TUTI

Technische Universitat Minchen

Towards Feature Validation in Time to Lane Change Classifi-
cation using Deep Neural Networks

Oliver De Candido, Michael Koller, Oliver Gallitz, Ron Melz, Michael Botsch,
and Wolfgang Utschick

The 23rd IEEE International Conference on Intelligent Transportation Systems.
September 20 — 23, 2020
Virtual Conference

© 2020 |IEEE. Personal use of this material is permitted. Permission from |IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

TUM Department of Electrical and Computer Engineering
Professur fir Methoden der Signalverarbeitung
Univ.-Prof. Dr.-Ing. Wolfgang Utschick

Towards Feature Validation in Time to Lane Change Classification
using Deep Neural Networks

Oliver De Candido', Michael Koller!, Oliver Gallitz2, Ron Melz3, Michael Botsch2, and Wolfgang Utschick!

Abstract—In this paper, we explore different Convolutional
Neural Network (CNN) architectures to extract features in
a Time to Lane Change (TTLC) classification problem for
highway driving functions. These networks are trained using the
HighD dataset, a public dataset of realistic driving on German
highways. The investigated CNNs achieve approximately the
same test accuracy which, at first glance, seems to suggest
that all of the algorithms extract features of equal quality. We
argue however that the test accuracy alone is not sufficient to
validate the features which the algorithms extract. As a form
of validation, we propose a two pronged approach to confirm
the quality of the extracted features. In the first stage, we
apply a clustering algorithm on the features and investigate
how logical the feature clusters are with respect to both an
external clustering validation measure and with respect to
expert knowledge. In the second stage, we use a state-of-the-
art dimensionality reduction technique to visually support the
findings of the first stage of validation. In the end, our analysis
suggests that the different CNNs, which have approximately
equal accuracies, extract features of different quality. This may
lead a user to choose one of the CNN architectures over the
others.

I. INTRODUCTION AND MOTIVATION

As the driving functions which (semi-)autonomous ve-
hicles should handle become more complex, the role of
Machine Learning (ML) algorithms as part of the solution
becomes apparent. However, ML algorithms lack valida-
tion methods, which is a major drawback. For example,
the classical V-model for product development, testing and
Verification and Validation (V&V) can no longer be easily
applied (see, e.g., [1]). This lack of validation becomes
concerning when ML algorithms are implemented in safety
critical driving functions. An example function could be
to predict when other vehicles in a highway scenario are
going to change lanes, i.e., the vehicles surrounding the
ego vehicle are tracked and the Time to Lane Change
(TTLC) should be predicted. In unexpected situations, the
automatic responsive action taken by the autonomous vehicle
can decrease the comfort or even endanger the safety of its
passengers. Recently, methods have been proposed to predict
the TTLC using ML algorithms (see, e.g., [2], [3]), however,
the problem of V&V was not discussed in those publications.
It is more important than ever that researchers focus on meth-
ods to validate ML algorithms employed in driving modules.
To this end, we propose a method to validate the features

I Department of Electrical and Computer Engineering Technical Univer-
sity of Munich, 80333 Munich, Germany; Email: oliver.de-candido @tum.de.

2Faculty of Electrical Engineering and Computer Science, Technische
Hochschule Ingolstadt, 85049 Ingolstadt, Germany.

3Department I/EF-A3, AUDI AG, 85045 Ingolstadt, Germany.

extracted by Convolutional Neural Networks (CNNs) which
are employed in autonomous driving functions.

The classical approach to time-series classification can
be summarized in two stages: first, discriminative features
are hand-designed by domain experts; and second, the time-
series signals are classified using k Nearest-Neighbors (k-
NN) with 1 neighbor, and an appropriate distance measure,
e.g., Dynamic Time Warping (DTW). In [4], the authors
give an overview of the classical time-series classification
methods which employ this two stage process. However, this
classical approach leads one to question how the discrimi-
native features should be designed from the time-series data
for a given application. Therefore, the modern approach to
time-series classification is to use deep learning techniques,
e.g., CNNs, to automatically extract appropriate features, and
directly classify the time-series signal.

In this paper, we investigate the properties of various CNN
architectures to extract features in time-series classification
problems. We can then investigate these properties and the
data which are used to train the algorithms to validate the
ML algorithms. We will refer to this approach of leveraging
multiple quality measures of ML algorithms as: validation by
diversity. The first applications of CNNs architecture were:
document classification [5], image classification [6], [7], and
more recently time-series classification [8], [9]. The authors
of [9] give an overview of the classification methods which
leverage the abilities of deep learning to directly classify
time-series problems in an end-to-end fashion.

The main advantage of the CNN architecture is—due to
the shared weights and translational invariance of the learned
kernels—that the features extracted by a CNN can directly
be used for classification. For time-series classification, a
CNN architecture was first proposed in [10], and tested on
the datasets from the UCR archive [11]. In [8], the authors
present a different CNN architecture to classify time-series
data, and compare their method with classical k-NN with
I neighbor and Support Vector Machine (SVM) methods
on both simulated datasets and UCR archive datasets. The
authors of [12] propose a method to first transform the input
time-series signals using down-sampling and smoothing,
and then running these signals in parallel through a CNN
architecture to predict the class of the time-series data;
their method was also verified on UCR archive datasets. A
novel CNN architecture was proposed in [13], where each
individual channel of a multi-variate time-series signal was
processed independently, and subsequently combined for the
classification task. In [14], a Deep Neural Network (DNN)
architecture was proposed to leverage the capacity of the

CNN architecture to generate interpretable features, which
can be used to classify the multi-variate time-series signals
using Decision Trees (DTs).

In this work, we introduce a method to validate the fea-
tures extracted by different CNN architectures, and give an
intuition about the possible features which can be extracted
by these different architectures. To this end, we introduce a
general CNN architecture which separates the feature extrac-
tion and the classification parts. Once discriminative features
are extracted, we validate them by applying a clustering
algorithm (e.g., k-Means) and a quality measure (e.g., the
rand index [15]). Finally, these features are projected into
two dimensions using a modern dimensionality reduction
technique, Uniform Manifold Approximation and Projection
(UMAP) [16], such that the features can additionally be
validated visually.

The paper is structured as follows: in Section II, we define
the learning problem of classifying the TTLC, and introduce
the real-world dataset we used for training. In Section III,
we introduce the general design of the CNN architectures,
and give an intuition of the possible features which can
be extracted by these methods. In Sections IV and V, we
discuss the simulation results and the method to validate
the extracted features, respectively. Finally, in Section VI,
we conclude our work with a discussion of our results, and
possible avenues to extend this work.

II. PROBLEM FORMULATION

In this section, we will first introduce the real-world
driving data we use to train the CNN classifiers, and then
formulate the problem of classifying the TTLC.

A. Real-World Data: The HighD Dataset

In this work, we use the real-world driving data recently
published in [17]. The authors recorded German highways
at six different locations using a drone. From the recordings
they extracted certain attributes of each vehicle on the
highway, e.g., the x and y coordinates, the velocities, and the
accelerations of each vehicle. Moreover, additional attributes
were also tracked for each vehicle, e.g., the number of lane
changes, the Time Headway (THW) or the Time to Collision
(TTC). From the z and y coordinates of each vehicle, we can
calculate the distances between all vehicles around it.

We summarize the tracked attributes in a multi-variate
time-series signal as

X =[z[1], =[2, ..., z[N]]eR™>N (1

where at each time-stamp n we summarize the I' attribute
signals in a vector z[n] = [x1[n], z2[n],...,zr[n]]T € RL.
We assume that the vehicle was tracked for at least IV
time-stamps; this defines a scenario. As input attributes we
consider the attributes in Table I.

B. Time to Lane Change Classification

Now, we can formulate the TTLC classification problem
with each multi-variate time-series training datum defined
in (1). To this end, we first extract all scenarios where a

Attribute [Description

Vlat. Lateral velocity

Vlong. Longitudinal velocity

Qlat. Lateral acceleration

Qlong. Longitudinal acceleration

Aahead Distance to the vehicle ahead in the current lane
dpehind Distance to the vehicle behind in the current lane

dj, ahead Distance to the vehicle ahead in the left lane
dj, behind Distance to the vehicle behind in the left lane
dy. ahead Distance to the vehicle ahead in the right lane
dy. behind Distance to the vehicle behind in the right lane

TABLE I: The considered attributes (I' = 10).

vehicle took an action within the time-stamps 1,..., N, i.e.,
we only consider scenarios where the vehicle was in view
for at least /V time-stamps. There are three possible actions
to be classified: the vehicle either stayed in its lane for all
N time-stamps, the vehicle changed lanes to the left, or it
changed lanes to the right, within the N time-stamps. In
total, we extracted 3685 left lane changes, 3122 right lane
changes and 4000 lane keeps from the HighD dataset [17].

Next, the multi-variate time-series signals from (1) are
each divided into P = N/Ng € Z. sections of equal
length Ng . Every section is considered a datapoint X &
RN Thus, every datapoint either corresponds to a
scenario where a vehicle kept its lane (each datapoint is
labeled K for lane keep) or changed lanes; those datapoints
belonging to a left lane change are labeled L, and those
belonging to a right lane change are labeled R. We further
index the lane change labels, L, and R, with p =1,..., P,
depending on how many sections in the future the lane
change occurs. For example, the label L; corresponds to a
left lane change in the current section, Lo corresponds to a
left lane change in the following section, and so on.

The task of TTLC classification is to classify the label for
each datapoint. The set of possible labels is defined as Y =
{Li,La,...,Lp,K,R;,Ry,...,Rp}. Therefore, the dataset
is summarized as

D:{(Xlayl)’(X27y2)7"'7(XIV17yM)}7 (2
where each input multi-variate time series X™ € RI'*Nea
and the class labels y™ € Y.

Since the HighD data was recorded with a sampling
frequency of 25 Hz, we split the scenario data into sections
of length 2 s, i.e., Ny, = 50 time-stamps. With scenarios of
length N = 150, we therefore have 3 classes for the left lane
changes, three classes for right lane changes and one class
for lane keep, i.e., Y = {L;,L2,L3,K,Ry,Ro,R3}. After we
split the scenarios into sections and balance the classes, we
have a total of 21854 samples; these are separated into 80%
for the training set and 20% for the test set, i.e., we separate
the dataset such that

Dtrain N Dtest = @ and Dtrain U Dtest = D;

Wlth ‘Dtrain‘ = 08 |D| = Mtrain and |Dlest| = 02 |D| = MlCSt'

[Channelr | 3 =
__ —» £
M

| —

Feature extraction

Fig. 1: Abstract CNN architecture.

III. DEEP NEURAL NETWORK ARCHITECTURE

The general architecture which we employ for our CNN
designs is depicted in Fig. 1. The input to the CNN is a
multi-variate time-series datapoint, which we interpret as a
multi-channel input. This is passed through C' consecutive
convolutional blocks depicted as Conv.y, ..., Conv.c. These
blocks are built of different convolutional layers, which will
be discussed in the following sub-sections, to investigate their
capability of extracting discriminative features. Note, we
refer to the input time-series datapoint has having multiple
channels, but after Conv.;, we refer to the filtered signals
as feature maps. After the convolutional blocks we employ
a Global Average Pooling (GAP) layer, which takes the
average of each filtered signal per feature map (see Sub-
section III-E). This ensures that we have the same dimen-
sional feature embedding before the classification in the out-
put space. We consider the combination of the convolutional
blocks and GAP layer as the feature extraction part of the
CNN - see the dotted block labeled feature extraction in
Fig. 1.

The convolutional blocks are built up of two functions:
first, a convolutional layer is applied to generate feature
maps, and second, the feature maps are passed through a
non-linear activation function. The properties of the differ-
ent convolution layers are explained in the following sub-
sections. The non-linear function can be described as

wgi) = U(zgi)), 3)

where 2! € R¥® and z{” € RN represent time-series
signals. The index v € {1,2,...,T()} represents the feature
map v in layer (i) for i = 1,..., A; T(©) = T" describe the
input channels. We consider the hyperbolic tangent function
as the non-linear activation function, viz. o(z) = tanh(z),
applied element-wise.

We define the operator to create a matrix with a Toeplitz

structure of the vector w = [w[l] w[2] w[L]]" €
RE as
toep (w; N) = [Low, Liw, ..., LN_Lw]T 4)
w(l] w[2] w[L] 0 0
_ 0 wll] w[2] w[L]
: S 0
0 0 wl[l] w[2] w[L]
6]1@1\/’—[1-‘v-1><1\/7 (5)

with the selection matrix defined as
T
L= 00w, Ipxz, Opxv—z—p] €RY*F, (6)

where the parameter N is the length of the signal which the
filter will be convolved with, and [=0,..., N — L.

A. Standard Convolutional Layers

The first type of 1-D convolutional layer which we inves-
tigate is the standard convolution originally introduced for
CNNs in [5]. These 1-D filters are applied to each feature
map of the previous layer and summed up to generate a
feature map in the current layer. This can be interpreted as
learning a Finite Impulse Response (FIR) filter for each input
feature map and summing over the filtered signals, i.e., the
feature map created in a standard convolutional layer can be
expressed as

ré-1u
zﬁf) = Z toep ('wgi))c;N(i,l)) zcgi_l). @)
c=1

We assume that there are I'*~1) feature maps in layer (i—1),
and I'¥) feature maps in layer (4), ie., v € {1,2,..., T}
The filters in layer (i) are assumed to have the length L,
hence the output signal after the convolutional operation has
the dimension N;_1y) — L) + 1.

As our input signals are multi-variate time-series data,
the filters in the first convolutional block (Conv.;) can be
interpreted as FIR filters on the raw input data, which not
only extract temporal correlations in the input signals, but
also cross-channel correlations. However, we should note that
each feature map zgl) in the first layer is a summation of
filtered input signals. Thus, it is difficult to give a physical in-
terpretation of the feature maps when employing the standard
1-D convolution after the first layer. For example, filtered
acceleration signals will be summed together with filtered
distance signals which loses its physical interpretation. We
will return to this observation in Sub-section III-D.

B. Depth-wise Separable Convolutional Layers

The second type of 1-D convolutional layer we investigate
is a depth-wise separable convolution, which was popularized
in recent years for image classification, see, e.g., [18],
[19]. The main idea behind the 1-D depth-wise separable
convolution is to split the convolutional task into two parts:
first, the temporal correlations per feature map are extracted;
and second, the cross-channel correlations are extracted using

a 1 x 1 convolution operation. By splitting the convolutional
operation into two stages, the number of required parameters
is reduced with similar performance (cf. [20]). The two
stages of the convolutional operation can be expressed as

T-1)
20 = 3 toep (6% Niy) 2D, @)
c=1

with II)—(YZ)C = wﬁf)p Y. In the first stage, a discrete-time
convolution with the weights u“;,ﬁ € R is performed on
each feature map of the input signal. Then in the second
stage, the output in feature map - is a scalar multiplication
with the weight w,(f)c € R per feature map and then summed
over all feature maps.

When applying the depth-wise separable convolution to
our multi-variate time series data, we must note that for each
convolutional block in the CNN, only one FIR filter, wﬁ“, is
learned per feature map (see (8)). Therefore, only the most
discriminative temporal correlations can be extracted from
the input feature map, however, due to the point-wise multi-
plication with the weights wﬁ,l)(, the influence of each input
feature map for each output feature map can be adjusted.
If we look at the signals in the first layer of the CNN,
we see that this means, the influence of the cross-channel
correlation between, e.g., a filtered acceleration signal and a
filtered distance signal, can be adjusted using these weights.
Again, similar to the standard 1-D convolution, a physical
interpretation of the filtered signals is lost after the first layer,
due to the mixing of input feature maps.

C. Local Convolutional Layers

The third type of 1-D convolutional layer we investigate
is the locally connected 1-D convolutional layer. It is similar
to the standard 1-D convolution; however, the weights are
no longer shared, viz. a new set of L; weight parameters
is learned for each part of each feature map of the input
sequence. This can be formulated as

-1

zgi) = Z toep ('wfz)c,o, . wEYZ’LN_L; N(i,1)> 2~
c=1

)

with a slight abuse of notation of the toep operator where
each filter vector, 'wgl,)CJ, is multiplied with the selection
matrix L;, as defined in (4). Moreover, each filter vec-
tor has individual weights, ie., w.”., € Rfw, VI €
{0,1,...,Ni_1)—L;)}, and thus, the’v’veights are not shared
over the input signal.

By relaxing the weight sharing condition in the standard
convolutional layer, we allow the CNN to learn discrimi-
native temporal correlations at each possible sequence of
input signals. This comes at the price of more parameters
per feature map, since the weights at each sequence of the
input signal are learned independently.

D. Multi-Channel Convolutional Layers

Finally, we want to investigate a network architecture
where each input channel is filtered individually; similar to
the CNN design in [13]. In this design, instead of processing
the multi-variate input signal as one signal, i.e., processing
all channels at once, each channel is filtered individually.
Therefore, if we refer to the convolution operations in (7),
(8) or (9), instead of creating a feature map by summing over
the input channels, we create a feature map per channel, i.e.,

zgl)g = toep (’wglg, Nsec[,) wEO)’ Vee{l,... ,F(O)}7 (10)
where toep (wﬁ,lg, Nsecl‘) € RVsa—L)+1XNea hag the
Toeplitz form defined by the 1-D convolutional layers in (7),
(8) and (9). Therefore, we introduce three new multi-channel
CNN architectures which use the convolutional layers de-
fined in Sub-Sections III-A, III-B and III-C. However, the
input channels are now kept separate, i.e., the features of
each channel are extracted in parallel.

As discussed in the previous sub-sections, the input signals
have different physical units, e.g., m for distances or m/s for
velocities, and by summing these filtered signals together,
we lose their physical interpretation. However, by separating
the input channels, the physical interpretation of the filtered
signals is maintained throughout all layers of the CNN.
On the other hand, by separating the input channels, only
temporal correlations can be extracted by the CNN, i.e., the
cross-channel correlations are only taken into consideration
by the final weight matrix after the feature extraction.

E. Global Average Pooling and Output

The GAP layer is located right before a linear transfor-
mation to the output. This type of layer was first proposed
in [21] to prevent overfitting in the final, fully connected
layers of a CNN, and the authors also argue that it introduces
a robustness against spatial translation of input images. In
addition to these advantages, we leverage the GAP layer to
bring the extracted feature maps into an equally dimensioned
space before the classification; we will refer to this as the
feature embedding space. In this layer, the signal of each
feature map is averaged over the remaining time dimension,
i.e., each filter map is replaced by its average signal. Thus,
we can control the size of the feature embedding space
by choosing T'*~1 appropriately. The GAP layer can be
expressed as

1 Na-1)
(A—1) _ (A—1)
z = T nl €R (11D
7 Na-1) 7; v

Therefore, an average signal is taken for each feature map
a:(WA_l), in the penultimate layer where v € {1,..., (A=D1,

After the GAP layer, we have feature embedding vectors
of the same dimension for each architecture introduced in
the previous sub-sections. Note, the separate feature maps
in the multi-channel CNN architectures are concatenated
at this stage. These feature embedding vectors will now
be linearly transformed into the output space, where we

ultimately employ the softmax function to approximate the
posterior probability of the output classes. Therefore, the
output of the CNNs is

2™ = softmax(WM (A=) ¢ (0, 1)/¥]] (12)

with the softmax function defined as softmax(x); =
exp(z:)/(Xh, exp(xy)), Vi = 1,...,K. This is the
simplest transformation into the output space for a CNN.
Hence, the bulk of the classification power comes from the
feature extraction in the Conv. blocks.

F. Fully Connected Neural Network

We additionally investigate whether the constraint of fea-
ture extractions using 1-D convolutions can achieve a similar
classification performance as a fully connected DNN. To
this end, each Conv. block is replaced with a simple linear
mapping and non-linear activation function, i.e.,

20 = g(WWgli—1) (13)

for all layers i € {1,...,A — 1}. Note, we exclude the
bias term without loss of generality. Moreover, the fully
connected network does not require the GAP layer, because
it does not generate multiple feature maps which need to
be averaged to map into the feature embedding space. The
output layer is the same as the CNNs as defined in (12).

It should be noted that the input of the DNN is merely
a vectorized version of the scenarios, i.e., the input is
x™ = vect(X™) € RI'Vwe| Thus, the physical interpreta-
tions, the discussion of the FIR filtering of the signals and the
temporal correlations previously discussed are, in general, no
longer valid.

IV. SIMULATION RESULTS

In this section, the simulation results of training each of
the previously introduced CNN architectures from Section III
are discussed. The objective function used during training is
the cross entropy

Muin K
L=-3"> #'m(z"),
m=1k=1
with the one-hot-encoded true labels ¢* € {0, 1} for all of
the training data indexed by m, and the output probabilities
defined in (12) for each input X .

We trained each of the CNNs using the Adam opti-
mizer [22] with a learning rate of o = 0.0005 and mini-
batches of size 200. Moreover, we employed Early Stopping
(ES) with a patience of 50 epochs to reduce overfitting of our
training set, and validated the training accuracies using k-fold
cross validation with 10 folds (see, e.g., [23, Ch. 7.2]). For
each of the CNN architectures, we used three Conv. blocks,
keeping the number of training parameters roughly equal for
a fair comparison; the exact architectures and ES epochs
can be found in Appendix I. We will henceforth refer to
the different CNN architectures with the sub-section name,
e.g., the standard convolutional layers will be referred to as
“CNN-III-A”, and the multi-channel standard convolutional
layers will be referred to as “CNN-III-A MC”.

(14)

[Architecture [[Linear [%] [[kNN [%] | DT [%] |
[DNN-IIF][89.55(0.37)]| 90.08(£0.17) | 87.93(-0.30) |
CNN-II-A 89.18(0.26) || 88.70£0.20) | 86.25(£0.35)
CNN-II-B 90.36(X0.55) || 88.77(£0.44) | 85.58(£0.46)
CNN-III-C 90.22(10.38) || 90.40(£0.20) | 87.80(£0.35)
CNN-III-A MC || 92.75@0.48) || 9L.17(0.34) | 83.15(£0.26)
CNN-III-B MC || 90.81(E1.70) || 87.682.56) | 87.32(E1.41)
CNN-III-C MC || 92.83(X0.38) || 91.33(£0.33) | 88.25(10.37)

TABLE II: Classification accuracies.

In Table II, the left column shows the achieved accuracies
(with the 95% confidence intervals in brackets) on the test set
after training the various CNN architectures, averaged over
the 10 k-folds. We observe that the CNNs achieve compa-
rable, in some cases better, accuracies to the DNN design,
with the advantage of the interpretability of the extracted
filters. Moreover, the multi-channel designs, where each
input channel—each physical signal—is processed separately
achieved the highest accuracy on average. However, this
comes at a price of a larger confidence interval, especially
for the CNN-III-B MC design.

Moreover, we should note that during training, the multi-
channel CNN architectures took more epochs to converge
(see Appendix I). However, there was no obvious divergence
between the training and the validation loss, which further
supports the argument that the multi-channel designs keep
the physical interpretation of the signals intact, in turn
reducing overfitting.

In the middle and rightmost columns, we see the achieved
accuracies, if we train a k-NN [24] or a DT [25] algorithm
with the features extracted after the CNN layers, i.e., using
the test data in the feature embedding space. We investigate
this to determine how much the final accuracies depend on
the linear transformation matrix W(A), which is trained, and
hence, different for each of the CNNs. We observe that the
achieved accuracy across all methods is only slightly lower
for both the k-NN and the DT. Note that with additional
hyperparameter tuning the accuracies may converge to those
achieved by the CNN architectures with W),

These results imply that the features extracted by the
CNN architectures are discriminative for the classification
task, and the achievable accuracy is independent of the final
linear transformation. With this result in mind, we argue that
an investigation of the quality of the extracted features is
meaningful.

V. FEATURE VALIDATION

As discussed in Section IV, merely taking the final accu-
racy into account does not provide sufficient evidence as
to whether one CNN is better than another, nor does it
suffice for the validation of the ML algorithm. Therefore, we
argue that an investigation into the quantitative differences
between the extracted features is meaningful for the goal
of validation. To this end, we propose the first pillar of
validation by diversity, where we investigate the extracted
features in a two pronged approach. In the first stage, we

propose that the extracted features in the feature embedding
space can be clustered, and the quality of this clustering can
be quantified using an appropriate measure. In the second
stage, the extracted features are visualized, and the clustering
can be inspected.

A. Feature Clustering

The first stage of this validation by diversity approach, is
to extract all of the features from the test set and investigate
the extracted features in the feature embedding space. Since
we have designed the CNN architectures in such a way,
that the final classification is only a linear transformation of
the features from the feature embedding space to the output
space, we argue that an analysis of these extracted features
is meaningful.

To this end, we first pass the test set through our CNNs in
a forward pass, and store the extracted features after the GAP
layer, i.e., first we take the test set and extract the learned
features

g™ = 28 = feat(X™) € R1, VX™ € Dy, (15)

where we abstract the first A — 1 layers of the CNNSs into the
function feat : RT'” *Neew —5 R190 with a 100 dimensional
feature embedding space. These extracted feature vectors
create the set: Dyeg = {&™ } Mo

Next, we use an unsupervised clustering algorithm, k-
means [23, Ch. 14], to cluster the extracted features in @mt.
Since we have the correct class labels for each datum a-
priori from our test set, and hence, for each datum in f)test,
we can use an external cluster validation method to validate
the unsupervised k-means clustering algorithm. To this end,
we use the Adjusted Rand Index (ARI) (see [15], [26]), to
validate the clusters generated by the k-means algorithm. The
clusters generated by the k-means algorithm are given the
labels {C1,...,C%. }. At first glance, these labels have no
obvious relationship with the data labels from Y, thus further
analysis is required.

The ARI, which lies in the interval [0, 1], is the percentage
of datapoints where the cluster labels agree with the true data
labels, it is adjusted for randomness in the clustering labels.
A low ARI indicates that the clustering does not correspond
to the labels. We vary the total number of clusters for k-
means between K’ € {2,...,2 - K} with the total number
K of true classes; in our simulations X = 7. The calculation
of the ARI is based on a contingency matrix D € REXK’
where every row corresponds to one of the true classes and
every column corresponds to one of the possible K’-means
clusters. The entry d; ; counts the number of datapoints that
are in class ¢ and cluster j. In the end, the ARI is calculated
as [26]

=, () (S 6 2) 1)
e @) (E@sm) e

(16)

1 T T T
|
1
0.8 l |
»
Q
el
i
= 06 [
=]
<
&
el - e =
2 04} o+ -/—*»-*J‘L\\:t_fzg}:::i”+ o=
= R S Y S A sk abl
< A 2 —6— CNN-III-A - +- CNN-III-A MC
0.2 -~ —5— CNN-III-B - - CNN-III-B MC
’ CNN-III-C - %~ CNN-II-C MC
——DNN-III-F--- K/ =7
0 |
2 4 6 8 10 12 14

K/

Fig. 2: The average ARI for different cluster sizes.

where d;. and d.; represents a sum over row 7 and a sum over
column j, respectively, and the total number of datapoints M.

We run the k-means with 100 random initializations and
take the clustering with best inertia value for each K’ value,
i.e., the lowest sum of squared distances between the samples
and their closest cluster center. The results of the clustering
can be seen in Fig. 2. We observe that the maximum ARI,
i.e., the number of clusters which corresponds with the
true labels, is at K’ = 7 for two of the CNNs and the
DNN. The DNN shows good clustering despite the missing
interpretability of the physical signals. On the other hand,
the multi-channel CNNs, which showed the best accuracy
results, have a local minimum at around K’ = 7. This
lower ARI for the multi-channel CNNs, could be explained
by the missing cross-channel correlation during the feature
extraction.

An investigation of the entries of the contingency matrix
of a specific method to investigate the extracted features can
also prove fruitful. For example, the contingency matrices
of the CNN-III-A and the CNN-III-A MC are depicted in
Table III. Note, the rows are normalized per true class label.
We see that the clustering label C3 for the CNN-III-A has
grouped the lane keeps, and the lane changes in the class Ls
and R3 together; furthermore, only left lane changes and only
right lane changes are clustered in C; and C, respectively.
This shows that the method extracted logical features for
both left lane changes and right lane changes. Moreover, the
features to distinguish between a vehicle which stays in its
lane are similar to those where a vehicle changes lane in 4-
6 s, i.e., long before a lane change the vehicles stay in their
lanes. On the other hand, clustering of the features extracted
by CNN-III-A MC, shows that no clear distinction between
left and right lane changes is seen in the extracted features.

A similar analysis of the contingency matrices, for dif-
ferent cluster sizes K’, can be performed for all CNN
architectures. However, our exemplary analysis of the CNN-

l [& [& [G [¢ [& [G |

R3 (%] 0 | 1149 [8851 || 0.65 | 76.27 | 23.08
Rz (%] 0 [9903 | 097 0 [9722 | 278
R1 [%] 0 | 9985 [0.15 0| 9687 | 3.3

[K%]| 0 [0.8 | 9982 || 0.17 | 2444 | 75.39 |
Ly (%] || 100 0 0 [%984 0] 016
Lo (%] || 9984 | 0 | 0.7 || 11.09 | 0 | 8891
L5 (%] || 1162 | 0 | 8938 || 031 0 | 9969

TABLE III: Normalized contingency matrix for CNN-III-A
(C) vs. CNN-III-A MC (C") for K' = 3.

III-A and the CNN-III-A MC, already indicates that the
former method extracted features of a higher quality from the
test data, which are also explainable. This result contradicts
the higher classification accuracy of the CNN-III-A MC.
Therefore, we argue that by clustering the extracted features
in the feature embedding space, we have come one step
closer to validating one ML algorithm over another. In the
following sub-section, we take the next step in validation by
diversity, and confirm the quality of the extracted features
by visualizing them.

B. Feature Visualization

For experts to be able to validate the features extracted
by the different methods, they should be able to visualize
them in addition to the clustering analysis presented in
the previous sub-section. To this end, we propose that the
extracted features in the feature embedding space should be
visualized using a state-of-the-art dimensionality technique,
e.g., UMAP [16]. The main advantages of UMAP when
compared with other non-linear dimensionality reduction
techniques, e.g., t-distributed Stochastic Neighborhood Em-
bedding (t-SNE), is that it is designed to not only preserve
local dependences, but also to map the global structures
within the data into the lower dimension. Moreover, once the
UMAP has been calculated, it can easily be used to transform
previously unseen input data into the lower dimension.

To this end, we plot the UMAP dimensionality reduction
of the CNN-III-A using the parameters: 15 neighbors in the
higher dimension, and a minimum distance of 0.4 between
points in the lower dimension. These parameters provide
a good representation of the global and local structures
in the data and within the clusters, which can be seen in
Fig. 3a and Fig. 3b. First, observe in Fig. 3a how the
features create logical clusters, i.e., the right changes R;
and Rs are clustered in the upper left hand side of the
plot. Moreover, we see that the three classes with similar
features, viz. R3, L3 and K, are clustered in the middle of
the plot with many overlapping points. A closer study of
the classification predictions showed that these three classes
were indeed difficult to differentiate and lead to most of the
classification errors. In general, datapoints were misclassified
when they lay within the cluster of another class.

In Fig. 3b, we can validate the ARI results presented in
the previous sub-section. Here, the cluster labels calculated
by the k-means clustering are plotted for K’ = 7, including

T T T T
5% |
g 0p -
_57 |
+R1DR20R3AK
Ll*LQXLs | | |
—10 -5 0 5 10 15
u2
5% |
s 0f .
_5 |
OC{*O&*C{;ACZ&
CLoCl~CL® 1 | |
-10 -5 0) 10 15

U2
(b) The k-means cluster labels.

Fig. 3: The UMAP embeddings for the CNN-III-A with
different labels.

the k-means centers (the & points). Here, we observe that
the features are well clustered by the k-means algorithm
and, in general, the clusters correspond to each of the true
label clusters. By employing the k-means clustering and the
UMAP dimensionality reduction, we are able to confirm
the findings in Section V-A about the extracted features.
Moreover, the UMAP can be used to visualize new input
datapoints, which can then be validated by observing whether
they are embedded close to the k-means cluster center of the
corresponding class or not. This gives experts an additional
method to visualize the extracted features for validation.

Therefore, despite the similar accuracies displayed by
CNN-III-A and CNN-III-A MC, the presented discussions
and visualizations lead us to conclude that the features
extracted by CNN-III-A are of better quality. This may help a
user when deciding between which of the two ML algorithms
should be implemented in a safety critical driving function.

VI. CONCLUSION

In this paper, we first investigate and interpret different
CNN architectures which can be used to classify the TTLC
in a highway driving scenario. These CNN models were
trained on a public dataset, and all showed comparatively
similar classification accuracies after training. We argue that
merely trusting the classification accuracy of a learned ML
algorithm is not sufficient for validation, especially when
it comes to safety critical driving functions. We propose a
two pronged approach to validate the extracted features from
these CNNs. We observed that a method with a lower clas-
sification accuracy actually clustered the extracted features
more meaningfully, which supports the argument that the
final accuracies can be misleading. This approach is the first
pillar of what we call validation by diversity.

The following extensions of this work are possible: first,
the GAP layer after the feature extraction layers can be
leveraged to visualize the regions in the input signal which
were important for a given classification (see, e.g., [10],
[27]). Second, the learning objective can be reformulated to
extract features which are inherently separated and clustered
(similar to [28]). Thus, these features can be directly classi-
fied by a k-NN algorithm, relieving the dependency on the
trainable linear transformation matrix at the output of the
CNN and simultaneously maintaining the interpretability of
the convolutional layers.

APPENDIX I
NETWORK ARCHITECTURES

The CNN architectures were trained each with C' = 3
convolutional blocks with filters of length L1y = 8, L) = 5
and L) = 3, respectively. To keep a fair comparison
in terms of possible degrees of freedom, we maintained
roughly the same number of parameters for each of the CNN
architectures. The number of filters (or neurons for the DNN)
per layer, the total parameter count, and the average ES epoch
can be found in Table IV.

[Architecture [Num. Filters [Num. Parameters | ES Epoch |
CNN-III-A (211, 260, 100) 369,880 152
CNN-III-B (550, 552, 100) 369,486 282
CNN-III-C (20, 20, 100) 369,500 192
CNN-III-A MC (65, 102, 10) 368,000 290
CNN-III-B MC (128, 256, 10) 369,420 560
CNN-III-C MC (10, 11, 10) 371,700 383

[DNNILF___ [[(375,3%0, 100) | 369555 | 139 |

TABLE IV: CNN parameters and average ES epoch.

REFERENCES

[1] R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of ISO
26262: Using machine learning safely in automotive software,” 2017.
[Online]. Available: http://arxiv.org/abs/1709.02435

[2] H. Q. Dang, J. Fiirnkranz, A. Biedermann, and M. Hoepfl, “Time-
to-lane-change prediction with deep Learning,” in Proc. of IEEE Int.
Conf. on Intell. Transp. Syst. (ITSC), 2017.

[3] Z. Yan et al., “Time to lane change and completion prediction based on
Gated Recurrent Unit Network,” in Proc. of 2019 IEEE Intell. Vehicles
Symp. (1V). 1EEE, 2019, pp. 102-107.

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: a review and experimental evalu-
ation of recent algorithmic advances,” Data Mining and Knowledge
Discovery, vol. 31, no. 3, pp. 606-660, 2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

Y. Le Cun et al., “Handwritten zip code recognition with multilayer
networks,” in Proc. of 10th Int. Conf. on Pattern Recognit. 1EEE,
1990, pp. 3540 vol.2.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. of the ACM,
vol. 60, no. 6, pp. 84-90, 2017.

B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” J. of Syst. Eng. and Electron-
ics, vol. 28, no. 1, pp. 162-169, 2017.

H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A.
Muller, “Deep Learning for time series classification: a review,” Data
Mining and Knowledge Discovery, vol. 33, no. 4, pp. 917-963, 2019.
Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in Proc. of 2017 Int.
Joint Conf. on Neural Networks (IJCNN), 2017, pp. 1578-1585.

Y. Chen et al., “The UCR Time Series Classification Archive,”
Jul 2015. [Online]. Available: https://www.cs.ucr.edu/~eamonn/
time_series_data/

Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural
networks for time series classification,” 2016. [Online]. Available:
http://arxiv.org/abs/1603.06995

Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Exploiting multi-
channels deep convolutional neural networks for multivariate time
series classification,” Frontiers of Comput. Science, vol. 10, no. 1,
pp- 96-112, 2016.

0. Gallitz, O. De Candido, M. Botsch, and W. Utschick, “Interpretable
feature generation using deep neural networks and its application to
lane change detection,” in Proc. of IEEE Int. Conf. on Intell. Transp.
Syst. (ITSC). 1EEE, 2019, pp. 3405-3411.

W. M. Rand, “Objective criteria for the evaluation of clustering
methods,” J. of the Amer. Statistical Assoc., vol. 66, pp. 846-850,
1971.

L. Mclnnes, J. Healy, and J. Melville, “UMAP: Uniform manifold
approximation and projection for dimension reduction,” 2018.
[Online]. Available: http://arxiv.org/abs/1802.03426

R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset:
A drone dataset of naturalistic vehicle trajectories on german highways
for validation of highly automated driving Syst.” in Proc. of IEEE Int.
Conf. on Intell. Transp. Syst. (ITSC). 1EEE, 2018, pp. 2118-2125.
L. Sifre and S. Mallat, “Rigid-motion scattering for image classifica-
tion,” Ph. D. thesis, 2014.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. of 30th IEEE Conf. on Comput. Vision and Pattern
Recognit., CVPR 2017, 2017, pp. 1800-1807.

A. G. Howard er al.,, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017. [Online]. Available:
http://arxiv.org/abs/1704.04861

M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proc. of 2nd
Int. Conf. on Learn. Representations, ICLR 2014, 2014.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. of 3rd Int. Conf. on Learn. Representations, ICLR
2015, 2015.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning - Data Mining, Inference, and Prediction. Springer, 2009.
E. Fix and J. L. Hodges, Discriminatory Analysis, nonparametric
discrimination: Consistency Properties. Tehcnical Report 4: USAF
school of Aviation Medicine, 1951.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. Belmont, CA: Wadsworth & Brooks, 1984.

L. Hubert and P. Arabie, “Comparing partitions,” J. of Classification,
vol. 2, no. 1, pp. 193-218, 1985.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learn-
ing deep features for discriminative localization,” Proc. of the IEEE
Conf. on Comput. Vision and Pattern Recognit., pp. 2921-2929, 2016.
B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-
friendly spaces: Simultaneous deep learning and clustering,” in Proc.
of 34th Int. Conf. on Mach. Learn., (ICML), vol. 8, 2017, pp. 5888—
5901.

