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SUMMARY

Focal adhesions (FAs) are proteinmachineries essen-
tial for cell adhesion, migration, and differentiation.
Talin is an integrin-activating and tension-sensing
FA component directly connecting integrins in the
plasmamembranewith the actomyosin cytoskeleton.
To understand how talin function is regulated, we
determined a cryoelectron microscopy (cryo-EM)
structure of full-length talin1 revealing a two-way
mode of autoinhibition. The actin-binding rod do-
mains fold into a 15-nm globular arrangement that is
interlocked by the integrin-binding FERM head. In
turn, the rod domains R9 and R12 shield access of
the FERM domain to integrin and the phospholipid
PIP2 at themembrane. Thismechanism likely ensures
synchronous inhibition of integrin, membrane, and
cytoskeleton binding.We also demonstrate that com-
pacted talin1 reversibly unfolds to an �60-nm string-
like conformation, revealing interaction sites for
vinculin andactin.Ourdataexplain how fast switching
between active and inactive conformations of talin
could regulate FA turnover, a process critical for cell
adhesion and signaling.

INTRODUCTION

Focal adhesions (FAs) are intracellular protein assemblies that

serve as tension-sensing anchoring points to link cells to the

extracellular environment (Geiger et al., 2009; Parsons et al.,

2010). FAs not only tether cells to the extracellular matrix

(ECM), but also facilitate intracellular reorganization, resulting

in dynamic changes in cell functions and cell morphologies (Gei-

ger et al., 2009; Legate et al., 2009; Parsons et al., 2010). FAs

consist of hundreds of proteins in a layered arrangement that

closely regulate each other (Kanchanawong et al., 2010). The

first layer consists of integrin-signaling components at the

plasma membrane, the second of force-transduction compo-

nents, the third of actin-regulatory factors, and the fourth layer

is made up of actin fibers. Several key proteins act to coordinate

the individual functions of each layer, mediate crosstalk between

layers, and to connect these layers with integrin receptor, the
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master-controller that links cytoplasmic FA complexes to the

ECM (Bachir et al., 2014).

FA-mediated cellular processes are facilitated by alternating

states of active and inactive integrins. In migrating cells, integrin

activation initiates vast FA formation, allowing cells to attach to

the extracellular environment, whereas integrin inactivation, fol-

lowed by disassembly of FAs, detaches cells. This cycling of

on/off states allows cells to continuously change anchoring

points, facilitating cellular movement. Talin is a key component

in FAs, responsible for activating integrins andmediating both in-

side-out and outside-in signaling (Tadokoro et al., 2003; Harbur-

ger and Calderwood, 2009; Nieswandt et al., 2007). Talin

activates integrin by associating with the cytosolic tail of integrin

beta-subunits. Once engaged, talin can assume an elongated

conformation up to 100 nm in length (Liu et al., 2015), directly

linking the beta-integrin subunit in the first layer of the FA to actin

bundles in the fourth layer (Kanchanawong et al., 2010). By span-

ning all four layers of the FA, talin is in a unique position to act as a

structural scaffold, greatly contributing to the overall composi-

tion and organization of FA complexes (Calderwood et al.,

2013). In addition to its role as an integrin activator, talin also

acts as amechanosensor; it stretches like a spring and transmits

tension between the ECM and the actomyosin machinery within

the FA (Austen et al., 2015; Kumar et al., 2016), a process which

is essential for regulating FA maturation and stability. As such,

the transition between active and inactive talin likely plays a

key regulatory role in FA dynamics, similar to the activation

and inactivation of integrins.

Talin is a large, 270 kDa protein with 18 domains comprising

an�50 kDa globular head, a long rod made of 62 helices forming

13helicalbundle (rod) domains (R1–R13) (Calderwoodetal., 2013;

Goult et al., 2013), and a dimerization (DD) motif at the C terminus

(Gingras et al., 2008). A unique conformational change of talin fa-

cilitates its spring-likebehavior, throughwhich talin canunfold into

a linearly elongated 60–100 nm rod-like shape (Liu et al., 2015;

Molony et al., 1987; Winkler et al., 1997). This allows it to bind to

at least 11 different FA components including vinculin and actin

(Goult et al., 2018). The talin head contains a 4.1-ezrin-radixin-

moesin (FERM) domain with four subdomains (F0–F3), which is

a common structural feature of several integrin tail-binding pro-

teins (Elliott et al., 2010; Garcia-Alvarez et al., 2003; Goult et al.,

2010; Rees et al., 1990). The FERM domain contains the integ-

rin-binding site IBS1 (Tanentzapf and Brown, 2006; Wegener

et al., 2007) and phosphatidylinositol-4,5-bisphosphate (PIP2)
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recognition site, allowing talin to attach to the membrane surface

in a regulated way. The force-mediated stretching of talin is

thought to follow (Atherton et al., 2015;Margadant et al., 2011), re-

sulting in the exposure of up to 11 cryptic binding sites for vinculin

(Fillingham et al., 2005; Gingras et al., 2005; Izard et al., 2004; Pa-

pagrigoriouetal., 2004). Thebindingof vinculin to talin isproposed

to reinforce FA strength, as vinculin facilitates binding to actin, re-

sulting in a cable-like configuration of F-actin (Case et al., 2015;

Kanchanawong et al., 2010; Liu et al., 2015; Carisey et al., 2013;

Humphries et al., 2007) and triggering the maturation of the FA

(Zaidel-Bar et al., 2003).

While the active form of talin is well-characterized, the critical

state of the inhibited form of talin is scarcely understood. The

importance of talin inhibition is highlighted by the fact that disrup-

tion of proper talin inhibition leads tomorphogenetic defects dur-

ing fly development (Ellis et al., 2013) and it hasbeen implicated in

the migration of metastatic cancer cells (Desiniotis and Kypria-

nou, 2011; Fang et al., 2016; Haining et al., 2016). In its autoinhi-

bited state, talin has a compact conformation (Goldmann et al.,

1994; Goult et al., 2013;Winkler et al., 1997), with domains folded

into each other, to occlude the interaction sites for binding part-

ners such as integrin, membrane, vinculin, and F-actin. Although

individual, truncated fragments of talin havebeenwell-character-

ized, the regulation of full-length talin and the interplay among its

domainsare largely unknownonamolecular level. For example, a

truncated fragment of the FERM domain (F3) was shown to

interact with the R9 rod domain (Song et al., 2012); however,

the overall mechanism is unclear because of the lack of informa-

tion about the full-length architecture of talin.

Here, we report a cryoelectron microscopy (cryo-EM) struc-

ture of the autoinhibited form of recombinantly produced full-

length talin1. The structure reveals charge-based interactions

among the 13 rod domains of the talin1 monomer that entangle

the protein into a compact 15 nm globular architecture, which is

further secured by respective interactions between the F2 and

F3 FERM subdomains and the R12 and R9 rod domains. Inter-

estingly, the PIP2-binding surface of the FERM domain is

completely covered by the rod domain R12 to occlude access

to the plasma membrane. The integrin-binding site is located

at the deepest part of the autoinhibition pocket. The closure

of the rod domains impedes binding to vinculin and to actin via

the actin-binding site 2 (ABS2), although it does not occlude

the other actin-binding site, ABS3. By mimicking talin activation,

we facilitated talin1 binding to F-actin and vinculin. On the basis

of these results, we propose a molecular model that explains

how talin activation is controlled at a PIP2-enriched membrane

surface and how the protein transitions from a 15 nm globular

structure to a 100 nm extended structure. Our results have

wide-ranging implications for the mechanistic understanding of

FAs and protein activation.

RESULTS

The Full-Length, Autoinhibited Talin1 Structure Shows
Molecular Closure of the Rod Domains by the FERM
Domain
Talin is thought to adopt open and closed conformational states

(Figure 1A). While open talin is amenable to further stretching by
its interacting partners, the globular state is likely to take on an

autoinhibited conformation that hinders access tomany of talin’s

binding sites, restricting interactions with other FA proteins. The

autoinhibited form is thought to be the cytosolic state of talin that

does not engage in FA assembly. It has been a challenge, how-

ever, to obtain a molecular view of the autoinhibited conforma-

tion. We successfully purified recombinantly expressed talin1

and pursued a full structural and biochemical characterization.

The cryo-EM analysis of full-length talin1 (talin-FL) in the

autoinhibited conformation (Figures 1B, S1, and S2; Table S1)

revealed an intertwined architecture. Although the intrinsic flexi-

bility of talin limited the resolution of the structural reconstruction

to a global resolution of 6.2 Å (Figures S2A–S2C; Table S1), the

clear connectivity of the rod domains within the density map

facilitated robust fitting of available structures of the 13 individual

rod domains and the F2 and F3 subdomains of the FERMdomain

(Figures 1C and S3). We performed further refinement using a

flexible fitting scheme by restraint molecular dynamics (Salo-

mon-Ferrer et al., 2013). Our results show that the rod domains

are entangled with each other, resulting in a compact organiza-

tion, and the FERM domain closes the assembly via two

anchoring points on rod domains R9 and R12, respectively,

acting as a lid to secure the closure of the talin architecture (Fig-

ure 1D). At the first anchoring point, located in the deepest

groove of the autoinhibition pocket (Figure 1E), the interacting

surface between R9 and F3 agrees well with a previously re-

ported crystal structure of isolated F3 and R9 fragments (Song

et al., 2012) (Figure S4), which are necessary for talin inhibition

in cells. At the second anchoring point (Figure 1E), located at

the critical connecting point for the closure of talin1, K272 and

K274 in F2 contact E2288 and D2297 at the C terminus of R12,

respectively (Figure 1D).

While the F2 and F3 FERM subdomains revealed interactions

necessary for talin1 autoinhibition, the densities corresponding

to the F0 and F1 FERM subdomains were not visualized in our

structure (Figure 1E). F0 serves as an interaction surface for

the small GTPase Rap1 (Zhu et al., 2017), which acts as a recruit-

ing factor to promote talin engagement with the plasma mem-

brane (Goult et al., 2010; Plak et al., 2016) (Figure 1F). While

these subdomains are missing from our structure, the corre-

sponding fragments were identified by mass spectrometry (Fig-

ure S3B). This indicates that the F0-F1 subdomains are flexibly

attached to the talin core structure, presumably by a long, 30

amino-acid linker between F1 and F2 (Figure 1E). Hence, F0

and F1 are likely not part of the inhibited structure, which sug-

gests that talin can be recruited to the membrane surface via

Rap1 without requiring disentanglement of the rod domains or

disruption of the FERM domain interaction with R9 and R12 (Fig-

ures 1E and 1F).

The Closed Talin Configuration Occludes the Integrin-
Binding Site and the Membrane-Binding Surface on the
FERM Domain
The talin FERM domain was shown to interact with PIP2 (Chin-

thalapudi et al., 2018; Or1owski et al., 2015; Song et al., 2012).

Specific residues responsible for this interaction were recently

identified including K272 of F2 and K316, K324, E342, and

K343 of F3 (Chinthalapudi et al., 2018). We mapped their
Cell 179, 120–131, September 19, 2019 121



Figure 1. Structure of Full-Length Talin

(A) Schematic of the domain organization of talin in

the open form (left) and the closed, autoinhibited

form (right).

(B) Three views of the structure of full-length talin.

(C) Molecular fitting of talin fragments (PDB: 3IVF,

1SJ8, 2L7A, 2LQG, 2L7N, 2L10, 5IC1, 2KVP,

3DYJ, and 2JSW) to the EM density map.

(D) The molecular closure of talin achieved by F2-

R12 and F3-R9 interactions and the charged amino

acids surrounding the interaction interface. Bold

highlighted numbers match previously published

PIP2-recognition residues.

(E) Superimposition of the F0-F1 subdomains of

the talin FERMdomain structure (overlaid with grey

shadow, PDB: 3IVF) onto our cryo-EM talin model.

The F0 and F1 subdomains were not visualized in

our structural analysis due to the flexibility of the

F1-F2 linker. The small GTP Rap1-binding site on

F0 is mapped in blue and labelled ‘‘Rap1.’’

(F) The NMR structure of F0-Rap1 (PDB: 6BA6).

(G) Comparison of the F3-R9 and F2-R12 auto-

inhibition sites in the closed structure with the F3-

integrin tail (PDB: 2H7D) and F2-F3-PIP2 (PDB:

6MFS) as well as with the membrane-interaction

sites of the FERM domain (Anthis et al., 2009),

highlighting the mechanism of the autoinhibition of

talin. In the inhibited form R12 forms a ‘‘lid’’

covering the PIP2-binding site on F2-F3.

See also Figures S1, S2, S3, S4, and S5 and

Table S1.
locations to understand the geometrical relationships among

them in full-length talin (Figure 1D). In the autoinhibited talin

structure, the PIP2-binding surface was mostly covered by the

rod domains, particularly by a region at the C terminus of R12,

ensuring that the binding site was inaccessible to PIP2 (Figures

1D and 1G). This region, containing the negatively charged

amino acids E2288, E2294, and D2297 (Figure 1D), provides

an acidic interface to complement the basic PIP2-binding

surface. Furthermore, to understand the arrangement of

integrin and the plasma membrane with respect to talin in the

open and closed configurations, we superimposed the

available structure of the integrin cytosolic tail in complex with
122 Cell 179, 120–131, September 19, 2019
F3 (Anthis et al., 2009; Wegener et al.,

2007) (Figure 1G). The integrin tail was

shown to bind on the surface of the trun-

cated F3 (Song et al., 2012), where R9

also binds in our autoinhibited structure,

showing that the integrin-F3 interaction

and the F3-R9 autoinhibitory interaction

are mutually exclusive. Moreover, the in-

tegrin transmembrane helix directly pre-

cedes the integrin tail, indicating that F2

and R12would have to separate to enable

F2 and F3 to bind the inner face of the

plasma membrane (Figure 1G). We also

noted that the interaction surface of F3

for R9 has been reported to be a key inter-

face for talin-binding partners, such as
RIAM (Yang et al., 2014) and layilin (Wegener et al., 2008), which

are likely involved in talin activation (Figure S4).

The Talin1 Folding Unit Is a Monomer in the
Autoinhibited Form
The last 50 amino acids at the C terminus of talin1 have been

crystalized as a coiled-coil in a dimeric structure (Gingras

et al., 2008) (termed DD domain), suggesting the possibility

that talin is capable of dimer formation. Furthermore, talin has

been separately observed as a dumbbell-shaped dimer (Gold-

mann et al., 1994) when interacting with actin and as entwined

dimers forming a globular assembly (Goult et al., 2013), keeping



Figure 2. The Dimerization Domain Is Not

Necessary for the Closure of Talin

(A) Negative-stain EM image of talin-DDD lacking

the dimerization domain at 75 mM KCl, and 2D

averages of the particles (right), showing a

morphology similar to that of talin-FL.

(B) Size-exclusion chromatography coupled with

multi-angle light-scattering profile of talin-FL and

talin-DDD at 75 mM KCl, showing molecular

weights corresponding to monomers. LS, light

scattering, normalized; UV, absorbance.

(C) Centrifugation profiles of talin-DDD and talin-FL

using the GraFix method. Talin-FL has an extra

band in the fraction at higher sucrose density (open

arrowhead). Black triangles depict the gradient of

sucrose and glutaraldehyde concentrations.
the question open as to whether or not talin dimerization is

necessary for its autoinhibition. Our cryo-EM structure clearly

showed that talin1 monomers are capable of achieving an auto-

inhibited architecture.

The DD domain, which follows R13, was not clearly visible in

our structure because of its flexibility, which in turn indicates

that it is not engaged in the autoinhibited conformation. Indeed,

a truncated talin construct that lacked theDDdomain (talin-DDD)

(Figure S3A) was still capable of assuming the autoinhibited

conformation (Figure 2A), and analysis by size-exclusion

chromatography coupled with multi-angle light scattering

(SEC-MALS; Figure 2B) showed that both talin-FL and talin-

DDD behave as monomers. Therefore, the DD domain appears

to be inactive or not strong enough to hold talin-FL dimers

together when talin is in the autoinhibited state.We further tested

if we could find talin dimers as a minor component in the molec-

ular population. Sucrose-gradient centrifugation of talin-FL in the

presence of a concomitant gradient of the cross-linker glutaral-

dehyde (GraFix) (Stark, 2010) showed a minor population of talin

thatmigrated differently in solution as well as on SDS-PAGE (Fig-

ure 2C), suggesting the presence of a talin-FL dimer, in agree-

ment with the previous report (Goldmann et al., 1994). In

contrast, talin-DDD did not display the corresponding minor

band and showed only a single monomeric population, indi-

cating that DD is the only domain in talin that is capable of facil-

itating dimerization.

Weak Interactions among Rod Domains Maintain the
Compaction of Talin
To explore how the molecular opening of talin is regulated, we

varied the ionic environment and tested if and how the conforma-
C

tion was changing. When we raised the

ionic environment to 500 mM salt (NaCl

or KCl), the conformation of full-length

talin changed from the globular, closed

architecture to the open, strand-like

conformation (Figures 3A and 3B) with a

length of 560 Å (SD = 170 Å) (Figure 3C),

which fits well to the reported length of ta-

lin in a cell (Kanchanawong et al., 2010;

Margadant et al., 2011). We looked for ev-
idence of the conformational change as a function of the salt

concentration using dynamic light-scattering (DLS) (Figure 3D),

and the results fit well with a two-state model of protein

folding-unfolding. At an ionic strength of 234 mM salt, the two

states were equally populated and at a physiological salt con-

centration of 150mM, 81% of talin had a compact conformation.

We also found that this conformational change was reversible

across fluctuating salt concentrations (Figure 3E).

Furthermore, we tested the importance of the inter-domain in-

teractions for autoinhibition by creating point mutations as well

as truncated talin constructs lacking the key domains for the

interaction of F2-R12. We created a C-terminal truncation

N-R11 lacking R12 and the C-terminus (Figure S3A), one of the

two contact points necessary for the FERM-rod interactions,

as well as N-R12 (Figure S3A). The DLS experiments showed

the conformational changes of both constructs in response to

the increase of salt concentration (Figure 3F). Point mutants of

talin-FL altering the charge at the key interacting points on R12

(talin-FL-5K: E2288K/E2294K/D2297K/E2299K/D2300K and ta-

lin-FL-2K: E2288K/E2294K, Figure 1D) revealed a compact

conformation at 75 mM salt and underwent a conformational

change similar to wild type talin-FL upon change of the salt con-

centration (Figure 3G). These experiments led us to hypothesize

that the rod domains themselves interact with each other to

maintain a compact formation.

The rod domains contain several binding sites for critical FA

components. Those sites include the F-actin-binding sites

ABS2 and ABS3 onR4-R8 andR13-DD, respectively (Hemmings

et al., 1996). We observed additional contacts among rod do-

mains, as shown by the mapping of neighboring domains (Fig-

ure 4A). Particularly, R4 is placed at the ‘‘core’’ of the globular
ell 179, 120–131, September 19, 2019 123



Figure 3. Two-State Conformational Ensemble of Talin

(A) Negative-stain EM image of talin-FL in the compact conformation at 75 mM KCl.

(B) Talin-FL in the open conformation in the presence of 500 mM KCl. Green arrowheads indicate examples of open talin.

(C) Distribution of the lengths of the open talin molecules from B (560 ± 170 Å, mean ± SD, N = 89).

(D) Dynamic light-scattering (DLS)measurements of the hydrodynamic radius of talin-FL under various salt concentrations, showing the conformational change of

talin as a function of salt concentration. The fitted curve indicates that talin adopts both conformations at an equal ratio at a salt concentration of 234 mM. At a

physiological salt concentration of 150 mM, 81% of talin employs the compact formation.

(E) Reversible conformational change of talin depending on the salt concentration as determined by DLS. Left: talin employs a closed conformation at an ionic

strength of 75 mM. Center: talin opens and increases its size when the ionic strength is increased to 500 mM. Right: talin closes again when the ionic strength is

lowered back to 75 mM, showing that the shape change of talin is reversible.

(F) DLS measurements of the hydrodynamic radius of N-R11 and N-R12 under various salt concentrations, showing a conformational change comparable to

talin-FL with a lower amplitude. The data point at 250 mM was removed as the measurement was outside of the dynamic range of the detector.

(G) DLS measurements of point mutants of talin-FL-2K and talin-FL-5K, also showing conformational changes dependent on salt concentration. Error bars show

standard deviations.
architecture and shielded by several rod domains (Figure 4B).

We therefore tested the overall interactions among the rod do-

mains by using a truncation construct that lacks the FERM

domain (R1-C). DLS showed the change of the conformation in

response to salt concentration (Figure 4C). To visualize the na-

ture of the interaction, we calculated the electrostatic surface

potential of each of the individual rod domains surrounding R4
124 Cell 179, 120–131, September 19, 2019
and estimated the interaction energies of those domains to R4

(Figures 4A and S5). The calculated energy landscape for the

domain-domain interactions indicated that the binding is rather

weak (Figure S5B), resulting in an overall marginal stability. The

rod domains may not rigidly bind to one another without cooper-

ative, multi-module packing, as induced by the overall arrange-

ment of the full-length protein. This explains the observation



Figure 4. Interdomain Interactions of Talin

(A) Map of talin interdomain interactions derived from the EM structure.

Binding domains relevant to this study are colored in red (actin-binding site

ABS2), blue (actin-binding site ABS3), and green (vinculin-binding site). Dotted

lines indicate positive (i.e., interactions are not favorable), while solid lines

depict negative interaction energies (i.e., domains are interactive) as deter-

mined by MD simulations (see STAR Methods). The thickness of the lines is

proportional to the calculated energies detailed in Figure S5.

(B) Spatial arrangement of the rod domains surrounding the R4 core in two

vertical slices through the structure.

(C) DLS measurements of the hydrodynamic radius of R1-C under various salt

concentrations in comparison to talin-FL (grey). The size distribution could not

be fit to a two-state model. Error bars show standard deviations.

See also Figure S5.
that the talin architecture is highly sensitive and how its confor-

mation can rapidly change in response to salt.

The Closed Conformation of Talin Prevents Vinculin
Binding, whereas theOpenConformation Binds Vinculin
with 1:1 Stoichiometry
Vinculin is a major talin-binding partner that facilitates crosstalk

between talin and actin through its talin-binding head domain

(V-head) and its actin-binding tail domain (V-tail) (Borgon

et al., 2004; Johnson and Craig, 1994). Sequence-based anal-

ysis identified 11 potential vinculin-binding sites (VBSs) in talin

(Gingras et al., 2005). Experiments using combinations of talin

rod fragments indicated that R3, containing two VBSs, is a

potent binding site for vinculin. It has been proposed that the

unfolding of the helical bundle in R3 exposes the otherwise hid-

den binding domain to vinculin (Izard et al., 2004; Yao et al.,

2014). Our truncation experiments supported that notion, as

the talin fragments R1–R8 and R1–R3 formed complexes with

V-head, whereas R4–R8 did not (Figure S6). It was unclear,

however, how those observations would be reflected in the

context of full-length talin.

To test the binding of vinculin to talin-FL, we performed

reconstitution assays using size-exclusion chromatography
(SEC, Figure 5A) at 75 mM KCl, where talin shows a compact

architecture. While various truncations of talin including R3

readily bound to vinculin (Figure S6), the majority of talin-FL

did not form complexes with full-length vinculin, V-head, or

the vinculin mutant (V-mut, N773A/E775A) (Cohen et al.,

2005), which exposes the talin interaction site by weakening

the autoinhibition of vinculin (Figure 5A, first row). These findings

suggest that the opening of the R3 helical bundle is hindered by

steric constraints in the autoinhibited form of talin. The root of

R3 is connected to R4, which is buried in the core of autoinhi-

bited talin. Therefore, we attempted to reconstitute the talin-vin-

culin complex with talin at 500 mM KCl, where talin shows an

open conformation. SEC revealed that talin and vinculin formed

stable complexes with the V-mut (Figure 5A, second row). Talin

formed a complex with V-head as well (Figures 5A and 5B).

SEC-MALS showed that the corresponding chromatographic

peaks were monodisperse with a molecular mass of 339 kDa,

corresponding to a complex comprising one talin-FL and one

vinculin molecule (Figure 5C). Interestingly, the talin-FL-2K

and talin-FL-5K mutants, which were designed to weaken the

interactions between F2 and R12 domains, were able to form

a complex with V-head at 75 mM KCl (Figures 5D and 5E) signif-

icantly more than wild type talin-FL. This indicates that the

disruption of F2-R12 leads to a partial access of vinculin, while

these mutants employ compact conformations under this con-

dition (Figure 3G).

The Compact Talin Can Retain Vinculin Head as a
Complex but Induces the Dissociation of Full-Length
Vinculin
To test the conformational change of talin in complex with vincu-

lin, we exposed the reconstituted talin-V-head complex to low

ionic strength conditions. We found that the retention volume

of the SEC peak of the complex shifted from 1.27 mL (500 mM

salt) to 1.31 mL (75 mM salt) (Figures 5A, S7A, and S7E), sug-

gesting a possible compaction of the complex. DLS experiments

of the preformed talin-FL-V-head complex indeed showed a

conformational change upon variation in salt concentration,

similar to talin-FL alone (Figures S7B–S7D). We also observed

the conformational change of the complex of V-head with talin-

FL-2K as well as talin-FL-5K, altogether pointing to the ability

of talin to change its conformation in complex with vinculin

head (Figures S7B and S7C).

The closed talin-V-head complex displayed a globular assem-

bly that was similar to the closed morphology of talin alone (Fig-

ure S7F), although the talin-V-head complex had a slightly larger

size (100 Å 3 230 Å) than talin alone (�100 Å 3 150 Å). Two-

dimensional class averages of the talin-vinculin complex

revealed a 60 Å protrusion from the �100 Å globular head (Fig-

ure S7F, top panel). By combining available crystal structures

of the talin VBS3 peptide bound to the vinculin N-terminal rods

(N-terminal part of the vinculin head) (Izard et al., 2004), a full-

length vinculin (Borgon et al., 2004), and our cryo-EM full-length

talin in the autoinhibited form, we assembled a structural model

of V-head binding to talin at the R3 domain with the talin helical

bundle unfolded (Izard et al., 2004; Yao et al., 2014) (Figure S7G).

This model matched well with the shape of the averaged talin-V-

head complex (Figure S7F), indicating that the 60 Å protrusion on
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Figure 6. Talin-F-Actin Binding Assay

(A) Scheme of actin-binding domains ABS2 and

ABS3 in the context of the autoinhibited talin

structure.

(B) Table summarizing tested constructs for

F-actin binding and vinculin accessibility of talin in

compact conformation (75 mM KCl).

(C) Representative SDS-PAGE analysis of the

F-actin co-sedimentation assay with various talin

constructs at 75 mM salt. The dotted line indicates

the elimination of an irrelevant lane from the gel.

(D) Quantification of the co-sedimented talin frag-

ments. Data are represented as mean ± SD.

N-R12, 0.68 ± 0.08; N-R11, 1.3 ± 0.2; N-R11 +

V-head, 1.1 ± 0.3; R1-C, 1.1 ± 0.2; and R1-C +

V-head, 1.3 ± 0.4. Differences between talin-FL

and N-R12 as well as N-R11 are statistically sig-

nificant (marked with *).

See also Figure S7.
the talin-vinculin complex likely corresponds to vinculin binding

to R3. However, when we attempted to re-close talin in complex

with the V-mut including the vinculin tail, vinculin was induced to

be displaced from the complex (Figure S7A). This observation

suggests that the vinculin tail competes with the talin R3 domain

for binding to the vinculin head.

F-Actin Binding Is Enhanced by the Opening of Talin
Another major binding partner of talin is F-actin, which is

located in the fourth layer of the FA. Acting as tension-gener-

ating machinery, actomyosin is thought to ensure the opening

of talin by binding to two sites located at R4–R8 (ABS2) and

R13 (ABS3; Figure 6A). Cell-based experiments with talin rod

mutations suggested that ABS3 plays a role in recruiting talin

to actin at the FA to activate talin, while ABS2 is critical for

the maturation or growth of the FA (Atherton et al., 2015).

Combining our structural findings, we hypothesized that the

opening of talin is correlated with the engagement of talin to

actin and tested the binding of various truncated talin variants

to F-actin by co-sedimentation assays.
Figure 5. Interaction Assays of Talin-FL and Vinculin under Various Conditions

(A) Talin-FL and vinculin reconstitution assays using size-exclusion chromatography (SEC). An ionic strengt

shown in the upper panel and 500 mM in the lower panel. SDS-PAGE profiles (talin-vinculin mixture, talin con

the SEC profiles. In order to achieve complex formation, it is necessary that both talin and vinculin employ ope

V-fl, vinculin full-length; V-mut, vinculin (N773A/E775A) mutant; V-head, vinculin head. Minor shoulders at the

without FERM domain. The control runs for talin come from the same experiment and the corresponding p

comparison. The y-scaling has been adjusted for the different amplitudes of the chromatograms.

(B) Negative-stain EM image of vinculin head bound to open talin at 500 mM KCl.

(C) SEC-multi-angle light-scattering profile of V-head bound to open talin with a calculated molecular weight o

1:1 stoichiometry. LS, light scattering, normalized; UV, absorbance.

(D) SEC reconstitution assay of talin-FL-2K mutant and vinculin head at 75 mM salt.

(E) SEC reconstitution assay of talin-FL-5K and vinculin head. The purified proteins have never been exposed t

The complex formation of these mutants and V-head is observed (indicated by red lines). The control ru

experiment and the corresponding profile and SDS-PAGE are shown twice for comparison.

See also Figures S6 and S7.

C

First, the truncated construct N-R12

was tested for binding to F-actin. In the

tested condition at 75 mM KCl, N-R12,
like talin-FL, employed an autoinhibited compact form (Fig-

ure 3F) that did not form a complex with vinculin (Figures 6B

and S7H). Reflecting the fact that N-R12 lacks ABS3, the

binding of F-actin to N-R12 was reduced compared to talin-

FL (Figures 6C and 6D). Next, we tested the C-terminal trunca-

tion construct N-R11, which lacks the R12 domain. Without

R12, talin N-R11 compaction is weak enough for vinculin

to associate (Figures 6B and S7I). In contrast to N-R12,

N-R11 bound F-actin with even higher amounts than talin-FL

(Figures 6C and 6D), despite the fact that it lacks ABS3.

Those results indicate that loosening the autoinhibitory lid

(R12) of talin directly correlates with the activation of the F-actin

binding of ABS2 as well as with vinculin binding. We also tested

the truncation of the N-terminal FERM domain (R1-C) in the

same way. R1-C showed binding similar to that of N-R11,

although the described F-actin-binding activity of ABS1 at the

FERM domain was missing from the fragment. R1-C was also

capable of binding to the vinculin head (Figures 6B and S7J);

however, it displayed no significant enhancement of F-actin

binding.
h of 75 mM was used for the reconstitution assays

trol, vinculin control) of the peaks are shown below

n conformations (bottom-center and bottom-right).

left side of talin peaks correspond to degraded talin

rofile and SDS-PAGE are shown multiple times for

f 339 kDa, indicating that the complex is madewith

o 500mM salt, which facilitates the opening of talin.

ns for V-head in (D) and (E) come from the same
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Figure 7. Model of Talin Activation

(1) Our structure of talin in the closed form reveals how inactivation is achieved through occlusion of functional sites. Rap1-mediated recruitment of talin to

membranes can occur without breaking the closed formation of talin as the F0 and F1 subdomains are accessible.

(2) Our structural analysis also indicated that the closed form of talin is in equilibrium with a semi-opened state due to the instable FERM-lid connection

(see Figure S1).

(3) Upon binding to the PIP2-embedded membrane surface, the R12-F2 and R9-F3 interfaces are broken because of competitive interactions with PIP2 and

integrin, respectively (shown in Figure 1). The binding to the integrin tail hinders the F3-rod interaction (Wegener et al., 2007) and releases the rod domains from

the FERM head as well as from the plasma membrane.

(4) The further opening of the rod domainsmay require themechanical aid of actomyosin pulling via the ABS3 and ABS2 actin-binding sites. Vinculinmay also take

an active role in reinforcing the binding of talin to actin (Humphries et al., 2007).
DISCUSSION

Mechanism of Talin Regulation
In cellular environments, the concentration of talin can be as high

as 50 mM (Zeiler et al., 2014; Zhu et al., 2017), making talin one of

the most abundant components in cells. The activation of talin

within FAs is essential; however, it is also critical that the adhe-

sion components can be properly switched off to control cell

attachment and migration. Therefore, the autoinhibited state of

talin is essential (Ellis et al., 2013). Information is available about

interactions among individual talin fragments (Goult et al., 2013;

Song et al., 2012); however, the molecular architecture and the

mechanism of talin’s autoinhibition have been unknown in the

regulatory context of full-length talin. We uncovered how talin

can be folded to ensure its autoinhibition. A network of polar in-

teractions keeps the 13 rod domains tangled into a compact

globular architecture with the R4 domain buried in the core,

thus shielding R4 and the actin-binding site ABS2 against actin

binding. The compact architecture was further locked down by

contacts between the F2 and F3 subdomains of the FERM

head and the R12 and R9 rod domains, respectively. The PIP2

binding FERM domain wasmasked by the R12 domain inhibiting

the interaction of talin to the inner leaflet of the plasma mem-

brane. The densities of R11–R13 are not well defined and

show flexibility in the 3D classification (Figure S1C). This sug-

gests that the connection between R12 and FERM domain F2

is loose. The interruption of this interaction may be sufficient to

grant access to binding partners such as vinculin, whose binding

cannot open the molecule completely. The conformational
128 Cell 179, 120–131, September 19, 2019
change of talin can be seen as an ensemble of open and closed

states, which can be reversibly shifted by the change of salt con-

centration in vitro. The open conformation of talin likely mimics

the activated talin stabilized by the actomyosinmachinery during

FA initiation.

Talin-Vinculin Complex Formation during Autoinhibition
We observed that one vinculin-binding site is readily available

when full-length talin is released from the autoinhibited state

without the application of any active force. Intriguingly, talin is

able to reverse back to the closed conformation while vincu-

lin-head is still bound to R3, but only in the absence of the vin-

culin tail. We speculate that this may hint at a mechanism to

release vinculin when talin is inactivated and no longer engaged

in the FA assembly. The closure of talin and concomitant

folding of R3 may weaken the interaction of vinculin head to

R3. In turn, the competition of vinculin tail for the head domain

becomes more effective, resulting in the inactivation of vinculin

and release from the complex in the autoinhibited form. It will

be interesting to structurally map the interaction surface and

find out which of the talin-binding partners can bind to the

autoinhibited form of talin. Such an analysis will shed light on

the functional role of talin in the cytosol and help to determine

if there are preformed complexes that act as precursors of FA-

related complexes. Along the same line, it is possible that talin

dimerization might also occur upon talin activation and elonga-

tion. Binding to actin further expands the footprint of talin and

exposes the C-terminal dimerization domain, as suggested

previously (Goldmann et al., 1994), while dimerization appears



dispensable when talin is autoinhibited. Talin dimerization of-

fers an additional layer of regulation and the possibility for

larger complexes to be assembled from preformed FA sub-

complexes. Further structural analysis of full-length talin in its

active, elongated form in comparison with its autoinhibited

form will provide a comprehensive view of talin function during

FA initiation and maturation.

The Topological Positioning of Talin Is a Key Step in FA
Activation
Our talin structure showed that the globular rod domains

occlude the membrane-binding plane of the FERM domain. On

the other hand, the N-terminal FERM F0-F1 subdomains and

the C-terminal DD domain were not involved in maintaining the

structural organization of the autoinhibited form of talin, indi-

cating that those domains are freely accessible and not inhibited

when talin is closed. In particular, F0 has been shown to be a key

binding domain for Rap1, which has been suggested as the first

step in the recruitment of talin to the cell-membrane surface (Zhu

et al., 2017).

In addition, talin has a 30 amino-acid flexible linker between

the F1 and F2 subdomains that separates F0-F1 from the glob-

ular autoinhibited structure (F2-DD). This separation may allow

F0-F1 to ‘‘search’’ for cofactors. Our findings, together with

previous results, suggest a model of how talin is recruited

and correctly positioned at the membrane surface (Figure 7,

model). Autoinhibited talin is recruited to the membrane via

its freely accessible F0 subdomain in a Rap1-assisted manner.

Thus, the FERM domain orchestrates the binding of Rap1 on

the one hand (Zhu et al., 2017), while on the other it accesses

the exposed, negatively charged plasma membrane via the

flexible loop inserted in the F1 subdomain (Goult et al., 2010).

This recruitment process increases the local concentration of

PIP2, due to the recruitment of PIPK1g90 by the F3 subdomain

(Di Paolo et al., 2002; Ling et al., 2002). PIP2 may bind to talin,

opening the R12 lid, thus shifting the conformational ensemble

toward open structures. The F3-R9 interaction may then be

abrogated (Figure 7, step 3), allowing the integrin tail to interact

with F3.

This rearrangement releases the rod domains from the head

domain (Figure 7, step 3), activating the interaction sites for

various talin-binding proteins. The rod domains themselves

can be readily approached by vinculin and actin (as shown in Fig-

ure 6), which could lead to the initiation of FA formation (Figure 7,

step 4). Our actin co-sedimentation assays with truncated talin

revealed that ABS2 is inhibited while talin is closed. This shows

that the initial pulling of talin ABS3 by the actomyosin machinery

aids the opening of talin to enable the accessibility of ABS2 as

well as vinculin, as also shown in a previous report (Atherton

et al., 2015). Finally, actin binding would enable actin retrograde

force to exert tensile force on talin, enabling mechanical force to

further stabilize talin opening (Sun et al., 2019). Our structure

provides a mechanistic basis to understand the inhibition and

activation of talin. Although our model is coherent, further testing

is needed to validate key events. Furthermore, other yet-un-

known activating factors may be involved to tightly regulate the

inhibition and activation of talin or to modulate individual func-

tions of talin.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli, BL21-Gold (DE3) Agilent Cat# 230132

Escherichia coli, XL1-Blue Agilent Cat# 200249

Chemicals, Peptides, and Recombinant Proteins

N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic

acid (HEPES)

Roth Cat# 9105.3

Potassium Chloride Roth Cat# 6781.1

Sodium Chloride Merck Cat# 1.06404

Ethylenediaminetetraacetic acid (EDTA) VWR Cat# 1.08418.0250

Dithiothreitol (DTT) AppliChem Cat# A1101

2-Mercaptoethanol AppliChem Cat# 4338.0100

D(+)-Saccharose Roth Cat# 4621.1

Glutharaldehyde Sigma Cat# 340855

Octyl b-D-glucopyranoside Sigma Cat# O8001-500MG

Uranyl acetate 2% Science Services Cat# E22400-2

Tris(hydroxymethyl)aminomethane (Tris/Trizma Base) Sigma Cat# T1503

4-Morpholineethanesulfonic acid (MES) Sigma Cat# M8250-250G

Imidazol Merck Cat# 1.04716.1000

Actin (rabbit skeletal muscle alpha actin) Hypermol Cat# 8101-03

L-Glutathione (reduced) VWR Cat# 0399-50G

Glyercol 99.5% Roth Cat# 3783.1

cOmplete EDTA-free, 3 x 20 Tablets Roche Cat# 5056489001

Magnesium chloride Roth Cat# 2189.2

Calcium chloride Roth Cat# 5239.2

Adenosine 5’-triphosphate disodium salt hydrate Sigma Cat# A2383-10G

Protein Marker VI (10 - 245) pre-stained AppliChem Cat# A8889.0500

Critical Commercial Assays

NucleoSpin Plasmid EasyPure Macherey Nagel Cat# 740727.250

Roche cOmplete His-Tag purification column Roche Diagnostics Cat# 06781535001

HiTrap Q HP column GE Healthcare Cat# 17-1154-01

16/600 Superdex 200 GL GE Healthcare Cat# 28-9893-35

3.2/300 Superdex 200 increase GE Healthcare Cat# 28-9909-46

3.2/300 Superose 6 increase GE Healthcare Cat# 29-0915-98

GSTrap FF, HiTrap GSH/GST GE Healthcare Cat# 17-5131-01

Deposited Data

Cryo-EM map of talin-FL This study EMD-4772

Atomic model of talin-FL This study PDB 6R9T

Experimental Models: Organisms/Strains

Escherichia coli, BL21-Gold (DE3) Agilent Cat# 230132

Escherichia coli, XL1-Blue Agilent Cat# 200249

Oligonucleotides

DNA Primers, see Table S2 This study N/A

Recombinant DNA

Plasmid DNAs, see Table S2 This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Serial EM Mastronarde, 2005 http://bio3d.colorado.edu/SerialEM

Gctf Zhang, 2016 https://en.wikibooks.org/w/index.php?

title=Software_Tools_For_Molecular_

Microscopy&stable=0#Gctf

Gautomatch Andrew Carter lab,

unpublished

https://www.mrc-lmb.cam.ac.uk/kzhang/

MotionCor2 Zheng et al., 2017 https://msg.ucsf.edu/software

RELION Zivanov et al., 2018 http://www3.mrc-lmb.cam.ac.uk/relion

cryoSPARC Punjani et al., 2017 https://cryosparc.com/

UCSF Chimera Pettersen et al., 2004 http://www.cgl.ucsf.edu/chimera/

Bsoft Heymann and Belnap, 2007 https://lsbr.niams.nih.gov/bsoft/

Coot Emsley et al., 2010 http://www2.mrc-lmb.cam.ac.uk/Personal/

pemsley/coot/

PHENIX Afonine et al. 2018 https://www.phenix-online.org/

UNICORN GE Healthcare https://www.gelifesciences.com

OmniSEC Malvern https://www.malvernpanalytical.com

PRISM Graphpad https://www.graphpad.com/scientific-software/prism/

Amber 16/18 Salomon-Ferrer

et al., 2013

http://ambermd.org/AmberTools.php

MaxQuant Cox and Mann, 2008 https://www.maxquant.org/maxquant/

Other

Carbon-coated copper grids Home-made N/A

Quantifoil Cu 200 mesh R1.2/1.3 grids QUANTIFOIL N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Naoko

Mizuno (mizuno@biochem.mpg.de). Materials and plasmids generated in this study (see Table S2) are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

E. coli XL1-blue was cultured at 37�C in LB medium supplemented with 100 mg/ml ampicillin for plasmid DNA extraction. E. coli

BL21(DE3) gold was cultured at 37�C in ZY auto-induction medium supplemented with 100 mg/ml ampicillin until reaching an

OD600 >2. The temperature was then switched to 16�C for protein expression overnight. Plasmids used for protein production are

listed in Table S2.

METHOD DETAILS

Protein purification
Expression constructs of full-length talin1 (talin-FL) were prepared using human talin1 DNA (a gift from Christophe Le Clainche). DNA

of talin-FL was amplified using PCR and subcloned into a pCB homemade expression vector with a His tag at the C-terminus for

bacterial or mammalian cells. Talin1 was expressed in E. coli BL21 (DE3) gold using ZY auto-induction medium. Cells were lysed

by sonication in 50 mM Tris-HCl pH 7.8, 500 mM NaCl, 10 mM imidazole, 1 mM DTT, 5 mM EDTA, purified by nickel-affinity chro-

matography (complete His-Tag purification column, Roche) and anion exchange (HiTrap Q HP, GE Healthcare). The His-tag was

removed using 3C protease and proteins were further purified by size-exclusion chromatography using a Superdex 200 16/600 col-

umn (GE Healthcare) in 20 mM HEPES pH 7.8, 75 mM KCl, 0.5 mM b-Mercaptoethanol and 0.5 mM EDTA and 10% glycerol.

Talin truncation and mutation variants were obtained using mouse talin FL (pLPCXmod-Talin1-Ypet; a gift from Carsten Grashoff)

as a template and cloned into homemade expression vectors (pCB and pEC vectors). Mouse talin constructs used in this study were

1-2482 (talin -DDD), 482-2541 (R1-C) 1-2294 (N-R12), 1-2141 (N-R11), 482-1655 (R1-R8), 482-913 (R1-R3), 913-1655 (R4-R8), talin

mutant E2288K/E2294K/D2297K/E2299K/D2300K (talin-FL-5K) as well as talin mutant E2288K/E2294K (talin-FL-2K) (see Table S2).
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The DNA fragments were amplified using PCR and subcloned into a pCB vector containing a cleavable N-terminal Venus-His8-Sumo

tag or His tag. Proteins were expressed in E. coliBL21 (DE3) gold in ZY auto-inductionmedium. Talin truncation variants were purified

using the same procedure as talin-FL. Tags were removed using 3C or Senp2 protease and proteins were further purified by size-

exclusion chromatography using a Superdex 200 16/600 column (GE Healthcare) with 20 mM HEPES pH 7.5, 75 mM NaCl,

0.5 mM EDTA and 0.5 mM b-Mercaptoethanol.

Vinculin constructs were designed based on a previous report (Cohen et al., 2005) and cloned into homemade pEC vectors con-

taining N-terminal GST-His tag and a 3C-cleavage site. V-head contains a.a. 1-851. Proteins were purified using His-affinity purifi-

cation methods and eluted with 500mM imidazole. Protein fragments were cleaved with 3C protease and dialyzed over night against

20 mM HEPES at pH 7.8, 100 mM KCl, 0.5 mM b-Mercaptoethanol, concentrated and subsequently applied to size-exclusion

chromatography (Superdex 200 16/600, GE Healthcare). All purified proteins were stored at �80�C. Analytical size-exclusion
chromatography experiments using talin were performed in 20 mM HEPES at pH 7.8, 0.5 mM b-Mercaptoethanol, 0.5 mM EDTA

either with 75 or 500 mM KCl to test the influence of salt on the conformational change observed under negative-stain EM.

Gradient Fixation (GraFix) of talin samples
To stabilize weak protein-protein interactions, the GraFix crosslinking protocol was used (Stark, 2010). Talin samples were subjected

to a sucrose and glutaraldehyde gradient of 10-30% and 0-0.2%, respectively, in a buffer containing 20 mM HEPES (pH 7.5),

75 mM KCl, 0.5 mM b-Mercaptoethanol and 0.5 mM EDTA. Gradients were prepared in 2.2 ml ultracentrifuge tubes (open-top poly-

clear tubes, Seton) using a Gradient Station machine (model ip, Biocomp). 50 ml of talin samples at a concentration of 5 mg/ml

(approximately 18.5 mM) were placed on top of the gradients and centrifuged in a TLS55 rotor (Beckman Coulter) at 50 000 rpm,

for 6 h at 4�C, using an OptimaMax-XP ultracentrifuge (Beckman Coulter). 100 ml-Fractions were collected manually from top to bot-

tom and quenchedwith 100mMTris (pH 7.5). Fractions containing themonomeric or dimeric talin, as determined by SDS-PAGEwere

pooled, concentrated, and buffer-exchanged to 20 mM HEPES (pH 7.5), 75 mM KCl, 0.5 mM b-Mercaptoethanol and 0.5 mM EDTA

to remove excess sucrose using Amicon Ultra centrifugal filters (0.5 ml, 50 MWCO).

Mass spectrometry
For validating the full-length coverage of the protein sequence, the talin-FL sample was subjected to peptide mass fingerprinting

analysis. The sample was diluted in equal volume of buffer containing 2% sodium deoxycholate (SDC), 20 mM TCEP and 80 mM

chloroacetamide in 25 mM Tris at pH 8.5 and incubated at 37�C for 20 min. The sample was then further diluted with LC-MS grade

water to reduce the SDC concentration to less than 0.5% and directly digestedwith 1 mg of trypsin (Promega) overnight. The peptides

were then acidified and purified via SDB-SCXStageTips and analysed in aQExactive HFmass spectrometer using a 75min gradient.

Raw data were processed using the MaxQuant platform and all identifications were filtered at 1% false discovery rate (FDR).

Negative-stain electron microscopy
For negative-stain EM, homemade carbon-coated grids were prepared and glow discharged before use. 5 ml of sample was applied

and incubated for 1 min, blotted, washed twice in two drops of water and stained in 2% uranyl acetate for 1 min. The prepared spec-

imens were visualized with a FEI CM200 with an operating voltage of 160 kV equipped with an Eagle CCD camera with a pixel size of

2.16 Å/pix or with a FEI Tecnai F20 at 200 kVwith an Eagle CCD camerawith a pixel size of 2.21 Å/pix. For 2D classifications, particles

were manually or automatically picked using RELION (Zivanov et al., 2018) and extracted in 276 Å boxes. For shape assessment,

1102 (talin-DDD) and 5678 (talin-FL V-head complex, treated with GraFix method for stabilization) particles were selected for refer-

ence-free 2D classification using RELION, resulting in 2D class averages. The lengths of open talin were measured using bshow in

BSOFT (Heymann andBelnap, 2007). Five images of negatively stained talin were filtered usingmedian filter (n=6) aswell as Gaussian

filter (sigma=4) to enhance the contrast of the protein densities. Particles showing clear boundaries were manually selected and their

contour length was measured using the ‘filament’ option in BSOFT, facilitating the tracing of elongated, string-like particles. The his-

togram was created from a population size of N = 89, and the distribution was fit to normal distribution (average 560 Å, S.D. 170 Å).

Cryo-EM analysis of full-length talin
Samples for cryo-EM were applied to glow-discharged R1.2/1.3 Cu 200 mesh holey carbon grids at a concentration of 0.3 mg/mL in

20 mM HEPES at pH 7.8, 75 mM KCl, 0.5 mM b-Mercaptoethanol, 0.5 mM EDTA to ensure the compact formation of talin based on

the DLS experiment shown in Figure 3D. Under salt concentrations of 200 mM KCl and higher, the compact formation of talin mole-

cule was compromised in the cryo-EM environment, yielding poor 2D averages (Figure S2D). The grids were blotted at�95% humid-

ity at 4�C for 4 s and plunged into liquid ethane-propane using a Vitrobot Mark IV (FEI). 11007 micrographs were collected on a Titan

Krios (FEI) at 300 kV equipped with a K2 Summit direct electron detector and a quantum energy filter (20 e-V)(Gatan). Micrographs

were exposed for 10 s at 7.68 e-/Å2/s (total dose 76.8 e-/Å2) and 40 frames were collected in counting mode (pixel size 1.06 Å/pixel).

Defocus was varied between -1 and -3 mm in steps of 0.3 mm. Movies were aligned, gain-normalized and dose-weighted using

MotionCor2 (Zheng et al., 2017). Defocus values were determined using GCTF (Zhang, 2016). Particles were automatically picked

with Gautomatch using the template-free mode (Gaussian blob with 220 Å diameter), imported to RELION-3 (Zivanov et al., 2018)

and extracted in 224 pixel-sized boxes. Extracted particles were applied to 2D classification routine in RELION-3 to remove

contaminations. 1,873,975 particles were selected and after removing low quality classes, initial 3D reconstruction was performed
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using cryoSPARC (Punjani et al., 2017). Using the initial model, 5 batches of 3D classification were performed, yielding several

models of a closed talin structure with different completeness of densities. Particles of the most complete model were combined,

further aligned and classified. 30,438 particles were selected for the final 3D refinement, yielding a final map with a global resolution

of 6.2 Å with up to 5.5 Å resolution in the core of talin using the RELION post-processing routine, using the gold-standard Fourier shell

correction (FCS) = 0.143 criterion. In the final map, the R3 domain was only partially resolved. To visualize the R3 domain, flexible

densities were computationally subtracted from individual particles using available scheme from RELION-3, and as previously

described (Bai et al., 2015), facilitating the focused 3D classification of the core density R1-R10. The particle information and the

alignment parameters of the 3D class with the most prominent density of R3 were applied to the original particles that contain the

flexible densities (FERM domain and R11-C) and the final map with the R3 domain was obtained. This map was used for the assign-

ment of the R3 domain. Finally, to assess the flexibility of the autoinhibition area in the talin structure, 3D classification was performed

to the 750,432 particles obtained from the initial stage of the 3D classification. It was observed that the parts corresponding to R11-

R13 exhibited a weaker density compared to the core part (R1-R10) of the structure, detecting high levels of flexibility. Overall, the

analysis indicated that the packing of talin-FL is sensitive to its environment, which agrees well with its conformational change

observed in our biochemical analysis as well as its cellular function. The graphical summary is depicted in Figure S1.

Molecular dynamics for flexible fitting
For each of the rod fragments (R1-R13) and the FERM domains, crystal and NMR structures are available. The corresponding PDB

entries are 3ivf (FERM domain), 1sj8 (rod domains R1 and R2), 2l7a (R3), 2lqg (R4), 2l10 (R6), 2l7n (R5) 5ic1 (R7, R8, R9), 2kvp (R10),

3dyj (R11, R12), 2jsw (R13). Initially, the structures containing multiple domains (PDB: 3ivf, 1sj8 and 5ic1) were computationally

divided into individual domains. These individual domain structures served as building blocks to build a model of the entire autoin-

hibited structure of talin (Figure S3).

The R1 rod domain has an asymmetric shape and only one unique well-fitted placement and orientation of this structure in the

density could be identified by rigid-body fitting. The C-terminus of the fitted R1model reaches into a neighboring helical bundle den-

sity in the cryo-EM map, which fitted well with the R2 model. The available structure of R1-R2 complex (PDB: 1SJ8) was indepen-

dently fitted using the colores program of the Situs package (Chacón and Wriggers, 2002) showing that they matched to each other.

This fitting served as a first anchor segment. The resolution of the density was sufficient to clearly distinguish between 4-helix and 5-

helix bundle segments in the density. R7 and R8 were readily identified due to the inter-winded helical bundle feature of R7 within R8.

Together with the constraint on the maximum linker length to covalently connect consecutive rod-domains it was possible to define

placements and also orientations of the subsequent rod domains (R3-R13) in order to fit to the density and at the same time, to allow

covalent connection to the previous and subsequent rod-domains. Placements that sterically did not allow connection of consecu-

tive fragments to form a fully connected talin chain were eliminated. Finally, remaining densities, which did not represent a helical

bundle arrangement, were assessed. These remaining densities consisted of two globular entities that were identified as F2 and

F3 domains due to their secondary structures features. Overall, the fitting was performed independent of any available structural

models showing the inter-domain connections. However, our placements brought the F3 segment in close binding vicinity to the

R9 rod-domain. The placement coincided with the crystal structure of F2-F3 in complex with R9 (PDB 4f7g) (within a root-mean

square deviation (RMSD) < 0.8 Å).

The resolution of the cyro-EM reconstruction of 6.2 Å together with the sterical constraints to covalently connect domains with

smaller linker segments readily allowed the identification of the unique topology for the full chain. However, no cryo-EM densities

for the FERMF0 and F1 domains and the DD domain were identified and these parts were not included duringmodel building. Finally,

a full covalently connected chain was formed by connecting N- and C-termini of consecutive rod fragments using the Leapmodule of

the Amber16 package (Salomon-Ferrer et al., 2013) in combination with the ff14SB force field (Maier et al., 2015). The disordered

connection between FERM F3 and R1 was not included and the F2 and F3 domains were treated as separate proteins not covalently

connected to the rod fragments.

The emap/sander module of the Amber16 packagewas used to perform a flexible fitting and sterical force field optimization (based

on the ff14SB force field). In order to keep the structure of each individual template structure (R1-R13 and F2 and F3) close to the

corresponding experimental crystal structure distance restraints between backbone atoms within each fragment were included.

These restraints kept the secondary structure and the arrangement of secondary structures in each domain to within RMSD < 1 Å

from the corresponding experimental domain reference structures. Connecting loops and side chains were nevertheless fully mobile

during flexible fitting. The full start structure was first energy minimized (5000 steps) followed by a Molecular Dynamics (MD) simu-

lation at 300 K (0.5 ns) until no further shift of themean structure was observed followed by another round of energyminimization. The

model was then subjected to manual building and correction in COOT (Emsley et al., 2010) and real-space refinement in PHENIX

(Afonine et al., 2018). The final structure fitted well to the cryo-EM density with a correlation coefficient around the model (CCmask)

of 0.81 without outliers in the Ramachandran plot (Table S1).

Estimation of interaction energies
The interaction energy between selected pairs of talin fragments (enthalpy) was calculated using theMMPBSA (Molecular Mechanics

Poisson Boltzmann Surface Area) approach as implemented in the Amber18 package (Onufriev et al., 2000; Salomon-Ferrer et al.,

2013). Pairs of talin subdomains were extracted from the compact talin autoinhibited structure in the same arrangement as observed
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in the full structure. For each case an ensemble of 250 conformations was generated using short MD simulation (0.1 ns, 300 K) keep-

ing the backbone strongly restraint to the starting placement (allowing shifts < 0.1 Å). The mean domain-domain interaction energy

was calculated using the MMPBSA method. It accounts for changes in electrostatic Coulomb interactions, changes in electrostatic

solvation (reaction field with the aqueous environment), changes in mean van-der-Waals interactions and nonpolar (hydrophobic)

contributions that depend on the buried surface area upon complex formation. In theMMPBSA approach, the change in electrostatic

reaction field contributions is calculated by solving the finite-difference Poisson-Boltzmann equation for each structure. The energy

of interaction was estimated by subtracting the contributions of each partner from the result of the domain-domain complex for each

case. Calculations were performed at a monovalent salt concentration of 0.15 M. We note that the calculated interaction energies

represent enthalpic contributions and do not include the entropic penalties of restricting the large ensemble of open and flexible con-

formations of talin to a small ensemble of compact conformations seen in the autoinhibited state.

F-Actin co-sedimentation assay
Actin was purchased fromHypermol, Germany. Actin was polymerized in 10mMTris pH 7.5, 50mMKCl, 2mMMgCl2, 0.2mMCaCl2,

0.2 mM ATP, 0.5 mM DTT for 20 min at RT. Buffer exchange of the samples was performed using Zeba Spin desalting columns

(Thermo Scientific). The buffer for all constructs was 20 mM Tris pH 7.5, 75 mM KCl. 2.5 mM talin fragments were incubated with

2.5 mM F-actin for 15 min at RT. The mixture was then ultra-centrifuged at 175 000 x g (TL-100 Ultracentrifuge, Beckmann) for 20 mi-

nutes at RT. Pellets were re-suspended to comparable volumes as supernatants with 1x SDS buffer. 6x SDS buffer was added to the

supernatant and 10 ml of samples were run on SDS-page and quantified using FIJI (Schindelin et al., 2012).

Analytical size-exclusion chromatography
For analytical size-exclusion chromatography, the buffer exchange of the sample was performed using Zeba Spin desalting columns

(Thermo Scientific) to 20 mMHEPES pH 7.5, 75 or 500 mMKCl, and 10 mMof samples were injected to either an analytical Superdex

200i 3.2/300 (for the reconstitutions of R1-C, R1-R3, R4-R8 and R4-R8 and V-head) or Superose 6i 3.2/300 (all other constructs)

on an ÄKTAmicro system (GE Healthcare). Fractions were collected, mixed with 6x SDS sample buffer and 10 ml were run on

SDS-PAGE.

Dynamic Light-Scattering (DLS)
Formeasurements of hydrodynamic radius changes, talin-FL, talin N-R11 and talin N-R12were initially prepared in 20mMHEPESpH

7.5, 75 mM KCl, 0.5 mM EDTA, 0.5 mM b-Mercaptoethanol. Further, the samples were diluted to a final concentration of 0.3 mg/ml

and final KCl concentrations of 75 – 500 mM (75/100/125/150/175/200/225/250/300/350/400/450/500 mMKCl) in the same buffer in

30 ml wells in a 384-well plate. DLS measurements were performed with a Dynapro Platereader-II Dynamic Light Scattering instru-

ment (Wyatt Technology Corporation) at 20�C. Samples were independently prepared in triplicates and 20 measurement points per

well were taken. The data was analyzed in Dynamic 7.8.1.3 (Wyatt Technology Corporation) and plotted with PRISM (GraphPad). The

fitting of the curve was performed using a nonlinear regression fit with a sigmoidal curve.

Size-Exclusion Chromatography Coupled with Multi-Angle Light-Scattering (SEC-MALS)
To test the molecular weight of the protein complexes, talin-FL and talin truncations as well as the mixtures of talin and vinculin

(1:1 ratio) were prepared in buffer containing 20 mM HEPES, pH 7.5, 75 or 500 mM KCl, 0.5 mM EDTA at 3 mg/ml concentration

and 20 ml were run on a Superdex 200 5/150 GL column on an ÄKTAmicro system (GE Healthcare) coupled to a Viscotek TDA302

detector (Malvern, Herrenberg, Germany) in the same buffer. Bovine serum albumin was used as a standard and the refractive index

increment (dn/dc) was set to 0.180 ml/g for calculations. Data was analyzed using the OmniSEC 4.5 software (Malvern) and plotted

with PRISM (GraphPad).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis related to EM data are integral parts of algorithms and software used.

For DLS analysis, the experiments were performed 3 times independently. The results were averaged and the error bars represent

the standard deviations. For the fitting, nonlinear regression fit, sigmoidal curve fitting was applied using the software PRISM

(GraphPad).

For F-actin analysis shown in Figure 6, the experiments were performed at least 3 times independently. The talin-FL band was run

on the same SDS-PAGE gel as an internal control to standardize the variability of the contrast caused by staining conditions of each

SDS-PAGE gels. Therefore, relative quantified values compared to the talin-FL band were used for the analysis. These values were

averaged and standard deviations were obtained. Unpaired t-test was used to assess statistical significance.

DATA AND CODE AVAILABILITY

The cryo-EM map of human talin1 was deposited in the EMDB database with accession code EMD-4772. The flexibly fitted atomic

model was deposited in the PDB with accession code 6R9T.
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Supplemental Figures

Figure S1. Summary of Cryo-EM Data Processing, Related to Figure 1
Top: Representative cryo-EM image of talin-FL at 75 mM salt with representative 2D averages. Bottom: Graphical scheme of image processing. 1.9 million

particles were selected out of 2D classifications. Further 3D classifications and refinement facilitated the final map generation (A – left). To visualize the R3

domain, the core density (R1-R10) was computationally extracted and focused 3D classification of the core density was performed. At the final step of the

processing, the alignment parameters were applied to the original particles to visualize the full density (B – center). Yellow density fitted with an available structural

model of R3. To assess the flexibility of the autoinhibition pocket consisting of the interface between FERM domain F2-F3 and R12-R13 (lid), extensive 3D

classifications were performed, yielding a visualization of the flexible densities of R11-R13 (C – right).



Figure S2. Quality Control of Cryo-EM Data Processing, Related to Figure 1

A: Local resolution map of the talin-FL structure, showing a resolution range between 5.5 Å and 7.9 Å. B: The Fourier shell correlation (FSC) curve of the talin-FL

structure showing a global resolution of 6.2 Å. The additional line indicates a FSC of 0.143 C: Angular distributions of the particle orientations that were incor-

porated into the final 3D reconstruction. D: Cryo-EM images of talin-FL in the presence of 200mMKCl and 500mMKCl, showing aggregations presumably due to

the talin opening at 500 mM KCl. 2D classifications of talin-FL at 200 mM KCl reveal less robust averages indicating higher structural heterogeneity.



Figure S3. Talin Fragments Used in This Study and Sequencing Information of Talin-FL, Related to Figure 1

A: Scheme of talin fragments used in this study (top) and the structures (PDB codes) that were used as building blocks for the fitting andmolecular modelling. For

PDBs 3IVF, 1SJ8, 5IC1 and 3DYJ, individual domains are computationally extracted and used independently (see also STAR methods). 2K denotes charge-

reversal double mutation E2288K, E2294K and 5K denotes mutations E2288K, E2294K, D2297K, E2299K, D2300K). B: Peptide detection of talin-FL by mass

spectrometry. The entire sequence of talin (1-2541) is covered, showing no indication of spontaneous cleavage.



Figure S4. Talin F3-Rod Binding Surfaces Obtained from Our Cryo-EM Map in Comparison to Available Structures, Related to Figure 1

Top-left: Our cryo-EM model of the F3-rod binding surface. Bottom-left: crystal structure (PDB: 4F7G) of truncated F2-F3 and R9. Right: Examples of structures

that bind to the talin F3-rod binding surface. From top to bottom: PDB: 4F7G superimposed to 2H7E (Integrin tail), 2MWN (RIAM), and 2K00 (Layilin).



Figure S5. Talin Inter-Domain Interactions, Related to Figures 1 and 4

A: Electrostatic surface potential of individual rod domains surrounding R4 and forming the autoinhibition core. Sites contacting each other are indicated with

yellow circles. B: Interaction energies calculated by restraint molecular dynamics simulations for major interaction surfaces in the presence of 150 mM salt.

Units: kCal/mol. We note that the calculated interaction energies represent enthalpic contributions and do not include the entropic penalties of restricting the large

ensemble of open and flexible conformations of talin to a small ensemble of compact conformations seen in the autoinhibited state.



Figure S6. SEC Reconstitution Assay of Various Talin Rod Domains and the Vinculin Head (V-Head) at 75 mM Salt, Related to Figure 5

The SDS-PAGE analysis corresponds to the profile of the protein mixtures (top), talin control constructs (center), and vinculin head control (bottom), respectively.



Figure S7. Conformational Change of Talin in Complex with V-Head, Related to Figures 5 and 6

A: Size-exclusion chromatography (SEC) profile of talin and vinculin constructs. Reconstitution assays of talin (open conformation) and V-head as well as V-mut

were performed at 500mM salt, and then the complexwas assessed by changing the salt concentration to 75mM. V-head stays in complexwith talin (blue), while

V-mut dissociates from talin (red). B-D: DLSmeasurements of the hydrodynamic radius of the reconstituted talin constructs (talin-FL, talin-FL-2K and talin-FL-5K)

in complex with V-head under various salt concentrations. In comparison to talin-FL constructs alone (shown in grey), the increased size of the sample is observed

showing complex formation. A conformational change of talin-V-head complex upon the change of salt concentration is also observed. For the case of talin-FL-

5K in complex with V-head, the profile did not fit to a two-state model. E: SEC-multi-angle light-scattering profile of the talin (75mM salt, closed) -V-head complex

showed a molecular weight of 362 kDa, indicating a 1:1 stoichiometry. LS: light scattering, normalized, UV: absorbance F: Negative-stain EM image of the talin-

vinculin head complex in closed talin and two-dimensional averages (right), showing a long protrusion from the main globular density. G: Molecular modeling of

our talin structure (white) with R3 unfolded (yellow) to accommodate the vinculin head density (green). The model was created by combining our cryo-EM talin-FL

(legend continued on next page)



structure (white) with available structures of a part of the V-head (a.a. 1–258) complexed with talin peptide (a.a. 1944–1969) (PDB: 1RKC, yellow) and the vinculin

head (a.a. 259–843) extracted from full-length vinculin (PDB: 1TR2, green). H-J: SEC profiles of various talin truncation constructs with V-head at 75 mM salt,

showing that the complex formation of talin and V-head occurs only with N-R11 (I) and R1-C (J). N-R12 containing the R12 (lid) did not form a complex with V-head

(H). In the reconstitution assay of R1-C + V-head, a Superdex S200 column was used while a Superose 6 was used for the other assays. The control runs for V-

head come from the same experiment and the corresponding profile and SDS-PAGE are shown twice for comparison. Error bars show standard deviations.
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