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We derive new positivity bounds for scattering amplitudes in theories with a massless graviton in the
spectrum in four spacetime dimensions, of relevance for the weak gravity conjecture and modified gravity
theories. The bounds imply that extremal black holes are self-repulsive, M=jQj < 1 in suitable units, and
that they are unstable to decay to smaller extremal black holes, providing an S-matrix proof of the weak
gravity conjecture. We also present other applications of our bounds to the effective field theory of weakly
broken Galileons, axions, and PðXÞ theories.
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Introduction.—The scattering matrix, or S matrix, is
undoubtedly one of the most important observables in
particle as well as gravitational physics, relating asymptotic
states at past and future infinity. It has long been known that
its general properties, unitarity, analyticity, and crossing
symmetry, imply dispersion relations between forward
elastic scattering amplitudes (i.e., at vanishing scattering
angle) and total cross sections. Such relations in turn yield
positivity bounds for amplitudes evaluated in the infrared
(IR), those measured in experiments. Dispersion relations
therefore provide nontrivial constraints on the operators’
coefficients in the effective field theories (EFTs) that are
used to calculate the amplitudes at low energy [1,2]. An
EFT with operators entering the action with the “wrong”
sign cannot arise as the low-energy limit of a consistent
ultraviolet (UV) theory satisfying the S-matrix axioms, and
thus it lives in the “swampland.” The proof of the a theorem
[3,4] is perhaps the prime example of an application of
these positivity bounds.
In this Letter, new amplitudes’ positivities are derived

for theories with a massless graviton in the spectrum,
despite the fact that the forward elastic 2-to-2 scattering is
universally singular due to graviton exchange in the t
channel. The new positivity bounds, and the way we
circumvent the graviton forward singularity, are extremely
important because they allow us to address the swampland
program of quantum gravity and modified gravity theories,
providing general and robust results.

As a notable application, we study the Einstein-Maxwell
theory, the low-energy EFT of an Abelian Uð1Þ gauge
theory coupled to gravity, and show that our positivity
bounds imply certain inequalities among its leading higher-
dimensional operators. Such operators are particularly
relevant in the context of black hole physics—they affect
the black hole’s extremality condition, the minimal mass
for which a charged black hole can exist. Our bounds imply
that extremal black holes of mass M and Uð1Þ charge Q
must satisfy

ffiffiffi
2

p
mPljQj=M > 1; thus they are self-repulsive

and no longer kinematically forbidden from decaying into
smaller extremal black holes. This result constitutes a proof
of (the mild form of) the celebrated weak gravity conjecture
(WGC) [5]: extremal black holes are themselves charged
states in the theory for which gravity is the weakest force.
Another interesting application of our bounds is on

weakly broken Galileons, hypothetical scalars whose
special properties make them very interesting candidates
for a modified theory of gravity. We show, however, that
these states have in fact a tiny cutoff if they are to originate
from a canonical microscopic S matrix, ΛUV < a few×
ðH3mPlÞ1=4 ∼ 1=ð107 kmÞ; i.e., their EFT breaks down at
energies orders of magnitude smaller than the scale
characterizing their interactions, the so-called strong cou-
pling scale Λ3 ¼ ðH2mPlÞ1=3 ∼ 1=ð103 kmÞ. Finally, we
comment on how the EFTs of axions and PðXÞ theories, of
relevance in cosmology, are also subject to our constraints.
Regulating the forward limit.—The forward elastic

amplitude of massless particles of polarizations zi is
dominated by the universal Coulomb singularity

Mz1z2ðs; t → 0Þ ¼ −
s2

m2
Plt

þOðsÞ ð1Þ
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because of the equivalence principle or, equivalently,
because of factorization of the amplitude at the pole into
the soft emission of an on-shell massless graviton, which
has universal strength given by the reduced Planck
mass mPl. Since the coefficient of s2 in Eq. (1) would enter
the dispersion relation in the forward limit for particles of
any spin zi [2], see Eq. (3), the naive application of the
Cauchy integral theorem toMz1z2ðs; t → 0Þ yields∞ ¼ ∞,
which is consistent, but admittedly not very informative.
However, this divergence is due to long-distance physics,
i.e., vanishing exchanged momentum, corresponding to the
graviton probing arbitrarily large macroscopic distances
even for large center-of-mass energy squared s. In any EFT
the presumption is that the IR physics is known; therefore,
one should be able to track and resolve the source of the
singularity. Indeed, we show below how to massage the
dispersion relation into an effective, regulated expression
∞−∞ ¼ finite > 0, returning something meaningful, free
of ambiguity and in fact of a definite sign, which can be used
for charting the swampland in gravitational theories.
The key observation is that theCoulomb singularity is due

to the infinite flat-space volume:we regulate it by putting the
system on a cylinder.We compactify one spatial direction on
a circle of length L, while the other three spacetime
dimensions remain flat and infinite. In this way we can
still scatter 3D asymptotic states while at the same time
getting rid of the Coulomb singularity. Indeed, there is no
propagating massless graviton inD ¼ 3, and hence no s2=t
term for any finite value of L [6]. The 4D graviton has not
fully disappeared though—rather it has left three propagat-
ing avatars: ĝMN → fσ; Vμ;KKmodesg, where σ is a mass-
less dilaton, Vμ a massless (Abelian) graviphoton, and the
Kaluza-Klein (KK) modes have massesm2

n ∼ n2=L2. In the
limit L → ∞, which we take at the end after isolating
the diverging terms, one recovers the 4D dynamics we are
interested in.
In the following we will be interested in scatte-

ring nongravitational massless states, for example, the
3D photon Aμ and the 3D scalar Φ that live inside the
4D photon ÂM, in the 4D Einstein-Maxwell theory reduced
to 3D. Since there is no 3D massless graviton and the states
are either gapped, nonpropagating, or equivalent to simple
scalars, we require a 3D Froissart-like bound

lim
s→∞

jMz1z2ðs; t ¼ 0Þ=s2j → 0; zi ¼ Φ; A; ð2Þ

where with a slight abuse of notation we are now using zi to
label the scattered 3D states. This is just the same
assumption of polynomial boundedness that one accepts
in 4D to derive dispersion relations and positivity bounds
for the coefficient of, e.g., ð∂πÞ4 or ðFμνFμνÞ2, when 4D
gravity is neglected or nondynamical [1,15].
Therefore, under exactly the usual assumptions that lead

to the familiar positivity bounds for systems of spin-0 and

spin-1 massless particles in 4D, and repeating similar steps
to those outlined in, for example, Ref. [2], we obtain a
(provisional) dispersion relation for our IR-regulated 4D
gravitational theory

az1z2 ¼ 2

π

Z
∞

0

ds
s3

ImMz1z2ðs; t ¼ 0Þ > 0; ð3Þ

where the low-energy scattering amplitude for the 3D states
zi is now regular in the forward elastic limit

Mz1z2ðs; t → 0Þ ¼ az1z2s2 þ � � � : ð4Þ

The dimensional reduction to 3D has left a universal
contribution from gravitational zero and KK modes. Each
KK mode gives

az1z2KK ∝
1

L2m4
PlmKK

∝
1

Lm4
Pljnj

; ð5Þ

where we used the fact that the nth KK-mode mass is
mKK ∝ jnjπ=L. While each such contribution is subleading
with respect to the terms that we want to bound in the
following sections, their sum is actually logarithmically
divergent. In addition, zero-mode loops generate s3=2 terms
in the amplitude, which dominate over the s2 terms at low
energy, seemingly swamping again the information about
az1z2 . In fact, these problems can be easily solved because the
right-hand side of the dispersion relation (3) reproduces the
same growth, so these otherwise large terms cancel out
between the two sides of Eq. (3). Indeed, since the integrand
itself in Eq. (3) is positive by the optical theorem, schemati-
cally ImMz1z2ðs;t¼0Þ¼P

xjMz1z2→xj2×ðphasespaceÞ, we
can move to the left-hand side any contribution from
intermediate states x in jMz1z2→xj2 and still get a positivity
bound due to the remaining set of intermediate states.
Specifically, we can move to the left-hand side the con-
tributions from the intermediate IR states, such as the KK
modes or anything that is calculablewithin the EFT (e.g., IR
loops, that is, the lightmultiparticle intermediate states). The
zero- and KK-mode contributions get subtracted and one is
left to calculate just the contact terms suppressed by the
cutoffΛUV, that is, those that are generated by integrating out
genuine UV states.
Just to illustrate this general point with a simple tree-

level example, let us consider ΦΦ → ΦΦ scattering with
the exchange of a scalar state S coupled to ð∂ΦÞ2,

MΦΦ
S ðs; tÞ ¼ −

2c
m2

PlL

�
s2

s −m2
S þ iϵ

þ crossing

�
; ð6Þ

where c is a fixed Oð1Þ number. This contributes to az1z2 in
Eq. (4) by an amount aΦΦ

S ¼ 4c=ðm2
PlLm

2
SÞ. The imaginary

part (associated with the production of S) is

PHYSICAL REVIEW LETTERS 123, 251103 (2019)

251103-2



ImMΦΦ
S ðs; t ¼ 0Þ ¼ 2πc

m2
PlL

m4
Sδðs −m2

SÞ þ � � � ; ð7Þ

precisely such that

aΦΦ
S −

2

π

Z
∞

0

ds
s3

ImMΦΦ
S ðs; t ¼ 0Þ ¼ 0; ð8Þ

as expected on general grounds.
The KK-mode contributions to az1z2 in Eq. (5) actually

arise at one loop, but the reasoning based on the optical
theorem is completely general and works as in the previous
example. This can be understood by discretizing the KK
branch cut in a series of poles. Likewise for the contribution
of the zero modes. The concrete details of how these
contributions are subtracted are given in the Supplemental
Material [7]. Here we note only that the KK modes, which
grow the “extra” dimension as seen from a low-energy 3D
observer, reproduce nicely the 4D universal gravitational
contribution to the renormalization group running of az1z2 .
Since we can subtract it, which amounts to setting the
renormalization scale at which az1z2 is evaluated at the
cutoff where UV and IR amplitudes are matched, our final
dispersion relation properly captures the UV physics that
we are interested in.
All in all, our provisional dispersion relation (3) is

rearranged into a much more informative expression

az1z2 − az1z2KK;IR ¼ 2

π

Z
∞

0

ds
s3

ImM̃z1z2ðs; t ¼ 0Þ > 0; ð9Þ

where M̃ is the amplitude with the aforementioned
gravitational zero- and KK-mode loop contributions sub-
tracted. The left-hand side is therefore obtained by taking
into account only the s2 contributions to the elastic z1z2
scattering due to the tree-level interactions with massless
particles such as the graviphoton and the dilaton, as well as
the UV generated contact terms. The two sides (factor L−1)

of the subtracted dispersion relation (9) are not only finite
for L → ∞ but also positive because of the optical theorem.
We note that removing the IR modes from the positivity
bound is always possible but is useful in practice only for
UV completions that are not strongly coupled at ΛUV,
because it would become murky to assign what is IR (KK)
and what is UV physics around the scale ΛUV. The
subtracted dispersion relation is instead sharp and useful
for weakly coupled UV completions.
Einstein-Maxwell EFT.—Let us focus on the important

example of the Einstein-Maxwell EFT, whose leading 4D
operators are

S ¼
Z

d4x
ffiffiffiffiffi
jĝj

p �
m2

Pl

2
R̂ −

1

4
F̂MNF̂MN þ α1

4m4
Pl

ðF̂MNF̂MNÞ2

þ α2
4m4

Pl

ð ˆ̃FMN
F̂MNÞ2 þ

α3
2m2

Pl

F̂ABF̂CDŴ
ABCD

�
; ð10Þ

where ŴABCD is the Weyl tensor and ˆ̃FMN ¼ ϵMNABF̂
AB=2.

The dependence on the UV scale ΛUV that generates the αi
is absorbed into their definitions. These are the most
general (parity preserving) four-derivative operators, up
to field redefinitions [17,18]. In order to regulate the 4D
forward limit and apply the positivity bounds (9), we
compactify the z direction as described in the previous
section,

dŝ24½ĝMN � ¼ eσds23½gμν� þ e−σðdzþ VμdxμÞ2; ð11Þ

ÂMdxM ¼ Aμdxμ þΦdz; ð12Þ

where all of the 3D fields are functions only of ðt; x; yÞ.
Focusing on terms which contribute to the s2 part of the
amplitude for ΦΦ → ΦΦ, AA → AA, and ΦA → ΦA only,
the terms in the action that we must retain are

S ¼ L
Z

d3x
ffiffiffiffiffiffi
−g

p �
m2

Pl

2

�
R −

1

2
ð∂σÞ2 − 1

4
V2

�
−
1

4
ð1 − σÞF2 −

1

2
ð1þ σÞð∂ΦÞ2 − 1

2
FμνVμνΦ

þ α1
4m4

Pl

ðF2 þ 2ð∂ΦÞ2Þ2 þ α2
m4

Pl

ðϵμνρFμν∂ρΦÞ2 þ α3
m4

Pl

�
FρμFρνFμσFνσ −

1

2
F4 − ð∂ΦÞ4 þ 1

2
F2ð∂ΦÞ2

�

−
α3
m2

Pl

ðFρμFρ
ν − ∂μΦ∂νΦÞ∇μ∇νσ −

α3
m2

Pl

Fμν∂ρΦð∇ρVμν þ gμρ∇αVναÞ
�
; ð13Þ

where F2 ¼ FμνFμν, and the same holds for V. To arrive
at this expression, we made a field redefinition
Aμ → Aμ þΦVμ to make gauge invariance manifest.
Since the gμν propagates no degrees of freedom in
D ¼ 3, we integrated it out, which is effectively equi-
valent to plugging the lowest-order equations of motion

Rμν − 1
2
gμνR ¼ Tμν=ðLm2

PlÞ into the interaction
terms, generating new contact terms. Finally, we made a
further field redefinition to remove interaction terms
with □σ.
The associated subtracted forward elastic scattering

amplitudes are
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M̃ðΦΦ → ΦΦÞðs; t ¼ 0Þ ¼ 2s2

m4
PlL

ð2α1 − α3Þ > 0; ð14Þ

M̃ðAA → AAÞðs; t ¼ 0Þ ¼ 2s2

m4
PlL

ð2α1 þ α3Þ > 0; ð15Þ

M̃ðΦA → ΦAÞðs; t ¼ 0Þ ¼ 4s2

m4
PlL

α2 > 0: ð16Þ

Therefore, the associated positivity bounds read

2α1 − α3 > 0; ð17Þ

2α1 þ α3 > 0; ð18Þ

α2 > 0; ð19Þ

or, equivalently, α1 > jα3j=2, α2 > 0. These new positivity
bounds are one of the main results of this Letter.
Remarkably, these bounds are stronger, meaning more

general, than just a pure 4D Euler-Heisenberg EFTwithout
gravity [1,2,19], and they carry extra information about α3,
which enters the black hole extremality condition, as we
discuss in the next section.
Moreover, our homogeneous bounds (17)–(19) are dis-

tinct from the order-of-magnitude causality bounds on
Oðjα3jÞ [19,20], which are derived while assuming
positivity of time delay and tree-level UV completion of
the Einstein-Maxwell Lagrangian. See also Refs. [20,21]
for a nice discussion of detectability of superluminal pro-
pagation within an EFT, and how the Euler-Heisenberg
Lagrangian limit of real-world QED avoids superlumin-
ality [22].
It is interesting to compare the bounds (17)–(19) with the

4D calculation of the same processes retaining the
Coulomb singularity in the t → 0 limit,

M↓↓
4D ¼ −

s2

m2
Plt

−
s
m2

Pl

þ 2s2ð2α1 − α3Þ
m4

Pl

; ð20Þ

M↑↑
4D ¼ −

s2

m2
Plt

−
s
m2

Pl

þ 2s2ð2α1 þ α3Þ
m4

Pl

; ð21Þ

M↑↓
4D ¼ −

s2

m2
Plt

−
s
m2

Pl

þ 4s2α2
m4

Pl

; ð22Þ

where the up and down arrows represent the two choices of
real linear polarizations (corresponding to crossing sym-
metric amplitudes [2,23]). The lesson is that our 4D-
regulated calculation, which works with 3D Lorentz
invariance of the cylinder, teaches us which finite parts
we are allowed to retain for the positivity bounds: throw
away the s2=t singularity, the finite OðsÞ term, but retain
precisely the Oðs2Þ term.

This immediately prompts us to expect a continuous set
of positivity bounds associated with arbitrary linear polar-
izations jc1;2i ¼ ðcθ1;2 j↑1;2i þ sθ1;2 j↓1;2iÞ, namely,

α3ðc2θ1 þ c2θ2Þ þ 4α1c2θ1þθ2
þ 4α2s2θ1þθ2

> 0; ð23Þ

where cθ ¼ cos θ and sθ ¼ sin θ.
WGC and extremal black holes.—The leading

higher-dimensional corrections αi in the 4D Einstein-
Maxwell EFT (10) modify the black hole extremality
condition to [24]

� ffiffiffi
2

p jQj
M=mPl

�
extr

¼ 1þ 4

5

ð4πÞ2m2
Pl

M2
ð2α1 − α3Þ > 1; ð24Þ

whereM is the black hole mass andQ its charge (including
the gauge coupling), and we work around M ≃QmPl

ffiffiffi
2

p
.

Remarkably, on the right-hand side of this expression, one
finds the same combination, 2α1 − α3, bounded to be
positive by Eq. (17). Therefore, positivity bounds imply
a greater charge-to-mass ratio for extremal black holes than
in pure general relativity coupled minimally to an Abelian
Uð1Þ gauge theory. The lighter the extremal black hole, the
larger the charge-to-mass ratio. Extremal black holes within
the validity of the 4D EFT, i.e., whose Schwarzschild radius
rs ¼ M=4πm2

Pl is larger than 1=ΛUV, are therefore self-
repulsive.
The positivity bound (17) implies the mild form of the

WGC [5], which posits that a consistent theory of quantum
gravity must contain massive charged states in the spectrum
with jqj > m=ð ffiffiffi

2
p

mPlÞ: the extremal black holes of
Eq. (24) are such states. As a result, the paradox of stable
extremal black holes has evaporated since extremal black
holes are no longer kinematically forbidden to decay.
Indeed, an extremal black hole of mass M and charge Q
cannot decay into states that all have larger mass-to-charge
ratio since the spectrum of masses and charges ðmi; qiÞ is
constrained by M >

P
i mi and Q ¼ P

i qi, whereasP
i mi ¼

P
i jqijmi=jqij > M, which would be a contra-

diction. This argument is evaded precisely by decay
products that contain one smaller extremal black hole,
which has smaller mass-to-charge ratio (24) because of the
positivity bound (17).
Since the same combination of EFT coefficients,

2α1 − α3, enters the Wald entropy shift [18,19], our
positivity bound (17) implies a larger black hole entropy
as well. (Positivity bounds on even higher-derivative terms
[23] imply a positive shift of the Kerr black hole
entropy [25].)
Bounds on Galileons, axions, and PðXÞ.—Our IR-

regulated positivity bounds can now be used to constrain
other interesting theories that have a massless graviton in
the spectrum, e.g., those that are formulated in the context
of modified gravity such as the weakly broken Galileons
[26,27]
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L ¼ −
1

2
ð∂πÞ2 − 1

2Λ3
3

ð∂πÞ2□π þ 1

4Λ4
2

ð∂πÞ4 þ � � � ; ð25Þ

where one can imagine the natural situation where
Λ2 ≫ Λ3 since ð∂πÞ4 weakly breaks the Galilean sym-
metry, whereas ð∂πÞ2□π is an invariant. It was shown
indeed that the hierarchy

Λ4
2 ≃H2m2

Pl; Λ3
3 ≃H2mPl; ð26Þ

where H is the Hubble constant, is stable under the loop
corrections due to gravity that break the Galileon sym-
metry [27].
However, as estimated in Refs. [2,28] and calculated in

detail in Ref. [29], scales Λ2 and Λ3 cannot be arbitrarily
separated while keeping the cutoff ΛUV fixed in a theory
without gravity, parametrically 1=Λ4

2 > Λ8
UV=Λ12

3 . We can
now see that a similar bound survives even when the
graviton is dynamical if the UV completion is assumed to
be weakly coupled (at least up to Λ2). Following the
arguments of the previous sections, we can subtract the
gravitational KK modes after the 3D compactification, and
we then extract the following bound,

1

Λ4
2L

>
2

π

Z
Λ2
UV ds

s3
ImM̃ππðsÞ > c

16π2
Λ8
UV

LΛ12
3

; ð27Þ

where we used the positivity of the integrand in Eq. (9) and
retained from the optical theorem only the inelastic
cross section into pairs of Galileon KK modes πk,P

k;mk<ΛUV
σðππ → πkπkÞ. The constant c ¼ Oð10−4Þ is

an inessential numerical factor resulting from integrating
over the phase space and then along the branch cut. The
bound (27) nicely reproduces the scaling from the calcu-
lation without gravity [29]. As a consequence, hierarchy
(26) between Λ2 and Λ3, which is stable because of
symmetry, in fact requires an extremely small cutoff,

ΛUV < ðH3mPlÞ1=4
�
16π2

c

�
1=8

∼
1

107 km
; ð28Þ

in order to be consistent with the beyond positivity bound
(27) that applies in a gravity theory.
We can also consider

L ¼ −
1

2
ð∂ϕÞ2 þ a

4f4
ð∂ϕÞ4 þ � � � ; ð29Þ

describing axions, or PðXÞ theories with X ¼ ð∂ϕÞ2 and
f ∼ Λ2 in Eq. (26). Our positivity bounds imply that a > 0,
even in the presence of gravity—such a constraint was not
possible before because of the inherent long-distance
sensitivity, t ∼H2, of their forward scattering amplitudes.
Conclusions.—In this Letter we derived new amplitudes’

positivities in quantum gravity in four dimensions. We
showed how to regulate and subtract the gravitational

Coulomb singularity in the forward elastic limit by putting
the theory on a cylinder, using its 3D scattering states and
then restoring 4D spacetime. This method allowed us to
extract positivity bounds on the s2 coefficient of the EFT
amplitudes removing the t-channel graviton singularity in a
controlled way. Remarkably, the resulting positivity bounds
are generically different than those obtained in flat space
without gravity. This is due to the contribution to the
amplitudes from the dilaton and the graviphoton (on top of
the contact terms from the nondynamical metric), which
remain dynamical even on the cylinder and leave their finite
gravitational footprint in the 4D limit.
As an important application, we studied the Einstein-

Maxwell EFT and showed that the positivity bounds imply
that extremal black holes have a charge-to-mass ratio larger
than 1, which is approached from above as the mass is
increased. This provides an S-matrix proof of the mild form
of the WGC since it implies that extremal black holes are
self-repulsive, jQj > M in suitable units. The amplitudes’
positivity implies as well that the Wald entropy shift due to
the leading higher-dimensional operators is always positive.
In the context of the swampland program, these are

perhaps somewhat negative results since they lower the
expectations that the WGC is useful for charting the
landscape of consistent theories of quantum gravity. Any
weakly coupled UV completion with a canonical S matrix
gives rise to unstable extremal black holes. Of course, it
may be that string theory is the only such UV completion.
We considered other important applications in cosmol-

ogy within the context of modified gravity. In particular, we
found that perturbative UV completions of Galileons can be
consistent with the (beyond) positivity bounds in a theory
with a massless graviton only if the cutoff of the theory is at
least as small as a few × ðH3mPlÞ1=4.
This work opens the door to a future understanding of

other quantum gravity conjectures in terms of amplitudes’
positivity.
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