and I. Harari, “Imposing Dirichlet boundary conditions with
Nitsche’s method and spline-based finite elements,” International Journal for Numerical
Methods in Engineering, vol. 83, no. 7, pp. 877–898, 2010.

[37] D. Schillinger and E. Rank, “An unfitted hp-adaptive finite element method based on
hierarchical B-splines for interface problems of complex geometry,” Computer Methods
in Applied Mechanics and Engineering, vol. 200, no. 47-48, pp. 3358–3380, 2011.

[38] N. Zander, T. Bog, S. Kollmannsberger, D. Schillinger, and E. Rank, “Multi-level hp-
adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging
nodes,” Computational Mechanics, vol. 55, no. 3, pp. 499–517, 2015.

[39] D. D’Angella, S. Kollmannsberger, E. Rank, and A. Reali, “Multi-level Bézier extraction
for hierarchical local refinement of isogeometric analysis,” Computer Methods in Applied
Mechanics and Engineering, vol. 328, pp. 147–174, 2018.

[40] F. de Prenter, C. V. Verhoosel, G. J. van Zwieten, and E. H. van Brummelen, “Condition
number analysis and preconditioning of the finite cell method,” Computer Methods in
Applied Mechanics and Engineering, vol. 316, pp. 297–327, 2017.

144 BIBLIOGRAPHY

[41] A. Abedian, J. Parvizian, A. Düster, H. Khademyzadeh, and E. Rank, “Performance of
different integration schemes in facing discontinuities in the finite cell method,” Inter-
national Journal of Computational Methods, vol. 10, no. 03, p. 1350002, 2013.

[42] M. Ruess, D. Tal, N. Trabelsi, Z. Yosibash, and E. Rank, “The finite cell method for bone
simulations: verification and validation,” Biomechanics and Modeling in Mechanobiol-
ogy, vol. 11, no. 3-4, pp. 425–437, 2012.

[43] B. Wassermann, S. Kollmannsberger, T. Bog, and E. Rank, “From geometric design to
numerical analysis: a direct approach using the finite cell method on constructive solid
geometry,” Computers & Mathematics with Applications, vol. 74, no. 7, pp. 1703–1726,
2017.

[44] M. Elhaddad, N. Zander, S. Kollmannsberger, A. Shadavakhsh, V. Nübel, and E. Rank,
“Finite cell method: High-order structural dynamics for complex geometries,” Interna-
tional Journal of Structural Stability and Dynamics, vol. 15, no. 07, p. 1540018, 2015.

[45] B. Müller, F. Kummer, and M. Oberlack, “Highly accurate surface and volume inte-
gration on implicit domains by means of moment-fitting,” International Journal for
Numerical Methods in Engineering, vol. 96, no. 8, pp. 512–528, 2013.

[46] M. Joulaian, S. Hubrich, and A. Düster, “Numerical integration of discontinuities on
arbitrary domains based on moment fitting,” Computational Mechanics, vol. 57, no. 6,
pp. 979–999, 2016.

[47] S. Hubrich, P. Di Stolfo, L. Kudela, S. Kollmannsberger, E. Rank, A. Schröder, and
A. Düster, “Numerical integration of discontinuous functions: moment fitting and smart
octree,” Computational Mechanics, vol. 60, no. 5, pp. 863–881, 2017.

[48] S. Hubrich and A. Düster, “Numerical integration for nonlinear problems of the finite cell
method using an adaptive scheme based on moment fitting,” Computers & Mathematics
with Applications, vol. 77, no. 7, pp. 1983–1997, 2019.

[49] K. W. Cheng and T.-P. Fries, “Higher-order XFEM for curved strong and weak discon-
tinuities,” International Journal for Numerical Methods in Engineering, vol. 82, no. 5,
pp. 564–590, 2010.

[50] G. Legrain, “A NURBS enhanced extended finite element approach for unfitted CAD
analysis,” Computational Mechanics, vol. 52, no. 4, pp. 913–929, 2013.

[51] R. Sevilla, S. Fernández-Méndez, and A. Huerta, “NURBS-enhanced finite element
method (NEFEM),” International Journal for Numerical Methods in Engineering,
vol. 76, no. 1, pp. 56–83, 2008.

[52] T.-P. Fries and S. Omerović, “Higher-order accurate integration of implicit geometries,”
International Journal for Numerical Methods in Engineering, vol. 106, no. 5, pp. 323–
371, 2016.

BIBLIOGRAPHY 145

[53] E. Nadal, J. Ródenas, J. Albelda, M. Tur, J. Tarancón, and F. Fuenmayor, “Efficient
finite element methodology based on cartesian grids: application to structural shape
optimization,” in Abstract and Applied Analysis, vol. 2013, Hindawi, 2013.

[54] O. Marco, R. Sevilla, Y. Zhang, J. J. Ródenas, and M. Tur, “Exact 3D boundary
representation in finite element analysis based on Cartesian grids independent of the
geometry,” International Journal for Numerical Methods in Engineering, vol. 103, no. 6,
pp. 445–468, 2015.

[55] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface con-
struction algorithm,” in Proceedings of the 14th Annual Conference on Computer Graph-
ics and Interactive Techniques, vol. 21, pp. 163–169, Association for Computing Machin-
ery, 1987.

[56] G. Királyfalvi and B. A. Szabó, “Quasi-regional mapping for the p-version of the finite
element method,” Finite Elements in Analysis and Design, vol. 27, no. 1, pp. 85–97,
1997.

[57] Q. Chen and I. Babuška, “Approximate optimal points for polynomial interpolation of
real functions in an interval and in a triangle,” Computer Methods in Applied Mechanics
and Engineering, vol. 128, no. 3-4, pp. 405–417, 1995.

[58] C. Verhoosel, G. van Zwieten, B. van Rietbergen, and R. de Borst, “Image-based goal-
oriented adaptive isogeometric analysis with application to the micro-mechanical mod-
eling of trabecular bone,” Computer Methods in Applied Mechanics and Engineering,
vol. 284, pp. 138–164, 2015. Isogeometric Analysis Special Issue.

[59] I. Khan, “Motor cycle engine internal setup - connecting rod.” https://grabcad.com/
library/motor-cycle-engine-internal-setup-connecting-rod-1, 2015. [Online,
accessed 19th October 2015].

[60] R. J. Hocken and P. H. Pereira, Coordinate measuring machines and systems. CRC
Press, 2016.

[61] C. Butler, “An investigation into the performance of probes on coordinate measuring
machines,” Industrial Metrology, vol. 2, no. 1, pp. 59–70, 1991.

[62] T. Várady, R. R. Martin, and J. Cox, “Reverse engineering of geometric models–an
introduction,” Computer-Aided Design, vol. 29, no. 4, pp. 255–268, 1997.

[63] M. Vermeulen, P. Rosielle, and P. Schellekens, “Design of a high-precision 3D-coordinate
measuring machine,” CIRP Annals, vol. 47, no. 1, pp. 447–450, 1998.

[64] Y. Li and P. Gu, “Free-form surface inspection techniques state of the art review,”
Computer-Aided Design, vol. 36, no. 13, pp. 1395–1417, 2004.

[65] P. Blondel and B. J. Murton, Handbook of seafloor sonar imagery, vol. 7. Wiley Chich-
ester, UK, 1997.

https://grabcad.com/library/motor-cycle-engine-internal-setup-connecting-rod-1
https://grabcad.com/library/motor-cycle-engine-internal-setup-connecting-rod-1

146 BIBLIOGRAPHY

[66] A. Fenster, D. B. Downey, and H. N. Cardinal, “Three-dimensional ultrasound imaging,”
Physics in Medicine & Biology, vol. 46, no. 5, p. R67, 2001.

[67] J. Blitz and G. Simpson, Ultrasonic methods of non-destructive testing, vol. 2. Springer
Science & Business Media, 1995.

[68] G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D
imaging sensors in industry, cultural heritage, medicine, and criminal investigation,”
Sensors, vol. 9, pp. 568–601, Jan 2009.

[69] F. Blais, M. Rioux, and J.-A. Beraldin, “Practical considerations for a design of a high
precision 3-D laser scanner system,” in Optomechanical and electro-optical design of
industrial systems, vol. 959, pp. 225–247, International Society for Optics and Photonics,
1988.

[70] B. Curless and M. Levoy, “Better optical triangulation through spacetime analysis,” in
Proceedings of IEEE International Conference on Computer Vision, pp. 987–994, IEEE,
1995.

[71] K. L. Boyer and A. C. Kak, “Color-encoded structured light for rapid active ranging,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 1, pp. 14–28,
1987.

[72] O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light
range scanning of moving objects,” in Proceedings of the Eighth IEEE International
Conference on Computer Vision. ICCV 2001, vol. 2, pp. 359–366, IEEE, 2001.

[73] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge
university press, 2003.

[74] R. Szeliski, Computer Vision: Algorithms and Applications. Berlin, Heidelberg:
Springer-Verlag, 1st ed., 2010.

[75] A. Heyden and M. Pollefeys, “Multiple view geometry,” in Emerging Topics in Computer
Vision, Prentice Hall PTR, 2005.

[76] R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Understanding,
vol. 68, no. 2, pp. 146–157, 1997.

[77] C. G. Harris, M. Stephens, et al., “A combined corner and edge detector.,” in Alvey
vision conference, vol. 15, pp. 10–5244, Citeseer, 1988.

[78] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[79] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in European
conference on computer vision, pp. 404–417, Springer, 2006.

[80] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to
SIFT or SURF,” in 2011 International Conference on Computer Vision, pp. 2564–2571,
IEEE, 2011.

BIBLIOGRAPHY 147

[81] A. W. Fitzgibbon and A. Zisserman, “Automatic camera recovery for closed or open
image sequences,” in European Conference on Computer Vision (ECCV), pp. 311–326,
Springer, 1998.

[82] P. Moulon, P. Monasse, and R. Marlet, “Adaptive structure from motion with a contrario
model estimation,” in Asian Conference on Computer Vision (ACCV), pp. 257–270,
Springer, 2012.

[83] P. Moulon, P. Monasse, and R. Marlet, “Global fusion of relative motions for robust,
accurate and scalable structure from motion,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 3248–3255, 2013.

[84] N. Snavely, S. M. Seitz, and R. Szeliski, “Skeletal graphs for efficient structure from
motion,” in 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–
8, IEEE, 2008.

[85] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjust-
ment—a modern synthesis,” in Vision Algorithms: Theory and Practice (B. Triggs,
A. Zisserman, and R. Szeliski, eds.), pp. 298–372, Springer, 1999.

[86] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle adjustment in the large,”
in European Conference on Computer Vision (ECCV), pp. 29–42, Springer, 2010.

[87] K. H. Wong and M. M.-Y. Chang, “3D model reconstruction by constrained bundle
adjustment,” in Proceedings of the 17th International Conference on Pattern Recogniion,
vol. 3, pp. 902–905, IEEE, 2004.

[88] H.-G. Maas, “On the accuracy potential in underwater/multimedia photogrammetry,”
Sensors, vol. 15, no. 8, pp. 18140–18152, 2015.

[89] R. Kotowski, “Phototriangulation in multi-media photogrammetry,” International
Archives of Photogrammetry and Remote Sensing, vol. 27, no. B5, pp. 324–334, 1988.

[90] P. Drap, J. Seinturier, D. Scaradozzi, P. Gambogi, L. Long, and F. Gauch, “Photogram-
metry for virtual exploration of underwater archeological sites,” in Proceedings of the
21st International Symposium, CIPA, p. 1e6, 2007.

[91] M. Shortis and E. H. D. Abdo, “A review of underwater stereo-image measurement for
marine biology and ecology applications,” in Oceanography and marine biology, pp. 269–
304, CRC Press, 2016.

[92] T. Kwasnitschka, T. H. Hansteen, C. W. Devey, and S. Kutterolf, “Doing fieldwork on
the seafloor: photogrammetric techniques to yield 3D visual models from ROV video,”
Computers & Geosciences, vol. 52, pp. 218–226, 2013.

[93] H.-G. Maas and A. Gruen, “Digital photogrammetric techniques for high-resolution
three-dimensional flow velocity measurements,” Optical Engineering, vol. 34, no. 7,
pp. 1970–1977, 1995.

148 BIBLIOGRAPHY

[94] A. Jordt-Sedlazeck and R. Koch, “Refractive structure-from-motion on underwater im-
ages,” in Proceedings of the 2013 IEEE international conference on Computer Vision
(ICCV), pp. 57–64, IEEE, 2013.

[95] A. Jordt, K. Köser, and R. Koch, “Refractive 3D reconstruction on underwater images,”
Methods in Oceanography, vol. 15, pp. 90–113, 2016.

[96] X. Chen and Y.-H. Yang, “Two-view camera housing parameters calibration for multi-
layer flat refractive interface,” in Proceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 524–531, 2014.

[97] K. N. Kutulakos and E. Steger, “A theory of refractive and specular 3D shape by light-
path triangulation,” International Journal of Computer Vision, vol. 76, no. 1, pp. 13–29,
2008.

[98] Y. Qian, M. Gong, and Y.-H. Yang, “Stereo-based 3d reconstruction of dynamic fluid
surfaces by global optimization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1269–1278, 2017.

[99] A. S. Glassner, ed., An Introduction to Ray Tracing. London, UK, UK: Academic Press
Ltd., 1989.

[100] C. Mulsow, “A flexible multi-media bundle approach,” International Archives of Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, vol. 38, pp. 472–477,
2010.

[101] J. Belden, “Calibration of multi-camera systems with refractive interfaces,” Experiments
in Fluids, vol. 54, no. 2, p. 1463, 2013.

[102] M. Lhuillier and L. Quan, “Robust dense matching using local and global geometric con-
straints,” in Proceedings 15th International Conference on Pattern Recognition. ICPR-
2000, vol. 1, pp. 968–972, IEEE, 2000.

[103] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview stereopsis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 8, pp. 1362–
1376, 2010.

[104] M. Gross and H. Pfister, Point-based graphics. Elsevier, 2011.

[105] T. P. Kersten, F. Tschirschwitz, and S. Deggim, “Development of a virtual museum
including a 4D presentation of building history in virtual reality,” The International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 42,
p. 361, 2017.

[106] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,
S. Anderson, J. Davis, J. Ginsberg, et al., “The digital Michelangelo project: 3D scanning
of large statues,” in Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pp. 131–144, ACM Press/Addison-Wesley Publishing Co., 2000.

BIBLIOGRAPHY 149

[107] M. Schleinkofer, Wissensbasierte Unterstützung zur Erstellung von Produktmodellen im
Baubestand. Dissertation, Technische Universität München, München, 2007.

[108] T. Várady, P. Benkő, and G. Kos, “Reverse engineering regular objects: simple segmen-
tation and surface fitting procedures,” International Journal of Shape Modeling, vol. 4,
no. 03n04, pp. 127–141.

[109] P. Benkő, R. R. Martin, and T. Várady, “Algorithms for reverse engineering boundary
representation models,” Computer-Aided Design, vol. 33, no. 11, pp. 839–851, 2001.

[110] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-cloud shape detec-
tion,” in Computer graphics forum, vol. 26, pp. 214–226, Wiley Online Library, 2007.

[111] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fit-
ting with applications to image analysis and automated cartography,” Communications
of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[112] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally: Efficient and
robust 3D object recognition,” in 2010 IEEE computer society conference on computer
vision and pattern recognition, pp. 998–1005, IEEE, 2010.

[113] R. Schnabel, P. Degener, and R. Klein, “Completion and reconstruction with primitive
shapes,” in Computer Graphics Forum, vol. 28, pp. 503–512, Wiley Online Library, 2009.

[114] N. Silberman, D. Sontag, and R. Fergus, “Instance segmentation of indoor scenes using
a coverage loss,” in European Conference on Computer Vision, pp. 616–631, Springer,
2014.

[115] Q. Zheng, A. Sharf, G. Wan, Y. Li, N. J. Mitra, D. Cohen-Or, and B. Chen, “Non-local
scan consolidation for 3d urban scenes,” in ACM Transactions on Graphics (TOG),
vol. 29, p. 94, Association for Computing Machinery, 2010.

[116] P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. Van Gool, and W. Purgathofer,
“A survey of urban reconstruction,” in Computer Graphics Forum, vol. 32, pp. 146–177,
Wiley Online Library, 2013.

[117] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mitra, “Globfit: Consis-
tently fitting primitives by discovering global relations,” ACM Transactions on Graphics
(TOG), vol. 30, no. 4, p. 52, 2011.

[118] S. Tuttas, A. Braun, A. Borrmann, and U. Stilla, “Acquisition and consecutive registra-
tion of photogrammetric point clouds for construction progress monitoring using a 4D
BIM,” PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science,
vol. 85, no. 1, pp. 3–15, 2017.

[119] D. Marmanis, J. D. Wegner, S. Galliani, K. Schindler, M. Datcu, and U. Stilla, “Se-
mantic segmentation of aerial images with an ensemble of CNNs,” ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 3, p. 473, 2016.

150 BIBLIOGRAPHY

[120] Y. Xu, Z. Ye, W. Yao, R. Huang, X. Tong, L. Hoegner, and U. Stilla, “Classification of
LiDAR point clouds using supervoxel-based detrended feature and perception-weighted
graphical model,” IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 2019.

[121] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A. Levine,
A. Sharf, and C. T. Silva, “A survey of surface reconstruction from point clouds,” in
Computer Graphics Forum, vol. 36, pp. 301–329, Wiley Online Library, 2017.

[122] W. Wang, H. Pottmann, and Y. Liu, “Fitting B-spline curves to point clouds
by curvature-based squared distance minimization,” ACM Transactions on Graphics
(TOG), vol. 25, no. 2, pp. 214–238, 2006.

[123] J. Hoschek, “Intrinsic parametrization for approximation,” Computer Aided Geometric
Design, vol. 5, no. 1, pp. 27–31, 1988.

[124] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer,
and W. Stuetzle, “Piecewise smooth surface reconstruction,” in Proceedings of the 21st
annual conference on Computer graphics and interactive techniques, pp. 295–302, Asso-
ciation for Computing Machinery, 1994.

[125] S. Flöry and M. Hofer, “Surface fitting and registration of point clouds using approxi-
mations of the unsigned distance function,” Computer Aided Geometric Design, vol. 27,
no. 1, pp. 60–77, 2010.

[126] H. Pottmann and S. Leopoldseder, “A concept for parametric surface fitting which
avoids the parametrization problem,” Computer Aided Geometric Design, vol. 20, no. 6,
pp. 343–362, 2003.

[127] F. Cazals and M. Pouget, “Estimating differential quantities using polynomial fitting of
osculating jets,” Computer Aided Geometric Design, vol. 22, no. 2, pp. 121–146, 2005.

[128] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, vol. 153.
Springer Science & Business Media, 2006.

[129] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface reconstruc-
tion from unorganized points,” SIGGRAPH Computer Graphics, vol. 26, pp. 71–78, July
1992.

[130] D. Levin, “Mesh-independent surface interpolation,” in Geometric modeling for scientific
visualization, pp. 37–49, Springer, 2004.

[131] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, “Computing
and rendering point set surfaces,” IEEE Transactions on visualization and computer
graphics, vol. 9, no. 1, pp. 3–15, 2003.

[132] M. Alexa and A. Adamson, “On normals and projection operators for surfaces defined by
point sets,” in Proceedings of the First Eurographics conference on Point-Based Graphics,
pp. 149–155, Eurographics Association, 2004.

BIBLIOGRAPHY 151

[133] N. Amenta and Y. J. Kil, “Defining point-set surfaces,” in ACM Transactions on Graph-
ics (TOG), vol. 23, pp. 264–270, Association for Computing Machinery, 2004.

[134] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCal-
lum, and T. R. Evans, “Reconstruction and representation of 3D objects with radial
basis functions,” in Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pp. 67–76, ACM, 2001.

[135] H. Wendland, Scattered data approximation, vol. 17. Cambridge University Press, 2004.

[136] I. Macedo, J. P. Gois, and L. Velho, “Hermite radial basis functions implicits,” in Com-
puter Graphics Forum, vol. 30, pp. 27–42, Wiley Online Library, 2011.

[137] M. Kazhdan, “Reconstruction of solid models from oriented point sets,” in Proceed-
ings of the third Eurographics symposium on Geometry processing, p. 73, Eurographics
Association, 2005.

[138] J. Wilhelms and A. Van Gelder, “Octrees for faster isosurface generation,” ACM Trans-
actions on Graphics (TOG), vol. 11, no. 3, pp. 201–227, 1992.

[139] R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill, “Octree-based decimation of
marching cubes surfaces,” in Proceedings of the Seventh Annual IEEE Visualization’96,
pp. 335–342, IEEE, 1996.

[140] R. Westermann, L. Kobbelt, and T. Ertl, “Real-time exploration of regular volume
data by adaptive reconstruction of isosurfaces,” The Visual Computer, vol. 15, no. 2,
pp. 100–111, 1999.

[141] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel, “Feature sensitive surface
extraction from volume data,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pp. 57–66, Association for Computing Machinery,
2001.

[142] S. Schaefer and J. Warren, “Dual marching cubes: Primal contouring of dual grids,”
in Proceedings of the 12th Pacific Conference on Computer Graphics and Applications,
pp. 70–76, IEEE, 2004.

[143] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,” Computers &
Graphics, vol. 30, no. 5, pp. 854–879, 2006.

[144] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[145] O. E. Yossef, “Experimental investigation of arteries’ mechanical properties: compress-
ibility, passive and active responses,” Master’s thesis, Dept. of Mechanical Eng., Ben-
Gurion University, Israel, 2017.

[146] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

152 BIBLIOGRAPHY

[147] J. L. Blanco and P. K. Rai, “nanoflann: a C++ header-only fork of FLANN, a library
for nearest neighbor (NN) with kd-trees.” https://github.com/jlblancoc/nanoflann,
2014.

[148] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), (Shanghai, China), May 9-13
2011.

[149] F. Aurenhammer and R. Klein, “Voronoi diagrams,” Handbook of Computational Geom-
etry, vol. 5, no. 10, pp. 201–290.

[150] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf, Computational geom-
etry. Springer, 1997.

[151] D. M. Hawkins, Identification of Outliers. Springer, 1980.

[152] C.-T. Lu, D. Chen, and Y. Kou, “Algorithms for spatial outlier detection,” in Third
IEEE International Conference on Data Mining (ICDM), pp. 597–600, IEEE, 2003.

[153] S. Sotoodeh, “Outlier detection in laser scanner point clouds,” International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, no. 5,
pp. 297–302, 2006.

[154] K. Wolff, C. Kim, H. Zimmer, C. Schroers, M. Botsch, O. Sorkine-Hornung, and
A. Sorkine-Hornung, “Point cloud noise and outlier removal for image-based 3D recon-
struction,” in 2016 Fourth International Conference on 3D Vision (3DV), pp. 118–127,
IEEE, 2016.

[155] A. Nurunnabi, G. West, and D. Belton, “Outlier detection and robust normal-curvature
estimation in mobile laser scanning 3D point cloud data,” Pattern Recognition, vol. 48,
no. 4, pp. 1404–1419, 2015.

[156] K. Zhang, M. Hutter, and H. Jin, “A new local distance-based outlier detection approach
for scattered real-world data,” in Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 813–822, Springer, 2009.

[157] O. Schall, A. Belyaev, and H.-P. Seidel, “Robust filtering of noisy scattered point data,”
in Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005.,
pp. 71–144, IEEE, 2005.

[158] P. Chalmovianskỳ and B. Jüttler, “Filling holes in point clouds,” in Mathematics of
Surfaces, pp. 196–212, Springer Berlin Heidelberg, 2003.

[159] Y. Quinsat et al., “Filling holes in digitized point cloud using a morphing-based approach
to preserve volume characteristics,” The International Journal of Advanced Manufactur-
ing Technology, vol. 81, no. 1-4, pp. 411–421, 2015.

[160] H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,” ACM Transactions
on Graphics (TOG), vol. 13, no. 1, pp. 43–72, 1994.

https://github.com/jlblancoc/nanoflann

BIBLIOGRAPHY 153

[161] C. L. Bajaj, F. Bernardini, and G. Xu, “Automatic reconstruction of surfaces and scalar
fields from 3D scans,” in Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques, pp. 109–118, Association for Computing Machinery, 1995.

[162] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The ball-pivoting
algorithm for surface reconstruction,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 5, no. 4, pp. 349–359, 1999.

[163] N. Amenta, M. W. Bern, M. Kamvysselis, et al., “A new Voronoi-based surface re-
construction algorithm,” in Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, vol. 98, pp. 415–421, Association for Computing
Machinery, 1998.

[164] T. K. Dey, J. Giesen, and J. Hudson, “Delaunay based shape reconstruction from large
data,” in Proceedings of the IEEE 2001 symposium on parallel and large-data visualiza-
tion and graphics, pp. 19–27, IEEE Press, 2001.

[165] J. Davis, S. R. Marschner, M. Garr, and M. Levoy, “Filling holes in complex surfaces
using volumetric diffusion,” in Proceedings of the First International Symposium on 3D
Data Processing Visualization and Transmission, pp. 428–441, IEEE, 2002.

[166] A. Hornung and L. Kobbelt, “Robust reconstruction of watertight 3D models from
non-uniformly sampled point clouds without normal information,” in Proceedings of
the fourth Eurographics symposium on Geometry processing, pp. 41–50, Eurographics
Association, 2006.

[167] P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun, “Voronoi-based variational recon-
struction of unoriented point sets,” in Proceedings of the fifth Eurographics symposium
on Geometry processing, pp. 39–48, Eurographics Association, 2007.

[168] P. Liepa, “Filling holes in meshes,” in Proceedings of the 2003 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing, pp. 200–205, Eurographics Association,
2003.

[169] J. Wang and M. M. Oliveira, “Filling holes on locally smooth surfaces reconstructed
from point clouds,” Image and Vision Computing, vol. 25, no. 1, pp. 103–113, 2007.

[170] A. Tagliasacchi, H. Zhang, and D. Cohen-Or, “Curve skeleton extraction from incomplete
point cloud,” in ACM Transactions on Graphics (TOG), vol. 28, p. 71, Association for
Computing Machinery, 2009.

[171] H. Huang, S. Wu, D. Cohen-Or, M. Gong, H. Zhang, G. Li, and B. Chen, “L1-medial
skeleton of point cloud,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, pp. 65–1,
2013.

[172] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su, “Point cloud skeletons via Lapla-
cian based contraction,” in 2010 Shape Modeling International Conference, pp. 187–197,
IEEE, 2010.

[173] C. Fox, An introduction to the calculus of variations. Courier Corporation, 1987.

154 BIBLIOGRAPHY

[174] A. V. Mobley, M. P. Carroll, and S. A. Canann, “An object oriented approach to geom-
etry defeaturing for finite element meshing,” in 7th International Meshing Roundtable,
Sandia National Labs, pp. 547–563, 1998.

[175] W. R. Quadros and S. J. Owen, “Defeaturing CAD models using a geometry-based
size field and facet-based reduction operators,” in Proceedings of the 18th international
meshing roundtable, pp. 301–318, Springer, 2009.

[176] C. Kublik, N. M. Tanushev, and R. Tsai, “An implicit interface boundary integral
method for Poisson’s equation on arbitrary domains,” Journal of Computational Physics,
vol. 247, pp. 279–311, 2013.

[177] B. Engquist, A.-K. Tornberg, and R. Tsai, “Discretization of Dirac delta functions in
level set methods,” Journal of Computational Physics, vol. 207, no. 1, pp. 28–51, 2005.

[178] H. G. Lee and J. Kim, “Regularized Dirac delta functions for phase field models,” In-
ternational Journal for Numerical Methods in Engineering, vol. 91, no. 3, pp. 269–288,
2012.

[179] S. K. Stoter, P. Müller, L. Cicalese, M. Tuveri, D. Schillinger, and T. J. Hughes, “A
diffuse interface method for the Navier–Stokes/Darcy equations: Perfusion profile for a
patient-specific human liver based on MRI scans,” Computer Methods in Applied Me-
chanics and Engineering, vol. 321, pp. 70–102, 2017.

[180] L. H. Nguyen, S. K. Stoter, M. Ruess, M. A. Sanchez Uribe, and D. Schillinger, “The
diffuse Nitsche method: Dirichlet constraints on phase-field boundaries,” International
Journal for Numerical Methods in Engineering, vol. 113, no. 4, pp. 601–633, 2018.

[181] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bundle adjustment,” in Pro-
ceedings of the 2011 Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3057–3064, IEEE, 2011.

[182] S. Hill, The early Byzantine churches of Cilicia and Isauria. Variorum Aldershot, UK,
1996.

[183] G. Pajares, “Overview and current status of remote sensing applications based on
unmanned aerial vehicles (UAVs),” Photogrammetric Engineering & Remote Sensing,
vol. 81, no. 4, pp. 281–330, 2015.

[184] M. Lo Brutto, A. Garraffa, and P. Meli, “UAV platforms for cultural heritage survey:
first results,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, vol. 5, pp. 227–234, 2014.

[185] M. L. Brutto, A. Borruso, and A. D’argenio, “UAV systems for photogrammetric data
acquisition of archaeological sites,” International Journal of Heritage in the Digital Era,
vol. 1, no. Supplement 1, pp. 7–13, 2012.

[186] E. Nocerino, F. Menna, F. Remondino, and R. Saleri, “Accuracy and block deforma-
tion analysis in automatic UAV and terrestrial photogrammetry–lesson learnt,” The
International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 2, pp. 203–208, 2013.

BIBLIOGRAPHY 155

[187] G. Guidi, M. Russo, S. Ercoli, F. Remondino, A. Rizzi, and F. Menna, “A multi-
resolution methodology for the 3D modeling of large and complex archeological areas,”
International Journal of Architectural Computing, vol. 7, no. 1, pp. 39–55, 2009.

[188] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[189] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise view selection
for unstructured multi-view stereo,” in Proceedings of the 2016 European Conference on
Computer Vision (ECCV), pp. 501–518, 2016.

	1 Introduction
	1.1 Motivation
	1.2 Structure, contributions

	2 The Finite Element and Finite Cell Methods
	2.1 Fundamentals of the Finite Element Method
	2.1.1 Galerkin method
	2.1.2 Linear finite elements
	2.1.3 The p-Version of the FEM
	2.1.4 Coordinate transformations, the blending function method
	2.1.5 NURBS representation of parametric curves and surfaces
	2.1.6 Numerical quadrature

	2.2 The Finite Cell Method
	2.2.1 Formulation
	2.2.2 Quadrature schemes
	2.2.2.1 Spacetrees
	2.2.2.2 Moment fitting-based schemes
	2.2.2.3 Conforming integration meshes in 2D
	2.2.2.4 Smart octrees - Conforming integration meshes in 3D

	2.2.3 Numerical examples
	2.2.3.1 Integration in 2D
	2.2.3.2 Integration in 3D

	3 Image-based shape measurement and mesh generation
	3.1 Overview of digital shape acquisition techniques
	3.1.1 Tactile methods
	3.1.2 Non-contact methods

	3.2 Photogrammetric acquisition of surface points
	3.2.1 Overview of the imaging process
	3.2.2 Multiple-view geometry
	3.2.3 Bundle adjustment
	3.2.3.1 Constrained bundle adjustment
	3.2.3.2 Bundle adjustment in refractive environments

	3.2.4 Multi-view stereo reconstruction

	3.3 Geometric model recovery from point clouds
	3.3.1 Recovery by geometric primitive identification
	3.3.2 From primitives to best-fit surfaces
	3.3.3 Methods based on implicit function fitting

	3.4 Application: mesh generation on a tubular geometry
	3.4.1 Effects of refraction
	3.4.2 Tubular object in synthetic images
	3.4.3 Tubular objects represented on real images
	3.4.4 Tubular object with a branch represented on real images

	4 The Finite Cell Method combined with oriented point clouds
	4.1 The role of geometric representations
	4.2 Point membership tests on oriented point clouds
	4.2.1 Connection to Voronoi diagrams

	4.3 Treatment of outliers
	4.4 Treatment of missing parts
	4.4.1 The effect of holes on point-membership classification
	4.4.2 Remedy strategies for holes
	4.4.3 A two-step indicator function recovery for the FCM

	4.5 Neumann boundary conditions
	4.6 Examples
	4.6.1 2D studies
	4.6.1.1 Perforated plate with circular hole
	4.6.1.2 Perforated plate with elliptical hole under internal pressure

	4.6.2 3D examples
	4.6.2.1 Athlete
	4.6.2.2 The cistern of the Hagia Thekla Basilica in Turkey
	4.6.2.3 Tower measured by an UAV

	5 Summary and outlook
	Bibliography

