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Abstract

Population protocols (Angluin et al., PODC, 2004) are a model of distributed computa-
tion in which identical, finite-state, passively mobile agents interact in pairs to achieve
a common goal. In the basic model of population protocols, agents compute number
predicates by reaching a stable consensus. It is well known that population protocols
compute precisely the semilinear predicates, or, equivalently, the predicates definable
in Presburger arithmetic, the first-order theory of the natural numbers equipped with
addition and the standard linear order.

This thesis investigates three fundamental questions of the theory of population pro-
tocols: Space complexity, verification complexity, and expressiveness of reasonable ex-
tensions.

Space Complexity. We show that every quantifier-free Presburger predicate ϕ aug-
mented with remainder predicates is computable by a population protocol with poly(|ϕ|)
states, where |ϕ| denotes the size of ϕ in binary encoding. Further, the protocol can be
constructed in polynomial time. This is a major improvement to the previously known
construction, which requires 2poly(|ϕ|) states. As a special case, we consider predicates
of the form ϕc(x) = x ≥ c, where c is a positive integer constant. We provide upper and
lower bounds for the number of states needed to represent ϕc(x).

Verification Complexity. Verification complexity is concerned with automatic solu-
tions to the correctness problem: Given a population protocol P and some Presburger
formula ϕ, decide whether P computes ϕ. Esparza et al. showed that the correctness
problem is decidable, albeit of very high complexity: It is at least as hard as the Petri
net reachability problem, which has non-elementary complexity (Esparza et al., Acta
Informatica, 2017). The high complexity of the correctness problem is essentially due to
its parametricity: The verifying procedure has to decide whether the protocol stabilizes
to the correct consensus for all inputs (of which there are infinitely many). We exhibit a
subclass of population protocols that is efficiently decidable and suitable for automatic
verification. We implemented our approach in the first fully-automatic and parametric
verification tool of its kind, and show its viability with benchmarks from the literature.

Expressiveness of Extensions. We show that under very weak assumptions, exten-
sions of the basic model of population protocols compute at most the number predicates
in NL, when the input is given in unary. As a very natural example of an extension
matching this upper bound, we introduce broadcast protocols, which extend population
protocols by the ability to transmit reliable broadcast signals simultaneously received
by all agents.
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Zusammenfassung

Populationsprotokolle (Angluin et al., PODC, 2004) sind ein distribuiertes Rechenmodell
von baugleichen, passiv-mobilen Agenten mit endlichem Speicher, welche in paarweisen
Interaktionen Rechnungen durchführen. In dem Standardmodell berechnen Agenten
Zahlenprädikate durch Erlangen eines stabilen Konsenses. Bekanntermaßen berechnen
Populationsprotokolle genau die semilinearen Prädikate; dies sind die Prädikate definier-
bar in Presburger-Arithmetik, der Theorie der Prädikatenlogik erster Stufe der ganzen
Zahlen mit Addition und der gewöhnlichen linearen Ordnung.

Die vorliegende Arbeit untersucht Populationsprotokolle aus dreierlei Blickwinkeln:
Platzkomplexität, Verifikationskomplexität, und Ausdrücksstärke von Erweiterungen.

Speicherkomplexität. Wir zeigen, dass sich jedes Quantoren-freie Presburger-Prädikat
ϕ (erweitert um Modulo-Prädikate) durch ein Protokoll mit poly(|ϕ|) Zuständen berech-
nen lässt, wobei |ϕ| die Länge von ϕ in Binärkodierung bezeichnet. Ferner lässt sich das
Protokoll in Polynomialzeit konstruieren. Dies ist eine deutliche Verbesserung zu der
bekannten Vorläuferkonstruktion, welche 2poly(|ϕ|) Zustände benötigt. Als Spezialfall
betrachten wir Prädikate der Form ϕc(x) = x ≥ c mit c ∈ N. Wir geben obere und
untere Schranken für die Anzahl an benötigten Zuständen zur Berechnung von ϕc(x).

Verifikationskomplexität. Verifikationskomplexität bezieht sich auf automatische
Lösungsansätze für das Korrektheitsproblem: Entscheide, ob ein gegebenes Protokoll
P ein gegebenes Prädikat ϕ berechnet. Esparza et al. wiesen Entscheidbarkeit des Kor-
rektheitsproblems nach, wenngleich mit hoher Komplexität: Das Problem ist mindestens
so schwer wie das Erreichbarkeitsproblem für Petrinetze, welches nicht-elementare Kom-
plexität aufweist (Esparza et al., Acta Informatica, 2017). Diese hohe Komplexität
lässt sich im Wesentlichen auf die Parametrizität des Problems zurückführen: Die ver-
ifizierende Prozedur muss entscheiden, ob das Protokoll zum richtigen Konsens kon-
vergiert, und zwar für alle Eingaben (wovon es unendlich viele gibt). Wir stellen
eine Teilklasse von Populationsprotokollen vor, welche sich für automatische Verifika-
tion eignet. Wir implementieren den daraus resultierenden Ansatz in dem ersten vol-
lautomatischen und parametrischen Verifikationswerkzeug seiner Art, und führen eine
Machbarkeitsstudie mit Benchmarks aus der Literatur durch.

Ausdrucksstärke von Erweiterungen. Wir zeigen, dass Erweiterungen von Pop-
ulationsprotokollen unter relativ schwachen Annahmen höchstens die Prädikate in NL
berechnen, wobei die Eingabe als unär-kodiert angenommen wird. Als natürliche Er-
weiterung, welche an diese obere Schranke heranreicht, stellen wir Broadcast-Protokolle
vor; diese erweitern Populationprotokolle um globale, verlässliche Broadcasts, die simul-
tan von allen Agenten empfangen werden.

v





Acknowledgments

First and foremost, I would like to thank my doctoral advisor, Javier Esparza, for his
invaluable guidance and support. Javier gave me plenty of opportunities for personal
growth; his focus on clarity and precision helped me become a better researcher, and a
better communicator of ideas.

With sincere gratitude, I would like to thank my Canadian co-author Michael Blondin,
who I now consider a good friend. Even by Canadian standards, Michael is exceptionally
nice and considerate; it is always a joy to work with him. In autumn 2018, Michael hosted
me at his home university in Sherbrooke, Canada. Together with his partner Fannie he
went out of his way to make my research stay pleasant and memorable.

I would also like to thank Stefan Kiefer for hosting me at the University of Oxford
in spring 2019. Stefan introduced me to the academic culture of Oxford (with all its
arcane customs and traditions), and he reserved a good chunk of his time for a rewarding
exchange of ideas.

The two research stays in Oxford and Sherbrooke were made possible by my graduate
school IGSSE, which provided extensive funding. I would like to thank the team of
IGSSE for their great support. I am also grateful for the support I received by an ERC
Advanced Grant (787367: PaVeS).

Furthermore, I would like to thank my other co-authors for their fruitful collaboration:
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1 Introduction

In a never-ending quest to condense units of computation to ever smaller units, re-
searchers have entertained the idea of a chemical computer [MCdFD05, AC02, DDPM19].
In this unconventional computer, input data are represented by differences in chemical
concentrations, and computations are implemented by local interactions between chem-
ical particles. From the perspective of distributed computing, the interacting particles
are network nodes, and interactions between these nodes result in a global system con-
figuration representing the distributed output of the computation.

If chemical particles are to be considered computational devices in a distributed net-
work, they must be devices of a particular kind: They are passively mobile in the sense
that they merely follow a Brownian motion pattern with no control over their movement
(they swirl around in a “chemical soup”, so to speak); they possess limited memory ;
they follow the same protocol (molecules of the same kind behave identically in the
chemical soup); they are anonymous (they cannot identify each other); they have lim-
ited communication primitives and interact locally with their immediate surroundings;
finally, their movements and interactions are stochastic and asynchronous. Similar con-
straints apply to sensor networks [AAD+06] and robot swarms [SVR17] composed of
tiny computational devices with limited mobility.

Applications in chemical computing and sensor networks inspired theoretical mod-
els of distributed computing which take these limitations into account. In the 1960s,
chemists started modeling the interactions between chemical components in continuous-
time models called chemical reaction networks [CCDS14]. In 2004, Angluin et al. intro-
duced population protocols [AAD+06], a model of distributed computing that may be
regarded as a discrete-time variant of chemical reaction networks. Population protocols
are the central object of study of this thesis.

Since their introduction in 2004, population protocols have attracted substantial re-
search interest1. The popularity of population protocols in research can in part be
explained by applications in sensor networks and chemical computing, and in part by
the elegant simplicity of the model: network nodes are replicas of the same finite state
machine; state transitions occur through pair-wise rendez-vous; the occurrence of such
rendez-vous is governed by a scheduler subject to a global fairness condition. The fair-
ness condition, in turn, serves as a substitute for a probabilistic scheduler, and frees
the theoretician from the complications that usually come with stochastic models, while
capturing the essential properties of random interactions.

In the standard variant of population protocols, network agents compute predicates
(i.e. boolean-values functions) by reaching a stable consensus; the value of the consensus
(yes or no) determines the outcome of the computation. The predicates computable
by population protocols are precisely the Presburger-definable predicates, that is, the
predicates definable in the first-order theory of the natural numbers with addition and

1A search for population protocols (in quotes) yields 1140 results on Google Scholar for the years
2004-2020.
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1 Introduction

the usual linear order. The deep and surprising connection with Presburger arithmetic
indicates that population protocols are a formalism worthy of close consideration.

Population protocols exhibit essential properties of the applications that inspired their
invention: anonymity and uniform behavior of network participants, limited memory,
and asynchronous local interactions that give rise to convergent collective behavior. On
the other hand, population protocols in their most basic form are incapable of expressing
the behavior of most real-world systems in sufficient detail; the basic model misses
essential properties such as the ability to specify dynamic network topologies, failure
probabilities, or differences in latencies. However, this apparent shortcoming is more of
a feature than a bug: Population protocols lie firmly at the boundary of decidability
[EGLM17, AR09], and seemingly innocuous extensions of the basic model quickly lead
to undecidability of many relevant decision problems, like whether some agent eventually
reaches a certain state for all input configurations, whether a protocol computes a certain
predicate, or whether a protocol stabilizes to a unique output [AR09]. In this sense
population protocols are quite economical: they allow us to reason about distributed
computations of tiny devices in a very abstract setting.

In this publication-based thesis, we investigate population protocol from the viewpoint
of complexity. When it comes to reasoning about the complexity of any theoretical model
of computation, the following questions are central:

1. How succinctly can computations be represented in the model?

2. What is the complexity of verifying properties of the model?

3. What is the expressiveness of the model and of its extensions?

We investigate all three questions for the model of population protocols.

Space complexity. Space complexity measures the size of the memory required per
agent, relative to the description size of the function computed by the protocol. Since
agents are assumed to be tiny in applications of population protocols, memory require-
ments are crucial, both in terms of implementation costs and in terms of practical realiz-
ability. This holds particularly true for molecular computing, where technical constraints
limit the number of states representable by a molecule [CDS+13]. Verifiability provides
another incentive for small protocols, because larger protocols are usually harder to
verify due to the state space explosion problem [Val96].

Automatic Verification. Population protocols, as a model of distributed computing,
specify interactions between nodes in a distributed system. In general, debugging and
testing of distributed systems is particularly difficult [MH89]: interleaved interactions
lead to inherent nondeterminism, and reproducibility of errors is reduced as a conse-
quence. Limited system transparency further restrains debugging capabilities: errors
may arise from global system properties whose identification is difficult from a local
view on the system.

These difficulties in debugging and testing make automatic verification methods at-
tractive. A formal verification algorithm takes as input a specification of the protocol P
and a formal specification ϕ of a system property, and determines whether P satisfies ϕ.
Automatic verification helps avoid design errors at the protocol level, and may provide
stronger correctness guarantees than empirical testing techniques.

Automatic verification techniques for population protocols can be divided into two
categories: 1.) Finite-state model checking techniques, and 2.) Parametric verification

2



1.1 Literature Overview

techniques (see e.g. [BK08], Chapter 21, for a comparison of the two categories). The first
category is limited to verifying networks of bounded size, while methods of the second
category verify a protocol independent of the number of network nodes. In algorithms
of the second category the size of the system is a parameter of the verification problem,
hence the name parametric verification technique [BK08].

Expressiveness. Population protocols were invented with applications in low-resource
environments in mind. The basic model is therefore quite restrictive in terms of com-
munication primitives: asynchronous interactions between nodes occur locally in pairs,
and a global clock or some other form of synchronization mechanism is absent. However,
population protocols are easily extendible, which is evidenced by the voluminous liter-
ature on extensions of the basic model [ISV17, GR07, MCS11, Asp17, MS15, BEJ19a,
AAER07, BBB13, CFQS12]. This raises the question how expressive these extensions
are. Here we are particularly interested in extensions of population protocols by non-
local communication primitives. These extensions are motivated by implementations of
in vivo computations in population of microorganisms, which may be stimulated by an
external global signal, such as a source of light [UMD+15, BDG+19].

1.1 Literature Overview

The population protocol model was introduced by Angluin, Aspnes, Diamadi, and Per-
alta in 2004 in a seminal paper in [AAD+06]. Aspnes and Ruppert provide a survey of
population protocols in [AR09].

Related models and applications. The development of population protocols was
motivated by work on networks of passively mobile finite-state sensors [AAD+06] and
by distributed models of trust propagation due to Diamadi and Fischer [DF01]. The
model of population protocols bears a strong resemblance to models used in theoretical
chemistry [Gil77, Gil92, AR09]. Population protocols are also closely related to multiset
rewrite systems [BT05, BLM86], vector addition systems [Ler11] or, equivalently, Petri
nets [DA94]. Various different extensions and variations of the standard model of popu-
lation protocols have been suggested in the literature, among these protocols that admit
faulty interactions [ISV17], protocols with identifiers [GR07, MCS11], protocols with
global synchronization mechanisms [Asp17, MS15, BEJ19a], protocols with unbounded
memory [AAER07], protocols with different fairness assumptions [CDFS11, SLDP09a],
and protocols acting on varying network topologies [BBB13, CFQS12].

Expressiveness. The expressive power of the basic model of population protocols is
well understood. In [AAE06, AAER07], Angluin, Aspnes and Eisenstat showed that the
basic model of population protocols computes precisely the semilinear predicates, which
is the class of predicates definable in Presburger arithmetic, the first-order theory of the
natural number with addition and the usual linear order (for a survey of Presburger
arithmetic, see e.g. [Haa18]). Semilinearity had earlier been shown to be sufficient in
[AAD+06].

For a discussion of research on population protocols related to space complexity, ver-
ification, and expressiveness of extensions we refer the reader to chapters 4-6.

3



1 Introduction

1.2 Summary of Contributions

Here we only give a brief and high-level account of the contributions of the thesis. For
a technical summary, we refer the reader to the chapters 4-6.

We show new results for three aspects of complexity in population protocols: Space
complexity, complexity of automatic verification, and expressiveness of extensions.

Space complexity. In [BEJ18a, BEG+20], we consider the number of states needed
per agent to compute a given predicate. We assume that predicates are represented
by formulas in the quantifier-free fragment of Presburger arithmetic, augmented with
remainder predicates of the form ϕ(x1, . . . , xn) =

∑
i αixi = c mod m, where the αi, c,

and m are integer constants. This fragment is equivalent in expressiveness to Presburger
arithmetic [Haa18, AAE06]. We show that any formula ϕ can be computed by a popu-
lation protocol with poly(|ϕ|) states, where |ϕ| denotes the binary length of the formula,
provided that numerical constants are encoded in binary. This is a major improvement
to the previously known construction which requires 2poly(|ϕ|) states. As a special case,
we consider predicates of the form ϕ(x) = x ≥ c, where c is a positive integer constant.
We provide upper and lower bounds for the number of states needed to represent these
predicates.

Automatic verification. Given a population protocol P and a predicate ϕ, we would
like to determine algorithmically whether P computes ϕ, independent of the size of the
input. This is a very hard problem, which has no practical solution for the entire class
of population protocols [EGLM17]. In [BEJM17] we exhibit a subclass of population
protocols suitable for automatic verification. We implemented our approach in the first
fully-automatic and parametric verification tool of its kind. We show the viability of our
approach with benchmarks using examples of population protocols from the literature
[BEJM17, BEJ18b].

Expressiveness of extensions. In [BEJ19a], we consider the expressive power of
broadcast consensus protocols, an extension of population protocols by reliable broadcasts
which are simultaneously received by the entire population. We show that broadcast
consensus protocols compute precisely the number predicates in the complexity class
NL; these are the predicates computable by a nondeterministic Turing machine with
logarithmic space, where the input is given in unary. We further establish an NL upper
bound for the expressive power of conservative extensions of protocols whose reachability
relation is computable in NL.

1.3 Publication Summary

This is a publication-based thesis. The papers are included in the appendix.

In Part I of Appendix, we present the following papers:

A Michael Blondin, Javier Esparza, Stefan Jaax. Large Flocks of Small Birds: on
the Minimal Size of Population Protocols. STACS, 2018. [BEJ18a]

B Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich, Stefan Jaax. Suc-
cinct Population Protocols for Presburger Arithmetic, STACS, 2020. [BEG+20]

In Part II of Appendix, we present the following papers:

4



1.4 Outline of the Thesis

C Michael Blondin, Javier Esparza, Stefan Jaax, Philipp J. Meyer. Towards Efficient
Verification of Population Protocols. PODC, 2017. [BEJM17]

D Michael Blondin, Javier Esparza, Stefan Jaax. Peregrine: A Tool for the Analysis
of Population Protocols. CAV, 2018. [BEJ18b]

In Part III of Appendix, we present the following paper:

E Michael Blondin, Javier Esparza, Stefan Jaax. Expressive Power of Broadcast
Consensus Protocols. CONCUR, 2019. [BEJ19a]

The papers appeared in peer-reviewed conference proceedings, and are therefore self-
contained. Each paper is prefaced with a summary page, containing the full citation
of the original publication, a short synopsis of the publications content and the thesis
author contributions.

1.4 Outline of the Thesis

Chapter 2 introduces mathematical notation, the basic model of population protocols,
and models related to population protocols.

Chapters 4-6 provide a technical overview of our contributions with respect to space
complexity, automatic verification, and expressiveness of extensions, in that order. Each
of the three chapters is divided into four sections: 1. Problem Statement, 2. New
Contributions, 3. Related Work, and 4. Open Research Questions. The first section
introduces the problem under consideration, the second section states our major new
contributions and provides proof sketches, the third section relates our results to existing
research, and the fourth section closes with an outlook on open questions.

The appendix has three parts. In Part I, II, and III we present papers A-B, C-D, and
E, respectively.
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2 Preliminaries

2.1 Basic Notation

Sets of numbers. By N we denote the set {0, 1, 2, . . .} of positive integers including 0,
and by Z we denote the set {. . . ,−2,−1, 0, 1, 2, . . .} of integers.

Multisets. A multiset over a finite set E is a mapping M : E → N. The set of
all multisets over E is denoted NE . For every e ∈ E, M(e) denotes the number of
occurrences of e in M . We sometimes denote multisets using a set-like notation, e.g.
Hf, g, gI is the multiset M such that M(f) = 1, M(g) = 2 and M(e) = 0 for every
e ∈ E \ {f, g}. Addition and comparison are extended to multisets componentwise, i.e.

(M + M ′)(e)
def
= M(e) + M ′(e) for every e ∈ E, and M ≤ M ′

def⇐⇒ M(e) ≤ M ′(e) for

every e ∈ E. We define multiset difference as (M −M ′)(e) def
= max(M(e)−M ′(e), 0) for

every e ∈ E. The empty multiset is denoted 0 and, for every e ∈ E, we write e
def
= HeI.

Finally, we define the support and size of M ∈ NE respectively as JMK def
= {e ∈ E :

M(e) > 0} and |M | def=
∑

e∈EM(e).

Vector notation. We write vectors of numbers in bold face. For number vectors
x = (x1, . . . , xk),y = (y1, . . . , yk) of equal dimension k, by x · y we denote the dot
product (x1 · y1 + x2 · y2 + . . . + xk · yk). Addition/substraction is defined component-
wise.

Complexity. By log we denote the logarithm to the base 2. A function f : N −→ N is
bounded by poly(n), if there exists a polynomial p such that f(n) ≤ p(n) for every n.
Similarly, we say f is bounded by polylog(n), if there exists a polynomial p such that
f(n) ≤ p(log(n)) for every n > 0.

2.2 Vector Addition Systems

Population protocols are related to vector addition systems.

Definition. A vector addition system with states (VASS) of some fixed dimension k ∈ N
can be described as a pair (Q,T ) where Q is a finite set of states, and T ⊆ Q× Zk ×Q
is a transition relation. VASS with |Q| = 1 are called vector addition systems or Petri
nets. We write q

v−→ r whenever (q,v, r) ∈ T . Furthermore, for two vectors w,w′ ∈ Nk
and states q, q′ ∈ Q, we write (q,w) −→ (q′,w′) whenever there exists a vector v such
that q

v−→ q′ and w′ = w + v. If |Q| = 1, we may omit the states and simply write

v −→ w for a single step from v to w. We call −→ one-step relation, and by
∗−→ we denote

the reflexive-transitive closure of −→.

Reachability. The reachability problem for VASS is the following problem: Given
vectors v,w ∈ Nk in the dimension k of a given VASS, and given states q, r, does
(q,v)

∗−→ (r,w) hold? The reachability problem is already TOWER-hard for vector
addition systems (without state) [CLL+19].
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2.3 Presburger Arithmetic and Semilinear Sets

Forward-inductive sets. Let −→⊆ Nm × Nm be the one-step relation of a vector
addition system. We say a set P ⊆ Nm is forward-inductive (w.r.t −→), if v −→ w and
v ∈ P implies w ∈ P .

2.3 Presburger Arithmetic and Semilinear Sets

Presburger Arithmetic. Presburger arithmetic is the first-order theory of the natural
numbers with addition, inequality, and the standard axioms of arithmetic. We say a first-
order formula is Presburger if it is compatible with the structure (Z, 0, 1,+, <), where
+ is the usual addition, and < denotes the usual linear order on the integers.

A number predicate of arity n is a subset of Zn. A Presburger formula ϕ with freely
occuring variables x1, . . . , xn defines a number predicate ϕ(x1, . . . , xn) of arity n:

ϕ(x1, . . . , xn)
def
= {(a1, . . . , an) ∈ Zn | ϕ[x1 := a1; . . . ;xn = an]}

where ϕ[x1 := a1; . . . ;xn = an] denotes the formula that is obtained by replacing all free
occurrences of xi by ai in ϕ.

If a = (a1, . . . , an) ∈ ϕ(x1, . . . , xn), we write this more concisely as ϕ(a). In this case
we say that a satisfies ϕ. Furthermore, we write ϕ(a) = 1, if a satisfies ϕ, and ϕ(a) = 0
otherwise. Two formulas ϕ,ψ are semantically equivalent if their sets of freely occuring
variables are identical, and ϕ(a) = ψ(a) holds for every a.

Example 2.3.1. The Presburger formula ∃y : y + y = x expresses the predicate “x is
even”.

It is well known that Presburger arithmetic admits quantifier elimination:

Theorem 1. [Haa18, AAD+06] Every Presburger predicate ϕ(x1, . . . , xn) is semanti-
cally equivalent to a boolean combination of predicates of the form

α1x1 + . . .+ αnxn ≥ c , and

α1x1 + . . .+ αnxn = c (mod m)

where α1, . . . , αn, c,m are integer constants.

We call predicates of the upper kind threshold predicates, and predicates of the lower
kind remainder predicates. We refer to threshold or remainder predicates as atomic
predicates.

If a Presburger predicate ϕ is given as boolean combination of threshold and remainder
predicates, we say that ϕ is in QFPA (quantifier-free Presburger arithmetic)1.

Semilinear Sets. A linear set (of dimension d > 0) is a any set of the form

{b+ λ1p1 + . . .+ λnpn | λi ≥ 0, 1 ≤ i ≤ n}

where b ∈ Zd is a base vector and {p1, . . . ,pn} is a set of period vectors. A semilinear
set is a finite union of linear sets.

The following result relates semilinear sets and Presburger-definable predicates:

Theorem 2. [GS64] Semilinear sets and Presburger-definable predicates coincide.

1This is a slight abuse of notation; technically, remainder predicates are not expressible in Presburger
arithmetic without quantifiers.
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3 The Basic Model of Population Protocols

In the basic model of population protocols, anonymous agents carry out computations
in populations of arbitrary, but fixed size. This excludes the possibility of crashes on the
level of individual agents, and the ability to spawn new agents after initialization. The
size of the population is determined by the size of the input: each agent is initially given
one token of the input that is mapped to some internal state, e.g. if the input is x = 2
and y = 3, this is represented by two agents in, say, state qx and three agents in, say,
state qy. At any given point in time, each agent is in one out of finitely many states. The
global distribution of states is referred to as configuration. Agents may change their state
in discrete time steps through pairwise rendez-vous. How interactions between agents
affect their states is governed by a transition relation, and the occurrence of interactions
is determined by a scheduler, which picks at every time step a pair of agents to interact.
The scheduler’s choices determine an infinite trace of successive configurations, called
execution of the protocol. The scheduler is assumed to be adversarial, but it must obey
a certain fairness condition. The condition roughly states that the scheduler may not
avoid a configuration forever when it is within reach infinitely many times.

By assuming a state, agents cast a vote: each state maps to a unique boolean output
in the set {0, 1}. A configuration is in a consensus of some value b ∈ {0, 1} if the state
of each agent maps to output b, and a consensus is stable if it cannot be destroyed by
future interactions. An execution rejects or accepts the input when a stable consensus
of value 0 or 1, respectively, is reached.

3.1 Formal Definition

A population protocol is formally specified by a tuple (Q,T,X, I,O), where

• Q is a finite set of states,

• T ⊆ Q4 is a set of transitions satisfying (q, r, q, r) ∈ T for every q, r ∈ Q,

• X is a finite set of input variables,

• I : X → Q is the input mapping,

• O : Q→ {0, 1} is the output mapping.

Configurations and input. Since agents are anonymous, the current state of a popu-
lation is exhaustively described by the number of agents in each state. Mathematically,
we represent this by a multiset C ∈ NQ, and we call such a multiset C a configuration.
Every input v ∈ NX is mapped to an initial configuration Cv ∈ NQ given by:

Cv(q)
def
=

∑
x∈I−1(q)

v(x) for every q ∈ Q.
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3.2 Examples of Population Protocols

Intuitively, every agent receives one token of the input.
For a given configuration C ∈ NQ, its output O(C) ∈ {0, 1,⊥} is given by:

O(C)
def
=


1 if O(q) = 1 for every q ∈ JCK,
0 if O(q) = 0 for every q ∈ JCK,
⊥ otherwise.

If O(q) = b ∈ {0, 1}, we also say C is in a consensus.

Transitions. For every t = (q1, q2, r1, r2) ∈ T , we write q1, q2 −→ r1, r2 to denote t,

and we define pre(t)
def
= Hq1, q2I and post(t)

def
= Hr1, r2I. We say t : q1, q2 −→ r1, r2 ∈ T is

enabled at a given configuration C if Hq1, q2I ≤ C, and disabled otherwise. If t is enabled
at C, then it can be fired, leading to a configuration C ′ = C − Hq1, q2I + Hr1, r2I, which

we denote C
t−→ C ′. Intuitively, firing t can be thought of as the scheduler picking two

agents in states q1 and q2, respectively, and putting them into the successor states r1, r2,
resulting in the successor configuration C ′.

Executions. An execution starting in some configuration C is an infinite sequence

C1C2C3C4 . . . such that C = C1 and Ci
ti−→ Ci+1 for every i ∈ N. If the transitions

are important, we write C1
t1−→ C2

t2−→ C3
t3−→ . . . instead, and call such a sequence a

labeled execution. By Inf(π)
def
= {C | Ci = C for infinitely many i} we denote the set of

of configurations occurring infinitely often in the execution π = C1C2C3 . . .. We lift the
output function to the execution π in the following way:

O(π)
def
=

{
b if O(C) = b for every C ∈ Inf(π),

⊥ otherwise.

Global fairness. The basic model of population protocols imposes a global fairness
assumption on the scheduler. An execution π is (globally) fair if the set of configurations
occurring infinitely often in π is closed under reachability, that is, if the following equality
holds:

{C ′ | ∃C ∈ Inf(π) : C
∗−→ C ′} = Inf(π)

In other words, every configuration that can be reached infinitely often, must be reached
infinitely often in a fair execution.

Well-Specified protocols. We call a protocol well specified if its executions stabilize
to a unique output for every input. More formally, a protocol is well specified if it
satisfies the following: For every input v ∈ NX , there exists a boolean b ∈ {0, 1} such
that O(π) = b for every fair execution π starting in the initial configuration Cv.

Stable computations. Every well-specified protocol stably computes a number predi-
cate ϕ : NX → {0, 1} given by ϕ(v) = O(πv), where O(πv) is the unique output of any
fair execution πv starting in Cv. To reduce notational clutter, we sometimes tacitly
assume that the input mapping I is the identity function (this does not limit expres-
siveness); in this case, we have v = Cv, and we simply write ϕ(C) for the value of the
predicate computed for the initial configuration C.

3.2 Examples of Population Protocols

Example 3.2.1. A simple counting protocol [AAD+06, BEJK18]. Let c ∈ N
be some integer constant, and let ϕc(x) be the one-arity predicate ϕc(x) = x ≥ c. We
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3 The Basic Model of Population Protocols

define a protocol Pc = (Q,T,X, I,O) with X = {x} that computes ϕc(x). This means
any fair execution of Pc shall stabilize to a consensus that decides the question: Are
there at least c agents in the population?

We set Q
def
= {0, 1, . . . , c}, I(x) = 1, O(q) = 1 ⇔ q = c, and let T consist of the

following transitions:

ta,b : a, b −→ 0,min(a+ b, c) for every 0 ≤ a, b < c,

ta : a, c −→ c, c

Intuitively, Pc works as follows. Each agent stores a number. When two agents interact
due to transition ta,b, one agents stores the sum, capped at c, and the other agent is sent
to 0. The transition ta and fairness ensures that once an agent reaches c, this value is
propagated throughout the population, and the computation stabilizes to consensus 1.
For example, let c = 3, let x = 4, and let the initial population be Cx = H1, 1, 1, 1I. The
following labeled execution is fair and stabilizes to the correct consensus O(H3, 3, 3, 3I) =
1 = (x > 3):

H1, 1, 1, 1I t1,1−−→ H2, 0, 1, 1I t2,1−−→ H3, 0, 0, 1I t0−→ H3, 3, 0, 1I t0−→ H3, 3, 3, 1I t1−→ H3, 3, 3, 1I t1−→ . . .

Example 3.2.2. Majority protocol [AAD+06]. We define the protocol Px≥y =
(Q,T,X, I,O) that computes the majority predicate ϕ(x, y) ≡ x ≥ y as follows.

Q ={X, Y, x, y} O(q) = 1⇔ q ∈ {X, x} T = {X, Y −→ x, y;

X ={x, y} I(x) = X X, y −→ X, x;

I(y) = Y Y, x −→ Y, y;

x, y −→ x, x}

Intuitively, initially all agents are in “big” states X or Y. Whenever X and Y interact,
they are turned into their smaller counterparts. This happens until only X or Y remains
among the big states. The big states may dominate the small states, and convert them
to the majority opinion. If a tie occurs, i.e. the number of X initially equals the number
of Y, then the bottom-most transition serves as a tie breaker by converting all agents to
x, yielding a stable 1-consensus. Agents can be converted back and forth for an arbitrary
amount of time, but fairness ensures that the majority eventually wins.

3.3 Population Protocols compute precisely the Semilinear
Predicates

In [AAD+06], Angluin et al. show that for every semilinear predicate, there exists
a protocol that stably computes this predicate. By Theorem 1, it suffices to show
that boolean combinations of predicates of the form

∑n
i=1 αixi > c (threshold) and∑n

i=1 αixi ≡ a ( mod b) (remainder) are computable by population protocols, where
αi, c, a, b are integer constants. Angluin et. al gave protocols for any remainder and
threshold predicate; the protocols are generalizations of the protocols from Example 3.2.1
and Example 3.2.2.

Negation can be implemented by flipping the output values. Finally, the conjunc-
tion/disjunction of two predicates can be implemented through a synchronous product
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3.4 Global Fairness and other Fairness Notions

HX, X, Y, YI

HX, Y, x, yI

HX, Y, x, xI HX, Y, y, yI

Hx, x, y, yI Hx, x, x, yI

Hx, x, x, xI

Figure 3.1: Drawing of the reachability graph of the configuration HX, X, Y, YI for the majority
protocol from Example 3.2.2. Self loops are omitted for clarity. The configuration
Hx, x, x, xI is the only bottom configuration. Note, however, that in general BSCCs
of reachability graphs need not be singletons.

construction: Given predicates ϕ1 and ϕ2, and protocols Pi = (Qi, Ti,Σ, Ii, Oi) that
compute ϕi, the protocol P◦ = (Q,T,Σ, I, O) computes ϕ1 ◦ ϕ2 for ◦ ∈ {∧,∨}:

Q = Q1 ×Q2,

T = {(q1, r1), (q2, r2) −→ (q′1, r
′
1), (q

′
2, r
′
2) | q1, q2 −→ q′1, q

′
2 ∈ T1, r1, r2 −→ r′1, r

′
2 ∈ T2},

I(x) = (I1(x), I2(x))

O((q, r)) = O1(q) ◦O2(r)

The protocol P◦ executes P1 and P2 in parallel: P1 is executed in the first component
of each state, and P2 is executed in the second component. The output of P is given by
applying the operator ◦ ∈ {∨,∧} to the outputs of P1 and P2.

In [AAD+06], Angluin et al. show that the converse also holds: predicate stable
computable by a population protocol is semilinear. The proof for the converse direction
is more involved; for details, see [AAD+06, AR09].

3.4 Global Fairness and other Fairness Notions

Since global fairness is an essential part of population protocol semantics, we provide al-
ternative characterizations of fairness. These characterizations provide further intuition.
They are also a prerequisite for later chapters.

Characterization via bottom configurations. The one-step reachability relation −→
of a population protocol induces for every configuration C a finite, directed reachability
graph G(C) = (V,E) with nodes V = {C ′ | C ∗−→ C ′} and edges E = {(C1, C2) ∈
V × V | C1 −→ C2}. We call a strongly connected component C of G(C) a bottom

strongly connected component (BSCC), if C is closed under the reachability relation
∗−→.

We call a configuration C ∈ V bottom, if C belongs to a BSCC. Figure 3.1 illustrates a
reachability graph for the majority protocol from Example 3.2.2.

Using the notion of BSCCs, we may characterize fair executions as precisely those
executions whose infinitely occurring configurations form a BSCC:

Proposition 1. [EGLM17] An execution π = C1C2 . . . is fair if and only if there exists
a BSCC B of G(C1) satisfying Inf(π) = B.
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3 The Basic Model of Population Protocols

Proof sketch. We only sketch the proof for the left-to-right direction; the converse di-
rection can be proven analogously. Assume π = C1C2 . . . is fair. We have to show that
there exists some BSCC B of G(C1) such that Inf(π) = B. Clearly, for every i ∈ N it is
possible to reach a bottom configuration of G(C1) from Ci. By finiteness of G(C1), at
least one bottom configuration C is reachable from Ci for infinitely many i. Then by
fairness there exists a bottom configuration C such that Ci = C for infinitely many i.
Fix such a C. Since C belongs to the BSCC B and BSCCs are closed under reachability,
every extension of an execution starting in C strictly contains configurations from B.
This establishes B ⊆ Inf(π). Moreover, since C ∈ Inf(π) by assumption and every C ′ ∈ B
is reachable from C, we have that every C ′ ∈ B is reachable from Ci for infinitely many
i. From this we obtain B ⊇ Inf(π) by fairness. Finally, from B ⊇ Inf(π) and B ⊆ Inf(π)
we conclude Inf(π) = B for some BSCC B of G(C1), and the claim follows.

Characterization via one-step reachability. There is an alternative characteri-
zation that relaxes transitive reachability to one-step reachability: An execution π =
C0C1C2 . . . is one-step (globally) fair, if every configuration that can be reached in-
finitely often in one step is reached infinitely often in π, formally: if {i ∈ N | Ci −→ D}
is infinite, then {i ∈ N | Ci = D} is infinite for every configuration D.

Proposition 2. Every fair execution is one-step fair, and vice versa.

Proof. Every fair execution π is clearly one-step fair. Conversely, assume π = C0C1C2 . . .
is one-step fair, and let D be such that {i ∈ N | Ci

∗−→ D} is infinite. To complete the
proof, we must show that D ∈ Inf(π) holds. By finiteness of the number of reachable
configurations in any given execution, there must be some configuration C such that
C = Ci and Ci

∗−→ D for infinitely many i. If Ci −→ D for infinitely many i, we are
done by one-step fairness. Otherwise C

∗−→ D entails the existence of some m ≥ 1 and
some configurations C ′1, . . . , C

′
m such that Ci −→ C ′1 −→ C ′2 −→ . . . −→ C ′m −→ D. Then by

one-step fairness, C ′1 occurs infinitely often in π, and by iterative application of one-step
fairness, so does C ′2, . . . , C

′
m, and D. Thus, if D is reachable infinitely often in π, it is

indeed reached infinitely often, which proves the claim.

Notice that the latter argument in the proof of Proposition 2 crucially depends on
finiteness of the number of configurations in any given execution; in infinite-state exten-
sions of population protocols the two notions of global fairness generally do not coincide
[AAER07].

Relation to probabilistic scheduling. In order to make sense of convergence time
of population protocols, the fair scheduler must be replaced by probabilistic semantics.
The obvious choice is to replace the fair scheduler by a probabilistic scheduler [AAE08b,
MNRS14, AGV15] that picks a pair of agents to interact uniformly at random at every
discrete time step. Using the theory of finite-state Markov chains [AAOW15], and the
characterization established in Proposition 1, one can show that executions induced by
such a uniformly probabilistic scheduler are almost surely fair, and thus every protocol
that is well specified under a fair scheduler remains well specified under a uniformly
probabilistic scheduler.

Time complexity in population protocols is usually measured in parallel time [AG15,
BEK18, AGV15], which is defined as the average number of steps the scheduler needs
until stabilization, divided by the population size.
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3.5 Protocols with Leaders

Local Fairness. In some publications (e.g. [CDFS11, SLDP09a]), global fairness is

replaced by a fairness notion called local fairness. A labeled execution π = C0
t1−→ C1

t2−→
C2 . . . is locally fair if every transition that can be fired infinitely often in π must be fired

infinitely often, formally: If {i ∈ N | ∃D : Ci
t−→ D} is infinite, then {i ∈ N | Ci

t−→ Ci+1}
is also infinite for every transition t.

Global fairness and local fairness are incomparable notions: To see that local fairness
does not imply global fairness, consider the majority protocol from Example 3.2.2. The
execution HY, x, yI −→ HX, x, xI −→ HY, y, xI −→ HY, x, xI −→ . . . that alternates between
the transitions Y, x −→ Y, y and x, y −→ x, x is locally fair, but not fair. To see why
global fairness does not imply local fairness, consider the protocol with states a, b, c and
transitions tx,y : x, x −→ y, y for every pair (x, y) ∈ {(a, b), (a, c), (b, c), (c, b), (c, a)}. The

execution that repeats the cycle Ha, aI ta,c−−→ Hc, cI tc,b−−→ Hb, bI tb,c−−→ Hc, cI tc,a−−→ Ha, aI ad
infinitum is globally fair, but not locally fair, since ta,b is enabled infinitely often and
never fired.

Observe, however, that for every bottom configuration C there is a locally fair execu-
tion π such that C occurs infinitely often in π. Thus, every protocol that is well specified
under local fairness is also well specified under global fairness.

3.5 Protocols with Leaders

Leaders are auxiliary agents in some designated state that are provided to the input
population. The number of leaders and their initial states are fixed, independent of the
input. Formally, a protocol with leaders can be specified as a tuple P = (Q,T,X,L, I,O),
where Q,T,X, I,O are defined as in leaderless population protocols, and L ∈ NQ is the
initial leader population. The predicate computed by P for every input v is given by
the output of every fair execution starting in Cv + L.

Example 3.5.1. Consider the protocol with leaders P = (Q,T,X,L, I,O) where Q, T ,
X, I, and O are defined as in the majority protocol provided in Example 3.2.2 , and the
leader configuration is given by L = HX, X, X, XI. The protocol P computes the predicate
x+ 4 ≥ y; the offset of 4 is provided by the leader population (recall that I(x) = X and
I(y) = Y).

Leaders do not increase the expressiveness of population protocols, but they may
speed up computation: Angluin et al. showed that for every predicate there exists a
protocol with leaders that runs in polylogarithmic parallel time [AAE08a]. This stands
in contrast to leaderless protocols, which require expected linear parallel time for some
predicates [AAE08a, DS18].

Leaders also facilitate the implementation of control states which enable or disable
transitions. This allows for bounded simulations of stateful token-based transition sys-
tems, like vector addition systems with states [HH14, Ler11], or, equivalently, counter
machines without zero tests.

To see why leaders do not increase the expressive power of the model, observe that
every protocol with leaders that computes some predicate ϕ(x) with initial leader pop-
ulation L, can be transformed into a leaderless protocol that computes ϕ′(x,y) ≡
(y = L)⇒ ϕ(x) ≡ (y 6= L ∨ ϕ(x)) via synchronous product with a protocol computing
y 6= L. Since ϕ′(x,y) is computable by a population protocol without leaders, it must
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3 The Basic Model of Population Protocols

be semilinear (every predicate computable by population protocol is semilinear), and
thus so is the projection ϕ(x) ≡ ∀y : ϕ′(x,y). Every semilinear predicate is computable
by a leaderless protocol, and thus so is ϕ(x) in particular.

Leader election. In some applications, leaders are only needed in so far that it must
be guaranteed that eventually some agent is in some designated state. This can be
achieved in leaderless protocols by means of a leader election: Initially, each agent starts
in a leader state L. Interactions of the form L,L −→ L,N eliminate duplicate leaders by
turnig one leader into a non-leaders state N , until precisely one agent in the leader state
L remains. This form of leader election by coalescence comes with a caveat: The leader
can never be certain that it got elected. Computations that require, say, precisely one
leader cannot be implemented by leader election, since the computation would have to
be started while the leader election might still be ongoing.

14



4 Space Complexity

In this chapter, we consider the question of the number of states needed to represent any
given predicate in a population protocol. This is the question of the space complexity of
population protocols.

4.1 Problem Statement

For a given representation of a semilinear predicate ϕ, by |ϕ| we denote the length of
its binary encoding. We investigate upper and lower bounds on the number of states
required to represent any given QFPA formula ϕ in a population protocol, relative to |ϕ|.
By the construction of Angluin et al. in [AAD+06], we have that every QFPA formula
ϕ can be computed by a leaderless protocol with 2poly(|ϕ|) states. The exponentiality of
this construction raises the question whether population protocols can be more succinct:
Is it e.g. possible to compute any ϕ with only poly(|ϕ|) states?

We investigate two cases: the case where ϕ belongs to the class {x ≥ c | c ∈ N} of
counting predicates, and the more general case where ϕ is an arbitrary QFPA formula.

4.2 New Contributions

The following ideas were developed in two separate papers ([BEJ18a] and [BEG+20])
that build on one another. Some results of [BEJ18a] were subsumed by later results in
[BEG+20]; we only discuss the theorems in their most general form. We first give an
overview of our contributions. After this, in subsections 4.2.3 - 4.2.6, we give further
explanations for some results that are of independent interest.

4.2.1 Overview for x ≥ c

In the first part of [BEJ18a] we established upper and lower bounds on the number of
states needed to compute {x ≥ c | c ∈ N}.
Lower bound for leaderless protocols. We established the following lower bound
for leaderless protocols:

Theorem 3. [BEJ18a] For every family {Pc : c ∈ N} of leaderless population protocols
such that Pc computes x ≥ c, there exist infinitely many c such that Pc has at least
(log c)1/4 states.

Theorem 3 follows from a simple counting argument that bounds the number of unary
predicates computable by leaderless protocols with a certain number of states.

A O(log log c) upper bound for some c. Theorem 3 merely states that in general,

at least log(c)
1
4 states are needed to compute x ≥ c. This raises the question whether

this lower bound holds for all infinite families of thresholds (c1 < c2 < . . .). Could it
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4 Space Complexity

e.g. be possible, that x ≥ c is computable with O(log log c) states for infinitely many c?
– At first glance, this appears counterintuitive. After all, the double-logarithmic bound
implies that a single agent does not have enough memory to store even a single bit of
c. However, we managed to exhibit a family of thresholds {ci}i∈N s.t. x ≥ ci can be
computed with O(log log cn) states and two leaders:

Theorem 4. [BEJ18a] There exists a family {Pn : n ∈ N} of population protocols with
two leaders, and values c0 < c1 < . . . ∈ N, such that Pn has O(log log cn) states and
computes the predicate x ≥ cn for every n ∈ N.

The proof of Theorem 4 is based on a construction in [Huy85], which exhibits a family
of commutative semigroup representations with a designated start symbol s and a final
symbol f , such that the smallest word beginning with f that is derivable from s is
double-exponential in length. Using the auxiliary two leaders, a population protocol
simulates possible derivations of a word beginning with f , starting from the symbol s. If
the population size is ≥ 22

n
, then the protocol has enough tokens at its disposal to always

eventually reach the final symbol f . Conversely, if there are not enough agents, then f
is never reached. This establishes double-logarithmic succinctness for some x ≥ cn.

Upper bound for 1-aware protocols. Is it possible to improve the lower bound of
Theorem 4 even further to O(log log log cn) states? – This question is still open, but we
managed to establish a negative result for the class of protocols where the occurrence
of a single state of opinion 1 ensures stabilization to 1. We call these protocols 1-aware
protocols. E.g. in Example 3.2.1, as soon as an agent transitions to the state c of opinion
1, the execution is guaranteed to stabilize to consensus 1. In [BEJ18a], we show:

Theorem 5. [BEJ18a] Every 1-aware protocol (leaderless or not) computing x ≥ c has
at least (log log(c)/151)1/9 states.

The proof uses the fact that in 1-aware protocols, stabilization reduces to coverability :
A configuration C covers a state q if there is a configuration C ′ such that C ′(q) > 1

and C
∗−→ C ′. By definition of 1-awareness, an input configuration C is accepting in a

1-aware protocol if and only if there exists a state q covered by C such that O(q) = 1. We
then obtain the lower bound via Rackoff’s procedure for coverability in vector addition
systems [Rac78].

4.2.2 Overview for QFPA

Our central contribution in [BEG+20] is the following theorem:

Theorem 6. [BEG+20] Every QFPA predicate ϕ can be computed by a leaderless pro-
tocol P with poly(|ϕ|) states. Moreover, P can be constructed in polynomial time.

The proof of Theorem 6 is based on a construction that was first introduced in
[BEJ18a] for the special case of systems of linear inequalities. The proof is quite in-
volved. The construction of the protocol requires assembling a host of gadgets into a
succinct protocol. However, the core ideas of the construction are simple. We now sketch
the basic ingredients; in the following explanations, we simply call a translation from a
subset of QFPA to population protocols succinct, if the resulting protocol has poly(|ϕ|)
states per input formula ϕ.

The standard translation from QFPA to population protocols introduced by Angluin
et al. is exponential due to the following two factors:
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1. Counting in unary like in Example 3.2.1 results in an exponential blow-up. For
example, the standard protocol for x ≥ c has |{0, 1, 2, . . . , c}| = c+ 1 states, which
is exponential in |ϕ| (recall that c is encoded in binary). For this reason, a protocol
has 2poly(|ϕ|) states per atomic predicate ϕ in the standard translation.

2. Boolean combinations like e.g. ϕ1∧. . .∧ϕn are implemented through n-fold applica-
tion of the product construction in the standard translation, which blows up expo-
nentially: If Pi computes ϕi withmi states, then the product has (m1 ·m2 · . . . ·mn)
states.

To overcome these two difficulties, we provide succinct constructions for any QFPA
formula ϕ in a sequence of steps in [BEG+20]: We first provide a succinct protocol for
ϕ with leaders; then we show how to eliminate leaders, provided that the population
size is large enough; in a separate step, we show how to compute ϕ in small populations
succinctly in a leaderless protocol; finally, the protocols for large and small populations
are assembled into a succinct, leaderless protocol that computes ϕ.

Succinct protocols with leaders. We start by relaxing the requirement of Theorem 6
to be leaderless, and allow O(|ϕ|3) leaders. This amount of leaders suffices to overcome
the two difficulties above:

Theorem 7. [BEG+20] Every QFPA formula ϕ is computable by a population protocol
with O(|ϕ|3) leaders and poly(|ϕ|) states.

We avoid the first difficulty by representing each number in binary with bits scattered
across the population, and by performing all additions and subtractions in binary. E.g.
instead of a single agent representing, say, 5 = 22 + 20, we may represent the number 5
with two agents, one in state 22 and one in state 20. This way, only O(log(|c|)) states
are needed per constant c. Decomposing numbers into bits requires a reservoir of spare
tokens beyond the original input; tokens of numerical value 0 can be reused to split input
tokens into their binary representation, and thus only a moderate number of additional
tokens is needed. These additional tokens can be supplied by l ∈ O(|ϕ|3) leaders (see
Subsection 4.2.5 for a detailed explanation).

The second difficulty could in principle be avoided by putting the protocols for the
atomic predicates “side by side” (instead of composing them in parallel), by dispatching
identical copies of the input tokens to each individual protocol, and by collecting the
outcome of each protocol in a bottom-up fashion, following the structure of the syntax
tree of ϕ. However, copies of the input would require a non-constant amount of extra
agents beyond the agents that are initialized with the input. So we have to modify
this approach a little bit: The individual n protocols do not each receive a full copy of
the input; instead, each protocol receives (roughly) the fraction 1

n of the input, and the
individual protocols work under the assumption that input tokens carry n times their
original value. To put this in vivid terms, we deflate the currency in order to pay more
with the same number of coins (see Subsection 4.2.4 for a detailed explanation).

Succinct leaderless protocols for large populations. The leaders in Theorem 7
merely provide additional tokens for the computation. This entails the following mono-
tonicity property: if the protocol works with l leaders, then it also works correctly with
l′ > l leaders. The monotonicity property enables the simulation of the leaders in a
leaderless protocol, by means of a leader election (recall that the leader election works
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by elimination of leaders). As long as there are enough agents in the population, it is
possible to simulate the l ∈ O(|ϕ|3) leaders with constant blow-up in memory per agent.
This gives the following theorem:

Theorem 8. [BEG+20] For every predicate ϕ, there exists some l ∈ O(|ϕ|3), such that
|x| ≥ l⇒ ϕ(x) can be computed by a succinct, leaderless protocol.

Succinct leaderless protocols for small populations. For small population sizes,
we must use a different approach. Under the assumption that the population size is
smaller than l ∈ O(|ϕ|3), agents may eventually learn their number through simple
counting in states 1, 2, . . ., up to at most l. Knowledge of the population size empowers
agents to simulate a restricted form of register machine, which performs computations
on inputs of size at most l. Moreover, it can be shown that every QFPA formula can
be represented succinctly in such a register machine. From these insights, we derive the
following theorem (see Subsection 4.2.6 for details):

Theorem 9. [BEG+20] For every QFPA formula ϕ and every positive integer l, there
is a succinct, leaderless protocol that computes x < l⇒ ϕ(x).

Succinct leaderless protocols for QFPA. Finally, the synchronous product of the
succinct protocols for x ≥⇒ ϕ(x) and x < l⇒ ϕ(x) gives a succinct, leaderless protocol
that computes ϕ(x).

Figure 4.1 outlines the structure of the proof.

4.2.3 Multi-Way Protocols

In the standard model of population protocols, agents are only allowed to interact in
pairs. For the presentation of our succinct constructions, it is useful to let k > 2 agents
interact simultaneously. This means we would like to use k-way transitions of the form
t : q1, q2, . . . , qk−1, qk −→ r1, r2, . . . , rk−1, rk. The usual notions from 2-way transitions

carry over to k-way transitions: t is enabled at C if Hq1, . . . , qkI ≤ C, and by C
t−→ C ′

we denote that t is enabled at C and C ′ = C − Hq1, . . . , qkI + Hr1, . . . , rkI.
Call a protocol of maximum transition arity k a k-way protocol. The restriction to

2-way protocols in the standard model is inessential. In [BEJ18a], we show that every
well-specified k-way protocol can be translated to an equivalent 2-way protocol with
polynomial blow-up:

Theorem 10. [BEJ18a] Let P = (Q,T, I, L,O) be a well-specified k-way population
protocol. For every 3 ≤ i ≤ k, let ni be the number of i-way transitions of P. There
exists a 2-way population protocol P ′, with at most |Q|+

∑
3≤i≤k 3i · ni states, which is

well-specified and computes the same predicate as P.

As Theorem 10 suggests, every k-way transitions of the form q1, q2, . . . , qk−1, qk −→
r1, r2, . . . , rk−1, rk can be implemented using only pairwise transitions and O(k) auxiliary
states. The idea is to ”collect” agents in the predecessor states q1, q2, . . . , qk−1, qk, one
by one, through a chain of pairwise interactions, and to temporarily ”freeze” collected
agents so that they do not participate in multiple transitions simultaneously. As long as
the state qk has not been collected, we ensure that this chain can be reversed, so that
the computation does not get stuck if the k-way transition is not enabled in the first
place. Finally, when the last state qk is collected, the agent in states qk, qk−1, . . . , q1, are
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Show: Any QFPA formula ϕ is computable with poly(|ϕ|) states.

ϕ(x) ≡ |x| < l⇒ ϕ(x) ∨ x ≥ l⇒ ϕ(x) (leaderless).

Product Construction.

∀l ∈ O(|ϕ|3) : |x| < l⇒ ϕ(x)
(leaderless).

Simulate succinct register machine
for small inputs.

∃l ∈ O(|ϕ|3) : x ≥ l⇒ ϕ(x)
(leaderless).

Perform leader election and
simulate leaders by input agents.

ϕ(x) with ≥ l ∈ O(|ϕ|3) leaders.

• Inflate value of tokens.

• Use dynamic initialization to
dispatch inflated tokens.

Any atomic predicate ψ with ≥ l ∈
O(|ψ|) leaders.

• Compute in binary
representation.

• Leaders supply spare tokens.

Figure 4.1: Top-down tree view of the proof structure for Theorem 6. The upper part of each
node states what kind of predicate can be computed in a succinct protocol (with
or without leaders). The lower part of each node sketches the implementation,
assuming the claims of its children hold.
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turned into the successor states rk, rk−1, . . . , r1, one by one, through a reverse chain of
pairwise interactions.

4.2.4 Dynamic Initialization for Succinct Parallelism

For succinct representation of boolean combinations of atomic predicates, we introduce a
sophisticated method for asynchronous, parallel computation of protocols in [BEG+20].
We illustrate the idea in a simple example. To this end, let ϕ1 and ϕ2 be atomic
predicates defined over a single variable. Further assume ϕi is computable with mi

states. We would like to compute ϕ(x) = ϕ1(x) ∨ ϕ2(x) using O(m1 + m2) states, in
contrast to the Ω(m1 · m2) states required by the product construction. Naively, we
might “dispatch” the input tokens to the protocols computing ϕ1 and ϕ2, respectively,
but doing so in parallel would require twice as many tokens: the input tokens for the
first protocol, and a copy of the input tokens for the second protocol. However, instead
of computing ϕ1(x) ∨ ϕ2(x), the protocol may equivalently compute∨

i=1,2

ϕ′i((x÷ 2), (x mod 2)),

where the ϕ′i are predicates satisfying ϕi(x) ⇐⇒ ϕ′i((x ÷ 2), (x mod 2)) for every i.
Assume the existence of protocols Pi that compute ϕ′i using O(mi) states, and further
assume there is a way to dispatch every second input token as left input to Pi for every i,
and to dispatch the remainder x mod 2 as second input to each protocol Pi. Then only
two additional tokens are needed to represent the remainder, which solves our previous
issue of requiring a copy of the input tokens. The constant number of additional tokens
needed in the new construction can be easily dealt with.

There is one caveat: When the protocol starts dispatching the input to the protocols
Pi, the remainder (x mod 2) is not known. At some point, the protocol needs to guess
whether the remainder equals 1 or 0, and it must dispatch the remainder to the protocols
Pi accordingly. This guess may be incorrect. If the guess is incorrect, then the input
will never be emptied. Thus, as long as there are still tokens in the input state, the
protocols must be able to “rewind” the computation of the protocols Pi, and return
tokens to the input, in order to make a new guess. However, not every protocol can
be safely “rewinded” this way: it is additionally required that all transitions of Pi can
be safely reversed, and that removing input tokens and putting tokens back from the
input between computations is safe. In [BEG+20], we formalize these requirements in
a class of protocols we call protocols with reversible dynamic initialization. We further
show that for every atomic predicate ψ, one may construct a succinct protocol with
reversible dynamic initialization, using only O(|ψ|) leaders. We generalize this idea to
arbitrary boolean combinations of threshold and remainder predicates in order to derive
Theorem 7.

4.2.5 Computing Atomic Predicates with l ∈ O(|ϕ|) Leaders

We now sketch how to construct for every atomic predicate ϕ a succinct protocol with l ∈
O(|ϕ|) leaders. We illustrate the construction in a sequence of examples with increasing
difficulty:

1. The family of predicates x ≥ c with parameter c > 0,
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2. The family of predicates αx ≥ c with parameters α, c > 0,

3. The family of threshold predicates
∑

i αi · xi > c with αi, c ∈ Z.

Protocol for x ≥ c. Let us first construct a protocol that computes ϕc
def
= x ≥ c with

poly(|ϕc|) = polylog(c) states. If c = 2i for some i, then the protocol may count up to c
in binary powers, using states {0} ∪ {20, 21, . . . , 2i}, and transitions 2j , 2j −→ 2j+1, 0 for
every 0 < j < i, and c, q −→ c, c for every q ∈ Q. The input/output functions I and O
are defined as in Example 3.2.1. The resulting leaderless protocol has size polynomial
in O(|ϕc|) = O(log c) and computes ϕc.

However, if c is not a power of 2, the construction for a protocol with O(polylog(c))
states needs to be modified. Let c > 0 be an arbitrary positive integer, and let 0 ≤ i1 <
. . . < im be such that c = 2i1 + 2i2 + . . . + 2im . We define a (tentative) construction
of a protocol Pc = (Q,Σ, T, I, O) that computes ϕc using O(poly(|ϕ|)) = O(polylog(c))
states as follows. Set

Q
def
= {0, c} ∪ {20, 21, . . . , 2im}

For every 0 ≤ i < im, let

addi : 2i, 2i −→ 2i+1, 0.

Since c is not a power of 2, a transition is needed that “collects” the binary representation
of c, scattered across multiple agents, into a single agent representing c.

collectc : 2i1 , 2i2 , . . . , 2im −→ c, 0, . . . , 0︸ ︷︷ ︸
(m−1) times

.

The transition collectc is im-way. Technically, only 2-way transitions are allowed
in the standard model. However, the transition collectc is a k-way transition with
k ∈ O(log c), and can by Theorem 10 be converted to pairwise transitions using poly(k) =
polylog(c) states. Like in the old protocol, I maps x to 1, the threshold state c converts
every other state to c, and c is the only state of opinion 1. The construction thus far
is not correct: As a counter example consider e.g. threshold c = 5 = 22 + 1, and input
x = 8 > c. Given these values for x and c, the terminal configuration H22, 22I of consensus
0 is reachable from the initial configuration via the sequence add0; add0; add1; add1, but
the protocol should stabilize to consensus 1. However, it is readily seen that whenever
x ≥ c holds, there is a run starting in the initial configuration Cx that stabilizes to 1
after firing collectc. Conversely, if x < c, then collectc is disabled in all configurations
reachable from the initial configuration, and consequently all runs starting in Cx stabilize
to 0. In order to fix the protocol, it suffices to ensure the execution can always return to
the initial configuration, as long as collectc has not been fired. This property can be
implemented by adding a reverse transition add−1i : 0, 2i+1 −→ 2i, 2i for every transition
addi : 2i, 2i −→ 2i+1, 0.

The full protocol computing x > c with polylog(c) states can thus be specified as
[BEJ18a]:
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Q = {0} ∪ {20, 21, . . . , 2im},
T = {addi, add−1i | 0 ≤ i < im} ∪ {collectc} ∪ {c, q −→ c, c | q ∈ Q},

I(x) = 1

O(q) =

{
1 if q = c,

0 otherwise.
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Figure 4.2: Graphical representation of a population protocol with 14 leaders computing 5x−
3y > 0. Outer circles represent states, squares represent transitions, and filled
circles represent number of agents in each state (image source: [BEJK18]).

Protocol for α · x ≥ c. Now let us consider a slightly more general family of predicates:
Given some some threshold c > 0 and some positive integer coefficient 1 < α < c, we
would like to compute the predicate ϕα,c = αx ≥ c in a population protocol Pα,c with
O(|ϕα,c|) states and leaders. For every input x, the corresponding initial population of
Pα,c must represent the value α · x using x agents, thus initially each agent carries the
value α > 1 in Pα,c. The value α may not be a power of 2, and thus we cannot use the
approach for the construction of Pc, where all agents carry a power of 2 up to the point
where collectc is fired. Even if α is a power of 2, the reverse transitions add−1i may no
longer avoid getting stuck prematurely, as there may not be enough agents to always go
back to a configuration that enables collectc. However, if leaders are allowed, this issue
can be avoided by adding a sufficiently large supply of leaders in state 0 that provide
“spare tokens”: Let m denote the length of the binary representation of c. Define the
states of Pα,c as {0, c, α} ∪ {2i | 0 ≤ i ≤ m + 1}. Further let addi, add

−1
i and collectc

be defined as before. Assuming a sufficient supply of additional agents in state 0, it
is possible to translate every agent from the initial state α to its binary representation
2i1 + . . . + 2in = α using n − 1 additional agents in state 0, by means of the n-way
transition

tα : α, 0, . . . , 0︸ ︷︷ ︸
(n−1) times

−→ 2i1 , . . . , 2in .
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It is relatively straightforward to see that the following holds for every configuration
C satisfying

∑
0≤i≤mC(2i) ≥ c: Given a sufficiently large supply of agents in state 0,

there is a sequence σ of transitions of the form addi and add−1i such that C
σ−→ C ′ and

C ′ enables collectc. Moreover, this property is forward-inductive, as the transitions
addi and their reverse transitions leave the quantity

∑
0≤i≤mC(2i) invariant.

Thus, given enough leaders in state 0, the protocol computes ϕα,c succinctly. How
many leaders are needed to obtain a correct protocol? – It can be shown that the
number of leaders is independent of the size of the input, and that 2m leaders suffice
for correctness. To see this, observe that a reservoir of 2m agents in state 0 is enough
to decompose two agents in the input state α into the constituent binary powers of α
via the transition tα. Moreover, whenever two identical powers of 2 interact, one token
is released. Thus, it is indeed possible to compute αx ≥ c in a succinct protocol with
m ∈ O(|ϕ|) leaders.

Protocol for
∑

i αi · x > c. In [BEJ18a], we generalize the last construction to obtain
succinct protocols for threshold predicates of the form with l ∈ O(|ϕ|) leaders serving
as spare tokens. The underlying idea for threshold is similar, except that the powers
of 2 are signed in order to distinguish between negative and positive coefficients, and
transitions are added which guarantee stabilization to the final majority.

We now sketch how to construct for a given threshold predicate ϕ a protocol P that
computes ϕ, using O(|ϕ|) states and O(|ϕ|) leaders. Consider for example the threshold
predicate ϕ = 5x − 3y > 0. The protocol P is partially represented in Figure 4.2. The
initial states x and y are translated into the (signed) binary representation of their co-
efficients: x is translated into 4 + 1 = 5, and y is translated into −3 = −2 + (−1). Like
in the previous protocol, there is an initial reservoir of O(|ϕ|) zeros, serving as spare
tokens, only this time there is one for each sign (+ or −). The transitions in the middle
allow positive and negative values of identical absolute value to cancel out. Like in the
previous protocol, binary powers can be promoted and demoted. By fairness, either all
positive or all negative values are eventually eliminated through promotions/demotions
and canceling. Transitions are added that ensure stabilization to the remaining major-
ity consensus (positive or negative). For the sake of clarity, these additional majority
transitions are missing from the graphical representation in Figure 4.2.

In [BEG+20] we extended this approach to remainder predicates. The construction is
similar.

4.2.6 Achieving Succinctness in Small Populations

Now we outline our approach for the construction of a succinct protocol under the
assumption that the population size is small. Concretely, we sketch the succinct con-
struction of a protocol P that computes |x| ≤ l ⇒ ϕ(x) for any given formula ϕ and
positive integer l ∈ O(|ϕ|3). Let us first weaken the requirement on P, aiming for a
protocol Pl that computes ϕ(x) in the case where x = l holds, and that may behave
arbitrarily whenever x 6= l. We denote this requirement by saying that Pl computes
(ϕ(x) | |x| = l). Notice that Pl need not be well-specified.

Construction for x = l. Since Pl is only required to work correctly for inputs of size
l, we may assume that every initial configuration is of size l. Given this assumption,
Pl may elect a leader by counting up to l like in the simple counting protocol from
Example 3.2.1; the agent that transitions to the threshold state l becomes the leader.
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Since the elected leader knows the population size l, it may label the remaining agents
with unique identities in the range [1, l−1] through pairwise interactions. The identities
enable the leader to iterate over the population via sequences of rendez-vous with agents
of identity 1, 2, . . . l− 1, in that order, keeping track of interactions in a counter ranging
from 1 to (l − 1). This global iteration mechanism enables Pl to simulate a virtual
register machine: The leader stores non-input registers and the control state of the
register machine, while each agent stores one bit of the input. Register updates and
register queries can be implemented by the iteration mechanism. Every register machine
with a description of size poly(l) can be simulated this way by a protocol Pl with poly(l)
states for all inputs of size l.

To finish the description of Pl, it thus suffices to show how any QFPA predicate ϕ
can be represented succinctly in a register machine for any input of size l ≤ poly(|ϕ|).
Boolean combinations of atomic predicates can be represented succinctly through se-
quential composition, given that the representation of atomic predicates is succinct.
Among the atomic predicates, it suffices to only consider threshold predicates; remain-
der predicates can be succinctly represented by a disjunction of threshold predicates for
inputs of size l [BEG+20]. Here we only consider threshold predicates of the form

ϕ(x,y) = α1x1 + . . .+ αnxn > β1y1 + . . .+ βmym.

where αi > 0 and βj > 0 for all i and j. The more general threshold predicate can be
implemented similarly.

The obvious approach to the computation of ϕ(x,y) would be to compute the sums
A = α ·x and B = β ·y, and to finally compare A and B. But summation would require
Θ(2|ϕ|) different register machine configurations, which cannot be represented succinctly.
Another approach would be to store the result of all comparisons α ·x > β ·y in a lookup
table. But there are Θ(2|ϕ|) possible pairings of x and y, hence this approach also does
not yield a succinct machine.

However, in order to decide the inequality α ·x > β ·y, it is not necessary to store all
digits of α ·x and β ·y simultaneously : Since |x| and |y| are bounded by l, the sums α ·x
and β ·y can be represented by a fixed-length binary sequence a1, . . . , am and b1, . . . , bm
such that m = O(l). Without loss of generality, assume 1 is the least-significant bit
position. Then α · x > β · y holds if and only if there is some 1 ≤ k ≤ m such that
ak > bk and ai = bi for all i < k. Consequently, the inequality α · x > β · y can be
decided by searching for the smallest k = 1, 2, . . . ,m, such that ak < bk or ak > bk holds.
If no such k exists, then α ·x and β ·y are equal. This approach requires the machine to
store the current index k ≤ m, and to probe the bits ak and bk. Probing of the bits ak
and bk can be implemented succinctly via a “forgetful” variant of the standard algorithm
for binary addition, where only the carry is kept when moving from one bit position to
the next, and the result of the summation for previous digits of lower significance is
discarded. This gives a succinct register machine for inputs of size l.

Construction for x ≤ l. Given that for every 2 ≤ i ≤ l, there is a succinct protocol Pi
that computes (ϕ(x) | |x| = i), we construct a succinct protocol P that computes |x| <
l ⇒ ϕ(x). The protocol P works as follows: Agents start by counting the population
size from 1, up to at most l. Whenever the counter is incremented to some value i, an
agent resets a subpopulation of size i to the initial configuration of Pi, and initiates a
simulation of Pi. If |x| ≥ l, then some agent’s counter reaches l, and this is propagated
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to stabilize to the correct value 1. If |x| = i < l, then P eventually executes Pi, and
stabilizes to the output of Pi, which equals ϕ(x).

4.3 Related Work

In our analysis of space complexity, we assume a uniform model of computation: Every
protocol computes a predicate for all (infinitely many) inputs. In a variety of publications
[AAE+17, AGV15, AG15, ABBS16], time/space trade-offs have been considered for non-
uniform computation of population protocols, where the number of states available to
each agent depends on the size of the input. The research on time/space trade-offs
was motivated by the result that leader election can be solved in O(log3(n)) time in a
protocol with O(log3(n)) states in populations of size n [AG15]. This stands in contrast
to leader election with constant memory, which requires linear time [DS18].

The space complexity of counting in population protocols has been studied in a number
of papers [BBCS15, ABBS16, BCM+07, BBC14]. In [BBCS15], counting is considered
in the setting where agents may be initialized arbitrarily, and there is an additional
leader in a designated initial state referred to as the base station. The authors show that
counting can be implemented in this setting with only one bit per regular agent under
global fairness. They also give a space-optimal protocol for counting with a base state
under local fairness. In [ABBS16], a space and time optimal protocol under uniformly
probabilistic scheduling is presented for arbitrarily initialized agents with base station.
The optimal protocol requires one bit per agent and converges in O(n log n)) expected
time. A number of recent publications [DLBBC14, MCS13, MM15] consider the space
complexity of the counting problem in networks of anonymous agents in a synchronous
model of computation.

Counting protocols notwithstanding, space complexity in the uniform model of com-
putation has attracted surprisingly little attention by the research community. In
[MNRS14], the majority protocol from Example 3.2.2 is shown to be space-optimal.
To the best of our knowledge, we are the first to improve the exponential construction
presented by Angluin et al. in [AAD+06] for the entire class of QFPA.

4.4 Open Research Questions

No lower bound is known for the number of states required to represent predicates
in population protocols with constant number of leaders. In particular, the following
question is still open: Is there an increasing sequence of positive integers c1, c2, . . .,
such that x ≥ ci can be computed by protocol with a constant number of leaders and
O(log log log ci) states for every i? This would be an improvement from the O(log log ci)
bound in Theorem 4. The existence of such a sequence seems implausible, but as of now
no proof could be found that establishes the opposite.
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This chapter is concerned with automatic verification of population protocols. For a
fixed input, a verification procedure can be obtained via exhaustive exploration of the
state space: Given some input v, some protocol P and some predicate ϕ, the procedure
may decide whether every fair run starting in the initial configuration Cv stabilizes to
ϕ(v) by inspecting the BSSCs of the reachability graph of Cv.

Here we are primarily interested in the parameterized variant of the verification prob-
lem, i.e. we would like to know whether a given protocol computes the correct output
for all, infinitely many inputs (instead of a single input v). The problem is thus param-
eterized over all inputs.

5.1 Problem Statement

We call the parameterized verification problem the correctness problem. Formally, this
is the following decision problem.

Correctness
Input: A population protocol P and a QFPA formula ϕ.
Question: Does P compute the predicate specified by ϕ?

By the characterization of fairness via BSSCs, deciding whether a protocol P com-
putes a predicate ϕ amounts to deciding whether the following formula is unsatisfiable
[BEJK18]:

∃C,D : C
∗−→ D (5.1)

∧ C is initial (5.2)

∧ D is bottom (5.3)

∧ O(D) 6= ϕ(C) (5.4)

In words: P does not compute ϕ, if there exists a bottom configuration D reachable
from some initial population C, such that the output of D does not equal ϕ(C).
A related problem is the well-specification problem.

WellSpecification
Input: A population protocol P.
Question: Is P well-specified?

By the characterization of fairness via BSSCs, deciding WellSpecification amounts
to deciding whether the following formula is unsatisfiable:

∃C,D1, D2 : C
∗−→ Di for every i ∈ {1, 2} (5.5)

∧ C is initial (5.6)

∧ Di is bottom for every i ∈ {1, 2} (5.7)

∧ (O(D1) = ⊥ ∨O(D1) 6= (D2)) (5.8)
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In words: P is not well-specified, if two bottom configurations of differing output are
reachable from the same initial configuration, or a non-consensus bottom configuration
is reachable from an initial configuration.

WellSpecification and Correctness are polynomially interreducible.

Reduction from Correctness to WellSpecification. Given P and ϕ for Correct-
ness, a polynomial-time procedure may by Theorem 6 construct a protocol Pϕ that
computes ϕ . The procedure then constructs a protocol P ′ that executes P0 = P and
P1 = Pϕ in parallel while alternating nondeterministically between the output of P0 and
P1. A state in P ′ is of the form (q0, q1, b) ∈ QP0×QP1×{0, 1}: each agent carries a pair
of states from P0 and P1 for the parallel execution of the two protocols, and a boolean
flag b ∈ {0, 1} which governs the output. The output is given by O((q0, q1, b)) = Ob(qb).
Transitions are added to P ′ that may flip the flag b any time, and leave the other compo-
nents unchanged. By construction P ′ is well-specified if and only if P0 and P1 compute
the same predicate, which is precisely the case if P computes ϕ.

Reduction from WellSpecification to Correctness. The reduction from Well-
Specification to Correctness is similar: Given an instance P for WellSpecifica-
tion, a polynomial time procedure may construct a protocol P ′ that executes two copies
of P in parallel by means of the product construction. The output of a product state
(q1, q2) is set to 1 if and only if the output of q1 and q2 is identical in P. It is readily
seen that P ′ computes the constant predicate true if and only if P is well-specified.

5.2 New Contributions

In [BEJM17] we presented the first fully automatic procedure for solving a multitude of
instances of Correctness and WellSpecification. We sketch the construction for
Correctness; the approach for WellSpecification only requires mild modifications.

The obvious idea is to express the constraints (5.1)-(5.4) in a suitable logic and to
automatically test for unsatisfiability with the help of a constraint solver. Here we face
two difficulties:

1. The reachability relation
∗−→ is not semilinear, and not expressible in any logic of

reasonable complexity [AAER07, EGLM17].

2. Subformula (5.3) (D is bottom) is effectively Presburger, but there is no known
upper bound on the norm of the corresponding semilinear set [EGLM17]. Known
approaches for construction of a formula equivalent to (5.3) are impractical.

We resolve the first issue by replacing
∗−→ by some overapproximation

∗99K⊇ ∗−→; the
overapproximation

∗99K will be expressible in the existential fragment of Presburger logic.

We resolve the second issue by confining our approach to silent protocols. A pro-
tocol is silent if every fair run ends up in a terminal configuration; D is terminal if
D −→ D′ implies D = D′ for every D′. In the case of silent protocols, we may replace
Subformula (5.3) (D is bottom) by the constraint (D is terminal). The constraint (D
is terminal) is definable in the quantifier-free fragment of Presburger arithmetic – we
only need to verify that effectful transitions are disabled at D, which is expressible as a
boolean combination of inequalities.
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Example 5.2.1. The majority protocol from Example 3.2.2 is silent. The reachable
terminal configurations are of the type HX, . . . , X, x, . . . , xI (if x > y), HY, . . . , Y, y, . . . , yI
(if y > x), or Hx, . . . , xI (if x = y).

The majority of protocols in the literature is naturally silent. However, switching
to silent protocols only seems to shift the problem: to guarantee soundness of our ap-
proach, we now have to verify that the protocol is silent, which is also hard. To bypass
this issue, we replace the property (P is silent) by a simpler sufficient criterion we
call LayeredTermination. Deciding LayeredTermination is in NP, and hence of
reasonable complexity.

LayeredTermination. A protocol P satisfies LayeredTermination, if the set of
effectful transitions of P can be partitioned into T1]T2] . . .]Tm for some m, such that
the following holds for every configuration C ∈ NQ:

1. For every 1 ≤ k ≤ m, every execution C
t1−→ C1

t2−→ C2
t3−→ . . ., such that ti ∈ Tk

for every i, is finite.

2. The following property is forward-inductive (i.e. closed under reachability) for
every 1 ≤ k ≤ m: All transitions in T1 ∪ . . . ∪ Tk are disabled.

Example 5.2.2. The majority protocol from Example 3.2.2 satisfies Layered Termi-
nation. It is easily verified that the following partition T1 ] T2 of its transition relation
satisfies the required properties:

T1 ={(X, Y) −→ (x, y), (Y, x) −→ (Y, y)}
T2 ={(X, y) −→ (X, x), (x, y) −→ (x, x)}

Given a partition T ′ = T1 ] T2 ] . . . ] Tm that satisfies the items in the definition of
LayeredTermination, it is always possible to reach from every configuration a termi-
nal configuration via some sequence in T ∗1 T

∗
2 . . . T

∗
m; by fairness, a terminal configuration

must eventually be reached. Thus, we obtain:

Theorem 11. [BEJM17] Every protocol that satisfies LayeredTermination is silent.

Moreover, we show the following:

Theorem 12. [BEJM17] Deciding whether a given protocol satisfies LayeredTermi-
nation is in NP.

The NP procedure first guesses m and a partition T ′ = T1 ] . . . ] Tm. The proce-
dure then checks whether the partition satisfies Properties 1 and 2 in the definition of
LayeredTermination. It is well-known that the first property can be checked in poly-
nomial time for vector addition systems, and thus also for population protocols. For the
second property, the procedure has to verify that once the first k blocks of the partition
are disabled in any execution, they cannot be re-enabled at a later point. This reduces
to a simple syntactic check on the presets and postsets of the transitions, which can be
carried out in polynomial time.

Overapproximating Reachability. For the approximation of the reachability rela-
tion, we use techniques familiar from the theory of Petri nets. Let T = {t1, . . . , tn} be a
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set of transitions. Given a finite sequence σ ∈ T ∗, let the Parikh vector of σ be defined
as xσ

def
= (|σ|t1 , . . . , |σ|tn) ∈ Nn where |σ|ti denotes the number of occurrences of ti in σ.

For every pair of configurations C and C ′, C
σ−→ C ′ implies the following equality for

x = xσ:

C ′(q) = C(q) +
∑
t∈T

x(t) · (post(t)(q)− pre(t)(q)) (5.9)

If C ′ is reachable from C, then there is some counting vector x that satisfies (5.9)
for the fixed configurations C and C ′. However, the converse need not hold: From the
existence of a vector x satisfying (5.9), it does not follow that C ′ is reachable from C,
as (5.9) only takes the cumulative effect of x into account, and consequently there may
be no realizable transition sequence σ such that xσ = x for a given solution x. Thus,
the following relation

∗99K is an overapproximation of the reachability relation
∗−→:

C
∗99K C ′ ⇔ ∃x s.t. C,C ′,x satisfy (5.9).

For given C and C ′, checking C
∗99K C ′ amounts to solving a linear system over the

integers, which can be done in nondeterministic polynomial time [BEJM17].

The relation
∗99K is too crude an overapproximation for our purposes. We refine it

using the established concepts traps and siphons from the Petri net literature.

Definition 5.2.1. Let U be a set of transitions. A set of states P is a U -trap if the
following holds for every transition q1, q2 −→ r1, r2 ∈ U : {q1, q2}∩P 6= ∅ ⇒ {r1, r2}∩P 6=
∅.

Intuitively, P is a U -trap if every transition from U that removes an agent from P must
also put an agent into P .

Siphons are the dual concept to traps:

Definition 5.2.2. Let U be a set of transitions. A set of states P is a U -siphon if the
following holds for every transition q1, q2 −→ r1, r2 ∈ U : {r1, r2}∩P 6= ∅ ⇒ {q1, q2}∩P 6=
∅.

Intuitively, P is a U -siphon if every transition from U that puts an agent into P must
also remove an agent from P .

We make the following observation:

Observation 5.2.1. Let σ ∈ T ∗ and U
def
= {t | σ(t) > 0}. Further let C,C ′ be configu-

rations such that C
σ−→ C ′. Then the following holds:

JC ′K ∩ P = ∅ =⇒ JCK ∩ P = ∅ for every U -trap P, (5.10)

JCK ∩ P = ∅ =⇒ JC ′K ∩ P = ∅ for every U -siphon P. (5.11)

We refine
∗99K by additionally requiring that (5.10) and (5.11) hold for all U -traps and

U -siphons, respectively, where U is defined as U
def
= Ux = {t ∈ T | x(t) > 0} for the

solution vector x of the state equation. We denote the refined relation by
∗99KU .

The relation
∗−→U is our replacement for the reachability relation

∗−→.

Putting the pieces together. Our approach executes the following steps:
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1. Verify LayeredTermination.

2. Verify Strong-ϕ-Consensus: Verify that the following formula is unsatisfiable.

∃C,D : C
∗99KU D (5.12)

∧ C is initial (5.13)

∧ D is terminal (5.14)

∧ O(D) 6= ϕ(C) (5.15)

If both steps succeed, then P computes ϕ, otherwise the question whether P computes
ϕ remains undecided. This gives a sound, albeit incomplete, decision procedure for
Correctness.

It can further be shown that every Presburger predicate ϕ can be computed by a
protocol that is verifiable by our procedure:

Theorem 13. [BEJM17] Every predicate given by a QFPA formula ϕ can be com-
puted by a population protocol that satisfies LayeredTermination and Strong-ϕ-
Consensus1.

Complexity. Deciding the two steps has complexity DP = {L1 ∩ L2 | L1 ∈ NP, L2 ∈
coNP}. The first step is in NP by Theorem 12. The unsatisfiability constraint for the
second step is expressible in existential Presburger arithmetic, the syntactic fragment
of Presburger arithmetic of formulas of the form ∃x : ϕ(x), where ϕ(x) is a boolean
combination of atomic predicates. It can further be shown that the size of the formula
does not blow up, and that unsatisfiability of a formula in the existential fragment is in
coNP. This gives membership in coNP for deciding Strong-ϕ-Consensus.

5.2.1 Experimental Results

We implemented our approach in a tool called Peregrine2. The tool takes a protocol
P as input and constructs two formulas: one for LayeredTermination, and one for
Strong-ϕ-Consensus. The former is satisfiable if and only if P satisfies LayeredTer-
mination, the latter is unsatisfiable if and only if P satisfies Strong-ϕ-Consensus.
The constraints are solved with the help of the SMT solver Z3 [DMB08]. The traps
and siphon constraints for Strong-ϕ-Consensus are not added all at once. Instead,
a refinement loop adds trap- and siphon constraints incrementally, until the set of con-
straints for Strong-ϕ-Consensus is rendered unsatisfiable. Iterative refinement helps
us avoid a quadratic blow-up in the number of variables, which would result from a direct
translation of the coNP-approach into a set of constraints (see [BEJM17] for details).
Usually, only few refinement steps are required, and the iterative refinement approach
is expected to perform well in practice [BEJM17].

Table 5.1 illustrates how our tool performs on a set of benchmarks. The set con-
sists of protocols introduced in the literature: the threshold and remainder protocol
of [AAD+06], the majority protocol of [AAE06], the broadcast protocol of [CDFS11],

1In [BEJM17], this result is presented in terms of a related property, called StrongConsensus; how-
ever, the proof can be easily adapted to Strong-ϕ-Consensus.

2https://peregrine.model.in.tum.de/
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Threshold

α |Q| |T | Time

3 28 288 8.0
4 36 478 26.5
5 44 716 97.6
6 52 1002 243.4
7 60 1336 565.0
8 68 1718 1019.7
9 76 2148 2375.9

10 84 2626 timeout

Flock of birds [CDFS11]

c |Q| |T | Time

50 51 99 11.8
100 101 199 44.8
150 151 299 369.1
200 201 399 778.8
250 251 499 1554.2
300 301 599 2782.5
325 326 649 3470.8
350 351 699 timeout

Remainder

m |Q| |T | Time

10 12 65 0.4
20 22 230 2.8
30 32 495 15.9
40 42 860 79.3
50 52 1325 440.3
60 62 1890 3055.4
70 72 2555 3176.5
80 82 3320 timeout

Majority

|Q| |T | Time

4 4 0.1

Flock of birds [CMS10]

c |Q| |T | Time

20 21 210 1.5
25 26 325 3.3
30 31 465 7.7
35 36 630 20.8
40 41 820 106.9
45 46 1035 295.6
50 51 1275 181.6
55 56 1540 timeout

Broadcast

|Q| |T | Time

2 1 0.1

Table 5.1: Results of the experimental evaluation where |Q| denotes the number of states, |T |
denotes the number of non silent transitions, and the time to verify WellSpecifi-
cation in seconds (this experimental evaluation first appeared in [BEJM17]).

and two versions of the simple counting protocol from Example 3.2.1. For families of
protocols such as threshold, we gradually increased the primary parameter until a time-
out was reached. We set the the timeout to one hour. All experiments were performed
on the same machine equipped with an Intel Core i7-4810MQ CPU and 16GB of RAM.
Checking Correctness was generally faster than checking WellSpecification.

5.2.2 Peregrine

In[BEJ18b], we introduced a new version of Peregrine. The new version has a graph-
ical user interface that offers the following features:

• Specification of population protocols in a graphical interface,

• Specification of families of population protocols in a text editor,

• Various modes of visualization for executions of protocols,

• Gathering Statistics of properties such as convergence speed,

• Automatic verification of correctness, with limited support for error diagnostics.

Support for error diagnostics is implemented with the help of the Petri net reacha-
bility tool LoLa [Sch00]. Since Strong-ϕ-Consensus is defined with respect to the
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overapproximation
∗−→U , a silent protocol may violate Strong-ϕ-Consensus, although

the protocol computes ϕ. This means every counter example to Strong-ϕ-Consensus
needs to be independently verified, using

∗−→ instead of
∗−→U . Given configurations C and

C ′, LoLa tries to determine whether C
∗−→ C ′ holds. Whenever a counter example to

Strong-ϕ-Consensus is returned during verification, the counter example is passed to
LoLa to check whether it is realizable by a corresponding finite execution. The counter
example is displayed to the user whenever LoLa manages to verify its validity.

5.3 Related Work

Decidability of WellSpecification. In [EGLM17] Esparza et al. showed that Well-
Specification, and equivalently, Correctness are decidable. They further show that
the reachability problem for vector addition systems is polynomially reducible to Well-
Specification. The reachability problem is TOWER-hard [CLL+19]. Thus any com-
plete decision procedure for WellSpecification or Correctness is bound to be prac-
tically infeasible.

The authors obtain a decision procedure for WellSpecification by parallel compo-
sition of two semi-decision procedures, one for the problem and one for its complement.
The semi-decision procedure for the complement can be obtained by enumeration of all
initial configurations, and by testing for each input configuration if the protocol stabi-
lizes to a unique output via inspection of its reachability graph. The procedure accepts
the protocol when such a test fails.

The proof for semi-decidability of WellSpecification is more involved; it exploits
the rich theory of vector additon systems and their correspondence to semilinear sets.
Since decidability of WellSpecification is a relatively surprising result, we now ex-
plain the proof structure in greater detail.

Let P be a population protocol. Let I be the set of input configurations of P, let
B denote the set of bottom configurations of P, and let Bb be the set of all bottom
configurations of P that can only reach configurations of output b ∈ {0, 1}. Further let
By Proposition 1, P is well-specified if and only if there exist I0 and I1 such that I0
and I1 form a partition of I, and the bottom configurations reachable from Ib are all in
consensus b. Formally, there must be some I1, I0 such that:

I0 ] I1 = I ∧ ∀b ∈ {0, 1}∀C ∈ Ib, ∀C ′ ∈ B \Bb : C 6 ∗−→ C ′. (5.16)

The authors establish the following [EGLM17]:

1. The partition I0 ] I1 of I in rejecting and accepting input configurations exists
and is Presburger-definable.

2. B and Bb are effectively Presburger for every b ∈ {0, 1}.

The first item follows from the assumption that P is well specified and from the fact
that well-specified protocols compute Presburger predicates. The second result can be
derived from fact that the mutual reachability relation {(C,C ′) | C ∗−→ C ′ ∧ C ′ ∗−→ C}
is effectively Presburger, which was previously established for the more general vector
addition systems in [Ler11] by Leroux.
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Reach(Ib)

Ib

Bb
∗

Figure 5.1: Schematic drawing of the overapproximation R̃each(Ib). Semilinear sets are indi-
cated by hexagons. The outermost hexagon represents the forwards-inductive set

R̃each(Ib). The set of configurations reachable from Ib is represented by a cloud,

indicating that it may not be semilinear. The set R̃each(Ib) contains Bb, but no
configuration in (B \Bb).

Let Reach(Ib)
def
= {C ′ | ∃C ∈ Ib : C

∗−→ C ′}. It can be shown ([EGLM17]) that for

every b ∈ {0, 1} there exist semilinear overapproximations R̃each(Ib) ⊇ Reach(Ib) of the
configurations reachable from Ib, satisfying:

1. R̃each(Ib) is closed under reachability,

2. Bb ⊆ R̃each(Ib),

3. (B \Bb) ∩ R̃each(Ib) = ∅.

Figure 5.1 illustrates these three properties. Properties 1-3 are effectively Presburger.
Property 1 can be expressed by the following Presburger formula for every b ∈ {0, 1}:

∀C∀C ′ : R̃each(Ib)(C) ∧ C −→ C ′ ⇒ R̃each(Ib)(C ′).

Since subset relations, intersection of predicates, and boolean combinations thereof
are expressible in Presburger arithmetic, Property 2 and Property 3 are effectively Pres-
burger, too.

Properties 1-3 entail (5.16) for a given partition I0 ] I1 = I and sets R̃each(Ib) ⊇ Ib.
Thus, a semi-decision procedure for WellSpecification can be given by enumeration

of all Presburger-definable partitions I0 ] I1 = I and Presburger sets R̃each(Ib) ⊇ Ib,
and verification of Properties 1-3.

Other subclasses with elementary verification complexity. In [EGMWK18],
Esparza et al. considered the well-specification problem for immediate observation pro-
tocols, a subclass of population protocols that can be characterized syntactically as only
containing transitions of the form q1, q2 −→ q1, q3 (i.e. at most one agent is affected by
a transition). They show that WellSpecification is solvable in exponential space for
immediate observation protocols. They further improve this result by showing PSPACE-
completeness in [ERWK19].
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Other verification approaches. To the best of our knowledge, our approach is the
first fully automatic and parametric approach to Correctness. Previous approaches
can be roughly divided into two camps: Those verifying correctness with the help of an
interactive theorem prover [DM09], and those that verify correctness only for fixed inputs
[PLD08, SLDP09b, CMS10, CDFS11]. The former requires human-computer interaction,
and is not fully automatic. The latter is not parametric, and requires exploration of the
respective reachability graph. Finite-state exploration of the reachability graph can be
implemented automatically with the help of model checking techniques, but with the
following caveat: Standard specification languages like linear temporal logic (LTL) or
Computation Tree Logic (CTL) are not expressive enough to specify correctness under
global fairness, and local fairness or some other notion of fairness has to be assumed
instead, if the model checker is restricted to these languages (see e.g. [CDFS11]). A
model checker that explicitly supports global fairness was presented in [SLDP09a].

A year after we published our approach, Blondin et al. introduced the notion of stage
graphs in [BEK18]. Stage graphs can be regarded as a generalization of the notion of
LayeredTermination. With the help of stage graphs, the authors managed to auto-
matically derive upper bounds on the parallel convergence time of population protocols.
As opposed to our approach, stage graphs can also deal with non-silent protocols, and
may be used for automatic verification of a larger class of protocols in the future.

5.4 Open Research Questions

Both WellSpecification and Correctness have non-elementary complexity. The
complexity of the following promise variant of Correctness is unknown:

Promise variant of Correctness
Input: A well-specified population protocol P and a QFPA formula ϕ.
Question: Does P compute the predicate specified by ϕ?

The promise variant differs from the original problem in the promise that P is well-
specified. The reduction from WellSpecification to Correctness sketched at the
beginning of this chapter does not necessarily map to a well-specified protocol, and thus
cannot be used to show that the promise problem is at least as hard as WellSpeci-
fication. Moreover, there seems to be no straightforward way to adapt the reduction
from the Petri net reachability problem to WellSpecification, as shown by Esparza
et al. in [EGLM17], to the promise problem above.
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The standard model of population protocols does not include a mechanism to detect
whether the computation has stabilized. In general, agents cannot know whether their
current output is permanent. For instance, consider the parity predicate:

ϕ(x) =

{
1 if x is even,

0 otherwise.

The output of any protocol that computes ϕ(x) must alternate with population size.
In particular, every agent needs to interact with some other agent at least once, in order
to stabilize to the correct output. At no point during the computation can an agent be
certain that all agents in the population took part in the computation – fairness only
ensures that every agent will eventually participate, but interactions can be delayed
arbitrarily long. Thus agents can never be certain that their current output is the final
output.

This apparent lack of termination indication complicates the design of population
protocols, since structuring of protocols into modular subroutines is hard to achieve; the
absence of an equivalent for a return statement makes it difficult to compose population
protocols sequentially. In Section 4.2.6, we showed how to overcome this difficulty under
the assumption that the population size is known: We showed how to implement an
analogue of subroutines and return statements by means of a leader that stores the
population size in a counter. The leader essentially emulates the behavior of a global
broadcast signal through sequential pairwise interactions, keeping track of occurrences
of interactions. Another way to look at the leader is to say that it provides a phase
clock that indicates when a task is completed. On a more fundamental level, one may
argue that the crucial functionality provided by the leader is a cover-time service [MS15]:
some way of knowing when it has covered the entire population by interacting with every
agent. The mechanism of a cover-time service, in turn, allows the leader to implement
a some restricted form of (possibly nondeterministic) register machine.

It is thus only natural to consider extensions of the standard model of population
protocols by one of these primitives: cover-time services, clocks, and global broadcasts.
In [MS15], Michail et al. considered population protocols augmented by a cover-time
service, which is given by a distinct agent that may store in its state when it has met
all agents in the current iteration. In [Asp17], J. Aspnes introduced clocked protocols,
which extend the standard model by a clock whose clock ticks signal stabilization for
the current computation phase. Finally, in [BEJ19a], we consider broadcast protocols,
which augment the standard model with the possibility to emit global broadcast signals
simultaneously received by all agents. All these extensions can be implemented via
modifying the one-step relation −→ appropriately.
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6.1 Problem Statement

We consider extensions of population protocols by modification of the one-step relation
−→. We call the superclass of all those extensions generic consensus protocols. Formally,
an generic consensus protocol can be specified by a tuple (Q,Step,Σ, L, I, O), where
Q,L, I,O are defined as in population protocols with leaders, and Step ⊆ NQ × NQ is
the step relation. The one-step relation is given by C −→ C ′ ⇔ (C,C ′) ∈ Step; the other
notions, like executions, stable computation, fairness, are defined with respect to the
one-step relation.

We investigate the expressive power of generic consensus protocols, when restricted to
step relations of reasonable complexity. As a special case, we consider broadcast consider
protocols (short: broadcast protocols), which extend population protocols by reliable
broadcasts. A broadcast protocol can be formally specified by a tuple (Q,T,B,Σ, I, O),
where Q,T, I,O are defined as in population protocols, and B is the set of broadcast
transitions. A broadcast transition is a triple (q, r, f), where q, r ∈ Q, and f : Q → Q
is a transfer function. Intuitively, q is the state of the broadcaster, r is its state after
emitting the broadcast, and f determines how the other agents change their states upon
receiving the broadcast signal. A step C −→ C ′ is either due to some transition t ∈ T like
in standard population protocols, or due to some broadcast transition. In the case of
broadcast transitions, for every (q, r, f) ∈ B and every configuration C, the step relation
satisfies minimally:

(HqI + C) −→
(
HrI + C ′

)
where C ′(q′) =

∑
q∈f−1(q′)C(q) for every q′ ∈ Q.

Example 6.1.1. Assuming every agent is initially in leader state L, a leader election
can be implemented by means of the broadcast transition (L,L, f) where f(L) = N ,
and f(q) = q for all q 6= L. After firing the transition (L,L, f), exactly one agent is in
the leader state L, and all the other agents are in the non-leader state N .

6.2 New Contributions

We relate broadcast protocols to the complexity class NL = NSPACE(log n), where n
is the size of the input in unary encoding. Unary encoding breaks with the default
assumption in complexity theory, where input numbers are usually given in binary.
However, unary encoding is the more natural assumption in our case, since protocols
receive their input in unary. Hence we say a k-ary predicate ϕ belongs to NL if there is
a nondeterministic Turing machine that accepts in O(log |x|)-space the tuples x ∈ Nk,
encoded in unary, precisely if ϕ(x) holds.

The following theorem is the central result of [BEJ19a]:

Theorem 14. [BEJ19a] The predicates computable by broadcast protocols are precisely
the predicates in NL.

We establish the NL upper bound for all generic broadcast consensus protocols whose
Step relation is in NL (see Subsection 6.2.1 for details). The upper bound for broadcast
protocols is a corollary of the more general result. The proof of the lower bound is
discussed in Subsection 6.2.2.
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Furthermore, we investigated the expressiveness of two natural subclasses of broadcast
protocols: 1.) Broadcast protocols where the transfer function is identical for all broad-
cast transitions, and 2.) broadcast protocols where each broadcast resets the execution
to initial. We established that the first class still computes all predicates in NL, while
the second class is no more expressive than the basic model of population protocols.
These two results are discussed in more detail in Subsection 6.2.3.

6.2.1 Predicates computable by Broadcast Protocols are in NL

For the NL upper bound, we establish the following general result:

Theorem 15. Let P = (Q,Step,Σ, L, I, O) be a generic consensus protocol computing
a predicate ϕ. If Step ∈ NL, then ϕ ∈ NL. In particular, predicates computable by
broadcast protocols are in NL.

Generic consensus protocols whose step relation is not in NL are unreasonable in terms
of practicality. Theorem 15 can thus be interpreted as establishing an upper bound on
the expressiveness of “reasonable” extensions of population protocols. The proof of 15
uses the fact that coNL = NL [Imm88], and that protocols can be simulated by an NL
procedure, if Step is in NL.

It can further be shown that all semilinear predicates are in DSPACE(log log n), where
n is the size of the input in unary encoding [BEJ19b]. Thus population protocols are
very far away from the theoretical limit of NL.

6.2.2 All Predicates in NL are computable by Broadcast Protocols

We establish the NL lower bound for broadcast protocols by simulating a (nondetermin-
istic) counter machine due to Minsky [Min61]. A counter machine can be defined as
a vector addition system with states, augmented by the possibility to perform a zero
test, that is, the possibility to execute a state transition dependent on whether a given
component of the counting vector equals 0. Each vector component is said to represent
one counter of the counter machine. We further assume the counter machine to have a
distinct accepting state qa. A counter machine accepts an input v, if there is a path from
the initial configuration (v, q0) to the configuration (0, qa). It is well-known that any
nondeterministic Turing machine that needs O(log n) space with unary input encoding
can be simulated by a counter machine whose counters are polynomially bounded in n
[Min61]. It can further be shown [BEJ19a] that every counter machine whose counters
are polynomially bounded can be simulated by a counter machine whose counter values
are bounded by the size of the input. Thus, in order to show that every predicate in NL
is computable by broadcast protocols, it suffices to simulate a counter machine under the
assumption that each counter value is bounded by n, where n is the number of tokens
needed to represent the input in unary.

Representing counters and control states. Counter values up to n can be repre-
sented by n agents, where the maximal n tokens of each counter are scattered across the
population. For example, the counting vector (1, 3) can be represented by the population
H(1, 1), (0, 1), (0, 1)I, where the first bit contributes to the first counter, and the second
bit contributes to the second counter. The control state of the counter machine can be
represented by a leader, and incrementation/decrementation of counter values can be
implemented by the leader through pairwise interactions.
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Simulating zero tests. Broadcast protocols can only weakly simulate zero tests, in the
following sense: The leader who represents the control state guesses whether the zero test
succeeds. If the guess has been correct, the computation may proceed as usual. If the
guess is wrong, then the error will eventually be detected further along the computation,
but the configuration may by then no longer correspond to a reachable configuration in
the counter machine, and the configuration must be reset to initial in order to start a
new, clean simulation attempt.

More specifically, the weak zero test is implemented as follows: Whenever the leader
simulates a zero test, it first assumes the tested counter value to be greater than 0, and
waits until it interacts with a witness for a positive counter value. A witness is an agent
having the corresponding counter bit set to 1. If the counter value is indeed positive, then
by fairness the leader will eventually interact with a witness, and may then proceed with
the computation. The leader may nondeterministically decide it has waited long enough
to find a witness, and then switch to the assumption that the counter value equals 0.
The leader announces the new guess via a broadcast. If the guess is correct, and the
counter value is indeed 0, then the other agents are unaffected by the broadcast, and the
leader proceeds with the computation under the assumption that the counter value is 0.
If the guess is incorrect, then at least one witness for a positive counter value receives
the broadcast signal. The witness then reacts by transitioning to a designated error
state, which is unaffected by any interaction with the leader. An agent in an error state
may emit a broadcast signal that resets the entire population to initial (resets can be
implemented by a broadcast, given that every state is annotated with the original input
of the agent). By fairness, the simulation will eventually be reset to initial, whenever an
erroneous guess has been made.

Simulating nondeterminism. Since the simulated counter machine is nondetermin-
istic, it may be the case that only some, but not all executions of the counter machine
accept the input. In order to explore different computational branches, the leader may
nondeterministically broadcast a signal that resets the configuration to initial, as long as
the accepting state qa has not been reached. If the machine accepts the input, then by
fairness the protocol will eventually simulate an accepting execution faithfully (without
erroneous zero tests), and the leader reaches an accepting state. The leader propa-
gates the acceptance of the input to the other agents, and the computation permanently
stabilizes to consensus 1.

From semi-computation to computation. From the previous considerations we
conclude that for every predicate ϕ in NL, there exists a broadcast protocol Pϕ that
stabilizes to 1 for input v if ϕ(v) holds. In the case where ϕ(v) does not hold, the exe-
cution of Pϕ may not stabilize. In this sense, Pϕ can be regarded as “semi-computing”
ϕ. By the Immerman-Stelepcsényi’s theorem [Imm88], we have NL = coNL, and conse-
quently there also exists a broadcast protocol P¬ϕ that semi-computes the complement
predicate ¬ϕ(v). Now, in order to obtain a broadcast protocol that stably computes
ϕ (instead of merely semi-computing), we assemble Pϕ and P¬ϕ as follows: The new
protocol alternates between executing Pϕ and P¬ϕ, starting with, say, Pϕ. The leader
nondeterministically resets the configuration to initial like in Pϕ, but instead of always
resetting to Pϕ, it nondeterministically picks between Pϕ or P¬ϕ for the next execution.
Eventually, either the execution of Pϕ or P¬ϕ stabilizes, and no more resets occur (re-
call that the leader is not allowed to reset the population when an accepting state is
reached). If the current protocol is Pϕ, the protocol shall stabilize to 1, otherwise to
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0. By fairness, the execution of the protocol eventually stabilizes to the correct output.
This construction computes ϕ for every predicate ϕ in NL.

6.2.3 Single-Signal Protocols and Protocols with Resets

We also investigated the expressiveness of two subclasses of broadcast protocols: Single-
signal protocols, and protocols with resets.

Single-Signal protocols. Call a broadcast protocol single-signal, if for any two broad-
cast transitions (q, r, f) and (q′, r′, f ′) the transfer function is identical: f = f ′. We
establish the following:

Theorem 16. [BEJ19a] For every predicate ϕ ∈ NL, there is a single-signal broadcast
protocol that computes ϕ.

The idea of Theorem 16 is to weakly simulate arbitrary broadcasts by means of rendez-
vous-transitions with a leader; the single broadcast signal functions as analogue of a
phase clock, which signals to regular agents when the broadcast starts/ends. Agents
assume an error state upon receiving two consecutive broadcasts, without interacting
with the leader agent in between. Error states eventually lead to resets like in the weak
simulation of counter machines. For the single-signal protocol to be well-specified, it
must be ensured that there are no fair runs with infinitely many broadcast transitions
in the simulated protocol (for otherwise there would be infinitely many failed simulation
attempts of broadcasts, and consequently infinitely many resets). The NL-powerful
construction for the simulation of counter machines from the previous section satisfies
this property.

Protocols with resets. One may be tempted to think that the true power of the previ-
ous constructions lies in the power to reset configurations to initial. Perhaps surprisingly,
the ability to reset an execution to initial alone does not increase expressiveness relative
to population protocols. Formally, a population protocol with reset is a broadcast pro-
tocol, such that for every infinite execution C0C1C2 . . . and every k the following holds:

If Ck
b−→ Ck+1 for some broadcast transition b, then there exists some l > k such that

Cl = C0.

Theorem 17. [BEJ19a] Every predicate computable by a population protocol with reset
is Presburger-definable, and thus computable by a standard protocol.

The proof is inspired by the proof for decidability of WellSpecification. Like
the latter, the proof of Theorem 17 uses deep results about semiliniarity of certain
reachability sets established in the literature on Petri nets (see [BEJ19a] for details).

6.3 Related Work

Broadcast protocols were introduced by Emerson and Namjoshi in [EN98] to specify
the behavior of bus-based hardware protocols. Broadcast protocols have been used for
verification of multithreaded programs [DRB02], and for controlling of gene expression
in living systems [UMD+15, BDGG17]. In [EFM99], Esparza et al. considered parame-
terized verification of broadcast protocols, with respect to safety and liveness properties
which are given by a regular or omega-regular expression, respectively. They showed
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that liveness properties are in general undecidable. This entails undecidability of Cor-
rectness for broadcast protocols.

In [MS15], Michail and Spirakis prove that protocols with cover-time service can com-
pute all predicates in DSPACE(log n) and that they can compute no more than the
predicates in NL, where n is the number of agents. It is readily seen that protocols with
cover-time service can implement broadcast transitions; from this and our results follows
that protocols with cover-time service compute precisely the predicates in NL.

In the clocked protocols by Aspnes ([Asp17]), agents carry an additional clock bit which
indicates whether the agent has waited long enough for the current phase of computation
to stabilize. The clock bit is set by clock tick received by all agents simultaneously upon
stabilization. Since stabilization cannot be ensured after a finite amount of time, time
intervals up to stabilization are modeled as transfinite intervals, and the time points
of stabilization are represented by limit ordinals. Aspnes shows that clocked protocols
which stabilize after ω2 steps compute precisely the predicates in NL. He also gave
an equivalent characterization of clocked protocols via inductively defined reachability
graphs to show that their step relation is in NL.

Both clocked protocols and protocols with cover-time service are capable of implement-
ing a zero test in a straightforward way1, with total accuracy. By contrast, simulation of
zero tests in broadcast protocols is necessarily weak, and subject to (detectable) errors.
The novelty of our contribution lies in showing that the weak form of zero test already
suffices to achieve the NL lower bound. Moreover, it is readily seen that both clocked
protocols, and protocols with cover-time service are capable of simulating broadcast
transitions. Thus Theorem 14 can be regarded a strengthening of the NL-completeness
results of the other two models.

In [AAE08a], Angluin et al. showed that population protocols with one leader can
simulate a register machine with high probability, under the assumption that the sched-
uler picks pairs of agents uniformly at random. The leader uses population epidemics
for information propagation, and to simulate an epidemics-based phase clock. In this
restricted sense, the random execution model is capable of implementing a probabilistic
variant of clocked protocols.

6.4 Open Research Questions

Future research may study the time and space complexity of broadcast consensus pro-
tocols in greater depth. Concerning time complexity, it is obvious that broadcasts –
besides being more powerful than rendez-vous transitions – may speed up computations:
For example, the leader election broadcast protocol from Example 6.1.1 elects a leader
in constant time, while leader election in leaderless population protocols requires linear
time [DS18]. Conditions for similar speed-ups certainly deserve further investigation,
also with respect to protocols with resets, which are no more expressive than population
protocols, but may behave differently in terms of time or space characteristics.

In the model of broadcast protocols under consideration, broadcasts are reliable. This
is hardly the case in real-world applications, and signals are frequently lost during trans-
mission. Under fair semantics, unreliable broadcasts are clearly of little help (unreliable
broadcasts can be simulated by a sequence of rendez-vous transitions); however, assum-
ing a probabilistic scheduler, unreliable broadcasts open another avenue for investigating

1In [MS15] zero tests are called absence detectors.
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broadcast protocols: How failure probabilities of broadcasts influence the failure prob-
ability of the computation as a whole, is of immediate practical significance. To the
best of our knowledge, this question has not been considered under the stable-consensus
computing paradigm assumed in broadcast consensus protocols.
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Synopsis. We investigate the space complexity of population protocols: the minimal
amount of memory required to compute a given predicate ϕ, relative to its description
size |ϕ|. We consider the family of simple counting predicates x ≥ n for n ∈ N, and more
generally, the predicates representing systems of linear inequalities over the integers. We
show that simple counting predicates can be computed by protocols with O(log n) states,
and that any system of linear inequalities A can be computed with poly(|A|) states, where
|A| denotes the description size of A, with numbers encoded in binary. We further prove
the existence of some infinite sequence of integers c1 < c2 < c3 < . . . such that x ≥ ci is
computable with O(log log ci) states for every i. It remains open whether this bound can
further be improved to O(log log log ci) – however, we show that this is not achievable
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of a state with output 1 guarantees stabilization to a positive consensus.
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1 Introduction

Population protocols [4] are a model of distributed computation by anonymous, identical,
and mobile finite-state agents. Initially introduced to model networks of passively mobile
sensors, they also capture the essence of distributed computation in trust propagation or
chemical reactions, the latter under the name of chemical reaction networks (see e.g. [18]).
Structurally, population protocols can also be seen as a special class of Petri nets or vector
addition systems [11].

Since the agents executing a protocol are anonymous and identical, its global state –
called a configuration – is completely determined by the number of agents at each local state.
In each computation step, a pair of agents, chosen by an adversary subject to a fairness
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condition stating that any repeatedly reachable configuration is eventually reached, interact
and move to new states according to a joint transition function. In a closely related model,
the adversary chooses the pair of agents uniformly at random.

A protocol computes a boolean value for a given initial configuration if in all fair executions
all agents eventually agree to this value – so, intuitively, population protocols compute by
reaching consensus. Given a set of initial configurations, the predicate computed by a protocol
is the function that assigns to each configuration C the boolean value computed by the
protocol starting from C.

Much research on population protocols has focused on their expressive power, i.e., the
class of predicates computable by different classes of protocols (see e.g. [3, 6, 13, 16, 7]). In
a famous result [6], Angluin et al. have shown that predicates computable by population
protocols are exactly the predicates definable in Presburger arithmetic. There is also much
work on complexity metrics for protocols. The main two metrics are the runtime of a protocol
– defined for the model with a randomized adversary as the expected number of pairwise
interactions until all agents have the correct output value – and its state space size, e.g. the
number of states of each agent. In [5], Angluin et al. show that every Presburger predicate is
computed with high probability by a population protocol with a leader – a distinguished
auxiliary agent that assumes a specific state in the initial configuration irrespective of the
input – in O(n log4 n) interactions in expectation, where n is the number of agents of the
initial configuration. Several recent papers study time-space trade-offs for specific tasks, like
electing a leader [10], or for specific predicates, like majority [2, 1, 9].

In this paper we study the state space size of protocols as a function of the predicate they
compute. In particular, we are interested in the minimal number of states needed to evaluate
systems of linear constraints (a large subclass of the predicates computed by population
protocols) as a function of the number of bits needed to describe the system. To the best
of our knowledge, this question has not been considered so far. We study the question for
protocols with and without leaders. Our results show that protocols with leaders can be
exponentially more compact than leaderless protocols.

In order to introduce our results in the simplest possible setting, in the first part of the
paper we focus on the family of predicates {x ≥ n : n ∈ N}. These predicates specify the
well-known flock-of-birds problem [4], in which tiny sensors placed on birds have to reach
consensus on whether the number of sick birds in a flock exceeds a given constant. The
minimal number of states for computing x ≥ n formalizes a very natural question about
emerging behavior: How many states must agents have in order to exhibit a “phase transition”
when their number reaches n? The standard protocol for the predicate x ≥ n (see Example 1)
has n+ 1 states. We are interested in protocols with at most O(logn) states, either leaderless
or with at most O(logn) leaders. In the second part of the paper, we generalize our results
to a much larger class of predicates, namely systems of linear inequalities Ax ≥ b. Since
x ≥ n is a (very) special case, our lower bounds for flock-of-birds protocols apply, while the
upper bounds require new (and involved) constructions.

Protocol size for the flock-of-birds problem. In a first warm-up phase we exhibit a family
of leaderless protocols with only O(logn) states. More precisely, we prove:
(1) There exists a family {Pn : n ∈ N} of leaderless population protocols such that Pn has

O(log2 n) states and computes the predicate x ≥ n for every n ∈ N.
We also give a lower bound:
(2) For every family {Pn : n ∈ N} of leaderless population protocols such that Pn computes

x ≥ n, there exist infinitely many n such that Pn has at least (logn)1/4 states.
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However, this bound is only existential (“there exists infinitely many n” instead of “for all
n”). Moreover, it follows from a counting argument that does not provide any information
on the values of n realizing the bound. Is there a poly-logarithmic universal bound? We
show that, surprisingly, the answer is negative:
(3) There exists a family {Pn : n ∈ N} of population protocols with two leaders, and values

c0 < c1 < . . . ∈ N, such that Pn has O(log log cn) states and computes the predicate
x ≥ cn for every n ∈ N.

Observe that in these protocols the “phase transition” occurs at x = cn, even though no
agent has enough memory to index a particular bit of cn.

Can one go even further, and design O(log log log cn) protocols? We show that the answer
is negative for 1-aware protocols. Both the standard protocol for x ≥ n and the families of
(1) and (3) have the following, natural property: If the number of agents is greater than or
equal to n, then the agents not only reach consensus 1, they also eventually know that they
will reach this consensus. We say that these protocols are 1-aware.

We obtain lower bounds for 1-aware protocols that essentially match the upper bounds
of (1) and (3):
(4) Every leaderless, 1-aware population protocol computing x ≥ n has at least log3 n states.
(5) Every 1-aware protocol (leaderless or not) computing x ≥ n has at least (log log(n)/151)1/9

states.

Protocols for systems of linear inequalities. In the second part of the paper we show that
our results can be extended to other predicates. First, instead of the simple predicate x ≥ n,
we study the general linear predicate a1x1 + a2x2 + · · · + akxk ≥ c for arbitrary integer
coefficients a1, . . . , ak, c ∈ Z. By means of a delicate construction we give protocols whose
number of states grows only logarithmically in the size of the coefficients:
(6) There is a protocol with at most O(kn) states and O(n) leaders that computes a1x1 +
· · ·+ akxk ≥ c, where n is the size of the binary encoding of max(|a1|, |a2|, . . . , |ak|, |c|).

Finally, in the most involved construction of the paper, we show that the same applies to
arbitrary systems of linear inequalities. Note that the standard conjunction construction,
which produces a protocol for ϕ1∧ϕ2 from protocols computing predicates ϕ1 and ϕ2, cannot
be applied because it would lead to exponentially large protocols.
(7) There is a protocol with at most O((logm + n)(m + k)) states and O(m(logm + n))

leaders that computes Ax ≥ c, where A ∈ Zm×k and n is the size of the largest entry in
A and c.

Structure of the paper. Section 2 introduces basic definitions, protocols with and without
leaders, and a simple construction with an involved correctness proof showing how to simulate
protocols with k-way interactions by standard protocols. Sections 3 to 5 present our bounds
on the flock-of-birds predicates, and Section 6 the bounds on systems of linear inequalities.
Due to space constraints, some proofs are deferred to the full version of this paper.

2 Preliminaries

Numbers. Let n ∈ N>0. The logarithm in base b of n is denoted by logb n. Whenever
b = 2, we omit the subscript. We define bits(n) as the set of indices of the bits occurring
in the binary representation of n, e.g. bits(13) = {0, 2, 3} since 13 = 11012. The size of
n, denoted size(n), is the number of bits required to represent n in binary. Note that
|bits(n)| ≤ size(n) = blognc+ 1.

STACS 2018
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Multisets. A multiset over a finite set E is a mapping M : E → N. The set of all multisets
over E is denoted NE . For every e ∈ E, M(e) denotes the number of occurrences of e in
M , and for every E′ ⊆ E we define M(E′) def=

∑
e∈E′ M(e). The support and size of M are

defined respectively as JMK def= {e ∈ E : M(e) > 0} and |M | def=
∑
e∈EM(e). Addition and

comparison are extended to multisets componentwise, i.e. (M +M ′)(e) def= M(e) +M ′(e) for
every e ∈ E, and M ≤M ′ def⇐⇒ M(e) ≤M(e) for every e ∈ E. We define multiset difference
as (M �M ′)(e) def= max(M(e)−M ′(e), 0) for every e ∈ E. The empty multiset is denoted 0.
We sometimes denote multisets using a set-like notation, e.g. Hf, 2 · g, hI is the multiset M
such that M(f) = 1, M(g) = 2, M(h) = 1 and M(e) = 0 for every e ∈ E \ {f, g, h}.

Population protocols. We introduce a rather general model of population protocols, al-
lowing for interactions between more than two agents and for leaders. A k-way population
protocol is a tuple P = (Q,T, I, L,O) such that

Q is a finite set of states,
T ⊆ ⋃

2≤i≤kQ
i ×Qi is a set of transitions,

I ⊆ Q is a set of initial states,
L ∈ NQ is a set of leaders, and
O : Q→ {0, 1} is the output mapping.

We assume throughout the paper that agents can always interact, i.e., that for every pair of
states (p, q), there exists a pair of states (p′, q′) such that ((p, q), (p′, q′)) ∈ T .

A configuration of P is a multiset C ∈ NQ such that |C| > 0. Intuitively, C describes a
non empty collection containing C(q) agents in state q for every q ∈ Q. We denote the set of
configurations over E ⊆ Q by Pop(E). A configuration C is initial if C = D + L for some
D ∈ Pop(I). So, intuitively, leaders are distinguished agents that are present in every initial
configuration. The number of leaders of P is |L|. We say that P is leaderless if it has no
leader, i.e. if L = 0. We discuss protocols with and without leaders later in this section.

Let t = ((p1, p2, . . . , pi), (q1, q2, . . . , qi)) be a transition. To simplify the notation, we
denote t as p1, p2, . . . , pi 7→ q1, q2, . . . , qi. Intuitively, t describes that i agents at states
p1, . . . , pi may interact and move to states q1, . . . , qi. The preset and postset of t are
respectively defined as •t def= {p1, p2, . . . , pi} and t• def= {q1, q2, . . . , qi}. We extend presets and
postsets to sets of transitions, e.g. •T def=

⋃
t∈T

•t. The pre-multiset and post-multiset of t are
respectively defined as pre(t) def= Hp1, p2, . . . , piI and post(t) def= Hq1, q2, . . . , qiI.

We say that t is enabled at C ∈ Pop(Q) if C ≥ pre(t). If t is enabled at C, then it can
occur, in which case it leads to the configuration C ′ = (C�pre(t)) + post(t)). We denote this
by C t−→ C ′. We say that t is silent if pre(t) = post(t). In particular, if t is silent and C t−→ C ′,
then C = C ′. We write C −→ C ′ if C t−→ C ′ for some t ∈ T . We write C t1t2···tk−−−−−→ C ′ if there
exist C0, C1, . . . , Ck ∈ Pop(Q) and t1, t2, . . . , tk ∈ T such that C = C0

t1−→ C1
t2−→ · · ·Ck = C ′.

We write C ∗−→ C ′ if C σ−→ C ′ for some σ ∈ T ∗. We say that C ′ is reachable from C if C ∗−→ C ′.
The support of a sequence σ = t1t2 · · · tn ∈ T ∗ is JσK def= {ti : 1 ≤ i ≤ n}.
I Example 1. The flock-of-birds protocol mentioned in the introduction is formally defined
as Pn = (Q,T, I, L,O) where Q = {0, 1, . . . , n}, I = {1}, L = 0, O(a) = 1 ⇐⇒ a = n, and
where T consists of the following transitions:

sa,b : a, b 7→ 0,min(a+ b, n) for every 0 ≤ a, b < n,

ta : a, n 7→ n, n for every 0 ≤ a ≤ n.

Pn is 2-way and leaderless. Intuitively, it works as follows. Each agent stores a number.
When two agents meet, one agent stores the sum of their values and the other one stores
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0. Sums cap at n. Once an agent reaches n, all agents eventually get converted to n. To
illustrate the above definitions, observe that: •s2,3 = {2, 3}, t•2 = {n}, pre(s2,3) = H2, 3I
and post(t2) = Hn, nI. Configuration H1, 1, 1I is initial, but H1, 0, 2I is not. We have
H1, 1, 1I s1,1−−→ H1, 0, 2I t0−→ H1, 2, 2I t1−→ H2, 2, 2I, or more concisely H1, 1, 1I σ−→ H2, 2, 2I where
σ = s1,1t0t1.

Computing with population protocols. An execution π is an infinite sequence of configur-
ations C0C1 · · · such that C0 −→ C1 −→ · · · . We say that π is fair if for every configuration D
the following holds1:

if {i ∈ N : Ci
∗−→ D} is infinite, then {i ∈ N : Ci = D} is infinite.

In other words, fairness ensures that a configuration cannot be avoided forever if it can be
reached infinitely often along π. We say that a configuration C is a consensus configuration if
O(p) = O(q) for every p, q ∈ JCK. If a configuration C is a consensus configuration, then its
output O(C) is the unique output of its states, otherwise it is ⊥. An execution π = C0C1 · · ·
stabilizes to b ∈ {0, 1} if O(Ci) = O(Ci+1) = · · · = b for some i ∈ N. The output of π is
O(π) def= b if it stabilizes to b, and O(π) def= ⊥ otherwise. A consensus configuration C is
stable if every configuration C ′ reachable from C is a consensus configuration such that
O(C ′) = O(C). It can easily be shown that a fair execution stabilizes to b ∈ {0, 1} if and
only if it contains a stable configuration whose output is b.

A population protocol P = (Q,T, I, L,O) is well-specified if for every initial configuration
C0, there exists b ∈ {0, 1} such that every fair execution π starting at C0 has output b. If P
is well-specified, then we say that it computes the predicate ϕ : Pop(I)→ {0, 1} if for every
D ∈ Pop(I), every fair execution starting at D + L has output ϕ(D).

I Example 2. Consider the protocol P2 defined in Example 1 (i.e, n = 2). We have
O(H1, 1, 1I) = 0, O(H2, 2, 2I) = 1 and O(H1, 0, 2I) = ⊥. The execution H1, 1, 1I −→ H1, 0, 2I −→
H1, 2, 2I −→ H2, 2, 2I −→ H2, 2, 2I −→ · · · is fair and its output is 1. However, the execution
H1, 1, 1I −→ H1, 0, 2I −→ H1, 0, 2I −→ · · · is not fair since H1, 0, 2I occurs infinitely often and can
lead to H2, 2, 2I which does not occur.

Leaders. Intuitively, leaders are extra agents present in every initial configuration. Allowing
a large number of leaders may help to compute predicates with fewer states. To illustrate
this, consider the leaderless protocol of Example 1. It computes x ≥ n with n + 1 states.
We describe a 2-way protocol with only 4 states, but n leaders. It is an adaptation of the
well-known basic majority protocol (see, e.g., [8]). Let P ′n = (Q,T, I, Ln, O) be the protocol
where Q def= {x, y, x, y}, I def= {x}, Ln def= Hn · yI, O(x) = O(x) def= 1, O(y) = O(y) def= 0, and
where T consists of the following transitions:

x, y 7→ x, y, x, y 7→ x, x, y, x 7→ y, y, x, y 7→ x, x.

Informally, “active” agents in states x and y collide and become “passive” agents in states
x and y. At some point, some active agents “win” and convert all passive agents to their
output. It is known that this protocol is well-specified and computes the predicate x ≥ y

when there are no leaders (i.e., if we set Ln = 0). So, by initially fixing n leaders in state y,
P ′n computes x ≥ n.

1 This definition of fairness differs from the original definition of Angluin et al. [4], but is equivalent.
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Thus, the predicate x ≥ n can be computed either with O(n) states and no leaders, or
with 4 states and O(n) leaders. This indicates a trade-off between states and leaders, and
one should avoid hiding all of the complexity in one of them. For this reason, we make these
two quantities explicit in all of our results.

The reason for considering protocols with leaders is that, as we shall see, even a constant
number of leaders demonstrably leads to exponentially more compact protocols for some
predicates. Other papers have made similar observations with respect to other resource
measures (see e.g. [5, 14]).

From k-way to 2-way protocols. In our constructions it is very convenient to use k-way
transitions for k > 2. The following lemma shows that k-way protocols can be transformed
into 2-way protocols by introducing a few extra states. Intuitively, a k-way transition is
simulated by a chain of 2-way transitions. The first part of the chain “collects” k participants
one by one. First, two agents agree to participate, and one of them becomes “passive”,
while the second “searches” for a third participant. This is iterated until k participants are
collected. In the second part, the last collected agent “informs” all passive agents, one by
one, that k agents have been collected; upon hearing this, the passive agents move to their
destination states and become active again. To prevent faulty behavior when there are not
enough agents, all transitions of the first part can be “reversed”, that is, the agent that
is currently searching and the last collected agent can “repent” and “undo” the transition.
While the construction is simple and intuitive, its correctness proof is very involved, because
agents that reach their destination can engage in other interactions while other participants
are still passive. The construction is presented in the full version of this paper.

I Lemma 3. Let P = (Q,T, I, L,O) be a well-specified k-way population protocol. For every
3 ≤ i ≤ k, let ni be the number of i-way transitions of P. There exists a 2-way population
protocol P ′, with at most |Q|+ ∑

3≤i≤k 3i · ni states, which is well-specified and computes
the same predicate as P.

3 Leaderless protocols for x ≥ n

In this section, we consider leaderless protocols for the predicate x ≥ n. We first show that
the number of states required to compute this predicate can be reduced from the known O(n)
bound to O(logn), using a similar binary encoding as in [1]. Then we show an existential
lower bound of O((logn)1/4).

A protocol with O(log n) states. We describe a leaderless size(n)-way protocol Pn =
(Qn, Tn, In,0, On) with size(n) + 3 states that computes x ≥ n. The states are Qn

def=
{0,20, . . . ,2size(n),n} and the sole initial state is In

def= {20}. The output mapping is defined
as On(n) def= 1 and On(q) def= 0 for every state q 6= n.

Before defining the set Tn of transitions, we need some preliminaries. For every state q ∈
Qn, let val(q) denote the number q stands for, i.e. val(0) = 0, val(n) = n and val(2i) = 2i for
every 0 ≤ i ≤ size(n). Moreover, for every configuration C, let val(C) def=

∑
q∈Qn

val(q) ·C(q).
A configuration C is a representation of m if val(C) = m. For example, the configuration
H0,21, 5 ·23I is a representation of 0+21 +5 ·23 = 42. Observe that every initial configuration
C0 is a representation of |C0|.

Tn is the union of two sets T 1
n and T 2

n . Intuitively, T 1
n allows the protocol to reach from a

representation of a number, say m, other representations of m. Formally, the transitions of
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T 1
n are:

2i,2i 7→ 2i+1,0 for every 0 ≤ i < size(n)
2i+1,0 7→ 2i,2i for every 0 ≤ i < size(n)

H2i : i ∈ bits(n)I 7→ n,0, · · · ,0︸ ︷︷ ︸
|bits(n)|−1 copies

The transitions of T 2
n allow agents in state n to “attract” all other agents to n. Formally,

they are:

n, q 7→ n,n for every q ∈ Qn.

Let us show that Pn computes x ≥ n. Let C0 = Hm · 20I. If m < n, then C(n) = 0
holds for every representation C of m. Therefore, every configuration C reachable from C0
satisfies C(n) = 0 and, since n is the only state with output 1, the protocol stabilizes to 0. If
m ≥ n, then it is possible to reach a representation C of m satisfying C(n) > 0, for example
C = Hn, (m − n) · 20I. Since for every transition 2i,2i 7→ 2i+1,0 the set Tn also contains
the reverse transition 2i+1,0 7→ 2i,2i, every representation C of m satisfying C(n) = 0 can
reach a representation C ′ of m satisfying C ′(n) > 0. Let π = C0C1C2 · · · be a fair execution.
By fairness, there is some i ∈ N such that Ci(n) > 0. Again by fairness, and because of T 2

n ,
there is also an index j such that Ck = Hm · nI for every k ≥ j, and so π stabilizes to 1.

Note that |Qn| = size(n) + 3. Moreover, Pn has one |bits(n)|-way transition. Thus, by
Lemma 3, we obtain the following theorem:

I Theorem 4. There exists a family {P0,P1, . . .} of leaderless and 2-way population protocols
such that Pn has at most 4blognc+ 7 states and computes the predicate x ≥ n.

An existential (log n)1/4 lower bound. We show that every family {Pn}n∈N of leaderless
and 2-way protocols computing the family of predicates {x ≥ n}n∈N must contain infinitely
many members of size Ω((logn)1/4). We call this an existential lower bound, contrary to a
universal lower bound, which would state that Pn has size Ω((logn)1/4) for every n ≥ 1.

I Theorem 5. Let {P0,P1, . . .} be an infinite family of leaderless and 2-way population
protocols such that Pn computes the predicate x ≥ n for every n ∈ N. There exist infinitely
many indices n such that Pn has at least (logn)1/4 states.

Proof sketch. The proof boils down to bounding the number d(m) of unary predicates
computed by protocols with m states. The number of distinct sets of transitions, excluding
silent ones, is bounded by 2m4−m2 . The number of possible initial states and output mappings
are respectively m and 2m. Altogether, we obtain:

d(m) ≤ 2m
4−m2 ·m · 2m = 2m

4 · 2m ·m
2m2 ≤ 2m

4
. J

4 A O(log log n) protocol with leaders for some x ≥ n

The lower bound of Section 3 is not valid for every n, it only ensures that, for some values
of n, protocols computing x ≥ n must have a logarithmic number of states. We prove
that, surprisingly, there is an infinite sequence n1 < n2 < · · · of values that break through
the logarithmic barrier: The predicates x ≥ ni can be computed by protocols with only
O(log logni) states and two leaders. So, loosely speaking, a flock of birds can decide if it
contains at least ni birds, even though no bird has enough memory to index a bit of ni.
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The result is based on a construction of [15]. In this paper, Mayr and Meyer study the
word problem for commutative semigroup presentations. Given a finite set A of generators,
a presentation of a commutative semigroup generated by A is a finite set of productions
S = {l1 → r1, . . . , lm → rm}, where li, ri ∈ A∗ for every 1 ≤ i ≤ m, satisfying:

Commutativity: ab→ ba ∈ S for every a, b ∈ A;2 and
Reversibility: if l→ r ∈ S, then r → l ∈ S.

Given α, β ∈ A∗, we say that β is derived from α in one step, denoted by α −→ β, if α = γ l δ

and β = γ r δ for some γ, δ ∈ A∗ and some r → l ∈ S. We say that β is derived from α if
α
∗−→ β, where ∗−→ is the reflexive transitive closure of the relation induced by −→. Observe

that, by reversibility, we have α ∗−→ β iff β ∗−→ α. Further, by commutativity we have α ∗−→ β

iff π(α) ∗−→ π′(β) for every permutation π of A.
Mayr and Meyer study the following question: given a commutative semigroup presenta-

tion S over A, and initial and final letters s, f ∈ A, what is the length of the shortest word α
such that s ∗−→ fα? They exhibit a family of presentations of size O(n) for which the shortest
α has double exponential length 22n . More precisely, in [15, Sect. 6], they construct a family
{Sn}n≥1 of presentations over alphabets {An}n≥1 satisfying the following properties:
(1) |An| = 14n+ 10, |Sn| = 20n+ 8, and max{|l|, |r| : l→ r ∈ Sn} = 5.
(2) {sn, fn, bn, cn} ⊆ An for every n ≥ 1.
(3) sncn

∗−→ fnα iff α = cnb
22n

n [15, Lemma 6 and 8].
To apply this result, for each n ≥ 1 we construct a 5-way population protocol Pn =
(Qn, Tn, In, Ln, On) with two leaders as follows:

Qn
def= An ∪ {x} for some x /∈ An.

Tn
def= T 1

n ∪ T 2
n , where:

T 1
n contains a transition pad(p) for every production p = l → r of Sn, obtained by

“padding” p with x so that its left and right sides have the same length. For example,
pad(aab→ cd) = a, a, b 7→ c, d, x, and pad(a→ bc) = a, x 7→ b, c,
T 2
n

def= {fn, q 7→ fn, fn | q ∈ Qn},
In

def= {x},
Ln

def= Hcn, snI, and
On(fn) def= 1 and On(q) def= 0 for every q 6= fn.

Intuitively, T 1
n allows Pn to simulate derivations of Sn: a step C pad(p)−−−−→ C ′ of Pn simulates a

one-step derivation of Sn. We make this more precise. Given α ∈ A∗n and m ≥ |α|, let Cα,m
be the configuration of Pn defined as follows: Cα,m(x) = m, and Cα,m(a) = |α|a for every
a ∈ An, where |α|a is the number of occurrences of a in α. Further, given a configuration C
of Pn, let αC be the element of Sn given by αC = a

C(a1)
1 · · · aC(am)

m , where a1, . . . , am is a
fixed enumeration of An. We have:

I Lemma 6. Let α, β ∈ A∗n and let C,C ′ be configurations of Pn.
(a) If α p1···pk−−−−→ β in Sn, then for every m ≥ 4k, Cα,m

pad(p1)···pad(pk)−−−−−−−−−−−→ Cβ,m′ in Pn for some
m′ ≥ 0.

(b) If C pad(p1)···pad(pk)−−−−−−−−−−−→ C ′ in Pn, then αC p1···pk−−−−→ αC′ in Sn.

From Lemma 6, (1) and (3), the following can be shown:

I Theorem 7. For every n ∈ N, there is a 5-way protocol Pn with at most 14n+11 states and
at most 34n+ 19 transitions that computes the predicate x ≥ cn for some number cn ≥ 22n .

2 In [15], the elements of S are written using uppercase letters. We use lowercase for convenience.
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Using Theorem 7 and Lemma 3, we obtain:

I Corollary 8. There exists a family {P0,P1, . . .} of 2-way protocols with two leaders and a
family {c0, c1, . . .} of natural numbers such that for every n ∈ N the following holds: cn ≥ 22n

and protocol Pn has at most 314 log log cn + 131 states and computes the predicate x ≥ cn.

5 Universal lower bounds for 1-aware protocols

To the best of our knowledge, all the protocols in the literature for predicates x ≥ n, including
those of Section 3 and Section 4, share a very natural property: if the number of agents is
greater than or equal to n, then the agents not only eventually reach consensus 1, they also
eventually know that they will reach this consensus. Let us formalize this idea:

I Definition 9. A well-specified population protocol P = (Q,T, I, L,O) is 1-aware if there
is a set Q1 ⊆ Q \ (I ∪ JLK) of states such that for every initial configuration C0 and every
fair execution π = C0C1 · · ·
(1) if π stabilizes to 0, then Ci(Q1) = 0 for every i ≥ 0, and
(2) if π stabilizes to 1, then there is some i ≥ 0 such that Cj(Q \Q1) = 0 for every j ≥ i.

If in the course of an execution π an agent reaches a state of Q1, then π cannot stabilize
to 0 by (1), and so, since P is well-specified, it stabilizes to 1; intuitively, at this moment the
agent “knows” that the consensus will be 1. Further, if an execution stabilizes to 1, then
all agents eventually reach and remain in Q1 by (2), and so eventually all agents “know”.3
Albeit seemingly restrictive, 1-aware protocols compute a significant subclass of predicates:
monotonic Presburger predicates (see the full version of the paper for more details).

We say that a state q is coverable from a configuration C if C ∗−→ C ′ for some configuration
C ′ such that C ′(q) > 0. The fundamental property of 1-aware protocols is that, loosely
speaking, consensus reduces to coverability:

I Lemma 10. Let P = (Q,T, {x}, L,O) be a 1-aware protocol computing a unary predicate
ϕ. We have ϕ(n) = 1 if and only if some state of Q1 is coverable from Hn · xI + L.

We show that for 1-aware protocols, the bounds of Sections 3 and 4 are essentially tight.

Leaderless protocols. We prove that a 1-aware, leaderless and 2-way protocol computing
x ≥ n has at least log3 n states. By Lemma 10, it suffices to show that some state of Q1 is
coverable from H3k · qI, where q is the initial state. Proposition 11 below is the key to the
proof. It states that for every finite execution C1

π−→ C2, there is C ′1
π′
−→ C ′2 such that C ′1

has the same support as C1 and is not too large, and C ′2 contains a “record” of all states
encountered during the execution of π (this is the set JC1K ∪ JπK•).

Let us define the norm of a configuration C as ‖C‖ def= max{C(q) : q ∈ JCK}. We obtain:

I Proposition 11. Let P = (Q,T, I, L,O) be a k-way population protocol and let C1
π−→ C2 be

a finite execution of P. There exists a finite execution C ′1
π′
−→ C ′2 such that (a) JC ′1K = JC1K,

(b) JC ′2K = JC1K ∪ Jπ′K•, and (c) ‖C ′1‖ ≤ (k + 1)|Q|.

3 We could also require the seemingly weaker property that eventually at least one agent “knows”. However,
by adding transitions that “attract” all other agents to Q1, we can transform a protocol in which some
agent “knows” into a protocol computing the same predicate in which all agents “know”.

STACS 2018



16:10 Large Flocks of Small Birds: on the Minimal Size of Population Protocols

I Theorem 12. Every 1-aware, leaderless and 2-way population protocol P = (Q,T, {q0},0,
O) computing x ≥ n has at least log3 n states.

Proof. Let Q1 ⊆ Q be the set of states from the definition of 1-awareness. Since L = 0,
C0 = Hn ·q0I is the smallest initial configuration with output 1, and by Lemma 10 the smallest
initial configuration from which some state q1 ∈ Q1 is coverable. Let C0

π−→ C ≥ Hq1I. Since
q1 6= q0, we have q1 ∈ JπK•. By Proposition 11, and since P is 2-way, q1 is also coverable from
C ′0 satisfying JC ′0K = JC0K = {q0} and ‖C ′0‖ = 3|Q|. Thus, C ′0 = H3|Q| · q0I. By minimality of
n, we get n ≤ 3|Q|, and thus |Q| ≥ log3 n. J

Observe that the proof Theorem 12 uses the fact that P is leaderless to conclude
C ′0 = H3|Q| · q0I from JC ′0K = JC0K and ‖C ′0‖ = 3|Q|, which is not necessarily true with leaders.

Protocols with leaders. In the case of protocols with leaders we obtain a lower bound from
Rackoff’s procedure for the coverability problem of vector addition systems [17].

A vector addition system of dimension k (k-VAS) is a pair (A,v0), where v0 ∈ Nk is
an initial vector and A ⊆ Zk is a set of vectors. An execution of a k-VAS is a sequence
v0v1 · · ·vn of vectors of Nk such that each vi+1 = vi+ai for some ai ∈ A. We write v0

∗−→ vn
and say that the execution has length n. A vector v is coverable in (A,v0) if v0

∗−→ v′ for
some v′ ≥ v. The size of a vector v ∈ Zk is

∑
1≤i≤k size(max(|v(i)|, 1)). The size of a set of

vectors is the sum of the size of its vectors. In [17] Rackoff proves:

I Theorem 13 ([17]). Let A ⊆ Zk be a set of vectors of size at most n and dimension k ≤ n,
and let v0 ∈ Nk be a vector of size n. For every v ∈ Nk, if v is coverable in (A,v0), then v

is coverable by means of an execution of length at most 2(3n)n .

Using a standard construction from the Petri net literature, it can be shown that every
2-way protocol P with n states can be simulated by a VAS VP of size at most 12n8, where
each execution of P has a corresponding execution twice as long in VP . Thus, by Theorem 13:

I Proposition 14. Let P = (Q,T, I, L,O) be a 2-way population protocol and let q ∈ Q.
For every configuration C, if q is coverable from C, then it is coverable by means of a finite
execution of length at most 2(3m)m−1 where m = 12|Q|8.

Using the above proposition, we derive:

I Theorem 15. Let P be a 1-aware and 2-way population protocol. For every n ≥ 2, if P
computes x ≥ n, then P has at least (log log(n)/151)1/9 states.

6 Protocols for systems of linear inequalities

In Section 3, we have shown that the predicate x ≥ c can be computed by a leaderless
protocol with O(log c) states. In this section, we will see that adding a few leaders allows to
compute systems of linear inequalities. More formally, we show that there exists a protocol
with O((m+k) · log(dm)) states and O(m · log(dm)) leaders computing the predicate Ax ≥ c,
where A ∈ Zm×k, c ∈ Zm and d is the the largest absolute value occuring in A and c.

There are three crucial points that make systems of linear inequalities more complicated
than flock-of-birds predicates: (1) variables have coefficients, (2) coefficients may be positive
or negative, and (3) they are the conjunction of linear inequalities. We will explain how to
address the two first points by considering the special case of linear inequalities. We will
then discuss how to handle the third point.
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Linear inequalities. Note that the predicate
∑

1≤i≤k aixi ≥ c is equivalent to
∑

1≤i≤k aixi+
(1−c) > 0. Therefore, it suffices to describe protocols for predicates of the form

∑
1≤i≤k aixi+

c > 0. In order to make the presentation more pleasant, we will first restrain ourselves to the
predicate ax − by + c > 0 for some fixed a, b ∈ N and c ∈ Z. Such a predicate admits the
difficult aspects, i.e. coefficients and negative numbers. Moreover, as we will see, handling
more than two variables is not an issue.

Let us now describe a protocol Plin for the predicate ax − by + c > 0. The idea
is to keep a representation of ax − by + c throughout executions of the protocol. Let
n

def= size(max(log |a|, log |b|, log |c|, 1)). As in Section 3, we construct states to represent
powers of two. However, this time, we also need states to represent negative numbers:

Q+ def= {+2i : 0 ≤ i ≤ n} and Q−
def= {−2i : 0 ≤ i ≤ n}.

We also need states X def= {x,y} for the variables, and two additional states R def= {+0,−0}.
The set of all states of Plin is Q def= X ∪Q+ ∪Q− ∪R, and the initial states are I def= X.

Let us explain the purpose of R. Intuitively, we would like to have the transitions:

x 7→ H+2i : i ∈ bits(a)I and y 7→ H−2i : i ∈ bits(|b|)I.
This way, every agent in state x (resp. y) could be converted to the binary representation of
a (resp. b). Unfortunately, this is not possible as these transitions produce more states than
they consume. This is where leaders become useful. If R initially contains enough leaders,
then R can act as a reservoir of extra states which allow to “pad” transitions. More formally,
let rep(z) : Z→ Pop(Q \X) be defined as follows:

rep(z) def=





H+2i : i ∈ bits(z)I if z > 0,
H−2i : i ∈ bits(|z|)I if z < 0,
H−0I if z = 0.

For every r ∈ R, we add to Plin the following transitions:

addx,r : x, r, r, . . . , r︸ ︷︷ ︸
|rep(a)|−1 times

7→ rep(a) and addy,r : y, r, r, . . . , r︸ ︷︷ ︸
|rep(b)|−1 times

7→ rep(b).

We set the leaders to L def= rep(c) + H(4n+ 2) ·−0I. We claim that 4n+ 2 reservoir states
are enough, we will explain later why. Now, the key idea of the construction is that it is
always possible to put 2n agents back into R. Thus, fairness ensures that the number of
agents in X eventually decreases to zero, and then that the value represented over Q+ ∪Q−
is ax− by+ c. We let the representations over Q+ and Q− “cancel out” until one side “wins”.
If the positive (resp. negative) side wins, i.e. if ax− by + c > 0 (resp. ax− by + c ≤ 0), then
it signals all agents in R to move to +0 (resp. −0). To achieve this, for every 0 ≤ i ≤ n,
we add transition canceli : +2i,−2i 7→ +0,−0 to the protocol. Since bits of the positive
and negative numbers may not be “aligned”, we follow the idea of Section 3 and add further
transitions to change representations to equivalent ones:

up+
i : +2i,+2i 7→ +2i+1,+0, down+

i+1,r : +2i+1, r 7→ +2i,+2i,

up−i : −2i,−2i 7→ −2i+1,−0, down−i+1,r : −2i+1, r 7→ −2i,−2i,

where 0 ≤ i < n and r ∈ R. Finally, for every 0 ≤ i ≤ n, we add transitions to signal which
side wins:

signal+i : +2i,−0 7→ +2i,+0, signal : −0,+0 7→ −0,−0,
signal−i : −2i,+0 7→ −2i,−0.
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Note that −0 “wins” over +0 because the predicate is false whenever ax− by + c = 0. It
remains to specify the output mapping of Plin which we define as expected, i.e. O(q) def= 1 if
q ∈ Q+ ∪ {+0}, and O(q) def= 0 otherwise.

Let us briefly explain why 4n+ 2 reservoir states suffice. At any reachable configuration
C, transitions of the form up+

i and up−i can occur until C(±2i) ≤ 1 for every 0 ≤ i < n.
Afterwards, at most 2n agents remain in these states. There can however be many agents in
S = {+2n,−2n}. But, these two states represent numbers respectively larger and smaller
than any coefficient, hence the number of agents in S can only grow by one each time a state
from X is consumed. Overall, this means that C ∗−→ C ′ for some C ′ such that C ′(R) ≥ 2n.

In order to handle more variables {x1, x2, . . . , xk}, note that all we need to do is to set
X = {x1,x2, . . . ,xk} instead, and add transitions addxi,r for every 1 ≤ i ≤ k and r ∈ R.

By applying Lemma 3 on Plin, we obtain:

I Theorem 16. Let a1, a2, . . . , ak, c ∈ Z and let n = size(max(|a1|, |a2|, . . . , |ak|, |c|, 1)).
There exists a 2-way population protocol, with at most 10kn states and at most 5n+ 2 leaders,
that computes the predicate

∑
1≤i≤k aixi + c > 0.

Conjunction of linear inequalities. We briefly explain how to lift the construction for linear
inequalities to systems of linear inequalities. The details of the formal construction and
proofs are a bit involved, and are thus deferred to the full version of this paper. Let us fix
some A ∈ Zm×k and c ∈ Zm. We sketch a protocol Psys for the predicate Ax + c > 0. For
every 1 ≤ i ≤ m, we construct a protocol Pi for the predicate

∑
1≤j≤k Ai,j · xj + ci > 0.

Protocol Pi is obtained as presented earlier, but with some modifications. The largest power
of two is picked as n def= size(d) + dlog 2m2e where

d
def= max(1, {|Ai,j | : 1 ≤ i ≤ m, 1 ≤ j ≤ k}, {|ci| : 1 ≤ i ≤ m}).

The reason for this modification is that the number of agents, in a largest power of two,
should now increase by at most 1/m each time an initial state is consumed, as opposed to 1.

We also replace each positive state q ∈ Q+ of Pi by two states q0 and q1, its 0-copy and
1-copy. The reason behind this is that positive states should not necessarily have output 1.
Indeed, one linear inequality may be satisfied while the other ones are not. Therefore, −0
and each negative state q ∈ Q− should be able to signal a 0-consensus to the positive states.
The transitions of the form up+

j , down+
j and cancelj are adapted accordingly.

Protocol Psys is obtained as follows. First, subprotocols P1,P2, . . . ,Pm are put side by
side. Their initial (resp. reservoir) states are merged into a single set X (resp. R). For
every 1 ≤ j ≤ k, transitions addxj,r of the m subprotocols are replaced by a single transition
consuming xj, and enough reservoir states, and producing rep(Ai,j) in each subprotocol Pi,
where 1 ≤ i ≤ m. The signal mechanisms are replaced by these new ones:

the 0-copy of state +20 of all subprotocols can meet to convert −0 to +0,
state +0 can convert any positive state to its 1-copy,
state −0 or any negative state can convert +0 to −0, and any positive state to its 0-copy.

A careful analysis of the formal construction of Psys combined with Lemma 3 yields:

I Theorem 17. Let A ∈ Zm×k, c ∈ Zm and n = size(max(1, {|Ai,j | : 1 ≤ i ≤ m, 1 ≤ j ≤ k}),
{|ci| : 1 ≤ i ≤ m}). There exists a 2-way population protocol, with at most 27(logm+n)(m+k)
states and at most 14m(logm+ n) leaders, that computes the predicate Ax + c > 0.
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7 Conclusion and further work

We have initiated the study of the state space size of population protocols as a function of
the size of the predicate they compute. Previous lower bounds were only for single predicates,
like the majority predicate x ≤ y, or for a variant of the model in which the number of states
is a function of the number of agents.

There are many open questions. We conjecture that systems of linear inequalities can
be computed by leaderless protocols with a polynomial number of states. A second, very
intriguing question is whether the function f(n) giving the minimal number of states of
a two-leader protocol computing x ≥ n exhibits large gaps, i.e., if there are (families of)
numbers c and c+ 1 such that f(c) is exponentially larger than f(c+ 1). A third question
is whether there exist protocols with O(log log logn) states for the flock-of-birds predicates
x ≥ n. Such protocols cannot be 1-aware, but they might exist. Their existence is linked to
the long standing question of whether the reachability problem for reversible VAS (a model
equivalent to the commutative semigroup representations of [15]) has the same complexity
as reachability for arbitrary VAS (see [12] for a brief introduction).
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1 Introduction

Population protocols [3, 4] are a model of distributed computation by indistinguishable,
mobile finite-state agents, intensely investigated in recent years (see e.g. [2, 10]). Initially
introduced to model networks of passively mobile sensors, they have also been applied to the
analysis of chemical reactions under the name of chemical reaction networks (see e.g. [14]).

In a population protocol, a collection of agents, called a population, randomly interact
in pairs to decide whether their initial configuration satisfies a given property, e.g. whether
there are initially more agents in some state A than in some state B. Since agents are
indistinguishable and finite-state, their configuration at any time moment is completely
characterized by the mapping that assigns to each state the number of agents that currently
populate it. A protocol is said to compute a predicate if for every initial configuration where
the predicate holds, the agents eventually reach consensus 1, and they eventually reach
consensus 0 otherwise.

In a seminal paper, Angluin et al. proved that population protocols compute exactly
the predicates definable in Presburger arithmetic (PA) [5]. As part of the result, for every
Presburger predicate Angluin et al. construct a leaderless protocol that computes it. The
construction uses the quantifier elimination procedure for PA: every Presburger formula ϕ
can be transformed into an equivalent boolean combination of threshold predicates of the form
α · x > β and remainder predicates of the form α · x ≡ β (mod m), where α is an integer
vector, and β,m are integers [12]. Slightly abusing language, we call the set of these boolean
combinations quantifier-free Presburger arithmetic (QFPA)1. Using that PA and QFPA have
the same expressive power, Angluin et al. first construct protocols for all threshold and
remainder predicates, and then show that the predicates computed by protocols are closed
under negation and conjunction.

The construction of [5] is simple and elegant, but it produces large protocols. Given a
formula ϕ of QFPA, let n be the number of bits of the largest coefficient of ϕ in absolute
value, and let m be the number of atomic formulas of ϕ, respectively. The number of states
of the protocols of [5] grows exponentially in both n and m. In terms of |ϕ| (defined as the
sum of the number of variables, n, and m) they have O(2poly(|ϕ|)) states. This raises the
question of whether succinct protocols with O(poly(|ϕ|)) states exist for every formula ϕ of
QFPA. We give an affirmative answer by proving that every formula of QFPA has a succinct
and leaderless protocol.

Succinct protocols are the state-complexity counterpart of fast protocols, defined as
protocols running in polylogarithmic parallel time in the size of the population. Angluin
et al. showed that every predicate has a fast protocol with a leader [6], but Alistarh et al.,
based on work by Doty and Soloveichik [9], proved that in the leaderless case some predicates
need linear parallel time [1]. Our result shows that, unlike for time complexity, succinct
protocols can be obtained for every QFPA formula in both the leaderless case and the case
with leaders.

The proof of our result overcomes a number of obstacles. Designing succinct leaderless
protocols is particularly hard for inputs with very few input agents, because there are less
resources to simulate leaders. So we produce two completely different families of protocols,
one for small inputs with O(|ϕ|3) agents, and a second for large inputs with Ω(|ϕ|3) agents,
and combine them appropriately.

1 Remainder predicates cannot be directly expressed in Presburger arithmetic without quantifiers.
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Large inputs. The family for large inputs is based on our previous work [8]. However,
in order to obtain leaderless protocols we need a new succinct construction for boolean
combinations of atomic predicates. This obstacle is overcome by designing new protocols
for threshold and remainder predicates that work under reversible dynamic initialization.
Intuitively, agents are allowed to dynamically “enter” and “leave” the protocol through the
initial states (dynamic initialization). Further, every interaction can be undone (reversibility),
until a certain condition is met, after which the protocol converges to the correct output for
the current input. We expect protocols with reversible dynamic initialization to prove useful
in other contexts, since they allow a protocol designer to cope with “wrong” non-deterministic
choices.

Small inputs. The family of protocols for small inputs is designed from scratch. We exploit
that there are few inputs of small size. So it becomes possible to design one protocol for each
possible size of the population, and combine them appropriately. Once the population size is
fixed, it is possible to design agents that check if they have interacted with all other agents.
This is used to simulate the concatenation operator of sequential programs, which allows for
boolean combinations and succinct evaluation of linear combinations.

Relation to previous work. In [8], we designed succinct protocols with leaders for systems of
linear equations. More precisely, we constructed a protocol with O((m+k)(n+logm)) states
and O(m(n + logm)) leaders that computes a given predicate Ax ≥ c, where A ∈ Zm×k
and n is the number of bits of the largest entry in A and c, in absolute value. Representing
Ax ≥ c as a formula ϕ of QFPA, we obtain a protocol with O(|ϕ|2) states and O(|ϕ|2)
leaders that computes ϕ. However, in [8] no succinct protocols for formulas with remainder
predicates are given, and the paper makes extensive use of leaders.

Organization. Sections 2 and 3 introduce basic notation and definitions. Section 4 presents
the main result. Sections 5 and 6 present the constructions of the protocols for large and
small inputs, respectively. Section 7 presents conclusions. For space reasons, several proofs
are only sketched. Detailed proofs are given in the full version of this paper [7].

2 Preliminaries

Notation. We write Z to denote the set of integers, N to denote the set of non negative
integers {0, 1, . . .}, [n] to denote {1, 2, . . . , n}, and NE to denote the set of all multisets
over E, i.e. unordered vectors with components labeled by E. The size of a multiset
v ∈ NE is defined as |v| def=

∑
e∈E v(e). The set of all multisets over E with size s ≥ 0 is

E〈s〉
def=
{
v ∈ NE : |v| = s

}
. We sometimes write multisets using set-like notation, e.g. Ha, 2 ·bI

denotes the multiset v such that v(a) = 1, v(b) = 2 and v(e) = 0 for every e ∈ E \ {a, b}.
The empty multiset HI is instead denoted 0 for readability. For every u,v ∈ NE , we write
u ≥ v if u(e) ≥ v(e) for every e ∈ E. Moreover, we write u + v to denote the multiset
w ∈ NE such that w(e) def= u(e) + v(e) for every e ∈ E. The multiset u � v is defined
analogously with − instead of +, provided that u ≥ v.

Presburger arithmetic. Presburger arithmetic (PA) is the first-order theory of N with
addition, i.e. FO(N,+). For example, the PA formula ψ(x, y, z) = ∃x′∃z′(x = x′ + x′) ∧ (y =
z+z′)∧¬(z′ = 0) states that x is even and that y > z. It is well-known that for every formula
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of PA there is an equivalent formula of quantifier-free Presburger arithmetic (QFPA) [13],
the theory with syntax given by the grammar

ϕ(v) ::= a · v > b | a · v ≡c b | ϕ(v) ∧ ϕ(v) | ϕ(v) ∨ ϕ(v) | ¬ϕ(v)

where a ∈ ZX , b ∈ Z, c ∈ N≥2, and ≡c denotes equality modulo c. For example, the formula
ψ(x, y, z) above is equivalent to (x ≡2 0) ∧ (y − z ≥ 1). Throughout the paper, we refer to
any formula of QFPA, or the predicate NX → {0, 1} it denotes, as a predicate. Predicates of
the form a · v > b and a · v ≡c b are atomic, and they are called threshold and remainder
predicates respectively. The max-norm ‖ϕ‖ of a predicate ϕ is the largest absolute value
among all coefficients occurring within ϕ. The length len(ϕ) of a predicate ϕ is the number
of boolean operators occurring within ϕ. The bit length of a predicate ϕ, over variables X, is
defined as |ϕ| def= len(ϕ) + log‖ϕ‖+ |X|. We lift these definitions to sets of predicates in the
natural way: given a finite set P of predicates, we define its size size(P ) as the number of
predicates in P , its length as len(P ) def=

∑
ϕ∈P len(ϕ), its norm as ‖P‖ def= max{‖ϕ‖ : ϕ ∈ P},

and its bit length as |P | def= size(P ) + len(P ) + log‖P‖+ |X|. Note that len(P ) = 0 iff P only
contains atomic predicates.

3 Population protocols

A population protocol is a tuple P = (Q,T, L,X, I,O) where
Q is a finite set whose elements are called states;
T ⊆ {(p, q) ∈ NQ × NQ : |p| = |q|} is a finite set of transitions containing the set
{(p,p) : p ∈ NQ, |p| = 2};
L ∈ NQ is the leader multiset;
X is a finite set whose elements are called input variables;
I : X → Q is the input mapping;
O : Q→ {0, 1,⊥} is the output mapping.

For readability, we often write t : p 7→ q to denote a transition t = (p, q). Given ∆ ≥ 2,
we say that t is ∆-way if |p| ≤ ∆.

In the standard syntax of population protocols T is a subset of N2×N2, and O : Q→ {0, 1}.
These differences are discussed at the end of this section.

Inputs and configurations. An input is a multiset v ∈ NX such that |v| ≥ 2, and a
configuration is a multiset C ∈ NQ such that |C| ≥ 2. Intuitively, a configuration represents
a population of agents where C(q) denotes the number of agents in state q. The initial
configuration Cv for input v is defined as Cv

def= L+ Hv(x) · I(x) : x ∈ XI.
The support and b-support of a configuration C are respectively defined as JCK def= {q ∈ Q :

C(q) > 0} and JCKb = {q ∈ JCK : O(q) = b}. The output of a configuration C is defined as
O(C) def= b if JCKb 6= ∅ and JCK¬b = ∅ for some b ∈ {0, 1}, and O(C) def= ⊥ otherwise. Loosely
speaking, if O(q) = ⊥ then agents in state q have no output, and a population has output
b ∈ {0, 1} if all agents with output have output b.

Executions. A transition t = (p, q) is enabled in a configuration C if C ≥ p, and disabled
otherwise. Because of our assumption on T , every configuration enables at least one transition.
If t is enabled in C, then it can be fired leading to configuration C ′ def= C � p+ q, which we
denote C t−→ C ′. For every set of transitions S, we write C S−→ C ′ if C t−→ C ′ for some t ∈ S.
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We denote the reflexive and transitive closure of S−→ by S∗
−−→. If S is the set of all transitions

of the protocol under consideration, then we simply write −→ and ∗−→.
An execution is a sequence of configurations σ = C0C1 · · · such that Ci −→ Ci+1 for every

i ∈ N. We write σi to denote configuration Ci. The output of an execution σ is defined
as follows. If there exist i ∈ N and b ∈ {0, 1} such that O(σi) = O(σi+1) = · · · = b, then
O(σ) def= b, and otherwise O(σ) def= ⊥.

Computations. An execution σ is fair if for every configuration D the following holds:

if |{i ∈ N : σi
∗−→ D}| is infinite, then |{i ∈ N : σi = D}| is infinite.

In other words, fairness ensures that an execution cannot avoid a configuration forever. We
say that a population protocol computes a predicate ϕ : NX → {0, 1} if for every v ∈ NX
and every fair execution σ starting from Cv, it is the case that O(σ) = ϕ(v). Two protocols
are equivalent if they compute the same predicate. It is known that population protocols
compute precisely the Presburger-definable predicates [5, 11].

I Example 1. Let Pn = (Q,T,0, {x}, I, O) be the protocol where Q def= {0, 1, 2, 3, . . . , 2n},
I(x) def= 1, O(a) = 1 def⇐⇒ a = 2n, and T contains a transition, for each a, b ∈ Q, of the form
Ha, bI 7→ H0, a+ bI if a+ b < 2n, and Ha, bI 7→ H2n, 2nI if a+ b ≥ 2n. It is readily seen that Pn
computes ϕ(x) def= (x ≥ 2n). Intuitively, each agent stores a number, initially 1. When two
agents meet, one of them stores the sum of their values and the other one stores 0, with sums
capping at 2n. Once an agent reaches this cap, all agents eventually get converted to 2n.

Now, consider the protocol P ′n = (Q′, T ′,0, {x}, I ′, O′), where Q′ def= {0, 20, 21, . . . , 2n},
I ′(x) def= 20, O′(a) = 1 def⇐⇒ a = 2n, and T ′ contains a transition for each 0 ≤ i < n of the
form H2i, 2iI 7→ H0, 2i+1I, and a transition for each a ∈ Q′ of the form Ha, 2nI 7→ H2n, 2nI.
Using similar arguments as above, it follows that P ′n also computes ϕ, but more succinctly:
While Pn has 2n + 1 states, P ′n has only n+ 1 states.

Types of protocols. A protocol P = (Q,T, L,X, I,O) is
leaderless if |L| = 0, and has |L| leaders otherwise;
∆-way if all its transitions are ∆-way;
simple if there exist f, t ∈ Q such that O(f) = 0, O(t) = 1 and O(q) = ⊥ for every
q ∈ Q \ {f, t} (i.e., the output is determined by the number of agents in f and t.)

Protocols with leaders and leaderless protocols compute the same predicates [5]. Every
∆-way protocol can be transformed into an equivalent 2-way protocol with a polynomial
increase in the number of transitions [8]. Finally, every protocol can be transformed into an
equivalent simple protocol with a polynomial increase in the number of states [7].

4 Main result

The main result of this paper is the following theorem:

I Theorem 2. Every predicate ϕ of QFPA can be computed by a leaderless population
protocol P with O(poly(|ϕ|)) states. Moreover, P can be constructed in polynomial time.

To prove Theorem 2, we first provide a construction that uses ` ∈ O(|ϕ|3) leaders. If
there are at least |v| ≥ ` input agents v (large inputs), we will show how the protocol can
be made leaderless by having agents encode both their state and the state of some leader.
Otherwise, |v| < ` (small inputs), and we will resort to a special construction, with a single
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leader, that only works for populations of bounded size. We will show how the leader can be
simulated collectively by the agents. Hence, we will construct succinct protocols computing
ϕ for large and small inputs, respectively. Formally, we prove:

I Lemma 3. Let ϕ be a predicate over variables X. There exist ` ∈ O(|ϕ|3) and leaderless
protocols P≥` and P<` with O(poly(|ϕ|)) states such that:
(a) P≥` computes predicate (|v| ≥ `)→ ϕ(v), and
(b) P<` computes predicate (|v| < `)→ ϕ(v).

Theorem 2 follows immediately from the lemma: it suffices to take the conjunction of
both protocols, which only yields a quadratic blow-up on the number of states, using the
classical product construction [3]. The rest of the paper is dedicated to proving Lemma 3.
Parts (a) and (b) are shown in Sections 5 and 6, respectively.

In the remainder of the paper, whenever we claim the existence of some protocol P, we
also claim polynomial-time constructibility of P without mentioning it explicitly.

5 Succinct protocols for large populations

We show that, for every predicate ϕ, there exists a constant ` ∈ O(|ϕ|3) and a succinct
protocol P≥` computing (|v| ≥ `) → ϕ(v). Throughout this section, we say that n ∈ N is
large if n ≥ `, and that a protocol computes ϕ for large inputs if it computes (|v| ≥ `)→ ϕ(v).

We present the proof in a top-down manner, by means of a chain of statements of the
form “A← B, B ← C, C ← D, and D”. Roughly speaking, and using notions that will be
defined in the forthcoming subsections:

Section 5.1 introduces protocols with helpers, a special class of protocols with leaders.
The section shows: ϕ is computable for large inputs by a succinct leaderless protocol (A),
if it is computable for large inputs by a succinct protocol with helpers (B).
Section 5.2 defines protocols that simultaneously compute a set of predicates. The section
proves: (B) holds if the set P of atomic predicates occurring within ϕ is simultaneously
computable for large inputs by a succinct protocol with helpers (C).
Section 5.3 introduces protocols with reversible dynamic initialization. The section shows:
(C) holds if each atomic predicate of P is computable for large inputs by a succinct
protocol with helpers and reversible dynamic initialization (D).
Section 5.4 shows that (D) holds by exhibiting succinct protocols with helpers and
reversible dynamic initialization that compute atomic predicates for large inputs.

5.1 From protocols with helpers to leaderless protocols
Intuitively, a protocol with helpers is a protocol with leaders satisfying an additional property:
adding more leaders does not change the predicate computed by the protocol. Formally, let
P = (Q,T, L,X, I,O) be a population protocol computing a predicate ϕ. We say that P is a
protocol with helpers if for every L′ � L the protocol P ′ = (Q,T, L′, X, I,O) also computes
ϕ, where L′ � L def= ∀q ∈ Q : (L′(q) = L(q) = 0 ∨ L′(q) ≥ L(q) > 0). If |L| = `, then we say
that P is a protocol with ` helpers.

I Theorem 4. Let P = (Q,T, L,X, I,O) be a ∆-way population protocol with `-helpers
computing some predicate ϕ. There exists a 2-way leaderless population protocol with O(` ·
|X|+ (∆ · |T |+ |Q|)2) states that computes (|v| ≥ `)→ ϕ(v).
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Proof sketch. By [8, Lemma 3], P can be transformed into a 2-way population protocol
(with helpers2) computing the same predicate ϕ, and with at most |Q|+ 3∆ · |T | states. Thus,
we assume P to be 2-way in the rest of the sketch.

For simplicity, assume X = {x} and L = H3 · q, 5 · q′I; that is, P has 8 helpers, and
initially 3 of them are in state q, and 5 are in q′. We describe a leaderless protocol P ′ that
simulates P for every input v such that |v| ≥ |L| = `. Intuitively, P ′ runs in two phases:

In the first phase each agent gets assigned a number between 1 and 8, ensuring that
each number is assigned to at least one agent (this is the point at which the condition
|v| ≥ ` is needed). At the end of the phase, each agent is in a state of the form (x, i),
meaning that the agent initially represented one unit of input for variable x, and that it
has been assigned number i. To achieve this, initially every agent is placed in state (x, 1).
Transitions are of the form H(x, i), (x, i)I 7→ H(x, i+ 1), (x, i)I for every 1 ≤ i ≤ 7. The
transitions guarantee that all but one agent is promoted to (x, 2), all but one to (x, 3),
etc. In other words, one agent is “left behind” at each step.
In the second phase, an agent’s state is a multiset: agents in state (x, i) move to state
HI(x), qI if 1 ≤ i ≤ 3, and to state HI(x), q′I if 4 ≤ i ≤ 8. Intuitively, after this move
each agent has been assigned two jobs: simultaneously simulate a regular agent of P
starting at state x, and a helper of L starting at state q or q′. Since in the first phase
each number is assigned to at least one agent, P ′ has at least 3 agents simulating helpers
in state q, and at least 5 agents simulating helpers in state q′. There may be many more
helpers, but this is harmless, because, by definition, additional helpers do not change the
computed predicate.
The transitions of P ′ are designed according to this double role of the agents of P ′. More
precisely, for all multisets p, q,p′, q′ of size two, Hp, qI 7→ Hp′, q′I is a transition of P ′ iff
(p+ q) −→ (p′ + q′) in P. J

5.2 From multi-output protocols to protocols with helpers
A k-output population protocol is a tuple Q = (Q,T, L,X, I,O) where O : [k]×Q→ {0, 1,⊥}
and Qi def= (Q,T, L,X, I,Oi) is a population protocol for every i ∈ [k], where Oi denotes the
mapping such that Oi(q)

def= O(i, q) for every q ∈ Q. Intuitively, since each Qi only differs
by its output mapping, Q can be seen as a single population protocol whose executions
have k outputs. More formally, Q computes a set of predicates P = {ϕ1, ϕ2, . . . , ϕk} if Qi
computes ϕi for every i ∈ [k]. Furthermore, we say that Q is simple if Qi is simple for
every i ∈ [k]. Whenever the number k is irrelevant, we use the term multi-output population
protocol instead of k-output population protocol.

I Proposition 5. Assume that every finite set A of atomic predicates is computed by some
|A|-way multi-output protocol with O(|A|3) helpers and states, and O(|A|5) transitions. Every
QFPA predicate ϕ is computed by some simple |ϕ|-way protocol with O(|ϕ|3) helpers and
states, and O(|ϕ|5) transitions.

Proof sketch. Consider a binary tree decomposing the boolean operations of ϕ. We design
a protocol for ϕ by induction on the height of the tree.

The case where the height is 0, and ϕ is atomic, is trivial. We sketch the induction
step for the case where the root is labeled with ∧, that is ϕ = ϕ1 ∧ ϕ2, the other cases
are similar. By induction hypothesis, we have simple protocols P1,P2 computing ϕ1, ϕ2,

2 Lemma 3 of [8] deals with leaders and not the more specific case of helpers. Nonetheless, computation
under helpers is preserved as the input mapping of P remains unchanged in the proof of the lemma.
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respectively. Let tj , fj be the output states of Pj for j ∈ {1, 2} such that Oj(tj) = 1 and
Oj(fj) = 0. We add two new states t, f (the output states of the new protocol) and an
additional helper starting in state f. To compute ϕ1 ∧ϕ2 we add the following transitions for
every b1 ∈ {t1, f1}, b2 ∈ {t2, f2}, and b ∈ {t, f}: Hb1, b2, bI 7→ Hb1, b2, tI if b1 = t1 ∧ b2 = t2,
and Hb1, b2, bI 7→ Hb1, b2, fI otherwise. The additional helper computes the conjunction as
desired. J

5.3 From reversible dynamic initialization to multi-output protocols
Let P = {ϕ1, . . . , ϕk} be a set of k ≥ 2 atomic predicates of arity n ≥ 1 over a set
X = {x1, . . . , xn} of variables. We construct a multi-output protocol P for P of size
poly(|ϕ1|+ · · ·+ |ϕk|).

Let P1, . . . ,Pk be protocols for ϕ1, . . . , ϕk. Observe that P cannot be a “product protocol”
that executes P1, . . . ,Pk synchronously. Indeed, the states of such a P are tuples (q1, . . . , qk)
of states of P1, . . . ,Pk, and so P would have exponential size in k. Further, P cannot execute
P1, . . . ,Pk asynchronously in parallel, because, given an input x ∈ Nn, it must dispatch k ·x
agents (x to the input states of each Pj), but it only has x. Such a P would need (k − 1)|x|
helpers, which is not possible, because a protocol of size poly(|ϕ1|+ · · ·+ |ϕk|) can only use
poly(|ϕ1|+ · · ·+ |ϕk|) helpers, whatever the input x.

The solution is to use a more sophisticated parallel asynchronous computation. Consider
two copies of inputs, denoted X = {x1, . . . , xn} and X = {x1, . . . , xn}. For each predicate
ϕ over X, consider predicate ϕ̃ over X ∪ X satisfying ϕ̃(x,x) = ϕ(kx + x) for every
(x,x) ∈ NX∪X . We obtain ϕ̃(x,x) = ϕ(x) whenever kx + x = x, e.g. for x := bx

k c and
x := xmod k. With this choice, P needs to dispatch a total of k (|x+ x|) ≤ |x|+n · (k− 1)2

agents to compute ϕ̃1(x,x), . . . , ϕ̃k(x,x). That is, n · (k − 1)2 helpers are sufficient to
compute P. Formally, we define ϕ̃ in the following way:

For ϕ(x) =
(

n∑

i=1
αixi > β

)
, we define ϕ̃(x,x) :=

(
n∑

i=1
(k · αi)xi + αixi > β

)

and similarly for modulo predicates. For instance, if ϕ(x1, x2) = 3x1 − 2x2 > 6 and k = 4,
then ϕ̃(x1, x1, x2, x2) = 12x1 + 3x1 − 8x2 − 2x2 > 6. As required, ϕ̃(x,x) = ϕ(kx+ x).

Let us now describe how the protocol P computes ϕ̃1(x,x), . . . , ϕ̃k(x,x). Let P̃1, . . . , P̃k
be protocols computing ϕ̃1, . . . , ϕ̃k. Let X = {x1, . . . , xn} be the input states of P, and let
xj

1, . . . , xj
n and xj

1, . . . , x
j
n be the input states of P̃j for every 1 ≤ j ≤ k. Protocol P repeatedly

chooses an index 1 ≤ i ≤ n, and executes one of these two actions: (a) take k agents from
xi, and dispatch them to x1

i, . . . , xk
i (one agent to each state); or (b) take one agent from xi

and (k − 1) helpers, and dispatch them to x1
i, . . . , xk

i. The index and the action are chosen
nondeterministically. Notice that if for some input xi, all ` agents of xi are dispatched, then
kxj

i + xj
i = ` for all j. If all agents of xi are dispatched for every 1 ≤ i ≤ n, then we say that

the dispatch is correct.
The problem is that, because of the nondeterminism, the dispatch may or may not be

correct. Assume, e.g., that k = 5 and n = 1. Consider the input x1 = 17, and assume that
P has n · (k − 1)2 = 16 helpers. P may correctly dispatch x1 = b 17

5 c = 3 agents to each of
x1

1, . . . , x1
5 and x1 = (17mod 5) = 2 to each of x1

1, . . . , x1
5; this gives a total of (3 + 2) · 5 = 25

agents, consisting of the 17 agents for the input plus 8 helpers. However, it may also wrongly
dispatch 2 agents to each of x1

1, . . . , x1
5 and 4 agents to each of x1

1, . . . , x1
5, with a total of

(2 + 4) · 5 = 30 agents, consisting of 14 input agents plus 16 helpers. In the second case, each
Pj wrongly computes ϕ̃j(2, 4) = ϕj(2 · 5 + 4) = ϕj(14), instead of the correct value ϕj(17).
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To solve this problem we ensure that P can always recall agents already dispatched to
P̃1, . . . , P̃k as long as the dispatch is not yet correct. This allows P to “try out” dispatches
until it dispatches correctly, which eventually happens by fairness. For this we design P so
that (i) the atomic protocols P̃1, . . . , P̃k can work with inputs agents that arrive over time
(dynamic initialization), and (ii) P̃1, . . . , P̃k can always return to their initial configuration
and send agents back to P, unless the dispatch is correct (reversibility). To ensure that
P stops redistributing after dispatching a correct distribution, it suffices to replace each
reversing transition p 7→ q by transitions p+ HxiI 7→ q + HxiI, one for each 1 ≤ i ≤ n: All
these transitions become disabled when x1, . . . , xn are not populated.

Reversible dynamic initialization. Let us now formally introduce the class of protocols with
reversible dynamic initialization that enjoys all properties needed for our construction. A
simple protocol with reversible dynamic initialization (RDI-protocol for short) is a tuple
P = (Q,T∞, T†, L,X, I,O), where P∞ = (Q,T∞, L,X, I,O) is a simple population protocol,
and T† is the set of transitions making the system reversible, called the RDI-transitions.

Let T def= T∞ ∪ T†, and let In def= {inx : x ∈ X} and Out def= {outx : x ∈ X} be the sets of
input and output transitions, respectively, where inx def= (0, HI(x)I) and outx def= (HI(x)I,0). An
initialization sequence is a finite execution π ∈ (T ∪ In ∪ Out)∗ from the initial configuration
L′ with L′ � L. The effective input of π is the vector w such that w(x) def= |π|inx

− |π|outx

for every x ∈ X. Intuitively, a RDI-protocol starts with helpers only, and is dynamically
initialized via the input and output transitions.

Let f, t ∈ Q be the unique states of P withO(f) = 0 andO(t) = 1. For every configuration
C, let [C] def= {C ′ : C ′(f) + C ′(t) = C(f) + C(t) and C ′(q) = C(q) for all q ∈ Q \ {f, t}}.
Intuitively, all configurations C ′ ∈ [C] are equivalent to C in all but the output states.

An RDI-protocol is required to be reversible, that is for every initialization sequence π
with effective input w, and such that L′ π−→ C for some L′ � L, the following holds:

if C T∗
−−→ D and D′ ∈ [D], then D′ T

∗
−−→ C ′ for some C ′ ∈ [C], and

C(I(x)) ≤ w(x) for all x ∈ X.
Intuitively, an RDI-protocol can never have more agents in an input state than the effective
number of agents it received via the input and output transitions. Further, an RDI-protocol
can always reverse all sequences that do not contain input or output transitions. This
reversal does not involve the states f and t, which have a special role as output states. Since
RDI-protocols have a default output, we need to ensure that the default output state is
populated when dynamic initialization ends, and reversal for f and t would prevent that.

An RDI-protocol P computes ϕ if for every initialization sequence π with effective input
w such that L′ π−→ C for some L′ � L, the standard population protocol P∞ computes ϕ(w)
from C (that is with T† disabled). Intuitively, if the dynamic initialization terminates, the
RDI-transitions T† become disabled, and then the resulting standard protocol P∞ converges
to the output corresponding to the dynamically initialized input.

I Theorem 6. Assume that for every atomic predicate ϕ, there exists a |ϕ|-way RDI-protocol
with O(|ϕ|) helpers, O(|ϕ|2) states and O(|ϕ|3) transitions that computes ϕ. For every finite
set P of atomic predicates, there exists a |P |-way simple multi-output protocol, with O(|P |3)
helpers and states, and O(|P |5) transitions, that computes P .
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5.4 Atomic predicates under reversible dynamic initialization
Lastly, we show that atomic predicates are succinctly computable by RDI-protocols:

I Theorem 7. Every atomic predicate ϕ over variables X can be computed by a simple
|ϕ|-way population protocol with reversible dynamic initialization that has O(|ϕ|) helpers,
O(|ϕ|2) states, and O(|ϕ|3) transitions.
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Figure 1 Partial representation of the protocol computing 5x + 6y ≥ 4 (mod 7) as a Petri net,
where places (circles), transitions (squares) and tokens (smaller filled circles) represent respectively
states, transitions and agents. Non-helper agents remember their input variable (labeled here within
tokens). The depicted configuration is obtained from input x = 2, y = 1 by firing the bottom
leftmost transition (dark blue).

The protocols for arbitrary threshold and remainder predicates satisfying the conditions
of Theorem 7, and their correctness proofs, are given in [7]. Note that the threshold protocol
is very similar to the protocol for linear inequalities given in Section 6 of [8]. Thus, as an
example, we will instead describe how to handle the remainder predicate 5x− y ≡7 4. Note,
that the predicate can be rewritten as (5x+ 6y ≥ 4 (mod 7)) ∧ (5x+ 6y 6≥ 5 (mod 7)). As
we can handle negations and conjunctions separately in Section 5.2, we will now explain the
protocol for ϕ def= 5x+ 6y ≥ 4 (mod 7). The protocol is partially depicted in Figure 1 using
Petri net conventions for the graphical representation.

The protocol has an input state x for each variable x ∈ X, output states f and t, a neutral
state 0, and numerical states of the form +2i for every 0 ≤ i ≤ n, where n is the smallest
number such that 2n > ‖ϕ‖. Initially, (at least) one helper is set to f and (at least) 2n
helpers set to 0. In order to compute 5x+ 6y ≥ 4 (mod 7) for x := r and y := s, we initially
place r and s agents in the states x and y, i.e., the agents in state x encode the number r in
unary, and similarly for y. The blue transitions on the left of Figure 1 “convert” each agents
in input states to a binary representation of their corresponding coefficient. In our example,
agents in state x are converted to a(x) = 5 = 01012 by putting one agent in 4 and another
one in 1. Since two agents are needed to encode 5, the transition “recruits” one helper from
state 0. Observe that, since the inputs can be arbitrarily large, but a protocol can only
use a constant number of helpers, the protocol must reuse helpers in order to convert all
agents in input states. This happens as follows. If two agents are in the same power of
two, say +2i, then one of them can be “promoted” to +2i+1, while the other one moves to
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state 0, “liberating” one helper. This allows the agents to represent the overall value of all
converted agents in the most efficient representation. That is, from any configuration, one
can always reach a configuration where there is at most one agent in each place 20, . . . , 2n−1,
there are at most the number of agents converted from input places in place 2n, and hence
there are at least n agents in place 0, thus ready to convert some agent from the input place.
Similar to promotions, “demotions” to smaller powers of two can also happen. Thus, the
agents effectively shift through all possible binary representations of the overall value of
all converted agents. The ≡7 transition in Figure 1 allows 3 agents in states 4, 2 and 1
to “cancel out” by moving to state 0, and it moves the output helper to f. Furthermore,
there are RDI-transitions that allow to revert the effects of conversion and cancel transitions.
These are not shown in Figure 1.

We have to show that this protocol computes ϕ under reversible dynamic initialization.
First note, that while dynamic initialization has not terminated, all transitions have a
corresponding reverse transition. Thus, it is always possible to return to wrong initial
configurations. However, reversing the conversion transitions can create more agents in input
states than the protocol effectively received. To forbid this, each input agent is “tagged” with
its variable (see tokens in Figure 1). Therefore, in order to reverse a conversion transitions,
the original input agent is needed. This implies, that the protocol is reversible.

Next, we need to argue that the protocol without the RDI-transitions computes ϕ
once the dynamic initialization has terminated. The agents will shift through the binary
representations of the overall value. Because of fairness, the ≡7 transition will eventually
reduce the overall value to at most 6. There is a ≥ 4-transition which detects the case where
the final value is at least 4 and moves the output helper from f to state t. Notice that
whenever transition ≡7 occurs, we reset the output by moving the output helper to state f.

6 Succinct protocols for small populations

We show that for every predicate ϕ and constant ` = O(|ϕ|3), there exists a succinct protocol
P<` that computes the predicate (|v| < `)→ ϕ(v). In this case, we say that P<` computes
ϕ for small inputs. Further, we say that a number n ∈ N (resp. an input v) is small with
respect to ϕ if n ≤ ` (resp. |v| ≤ `). We present the proof strategy in a top-down manner.

Section 6.1 proves: There is a succinct leaderless protocol P that computes ϕ for small
inputs (A), if for every small n some succinct protocol Pn computes ϕ for all inputs of
size n (B). Intuitively, constructing a succinct protocol for all small inputs reduces to the
simpler problem of constructing a succinct protocol for all small inputs of a fixed size.
Section 6.2 introduces halting protocols. It shows: There is a succinct protocol that
computes ϕ for inputs of size n, if for every atomic predicate ψ of ϕ some halting succinct
protocol computes ψ for inputs of size n (C). Thus, constructing protocols for arbitrary
predicates reduces to constructing halting protocols for atomic predicates.
Section 6.3 proves (C). Given a threshold or remainder predicate ϕ and a small n, it
shows how to construct a succinct halting protocol that computes ϕ for inputs of size n.

6.1 From fixed-sized protocols with one leader to leaderless protocols
We now define when a population protocol computes a predicate for inputs of a fixed size.
Intuitively, it should compute the correct value for every initial configurations of this size; for
inputs of other sizes, the protocol may converge to the wrong result, or may not converge.
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I Definition 8. Let ϕ be a predicate and let i ≥ 2. A protocol P computes ϕ for inputs of
size i, denoted “P computes (ϕ | i)”, if for every input v of size i, every fair execution of P
starting at Cv stabilizes to ϕ(v).

We show that if, for each small number i, some succinct protocol computes (ϕ | i), then
there is a single succinct protocol that computes ϕ for all small inputs.

I Theorem 9. Let ϕ be a predicate over a set of variables X, and let ` ∈ N. Assume that for
every i ∈ {2, 3, . . . , `−1}, there exists a protocol with at most one leader and at most m states
that computes (ϕ | i). Then, there is a leaderless population protocol with O(`4 ·m2 · |X|3)
states that computes (x < `)→ ϕ(x).

Proof sketch. Fix a predicate ϕ and ` ∈ N. For every 2 ≤ i < `, let Pi be a protocol
computing (ϕ | i). We describe the protocol P = (Q,T,X, I,O) that computes (x ≥
`) ∨ ϕ(x) ≡ (x < `)→ ϕ(x). The input mapping I is the identity. During the computation,
agents never forget their initial state – that is, all successor states of an agent are annotated
with their initial state. The protocol initially performs a leader election. Each provisional
leader stores how many agents it has “knocked out” during the leader election in a counter
from 0 to `− 1. After increasing the counter to a given value i < `, it resets the state of i
agents and itself to the corresponding initial state of Pi+1, annotated with X, and initiates a
simulation of Pi+1. When the counter of an agent reaches `− 1, the agent knows that the
population size must be ≥ `, and turns the population into a permanent 1-consensus. Now,
if the population size i is smaller than `, then eventually a leader gets elected who resets the
population to the initial population of Pi. Since Pi computes (ϕ | i), the simulation of Pi
eventually yields the correct output. J

6.2 Computing boolean combinations of predicates for fixed-size inputs
We want to produce a population protocol P for a boolean combination ϕ of atomic predicates
(ϕi)i∈[k] for which we have population protocols (Pi)i∈[k]. As in Section 5.3, we cannot use a
standard “product protocol” that executes P1, . . . ,Pk synchronously because the number of
states would be exponential in k. Instead, we want to simulate the concatenation of (Pi)i∈[k].
However, this is only possible if for all i ∈ [k], the executions of Pi eventually “halt”, i.e.
some agents are eventually certain that the output of the protocol will not change anymore,
which is not the case in general population protocols. For this reason we restrict our attention
to “halting” protocols.

I Definition 10. Let P be a simple protocol with output states f and t. We say that P is a
halting protocol if every configuration C reachable from an initial configuration satisfies:

C(f) = 0 ∨ C(t) = 0,
C
∗−→ C ′ ∧ C(q) > 0⇒ C ′(q) > 0 for every q ∈ {f, t} and every configuration C ′.

Intuitively, a halting protocol is a simple protocol in which states f and t behave like
“final states”: If an agent reaches q ∈ {f, t}, then the agent stays in q forever. In other words,
the protocol reaches consensus 0 (resp. 1) iff an agent ever reaches f (resp. t).

I Theorem 11. Let k, i ∈ N. Let ϕ be a boolean combination of atomic predicates (ϕj)j∈[k].
Assume that for every j ∈ [k], there is a simple halting protocol Pj = (Qj , Lj , X, Tj , Ij , Oj)
with one leader computing (ϕj | i). Then there exists a simple halting protocol P that
computes (ϕ | i), with one leader and O (|X| · (len(ϕ) + |Q1|+ . . .+ |Qk|)) states.
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Proof sketch. We only sketch the construction for ϕ = ϕ1 ∧ ϕ2. The main intuition is
that, since P1 and P2 are halting, we can construct a protocol that, given an input v, first
simulates P1 on v, and, after P1 halts, either halts if P1 converges to 0, or simulates P2 on
v if P1 converges to 1. Each agent remembers in its state the input variable it corresponds
to, in order to simulate P2 on v. J

6.3 Computing atomic predicates for fixed-size inputs
We describe a halting protocol that computes a given threshold predicate for fixed-size inputs.

I Theorem 12. Let ϕ(x,y) def= α · x − β · y > 0. For every i ∈ N, there exists a halting
protocol with one leader and O(i2(|ϕ|+ log i)3) states that computes (ϕ | i).

We first describe a sequential algorithm Greater-Sum(x,y), that for every input x,y satisfying
|x| + |y| = i decides whether α · x − β · y > 0 holds. Then we simulate Greater-Sum by
means of a halting protocol with i agents.

Since each agent can only have O(log i+ log |ϕ|) bits of memory (the logarithm of the
number of states), Greater-Sum must use at most O(i · (log i + log |ϕ|)) bits of memory,
otherwise it cannot be simulated by the agents. Because of this requirement, Greater-Sum
cannot just compute, store, and then compare α · x and β · y; this uses too much memory.

Greater-Sum calls procedures Probe1(j) and Probe2(j) that return the j-th bits of αx
and βy, respectively, where j = 1 is the most significant bit. Since |x| ≤ i, and the
largest constant in α is at most ||ϕ||, we have α · x ≤ i · ||ϕ||, and so α · x has at most
m

def= |ϕ|+ blog(i)c+ 1 bits, and the same holds for βy. So we have 1 ≤ j ≤ m. Let us first
describe Greater-Sum, and then Probe1(j); the procedure Probe2(j) is similar.

Greater-Sum(x,y) loops through j = 1, . . . ,m. For each j, it calls Probe1(j) and Probe2(j).
If Probe1(j) > Probe2(j), then it answers ϕ(x,y) = 1, otherwise it moves to j + 1. If
Greater-Sum reaches the end of the loop, then it answers ϕ(x,y) = 0. Observe that
Greater-Sum only needs to store the current value of j and the bits returned by Probe1(j)
and Probe2(j). Since j ≤ m, Greater-Sum only needs O(log(|ϕ|+ log i)) bits of memory.

Probe1(j) uses a decreasing counter k = m, . . . , j to successively compute the bits b1(k)
of α · x, starting at the least significant bit. To compute b1(k), the procedure stores the
carry ck ≤ i of the computation of b1(k + 1); it then computes the sum sk := ck +α(k) · x
(where α(k) is the k-th vector of bits of α), and sets bk := sk mod 2 and ck−1 := sk ÷ 2. The
procedure needs O(log(|ϕ|+ log i)) bits of memory for counter k, log(i) + 1 bits for encoding
sk, and O(log(i)) bits for encoding ck. So it only uses O(log(|ϕ|+ log i)) bits of memory.

Let us now simulate Greater-Sum(x,y) by a halting protocol with one leader agent.
Intuitively, the protocol proceeds in rounds corresponding to the counter k. The leader
stores in its state the value j and the current values of the program counter, of counter k,
and of variables bk, sk, and ck. The crucial part is the implementation of the instruction
sk := ck +α(k) · x of Probe1(j). In each round, the leader adds input agents one by one. As
the protocol only needs to work for populations with i agents, it is possible for each agent to
know if it already interacted with the leader in this round, and for the leader to count the
number of agents it has interacted with this round, until it reaches i to start the next round.

7 Conclusion and further work

We have proved that every predicate ϕ of quantifier-free Presburger arithmetic (QFPA)
is computed by a leaderless protocol with poly(|ϕ|) states. Further, the protocol can be
computed in polynomial time. The number of states of previous constructions was exponential
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both in the bit-length of the coefficients of ϕ, and in the number of occurrences of boolean
connectives. Since QFPA and PA have the same expressive power, every computable predicate
has a succinct leaderless protocol. This result completes the work initiated in [8], which also
constructed succinct protocols, but only for some predicates, and with the help of leaders.

It is known that protocols with leaders can be exponentially faster than leaderless protocols.
Indeed, every QFPA predicate is computed by a protocol with leaders whose expected time
to consensus is polylogarithmic in the number of agents [6], while every leaderless protocol
for the majority predicate needs at least linear time in the number of agents [1]. Our result
shows that, if there is also an exponential gap in state-complexity, then it must be because
some family of predicates have protocols with leaders of logarithmic size, while all leaderless
families need polynomially many states. The existence of such a family is an open problem.

The question of whether protocols with poly(|ϕ|) states exist for every PA formula ϕ,
possibly with quantifiers, also remains open. However, it is easy to prove that no algorithm
for the construction of protocols from PA formulas runs in time 2p(n) for any polynomial p.

I Theorem 13. For every polynomial p, every algorithm that accepts a formula ϕ of PA as
input, and returns a population protocol computing ϕ, runs in time 2ω(p(|ϕ|)).

Therefore, if PA also has succinct protocols, then they are very hard to find.
Our succinct protocols for QFPA have slow convergence (in the usual parallel time model,

see e.g. [2]), since they often rely on exhaustive exploration of a number of alternatives, until
the right one is eventually hit. The question of whether every QFPA predicate has a succinct
and fast protocol is very challenging, and we leave it open for future research.
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ABSTRACT
Population protocols are a well establishedmodel of computation by
anonymous, identical finite state agents. A protocol is well-specified
if from every initial configuration, all fair executions of the protocol
reach a common consensus. The central verification question for
population protocols is the well-specification problem: deciding if a
given protocol is well-specified. Esparza et al. have recently shown
that this problem is decidable, but with very high complexity: it
is at least as hard as the Petri net reachability problem, which is
EXPSPACE-hard, and for which only algorithms of non-primitive
recursive complexity are currently known.

In this paper we introduce the class WS3 of well-specified
strongly-silent protocols and we prove that it is suitable for au-
tomatic verification. More precisely, we show that WS3 has the
same computational power as general well-specified protocols, and
captures standard protocols from the literature. Moreover, we show
that the membership problem forWS3 reduces to solving boolean
combinations of linear constraints over N. This allowed us to de-
velop the first software able to automatically prove well-specifica-
tion for all of the infinitely many possible inputs.

CCS CONCEPTS
• Networks → Protocol testing and verification; • Theory of
computation → Logic and verification;

KEYWORDS
population protocols; automated verification; termination

1 INTRODUCTION
Population protocols [1, 2] are a model of distributed computation
by many anonymous finite-state agents. They were initially intro-
duced to model networks of passively mobile sensors [1, 2], but
are now also used to describe chemical reaction networks (see e.g.
[7, 19]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC ’17, July 25-27, 2017, Washington, DC, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4992-5/17/07. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3087801.3087816

In each computation step of a population protocol, a fixed num-
ber of agents are chosen nondeterministically, and their states are
updated according to a joint transition function. Since agents are
anonymous and identical, the global state of a protocol is com-
pletely determined by the number of agents at each local state,
called a configuration. A protocol computes a boolean value b for
a given initial configuration C0 if in all fair executions starting at
C0, all agents eventually agree to b — so, intuitively, population
protocols compute by reaching consensus under a certain fairness
condition. A protocol is well-specified if it computes a value for
each of its infinitely many initial configurations (also called inputs).
The predicate computed by a protocol is the function that assigns
to each input the corresponding consensus value. In a famous se-
ries of papers, Angluin et al. [1, 2] have shown that well-specified
protocols compute exactly the predicates definable in Presburger
arithmetic [1–4].

In this paper we search for efficient algorithms for the well-
specification problem: Given a population protocol, is it well-spe-
cified? This is a question about an infinite family of finite-state
systems. Indeed, for every input the semantics of a protocol is a
finite graph with the reachable configurations as nodes. Deciding
if the protocol reaches consensus for a fixed input only requires to
inspect one of these graphs, and can be done automatically using
a model checker. This approach has been followed in a number of
papers [6, 8, 20, 24], but it only shows well-specification for some
inputs. There has also been work in formalizing well-specification
proofs in interactive theorem provers [10], but this approach is not
automatic: a human prover must first come up with a proof for each
particular protocol.

Recently, the second author, together with other co-authors, has
shown that the well-specification problem is decidable [13]. That
is, there is an algorithm that decides if for all inputs the protocol
stabilizes to a boolean value. The proof uses deep results of the
theory of Petri nets, a model very close to population protocols.
However, the same paper shows that the well-specification problem
is at least as hard as the reachability problem for Petri nets, a
famously difficult problem. More precisely, the problem is known
to be EXPSPACE-hard, and all known algorithms for it have non-
primitive recursive complexity [22]. In particular, there are no stable
implementations of any of these algorithms, and they are considered
impractical for nearly all applications.

For this reason, in this paper we search for a class of well-spe-
cified protocols satisfying three properties:

(a) No loss of expressive power: the class should compute all
Presburger-definable predicates.



(b) Natural: the class should contain most protocols discussed
in the literature.

(c) Feasible membership problem: membership for the class
should have reasonable complexity.

The classWS of all well-specified protocols obviously satisfies
(a) and (b), but not (c). So we introduce a new classWS3, standing
for Well-Specified Strongly Silent protocols. We show that WS3 still
satisfies (a) and (b), and then prove that the membership problem
forWS3 is in the complexity class DP; the class of languages L such
that L = L1 ∩ L2 for some languages L1 ∈ NP and L2 ∈ coNP. This
is a dramatic improvement with respect to the EXPSPACE-hardness
of the membership problem forWS.

Our proof that the problem is in DP reduces membership for
WS3 to checking (un)satisfiability of two systems of boolean combi-
nations of linear constraints over the natural numbers. This allowed
us to implement our decision procedure on top of the constraint
solver Z3 [9], yielding the first software able to automatically prove
well-specification for all inputs. We tested our implementation on
the families of protocols studied in [6, 8, 20, 24]. These papers prove
well-specification for some inputs of protocols with up to 9 states
and 28 transitions. Our approach proves well-specification for all
inputs of protocols with up to 20 states in less than one second, and
protocols with 70 states and 2500 transitions in less than one hour.
In particular, we can automatically prove well-specification for all
inputs in less time than previous tools needed to check one single
large input.

The verification problem for population protocols naturally di-
vides into two parts: checking that a given protocol is well speci-
fied, and checking that a given well-specified protocol computes
the desired predicate. While in this paper we are concerned with
well-specification, our implementation is already able to solve the
second problem for all the families of protocols described above.
This is achieved by adding to the second system of constraints used
to check well-specification further linear constraints describing the
sets of input configurations for which the protocol should return
true or false. An extension of the software that, given a protocol
and an arbitrary Presburger predicate, checks whether the protocol
computes the predicate, requires to solve implementation problems
related to Presburger arithmetic, and is left for future research.

The paper is organized as follows. Section 2 contains basic def-
initions. Section 3 introduces an intermediate classWS2 of silent
well-specified protocols, and shows that its membership problem is
still as hard as forWS. In Section 4, we characterizeWS2 in terms
of two properties which are then strengthened to define our new
classWS3. We then show that the properties defining WS3 can be
tested in NP and coNP, and so that membership forWS3 is in DP.
Section 5 proves that WS3-protocols compute all Presburger predi-
cates. Section 6 reports on our experimental results, and Section 7
presents conclusions.

2 PRELIMINARIES
Multisets. A multiset over a finite set E is a mappingM : E → N.

The set of all multisets over E is denoted NE . For every e ∈ E,M (e )
denotes the number of occurrences of e inM . We sometimes denote
multisets using a set-like notation, e.g. Hf ,д,дI is the multiset M
such thatM ( f ) = 1,M (д) = 2 andM (e ) = 0 for every e ∈ E \ { f ,д}.

The support of M ∈ NE is JMK def
= {e ∈ E : M (e ) > 0}. The size

of M ∈ NE is |M | def
=
∑
e ∈E M (e ). Addition and comparison are

extended to multisets componentwise, i.e. (M +M ′) (e ) def
= M (e ) +

M ′(e ) for every e ∈ E, and M ≤ M ′
def⇐⇒ M (e ) ≤ M (e ) for

every e ∈ E. We define multiset difference as (M � M ′) (e ) def
=

max(M (e )−M ′(e ), 0) for every e ∈ E. The emptymultiset is denoted
0, and for every e ∈ E we write e def

= HeI.

Population protocols. A population P over a finite set E is a multi-
set P ∈ NE such that |P | ≥ 2. The set of all populations over E is de-
noted by Pop(E). A population protocol is a tuple P = (Q,T , Σ, I ,O )
where
• Q is a non-empty finite set of states,
• T ⊆ Q2 × Q2 is a set of transitions such that for every
(p,q) ∈ Q2 there exists at least a pair (p′,q′) ∈ Q2 such
that (p,q,p′,q′) ∈ T ,
• Σ is a non-empty finite input alphabet,
• I : Σ → Q is the input function mapping input symbols to
states,
• O : Q → {0, 1} is the output function mapping states to
boolean values.

Following the convention of previous papers, we call the pop-
ulations of Pop(Q ) configurations. Intuitively, a configuration C
describes a collection of identical finite-state agents with Q as set
of states, containing C (q) agents in state q for every q ∈ Q , and at
least two agents in total.

Pairs of agents1 interact using transitions. For every t = (p,q,
p′,q′) ∈ T , we write (p,q) 7→ (p′,q′) to denote t , and we define
pre(t ) def

= Hp,qI and post(t ) def
= Hp′,q′I. For every configuration C

and transition t ∈ T , we say that t is enabled at C if C ≥ pre(t ).
Note that by definition of T , every configuration enables at least
one transition. A transition t ∈ T enabled atC can occur, leading to
the configuration C � pre(t ) + post(t ). Intuitively, a pair of agents
in states pre(t ) move to states post(t ). We write C t−→ C ′ to denote
that t is enabled atC and that its occurrence leads toC ′. A transition
t ∈ T is silent if pre(t ) = post(t ), i.e., if it cannot change the current
configuration.

For every sequence of transitionsw = t1t2 · · · tk , we write C
w−−→

C ′ if there exists a sequence of configurations C0,C1, . . . ,Ck such
that C = C0

t1−−→ C1 · · ·
tk−−→ Ck = C ′. We also write C −→ C ′ if

C
t−→ C ′ for some transition t ∈ T , and call C −→ C ′ a step. We

write C ∗−→ C ′ if C w−−→ C ′ for some w ∈ T ∗. We say that C ′ is
reachable from C if C ∗−→ C ′. An execution is an infinite sequence
of configurations C0C1 · · · such that Ci −→ Ci+1 for every i ∈ N.
An execution C0C1 · · · is fair if for every step C −→ C ′, if Ci = C
for infinitely many indices i ∈ N, then Cj = C and Cj+1 = C ′ for
infinitely many indices j ∈ N. We say that a configuration C is

• terminal if C ∗−→ C ′ implies C = C ′, i.e., if every transition
enabled at C is silent;
• a consensus configuration ifO (p) = O (q) for every p,q ∈ JCK.

1While protocols only model interactions between two agents, k -way interactions for
a fixed k > 2 can be simulated by adding additional states.



For every consensus configuration C , let O (C ) denote the unique
output of the states in JCK. An execution C0C1 · · · stabilizes to b ∈
{0, 1} if there exists n ∈ N such thatCi is a consensus configuration
and O (Ci ) = b for every i ≥ n.

Predicates computable by population protocols. Every input X ∈
Pop(Σ) is mapped to the configuration I (X ) ∈ Pop(Q ) defined by

I (X ) (q)
def
=
∑

σ ∈Σ
I (σ )=q

X (σ ) for every q ∈ Q .

A configuration C is said to be initial if C = I (X ) for some input X .
A population protocol is well-specified if for every input X , there
exists b ∈ {0, 1} such that every fair execution of P starting at I (X )
stabilizes to b. We say that P computes a predicate φ if for every
inputX , every fair execution of P starting at I (X ) stabilizes toφ (X ).
It is readily seen that P computes a predicate if and only if it is
well-specified.

Example 2.1. We consider the majority protocol of [3] as a run-
ning example. Initially, agents of the protocol can be in either state
A or B. The protocol computes whether there are at least as many
agents in state B as there are in state A. The states and the input
alphabet are Q = {A,B,a,b} and Σ = {A,B} respectively. The input
function is the identity function, and the output function is given
by O (B) = O (b) = 1 and O (A) = O (a) = 0. The set of transitions T
consists of:

tAB = (A,B) 7→ (a,b)

tAb = (A,b) 7→ (A,a)

tBa = (B,a) 7→ (B,b)

tba = (b,a) 7→ (b,b)

and of silent transitions for the remaining pairs of states. Transition
tAB ensures that every fair execution eventually reaches a configu-
ration C such that C (A) = 0 or C (B) = 0. If C (A) = 0 = C (B), then
there were initially equally many agents in A and B. Transition
tba then acts as tie breaker, resulting in a terminal configuration
populated only by b. If, say,C (A) > 0 andC (B) = 0, then there were
initially more As than Bs, and tAb ensures that every fair execution
eventually reaches a terminal configuration populated only by A
and a.

3 WELL-SPECIFIED SILENT PROTOCOLS
Silent protocols2 were introduced in [12]. Loosely speaking, a pro-
tocol is silent if communication between agents eventually ceases,
i.e. if every fair execution eventually stays in the same configura-
tion forever. Observe that a well-specified protocol need not be
silent: fair executions may keep alternating from a configuration
to another as long as they are consensus configurations with the
same output.

More formally, we say that an executionC0C1 · · · is silent if there
exists n ∈ N and a configurationC such thatCi = C for every i ≥ n.
A population protocol P is silent if every fair execution of P is
silent, regardless of the starting configuration. We call a protocol
that is well-specified and silent aWS2-protocol, and denote byWS2

the set of all WS2-protocols.
2Silent protocols are also referred to as protocols with stabilizing states and silent
transitions are called ineffective in [17, 18].

Example 3.1. As explained in Example 2.1, every fair execution
of the majority protocol is silent. This implies that the protocol is
silent. If, for example, we add a new state b ′ where O (b ′) = 1, and
transitions (b,b) 7→ (b ′,b ′), (b ′,b ′) 7→ (b,b), then the protocol is
no longer silent since the execution where two agents alternate
between states b and b ′ is fair but not silent.

Being silent is a desirable property. While in arbitrary protocols
it is difficult to determine if an execution has already stabilized, in
silent protocols it is simple: one just checks if the current config-
uration only enables silent transitions. Even though it is was not
observed explicitely, the protocols introduced in [1] to characterize
the expressive power of population protocols belong toWS2. There-
fore, WS2-protocols can compute the same predicates as general
ones.

Unfortunately, a slight adaptation of [14, Theorem 10] shows
that the complexity of the membership problem for WS2-protocols
is still as high as for the general case:

Proposition 3.2. The reachability problem for Petri nets is re-
ducible in polynomial time to the membership problem for WS2. In
particular, membership for WS2 is EXPSPACE-complete.

To circumvent this high complexity, we will show in the next
section how WS2 can be refined into a smaller class of well-speci-
fied protocols with the same expressive power, and a membership
problem of much lower complexity.

4 A FINER CLASS OF SILENT
WELL-SPECIFIED PROTOCOLS:WS3

It can be shown that WS2-protocols are exactly the protocols satis-
fying the two following properties:
• Termination: for every configuration C , there exists a ter-
minal configuration C ′ such that C ∗−→ C ′.
• Consensus: for every initial configurationC , there exists b ∈
{0, 1} such that every terminal configuration C ′ reachable
from C is a consensus configuration with output b, i.e. C ∗−→
C ′ implies O (C ′) = b.

We will introduce the new class WS3 as a refinement of WS2

obtained by strengthening Termination and Consensus into two
new properties called LayeredTermination and StrongConsen-
sus. We introduce these properties in Section 4.1 and Section 4.2,
and show that their decision problems belong to NP and coNP
respectively.

Before doing so, let us introduce some useful notions. Let P =
(Q,T , Σ, I ,O ) be a population protocol. For every S ⊆ T , P[S]
denotes the protocol induced by S , i.e. P[S] def

= (Q, S ∪ T ′, Σ, I ,O )

where T ′ def
=
{
(p,q,p,q) : p,q ∈ Q } is added to ensure that any two

states can interact. Let−→S denote the transition relation ofP[S]. An
ordered partition ofT is a tuple (T1,T2, . . . ,Tn ) of nonempty subsets
of T such that T = ⋃n

i=1Ti and Ti ∩Tj = ∅ for every 1 ≤ i < j ≤ n.

4.1 Layered termination
We replace Termination by a stronger property called Layered-
Termination, and show that deciding LayeredTermination be-
longs to NP. The definition of LayeredTermination is inspired
by the typical structure of protocols found in the literature. Such



protocols are organized in layers such that transitions of higher
layers cannot be enabled by executing transitions of lower layers.
In particular, if the protocol reaches a configuration of the highest
layer that does not enable any transition, then this configuration
is terminal. For such protocols, Termination can be proven by
showing that every (fair or unfair) execution of a layer is silent.

Definition 4.1. A population protocol P = (Q,T , Σ, I ,O ) satisfies
LayeredTermination if there is an ordered partition

(T1,T2, . . . ,Tn )

of T such that the following properties hold for every i ∈ [n]:
(a) For every configuration C , every (fair or unfair) execution

of P[Ti ] starting at C is silent.
(b) For every configurations C and C ′, if C ∗−→Ti C ′ and C is

terminal in P[T1 ∪T2 ∪ · · · ∪Ti−1], then C ′ is also terminal
in P[T1 ∪T2 ∪ · · · ∪Ti−1].

Example 4.2. The majority protocol satisfies LayeredTermina-
tion. Indeed, consider the ordered partition (T1,T2), where

T1 = {(A,B) 7→ (a,b), (A,b) 7→ (A,a)}
T2 = {(B,a) 7→ (B,b), (b,a) 7→ (b,b)}.

All executions of P[T1] and P[T2] are silent. For every terminal
configuration C of P[T1], we have JCK ⊆ {A,a} or JCK ⊆ {B,a,b}.
In the former case, no transition of T2 is enabled; in the latter case,
taking transitons of T2 cannot enable T1.

As briefly sketched above, LayeredTermination implies Termi-
nation. In the rest of this section, we prove that checking Layered-
Termination is in NP. We do this by showing that conditions (a)
and (b) of Definition 4.1 can be tested in polynomial time.

We recall a basic notion of Petri net theory recast in the terminol-
ogy of population protocols. For every stepC t−→ C ′ and every state
q of a population protocol, we have C ′(q) = C (q) + post(t ) (q) −
pre(t ) (q). This observation can be extended to sequences of tran-
sitions. Let |w |t denote the number of occurrences of transition t
in a sequencew . We haveC ′(q) = C (q) +∑t ∈T |w |t · (post(t ) (q) −
pre(t ) (q)). Thus, a necessary condition forC w−−→ C ′ is the existence
of some x : T → N such that

C ′(q) = C (q) +
∑

t ∈T
x (t ) · (post(t ) (q) − pre(t ) (q)). (1)

We call (1) the flow equation for state q.

Proposition 4.3. Let P = (Q,T , Σ, I ,O ) be a population protocol.
Deciding whether an ordered partition (T1,T2, . . . ,Tn ) of T satisfies
condition (a) of Definition 4.1 can be done in polynomial time.

Proof. Let i ∈ [n] and letUi be the set of non silent transitions
of Ti . It can be shown that P[Ti ] is non silent if and only if there
exists x : Ui → Q such that∑t ∈Ui x (t ) · (post(t ) (q)−pre(t ) (q)) = 0
and x (q) ≥ 0 for every q ∈ Q , and x (q) > 0 for some q ∈ Q .
Therefore, since linear programming is in P, we can check for the
(non) existence of an appropriate rational solution x i for every
i ∈ [n]. □

We show how to check condition (b) of Definition 4.1 in poly-
nomial time. Let U ⊆ T be a set of transitions. A configuration

C ∈ Pop(Q ) is U -dead if for every t ∈ U , C t−→ C ′ implies C ′ = C .
We say that P isU -dead from C0 ∈ Pop(Q ) if every configuration
reachable from C0 isU -dead, i.e. C0

∗−→ C implies that C isU -dead.
Finally, we say that P isU -dead if it isU -dead from everyU -dead
configuration C0 ∈ Pop(Q ).

Proposition 4.4. Let P = (Q,T , Σ, I ,O ) be a population proto-
col. Deciding whether an ordered partition (T1, . . . ,Tn ) of T satisfies
condition (b) of Definition 4.1 can be done in polynomial time.

Proof. Let i ∈ [n] and letU def
= T1∪T2∪· · ·∪Ti−1. P[Ti ] satisfies

condition (b) if and only if P[Ti ] isU -dead. The latter can be tested
in polynomial time through the following characterization: P[Ti ]
is not U -dead if and only if there exist t ∈ Ti and non silent u ∈ U
such that for every non silent u ′ ∈ U :

pre(u ′) ≰ pre(t ) + (pre(u) � post(t )). □

Propositions 4.3 and 4.4 yield an NP procedure to decide Lay-
eredTermination. Indeed, it suffices to guess an ordered partition
and to check whether it satisfies conditions (a) and (b) of Defini-
tion 4.1 in polynomial time.

Corollary 4.5. Deciding if a protocol satisfies LayeredTermina-
tion is in NP.

4.2 Strong consensus
To overcome the high complexity of reachability in population
protocols, we strengthen Consensus by replacing the reachability
relation in its definition by an over-approximation, i.e., a relation
99K over configurations such that C ∗−→ C ′ implies C 99K C ′. Ob-
serve that the flow equations provide an over-approximation of the
reachability relation. Indeed, as mentioned earlier, if C ∗−→ C ′, then
there exists x : T → N such that (C,C ′,x ) satisfies all of the flow
equations. However, this over-approximation alone is too crude for
the verification of protocols.

Example 4.6. For example, let us consider the configurationsC =
HA,BI andC ′ = Ha,aI of the majority protocol. The flow equations
are satisfied by the mapping x such that x (tAB ) = x (tAb ) = 1 and
x (tBa ) = x (tba ) = 0. Yet, C ∗−→ C ′ does not hold.

To obtain a finer reachability over-approximation, we introduce
so-called traps and siphons constraints borrowed from the theory
of Petri nets [11, 15, 16] and successfully applied to a number of
analysis problems (see e.g. [5, 15, 16]). Intuitively, for some subset
of transitions U ⊆ T , a U -trap is a set of states P ⊆ Q such that
every transition ofU that removes an agent from P also moves an
agent into P . Conversely, aU -siphon is a set P ⊆ Q such that every
transition of U that moves an agent into P also removes an agent
from P . More formally, let •R def

= {t ∈ T : Jpost(t )K ∩ R , ∅} and
R• def
= {t ∈ T : Jpre(t )K∩R , ∅}.U -siphons andU -traps are defined

as follows:

Definition 4.7. A subset of states P ⊆ Q is aU -trap if P•∩U ⊆ •P ,
and aU -siphon if •P ∩U ⊆ P•.

For every configuration C ∈ Pop(Q ) and P ⊆ Q , let C (P ) def
=

∑
q∈P C (q). Consider a sequence of steps C0

t1−−→ C1
t2−−→ · · · tn−−→ Cn



where t1, . . . , tn ∈ U . It follows from Definition 4.7 that if some
transition ti moves an agent to a U -trap P , then Cj (P ) > 0 for
every j ≥ i . Similarly, if some transition ti removes an agent from
aU -siphon, then Cj (P ) > 0 for every j < i . In particular:

Observation 4.8. LetU ⊆ T , and let C and C ′ be configurations
such thatC

∗−→U C ′. For everyU -trap P , ifC ′(P ) = 0, then •P∩U = ∅.
For everyU -siphon P , if C (S) = 0, then P• ∩U = ∅.

We obtain a necessary condition for C ∗−→U C ′ to hold, which
we call potential reachability:

Definition 4.9. Let C,C ′ be two configurations, let x : T → N,
and let U = JxK. We say that C ′ is potentially reachable from C

through x , denoted C x99KC ′, if
(a) the flow equation (1) holds for every q ∈ Q ,
(b) C ′(P ) = 0 implies •P ∩U = ∅ for everyU -trap P , and
(c) C (P ) = 0 implies P• ∩U = ∅ for everyU -siphon P .

Example 4.10. Let us reconsider Example 4.6. Let U = JxK =
{tAB , tAb } and P = {A,b}. Recall that tAB = (A,B) 7→ (a,b) and
tAb = (A,b) 7→ (A,a). We have P• ∩U = U which implies that P is
aU -trap. This means that Definition 4.9(b) is violated as C ′(P ) = 0
and •P ∩U = U , ∅. Therefore, HA,BI x99K Ha,aI does not hold.

We writeC 99KC ′ ifC x99KC ′ for some x : T → N. As an imme-
diate consequence of Observation 4.8, for every configurations C
andC ′, ifC ∗−→ C ′, thenC 99KC ′. This allows us to strengthen Con-
sensus by redefining it in terms of potential reachability instead of
reachability:

Definition 4.11. A protocol satisfies StrongConsensus if for
every initial configuration C , there exists b ∈ {0, 1} such that every
terminal configuration C ′ potentially reachable from C is a consen-
sus configuration with output b, i.e. C 99KC ′ implies O (C ′) = b.

Since the number of U -traps and U -siphons of a protocol can
be exponential in the number of states, checking trap and siphon
constraints by enumerating them may take exponential time. Fortu-
nately, this can be avoided. By definition, it follows that the union of
two U -traps is again a U -trap, and similarly for siphons. Therefore,
given a configuration C , there exists a unique maximal U -siphon
Pmax such that C (Pmax) = 0, and a unique maximal U -trap P ′max
such that C (P ′max) = 0. Moreover, Pmax and P ′max can be computed
in linear time by means of a simple greedy algorithm (see e.g. [11,
Ex. 4.5]). This simplifies the task of checking traps and siphons
constraints, and yields a coNP procedure for testing StrongCon-
sensus:

Proposition 4.12. Deciding if a protocol satisfies StrongCon-
sensus is in coNP.

Proof. Testing whether a protocol does not satisfy StrongCon-
sensus can be done by guessing C0,C,C ′ ∈ Pop(Q ), b ∈ {0, 1},
q,q′ ∈ Q and x ,x ′ : T → N, and testing whether

(a) C0 is initial, C is terminal, C ′ is terminal, q ∈ JCK, q′ ∈ JC ′K,
O (q) , O (q′), and

(b) C0
x99KC and C0

x ′99KC ′.

Since there is no a priori bound on the size ofC0,C,C ′ and x ,x ′,
we guess them carefully. First, we guess whetherD (p) = 0,D (p) = 1
or D (p) ≥ 2 for every D ∈ {C0,C,C ′} and p ∈ Q . This gives enough
information to test (a). Then, we guess JxK and Jx ′K. This allows
to test traps/siphons constraints as follows. Let U def

= JxK, let Pmax
be the maximalU -trap such that C (Pmax) = 0, and let P ′max be the
maximalU -siphon such thatC0 (P ′max) = 0. Conditions (b) and (c) of
Definition 4.9 hold if and only if • (Pmax)∩U = ∅ and (P ′max)

•∩U =
∅, which can be tested in polynomial time. The same is done for
x ′. If (a) and siphons/traps constraints hold, we build the system S
of linear equations/inequalities obtained from the conjunction of
the flow equations together with the constraints already guessed.
By standard results on integer linear programming (see e.g. [23,
Sect. 17]), if S has a solution, then it has one of polynomial size,
and hence we may guess it. □

4.3 WS3-protocols
We say that a protocol belongs toWS3 if it satisfies LayeredTer-
mination and StrongConsensus. SinceWS3 ⊆WS2 ⊆WS holds,
everyWS3-protocol is well-specified. Recall that a language L be-
longs to the class DP [21] if there exist languages L1 ∈ NP and
L2 ∈ coNP such that L = L1 ∩ L2. By taking L1 and L2 respectively
as the languages of population protocols satisfying LayeredTermi-
nation and StrongConsensus, Corollary 4.5 and Proposition 4.12
yield:

Theorem 4.13. The membership problem for WS3-protocols is in
DP.

5 WS3 IS AS EXPRESSIVE ASWS
In a famous result, Angluin et al. [3] have shown that a predicate is
computable by a population protocol if and only if it is definable in
Presburger arithmetic, the first-order theory of addition [1, 3]. In
particular, [1] constructs protocols for Presburger-definable predi-
cates by means of a well-known result: Presburger-definable pred-
icates are the smallest set of predicates containing all threshold
and remainder predicates, and closed under boolean operations. A
threshold predicate is a predicate of the form

P (x1, . . . ,xk ) =
*.,
k∑

i=1
aixi < c+/- ,

where k ≥ 1 and a1, . . . ,ak , c ∈ Z. A remainder predicate is a
predicate of the form

P (x1, . . . ,xk ) =
*.,
k∑

i=1
aixi ≡ c (modm)+/- ,

where k ≥ 1,m ≥ 2 and a1, . . . ,ak , c,m ∈ Z. Here, we show that
these predicates can be computed by WS3-protocols, and that WS3

is closed under negation and conjunction. As a consequence, we
obtain that WS3-protocols are as expressive as WS, the class of all
well-specified protocols.

Threshold. We describe the protocol given in [1] to compute the
threshold predicate ∑ki=1 aixi < c . Let

vmax
def
= max( |a1 |, |a2 |, . . . , |ak |, |c | + 1)



and define

f (m,n)
def
= max(−vmax,min(vmax,m + n))

д(m,n)
def
= (m + n) − f (m,n)

b (m,n)
def
= ( f (m,n) < c )

The protocol is Pthr def
= (Q,T , Σ, I ,O ), where

Q
def
= {0, 1} × [−vmax,vmax] × {0, 1}

Σ
def
= {x1,x2, . . . ,xk }

I (xi )
def
= (1,ai ,ai < c ) for every i ∈ [k]

O (ℓ,n,o)
def
= o for every state (ℓ,n,o),

and T contains

(1,n,o), (l ,n′,o′) 7→ (1, f (n,n′),b (n,n′)), (0,д(n,n′),b (n,n′))

for every n,n′ ∈ [−vmax,vmax], ℓ,o,o′ ∈ {0, 1}. Intuitively, a state
(ℓ,n,o) indicates that the agent has value n, opinion o, and that it is
a leader if and only if ℓ = 1. When a leader q and a state r interact, r
becomes a non leader, and q increases its value as much as possible
by substracting from the value of r . Moreover, a leader can change
the opinion of any non leader.

Proposition 5.1. Pthr satisfies StrongConsensus.

Proof. Let val(q) def
= n for every state q = (ℓ,n,o) ∈ Q , and let

val(C ) def
=
∑
q∈Q C (q) · val(q) for every configuration C ∈ Pop(Q ).

The following holds for every C,C ′ ∈ Pop(Q ):

(a) If (C,C ′,x ) is a solution to the flow equations for some x :
T → N, then val(C ) = val(C ′).

(b) IfC,C ′ are terminal,C andC ′ contain a leader, and val(C ) =
val(C ′), then O (C ) = O (C ′).

Suppose for the sake of contradiction that P does not satisfy
StrongConsensus. There exist C0,C,C ′ ∈ Pop(Q ), q,q′ ∈ Q and
x ,x ′ : T → N such that C0

x99K C , C0
x ′99K C ′, C0 is initial, C and

C ′ are terminal consensus configurations, q ∈ JCK, q′ ∈ JC ′K and
O (q) , O (q′). Note that (C0,C,x ) and (C0,C ′,x ′) both satisfy the
flow equations. Thus, by (a), val(C ) = val(C0) = val(C ′). Since C0
is initial, it contains a leader. Since the set of leaders forms aU -trap
for every U ⊆ T , and (C0,C,x ) and (C0,C ′,x ) satisfy trap con-
straints, C and C ′ contain a leader. By (b), C and C ′ are consensus
configurations with O (C ) = O (C ′), which is a contradiction. □

Proposition 5.2. Pthr satisfies LayeredTermination.

Proof. Let L0
def
= {(1,x , 0) : c ≤ x ≤ vmax}, L1 def

= {(1,x , 1) :
−vmax ≤ x < c}, N0

def
= {(0, 0, 0)} and N1

def
= {(0, 0, 1)}. It can be

shown that the following ordered partitions satisfy layered termi-
nation for c > 0 and c ≤ 0 respectively:

T1
def
= {t ∈ T : pre(t ) , Hq, rI for all q ∈ L0, r ∈ N1},

T2
def
= T \T1, and

S1
def
= {t ∈ T : pre(t ) , Hq, rI for all q ∈ L1, r ∈ N0},

S2
def
= T \ S1. □

Remainder. We give a protocol for the remainder predicate

k∑

i=1
aixi ≡ c (modm).

The protocol is Prmd = (Q,T , Σ, I ,O ), where

Q
def
= [0,m) ∪ {true, false}

Σ
def
= {x1,x2, . . . ,xk }

I (xi )
def
= ai modm for every i ∈ [k]

O (q)
def
=


1 if q ∈ {c, true}
0 otherwise

and where T contains the following transitions for every n,n′ ∈
[0,m) and b ∈ {false, true}:

(n,n′) 7→ (n + n′ modm,n + n′ modm = c ) and
(n,b) 7→ (n,n = c ).

In the the full version of this paper3 we show that Prmd belongs to
WS3 by adapting the proof for Pthr.

Negation and conjunction. Let P1 = (Q1,T1, Σ, I1,O1) and P2 =
(Q2,T2, Σ, I2,O2) be WS3-protocols computing predicates φ1 and
φ2 respectively. We may assume that P1 and P2 are defined over
identical Σ, for we can always extend the input domain of thresh-
old/remainder predicates by variables with coefficients of value
zero. The predicate ¬φi can be computed by replacing Oi by the
new output functionO ′i such thatO ′i (q)

def
= ¬Oi (q) for every q ∈ Qi .

To compute φ1∧φ2, we build an asynchronous product where steps
of P1 and P2 can be executed independently.

More formally, the conjunction of P1 and P2 is defined as the
population protocol P def

= (Q, S, I , Σ,O ) such that Q def
= Q1 × Q2,

S
def
= S1 ∪ S2, I (σ )

def
= (I1 (σ ), I2 (σ )) and O (p,q)

def
= O1 (p) ∧ O2 (q)

where

S1
def
= {(p, r ), (p′, r ′) 7→ (q, r ), (q′, r ′) : (p,p′,q,q′) ∈ T1, r , r ′ ∈ Q2},

S2
def
= {(r ,p), (r ′,p′) 7→ (r ,q), (r ′,q′) : (p,p′,q,q′) ∈ T2, r , r ′ ∈ Q1}.

In the full version of this paper. we show that P is in WS3 since
terminal/consensus configurations, flow equations, and traps and
siphons constraints are preserved by projections from P onto P1
and P2.

3https://arxiv.org/abs/1703.04367



Threshold
vmax |Q | |T | Time

3 28 288 8.0
4 36 478 26.5
5 44 716 97.6
6 52 1002 243.4
7 60 1336 565.0
8 68 1718 1019.7
9 76 2148 2375.9
10 84 2626 timeout

Remainder
m |Q | |T | Time
10 12 65 0.4
20 22 230 2.8
30 32 495 15.9
40 42 860 79.3
50 52 1325 440.3
60 62 1890 3055.4
70 72 2555 3176.5
80 82 3320 timeout

Majority
|Q | |T | Time
4 4 0.1

Flock of birds [6]
c |Q | |T | Time
20 21 210 1.5
25 26 325 3.3
30 31 465 7.7
35 36 630 20.8
40 41 820 106.9
45 46 1035 295.6
50 51 1275 181.6
55 56 1540 timeout

Broadcast
|Q | |T | Time
2 1 0.1

Flock of birds [8]
c |Q | |T | Time
50 51 99 11.8
100 101 199 44.8
150 151 299 369.1
200 201 399 778.8
250 251 499 1554.2
300 301 599 2782.5
325 326 649 3470.8
350 351 699 timeout

Table 1: Results of the experimental evaluation where |Q | denotes the number of states, |T | denotes the number of non silent
transitions, and the time to prove membership forWS3 is given in seconds.

6 EXPERIMENTAL RESULTS
We have developed a tool called Peregrine4 to check membership
in WS3. Peregrine is implemented on top of the SMT solver Z3 [9].

Peregrine reads in a population protocolP = (Q,T , Σ, I ,O ) and
constructs two sets of constraints. The first set is satisfiable if and
only if LayeredTermination holds, and the second is unsatisfiable
if and only if StrongConsensus holds.

For LayeredTermination, our tool Peregrine iteratively con-
structs constraints checking the existence of an ordered partition
of size 1,2, . . . , |T | and decides if they are satisfiable. To check that
the execution of a layer is silent, the constraints mentioned in the
proof of Proposition 4.3 are transformed using Farkas’ lemma (see
e.g. [23]) into a version that is satisfiable if and only if all the execu-
tions of the layer are silent. Also, the constraints for condition (b)
of Definition 4.1 are added.

For StrongConsensus, Peregrine initially constructs the con-
straints for the flow equation for three configurations C0,C1,C2
and vectors x1 and x2, with additional constraints to guarantee that
C0 is initial,C1 andC2 are terminal, andC1 andC2 are consensus of
different values. If these constraints are unsatisfiable, the protocol
satisfies StrongConsensus. Otherwise, Peregrine searches for
a U -trap or U -siphon to show that either C0

x 199KC1 or C0
x 299KC2

does not hold. If, say, a U -siphon S is found, then Peregrine adds
the constraint C0 (S) > 0 to the set of initial constraints. This pro-
cess is repeated until either the constraints are unsatisfiable and
StrongConsensus is shown, or all possibleU -traps andU -siphons
are added, in which case StrongConsensus does not hold. We
use this refinement-based approach instead of the coNP approach
described in Proposition 4.12, as that could require a quadratic num-
ber of variables and constraints, and we generally expect to need a
small number of refinement steps.

We evaluated Peregrine on a set of benchmarks: the threshold
and remainder protocols of [2], the majority protocol of [3], the

4Peregrine and benchmarks are available from https://gitlab.lrz.de/i7/peregrine/.

broadcast protocol of [8] and two versions of the flock of birds5
protocol from [6, 8]. We checked the parametrized protocols for
increasing values of their primary parameter until we reached a
timeout. For the threshold and remainder protocols, we set the
secondary parameter c to 1 since it has no incidence on the size of
the protocol, and since the variation in execution time for different
values of c was negligible. Moreover, we assumed that all possible
values for ai were present in the inputs, which represents the worst
case.

All experiments were performed on the same machine equipped
with an Intel Core i7-4810MQ CPU and 16GB of RAM. The time
limit was set to 1 hour. The results are shown in Table 1. In all cases
where we terminated within the time limit, we were able to show
membership for WS3. Generally, showing StrongConsensus took
much less time than showing LayeredTermination, except for the
flock of birds protocols, where we needed linearly manyU -traps.

As an extension, we also tried proving correctness after proving
membership in WS3. For this, we constructed constraints for the
existence of an input X and configuration C with I (X )

x99KC and
φ (X ) , O (C ).Wewere able to prove correctness for all the protocols
in our set of benchmarks. The correctness check was faster than
the well-specification check for broadcast, majority, threshold and
both flock of birds protocols, and slower for the remainder protocol,
where we reached a timeout form = 70.

7 CONCLUSION AND FURTHERWORK
We have presented WS3, the first class of well-specified population
protocols with a membership problem of reasonable complexity
(i.e. in DP) and with the full expressiveness of well-specified pro-
tocols. Previous work had shown that the membership problem
for the general class of well-specified protocols is decidable, but at
least EXPSPACE-hard with algorithms of non primitive recursive
complexity.

5The variant from [8] is referred to as threshold-n by its authors.



We have shown thatWS3 is a natural class that contains many
standard protocols from the literature, like flock-of-birds, majority,
threshold and remainder protocols. We implemented the member-
ship procedure for WS3 on top of the SMT solver Z3, yielding the
first software able to automatically prove well-specification of pop-
ulation protocols for all (of the infinitely many) inputs. Previous
work could only prove partial correctness of protocols with at most
9 states and 28 transitions, by trying exhaustively a finite number
of inputs [6, 8, 20, 24]. Our algorithm deals with all inputs and
can handle larger protocols with up to 70 states and over 2500
transitions.

Future work will concentrate on three problems: improving the
performance of our tool; automatically deciding if aWS3-protocol
computes the predicate described by a given Presburger formula;
and the diagnosis problem: when a protocol does not belong toWS3,
delivering an explanation, e.g. a non-terminating fair execution.
We think that our constraint-based approach provides an excellent
basis for attacking these questions.
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Contributions of thesis author. Composition and revision of the manuscript. Design
and implementation of the novel parts of the tool Peregrine. Creation of software
artifact for conference submission.
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Abstract. We introduce Peregrine, the first tool for the analysis and
parameterized verification of population protocols. Population protocols
are a model of computation very much studied by the distributed com-
puting community, in which mobile anonymous agents interact stochas-
tically to achieve a common task. Peregrine allows users to design
protocols, to simulate them both manually and automatically, to gather
statistics of properties such as convergence speed, and to verify correct-
ness automatically. This paper describes the features of Peregrine and
their implementation.
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1 Introduction

Population protocols [1,3,4] are a model of distributed computing in which repli-
cated, mobile agents with limited computational power interact stochastically to
achieve a common task. They provide a simple and elegant formalism to model,
e.g., networks of passively mobile sensors [1,5], trust propagation [13], evolu-
tionary dynamics [14], and chemical systems, under the name chemical reaction
networks [12,16,19].

Population protocols are parameterized: the number of agents does not
change during the execution of the protocol, but is a priori unbounded. A
protocol is correct if it behaves correctly for all of its infinitely many initial
configurations. For this reason, it is challenging to design correct and efficient
protocols.

In this paper we introduce Peregrine1, the first tool for the parameterized
analysis of population protocols. Peregrine is intended for use by researchers
in distributed computing and systems biology. It allows the user to specify pro-
tocols either through an editor or as simple scripts, and to analyze them via a

M. Blondin was supported by the Fonds de recherche du Québec – Nature et tech-
nologies (FRQNT).

1 Peregrine can be found at https://peregrine.model.in.tum.de.

c� The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 604–611, 2018.
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graphical interface. The analysis features of Peregrine include manual step-
by-step simulation; automatic sampling; statistics generation of average conver-
gence speed; detection of incorrect executions through simulation; and formal
verification of correctness. The first four features are supported for all protocols,
while verification is supported for silent protocols, a large subclass of proto-
cols [6]. Verification is performed automatically over all of the infinitely many
initial configurations using the recent approach of [6] for solving the so-called
well-specification problem.

Related Work. The problem of automatically verifying that a population proto-
col conforms to its specification for one fixed initial configuration has been con-
sidered in [10,11,17,20]. In [10], ad hoc search algorithms are used. In [11,17],
the authors show how to model the problem in the probabilistic model checker
Prism, and under certain conditions in Spin. In [20], the problem is modeled
with the Pat toolkit for model checking under fairness assumptions. All these
tools increase our confidence in the correctness of a protocol. However, compared
to Peregrine, they are not visual tools, they do not offer simulation capabili-
ties, and they can only verify the correctness of a protocol for a finite number
of initial configurations, with typically a small number of agents. Peregrine
proves correctness for all of the infinitely many initial configurations, with an
arbitrarily large number of agents.

As mentioned in the introduction, population protocols are isomorphic to
chemical reaction networks (CRNs), a popular model in natural computing.
Cardelli et al. have recently developed model checking techniques and analysis
algorithms for stochastic CRNs [7–9]. The problems studied therein are incom-
parable to the parameterized questions addressed by Peregrine.

The verification algorithm of Peregrine is based on [6], where a novel app-
roach for the parameterized verification of silent population protocols has been
presented. The command-line tool of [6] only offers support for proving correct-
ness, with no functionality for visualization or simulation. Further, contrary to
Peregrine, the tool cannot produce counterexamples when correctness fails.

2 Population Protocols

We introduce population protocols through a simple example and then briefly
formalize the model. We refer the reader to [4] for a more thorough but still
intuitive presentation. Suppose anonymous and mobile agents wish to take a
majority vote. Intuitively, anonymous means that agents have no identity, and
mobile that agents are “wandering around”, and can only interact whenever they
bump into each other. In order to vote, all agents conduct the following protocol.
Each agent is in one out of four states {Y,N, y, n}. Initially all agents are in the
states Y or N , corresponding to how they want to vote (states y, n are auxiliary
states). Agents repeatedly interact pairwise according to the following rules:

a : Y N �→ yn b : Y n �→ Y y c : Ny �→ Nn d : yn �→ yy
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For example, if the population initially has two agents of opinion “yes” and one
agent of opinion “no”, then a possible execution is:

�Y , Y, N� a−→ �y, Y , n� b−→ �y, Y, y�, (1)

where e.g. �Y, Y, N� denotes the multiset with two agents in state Y and one
agent in state N .

The goal of every population protocol is to ensure that the agents eventually
reach a lasting consensus, i.e., a multiset in which (1) either all agents are in
“yes”-states, or all agents are in “no”-states, and (2) further interactions do
not destroy the consensus. On top of this universal specification, each protocol
has an individual goal, determining which initial configurations should reach the
“yes” and the “no” lasting consensus. In the majority protocol above, the agents
should reach a “yes”-consensus iff 50% or more agents vote “yes”.

Execution (1) above leads to a lasting “yes”-consensus; further, the consensus
is the right one, since 2 out of 3 agents voted “yes”. In fact, assuming agents
interact uniformly and independently at random, the above protocol is correct:
executions almost surely reach a correct lasting consensus.

More formally, a population protocol is a tuple (Q,T, I,O) where Q is a
finite set of states, T ⊆ Q2 × Q2 is a set of transitions, I ⊆ Q are the initial
states and O : Q → {0, 1} is the output mapping. A configuration is a non-empty
multiset over Q, an initial configuration is a non-empty multiset over I, and a
configuration is terminal if it cannot be altered by any transition. A configuration
is in a consensus if all of its states map to the same output under O.

An execution is a finite or infinite sequence C0
t1−→ C1

t2−→ · · · such that Ci is
obtained from applying transition ti to Ci−1. A fair execution is either a finite
execution that reaches a terminal configuration, or an infinite execution such
that if {i ∈ N : Ci

∗−→ D} is infinite, then {i ∈ N : Ci = D} is infinite for any
configuration D. In other words, fairness ensures that a configuration cannot be
avoided forever if it is reachable infinitely often. Fairness is an abstraction of
the random interactions occurring within a population. A configuration C is in
a lasting consensus if every execution from C only leads to configurations of the
same consensus.

If for every initial configuration C, all fair executions from C lead to a last-
ing consensus ϕ(C) ∈ {0, 1}, then we say that the protocol computes the pred-
icate ϕ. For example, the above majority protocol with O(Y ) = O(y) = 1 and
O(N) = O(n) = 0 computes the predicate C[Y ] ≥ C[N ], where C[x] denotes the
number of occurrences of state x in C. A protocol does not necessarily compute a
predicate. For example, if we alter the majority protocol by removing transition
d, then �Y, N� a−→ �y, n� is a fair execution, but �y, n� is not in a consensus. In
other words, transition d acts as a tie-breaker which allows to reach the con-
sensus configuration �y, y�. A protocol that computes a predicate is said to be
well-specified. It is well-known that well-specified population protocols compute
precisely the predicates definable in Presburger arithmetic [3]. On top of differ-
ent majority protocols for the predicate C[x] ≥ C[y], the literature contains, e.g.,
different families of so-called flock-of-birds protocols for the predicates C[x] ≥ c,
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where c is an integer constant, and families of threshold protocols for the pred-
icates a1 · C[x1] + · · · + an · C[xn] ≥ c, where a1, . . . , an, c are integer constants
and x1, . . . , xn are initial states.

3 Analyzing Population Protocols

Peregrine is a web tool with a JavaScript frontend and a Haskell backend.
The backend makes use of the SMT solver Z3 [15] to test satisfiability of Pres-
burger arithmetic formulas. The user has access to four main features through
the graphical frontend. We present these features in the remainder of the section.

Protocol Description. Peregrine offers a description language for both sin-
gle protocols and families of protocols depending on some parameters. Single
protocols are described either through a graphical editor or as simple Python
scripts. Families of protocols (called parametric protocols) can only be specified
as scripts, but Peregrine assists the user by generating a code skeleton.

Simulation. Population protocols can be simulated through a graphical player
depicted in Fig. 1. The user can pick an initial configuration and simulate the
protocol by either manual selection of interactions, or by letting a scheduler
pick interactions uniformly at random. The simulator keeps a history of the
execution which can be rewound at any time, making it easy to experiment with
the different behaviours of a protocol. Configurations can be displayed in two
ways: either as explicit populations, as illustrated in Fig. 1, or as bar charts of
the states count, more convenient for large populations.

Fig. 1. Simulation of the majority protocol from the initial configuration �5 ·Y, 10 ·N�.

Statistics. Peregrine can generate statistics from batch simulations. The user
provides four parameters: smin, smax, m and n. Peregrine generates n random
executions as follows. For each execution, a number s is picked uniformly at
random from [smin, smax], and an initial configuration of size s is then picked
uniformly at random. Each step of an execution is picked uniformly at random
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among enabled interactions. If no terminal configuration is reached within m
steps, then the simulation halts. In the end, n executions of length at most m
are gathered. Peregrine classifies the generated executions according to their
consensus, and computes statistics on the convergence speed (see the next two
paragraphs). The results can be visualized in different ways, and the raw data
can be exported as a JSON file.

Consensus. For each random execution, Peregrine checks whether the last
configuration of an execution is in a consensus and, if so, whether the consensus
corresponds to the expected output of the protocol. Peregrine reports which
percentage of the executions reach a consensus, and whether the consensus is cor-
rect and/or lasting. In normal mode, Peregrine only classifies an execution as
lasting consensus if it ends in a terminal configuration. In the increased accuracy
mode, if the execution ends in a configuration C of consensus b ∈ {0, 1}, then
the model checker LoLA [18] is used to determine whether there exists a config-
uration C � such that C

∗−→ C � and C � is not of consensus b. If it is not the case,
then Peregrine concludes that C is in a lasting consensus. Peregrine plots
the percentage of executions in each category as a function of the population
size, as illustrated on the left of Fig. 2.

Average Convergence Speed. Peregrine also provides statistics on the conver-
gence speed of a protocol. Let C0

t1−→ C1
t2−→ · · · t�−→ C� be an execution such

that C� is in a consensus b ∈ {0, 1}. The number of steps to convergence of the
execution is defined as 0 if all configurations are of consensus b, and otherwise as
i+1, where i is the largest index such that Ci is not in consensus b. For each pop-
ulation size, Peregrine computes the average number of steps to convergence
of all consensus executions of that population size, and plots the information as
illustrated on the right of Fig. 2.

Fig. 2. Statistics for 5000 random executions of the approximate majority protocol
of [2], of length at most 40, from initial configurations of size at most 25. The left plot
shows the percentage of executions reaching a consensus (dark green: lasting correct,
light green: correct, light red: incorrect, dark red: lasting incorrect) and no consensus
(orange). In this example the occurrences of light red are negligible. The right plot
shows the average number of steps to convergence. (Color figure online)
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Fig. 3. Verification of the majority protocol of Sect. 2 without transition d : yn �→ yy.

Verification. Peregrine can automatically verify that a population proto-
col computes a given predicate. Predicates can be specified by the user in
quantifier-free Presburger arithmetic extended with the family of predicates
{x ≡ y (mod c)}c≥2, which is equivalent to Presburger arithmetic. For example,
for the majority protocol of Sect. 2, the user simply specifies C[Y] >= C[N].

Peregrine implements the approach of [6] to verify correctness of protocols
which are silent. A protocol is said to be silent if from every initial configuration,
every fair execution leads to a terminal configuration. The majority protocol of
Sect. 2 and most existing protocols from the literature are silent [6]. We briefly
describe the approach of [6] and how it is integrated into Peregrine.

Suppose we are given a population protocol P and we wish to determine
whether it computes a predicate ϕ. The procedure first tries to prove that P
is silent. This is done by verifying a more restricted condition called layered
termination. Verifying the latter property reduces to testing satisfiability of a
Presburger arithmetic formula. If this formula holds, then the protocol is silent,
otherwise no conclusion is derived. However, essentially all existing silent proto-
cols satisfy layered termination [6].

Once P is proven to be silent, the procedure attempts to prove that no “bad
execution” exists. More precisely, it checks whether there exist configurations C0

and C1 such that C0
∗−→ C1, C0 is initial, C1 is terminal, and C1 is not in consensus

ϕ(C0) ∈ {0, 1}. Since reachability is not definable in Presburger arithmetic, a
Presburger-definable over-approximation ∗−� of reachability, borrowed from Petri
net theory, is used instead. We obtain the following formula Φbad-exec:

∃C0, C1 : C0
∗−� C1 ∧

�

q �∈I

C0[q] = 0 ∧
�

t∈T

succ(C1, t) ⊆ {C1} ∧
�

q∈C1

(O(q) = ¬ϕ(C0)).

If Φbad-exec is unsatisfiable, then P is correct. Otherwise, no conclusion is reached,
and Φbad-exec is iteratively strengthened by enriching the over-approximation ∗−�.
Whenever Φbad-exec is satisfied by (C0, C1), Peregrine calls the model-checker
LoLA to test whether C1 is indeed reachable from C0. If so, then Peregrine
reports P to be incorrect, and generates a counter-example execution, which can
be replayed or exported as a JSON file (see Fig. 3).
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Currently Peregrine can verify protocols with up to a hundred states and
a few thousands transitions. The bottleneck is the size of the constraint system.
Due to lack of space, we refer the reader to [6] for detailed experimental results.
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Synopsis. We study the expressive power of broadcast consensus protocols, the ex-
tension of population protocols by reliable global broadcasts. We show that broadcast
consensus protocols compute precisely the predicates in NL, i.e. the predicates com-
putable by a nondeterministic Turing machine with logarithmic space, when the input
is given in unary. Hence broadcast consensus protocols are vastly more expressive than
basic population protocols, which are known to compute precisely the semilinear predi-
cates. We further show that broadcast protocols still compute all predicates in NL, when
restricted to a single broadcast signal. On the other hand, we prove that adding the
power to globally reset configurations to initial does not increase expressiveness relative
to population protocols.
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1 Introduction

Population protocols are a theoretical model for the study of ad hoc networks of tiny
computing devices without any infrastructure [5, 6], intensely investigated in recent years
(see e.g. [2, 3, 4, 14]). The model postulates a “soup” of indistinguishable agents that behave
identically, and only have a fixed number of bits of memory, i.e., a finite number of local states.
Agents repeatedly interact in pairs, changing their states according to a joint transition
function. A global fairness condition ensures that every finite sequence of interactions that
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becomes enabled infinitely often is also executed infinitely often. The purpose of a population
protocol is to allow agents to collectively compute some information about their initial
configuration, defined as the function that assigns to each local state the number of agents
that initially occupy it. For example, assume that initially each agent picks a boolean value
by choosing, say, q0 or q1 as its initial state. The many majority protocols described in
the literature allow the agents to eventually reach a stable consensus on the value chosen
by a majority of the agents. More formally, let x0 and x1 denote the initial numbers of
agents in states q0 and q1; majority protocols compute the predicate ϕ : N × N → {0, 1}
given by ϕ(x0, x1) = (x1 ≥ x0). Throughout the paper, we use the term “predicate” as an
abbreviation for “function from Nk to {0, 1} for some k”.

In a seminal paper, Angluin et al. proved that population protocols compute exactly the
predicates expressible in Presburger arithmetic [6, 7]. Thus, for example, agents can decide
if they are at least a certain number, if at least 2/3 of them voted the same way, or, more
generally, if the vector (x1, x2, . . . , xn) representing the number of agents that picked option
1, 2, . . . , n in an election with n choices is a solution of a system of linear inequalities. On
the other hand, they cannot decide if they are a square or a prime number, or if the product
of the number of votes for options 1 and 2 exceeds the number of votes for option 3. Much
work has been devoted to designing more powerful formalisms and analyzing their expressive
power. In particular, population protocols have recently been extended with capabilities
allowing an agent to obtain global information about the current configuration, which we
proceed to describe.

In [22], Michail and Spirakis extend the population protocol model with absence detectors,
by means of which an agent knows, for every state, whether the state is currently populated or
not. Further, they implement absence detectors by a weaker object called a cover-time service,
which allows an agent to deduce if it has interacted with every other agent in the system.
They prove that protocols with cover-time can compute all predicates in DSPACE(logn) and
can only compute predicates in NSPACE(logn) = NL, where n is the number of agents1.

In [8], Aspnes observes that cover-time services are a kind of internal clock mechanism,
and introduces clocked population protocols. Clocked protocols have a clock oracle that
signals to one or more agents that the population has reached a bottom strongly connected
component of the configuration graph, again an item of global information. Aspnes shows
that clocked protocols can compute exactly the predicates in NL.

Absence detectors, cover-time services, and clocked protocols are difficult to implement,
since they require that an agent reliably receives information from all other agents; moreover,
the agent needs to know that it has already received messages from all other agents before
making a move, which is particularly difficult because agents are assumed to have no identities
and to ignore the size of the population. In this paper, we propose a much simpler extension
(from an implementation point of view): We allow agents to perform reliable broadcasts,
a standard operation in concurrency and distributed computing. We are inspired by the
broadcast protocol model introduced by Emerson and Namjoshi in [15] to describe bus-based
hardware protocols. The model has been used and further studied in many other contributions,
e.g. [16, 18, 12, 24, 9]. In broadcast protocols, agents can perform binary interactions, as in
the population protocol model, but, additionally, an agent can also broadcast a signal to all
other agents, which are guaranteed to react to it. Broadcast protocols are rather simple to

1 Observe that, for example, n agents can decide whether n is prime. Indeed, a Turing machine can
decide if n is a prime number in Θ(log n) space by going through all numbers from 2 to n − 1, and
checking for each of them if they divide n.
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implement with current technology on mobile agents moving in a limited area. Broadcasts
also appear in biological systems. For example, Uhlendorf et al. describe a system in which
a controller adds a sugar or saline solution to a population of yeasts, to which all the yeasts
react [27]. An idealized model of the system, which is essentially a broadcast protocol, has
been analyzed by Bertrand et al. in [9].

In this paper, we show that population protocols with reliable broadcasts also compute
precisely the predicates in NL, and are therefore as powerful as absence detectors or clocks.
To prove this result, we first define the notion of silent semi-computation, a weaker notion
than standard computation, and prove that broadcast protocols silently semi-compute all
protocols in NL. This result makes crucial use of the ability of broadcast protocols to “restart”
the whole population nondeterministically whenever something bad or unexpected is detected.
We then prove that silent semi-computability and computability coincide for the class NL.

In a second contribution, we explore in more detail the minimal requirements for achieving
NL power. On the one hand, we show that it is enough to allow a single agent to broadcast
a single signal. On the other hand, we prove that the addition of a reset, which causes all
agents to return to their initial states, does not increase the power of population protocols.

2 Preliminaries

Multisets. A multiset over a finite set E is a mapping M : E → N. The set of all multisets
over E is denoted NE . For every e ∈ E, M(e) denotes the number of occurrences of e in
M . We sometimes denote multisets using a set-like notation, e.g. Hf, g, gI is the multiset
M such that M(f) = 1, M(g) = 2 and M(e) = 0 for every e ∈ E \ {f, g}. Addition and
comparison are extended to multisets componentwise, i.e. (M + M ′)(e) def= M(e) + M ′(e)
for every e ∈ E, and M ≤ M ′

def⇐⇒ M(e) ≤ M ′(e) for every e ∈ E. We define multiset
difference as (M �M ′)(e) def= max(M(e)−M ′(e), 0) for every e ∈ E. The empty multiset is
denoted 0 and, for every e ∈ E, we write e def= HeI. Finally, we define the support and size of
M ∈ NE respectively as JMK def= {e ∈ E : M(e) > 0} and |M | def=

∑
e∈EM(e).

Population protocols. A population over a finite set E is a multiset P ∈ NE such that
|P | ≥ 2. The set of all populations over E is denoted by Pop(E). A population protocol with
leaders (population protocol for short) is a tuple P = (Q,R,Σ, L, I, O) where:

Q is a non-empty finite set of states,
R ⊆ (Q×Q)× (Q×Q) is a set of rendez-vous transitions,
Σ is a non-empty finite input alphabet,
I : Σ→ Q is the input function mapping input symbols to states,
L ∈ NQ is the multiset of leaders, and
O : Q→ {0, 1} is the output function mapping states to boolean values.

Following the standard convention, we call elements of Pop(Q) configurations. Intuitively,
a configuration C describes a collection of identical finite-state agents with Q as set of states,
containing C(q) agents in state q for every q ∈ Q, and at least two agents in total.

We write (p, q) 7→ (p′, q′) to denote that (p, q, p′, q′) ∈ R. The relation Step: Pop(Q)→
Pop(Q) is defined by: (C,C ′) ∈ Step iff there exists (p, q, p′, q′) ∈ R such that C ≥ Hp, qI and
C ′ = C�Hp, qI+ Hp′, q′I. We write C −→ C ′ if (C,C ′) ∈ Step, and C ∗−→ C ′ if (C,C ′) ∈ Step∗,
the reflexive and transitive closure of Step. If C ∗−→ C ′, then we say that C ′ is reachable from
C. An execution is an infinite sequence of configurations C0C1 · · · such that Ci −→ Ci+1 for
every i ∈ N. An execution C0C1 · · · is fair if for every step C −→ C ′ the following holds: if
Ci = C for infinitely many indices i ∈ N, then Cj = C ′ for infinitely many indices j ∈ N.
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We now explain the roles of the input function I and the multiset L of leaders. The
elements of Pop(Σ) are called inputs. For every input X ∈ Pop(Σ), let I(X) ∈ Pop(Q)
denote the configuration defined by

I(X)(q) def=
∑

{σ∈Σ:I(σ)=q}
X(σ) for every q ∈ Q.

A configuration C is initial if C = I(X) + L for some input X. Intuitively, the agents of
I(X) encode the input, while those of L are a fixed number of agents, traditionally called
leaders, that perform the computation together with the agents of I(X).

Predicate computed by a protocol. If O(p) = O(q) for every p, q ∈ JCK, then C is a
consensus configuration, and O(C) denotes the unique output of the states in JCK. We
say that a consensus configuration C is a b-consensus if O(C) = b. An execution C0C1 · · ·
stabilizes to b ∈ {0, 1} if there exists n ∈ N such that Ci is a b-consensus for every i ≥ n.

A protocol P over an input alphabet Σ computes a predicate ϕ : Pop(Σ) → {0, 1} if
for every input X ∈ Pop(Σ), every fair execution of P starting at the initial configuration
I(X) + L stabilizes to ϕ(X).

Throughout the paper, we assume Σ = {A1, . . . , Ak} for some k > 0. Abusing language,
we identify population M ∈ Pop(Σ) to vector α = (M(A1), . . . ,M(Ak)), and say that P
computes a predicate ϕ : Nk → {0, 1} of arity k. In the rest of the paper, the term “predicate”
is used with the meaning “function from Nk to {0, 1}”. It is known that:

I Theorem 1 ([7]). Population protocols compute exactly the predicates expressible in
Presburger arithmetic, i.e. the first-order theory of the natural numbers with addition.

3 Broadcast consensus protocols

Broadcast protocols were introduced by Emerson and Namjoshi in [15] as a formal model of
bus-based hardware protocols, such as those for cache coherency. The model has also been
applied to the verification of multithreaded programs [12], and to idealized modeling of control
problems for living organisms [27, 9]. Its theory has been further studied in [16, 18, 24].

Agents of broadcast protocols can communicate in pairs, as in population protocols, and,
additionally, they can also communicate by means of a reliable broadcast. An agent can
broadcast a signal to all other agents, which after receiving the signal move to a new state.
Broadcasts are routinely used in wireless ad-hoc and sensor networks (see e.g. [1, 28]), and
so they are easy to implement on the same kind of systems targeted by population protocols.
They can also model idealized versions of communication in natural computing. For example,
in [9] they are used to model “communication” in which an experimenter “broadcasts” a
signal to a colony of yeasts by increasing the concentration of a nutrient in a solution.

We introduce broadcast consensus protocols, i.e., broadcast protocols whose goal is to
compute a predicate in the computation-by-consensus paradigm.

I Definition 2. A broadcast consensus protocol is a tuple P = (Q,R,B,Σ, L, I, O), where
all components but B are defined as for population protocols, and B is a set of broadcast
transitions. A broadcast transition is a triple (q, r, f) where q, r ∈ Q and f : Q → Q is a
transfer function.

The relation Step ⊆ Pop(Q) × Pop(Q) of P is defined as follows. A pair (C,C ′) of
configurations belongs to Step iff
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there exists (p, q) 7→ (p′, q′) ∈ R such that C ≥ Hp, qI and C ′ = C � Hp, qI + Hp′, q′I; or
there exists a transition (q, r, f) ∈ B such that C(q) ≥ 1 and C ′ is the configuration
computed from C in the following three steps:

C1 = C � HqI, (1)

C2(q′) =
∑

r′∈f−1(q′)

C1(r′) for every q′ ∈ Q, (2)

C ′ = C2 + HrI. (3)

Intuitively, (1)–(3) is interpreted as follows: (1) an agent at state q broadcasts a signal and
leaves q, yielding C1; (2) all other agents receive the signal and move to the states indicated
by the function f , yielding C2; and (3) the broadcasting agent enters state r, yielding C ′.
Correspondingly, instead of (q, r, f) we use q 7→ r; f as notation for a broadcast transition.

Beyond Presburger arithmetic. As a first illustration of the power of broadcast protocols,
we show that their expressive power goes beyond Presburger arithmetic, and so beyond the
power of population protocols. We present a broadcast consensus protocol for the predicate
ϕ, defined as ϕ(x) = 1 iff x > 1 and x is a power of two. For readability, we use the
notation q 7→ q′; [q1 7→ q′1, . . . , qn 7→ q′n] for a broadcast transition, where f(qi) = q′i and
where transfers of the form qi 7→ qi may be omitted.

Let P = (Q,R,B,Σ, L, I, O) be the broadcast consensus protocol where
Q

def= {x, x, x̃, 0, 1,⊥}, Σ def= {x}, I def= x 7→ x, L def= 0, O(q) = 1 def⇐⇒ q = 1, and R and B are
defined as follows:

R contains the rendez-vous transition s : (x, x) 7→ (x, 0);
B contains the broadcast transitions r : ⊥ 7→ x; [q 7→ x : q ∈ Q] and

s : x 7→ x;




x 7→ ⊥
x 7→ x

0 7→ 1


 t0 : x 7→ x;

[
1 7→ 0

]
t0 : x 7→ 0;




x 7→ ⊥
x 7→ 0
1 7→ ⊥


 t1 : x 7→ 1;




x 7→ ⊥
x 7→ ⊥
0 7→ ⊥


 .

Intuitively, P repeatedly halves the number of agents in state x, and it accepts iff it never
obtains an odd remainder. More precisely, the transitions of P are intended to be fired as
follows, where C denotes the current configuration:

while C(x) 6= 1:
while C(x) ≥ 2: fire s /* split agents equally from x to x and 0 */
if C(x) = 0: fire s /* move agents from x to x if no remainder */

if C(x) = 0: fire t1 /* if no remainder, then accept */
else: fire t0 t0 /* otherwise, reject */

It is easy to show that P produces a (lasting) consensus, and the right one, if transitions are
executed as above. However, an arbitrary execution may not follow the above procedure.
Firing transition t0 when not intended has no incidence on the outcome. Moreover, if another
transition is fired when it should not be, then s, t0 or t1 will detect this error by moving an
agent to state ⊥. In this case, by fairness, r eventually resets the agents back to the initial
configuration and, again by fairness, transitions are eventually fired as intended.

I Proposition 3. The broadcast consensus protocol P described above computes the predicate
ϕ, defined as ϕ(x) = 1 iff x > 1 and x is a power of two.
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Leaderless broadcast protocols. A broadcast protocol P = (Q,R,B,Σ, L, I, O) is leaderless
if L = 0. It can be shown that leaderless broadcast consensus protocols compute the same
predicates as the general class. We only sketch the argument. First, a broadcast protocol
with leader multiset L can be simulated by a protocol with a single leader. Indeed, the
protocol can be designed so that the first task of the leader is to “recruit” the other leaders
of L from among the agents. Second, a protocol with one leader can be simulated by a
leaderless protocol because, loosely speaking, a broadcast protocol can elect a leader in a
single computation step2. Indeed, if initially all agents are in a state, say q, then a broadcast
q 7→ `; f , where f(q) = q′, sends exactly one agent to leader state `, and all other agents to
state q′. It is simple to construct P ′ using this feature, and the details are omitted.

In the rest of the paper, we use protocols with leaders to simplify the constructions, but
all results (except Proposition 17) remain valid for leaderless protocols.

4 Broadcast consensus protocols compute exactly NL

In this section, we prove our main theorem: a predicate is computable by a broadcast
consensus protocol iff it is in NL. We follow the convention and say that a predicate ϕ
belongs to NL if there is a nondeterministic Turing machine that accepts in O(logn)-space
exactly the tuples (x1, x2, . . . , xk) ∈ Nk, encoded in unary, such that ϕ(x1, x2, . . . , xk) holds.

The proof is divided in two parts. Section 4.1 proves the easier direction: predicates
computable by broadcast consensus protocols are in NL. Section 4.2 proves the converse,
which is more involved.

4.1 Predicates computable by broadcast consensus protocols are in NL
We prove the result in more generality. We define a generic computational model in which
the possible steps between configurations are given by an arbitrary relation preserving the
number of agents. Formally, a generic consensus protocol is a tuple P = (Q,Step,Σ, L, I, O)
where Q,Σ, L, I, O are defined as for population protocols, and Step ⊆ Pop(Q)× Pop(Q) is
the step relation between populations, satisfying |C| = |C ′| for every (C,C ′) ∈ Step.

Clearly, broadcast consensus protocols are generic consensus protocols. Further, it is easy
to see that if Step is the one-step relation of a broadcast protocol, then Step ∈ NL. Indeed,
Step ∈ NL if there is a nondeterministic Turing machine that given a pair of configurations
(C,C ′) with n agents, uses O(logn) space and accepts iff (C,C ′) ∈ Step. A quick inspection
of the two conditions in the definition of Step (Definition 2) shows that this is the case.

Thus, it suffices to prove that generic consensus protocols satisfying Step ∈ NL can only
compute predicates in NL. We sketch the proof, more details can be found in the full version
of the paper.

I Proposition 4. Let P = (Q,Step,Σ, L, I, O) be a generic consensus protocol computing a
predicate ϕ. If Step ∈ NL, then ϕ ∈ NL. In particular, predicates computable by broadcast
consensus protocols are in NL.

Proof. We show that there is a nondeterministic Turing machine that decides whether
ϕ(x) = 1 holds, and uses O(log |x|) space. Let G = (V,E) be the graph where V is the set
of all configurations of P of size |x|, and (C,C ′) ∈ E iff C −→ C ′.

2 Unlike population protocols, where efficient leader election is non-trivial and much studied; see e.g. [14].
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It is easy to see that ϕ(x) = 1 iff G contains a configuration C of size |C| = |I(x)| = |x|
satisfying (1) C0

∗−→ C; and (2) every configuration reachable from C, including C itself, is
a 1-consensus. Therefore, we can decide ϕ(x) = 1 by guessing C, and checking (1) and (2)
in O(log |I(x)|) space. For (1), this follows from the fact that graph reachability is in NL.
For (2), we observe that determining whether some configuration reachable from C is not a
1-consensus can be done in NL, and we use the fact that NL = coNL [20]. J

I Remark 5. Protocols with absence detector [22] are a class of generic consensus protocols,
and hence Proposition 4 can be used to give an alternative proof of the fact that these
protocols only compute predicates in NL.

4.2 Predicates in NL are computable by broadcast consensus protocols
The proof is involved, and we start by describing its structure. In Section 4.2.1, we show
that it suffices to prove that every predicate in NL is silently semi-computable. In the rest of
the section, we proceed to prove this in three steps. Loosely speaking, we show that:

predicates computable by nondeterministic Turing machines in O(n) space can also be
computed by counter machines with counters polynomially bounded in n (Section 4.2.2);
predicates computed by polynomially bounded counter machines can also be computed
by n-bounded counter machines, i.e. in which the sum of the values of all counters never
exceeds their initial sum (Section 4.2.3);
predicates computed by n-bounded counter machines can be silently semi-computed by
broadcast protocols. (Section 4.2.4).

Finally, Section 4.2.5 puts all parts of the proof together.

4.2.1 Silent semi-computation
Recall that, loosely speaking, a protocol computes ϕ if it converges to 1 for inputs that satisfy
ϕ, and it converges to 0 for inputs that do not satisfy ϕ. Additionally, a protocol silently
computes ϕ if convergence to b ∈ {0, 1} happens by reaching a terminal b-consensus, i.e., a
configuration C that is a b-consensus and from which one can only reach C itself. (Intuitively,
the protocol eventually becomes “silent” because no agent changes state anymore, and hence
communication “stops”.) We say that a protocol silently semi-computes ϕ if it reaches a
terminal 1-consensus for inputs that satisfy ϕ, and no terminal configuration for other inputs.

I Definition 6. A broadcast consensus protocol P silently semi-computes a k-ary predicate
ϕ if for every α ∈ Nk the following properties hold:
1. if ϕ(α) = 1, then every fair execution of P starting at I(α) eventually reaches a terminal

1-consensus configuration;
2. if ϕ(α) = 0, then no fair execution of P starting at I(α) eventually reaches a terminal

configuration.3

We show that if a predicate and its complement are both silently semi-computable by
broadcast consensus protocols, say P1 and P0, then the predicate is also computable by a
broadcast consensus protocol P which, intuitively, behaves as follows under input α. At
every moment in time, P is simulating either P1 or P0. Initially, P simulates P0. Assume
P is simulating Pi and the current configuration is C. If C is a terminal configuration of

3 Since every finite execution can be extended to a fair one, this condition is actually equivalent to “no
terminal configuration is reachable from I(α)”.
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Pi, then P terminates too. Otherwise, P nondeterministically chooses one of three options:
continue thesimulation of Pi, “reset” the computation to I0(α), i.e., start simulating P0, or
“reset” the computation to I1(α). Conditions 1 and 2 ensure that exactly one of P0 and P1
can reach a terminal configuration, namely Pϕ(α). Fairness ensures that P will eventually
reach a terminal configuration of Pϕ(α), and so, by condition 1, that it will always reach the
right consensus. Hence, P silently computes ϕ.

The “reset” is implemented by means of a broadcast that sends every agent to its initial
state in the configuration Ij(α); for this, the states of P are partitioned into classes, one for
each input symbol x ∈ X. Every agent moves only within the states of one of the classes,
and so every agent “remembers” its initial state in both P0 and P1.

I Lemma 7. Let ϕ be an m-ary predicate, and let ϕ be the predicate defined by ϕ(α) def=
1 − ϕ(α) for every α ∈ Nm. Further let P1 and P0 be broadcast consensus protocols that
silently semi-compute ϕ and ϕ, respectively. The following holds: there exists a broadcast
consensus protocol P that silently computes ϕ.

Proof. Let P1 = (Q1, R1, B1,Σ, I1, O1) and P0 = (Q0, R0, B0,Σ, I0, O0) be protocols that
silently semi-compute ϕ and ϕ, respectively. Assume w.l.o.g. that Q1 and Q0 are disjoint.
We construct a protocol P = (Q,R,B,Σ, I, O) that computes ϕ.

For the sake of clarity we refrain from giving a fully formal description, but we provide
enough details to show that the design idea above can indeed be implemented.

States and mappings. The set of states of P is defined as:

Q
def= Σ× (Q1 ∪Q0 ∪ {reset})

If an agent is in state (x, q), we say that x is its origin and that q is its position. The
initial position of an agent is its initial state in P0, i.e. I(x) def= (x, I0(x)). Transitions will
be designed so that agents may update their position, but not their origin. Alternatively,
instead of applying a transition, agents can nondeterministically choose to transition from
(x, q) ∈ X × (Q1 ∪ Q0) to (x, reset). An agent in state (x, reset) eventually resets the
simulation to either P0 or P1.

Simulation transitions. We define transitions that proceed with the simulation of P0 and
P1 as follows. For every i ∈ {1, 0}, every x, y ∈ Σ, and every non-silent rendez-vous transition
(q, r) 7→ (q′, r′) of Ri, we add the following rendez-vous transitions to R:

(x, q), (y, r) 7→ (x, q′), (y, r′) and (x, q), (y, r) 7→ (x, reset), (y, reset).

The first transition implements the simulation, while the second transition enables resets
when the simulation has not reached a terminal configuration. For every broadcast transition
q 7→ q′; f of Bi and every x ∈ Σ, we add the following broadcast transitions to B:

(x, q) 7→ (x, q′); f ′

(x, q) 7→ (x, reset); f ′

where f ′ only acts on Qi by f ′(y, r)
def= (y, f(r)) for every (y, r) ∈ Σ×Qi. The first transition

implements the simulation of a broadcast in the original protocols, while the second transition
enables a reset.
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Reset transitions. We define transitions that trigger a new simulation of either P0 or P1.
For every i ∈ {1, 0}, let fi : Q→ Q be the function defined as fi(x, q)

def= (x, Ii(x)) for every
(x, q) ∈ Q. For every i ∈ {1, 0} and every x ∈ Σ, we add the following broadcast transition
to B: (x, reset) 7→ (x, Ii(x)); fi. J

Using Lemma 7, we may now prove the following:

I Proposition 8. If every predicate in NL is silently semi-computable by broadcast consensus
protocols, then every predicate in NL is silently computable (and so computable) by broadcast
consensus protocols.

Proof. Assume every predicate in NL is silently semi-computable by broadcast consensus
protocols, and let ϕ be a predicate in NL. We resort to the powerful result stating that
predicates in coNL and NL coincide. This is an immediate corollary of the coNL = NL
theorem for languages [20, 26, 23], and the fact that one can check in constant space whether
a given word encodes a vector of natural numbers of fixed arity. Thus, both ϕ and ϕ are
predicates in NL, and so, by assumption, silently semi-computable by broadcast consensus
protocols. By Lemma 7, they are silently computable by broadcast consensus protocols. J

4.2.2 Simulation of Turing machines by counter machines
We recall that nondeterministic Turing machines working in O(n) space can be simulated by
counter machines whose counters are polynomially bounded in n, and so that both models
compute the same predicates.

Let X = {x1, x2, . . . , xk} and Ins = {inc(x), dec(x), zro(x), nzr(x), nop | x ∈ X}. A
k-counter machine M over counters X is a tuple (Q,X,∆,m, q0, qa, qr), where Q is a finite
set of control states; ∆ ⊆ Q × Ins × Q is the transition relation; m ≤ k is the number of
input counters; and q0, qa, qr are the initial, accepting, and rejecting states, respectively.

A configuration ofM is a pair C = (q,v) ∈ Q× Nk consisting of a control state q and
counter values v. For every i ∈ [k], we denote the value of counter xi in C by C(xi)

def= vi.
The size of C is |C| def=

∑k
i=1 C(xi).

Let ei be the i-th row of the k × k identity matrix. Given ins ∈ Ins, we define the
relation ins−−→ over configurations as follows: (q,v) ins−−→ (q′,v′) iff (q, ins, q′) ∈ ∆ and one of
the following holds: ins = inc(xi) and v′ = v + ei; ins = dec(xi), vi > 0, and v′ = v − ei;
ins = zro(xi), vi = 0, and v′ = v; ins = nzr(xi), vi > 0, and v′ = v; ins = nop and v′ = v.

For every α ∈ Nm, the initial configuration ofM with input α is defined as:

Cα
def= (q0, (α1,α2, . . . ,αm, 0, . . . , 0︸ ︷︷ ︸

k−m times

)).

We sayM accepts α if there exist counter values v ∈ Nk satisfying Cα
∗−→ (qa,v). We say

M rejects α if M does not accept α and for all configurations C ′ with Cα
∗−→ C ′, there

exists v ∈ Nk satisfying C ′ ∗−→ (qr,v). We sayM computes a predicate ϕ : Nm → {0, 1} if
M accepts all inputs α such that ϕ(α) = 1, and rejects all α such that ϕ(α) = 0.

A counter machineM is f(n)-bounded if |C| ≤ f(|Cα|) holds for every initial configuration
Cα and every configuration C reachable from Cα. It is well-known that counter machines
can simulate Turing machines:

I Theorem 9 ([19, Theorem 3.1]). A predicate is computable by an s(n)-space-bounded
Turing machine iff it is computable by a 2s(n)-bounded counter machine.
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In [19], a weaker version of Theorem 9 is proven that applies to deterministic Turing and
counter machines only. However, the proof can be easily adapted to the nondeterministic
setting we consider here.

I Corollary 10. A predicate is in NL iff it is computable by a polynomially bounded counter
machine.

4.2.3 Simulation of polynomially bounded counter machines by
n-bounded counter machines

I Lemma 11. For every polynomially bounded counter machine that computes some predicate
ϕ, there exists an n-bounded counter machine that computes ϕ.

Proof. We sketch the main idea of the proof; details can be found in the full version of the
paper. Let c ∈ N>0 and let M be an nc-bounded counter machine with k counters. To
simulateM by an n-bounded counter machineM, we need some way to represent any value
` ∈ [0, nc] by means of counters with values in [0, n]. We encode such a value ` by its base
n+ 1 representation over c counters. Zero-tests are performed by zero-testing all c counters
sequentially. Nonzero-tests are implemented similarly with parallel tests. Incrementation
and decrementation are implemented with gadgets to (a) assign 0 to a counter; (b) assign n
to a counter; (c) test whether a counter value equals n.

This construction is only weakly n-bounded, in the sense that all counters are indeed
bounded by n, but the overall sum can reach k ·n. To circumvent this issue, we simulateM by
another counter machineM′ whose counters symbolically hold values from multiple counters
of M. In more details, the counters are defined as {yS : S ⊆ X}. Intuitively, if counter
yS has value a, then it contributes by a to the value of each counter of S. For example,
if X = {x1, x2, x3} and the input size is n = 6, then counter values (x1, x2, x3) = (6, 1, 4)
ofM can be represented inM′ as y{x1,x2,x3} = 1, y{x1,x3} = 3, y{x1} = 2, and yS = 0 for
every other S. Under such a representation, the sum of all counters equals n. Moreover, all
instructions can be implemented quite easily. J

4.2.4 Simulation of n-bounded counter machines by broadcast
consensus protocols

Let M = (Q,X,∆,m, q0, qa, qr) be an n-bounded counter machine that computes some
predicate ϕ : Nm → {0, 1}. We construct a broadcast protocol P = (Q′, R,B,Σ, L, I, O) that
silently semi-computes ϕ.

States and mappings. Let X ′ def= X ∪ {idle, err}. The states of P are defined as

Q′
def= Q× {0, 1}︸ ︷︷ ︸

leader states

∪ X ′ ×X × {0, 1}︸ ︷︷ ︸
nonleader states

.

The protocol will be designed in such a way that there is always exactly one agent, called the
leader, in states Q× {0, 1}. Whenever the leader is in state (q, b), we say that its position
is q, and its opinion is b. Every other agent will remain in a state from X ′ ×X × {0, 1}.
Whenever a nonleader agent is in state (x, y, b), we say that its position is x, its origin is y,
and its opinion is b. Intuitively, the leader is in charge of storing the control state ofM, and
the nonleaders are in charge of storing the counter values ofM.
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The protocol has a single leader whose initial position is the initial control state ofM,
i.e. L def= H(q0, 0)I. Moreover, every nonleader agent initially has its origin set to its initial
position, which will remain unchanged by definition of the forthcoming transition relation:
I(x) def= (x, x, 0) for every x ∈ X. The output of each agent is its opinion:

O(q, b) def= b for every q ∈ Q, x ∈ X ′, y ∈ X, b ∈ {0, 1}.
O(x, y, b) def= b

We now describe how P simulates the instructions ofM.

Decrementation/incrementation. For every transition q dec(x)−−−−→ r ∈ ∆, every y ∈ X and
every b, b′ ∈ {0, 1}, we add to R the rendez-vous transition:

(q, b), (x, y, b′) 7→ (r, b), (idle, y, b′).

These transitions change the position of one agent from x to idle, and thus decrement the
number of agents in position x.

Similarly, for every transition q inc(x)−−−−→ r, every y ∈ X and every b, b′ ∈ {0, 1}, we add to
R the rendez-vous transition:

(q, b), (idle, y, b′) 7→ (r, b), (x, y, b′).

These transitions change the position of an idle agent to x, and thus increment the number
of agents in position x. If no agent is in position err, then at least one idle agent is available
when a counter needs to be incremented, sinceM is n-bounded.

Nonzero-tests. For every q nzr(x)−−−−→ r ∈ ∆, every y ∈ X and every b, b′ ∈ {0, 1}, we add to
R the rendez-vous transition:

(q, b), (x, y, b′) 7→ (r, b), (x, y, b′).

These transitions can only be executed if there is at least one agent in position x, and thus
only if the value of x is nonzero.

Zero-tests. For a given x ∈ X, let fxerr : Q′ → Q′ be the function that maps every nonleader
in position x to the error position, i.e. fxerr(x, y, b)

def= (err, y, b) for every y ∈ X, b ∈ {0, 1},
and fx is the identity for all other states.

For every transition q
zro(x)−−−−→ r ∈ ∆ and every b ∈ {0, 1}, we add to B the broadcast

transition (q, b) 7→ (r, b); fxerr. If such a transition occurs, then nonleaders in position x move
to err. Thus, an error is detected iff the value of x is nonzero.

To recover from errors, P can be reset to its initial configuration as follows. Let frst : Q′ →
Q′ be the function that sends every state back to its origin, i.e.

frst(q, b)
def= (q0, 0) for every q ∈ Q, b ∈ {0, 1},

frst(x, y, b)
def= (y, y, 0) for every x ∈ X ′, y ∈ X, b ∈ {0, 1}.

For every y ∈ X and every b ∈ {0, 1}, we add the following broadcast transition to B to
reset P to its initial configuration:

(err, y, b) 7→ (y, y, 0); frst.

CONCUR 2019
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Acceptance. For every q ∈ Q \ {qa} and b ∈ {0, 1}, we add to B the broadcast transition
(q, b) 7→ (q0, 0); frst. Intuitively, as long as the leader’s position differs from the accepting
control state qa, it can reset P to its initial configuration. This ensures that P can try all
computations.

Let ferr : Q′ → Q′ be the function that changes the opinion of each state to 1, i.e.

ferr(q, b) def= (q, 1) for every q ∈ Q, b ∈ {0, 1},
ferr(x, y, b) def= (x, y, 1) for every x ∈ X ′, y ∈ X, b ∈ {0, 1}.

For every b ∈ {0, 1}, we add the following transition to B:

tone,b : (qa, b)→ (qa, 1); fone.

Intuitively, these transitions change the opinion of every agent to 1. If such a transition
occurs in a configuration with no agent in err, then no agent can change its state anymore,
and the stable consensus 1 has been reached.

Correctness. Let us fix some some input α ∈ Nm. Let C0 and D0 be respectively the initial
configurations ofM and P on input α. Abusing notation, for every D ∈ Pop(Q′), let

D(x) def=
∑

(x,y,b)∈Q′
D(x, y, b).

The two following propositions state that every execution of M has a corresponding
execution in P and vice versa. The proofs are routine.

I Proposition 12. Let C be a configuration of M such that C is in control state q and
C0

∗−→ C. There exists a configuration D ∈ Pop(Q′) such that (i) D0
∗−→ D; (ii) D(x) = C(x)

for every x ∈ X; (iii) D(err) = 0; and (iv) D(q, b) = 1 for some b ∈ {0, 1}.
I Proposition 13. Let D ∈ Pop(Q′) be such that D0

∗−→ D. If D(err) = 0, then there is a
configuration C ofM such that (i) C0

∗−→ C; (ii) C(x) = D(x) for every x ∈ X; and (iii) if
D(q, b) = 1 for some (q, b) ∈ Q′, then C is in control state q.

We may now prove that P silently semi-computes ϕ.

I Proposition 14. For every n-bounded counter machineM that computes some predicate
ϕ, there exists a broadcast consensus protocol that silently semi-computes ϕ.

Proof. We show that P silently semi-computes ϕ by proving the two properties of Definition 6.
Let α be an input.
1. Assume ϕ(α) = 1. Then M accepts α, and so there is a configuration C such that

C0
∗−→ C and C is in control state qa. By Proposition 12, there exists some configuration

D ∈ Pop(Q′) satisfying D0
∗−→ D, D(err) = 0 and D(qa, b) = 1. Since M halts when

reaching qa, the only transition enabled at D is tone,b, and its application yields a terminal
configuration D′ of consensus 1. Further, every configuration reachable from D0, where
the leader is not in position qa or where some nonleader is in position err, can be set
back to D0 via some reset transition. Therefore, every fair execution of P starting at
I(α) = C0 will eventually reach D′.

2. Assume ϕ(α) = 0. We prove by contradiction that no configuration D reachable from D0
is terminal. Assume the contrary. We must have D(qa, 1) = 1, D(err) = 0 and O(D) = 1,
for otherwise some broadcast transition with frst or fone would be enabled. From this
and by Proposition 13, there exists some configuration C ofM in control state qa and
satisfying C0

∗−→ C. Thus,M accepts α, contradicting ϕ(α) = 0. J
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4.2.5 Main theorem
We prove our main result, namely that broadcast consensus protocols precisely compute the
predicates in NL.

I Theorem 15. Broadcast consensus protocols compute exactly the predicates in NL.

Proof. Proposition 4 shows that every predicate computable by broadcast consensus protocols
is in NL. For the other direction, let ϕ be a predicate in NL. Since NL = coNL by Immerman-
Stelepcsényi’s theorem, the complement predicate ϕ is also in NL. Thus, ϕ and ϕ are
computable by O(logn)-space-bounded nondeterministic Turing machines. By Theorem 9
and Proposition 11, ϕ and ϕ are computable by polynomially bounded counter machines,
and thus by n-bounded counter machines. Therefore, by Proposition 14, ϕ and ϕ are silently
semi-computable by broadcast consensus protocols. By Proposition 8, this implies that ϕ is
silently computable by a broadcast consensus protocol. J

Actually, the proof shows this slightly stronger result:

I Corollary 16. A predicate is computable by a broadcast consensus protocol iff it is silently
computable by a broadcast consensus protocol. In particular, broadcast consensus protocols
silently compute all predicates in NL.

5 Subclasses of broadcast consensus protocols

While broadcasting is a natural, well understood, and much used communication mechanism,
it also consumes far more energy than rendez-vous communication. In particular, agents
able to broadcast are more expensive to implement. In this section, we briefly analyze which
restrictions can be imposed on the broadcast model without reducing its computational
power. We show that all predicates in NL can be computed by protocols satisfying two
properties:
1. only one agent broadcasts; all other agents only use rendez-vous communication.
2. the broadcasting agent only needs to send one signal, meaning that the receivers’ response

is independent of the broadcast signal.

Finally, we show that a third restriction does decrease the computational power. In
simulations of the previous section, broadcasts are often used to “reset” the system. Since
computational models with resets have been devoted quite some attention [21, 25, 13, 11],
we investigate the computational power of protocols with resets.

Protocols with only one broadcasting agent. Loosely speaking, a broadcast protocol with
one broadcasting agent is a broadcast protocol P = (Q,R,B,Σ, L, I, O) with a set Q` of
leader states such that L = HqI for some q ∈ Q` (i.e., there is exactly one leader), and whose
transitions ensure that the leader always remains within Q`, that no other agent enters
Q`, and that only agents in Q` can trigger broadcast transitions. Protocols with multiple
broadcasting agents can be simulated by protocols with one broadcasting agent, say b. Instead
of directly broadcasting, an agent communicates with b by rendez-vous, and delegates to
b the task of executing the broadcast. More precisely, a broadcast transition q 7→ q′; f is
simulated by a rendez-vous transition (q, q`) 7→ (qaux, q`,f ), followed by a broadcast transition
q`,f 7→ q`; (f ∪ {qaux 7→ q′}).
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Single-signal broadcast protocols. In single-signal protocols the receivers’ response is
independent of the broadcast signal. Formally, a broadcast protocol (Q,R,B,Σ, I, O) is a
single-signal protocol if there exists a function f : Q→ Q such that B ⊆ Q2 × {f}.

I Proposition 17. Predicates computable by broadcast consensus protocols are also computable
by single-signal broadcast protocols.

Proof. We give a proof sketch; details can be found in the full version of the paper. We
simulate a broadcast protocol P by a single-signal protocol P ′. The main point is to simulate
a broadcast step C1

q1 7→q2;g−−−−−→ C2 of P by a sequence of steps of P ′.
In P, an agent at state q1, say a, moves to q2, and broadcasts the signal with meaning

“react according to g”. Intuitively, in P ′, agent a broadcasts the unique signal of P ′, which
has the meaning “freeze”. An agent that receives the signal, say b, becomes “frozen”. Frozen
agents can only be “awoken” by a rendez-vous with a. When the rendez-vous happens, a
tells b which state it has to move to according to g.

The problem with this procedure is that a has no way to know if it has already performed
a rendez-vous with all frozen agents. Thus, frozen agents can spontaneously move to a state
err indicating “I am tired of waiting”. If an agent is in this state, then eventually all agents
go back to their initial states, reinitializing the computation. This is achieved by letting
agents in state err move to their initial states while broadcasting the “freeze” signal. J

Protocols with reset. In protocols with reset, all broadcasts transitions reset the protocol to
its initial configuration. Formally, a population protocol with reset is a broadcast protocol P =
(Q,R,B,Σ, I, O) such that for every finite execution C0C1 · · ·Ck from an initial configuration
C0, the following holds: Ck

b−→ C ′ implies C ′ = C0 for every b ∈ B and every C ′ ∈ Pop(Q).

I Proposition 18. Every predicate computable by a population protocol with reset is
Presburger-definable, and thus computable by a standard population protocol.

Proof. We give a proof sketch; details can be found in the full version of the paper. Let
P = (Q,R,B,Σ, I, O) be a population protocol with reset that computes some predicate. We
show that the set of accepting initial configurations of P , denoted I1, is Presburger-definable
as follows. Let:
P ′ be the population protocol obtained from P by eliminating the resets;
N be the set of configurations C of P ′ from which no reset can occur, i.e., no configuration
reachable from C enables a reset of P;
S1 be the set of configurations C of P ′ that are stable 1-consensuses, i.e., O(C ′) = 1 for
every C ′ reachable from C;
B be the set of configurations C of P ′ that belong to a bottom strongly connected
component of the configuration graph, i.e., C can reach C ′ iff C ′ can reach C.

We show that an initial configuration C belongs to I1 iff it belongs to S1 or it can reach
a configuration from S1 ∩ B ∩ N . Using results from [17], showing in particular that B is
Presburger-definable, we show that I1 is Presburger-definable. J

6 Conclusion

We have studied the expressive power of broadcast consensus protocols: an extension
of population protocols with reliable broadcasts, a standard communication primitive in
concurrency and distributed computing. We have shown that, despite their simplicity, they
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precisely compute predicates from the complexity class NL, and are thus as expressive
as several other proposals from the literature which require a primitive more difficult to
implement: receiving messages from all agents, instead of sending messages to all agents.

As future work, we wish to study properties beyond expressiveness, such as state com-
plexity and space vs. speed trade-offs. It would also be interesting to tackle the formal
verification of broadcast consensus protocols. Although this is challenging as it goes beyond
Presburger arithmetic and the decidability frontier, it has recently been shown that models
with broadcasts admit more tractable approximations [10].
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