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Summary

We consider the goal of ensuring robust stability when a given manipulator
feedback control law is modified online, for example, to safely improve the
performance by a learning module. To this end, the factorization approach
is applied to both the plant and controller models to characterize robustly
stabilizing controllers for rigid-body manipulators under approximate inverse
dynamics control. Outer-loop controllers to stabilize the nonlinear uncertain
loop that results from approximate inverse dynamics are often derived by lump-
ing uncertainty in a single term and subsequent analysis of the error system.
Here, by contrast, the well-known norm bounds of these uncertain dynamics
are first recast into a generalized plant configuration that preserves the char-
acteristic uncertainty structure. Then, the overall loop uncertainty is expressed
with respect to the nominal outer-loop feedback controller by means of an
uncertain dual-Youla operator. Therefore, using the dual-Youla parameteriza-
tion, we provide a novel way to rigorously quantify permissible perturbations
of robot manipulator feedforward/feedback controllers. The method proposed
in this paper does not constitute another robust control law for rigid-body
manipulators, but rather a characterization of a set of robustly stabilizing con-
trollers. The resulting double-Youla parameterization for the control of robot
manipulators is amenable to numerous advanced design methods. The result
is thoroughly discussed by a planar elbow manipulator and exemplified with a
six-degree-of-freedom robot scenario with varying payload.
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1 INTRODUCTION

Operating conditions of robot manipulators change over time, impairing the control performance, for example, by wear,
varying load, etc. To adapt the controller to such situations, a variety of data-driven methods have been proposed in
the literature, including adaptive and learning control.1-4 In practice, however, very simple feedback controllers and
model-based architectures are prevalent.
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On the one hand, if the complete dynamic model is available, feedback linearization can be applied. On the other hand,
simple, completely model free controllers are ubiquitous, most prominently, the popular proportional-derivative (PD)
controller. Both may be interpreted as two extremes on the spectrum of approximate inverse dynamics (AID) controllers:
ideal linearization is theoretically achieved if the model is perfect; if, on the contrary, there simply is no dynamical model
in the controller, only the PD action of the outer loop remains. In this article, we consider the following question. Given
a robot manipulator under AID control, how and how much can the outer-loop controller be modified during opera-
tion without compromising stability? Answering this question ultimately allows to use for online control performance
enhancement methods that are otherwise hard to employ in a strict robust stability framework, eg, black-box optimization
or reinforcement learning.

It is intuitively clear that the worse the controller is informed about the dynamic characteristics of the controlled robot,
the harder it will be to provide stability guarantees when the controller is modified during operation. This situation is
depicted in Figure 1 and motivates this article: We provide a method to quantify this trade-off. We then characterize a
set of robustly stabilizing controllers R, ie, all controllers contained in R stabilize the uncertain nonlinear inner loop
resulting from a particular AID situation. Interestingly, not only the model accuracy but also the nominal outer-loop
controller K influence the amount of apparent uncertainty in the loop. Only comparatively recently, Bascetta and Rocco5

have reformulated the robust control of rigid manipulators to account for this issue, after it had not been considered by the
most common robust robot control methods.1-4 The new framework proposed in this article provides a unified perspective
and constitutes a tool to explore freedom in controller (re)tuning, given a simplified model of the robot manipulator and
a nominal outer-loop controller K.

Central to our method is a Q-parameterization (viz, Youla-Kučera parameterization due to the original developments
in the works of Youla et al6 and Kučera7) of stabilizing controllers and the dual S-parameterization of plants stabilized by
a controller.8 The primary parameterization was already applied to the robust linear design of robot controllers around
30 years ago,9 known in robotics as the stable factorization approach.9,10 Our interest in extending this approach is due
to the beneficial stability and robustness properties obtained by a Q-parameterization: Our recent work11 suggests that
such a parameterization is very helpful to leverage machine learning also in a feedback configuration, that is, in closed
loop and on hardware. Inherently, the question is raised of how much feedback controller modification is admissible,
given the effect of neglected uncertainties in the closed-loop system. The dual-Youla parameter S is needed to answer this
question and there appears to be a gap in the literature of how to utilize the dual parameterization12 for the control of
robot manipulators. The following novel methodological contributions are given.

(i) A generalized plant description of the rigid-body robot manipulator under AID control is formulated, such that the
sources of uncertainty remain separated and the outer-loop controller K is left undetermined.

(ii) Next, a dual-Youla parameterization is derived to quantify the uncertainty occurring by the interplay of neglected
manipulator dynamics in the inner loop and the outer-loop controller K. Opposed to the works of Bascetta and Rocco5

and Spong and Vidyasagar,9 our approach allows for a general control configuration and the sources of uncertainty
are kept separated throughout. Hence, we propose a unified framework to rigorously assess the uncertainty arising
in the closed-loop system.

(iii) Our main result is a general parameterization of robustly stabilizing two-degree-of-freedom (DoF) (feedforward/
feedback) controllers for rigid-body manipulators under AID control that is amenable to a variety of control design

FIGURE 1 The goal of this article is to parameterize a set of robustly
stabilizing feedback controllers for rigid-body robot manipulators. To this
end, a general approximate inverse dynamics (AID) controller is
considered in the inner loop that may range from a perfect inverse
dynamics model to none at all. An outer-loop feedback controller K be
given that stabilizes the loop but may not yet yield satisfactory
performance. Therefore, in general, one can augment K by some stable
parameter Q ∈  ⊆ ∞. However, if the dynamic model of in the inner
AID loop is imperfect, only a subset  ⊂ ∞ is admissible to preserve
the stability of the overall loop. In this article, the set  and the controller
parameterization K(Q) are characterized such that various advanced
design methods can be used for robust controller performance
enhancement [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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methods (learning, gain scheduling, etc). To this end, the worst-case uncertainty measure from (ii) is employed in a
double-Youla parameterization, effectively tightening the set of nominally stabilizing controllers for the ideal double
integrator system to the corresponding subset of robustly stabilizing controllers.

(iv) The derivation offers several new developments of relevance to the broader control community beyond the scope of
robotics. In particular:

(a) A state-space realization for the dual-Youla parameter is derived for nondynamic metric-bounded uncertainty,
given an arbitrary linear controller and a strictly proper plant.

(b) We specialize the result to a double-Youla parameterization based on a static central controller and discuss a
choice of the gain design parameter such that the results are further simplified.

The remainder of this article is structured as follows. We first introduce the methods underlying our work in Section 2.
The main result is given in Section 3, a general double-Youla parameterization for robot manipulators under AID control;
the specialization using a static nominal controller is then reported in Section 4. In Section 5, the results are exemplified
and thoroughly discussed by means of a planar elbow manipulator and a PUMA P560 robot model with six DoFs. The
proofs and some technical details are provided in the Appendix.

Notation. Lowercase boldface letters are for vectors (x), matrices (M) are written in capital bold letters, sets () are

calligraphic, transfer operators (G) that define input/output relations are in standard capital letters, and stands

for a state-space realization. The symbol≜means equality by definition. The set of nonnegative real numbers isℝ+
0 and

the Euclidean space of vectors of dimension n is denoted ℝn, with the 2-norm ||x|| =√∑n
i=1 |xi|2. The corresponding

induced matrix norm of an n× n matrix M is written ||M||. The vertical concatenation of two column vectors x1, x2 is
denoted col(x1x2) ≜ [x⊤

1 , x⊤
2 ]

⊤. A symmetric positive definite matrix M = M⊤ is written M ≻ 0. The set of 𝛾-bounded
n ×m real matrices w.r.t. the induced p-norm is n×m

p (𝛾) ≜ {M ∶ M ∈ ℝn×m, ||M||p ≤ 𝛾}. The set 2 consists of twice
continuously differentiable functions on ℝ. The set of all piecewise continuous integrable functions x ∶ ℝ+

0 → ℝn

is the Lebesgue space p for 1 ≤ p < ∞ with norm ||x||p = (∫
∞

0 ||x(t)||pdt)1∕p < ∞, and 𝓁p denotes the analogous
discrete-time norms. Furthermore, x(t) ∈ ∞(ℝ+

0 ,ℝn) is the space of uniformly bounded functions with ||x(t)||∞ <

∞. We use the convention that if G(s) is a transfer matrix and u = u(t) is a Laplace transformable signal, then by
Gu the signal (g ∗ u)(t) is meant, where g(t) is the impulse response of G(s) and ∗ denotes the convolution operator,
with the technical distinction being given from the context. The space ∞ denotes the set of all proper and real
n × m rational stable transfer matrices G(s) and the associated ∞ norm is ||G(s)||∞ ≜ sup𝜔∈ℝ�̄�(G( 𝑗𝜔)), where �̄�

denotes the largest singular value. If G is a nonlinear mapping, by ||G||∞ the induced 2 gain of G is meant. The
feedback interconnection of two systems G1 and G2 through common input/output variables is written (G1,G2). A

lower linear fractional transformation of a partitioned operator G =
[

G11 G12
G21 G22

]
∈ ∞ with another mapping K

is written 𝓁(G,K) ≜ G11 + G12K(I − G22K)−1G21, whereas the upper fractional transformation is u(G,Δ) ≜ G22 +
G21Δ(I − G11Δ)−1G12. The transformations are well defined if and only if the well-posedness condition is satisfied.

2 REVIEW OF UNDERLYING CONCEPTS

2.1 Rigid-body manipulator dynamics and tracking control
We consider a rigid-body robot manipulator with n links, described by the standard Euler-Lagrange model1-3

M(q(t))q̈(t) + n(q(t), .q(t)) = 𝜏(t) + 𝜏dist(t), (1)

n(q(t), .q(t)) = C(q(t), .q(t)) .q(t) + f ( .q(t)) + g(q(t)), (2)

where q(t) ∈ ℝn is the vector of generalized coordinates (representing joint positions), 𝝉 ∈ ℝn is the input vector of
generalized force (torque), M(q) ∈ ℝn×n,M(q) ≻ 0 is the inertia matrix, and n ∈ ℝn is a vector that summarizes the
vector of Coriolis and centrifugal terms C(q(t), .q(t)) .q(t) ∈ ℝn, the friction terms f ( .q(t)) ∈ ℝn, and the gravitational terms
g(q(t)) ∈ ℝn. It is assumed that the input disturbance 𝝉dist(t) is a Lebesgue measurable function. The state of the system
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is denoted x(t) = col(q(t), .q(t)). Given a desired path in joint space qd(t) ∈ 2,qd,
.qd, q̈d ∈ ∞(ℝ+,ℝn), the tracking error

is formed as e(t) = col(e1(t), e2(t)) = col(qd(t) − q(t), .qd(t) −
.q(t)). The measurement available for feedback is assumed as

q̂(t) = q + w1(t),
.̂q(t) = .q(t) + w2(t), where w(t) represents measurement uncertainty. The goal of tracking control is to

find a controller generating 𝝉(t) such that e(t) vanishes. For the sake of readability, we henceforth drop the dependency
on time t where it is unambiguously clear from the context.

2.2 Control of rigid manipulators using AID
The parameters of (1) are in pratice not known exactly. The approximate or realistic inverse dynamics control2,3 therefore
attempts to cancel the nonlinearities of (1) by feedback linearization based on the measured quantities and an available
model of the dynamic parameters, denoted by ̂(·):

𝝉 = M̂(q̂)u + n̂(q̂), where n̂(q̂, .̂q) = Ĉ(q̂, .̂q) .̂q + f̂ ( .̂q) + ĝ(q̂). (3)

The available model parameters may have been obtained by estimations (eg, due to unknown load) or approximations
(unknown dynamic model, simplified models, etc). The error quantities are denoted using (̃·) as

M̃(q, q̂) = M̂(q̂) −M(q), ñ(q̂, .̂q,q, .q) = n̂(q̂, .̂q) − n(q, .q). (4)

The dynamics given by application of the control law (3) to the system (1) is referred to as inner loop, and the vector
u ∈ ℝn is the new control input that is to be determined by an outer loop. Clearly, if M̃ ≡ 0, ñ ≡ 0, (3) achieves a perfect
feedback linearization and the minimum-phase nonlinear robot equations (1) are turned into a set of double integrators.
Thus, a common choice to stabilize the resulting system is a linear state feedback with positive definite gain matrices
KP,KD ∈ ℝn×n,KP,KD ≻ 0 in the outer loop. The control law

u = [KP KD]e (5)

then effectively acts as a PD controller.
In the realistic situation, however, the control law (3) inserted into (1) yields the following perturbed double integrator:

q̈ = (I + ΔM)u + 𝝍 , where (6)

𝚫M = M(q)−1M̃(q, q̂) = M(q)−1M̂(q̂) − I, (7)

𝝍 = M(q)−1 ñ(q̂, .̂q,q, .q) +M(q)−1𝝉dist(t). (8)

Robust AID controller design thus amounts to selecting u in the outer loop that rejects the inverse additive disturbance𝝍 ,
subject to being robust w.r.t. the multiplicative input uncertainty 𝚫M caused by an inaccurate inertia matrix estimate M̂.
Hence, controller design in the following refers to the outer-loop controller generating u.

2.3 Manipulator norm bounds
A number of norm bounds are routinely assumed for the system (1)-(2) as summarized in Appendix A. Moreover, the
accuracy of the dynamical model is assumed to fulfill the following properties.

Assumption 1 (Model approximation).

1. There exists a constant 𝛼 > 0 such that, for all q ∈ ℝn,

||𝚫M|| = ||M(q)−1M̂(q̂) − I|| ≤ 𝛼. (9)

For the analysis in this paper, it is not necessarily required that 𝛼 < 1 as in the works of Bascetta and Rocco5 and
Spong and Vidyasagar.9 It will be shown, however, that robust performance enhancement is feasible only if 𝛼 < 1.
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2. There exists a functionΦ ∶ ℝ → ℝ such that, ∀x, x̂ ∈ ℝ2n ∶ ||ñ(q̂, .̂q,q, .q)|| ≤ Φ(||x||). The reader is referred to the
work of Rocco13 for details and to the work of Grimm14 for computational procedures to obtain numeric values.
In this article, the bound is taken as

Φ(||x||) = 𝛼0 + 𝛼1||x||. (10)

2.4 Controller parameterization by factorization
In this section, we provide a concise summary of the plant/controller factorization10 approach central to this article. The
resulting Q-parameterization is ubiquitously used in control theory, eg, in robust control,15,16 computer-aided design,17

gain scheduling,18,19 model predictive,20 hybrid,21 and adaptive22-24 control. For a general introductory exposition, the
reader is referred to the work of Anderson.8 The factorization approach has been introduced to the robust control of
robots in the work of Spong and Vidyasagar9 in a one-DoF controller design and in the work of Sugie et al25 for a two-DoF
controller design, and is nowadays covered in textbooks4,26 as well. Proceeding in state space, our notation is along the
lines of the work of Tay et al.22

Consider the system G with state xG ∈ ℝnx ,

such that exogenous signals w ∈ ℝnw (reference signals, disturbances, noise) and control inputs u ∈ ℝnu are mapped to
the outputs y ∈ ℝny (measurements available for control) and the performance signals z ∈ ℝnz (signals to be controlled):[

z
y

]
=
[

G11 G12
G21 G22

] [
w
u

]
.

Let G11, G12, G21 ∈ ∞, ie, be rational proper asymptotically stable transfer function matrices. Then, internal stability of
the system is given if and only if the feedback loop that is formed by G0 = G22(s) = Cy(sI − A)−1Bu +Dyu and a controller
K0 is well-posed and internally stable (Figure 2A).

2.4.1 Youla parameterization
To parameterize all stabilizing controllers, G0 and K0 are written in terms of double coprime factorizations

G0 = M̃−1
0 Ñ0 = N0M−1

0 and K0 = Ṽ−1
0 Ũ0 = U0V−1

0 , where N0,M0, Ñ0, M̃0,V0,U0, Ṽ0, Ũ0 ∈ ∞, (12)

such that the left ̃(·) and right (·) factors have no unstable pole-zero cancellations, ie, chosen to satisfy the double Bezout
identity [

Ṽ0 −Ũ0
−Ñ0 M̃0

] [
M0 U0
N0 V0

]
=
[

M0 U0
N0 V0

] [
Ṽ0 −Ũ0
−Ñ0 M̃0

]
=
[

I 0
0 I

]
. (13)

The following result is summarized, eg, from Th. 12.17 in the work of Zhou et al.15

Proposition 1 (Q-parameterization). Given coprime factorizations (12) of the plant and the controller that fulfill (13),
the set  of stabilizing controllers for G0 can be characterized in terms of arbitrary stable Q as  = {K(Q) | Q ∈  ⊆

∞},
K(Q) = U(Q)V(Q)−1, where U(Q) = U0 +M0Q, V(Q) = V0 + N0Q (14)

(A) (B)

FIGURE 2 Reformulation of a feedback loop in terms of a lower
fractional transformation of a stabilizing controller and a stable
parameter system Q. A, Nominal controller; B, Q-parameterization
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to obtain a right-factored form, or

K(Q) = Ṽ−1(Q)Ũ(Q), where Ṽ(Q) = Ṽ0 + QÑ0, Ũ(Q) = Ũ0 + QM̃0 (15)

for a left stable linear fractional form. Reformulating from the definition, by the Bezout identity, we also have

K(Q) = Ṽ−1
0 Ũ0 + Ṽ−1

0 Q
(

I + V−1
0 N0Q

)−1V−1
0 ≜ 𝓁( J,Q),

where Q ∈ ∞ such that (I + V−1
0 N0Q)(∞) is invertible and the generator system J can be implemented as

J =
[

J11 J12
J21 J22

]
=
[

Ṽ−1
0 Ũ0 Ṽ−1

0
V−1

0 −V−1
0 N0

]
. (16)

Proof. See the work of Zhou et al.15

In words, by a Q-parameterization shown in Figure 2B, every linear internally stabilizing controller K can be imple-
mented as a lower fractional transformation K(Q) = 𝓁( J,Q). That is, some central system J, where J11 is the nominal
controller K0, is interconnected with another stable filter Q ∈ ∞ such that

col(u, r) = [J]col(y, s), s = Qr. (17)

Note that the relationship between K and Q is bijective and that the nominal controller K0 is recovered by Q = 0.

2.4.2 Dual-Youla parameterization
The dual parameterization is most known for its use in closed-loop system identification in the Hansen scheme.27 In addi-
tion, parameterizations of the dual form play a key role to reduce conservatism in the robust design of advanced motion
control systems; see the work of Oomen.28 The dual parameterization characterizes8,22 in terms of a stable parameter
system S all systems that are stabilized by one particular given controller.

Proposition 2 (S-parameterization). Given coprime factorizations (12) of the nominal plant G and the controller K0
that fulfill (13), the set of all proper plants stabilizable by K0 is characterized in terms of an arbitrary stable operator S as
 = {G(S) | S ∈  ⊆ ∞}, where

G(S) = N(S)M(S)−1, with N(S) = N0 + V0S, M(S) = M0 + U0S, or (18)

G(S) = M̃(S)−1Ñ(S), with M̃(S) = M̃0 + SŨ0, Ñ(S) = Ñ0 + SṼ0. (19)

Proof. The coprime factors of G(S) and of K0 satisfy the Bezout identity; hence, the result is dual to Proposition 1.
A detailed derivation is spelled out in Chap. 3.4 in the work of Tay et al.22

The relation between any S and the corresponding G(S) is bijective, and the nominal system G0 is recovered by S = 0.
Note that S ∉ ∞ implies that the pair (G(S),K0) is not stabilizing.

2.4.3 Double-Youla parameterization
Combining the above parameterizations of plant G(S) and controller K(Q), the double-Youla parameterization22 is
obtained. It describes the set of loops formed by a nominal plant/controller interconnection and perturbations of the
closed loop by systems S and Q.

Proposition 3 (Double-Youla parameterization). Let (G0,K0) be a stabilizing nominal plant/controller pair, let G(S)
be the class of plants described by (18)-(19), and let K(Q) be the class of controllers (14)-(15). Then, (G(S),K(Q)) is
well-posed and internally stable if and only if the feedback system (Q, S) is well-posed and internally stable, ie, there exists[

I −Q
−S I

]−1

∈ ∞.
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Proof. See Th. 2.1 in the work of Tay et al.29

Let us emphasize in particular that the transfer function matrix from the input s to the output r in the closed loop of
Figure 2B is the parameter S. Thus, to establish robust stability under both plant and controller uncertainty, the nominal
plant/controller interconnection has to be stable, as well as the loop (Q, S). For a more detailed exposition, the reader
is referred to the work of Tay et al.22 Proposition 3 allows to characterize the set  of maximally allowed perturbations
Q ∈  of the controller K subject to robust stability of the closed loop for some set  of permissible models S ∈  .

Proposition 4 (Stable plant/controller perturbations). Consider a set of plants  and a set of controllers  given by

(G0,K0, 𝛾S) ≜ {(N0 + V0S)(M0 + U0S)−1 | ||S||∞ ≤ 𝛾S}, (G0,K0, 𝛾Q) ≜ {(U0 +M0Q)(V0 + N0Q)−1 | ||Q||∞ ≤ 𝛾Q}.

Then, all plants in  are stabilized by all controllers in  if and only if 𝛾S · 𝛾Q < 1.

Proof. This follows directly from application of the small-gain theorem30 on the (Q, S) loop; see pp. 166f, 224 in the
work of Tay et al.22

Early investigations of such parameterizations were motivated by adaptive robust performance enhancement.29 The
advantages of the double-Youla framework are its inherent handling of uncertainty, the variety of design methods nowa-
days documented in the literature on the basis of the Youla parameter, and finally its nonconservatism compared to
using other robustness metrics such as the Vinnicombe gap metric.31 Therefore, recent work exploits the double param-
eterization approach, eg, to establish robust stability for systematic coupling controller design32 or switching control for
uncertain systems.33 A double-Youla parameterization that is particularly suitable for implementation on robotic systems
will be derived in Section 4.

2.5 Robust AID control
Before we proceed to characterize robust AID controllers via the double-Youla parameterization, a brief overview of the
related work is given. The robust control of robot manipulators has been subject to research for decades, and a wealth of
methods have been developed,1-4 based on a multitude of underlying approaches, eg, linear multivariable, passivity-based,
sliding mode.34,35 We therefore review selected work paradigmatically by ascending dynamic model demand.

Static and model free. It has long been known that a high-gain PD controller applied directly to the nonlinear
rigid-body system robustly yields uniform ultimate boundedness of the tracking error.36,37 Design methods for gain selec-
tion are nonetheless being investigated today38 and a high-gain PD controller can be suitable even for fast dynamic
manipulation tasks.39

Based on crude approximation. Even if not based on inverse dynamics, robust manipulator control methods typi-
cally employ a nominal inertia model, eg, using a disturbance observer40 or model-free time delay control.41 That is, only
the most dominant part of the manipulator dynamics is approximated and the rest is treated as an uncertain disturbance
input.42-44 Taking only a diagonal estimate of the inertia matrix, the problem is handled as a linear decoupled system sub-
ject to the disturbances induced by neglected cross-coupling terms. This way, it is always possible to achieve 𝛼 < 1 in (9).
In the authors' experience,11 this approach constitutes a viable trade-off to build a parameterization-based robustly sta-
ble learning control system that noticeably exploits domain knowledge without a detailed dynamical model of the robot
manipulator at hand.

Nonlinear model-based. Taking a nonlinear dynamical model of the robot manipulator allows to accomplish a better
approximate feedback linearization. Nonetheless, the model (6) is always imprecise to a certain extent, ie, (7) and (8) do not
vanish. Classic robust manipulator control methods1-4 therefore design the outer-loop controller to ensure robust stability
of the overall loop. Recent research also considers performance or optimality criteria, eg, ∞ optimality,45 time-domain
bounds,46 or orbital stabilization around the desired trajectory.47

Most relevant for the developments in this article are the classic linear multivariable design9 and the Lyapunov-based
robust manipulator control designs5 reviewed in more detail next.
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2.5.1 The linear multivariable approach
A double-Youla parameterization allows to consider perturbations of both the controller and the plant models. The early
robust manipulator control methods, in contrast, only exploit the characterization of all stabilizing compensators for
the linear unperturbed model. Spong and Vidyasagar9 were able to show that one can always find a linear control law
stabilizing the nonlinear loop resulting from AID if the dynamic model of the robot satisfies Assumptions 1 and 2 and
𝛼 < 1 in (9). To this end, consider the control

u = q̈d + 𝝂, (20)

where the additional term 𝝂 is supposed to increase the robustness against the uncertainties due to the approximate
controller (3). Inserting (20) and (3) into (1), the resulting error dynamics read

.e =
[

0 I
0 0

]
e +

[
0
I

]
(𝜼 + 𝝂), (21)

where the vector 𝜼 is induced by the uncertainty resulting from the approximate model in the closed loop:

𝜼 = 𝚫M(q̈d + 𝝂) +M−1(ñ + 𝝉d). (22)

Hence, 𝜼(q̈d,q, .q, 𝝂) is a nonlinear term that cannot simply be rejected as if it were an external disturbance. Instead, under
the assumptions (9) and (10) with 𝛼 < 1, it is shown in the work of Spong and Vidyasagar9 that, for some constants
b and 𝛿, the bound ||𝜼||T∞ ≤ (𝛿𝛽1 + 𝛼𝛽3)||𝜼||T∞ + b holds, where || · ||T∞ denotes the truncated ∞ norm.30 Then, if
(𝛿𝛽1 + 𝛼𝛽3) < 1, the control 𝝂, the tracking error e, and the uncertainty 𝜼 are bounded. A sequence of Youla parameters
Qk is thus designed such that 𝛽1 → 0 and 𝛽3 → 1 for k → ∞. The resulting robust controller Kk is finally given from (15)
and is generally a high-gain dynamic compensator.

2.5.2 Lyapunov-based method
Another popular approach to design a robust control input u for (3) is based on Lyapunov's second method.1-4 It is usually
assumed that a PD controller with feedforward acceleration compensation and an additional input term 𝝂 is employed in
the outer loop,

u = q̈d + KP(qd − q) + KD(
.qd −

.q) + 𝝂, (23)
which results in the error system

.e =
[

0 I
−KP −KD

]
e +

[
0
I

]
(𝜼 + 𝝂). (24)

Similar to (21)-(22), the uncertainty in the closed loop is lumped in a single term 𝜼 and one needs to select an appropriate
control Lyapunov function to design 𝝂 so as to suppress the destabilizing effects of 𝜼. For the details and assumptions
underlying the classic approach, the reader is referred to Chap. 6.5.3 of the work of Sciavicco and Siciliano,2 the work of
Spong et al,3 and Chap. 5.2 of the work of Lewis et al.4

2.5.3 Drawbacks of established approaches
The robot control methods based on the approaches of Sections 2.5.1 and 2.5.2 have a number of drawbacks in common.
First, all of the AID uncertainty is lumped in a single quantity 𝜼. However, it is clear from (6) that an inaccurate inertia
model results in multiplicative input uncertainty, whereas the neglected manipulator nonlinearities induce the inverse
additive disturbance𝝍 . Therefore, the structure of (6) is dismissed when the analysis starts with a single term 𝜼. Second, an
outer-loop PD controller is commonly1-4 applied to stabilize (6) prior to the robustness analysis. Therefore, in all subsequent
developments, one has to work with an error system (24) where the gains KP,KD of the controller occur in the dynamic
matrix A.

These aspects entail unfavorable consequences. The additional input 𝝂 must be carefully constructed to suppress the
internal nonlinear disturbance 𝜼, and it remains prohibitive, in general, to adapt 𝝂 on the fly by data-driven methods.
Furthermore, to design 𝝂, a scalar bound ||𝜼|| ≤ 𝜌(||e||) is required, which in the classic robust manipulator control1-4

depends on the gains ||[KP,KD]|| of the nominal PD controller. Thus, as pointed out in the works of Bascetta and Rocco5

and Abdallah et al,34 higher gains in the controller require stronger robustifying inputs 𝝂 to correct for seemingly higher



FRIEDRICH AND BUSS 5145

uncertainty. In contrast, the practitioner's approach of using a high-gain PD controller is widely known to work robustly in
practice. For the Lyapunov-based design, this discrepancy has been resolved by Bascetta and Rocco in the revised design.5
We will return to these works by comparing to our novel parameterization in Section 5.3.

3 MAIN RESULT

Our main goal is to shape a set of admissible controller perturbations such that numerous advanced design methods
are applicable for enhancement of the AID-based controllers in a strict robust stability framework. To circumvent the
drawbacks summarized in Section 2.5.3, we keep the uncertainty separated throughout instead of lumping the effects
of (7)-(8) into a single additive term. As a sideline, we derive bounds on the perturbations to (6) before any outer-loop
controller comes into place. To eventually keep the influence of the outer-loop controller transparent as well, we describe
the uncertainty by means of the dual-Youla parameter. Therefore, in the framework proposed next, by construction, the
uncertainty due to AID remains clearly distinguishable from the gains of the outer-loop controller.

3.1 Problem statement
It is unfortunately not obvious to find in the literature1-4,26,48 a suitable generalized plant15,49 description for AID, as most
methods work with error dynamics (21) or (24). Therefore, the first problem we tackle is how the standard robotic bounds
(9)-(10) translate into a generalized setup (Figure 3A) without lumping the effects of (7)-(8) into a single additive term.

Problem 1 (Generalized plant formulation of AID). Given the system (1) and the control law (3) with Assumptions 1
and 2 fulfilled, reformulate the AID (6) and the corresponding bounds as a system

G ∶
⎧⎪⎨⎪⎩

zΔ = GzΔwΔwΔ + GzΔww + GzΔuu
z = GzwΔwΔ + Gzww + Gzuu
y = GywΔwΔ + Gyww,

(25)

such that the uncertainty (7) and (8) acting on the nominal double integrator q̈ = u is described by a linear fractional
transformation as shown in Figure 3A. That is, the uncertainty is captured by an unknown norm-boundedΔ operating
on the signals zΔ to yield the input perturbation wΔ,

wΔ(t) = Δ(x(t), t)zΔ(t), where ∃𝛿 ∀t ∶ ||Δ(x(t), t)|| ≤ 𝛿. (26)

In the next step, we analyze how these bounds affect the closed-loop system when the nominal outer-loop controller is
applied.

Problem 2 (Dual-Youla bound of uncertainty under AID). Given the system (25)-(26) and a nominal outer-loop sta-
bilizing controller K0, characterize by means of a dual-Youla bound ||S||∞ ≤ 𝛾S the worst-case dynamic perturbation
in closed-loop w.r.t. the nominal controlled plant q̈ = u.

The main result is a parameterization of robustly stabilizing controllers for the rigid-body manipulator under AID control.
Once Problem 2 is solved, the solution to the following problem is immediate.

Problem 3 (Double-Youla for robust approximate inverse dynamics). For a given robot under AID control as in
Problems 1 and 2, characterize in terms of the parameter set  a subset of robustly stabilizing controllers R ⊂ K().

(A) (B)

FIGURE 3 Open-loop uncertainty plant description Δ and
double-Youla parameterization under external inputs. A,
Generalized plant setup with uncertainty Δ in open loop; B,
Reformulation as prestabilized uncertain closed loop T(S) and
controller parameterization via Q
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3.2 Generalized plant formulation of uncertainty bounds
We first tackle Problem 1 to obtain an uncertainty formulation in the form of the generalized plant depicted in Figure 3A.
For convenience, let us restate (6) in the form

q̈ = u +wU
Δ +wdist, (27)

where external disturbances wdist ≜ M−1(q)𝝉dist, and the vector of internal model uncertainty wU
Δ = wM

Δ +wψ
Δ is summing

up both inertia-induced uncertainty wM
Δ and signal uncertainty wψ

Δ:

wM
Δ ≜ 𝚫M(q, q̂)u, wψ

Δ ≜ M−1(q)ñ(q, .q, q̂, .̂q).

Subsequently, the dependency on joint positions and velocities is dropped for brevity in notation. With Assumption 3
the summand wdist is bounded by ||wdist||∞ ⩽ MuCdist and depending neither on state nor on control; wdist is therefore
considered as external disturbance input. Note that by (9)-(10), both wM

Δ and wψ
Δ are nondynamic, time-varying nonlinear

uncertainties; it is therefore possible to use a norm-bounded uncertainty description (26), where the upper bound on
the induced matrix norm ||Δ|| ≜ maxzΔ(t)≠0

||ΔzΔ(t)||||zΔ(t)|| ≤ 𝛿 is satisfied for all times t (Sec. 2.3.1 in the work of Petersen and
Tempo50). This corresponds to the maximum amplification over all input directions zΔ and is key to solving Problem 1.

Theorem 1 (Structured uncertainty under AID). Under the conditions of Problem 1, the perturbed double integrator
system (6) can be conservatively reformulated as a G − Δ structure depicted in Figure 4, where wΔ ≜ col(wM

Δ ,wψ
Δ),

zΔ ≜ col(u, zf
Δq, .q), zf

Δ ≡ 1 and Δ(t) ∈ Δ with the perturbation set

Δ =
{
𝚫 =

[
𝚫M 0
0 𝚫Ψ

]
∶ 𝚫M ∈ ℝn×n,𝚫Ψ ∈ ℝn×(2n+1), ||𝚫M|| ≤ 𝛼M, ||𝚫Ψ|| ≤ 𝛼Ψ

}
. (28)

The bounds 𝛼M and 𝛼𝛹 are scalars given by (B3).

Proof. The derivation is given in Appendix B.1.

Remark 1 (Uncertainty separation). To obtain such a description, one could also work with wU
Δ = ΔUzΔ instead of

collecting the terms wM
Δ , wψ

Δ of (27) separately in the vector wΔ. Then, however, the result is unstructured with an
overly conservative bound on the uncertainty matrix 𝚫.

By adopting the uncertainty structure (28), the separation of the two uncertainty sources is preserved because the summa-
tion of u, wM

Δ , and wψ
Δ in (27) is captured by the signal interconnection in the generalized plant G, as depicted in Figure 4.

Therefore, this structure is carried into the dual-Youla operator in the sequel.

3.3 Dual-Youla uncertainty characterization
We now calculate a realization of the uncertain dual-Youla parameter S when the nominal controller K0 is applied
to stabilize the uncertain plant u(G,Δ). Recall that in (18)-(19) all systems stabilized by K0 are parameterized as .

FIGURE 4 Generalized plant interconnection of a robot
manipulator under approximate inverse dynamics control with
uncertainties “pulled out.”15 This figure only depicts the perturbed
double integrator system and the uncertainty, ie, the G-Δ structure
suitable for subsequent analyses. The precise configuration of the
control and performance channels y, z depends on the manipulator
control goal at hand, eg, tracking or impedance control. A tracking
control example is given in Section 5 with the corresponding
state-space realization in Appendix C
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Consequently, if Gyu(Δ) = u(G,Δ) is robustly stabilized by K0, ie, Gyu(Δ) ∈  for allΔ ∈ Δ, then equivalently there exists
an uncertain S ∈ Δ ⊆  . Key to our approach is the following explicit connection of the open-loop uncertainty descrip-
tion in terms of Δ and in terms of the S obtained in the closed loop with K0 applied (Th. 3.4 in the work of Niemann,12

and the work of Niemann and Stoustrup51):

Gyu(S) = Gyu(Δ) ⇔ S(Δ) = TΔ,21Δ(I − TΔ,11Δ)−1TΔ,12 = u(TΔ,Δ). (29)

In (29), TΔ refers to the mapping from the inputs col(wΔ, s) to the outputs col(zΔ, r). In operator notation, TΔ is
expressed as

TΔ =
[

GzΔwΔ + GzΔuU0M̃0GywΔ GzΔuM0
M̃0GywΔ 0

]
. (30)

Remark 2. As Niemann12 points out, “S depends only on the uncertain block Δ and the coprime factors.” For the
purpose of this paper, however, we would like to emphasize the fact that (29) and (30) also depend on the intercon-
nection used in the generalized plant (25). This is an important feature of this article: in contrast to the robust control
approaches summarized in Section 2.5, by the derivation in Section 3.2, we keep the inertia-induced uncertainty wM

Δ
completely separated from the nonlinear inputs wψ

Δ, thus reducing the conservatism of the resulting S.

With the generalized plant of Figure 4 and the bounded perturbation set Δ from (28), we obtain the following result.

Theorem 2 (Realization of dual-Youla uncertainty set). Consider the system (1) with the AID controller (3) such that
Assumptions 1 and 2 are fulfilled. According to Section 3.2, the resulting system dynamics is conservatively covered by the
linear, stabilizable, and detectable plant (25) with a state-space realization (C1) and the uncertainty structure (28). Let a
nominal linear controller

be applied to the outer loop, with the pairs (AK,BK) stabilizable and (AK,CK) detectable. Let the state-feedback gains FG
and FK be designed such that A11 + B13FG and AK + BKFK are stable. Then, the set of uncertain dual-Youla operators is
given by

where

AS =
⎡⎢⎢⎢⎣

B13DKC31 + A11 B13CK AS,13 AS,14
BKC31 AK BKD31ΔC̄ AS,24

0 0 Ā B̄C11 + B̄D13FG
0 0 0 B13FG + A11

⎤⎥⎥⎥⎦ , BS =
⎡⎢⎢⎢⎣

BS,11
BKD31ΔD̄D13

B̄D13
B13

⎤⎥⎥⎥⎦ , (33)

CS =
[

C31 −FK D31ΔC̄ D31ΔD̄C11 +D31ΔD̄D13FG
]
, DS = D31ΔD̄D13,

AS,13 = B11ΔC̄ + B13DKD31ΔC̄,

AS,14 = B11ΔD̄C11 + B11ΔD̄D13FG + B13DKD31ΔD̄C11 + B13DKD31ΔD̄D13FG,

AS,24 = BKD31ΔD̄C11 + BKD31ΔD̄D13FG, BS,11 = B11ΔD̄D13 + B13DKD31ΔD̄D13,

and the expressions for Ā, B̄, C̄, D̄ are given by the realization (B6).

Proof. The proof is given in Appendix B.2.

From the realization (33), it becomes apparent that S is much more involved than the diagonal uncertainty structure
of Δ. Hence, standard robustness tools52 such as 𝜇 analysis53 or worst-case gain assessment54 cannot be directly applied.
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To solve Problem 2, it is nonetheless required to find an estimate �̂�S of the worst-case gain

𝛾S ≜ sup
S∈Δ

||S||∞. (34)

To this end, we propose to adopt a randomized approach55 allowing for the following probabilistic worst-case
assessment.

Proposition 5 (Probabilistic dual-Youla uncertainty bound). Assign with p ∈ (0, 1), 𝛿 ∈ (0, 1) the desired probability
level such that P(||S(Δ)||∞ ≤ �̂�S) ≥ p, ∀Δ ∈ Δ holds with probability 1−𝛿. The corresponding gain bound �̂�S is obtained
by the empirical maximum �̂�S = maxi=1,… ,nS ||Si||∞, using nS ≥

⌈
ln 1∕𝛿
ln 1∕p

⌉
iid samples from Δ.

Proof. This follows directly from the definition of probabilistic worst-case performance assessment using a random-
ized algorithm.55

A procedure to obtain �̂�S correspondingly is summarized in Algorithm 1.

Remark 3 (Realization of dual-Youla parameter for norm-bounded memoryless uncertainty). The state-space real-
ization for the dual-Youla parameter S according to (33) is a fairly general result by itself: It covers, under the usual
assumptions for double-Youla parameterizations, the linear generalized plant interconnection of the form (C1) sub-
ject to nondynamic (memoryless) norm-bounded uncertainty Δ, while allowing for any linear central controller
K0 in the Q-parameterization. Thus, the result extends12 in that, due to the symbolic derivation, the realiza-
tion of S given in (33) is explicit in the state-space matrices and hence suitable for numeric computation of the
∞-norm. By contrast, in our simulation study reported in Section 5, a straightforward* implementation by (29)
quickly becomes inaccurate, presumably because of the numeric inversion that easily yields badly conditioned
systems.

3.4 Characterization of robustly stabilizing controllers
With S according to (29) and (33), respectively, the control loop can now be described as shown in Figure 3B. The loop
T(S) is stabilized but uncertain and the controller is determined by some Q ∈ . Writing out the matrix transfer operator
Tzw(S,Q) = 𝓁(T(S),Q) from references w to outputs z, one obtains

Tzw(S,Q) = T11(S) + T12(S)Q(I − T22(S)Q)−1T21(S).

The following sufficient condition is established to ensure the overall stability of the scheme.

*Direct computation of S by formula (29) using MATLAB state-space objects ss yields hinfnorm(S,1e-6)=inf although S is stable.
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Lemma 1 (Double Youla under exogenous disturbance and plant uncertainty). Under the previous assumptions, for
all Δ ∈ Δ, there exists correspondingly an S ∈ Δ. Denote by  the set of finite-gain stable, admissible parameters
Q ∈ . Referring to Figure 3, Tzw(S,Q) is robustly stable if both of the following conditions hold.

(i) K0 robustly stabilizes the uncertain plant u(G,Δ), ie,

∀Δ ∈ Δ ∶
⎡⎢⎢⎣ I −

[
0 0
0 K0

]
−u(G,Δ) I

⎤⎥⎥⎦
−1

∈ ∞, (35)

(ii) the loop (Q, S) is stable and ∀Q ∈ ,∀S ∈ Δ ∶ ||Q||∞||S||∞ < 1.

Proof. Please refer to Appendix B.3.

By the condition (ii), it is immediate to characterize a set of controller parameters  that preserves robust stability and
is suitable for a wide range of performance enhancement methods.

Theorem 3 (Set of robust AID controllers). Under the assumptions of Theorem 2, let the worst-case gain (34) be esti-
mated by �̂�S

⩾
−→ 𝛾S. If �̂�S is finite, K0 is robustly stabilizing. A subset of all robustly stabilizing controllers is then given by

R = {K(Q) ∶ (14) − (15) and ||Q||∞ < 1∕�̂�S} , (36)

and every controller K ∈ R stabilizes the nonlinear system (6)-(8).

Proof. According to Theorem 1, the uncertain nonlinear dynamics (6)-(8) are conservatively covered by the uncer-
tainty structure Δ from (28). As by Theorem 2, Δ corresponds to Δ when the nominal controller K0 is applied.
With Proposition 5, �̂�S is the worst-case gain over allΔ by letting p → 1, 𝛿 → 0. The result is then a direct consequence
of Lemma 1.

On the one hand, the first condition (i) of Lemma 1, ie, robust stability of the uncertain loop with only the nom-
inal controller applied, may seem quite restrictive. On the other hand, the stability of the (Q, S) loop is ensured by
a small-gain argument; thus, it also guarantees internal stability when Q is a nonlinear or time-varying stable oper-
ator with an appropriately defined stability notion.30 Hence, due to the double-Youla parameterization, a variety of
advanced methods can be used for manipulator control design in the proposed rigorous robust stability framework
(cf Figure 1).

Remark 4 (Model complexity trade-off). Theorem 3 provides a way to quantify the trade-off between the accuracy of
the available manipulator model and the amount of controller enhancement permissible without sacrificing robust
stability of the system: A very imprecise robot model will yield large 𝛾S and consequently R → {K0} as  → ∅. As
for the other extreme, a perfect model allows for a true feedback linearization; hence, S = 0, and by �̂�S → 0, Theorem
3 recovers the set of all controllers that stabilize a double integrator.

Remark 5 (Robust stability under nominal control). If the nominal controller K0 does not stabilize the system under
all perturbations Δ ∈ Δ, then 𝛾S = ∞, ie, there is some unstable S(Δ). In such cases, it may via Q still be possible to
adaptively stabilize the (Q, S) loop of the double-Youla parameterization.29 We do not pursue such approaches further
but restrict attention to a more robust setting: here, stabilization under all perturbations Δ ∈ Δ by means of all
controllers (36) is the asset allowing for straightforward online performance enhancement.

4 SPECIAL CASE: STATIC NOMINAL CONTROL

In this section, we specialize the main result to the very commonly used controller of the PD-type (5) or (23) as initial
controller K0. To this end, under the previous assumptions, a Q-parameterization can be constructed as follows.
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Proposition 6 (Central J for static nominal control11). A realization of the central system J to build a
Q-parameterization around a static controller for the system (C1) is

Proof. See the work of Friedrich and Buss.11

A block diagram of (37) is depicted in Figure 5.

Remark 6 (Components of control input). Comparing to Section 2.5, the overall control signal corresponds exactly
to the standard ansatz for the outer loop (23), but the additional signal 𝜹u is generated differently from the
“robust-control term”5 𝝂, precisely model based in the Q-parameterization generated from (37).

Note that the central system J inherits with (37) a separation structure that is very useful for implementation on hard-
ware: The two-port system (37) is given directly by the static nominal controller D0 and some dynamic augmentation to
generate the signal r. Referring to Figure 5, the augmentation J can be further simplified by choosing the coprime factor
stabilizing gain FG as

FG = D0C31. (38)

By this choice, only the filtered output s is added to the control input u = unom + 𝜹ua + s
(37) with (38)

= unom + s. Thus,
the proposed special case is particularly simple to implement: Opposed to the standard Youla parameterization,15 no
observer-based central controller is required. Instead, robot manipulators that are already driven by a PD controller can
be augmented to generate the parameterization.

To quantify the uncertainty in the closed loop by �̂�S, an expression for the corresponding dual-Youla parameter is derived
as well.

Corollary 1. The realization of the uncertain dual-Youla parameter S(Δ) describing the AID effect (25), (28) controlled
by (37) is given as

where

AS,11 = B13D0C31 + A11, AS,12 = B11𝚫C̄ + B13D0D31𝚫C̄,

AS,13 = B11𝚫D̄C11 + B11𝚫D̄D13FG + B13D0D31𝚫D̄C11 + B13D0D31𝚫D̄D13FG,

BS,11 = B11𝚫D̄D13 + B13D0D31𝚫D̄D13, CS,13 = D31𝚫D̄C11 +D31𝚫D̄D13FG,

Ā = B11𝚫D̃−1C11 + B11𝚫D̃−1D13D0C31 + B13D0C31 + B̃C11 + B̃D13D0C31 + A11,

B̄ = −B11𝚫D̃−1 − B̃, C̄ = −D̃−1C11 − D̃−1D13D0C31, D̄ = D̃−1
,

B̃ = B13D0D31𝚫D̃−1
, D̃ = I −D11𝚫 −D13D0D31𝚫.

FIGURE 5 Central system J to generate a Q-parameterization, based on
a static nominal controller K0 ≜ D0. Note that the augmentation simplifies
further by choosing FG = D0C31. In this case, 𝜹ua = 0 and consequently
u = unom + s
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Proof. The derivation is analogous to the full case of Theorem 2, replacing the coprime factors with those for a static
controller.11 Alternatively, the given realization of S can be obtained from (33) by appropriately removing obsolete
rows and columns for undefined AK, BK, CK, and taking DK = D0.

4.1 Summary of the proposed robust manipulator control framework
The steps to employ the control design in practice are summarized as follows.

1© Design a static nominal controller K0 with the goal of ensuring robust stability to the uncertain system, given an
underlying AID controller.

2© Determine, eg, by simulation or experiment, an estimate of the norm bounds of Assumption 2 and 3 for the robot
manipulator at hand and the bounds (9) and (10) that characterize the accuracy of the inverse dynamics controller.

3© Calculate by (B3) the bounds 𝛼M and 𝛼Ψ, corresponding to inertia respectively nonlinear signal uncertainty.
4© Obtain by Algorithm 1 an estimate �̂�S of the worst-case dual-Youla operator norm.
5© Add the dynamic augmentation to build the central system (37) shown in Figure 5. Then, improve the performance

by adding Q, designed by any suitable method, subject to ||Q||∞ < 1∕�̂�S.

Steps 1© and 2© are standard, whereas steps 3©– 5© exploit the novel parameterization based on the double-Youla
approach.

5 DISCUSSION AND ILLUSTRATIVE STUDY

First, let us discuss the implications of the main result by the familiar planar elbow manipulator example. Next, the
practical utilization of the proposed framework is illustrated by means of a robotic manipulator with six rotational DoFs
under varying payload. We will finally compare the novel robust stability framework to the existing ones and outline how
a variety of control design methods can be used in the control approach put forward in this article.

5.1 Discussion of worst-case dual-Youla uncertainty measure
The dual-Youla characterization according to Proposition 5 of our main result provides a new perspective to uncertainty
quantification in AID manipulator control.

5.1.1 Example setup
As in the reference book,4 we use a planar elbow manipulator with two rotational DoFs to illustrate the control scheme
and discuss our results. For the description and detailed physical parameters of the particular manipulator, the reader is
referred to the work of Schill and Buss.39 The resulting model is given by (all in SI units)

M =
[ 0.162 cos(q2) + 0.655 0.0809 cos(q2) + 0.142

0.0809 cos(q2) + 0.142 0.356

]
, C =

[−0.0809 .q2 sin(q2) −0.0809 sin(q2)(
.q1 +

.q2)
0.0809q1 sin(q2) 0

]
, (40a)

g =
[ 3.60 cos(q1 + q2) + 9.35 cos(q1)

3.60 cos(q1 + q2)

]
, f = blkdiag(3.00, 3.00) .q. (40b)

A preliminary analysis yields the following numeric values of the bounds (A1) for this manipulator:

Mu = 3.765, Fu = 3, Cu = 1.289, gu = 13.44. (41)

To analyze the interplay of the available model knowledge and the outer-loop controller w.r.t. the uncertainty S(Δ), the
most commonly used controllers of type (3) are summarized in Table C1; the abbreviations PFL, AID, SID, DS, GC, and
NID correspondingly refer to the inner-loop controllers in the following. The parameters used in the simulation study
and the achievable uncertainty bounds are also given in Table C1.

Remark 7 (Two-DoF control). We employ a two-DoF control scheme in the sequel, ie, the feedforward and feedback
gains can be tuned independently. By selecting y = col(q̂, .̂q,qd,

.qd, q̈d) instead of y = col(e, .e, q̈d), the following devel-
opments hold for the general class of two-DoF controllers. We use the state-space realization as given by (C1)–(C2) in
Appendix C, corresponding to a tracking control configuration of Figure 4.
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To keep the following discussion simple, we restrict most of our attention to the specialization of the main result from
Section 4. The central controller is based on static u0 = K0y with

K0 ∶ D0 = [−Kp,−Kd,Kp,Kd,K ff], (42)

and the Q-parameterization is generated from (37). Consequently, S is calculated according to Corollary 1 unless stated
otherwise. The stabilizing gains FG,FK are design parameters in the construction of the stabilizing factorization (B4) of
the plant and controllers and affect 𝛾S. In this section, no FK is needed because of the static nominal controller, and unless
stated differently, FG is calculated by (38). Note that, by construction, S is a dynamical operator mapping s ∈ ℝnu to
r ∈ ℝny ; hence, in this example with two joints and ny = 10 measurements according to Remark 7, S is a 10× 2 uncertain
system. With 𝛾S from (34) describing the worst-case uncertainty in the closed-loop system given a specific outer-loop
controller, the following qualitative properties should be captured.

• Larger model uncertainty (ie, larger values of 𝛼M, 𝛼Ψ) should result in larger 𝛾S.
• Robust and high-gain nominal controllers should lead to lower 𝛾S.
• Feedforward control action should not increase uncertainty 𝛾S of the feedback loop.

By inspection of (33), all these aspects influence the expression for S(Δ); therefore, each will be discussed separately. To
obtain �̂�S, the procedure from Table 1 is used with the confidence level set to p = 99.99% and 𝛿 = 10−4, corresponding to
nS ≥ 92099 samples† over the uncertainty set Δ for each calculation of �̂�S. A single evaluation of �̂�S with 105 samples
takes approximately 20 min on a current desktop computer (3.9 GHz, 32 GB of RAM) using MATLAB R2017a.

Remark 8 (Signal uncertainty for revolute manipulators). The example manipulator consists only of revolute joints;
thus, a constant bound on the gravity error can be assumed. In other words, it is known exactly that ||ñ|| does not
depend on joint positions and consequently, the uncertainty on nonlinearities can be taken as a matrix 𝚫Ψ ∈ ℝn×(n+1).

5.1.2 Influence of AID parameters
We first investigate how the accuracy of the approximate model influences the worst-case gain 𝛾S. To this end, for now,
assume that the outer-loop controller is a PD feedback controller for critical damping in the nominal loop, ie, it is defined
by (42) with

Kp = diag(Kp,Kp),Kd = diag(Kd,Kd), where Kp = 103,Kd = 63.3, and K ff = 0. (43)

First, consider the PFL case of Table C1, ie, 𝛼M = 𝛼Ψ = 0. Clearly, in this case, there is no uncertainty as the underlying
feedback linearization uses a perfect model of the manipulator dynamics. The uncertainty set consequently degenerates
to Δ = {0} and from (33) immediately S = 0 follows. As expected from Remark 4, the nominal decoupled double
integrators describe the resulting loop perfectly.

In the robust control approaches reviewed in Section 2.5, the accuracy of the inertia model plays a crucial role as mea-
sured by the value of 𝛼 from (9): Both Spong and Vidyasagar9 and Bascetta and Rocco5 need 𝛼 < 1 as a prerequisite. We
therefore begin by investigating the influence of 𝛼M on the worst-case gain 𝛾S while 𝛼𝛹 = 0. The calculations were carried
out over a fine grid on 0 < 𝛼M ≤ 1.1. The results are shown in Figure 6A. The uncertainty characterized by the worst-case||S(Δ)||∞ is very low for 0 < 𝛼M < 0.7. We can then observe a rapid increase for 0.7 < 𝛼M < 0.85 and �̂�S = ∞, ie, unstable
S, for values greater than 𝛼M ≈ 0.85. In other words, robust stability of the inner AID loop using the PD controller with
the gains (43) is lost for inertia uncertainty greater in norm than 0.85, given that ñ = 0.

Similarly, the influence of the norm of the neglected nonlinearities ñ can be evaluated. To this end, we have calculated
�̂�S over a grid of 0 < 𝛼Ψ ≤ 110 with 𝛼M = 0. As depicted in Figure 6B, for low values of 0 ≤ 𝛼Ψ < 50, �̂�S stays small
with a sudden increase up to instability of S for 𝛼Ψ > 63. Comparing with Table C1, we find that, for the gains (43),
robust stability cannot be concluded for the inner-loop controller types NID, GC, DS, and SID, while viable robustness is
obtained under the AID law.

We also performed a parameter sweep calculation over a grid of both 𝛼M and 𝛼Ψ, as shown in Figure 7. It can be observed
that there is a relatively clear boundary between model accuracy that allows for robust controller enhancement and too
inaccurate modeling that results in �̂�S = ∞. Note that these values are depending on the controller gains and were obtained

†Implementations of suitable methods55 for uniform sampling over norm-bounded real matrices are readily available.56
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(A)

(B)

FIGURE 6 Influence of accuracy of inertia and nonlinearities'
bounds on �̂�S. Unstable S are marked by x in the graphs only for
visibility; by definition, 𝛾S = ∞ if S is not stable. A, Evaluation of �̂�S

using a fine discretization over the range of 0 < 𝛼M ≤ 1.1 and
𝛼𝛹 = 0. A logarithmic scaling is used on the y-axis to visualize the
change of �̂�S in the order of magnitudes for 𝛼M < 0.85, up to
instability of S occuring rapidly for 𝛼M > 0.85; B, Evaluation of the
influence of 𝛼Ψ with 𝛼M = 0. A logarithmic scaling is used on the
y-axis for enhanced visibility

FIGURE 7 Evaluation of worst-case||S||∞ over a grid of both 𝛼Ψ and 𝛼M, where
unstable S are marked by x. There is a
relatively clear boundary between overall
acceptable worst-case model uncertainty
and a nonrobust nominal control loop with
the gains (43) in the outer loop. The
depicted inner-loop controllers AID, SID,
and DS are according to Table C1. Here,
only the AID allows for robustly stable
controller enhancement by some parameter
Q. AID, approximate inverse dynamics; DS,
diagonal scaling; SID, simplified inverse
dynamics

using controller (43). Figures 6 and 7 demonstrate how the main result allows to quantify the worst-case uncertainty set
under a given AID situation.

5.1.3 Influence of nominal outer-loop controller K0
Central feedback gains. A high-gain PD controller is working robustly in practice to control the rigid manipulator.37

It is also clear from (33) that the P- and D-gains of the nominal controller influence the uncertainty expressed by the
dual-Youla parameter. Hence, we calculated the values of �̂�S over a grid of P/D combinations for the central gain (42). As
shown in Figure 8, the evaluation was performed over a dense grid with values of 0 < Kp < 5·104 and 0 < Kd < 104. Three
different parameter sweeps were performed, with the uncertainty levels 𝛼M and 𝛼Ψ set corresponding to the inner-loop
controllers AID, SID, and DS from Table C1. In accordance to intuition, one can observe that the uncertainty in the closed
loop decreases with increasing gains and increasing model accuracy. Furthermore, a minimum D-gain of approximately
Kd > 10 is needed to conclude robust stability although the model employed in the AID controller is relatively good. Note
that even if the model had been perfect, some Kd > 0 would have been required as lead compensation for the double
integrator plant. In accordance to the literature,37 large PD gains are required for robustification in case of limited model
knowledge.

Feedforward term. The previous analysis only considered a controller feeding back position and velocity errors.
Here, the effect of adding feedforward terms is examined, ie, Kff ≠ 0 in (42). In the robust robot controllers of other
works,2,5,9 the outer-loop controller (20) and (23) includes a summand q̈d. In the ideal case then, q = ∫ ∫ q̈ddt2 = qd
even without feedback. In the methods reviewed in Section 2.5, the robust control term 𝝂 also depends on the maximum
norm ||q̈d||∞ of the desired trajectory acceleration. In the framework put forward in this article, on the contrary, the
uncertainty measure S does not change when the feedforward gains are included in (42) by some Kff ≠ 0. This may
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FIGURE 8 Evaluation of worst-case ||S||∞ over a grid of P- and D-gains in the outer loop, given the three inner-loop controllers AID, SID,
and DS according to Table C1. Configurations where �̂�S is not finite are marked by x for visibility. The GC and NID controllers yield unstable
S everywhere on the depicted grid and are hence excluded from the graph. The PFL case is also not depicted as �̂�S = 0,∀Kd,Kp > 0. AID,
approximate inverse dynamics; DS, diagonal scaling; GC, gravity compensation; NID, no inverse dynamics; PFL, perfect feedback
linearization; SID, simplified inverse dynamics [Colour figure can be viewed at wileyonlinelibrary.com]

seem counterintuitive, but it is a simple consequence of the clear structure obtained by the generalized plant: Due to the
Q-parameterization, subsequent controller design is based on an internal model of the plant; hence, the structure is carried
into all controllers parameterized by Q (cf Remark 2). More formally, a two-DoF controller can be thought of as a single
controller K = [Kff,Kfb] in feedback connection with an augmented plant [0,G⊤]⊤.22(p32f) Hence, all two-DoF controllers
stabilizing G are obtained,22(pp49f,53) as all one-DoF controllers for [0,G⊤]⊤. Consequently, the plant in feedforward control
channels is known exactly: It is a zero operator. The control u cannot affect feedforward signals. Naturally, the associated

uncertainty with this plant is zero, as are the corresponding entries in S =
[

Sfb
Sff

]
=
[

Sfb
0

]
. Indeed, in our example system

with the measurements according to Remark 7, calculating the uncertain operator S(Δ) confirms that its realization always
has the form

There is accordingly no uncertainty associated with the last six components of y, ie, qd,
.qd, q̈d. It is a clear advantage of the

proposed parameterization that the loop uncertainty measure 𝛾S can be made independent from quantities such as qd, q̈d
by the two-DoF design according to Remark 7. Note that Figure 8 is obtained irrespectively of Kff because ||S||∞ = ||Sfb||∞.

5.2 Illustrative example: P560 with varying payload
With the previous example, only the novel dual-Youla perspective on AID uncertainty was discussed. In this section,
the utilization of the complete double-Youla parameterization is illustrated by means of a multi-DoF robot system under
varying payload. To this end, we consider a PUMA P560 manipulator with six DoF, the dynamic model being publicly
available from the work of Corke.57 The task is to track a fast reference trajectory for each joint while the payload mp
applied in 10 cm distance to the end-effector is uncertain within mp ∈ [0.5, 1.5] kg. The trajectory is chosen to cross areas
of the state- space where nonlinearities and inertial interactions are strong; precisely, we use qd,i(t) = q0,i+ai

𝜋

180
sin(2𝜋𝑓i t),

where a1 = 90, a2 = 45, a3 = 22.5, a4 = 55, a5 = 50, a6 = 133 and f1 = 0.2, f2 = 0.4, f3 = 1, f4 = 0.5, f5 = 0.25, f6 = 0.2. Let
us walk trough steps 1©– 5© of our approach as summarized in Section 4.

1© For the nominal control design, an inverse dynamics controller is used in the inner loop based on the robot model for
mnom = 1.0 kg. Given the varying payload, this controller can only achieve an approximate feedback linearization.
Therefore, an outer-loop controller K0 is designed to robustify the loop. We use the proportional gains Kp = 900 and
derivative gains Kd = 2

√
Kp = 60 in each joint.

http://wileyonlinelibrary.com


FRIEDRICH AND BUSS 5155

2© Next, one needs to obtain numeric values for the bounds (9), (10), and (A1a). By a simulation as in the work of
Rocco,13 we find

𝛼 = 0.3438 (worst case with mp = 0.5), 𝛼0 = 5.4028, 𝛼1 = 4.3689, Mu = 5.7032.

3© While the previous bounds are only due to the manipulator and uncertain feedback linearization, we now construct
the novel generalized plant setup proposed in Theorem 1. Just as in the previous example, we use the two-DoF
design structure given in Appendix C. Now, the uncertainties are conceptually pulled out as shown in Figure 4. To
keep the conservatism reasonable, some characteristics of the manipulator are considered. In particular,

• all six DoFs of the P560 are rotational (cf Remark 8);
• the Coriolis and centripetal effects of the P560 are to a very large extent determined from .q1,

.q2,
.q3;

• Friction is independent of payload, hence compensated by the inverse dynamics controller.

Accordingly, the uncertainty structure (28) is described by matrices 𝚫M ∈ ℝ6×6 and 𝚫Ψ ∈ ℝ3×(3+1). From the values
obtained in step 2©, we have as of (B3) the associated norm bounds 𝛼M = 0.3438 and 𝛼Ψ = 39.627.

4© Next, the realization of the uncertain dual-Youla operator (39) is calculated. We then assign the probability levels
p = 99.9% and 𝛿 = 10−4 to employ Algorithm 1 from Table 1, using 104 samples. The worst estimate is �̂�S = 0.1137.

5© The detailed uncertainty quantification of the dual-Youla parameter S by 1©- 4© is worthwhile once the
Q-parameterization is used to enhance performance. That is, the nominal PD controller is firstly augmented, as
shown in Figure 5. According to Theorem 3, the parameterization now allows to search over robustly stabilizing
controllers simply by choosing a (possibly time-varying) finite-gain 2 stable parameter system Q. By the value of
�̂�S = 0.1137, robust stability is assured if ||Q||∞ < 1∕�̂�S ≈ 8.8.

There is a multitude of design methods for the parameter Q, and the reader is referred to the literature.15-17,19,21,22,24 Con-
troller design in Q is beyond the scope of this article, yet in general, the less restricted ||Q||∞ needs to be, the more design
freedom there is for any such method.

Let us briefly illustrate this trade-off. To this end, some controllers Q are “designed” by randomly sampling sta-
ble dynamic systems of maximum order 10. We run 20 times 50 nonlinear simulations of the closed loop over
T = 10 seconds, each time increasing the allowed threshold of the loop norm ||Q||∞ · �̂�S in a logarithmic range of
0.05, 0.1, 0.25, 0.75, … , 500, 103, 104. To account for the uncertain load, a random value 0.5 ≤ mp ≤ 1.5 is assigned to
the payload in each simulation run. The initial state is q0 = [0, 𝜋∕4,−𝜋∕2, 0, 0, 0, 01×6]⊤. A discrete-time formulation of
the controller is used for implementation. The sampling time is constant with ts = 5 ms, and the solutions are obtained
by a third-order Runge-Kutta method (Bogacki-Shampine). To keep the comparison irrespective of feedforward control,
only a feedback controller augmentation is used in this example, ie, Qff = 06×18 in all simulations.

The result of these simulations is summarized in Figure 9, depicting the 𝓁2-norm of the six-dimensional error signals.
Controllers on the left side of the vertical dashed line in Figure 9 are within the set R from (36). It can be observed that
none of the controllers in R leads to a significant increase in the error norm. Leaving the set of admissible robust con-
trollers, the error norms rapidly increase up to practically useless control behavior and instability of the simulated loops
starting from approximately ||Q||∞ > 20∕�̂�S. Compared to Q = 0, 46 of the 548 controllers K ∉ R yield better perfor-
mance; however, 211 controllers K ∉ R lead to instability. This study shows how the parameterization of Theorem 3 is
indeed useful: It allows to search exclusively over robustly stabilizing controllers. Robust performance can subsequently
be obtained by suitable design of Q subject to ||Q||∞ < 1∕�̂�S. Approximately half of the LTI systems Q actually improve the
performance of the overall control system in this study, albeit being only randomly sampled. This is depicted in Figure 9B,
which shows a magnification of the area marked by the rectangle in the lower left corner of Figure 9A.

5.3 Comparison to related work
Single primary vs double-Youla parameterization. The robust control of Section 2.5.1 derived in the classic fre-
quency domain Youla parameterization always yields a high-gain dynamic compensator.9 Here, the parameterization is
in state-space and it can be based on both dynamic and static central K0. Moreover, the conventional approach is lump-
ing all uncertainties in a single term (22) of internal feedback disturbances 𝜼 that must be suppressed. In contrast, the
structure (28) proposed in this article more accurately reflects that of AID uncertainty (6)-(8).
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(A) (B)

FIGURE 9 Tracking errors of a P560 with uncertain payload and 1000 randomly sampled filters Q. The simulation confirms that all
controllers K(Q) ∈ R robustly stabilize the nonlinear loop. Conservatism is discernible in that some K(Q) ∉ R also yield improved
performance. A, Joint tracking error norms obtained by 1000 simulation runs with randomly sampled controllers. The gray vertical dashed
line denotes the border of the set R, ie, K(Q) ∈ R if ||Q||∞�̂�S < 1. The horizontal dashed line depicts the performance of the central PD
controller K(Q = 0). Unstable simulations are marked by x. The area in the rectangle is magnified in Figure 9B; B, Performance of 552
randomly sampled controller augmentations, of which 452 fulfill Q ∶ K(Q) ∈ R (left side of the vertical dashed line). The best such
controller improves the tracking performance by 11% w.r.t the nominal design (Q = 0) indicated by the horizontal dashed line

It may be less evident that the purpose of the parameterizations is quite different. In the method of Spong and
Vidyasagar,9 the central controller does not ensure robust stability; robustness is obtained by careful design of Q (“The
choice of [Q] is not easy to see”9). As the primary Youla parameterization only yields stabilizing controllers for the unper-
turbed plant, ie, the nominal double integrator, in the work of Spong and Vidyasagar,9 the design of the filter system Q
must ensure that the internal disturbance 𝜼 is suppressed and not destabilizing. In this paper, we do not report another
robustification tool but rather characterize a whole set of robustly stabilizing AID controllers (36) such that the control
performance can be enhanced online (cf Figure 1 and Remark 5). Such enhancement is possible using time-varying or
switching schemes, including adaptive,23,29 learning,11 model predictive,20 hybrid,21 and gain scheduling18,19 approaches.
Most of these references only focus on the design aspect of the system Q, ie, design for a nominal model within the set of
stabilizing controllers. By the contributions in this article, such a design can be systematically tightened to the subset of
robustly stabilizing controllers for robot manipulators. Finally, the traditional approach dictates the design of the system
Q and is therefore limited to robust trajectory tracking control. The double-Youla framework reported in this article, in
general, does not make this restriction because all derivations refer to the generalized plant (25).

Comparison to Lyapunov-based designs. By the revised robust control design, Bascetta and Rocco5 essentially
undo the step in the Lyapunov-based designs (Section 2.5.2) of lumping the closed-loop uncertainty into a single term 𝜼

in (24). Their method consists of two steps: First, the nominal PD controller is designed to ensure global asymptotic sta-
bility of the error system under perturbation with any admissible matrix ||𝚫M|| ≤ 𝛼. Second, the asymptotic performance
under the influence of the neglected terms ñ is recovered by an additional feedback term 𝝂 = f(e) obtained via a quadratic
Lyapunov function. Our requirement of (35) that robust stability is ensured by the nominal controller is therefore similar
to the first step of Bascetta and Rocco.5 While the methodological approach is quite different, the additional input 𝛿u in
this paper corresponds to the term 𝝂 in the work of Bascetta and Rocco,5 as emphasized in Remark 6. The parameterization
of Theorem 3 thus constitutes a viable alternative to the Lyapunov-based methods. The general drawback of a factoriza-
tion approach is that only uniform ultimate boundedness is ensured as long as the linear bound (10) holds. In turn, the
double-Youla parameterization brings some advantages. First, the Lyapunov approaches to robust manipulator control
typically result in high-frequency additional control signals 𝝂. Here, in contrast, the characteristics of 𝛿u depend exclu-
sively on the design of Q. For example, the controllers of Section 5.2 generate smooth signals because Q is LTI. Second,
Bascetta and Rocco5 only deal with robust tracking control. The novel double-Youla parameterization, however, is derived
for a generalized plant structure (25) and an arbitrary LTI controller K0. It therefore complements the Lyapunov-based
approaches in terms of versatility, as (25) allows to represent via z many more control objectives in the design step of Q.

Recent approaches. Let us finally recapitulate the distinctive features of the presented double-Youla approach com-
pared to recent literature on robust manipulator control. The conservatism is determined by the accuracy of the model
bounds and nominal outer-loop compensator gains. Helwa et al58 consequently propose a learning-based adjustment of
the uncertainty bounds in the Lyapunov-based robust design. Nonetheless, the robustification term is a switching signal
of potentially high frequency, and the overall design is tailored towards tracking control; one could then also work with
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a robust-adaptive scheme.59 In addition, the work of Kim et al46 is related in that the L1 robustness bounds therein are
as well derived by consideration of a generalized plant interconnection. However, Kim et al46 start from the error system
(24), and the disturbance signal is only split into exogenous and internal components. The uncertainty structure used
in the work of Kim et al46 hence does not distinguish between inertia and signal uncertainty, resulting in a conservative
design (cf Remark 1). In all these works, the analysis is conducted regardless of the nominal outer-loop PD controller
that has considerable influence on robustness. The dual-Youla measure of uncertainty proposed in this article, in turn,
provides a general approach to systematically quantify this influence.

6 CONCLUSION

We provide for the first time a double-Youla parameterization for robust control of rigid body manipulators, with the dual
parameterization being the key tool to quantify the uncertainty of the control loop. Using a static nominal controller,
the theory specializes to a handy structure suitable for practical implementations. In summary, the proposed methodol-
ogy constitutes a control strategy that allows to apply numerous advanced design methods for enhancement of inverse
dynamics–based feedback controllers in a strict robust stability framework.

We emphasize that the parameterization generally entails controllers based on the internal model principle. Clearly,
also the disturbance observer compensation designs are a specific implementation of the internal model principle.60 Just
as the linear robust internal-loop compensator structure from the work of Kim et al60 has been generalized to the nonlinear
setting,45 a nonlinear flavor of our method might be developed in future work: With suitable extensions,61 one could take
advantage of the available manipulator model directly in terms of a parameterization. It would also be worthwhile to
develop a dual-Youla uncertainty characterization for the robust manipulator control with a disturbance observer–based
inner loop compensation.40 Another important research direction is to include the analysis of flexible robots62 in the
framework.
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APPENDIX A

STANDARD ROBOTIC NORM BOUNDS

The reader is referred to other works2,4,9 for details and an in-depth interpretation of the following assumptions.

Assumption 2 (Manipulator dynamic bounds2,4). When the robot arm (1) is revolute, there exist known positive
constants Ml,Mu,Cu,Fu, and gu such that, for all (t,q, .q) ∈ ℝt ×ℝn ×ℝn, the matrices M(q), C(q, .q) and the vectors
f ( .q) and g(q) satisfy the following inequalities:

0 < Ml ≤ ||M(q)−1|| ≤ Mu < ∞, (A1a)

||C(q, .q)|| ≤ Cu|| .q||, ||F( .q)|| ≤ Fu|| .q||, ||g(q)|| ≤ gu. (A1b)

The workspace of the manipulator is bounded ||q||∞ ≤ qmax; hence, the inertia matrix M(q) is invertible for all q.
Finally, || .q||∞ ≤ vmax holds due to the power limitation.

Assumption 3 (Exogenous signal bounds).

1. The input disturbance is bounded from above by a known constant Cdist such that ||𝝉dist||∞ ≤ Cdist < ∞.
2. The measurement noise fulfills ||wi||∞ ≤ Wi, i = 1, 2, for some known constants Wi < ∞.
3. The reference trajectory satisfies ||qd||∞ ≜ Qd.

APPENDIX B

PROOFS

The following simple auxiliary inequality is introduced.

Lemma 2. Let a1, a2 ∈ ℝ and h1,h2 ∈ ℝn; then,

[a1, a2]col(|| h1 ||, || h2 ||) ≤ || [a1, a2] || || col(h1, h2) ||. (B1)

https://doi.org/10.1002/rnc.4671
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Proof. (B2) can be shown by straightforward algebraic manipulation and the definition of the induced vector 2-norm.

B.1 Proof of Theorem 1
Proof. The state- and control-dependent nonlinear terms of wU

Δ in (27) are collected separately in a vector wΔ =
col(wM

Δwψ
Δ). We then have

||wΔ|| = ‖‖‖‖‖
[

wM
Δ

wψ
Δ

]‖‖‖‖‖ ≤
‖‖‖‖‖
[ || 𝚫Mu |||| M−1ñ || ]‖‖‖‖‖ ≤

‖‖‖‖‖
[ || 𝚫M || || u |||| M−1 || || ñ || ]‖‖‖‖‖ ,

where the last inequality is due to the submultiplicative property of compatible induced matrix norms. Inserting the
bounds (10) and (A1a) yields

||wΔ|| ≤ ‖‖‖‖‖
[ || 𝚫M || || u ||

Mu𝛼0 +Mu𝛼1 || x || ]‖‖‖‖‖ .
At this point, one cannot simply treat the constant part of Φ(||x||) as if it were a bounded additive disturbance wext

such that ||wext|| ≤ Mu𝛼0, similarly as it could be done with the external disturbances wdist. Here, such a step would
void conservatism because ||col(||u||, a + ||x||)|| ≰ ||col(||u||, ||x||)|| + a in general. To proceed nonetheless, introduce
a fictitious perturbation signal zf

Δ ≜ 1 = ||zf
Δ|| to rewrite the sum Mu𝛼0 +Mu𝛼1||x|| as a dot product

||wΔ|| ≤

‖‖‖‖‖‖‖‖‖‖
⎡⎢⎢⎢⎢⎣

||𝚫M||||u||
[Mu𝛼0,Mu𝛼1] ·

⎡⎢⎢⎢⎣
‖‖‖zf
Δ
‖‖‖‖‖‖‖‖

[
q.q

]‖‖‖‖‖
⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦
‖‖‖‖‖‖‖‖‖‖
.

By application of Lemma 2, we have

||wΔ|| ≤
‖‖‖‖‖‖‖‖
⎡⎢⎢⎢⎣

||𝚫M||||u||
‖[Mu𝛼0,Mu𝛼1]‖ · ‖‖‖‖‖‖

[
zf
Δ
q.q

]‖‖‖‖‖‖
⎤⎥⎥⎥⎦
‖‖‖‖‖‖‖‖ =

‖‖‖‖‖‖‖‖
[ ||𝚫M|| 0

0 ‖[Mu𝛼0,Mu𝛼1]‖
] ⎡⎢⎢⎢⎣

||u||‖‖‖‖‖‖
[

zf
Δ
q.q

]‖‖‖‖‖‖
⎤⎥⎥⎥⎦
‖‖‖‖‖‖‖‖ ≤

‖‖‖‖‖
[
𝛼M 0
0 𝛼Ψ

]‖‖‖‖‖ ·
‖‖‖‖‖‖‖‖
⎡⎢⎢⎢⎣

u
zf
Δ
q.q

⎤⎥⎥⎥⎦
‖‖‖‖‖‖‖‖ , (B2)

where the abbreviations

𝛼M ≜ ||𝚫M|| (9)= 𝛼, 𝛼Ψ ≜ ||[Mu𝛼0, Mu𝛼1]|| (B3)

are introduced. Denote by zΔ ≜ col(u, zf
Δq, .q) the vector of signals exciting uncertainty. Thus, by the inequality (B2),

a conservative gain bound such that ||wΔ||∞ ⩽ ||ΔzΔ||∞ is given‡ by ||𝚫|| ≤ ||diag(𝛼M, 𝛼Ψ)|| = max(𝛼M, 𝛼Ψ), where
𝚫 ∈ ℝ2n×(3n+1) is any real matrix of appropriate size and norm. From their definitions, however, it is known that
wM
Δ (u) and wψ

Δ(q,
.q) are decoupled. It follows that the relevant uncertain matrices can be restricted to a set Δ of block

diagonal matrices with separate norm bounds

Δ =
{
𝚫 =

[
𝚫M 0
0 𝚫Ψ

]
∶ 𝚫M ∈ ℝn×n,𝚫Ψ ∈ ℝn×(2n+1), ||𝚫M|| ≤ 𝛼M, ||𝚫Ψ|| ≤ 𝛼Ψ

}
.

B.2 Proof of Theorem 2
Proof. Begin by checking that (A11,B13) is stabilizable and (A11,C31) detectable, which can be easily verified for the
generalized plant given by (C1) to (C2). Furthermore, D33 = 0, ie, there is no direct feedthrough in the control channel

‡Note that the spatial norm in the definition of the ∞-norm can be any vector p-norm63; here, p = 2.
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of the plant. Then, for the general controller (31), a coprime factorization can be obtained directly in state-space by
adopting the formulae given in the works of Tay et al29 and Ishihara and Sales64

Next, an expression for TΔ from (30) has to be calculated, which we repeat here for convenience:[
TΔ,11TΔ,12
TΔ,21TΔ,22

]
=
[

GzΔwΔ + GzΔuU0M̃0GywΔ GzΔuM0
M̃0GywΔ 0

]
.

Let us also explicitly state the following systems determined from (C1) as

The steps to obtain a compact expression of TΔ,11 are the insertion of the coprime factors U0 and M̃0 from (B4) and
algebraic simplification, subsequent application of a state similarity transformation such that 𝝃 = Tx with

T =

⎡⎢⎢⎢⎢⎢⎢⎣

I I 0 0 0 0 0
0 0 0 I 0 0 0
0 −I 0 0 I 0 0
0 0 I 0 0 0 0
I 0 0 0 0 0 0
0 0 0 −I 0 I 0
−I 0 0 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎦
.

and the removal of four uncontrollable and one unobservable modes. A realization is finally obtained as

By analogous steps, for TΔ,12 and TΔ,21, we have

where one uncontrollable and one unobservable mode were removed, respectively. Consequently, assuming Δ ≜ 𝚫
as a nondynamic matrix and defining D̃ = I −D11𝚫 −D13DKD31𝚫, a realization for (I − TΔ,11Δ)−1 is

where

Ā =
[

Ā11 Ā12
Ā21 Ā22

]
,

Ā11 = B13DKC31 + B11𝚫D̃−1C11 + B11𝚫D̃−1D13DKC31 + B13DKD31𝚫D̃−1C11 + B13DKD31𝚫D̃−1D13DKC31 + A11,

Ā12 = B13CK + B11𝚫D̃−1D13CK + B13DKD31𝚫D̃−1D13CK,

Ā21 = BKC31 + BKD31𝚫D̃−1C11 + BKD31𝚫D̃−1D13DKC31, Ā22 = AK + BKD31𝚫D̃−1D13CK,

B̄ =
[

B11𝚫D̃−1 − B13DKD31𝚫D̃−1

−BKD31𝚫D̃−1

]
, C̄ = [−D̃−1C11 − D̃−1D13DKC31 − D̃−1D13CK], D̄ = D̃−1

.
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Finally, plugging the above realizations of TΔ,12, (I−TΔ,11Δ)−1 and TΔ,21 into (29) and a number of straightforward but
tedious simplifications yield the result (33).

B.3 Proof of Lemma 1
Proof. To obtain a robustly stable loop, the stability condition on (Q, S) from Proposition 4 is not sufficient yet because
it only refers to the controlled channel; in Figure 3B, however, the prestabilized yet uncertain loop T(S) is subject to

exogenous inputs w. Hence, to ensure robust closed-loop internal stability, it is required that the pair
([

0 0
0 Q

]
,T(S)

)
be stable22(p80) for all allowed perturbations. To this end, it is sufficient to show22(p32) that T11(S),T12(S),T21(S) ∈
∞ as S ∈ ∞, and (Q,T22(S)) = (Q, S) should be a stabilizing loop by construction. Denoting with P(S)
the transfer matrix between col(w,u) and col(z, y) for the plant determined by S, the uncertain operator T(S) is
given by22(p79)

T(S) =
[

T11(S) T12(S)
T21(S) T22(S)

]
=
[

P11(S) + P12(S)UM̃(S)P21(S) P12(S)M(S)
M̃(S)P21(S) S

]
. (B6)

By the first condition (i), consider that (35) is necessary and sufficient for the stability of the nominal uncertain
loop. Then, for all Δ ∈ Δ, there exists a stable dual-Youla operator S ∈ ∞ whose coprime factors satisfy
M̃(S),M(S) ∈ ∞ by construction and consequently SΔ ⊂ ∞. Using (29) to calculate S, by the factorization, the
plant under control P(S) in (B6) is precisely that of the uncertain plant u(G,Δ) from the controller's point of view.
Thus, with (35) also P11(S),P12(S),P21(S) ∈ ∞ and consequently T(S) ∈ ∞∀Δ ∈ Δ. Alternatively, the require-
ment (i) could also be proved by coprimeness of the factors involved (App. B in the work of Thomsen et al20). The
requirement (ii) follows directly from the small-gain condition of Proposition 4: S is an uncertain stable time-varying
operator and the only assumption about the plug-in controller Q is that ||Q||∞ ≤ 𝛾Q for some finite 𝛾Q. The small-gain
theorem is therefore necessary (Th. 9.1 in the work of Zhou et al15) to ensure that all S ∈ Δ are stabilized by
all Q ∈ Q.

APPENDIX C

STATE-SPACE REALIZATION OF GENERALIZED PLANT FOR TRACKING CONTROL

A state-space description of (25) is

with (A11,B13) and (A11,C31) stabilizable and detectable pairs, respectively. For the case of a two-DoF tracking control
design (Figure 4 specialized according to Remark 7 and Remark 8), we have

A11 =
[

0n In
0n 0n

]
,B11 =

[
0n 0n
In In

]
,B12 =

[
0n×(5n+1) 0n
0n×(5n+1) In

]
,B13 =

[
0n
In

]
,C11 =

[
0(n+1)×2n
0n In

]
,C21 =

[ In 0n
0n×2n
In 0n

]
,

C31 =
[

I2n
03n×2n

]
,D11 = 0(2n+1)×2n,D12 =

[ 0n×(6n+1)
1 01×6n
0n×(6n+1)

]
,D13 =

[
In

0(n+1)×n

]
,D21 = 03n×2n,D22 =

[
0n×1 − In 0n×5n

02n×(6n+1)

]
,

D23 =
[
0⊤n , I⊤n , 0⊤n

]⊤
,D31 = 05n×2n,D32 =

[
02n×1 02n×3n I2n 02n×n
03n×1 I3n 03n

]
.

(C2)
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