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We report a measurement of time-dependent CP violation in B0 → K0
Sπ

0π0 decays using a data sample
of 772 × 106 BB̄ pairs collected by the Belle experiment running at the ϒð4SÞ resonance at the KEKB
eþe− collider. This decay proceeds mainly via a b → sdd̄ “penguin” amplitude. The results are sin 2ϕeff

1 ¼
0.92þ0.27

−0.31 (stat.) �0.11 (syst.) and A ¼ 0.28� 0.21 (stat.) �0.04 (syst.), which are the most precise
measurements of CP violation in this decay mode to date. The value for the CP-violating parameter
sin 2ϕeff

1 is consistent with that obtained using decay modes proceeding via a b → cc̄s “tree” amplitude.

DOI: 10.1103/PhysRevD.99.011102

In the Standard Model (SM), CP violation in the quark
sector is induced by a complex phase in the Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing matrix [1]. At
ϒð4SÞ → BB̄ transitions, for neutral Bmeson decays into a
CP eigenstate produced, the decay rate has a time depend-
ence [2,3]

PðΔt; qÞ ¼ e−jΔtj=τB0

4τB0

× ð1þ q½S sinðΔmdΔtÞ þA cosðΔmdΔtÞ�Þ;
ð1Þ

where S and A are CP-violating parameters; q ¼ 1 for B̄0

decays and −1 for B0 decays; Δt is the difference in decay
times of the B0 and B̄0 mesons; Δmd is the mass difference
between the two mass eigenstates of the B0 − B̄0 system;
and τB0 is the B0 lifetime. As the B0 → K0

Sπ
0π0 decays

proceed mainly via a b → sdd̄ “penguin” amplitude,
and the final state is CP even [4], the SM expectation is
S ≈ − sin 2ϕ1 and A ≈ 0, where ϕ1 ¼ arg½ð−VcdV�

cbÞ=
ðVtdV�

tbÞ� [5]. Deviations from these expectations could
indicate new physics. The value of sin 2ϕ1 is well measured
using decays proceeding via a b → cc̄s tree amplitude, and
thus comparing our measurement of sin 2ϕeff

1 to the b →
cc̄s value [6,7] provides a test of the SM [8]. We note that
there is a b → uūs tree amplitude that also contributes to
B0 → K0

Sπ
0π0 decays and can shift ϕeff

1 from ϕ1; however,
this amplitude is doubly Cabibbo suppressed, and thus the
resulting shift is very small [9]. Previously, the BABAR
experiment studied this decay and measured sin 2ϕeff

1 ¼
−0.72� 0.71� 0.08 [10]; here we present the first such
measurement from the Belle experiment using a data
sample 3.4 times larger than that of BABAR.
The Belle detector is a large-solid-angle magnetic spec-

trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-like

arrangement of time-of-flight scintillation counters (TOF),
and an electromagnetic calorimeter comprised of CsI(Tl)
crystals (ECL) located inside a superconducting solenoid
coil that provides a 1.5 T magnetic field. An iron flux-return
located outside the coil is instrumented to detect K0

L mesons
and to identify muons (KLM). The detector is described in
detail elsewhere [11]. Two inner detector configurations
were used. A 2.0 cm radius beampipe and a 3-layer silicon
vertex detector was used for the first sample of 152 × 106BB̄
pairs, while a 1.5 cm radius beampipe, a 4-layer silicon
detector and a small-cell inner drift chamber were used to
record the remaining 620 × 106BB̄ pairs [12].
Due to the asymmetric energies of the eþ and e− beams,

the ϒð4SÞ is produced with a Lorentz boost of βγ ¼ 0.425
nearly parallel to the þz axis, which is defined as the
direction opposite the eþ beam. Since the B0B̄0 pair is
almost at rest in the ϒð4SÞ center-of-mass (CM) frame, the
decay time difference Δt can be determined from the
separation along z of the B0 and B̄0 decay vertices:
Δt ≈ ðzCP − ztagÞ=ðβγcÞ, where zCP and ztag are z-coordi-
nates of the decay positions of the B0 decaying to the CP
eigenstate and the other (tag-side), respectively. To recon-
struct the decay vertices without the presence of primary
charged tracks, we extrapolate the reconstructed K0

S
momentum back to the region of the interaction point
(IP) and use the IP profile in the transverse plane
(perpendicular to the z axis) as a constraint. This method
was used in a previous Belle analysis of B0 → K0

Sπ
0 decays

[13] and is described in detail in Ref. [14]. Compared to
B0 → K0

Sπ
0 decays, the K0

S in three-body B0 → K0
Sπ

0π0

decays has lower momentum and thus tends to decay closer
to the IP; this results in about a 20% larger yield of K0

S
decays to πþπ− inside the SVD volume with a correspond-
ingly higher vertex reconstruction efficiency and greater
precision in the B decay vertex position as discussed
in Ref. [4].
In the determination of the event selection, Monte Carlo

simulated events (MC) are used. For the signal, 1 million
events for each of nonresonant, K�ð892Þ0π0 and f0K0

S, all
of which decay into a K0

Sπ
0π0 final state, are generated

using the EVTGEN [15] event generator package. These
resonant states are also CP-eigenstates induced by same
diagram as the nonresonant decay. Using these MC
samples, all of the states are confirmed to be reconstructed
and not to be affected by the selections. For the
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background, a large number of BB̄ and qq̄ processes are
simulated. Interactions of the particles in the Belle detector
are reproduced using GEANT3 [16] with detector configu-
ration information in each time period of the experiment.
Candidate K0

S decays are selected using multivariate
analysis based on a neural network technique [17,18]. The
input variables to select displaced vertices are as follows:
the distance between two daughter pion tracks in the z
direction, the flight distance in the x-y plane, the angle
between the momentum of the πþπ− system and the K0

S
candidate’s vertex position vector with respect to the IP, and
the shortest distance between the IP and daughter tracks of
the K0

S candidate. In addition, we use the momenta of the
K0

S and π, the angle between the K0
S and π, and hit

information of daughters in the SVD and CDC. In this
analysis we require that candidates satisfy the selection
0.480 GeV=c2 < Mπþπ− < 0.516 GeV=c2, whereMπþπ− is
the reconstructed invariant mass of the charged pions. This
range corresponds to approximately 3σ in the resolution of
the mass.
Candidate π0 → γγ decays are reconstructed using pho-

ton candidates identified from ECL hits. We require that
Mγγ satisfy 0.115 GeV=c2 < Mγγ < 0.152 GeV=c2, which
corresponds to approximately 3σ in resolution. To improve
the π0 momentum resolution, we perform a mass-con-
strained fit to the two photons, assuming they originate
from the IP.
In the case of multiple B0 candidates in an event, we

select the candidate that combines the π0 of the smallest
mass-constrained fit χ2 value with the K0

S of the largest
value of the neural network output variable.
To identify the decay B0 → K0

Sπ
0π0, we define

two variables: the beam-constrained mass Mbc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEbeam=c2Þ2 − jp⃗CM
B =cj2

p

and the energy difference
ΔE≡ Ebeam − ECM

B , where p⃗CM
B and ECM

B are the B
momentum and energy, respectively, in the eþe− CM
frame. The quantity Ebeam is the beam energy in the CM
frame. The variables Mbc and ΔE for signal events peak at
the B0 mass and at zero, respectively, but have tails to lower
values due to lost energy in the π0 reconstruction.
To reject background BB̄ decays resulting in the K0

Sπ
0π0

final state, we define veto regions for the reconstructed
invariant masses MK0

Sπ
0 and Mπ0π0 . Decays B0 → D0X

and B0 → K0
Sπ

0 are rejected by vetoing the regions
1.77 GeV=c2 < MK0

Sπ
0 < 1.94 GeV=c2 and MK0

Sπ
0 >

4.8 GeV=c2, respectively, for both π0 candidates individu-
ally combined with the K0

S candidate. The veto region
for B0 → ðcc̄ÞK0

S is 2.8 GeV=c2 < Mπ0π0 < 3.6 GeV=c2,
where ðcc̄Þ is dominated by the charmoniummesons. Many
of the two-body decays of the B0 into a neutral meson and
K0

S are CP eigenstates. Among such decay modes, B0 →
η0K0

S becomes background if photons are not detected with

the decays of η0 → ηπþπ−, η → 2γ and K0
S → π0π0 so that

Mπ0π0 < 0.6 GeV=c2 is vetoed. In addition to those invari-
ant masses of intermediate states, the absolute value of the
cosine of the angle between the photons and the π0 boost
direction of the laboratory in the π0 rest frame is required to
be less than 0.9 to reject B → Xsγ decays, where Xs denotes
the hadronic state governed by a radiative penguin decay.
To suppress eþe− → qq̄ continuum background events,

a likelihood ratio Rs=b is calculated using modified Fox-
Wolfram moments [19,20] and the cosine of the angle
between the beam direction and B0 flight direction in the
CM frame, cos θB. Figure 1 shows the Rs=b distribution of
the signal and qq̄ MC. We impose a loose requirement
Rs=b > 0.50, which rejects 84% of continuum background
while retaining 90% of signal decays. We subsequently
include a probability density function (PDF) forRs=b when
fitting for the signal yield.
The vertex of the tag-side B is reconstructed from all

charged tracks in the event, except for the K0
S daughters,

using a vertex reconstruction algorithm described in
Ref. [21]. To determine the B0 flavor q, a multidimensional
likelihood-based method for inclusive properties of par-
ticles not associated with the signal B0 candidate is used
[22]. The quality of the flavor tagging result is expressed by
r, where r ¼ 0 corresponds to no flavor discrimination, and
r ¼ 1 corresponds to unambiguous flavor assignment.
Candidates with r ≤ 0.10 are not considered further for
CP violation measurement. The wrong tag fractions for
six r intervals, wlðl ¼ 1 − 6), and their differences between
B0 and B̄0 decays, Δwl, are determined from large
control samples of self-tagging B0 → D�−lþν, B0 →
Dð�Þ−hþðh ¼ π; ρÞ decays. The total effective tagging
efficiency defined as Σðfl × ð1 − 2wlÞ2Þ is determined to
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FIG. 1. Distribution of Rs=b, an event-shape-based likelihood
ratio, for signal and qq̄ MC illustrated by solid and broken lines,
respectively.
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be ð29.8� 0.4Þ%, where fl is the fraction of the events in
the lth interval.
After applying all selection criteria, the signal yield is

extracted from a three-dimensional unbinned maximum
likelihood fit to Mbc, ΔE, and Rs=b. For signal and BB̄
background, the PDFs are modeled as binned histograms
determined from MC simulation. A two-dimensional PDF
is used for Mbc and ΔE, taking into account the correlation
between these variables. The qq̄ background PDF for
Mbc is modeled by an ARGUS function [23], and that
for ΔE is modeled by a second-order polynomial function.
A binned histogram from the MC is used for the qq̄
background PDF of Rs=b. From the 43225 events in the
regions of Mbc > 5.2 GeV=c2, −0.25 GeV < ΔE <
0.25 GeV, and Rs=b > 0.5, the yields of signal, qq̄ and
BB̄ are found to be 335� 37, 38599� 262 and
4290� 190, respectively. Figure 2 shows the data distri-
bution in the signal-enhanced region Mbc > 5.27 GeV=c2,
−0.15 GeV < ΔE < 0.10 GeV, and Rs=b > 0.9, together
with the fit projections, where the selection requirement on
the plotted quantity is released.
To measure the CP violation parameters, an unbinned

maximum likelihood fit is performed for the Δt distribution
using q from the flavor tagging procedure and the signal
fraction evaluated from the signal extraction fit. The PDF
for the signal is set to take the form of Eq. (2) which is
obtained by modifying Eq. (1) for wrong tagging and
vertex resolution:

PðΔt; qÞ ¼ e−jΔtj=τB0

4τB0

ð1− qΔwþ ð1− 2wÞq½S sinðΔmdΔtÞ

þA cosðΔmdΔtÞ�Þ⊗ RðΔtÞ: ð2Þ

Here RðΔtÞ is a convolved resolution function consisting of
three components: the detector resolution for zCP and ztag
vertices, the shift of ztag due to secondary tracks, and the
kinematic approximation used in calculating Δt from the
vertex positions. These are determined using a large CP-
conserving sample of semileptonic and hadronic B decays.
For the background, which includes both qq̄ and BB̄, the
PDF is modeled as a combination of two Gaussian
functions and a delta function, as determined from the
sideband regions 5.20 GeV=c2 < Mbc < 5.26 GeV=c2,
−1.00 GeV < ΔE < −0.40 GeV and 0.20 GeV < ΔE <
0.50 GeV. τB and Δmd are fixed to world average values
[24]. For the resolution function RðΔtÞ, a broad Gaussian
function is included to account for a small outlier compo-
nent. The number of events within the three-dimensional
region of Mbc > 5.27 GeV=c2, −0.15 GeV < ΔE <
0.10 GeV and Rs=b > 0.5 with vertices and flavor infor-
mation is 964, and the purity is 11.4%. From fitting these
events we obtain S ¼ −0.92þ0.31

−0.27 and A ¼ 0.28� 0.21,
where the errors are statistical only. Figure 3 shows the Δt
distribution of each flavor together with the background.
The systematic uncertainties are summarized in Table I.

Systematic uncertainties originating from vertexing oppo-
site the CP side, flavor tagging, and fixed physics param-
eters, and tag-side interference [25] are estimated from
studying the large statistic data sample of the B0 → ðcc̄ÞK0
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variable displayed. The fit result is illustrated by the solid curve,
while the total and BB̄ backgrounds are shown by broken and
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analysis [6]. Uncertainty from vertex reconstruction using
K0

S including the resolution function is estimated using a
large control sample of B0 → J=ψK0

S decays. Fit bias is
estimated by fitting a large number of signal MC samples
and evaluating the resulting deviation compared to the input.
For the PDF shape, the uncertainty is estimated using a
smeared distribution. For parameters fixed in the fit, such as
the signal fraction and background Δt PDF, the uncertainties
are estimated by shifting these parameters by their errors and
refitting; the resulting changes in S and A are taken as the
systematic uncertainties. Including the systematic uncer-
tainty, we determine that sin 2ϕeff

1 ¼ 0.92þ0.27
−0.31 � 0.11 and

A ¼ 0.28� 0.21� 0.04, where the first and second errors
are statistic and systematic, respectively.
In summary, we measure CP violation parameters in the

decay B0 → K0
Sπ

0π0 using 772 × 106BB̄ pairs and obtain

S ¼ −0.92þ0.31
−0.27ðstatÞ � 0.11ðsystÞ;

A ¼ 0.28� 0.21ðstatÞ � 0.04ðsystÞ:

The result for S is consistent with the value measured from
decays mediated by a b → cc̄s transition, sin 2ϕ1 ¼
0.698� 0.017 [26]. The result for A is consistent with
zero, i.e., no direct CP violation, as expected in the SM.
This is the first result obtained by the Belle experiment
for this mode (and it is the third CP-even eigenstate from
b → sqq̄ transitions used by Belle for the sin 2ϕeff

1 meas-
urement after B0 → η0K0

L and B0 → ϕK0
L).
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TABLE I. Systematic uncertainties.

Δ sin 2ϕeff
1 ΔA

Vertexing �0.02 �0.01
Flavor tagging �0.004 �0.003
Resolution function �0.06 þ0.004

−0.003
Physics parameters �0.002 < 0.001
Fit bias �0.03 �0.02
Background fraction �0.02 �0.02
Background Δt �0.08 �0.02
Tag-side interference �0.001 �0.008
Total �0.11 �0.04
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