
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Application of Deep Learning for
Inspection in Industrial Overhaul

Processes

Benjamin Taheri, M.Sc.

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Forschungs- und Lehreinheit 1
Angewandte Softwaretechnik

Application of Deep Learning for
Inspection in Industrial Overhaul

Processes

Benjamin Taheri, M.Sc.

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Matthias Althoff

Prüfer der Dissertation: 1. Prof. Dr. Bernd Brügge
2. Prof. Dr.-Ing. Birgit Vogel-Heuser

Die Dissertation wurde am 05.03.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 08.07.2020 angenommen.

Abstract

Industrial machineries wear down by nature after certain years of operation,
which could lead to critical break-down and a costly repair. However, a regular
overhauling process can stop the system from wearing down and malfunctioning.
Overhauling consists of disassembling, inspecting and reassembling the compo-
nents to ensure that each part is in serviceable condition. The main workflow
of the overhaul process can be generalized to removing, disassembly, cleaning,
inspection, replace/repair, reassembly, installing and testing.

Inspection is the core of the overhauling process, in which all components
must be inspected for damages and anomalies, and repaired or replaced if needed.
The components consist of parts of various sizes such as rotors and covers, as
well as small parts and fasteners such as bolts, screws, washers, and nuts that hold
different parts together. Therefore, the inspection involves identifying damages,
sorting and classifying the fasteners, and placing them into compartments for fur-
ther reuse, which are performed manually in overhaul plants by technicians. The
technicians are more likely to be exposed to a broad range of occupational haz-
ards, noise, vibration and different kinds of radiation, and chemicals. Some in-
spection tasks can be tedious and time-consuming, which increases the errors,
especially under time pressure. Moreover, the inspection tasks have their specific
challenges: 1) the number and the similarity of the fasteners and small parts that
must be manually sorted, classified and packaged, 2) characteristics and nature
of metallic parts and surfaces, and 3) different range of damages which need to
be inspected. These challenges introduce opportunities to use machine learning,
computer vision and automation for inspection tasks in overhaul processes.

To assist technicians in overhauling processes, we conducted an experimen-
tal research on developing supporting systems using deep learning and computer
vision, including damage detection, sorting, classification, and packaging of the
fasteners used in the machineries. We used a deep learning based approach to
sort, classify and place the components inside compartments. Deep learning based
methods are characteristically data-centric algorithms and their performance de-
pends on the availability of a dataset of images. We collected 7 experimental dif-
ferent datasets for fastener damage detection, surface damage detection, sorting,
single-view classification, multi-view classification, classification with mixed real
and synthetic images, and bin picking . Having an accuracy of over 99% in dam-
age detection and classification, over 99% in sorting, over 99% in classification
and over 70% in bin picking, our approaches imply a possible usage in overhaul
processes. Using these applications reduces the the time and human error of the
overhauling process.

Zusammenfassung

Industriemaschinen nutzen sich nach bestimmten Betriebsjahren von Natur
aus ab, was zu kritischen Ausfällen und kostspieligen Reparaturen führen kann.
Regelmäßige Wartungssprozesse können jedoch Abnutzungen reduzieren und da-
durch auch Ausfallzeiten minimieren. Der Überholungsprozess besteht in der Re-
gel aus der Demontage, Inspektion und Montage der Komponenten, um sicher-
zustellen, dass sich jedes Teil in einem betriebsbereiten Zustand befindet. Der
Hauptarbeitsablauf des Überholungsprozesses kann auf das Entfernen, Zerlegen,
Reinigen, Prüfen, Ersetzen / Reparieren, Zusammenbauen, Installieren und Testen
verallgemeinert werden.

Die Inspektion ist der Kern des Überholungsprozesses, bei dem alle Kompo-
nenten auf Beschädigungen und Anomalien überprüft und bei Bedarf repariert
oder ersetzt werden müssen. Die Komponenten bestehen aus Teilen verschie-
dener Größen wie Rotoren und Abdeckungen sowie kleinen Teilen und Befe-
stigungselementen wie Bolzen, Schrauben, Unterlegscheiben und Muttern, die
verschiedene Teile zusammenhalten. Daher umfasst die Inspektion das Erken-
nen von Schäden, das Sortieren und Klassifizieren von Befestigungselementen
sowie dessen Einordnung in verschiedene Behälter zur weiteren Wiederverwen-
dung. Diese Tätigkeiten werden heutzutage meist noch manuell von Technikern
in Wartungszentren durchgeführt. Techniker kommen hierdurch leichter mit ei-
ner Vielzahl von Gefahren am Arbeitsplatz in Berührung, wie z.B. Lärm, Vi-
brationen, Chemikalien und verschiedene Arten von Strahlung. Einige Inspek-
tionsaufgaben können langwierig und zeitaufwändig sein, was die Fehlerraten
von Instandhaltungen insbesondere unter Zeitdruck erhöhen kann. Darüber hin-
aus haben Inspektionsaufgaben ihre jeweiligen spezifischen Herausforderungen:
1) Anzahl und Ähnlichkeit der Verbindungselemente und Kleinteile, die manu-
ell sortiert, klassifiziert und verpackt werden müssen, 2) Eigenschaften und Art
der Metallteile und -oberflächen und 3) unterschiedliche Bereiche von Schäden,
die überprüft werden müssen. Diese Herausforderungen bieten die Möglichkeit,
maschinelles Lernen, Computer Vision und Automatisierung für Inspektionsauf-
gaben in Wartungsprozessen einzusetzen. Um Techniker bei der Durchführung
von Wartungsprozessen zu unterstützen, wurden Experimente zur Entwicklung
unterstützender Systeme unter Verwendung von Deep Learning und Computer
Vision durchgeführt.

ii

Diese Experimente beinhalteten die Schadenserkennung, Sortierung, Klassifi-
zierung und Verpackung der in den Maschinen zu verwendeten Befestigungsele-
mente. Unter verwendung eines Deep Learning-basierten Ansatzes wurden Kom-
ponenten sortiert, klassifiziert und verschiedenen Behältern zugeordnet. Deep Le-
arning-basierte Ansätze sind charakteristisch datenzentrierte Algorithmen und ih-
re Leistung hängt von der Verfügbarkeit eines Datensatzes von Bildern ab. Für
unsere Experimente wurden Datensätze von den folgenden 7 Aufgabenbereichen
generiert: Die Erkennung von Befestigungsschäden, die Erkennung von Ober-
flächenschäden, die Sortierung von Einzelteilen, die Einzelansichtsklassifizierung,
die Mehrfachansichtsklassifizierung, die Klassifizierung mit gemischten realen
und synthetischen Bildern sowie für die Kommissionierung von Behältern. Als
Resultate konnten die folgenden Genauigkeiten erzielt werden: Schadenserken-
nung und -klassifizierung (über 99%), bei der Sortierung und Klassifizierung von
Einzelteilen (über 99%), bei der Kommissionierung in Behälter (über 70%). Die-
se Ergebnisse implizieren, das sich unsere Ansätze gezielt bei anstehenden War-
tungsprozessen einsetzen lassen. Die Verwendung unserer Ansätze reduziert darü-
ber hinaus die Wartungsdauer, sowie das menschliche Versagen während des War-
tungsprozesses.

iv

Acknowledgments
I would like first to express my deepest sincere gratitude to my advisor profes-

sor Bernd Brügge, for his trust and support, and the freedom he gave me during
the years of my doctoral studies. I never forget the first time I talked to him after
his lecture and the willingness and kindness he showed to help. I would also like
to thank professor Birgit Vogel-Heuser, for accepting to be my second supervisor.
I first met her at CASE 2019 in Vancouver and we had a wonderful discussion
during the lunch with leaders, in which she implicitly showed her interest to be
my supervisor.

I am also thankful to all my colleagues and friends at the chair of applied
software engineering. In particular, I would like to thank Jan Knobloch for being
a nice office-mate to me, Juan Haladjian for the discussions we had and all the
comments he gave me on my papers and research, and Zardosht Hodaie for being
there whenever I needed to chat and for his input and comments on my approa-
ches, Rana Alkadhi for all her encouragements, and Jan Ole Johanßen and Nadine
von Frankenberg und Ludwigsdorff for their help in reviewing parts of my disser-
tation. I also thank Monika Markl for managing and organizing all the bureaucratic
processes, Helma Schneider for resolving whatever technical issue I had, and Uta
Weber for helping with the financial aspects of my studies and conference travels.

During the years of my doctoral studies, I had the opportunity to work with
motivated and talented students. I would like to thank Amr Abdelraouf, Ralf
Schönfeld, René Birkeland, Valon Xhafa, Paul Rangger, Haonan Yu, Leo Vin-
zenz, and Marcel Schmitt. Specifically, I would like to thank Ralf Schönfeld and
Haonan Yu for their help, their working attitude, and the discussions with them
that enriched my research.

My research would not have been possible without the support with hardware
and mechanical setups. I would like to thank Mr. Michael Neumaier from NeuPro
Solutions for supporting me in my research. I am also grateful to Mr. Christoph
Haas and Mr. Karsten Bunde at MTU Maintenance (Hannover) for their kind in-
vitation to visit the company and their comments on my first paper manuscript.

Last but not least, I thank my wife, family and friends. I thank Hannah for all
her patience and love. Without her support I would have not been able to make it
through the doctoral studies. I also thank my parents for their support before and
during my doctoral studies.

Contents

abstract i

Zusammenfassung i

Acknowledgments iv

1 Introduction 1
1.1 Hypotheses . 12
1.2 Rating and Scope . 13
1.3 Outline . 15

2 Background 17
2.1 Basics of Computer Vision . 17

2.1.1 Contour Detection . 17
2.1.2 Image Moment . 18
2.1.3 Dimensionality Reduction 18

2.2 Basics of Deep Neural Networks 20
2.2.1 Artificial Neurons . 20
2.2.2 Multilayer Perceptron 21
2.2.3 Activation Functions . 22
2.2.4 Loss Functions . 24
2.2.5 Layers . 24
2.2.6 Training a Network . 26

2.3 Convolutional Neural Networks 31
2.3.1 Classification . 32
2.3.2 Multi-view Convolutional Neural Networks 34
2.3.3 Rotation Net . 37
2.3.4 Siamese Networks . 38
2.3.5 Object Detection . 38
2.3.6 Object Segmentation . 39

2.4 Unsupervised Techniques for Anomaly Detection 41

vi

vii Contents

2.4.1 Autoencoder . 41
2.4.2 One-class Support Vector Machine 42
2.4.3 Isolation Forest . 43
2.4.4 Local Outlier Factor . 44

2.5 Evaluation Metrics . 44

3 PPIC: Platform for Parts Image Capturing 46
3.1 Industrial Parts Characteristics and Challenges 46
3.2 PPIC . 48

3.2.1 PPIC Configurations . 49

4 Damage Identification 56
4.1 Damage Detection of Fasteners 57

4.1.1 Dataset Collection . 58
4.1.2 Methods . 60
4.1.3 Results and Discussion 60

4.2 Surface Damage Detection . 67
4.2.1 Data Collection . 68
4.2.2 Methods . 69
4.2.3 Evaluation and Results 71
4.2.4 Discussion . 71

5 Sorting the Fasteners based on their Similarity 76
5.1 Data Collection . 77
5.2 Training and Evaluation . 77
5.3 Results and Discussion . 80

6 Fine-grained Visual Categorization of Fasteners 84
6.1 Single-view Classification . 84

6.1.1 Dataset Creation . 85
6.1.2 Training and Evaluation 86
6.1.3 Results and Discussion 90

6.2 Multi-view Classification . 91
6.2.1 Dataset Creation . 92
6.2.2 Training and Evaluation 94
6.2.3 Results and Discussion 96

6.3 Using Synthetic Data for Classification 98
6.3.1 Dataset Creation . 100
6.3.2 Training . 101
6.3.3 Results and Discussion 104

Contents viii

7 Bin Picking 106
7.1 Bin Picking on Uniform Background 108

7.1.1 Data Collection . 108
7.1.2 Method . 109
7.1.3 Evaluation . 112
7.1.4 Results and Discussion 112

7.2 Bin Picking on Non-uniform Background 113
7.2.1 Dataset Creation . 113
7.2.2 Model Training . 113
7.2.3 Method . 115
7.2.4 Evaluation . 118
7.2.5 Results and Discussion 119

8 Validation 122
8.1 SPARCS . 122

8.1.1 Scenarios . 124
8.1.2 SPARCS Platform . 127
8.1.3 Results . 132

8.2 SUMA . 134
8.2.1 Scenarios . 134
8.2.2 SUMA Platform . 136
8.2.3 Evaluation and Results 139

8.3 Benchmark Preparation . 139
8.4 Comparison and Discussions . 141
8.5 Threats To Validity . 143

9 Contributions and Future Work 146
9.1 Contributions . 146
9.2 Future Work . 148

Appendix A Acronyms 153

Appendix B Copyrights 155

Appendix C Datasets 160

List of Figures 169

List of Tables 172

Bibliography 173

Chapter 1

Introduction

Industrial machineries are made of mechanical components that use power to
apply forces to perform an intended action, such as gearbox, carburetor, and valve.
These mechanical components are used widely in different areas, such as agricul-
ture, aviation, assembly lines, packaging and labeling. Some areas have defined
the worthiness conditions of the machines which refers to their ability to meet the
standards and be in a suitable operating condition. For instance, airworthiness
of an engine in aviation industry, roadworthiness of a car in automobile indus-
try, and railworthiness of a locomotive in railway industry. There are multiple
approaches to ensure the worthiness of a machine and system reliability, such as
increasing system capacity, reinforcing redundancy and employing more reliable
components [Endrenyi et al., 2001]. However, these approaches can be heavily
constrained by the machine specifications, such as size, and cost. Therefore, per-
forming maintenance checks is becoming the most practical approach to ensure
the machinery’s worthiness and extend its lifespan [Mobley, 2002].

Maintenance programs range from the very simple to the quite complex. Euro-
pean standard EN 133061 formulated maintenance as a ”combination of all tech-
nical, administrative and managerial actions during the life cycle of an item in-
tended to retain it in, or restore it to, a state in which it can perform the required
function”. This formulation implies a difference between corrective, and preven-
tive maintenance processes. Corrective maintenance is performed after the oc-
currence of a failure to fix the machine. It can be carried out immediately after
the failure occurs (remedial) or delayed to limit the interference of the production
process (deferred) [Moubray, 2001]. It is the simplest maintenance program that
can adopt a rigid maintenance schedule where predefined activities are carried out
at fixed time intervals [Endrenyi et al., 2001]. Whenever the component fails,
it must be repaired or replaced (run-to-failure). There has been a shift since the

1https://standards.cen.eu/dyn/www/f?p=204:110:0

1

https://standards.cen.eu/dyn/www/f?p=204:110:0

Chapter 1. Introduction 2

60s to preventive time-driven maintenance programs to ensure higher availability
of the machine and lower costs (planned) [Mobley, 2002]. Planned preventive
maintenance is performed at predetermined intervals to reduce the probability of
failure. Improvement maintenance is aimed at reducing the need of maintenance
by making changes in the process or by engineering solutions. Maintenance must
be carried out in a shutdown condition, when the whole machine is stopped. Since
early 2000s, adapting new technologies and using them in maintenance processes
resulted in reducing the manual tasks, and therefore, reducing the costs and time
for the maintenance. These new technologies enable monitoring the machines and
perform the maintenance whenever there is an early signal for any malfunction.
Condition-based maintenance can be performed in normal working conditions,
when the system is running. However, depending on the circumstances, shutdown
conditions are considered safer than maintenance during working production.

There are also other maintenance methods, such as total productive mainte-
nance (TPA), reliability centered maintenance (RCM), or improvement mainte-
nance. TPA is a Japanese approach that aims to address planned maintenance
shortcomings with some best business practices [Ahuja and Khamba, 2008]. RCM
can determine which maintenance method is the most appropriate for the specific
component in machine [Moubray, 2001]. Improvement maintenance aims to re-
duce the need of maintenance or enhance the machine with new features by mak-
ing changes in the process or by engineering solutions. This dissertation uses the
aforementioned categorization, shown in Figure 1.1, which is adapted from [Mob-
ley, 2002]. Figure 1.2 illustrates maintenance evolution through the last 70 years.

Industrial overhauling is a maintenance that consists of disassembling, in-
specting and reassembling the components to ensure the worthiness condition
[Lampe et al., 2004]. Overhauling is carried out for variety of reasons, such as
a regular maintenance check or changes to the machine to introduce new features.

Preventive

Maintenance

Corrective

Remedial Deferred Planned Condition-based

Figure 1.1: Overview of maintenance types.

3

Corrective:
• If it ain’t broke, don’t fix

it
• High overtime labor cost
• High machine down time
• High cost

Preventive (Planned):
• Time-driven (mean-time-

to-failure)
• Total shut down
• Unnecessary repairs
• Catastrophic failure

Preventive (Predictive):
• Condition-driven

(regular monitoring)
• During running mode
• Minimize unscheduled

breakdowns

1960 2000 Now

Figure 1.2: Evolution of maintenance through the years.

Due to the fact that different industries have different criteria for their machines
worthiness and different engineering processes, there is no single standard pro-
cess for overhaul. Nevertheless, we can generalize how the main workflow of the
overhaul process is conducted. Overhauling in planned preventive maintenance
begins with component removal, following with disassembly, inspection, repair
and replace, reassembly, installation and testing. Overhauling in condition-based
preventive maintenance begins with inspection (regular monitoring the machine)
and follows with the same activities, but only for the specific machine component,
for which the monitoring data show an early signal of failure or malfunction. The
main focus of this dissertation is on the machines with high safety requirements,
such as airplane engines. The condition-based preventive maintenance is per-
formed on most of these machines, using different sensors to monitor the perfor-
mance. However, due to higher safety requirements, these machines are required
for a total overhaul after every specified amount of usage. In Figures 1.3, and
1.4, different activities in corrective, planned and condition-based overhauling of
industrial machines’ components are shown.

• Remove: while it is possible to perform certain repairs on a mounted com-
ponents, it is needed to disconnect and remove the entire component for
a general overhaul. The steps in preparation for removal consists of dis-
connecting wires, draining the fuel and oil, remove any auxiliary drive and
detaching any throttle. After the preparation, the component must be free
of all its attachments except for its mounting. Removing some fasteners
allows the component to be lifted and moved out.

• Disassemble: this phase consists of disassembling the accessories, such as
tanks, flippers, etc., and removing different sub-components, such as car-
buretor, muffler, valves, cylinders, crankshaft, etc. These sub-components
might vary depending on different type of main component.

• Inspect: at this stage, each sub-component must be cleaned and inspected

Chapter 1. Introduction 4

Figure 1.3: Activities in overhauling of industrial machines for both corrective and
planned preventive maintenance (UML activity diagram).

Figure 1.4: Activities in overhauling of industrial machines for condition-based preven-
tive maintenance (UML activity diagram).

properly. All component parts must be compared with the permissible lim-
its and assessed for their reusability or reparability. Each part is observed
relative to the legal requirements and the manufacturing specifications.

• Repair/Replace: depending on the inspection results, some parts must un-
dergo a replacing or repairing process.

• Reassemble: once the required inspection and Repair/Replace tasks are
performed, the pile of parts and sub-components must be assemble back
into a working component.

• Install: after reassembly of the component, it must be installed back into
the machine. All parts which were detached in the removal step, must be
attached again to the component.

• Test: in this step, an integration test must be carried. Therefore, the compo-
nent is tested for any abnormalities, such as overspeeds, unusual knocking
or banging, excessive smoke from exhaust overheating, oil or gas leakage.
If the component fails the test, overhauling must continue with removing the

5

component and disassembling it; this time, the component is not repaired
and it must be replaced.

The inspection is the core of the overhaul process. In this phase, all the disas-
sembled machine components must be inspected for possible damages and pre-
pared for the next step (namely Reassembly). This preparation includes sorting
and classifying the components, and packaging them into compartments. These
components consist of parts of various sizes such as panels from the wing or a
propeller, as well as fasteners such as screws, bolts, washers, and nuts that hold
different parts together. Figure 1.5 shows a model of machine component and
Figure 1.6 presents the workflow of inspection activities in overhaul processes.

As inspection is carried out, technicians are more likely to be exposed to a
broad range of occupational hazards. Data from the Spanish working conditions
survey2 indicate a high exposure of inspection technicians to noise, vibration and
different kinds of radiation, and chemicals. Some inspection tasks involve rou-
tine and tedious processes in abnormal operating conditions requiring the use of
equipment. Exposure to the hazards and abnormal working conditions results in
increasing the errors, especially under time pressure and when high safety expec-
tations are required. For example, technicians may decide to replace a fastener of
an airplane engine, only because of a simple damage. However, it may turn out
that the fastener is in normal condition and can be reused. These sort of false-
negative decisions increases the cost of inspection and overhaul in general.

Overhauling inspection technicians often work alongside a running process
and in close contact with machines. As overhaul is an activity in which technicians

Fastener

Machine
Component

Sub-component

0..*

0..*

Bolt Screw Nut Washer Pin Crank …

Figure 1.5: Composition of machine component and taxonomy of fasteners.

2https://www.observatoriovascosobreacoso.com/wp-content/
uploads/2015/12/VI-ENCUESTA-NACIONAL-CONDICIONES-TRABAJO-INSHT.
compressed.pdf

https://www.observatoriovascosobreacoso.com/wp-content/uploads/2015/12/VI-ENCUESTA-NACIONAL-CONDICIONES-TRABAJO-INSHT.compressed.pdf
https://www.observatoriovascosobreacoso.com/wp-content/uploads/2015/12/VI-ENCUESTA-NACIONAL-CONDICIONES-TRABAJO-INSHT.compressed.pdf
https://www.observatoriovascosobreacoso.com/wp-content/uploads/2015/12/VI-ENCUESTA-NACIONAL-CONDICIONES-TRABAJO-INSHT.compressed.pdf

Chapter 1. Introduction 6

Figure 1.6: Simplified activities with focus on Inspection in overhaul processes (UML
activity diagram).

need to be in close contact with processes (in contrast to production modes), direct
contact between technicians and machines cannot always be reduced substantially.
Therefore, inspection processes are yet depending on manual workforce. This
dissertation studies each of the inspection sub-processes in industrial overhauling
and defines the typical challenges in each. The following examples present the
possible challenges during different inspection processes in overhauling:

• Identify Damages: after disassembling all fasteners from a component and
washing off dirt and oil, they are inspected for anomalies and damages.
Therefore, they are placed in a container and brought to special worksta-
tions in maintenance checking plants with access to magnifiers and illu-
mination with which the technicians inspect them for all kind of damages,
including oxidation, scratches, missing or flaked off coating and erosion.
Figure 1.7 shows examples of the damages on two sample bolts. There are
no comprehensive defined rules to identify fasteners as damaged. Although
non-destructive methods like fluorescent penetrant testing or magnetic par-

7

ticle testing are used to identify cracks and voids in bigger components3,
applying them for all the fasteners could be expensive and unrealistic, con-
sidering their smaller size. In addition, in some industries, such as aero-
engines, most of the fasteners are made of resistant alloys, like steel or tita-
nium, and are manufactured under specific considerations [Teer and Salem,
1977], they can be expensive and technicians must check each of them by
looking and touching, in which they may decide to keep or discard them.
Typically, the technicians might need up to 15 seconds to inspect a fastener
properly in their workstations. Furthermore, the nature of aero-engine fas-
teners introduces problems like reflection and shadow [Taheritanjani et al.,
2019a] which makes the task of damage detection challenging. Therefore,
an automatic damage detection process would save time and reduce costs
during overhaul processes.

(a)

(b)

Figure 1.7: Examples of intact and damaged bolts from a side view (a) and top view
(b). The annotated damages show either scratches or dirt which could not be
cleaned by washing [Taheritanjani et al., 2019b].

3https://power.mtu.de/engineering-and-manufacturing/
aero-solutions/special-processes/

https://power.mtu.de/engineering-and-manufacturing/aero-solutions/special-processes/
https://power.mtu.de/engineering-and-manufacturing/aero-solutions/special-processes/

Chapter 1. Introduction 8

• Sort: the technicians are provided with a box full of fasteners that are re-
moved from a specific component, and must categorize them (Figure 1.8).
Categorizing the fasteners one by one is time consuming. Therefore, the
technicians start with sorting them based on their similarity. Sorting can
be in different stages: first start with placing the different type of fasteners
in different groups (bolts, nuts, washers, etc.), then each group to multiple
groups based on the size of the fasteners. This process continues until all
the fasteners are sorted based on their similarity. Typically, the technicians
know the number of different fasteners in the component (n). Therefore,
their task is to sort the fasteners in the box, in n groups. The similarity of
the fasteners makes sorting still time consuming and error prone. Figure 1.8
shows an example of the sorted fasteners on the workspace.

Figure 1.8: Examples of industrial parts on a workstation that are grouped based on their
similarity.

• Categorize: one challenge during manual inspection in overhaul processes
is number of fasteners and small parts that must be classified and placed in
their respective containers [Jardine and Tsang, 2005] [Marx and Graeber,
1994]. The disassembled fasteners in overhaul plants, as shown in Fig-
ure 1.9, are brought in compartments to workstations with access to cata-
logs, digital manuals, pictures of each part, magnifiers, and measurement
devices with which the technicians can classify them [Taheritanjani et al.,
2019a].

9

Figure 1.9: Fasteners that were taken from part of engine and must be classified during
inspection in overhaul process.

After grouping the fasteners based on their similarity, the technicians pick
at least one fastener from each group and classify it with its part number,
using the magnifiers. Typically, bolts, screws and nuts have a part number
carved on them, and can be classified using their part number. However,
some fasteners do not have any part number, such as washers or cranks. In
addition, on some fasteners the part number might not be recognizable due
to scratches or erosion. In such cases, the technicians must compare fas-
teners with their comparison-sketch in a catalog in an 1:1 scale relative to
the fastener structure (see Figure 1.10) to classify them correctly and place
them in the correct container. The technicians may also compare the fas-
teners with the fastener samples in the catalog. Most of the aero-engine
fasteners are made of resistant alloys, like steel or titanium, and are manu-
factured under specific considerations [Teer and Salem, 1977]. Therefore,
they can be expensive and the process of 1:1 scale comparison must be re-
peated for all fasteners without part number or with unrecognizable part
number, which makes the classification time consuming and costly [Marx
and Graeber, 1994]. As an example, to classify a bolt with unrecognizable
part number, the technicians might need up to 30 seconds to find possi-
ble similar sketches in the catalog and compare them [Taheritanjani et al.,
2019a].

Chapter 1. Introduction 10

Figure 1.10: The structure of a sample bolt, washer and nut, displaying the length, width,
shaft, pitch and diameters ([Taheritanjani et al., 2019a] and [Birkeland,
2018]).

11

• Bin Picking: after sorting and categorization, and prior to refitting, fas-
teners must be placed into different containers, which are sent to assembly
stations for refitting. Figure 1.11 shows examples of compartments, where
sorted and inspected parts must be placed into them.

Figure 1.11: Examples of compartments which contain the small parts after packaging.

In large overhauling plants, placing small parts and fasteners into different
containers is performed manually by a human or technician. These techni-
cians are provided with guide sheets that define the type and number of parts
that must be placed into different containers. Occasionally, some containers
must contain different types of parts, e.g., bolts and corresponding washers.
Typically, the technicians must check the parts’ number, count and pick the
required amount, and place them into a designated container. Typically, the
position of the part inside its container is unimportant; however, some parts
must be placed in a specific position relative to their orientation inside a
container.

Filling all containers is tedious and time consuming: checking one part’s
number, counting, picking and placing them into a container for every part
as specified in the guide sheet. One challenge is to memorize the location
of each part on the workstation. Due to the numbers and different types
of small parts to package, their similarities, and mixed and different orders
on the guide sheet, technicians must frequently double check part numbers
to ensure they select the correct parts. Therefore, a picking process to au-
tomatically place parts into containers could reduce time and costs during
packaging in overhaul processes.

Chapter 1. Introduction 12

1.1 Hypotheses

This dissertation investigates three hypotheses to address the aforementioned
challenges during inspection in overhaul processes:

• H1: the damages on the fasteners and components’ surfaces can be
identified by training a model on intact fasteners, i.e. without knowl-
edge of damages.

Although most of the applications of Machine Learning today are based on
super-vised learning, the vast majority of the available data is actually un-
labeled. There are images of fasteners and surfaces, but we do not have
their status (labels as damaged or intact). Without the knowledge of dam-
ages, detecting anomalies on surfaces and fasteners can be performed using
unsupervised learning methods. The distinction between damaged and un-
damaged samples is often delicate and a notion of normality must be deter-
mined from undamaged instances.

• H2: an automatic inspection process, including damage detection, sort-
ing, classification and bin picking, saves time in overhaul processes.

This dissertation concentrates on inspection sub-process in industrial over-
haul and investigate a set of deep learning based approaches to reduce the
costly false-negatives. Sorting, categorizing and bin picking require various
measurements. For example, sorting and categorizing involve measuring
the length or counting threads of a fastener, while bin picking requires com-
puting the orientation and grasp point of parts to be picked by a robotic arm.
Identifying damages requires observations to ensure the component is in a
worthy condition. These measurements and observations can be automated
using vast variety of methods, such as laser, fluorescent, ultrasonic, scale,
RFID, NFC, and camera.

• H3: the error (in particular false-negatives) in manual inspection tasks
in overhaul processes is reduced with machine learning and computer
vision.

Some methods, such as scaling the components for classification, cannot be
employed alone for automatic inspection. They must be used along with
combination of other sensors, which can make the design of automatic in-
spection systems more complex. Non-destructive methods, such as fluo-
rescent penetrant testing or magnetic particle testing, have been employed
for damage inspection, particularly to identify cracks and voids in bigger

13 1.2. Rating and Scope

components4. However, applying them for all smart components and fas-
teners could be expensive and unrealistic, considering their smaller size. In
addition, some modern technologies like smart dusts5 are not practical, and
to the best of our knowledge, they haves not used yet for building the me-
chanical machines. On the other hand, computer vision approaches using
deep learning methods achieved state of the art results in image classifica-
tion [Chan et al., 2015] [Wang et al., 2017] [Akata et al., 2015], image seg-
mentation [Girshick, 2015] [Ren et al., 2015] [He et al., 2017], and anomaly
detection [Schlegl et al., 2017] [Cha et al., 2017], which can be employed
for automatic inspection tasks in overhaul processes.

Parts of this dissertation have been previously published [Taheritanjani et al.,
2019a] [Taheritanjani et al., 2019b] [Taheritanjani et al., 2020].

1.2 Rating and Scope
To compare the functional and non-functional requirements used in the stud-

ies in this dissertation with other studies described in the literature, we use the
Table 1.1. Each requirement is listed as fulfilled (+), partially fulfilled (±) or not
fulfilled (-).

4https://power.mtu.de/engineering-and-manufacturing/
aero-solutions/special-processes/

5Smart dust refers to collection of tiny wireless microelectromechanical sensors, which are
able to detect conditions such as light, vibration, temperature and noise, and autonomously com-
municate this information back to a receiver.

https://power.mtu.de/engineering-and-manufacturing/aero-solutions/special-processes/
https://power.mtu.de/engineering-and-manufacturing/aero-solutions/special-processes/

Chapter 1. Introduction 14

Table 1.1: Rating schema used to compare the results and state of the art in this disserta-
tion.

Requirement Explanation
R1: Support for Industrial
Small Parts and Fasteners

+: used small parts and fasteners in the study
±: can be used for industrial small parts
-: is not applicable to be used for industrial small parts

R2: Support for Real-time +: method can be performed in less than 1 second
±: method requires less than 3 seconds
-: method requires more than 3 seconds

R3: Explainability and In-
terpretability (using Visual-
izations)

+: yes
±: third party solutions can be used with the study
-: no

R4: Generalizability +: generalizable to variety of different settings
±: partially generalizable with a set of constraints
-: only applicable using the stated constraints

R5: Need for Labeled Data +: no need for labeled data
±: less than 20% labeled data are needed
-: more than 20% labeled data are needed

R6: Accuracy on test
datasets for a multi-class
classification

+: above 95% accuracy
±: above 80% accuracy
-: less than 80% accuracy

The scope of this dissertation is limited as follows:

1. Context. This dissertation focuses on the inspection process of compo-
nents. Components consist of fasteners and other sub-components (Fig-
ure 1.5). The inspection process is the damage identification for both sub-
components and fasteners, and sorting, categorizing and bin picking for fas-
teners.

2. Damage Type. Various components can expose different type of damages.
For example, the components with electrical circuits and wires may have
semiconductor failures after certain amount of time. This dissertation fo-
cuses on physical damages such as scratches, oxidation, dents and missing
coats.

3. Camera-based Inspection. This dissertation uses camera images to apply
computer vision and deep learning methods for automatic inspection pro-
cess. These methods might not be applicable to other sensor data.

15 1.3. Outline

1.3 Outline

The dissertation is structured as follows:
Chapter 2 provides background information on deep neural networks, includ-

ing foundations on image classification, image segmentation, and anomaly de-
tection. In addition, the background information on basic computer vision tech-
niques, such as contour detection and dimensionality reduction, is presented.

Chapter 3 explains the characteristics and challenges of capturing images from
industrial fasteners and surfaces. Moreover, it describes PPIC, the image captur-
ing platform that we use in the dissertation, to capture images for damage detec-
tion, sorting, categorization and bin picking.

Chapter 4 focuses on the validation of H1 using deep learning methods, in par-
ticular supervised learning using Mask R-CNN [He et al., 2017] and unsupervised
learning using autoencoders [Schlegl et al., 2017] to identify unknown damages.

Chapter 5 describes a similarity detection approach using Siamese Networks
for sorting the fasteners based on their similarity [Bertinetto et al., 2016]. The
result of the sorting will be grouping the similar small parts together, using only
an image of the mixed parts. This sorting helps to speed up the process, before
we categorize the parts in a fine-grained manner. Furthermore, if all the parts
can be sorted, they can be used directly for packaging, without any fine-grained
classification.

Chapter 6 illustrates convolutional neural network based approaches for au-
tomatic classification the small parts in a fine-grained level using one or multiple
views [Chan et al., 2015]. As the result, the serial number of each part used earlier
during labeling is returned.

Chapter 7 describes different image segmentation methods, such as pixel thresh-
olding and Mask R-CNN, for automatic bin picking of the parts in different con-
tainers for further reuse. After segmentation, small parts orientation and grasp
point are calculated, using only a 2D image of the sorted parts on the surface. We
used principal component analysis (PCA) and Image Moment to find the orien-
tation and grasp point of fasteners to have a baseline for comparisons [Jolliffe,
2011] [Karakasis et al., 2015].

Chapter 8 describes two industrial demonstrators (SPARCS and SUMA) to val-
idate the Hypotheses H2 and H3. SPARCS focuses on identification of small parts
in the area of jet-engine maintenance for large aircraft. It uses the automatic cate-
gorization and automatic bin picking approaches described in Chapters 6 and 7, to
classify the jet-engine fasteners and place them in containers. Using metrics such
as the execution time of the categorization and bin picking tasks, the SPARCS
demonstrator shows that the automization saves time when compared to manual
categorization and manual bin picking. In addition, using precision and recall

Chapter 1. Introduction 16

metrics, we show the error ratio in SPARCS is reduced. SUMA investigates prob-
lems in the area of surface maintenance. It uses the automatic damage detection
methods described in Chapter 4 to identify scratches and dents on boat surfaces.
This is followed by automatic grinding and polishing the identified damages with
a robotic arm. Using precision, recall , IoU (intersection of units) and execution
time for damage identification, we show that the automization increases the ac-
curacy of the damage identification and reduces overall maintenance time when
compared with manual maintenance.

Chapter 9 summarizes the contributions of this work, and identifies future
work directions.

Appendices include the list of acronyms, the copyrights to use the published
articles, and the links to access the datasets.

Chapter 2

Background

This chapter presents the basic concepts of computer vision methods used in
this dissertation. In addition, it provides the foundations and principles of neural
networks and deep learning, and explains how neural networks can be used for
image recognition, similarity detection, image segmentation, and anomaly detec-
tion. Section 2.1 describes the basic computer vision methods, such as contour
detection and dimensionality reduction. Section 2.2 describes the fundamentals
of deep neural networks and how to train them. Section 2.3 explains the convo-
lutional neural networks (CNNs) and different CNN-based approaches, such as
multi-view classification, siamese networks, and rotation net, used in this disser-
tation. Section 2.4 describes unsupervised (recently referred as self-supervised)
approaches, such as autoencoders used in anomaly detection. Finally, Section 2.5
presents the evaluation metrics that are used in different studies in this disserta-
tion.

2.1 Basics of Computer Vision

This section presents an overview of basic computer vision methods that are
used in different chapters of this work.

2.1.1 Contour Detection
Contour detection detects the borders of the subjects shapes in an image. There

are a number of operations that are used to identify contours, namely computing
bounding polygons, approximating shapes, and generally calculating regions of
interest. Calculating the regions of interest simplifies interaction with image data
due to working with a rectangular region, which is easily defined with an array
slice, using fast computing libraries, such as NumPy.

17

Chapter 2. Background 18

Figure 2.1: Original Image (a). The result of contour detection (b). Minimum enclosing
rectangle around the contour (c).

Bounding Box and Minimum Enclosing Rectangle

In many cases, such as object detection applications, finding the contours of an
object can be an overkill. In some applications, we are interested in determining
the bounding box of the subject or its minimum enclosing rectangle (or circle).

To identify the coordinates of the minimum enclosing rectangle, we calculate
the minimum rectangle area, and compute the vertexes of the rectangle. Since the
calculated vertexes are floats and pixels are accessed with integers, a conversion
is required. Figure 2.1 shows an example of contour detection and minimum
enclosing rectangle computation.

Using Minimum enclosing area, we performed preprocessing steps in Chap-
ters 4 and 7.

2.1.2 Image Moment

In computer vision, an image moment is a function with a certain particular
weighted average (moment) of the image pixels’ intensities, with an attractive
property or interpretation. Image moments are useful to describe objects after
segmentation. Image moments capture information about the shape of a blob in a
binary image, such as area (or total intensity), centroid, and information about its
orientation. Figure 2.2 shows an example image and its first image moment (the
centroid).

2.1.3 Dimensionality Reduction

In machine learning approaches, we try to find a set of features among the
features in the input instances (feature engineering) and train a solution on them.
However, many problems involve thousands of features, which makes training

19 2.1. Basics of Computer Vision

Figure 2.2: Original Image (a) and its first image moment as the centroid in pink color
(b). The mass on the bolt head is more than its shaft. Therefore the centroid
is not exactly on the center and is towards the head.

extremely slow and can make it harder to find an optimal solution. This problem
is often referred to as the curse of dimensionality.

In some problems, it is often possible to reduce the number of features. For
example, if the images of the fasteners are center aligned, the pixels on the image
borders belong almost always tot he background, so we could completely drop
these pixels from the training set without losing information. In addition, in a
high resolution image, two neighboring pixels are often highly correlated. There-
fore, we can merge them into a single pixel by taking the mean of the two pixel
intensities [Géron, 2019].

Principal Component Analysis

Principal Component Analysis (PCA) is the most popular dimensionality re-
duction algorithm [Géron, 2019]. First it identifies the hyperplane that lies closest
to the data (in our case, pixel values plotted in 2D plane), and then it projects the
data onto it.

Prior to projecting the training set onto a lower-dimensional hyperplane, the
right hyperplane must be selected, i.e. the axis that preserves the maximum
amount of variance, as it will lose less information than the other projections.
Another way to justify this choice is that it is the axis that minimizes the mean
squared distance between the original dataset and its projection onto that axis.
This is the rather simple idea behind PCA.

PCA can also be used in finding the orientation of an object in an image. By
taking the axis that minimizes the mean squared distance between the pixel inten-
sities in the input image, we can compute the orientation of the object. Figure 2.3
shows an example of applying PCA and finding the orientation of the object in the
image.

Using PCA, we obtained baselines for comparison purposes in Chapter 7.

Chapter 2. Background 20

Figure 2.3: Applying PCA to an input image and finding the axes. To bigger axis repre-
sents the orientation of the bolt.

2.2 Basics of Deep Neural Networks

Deep learning is a machine learning method that is based on neural networks
with multiple layers of artificial neurons. Section 2.2.1 introduces artificial neu-
rons which are the essential parts of neural networks. Section 2.2.2 deals with the
basic structure of neural networks. The Sections 2.2.3, 2.2.4, and 2.2.5 focus on
different types of layers, which are used to group artificial neurons with the same
functionality. Finally, Section 2.2.6 describes in detail how a neural network ac-
tually learns.

2.2.1 Artificial Neurons
The human brain is able to interpret sensor data at an immense speed and can

learn internal representations without explicit instructions [Hinton, 1992]. The
human neuron collects information signals from other neurons to which it is con-
nected with fine structures called dendrites. Spikes of electrical activity are sent
out through a long structure (the axon), which splits into branches. At the end
of each branch a synapse converts the activity into an electrical effect stimulating
connected neurons.

An artificial neuron models the way a neuron in the brain processes informa-
tion. Artificial neurons modeling digital representations of the neurons are com-
bined into neural networks to achieve brain-like properties. An artificial neuron
has one or many inputs (x) with assigned weights (w), as shown in Figure 2.4.
These weights model the connection properties of the dendrites and result in a
weighted input for the neuron. The bias b in Figure 2.4 is a constant term modi-
fying the output (output = (inputs ∗ weights) + bias)) allowing scaling/trans-
formation of the activation function. This output is passed to one or multiple
outputs (y) being the input of other neurons. For a neural network to know how
to perform a specific task the weights modeling the interconnection (how can one
neuron influence others) have to be adapted.

21 2.2. Basics of Deep Neural Networks

Figure 2.4: Artificial neuron.

2.2.2 Multilayer Perceptron

A Multilayer Perceptron (MLP), also called feedforward neural network is the
basis of current deep learning models [Goodfellow et al., 2016]. The goal of a
neural network is to approximate an arbitrary function f ∗. The neural network is
a function matching a specific input to a specific output. A classifier for example
takes an input x and has the target to map it to an output y representing the class of
the input. The graph in Figure 2.5 shows a perceptron which can for example be
used for a binary classification task. The perceptron consists of a network graph
with one hidden layer, i input nodes, j hidden nodes and one output node. Each
node has an edge connecting it with the previous and following layer.

θ is a set of parameters of the neural network. A mapping from an input to an
output in a feedforward neural network is defined as a function y = f(x, θ) (using
the input x and θ to compute the output y). The parameters are learned to result
in the best function approximation. The nodes in the graph are artificial neurons
introduced in section 2.2.1, also the parameters of the perceptron θ are the weights
w of the neuron. Neural networks are typically structured in layers containing the
artificial neurons. Usually a layer only has connections to the preceding and the
following layer - like the hidden layer in Figure 2.5. A layer is ”hidden” when it
is not directly connected to the input or output. As the artificial neuron applies a
function to inputs and generates outputs, a network of neurons is a nesting of these
functions. According to Hornik et al., a feedforward can approximate a Borel
measurable [Azoff, 1974] (continuous) function from one finite dimensional space
to another, providing enough hidden units (neurons in a hidden layer) [Hornik

Chapter 2. Background 22

Figure 2.5: An example of a multilayer perceptron.

et al., 1989].

2.2.3 Activation Functions

Artificial neural inputs are summed up and passed to a function which is either
linear, threshold-based or nonlinear. Activation functions are nonlinear functions
g(z) and are applied element-wise to hidden units (see section 2.2.2). They allow
the approximation of complex functions by providing a slope [Géron, 2019]. The
sigmoid activation function [Goodfellow et al., 2016] ranges from zero to one,
as shown in Figure 2.6. Sigmoid activation can be used for binary classification.
The hyperbolic tangent activation function, as shown in Figure 2.6, is a closely
related to the sigmoid activation function because tanh(z) = 2σ(2z) − 1. Both
have the issue of fast saturation (reaching the value one and not further providing
a slope for gradient descent). The output stays always the same for large or small
values of z. This is one of the reasons why rectified linear units (ReLUs) and
variations are used in modern neural networks. Figures 2.8 and 2.9 depict recti-
fied linear units where the ReLU is g(z) = max{0, z} and the LeakyReLU is
g(z) = max{0.1z, z}. ReLUs also have the benefit of simple and therefore fast
computation. The standard ReLU doesn’t saturate for values > 0 and therefore
the gradients remain large for active units resulting in faster convergence.

23 2.2. Basics of Deep Neural Networks

−4 −2 0 2 4

0

0.5

1

z
Si

gm
oi

d
σ
(z
)

Figure 2.6: Sigmoid activation function.

−4 −2 0 2 4

−1

0

1

z

ta
n
h
(z
)

Figure 2.7: Tanh activation function.

−4 −2 0 2 4
−5

0

5

z

R
eL
U
(z
)

Figure 2.8: ReLU activation function.

−4 −2 0 2 4
−5

0

5

z

L
ea
k
y
R
eL
U
(z
)

Figure 2.9: Leaky ReLU activation function.

Chapter 2. Background 24

2.2.4 Loss Functions
Loss functions (also known as cost functions) are used to train neural net-

works. They are computed by using the provided input (xi) and the expected
target (yi) using the scoring function (applying the model) s = f(xi, w) with
w being the model weights. One basic loss function is the Mean Squared Error
(MSE) shown in equation 2.1.

MSE =
1

n

n∑
i=1

(yi − f(xi, w))2 (2.1)

For the MSE the sum of differences between model output and ground truth is
squared and divided by the dataset size. In recent architectures, such as AlexNet
[Szegedy et al., 2013], GoogleNet [Szegedy et al., 2016] and ResNet [He et al.,
2016] log loss (also cross entropy loss) is used for classification. Equation 2.2
denotes the cross entropy loss function.

CrossEntropyLoss = − 1

n

n∑
i=1

yi · log(f(xi, w)) (2.2)

With the cross entropy loss the difference between predicted probabilities and
ground truth probabilities is minimized. It gives the direction in which the weights
have to be adapted so that the target value is most likely to occur when applying
the weights to the input. The log of the output of the scoring function f(xi, w)
using the provided input (xi) and the model weights (w) is multiplied with the
expected target (yi) and summed up for all inputs. The negative value for the sum
divided by the number of samples is the cross entropy loss.

2.2.5 Layers
Neural networks are structured in layers of neurons, all with the same prop-

erties, i.e. type. The multi-layer perceptron in Figure 2.5 consists of three fully
connected layers. Fully connected layers, also known as linear layera, have con-
nections from every neuron of one layer to all neurons of the previous layer. Every
connection is assigned a weight/learnable parameter which works well for small
images but is unusable for larger images. For example a 100 × 100 image with a
first layer of only 1000 neurons has already ten million connections resulting in
also ten million learnable parameters. Partially connected layers in convolutional
neural networks (CNNs) solve this problem [Géron, 2019, p. 356-380].

Convolutional layers are partially connected by only connecting pixels to their
receptive fields. In Figure 2.10 depicting a convolutional layer these connections
go from the input image or the input feature map to the output feature maps. Neu-
rons on the output layers are only connected to a small patch in the input layer.

25 2.2. Basics of Deep Neural Networks

input image
or input feature map

output feature maps

Figure 2.10: Applying convolutional filters to extract features.

This allows to create hierarchical features with low-level features in the first hid-
den layer and higher-level features in the next hidden layer. Since this hierarchical
structure is common in real-world images CNNs work so well for image recog-
nition. However with convolutions some spatial information containing the exact
location of a high-level feature is lost. The small patches in Figure 2.10 are called
filters or convolutional kernels and share their weights for one output feature map,
which is the output of applying a filter to an input image or feature map. Parame-
ters for a convolutional layer are the number of output feature maps (create more
ore fewer features), filter size, stride and padding. The filter size adjusts the size
of the convolutional kernels which are moved with a stride over the whole input.
The stride defines how far the filters are applied from the previous application of
the filter. The distance to the input border is defined by the padding parameter.

Feature maps in convolutional neural networks capture gradually higher level
features (outputs of deeper convolutional layers) that consist of lower level fea-
tures (outputs of earlier convolutional layers). [Zeiler and Fergus, 2014] intro-
duces a visualization technique which allows to inspect feature maps. In Fig-
ure 2.11 feature maps of a convolutional neural network are displayed. The Layer
1 feature map in Figure 2.11a shows low-level features (for example edges) of
a small patch of the input image. With deeper layers the patches are combined
creating higher-level features like car wheels (see Figure 2.11c) and faces (see
Figure 2.11e).

Pooling layers subsample (shrink) the input image or the input feature maps to
reduce computational load, the number of parameters as well as reducing the risk
of overfitting. Similarly to convolutional layers patches of the input are processed
to generate lower dimensional outputs. The pooling layer has the same parameters
with respect to filter size, stride and padding. The difference is that a pooling filter
has no weights, it just aggregates the input. Aggregations are typically the mean
or the maximum of the input. The pooling layer in Figure 2.12 effectively reduces

Chapter 2. Background 26

(a) Layer 1 (b) Layer 2 (c) Layer 3

(d) Layer 4 (e) Layer 5

Figure 2.11: An example of feature map visualization [Zeiler and Fergus, 2014].

the size of the input feature maps by aggregation.

2.2.6 Training a Network
The previous sections describe the architecture of a neural network. However,

a randomly initialized network is only capable of producing random results. For
the network to accurately classify input data, we must first train the network. To
do so the network tries to find the optimal weights and bias so that the network
for input x approximates the ground truth label y (the result we wish the model
to make). This section describes the different techniques used to train a neural
network.

Data Splitting and Augmentation

To train a network we require a dataset of training data. The data should be
similar to the data we want to classify in the future. A model which should classify
cats and dogs, is best trained on pictures of cats and dogs. The first part is to split
the dataset into three parts; train, validation and test. A common split is 70%,
20% and 10% respectively. The training set contains the data which is used to
train the network. Validation is used to measure the model’s performance during

27 2.2. Basics of Deep Neural Networks

feature maps
layer (l − 1)

feature maps
layer l

Figure 2.12: Applying pooling filters to subsample feature maps.

training, making sure that the model is not overfitting (see section 2.2.6). The data
contained in the test set should never be accessed during training. It should only
be used to measure the expected performance of the model after deployment by
measuring how well it classifies data the model has never seen before.

Another technique to artificially increase the training dataset is to augment
the data. Common augmentations transform the images using rotation, flipping
and scaling (see examples in Figure 2.13). Larger datasets usually produce better
models, due to better generalization [Cubuk et al., 2018], and augmentations can
create multiple slightly different versions of the same image.

(a) Original (b) Rotate (c) Scale

Figure 2.13: Nut augmentations

Initialization

Before training a neural network, the weights and biases must be initialized.
Commonly pretrained models are used for initialization. A pretrained model is
a neural network that has already been trained before. To implement a CNN for
classifying images using the VGG architecture, we can initialize the weights using

Chapter 2. Background 28

a pretrained VGG model trained on ImageNet [Russakovsky et al., 2015b]. Ima-
geNet consists of 1000 different classes and therefore gives a good foundation for
any other image classifier. Pretrained models have been shown to converge faster
and have better generalization [Taylor and Stone, 2009], by already learning filters
that can recognize common structures such as lines, circles etc. After initializa-
tion using a pretrained model, it is important to replace the last classification layer
with a randomly initialized layer. The last classification layer’s output is a vector
of the same length as the number of classes. Therefore, it must be replaced with a
layer with as many output nodes as classes we wish in our new model. The other
common approach is to use random initialization. In this case the neural network’s
weights and bias is randomly set and will at first produce random predictions.

Forward Propagation and Loss Functions

After the weights are initialized the first step in the training process is sending
the data through the network. This process is called forward propagation, and
produces a prediction vector as described in 2.2.2. The data is forward propagated
in batches. The batch contains multiple samples, which are all passed through the
network before an optimization step (see section 2.2.6). In the case of random
initialization, the model will predict each class the same amount of times, and
therefore not be better than random. To compare the output result to the ground
truth, we introduce a loss function. The loss function produces a loss which tells
the model how wrong the prediction is compared to the ground truth. One of the
most common loss functions is cross entropy loss.

CrossEntropyLoss = − 1

n

∑
x

(y ln a+ (1− y) ln(1− a))

Where x is the input data, y the ground truth and a the model’s outputted
prediction. Cross entropy loss is a logarithmic loss function, where the loss has
a logarithmic growth the more wrong the prediction is. This causes the model to
learn quickly when it is very wrong, and then the learning will decrease as the
model improves. During training we want to minimize the loss, where a loss of 0
indicates there is no difference between the prediction and the ground truth.

Optimization

The gradient descent algorithm for [Amari et al., 1996, p. 757-763] and vari-
ations are used to optimize neural networks to give a specific output to a specific
input. Gradient descent is an optimization algorithm which can find the global
minimum for any convex function (a convex function has one global minimum,
no local minimum and is continuous) [Géron, 2019, p. 111-120]. As mentioned,

29 2.2. Basics of Deep Neural Networks

the goal is to minimize the loss function. This can be performed by randomly
tweaking all the weights and bias and recalculate the loss and use the settings that
produce the lowest loss. However, this brute force method quickly becomes im-
possible as the network grows. To combat the scalability issue gradient decent
algorithms are commonly used. Gradient decent tries to find the minimum of a
function. If the function is convex, it will find the global minimum. However, in
most real-life scenarios the functions will not be convex and instead have many
local minimas. In other words, we want to find the deepest valley in the function.
For each training sample in the dataset, we find the derivative of the loss function
(L) with respect to each of the weights and biases (θ) to get a vector of gradients
∂L
∂θ

. This process is explained in more detailed in the section 2.2.6. Finally, all
the vectors are summed and averaged. The product is a vector of gradients that all
point uphill in the function. Therefore, we need to update the weights and bias in
step in the opposite direction of the gradient. This is called an optimization step.
To control how far we step we define the hyper-parameter learning rate (α). The
parameters θ are then updated using the following formula:

θ = θ − α∂L
∂θ

The learning rate is a very important hyper-parameter, as a too high learning
rate can cause the step to overshoot the minima, and a too low learning rate can
cause the network to require a very long time to converge. Common practices to
avoid this is to gradually decrease the learning rate as the network comes closer to
a minima or use a different optimization algorithm such as ADAM [Kingma and
Ba, 2014].

Figure 2.14: Visualization of a gradient descent example.

This optimization process will continue until convergence. The problem with
this method is the computational time required to calculate the gradients for all

Chapter 2. Background 30

the parameters for all the training samples. Therefore most optimization methods
use stochastic gradient decent (SGD) instead. SGD works exactly the same as
gradient decent, but instead of calculating the gradient for all training samples,
it only uses a single or a few samples before computing the optimization step.
The result is much faster computation; however, the gradients will not necessarily
point towards the global minima, rather towards the minima of the samples. Nev-
ertheless, the trade-off is worth it as many inaccurate optimization steps converge
faster than few accurate steps [Li et al., 2014].

Backpropagation

The neural network learns by examples and targets. The backpropagation al-
gorithm presented in [Rumelhart et al., 1986, p. 533-536] is a method to repeatedly
adjust the weights/parameters of the connections in the artificial neural network
to achieve the desired input-output matching. The actual output is compared with
the desired output and this difference (also called loss/cost see section 2.2.4) is
minimized. By adapting their weights the hidden units represent features of the
task-domain. In a feedforward network the flow of information from the input
x multiplied with the weights w (parameters θ in section Multilayer Perceptron)
to the output y is called forward-propagation [Goodfellow et al., 2016, p. 200-
220]. The backpropagation allows information from the cost (computed by a
function applied to output a desired output) to flow backward through the network
to compute the gradient. The backpropagation itself only computes the gradient
∇xf(x, y) (the slope of the function). A neural network can be described by a
computational graph.

As described in section 2.2.6, we want to calculate the derivative of the loss
in respect to each weight. However, the gradients of each layer depend on the
gradient of all previous layers. We can view a neural network as a series of nested
functions. We define a single convolutional block with three layers as the func-
tions: convolution c(x), activation a(x) and pooling p(x) and the output is the
result of p(a(c(x))). We apply the chain rule to compute the partial derivative of
the loss with respect to each of the weights. The chain rules states that to calculate
the derivative of the composition of two or more functions, for example f(g(x)).
The derivative with respect to x is:

∂

∂x
f(g(x)) = f ′(g(x))g′(x)

Since a neural network is just a nested set of functions, by using backpropa-
gation, we can find the gradient of the error with respect to each weight. These
gradients are then averaged to produce the final gradient for each weight used by
the optimizer.

31 2.3. Convolutional Neural Networks

Figure 2.15: Overfitting

Overfitting

During training, a risk is overfitting to the training data. When overfitting
occurs, the loss and classification is low because the model has only learned to
differentiate the different data in the training set instead of the generalization of
the classes. During training the model is seemingly performing very well, even
reaching 100% training classification accuracy. To monitor whether the model is
overfitting or not during training, validation is used. The validation set contains
data which the model has not seen during the current epoch (one full forward
propagation). When overfitting occurs, the training accuracy will be high, but the
validation low as seen in Figure 2.15. To avoid an overfitted model, we can ei-
ther deploy the model with the highest validation accuracy or introduce different
measures to avoid overfitting the training data. Augmentation as introduced in
section 2.2.6 is an effective way by changing how a class looks to force the model
to learn the generalization of the class. Dropout is also an effective method, by
randomly turning off neurons in the fully connected layers based on a probability.
Finally, ensemble methods combine the weights of the same network from dif-
ferent training sessions or completely different networks to better generalize the
training data.

2.3 Convolutional Neural Networks

CNNs are used for many different tasks in image recognition. The following
sections describe the tasks classification, object detection, semantic segmentation
as well as instance segmentation listing possible network architectures. Architec-

Chapter 2. Background 32

tures are described and design choices are analyzed.

2.3.1 Classification
Classification for image recognition tries to match an input image to one spe-

cific class. The main idea is that CNNs are extracting lower level (from first
layers) and higher level features (later layers) and this features are combined to
numeric representations. These numeric representations then are combined to out-
put the class probabilities for the target classes. A high probability means that the
model is certain, that the image belongs to the class. CNNs for classification are
trained by providing images of the target classes and adapting the model weights
to output the target class for the inputs. There are different types of models and
architectures using combinations of different layers and activation functions.

The ImageNet challenge [Russakovsky et al., 2015a] is a benchmark for image
category classification with hundreds of classes and millions of images. Modern
networks tend to report their performance on the ImageNet challenge. For appli-
cations not only the performance but also the model size, training and inference
(applying the model) times are important. Benchmark results are usually reported
for an average ensemble of multiple models of the same type. In an average en-
semble for example five models trained on different subsets of the data output
their probabilities for the target classes on an input image. The average of the
probabilities is then used to determine the final result (with an average probability
larger than 0.5 for a class the input is assigned to that class).

Model Error Rate Year
Alexnet 15, 3% 2012
InceptionV3 3, 58% 2015
ResNet152 4, 49% 2015
Inception-ResNet V2 3, 1% 2016

Table 2.1: Model results on the ImageNet 2012 classification challenge

In table 2.1 the results of various models on the 2012 ImageNet classification
challenge is displayed. All results are obtained using ensembles of the architec-
tures. The winner of the 2012 ImageNet Challenge AlexNet [Krizhevsky et al.,
2012] achieved an error rate of 15, 3% with an ensemble. AlexNet consists of
five convolutional layers, max-pooling layers, normalization layers and three lin-
ear layers. AlexNet is the first model that uses ReLU as an activation function.
Further architectures like ZFNet [Wan et al., 2013] and VGG [Simonyan and Zis-
serman, 2014] increase the number of layers, filters and the general model size to
improve the error rate but don’t change the general style of stacking convolutional

33 2.3. Convolutional Neural Networks

layers and max-pooling layers for feature extraction as well as linear layers for
mapping the features to the target classes.

In GoogLeNet (InceptionV1) [Szegedy et al., 2015] the idea of inception mod-
ules is introduced. A naive inception module on the left of Figure 2.16 extracts
multilevel features using different-sized convolution kernels. By adding 1 × 1
filters (right inception module in Figure 2.16) the model can scale feature maps.
Then the output features are concatenated and passed to the following layer. In-
ceptionV3 [Szegedy et al., 2016] slightly improves InceptionV1 by using a differ-
ent training algorithm (RMSprop, another method for using an adaptive learning
rate) and an auxiliary head with batch normalization (scaling of activation func-
tions to output in a range from zero to one) to improve training. With a relatively
low model size InceptionV3 compared to VGG an ensemble still is able to produce
a low error rate of 3.58% on the ImageNet challenge.

Figure 2.16: Inception modules for multilevel feature extraction [Szegedy et al., 2016]

Residual Neural Networks (Resnets) [He et al., 2016] solve the problem of the
vanishing or exploding gradient (deep layers are not reached by the gradient or
weights are just added up saturating the network). The network consists of resid-
ual blocks depicted in Figure 2.17. The identity function (also skip-connection)
of the residual block allows the gradient of a higher layer to be directly passed to a
lower layer during backpropagation. The input of a layer x is added to the output
of a layer F (x). This makes it easy for the network to learn the identity function
for deeper layers, but also easier to find small fluctuations. With residual blocks
allows networks can be deeper since even deep layers are reached by the gradient
as well as shallower networks can be emulated using the identity function. An
ensemble of Resnets with a depth of 152 layers scored an error rate of 4, 49% in
the 2012 ImageNet challenge, which is lower than InceptionV3, but won the 2015
ImageNet challenge.

Inception ResnetV2 combines the ideas of InceptionV3 and Resnet into one
architecture [Szegedy et al., 2017]. An identity function is added to the multi-
level convolutional layers of InceptionV3 replacing the Max-Pooling Layers. An
ensemble of this architecture achieved an error rate of 3, 1% beating InceptionV3
and Resnet.

Chapter 2. Background 34

Figure 2.17: Residual block with identity function for free gradient flow [He et al., 2016]

2.3.2 Multi-view Convolutional Neural Networks
Multi-view convolutional neural networks (MVCNN) are mostly the same as

normal CNNs, with one big difference. Instead of a single input to produce a sin-
gle prediction, MVCNNs use multiple inputs for a single prediction. MVCNNs
where first designed to classify 3D objects. Princeton’s ModelNet [Wu et al.,
2015] challenge consists of 40 different classes of 3D computer-aided design
(CAD) models. A CAD model is a vector graphic normally used for digitally
designing components for manufacturing. By taking multiple images of an object
(or a digital rendering of a CAD model) simultaneously, we can capture more de-
tails about the object than with just a single view. MVCNN therefore allows us to
capture and process images of object which contains crucial features that cannot
be captured from any single angle.

The Princeton ModelNet1 project published a 3D CAD model dataset to pro-
vide a comprehensive benchmark to develop 3D capable neural networks [Wu

Figure 2.18: Multi view convolutional neural network

1http://modelnet.cs.princeton.edu/

http://modelnet.cs.princeton.edu/

35 2.3. Convolutional Neural Networks

(a)
(b) (c)

Figure 2.19: Example of artificial camera configurations with 12 (a), 20 (b) and 60 (c)
angles [Kanezaki et al., 2018].

et al., 2015]. All the CAD models in ModelNet do not necessarily contain any
texture or color. Therefore, the only discriminative features are the object shapes.
The total dataset contains 662 object categories, where there are two main subsets
for benchmarking that contain 10 and 40 classes, called ModelNet10 and Mod-
elNet40 respectively. The performance of the classification models is measured
with classification accuracy.

Multi-view CNNs try to address the problem of 3D points sparsity by pro-
jecting 3D objects to 2D representations of the same object. By transforming
the 3D data to 2D, we effectively extract the features of the object. In feature
extraction, part of the data, which is not considered as important, is discarded.
Methods such as principal component analysis (PCA), use the largest eigenvec-
tors of a covariance matrix to project the data into a smaller subspace with fewer
dimensions [Holland, 2008]. In the same way, by discarding a dimension from
the 3D objects, we reduce space and required computational power, and address-
ing the curse of dimensionality [Bellman, 2013]. ModelNet’s CAD models are
rendered using a rendering software, such as Blender2, and the 2D images can be
artificially captured from any angle. Figure 2.19 shows three potential artificial
camera configurations with 12, 20 and 60 angles respectively. By capturing one
image per angle, we have n 2D images instead of a 3D object. Multi-view CNN
takes all n images as input to produce a single prediction.

One way to implement a form of Multi-view CNN is to use a single network
which takes single images as input. Here, we consider each image as an individual
image (instead of aggregating the images together). This approach ignores the fact
that many of the images can be of the same object at the same time. The benefit is
the simplicity of implementation; there is no need for aggregating multiple views.
However, the main disadvantage is that the information sharing between views
is lost; the network will not be able to confidently classify any angle that does

2https://www.blender.org/

https://www.blender.org/

Chapter 2. Background 36

(a) Bookshelf front (b) Bookshelf back

(c) Dresser front (d) Dresser back

Figure 2.20: Bookshelf and dresser from different angles

not contain discriminative features. Figure 2.20 shows that the classes Bookshelf
and Dresser from ModelNet have no explicit features to distinguish between them
from the back view. Either object can be a smaller or taller variant of each other.
However, the front view shows that bookshelves have shelves, while dressers have
drawers. This example illustrates that it is necessary to share information between
views to be able to classify even everyday objects.

Multi-view CNN uses the artifical camera configuration using 12 angles, as
shown in Figure 2.19a. Multi-view CNN can be realized as an extension of a
normal CNN. For each multi-view image (n images that are all of the same ob-
ject), each image is passed through the feature extraction layers independently
to produce n sets of feature maps. Afterwards, these n sets are reduced through
max-pooling layers. The result is a set of feature map of the highest activations
between all n angles. This feature map is then squeezed and used as input to the
classification layers.

The information sharing between the different views is the advantage com-
pared to a standard CNN. However, pooling multiple feature maps from different

37 2.3. Convolutional Neural Networks

Figure 2.21: Multi-view CNN architecture [Su et al., 2015].

views can cause the result to become unrecognizable. Multi-view CNN achieves
90.1% classification accuracy on the ModelNet40 dataset, outperforming the orig-
inal volumetric based 3DShapeNets which had an accuracy of 77.3%.

2.3.3 Rotation Net

RotationNet also uses the same idea of Multi-view CNN [Kanezaki et al.,
2018]. Similar to Multi-view CNN, it uses multiple views during training. How-
ever, during classifying unseen data, RotationNet only requires a subset of the
views. RotationNet is able to classify the object even with only a single view
instead of the same number used during training. It also differentiates itself by
not requiring the objects to be aligned. The objects can lay in any orientation
in 3D space. RotationNet achieves this by introducing a latent variable which is
optimized during training to learn which viewpoint is the most similar to one the
network has seen during training.

As mention, RotationNet only requires a subset of views during inference and
is therefore much more practical in real application, where it might not be pos-
sible to capture all angles. RotationNet showed its success on a new multi-view
dataset Multi-view Images of Rotated Objects (MIRO) [Kanezaki et al., 2018],
consisting of multi-view images of real objects. In Figure 2.22a we observe that
Multi-view CNN is still outperforming RotationNet on ModelNet40, though it is
noteworthy the amount of accuracy achieved by RotationNet with fewer views. In
Figure 2.22b, using the real object dataset MIRO, RotationNet notably out per-
forms Multi-view CNN, achieving the same results with only a subset of 2 views
during inference.

Chapter 2. Background 38

2.3.4 Siamese Networks
A Siamese network is one of the simplest and most popularly used one-shot

learning algorithms. One-shot learning (see also 2.4.2) is a technique in which
the network learns from only one training example per class. Siamese network is
predominantly used in applications that the classes lack many instances.

Siamese networks consist of two symmetrical neural networks that share the
same weights and architecture. The two blocks join together at the end using an
energy function, E. The objective of the Siamese network is to learn whether
two input values are similar or dissimilar. Figure 2.23 shows the architecture of a
sample Siamese network.

The output is flattened into a number in [0,1] with a sigmoid function to make
it a probability (1 when the images have the same class and 0 for a different class).
Since the simaese network is trained with logistic regression, the loss function
should be binary cross entropy between the predictions and targets.

2.3.5 Object Detection
For object detection a classification CNN is typically combined with a bound-

ing box regressor. Neural networks, performing the object detection task, output
the probabilities for multiple sliding windows (smaller rectangles on the input im-
age) to find objects. The selection of the sliding windows differs by algorithm,
windows of the same class which are close to each other are combined to bound-
ing boxes (marking a rectangular position) for the objects. In Figure 2.24 a sample
of an image with probability bounding boxes is shown. CNNs for object detection
have to be trained with images including the annotated bounding boxes.

For object detection currently two approaches are used one is first extracting
region proposals, then computing features as well as classifying the regions. The
classified regions are the bounding boxes output of the network. R-CNN [Gir-
shick et al., 2014] uses selective search [Uijlings et al., 2013] for region propos-

(a) Using ModelNet40 (b) Using MIRO

Figure 2.22: RotationNet/Multi-view CNN results [Kanezaki et al., 2018]

39 2.3. Convolutional Neural Networks

Figure 2.23: Siamese network architecture.

als, Alexnet as a feature extractor and multiple Support Vector Machines (SVMs)
trained for each class to identify the region. Fast R-CNN [Girshick, 2015] and
Faster R-CNN [Ren et al., 2015] improve detection as well as training by com-
bining region proposals, classification into one network and also using a better
performing architecture for classification (VGG).

Figure 2.24: Object detection output [Girshick et al., 2014]

The second approach Single Shot MultiBox Detector SSD [Liu et al., 2016],
discretizes the output space of bounding boxes into a set of default boxes over
different aspect ratios and scales per feature map location. Each box is classified
by the network and the default box is adjusted to match the object shapes. Multiple
feature maps are combined to handle objects of varying sizes. SSDs are faster than
region proposals since the image is just processed once.

2.3.6 Object Segmentation
There are two different levels of object segmentation, namely, semantic seg-

mentation and instance segmentation. Semantic segmentation is a pixel-wise clas-

Chapter 2. Background 40

sification of images. As shown in Figure 2.25 each pixel is assigned a class, which
is visualized by a color in the image. In semantic segmentation unlike object de-
tection instances of classes are not differentiated. For the training also pixel-wise
annotations are needed.

Fully Convolutional Networks (FCNs) [Long et al., 2015] reduce the dimen-
sionality of an input image extracting features and then upsample again to the
input size with on feature map for each class. The FCN in Figure 2.25 is trained
end-to-end by providing the pixel-wise class masks. The network learns the spe-
cific tasks of pixel-wise segmentation. For semantic segmentation a background
class is added representing everything different from the target classes.

Figure 2.25: Semantic segmentation using a FCN [Long et al., 2015]

Region proposal networks (see section 2.3.5) are also used for semantic seg-
mentation. For each pixel in a proposed region the class is predicted.

Instance segmentation combines object detection and semantic segmentation
outputting pixel-wise classification of instances. The output as portrayed in Fig-
ure 2.26 is a mask for each detected instance. For training the pixel-wise annota-
tions of the instances have to be provided.

Mask R-CNN [He et al., 2017] extends Faster R-CNN (see section 2.3.5) by
adding a branch for predicting an object mask in parallel with the existing branch
for bounding box recognition. Mask R-CNN is a general approach which allows
exchanging of components. The backbone component for feature extraction can
be any CNN like for example Resnet (see section 2.3.1). The network head com-
ponent is the used for bounding-box recognition (classification and regression)
and mask prediction that is applied separately to each region of interest.

41 2.4. Unsupervised Techniques for Anomaly Detection

Figure 2.26: Instance segmentation using Mask R-CNN [He et al., 2017]

2.4 Unsupervised Techniques for Anomaly Detection

Classification problems deal with two or more classes. The goal is to distin-
guish between a number of classes using the training data. Anomaly detection
(also outlier detection and one-class classification) deals with the problem of only
having one class in the training data and the target to determine if new data is
alike the training data. In the following sections methods for outlier detection are
described.

2.4.1 Autoencoder

An autoencoder is a method of obtaining a lower dimensional representations
of the input dimension. The general idea is that an autoencoder tries to learn how
to copy the input to an output [Géron, 2019, p. 415-440]. Since the autoencoder is
constrained to pass the input information through a lower dimensional bottleneck
(the code) it learns an efficient representation of the input data. Autoencoders are
unsupervised since no labels are needed for the training. Autoencoders typically
consist of an encoder and a decoder part. The encoder part reduces the dimension-
ality of the input resulting in the code. The decoder then tries to reconstruct the
input from the code. Autoencoders are normally trained with the mean squared
error as a loss function (see section 2.2.4).

Linear Autoencoder

A linear autoencoder consists of multiple linear layers for the encoder and the
decoder component (see section 2.2.5) each followed by an activation function
(see section 2.2.3). The code is a linear layer with a reduced amount of neurons.
Since only fully-connected layers are used the amount of parameters for large

Chapter 2. Background 42

images is very large making the linear autoencoder difficult to train and memory
intensive.

Convolutional Autoencoder

Convolutional autoencoders consist of multiple convolutional layers (see sec-
tion 2.2.5) each followed by a activation function (see section 2.2.3) A combina-
tion of filter size and stride is used to adapt the image size to extract features and
condense the information to the lower dimensional representation. Decoding is
achieved by deconvolutional layers which invert the convolutions by applying fil-
ters to upsample the input. A convolutional autoencoder like a CNN for detection
is able to extract image features and can be built with less parameters.

Variational Autoencoder

Variational autoencoders introduced by [Kingma and Welling, 2013] differ
from the previously introduced autoencoder types by being probabilistic (outputs
are partly random) and generative. Generative means that they can produce new
instances looking like they’re sampled from the training set. Variational autoen-
coders have the same encoder-decoder architecture. The coding is not directly
produced by the input, but by summing a random sample from a Gaussian distri-
bution multiplied by the standard deviation of the coding and the mean coding.
The loss of the variational autoencoder is composed of the standard mean squared
error and the latent loss. The latent loss rewards the autoencoder coding too look
like they’re sampled from a Gaussian distribution. This latent loss supports the
generative properties of the autoencoder as the standard deviation of the coding
represents the difference of multiple samples allowing to ”morph” from one out-
put to another.

2.4.2 One-class Support Vector Machine

A Support Vector Machine (SVM) is a model for classification and regression
problems. It can be used to solve linear and non-linear problems. SVM creates a
line or a hyperplane which separates the data into different classes. The non-linear
decision boundary is achieved by projecting the data through the non-linear func-
tion φ. SVM maximizes the distance of the support vector (vector consisting of all
features) of each to the separating hyperplane which is constrained by the kernel
function. Analogous the one-class SVM [Schölkopf et al., 2000] maximizes the
distance of the hyperplane to the origin as shown in Figure 2.27a. The parameters
for the SVM classifier determine the trade-off between maximizing the margin

43 2.4. Unsupervised Techniques for Anomaly Detection

and the number of training data points within that margin. A one-class SVM as
depicted in Figure 2.27b can also have a non-linear decision boundary.

(a) Training (b) Non-linear boundaries

Figure 2.27: One-Class SVM

2.4.3 Isolation Forest
Isolation forests separate observations by randomly selecting a feature and

then splitting the observations by a random value between the maximum and min-
imum value of the feature [Liu et al., 2008]. This ”isolation” process is executed
multiple times building multiple decision trees which are combined into a forest.
The number of splits to isolate a sample is the path length from the root node to
the terminating node in a decision tree. With the average path length over a forest
of random trees a measures of normality is defined.

Anomalies are easier to separate from the normal data points, with a shorter
path length samples are likely to be anomalous. In Figure 2.28a an example of
random splits separating a normal data point is shown. With less splits as visual-

(a) Results on a normal data point (b) Results on an anomalous data point

Figure 2.28: Isolation Forest

Chapter 2. Background 44

ized in Figure 2.28b an anomalous data point can be separated. Parameters define
the number of trees, features selected and the threshold for the decision function.

2.4.4 Local Outlier Factor

Local outliers are outliers compared to their local neighborhoods, instead of
the global data distribution. The local outlier factor is the assigned degree of being
an outlier [Breunig et al., 2000]. Te local outlier factor is based on a concept of a
local density, where locality is given by k nearest neighbors. The distance to the
neighbors is used to estimate the density. Comparing the local density of an object
to the local densities of its neighbors, outliers can be identified (see Figure 2.29).
Outliers have a substantially lower density than their neighbors. Parameters are
the number of neighbors, the distance metric and the threshold for the decision
function.

Figure 2.29: Local Outlier Factor determining density with k=3 neighbors

2.5 Evaluation Metrics

There are several metrics used by researchers and practitioners to evaluate
the performance of machine learning and deep learning models. Each of these
metrics measures different aspects of a trained model. Below, we present a brief
description of each method.

• Accuracy: the proportion of correctly classified instances out of a given set
of instances. When the classes are heavily imbalanced, this metric is less
useful.

Accuracy =
TP + TN

allinstances

45 2.5. Evaluation Metrics

• Precision: the proportion of correct classified items out of all the predictions
classified as the given class.

Precision =
TP

TP + FP

• Recall: the proportion of correct classified items out of a given set of the
class instances. This metric represents the class detection capability of the
model.

Recall =
TP

TP + FN

• True negative rate (Specifity): the proportion of correct false classifications
out of a given set of false instances.

Specifity =
TN

TN + FP

• False positive rate: the proportion of instances classified incorrectly as true
out of a given set of false instances.

FalsePositiveRate =
FP

TN + FP

• False negative rate: the proportion instances classified incorrectly as false
out of a given set of true instances.

FalseNegativeRate =
FN

TP + FN

• F1 score: the harmonic mean of precision and recall. For the problems with
imbalanced classes, this is a useful metric to evaluate models.

F1 = 2
Precision.Recall

Precision+Recall

Chapter 3

PPIC: Platform for Parts Image
Capturing

This chapter describes PPIC, an image capturing platform that addresses the
industrial parts challenges. Parts of the presented work in this chapter have been
previously published [Taheritanjani et al., 2019a] [Taheritanjani et al., 2019b].
Section 3.1 describes the characteristics of industrial parts and the challenges of
capturing images. Section 3.2 describes the image capturing configuration and its
components.

3.1 Industrial Parts Characteristics and Challenges

To obtain a dataset for sorting and classification of industrial parts, the training
dataset must contain the main discriminative features [Chai, 2015]. In addition,
image segmentation for damage detection and bin picking of fasteners requires
quality images. There are three challenges for industrial parts in comparison with
most other image datasets [Deng et al., 2009] [Huang et al., 2008] [Khosla et al.,
2011]. Firstly, unlike the cases in which the background of the image can con-
tribute to the classification, in inspection processes the background is not infor-
mative, can be a source of noise, and results in unnecessary computation overhead.
Secondly, many classes can only be separated by subtle details, for example small
length differences or difference in the thread pitch for bolts. Figure 3.1 is an ex-
ample of such cases. Thirdly, capturing images of industrial parts faces challenges
due to the nature of the parts themselves:

• Perspective: in the graphic arts, perspective is an approximate represen-
tation of an image on a flat surface as it is seen by the eye. Perspective
is characterized by its correlation between object’s size and its distance to

46

47 3.1. Industrial Parts Characteristics and Challenges

Figure 3.1: An example of similar fasteners. A is identical to C except that its non-
threaded shaft is one millimeter shorter. B has a two millimeter longer non-
threaded shaft and a one millimeter smaller diameter than C [Taheritanjani
et al., 2019a].

the observer. The objects become smaller as their distance from the ob-
server increases [Grau, 2003]. Unlike most of the objects where scaling the
size, width or height does not affect their actual category, the size of the
fasteners must be preserved in all the instances of the dataset. Any scaling
transformation of the image of the fastener can result in misclassification.
Figure 3.2 shows an example of two bolts which are scale versions of each
other, considering their length and width. Their distance to the camera lens
must be known and always scaled to a fixed size in all the data samples.

• Reflection: most of the parts used in mechanical machines are metallic and
primarily silver color. Their surface reflects the light, which might introduce
extra noise and hides important details of the part in the image such as the
fastener threads or the damages on the part surface. Therefore, a specific
light polarization must be utilized to control and reduce the light reflection.

• Shadow: laying the parts on a surface with a normal source of light such as
room lighting results in them being surrounded by shadow. Considering the
small size of some parts like fasteners and the generated shadows, shadows
can be a source of noise which makes the data augmentation process less
useful.

Aside from the challenges, the shape, color, and texture have previously been
studied as the most common visual image features [ping Tian et al., 2013] [Stanchev

Chapter 3. PPIC: Platform for Parts Image Capturing 48

Figure 3.2: An example of two bolts that each one is a scale version of the other one.
Scaling one’s image is an example of the perspective issue and can result in
a misclassification [Taheritanjani et al., 2019a].

et al., 2003] [Zhang and Lu, 2004]. The parts used in the inspection process have
typically metallic silver or dark color and a metallic texture, irrespective of their
constituent alloy. As the texture and color are identical for most parts, we focus
on shape, threads, and head.

The shape of a part can identify whether the part is a bolt, screw, nut, washer
or crank and how large, small, narrow or thick it is. Moreover, for threaded parts
such as bolts, screws, and nuts, the threads can be used to distinguish between
different similar-shaped items. Differences in the thread pitch, size, and the length
of the threaded shaft of the part indicate a different fastener. In addition, there are
many screws and bolts which have the same shape, length and width and also the
same threads–pitch, length and location of threads on the shaft. However, they
have different heads such as hex socket, hex cap, flat head, or curved head bolts
and screws. The fastener head indicates what kind of wrench or screw driver is
required to drive it and different head types are appropriate for different threaded
holes.

3.2 PPIC

Considering the challenges described in 3.1 - perspective, reflection, and shadow
with normal ambient lighting, as well as the shape, threads, and head features on
which we want to focus, we describe a platform for parts image capturing, PPIC,
a research platform for recording images of the parts for creating the datasets,

49 3.2. PPIC

training, and prediction.
To control the reflection on parts’ surface, PPIC utilizes textiles to polarize

the lights [Biver et al., 2012]. The textile diffuses the light, softening it so that
the lighting is evened out. The even light from all angles ensures that there is
no critical reflection. Moreover, to reduce the shadows around parts and have a
uniform background, it uses dimmable backlighting. Shining a controlled light be-
hind the object directly at the camera lens darkens the object, which again reduces
reflection effects [Biver et al., 2012]. In addition to the backlighting underneath
the surface, there are multiple lights in the room to spread light from above and
the side. Furthermore, fixed cameras are used to overcome the perspective issue,
which are placed inside the polarized space. Using fixed cameras, the distance be-
tween fastener and the camera lens is fixed (ignoring minor variation in distance
resulting from the different positions of the fasteners on the surface). PPIC can
also employs a non-fixed camera. However, we must compute the camera distance
to the part, (for example, using fiducial markers), and scale the image to the initial
fixed size.

To semi-automate the process of recording the images for the dataset, PPIC
uses a backlight supported textile conveyor belt. To ensure that one fastener ar-
rives under the camera at a time and to reduce the occlusion effect, it employs
vibration to separate them. The vibration must be performed before the parts ar-
rive under the camera. Finally, to fully automate the capturing process, PPIC uses
a mechanical solution with another conveyor belt to move the parts at the end of
the main conveyor belt back to its beginning. This can be also beneficial for the
parts which do not arrive separately under the camera (occlusion). Using the sec-
ond conveyor belt, PPIC can fully automate data creation, even if there are few
samples from a part. Figure 3.3 shows a sketch of PPIC.

3.2.1 PPIC Configurations
PPIC, as shown in Figure 3.3, is a generic research platform, that can be con-

figured for different use cases. Depending on the requirements and specifications
of a study, we can use parts of PPIC for the hardware configuration. The light
green parts of PPIC depicted in Figure 3.3 support semi-automatic dataset cre-
ation, as well as automatic collection and feeding back the leftover fasteners1.
While these light green parts help to automate the process, the inspection pro-
cesses are performed under the cameras, as shown in yellow in Figure 3.3. There-
fore, this section focuses on the under camera part of PPIC and describes four
configurations, which are used in the rest of this dissertation.

1Leftover fasteners refer to the ones that the automatic damage identification, sorting, classi-
fication or bin picking could not be applied to them, mainly due to their position relative to other
nearby fasteners.

Chapter 3. PPIC: Platform for Parts Image Capturing 50

Figure 3.3: The sketch of PPIC with a vibration conveyor belt. The backlighting comes
from below the conveyor belt. The light green section can move the parts
back to the beginning of the conveyor belt and the vibration section.

PPIC-A: Configuration without Ambient Light and with Single Camera

PPIC-A uses only a single camera on top of the conveyor belt. The camera
lens angle with the conveyor belt surface must be 90°. The backlighting and light
diffusing textile are required to reduce the reflection on parts and shadows around
them. In addition, PPIC-A necessitates to turn off sources of illumination on top.
Therefore, it does not require any light diffusing textile for polarization (Chapter 6
shows how this configuration setup can be used for single-view classification of
fasteners). Figure 3.4 shows a sketch of PPIC-A. Figure 3.5 shows an image of
two bolts and one washer obtained with normal ambient lighting (3.5a) and with
PPIC-A (3.5b).

51 3.2. PPIC

Figure 3.4: The sketch of PPIC-A with a light diffusing conveyor belt. The backlighting
comes from below the conveyor belt and a single camera with 90°captures
the images.

(a) (b)

Figure 3.5: Image of fasteners obtained on the conveyor belt using normal ambient light-
ing (a) and using top camera view of PPIC-A with reduced shadows and
reflection (b).

PPIC-B: Configuration with Ambient Light and with Single Camera

PPIC-B employs again a single camera with a right angle towards the surface
and backlighting and light diffusing textile conveyor belt. However, PPIC-B re-
quires sources of illumination on top of the platform with a light diffusing textile
for polarizing them. Figure 3.6 shows a sketch of PPIC-B. Figure 3.7 shows an

Chapter 3. PPIC: Platform for Parts Image Capturing 52

image of a bolt obtained with normal ambient lighting (3.7a) and with PPIC-B
(3.7b).

Figure 3.6: The sketch of PPIC-B with a single camera, light diffusing conveyor belt, and
backlighting. There are illumination on top of platform and light diffusing
textile to polarize the light.

(a) (b)

Figure 3.7: Image of a bolt obtained using normal ambient lighting (a) and using camera
view of PPIC-B (b).

53 3.2. PPIC

PPIC-C: Configuration with Ambient Light and with Two Cameras

PPIC-C also utilizes sources of illumination on top of the platform with light
diffusing textile for polarizing them. PPIC-C uses two cameras2, one with 90°and
another one with 60°angle towards the surface. Figure 3.8 shows a sketch of
PPIC-C. Figure 3.9 shows an image of a nut from two views obtained with PPIC-
C.

Figure 3.8: The sketch of PPIC-C with two cameras, illumination on top, and polarized
backlighting supported conveyor belt.

2We only use two cameras for multi-view studies in this dissertation. However, the number of
cameras and views can be extended.

Chapter 3. PPIC: Platform for Parts Image Capturing 54

Figure 3.9: Image of a nut obtained using both camera views of PPIC-C.

PPIC-D: Configuration with Directed Illumination

In this configuration, there is no light diffusing textile and backlighting. How-
ever, there is one illumination source on top of the conveyor belt. The illumination
is directed with 45°angle towards the surface. The camera has 90°angle towards
the surface. Figure 3.10 shows a sketch of PPIC-D. Figure 3.11 shows an image of
a surface obtained with normal ambient lighting (3.11a) and with PPIC-D (3.11b)

Figure 3.10: The sketch of PPIC-D with one camera on top, and one illumination source
with 45°angle towards the surface.

55 3.2. PPIC

(a) (b)

Figure 3.11: Image of damages on a surface a using normal ambient lighting (a) and
using PPIC-D with reduced reflection (b).

Chapter 4

Damage Identification

Many studies have been conducted to detect the defect and damages for both
industrial and non-industrial purposes. Chen et al. present a method to find
damages on steel plates and use an industrial robot to polish the damaged ar-
eas [Chen et al., 2019]. They perform binary thresholding with a fixed thresh-
old value, which makes the results deterministic for their special setup, but also
makes the system vulnerable to small changes in light settings because the fixed
threshold cannot adapt to changes in the lighting conditions. Similar thresholding
techniques have been used in other studies [Senthikumar et al., 2014] [Chen and
Deng,].

In addition to thresholding methods, convolutional neural network (CNN) ap-
proaches have been widely used to detect the damages. Masci et al. presented a
convolutional neural network (CNN) approach for supervised steel defect classi-
fication in the steel strip market [Masci et al., 2012]. They classified 7 different
defect types collected from a real production line, with an error rate of 7%, which
outperformed a support vector machine (SVM) approach with various feature ex-
tractors. Park et al. also used a CNN for automatic surface defect inspection with
an accuracy near to the human inspection [Park et al., 2016]. Cha et al. performed
an automated visual inspection on civil infrastructures to increase safety [Cha
et al., 2018]. A Faster R-CNN was trained to identify objects with the following
classes: medium steel corrosion, steel delamination, high steel corrosion, concrete
cracks and bolt corrosion. The first features of the input image were extracted with
a CNN, the object/region proposals were made from these features, and finally the
proposals were classified and the bounding box was fitted using a regressor.

Giben et al. described an approach to automatically monitor railway tracks
to ensure passenger safety [Giben et al., 2015]. Cameras mounted on a wagon
generate large volumes of images for visual inspection. The visual inspection was
automated with a CNN for semantic segmentation. It could distinguish between
the material categories ballast, wood, rough concrete, medium concrete, smooth

56

57 4.1. Damage Detection of Fasteners

concrete, crumbling concrete, chipped concrete, lubricator, rail, and fastener. With
the resulting pixel-wise segmentation they could identify damages and also eval-
uate the number of damages occured. Semantic segmentation has also been used
to detect defects in fabrics, fruits, and asphalt on roads [Latorella and Prabhu,
2000] [Li et al., 2002] [Sudakov et al., 2008].

Ferguson et al. et al. trained a Mask R-CNN on the GDXray dataset [Mery
et al., 2015] containing X-ray images with annotated casting defects [Ferguson
et al., 2018]. In another study, the authors presented an approach to detect dam-
ages for product printings. It is worth noting that the algorithm is a combination of
raw pixel comparison of neighboring pixels and edge detection [Yangping et al.,
2018]. First, the edges are identified using a Laplacian edge detector, using the
first and second derivative in one dimension finding contrast changes. With a
threshold, a binary mask of edges is created. The difference in the binary mask,
as well as the pixel difference in non-edge patches of pixels in the image for the
input is compared to the reference image. A threshold determines if there is a
defect.

Baur et al. employed multiple variants of autoencoder architectures to detect
anomalies from magnetic resonance images [Baur et al., 2018]. The general idea
is to train the autoencoder to reconstruct the input and detect anomalies by sub-
tracting the reconstruction from the input. Unseen data cannot be reconstructed by
the autoencoder because it can lead to a higher reconstruction error. Furthermore,
the segmentation is achieved by thresholding the reconstruction error of the au-
toencoder [Baur et al., 2018]. The authors used normal autoencoders, variational
autoencoders, and variational autoencoders with the decoder part trained like an
AnoGAN [Schlegl et al., 2017].

These studies have inspired the methods used in this chapter, in particular to
validate H1. Section 4.1 describes the damage detection of fasteners, in which
we compare a set of damage detection models for fasteners using different ap-
proaches, which will be used in Section 8.1. Section 4.2 describes the damage
detection on industrial surfaces. These algorithms will be used to in Section 8.21.

4.1 Damage Detection of Fasteners
As explained in Chapter 1, a component may consist of multiple fasteners

and also other components (see Figure 1.5). This section presents the damage
identification methods and results for the fasteners. Parts of the presented work
in this section have been previously published [Taheritanjani et al., 2019b] or is
extracted from a study conducted at the chair for applied software engineering at

1Parts of this chapter have been previously published [Taheritanjani et al., 2019b]

Chapter 4. Damage Identification 58

TU Munich [Schönfeld, 2018]. Subsection 4.1.1 describes the dataset properties.
Subsection 4.1.2 explains the approaches and methods that are used to conduct this
study. Finally, Subsection 4.1.3 presents the results and discusses the implications.

4.1.1 Dataset Collection
Since there is no dataset available that focuses on damages of fasteners, we

used PPIC-B, described in Section 3.2.1 to collect the dataset in this study. The
fasteners dataset consists of 2019 images of 12 different bolt types each with in-
tact and damaged samples. Table 4.1 shows examples of these different types of
fasteners. The bolts of type AS 31532 and AS 21514 are specific airplane engine
fasteners. The other bolts M5 12, M5 20, M5 30, M5 40, M5 50, M6 16, M6 20,
M6 30, M6 40, and M6 50 are standard bolts. They have metric ISO-threads (M)
with a diameter of 5 and 6 millimeters and a length ranging from 12 to 50 millime-
ters. The dataset consists of 4 different instances per status of each fastener for
the standard types. The AS 31532 bolt is represented with 2 damaged and 2 intact
instances while the AS 21514 is presented in the dataset with 1 damaged instance
and 2 intact instances. In total the dataset consists of 87 instances of fasteners.

To ensure that the model generalizes to the all kinds of damages and not spe-
cific instances of them, the model is tested on a holdout set of damaged and intact
instances that it has not seen before. For each of the standard types an instance
of an intact and an additional damaged fastener - not in the training dataset - is
used in the holdout set. The test dataset consists of 207 pictures of damaged fas-
teners and 213 intact fasteners. The rest of the images are used for training and
validation, with a random split of 75% for training and 25% for validation.

For the instance segmentation of the damages, we manually created the fine-
grained annotations. The instances of damages are annotated with a mask marking
the damaged area. In total, we annotated 373 images of the fasteners with 2438
masks defining regions of damages (2065 masks) and the area of the fasteners
(373 masks). The instance segmentation dataset is also split into a training dataset
with 248 images and 1720 annotations as well as a validation dataset with 125
images and 718 annotations.

In addition, we preprocess the recorded images to improve the detection per-
formance of the damage detection algorithms. To separate the captured image
from the background, we apply either a simple threshold for a uniform back-
ground, i.e., using a binary threshold for the background color in OpenCV, or an
edge detection for a non-uniform background. In edge detection step, we blur the
image using Gaussian Blur in OpenCV for noise robustness. Afterwards, using
the Sobel filter in OpenCV, we apply a filter to detect edges. From the resulting
pixel, the threshold mask or the edges of the outer contours are identified. To lo-
cate the fastener, we use the minimum area rectangle of the outer contour. Finally,

59 4.1. Damage Detection of Fasteners

Table 4.1: Fasteners used in the dataset.

Chapter 4. Damage Identification 60

Figure 4.1: The preprocessing workflow (UML activity diagram).

the image of the fastener is rotated and cropped and the final result is a rectangular
image just fitting the fastener. Figure 4.1 shows the preprocessing workflow.

4.1.2 Methods
Considering the challenges faced in the fine-grained visual categorization of

fasteners [Taheritanjani et al., 2019a], perspective, reflection, and shadow with
normal ambient lighting as well as the shape, threads, and head features on which
we want to focus, we describe a set of methods to preprocess the data, create
damages, and train the models.

We trained different machine learning models (both supervised and unsuper-
vised) to detect the damages. Supervised tasks are the classification of the type
of the fastener and the instance segmentation of damages, i.e., they determine if
a fastener is intact or damaged. The unsupervised task is anomaly detection with
anomalies representing damages. Figure 4.2 shows an overview of the supervised
and unsupervised approaches in this study.

We also used the Blackboard pattern to combine multiple interdependent dam-
age detection algorithms. Blackboard stores solutions and intermediate results
that are accessed by the knowledge sources. Knowledge sources query the Black-
board for information that is provided by other knowledge sources. Table 4.2
shows the knowledge sources.

4.1.3 Results and Discussion
The results are divided into supervised and unsupervised approaches. Super-

vised approaches are the classification of the type of the fastener and the instance
segmentation of damages, i.e., if a fastener is intact or damaged, while the unsu-
pervised approaches are based on anomaly detection.

61 4.1. Damage Detection of Fasteners

MachineLearningAlgorithm

SupervisedClassificationAlgorithm UnsupervisedAnomalyDetectionAlgorithm

Resnet101 Mask R-CNN FeatureBasedAlgorithm Autoencoder

One-Class SVM One-Class NN IsolationForest Local Outlier Factor

Patch Based Autoencoder Small Part Autoencoder

Figure 4.2: The overview of the algorithms which are used in this study [Taheritanjani
et al., 2019b].

The first supervised approach is the classification that determines if a fastener
is damaged or intact - damaged/intact classification. Using a Resnet101, all dam-
aged and intact fasteners are correctly classified for the training dataset. In the test
dataset, consisting of the damages the model has not seen before, the performance
drops slightly. 99% of the damaged fasteners are correctly identified as damaged
as well as 99% of the intact fasteners are correctly classified as intact.

The Mask R-CNN trained on the detection of damage instances achieved an
mAP at an IoU of 50 of 0.5563 for the task of object detection on the validation
dataset with fine-grained annotations. Combining the results from Mask R-CNN
with simple rules (damaged area covers more than 1% of the whole image and
number of damaged objects is greater than zero) can also output a damage detec-
tion model. Table 4.3 shows the performance metrics for the supervised classifi-
cation algorithms. The rules have the same precision with lower recall values, due
to a lower number of true positives. Combining the Resnet101 result with Mask
R-CNN (considers a fastener to be damaged if either the Resnet101 or the Mask
R-CNN determines it to be damaged) decreases the true negatives and precision
but increases the generalizability since damage objects of unknown fasteners can
also be identified.

Chapter 4. Damage Identification 62

Table 4.2: Knowledge sources that are used for damage detection with their input and
output sources. Feature Vector: lower dimensional representation, Area Dam-
aged: percentage of the fastener which is damaged, Numeric Anomaly: nu-
meric value representing how anomalous a fastener is according to a damage
detection algorithm, Model Output: output of a model determining whether
the fastener is damaged or intact, Result: output of the blackboard represent-
ing the final decision.

Knowledge Source Input Output Algorithm
TypeClassificationKS Input Image Type, Feature Vector Resnet101
StatusClassificationKS Input Image Model Output, Fea-

ture Vector
Resnet101

InstanceSegmentationKS Input Image Number of Damages,
Area Damaged

Mask R-CNN

PatchAutoencoderKS Input Image Numeric Anomaly Patch-based Au-
toencoder

FastenerAutoencoderKS Input Image Numeric Anomaly,
Feature Vector

Autoencoder

OneClassSVMKS Feature Vector, Type Model Output One-class SVM
IsolationForestKS Feature Vector, Type Model Output Isolation Forest
LocalOutlierFactorKS Feature Vector, Type Model Output Local Outlier

Factor
OneClassNeuralNetworkKS Feature Vector, Type Model Output One-class Neural

Network
NumberOfDamagesRuleKS Number of Damages Model Output Rule-based
AreaDamagedRuleKS Area Damaged Model Output Rule-based
ReconstructionErrorRuleKS Numeric Anomaly,

Type
Model Output Rule-based

EnsembleKS Model Output Result Ensemble

Figure 4.3 visualizes the Resnet101 output for a sample damaged fastener us-
ing Grad-CAM [Selvaraju et al., 2017] and Figure 4.4 shows an example of the
Mask R-CNN result.

The unsupervised approaches are anomaly detection with anomalies that rep-
resent damages. Table 4.4 shows the performance metrics for the unsupervised
anomaly detection methods. The anomaly detection methods operate on different
extracted features from the image (Resnet101 features and autoencoder bottleneck
features) and apply one-class SVMs, one-class neural networks [Chalapathy et al.,
2018], isolation forests, and local outlier factors to determine if the set of features
is abnormal. Rules based on the reconstruction error of autoencoders (patch-based
and for the whole fastener) trained on images of intact fasteners use a threshold to
determine whether a fastener is considered to be damaged. The patch-based au-

63 4.1. Damage Detection of Fasteners

Figure 4.3: An example of the heatmap visualization for a damaged fastener. Low activa-
tion is shown with cold colors (namely blue). The colder area indicates less
anomalies in that part of the image [Taheritanjani et al., 2019b].

Figure 4.4: An example of Mask R-CNN result for the damages including their masks
and bounding boxes [Taheritanjani et al., 2019b].

Chapter 4. Damage Identification 64

Table 4.3: Supervised classification performance results on test dataset

Algorithm Accuracy Precision Recall Training Details
Resnet101 0.99 0.99 0.99 epochs=8, batch size=8,

lr=0.001
Mask R-CNN (Number of
Damages Rule)

0.743 0.99 0.483 epochs=32, batch size=2,
lr=0.001

Mask R-CNN (1% Area
Rule)

0.743 0.99 0.483 epochs=32, batch size=2,
lr=0.001

Mask R-CNN +
Resnet101

0.988 0.986 0.99 -

toencoder rule has the highest accuracy among the unsupervised approaches with
an accuracy of 84%, the true negatives of 98%, precision 97%, and F1-Score of
77%.

Figure 4.5a and Figure 4.5b show the output of the patch based autoencoder to
the corresponding input as well as the reconstruction error (absolute value for sub-
tracting the reconstruction from the input image) and the squared reconstruction
error. The squared error reduces the noise and visualizes only larger damages. The
patch-based autoencoder does the reconstruction on small image patches identi-
fying errors in the texture of the fasteners.

The results for the damaged/intact classification, with the precision and recall
of 99%, also imply a possible usage in the overhaul process. The mAP at an IoU
of 50 of 0.5563 for the damage object detection is comparable to other object de-
tectors on the COCO dataset [Redmon and Farhadi, 2018]. With the specificity
of 0.995 and precision of 0.99, the instance segmentation can complement other
damage detectors and provide visual insights about the damages. For a complete
evaluation, the damaged/intact classification must be scaled with more samples
recorded with an automated system, allowing automating the whole classification
and sorting process in an overhaul plant. To compare, Table 4.5 shows the com-
parison between the fastener damage identification approaches used in this disser-
tation and state of the art results with regards to the rating scheme, described in
Section 1.2.

Without the knowledge of damages, the task of unsupervised anomaly detec-
tion on images can be challenging. The distinction between damaged and intact
fasteners is often fine-grained and affected by noise, light, the position of the
fastener or other minor changes. The combination of feature extraction with one-
class classifiers did not lead to satisfying results. We consider that the extracted
features, especially from the autoencoders, cannot represent the damages very
well. We can determine the notion of normality using autoencoders. However,
their performance is still lower than the supervised methods - with an accuracy of

65 4.1. Damage Detection of Fasteners

(a) Intact fastener (b) Damaged fastener

Figure 4.5: An example of the autoencoder input (first row), its reconstruction (second
row), reconstruction error (third row), and square of reconstruction error (last
row) for an intact and a damaged fastener [Taheritanjani et al., 2019b].

Chapter 4. Damage Identification 66

Table 4.4: Unsupervised classification performance results on test dataset.

Algorithm Feature
Extractor

Accuracy Precision Recall Training Details

One-class Support
Vector Machines

ResNet101 0.63 0.59 0.82 kernel=”rbf”, nu=0.1,
gamma=1/8192

One-class Support
Vector Machines

Autoencoder 0.55 0.57 0.35 kernel=”rbf”, nu=0.01,
gamma=1/8192

Isolation Forests ResNet101 0.63 0.59 0.83 n estimators=100,
bootstrap=False

Isolation Forests Autoencoder 0.55 0.57 0.35 n estimators=100,
bootstrap=False

Local outlier Fac-
tors

ResNet101 0.66 0.60 0.89 -

Local outlier Fac-
tors

Autoencoder 0.53 0.54 0.24 -

One-class Neural
Networks

ResNet101 0.65 0.70 0.49 epochs=50,
hidden nodes number=

32
One-class Neural
Networks

Autoencoder 0.50 0.45 0.04 epochs=50,
hidden nodes number=

32
Autoencoder
Reconstruction
Rule

- 0.78 0.96 0.57 epochs=40, batch size=4,
lr=0.00005

Patch Autoencoder
Reconstruction
Rule

- 0.84 0.97 0.64 epochs=40, batch size=4,
lr=0.00005

84% and a recall of 64% for the patch-based autoencoder paired with a rule for
the reconstruction error, which could be due to the distinguishing of the concept
of normality from everything else. However, a visualization of the reconstruction
error provides valuable insights for human operators showing where exactly the
damage might be located.

The drawback of the supervised approaches is that we need to train the models
with both intact and damaged instances of the fasteners. While they offer higher
accuracy, the efforts for the dataset collection and the preprocessing steps are
also high and the generalizability could be affected with introducing new unseen
damages. However, unsupervised approaches need only the intact instances for
the training phase that can reduce the efforts for the dataset collection and the
preprocessing steps.

To improve the results and the generalization of the solutions, more data and

67 4.2. Surface Damage Detection

Table 4.5: Comparison between the fastener damage identification approaches used in
this dissertation and the state of the art results in damage identification with
regards to the rating scheme.

Study R1 R2 R3 R4 R5 R6
[Ferguson et al., 2018] ± + + - - +

[Cha et al., 2018] ± + ± ± - +
[Yangping et al., 2018] - + ± - + ±

[Baur et al., 2018] ± + + + + not provided

[Wei et al., 2018] ± + + ± + ±
Fastener damage identification

approaches used in this dissertation
+ + ± + + (unsupervised)

± (supervised)

± (unsupervised)
+ (supervised)

more different damages are needed. Furthermore, since the noise is an extra
anomaly, constraining the data collection environment and reducing the noise can
also increase the accuracy of the results. Moreover, the current images of the fas-
teners are from one top-down perspective. To detect the damages on all sides of
the fasteners, they must automatically be rotated using vibration or another setup
that uses multi-view cameras. In addition, the current dataset must be scaled to a
larger number of classes. Some damages are not detectable optically and, there-
fore, cannot be identified using computer vision. To detect these types of damages,
we can use for example other sensors and methods [Michaels, 2008] [Fugate et al.,
2001] [Ciang et al., 2008].

Our dataset might not represent all the classes in the target environment. There-
fore, to ensure consistent performance, more data preferably with more classes
have to be recorded. Another threat to validity is the damages of the fastener in
the dataset that might not represent all the cases of real damaged fasteners. To
solve this issue, the data has to be collected at the target location. Currently, im-
ages are only recorded with one specific type of camera at a fixed distance. Using
image processing and passing the distance/scale to the models can remediate this
limitation.

4.2 Surface Damage Detection

This section presents the surface damage identification methods. Parts of the
presented work in this section have been extracted from an ongoing study at chair
for applied software engineering at TU Munich [Vinzenz, 2020]. Subsection 4.2.1
describes the dataset properties. Subsection 4.2.2 explains the approaches and
methods that are used to conduct this study. Subsection 4.2.3 describes the evalu-
ation and presents the results. Finally, Subsection 4.2.4 discusses the findings and

Chapter 4. Damage Identification 68

implications.

4.2.1 Data Collection
There are available datasets for surface damage detection. Severstal: Steel

Defect Detection2 dataset has images of steel surfaces with their encoded damage
pixels in a csv file. Kolektor Surface-Defect Dataset [Tabernik et al., 2019] has
images of microscopic fractions or cracks on the surface of the plastic embed-
ding in electrical commutators annotated with bitmap labels. NEU surface defect
database [Song and Yan, 2013] has 6 kinds of surface damages on the hot-rolled
steel strip which are annotated in PascalVOC XML format. However, they are
either from one single type of material or lack insufficient images from damaged
or intact classes (see Table C.2 for a better comparison between the datasets).

Therefore, we captured the dataset using PPIC-D from two different materials.
Table 4.6 shows the materials used in data collection.

Table 4.6: Surfaces used in the dataset (102 images with 15 damages per image on av-
erage and their fine-grained annotations and 355 images of the intact surfaces
for novelty detection).

Name Sample Image

Galvanized Metal

Aluminum Metal

We captured 65 images of galvanized metal and 37 images of aluminum metal.
All the images were annotated using VGG Image Annotator (VIA) Tool, in order
to have the ground truth bounding boxes of the damages for the evaluation. Each

2https://www.kaggle.com/c/severstal-steel-defect-detection/

https://www.kaggle.com/c/severstal-steel-defect-detection/

69 4.2. Surface Damage Detection

damaged image contained at least 3 to 37 damage annotations. The whole dataset
had 1572 annotated areas, having an average of 15.4 damaged areas per image.
The size of annotated damages ranges from 1mm to more than 20 mm.

Moreover, to use anomaly detection and novelty detection algorithms, images
of intact samples of the surfaces were captured. We collected 161 images of galva-
nized metal and 194 images of aluminum metal. These images formed the second
dataset (intact dataset) and used later for training phase of anomaly detection al-
gorithms.

4.2.2 Methods
We applied three different methods to identify damages on the surfaces. Sub-

section 4.2.2 presents the thresholding method. Subsection 4.2.2 explains the su-
pervised image segmentation approach using Mask R-CNN, and Subsection 4.2.2
presents unsupervised anomaly detection method using autoencoders.

Thresholding

Thresholding technique is not required to split the dataset for training. Never-
theless, we used set of images for testing the performance of the algorithm. The
first thresholding technique is Gaussian Otsu. It does not require any threshold
parameter to be selected; the algorithm finds the best global threshold for bina-
rization. However, some parameters must be provided, such as blur kernel or size
of the bounding box of the detected damage. The algorithm starts with reading
the image and applying median blur, followed by a Gaussian blur filter. We set the
median blur kernel to 5 × 5 and the Gaussian kernel size to 3 × 3. The Gaussian
kernel blurs the edges and reduces contrast, which results in removing noise in
Otsu thresholding. Finally, next to applying the thresholding technique, a mini-
mum and maximum area check must be provided. The detected damage bounding
box must be smaller than one third of the whole image and bigger than 60 pixels.

Supervised Image Segmentation

For Mask R-CNN, we split the data into train, validation and test datasets. We
used 80% of the data for training, 8% for validation, and 12% for test (82 images
in train, 8 images in validation and 12 images in the test dataset). We also applied
a stratified split with respect to the distribution of images per class to ensure that
each of the train, test, and validation contain the same proportion of the classes.

In addition, we applied image augmentation to regularize the training. We
used the following augmentations:

• Flipping: we applied horizontal and vertical flipping to 50% of the dataset.

Chapter 4. Damage Identification 70

• Color Jitter: images recorded with small changes in ambient light, and
dirty small parts can cause large differences in appearance. To avoid the
network to overfit to the lighting conditions, or recognize dirty small parts
which can appear darker, we applied random brightness and contrast aug-
mentations. The brightness and contrast are randomly altered up to ±25%
for each image.

• Random Rotation: we rotated the image to artificially increase the dif-
ferent rotations a nut can lay in. Each image is randomly rotated between
±180°.

Finally, we trained a Mask R-CNN model to automatically segment the dam-
ages in the images. Table 4.7 summarizes the training parameters.

Table 4.7: Parameters and settings used to train Mask R-CNN model, pretrained with
COCO dataset.

of epochs Learning Rate Batch Size Optimizer Backbone
10 (heads)
80 (all)

0.001(epochs 1 to 30)
0.0001(epochs 31 to 60)
0.00001(epochs 61 to
90)

2 SGD(momentum=0.9,
weight decay=0.0001)

ResNet50

Unsupervised Anomaly Detection

To apply unsupervised anomaly detection for the surfaces, we used autoen-
coders. An autoencoder tries to learn the most important features of the input by
first encoding the input to lower dimensionality (encoding) and then reconstruct
the original input from the encoded features (decoding).

We trained a stacked convolutional autoencoder using the intact dataset. The
autoencoder consisted of five convolutional layers in encoder and five convolu-
tional layers in decoder. Table 4.8 shows the architecture of the autoencoder and
the training hyper parameters.

Table 4.8: Parameters and settings used to train autoencoder for anomaly detection.

of epochs Learning
Rate

Batch Size OptimizerArchitecture

20 1 8 SGD 4 convolutional layers with 64, 128, 128, and
256 filters, each with kernel size=(3, 3) and
activation= ’selu’

71 4.2. Surface Damage Detection

4.2.3 Evaluation and Results
We tested the methods described in Section 4.2.2 on the test datasets for the

segmentation results with the mean average intersection of unit (IoU) metric. We
used 12 damaged images in Mask R-CNN test dataset together with 12 intact im-
ages to test the methods for binary classification (damaged vs. intact). Table 4.9
shows the performance metrics for the different methods. In addition to the accu-
racy, we also used precision and recall metrics.

Table 4.9: The performance results on test dataset.

Method Segmentation
IoU

Classification
Accuracy

Classification
Precision

Classification
Recall

Thresholding 23.5% 41.7% 41.7% 41.7%
Supervised Segmentation

(Mask R-CNN)
48.1% 95.83% 100% 91.7%

Anomaly Detection
(Autoencoder)

42.7% 83.3% 78.6% 91.7%

Figures 4.6 and 4.7 shows examples of the results obtained by different meth-
ods on both of the materials.

4.2.4 Discussion
The thresholding algorithm obtained an AP at an IoU of 50 of 0.235 for the

task of damage detection on the test dataset with fine-grained annotations. Using
this algorithm for binary classification (damaged area covers more than 1% of
the whole image and number of damaged objects is greater than zero) resulted in
41.7% accuracy, precision and recall. These results were used as a baseline for
comparison of the methods.

The Mask R-CNN trained on the detection of damage instances achieved an
AP at an IoU of 50 of 0.481 for the task of damage detection on the test dataset
with fine-grained annotations. Combining the results from Mask R-CNN with
binary rules (damaged area covers more than 1% of the whole image and number
of damaged objects is greater than zero) can also output a damage detection model.

The results for the damaged/intact classification, with the precision of 100%
and recall of 91.7%, also imply a possible usage in surface damage detection in
overhaul process. The AP at an IoU of 50 of 0.481 for the damage object detec-
tion is slightly less than other object detectors on the COCO dataset [Redmon and
Farhadi, 2018]. The instance segmentation can complement other damage detec-
tors and provide visual insights about the damages. For a complete evaluation,
the damaged/intact classification must be scaled with more samples recorded with

Chapter 4. Damage Identification 72

Figure 4.6: An example of the original image input (first row), thresholding result (sec-
ond row), segmentation result using Mask R-CNN (third row), and its au-
toencoder reconstruction (last row) for galvanized surfaces.

73 4.2. Surface Damage Detection

Figure 4.7: An example of the original image input (first row), thresholding result (sec-
ond row), segmentation result using Mask R-CNN (third row), and its au-
toencoder reconstruction (last row) for aluminum surfaces.

Chapter 4. Damage Identification 74

an automated system, allowing automating the whole classification and sorting
process in an overhaul plant.

As described earlier in Section 4.1.3, without the knowledge of damages, the
task of unsupervised anomaly detection on images can be challenging. The dis-
tinction between damaged and intact surfaces is often fine-grained and affected by
noise, and the type of surface material. The extracted features from the autoen-
coders cannot represent the damages very well. Although, we can determine the
notion of normality using autoencoders, their performance is still lower than the
supervised methods - with an accuracy of 83.3% and a precision of 78.6% for the
autoencoder paired with a rule for the reconstruction error, which could be due
to the distinguishing of the concept of normality from everything else. However,
a visualization of the reconstruction error provides valuable insights for human
operators showing where exactly the damage might be located.

It is also worth to mention that the methods usefulness is varied on different
types of materials. Damages and cracks on aluminum material are easier to spot by
thresholding and autoencoder approaches, due to the uniform color and texture of
the material. The damages on the galvanized material, however, are best detected
by Mask R-CNN approach. Galvanized metal has a scrambled texture, which
makes it challenging to distinguish the cracks versus the material itself.

The drawback of the supervised approaches is that we require to train the
models with many instances of damaged surfaces. While they offer higher ac-
curacy, the efforts for the dataset collection and the preprocessing steps are also
high and the generalizability could be affected with introducing new unseen dam-
ages. However, unsupervised approaches require only the intact instances for the
training phase that can reduce the efforts for the dataset collection and the prepro-
cessing steps.

To improve the results and the generalization of the solutions, more data and
more different damages are needed. Furthermore, the current images of the sur-
faces are from one top-down perspective. To detect the damages on all sides of
the surfaces, they must automatically be rotated or other setups that use multi-
view cameras must be employed. In addition, the current dataset must be scaled
to a larger number of classes. Some damages are not detectable optically and,
therefore, cannot be identified using computer vision. To detect these types of
damages, other sensors and methods can be used [Michaels, 2008] [Fugate et al.,
2001] [Ciang et al., 2008].

We only used aluminum and galvanized metals in the dataset, which do not
represent all the classes in the target environment. Therefore, to ensure consistent
performance, more data preferably with more types of materials must be recorded.
Another threat to validity is the damages on the surfaces in the dataset that might
not represent all the cases of real damaged fasteners. To solve this issue, the
data must be collected at the target location. Currently, images are only recorded

75 4.2. Surface Damage Detection

with one specific type of camera at a fixed distance. Using image processing and
passing the distance/scale to the models can remediate this limitation.

Chapter 5

Sorting the Fasteners based on their
Similarity

Deep learning applications require large amount of data. When there are only
a few data samples, the task is usually more complicated and challenging. One-
shot learning is an example of this situation, when there are not many data sam-
ples; the prediction is based on only one single example of each class. Koch et
al. described a method by using a siamese neural network, which has a unique
structure to rank similarity between inputs naturally [Koch et al., 2015]. The
siamese networks are capable of learning generic image features for making pre-
dictions on unknown class distributions. They provide a competitive approach
which does not reply on domain-specific knowledge by exploiting deep learning
techniques. Their model can predict on new data and generalize the predictive
power to entirely new classes from unknown distributions based on the powerful
discriminative features extracted.

In another study, Wang et al. proposed a deep ranking model to learn fine-
grained image similarity [Wang et al., 2014]. The model characterizes the fine-
grained image similarity relationship with a set of triplets. A triplet is a group
of images including a query image, a positive image and a negative image. The
positive image is similar to the query image, while the negative image is not the
same class. The order in the triplets represents image similarity. The authors
used a bootstrapping method to generate an unlimited amount of training data
virtually. Due to the intrinsic difference between image classification and simi-
larity detection tasks, the classic network for image classification is not optimal
for calculating the similarity between images. Therefore, Wang et al. proposed
a multi-scale network structure which contains the convolutional neural network
with two low-resolution paths. The results outperformed the hand-crafted visual
feature-based approaches and deep classification [Taylor et al., 2011] [Krizhevsky
et al., 2012].

76

77 5.1. Data Collection

Bertinetto et al. generated an image patch similarity function to learn from
annotated pairs of raw image patches. To train the networks, they use an extensive
database that contains pairs of raw image patches, which can be matched or not
matched. They can enrich this database with more samples to improve the per-
formance of the models. After applying their approach on several problems and
benchmark datasets, their methods lead to feature descriptors with better perfor-
mance than manually designed descriptors(e.g., SIFT, DAISY) and other learned
descriptors [Simonyan et al., 2014].

This section explains the clustering of fasteners based on their similarity, where
we sort bolts using a single camera view from PPIC-A. Parts of the presented work
in this section have been extracted from a study conducted at the chair for applied
software engineering at TU Munich [Yu, 2020]. Section 5.1 describes the dataset
properties. Section 5.2 explains how we trained and evaluated the models. Finally,
Section 5.3 shows the results and discussion.

5.1 Data Collection

We collected the dataset using PPIC-A, described in Section 3.2.1. We used
a HUAWEI Mate 20 cellphone camera to capture images, each with 3968x2976
pixels resolution. The camera shutter speed, aperture size and ISO were not fixed
and the camera automatically set these configurations.

The dataset consists of 20 different classes fasteners. The fasteners were cho-
sen in a way that they can be classified from a bird’s eye view, i.e. the similar bolts
with different heads are excluded from this study. The dataset contains a total of
1000 single-view images, 50 per class. Table 5.1 shows examples of fasteners in
dataset.

The dataset was split into a train and test set during the training (see Sec-
tion 5.3).

5.2 Training and Evaluation

We applied several data preprocessing methods prior to training the siamese
network. First, we cropped the minimum enclosing rectangle of the fasteners and
rotate them horizontally. Afterwards, we added the padding around the cropped
images to have them in 1000 × 1000 pixels (which is less than the length of the
longest edge of all the cropped images so that each image has the same size). We
also converted all the images to grayscale. Afterwards, we resized the images from
1000× 1000 to 200× 200. The resizing step improves the speed of computation,
saves memory in GPU and also removes noisy high-level features which are not

Chapter 5. Sorting the Fasteners based on their Similarity 78

Table 5.1: Fasteners used in the dataset (scaled to 0.5 of the original size).

79 5.2. Training and Evaluation

important for the clustering.
In addition, we used the following three augmentations for the experiments:

• Color Jitter: Images are collected with small differences of brightness be-
cause of automatic camera settings. Moreover, the dirty or damaged small
parts may cause differences in appearance. To address this issue, we applied
random brightness augmentations. The brightness is randomly shifted up to
±40% for each image.

• Rotation: we rotated the images to four different angles, 0°, 90°, 180°and
270°. These 4 numbers must suffice to include all the possible angles, since
we cropped the bounding boxes horizontally in data preprocessing steps.
We extended the original dataset with the rotated images and obtained 200
images per class in the dataset.

Furthermore, all models are trained using the following parameters and the
model with the highest validation accuracy was selected.

• Initialization: we initialized CNN layer weights with mean as 0 and stan-
dard deviation of 0.01, and CNN layer biases with mean as 0.5 and standard
deviation of 0.01 [Koch et al., 2015].

• Optimizer: we selected standard SGD with a momentum of 0.9 and weight
decay of 10−4 as the optimizer. Momentum and weight decay minimize
the impact of noisy gradients and local minima, which usually results in
training speed up and higher accuracy.

• Loss Function: we used standard cross-entropy loss for training.

• Learning Rate: after several experiments, we set the learning rate to 10−2.
We decided not to decrease the learning rate over time, because it did not
improve the performance of the model in several experiments.

• Batch Size: although using a smaller batch size in each step results in faster
execution of step, these steps usually are less accurate due to lower amount
of data. After several experiments, we set the batch size to 20.

• Epochs: we used 40000 epochs (iterations) to reach a steady loss.

Table 5.2 shows an overview of the hyper-parameters and augmentations used
during trainings. For evaluation of model performance, we measured the accuracy.

We could also consider training time as a metric. Training time is defined as
the amount of time needed to adjust weights and bias of the model. We evaluated

Chapter 5. Sorting the Fasteners based on their Similarity 80

Table 5.2: Overview of parameters and settings used to train models.

Optimizer Iterations Learning
Rate

Batch
Size

Augmentations

SGD
(mmentum=0.9,
weight decay=0.0001)

40000 0.01 20 Random rotation to four different an-
gles, 0°, 90°, 180°and 270°, random
light intensity (color Jitter) between
±40%

each trained model running on pair images from the test dataset that was randomly
generated. Since the network sees the training samples in a random order, and the
fully connected layers are randomly initialized, training models cannot have the
exact same weights after a set number of epochs. Therefore, we trained each
model independently three times. The reported results are an averaged testing
accuracy over the three independent models.

5.3 Results and Discussion

Table 5.3 shows an overview of the training results for different configurations
of the training and test. The results indicate that with increasing the number of
images for training, we obtain higher accuracy. The reported accuracy is calcu-
lated on 1000 pair images from test dataset. Therefore, the model’s accuracy is
99.8% on the images from the fasteners that the model was trained on.

To evaluate the model on new classes of fasteners which were not part of
training, we tested the model with highest accuracy on images with images with
multiple fasteners on a surface. Figure 5.1 shows an example of the images which
used for testing the model. In these images, we used a mixture of fasteners that
were used during training and new unseen classes of fasteners.

Table 5.3: Overview of the training results for sorting using Siamese networks, using 20
classes, 200× 200 input image size, 1000 test pairs, and 40000 iterations.

Number of pair Images used for
Training/Testing per Class

Accuracy

1 85/ 15 93.30%
2 85/ 15 95.30%
3 85/ 15 98.80%
4 150/ 50 99.80%
5 100/ 100 99.50%

81 5.3. Results and Discussion

Figure 5.1: An example of the original input image that was used to test the accuracy of
model on new classes fasteners.

Each image had at least one new class of fasteners. Depending on the com-
bination of the new classes of fasteners, the accuracy of the model on the new
classes was different. 70 images had only one fastener from new classes, i.e. the
new fasteners cannot be paired with any other fastener on the image. 30 images

Chapter 5. Sorting the Fasteners based on their Similarity 82

Table 5.4: Results of the model accuracy on new classes of fasteners, averaged in test
images.

of fasteners from new classes
in image

of images Accuracy of fasteners of
new classes

Weighted
Accuracy

1 70 75% 96.6%
more than 1 30 20% 90.1%

had two or more than two fasteners of the same new classes. Table 5.4 shows the
results of the model on the new classes of fasteners.

In 75% of the cases of having only one fastener from new classes, the model
did not cluster them with any other groups of fasteners. In 20% of the cases of
having two or more fasteners from same new classes, the model clustered these
fasteners together without any error, while in 80% of the cases, some other fas-
teners from other classes were also clustered wrongly with the same new ones. To
compute the real precision of the model, we used the weighted accuracy, which
gives score to each right instance in a cluster. The weighted accuracy is calculated
by:

WeightedAccuracy =
NumberOfFastenersInCluster

NumberOfAllFasteners

∑
ClusterAccuracy

Figure 5.2 shows the result of similarity detection on the input image shown
in Figure 5.1.

The results of the tests indicates that the model obtains 99.8% accuracy on the
fastener classes which were part of training and 90.1% accuracy on a mixture of
training fasteners and new classes. To improve the results and the generalization
of the solutions, more data from different fasteners classes are required. Moreover,
the current images of the fasteners are from one top-down perspective. To detect
the fasteners from all sides, another setup that uses multiple cameras must be
utilized.

83 5.3. Results and Discussion

Figure 5.2: The result of computed similarity of the fasteners on the input image (Fig-
ure 5.1).

Chapter 6

Fine-grained Visual Categorization
of Fasteners

In this chapter, we train a model using state of the art convolutional neural
networks to classify the fasteners using PPIC configurations described in Chap-
ter 3. Section 6.1 describes a single view classification method to classify bolts
and washers. Section 6.2 uses multi-view convolutional neural networks to ad-
dress certain different fasteners which from a single view appear to be of the same
type, namely bolts. Finally, in Section 6.3, we explore synthetic data creation and
its usage in training such models with less real data.

6.1 Single-view Classification

Categorization of fasteners can be defined as a Fine-grained Visual Catego-
rization (FGVC) problem. The definition of FGVC originates from a Nilsback
and Zisserman study [Nilsback and Zisserman, 2006] in which they introduced
an object classification dataset for flower species. This problem was particularly
challenging given the high intra-class and low inter-class variance nature among
flowers, which made the older standard classification methods inefficient. Ever
since, FGVC has gained popularity and has been used in different domains in-
cluding classification of flowers, birds, dogs, aircrafts [Nilsback and Zisserman,
2006] [Parkhi et al., 2012] [Yang et al., 2012] [Maji et al., 2013]. FGVC has been
also used for industrial purposes. Maji et al. introduced a large dataset of aircraft
images for fine-grained visual categorization [Maji et al., 2013]. They obtained
the images from aircraft spotter collections, maximizing internal diversity in or-
der to reduce unwanted correlation between images taken by a limited number of
photographers.

Aside from FGVC, for industrial purposes, work has also been carried out to

84

85 6.1. Single-view Classification

detect and classify fasteners, in particular in railway maintenance. Aytekin et al.
analyzed the specific case of hexagonal headed fastener detection from depth im-
ages that were acquired using a high speed 3D laser range finder [Aytekin et al.,
2015]. They described a fused approach with an appearance based and a his-
togram peak checking method. In another study, Feng et al. described a railway
inspection system, which assesses the damage of multiple types of fasteners [Feng
et al., 2013]. Their proposed system is insensitive to the illumination used and can
model different types of fasteners using unlabeled data, and ranks the statuses of
fasteners. Gibert et al. described another method for railway fastener detection
by aligning training data, reducing intra-class variation, and bootstrapping diffi-
cult samples to improve the classification margin [Gibert et al., 2015]. They used
histogram of oriented gradients features and a combination of linear support vec-
tor machine (SVM) classifiers to inspect ties for missing or defective rail fastener
problems.

Laptev et al. designed a framework to incorporate expert knowledge on nui-
sance variations in the data during training deep neural networks [Laptev et al.,
2016]. This framework handled prior knowledge on nuisance variations in the
data, such as rotation or scale changes. Influenced by [Laptev et al., 2016],
Xuan et al. designed a pearl classification machine, which automatically collected
multi-view images of pearls [Xuan et al., 2017]. Using their machine, the pearls
could be classified with a multi-view CNN. Usman and Rajpoot presented an algo-
rithm to hierarchically classify tumor into three regions: whole tumor, core tumor
and enhancing tumor [Usman and Rajpoot, 2017]. They extracted Intensity, inten-
sity difference, neighborhood information and wavelet features from MRI scans
with various classifiers.

This section explains the single-view classification of fasteners, where we
classified bolts and washers using a single camera view from PPIC-A, described
in Section 3.2.1. Parts of the presented work in this section have been previously
published [Taheritanjani et al., 2019a]. Subsection 6.1.1 describes the dataset
properties. Subsection 6.1.2 explains how we trained and evaluated the models.
Finally, Subsection 6.1.3 shows the results and discussion.

6.1.1 Dataset Creation
Using PPIC-A, the images cannot present the screw and bolt recesses or the

inner threads of nuts. Therefore, nuts and similar bolts with different head recesses
are excluded from data creation.

We created the data in a number of iterations with different light intensities
and a differing number of images. For the first iteration, we started with a small
dataset, trained a model, and evaluated how well the created model performed.
If the performance was below our expectations - less than 95% - we added ad-

Chapter 6. Fine-grained Visual Categorization of Fasteners 86

ditional examples to the training data and tested the trained model again. After
several iterations it was realized that we can divide the camera view into five
regions. Placing the fastener in each of these regions can result in capturing a
slightly different image in comparison with other ones. Figure 6.1 shows the five
regions of the camera view and the differences between the sample captured bolt
in each of them. Considering the vertical or horizontal position of the bolt along
with its shaft, the bolt head and the reflections on the sides of its shaft are shown
differently. Therefore, we must make sure that the dataset has sample images of
the bolt in each of these regions.

We recorded 10 different images per region of each bolt - 50 images in total
- and augmented 950 more images from these original images. Since the aero-
engine washers are thin plates with a hole in the middle, without any threads and
different sections such as a shaft and head, the quantity of actual washer images
required to train a classifier may be less than with bolts and screws. Therefore, we
only captured 10 images of washers without considering the region divisions and
augmented 290 more images from them (see Figure 6.2).

6.1.2 Training and Evaluation
Figures 6.3 and 6.4 show the steps prior to saving the data on the disk and

the preprocessing pipeline prior to training. After recording the images with the
system, we converted the images to grayscale to filter out the color feature.

In addition, we created a square bounding box around the object and cropped
the image to reduce both the background and the computation overhead during
the training phase. The size of the bounding box was a fixed 500× 500 square, so
that the largest object in the dataset (bolts 11 and 19) fit in.

As the light reflection and shadows around the parts were minimized using
light polarization and backlighting, it was possible to use rotation and translation
augmentation techniques to enhance the dataset. In different runs, we realized
that using augmentation without minimizing the shadows and light reflection is
not helpful because the network learns these noises as part of the classification.
For example, using a bolt image with shadows on its right side results in having
shadows on the right side of the bolt after rotation and translation augmentations
and the network may learn that this bolt should always have shadows on its right
side. In this study, mirroring and flipping augmentations do not function well for
threaded fasteners - right hand versus left hand fasteners.

In short, for the preprocessing, we applied the following methods: width and
height shift of 10%, a range of 0.7 to 1.3 light intensity augmentation, to make
the models more insensitive to slight light changes [McCarthy et al., 2013], and
from 0°to 270°rotation just for the bolts. Using these augmentation techniques,
we created 950 augmented data samples for each bolt and 290 for each washer,

87 6.1. Single-view Classification

Figure 6.1: The camera view is divided into five regions shown in blue and aqua. The red
dotes indicate the differences between the bolt head when the bolt is moved
vertically along its shaft. The yellow dots indicate the differences in light
reflection on the bolt shaft when it is moved horizontally. The more we move
the bolt to the left side of the view, the less reflection is captured on its left
side, and vice versa [Taheritanjani et al., 2019a].

Chapter 6. Fine-grained Visual Categorization of Fasteners 88

Figure 6.2: Twenty bolts and fourteen washers which were used for the classification.

and added them to the original images for the training.
We trained 23 different models for the fasteners. Table 6.1 summarizes the

most important runs and their hyper-parameters - number of epochs, steps per
epochs, and batch size. Apart from experimental runs to tune hyper-parameters
of the convolutional neural network, we performed 9 different runs for training
the classifier, each with different datasets and configurations. We started with
AlexNet and VGG Net 19 for training the models and achieved less than 75%
accuracy. Therefore, we decided to use the InceptionV3 Model with Keras on top
of TensorFlow. We also used stochastic gradient descent (SGD) optimizer with
the learning rate of 0.0001 and the momentum of 0.9 for all the trainings. 80% of
the data was used for the train, 10% for validation, and 10% for the test in all of
the experiments.

89 6.1. Single-view Classification

Figure 6.3: Overview of steps executed before saving the data on the disk (UML activity
diagram).

Figure 6.4: Overview of preprocessing steps executed before feeding the data to the train
process (UML activity diagram).

Before using the dataset obtained by the system we conducted several exper-
imental runs using images with normal ambient lighting to have a baseline for
comparison. We started training using four similar bolts - bolts 1, 2, 3 and 4 in
Figure 6.2 where bolt 1 and 2 were accordingly 5 and 2 millimeters smaller on
their non-threaded shaft in comparison with bolt 3 and 4. However, the obtained
trained model for bolts 1to 4 using the normal ambient lighting never reached
beyond 49% accuracy over the test dataset.

Subsequently we studied the performance of the following training datasets:
4 bolts (in four runs), 10 bolts, 10 bolts and 3 washers, 10 bolts and 6 washers,
10 bolts and 9 washers and 20 bolts and 14 washers - see Table 6.1. For 4 bolts
we used the data obtained by the system and applied the preprocessing steps. By
applying grid search and a process of trial and error in respect of the number of
augmented images, number of epochs, number of steps per epoch, batch size and
early stopping we finally obtained 98.9% accuracy on the test dataset, where the
model was trained with 100 steps per epoch, and early stopping being applied after
50 epochs. We generated random data augmentations on the fly, which allowed
us to have an infinite generated train dataset. Therefore, we changed the steps per

Chapter 6. Fine-grained Visual Categorization of Fasteners 90

epoch to limit the number of training data during experiments.
For 10 bolts, we continued using the same configurations, although the num-

ber of validation steps during the training was increased from 3 to 30 resulting in
overall 96.2% accuracy. Subsequently we continued adding washers to the dataset
and increased the number of epochs in each experiment - runs 6 to 8 in Table 6.1.
The accuracy of classification increased in each experiment with the addition of
the washers. The surprising phenomenon during the experiments was the im-
provement in the classification results of the bolts after simply adding washers to
the training dataset. We consider that this is because the addition of the objects
with different shapes activates filters in convolution steps that were not active be-
fore. This could help to boost the filters to achieve superior results in comparison
with previous results [Zilly et al., 2015].

Finally, we added another 5 washers and 10 bolts to the dataset and used 1210
steps per epoch for a total number of 250 epochs, a batch size of 20 and a val-
idation step size of 100 and applied early stopping after 50 epochs - run 9 in
Table 6.1.

Table 6.1: Overview of the training results, using InceptionV3 and Keras on top of Ten-
sorFlow, optimizer=SGD (Stochastic Gradient Descent), learning rate=0.0001
and momentum=0.9. The accuracy is reported on the test dataset which is 10%
of the whole data.

#
Number of Classes
(Bolts/ Washers)

Images per Class
(Real/ Augmented)

Epochs Steps per Epoch Batch Size Accuracy

1-4 4/ 0

5/ 95
20/ 180
25/ 470
50/ 950

100

20
40
100
200

20

51.1%
79.5%
89.3%
97.7%

5 10/ 0 50/ 950 100 500 20 96.2%
6 10/ 3 10-50 / 290-950 100 545 20 96.7%
7 10/ 6 10-50 / 290-950 150 590 20 97.8%
8 10/ 9 10-50 / 290-950 200 635 20 99.4%
9 20/ 14 10-50 / 290-950 250 1210 20 99.4%

6.1.3 Results and Discussion
For training with all 34 fasteners in the dataset, we ultimately achieved 99.4%

accuracy over the test dataset which contains 50 images of each fastener (see
Table 6.1).

This study used PPIC-A, in which the input images cannot be obtained from
multiple cameras. A single camera limits the approach to a single view and a sin-

91 6.2. Multi-view Classification

gle view cannot extract all the discriminative features from some of the fasteners
- namely bolts and nuts. Using multiple cameras, we can use multi-view CNNs
to generalize the fasteners FGVC to all bolt types and nuts [Su et al., 2015]. We
also used a polarized backlighting supported conveyor belt to create the datasets
and the fasteners FGVC model can only be employed using this system. How-
ever, we assume aero-maintenance companies can simply provide such a system
with reusing the existing materials and tools they have on their workstations -
dimmable lighting and light diffusing textile.

6.2 Multi-view Classification
There are mainly two different approaches to classify 3D objects. The first

approach uses 3D data, such as point clouds1, or volumetric data, such as CAD
models. The second approach projects the 3D shape of the object into 2D format
such that CNN methods can be used for the classification.

Multi-view image analysis has been widely adopted for 3D shape classifica-
tion. Wu et al. studied volumetric representation of 3D shapes and adopted 3D
Deep Belief Nets [HOT06], to obtain superior results of shape classification on
Princeton ModelNet [Wu et al., 2015]. Zhu et al. used autoencoders to learn 3D
shape features with multi-view depth images, leading to accurate 3D shape re-
trieval [Zhu et al., 2016]. Su et al. described a multi-view CNN for 3D shape
recognition, in which the multiple views features were integrated with an extra
CNN [Su et al., 2015].

The term Multi-view CNN (or MVCNN) was used for the first time by Hang
Su et al. in their study Multi-view Convolutional Neural Networks for 3D Shape
Recognition [Su et al., 2015]. Multi-view CNN can be realized as an extension
of a normal CNN. For each multi-view image (n images that are all of the same
object), each image is passed through the feature extraction layers independently
to produce n sets of feature maps. Afterwards, these n sets are reduced through
max-pooling layers. The result is a set of feature maps of the highest activations
between all n angles. These feature maps are then squeezed and used as input to
the classification layers.

RotationNet also uses the same idea of Multi-view CNN [Kanezaki et al.,
2018]. Similar to Multi-view CNN, it uses multiple views during training. How-
ever, during classifying unseen data, RotationNet only requires a subset of the
views. RotationNet is able to classify the object even with only a single view
instead of the same number used during training. It also differentiates itself by
not requiring the objects to be aligned. The objects can lay in any orientation in

1Point clouds are a set of points in the space with x, y, z coordinates.

Chapter 6. Fine-grained Visual Categorization of Fasteners 92

a 3D space. RotationNet achieves this by introducing a latent variable which is
optimized during training to learn which viewpoint is the most similar to one the
network has seen during training.

This section describes the multi-view classification of fasteners, which focuses
on the classification of nuts. However, multi-view classification can be general-
ized to all scale sensitive fasteners. We chose nuts because they are scale sensitive,
and due to their shape, it is also challenging to capture their inner threads. Parts
of the presented work in this section is extracted from a study conducted at the
chair for applied software engineering at TU Munich [Birkeland, 2018]. Sub-
section 6.2.1 describes the dataset properties. Subsection 6.2.2 explains how we
trained and evaluated the models. Finally, Subsection 6.2.3 shows the results and
discussion.

6.2.1 Dataset Creation
We used PPIC-C to capture the dataset (see Section 3.2.1). Although PPIC-C

minimizes light reflection and shadow, it cannot entirely exclude them. There-
fore, the fasteners could still have reflections and shadows from changes in natu-
ral lights from the surrounding in capture environment. To address this issue, the
dataset was captured over a period of different days and time of day to capture
light differences. The configuration consisted of two industrial cameras (Genie
Nano GigE), angled at 90 and 45 degrees relative to the surface. Each image is
captured with a resolution of 500×500 pixels. Some aero-engine nuts have heads
and their shape is not symmetric. Therefore, these nuts were captured randomly
in one of two positions, head up or head down. We chose to restrict the nut to
only lay in one of these two positions due to the limitations of only having two
cameras. Allowing the object to lay in any 3D position, such as on its side, may
hide some of the discriminative features.

The dataset consists of 8 different classes of nuts; A-1, A-2, A-3, A-4, M5-
DIN934, M5-DIN985, M6-DIN934, M6-DIN985, as shown in Table 6.2. The nuts
in the dataset were selected in order to represent fasteners that can share multiple
features but have a few features that distinguish them. The dataset contains a total
of 400 multi-view images, 50 per class. Because each multi-view image consists
of 2 images there is a total of 800 images.

The dataset was split into a train, validation and test dataset. The training and
validation datasets are used during training, while the test dataset is only used
for testing the expected performance on unseen data after deployment. The train
dataset contains 72% of the images, while the validation and test dataset contain
14% each. The test dataset contained images taken on a different day and time
to ensure that the it consists of unseen lighting features. The accuracies of each
model are reported on the unseen test dataset.

93 6.2. Multi-view Classification

Table 6.2: Eight nuts which are captured in the dataset.

Nut Name Top View 45 °View

A-1

A-2

A-3

A-4

M5-DIN934

M5-DIN985

M6-DIN934

M6-DIN985

Chapter 6. Fine-grained Visual Categorization of Fasteners 94

6.2.2 Training and Evaluation
Prior to training and to ensure that the network learns the generalization of the

object rather than overfitting to the instances in the train dataset, we performed
data augmentation. However, the augmentations must not change the discrimina-
tive features the network should recognize. Nuts are scale sensitive and their inner
threads contain discriminative features. Therefore, the size information must not
be altered and we must not use any augmentations such as cropping, scaling, hor-
izontal or vertical flipping (the last two augmentations would change the direction
of the threads). We used the following preprocessing steps and augmentations for
all the experiments:

• Resize: we resized the image from the original size 500×500 to 224×224,
which is the accepted input size for ResNet. The resizing speeds up the
computational time, and removes noisy high-level features which are not
important for the classification. Lowering the spatiality of the input image
allows us to focus more on the important features of the nut instead of small
artifacts such dirt and small scratches.

• Color Jitter: images recorded with small changes in ambient light, and
dirty small parts can cause large differences in appearance. To avoid the
network to overfit to the lighting conditions, or recognize dirty small parts
which can appear darker, we applied random brightness and contrast aug-
mentations. The brightness and contrast are randomly altered up to ±40%
for each image.

• Random Rotation: we rotated the image to artificially increase the dif-
ferent rotations a nut can lay in. Each image is randomly rotated between
±90°.

We defined the training parameters and a specific training procedure to en-
sure that the different training methods are fairly compared. This allowed us to
not only compare the accuracy of each model, but also their respective compu-
tational, memory and time efficiency. We trained all models using the following
parameters/hyper-parameters, and chose the model with highest validation accu-
racy to compute the testing accuracy.

• Pre-training: all the networks are pre-trained on ImageNet dataset2 to
speed up the training. Since all the implementations were built on top
of standard architectures, we used the automatic loading functions in the

2http://www.image-net.org

http://www.image-net.org

95 6.2. Multi-view Classification

deep learning frameworks to load the pre-defined architectures. In addi-
tion, we replaced the classification layers with randomly initialized fully
connected layer, where the last layer has the same number of outputs as we
have classes.

• Optimizer: for the choice of optimizer, we used standard stochastic gradi-
ent decent (SGD) with a momentum of 0.9 and weight decay of 10−4. Mo-
mentum and weight decay help to speed up the training time and accuracies
by minimizing the impact of noisy gradients and local minimas [Kingma
and Ba, 2014] [Zeiler, 2012].

• Learning Rate: the learning rate determines how large the optimization
steps are. Since we use a pre-trained model, the training starts with a proper
weight initialization and is not improved by a high starting learning rate. We
set the learning rate to a moderate static value of 10−3. We could reach sim-
ilar accuracies as lowering the learning rate over time by instead increasing
the batch size, but in a shorter training time [Smith et al., 2017]. Therefore,
we did not schedule a decrease in learning rate over time, and scheduled an
increase in batch size.

• Loss Function: we utilized standard cross entropy loss for trainings [Tsai
et al., 2007].

• Batch Size: the batch size determines how many samples must be loaded
into memory and forward propagated together before calculating a opti-
mization step. A smaller batch size allows for faster and more frequent
steps. However, these steps are generally less precise. A larger batch size is
slower but more accurate. We used an increased batch size instead of a de-
caying learning rate. By testing various batch size schedules, we found that
a training procedure of a batch size of 4, for the first 20 epochs, followed by
5 epochs with a batch size of 20, gave us an acceptable trade-off between
accuracy and training time.

• Epochs: an epoch is one full forward pass of the whole train dataset. There-
fore, the number of epochs determines how many times the network sees
each instance in the dataset. The number of epochs required to fully train
a network depends on the size and complexity of the data. Using the batch
size schedule defined in the previous points, we set the number of epochs to
25.

Table 6.3 shows an overview of the hyper-parameters and augmentations used
during trainings.

Chapter 6. Fine-grained Visual Categorization of Fasteners 96

Table 6.3: Overview of parameters and settings used to train models.

Optimizer Epochs Learning
Rate

Batch Size Augmentations

SGD
(mmentum=0.9,
weight decay=0.001)

25 0.001 4 (epoch 1-20)
5 (epoch 20-25)

Random rotation between
±90°, random light intensity
(color litter) between ±40%

To evaluate the model performance, we measured the accuracy and average
computation time metrics. Average computation time measures the average time
taken to classify a single nut during inference. Average computation time is cal-
culated by:

AverageComputationT ime =
1

n

∑
n

ComputationT ime

It is also possible consider memory consumption as a metric. Memory con-
sumption is defined as the amount of memory taken by the weights and bias of
the model in the memory (either RAM or GPU’s memory). The larger model size
results in less space in memory to store training samples, and decreases the maxi-
mum batch size at any given time. However, since we did not define the memory
consumption as a requirement in th study, we have not computed it.

We evaluated each algorithm running on AlexNet and ResNet18. Since the
network sees the training samples in a random order, and the fully connected lay-
ers are randomly initialized, training models cannot have the exact same weights
after a set number of epochs. Therefore, we trained each algorithm on each ar-
chitecture independently three times. The reported results are an averaged testing
accuracy over the three independent models.

6.2.3 Results and Discussion

Tables 6.4 and 6.5 show the averaged test accuracies and computation time
over the three independently trained models. the two baseline algorithms Sin-
gleCNN and MultiCNN, show the performance of a standard CNN without any
multi-view functionality. While Multi-view CNN and RotationNet uses multi-
view for information sharing between the views. RotationNet built on ResNet18
outperforms other implementations in terms of speed and accuracy. Multi-view
CNN outperforms the SingleCNN using AlexNet, while it suffers from a large
drop in accuracy on ResNet18, where SingleCNN experiences a substantial in-
crease.

97 6.2. Multi-view Classification

Table 6.4: Classification accuracy on test dataset.

SingleCNN MultiCNN Multi-view CNN RotationNet
AlexNet 84.33% 79.67% 98.0% 42,67%

ResNet18 98.0% 95.67% 53,67% 100%

Table 6.5: Average computation time per nut during inference in ms.

SingleCNN MultiCNN Multi-view CNN RotationNet
AlexNet 13.25 22.32 26.85 6.36

ResNet18 14.21 28.33 29.21 8.01

In the SingleCNN and MultiCNN implementations, ResNet18 algorithm out-
performs AlexNet while SingleCNN results outperform the MultiCNN’s. How-
ever, in the case of splitting the MultiCNN into two separate networks and look-
ing at their individual performance, we can observe a large difference. Table 6.6
shows the average accuracy results for each individual network from MultiCNN.

Table 6.6: MultiCNN individual network’s test accuracy. Network1 uses the 90°view
images and Network2 uses the 45°view images.

Network1 Network2
AlexNet 36,33% 84.33%

ResNet18 22,67% 97.67%

Table 6.6 shows that Network1 is not able to determine between the different
classes and reduces the overall accuracy. Network1 only uses images from the top
view (see Table 6.2), which can only see the two discriminative features Outer-
Diameter and InnerDiameter. Using this information, Network1 cannot correctly
classify the nuts which share these features. On the other hand, Network2 per-
forms close to the SingleCNN approach by just using the 45°view. This shows
that the 45°view is able capture most of the important features. As expected, Ta-
ble 6.5 also shows that the MultiCNN spends roughly twice the time to classify a
single nut because each nut is being processed by two models instead of one.

Therefore, a single view CNN is able to learn the difference between highly
similar nuts, but only given a view which contains almost all the discriminative
features. Given a less than optimal view, such as the top view in the study, the
model struggles as there is not enough discriminative features visible to distin-
guish between them. In addition, the MultiCNN approach does not address this
problem, because there is no information sharing between the models. When one
model is uncertain, it is not able to learn from other views and will produce widely

Chapter 6. Fine-grained Visual Categorization of Fasteners 98

inaccurate results. When these results are aggregated into an overall classification
result, the uncertain models reduce the accuracy.

According to Tables 6.4 and 6.5, the information sharing algorithms such as
Multi-view CNN and RotationNet work well given a suitable architecture. The
variation between two architectures produce differences in testing accuracy. It can
be due to the fact that we used a set of training settings and parameters. Not all
models can be trained effectively using the same hyper-parameters. Given more
complex training algorithms such as Multi-view CNN and RotationNet, they can
utilize different hyper-parameters.

RotationNet reaches a slightly higher accuracy than Multi-view CNN, 100%
compared to 98%. Given longer training time, Multi-view CNN may also able
to reach 100%. Nevertheless, according to Table 6.5, RotationNet is drastically
faster during inference than Multi-view CNN, and also outperforms both of the
baseline approaches.

One limitation of the study is the number of cameras. We showed that which
particular view can observe the features that are discriminative for the classifica-
tion accuracy. Using only two cameras, we were able to confidently classify nuts
given that they are either in a head up or head down position. However, in real-life
scenarios where the nut can lay in any random 3D orientation, we cannot ensure
that all the discriminative features are visible, and may not be able to confidently
classify the nut with the captured dataset,

Another limitation of this study is the dataset size. 50 images per class is con-
sidered a low amount, to capture all the different positions and conditions the nut
can lay in. However, the image capture configuration produces smooth even light-
ing conditions and we specifically limited the amount of positions the nut can lay
in. In this case, 50 images with augmentations could be enough to generalize the
dataset. However, introducing more classes and cameras will require the dataset
to be larger to preserve the same results.

6.3 Using Synthetic Data for Classification

CNNs are characteristically data-centric algorithms. The performance of a
CNN algorithm depends on the availability of a dataset of images that can capture
each target object’s intra-class variability [Krizhevsky et al., 2012]. For classifica-
tion of fasteners, we must train a CNNs using images that capture the distinguish-
ing features of each of the fasteners. The task of collecting image datasets can be
challenging and time consuming.

Synthetic images have been used for training in a variety of problems. Peng et
al. used 3D CAD models to generate synthetic images and tested the invariance of
convolutional neural networks to low level cues, such as object texture, color, 3D

99 6.3. Using Synthetic Data for Classification

pose and 3D shape, background scene texture, and color [Peng et al., 2015]. Peng
et al. used part of the Office dataset [Saenko et al., 2010], which has the same 31
categories of common objects, such as cups and keyboards, in each domain. They
compared the usage of 3D models with real texture against 3D models with uni-
form gray texture. The authors concluded that a CNN trained on synthetic images
with real texture perform better than images with a gray texture. Gerogakis et al.
used a mixture of synthetic images and real images to train a network for object
detection in indoor scenes [Georgakis et al., 2017]. The synthetic images were
created by superimposing images of the target objects on indoor backgrounds. In-
stead of rendering images from 3D models, cropped real images from the BigBird
dataset were used [Singh et al., 2014]. In addition, the background images had
depth map information (RGB-D images). The authors concluded that training an
object classifier using a mixture of 90% synthetic images and 10% real images
can produce comparable results to a classifier trained on only real images.

Rajpura et al. [Rajpura et al., 2017] used 3D models of refrigerators and items
inside refrigerators from Archive3D1 and ShapeNet [Chang et al., 2015] to per-
form object detection in refrigerator scenes. Synthetic images were generated by
rendering 2D images of a 3D synthetic scene were the products are placed inside
the refrigerators. The authors trained a CNN using a fully real train dataset, a fully
synthetic train dataset, and a synthetic train dataset containing 10% real data. The
CNN fully trained with only synthetic images underperformed against the one
with real images but the mixed train dataset boosts the detection performance by
12% which signifies the importance of transferable cues from synthetic to real.

Sarkar et al. trained a CNN image classifier on synthetic images rendered from
3D models of five different objects [Sarkar et al., 2017]. The 3D models were cre-
ated by scanning the real target objects using a 3D scanner. Synthetic images were
created by rendering the 3D models on 3 different types of backgrounds: a plain
white background, a random indoor background taken from indoor categories of
PASCAL dataset [Everingham et al., 2010], and a chosen background similar to
that of test images. Additionally, images were rendered with two object texture
settings: full texture and no texture. The authors found that synthetic images
of fully textured objects overlaid on a mixture of white and chosen backgrounds
produce the best results compared to other texture and background settings.

This section describes the experimental results of using synthetic data in com-
bination with real data to train the classification models. This is inherently dif-
ferent approach than typical data augmentation techniques. Using data augmenta-
tion, we use image transformation to artificially expand the size of a train dataset
by creating modified versions of images. We typically perform data augmentation
prior to training the network and after loading the batches to the memory. On the
other hand, when using synthetic data for training, we capture the train dataset
using artificially rendered images from a 3D model, such as a CAD model. We

Chapter 6. Fine-grained Visual Categorization of Fasteners 100

typically store these images on the disk before loading the batches to the mem-
ory. We trained CNNs that used both real and synthetic images. We define real
images as the natural images of the fastener, captured using a camera. Synthetic
images, on the other hand, are artificially rendered images. They are 2D rendi-
tions of 3D models of fasteners. Parts of the presented work in this section is
extracted from a study conducted at the chair for applied software engineering at
TU Munich [Abdelraouf, 2018]. Subsection 6.3.1 describes the dataset proper-
ties. Subsection 6.3.2 explains how we trained and evaluated the models. Finally,
Subsection 6.3.3 shows the results and discussion.

6.3.1 Dataset Creation
The real and synthetic images must capture the fasteners and their correspond-

ing 3D models from different angles and in different positions. For this purpose,
we performed transformations to the 3D models of fasteners. We used two types
of transformations: translation to change the position of the target object, and ro-
tation to change the angle. Each transformation has a range. This prevents the
target objects from being translated or rotated away from the camera view.

To obtain 3D models, we scanned the selected a fastener using 3D scanner.
However, we were unable to create 3D models with satisfactory quality (see Fig-
ure 6.5) for two reasons. First, the small size of the target fastener required a great
level of precision to create an accurate 1:1 model. Secondly, the reflective surface
of the small parts bounced the scanner’s light off and caused the scanner to cap-
ture a lot of clutter. Figure 6.5 shows a fastener and its corresponding scanned 3D
model. The scanner was not able to accurately scan fine details like the small part
threads.

To address this problem, we used readily available 3D models for the exper-
iment. We downloaded a 3D model from the Traceparts website3. Figure 6.6
shows an example image of each downloaded fastener.

To generate real images, we used PPIC-A, described in Section 3.2.1. We
placed the fastener on the conveyor belt and used backlighting underneath. An
iPhone 6s placed over the plane was used as the camera in this study. We captured
images such that the fastener is fully within the viewfield of the camera. The real
images taken by the iPhone camera were resized to conform with the height and
width required by the image classifier.

For generating synthetic images, we used a synthetic scene: an artificial en-
vironment created in 3D modeling software. Figure 6.7 shows an example of a
synthetic scene, where a 3D model is placed in a synthetic scene in 3D modeling
software. The 3D modeling software renders a 2D image of the environment to

3https://www.traceparts.com

https://www.traceparts.com

101 6.3. Using Synthetic Data for Classification

Figure 6.5: An example fastener (on the left) and its 3D model created by 3D scanner (on
the right). The 3D model is rendered without texture for clarity.

create a synthetic scene. We created the synthetic scene in the Rhinoceros 3D
modeling software4. First, an image of the real horizontal plane is captured and
used as a background for the synthetic scene. A synthetic lighting source was
placed underneath the plane to mimic the lighting effect of the real environment
and the 3D model was placed on the horizontal plane of the environment. Sub-
sequently, we created a data generator script that uses the Rhinoceros library to
manipulate 3D objects in the Rhinoceros software. The synthetic data generator
obtained the rotation and translation ranges of the 3D model.

After capturing and generating the images and saving them to a dataset folder
on the disk, the dataset was split into a train dataset, a validation dataset and a test
dataset. Table 6.7 presents the number of images per class for each dataset. We
generated 5 different datasets using different range of real data: a fully synthetic
train dataset R0S100, a 2.5% real train dataset R2.5S97.5, a 5% real train dataset
R5S95, a 10% real train dataset R10S90, and a fully real train dataset R100S0.

6.3.2 Training
We trained VGG16 and VGG19 models for each data split [Simonyan and

Zisserman, 2014]. For the choice of optimizer, we used the Stochastic Gradient

4https://www.rhino3d.com

https://www.rhino3d.com

Chapter 6. Fine-grained Visual Categorization of Fasteners 102

Figure 6.6: Examples of images for each class that uses in the experiments. For each pair,
the image on the left is a sample real image, while the image on the right is a
sample synthetic image.

103 6.3. Using Synthetic Data for Classification

Figure 6.7: An example synthetic scene where a screw lies on a horizontal plane. The
isometric view of the scene (a). The side view (b).

Descent (SGD) and Adam [Kingma and Ba, 2014]. Similar to the multi-view
classification, we utilized transfer learning by using pre-trained CNN models on
the ImageNet dataset [Pan and Yang, 2009]. Furthermore, the CNN models are
tweaked to train and evaluate images of size 500× 500 pixels. Since we used pre-
trained CNN models, each layer was pre-loaded with optimized weights. During
the trainings, we froze some of the early network layers to preserve these opti-
mized weights. For VGG16, the first 10 or 14 layers were frozen. For VGG19,
the first 12 or 16 layers were frozen.

Table 6.8 shows an overview of the hyper-parameters and settings used to
train the models. Notice that due to using the synthetic data, we did not utilize

Table 6.7: The number of images per class for the specified data split.

Dataset Train
(Synthetic)

Train
(Real)

Validation Test

R0S100 600 0 100 150
R2.5S97.5 585 15 100 150

R5S95 570 30 100 150
R10S90 540 60 100 150
R100S0 0 600 100 150

Chapter 6. Fine-grained Visual Categorization of Fasteners 104

Table 6.8: Overview of parameters and settings used to train models.

Optimizer Epochs Learning Rate Batch Size Frozen Layers
SGD, Adam 30 0.0001 4, 8, 16 10/14 (VGG16)

12/16 (VGG19)

Table 6.9: Class-wise classification accuracy of a VGG16 networks.

Dataset Flat
Head

Hex
Large

Hex
Small

Long-hex
Large

Mushroom
Large

Mushroom
Small

Average

R0S100 99.33% 48.00% 98.67% 96.67% 80.67% 78.00% 83.56%
R2.5S97.5 100% 79.26% 99.26% 99.26% 83.70% 80.74% 90.37%

R5S95 100% 95.83% 100% 97.50% 90.83% 75.83% 93.33%
R10S90 100% 94.44% 98.89% 100% 98.89% 90.00% 97.037%
R100S0 100% 100% 100% 100% 100% 100% 100%

data augmentations in this experiment.

6.3.3 Results and Discussion

Tables 6.9 and 6.10 provide the results of class-wise classification accuracy of
training a VGG16 and a VGG19 network respectively. The presented classifica-
tion accuracy is the result of evaluating each CNN model using the respective test
dataset.

The results show that the results of trainings on fully synthetic train datasets
underperform the results of trainings on fully real train datasets. However, A
VGG16 trained on a train dataset with 10% real data produces comparable results
to a train dataset with fully real data. Moreover, the VGG19 network achieved an
accuracy of 99.33% using the R100S0 dataset, compared to an accuracy of 97.22%
as a result of using the R5S95 dataset. The Flat Head and Long-hex Large fasteners
had the highest class-wise accuracies. This can be due to the different shape of

Table 6.10: Class-wise classification accuracy of a VGG19 networks.

Dataset Flat
Head

Hex
Large

Hex
Small

Long-hex
Large

Mushroom
Large

Mushroom
Small

Average

R0S100 100% 81.33% 88.67% 92.00% 98.67% 52.67% 85.56%
R2.5S97.5 100% 100% 86.67% 99.26% 99.26% 90.37% 95.93%

R5S95 100% 100% 96.67% 98.33% 100% 88.33% 97.22%
R10S90 100% 90.00% 96.67% 98.89% 98.89% 96.67% 96.85%
R100S0 100% 100% 100% 100% 99.67% 97.00% 99.33%

105 6.3. Using Synthetic Data for Classification

these two fasteners in comparison with the others. The other four fasteners look
more similar, which results in a lower class-wise classification accuracy for them.

One limitation of this study is the 3D model of the fasteners in order to gen-
erate synthetic images. Since the 3D scanning of the fasteners could not provide
acceptable result, we must use 3D models from other sources. In addition, we
only used VGG networks and did not perform any experiment on other CNNs.
Other CNNs may perform and generalize better with synthetic data. We also lim-
ited the studies to the settings and parameters explained in Section 6.3.2. Using
other hyper-parameters such as training the network with more epochs may lead
to different results.

Another limitation of the study is the number of views we used for the experi-
ment (only one). Using more views and utilizing the Multi-view CNN (explained
in Section 2.3.2) could result in better performance for the synthetic data. We also
used 600 images per class and 2.5% to 10% of the real data for the mixed datasets.
Changing these amounts can highly vary the results.

In this chapter, we described a set of methods for categorization of fasteners
in overhaul processes. To compare, Table 6.11 shows a comparison between the
fastener categorization approaches used in this dissertation and the state of the art
results with regards to the rating scheme, described in Section 1.2.

Table 6.11: Comparison between the fasteners categorization approaches used in this dis-
sertation and the state of the art results in single-view/multi-view image clas-
sification with regards to the rating scheme.

Study R1 R2 R3 R4 R5 R6
[Xuan et al., 2017] ± - - ± - ±

[Usman and Rajpoot, 2017] ± + - - - +
[Sironi et al., 2018] - + ± ± + +

[Su et al., 2015] ± + ± - - ±
[Qi et al., 2017] - + ± ± - ±

[Liu and Kang, 2017] ± + ± ± - ±
[Kanezaki et al., 2018] ± + ± - - +

Fasteners categorization
approaches used in this dissertation

+ + ± + (multi-view)

± (single-view)

± +

Chapter 7

Bin Picking

Picking small parts and placing them into specific containers in overhaul plants
can be formulated as a bin picking problem in which all small parts and fasteners
are grouped and piled on a specific part of the workstation. Most industrial bin
picking solutions determine the pose of an object and the grasp point by match-
ing a CAD model to the point cloud obtained from a 3D camera [Spenrath et al.,
2013] [Dieter Schraft and Ledermann, 2003] [Palzkill and Verl, 2012]. How-
ever, many machines use different fasteners produced by different manufacturers
with different CAD models, which may not always be made available by vendors.
Moreover, 3D bin picking solutions, which can operate without CAD models of
objects, can be prohibitively expensive for many projects. In addition, the charac-
teristics and nature of industrial fasteners and small parts introduce various prob-
lems, such as reflection and shadow [Taheritanjani et al., 2019a], which makes
fastener picking more challenging. Finally, using only a single 2D image, it is im-
possible to extract the 3D position of objects. Without any knowledge of the 3D
orientation of objects, robots can only pick the non-occluded parts that are placed
flat relative to the camera lens [Kim et al., 2012] [D’Avella et al., 2020].

The Bin picking approaches can be divided into two main categories: 1) meth-
ods that only compute grasp points and 2) methods that utilize an object detection
framework to find suitable grasp points on the detected objects. The former pro-
vides a heat map that shows the probability of a successful grasp and selects the
highest one. However, such methods require the orientation of the grasped object.
Recently, using multiple robots in parallel [Levine et al., 2018] or computing a
heat map from artificial grasps in simulations for parallel grippers [Mahler et al.,
2017] have improved object grasping performance.

The latter category attempts to find suitable grasp locations by estimating the
pose of an object and then extracting grasp points. Numerous bin picking 3D
software applications use such methods to search for local maxima in a depth
map to begin with pose estimation of the known object by fitting a CAD model

106

107

and determining its pose using a lookup table [Dieter Schraft and Ledermann,
2003] [Palzkill and Verl, 2012] [Spenrath et al., 2013]. Then, a collision free path
is computed to a predefined grasp location on the object.

Deep neural networks have been used for pose estimation [Do et al., 2018].
Brachman et al. described a 6D pose estimation system for object instances and
scenes which only needs a single 2D image as input [Brachmann et al., 2016].
Wu et al. proposed to jointly optimize the model learning and pose estimation in
an end-to-end deep learning framework [Wu et al., 2019]. Their method produces
a 3D object model and a list of rigid transformations to generate instances to
minimize the Chamfer distance.

Object detection and semantic segmentation have received wide attention by
the research community and many studies have been conducted in these areas.
Gupta et al. applied iterative region segmentations and manipulation of regions
to sort small objects on a tabletop [Gupta et al., 2014]. State-of-the-art results
have been published using various frameworks, such as Fast R-CNN [Girshick,
2015], Faster R-CNN [Ren et al., 2015], and Mask R-CNN [He et al., 2017].
Some studies have used CNNs to solve segmentation tasks for image classification
[Wang et al., 2018] [Chen et al., 2018] [Chen et al., 2017], while others have used
fully convolutional networks [Long et al., 2015] [Noh et al., 2015]. Hema et
al., Schwarz et al., and Danielczuk et al. designed segmentation methods for bin
picking tasks [Hema et al., 2007] [Schwarz et al., 2018] [Danielczuk et al., 2019].

In this section, we describe two different methods to recognize individual parts
automatically. These methods can be used in combination with a robotic arm to
automatically pick parts and place them into compartments. In case of using a
pneumatic, hydraulic, or servo-electric robotic gripper, parts must be picked by
a two-fingered pinch grasp. Therefore, the robot must receive the orientation of
the part and the center point between its two pinch fingers as the grasp point.
Similarly, when using a vacuum robotic gripper, small parts must be picked by
a suction cup directly from the grasp point relative to the orientation of the part.
Therefore, the orientation and grasp point of parts must be computed.

Section 7.1 describes an approach that uses image thresholding and contour
detection for the parts on a uniform background to segment objects and to find
pickable parts and a suitable grasp point. Similarly, Section 7.2 uses Mask R-
CNN approach for the parts that occlude each other to segment objects and to
find pickable parts and a suitable grasp point. This approach can use different
section segmentations to calculate the orientation, i.e., different classes must be
segmented to compute the grasp point and determine the orientation or pose of
the object. On the other hand, this approach can also utilize principal component
analysis [Jolliffe, 2011] and Image Moment [Karakasis et al., 2015] on the de-
tected masks. We demonstrate that this is especially beneficial for picking small
parts in overhaul processes because, by using 2D image, we can propose pickable

Chapter 7. Bin Picking 108

objects to robots with vacuum, pneumatic, hydraulic, or servo-electric grippers.
Therefore, our approach is independent of the robotic gripper and can segment
objects to be picked using only 2D images.

7.1 Bin Picking on Uniform Background
This section describes a thresholding computer vision approach to segment the

parts for bin picking on a uniform background. We define uniform background as
a background where we can apply computer thresholding algorithms to find the
fastener contours. Therefore, a uniform background consists of a uniform color,
where the light reflection and shadow effects are reduced. A uniform background
can be achieved using backlighting and light polarization (see Chapter 3). In ad-
dition, to use thresholding algorithms, the fasteners must not occlude each other1.
To perform bin picking for such fasteners, there are two options: 1) properly plac-
ing the fasteners on the surface prior to bin picking, or 2) using a mechanical
solution using vibration and conveyor belt (see 3.2) to separate the fasteners. We
use the latter in this study. Subsection 7.1.1 describes the data collection process.
Subsection 7.1.2 explains the methods we used in this section. Subsection 7.1.3
describes how we trained and evaluated the models and finally, Subsection 7.1.4
shows the results and discussion.

7.1.1 Data Collection
We acquired data from 23 different bolts. The images were captured using

PPIC-A, described in Section 3.2.1, with a fixed camera (Logitech c920) on top
of the conveyor belt. We captured 95 images and converted them to grayscale. We
also cropped the borders of the image to ensure that the there is a safe distance
between the image margin and the conveyor belt border. Each image was 1440×
1080 pixels and pictured the bolts that were separated from each other on the
vibration plate and brought under the camera by the conveyor belt. Figure 7.1
shows examples of the images in the dataset.

Since we had a uniform background using the backlighting under the conveyor
belt, we performed the image thresholding algorithms and found the bounding box
of object contours in the images. We cropped the bounding boxes and used them
for training an occluded/not-occluded classifier. Figure 7.2 shows the prerpocess-
ing steps to capture the data for training the classifier.

1We do not consider to terminate the occlusion. Depending on the setup, it is sufficient to
achieve only a partial non-occlusion, in which considerable amount of the objects are not occluded
each other.

109 7.1. Bin Picking on Uniform Background

Figure 7.1: Examples of the images captured for training a classifier, using PPIC-A.

Figure 7.2: Overview of preprocessing steps executed prior to train an occluded/not-
occluded classifier (UML activity diagram).

7.1.2 Method

The cropped images obtained in 7.1.1 can contain multiple fasteners. This
may rise one the following issues: 1) the fasteners occlude each other, 2) they are
placed next to each other without any distance in between, or 3) they are placed in
a close range of each other. In case of occlusion or placing next to each other, the
thresholding algorithms cannot detect the fastener contour separately. Figure 7.3
shows an example of a possible result when fasteners occlude or are placed next
to each other. In case of fasteners placing in a close range of each other, the
robotic arm may not be able to pick the fasteners or may collide the other fasten-
ers when picking one, which results in non-deterministic behavior. Therefore, to
avoid having multiple fasteners in one image, we first train a classifier to detect
the occlusion or presence of multiple fasteners. Using PPIC, it is possible to ig-
nore such cases; they are sent back to a vibration plate on the beginning of the
conveyor belt and can be placed differently.

Chapter 7. Bin Picking 110

(a) (b)

Figure 7.3: Example of fasteners that are placed next to each other (a) and their contour
obtained from adaptive thresholding algorithm (b).

Classifier Training

Prior to computing the orientation and grasp point of the bolts, we first train
a model to classify pickable/non-pickable bolts, i.e. whether a crop consists of a
single bolt with no occlusion or there are multiple bolts, possibly occluding each
other. We train a binary classifier using the crops obtained from applying thresh-
olding and bounding box computation in 7.1.1. We define an offset of 90 pixels
for width and height of the detected bounding boxes to ensure the fasteners are
distant from the contour of the image. There were 134 single-bolt not-occluded
images and 797 occluded or multiple-bolts images.

The pickable/non-pickable classifier is trained with DenseNet121 pretrained
on ImageNet dataset [Deng et al., 2009]. We used 15% of the dataset for val-
idation, i.e., 22 images of pickable bolts and 120 images of non-pickable bolts.
During training, we set the class weight argument to give a larger weight to under-
represented class (pickable) and a lower weight to overrepresented classes (non-
pickable). Table 7.1 gives an overview of the training parameters and settings.

Table 7.1: Parameters and settings used to train pickable/non-pickable classifier.

of epochs Learning
Rate

Optimizer Augmentations

25 0.001 SGD (momen-
tum=0.9)

10% width and height shift, Blurring,
random rotation from 0 to 270°, range
of 0.7 to 1.3 light intensity

111 7.1. Bin Picking on Uniform Background

Orientation Computation

The bolt orientation can be inferred as the line segment between the center of
the bolt and its head. To calculate the orientation, we used principal component
analysis (PCA). PCA can identify two axes that account for the largest amount
of variance in the data [Jolliffe, 2011]. We can compute the orientation of the
bolts (the green axes in Figure 7.4) by selecting the axis that minimizes the mean
squared distance between the input pixels and their projection onto it and calcu-
lating the axis’s slope.

PCA does not return the directional orientation by default. The direction of
the axis can be oriented towards the head or the shaft of the bolts. To address
this issue, we calculated the centroid of the cropped image (see 7.1.2) and the
center of the cropped image. The average pixel intensity of the image is higher
where the bolt head is placed. Therefore, the centroid of the image is not in the
middle and is shifted towards the head. Hence, we can ensure that the slope of
the line segment from the middle of the crop towards the centroid is less than
90°from the orientation of the bolt towards the head. Using this slope to check the
PCA-calculated orientation, we can adjust the orientation towards the head.

Grasp Point Computation

We considered potential grasp point as the middle of the bolt. To compute
the grasp point, we used the image moment, which is a weighted average of an
image’s pixel intensities. Image moment can capture the centroid (geometric cen-
ter) of the object as the statistical properties of the shape, which can be used as
the grasp point of the object. In Figure 7.4, the pink circles show the grasp point
calculation result obtained using image moment for two bolts.

Figure 7.4: Examples of orientation (green axis) and grasp point (pink circle) calculations
for two bolts.

Chapter 7. Bin Picking 112

7.1.3 Evaluation

To evaluate the method, we used PPIC-A to capture 30 different images. Each
image contained multiple fasteners laid randomly on the conveyor belt. In total,
these images had 72 pickable bolts, which were counted manually to compare and
measure the results (pickable bolt is defined a stand alone bolt within the margin
of 90 pixels from its contour in each direction).

To evaluate the occluded/not-occluded classifier, we used the accuracy, preci-
sion and recall. The orientation errors are calculated in rotation angle (the angle
in radian by which the computed orientation must be rotated to reach the actual
orientation). The grasp point errors are the distance between the computed grasp
point and the actual grasp point (∆d in pixels).

7.1.4 Results and Discussion

Table 7.2 summarize the classifier, orientation, and grasp point computation
evaluation results.

Table 7.2: Overview of classification, orientation and grasp point calculation results.

Accuracy Precision Recall Orientation
Computation
Error (radian)

Grasp Point
Computation
Error (pixel)

96.1% 98.2% 88.6% 0.029 8

The pickable/non-pickable bolts classifier obtained 96.1% accuracy during
evaluation. Moreover, The computation error of the orientation and grasp point
was 0.029 radian and 8 pixels respectively. One challenge during pickable/non-
pickable classification is the bolts which are partially within the cropped image,
i.e. part of their head or shaft is outside the image. In case of using a pneumatic,
hydraulic, or servo-electric robotic gripper, bolts must be picked by a two-fingered
pinch grasp. We used a fixed offset from the part contour during cropping the im-
age to ensure avoiding any collision with other parts on the surface or grasping
multiple parts. If part of the bolt is outside the crop, we cannot ensure the safe
offset distance between the bolt and other parts. Therefore, these instances must
be classified as non-pickable. However, it is challenging for the classifier to dis-
tinguish between a pickable bolt that its contour is close to the border and a bolt
that part of its shaft is outside the crop. One solution could be to label all the bolts
images with their contour close to the border to non-pickable. However, this can
slow down the detection of pickable bolts.

113 7.2. Bin Picking on Non-uniform Background

7.2 Bin Picking on Non-uniform Background
This section presents two different methods for bin picking on non-uniform

backgrounds, especially when the objects occlude each other. For this section,
we focused on flat-shaped objects, such as crank2, that stack on each other under
ambient light conditions. However, these methods also can be generalized and
used for other type of fasteners. Parts of the presented work in this section have
been previously published [Taheritanjani et al., 2020].

Subsection 7.2.1 describes the data collection process and dataset properties.
Subsection 7.2.2 describes the process of training an instance segmentation model.
In Subsection 7.2.3 we explain the methods and approaches. Subsection 7.2.4
describes how we trained and evaluated the models and finally, Subsection 7.2.5
shows the results and discussion.

7.2.1 Dataset Creation
We acquired data from three different cranks. The images were captured using

a fixed monocular camera (Genie Nano GigE) on top of a workstation. For training
and validation, we used 12 grayscale images. Each image was 1280× 1024 pixels
and pictured a pile of cranks on the workstation in ambient light. Figure 7.5 shows
examples of the images in the dataset.

We annotated each image using the VGG Image Annotator [Dutta and Zisser-
man, 2019]. For pickable cranks, we annotated their outer contour and two of the
holes on their surface. Since the robotic arm can only grasp parts that are not oc-
cluded by others and placed flat, we annotated the outer contour of all unpickable
parts as a different category. Figure 7.6 shows an example image with annotations
from the dataset.

7.2.2 Model Training
A robotic arm requires a grasp point and the orientation of a crank to pick it

for packaging; therefore, we trained a Mask R-CNN model to segment cranks in
the images. We used Mask R-CNN with Resnet50 as the network backbone, and
the weights were pretrained using the COCO dataset [Lin et al., 2014]. We used
15% of the dataset for validation, i.e., two images for each crank. During training,
each pixel was labeled as either background class 0 or other classes. The error was
calculated by finding the mean over the loss for all classes, and the network was
validated by taking the mean pixel intersection over union (IoU), with the mean

2Crank is part of an axle in gearboxes that is used for converting reciprocal to circular motion
and vice versa.

Chapter 7. Bin Picking 114

(a) (b)

Figure 7.5: The datasets contain three different cranks (a). Example image (b) [Taheri-
tanjani et al., 2020].

Figure 7.6: Example annotated image in the dataset. While only the outer contour of un-
pickable cranks are annotated, we also annotated two inner holes of pickable
instances, and their outer contour. The pickable and unpickable cranks were
labeled as different classes [Taheritanjani et al., 2020].

115 7.2. Bin Picking on Non-uniform Background

Table 7.3: Parameters and settings used to train Mask R-CNN model.

of epochs Learning Rate Augmentations
15 (heads)
45 (all)

0.01 (epochs 1 to 15)
0.001 (epochs 16 to 60)

10% width and height shift, flip left to right, flip
up to down, Blurring, random rotation from 0 to
270°, range of 0.7 to 1.3 light intensity

taken over all classes, including the background. Table 7.3 gives an overview of
the training parameters and settings.

For comparison, we trained two types of segmentation models. First, we used
images of each crank to train a model for each crank, i.e., three models for three
different cranks. Second, we used all cranks images, together to train a single
model for all of cranks.

7.2.3 Method
As shown in Figure 7.7, we computed the orientation and grasp point of pick-

able cranks using the cranks’ masks, and evaluated the performance of each of
these methods.

Figure 7.7: Overview of the required methods for fasteners bin picking in overhaul pro-
cesses. The computation steps to calculate the orientation of the pickable
cranks, using Mask R-CNN or PCA, and the grasp point of the pickable
cranks, using Mask R-CNN or Image Moment. The mask filtering algorithm
(marked in yellow) must be calculated only once, for both the orientation and
the grasp point computations.

Segmentation

Using the trained Mask R-CNN models, we segmented the cranks in the im-
ages. We annotated pickable and unpickable cranks in the train and validation

Chapter 7. Bin Picking 116

datasets; therefore, the trained models could segment the pickable cranks. We
did not use the computed bounding boxes of the results. Only the segmentations
were used to feed into the next steps to compute the orientation and grasp point.
Figure 7.8c shows an example of the detected pickable cranks.

(a) Input Image (b) Filtered Masks

(c) Unfiltered Masks (d)

Figure 7.8: Example original input image (a), the visualization of the pickable cranks
after filtering the masks, using only Mask R-CNN (b), and the visualization
of all of the found pickable cranks using Mask R-CNN (c). Using the results
from (c), we apply PCA and Image Moment to find the orientation (green and
blue pivots) and the grasp point (yellow circle) for the lever on the lower right
corner of the input image (d) [Taheritanjani et al., 2020].

Orientation Computation

We considered the orientation of a crank as the angle between the hypothetical
horizontal line and the line between the center of its holes, i.e., the slope of the
line between the center of the holes. For example, all cranks in Figure 7.5a have
an orientation of 90°. To compute the orientation of the pickable cranks, we con-
sidered using either Mask R-CNN or PCA (Figure 7.7). Note that, we annotated

117 7.2. Bin Picking on Non-uniform Background

Algorithm 1 Filtering out cranks with none or only one hole detected (marked
with yellow in Figure 7.7) [Taheritanjani et al., 2020].

1: for crank ROIs do
2: mask ← binary fill holes(crank ROI)
3: pickablecrank.insert(tempcrank)
4: pickable1st.insert(temp1st)
5: pickable2nd.insert(temp2nd)
6: tempcrank, temp1st, temp2nd ← null
7: for hole1 ROIs do
8: hole1 mask ← binary fill holes(hole1 ROI)
9: if mask = mask or hole1 mask then

10: tempcrank ← crank ROI
11: temp1st ← hole1 ROI
12: go out of the loop and continue
13: if tempcrank is null then
14: continue with the next crank ROI
15: for hole2 ROIs do
16: hole2 mask ← binary fill holes(hole2 ROI)
17: if mask = mask or hole2 mask then
18: temp2nd ← hole2 ROI
19: go out of the loop and continue
20: if temp2nd is null then
21: tempcrank, temp1st ← null

two of the inner holes of the pickable cranks in the dataset. Therefore, we can
filter the cranks to find their orientation, where the crank’s outer mask contains
two inner holes. To filter out the masks, we filled the detected masks’ matrices of
the cranks and the detected masks’ matrices of the holes with 1s, and performed a
bitwise OR operation on them. If their bitwise OR is equal to the detected mask’s
matrix (filled with 1s), the crank mask contains the hole. Algorithm 1 shows the
pseudocode to filter out cranks with none or only one hole detected. A filtered
segmentation mask is shown in Figure 7.8b. Detection of the inner holes of the
crank make it possible to calculate its orientation by computing the slope of the
hypothetical line segment between the center of the masks of the holes.

The other approach to calculate the orientation is to use PCA. Figure 7.8d
visualizes the two axes computed by PCA for an example crank. By selecting the
axis that minimizes the mean squared distance between the input pixels and their
projection onto it and calculating the axis’s slope, we can compute the orientation
of the crank (the green axis in Figure 7.8d).

Chapter 7. Bin Picking 118

Grasp Point Computation

We considered potential grasp point as the middle of the line segment between
the center of crank’s two holes. For cranks with three holes, we used position be-
tween their big and middle holes. To compute the grasp point of pickable cranks,
we can use either Mask R-CNN or Image Moment (Figure 7.7). Section 7.2.3
discussed how we filter out the cranks with none or only one detected hole. Using
the holes’ masks of the pickable cranks, we find the middle point in the hypothet-
ical line segment between the center of the holes’ masks, which can be used as a
crank’s grasp point.

The other approach to compute the grasp point is to use the Image Moment.
In Figure 7.8d, the yellow circle shows the grasp point calculation result obtained
using Image Moment for an example crank.

7.2.4 Evaluation

To evaluate the described approaches, we used a fixed monocular camera and
workstation to capture 20 different images for each crank type (60 images in total).
Each image contained five to 50 cranks laid randomly on the workspace. In total,
these images had 581 pickable cranks, which were counted manually to compare
and measure the results. We evaluated all images with the methods discussed in
the Sections 7.2.3, 7.2.3, and 7.2.3.

The orientation errors are calculated in rotation angle (the angle in radian by
which the computed orientation must be rotated to reach the actual orientation).
The grasp point errors are the distance between the computed grasp point and the
actual grasp point (∆d in pixels).

In many bin picking studies, the results were compared using the mean IoU
[Wang et al., 2018] [Chen et al., 2018] [Chen et al., 2017]. We also used accuracy,
precision and recall relative to the detected non-occluded flat laid objects in the
images to evaluate the segmentation results, and we used the mean absolute error
to evaluate the orientation and grasp point computations. The ground truth values
for the orientation and grasp point were acquired manually for comparison. For
example, Figure 7.8a shows 22 cranks that are not occluded and laid flat on the
surface and 38 unpickable cranks (occluded and/or non-flat). In Figure 7.8c, the
trained Mask R-CNN model detected 16 pickable cranks correctly (true positive)
and three incorrectly (false positive). Therefore, the accuracy of the segmentation
method was 85%. In Figure 7.8d, the orientation error is 0.052 radians and the
grasp point error is 13 pixels.

119 7.2. Bin Picking on Non-uniform Background

Table 7.4: Overview of segmentation results.

of crank types Mean IoU Average Accuracy Precision Recall
1 96% 77% 77% 61%
3 97% 80% 79% 69%

Table 7.5: Overview of orientation and grasp point calculation results.

Approach % of Detected
Pickable Cranks

Orientation
Computation
Error (radian)

Grasp Point
Computation
Error (pixel)

Calculation
Time

(second)
Mask R-CNN 53% 0.033 11 5 to 20
PCA & Image

Moment
70% 0.113 21 1 to 3

7.2.5 Results and Discussion
Tables 7.4 and 7.5 summarize the segmentation, orientation, and grasp point

computation evaluation results. The model trained with all three cranks obtained
slightly greater mean IoU compared to individual models trained using only one
crank type. The model trained with all three cranks demonstrated higher accuracy,
precision and recall than the models trained with a single crank type.

Using Mask R-CNN to filter out cranks with no or only detected hole resulted
in low accuracy in some images, especially where there were very few pickable
cranks in a large pile. Using PCA and Image Moment to compute the orientation
and grasp point showed a 17% greater percentage of detected pickable cranks.
Despite that, its orientation and grasp point computation errors were also higher
(around three times greater for the orientation computation and approximately two
times higher for the grasp point computation).

The method that use PCA and Image Moment to compute the orientation and
grasp point ran up to six times faster than the Mask R-CNN based method. Note
that we examined calculation time only for comparison purposes. The time can
differ depending on different data types, libraries, implementation details, and
hardware.

The Mask R-CNN approach to compute orientation and grasp point uses the
mask filtering algorithm to filter out cranks with no or only one detected hole. One
reason for the higher percentage of detected pickable cranks using PCA and Image
Moment may be due to the surface of the underlying cranks being visible through
the inner holes of the pickable cranks. In such cases, the model can fail to detect
the holes. In addition, if we use the Mask R-CNN to compute the orientation,
the crank’s large and small holes are detected as different classes. Therefore, we
can always maintain the same orientation calculation for all pickable cranks (the

Chapter 7. Bin Picking 120

slope of the line, when we start from the center of big hole towards the center
of the small hole). Using PCA, it is also possible to compute the orientation
towards the big hole, by splitting the crank relative to the second axis obtained by
PCA, and apply PCA individually on each split. The split that has a bigger 2nd
eigenvalue has also the bigger hole part. However, the drawback of using PCA is
that it may fail to find the bigger hole, if the surface of the underlying cranks are
visible through the small hole of the pickable cranks. Thus, the relative direction
of the axes to the crank’s big and small holes can be flipped for different images.
In cases where the surface of the underlying cranks are not visible through the
small hole of the pickable crank, PCA computes one feature axis towards the big
hole. In other case, PCA may compute one feature axis towards towards the small
hole. The unpredictable calculation of the feature axis can make this approach not
robust for rare cases, when the robot must place the part in a specific position in
the container. In this case, the Mask R-CNN based approach can be used, where
the detected inner holes’ segments are used to compute the orientation precisely.

Note that the calculation time has a direct correlation with the number of the
cranks in the image. The Mask R-CNN model requires approximately 20 seconds
to find segmentations. The mask filtering process in Algorithm 1 requires an order
of O(n2) to compare filled masks. Therefore, using the detected inner holes to
compute the orientation and grasp point, this approach requires more calculation
time compared to the PCA and Image Moment based approaches.

We computed PCA and Image Moment on the ROI of the masks output from
Mask R-CNN. Here, higher orientation and grasp point computation errors when
using PCA and Image Moment is primarily due to the computations on the entire
crank’s ROI rather than the crank’s Mask. Moreover, the results indicate that
training only one model for all crank types performs better than training a single
model per category. This can be due to having a relatively low amount of data for
the training (only 10 images per crank type). With only 10 annotated images for
training, the dataset cannot represent all positions and orientations of the objects
in the target environment. Therefore, more annotated images should be employed
to realize better performance and generalization.

Many 3D CAD-based solutions3 enable LED lightning technology to generate
3D point clouds. Without relying on these type of sensors, this approach can cost
up to 40 times less. The main drawback of the proposed approaches is that objects
in the images must be annotated manually for training. Due to the cluttered order
of the objects and noise (light reflection and shadows), it is very challenging to
obtain acceptable annotations using automatic contour detection methods, such as
Canny edge detection [Liu et al., 2012]. However, we can rerun the computations

3https://www.isravision.com/en/ready-to-use/robot-vision/
bin-picking/

https://www.isravision.com/en/ready-to-use/robot-vision/bin-picking/
https://www.isravision.com/en/ready-to-use/robot-vision/bin-picking/

121 7.2. Bin Picking on Non-uniform Background

of the pickable cranks after some are picked by the robot. Moreover, Danielczuk
et al. showed the usefulness of pushing actions to separate objects and move them
away [Danielczuk et al., 2018]. Since picking objects from the pile results in a
new scene in the image, it is possible that using cranks that are no longer occluded
may allow us to obtain new segments for new pickable cranks. Therefore, the
results of this study imply practical usage of automatic bin picking for packaging
in overhaul processes. To compare, Table 7.6 shows the comparison between
the orientation and grasp point computation approaches for bin picking used in
this dissertation and the state of the art results with regards to the rating scheme,
described in Section 1.2.

Table 7.6: Comparison between the orientation and grasp point computation approaches
for bin picking used in this dissertation and the state of the art results in the ori-
entation and grasp point calculation for bin picking with regards to the rating
scheme.

Study R1 R2 R3 R4 R5 R6
[Mahler et al., 2017] ± + ± - ± ±

[Schwarz et al., 2018] ± + ± ± - ±
[Wu et al., 2019] + + ± - + ±

Orientation and grasp point
computation approaches for bin
picking used in this dissertation

+ + (PCA & Image Moment)

± (Mask R-CNN)

± + ± ±

Chapter 8

Validation

In order to validate H2 and H3, we used an illustrative case study approach
[Yin, 2011] with two industrial demonstrators1. Section 8.1 describes the SPARCS
(Small PARts Classification System) that utilizes the automatic classification ap-
proach mentioned in Chapter 6 to classify bolts. It also uses the 2D bin pick-
ing approach described in Section 7.1 to place the bolts in the compartments.
Section 8.2 describes SUMA (SUrface MAintenance) that employs the automatic
damage detection methods to identify dirt, scratches, and dents on surfaces prior
to automatic grind and polish. There is no public available reference to compare
the automatic approaches results with the current manual classification results, in
particular a benchmark as a basis for the comparison between the automatic and
manual approaches. Section 8.3 describes how we obtained benchmarks to com-
pare with the automatic methods in sections 8.1 and 8.2. Section 8.4 compares the
benchmarks with the automatic approaches and discusses the findings . Finally,
Section 8.5 discusses the threats to validity.

8.1 SPARCS
This section describes the project SPARCS, which was funded by Verein Deutscher

Ingenieure (VDI)2 to automatically classify the small parts (fasteners) which are
collected from airplane engines. The goal of the project is to build a system that
automatically detect known and unknown classes of fasteners used in airplane
engines, and sort them inside the system. Figure 8.1 shows SPARCS’s use case
model.

The rest of this section organized as follows: Subsection 8.1.1 describes the
demo scenarios. Subsection 8.1.2 presents the platform which was designed for

1H1 was validated in chapter 4
2https://vdivde-it.de/

122

https://vdivde-it.de/

123 8.1. SPARCS

Figure 8.1: SPARCS use cases (UML use case diagram).

Chapter 8. Validation 124

this project, including all software and hardware components, and subsection 8.1.3
presents the results of the evaluation.

8.1.1 Scenarios
A scenario informally describes how one of the actors interact with a sys-

tem [Bruegge and Dutoit, 1999]. This section describes the scenarios that are
implemented in SPARCS.

The scenario CreateDatasetForComponent describes the following steps after
a SystemEngineer receives a container of fasteners that are not yet captured in
a dataset. First the SystemEngineer reads the catalog belonging to the container
where they find the serial number of the component it comes from, and the serial
numbers of all the fasteners associated with that component. The SystemEngineer
input the information into SPARCS and then place the container fasteners on the
conveyor belt. SPARCS detects the fasteners under the camera and captures im-
ages. Afterwards, SystemEngineer selects the correct serial number from a list.
The images together with their label is finally stored in the dataset. The same ac-
tions apply to capturing images of fasteners heads on the chuck. Figure 8.2 shows
the simplified activity diagram for this scenario.

The scenario SortBolts shows how a SystemEngineer initiates the sorting pro-
cess for a specific component. Firstly, the SystemEngineer selects the model cor-
responding to the component and places the container fasteners on the conveyor
belt of SPARCS. At each predefined interval, the camera captures an image and
detect if the image belongs to the category of bolts or not. If the image is a bolt,
then SPARCS uses a robotic arm to pick the bolt and place it on a chuck to capture
the image of its head from above. The two images are then fed into SPARCS for
classification. SPARCS will predict the type of each bolt and instruct its robotic
arm to place the fastener in a compartment corresponding to its predicted serial
number. Figure 8.3 shows the activity diagram for this scenario.

RetrainModel describes how the SystemEngineer adds new data to an already
existing model to further improve the classification accuracy. After selecting the
pretrained model, the SystemEngineer follows the steps described in scenario Cre-
ateDatasetForNewComponent, to create a dataset. The SystemEngineer loads the
new dataset into SPARCS and initiates the retraining. SPARCS trains on the new
data and outputs the classification score as the model trains.

OnlineLearning describes the scenario in which SPARCS benefits from the ex-
pert knowledge to enhance its classification accuracy. During SortBolts scenario,
SPARCS receives images from the fasteners and returns the classification result
as prediction scores (i.e., percentages for each class). If the highest prediction
score is lower than a predefined threshold, it means that SPARCS is not certain
about the class of the fastener. Therefore, it saves the image in a folder that will

125 8.1. SPARCS

Figure 8.2: Activities in CreateDatasetForComponent scenario of SPARCS (UML activ-
ity diagram).

Chapter 8. Validation 126

Figure 8.3: Simplified activities in SortBolts scenario of SPARCS (UML activity dia-
gram).

127 8.1. SPARCS

be checked and labeled by a technician expert to be used as part of the dataset in
RetrainModel scenario.

8.1.2 SPARCS Platform
SPARCS was developed as an evolution of iterations. The first iteration was

a prototype that utilized a rotating glass table covered with opal foil, which was
supported with backlighting. The opal foil and glass surface of the table acted as
PPIC-A’s conveyor belt texture (light diffusion textile). This prototype was used
at the lab for research purposes. Figure 8.4 shows this prototype.

Figure 8.4: The realization of PPIC-A with a rotating glass table covered with opal foil
and supported with backlighting, used in the first iteration of SPARCS.

Although the first iteration utilized PPIC-A design, due to the slippery surface
of glass table, the fasteners could roll easily, which made the table movements
impractical. Considering the slippery surface and being unable to move the rotat-
ing glass, capturing images to create datasets was a slow and tedious process. The
second iteration was designed to address this issue. It utilized a vibration plate
with LED backlighting. The surface of the plate was not slippery and we were
able to use vibration to create dataset for a fastener. In addition, we could use

Chapter 8. Validation 128

the vibration to see different sides of the fasteners during damage detection. Fig-
ure 8.5 shows the second iteration of the hardware platform, with one camera on
top and the PLC controller for the vibration plate, which was used at the research
lab to conduct further researches.

Figure 8.5: The realization of PPIC-A with a vibration plate and LED backlighting, used
in the second iteration of SPARCS.

The current solution of SPARCS utilizes PPIC, described in Section 3.2. It was
designed to include the robotic arm and compartment storage to automate the clas-
sification and bin picking tasks (see Figure 8.6). It uses two conveyor belts, one
for bringing the fasteners under the camera and another one to return the leftover
fasteners to the beginning. It also uses additional components, such as a chuck, a
robotic arm and compartment storage. The chuck is used to obtain an image from
the bolt heads and use it as the second view for multi-view classification. To lower
the cost of configuration, webcams are used as PPIC cameras.

We placed the webcam as close as possible to the conveyor belt surface, to
ensure the captured images have an acceptable sharpness needed for the classifi-
cation. To ensure that the robotic arm does not collide with the camera during the
sorting process, the camera was placed on the side of conveyor belt and tilted it to
be able to capture the whole width of the conveyor belt.

129 8.1. SPARCS

Figure 8.6: The realization of PPIC with a vibration conveyor belt with light diffusing
textile and backlighting, used in current solution of SPARCS.

The SPARCS computer controls the cameras and triggers all the preprocessing
and classification methods, which are hosted on the same machine. Controlling
the conveyor belt, chuck, robotic arm and the compartment storage is performed
by the PLC controller. Figure 8.7 shows the hardware/software mapping of the
system.

The platform used for SPARCS uses a conveyor belt with light diffusing textile
and backlighting. Therefore, it ensures a uniform background during processing
of images for classification and bin picking. We used the methods described in
Section 7.1 to compute the grasp point and orientation of the fasteners. We also
trained a bolt/not-bolt classifier to detect if a contour is a pickable bolt. We con-
sidered a bolt is pickable, if it is not occluded by any other fastener and there
is a certain distance between its contour and its neighbor fasteners3 This ensures
minimal collision between the robotic arm and other fasteners on the conveyor
belt. This minimal collision between robotic arm and other fasteners is necessary
to reduce the image processing computations and avoid picking any unwanted
fastener.

Since the camera is tilted, we projected the obtained images using geomet-
ric transformations in OpenCV4. The projection addressed the perspective issue

3In the implementation we set this distance to 3 cm.
4https://docs.opencv.org/trunk/da/d6e/tutorial_py_geometric_

transformations.html

https://docs.opencv.org/trunk/da/d6e/tutorial_py_geometric_transformations.html
https://docs.opencv.org/trunk/da/d6e/tutorial_py_geometric_transformations.html

Chapter 8. Validation 130

Figure 8.7: SPARCS hardware software mapping (UML deployment diagram).

131 8.1. SPARCS

Figure 8.8: Overview of the 30 bolts used in SPARCS dataset. Some bolts may look
distorted due the image projection prior to dataset capturing.

Chapter 8. Validation 132

during having fasteners on different positions of the conveyor belt. Finally, after
grasping the bolt, the robotic arm places it on the chuck (heads-up) that we cap-
ture an image of its head. Together with the image obtained on the conveyor belt,
the two images are send to multi-view classifier for the fine-grained classification.

We trained a multi-view classification model for 30 sample bolts, obtained
form a specific airplane engine component. We also trained a single-view classifi-
cation model, using the bolt images obtained on the conveyor belt, mainly to have
a base line for comparison. Figure 8.8 shows an overview of the fasteners used in
the dataset.

8.1.3 Results
This section describes the evaluation process and results for SPARCS. Ta-

bles 8.1 and 8.2 show an overview of the results obtained during bin picking and
fine-grained classification.

Table 8.1: Overview of bolt/not-bolt model, and grasp point and orientation calculation
results for 30 classes of bolts.

Accuracy Precision Recall Orientation
Computation
Error (radian)

Grasp Point
Computation
Error (pixel)

94% 92% 100% 0.03 11

Table 8.2: Overview of classification results for 30 classes of bolts.

Model Accuracy Precision Recall
Single-View 87.5% 85.3% 91.2%
Multi-View 79.1% 80.3% 82.8%

The results shown in Table 8.1 are similar to the findings in Section 7.1.4. The
single-view model accuracy in Table 8.2 is better than multi-view model accu-
racy. As described in Section 6.2.3, the poor performance of a multi-view model
compared to a single-view model can be justified as the low amount of discrimi-
native features in the other views used by the multi-view model (in this case, the
image obtained from the bolt head on the chuck view). Therefore, a single view
CNN is able to learn the difference between highly similar bolts, but only given
a view which contains almost all the discriminative features. Figure 8.9 shows
the images obtained from the heads of different bolts and images obtained on the
conveyor belt. Given a less than optimal view, such as the chuck view in SPARCS,

133 8.1. SPARCS

Figure 8.9: Images of the heads of three bolts (top) and their respective side view (bot-
tom). The similarity of the heads reduces the accuracy of multi-view model
after aggregating the results into an overall classification.

the model struggles as there is not enough discriminative features visible to dis-
tinguish between them. The Multi-CNN approach does not address this problem,
because there is no information sharing between the models.

Due to the better performance of the single-view classification model, and to
reduce the overhead time required to place the bolt on the chuck to capture the
bolt head, we decided to use the single-view model for the demo. For training
with all the 30 fasteners in the dataset, we ultimately achieved 87.5% accuracy
over the test dataset which contains 20 images of each fastener.

Chapter 8. Validation 134

8.2 SUMA
This section describes the project SUMA, which was done in the practical

course at the chair for applied software engineering at technical University of
Munich in the summer semester 20195 to automatically detect and maintain the
damages and dirts on the surface of components.

Maintenance of surfaces represent a classic example of surface detection prob-
lems. Currently, skilled workers only decide which tools should be used for the
whole process of the surfaces. The lack of enough skilled workers and the need
to protect them against pollutants and injuries highlight the main issues in current
process. In addition, the working environment must be in a way that an ergonomic
work is possible.

The goal of the project SUMA is to build a partially automatic system to assist
the maintenance of surfaces. It must independently recognize the shape of the 3D
surface, and decide which tools are used for maintenance. The challenges include
dealing with an explosion-prone environment due to large amounts of fuel. With
the increasing pollution of waters all over the world, the project contributes to
a more sustainable use of watercraft for work and leisure. Figure 8.10 shows
SUMA’s use case model.

Subsection 8.2.1 describes the problem. Subsection 8.2.2 presents the robot
and hardware platform which was used in this project, and subsection 8.2.3 presents
the results of the evaluation.

8.2.1 Scenarios
This section describes the scenarios that are implemented in SUMA.
The scenario CreateDamageAndDirtDataset describes the following steps af-

ter a SystemEngineer receives a new surface, with multiple dirts and damages on
its surface. The SystemEngineer configures the camera and lightning, and cap-
tures images from the surface. Afterwards, SystemEngineer annotates the dirts
and damages on the images. The images together with their annotations is finally
stored in the dataset.

Detect3DSurface describes the scenario in which the SystemEngineer detects
the 3D point clouds of the component surface prior to damage and dirt detec-
tion. In this scenario, he SystemEngineer initiates the image capturing using the
3D camera and loads the new image into 3DSurfaceDetection software. 3DSur-
faceDetection return the point clouds of the surface which is used for path plan-
ning of the robot.

5https://ase.in.tum.de/lehrstuhl_1/component/content/article/
106-teaching/1037

https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-teaching/1037
https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-teaching/1037

135 8.2. SUMA

Figure 8.10: SUMA use cases (UML use case diagram).

The scenario DetectDamageAndDirt shows how a SystemEngineer detects
damages and dirts on the surfaces of components. Firstly, the 2D camera captures
an image of a part of surface. This image is fed into the Classification component
of SUMA and the model detects if the image contains any damages or dirts.

MaintainSurface shows how the SystemEngineer uses the 3D point clouds and
the masks of the damages and dirts on 2D image from previous scenarios and
maintain the surface. After obtaining the results of Detect3DSurface and Detect-
DamageAndDirt, these data are sent to the SUMA app to create a workplan. The
workplan includes the visualization of the 2D pictures with the found damages,
dirts and dents, and the 3D image of the surface. The SystemEngineer is able to
approve and decline the calculated workplan and also to delete or add bounding
boxes for damages/dirts or dents. The SystemEngineer installs the proper grind-
ing tool on the robotic arm and triggers the start process to which executes the

Chapter 8. Validation 136

workplan.

8.2.2 SUMA Platform
This section describes the hardware platform used in SUMA. SUMA uses a

robotic arm and a camera on top. The 3D camera has also stereo output to cap-
ture 2D images and the robotic arm has a PLC controller. Figure 8.11 shows the
hardware platform and Figure 8.12 illustrates the hardware software mapping of
SUMA.

SUMA uses the supervised method described in Section 4.2 to detect the dam-
ages and dirts on the surfaces. We collected 200 images from different dam-
aged surfaces, such as damages on the car surfaces, and annotated them using
the VIA tool. To reduce the reflection on the surface6, the images were collected
using PPIC-D and three classes of annotations were defined: dirts (of any kind),
scratches, and dents. We trained a Mask R-CNN model to detect the dirts and
damages on the surfaces. Figure 8.13 shows the segmentation results obtained
from the Mask R-CNN.

To be able to perform the path planning for the robotic arm, SUMA uses the
point clouds obtained from the 3D camera. After receiving the depth image and
extracting the the point clouds, we applied point reduction algorithms to reduce
the amount of calculations for next steps. At this point, we were able to extract
the surfaces and apply surface smoothing algorithm to reduce the noises. Finally,
we calculated the norms of the points7.

Using the norms, SUMA applies a path planning for the robotic arm. Together
with the coordination of dirts and damages, these data are sent to workplan gen-
erator to create a workplan.

6Due to the size and location of damaged surfaces, we were not able to bring them to the
lab for data collection. However, the same techniques and concepts used in PPIC-D was used to
collect the data.

7A norm is a function that assigns a positive length or size to vectors in a vector space.

137 8.2. SUMA

Figure 8.11: The hardware platform used in SUMA. The robotic arm is equipped with a
3D camera and sees the surface in front of it.

Chapter 8. Validation 138

Figure 8.12: SUMA hardware software mapping (UML deployment diagram).

139 8.3. Benchmark Preparation

Figure 8.13: Example of segmentation results from the trained Mask R-CNN model.

8.2.3 Evaluation and Results
We separated the evaluation of SUMA into two sections: damage/dirt detec-

tion evaluation and path planning evaluation. Due to the stationary hardware plat-
form of SUMA and unavailability of different damaged surfaces for processing
and maintaining in our lab, we were not able to perform tests on different surfaces
and different damages for path planning. Therefore, the main focus was to evalu-
ate the damage/dirt detection. We used a test dataset of 40 images annotated with
VIA tool, and measured the IoU for the detected bounding boxes and the ground
truth annotations. Table 8.3 shows an overview of the results.

Table 8.3: Overview of instance segmentation results using Mask R-CNN for dirt and
damage detection.

Accuracy Precision Recall IoU
81% 81% 79% 51%

8.3 Benchmark Preparation
There is no public available reference to compare the results obtained in sec-

tions 8.1.3 and 8.2.3 with the current manual process. We performed interviews
with 6 people from MTU Hanover8 and collected information on the process and

8https://www.mtu.de/maintenance/

https://www.mtu.de/maintenance/

Chapter 8. Validation 140

Table 8.4: Three manual experiments performed to obtain benchmark as a basis for com-
parison in SPARCS.

of
Fasteners

of
Misclassified

Items

Classification
Time (Minutes)

Bin Picking
Time

(Minutes)
1 297 4 252 123
2 414 5 266 116
3 341 3 218 113

Total 1052 12 736 352

challenges of the manual fastener sorting process (including damage identifica-
tion, classification and bin picking). We also observed the overhauling process at
Schindler Handhabetechnik9. Due to the company non-disclosure agreements, the
results of these interviews cannot be shared.

We performed the manual classification and bin picking three times, and col-
lected the data for comparison. First, we manually classified a boxes with 297,
414 and 341 fasteners (the images of the bolts in the last box with 341 were used
for SPARCS dataset. See Figure 8.8) and double-checked them to measure the
accuracy. Table 8.4 shows the details of each experiment.

Only four, five and three fasteners were misclassified in each box. Neverthe-
less, the double-checking process must be performed for all the fasteners when
they are checked for damages10. Therefore, we decided to use 100% accuracy,
precision and recall for the manual classification. The whole manual classifica-
tion process took 252, 266 and 218 minutes for each box. For placing the fasteners
in their compartments, we needed 123, 116 and 113 minutes (for each box) to read
the catalogs and fill in the compartments accordingly. Therefore, we needed on
average about 58 seconds for classification and bin picking per fastener.

Similarly to SPARCS, there is no available reference to compare the segmen-
tation results in SUMA with the manual damage/dirt detection. We performed 10
experiments, in which we spotted the damages/dirts on a car door surface (see
Figure 8.11) and computed their coordination using moving the robotic arm to the
spot prior to process the surface. To manually find the coordinations, we moved
the robotic arm to the top left corner of a hypothetical bounding box around the
damage/dirt, saved the location, moved the arm to the lower right corner of the
hypothetical box and saved the location. For the first spot, it needed more time
in compare with the next spots, due to conveying the robotic arm from the de-

9https://www.schindler-handhabe.de
10The double checking is automatically performed during the manual bin picking process, in

which the technicians ensure the similarity of the fasteners prior to placing them inside the com-
partments.

https://www.schindler-handhabe.de

141 8.4. Comparison and Discussions

Table 8.5: 10 manual experiments performed to obtain benchmark as a basis for compar-
ison in SUMA.

of Damages/Dirts Duration
(Seconds)

1 1 23
2 1 24
3 1 24
4 2 44
5 2 43
6 2 41
7 3 60
8 3 65
9 3 61

10 4 83
Total 22 468

fault position to the surface. On average, this process took about 21.3 seconds per
detected spot. Table 8.5 shows the detailed information for the 10 experiments.

8.4 Comparison and Discussions

In SPARCS, the automatic approach needed half a second for bolt/not-bolt
classification, less than half a second for orientation and grasp point calculation
and about 8 seconds for bin picking. Comparing this with the time used in the
manual approach shows that the automatic approach achieves about 6.5 times
faster results.

The dataset creation and training time overheads are excluded from this com-
parison. To create datasets, we placed multiple instances of bolts on the conveyor
and captured images from them. Afterwards, we cropped the minimum rectangle
area of the detected contours in the image. The time spent for dataset creation
depended on the number of available instances of fasteners (the more instances
available, less time was needed to capture images due to having multiple samples
of a fastener in a single image). After capturing images, there are a set of pre-
processing step to create the final images for the datasets (see Figure 8.2) . In
total, we needed about 6 hours and 12 minutes for the whole dataset. The training
time was also about 29 hours. On the other hand, in the manual approach, techni-
cians must create 1:1 comparison-sketch for each fastener. The time to create the
sketches is unknown to us. Technicians must also pass special training courses to
prepare for job. This time could be varied per trainee. We conducted the manual

Chapter 8. Validation 142

Table 8.6: Comparison between the manual and the automatic classification and bin pick-
ing for 341 fasteners.

Manual Automatic
Accuracy 100% 87.5%
Precision 100% 85.3%

Recall 100% 91.2%
Classification and Bin Picking

Time needed per Fastener
About 58 seconds Less than 9 seconds

experiments in a set of consecutive days. However, the manual classification and
bin picking process is a tedious task and the performance depends heavily on be-
ing refreshed and rested. Otherwise, the 100% accuracy, precision and recall may
not be achieved in the reported time.

For the automatic classification in a real environment, data creation and train-
ing phases must be performed every couple of months, when new unknown fas-
teners are detected. Therefore, in a real environment, the average data creation
and training time might be more than the one we presented in this experiment.
Table 8.6 summarizes the results of the manual and automatic classification and
bin picking.

The choice of webcams as the PPIC’s cameras affected the accuracy of the
classification methods. However, more advanced industrial cameras can result in
sharper images and better results (see the results from Chapters 4, 5, 6, 7). In con-
clusion, the results shown Table 8.6 indicate a practical usage of the system in real
industrial environment, which validates the hypotheses H2 and H3 in Section 1.1.

In SUMA, we obtained 81% accuracy of the detected damages and dirts and
over 50% intersection of units for the detected bounding boxes. Most of the error
in the results (false-negatives and false-positives) belongs to the dents. Detection
of the dents with PPIC and only using 2D cameras can be challenging. The dents
can result in light reflection, even if we set the lightning with an angle towards
the object. Even supposing the dent does not reflect the light, detecting it in a 2D
without any additional setup is not accurate. To address dents issue, additional
components, such as a chessboard template can be used. Pointing out a chess-
board template with an angle towards the surface, the image of symmetric cells
are distorted and indicate a possible dent in the image. However, this method re-
quires an additional segmentation model for the dents and cannot determine the
depth of dents. A better solution may be using 3D images together with the CAD
model of the object that its surface is damaged.

As a result, the automatic segmentation method required about 3 seconds for
an image on SUMAComputer. Therefore, the automatic approach is faster than
the manual input process obtained in benchmark (21.3 seconds).

143 8.5. Threats To Validity

SUMA does not necessarily require an overhauling process, i.e. the detection
of damages/dirts must be performed on the component surfaces without remov-
ing and disassembly of components. The results obtained in section 8.2.3 do not
validate the H3, since the accuracy is only 81%. However, the trained model accu-
racy has a correlation with the quality of data and defusing the noise, in particular
the light reflection on the surface, which can be addressed by removing and dis-
assembling components, cleaning the components prior to inspection, and using
PPIC-D to detect the damages. However, the results in this section validates H2
by saving the time.

8.5 Threats To Validity

Like any other research, there are threats to validity of the results. The study
was was conducted in a controlled environment. It is common in industry to have
controlled environments to perform tasks sensitive to environmental factors such
as temperature, brightness and humidity, which is also used in the current manual
inspection workflow. The automation following recent trends like Industry 4.0
uses parts of current system components [Vogel-Heuser et al., 2017]. However,
there are some challenges to build automation software, such as changeability
during run-time and specific platforms and their constraints [Vogel-Heuser et al.,
2014]. In the following, we describe the main limitations of the study.

Small Number of Systems for Validation

We used only two systems, namely SPARCS and SUMA, for validation of the
hypotheses. The main reason for this small number is that it takes a considerable
amount of time to build such systems (building SPARCS took 3 years and building
SUMA took 1 year). Nevertheless, for more robust results, the number of systems
for validation the studies must be increased.

Number of Experiments for Benchmark

To obtain a benchmark as a baseline for comparison, we performed three ex-
periments for SPARCS and 10 experiments for SUMA. These were limited amount
of experiments performed by limited number of people at specific sites. The num-
ber of experiments must be increased and experimenter bias must be reduced by
conducting the experiments using different people, preferably selected by a strat-
ified sampling method [Trost, 1986].

Chapter 8. Validation 144

Type and Number of Classes in Datasets

We used 30 classes of fasteners in SPARCS. However, some components may
have more than 50 different classes. To ensure consistent performance more data
with more classes must be recorded. To use synthetic data for classification, we
must rely on having access to the 3D model of the fasteners in order to generate
synthetic images. These 3D models, however may not be easily accessible. In
damage identification for SUMA, some of the damages in the dataset are manually
created and might not be realistic differing form real damaged. To address this
issue real damages from target location must be used.

Size of Test Datasets Used for Evaluation

We used 20 to 30 images in test datasets for evaluation of the trained models
in this dissertation. The size of test dataset may not be sufficient to conclude that
the methods are scalable and generalizable. For more reliable results, more data
and more images for testing are required.

Number of Views

We used two views in SPARCS. The number of views of parts is a limitation,
especially during damage identification. Additional views and mechanical setup
must be used to address this issue and avoid any occlusion of the region of interest,

Risk of Overfitting

While PPIC ensures that we reduce noises, such as reflections and shadows, it
also creates a very homogeneous environment. the data augmentation techniques
fight the risk of overfitting to the specific environment, however, it is still a small
set of classes and lighting conditions for the model to learn. For example, most
of the model training curves showed the validation loss is increasing while the
training loss is decreasing. This is a common feature of an overfitting model.

Technology Limitations

Some of the damages, such as dents, are not detectable optically by 2D the
cameras. Therefore, these structural damages need other solutions or preferably
3D and CAD based solutions [Michaels, 2008], [Fugate et al., 2001] and [Ciang
et al., 2008]. Moreover, the described methods in this chapter were combined
with a robotic arm to automate the tasks. Although robotic manipulation has
been improved in recent years [Gu et al., 2017] [Kalashnikov et al., 2018] and
powerful grabbers, such as suction cups, are used to grasp the objects, yet, there

145 8.5. Threats To Validity

is no single grabber that can grasp all kinds of fasteners in mechanical machines.
Unavailability of powerful grabbers is another limitation for this work11.

11In a direct discussion with professor Matthew T. Mason, he mentioned that although there are
suction cups which can grasp very small objects such as needles, there is not yet a single grabber
which can pick all sorts of small and big fasteners.

Chapter 9

Contributions and Future Work

In this dissertation, we investigated inspection processes and applied deep
learning and computer vision techniques to present automatic processes for sort-
ing, categorizing, and bin picking of the fasteners, and identify damages in both
fasteners and components. We described a polarized backlighting supported plat-
form with vibration conveyor belt with single or multiple cameras to automatically
detect damages of fasteners in overhaul processes and recorded datasets for fas-
tener damage detection and presented computer vision techniques to detect the
damages on the component surfaces using their image. Moreover, we trained
different convolutional neural networks to sort and classify the fasteners. In addi-
tion, we have examined the bin picking task in overhaul processes to automatically
place small parts into containers for reuse. The proposed deep learning based ap-
proaches are now used by Schindler Handhabetechnik to build a demonstrator,
which will be deployed at MTU Aero Engines.

This chapter concludes the dissertation. Section 9.1 summarizes the main con-
tributions and Section 9.2 outlines the future work direction of this work.

9.1 Contributions
This dissertation contributes to the application of deep learning for inspection

in industrial overhaul processes to decrease the error, and save cost and time. In
particular, the following list the major contributions of this dissertation.

A Research Platform for Parts Image Capturing

We presented PPIC, a research platform to capture images of parts in inspec-
tion processes. PPIC supports single-view and multi-view applications and can
be configured based on the requirements of the different tasks. PPIC can be con-
figured for four inspection tasks in this study, namely, sorting, single-view and

146

147 9.1. Contributions

multi-view categorization, fasteners damage identification, and surface damage
identification.

Fasteners Damage Identification

We implemented a benchmark of supervised and unsupervised deep learning
methods used in the damage identification literature, and evaluate them on two
datasets to identify the damages of the fasteners and surfaces. The deep learning
models have been selected from the best practices in research community and
they are representative of different approaches to building deep learning models.
The best supervised learning method acquired 99% accuracy on the test dataset.
However, the major contribution in this dissertation is the use of the unsupervised
learning to learn the notion of normality for fasteners. We obtained 84% accuracy
for fasteners and 83% for the surfaces (both on the test datasets). To the best of our
knowledge, no one else has achieved better results for industrial fasteners using
an unsupervised method.

Sorting, Categorization and Bin picking for Fasteners

For the application domain of fasteners we have developed sorting, categoriza-
tion and bin picking methods. The sorting was accomplished by using siamese
networks to detect the similarity of the fasteners. Using this similarity the fasten-
ers are grouped prior to categorization and bin picking. The automatic fasteners
similarity detection methods obtained over 99% accuracy for 20 different fas-
teners. Using the results of the trained siamese model, we are able to sort the
all fasteners (even the ones which were not seen by the model during training).
Moreover, different convolutional neural networks were trained to categorize the
fasteners. We achieved 99.4% accuracy with the single-view classification for 34
bolts and washers, and 100% accuracy using the multi-view classification for 8
nuts.

In addition,we developed a processing pipeline that overhaul plants can use for
an automatic bin picking approach after classification for placing the fasteners in
a compartment.The results of a preliminary evaluation were presented, in which
the approach found 70% of pickable objects in an image, using only 10 annotated
images for training.

Finally, we investigated the use of synthetic data in combination with real
images and showed its advantage to obtain comparable results with approaches
that use only real image.

Chapter 9. Contributions and Future Work 148

Datasets for Benchmarking

We have recorded eight datasets for different inspection tasks in overhaul pro-
cesses and made them available to the research community for benchmarking and
further use and analysis [Taheritanjani,]. These datasets can be used industry-
wide for automation of industrial overhauling workflows. The datasets include:

• 2019 images from 12 different bolts for damage identification of fasteners,
with their fine-grained annotations.

• 102 images from two type of materials for damage identification on sur-
faces, with their fine-grained annotations and 355 images of the intact sur-
faces of same two materials for novelty detection.

• 1000 images of 20 bolts for similarity detection of fasteners.

• 1000 images from 20 bolts and 140 images from 14 washers for fine-grained
categorization of fasteners using a single-view approach.

• 800 multi-view images from 8 different nuts, for fine-grained categorization
using multi-view approaches.

• 1500 images of six screws and over 6000 synthetic images obtained from
their 3D model for fine-grained categorization using synthetic data.

• 36 images from three different type of cranks, for automatic bin picking of
fasteners.

• 5650 images from two views, for automatic classification of fasteners (used
in SPARCS).

See appendix C for the access URL, descriptions, and a comparison with other
available datasets.

9.2 Future Work

This dissertation has shown the possibility and the applicability of using deep
learning based approaches for inspection tasks in overhaul processes. However,
the ability to flexibly adapt to changing requirements is one design principles of
modern industrial applications [Vogel-Heuser and Hess, 2016], i.e. industry 4.0.
Future work can investigate the constraints of a controlled environment used in
this work and the possibility of widening them.

149 9.2. Future Work

Another possible improvement to the work presented in this dissertation is the
application of deep learning using 3D images and unsupervised techniques, which
are active research areas and we could greatly benefit from their recent advances.
In addition, the platform described in Chapter 3 and applications described in
Chapters4, 5, 6 and 7 can be made available for other researchers using platform
as a service (PaaS) and software as a service (SaaS). The following describes
possible improvements:

• Damage identification: To improve the results of this section, more col-
lected data is required. With more data and also more different damages the
generalizability of the models will improve. Another improvement would
be the data collection in a more industrial controlled environment reducing
noise and therefore making the supervised as well as the unsupervised clas-
sification more robust. With more environmental constraints (for example
illumination or rotation) the model performance can possibly be improved.
Another point is that the parts must be automatically rotated to detect dam-
ages on all sides of the part. Furthermore the current algorithms have to
be scaled to a larger number of different fasteners and integrated in a over-
hauling control system. From a research and machine learning perspective,
3D methods for object detection and 3D autoencoders can be used to detect
damages which might also be effective depending on the 3D scan quality.
This also requires a 3D dataset which could be partly obtained from refer-
ence 3D models of the small parts. Respective to anomaly detection Gen-
erative Adversarial Networks (GANs) like AnoGAN [Schlegl et al., 2017]
can be applied to the dataset. In case of having many unlabeled training
data, we can try to use them to train an unsupervised model, such as an au-
toencoder or a generative adversarial network, reuse the lower layers of the
autoencoder or the lower layers of the GAN’s discriminator, add the output
layer for your task on top, and fine-tune the final network using supervised
learning (i.e., with the labeled training examples) [Géron, 2019]. Although
GANs are computationally challenging for high resolutions, some recent
studies obtained state of the art results on high resolution images [Karras
et al., 2019]. The approach of damage and anomaly detection using deep
learning can be transferred to other visual inspection tasks as well as other
domains like medicine. With the proposed automation not only costs can be
reduced but also the performance of damage as well as anomaly detection
tasks can be improved.

• Sorting: To fully utilize the overhauling inspection tasks with the bene-
fits of automatic sorting, we must change the image capturing platform to
support having all the fasteners in one camera view. Using one high resolu-
tion image that shows all the fasteners from one component, the automatic

Chapter 9. Contributions and Future Work 150

sorting can be finished in one shot. However, it is challenging to build a
platform that can separates all the fasteners and place them on the surface
under the camera. PPIC that was introduced in chapter 3 must be extended
to use a wider vibration plate and a wider conveyor belt. Moreover, the
camera must be mounted in a higher distance to be able to capture all the
instances. With such a platform, we can focus the research to use the sorting
process instead of the categorization.

• Categorizing: We can introduce more cameras to be able to capture ev-
ery feature of any fastener, regardless of orientation and position. Since
we must ensure to maintain the scale feature by setting a fixed distance be-
tween the camera and the fastener, by introducing physical markers next to
the fastener (for example, on the side of conveyor belt), we can automati-
cally calibrate the cameras and scale the image to a fixed size [Koterba et al.,
2005]. Moreover, to address the low amount of discriminative features in
one specific view described in Sections 6.2.3 and 8.1.3, we can use the im-
ages of different similar looking fasteners in one class, detect them using
a single-view classification model, and use the second-view to differentiate
between the different fasteners. In this way, the similarity of second view
will not affect the whole classification. Regarding synthetic data, the results
indicate that, when adding new classes, the output classification accuracy is
affected by the aesthetic similarity of fasteners in the dataset. A logical next
step is to evaluate the CNNs after increasing the number of output classes.
Moreover, a possible improvement is to evaluate the usage of deeper CNN
models such as the ones presented by He et al. and Szegedy et al. [He et al.,
2016] [Szegedy et al., 2016]. In addition, the total number of synthetic
images in the training set has not been varied through the experiments. A
possible improvement in accuracy could be achieved by training the CNN
models on a bigger training set containing a larger amount of synthetic im-
ages and from multiple views as discussed earlier in Chapter 6. Finally,
application of classification of 3D images of fasteners and comparing the
results with the proposed multi-view techniques can be also interesting.

• Bin Picking: We only used three crank types for bin picking of fasteners on
non-uniform backgrounds. However, the same approach can be employed
for other small parts by identifying the pickability conditions. For example,
we decided that cranks must be placed flat relative to camera and their in-
ner holes must be non-occluded to consider them pickable. For bolts, they
must placed flat relative to camera, and in addition, there must be a safe
distance between their contour and surrounding objects that finger-based
grippers can pick them. For nuts, they must placed head-up or head-down

151 9.2. Future Work

without any occlusion. In addition, pickability conditions can also be ad-
dressed using keypoint detection of the objects, which has been introduced
in some instance segmentation frameworks [He et al., 2017]. It is also pos-
sible to detect the keypoints for the small parts as part of the training. Study
of pickability conditions for different small parts and performing keypoint
detection on the small parts left for future work. In addition, the same tech-
niques used from Wu et al. can also be employed for bin picking in over-
haul processes, using the point clouds obtained from 3D cameras [Wu et al.,
2019].

With the combination of robotic arms, the approaches presented in this dis-
sertation can be extended to automate inspection process of different industrial
small parts and components. These approaches could be applied to other tasks in
overhauling processes, such as reassembly of the components. With training an
action recognition model and using it along with the categorization models, the
technicians can benefit from automatic suggestions and next-step information to
perform the tasks.

Another interesting research direction is the combination of inspection pro-
cess for electrical and mechanical components. This includes anomaly detection
techniques to process the electrical devices. Using this combination, the whole
machine can be inspected without separating the parts and components.

A long term evaluation in an industrial setting that shows the benefits of auto-
matic inspection process would also be an interesting research direction. For this
purpose, an integrated tool could be implemented. When combined with PPIC
platform, interesting insights regarding feedback and actual development changes
could be obtained. These changes could then be analyzed and correlated to inspec-
tion accuracy. Based on the feedback obtained from the discussion with industry
partners at MTU Hanover1, we believe that an integrated tool with the techniques
presented in this dissertation could also be of interest for the industry.

1https://www.mtu.de/maintenance/

https://www.mtu.de/maintenance/

Appendix A

Acronyms

AE Autoencoder

AP Average Precision

AnoGAN Unsupervised Anomaly Detection with Genrative Adversarial Netowrks

COCO Common Objects in Context

CNN Convolutional Neural Network

FCN Fully Convolutional Network

FGVC Fine-grained Visual Categorization

FN False Negative

FP False Positive

GAN Generative Adversarial Network

GPU Graphical Processing Unit

IF Isolation Forest

IoU Intersection over Union

KS Knowledge Source

LOF Local Outlier Factor

mAP mean Average Precision

MLP Multilayer Perceptron

153

Appendix A. Acronyms 154

MRO Maintenance, Repair and Overhaul

MSE Mean Squared Error

MVCNN Multi-view Convolutional Neural Network

MIRO Multi-view Images of Rotated Objects

NN Neural Network

OC One-Class

PCA Principal Component Analysis

PPIC Platform for Parts Image Capturing

RCM Reliability Centered Maintenance

R-CNN Regions with CNN features

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SSD Single Shot MultiBox Detector

SPARCS Small Parts Classification System

SVM Support Vector Machine

TN True Negative

TP True Positive

TPA Total Productive Maintenance

VIA VGG Image Annotator

SUMA Surface Maintenance

Appendix B

Copyrights

As addressed in Chapter 1, parts of this dissertation have been previously pub-
lished through different publishers. For all used material, the permission for reuse
in this dissertation is presented. Figures B.1 and B.2 show the retrieved permis-
sion grants from the IEEE Xplore Digital Library.

155

Appendix B. Copyrights 156

Home Help Email Support Sign in Create Account

© 2020 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink

Fine-Grained Visual Categorization of Fasteners in Overhaul Processes
Conference Proceedings:
2019 5th International Conference on Control, Automation and Robotics (ICCAR)

Author: Sajjad Taheritanjani

Publisher: IEEE

Date: April 2019

Copyright © 2019, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., !gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted !gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro!lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Figure B.1: Permission grant for [Taheritanjani et al., 2019a]

157

Home Help Email Support Sign in Create Account

© 2020 Copyright - All Rights Reserved | Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions

RightsLink

Automatic Damage Detection of Fasteners in Overhaul Processes
Conference Proceedings:
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)

Author: Sajjad Taheritanjani

Publisher: IEEE

Date: Aug. 2019

Copyright © 2019, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., !gure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted !gure and/or table.
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-
line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Micro!lms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE

Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Figure B.2: Permission grant for [Taheritanjani et al., 2019b]

Appendix B. Copyrights 158

Content of the SCITEPRESS published work ([Taheritanjani et al., 2020]) is
used in this dissertation based on the ACM Author Rights1 as well as the copyright
shown in Figure B.3.

1https://authors.acm.org/author-services/author-rights

https://authors.acm.org/author-services/author-rights

159

CONSENT TO PUBLISH and COPYRIGHT TRANSFER

For the mutual benefit and protection of Authors and Publishers, it is necessary that Authors provide formal written Consent

to Publish and Transfer of Copyright before publication of the Book. The signed Consent ensures that the publisher has

the Author´s authorization to publish the Contribution.

Conference: ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods.

Place/Date: Valletta, Malta; 22 - 24 February, 2020.

Book Title: Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods.

Edited by: Maria De Marsico, Gabriella Sanniti di Baja and Ana Fred.

Publisher: SCITEPRESS.

Paper number: 47.

Title of the contribution: 2D Orientation and Grasp Point Computation for Bin Picking in Overhaul Processes.

Author (name and address):

Sajjad Taheritnajnai.

Germany.

It is herein agreed that:

The copyright to the contribution identified above is transferred from the Author to the “Science and Technology Publications,

Lda” (here forth known as SCITEPRESS). The copyright transfer covers the exclusive, sole, permanent, world-wide, transferable,

sub licensable and unlimited right to reproduce, publish, transmit, archive, lease/lend, sell and distribute the contribution or

parts thereof individually or together with other works in any language, revision and version (digital and hard), including

reprints, translations, photographic reproductions, microform, audiograms, videograms, electronic form (offline, online), or

any other reproductions of similar nature, including publication in the aforementioned book or any other book, as well as,

the usage for advertising purposes. SCITEPRESS is also entitled to carry out editorial changes in the contribution with the

sole purpose of enhancing the overall organization and form of the contribution. The Author retains the rights to publish the

contribution in his/her own web site and thesis, in his/her employer’s web site and to publish a substantially revised version

(at least 30% new material) elsewhere, as long as it is clearly stated that the contribution was presented at ICPRAM 2020, a

link to the event web site is made available there and also the presence of the corresponding DOI number. Prior versions of the

contribution published on non-commercial pre-print servers like ArXiv/CoRR and HAL can remain on these servers and/or

can be updated with Author’s accepted version. The final published version (in pdf) cannot be used for this purpose. The

Creative Commons license CC BY-NC-ND applies to everyone that wishes to use the published version.

The Author warrants that his/her contribution is original, except for such excerpts from copyrighted works as may be included

with the permission of the copyright holder and author thereof, that it contains no libelous statements, and does not infringe on

any copyright, trademark, patent, statutory right, or propriety right of others; and that Author will indemnify SCITEPRESS against

any costs, expenses or damages for which SCITEPRESS may become liable as a result of any breach of this warranty. The

Author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.

This agreement shall be governed by, and shall be construed in accordance with, the laws of Portugal. The courts of Portugal

shall have the exclusive jurisdiction.

In return for these rights:

The publisher agrees to have the identified contribution published, at its own cost and expense, in the event proceedings.

The undersigned hereby gives permission to SCITEPRESS to have the above contribution published.

Date: 11 December, 2019

Figure B.3: Permission grant for [Taheritanjani et al., 2020]

Appendix C

Datasets

Access URL: https://mediatum.ub.tum.de/1537830
There are 8 compressed files, each represent dataset for one task:

• Fastener Damage Identification: consists of images of damaged and intact
fasteners, with fine-grained annotations of damages to be used with super-
vised segmentation methods such as Mask R-CNN and also patches of the
images to be used in patch autoencoders.

• Surface Damage Identification: consists of images of damaged and intact
surfaces, with fine-grained annotations of damages to be used with super-
vised segmentation methods such as Mask R-CNN.

• Sorting: consists of images from 23 classes of bolts and washers to be used
for similarity detection algorithms such as siamese networks and also for
categorization and classification of the fasteners.

• Single-View Classification: consists of images from 20 classes of bolts and
14 classes washers to be used for single-view categorization and classifi-
cation of the fasteners and also for similarity detection algorithms such as
siamese networks.

• Multi-View Classification: consists of images from two views of 8 classes
of nuts to be used for multi-view categorization and classification of the
fasteners.

• Classification using Synthetic Images: consists of images and 3D CAD
models of 6 classes of screws to be used for single-view categorization and
classification of the fasteners using synthetic data.

160

https://mediatum.ub.tum.de/1537830

161

• Bin Picking on Non-uniform Background : consists of images and fine
grained annotations of 5 classes of cranks to be used for instance segmen-
tation of the fasteners together with grasp point and orientation calculation
for bin picking.

• SPARCS: consists of images from 30 classes of bolts and 4 classes washers,
captured with low resolution webcam, to be used for single-view catego-
rization and classification of the fasteners and also for similarity detection
algorithms such as siamese networks.

All the fine-grained annotations for the segmentation are stored in JSON files
which must be loaded prior to training in Mask R-CNN.

To the best of our knowledge, there are no other publicly available datasets
for fasteners damage identification, sorting and classification. However, there are
multiple available datasets for surface damage detection and bin picking. For
a better overview, we compare our surface damage detection and bin picking
datasets to other available datasets with regards to a rating schema shown in Ta-
ble C.1.

Table C.1: Rating schema used to compare the datasets.

Feature Explanation
F1: Object Type +: industrial surfaces and fasteners

±: other industrial small parts (high intra-class and low inter-class

variance)

-: not industrial small parts
F2: Number of Classes The higher the better
F3: Number of Images (per Class) Usually more images are preferred
F4: Resolution of Images In higher resolution more fine-grained segmentation is

possible
F5: Annotations and Labels +: available

±: partially available (less than 50% of the data)
-: not available

Table C.2 shows the comparison between the surface damage detection dataset
used in this dissertation and other available datasets with regards to the rating
schema.

Appendix C. Datasets 162

Table C.2: Comparison between the surface damage detection dataset used in this disser-
tation and other available surface damage detection datasets with regards to
the rating scheme described in Table C.1.

Dataset F1 F2 F3 F4 F5
[Amhaz et al., 2015] ± 5 23 to 89 (damaged) varied ranges from

220 to 1000 pixels
(height and width)

±

Road Anomaly Detection1 ± 4 489 to 640 +
[Tabernik et al., 2019] ± 1 52 (damaged)

347 (Intact)

500× 1255 +

Severstal: Steel Defect
Detection2

+ 1 12568 1600× 256 +

[Song and Yan, 2013] + 6 1800 (damaged) 200× 200 +
Surface damage detection

dataset used in this dissertation
+ 2 60 (damaged)

170 (intact)

5184× 3456 +

Table C.3 shows the comparison between the bin picking datasets used in this
dissertation and other available datasets with regards to the rating schema.

Table C.3: Comparison between the bin picking datasets used in this dissertation and
other available bin picking datasets with regards to the rating scheme de-
scribed in Table C.1.

Dataset F1 F2 F3 F4 F5
[Drost et al., 2017] ± 28 125 3264× 2448 ±

[Brégier et al., 2017] ± 8 122 (each image

contains one to 24

fine-grained annotations)

1178× 1018 + (instance

segmentation)

[Kleeberger et al., 2019] ± 10 varied ranges from
290 to 39260

1280× 1024 + (instance

segmentation)

Bin picking datasets used
in this dissertation

+ 5 12 (each image contains

four to 63 fine-grained

annotations)

1280× 1024 + (instance

segmentation)

1http://radprojectbismil.blogspot.com
2https://www.kaggle.com/c/severstal-steel-defect-detection/

http://radprojectbismil.blogspot.com
https://www.kaggle.com/c/severstal-steel-defect-detection/

List of Figures

1.1 Overview of maintenance types. 2
1.2 Evolution of maintenance through the years. 3
1.3 Activities in overhauling of industrial machines for both correc-

tive and planned preventive maintenance (UML activity diagram). 4
1.4 Activities in overhauling of industrial machines for condition-based

preventive maintenance (UML activity diagram). 4
1.5 Composition of machine component and taxonomy of fasteners. . 5
1.6 Simplified activities with focus on Inspection in overhaul pro-

cesses (UML activity diagram). 6
1.7 Examples of intact and damaged bolts from a side view (a) and

top view (b). The annotated damages show either scratches or dirt
which could not be cleaned by washing [Taheritanjani et al., 2019b]. 7

1.8 Examples of industrial parts on a workstation that are grouped
based on their similarity. 8

1.9 Fasteners that were taken from part of engine and must be classi-
fied during inspection in overhaul process. 9

1.10 The structure of a sample bolt, washer and nut, displaying the
length, width, shaft, pitch and diameters ([Taheritanjani et al.,
2019a] and [Birkeland, 2018]). 10

1.11 Examples of compartments which contain the small parts after
packaging. 11

2.1 Original Image (a). The result of contour detection (b). Minimum
enclosing rectangle around the contour (c). 18

2.2 Original Image (a) and its first image moment as the centroid in
pink color (b). The mass on the bolt head is more than its shaft.
Therefore the centroid is not exactly on the center and is towards
the head. 19

2.3 Applying PCA to an input image and finding the axes. To bigger
axis represents the orientation of the bolt. 20

2.4 Artificial neuron. 21

164

165 List of Figures

2.5 An example of a multilayer perceptron. 22
2.6 Sigmoid activation function. 23
2.7 Tanh activation function. 23
2.8 ReLU activation function. 23
2.9 Leaky ReLU activation function. 23
2.10 Applying convolutional filters to extract features. 25
2.11 An example of feature map visualization [Zeiler and Fergus, 2014]. 26
2.12 Applying pooling filters to subsample feature maps. 27
2.13 Nut augmentations . 27
2.14 Visualization of a gradient descent example. 29
2.15 Overfitting . 31
2.16 Inception modules for multilevel feature extraction [Szegedy et al.,

2016] . 33
2.17 Residual block with identity function for free gradient flow [He

et al., 2016] . 34
2.18 Multi view convolutional neural network 34
2.19 Example of artificial camera configurations with 12 (a), 20 (b) and

60 (c) angles [Kanezaki et al., 2018]. 35
2.20 Bookshelf and dresser from different angles 36
2.21 Multi-view CNN architecture [Su et al., 2015]. 37
2.22 RotationNet/Multi-view CNN results [Kanezaki et al., 2018] . . . 38
2.23 Siamese network architecture. 39
2.24 Object detection output [Girshick et al., 2014] 39
2.25 Semantic segmentation using a FCN [Long et al., 2015] 40
2.26 Instance segmentation using Mask R-CNN [He et al., 2017] 41
2.27 One-Class SVM . 43
2.28 Isolation Forest . 43
2.29 Local Outlier Factor determining density with k=3 neighbors . . . 44

3.1 An example of similar fasteners. A is identical to C except that
its non-threaded shaft is one millimeter shorter. B has a two mil-
limeter longer non-threaded shaft and a one millimeter smaller
diameter than C [Taheritanjani et al., 2019a]. 47

3.2 An example of two bolts that each one is a scale version of the
other one. Scaling one’s image is an example of the perspective is-
sue and can result in a misclassification [Taheritanjani et al., 2019a]. 48

3.3 The sketch of PPIC with a vibration conveyor belt. The backlight-
ing comes from below the conveyor belt. The light green section
can move the parts back to the beginning of the conveyor belt and
the vibration section. 50

List of Figures 166

3.4 The sketch of PPIC-A with a light diffusing conveyor belt. The
backlighting comes from below the conveyor belt and a single
camera with 90°captures the images. 51

3.5 Image of fasteners obtained on the conveyor belt using normal
ambient lighting (a) and using top camera view of PPIC-A with
reduced shadows and reflection (b). 51

3.6 The sketch of PPIC-B with a single camera, light diffusing con-
veyor belt, and backlighting. There are illumination on top of
platform and light diffusing textile to polarize the light. 52

3.7 Image of a bolt obtained using normal ambient lighting (a) and
using camera view of PPIC-B (b). 52

3.8 The sketch of PPIC-C with two cameras, illumination on top, and
polarized backlighting supported conveyor belt. 53

3.9 Image of a nut obtained using both camera views of PPIC-C. . . . 54
3.10 The sketch of PPIC-D with one camera on top, and one illumina-

tion source with 45°angle towards the surface. 54
3.11 Image of damages on a surface a using normal ambient lighting

(a) and using PPIC-D with reduced reflection (b). 55

4.1 The preprocessing workflow (UML activity diagram). 60
4.2 The overview of the algorithms which are used in this study [Taher-

itanjani et al., 2019b]. 61
4.3 An example of the heatmap visualization for a damaged fastener.

Low activation is shown with cold colors (namely blue). The
colder area indicates less anomalies in that part of the image [Taher-
itanjani et al., 2019b]. 63

4.4 An example of Mask R-CNN result for the damages including
their masks and bounding boxes [Taheritanjani et al., 2019b]. . . . 63

4.5 An example of the autoencoder input (first row), its reconstruc-
tion (second row), reconstruction error (third row), and square of
reconstruction error (last row) for an intact and a damaged fas-
tener [Taheritanjani et al., 2019b]. 65

4.6 An example of the original image input (first row), threshold-
ing result (second row), segmentation result using Mask R-CNN
(third row), and its autoencoder reconstruction (last row) for gal-
vanized surfaces. 72

4.7 An example of the original image input (first row), threshold-
ing result (second row), segmentation result using Mask R-CNN
(third row), and its autoencoder reconstruction (last row) for alu-
minum surfaces. 73

167 List of Figures

5.1 An example of the original input image that was used to test the
accuracy of model on new classes fasteners. 81

5.2 The result of computed similarity of the fasteners on the input
image (Figure 5.1). 83

6.1 The camera view is divided into five regions shown in blue and
aqua. The red dotes indicate the differences between the bolt head
when the bolt is moved vertically along its shaft. The yellow dots
indicate the differences in light reflection on the bolt shaft when it
is moved horizontally. The more we move the bolt to the left side
of the view, the less reflection is captured on its left side, and vice
versa [Taheritanjani et al., 2019a]. 87

6.2 Twenty bolts and fourteen washers which were used for the clas-
sification. 88

6.3 Overview of steps executed before saving the data on the disk
(UML activity diagram). 89

6.4 Overview of preprocessing steps executed before feeding the data
to the train process (UML activity diagram). 89

6.5 An example fastener (on the left) and its 3D model created by 3D
scanner (on the right). The 3D model is rendered without texture
for clarity. 101

6.6 Examples of images for each class that uses in the experiments.
For each pair, the image on the left is a sample real image, while
the image on the right is a sample synthetic image. 102

6.7 An example synthetic scene where a screw lies on a horizontal
plane. The isometric view of the scene (a). The side view (b). . . . 103

7.1 Examples of the images captured for training a classifier, using
PPIC-A. 109

7.2 Overview of preprocessing steps executed prior to train an occluded/not-
occluded classifier (UML activity diagram). 109

7.3 Example of fasteners that are placed next to each other (a) and
their contour obtained from adaptive thresholding algorithm (b). . 110

7.4 Examples of orientation (green axis) and grasp point (pink circle)
calculations for two bolts. 111

7.5 The datasets contain three different cranks (a). Example image
(b) [Taheritanjani et al., 2020]. 114

List of Figures 168

7.6 Example annotated image in the dataset. While only the outer
contour of unpickable cranks are annotated, we also annotated
two inner holes of pickable instances, and their outer contour. The
pickable and unpickable cranks were labeled as different classes
[Taheritanjani et al., 2020]. 114

7.7 Overview of the required methods for fasteners bin picking in
overhaul processes. The computation steps to calculate the orien-
tation of the pickable cranks, using Mask R-CNN or PCA, and the
grasp point of the pickable cranks, using Mask R-CNN or Image
Moment. The mask filtering algorithm (marked in yellow) must
be calculated only once, for both the orientation and the grasp
point computations. 115

7.8 Example original input image (a), the visualization of the pickable
cranks after filtering the masks, using only Mask R-CNN (b), and
the visualization of all of the found pickable cranks using Mask
R-CNN (c). Using the results from (c), we apply PCA and Image
Moment to find the orientation (green and blue pivots) and the
grasp point (yellow circle) for the lever on the lower right corner
of the input image (d) [Taheritanjani et al., 2020]. 116

8.1 SPARCS use cases (UML use case diagram). 123
8.2 Activities in CreateDatasetForComponent scenario of SPARCS

(UML activity diagram). 125
8.3 Simplified activities in SortBolts scenario of SPARCS (UML ac-

tivity diagram). 126
8.4 The realization of PPIC-A with a rotating glass table covered with

opal foil and supported with backlighting, used in the first itera-
tion of SPARCS. 127

8.5 The realization of PPIC-A with a vibration plate and LED back-
lighting, used in the second iteration of SPARCS. 128

8.6 The realization of PPIC with a vibration conveyor belt with light
diffusing textile and backlighting, used in current solution of SPARCS.129

8.7 SPARCS hardware software mapping (UML deployment diagram). 130
8.8 Overview of the 30 bolts used in SPARCS dataset. Some bolts may

look distorted due the image projection prior to dataset capturing. 131
8.9 Images of the heads of three bolts (top) and their respective side

view (bottom). The similarity of the heads reduces the accuracy
of multi-view model after aggregating the results into an overall
classification. 133

8.10 SUMA use cases (UML use case diagram). 135

169 List of Figures

8.11 The hardware platform used in SUMA. The robotic arm is equipped
with a 3D camera and sees the surface in front of it. 137

8.12 SUMA hardware software mapping (UML deployment diagram). . 138
8.13 Example of segmentation results from the trained Mask R-CNN

model. 139

B.1 Permission grant for [Taheritanjani et al., 2019a] 156
B.2 Permission grant for [Taheritanjani et al., 2019b] 157
B.3 Permission grant for [Taheritanjani et al., 2020] 159

List of Tables

1.1 Rating schema used to compare the results and state of the art in
this dissertation. 14

2.1 Model results on the ImageNet 2012 classification challenge . . . 32

4.1 Fasteners used in the dataset. 59
4.2 Knowledge sources that are used for damage detection with their

input and output sources. Feature Vector: lower dimensional rep-
resentation, Area Damaged: percentage of the fastener which is
damaged, Numeric Anomaly: numeric value representing how
anomalous a fastener is according to a damage detection algo-
rithm, Model Output: output of a model determining whether the
fastener is damaged or intact, Result: output of the blackboard
representing the final decision. 62

4.3 Supervised classification performance results on test dataset . . . 64
4.4 Unsupervised classification performance results on test dataset. . . 66
4.5 Comparison between the fastener damage identification approaches

used in this dissertation and the state of the art results in damage
identification with regards to the rating scheme. 67

4.6 Surfaces used in the dataset (102 images with 15 damages per im-
age on average and their fine-grained annotations and 355 images
of the intact surfaces for novelty detection). 68

4.7 Parameters and settings used to train Mask R-CNN model, pre-
trained with COCO dataset. 70

4.8 Parameters and settings used to train autoencoder for anomaly de-
tection. 70

4.9 The performance results on test dataset. 71

5.1 Fasteners used in the dataset (scaled to 0.5 of the original size). . . 78
5.2 Overview of parameters and settings used to train models. 80

170

171 List of Tables

5.3 Overview of the training results for sorting using Siamese net-
works, using 20 classes, 200 × 200 input image size, 1000 test
pairs, and 40000 iterations. 80

5.4 Results of the model accuracy on new classes of fasteners, aver-
aged in test images. 82

6.1 Overview of the training results, using InceptionV3 and Keras
on top of TensorFlow, optimizer=SGD (Stochastic Gradient De-
scent), learning rate=0.0001 and momentum=0.9. The accuracy
is reported on the test dataset which is 10% of the whole data. . . 90

6.2 Eight nuts which are captured in the dataset. 93
6.3 Overview of parameters and settings used to train models. 96
6.4 Classification accuracy on test dataset. 97
6.5 Average computation time per nut during inference in ms. 97
6.6 MultiCNN individual network’s test accuracy. Network1 uses the

90°view images and Network2 uses the 45°view images. 97
6.7 The number of images per class for the specified data split. 103
6.8 Overview of parameters and settings used to train models. 104
6.9 Class-wise classification accuracy of a VGG16 networks. 104
6.10 Class-wise classification accuracy of a VGG19 networks. 104
6.11 Comparison between the fasteners categorization approaches used

in this dissertation and the state of the art results in single-view/multi-
view image classification with regards to the rating scheme. 105

7.1 Parameters and settings used to train pickable/non-pickable clas-
sifier. 110

7.2 Overview of classification, orientation and grasp point calculation
results. 112

7.3 Parameters and settings used to train Mask R-CNN model. 115
7.4 Overview of segmentation results. 119
7.5 Overview of orientation and grasp point calculation results. . . . 119
7.6 Comparison between the orientation and grasp point computation

approaches for bin picking used in this dissertation and the state
of the art results in the orientation and grasp point calculation for
bin picking with regards to the rating scheme. 121

8.1 Overview of bolt/not-bolt model, and grasp point and orientation
calculation results for 30 classes of bolts. 132

8.2 Overview of classification results for 30 classes of bolts. 132
8.3 Overview of instance segmentation results using Mask R-CNN

for dirt and damage detection. 139

List of Tables 172

8.4 Three manual experiments performed to obtain benchmark as a
basis for comparison in SPARCS. 140

8.5 10 manual experiments performed to obtain benchmark as a basis
for comparison in SUMA. 141

8.6 Comparison between the manual and the automatic classification
and bin picking for 341 fasteners. 142

C.1 Rating schema used to compare the datasets. 161
C.2 Comparison between the surface damage detection dataset used

in this dissertation and other available surface damage detection
datasets with regards to the rating scheme described in Table C.1. . 162

C.3 Comparison between the bin picking datasets used in this disser-
tation and other available bin picking datasets with regards to the
rating scheme described in Table C.1. 162

Bibliography

[Abdelraouf, 2018] Abdelraouf, A. (2018). Using synthetic data for classification of
small parts. Master’s thesis, Technische Universität München, Germany.

[Ahuja and Khamba, 2008] Ahuja, I. P. S. and Khamba, J. S. (2008). Total productive
maintenance: literature review and directions. International Journal of Quality &
Reliability Management, 25(7):709–756.

[Akata et al., 2015] Akata, Z., Reed, S., Walter, D., Lee, H., and Schiele, B. (2015).
Evaluation of output embeddings for fine-grained image classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2927–
2936.

[Amari et al., 1996] Amari, S.-i., Cichocki, A., and Yang, H. H. (1996). A new learning
algorithm for blind signal separation. In Advances in neural information processing
systems, pages 757–763.

[Amhaz et al., 2015] Amhaz, R., Chambon, S., Idier, J., and Baltazart, V. (2015). Auto-
matic crack detection on 2d pavement images: An algorithm based on minimal path
selection, accepted to ieee trans. Intell. Transp. Syst.

[Aytekin et al., 2015] Aytekin, Ç., Rezaeitabar, Y., Dogru, S., and Ulusoy, I. (2015). Rail-
way fastener inspection by real-time machine vision. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 45(7):1101–1107.

[Azoff, 1974] Azoff, E. A. (1974). Borel measurability in linear algebra. Proceedings of
the American Mathematical Society, 42(2):346–350.

[Baur et al., 2018] Baur, C., Wiestler, B., Albarqouni, S., and Navab, N. (2018). Deep au-
toencoding models for unsupervised anomaly segmentation in brain mr images. arXiv
preprint arXiv:1804.04488.

[Bellman, 2013] Bellman, R. (2013). Dynamic programming. Courier Corporation.

[Bertinetto et al., 2016] Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., and
Torr, P. H. (2016). Fully-convolutional siamese networks for object tracking. In Euro-
pean conference on computer vision, pages 850–865. Springer.

173

Bibliography 174

[Birkeland, 2018] Birkeland, R. S. (2018). A multi-view cnn approach to classify bolts
and nuts in overhauling processes. Master’s thesis, Technische Universität München,
Germany.

[Biver et al., 2012] Biver, S., Fuqua, P., and Hunter, F. (2012). Light science and magic:
An introduction to photographic lighting. Routledge.

[Brachmann et al., 2016] Brachmann, E., Michel, F., Krull, A., Ying Yang, M., Gumhold,
S., et al. (2016). Uncertainty-driven 6d pose estimation of objects and scenes from a
single rgb image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3364–3372.

[Brégier et al., 2017] Brégier, R., Devernay, F., Leyrit, L., and Crowley, J. L. (2017).
Symmetry aware evaluation of 3d object detection and pose estimation in scenes of
many parts in bulk. In The IEEE International Conference on Computer Vision (ICCV).

[Breunig et al., 2000] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000).
Lof: identifying density-based local outliers. In ACM sigmod record, volume 29, pages
93–104. ACM.

[Bruegge and Dutoit, 1999] Bruegge, B. and Dutoit, A. A. (1999). Object-oriented soft-
ware engineering; conquering complex and changing systems. Prentice Hall PTR.

[Cha et al., 2017] Cha, Y.-J., Choi, W., and Büyüköztürk, O. (2017). Deep learning-based
crack damage detection using convolutional neural networks. Computer-Aided Civil
and Infrastructure Engineering, 32(5):361–378.

[Cha et al., 2018] Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S., and Büyüköztürk,
O. (2018). Autonomous structural visual inspection using region-based deep learning
for detecting multiple damage types. Computer-Aided Civil and Infrastructure Engi-
neering.

[Chai, 2015] Chai, Y. (2015). Advances in fine-grained visual categorization. PhD thesis,
Oxford University, UK.

[Chalapathy et al., 2018] Chalapathy, R., Menon, A. K., and Chawla, S. (2018). Anomaly
detection using one-class neural networks. arXiv preprint arXiv:1802.06360.

[Chan et al., 2015] Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., and Ma, Y. (2015).
Pcanet: A simple deep learning baseline for image classification. IEEE transactions
on image processing, 24(12):5017–5032.

[Chang et al., 2015] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang,
Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al. (2015). Shapenet: An
information-rich 3d model repository. arXiv preprint arXiv:1512.03012.

[Chen and Deng,] Chen, L. and Deng, J. Research on surface defects detection of stain-
less steel spoon based on machine vision. In 2018 Chinese Automation Congress
(CAC), pages 1096–1101. IEEE.

175 Bibliography

[Chen et al., 2017] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille,
A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis
and machine intelligence, 40(4):834–848.

[Chen et al., 2018] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H.
(2018). Encoder-decoder with atrous separable convolution for semantic image seg-
mentation. In Proceedings of the European conference on computer vision (ECCV),
pages 801–818.

[Chen et al., 2019] Chen, N., Sun, J., Wang, X., Huang, Y., Li, Y., and Guo, C. (2019).
Research on surface defect detection and grinding path planning of steel plate based
on machine vision. In 2019 14th IEEE Conference on Industrial Electronics and Ap-
plications (ICIEA), pages 1748–1753. IEEE.

[Ciang et al., 2008] Ciang, C. C., Lee, J.-R., and Bang, H.-J. (2008). Structural health
monitoring for a wind turbine system: a review of damage detection methods. Mea-
surement Science and Technology, 19(12):122001.

[Cubuk et al., 2018] Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V.
(2018). Autoaugment: Learning augmentation policies from data. arXiv preprint
arXiv:1805.09501.

[Danielczuk et al., 2018] Danielczuk, M., Mahler, J., Correa, C., and Goldberg, K.
(2018). Linear push policies to increase grasp access for robot bin picking. In 2018
IEEE 14th International Conference on Automation Science and Engineering (CASE),
pages 1249–1256. IEEE.

[Danielczuk et al., 2019] Danielczuk, M., Matl, M., Gupta, S., Li, A., Lee, A., Mahler,
J., and Goldberg, K. (2019). Segmenting unknown 3d objects from real depth im-
ages using mask r-cnn trained on synthetic data. In 2019 International Conference on
Robotics and Automation (ICRA), pages 7283–7290. IEEE.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
(2009). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee.

[Dieter Schraft and Ledermann, 2003] Dieter Schraft, R. and Ledermann, T. (2003). In-
telligent picking of chaotically stored objects. Assembly Automation, 23(1):38–42.

[Do et al., 2018] Do, T.-T., Cai, M., Pham, T., and Reid, I. (2018). Deep-6dpose: Recov-
ering 6d object pose from a single rgb image. arXiv preprint arXiv:1802.10367.

[Drost et al., 2017] Drost, B., Ulrich, M., Bergmann, P., Hartinger, P., and Steger, C.
(2017). Introducing mvtec itodd-a dataset for 3d object recognition in industry. In
Proceedings of the IEEE International Conference on Computer Vision Workshops,
pages 2200–2208.

Bibliography 176

[Dutta and Zisserman, 2019] Dutta, A. and Zisserman, A. (2019). The via annotation
software for images, audio and video. arXiv preprint arXiv:1904.10699, 5.

[D’Avella et al., 2020] D’Avella, S., Tripicchio, P., and Avizzano, C. A. (2020). A study
on picking objects in cluttered environments: Exploiting depth features for a custom
low-cost universal jamming gripper. Robotics and Computer-Integrated Manufactur-
ing, 63:101888.

[Endrenyi et al., 2001] Endrenyi, J., Aboresheid, S., Allan, R., Anders, G., Asgarpoor, S.,
Billinton, R., Chowdhury, N., Dialynas, E., Fipper, M., Fletcher, R., et al. (2001). The
present status of maintenance strategies and the impact of maintenance on reliability.
IEEE Transactions on power systems, 16(4):638–646.

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and
Zisserman, A. (2010). The pascal visual object classes (voc) challenge. International
journal of computer vision, 88(2):303–338.

[Feng et al., 2013] Feng, H., Jiang, Z., Xie, F., Yang, P., Shi, J., and Chen, L. (2013). Au-
tomatic fastener classification and defect detection in vision-based railway inspection
systems. IEEE transactions on instrumentation and measurement, 63(4):877–888.

[Ferguson et al., 2018] Ferguson, M., Ak, R., Lee, Y.-T. T., and Law, K. H. (2018). De-
tection and segmentation of manufacturing defects with convolutional neural networks
and transfer learning. arXiv preprint arXiv:1808.02518.

[Fugate et al., 2001] Fugate, M. L., Sohn, H., and Farrar, C. R. (2001). Vibration-based
damage detection using statistical process control. Mechanical Systems and Signal
Processing, 15(4):707–721.

[Georgakis et al., 2017] Georgakis, G., Mousavian, A., Berg, A. C., and Kosecka, J.
(2017). Synthesizing training data for object detection in indoor scenes. arXiv preprint
arXiv:1702.07836.

[Géron, 2019] Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras
and TensorFlow: concepts, tools, and techniques to build intelligent systems. ”
O’Reilly Media, Inc.”.

[Giben et al., 2015] Giben, X., Patel, V. M., and Chellappa, R. (2015). Material classi-
fication and semantic segmentation of railway track images with deep convolutional
neural networks. In Image Processing (ICIP), 2015 IEEE International Conference
on, pages 621–625. IEEE.

[Gibert et al., 2015] Gibert, X., Patel, V. M., and Chellappa, R. (2015). Robust fastener
detection for autonomous visual railway track inspection. In 2015 IEEE Winter Con-
ference on Applications of Computer Vision, pages 694–701. IEEE.

[Girshick, 2015] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 1440–1448.

177 Bibliography

[Girshick et al., 2014] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich
feature hierarchies for accurate object detection and semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
580–587.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
(2016). Deep learning, volume 1. MIT press Cambridge.

[Grau, 2003] Grau, O. (2003). Virtual Art: from illusion to immersion. MIT press.

[Gu et al., 2017] Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). Deep reinforce-
ment learning for robotic manipulation with asynchronous off-policy updates. In 2017
IEEE international conference on robotics and automation (ICRA), pages 3389–3396.
IEEE.

[Gupta et al., 2014] Gupta, M., Müller, J., and Sukhatme, G. S. (2014). Using manip-
ulation primitives for object sorting in cluttered environments. IEEE transactions on
Automation Science and Engineering, 12(2):608–614.

[He et al., 2017] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages 2961–
2969.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

[Hema et al., 2007] Hema, C. R., Paulraj, M., Nagarajan, R., and Sazali, Y. (2007). Seg-
mentation and location computation of bin objects. International Journal of Advanced
Robotic Systems, 4(1):9.

[Hinton, 1992] Hinton, G. E. (1992). How neural networks learn from experience. Sci-
entific American, 267(3):144–151.

[Holland, 2008] Holland, S. M. (2008). Principal components analysis (pca). Department
of Geology, University of Georgia, Athens, GA, pages 30602–2501.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural networks, 2(5):359–366.

[Huang et al., 2008] Huang, G. B., Mattar, M., Berg, T., and Learned-Miller, E. (2008).
Labeled faces in the wild: A database forstudying face recognition in unconstrained
environments.

[Jardine and Tsang, 2005] Jardine, A. K. and Tsang, A. H. (2005). Maintenance, re-
placement, and reliability: theory and applications. CRC press.

[Jolliffe, 2011] Jolliffe, I. (2011). Principal component analysis. Springer.

Bibliography 178

[Kalashnikov et al., 2018] Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A.,
Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, V., et al. (2018). Qt-
opt: Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293.

[Kanezaki et al., 2018] Kanezaki, A., Matsushita, Y., and Nishida, Y. (2018). Rotation-
net: Joint object categorization and pose estimation using multiviews from unsuper-
vised viewpoints. In Proceedings of IEEE International Conference on Computer Vi-
sion and Pattern Recognition (CVPR).

[Karakasis et al., 2015] Karakasis, E. G., Amanatiadis, A., Gasteratos, A., and
Chatzichristofis, S. A. (2015). Image moment invariants as local features for con-
tent based image retrieval using the bag-of-visual-words model. Pattern Recognition
Letters, 55:22–27.

[Karras et al., 2019] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila,
T. (2019). Analyzing and improving the image quality of stylegan. arXiv preprint
arXiv:1912.04958.

[Khosla et al., 2011] Khosla, A., Jayadevaprakash, N., Yao, B., and Li, F.-F. (2011).
Novel dataset for fine-grained image categorization: Stanford dogs. In Proc. CVPR
Workshop on Fine-Grained Visual Categorization (FGVC), volume 2.

[Kim et al., 2012] Kim, K., Kim, J., Kang, S., Kim, J., and Lee, J. (2012). Vision-based
bin picking system for industrial robotics applications. In 2012 9th International Con-
ference on Ubiquitous Robots and Ambient Intelligence (URAI), pages 515–516. IEEE.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.

[Kleeberger et al., 2019] Kleeberger, K., Landgraf, C., and Huber, M. F. (2019). Large-
scale 6d object pose estimation dataset for industrial bin-picking. arXiv preprint
arXiv:1912.12125.

[Koch et al., 2015] Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese neural
networks for one-shot image recognition. In ICML deep learning workshop, volume 2.

[Koterba et al., 2005] Koterba, S. C., Baker, S., Matthews, I., Hu, C., Xiao, J., Cohn,
J., and Kanade, T. (2005). Multi-view aam fitting and camera calibration. In Proc.
International Conference on Computer Vision, volume 1, pages 511 – 518.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Ima-
genet classification with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

179 Bibliography

[Lampe et al., 2004] Lampe, M., Strassner, M., and Fleisch, E. (2004). A ubiquitous
computing environment for aircraft maintenance. In Proceedings of the 2004 ACM
symposium on Applied computing, pages 1586–1592. ACM.

[Laptev et al., 2016] Laptev, D., Savinov, N., Buhmann, J. M., and Pollefeys, M. (2016).
Ti-pooling: transformation-invariant pooling for feature learning in convolutional neu-
ral networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 289–297.

[Latorella and Prabhu, 2000] Latorella, K. A. and Prabhu, P. V. (2000). A review of hu-
man error in aviation maintenance and inspection. International Journal of industrial
ergonomics, 26(2):133–161.

[Levine et al., 2018] Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D.
(2018). Learning hand-eye coordination for robotic grasping with deep learning and
large-scale data collection. The International Journal of Robotics Research, 37(4-
5):421–436.

[Li et al., 2014] Li, M., Zhang, T., Chen, Y., and Smola, A. J. (2014). Efficient mini-
batch training for stochastic optimization. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 661–670.
ACM.

[Li et al., 2002] Li, Q., Wang, M., and Gu, W. (2002). Computer vision based system for
apple surface defect detection. Computers and electronics in agriculture, 36(2-3):215–
223.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer.

[Liu et al., 2008] Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In
2008 Eighth IEEE International Conference on Data Mining, pages 413–422. IEEE.

[Liu and Kang, 2017] Liu, K. and Kang, G. (2017). Multiview convolutional neural net-
works for lung nodule classification. International Journal of Imaging Systems and
Technology, 27(1):12–22.

[Liu et al., 2012] Liu, M.-Y., Tuzel, O., Veeraraghavan, A., Taguchi, Y., Marks, T. K., and
Chellappa, R. (2012). Fast object localization and pose estimation in heavy clutter for
robotic bin picking. The International Journal of Robotics Research, 31(8):951–973.

[Liu et al., 2016] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and
Berg, A. C. (2016). Ssd: Single shot multibox detector. In European conference on
computer vision, pages 21–37. Springer.

Bibliography 180

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3431–3440.

[Mahler et al., 2017] Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea,
J. A., and Goldberg, K. (2017). Dex-net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312.

[Maji et al., 2013] Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi, A. (2013).
Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151.

[Marx and Graeber, 1994] Marx, D. A. and Graeber, R. C. (1994). Human error in air-
craft maintenance. Aviation psychology in practice, pages 87–104.

[Masci et al., 2012] Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., and Fricout, G.
(2012). Steel defect classification with max-pooling convolutional neural networks.
In Neural Networks (IJCNN), The 2012 International Joint Conference on, pages 1–6.
IEEE.

[McCarthy et al., 2013] McCarthy, C., Feng, D., and Barnes, N. (2013). Augmenting
intensity to enhance scene structure in prosthetic vision. In 2013 IEEE international
conference on multimedia and expo workshops (ICMEW), pages 1–6. IEEE.

[Mery et al., 2015] Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar,
I., Lobel, H., and Carrasco, M. (2015). Gdxray: The database of x-ray images for
nondestructive testing. Journal of Nondestructive Evaluation, 34(4):42.

[Michaels, 2008] Michaels, J. E. (2008). Detection, localization and characterization of
damage in plates with an in situ array of spatially distributed ultrasonic sensors. Smart
Materials and Structures, 17(3):035035.

[Mobley, 2002] Mobley, R. K. (2002). An introduction to predictive maintenance. Else-
vier.

[Moubray, 2001] Moubray, J. (2001). Reliability-centered maintenance. Industrial Press
Inc.

[Nilsback and Zisserman, 2006] Nilsback, M.-E. and Zisserman, A. (2006). A visual
vocabulary for flower classification. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 1447–1454.
IEEE.

[Noh et al., 2015] Noh, H., Hong, S., and Han, B. (2015). Learning deconvolution net-
work for semantic segmentation. In Proceedings of the IEEE international conference
on computer vision, pages 1520–1528.

[Palzkill and Verl, 2012] Palzkill, M. and Verl, A. (2012). Object pose detection in in-
dustrial environment. In ROBOTIK 2012; 7th German Conference on Robotics, pages
1–5. VDE.

181 Bibliography

[Pan and Yang, 2009] Pan, S. J. and Yang, Q. (2009). A survey on transfer learning.
IEEE Transactions on knowledge and data engineering, 22(10):1345–1359.

[Park et al., 2016] Park, J.-K., Kwon, B.-K., Park, J.-H., and Kang, D.-J. (2016). Ma-
chine learning-based imaging system for surface defect inspection. International Jour-
nal of Precision Engineering and Manufacturing-Green Technology, 3(3):303–310.

[Parkhi et al., 2012] Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C. (2012).
Cats and dogs. In 2012 IEEE conference on computer vision and pattern recognition,
pages 3498–3505. IEEE.

[Peng et al., 2015] Peng, X., Sun, B., Ali, K., and Saenko, K. (2015). Learning deep
object detectors from 3d models. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1278–1286.

[ping Tian et al., 2013] ping Tian, D. et al. (2013). A review on image feature extraction
and representation techniques. International Journal of Multimedia and Ubiquitous
Engineering, 8(4):385–396.

[Qi et al., 2017] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 652–660.

[Rajpura et al., 2017] Rajpura, P. S., Bojinov, H., and Hegde, R. S. (2017). Object detec-
tion using deep cnns trained on synthetic images. arXiv preprint arXiv:1706.06782.

[Redmon and Farhadi, 2018] Redmon, J. and Farhadi, A. (2018). Yolov3: An incremen-
tal improvement. arXiv preprint arXiv:1804.02767.

[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: To-
wards real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors. nature, 323(6088):533.

[Russakovsky et al., 2015a] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-
Fei, L. (2015a). ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252.

[Russakovsky et al., 2015b] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015b). Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252.

[Saenko et al., 2010] Saenko, K., Kulis, B., Fritz, M., and Darrell, T. (2010). Adapting
visual category models to new domains. In European conference on computer vision,
pages 213–226. Springer.

Bibliography 182

[Sarkar et al., 2017] Sarkar, K., Varanasi, K., Stricker, D., Sarkar, K., Varanasi, K., and
Stricker, D. (2017). Trained 3d models for cnn based object recognition. In VISI-
GRAPP (5: VISAPP), pages 130–137.

[Schlegl et al., 2017] Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U.,
and Langs, G. (2017). Unsupervised anomaly detection with generative adversarial
networks to guide marker discovery. In International Conference on Information Pro-
cessing in Medical Imaging, pages 146–157. Springer.

[Schölkopf et al., 2000] Schölkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor,
J., and Platt, J. C. (2000). Support vector method for novelty detection. In Advances
in neural information processing systems, pages 582–588.

[Schwarz et al., 2018] Schwarz, M., Milan, A., Periyasamy, A. S., and Behnke, S. (2018).
Rgb-d object detection and semantic segmentation for autonomous manipulation in
clutter. The International Journal of Robotics Research, 37(4-5):437–451.

[Schönfeld, 2018] Schönfeld, R. (2018). Automatic detection of damaged small parts
during overhauling processes. Master’s thesis, Technische Universität München, Ger-
many.

[Selvaraju et al., 2017] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh,
D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, pages 618–626.

[Senthikumar et al., 2014] Senthikumar, M., Palanisamy, V., and Jaya, J. (2014). Metal
surface defect detection using iterative thresholding technique. In Second International
Conference on Current Trends In Engineering and Technology-ICCTET 2014, pages
561–564. IEEE.

[Simonyan et al., 2014] Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Learning
local feature descriptors using convex optimisation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(8):1573–1585.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very
deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

[Singh et al., 2014] Singh, A., Sha, J., Narayan, K. S., Achim, T., and Abbeel, P. (2014).
Bigbird: A large-scale 3d database of object instances. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 509–516. IEEE.

[Sironi et al., 2018] Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., and Benosman,
R. (2018). Hats: Histograms of averaged time surfaces for robust event-based object
classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1731–1740.

183 Bibliography

[Smith et al., 2017] Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V. (2017). Don’t
decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489.

[Song and Yan, 2013] Song, K. and Yan, Y. (2013). A noise robust method based on com-
pleted local binary patterns for hot-rolled steel strip surface defects. Applied Surface
Science, 285:858–864.

[Spenrath et al., 2013] Spenrath, F., Palzkill, M., Pott, A., and Verl, A. (2013). Object
recognition: Bin-picking for industrial use. In IEEE ISR 2013, pages 1–3. IEEE.

[Stanchev et al., 2003] Stanchev, P., Green Jr, D., and Dimitrov, B. (2003). High level
color similarity retrieval.

[Su et al., 2015] Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. (2015). Multi-
view convolutional neural networks for 3d shape recognition. In Proceedings of the
IEEE international conference on computer vision, pages 945–953.

[Sudakov et al., 2008] Sudakov, S., Barinova, O., Velizhev, A., and Konushin, A. (2008).
Semantic segmentation of road images based on cascade classifiers. In Proceedings of
the ISPRS XXI Congress, pages 601–604.

[Szegedy et al., 2017] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017).
Inception-v4, inception-resnet and the impact of residual connections on learning. In
AAAI, volume 4, page 12.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9.

[Szegedy et al., 2016] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z.
(2016). Rethinking the inception architecture for computer vision. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2818–2826.

[Szegedy et al., 2013] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I., and Fergus, R. (2013). Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199.

[Tabernik et al., 2019] Tabernik, D., Šela, S., Skvarč, J., and Skočaj, D. (2019).
Segmentation-Based Deep-Learning Approach for Surface-Defect Detection. Journal
of Intelligent Manufacturing.

[Taheritanjani,] Taheritanjani, S. Overhaulinginspection.

[Taheritanjani et al., 2019a] Taheritanjani, S., Haladjian, J., and Bruegge, B. (2019a).
Fine-grained visual categorization of fasteners in overhaul processes. In 2019 5th Inter-
national Conference on Control, Automation and Robotics (ICCAR), pages 241–248.
IEEE.

Bibliography 184

[Taheritanjani et al., 2020] Taheritanjani, S., Haladjian, J., Neumaier, T., Hodaie, Z., and
Bruegge, B. (2020). 2d orientation and grasp point computation for bin picking in
overhaul processes.

[Taheritanjani et al., 2019b] Taheritanjani, S., Schoenfeld, R., and Bruegge, B. (2019b).
Automatic damage detection of fasteners in overhaul processes. pages 241–248.

[Taylor et al., 2011] Taylor, G. W., Spiro, I., Bregler, C., and Fergus, R. (2011). Learning
invariance through imitation. In CVPR 2011, pages 2729–2736. IEEE.

[Taylor and Stone, 2009] Taylor, M. E. and Stone, P. (2009). Transfer learning for re-
inforcement learning domains: A survey. Journal of Machine Learning Research,
10(Jul):1633–1685.

[Teer and Salem, 1977] Teer, D. and Salem, F. (1977). The formation of low friction
wear-resistant surfaces on titanium by ion plating. Thin Solid Films, 45(3):583–589.

[Trost, 1986] Trost, J. E. (1986). Statistically nonrepresentative stratified sampling: A
sampling technique for qualitative studies. Qualitative sociology, 9(1):54–57.

[Tsai et al., 2007] Tsai, M.-F., Liu, T.-Y., Qin, T., Chen, H.-H., and Ma, W.-Y. (2007).
Frank: a ranking method with fidelity loss. In Proceedings of the 30th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pages 383–390. ACM.

[Uijlings et al., 2013] Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeulders,
A. W. (2013). Selective search for object recognition. International journal of com-
puter vision, 104(2):154–171.

[Usman and Rajpoot, 2017] Usman, K. and Rajpoot, K. (2017). Brain tumor classifica-
tion from multi-modality mri using wavelets and machine learning. Pattern Analysis
and Applications, 20(3):871–881.

[Vinzenz, 2020] Vinzenz, L. M. (2020). Automatic Damage Detection on Metallic Sur-
faces. Bachelor’s thesis, Technische Universität München, Germany.

[Vogel-Heuser et al., 2017] Vogel-Heuser, B., Bauernhansl, T., and Ten Hompel, M.
(2017). Handbuch industrie 4.0 bd. 4. Allgemeine Grundlagen, 2.

[Vogel-Heuser et al., 2014] Vogel-Heuser, B., Diedrich, C., Fay, A., Jeschke, S.,
Kowalewski, S., Wollschlaeger, M., et al. (2014). Challenges for software engineering
in automation. Journal of Software Engineering and Applications, 2014.

[Vogel-Heuser and Hess, 2016] Vogel-Heuser, B. and Hess, D. (2016). Guest editorial
industry 4.0–prerequisites and visions. IEEE Transactions on Automation Science and
Engineering, 13(2):411–413.

185 Bibliography

[Wan et al., 2013] Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013).
Regularization of neural networks using dropconnect. In International Conference on
Machine Learning, pages 1058–1066.

[Wang et al., 2017] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang,
X., and Tang, X. (2017). Residual attention network for image classification. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3156–3164.

[Wang et al., 2014] Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J.,
Chen, B., and Wu, Y. (2014). Learning fine-grained image similarity with deep rank-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1386–1393.

[Wang et al., 2018] Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., and Cot-
trell, G. (2018). Understanding convolution for semantic segmentation. In 2018 IEEE
winter conference on applications of computer vision (WACV), pages 1451–1460.
IEEE.

[Wei et al., 2018] Wei, Q., Ren, Y., Hou, R., Shi, B., Lo, J. Y., and Carin, L. (2018).
Anomaly detection for medical images based on a one-class classification. In Medical
Imaging 2018: Computer-Aided Diagnosis, volume 10575, page 105751M. Interna-
tional Society for Optics and Photonics.

[Wu et al., 2019] Wu, Y., Marks, T., Cherian, A., Chen, S., Feng, C., Wang, G., and
Sullivan, A. (2019). Unsupervised joint 3d object model learning and 6d pose estima-
tion for depth-based instance segmentation. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 0–0.

[Wu et al., 2015] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J.
(2015). 3d shapenets: A deep representation for volumetric shapes. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1912–1920.

[Xuan et al., 2017] Xuan, Q., Fang, B., Liu, Y., Wang, J., Zhang, J., Zheng, Y., and Bao,
G. (2017). Automatic pearl classification machine based on a multistream convolu-
tional neural network. IEEE Transactions on Industrial Electronics, 65(8):6538–6547.

[Yang et al., 2012] Yang, S., Bo, L., Wang, J., and Shapiro, L. G. (2012). Unsupervised
template learning for fine-grained object recognition. In Advances in neural informa-
tion processing systems, pages 3122–3130.

[Yangping et al., 2018] Yangping, W., Shaowei, X., Zhengping, Z., Yue, S., and Zheng-
hai, Z. (2018). Real-time defect detection method for printed images based on
grayscale and gradient differences. Journal of Engineering Science & Technology Re-
view, 11(1).

[Yin, 2011] Yin, R. K. (2011). Applications of case study research. sage.

Bibliography 186

[Yu, 2020] Yu, H. (2020). Sorting fasteners based on their similarity using siamese net-
works. Master’s thesis, Technische Universität München, Germany.

[Zeiler, 2012] Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701.

[Zeiler and Fergus, 2014] Zeiler, M. D. and Fergus, R. (2014). Visualizing and under-
standing convolutional networks. In European conference on computer vision, pages
818–833. Springer.

[Zhang and Lu, 2004] Zhang, D. and Lu, G. (2004). Review of shape representation and
description techniques. Pattern recognition, 37(1):1–19.

[Zhu et al., 2016] Zhu, Z., Wang, X., Bai, S., Yao, C., and Bai, X. (2016). Deep learning
representation using autoencoder for 3d shape retrieval. Neurocomputing, 204:41–50.

[Zilly et al., 2015] Zilly, J. G., Buhmann, J. M., and Mahapatra, D. (2015). Boosting
convolutional filters with entropy sampling for optic cup and disc image segmenta-
tion from fundus images. In International workshop on machine learning in medical
imaging, pages 136–143. Springer.

	abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Hypotheses
	Rating and Scope
	Outline

	Background
	Basics of Computer Vision
	 Contour Detection
	Image Moment
	Dimensionality Reduction

	Basics of Deep Neural Networks
	Artificial Neurons
	Multilayer Perceptron
	Activation Functions
	Loss Functions
	Layers
	Training a Network

	Convolutional Neural Networks
	Classification
	Multi-view Convolutional Neural Networks
	Rotation Net
	Siamese Networks
	Object Detection
	Object Segmentation

	Unsupervised Techniques for Anomaly Detection
	Autoencoder
	One-class Support Vector Machine
	Isolation Forest
	Local Outlier Factor

	Evaluation Metrics

	PPIC: Platform for Parts Image Capturing
	Industrial Parts Characteristics and Challenges
	PPIC
	PPIC Configurations

	Damage Identification
	Damage Detection of Fasteners
	Dataset Collection
	Methods
	Results and Discussion

	Surface Damage Detection
	Data Collection
	Methods
	Evaluation and Results
	Discussion

	Sorting the Fasteners based on their Similarity
	Data Collection
	Training and Evaluation
	Results and Discussion

	Fine-grained Visual Categorization of Fasteners
	Single-view Classification
	Dataset Creation
	Training and Evaluation
	Results and Discussion

	Multi-view Classification
	Dataset Creation
	Training and Evaluation
	Results and Discussion

	Using Synthetic Data for Classification
	Dataset Creation
	Training
	Results and Discussion

	Bin Picking
	Bin Picking on Uniform Background
	Data Collection
	Method
	Evaluation
	Results and Discussion

	Bin Picking on Non-uniform Background
	Dataset Creation
	Model Training
	Method
	Evaluation
	Results and Discussion

	Validation
	SPARCS
	Scenarios
	SPARCS Platform
	Results

	SUMA
	Scenarios
	SUMA Platform
	Evaluation and Results

	Benchmark Preparation
	Comparison and Discussions
	Threats To Validity

	Contributions and Future Work
	Contributions
	Future Work

	Appendix Acronyms
	Appendix Copyrights
	Appendix Datasets
	List of Figures
	List of Tables
	Bibliography

