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A B S T R A C T

Aerial image classification is of great significance in the remote sensing community, and many researches have
been conducted over the past few years. Among these studies, most of them focus on categorizing an image into
one semantic label, while in the real world, an aerial image is often associated with multiple labels, e.g., multiple
object-level labels in our case. Besides, a comprehensive picture of present objects in a given high-resolution
aerial image can provide a more in-depth understanding of the studied region. For these reasons, aerial image
multi-label classification has been attracting increasing attention. However, one common limitation shared by
existing methods in the community is that the co-occurrence relationship of various classes, so-called class
dependency, is underexplored and leads to an inconsiderate decision. In this paper, we propose a novel end-to-
end network, namely class-wise attention-based convolutional and bidirectional LSTM network (CA-Conv-
BiLSTM), for this task. The proposed network consists of three indispensable components: (1) a feature ex-
traction module, (2) a class attention learning layer, and (3) a bidirectional LSTM-based sub-network.
Particularly, the feature extraction module is designed for extracting fine-grained semantic feature maps, while
the class attention learning layer aims at capturing discriminative class-specific features. As the most important
part, the bidirectional LSTM-based sub-network models the underlying class dependency in both directions and
produce structured multiple object labels. Experimental results on UCM multi-label dataset and DFC15 multi-
label dataset validate the effectiveness of our model quantitatively and qualitatively.

1. Introduction

With the booming of remote sensing techniques in the recent years,
a huge volume of high resolution aerial imagery is now accessible and
benefits a wide range of real-world applications, such as urban mapping
(Marmanis et al., 2018; Audebert et al., 2018; Marcos et al., 2018; Mou
and Zhu, 2018a), ecological monitoring (Zarco-Tejada et al., 2014; Wen
et al., 2017), geomorphological analysis (Mou and Zhu, 2018b;
Lucchesi et al., 2013; Weng et al., 2018; Cheng et al., 2017), and traffic
management (Mou and Zhu, 2018c; Mou and Zhu, 2016; Li et al.,
2018). As a fundamental bridge between aerial images and these ap-
plications, image classification, which aims at categorizing images into
semantic classes, has obtained wide attention, and many researches
have been conducted recently (Nogueira et al., 2017; Yang and
Newsam, 2010; Xia et al., 2017; Zhu et al., 2017; Demir and Bruzzone,
2016; Hu et al., 2015, 2018; Zhang et al., 2015; Huang et al., 2018; Mou
et al., 2017). However, most existing studies assume that each image

belongs to only one label (e.g., scene-level labels in Fig. 1), while in
reality, an image is usually associated with multiple labels (Tan et al.,
2017). Furthermore, a comprehensive picture of objects present in an
aerial image is capable of offering a holistic understanding of such
image. With this intention, numerous researches, i.e., semantic seg-
mentation (Ren et al., 2015; Long et al., 2015; Badrinarayanan et al.,
2015) and object detection (Ren et al., 2015; Viola and Jones, 2001; Lin
et al., 2017; Ren et al., 2017), have emerged recently. Unfortunately, it
is extremely labor- and time-consuming to acquire ground truths for
these studies (i.e., pixel-wise segmentation masks and bounding-box-
level annotations). Compared to these expensive labels, image-level
labels (cf. multiple object-level labels in Fig. 1) are at a fair low cost and
readily accessible. To this end, multi-label classification, aiming at as-
signing an image with multiple object labels, is arising in both remote
sensing (Karalas et al., 2016; Zeggada et al., 2017; Koda et al., 2018;
Zeggada et al., 2018) and computer vision communities (Patterson and
Hays, 2012; Chua et al., 2009; Everingham et al., 2010). In this paper,
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we deploy our efforts in exploring an efficient multi-label classification
model.

1.1. The challenges of multi-label classification

Benefited from the fast-growing remote sensing technology, large
quantities of high-resolution aerial images are available and widely
used in many visual tasks. Along with such huge opportunities, chal-
lenges have come up inevitably.

On one hand, it is difficult to extract high-level features from high-
resolution images. Considering its complex spatial structure, conven-
tional hand-crafted features, and mid-level semantic models (Yang and
Newsam, 2010; Shao et al., 2013; Risojevic and Babic, 2013; Lowe,
2004; Zhu et al., 2016) suffer from the poor performance of capturing
holistic semantic features, which leads to an unsatisfactory classifica-
tion ability.

On the other hand, underlying correlations between dependent la-
bels are required to be unearthed for an efficient prediction of multiple
object labels. E.g., the existence of ships infers to a high probable co-
occurrence of the sea, while the presence of buildings is almost always
accompanied by the coexistence of pavement. However, the recently
proposed multi-label classification methods (Karalas et al., 2016;
Zeggada et al., 2017; Koda et al., 2018; Zeggada et al., 2018) assumed
that classes are independent and employed a set of binary classifiers
(Karalas et al., 2016) or a regression model (Zeggada et al., 2017; Koda
et al., 2018; Zeggada et al., 2018) to infer the existence of each class
separately.

To summarize, a well-performed multi-label classification system
requires powerful capabilities of learning holistic feature representa-
tions and should be capable of harnessing the implicit class de-
pendency.

1.2. The motivation of our work

As our survey of related work shows above, recent approaches make
few efforts to exploit the high-order class dependency, which constrains
the performance in multi-label classification. Besides, direct utilization
of CNNs pre-trained on natural image datasets (Zeggada et al., 2017;
Koda et al., 2018; Zeggada et al., 2018) leads to a partial interpretation
of aerial images due to their diverse visual patterns. Moreover, most
state-of-the-art methods decompose multi-label classification into se-
parate stages, which cuts off their inter-correlations and makes end-to-
end training infeasible.

To tackle these problems, in this paper, we propose a novel end-to-
end network architecture, class attention-based convolutional and bi-
directional LSTM network (CA-Conv-BiLSTM), which integrates feature
extraction and high-order class dependency exploitation together for
multi-label classification. Contributions of our work to the literature are
detailed as follows:

• We regard the multi-label classification of aerial images as a struc-
tured output problem instead of a simple regression problem. In this
manner, labels are predicted in an ordered procedure, and the pre-
diction of each label is dependent on others. As a consequence, the
implicit class relevance is taken into consideration, and structured
outputs are more reasonable and closer to the real-world case as
compared to regression outputs.
• We propose an end-to-end trainable network architecture for multi-
label classification, which consists of a feature extraction module
(e.g., a modified network based on VGG-16), a class attention
learning layer, and a bidirectional LSTM-based sub-network. These
components are designed for extracting features from input images,
learning discriminative class-specific features, and exploiting class
dependencies, respectively. Besides, such a design makes it feasible
to train the network in an end-to-end fashion, which enhances the
compactness of our model.
• Considering that class dependencies are diverse in both directions, a
bidirectional analysis is required for modeling such correlations.
Therefore, we employ a bidirectional LSTM-based network, instead
of a one-way recurrent neural network, to dig out class relation-
ships.
• We build a new challenging dataset, DFC15 multi-label dataset, by
reproducing from a semantic segmentation dataset, GRSS_DFC_2015
(DFC15) (IEEE GRSS data fusion contest, 2015). The proposed da-
taset consists of aerial images at a spatial resolution of 5 cm and can
be used to evaluate the performance of networks for multi-label
classification.

The following sections further introduce and discuss our network.
Specifically, Section 2 provides an intuitive illustration of the class
dependency and then details the structure of the proposed network in
terms of its three fundamental components. Section 3 describes the
setup of our experiments, and experimental results are discussed from
quantitative and qualitative perspectives. Finally, the conclusion of this
paper is drawn in Section 4.

2. Methodology

2.1. An observation

Current aerial image multi-label classification methods (Zeggada
et al., 2017; Koda et al., 2018; Zeggada et al., 2018) consider such
problem as a regression issue, where models are trained to fit a binary
sequence, and each digit indicates the existence of its corresponding
class. Unlike one-hot vectors, a binary sequence is allowed to contain
more than one ‘hot’ value for indicating the joint existence of multiple
candidate classes in one image. Besides, several researches (Karalas
et al., 2016) formulate multi-label classification into several single-label
classification tasks, and thus, train a set of binary classifiers for each
class. Notably, one common assumption of these studies is that classes

Fig. 1. Example high resolution aerial images with their scene labels and multiple object labels. Common label pairs are highlighted. (a) Free way: bare soil, car, grass,
pavement and tree. (b) Intersection: building, car, grass, pavement and tree. (c) Parking lot: car and pavement.
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are independent of each other, and classifiers predict the existence of
each category independently. However, this is violent and not accord
with real life. As illustrated in Fig. 1, although images obtained in di-
verse scenes are assigned with multiple different labels, there are still
common classes, e.g., car and pavement, coexisting in each image. This
is because, in the real-life world, some classes have a strong correlation,
for example, cars are often driven or parked on pavements. To further
demonstrate the class dependency, we calculate conditional prob-
abilities for each of the two categories. Let Cr denote referenced class,
and Cp denote potential co-occurrence class. Conditional probability
P C C( | )p r , which depicts the possibility that Cp exhibits in an image,
where the existence of Cr is priorly known, can be solved with Eq. (1),

=P C C
P C C

P C
( | )

( , )
( )

.p r
p r

r (1)

P C C( , )p r indicates the joint occurrence probability of Cp and Cr , and
P C( )r refers to the priori probability of Cr . Conditional probabilities of
all class pairs in UCM multi-label datasets are listed in Fig. 2, and it is
intuitive that some classes have strong dependencies. For instance, it is
highly possible that there are pavements in images, which contain
airplanes, buildings, cars, or tanks. Moreover, it is notable that class
dependencies are not symmetric due to their particular properties. For
example, P water ship( | ) is twice as P ship water( | ) due to the reason that
the occurrence of ships always infer to the co-occurrence of water,
while not vice versa. Therefore, to thoroughly dig out the correlation
among various classes, it is crucial to model class probabilistic de-
pendencies bidirectionally in a classification method.

To this end, we boil the multi-label classification down into a
structured output problem, instead of a simple regression issue, and

Fig. 2. The co-occurrence matrix of labels in UCM multi-label dataset. Notably, all images are taken into consideration when calculating this matrix. Labels at Y-axis
represent referenced classesCr , while labels at X-axis are potential co-occurrence classesCp. The conditional probability P C C( | )p r of each class pair is presented in the
corresponding block.

Fig. 3. The architecture of the proposed CA-Conv-BiLSTM for the multi-label classification of aerial images.
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employ a unified framework of a CNN and a bidirectional RNN to (1)
extract semantic features from raw images and (2) model image-label
relations as well as bidirectional class dependencies, respectively.

2.2. Network architecture

The proposed CA-Conv-BiLSTM, as illustrated in Fig. 3, is composed
of three components: a feature extraction module, a class attention
learning layer, and a Bidirectional LSTM-based recurrent sub-network.
More specifically, the feature extraction module employs a stack of
interleaved convolutional and pooling layers to extract high-level fea-
tures, which are then fed into a class attention learning layer to produce
discriminative class-specific features. Afterwards, a bidirectional LSTM-
based recurrent sub-network is attached to model both probabilistic
class dependencies and underlying relationships between image fea-
tures and labels.

Section 2.2.1 details the architecture of the feature extraction
module, and Section 2.2.2 describes the explicit design of the class at-
tention learning layer. Finally, Section 2.2.3 introduces how to produce
structured multi-label outputs from class-specific features via a bidir-
ectional LSTM-based recurrent sub-network.

2.2.1. Dense high-level feature extraction
Learning efficient feature representations of input images is ex-

tremely crucial for the image classification task. To this end, a modern
popular trend is to employ a CNN architecture to automatically extract
discriminative features, and many recent studies (Hua et al., 2018; Mou
and Zhu, 2018c; Xia et al., 2017; Kang et al., 2018; Zhu et al., 2017;
Mou et al., 2017) have achieved great progress in a wide range of
classification tasks. Inspired by this, our model adapts VGG-16
(Simonyan and Zisserman, 2014), one of the most welcoming CNN
architectures for its effectiveness and elegance, to extract high-level
features for our task.

Specifically, the feature extraction module consists of 5 convolu-
tional blocks, and each of them contains 2 or 3 convolutional layers (as
illustrated in the left of Fig. 3). Notably, the number of filters is
equivalent in a common convolutional block and doubles after each
pooling layer, which is utilized to reduce the spatial dimension of
feature maps. The purpose of such design is to enable the feature ex-
traction module to learn diverse features at a less computational ex-
pense. The receptive field of all convolutional filters is ×3 3, which
increases nonlinearities inside the feature extraction module. Besides,
the convolution stride is 1 pixel, and the spatial padding of each con-
volutional layer is set as 1 pixel as well. Among these convolutional
blocks, max-pooling layers are interleaved for reducing the size of
feature maps and meanwhile, maintaining only local representative,
such as maximum in a ×2 2-pixel region. The size of pooling windows
is ×2 2 pixels, and the pooling stride is 2 pixels, which halves feature
maps in width and length.

Features directly learned from a conventional CNN (e.g., VGG-16)
are proved to be high-level and semantic, but their spatial resolution is
significantly reduced, which is not favorable for generating high-di-
mensional class-specific features in the subsequent class attention
learning layer. To address this, max-pooling layers following the last

two convolutional blocks are discarded in our model, and atrous con-
volutional filters with dilation rate 2 are employed in the last con-
volutional block for preserving original receptive fields. Consequently,
our feature extraction module is capable of learning high-level features
with finer spatial resolution, so-called “dense”, compared to VGG-16,
and it is feasible to initialize our model with pre-trained VGG-16,
considering that all filters have equivalent receptive fields.

Moreover, it is noteworthy that other popular CNN architectures
can be taken as prototypes of the feature extraction module, and thus,
we extend researches to GoogLeNet (Szegedy et al., 2015) and ResNet
(He et al., 2016) for a comprehensive evaluation of CA-Conv-BiLSTM.
Regarding GoogLeNet, i.e., Inception-v3 (Szegedy et al., 2016), the
stride of convolutional and pooling layers after “mixed7” is reduced to 1
pixel, and the dilation rate of convolutional filters in “mixed9” is 2. For
ResNet (we use ResNet-50), the convolution stride in last two residual
blocks is set as 1 pixel, and the dilation rate of filters in the last residual
block is 2. Besides, layers after global average pooling layers, as well as
itself, are removed to ensure dense high-level feature maps.

2.2.2. Class attention learning layer
Although Features extracted from pre-trained CNNs are high-level

and can be directly fed into a fully connected layer for generating multi-
label predictions, it is infeasible to learn high-order probabilistic de-
pendencies by recurrently feeding it with identical features. Therefore,
extracting discriminative class-wise features plays a key role in dis-
covering class dependencies and effectively bridging CNN and RNN for
multi-label classification tasks.

Here, we propose a class attention learning layer to explore features
with respect to each category, and the proposed layer, illustrated in the
middle of Fig. 3, consists of the following two stages: (1) generating
class attention maps via a ×1 1 convolutional layer with stride 1, and
(2) vectorizing each class attention map to obtain class-specific fea-
tures. Formally, given feature maps X , extracted from the feature ex-
traction module, with a size of × ×W W K , and let wl represent the l-th
convolutional filter in the class attention learning layer. The attention
map Ml for class l can be obtained with the following formula:

=M X w ,l l (2)

where l ranges from 1 to the number of classes, and represents con-
volution operation. Considering that the size of convolutional filters is

×1 1, a class attention map Ml is intrinsically a linear combination of
all channels in X . With this design, the proposed class attention
learning layer is capable of learning discriminative class attention
maps. Some examples are shown in Fig. 4. An aerial image (cf. Fig. 4a)
in UCM multi-label dataset is first fed into the feature extraction
module, adapted from VGG-16, and outputs of its last convolutional
block are considered as the feature maps X in Eq. (2). Thus, X is
abundant in high-level semantic information, and the size of X is

× ×14 14 512. Afterwards, a class attention learning layer, where the
number of filters is equivalent to that of classes, is appended to generate
class-specific feature representations with respect to all categories. With
sufficient training, they are supposed to learn class-wise attention maps.
It is observed that class attention maps highlight discriminative areas
for different categories and exhibit almost no activations with respect to

Fig. 4. Example class attention maps of an (a) aerial image, with respect to different classes: (b) bare soil, (c) building, and (d) water.
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absent classes (as shown in Fig. 4c).
Subsequently, class attention maps Ml are transformed into class-

wise feature vectors vl of W 2 dimensions by vectorization. Instead of
fully connecting class attention maps to each hidden unit in the fol-
lowing layer, we construct class-wise connections between class atten-
tion maps and their corresponding hidden units, i.e., corresponding
time steps in an LSTM layer in our network. In this way, features fed
into different units are retained to be class-specific discriminative and
significantly contribute to the exploitation of the dynamic class de-
pendency in the subsequent bidirectional LSTM layer.

2.2.3. Class dependency learning via a BiLSTM-based sub-network
As an important branch of neural networks, RNN is widely used in

dealing with sequential data, e.g., textual data and temporal series, due
to its strong capabilities of exploiting implicit dependencies among
inputs. Unlike CNN, RNN is characterized by its recurrent neurons, of
which activations are dependent on both current inputs and previous
hidden states. However, conventional RNNs suffer from the gradient
vanishing problem and are found difficult to learn long-term de-
pendencies. Therefore, in this work, we seek to model class de-
pendencies with an LSTM-based RNN, which is first proposed in
Hochreiter and Schmidhuber (1997) and has shown great performance
in processing long sequences (Graves, 2013; Gers et al., 1999; Xu et al.,
2015; Mou et al., 2017, 2019).

Instead of directly summing up inputs as in a conventional recurrent
layer, an LSTM layer relies on specifically designed hidden units, LSTM
units, where information, such as the class dependency between cate-
gory l and l 1, is “memorized”, updated, and transmitted with a
memory cell and several gates. Specifically, given a class-specific fea-
ture vl obtained from the class attention learning layer as an input of the
LSTM memory cell cl at time step l, and let hl represent the activation of
cl. New memory information cl, learned from the previous activation
hl 1 and the present input feature vl, is obtained as follows:

= + +c W v W h btanh( ),l cv l ch l c1 (3)

whereWcv andWch denote weight matrix from input vectors to memory
cell and hidden-memory coefficient matrix, respectively, and bc is a bias
term. Besides, tanh(·) is the hyperbolic tangent function. In contrast to
conventional recurrent units, where the cl is directly used to update the
current state hl, an LSTM unit employs an input gate il to control the
extent to which cl is added, and meanwhile, partially omits un-
correlated prior information from cl 1 with a forget gate f l. The two
gates are performed by the following equations:

= + + +
= + + +

i W v W h W c b
f W v W h W c b

( ),
( ).

l iv l ih l ic l i

l fv l fh l fc l f

1 1

1 1 (4)

Consequently, the memory cell cl is updated by

= +c i c f c ,l l l l l 1 (5)

where represents element-wise multiplication. Afterwards, an output
gate ol, formulated by

= + + +o W v W h W c b( ),l ov l oh l oc l o1 (6)

is designed to determine the proportion of memory content to be ex-
posed, and eventually, the memory cell cl at time step l is activated by

=h o ctanh( ).l l l (7)

Although it is not difficult to discover that the activation of the
memory cell at each time step is dependent on both input class-specific
feature vectors and previous cell states. However, taking into account
that the class dependency is bidirectional, as demonstrated in Section
2.1, a single-directional LSTM-based RNN is insufficient to draw a
comprehensive picture of inter-class relevance. Therefore, a bidirec-
tional LSTM-based RNN, composed of two identical recurrent streams
but with reversed directions, is introduced in our model, and the hidden
units are updated based on signals from not only their preceding states
but also subsequent ones.

In order to practically adapt a bidirectional LSTM-based RNN to
modeling the class dependency, we set the number of time steps in our
bidirectional LSTM-based sub-network equivalent to that of classes

Fig. 5. Illustration of the bidirectional structure. The direction of the upper stream is opposite to that of the lower stream. Notably, h c,l l1 1 denotes the activation
and memory cell in the upper stream at the time step, which corresponds to class l 1 for convenience (considering that the subsequent time step is usually denoted
as +l 1).

Table 1
The number of images in each object class.

Class No. Class Name Total Training Test

1 Airplane 100 80 20
2 Bare soil 718 577 141
3 Building 691 555 136
4 Car 886 722 164
5 Chaparral 115 82 33
6 Court 105 84 21
7 Dock 100 80 20
8 Field 104 79 25
9 Grass 975 804 171
10 Mobile home 102 82 20
11 Pavement 1300 1047 253
12 Sand 294 218 76
13 Sea 100 80 20
14 Ship 102 80 22
15 Tank 100 80 20
16 Tree 1009 801 208
17 Water 203 161 42

– All 2100 1680 420
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under the assumption that distinct classes are predicted at respective
time steps. Validated in Sections 3.3 and 3.4, such design enjoys two
outstanding characteristics: on one hand, the LSTM memory cell at time
step cl, l, focuses on learning dependent relationship between class l and
others in dual directions (cf. Fig. 5), and on the other hand, the oc-
currence probability of class l P, l, can be predicted from outputs h h[ , ]l l
with a single-unit fully connected layer:

= +w h h bP ( [ , ] ),l l l l l (8)

where hl denotes the activation of cl in the other direction, and is
used as the activation function.

3. Experiments and discussion

In this section, two high-resolution aerial datasets of different re-
solution used for evaluating our network are first described in Section
3.1, and then, the training strategies are introduced in Section 3.2.
Afterwards, the performance of the proposed network on the two da-
tasets is quantitatively and qualitatively evaluated in the following
sections.

3.1. Data description

3.1.1. UCM multi-label dataset
UCM multi-label dataset (Chaudhuri et al., 2018) is reproduced

from UCM dataset (Yang and Newsam, 2010) by reassigning them with
multiple object labels. Specifically, UCM dataset consists of 2100 aerial
images of ×256 256 pixels, and each of them is categorized into one of
21 scene labels: airplane, beach, agricultural, baseball diamond,
building, tennis courts, dense residential, forest, freeway, golf course,
mobile home park, harbor, intersection, storage tank, medium re-
sidential, overpass, sparse residential, parking lot, river, runway, and
chaparral. For each of them, there are 100 images with a spatial re-
solution of one foot collected by cropping manually from aerial ortho
imagery provided by the United States Geological Survey (USGS) Na-
tional Map.

In contrast, images in UCM multi-label dataset are relabeled by
assigning each image sample with one or more labels based on their
primitive objects. The total number of newly defined object classes is
17: airplane, sand, pavement, building, car, chaparral, court, tree, dock,
tank, water, grass, mobile home, ship, bare soil, sea, and field. It is
notable that several labels, namely, airplane, building, and tank, are
defined in both datasets but with variant level. In UCM dataset, they are
scene-level labels, since they are predominant objects in an image and
used to depict the whole image, while in UCM multi-label dataset, they
are object-level labels, regarded as candidate objects in a scene. The
numbers of images related to each object category are listed in Table 1,
and examples from each scene category are shown in Fig. 6, as well as
their corresponding object labels. To train and test our network on UCM
multi-label dataset, we select 80% of sample images evenly from each
scene category for training and the rest as the test set.

3.1.2. DFC15 multi-label dataset
Considering that images collected from the same scene may share

similar patterns, alleviating task challenges, we build a new multi-label
dataset, DFC15 multi-label dataset, based on a semantic segmentation

Fig. 6. Example images from each scene category and their corresponding multiple object labels in UCM multi-label dataset. Each image is ×256 256 pixels with a
spatial resolution of one foot, and their scene and object labels are introduced: (a) Agricultural: field and tree. (b) Airplane: airplane, bare soil, car, grass and pavement.
(c) Baseball diamond: bare soil, building, grass, and pavement. (d) Beach: sand and sea. (e) building: building, car, and pavement. (f) Chaparral: bare soil and chaparral. (g)
Dense residential: building, car, grass, pavement, and tree. (h) Forest: building, grass, and tree. (i) Free way: bare soil, car, grass, pavement, and tree. (j) Golf course: grass,
pavement, sand, and tree. (k) Harbor: dock, ship, and water. (l) Intersection: building, car, grass, pavement, and tree. (m) Medium residential: building, car, grass, pavement,
and tree. (n) Mobile home park: bare soil, car, grass, mobile home, pavement, and tree. (o) Overpass: bare soil, car, and pavement. (p) Parking lot: car, grass, and pavement.
(q) River: grass, tree, and water. (r) Runway: grass and pavement. (s) Sparse residential: bare soil, building, car, grass, pavement, and tree. (t) Storage tank: bare soil,
pavement, and tank. (u) Tennis court: bare soil, court, grass, and tree.

Table 2
The number of images in each object class.

Class No. Class Name Total Training Test

1 Impervious 3133 2532 602
2 Water 998 759 239
3 Clutter 1891 1801 90
4 Vegetation 1086 522 562
5 Building 1001 672 330
6 Tree 258 35 223
7 Boat 270 239 31
8 Car 705 478 277

– All 3342 2674 668
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dataset, DFC15 (IEEE GRSS data fusion contest, 2015), which was
published and first used in 2015 IEEE GRSS Data Fusion Contest. DFC15
dataset is acquired over Zeebrugge with an airborne sensor, which is
300m off the ground. In total, 7 tiles are collected in DFC dataset, and
each of them is ×10000 10000 pixels with a spatial resolution of 5 cm.
Unlike UCM dataset, where images are assigned with image-level

labels, all tiles in DFC15 dataset are labeled in pixel-level, and each
pixel is categorized into 8 distinct object classes: impervious, water,
clutter, vegetation, building, tree, boat, and car. Notably, vegetation
refers to low vegetation, such as bushes and grasses, and has no overlap
with trees. Impervious indicates impervious surfaces (e.g., roads) ex-
cluding building rooftops.

Considering our task, the following processes are conducted: First,
we crop large tiles into images of ×600 600 pixels with a 200-pixel-
stride sliding window. Afterwards, images containing unclassified
pixels are ignored, and labels of all pixels in each image are aggregated
into image-level multi-labels. An important characteristic of images in
DFC15 multi-label dataset is lower inter-image similarity due to that
they are cropped from vast regions consecutively without specific
preferences, e.g., seeking images belonging to a specific scene.
Moreover, extremely high resolution makes it more challenging as
compared to UCM multi-label dataset. The numbers of images con-
taining each object label are listed in Table 2, and example images with
their image-level object labels are shown in Fig. 7. To conduct the
evaluation, 80% of images are randomly selected as the training set,
while the others are utilized to test our network.

Fig. 7. Example images in DFC15 multi-label dataset and their multiple object labels. Each image is ×600 600 pixels with a spatial resolution of 5 cm. (a) Water and
vegetation. (b) Impervious, water, and car. (c) Impervious, water, vegetation, building, and car. (d) Water, clutter, and boat. (e) Impervious, vegetation, building, and car. (f)
Impervious, vegetation, building, and car. (g) Impervious, vegetation, and tree. (h) Impervious, vegetation, and building.

Table 3
Configurations of CA-Conv-LSTM architectures.

Model CNN model Class Attention Map Bi.

CA-VGG-LSTM VGG-16 × × N28 28
CA-VGG-BiLSTM VGG-16 × × N28 28 ✓

CA-GoogLeNet-LSTM Inception-v3 × × N17 17
CA-GoogLeNet-BiLSTM Inception-v3 × × N17 17 ✓

CA-ResNet-LSTM ResNet-50 × × N28 28
CA-ResNet-BiLSTM ResNet-50 × × N28 28 ✓

N indicates the number of classes in the dataset.
Bi. indicates whether the model is bidirectional or not.

Table 4
Quantitative results on UCM multi-label dataset (%).

Model m.F1 m.F2 m.Pe m.Re m.Pl m.Rl

VGGNet (Simonyan and Zisserman, 2014) 78.54 80.17 79.06 82.30 86.02 80.21
VGG-RBFNN (Zeggada et al., 2017) 78.80 81.14 78.18 83.91 81.90 82.63

CA-VGG-LSTM 79.57 80.75 80.64 82.47 87.74 75.95
CA-VGG-BiLSTM 79.78 81.69 79.33 83.99 85.28 76.52

GoogLeNet (Szegedy et al., 2015) 80.68 82.32 80.51 84.27 87.51 80.85
GoogLeNet-RBFNN (Zeggada et al., 2017) 81.54 84.05 79.95 86.75 86.19 84.92

CA-GoogLeNet-LSTM 81.78 85.16 78.52 88.60 86.66 85.99
CA-GoogLeNet-BiLSTM 81.82 84.41 79.91 87.06 86.29 84.38

ResNet-50 (He et al., 2016) 79.68 80.58 80.86 81.95 88.78 78.98
ResNet-RBFNN (Zeggada et al., 2017) 80.58 82.47 79.92 84.59 86.21 83.72

CA-ResNet-LSTM 81.36 83.66 79.90 86.14 86.99 82.24
CA-ResNet-BiLSTM 81.47 85.27 77.94 89.02 86.12 84.26

m.F1 and m.F2 indicate the mean F1 and F2 score.
m.Pe and m.Re indicate mean example-based precision and recall.
m.Pl and m.Rl indicate mean label-based precision and recall.
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3.2. Training details

The proposed CA-Conv-BiLSTM is initialized with separate strate-
gies with respect to three dominant components: (1) the feature ex-
traction module is initialized with CNNs pre-trained on ImageNet da-
taset (Deng et al., 2009), (2) convolutional filters in the class attention
learning layer is initialized with a Glorot uniform initializer, and (3) all
weights in the bidirectional 2048-d LSTM layer are randomly initialized
in the range of [ 0.1, 0.1] with a uniform distribution. Notably, weights
in the feature extraction module are trainable and fine-tuned during the
training phase of our network.

Regarding the optimizer, we chose Adam with Nesterov momentum
(Dozat, 2016), claimed to converge faster than stochastic gradient
descent (SGD), and set parameters of the optimizer as recommended:

= =0.9, 0.9991 2 , and = e1 08. The learning rate is set as e1 04
and decayed by 0.1 when the validation accuracy is saturated. The loss
of the network is defined as the binary cross entropy. We implement the
network on TensorFlow and train it on one NVIDIA Tesla P100 16 GB
GPU for 100 epochs. The size of the training batch is 32 as a trade-off
between GPU memory capacity and training speed. To avoid over-
fitting, we stop training procedure when the loss fails to decrease in five
epochs. Concerning ground truths, multiple labels of an image are

encoded into a multi-hot binary sequence, of which the length is
equivalent to the number of all candidate labels. For each digit, 1 in-
dicates the existence of its corresponding label, while 0 denotes the
absent label.

3.3. Results on UCM multi-label dataset

3.3.1. Quantitative results
To evaluate the performance of CA-Conv-BiLSTM for multi-label

classification of high resolution aerial imagery, we calculate both F1
(Wu and Zhou, 2017) and F2 (Planet: Understanding the Amazon from
space) score as follows:

= +
+

=F
p r

p r
(1 ) , 1, 2,e e

e e

2
2 (9)

where pe is the example-based precision (Tsoumakas and Vlahavas,
2007) of predicted multiple labels, and re indicates the example-based
recall. They are computed by:

=
+

=
+
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e
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e

e

e e (10)

where TP FP,e e, and FNe indicate the numbers of positive labels, which
are predicted correctly (true positives) and incorrectly (false positives),
and negative labels, which are incorrectly predicted (false negatives) in
an example (i.e., an image with multiple object labels in our case),
respectively. Then, the average of F2 scores of each example is formed
to assess the overall accuracy of multi-label classification tasks. Besides,
example-based mean precision as well as mean recall are calculated to
assess the performance from the perspective of examples, while label-
based mean precision and mean recall can help us understand the
performance of the network from the perspective of object labels:

=
+

=
+

p TP
TP FP

r TP
TP FN

, ,l
l

l l
l

l

l l (11)

where TP FP,l l, and FNl represent the numbers of correctly predicted
positive images, incorrectly predicted positive images, and incorrectly
predicted negative images with respect to each label.

For a fair validation of CA-Conv-BiLSTM, we decompose the eva-
luation into two components: we compare (1) CA-Conv-LSTM with
standard CNNs to validate the effectiveness of employing LSTM-based
recurrent sub-network, and (2) CA-Conv-BiLSTM with CA-Conv-LSTM
for further assess the significance of the bidirectional structure. The

Fig. 8. Example class attention maps of
(a) images in UCM multi-label dataset
with respect to (b) bare soil, (c)
building, (d) car, (e) court, (f) grass, (g)
pavement, (h) tree, and (i) water. Red
indicates strong activations, while blue
represents non-activations. Besides,
normalization is performed based on
each row for a fair comparison among
class attention maps of the same images.
(For interpretation of the references to
colour in this figure legend, the reader is
referred to the web version of this ar-
ticle.)

Table 6
Quantitative results on DFC15 multi-label dataset (%).

Model m.F1 m.F2 m.Pe m.Re m.Pl m.Rl

VGGNet (Simonyan and
Zisserman, 2014)

73.86 74.09 76.16 74.95 62.57 59.95

VGGNet-RBFNN (Zeggada et al.,
2017)

72.21 73.02 74.08 74.42 60.82 66.58

CA-VGG-LSTM 75.46 75.85 77.95 76.95 73.56 59.19
CA-VGG-BiLSTM 76.25 76.93 78.27 78.30 74.99 64.31

GoogLeNet (Szegedy et al., 2015) 74.99 73.41 81.01 73.01 71.80 53.95
GoogLeNet-RBFNN (Zeggada

et al., 2017)
73.38 72.62 78.46 72.94 64.62 63.22

CA-GoogLeNet-LSTM 75.67 75.46 79.08 76.12 70.22 60.65
CA-GoogLeNet-BiLSTM 78.25 76.80 83.97 76.52 82.98 61.04

ResNet-50 (He et al., 2016) 78.10 76.21 84.89 75.64 81.50 59.99
ResNet-RBFNN (Zeggada et al.,

2017)
78.36 78.08 82.64 78.76 72.01 69.85

CA-ResNet-LSTM 78.78 76.65 85.66 75.84 83.83 60.05
CA-ResNet-BiLSTM 83.65 80.61 91.93 79.12 94.35 62.35
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detailed configurations of these competitors are listed in Table 3. For
standard CNNs, we substitute last softmax layers, which are designed
for single-label classification, with sigmoid layers to predict multi-hot
binary sequences, where each digit indicates the probability of the
presence of its corresponding category. To calculate evaluation metrics,
we binarize outputs of all models with a threshold of 0.5 for producing
binary sequences. Besides, our model is compared with a relevant ex-
isting method (Zeggada et al., 2017) for a comprehensive evaluation of
its performance.

Table 4 exhibits results on UCM multi-label dataset, and it can be
seen that compared to directly applying standard CNNs to multi-label
classification, CA-Conv-LSTM framework performs superiorly as ex-
pected due to taking class dependencies into consideration. CA-VGG-
LSTM increases the mean F1 score by 1.03% with respect to VGGNet,
while for CA-ResNet-LSTM, an increment of 1.68%, is obtained com-
pared to ResNet. Mostly enjoying this framework, CA-GoogLeNet-LSTM
achieves the best mean F1 score of 81.78% and an increment of 1.10%
in comparison with other CA-Conv-LSTM models and GoogLeNet, re-
spectively. Moreover, CA-ResNet-LSTM shows an improvement of
3.08% of the mean F2 score in comparison with ResNet, while CA-
GoogLeNet-LSTM obtains the best F2 score of 85.16%. To summarize,
all comparisons demonstrate that instead of directly using a standard
CNN as a regression task, exploiting class dependencies plays a key role
in multi-label classification.

Concerning the signification of employing a bidirectional structure,
CA-Conv-BiLSTM performs better than CA-Conv-LSTM in the mean F1
score, and compared to Conv-RBFNN, our models achieve higher mean
F1 and F2 scores, increased by at most 0.98% and 2.80%, respectively.
Another important observation is that our proposed model is equipped
with higher example-based recall but lower example-based precision,
which leads to a relatively higher mean F2 score. Notably, the F2 score is
an evaluation index used in Kaggle Amazon contest (Planet:
Understanding the Amazon from space) to assess the performance of
recognizing challenging rare objects in aerial images, and a higher score
indicates a stronger capability. Table 5 exhibits several example pre-
dictions in UCM multi-label dataset. Although our model successfully
predicts most multiple object labels, it is observed that the grass and
tree are prone to be misclassified due to their analogous appearances. In
the 4th image, the grass is a false positive when there exist trees, while
in the 5th image, the tree is a false positive when the grass presents.
Likewise, the bare soil in the 5th image is neglected unfortunately for

its similar visual patterns with the grass.

3.3.2. Qualitative results
In addition to validate classification capabilities of the network by

computing the mean F2 score, we further explore the effectiveness of
class-specific features learned from the proposed class attention
learning layer and try to“open” the black box of our network by feature
visualization. Example class attention maps produced by the proposed
network on UCM multi-label dataset are shown in Fig. 8, where column
(a) is original images, and columns (b)-(i) are class attention maps for
different objects: (b) bare soil, (c) building, (d) car, (e) court, (f) grass,
(g) pavement, (h) tree, and (i) water. As we can see, these maps high-
light discriminative regions for positive classes, while present almost no
activations when corresponding objects are absent in original images.
For example, object labels of the image at the first row in Fig. 8 are
building, grass, pavement, and tree, and its class attention maps for
these categories are strongly activated. From images at the fourth row
of Fig. 8, it can be seen that regions of the grassland, forest, and river
are highlighted in their corresponding class attention maps, leading to
positive predictions, while no discriminative areas are intensively ac-
tivated in the other maps.

3.4. Results on DFC15 multi-label dataset

3.4.1. Quantitative results
Following the evaluation on UCM multi-label dataset, we assess our

network on DFC15 multi-label dataset by calculating the mean F1 and
F2 score as well as mean example- and label-based precision and recall.
Table 6 shows experimental results on this dataset, and the conclusion
can be drawn that modeling class dependencies with a bidirectional
structure contributes significantly to multi-label classification. Specifi-
cally, the mean F1 score achieved by CA-ResNet-BiLSTM is 4.87% and
5.55% higher than CA-ResNet-LSTM and ResNet, respectively. CA-VGG-
BiLSTM obtains the best mean F1 score of 76.25% in comparison with
VGGNet and CA-VGG-LSTM, and the mean F1 score of CA-GoogLeNet-
BiLSTM is 78.25%, higher than its competitors. In comparison with
Conv-RBFNN, CA-Conv-BiLSTM exhibits an improvement of at most
5.29% and 4.18% in terms of the mean F1 and F2 score, respectively. To
conclude, all these increments demonstrate the effectiveness and ro-
bustness of our bidirectional structure for high-resolution aerial image
multi-label classification. Several example predictions in DFC15 multi-

Fig. 9. Example class attention maps of
(a) images in DFC15 dataset with re-
spect to (b) impervious, (c) water, (d)
clutter, (e) vegetation, (f) building, (g)
tree, (h) boat, and (i) car. Red indicates
strong activations, while blue represents
non-activations. Besides, normalization
is performed based on each row for a
fair comparison among class attention
maps of the same images. (For inter-
pretation of the references to colour in
this figure legend, the reader is referred
to the web version of this article.)
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label dataset are shown in Table 5. The last two examples of DFC15
multi-label dataset show that trees are false negatives with the occur-
rence of vegetations due to their similar appearances. Moreover, we
note the best result (Campos-Taberner et al., 2016) in 2015 IEEE GRSS
Data Fusion Contest achieves 71.18% in the mean F1 score, which is
reduced by 12.47% with respect to our best result. This is because
predicting dense pixel-level labels is challenging in comparison with
classifying multiple image-level labels.

3.4.2. Qualitative results
To study the effectiveness of class-specific features, we visualize

class attention maps learned from the proposed class attention learning
layer, as shown in Fig. 9. Columns (b)–(i) are example class attention
maps with respect to (b) impervious, (c) water, (d) clutter, (e) vegeta-
tion, (f) building, (g) tree, (h) boat, and (i) car. As we can see, figures at
column (b) of Fig. 9 show that the network pays high attention to im-
pervious regions, such as parking lots, while figures at column (i)
highlight regions of cars. However, some of class attention maps for
negative object labels exhibit unexpected strong activations. For in-
stance, the class attention map for the car at the third row of Fig. 9 is
not supposed to highlight any region due to its absence of cars. This can
be explained as the highlighted regions share similar patterns as cars,
which also illustrates why the network made wrong predictions (cf.
wrongly predicted car label in Fig. 9). Overall, the visualization of class
attention maps demonstrates that the features captured from the pro-
posed class attention learning layer are discriminative and class-spe-
cific. Besides, we note that there exist strong border artifacts in figures,
especially those at column (b) of Fig. 9, which questions whether im-
proving the quality of class attention maps benefits the effectiveness of
the BiLSTM-based sub-network. Then we experimented with using the
skip connection scheme in order to refine class attention maps. Ex-
perimental results demonstrated that this provides negligible im-
provements.

4. Conclusion

In this paper, we propose a novel network, CA-Conv-BiLSTM, for the
multi-label classification of high-resolution aerial imagery. The pro-
posed network is composed of three indispensable elements: (1) a fea-
ture extraction module, (2) a class attention learning layer, and (3) a
bidirectional LSTM-based sub-network. Specifically, the feature ex-
traction module is responsible for capturing fine-grained high-level
feature maps from raw images, while the class attention learning layer
is designed for extracting discriminative class-specific features.
Afterwards, the bidirectional LSTM-based sub-network is used to model
the underlying class dependency in both directions and predict multiple
object labels in a structured manner. With such design, the prediction of
multiple object-level labels is performed in an ordered procedure, and
outputs are structured sequences instead of discrete values. We evaluate
our network on two datasets, UCM multi-label dataset and DFC15
multi-label dataset, and experimental results validate the effectiveness
of our model from both quantitative and qualitative respects. On one
hand, the mean F2 score is increased by at most 0.0446 compared to
other competitors. On the other hand, visualized class attention maps,
where discriminative regions for existing objects are strongly activated,
demonstrate that features learned from this layer are class-specific and
discriminative. Looking into the future, the application of our network
can be extended to fields, such as weakly supervised semantic seg-
mentation and object localization.
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