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Abstract

Over the past decades, the advancements in the area of ultrasound imaging have continuously
been improving its impact in the medical field. However, one fundamental aspect of this
imaging modality has been totally unaffected by these research efforts since its initial concep-
tion: ultrasound acquisitions are performed manually by a trained physician or sonographer.
Unfortunately, the level of expertise of the operator has a substantial impact on the clinical
outcome. An ultrasound transducer has to be maneuvered to the right position, with the right
inclination and applying the right force to (re)produce a specific ultrasound image. Often,
the lack of an expert operator risks translating into a misdiagnosis. The same characteristics
make the acquisition of ultrasound images an incredibly complex task to automate. Human
operators rely on visual cues from the live ultrasound images, knowledge about the patient
anatomy, and its response to the applied transducer pressure.

Robotics has been tackling the problem since the late 1990s, attempting to provide systems
to reduce the required physical interaction of ultrasound operators. The main focus of the
research in the field has been on teleoperation for ultrasound acquisitions. Mechanical
transducer holders that are remotely controlled by an operator have been designed and
validated for many clinical applications, with the common aim to reduce the need for an expert
operator in situ. The visual feedback from the ultrasound data stream has been employed in
visual servoing tasks, to automatically maintain the visibility of specific anatomical targets
or follow the movements of surgical tools. Nonetheless, complete autonomous ultrasound
systems have not yet been developed.

This dissertation aims at introducing the design and validation of an autonomous robotic
ultrasound system. The same sensorial information that a human operator leverages are
evaluated and combined to obtain a complete system that fully benefits from them. Visual
information from the scene and pre-operative imaging are employed to obtain a valid robotic
trajectory with respect to a selected clinical target. Force sensing enables safe acquisitions and
optimizes the overall produced images using patient-specific analysis. The overall system is
evaluated in clinical scenarios, targeting both diagnostic and interventional procedures.






Zusammenfassung

In den letzten Jahrzehnten fithrte der Fortschritt in der Ultraschallbildgebung zu einem
stetig zunehmenden Einfluss dieser Technologie im medizinischen Bereich. Ein grundlegender
Aspekt dieser Bildgebungsmodalitét ist jedoch von diesen Forschungsbemiihungen bisher vollig
unberiihrt geblieben: Die Ultraschallaufnahmen werden manuell von einem ausgebildeten
Arzt oder Sonographen durchgefiihrt. Leider hat der Kompetenzgrad des Anwenders einen
erheblichen Einfluss auf das klinische Ergebnis der Aufnahmen. Eine Ultraschallsonde muss
in die richtige Position, mit der richtigen Neigung und unter Anwendung der richtigen Kraft
manovriert werden, um ein spezifisches Ultraschallbild (wieder) zu erzeugen. Oftmals besteht
die Gefahr, dass das Fehlen eines sachkundigen Anwenders in einer Fehldiagnose resultiert.
Die genannten Eigenschaften machen die Aufnahme von Ultraschallbildern zu einer sehr
komplexen Aufgabe, die es zu automatisieren gilt. Der menschliche Anwender ist auf die
visuellen Hinweise aus den Live-Ultraschallbildern, die Kenntnis der Anatomie des Patienten
und seine Reaktion auf den angewandten Schallkopfdruck angewiesen.

Die Robotik beschéftigt sich seit Ende der 1990er Jahre mit diesem Problem und versucht
Systeme bereitzustellen, die die erforderliche physische Interaktion zwichen Anwender und
Ultraschallkopf reduziert. Der Forschungsschwerpunkt in diesem Bereich lag in der Teleopera-
tion von Ultraschallakquisitionen. Mechanische Schallkopfhalterungen, die von einem Nutzer
ferngesteuert werden, wurden fiir viele klinische Anwendungen entwickelt und validiert. Thr
gemeinsames Ziel besteht darin, den Bedarf an Expertenanwendern vor Ort zu reduzieren. Das
visuelle Feedback aus den Ultraschallbildern wurde bei visuellen Servoaufgaben eingesetzt,
um die Sichtbarkeit bestimmter anatomischer Ziele automatisch aufrechtzuerhalten oder den
Bewegungen der chirurgischen Werkzeuge zu folgen. Dennoch wurden bisher noch keine
vollstdndig autonomen Ultraschallsysteme entwickelt.

Ziel dieser Dissertation ist es, den Entwurf und die Validierung eines autonomen Ultraschall-
Robotersystems vorzustellen. Dieselben sensorischen Informationen, die ein menschlicher
Anwender nutzt, werden ausgewertet und kombiniert, um ein komplett integriertes System zu
erhalten, das von diesen Informationen profitiert. Visuelle Informationen der Umgebung und
die praoperative Bildgebung werden verwendet, um eine giiltige Robotertrajektorie in Bezug
auf ein ausgewéhltes klinisches Ziel zu erhalten. Die Kraftsensorik erméglicht sichere Aufnah-
men und optimiert die insgesamt erzeugten Bilder durch eine patientenspezifische Anpassung.
Das Gesamtsystem wird in klinischen Szenarien evaluiert, die sowohl auf diagnostische als
auch auf interventionelle Verfahren abzielen.
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Introduction

Ultrasound imaging has been one of the most used imaging modalities from its introduction in
the 1940s, and since then, its development has been rapid and continuous. Its success is mainly
due to its advantages over other imaging modalities such as X-ray, Computer Tomography
(CT), or Magnetic Resonance Imaging (MRI). Ultrasound imaging equipment, in fact, does not
produce any ionizing radiation nor requires a nephrotoxic contrast agent during its use, has a
small form factor that allows for its easy transportation and is available at an affordable price
compared to the aforementioned modalities. More importantly, ultrasonography produces
real-time dynamic images.

However, considering all the mentioned modalities, one can immediately capture the most
prominent characteristic that differentiate ultrasound imaging from the others: it always
requires an operator. In our collective mind, we all have a clear image of a large CT or MRI
machine sitting in an otherwise empty room. We are used to be placed on an examination bed
and let alone with that machine, and we are confident that the machine itself will be able to
produce an image of our anatomy. Operators, in this context, are limited to the simple role of
a technician that has to initialize a well-defined protocol from a separated control room. In
the case of ultrasound imaging, the practice is very different.

Ultrasound probes are currently designed as hand-held devices, and they require the knowl-
edge and experience of a trained human to maneuver them. Two key elements enable a
person to correctly acquire ultrasound images: vision and haptics. The former, comes in two
different forms, on the one hand, the operator uses his visual senses to move the probe along
the patient body, targeting specific areas; on the other, she/he receives the visual feedback
from the live ultrasound stream and adjusts the probe position based on it. The latter comes
in the form of manual palpation and the application of a certain pressure to the probe and
onto the patient’s body. These characteristics are fundamental to achieve a successful and
clinically meaningful ultrasound acquisition, characteristics that are complex to transfer onto
a machine.

Robotic systems (i.e., intelligent mechanical structures) have been successfully developed and
employed to target complex tasks in various fields, and have also being explored in the field
of ultrasound imaging (See Sec. 1.3). This dissertation examines the author’s contribution to
the field of robotic ultrasound imaging, with a strong focus on providing and utilizing at best
vision and force sensing to enable fully autonomous systems.
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1.1 Motivation and Main Objective

The development of a robotic system for ultrasound imaging has to have clinical motivations
other than the pure engineering interest to solve the task. As already mentioned, other
imaging modalities only require the presence of a member of the technical staff, rarely the
availability of a radiologist is required. Ultrasound acquisitions, instead, are always performed
by a trained physician or by a sonographer. In both cases, the individuals are highly trained,
and their experience is fundamental to the clinical outcome of the procedure. As shown by
many works in the clinical literature [10, 11, 12, 13], acquisitions by inexperience operators
result in less accurate evaluation of the images. That is, missing to capture crucial information
from the acquired ultrasound frames, might hinder the overall diagnosis or treatment. This
introduces a high variability of the performed acquisitions; a patient might need to undergo
further examinations or receive a dangerous late diagnosis. In an interventional setting, it
would be often required the presence of an experienced sonographer in the operating room,
adding costs to the operation and one more person to an already typically crowded scene.
Drawbacks of manual ultrasound acquisitions are not only on the patient side. Over the past
decades, it has been unquestionably proven by many analyses that sonographers are often
subject of musculoskeletal disorders due to their posture and the repetitive motions during
ultrasound acquisitions [14, 15, 16, 17, 18]. In general, it is a manual task that is hard to do
well, it is hard to repeat consistently and causes stress to the operators’ bodies.

Robotic systems are, overall, optimal solutions for repetitive manual tasks, but in the case of
ultrasound acquisition, they could additionally provide a platform to standardize results and
reduce operator dependence. However, the complexity of the task requires the availability
of crucial information to perform it. To achieve a completely autonomous robotic system
for ultrasound acquisitions, a careful design process has to be carried out. This includes the
integration of multiple sensing modalities and their coherent use, as well as the implementation
of an entirely new workflow. As already mentioned, vision and haptics are the two fundamental
input signals for the task. The objective of this thesis is to explore how the two modalities,
in the form of ultrasound image feedback, force sensing, and 3D vision, can be effectively
employed in a clinically relevant autonomous system for medical ultrasound. The main
interest is to demonstrate how these modalities can take advantage of each other strengths to
optimize their output and the overall clinical outcome.

1.2 OQOutline

This thesis is subdivided into three parts. The current one, Part I, continues with an overview
of the state-of-the-art in the field of robotic ultrasound imaging, with a focus on autonomous
systems and their current applications.

In Part II, the essential methodology used throughout the work reported in this dissertation is
formally introduced, and the specific contributions of this thesis are presented, in details:

* Chapter 2 introduces fundamental concepts of ultrasound imaging. The main focus lies
on the description of ultrasound B-mode image formation, the creation of ultrasound 3D

Chapter 1 Introduction



volumes, and the use of such data with other imaging modalities through image-based
registration.

* Chapter 3 describes the control strategies employed to achieve safe and accurate motions
of a robotic ultrasound system. As ultrasound imaging requires contact with the patient’s
body, modern force control techniques used along this dissertation are presented.

* Chapter 4 describes the 3D vision technology employed to model the environment with
whom a robotic ultrasound system has to interact. Techniques for the alignment of 3D
point sets are also presented.

* Chapter 5 presents a the main ideas, methods, and experiments, developed by the
author to achieve accurate, safe and, reproducible robotic ultrasound acquisition in full
autonomy. This section is based on the author’s original publications.

Part III contains an analysis of the presented contributions:

* In Chapter 6, a summary of the findings and improvements concerning the state-of-the-
art is presented.

* In Chapter 7, an ultimate analysis of the benefits and limitations of the proposed
methods is presented here. Further possible directions to improve the current state and
enable the use of robotic ultrasound systems in clinical practice are also introduced.

Finally, Appendix A presents the abstracts of other publications that are not included in this
thesis.

This dissertation is publication-based, text and figures are extracted from the corresponding
publications. Note that [7] and [8] partially contain work developed during the author’s
Master studies, but peer-reviewed, refined and published during his Doctoral studies. The
presented findings present the foundations to this dissertation. Further Doctoral work is
presented in [4] and [1], composing the complete author’s contribution to the field. While
all this work was made possible by great contributions of fellow colleagues and co-authors,
the personal contribution of this thesis’ author is stated for each publication presented in
Chapter 5.

1.3 Background and Related Work

Robotics has the potential to transform many aspects of the current medical practice. Many
fields could benefit from the integration of robotic solutions, from hospital automation to
rehabilitation and surgical intervention, so far, the most significant impact of robotics in
medicine has undoubtedly been in soft tissue surgery. Based on research from the beginning
of the 1990s, taking advantage of concepts like the remote center of motion [19], commercial
systems have been able to perform robotic-assisted surgery for a various number of procedures
[20, 211, with a focus on urology [22, 23, 24]. Research related to robotic systems for surgery

1.3 Background and Related Work
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is nowadays still very active and broad [25]. Robotics is having an impact in other fields such
as orthopedics [26, 27], neurosurgery [28], steerable catheters [29, 30], and radiosurgery
[31]. For the interest of this dissertation, the focus is on the past and present state-of-the-art
research in the field of robotic imaging, and specifically robotic ultrasound. An interested
reader can find more information on the overall field of medical robotics in the available
literature reviews [32, 33, 34, 35].

The research interest in robotic ultrasound aims at solving some of the limitations of traditional
ultrasound imaging presented already in Section 1.1, i.e., reduce or remove the required
manual interaction by an expert sonographer. Just like in the case of robotic surgery, one
fundamental aspect has been the development of teleoperated systems to allow for ultrasound-
based diagnostics in remote areas, driven especially from research in the military. The first
concept for a manual tele-ultrasound system has been presented in [36], with a focus on the
requirements for image compression and transmission to achieve real-time capabilities.

The conception of robotic ultrasound imaging has to be attributed to a fundamental series
of research by Salcudean et al., stated in 1999 [37]. A first mechanical design was proposed
to relieve sonographers from the musculoskeletal fatigue of manual ultrasound procedures,
taking as first exemplary application the examination of the carotid artery. It is remarkable
that already in such an early stage of the research field, the authors had clear what the
requirements for such a system should be: able to ensure patient safety at all times, light,
limited in the amount of force it could exert onto the patient, with backdrivable joints so that it
could be pushed away, and able to cover the range of motions and forces required by the task.
The system was then showcased for teleoperation in [38], using image correlation techniques
to maintain feature visibility in [39]. The used shared-control approach was then formalized in
[40]. Additionally, the authors present some early work on visual servoing control techniques
based on the detection and tracking of anatomical structures in ultrasound [41], a field
of research more and more explored in the following years. In [42], the complete system
usability is demonstrated by employing a shared control schema between the operator, robot
controller, and ultrasound image servoing. 3D ultrasound reconstruction and robot control
over the internet are also showcased. In the same years, a parallel effort in the development
of the first prototypes of mechanical devices for teleoperated ultrasound was also taking place
in Japan [43]. Common to all the early-stage work is the development of custom robotic
systems, due to the need to fit the essential requirements needed in medical applications.
Industrial robots, in fact, did not provide yet the level of safety required for direct contact
with the patient and medical staff. Fore control techniques were still limited to the research
communities, and sensing capabilities on board of the available industrial manipulators were
inadequate. The details provided by [38] influenced the research on robotic platforms for
ultrasound imaging that followed, following also the research path for the modernization of
industrial manipulators that have been more and more modified also to fit these needs.

The development of systems for teleoperation of ultrasound devices continued with the efforts
by European institutions in a series of projects: TeleInVivo [44], TER [45, 46, 47], OTELO [48,
49, 50] and the TERESA project [51]. More recently, [52] focused on the design of an IMU
tracked controller that mimics the shape and size of a standard ultrasound probe, to control
a remote robotic ultrasound system, while [53] transitioned to the use of an off-the-shelf
commercial robotic manipulator for tele-ultrasound. These projects, while proving the growing
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interest of the research community for the topic, were still focused on the mechanical design,
control characterization, and signal transmission and compression to enable a functional
teleoperated system. The integration between multiple sensorial information was mostly
limited to ultrasound imaging processing, and the concept of full autonomy was not yet
addressed.

Once the basis for such systems has been established, a large wave of research was directed
to close the loop between the acquisition of ultrasound images and the robot control. Visual
servoing techniques were established for the task, aiming at reaching the desired ultrasound
view of the target anatomy [54]. Multiple techniques for the extraction of features in the
ultrasound images have been presented: speckle tracking has been employed to compensate
for the motion of diagnostic targets [55] and to stabilize the robot motion in real-time [56]. To
maintain the visibility of target objects image moments [57], plain intensity-based registration
[58], and template-matching algorithms [59] have been explored. Visual servoing techniques
have been employed to track not only anatomical targets but also instruments (e.g., needle,
catheters, etc.) inserted into the patient’s body during an intervention. The use of a robotic
system allows, in these cases, to achieve an autonomous tracking of the instrument and
maintains its visibility during its insertion. The real-time detection and tracking of rigid and
flexible needles have been proposed [60, 61] using small 3D ultrasound volume acquired
at a fast rate and a combination of particle and Kalman filters to obtain a robust tracking.
A two robot system is guided in [62], with one manipulator acquiring ultrasound images
while maintaining the visibility of a needle inserted by the other one, in a fully calibrated
system. The tracking of a catheter equipped with an active piezo-element is achieved in [63].
The pulse emitted by the element is captured by the ultrasound transducer equipped onto a
manipulator, and that information used to guide the probe position while the catheter has
been inserted inside a vascular tree. Another use of visual servoing methods has been targeted
at the optimization of the acquired ultrasound image quality, a series of work from Chatelain
et al. relies on an ultrasound image quality metric called confidence maps and aims at adjusting
the transducer pose in order to maximize image quality, avoiding loss of contact with the
patient skin [64, 65, 66].

The use of external force sensing has also been leveraged to improve the usability of robotic
systems, [67] and [68] explored the use of a collaborative force control approach to limit the
force that an operator has to apply during an ultrasound acquisition manually.

Following the release of modern robotic manipulators that enable a safer human-robot
interaction, the research in the field has gradually shifted towards the integration of such
systems into the clinical routine, rather than focusing on new mechanical designs. Some
more recent work on the design of robotic ultrasound systems focus on new kinematic designs
adapted to satisfy the needs for a specific clinical application or on the use of recently developed
materials. For instance, adopting a specific design for the acquisition of fetal ultrasound using
one [69] or two robotic arms [70]. Modern soft robotics, instead, is employed in [71, 72] to
achieve safe ultrasound acquisitions on pregnant women by leveraging a novel end-effector
design to locally steer the ultrasound probe after it has been placed onto the target area.

Specific clinical applications for robotic ultrasound imaging have also been explored in the
literature, in [73, 74] a robotic system for the online monitoring and adjustment of radiation

1.3 Background and Related Work
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therapy plans has been presented, making use of ultrasound imaging to track shifts in the
patient position and allow to minimize incorrect radiation exposures. A robot for ultrasound
guidance during transrectal interventions has been proposed in [75]. Neurosurgical navigation
for spinal procedures is enhanced using ultrasound-based robotic guidance, and image-based
registration of subsequential acquisitions is explored in [76], the groundwork for the first
patient trials performed in [3].

Finally, the interest for robotic ultrasound systems has nowadays permeated also the industry,
with tele-echography commercial systems being developed in Europe [77, 78] and China
[79]. Research in the field also continues to be supported by European initiatives, such as the
MURAB! H2020 project [80], targeted at ultrasound-based robotic-guided breast biopsies.

Reviews on the state-of-the-art for robotic ultrasound systems have also been produced in
literature over the years. The interested reader can refer to [81, 82, 83, 84, 85].

Ihttps://www.murabproject.eu/
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Ultrasound Imaging

The origin of ultrasound research can be traced back to the year 1794, when a fellow
Italian scientist, Lazzaro Spallanzani, discovered echolocation in nature. Spallanzani was a
biologist, physiologist, and Catholic priest that, as described in [86], performed a long series
of experiments on bats with the intent of understanding their ability to navigate in the absence
of light. To his surprise, Spallanzani was able to associate this trait to the bats’ use of their
hearing. He observed that bats were able to avoid obstacles while flying when blinded, only to
lose this ability when their ears would be obstructed. He did not believe initially that hearing
could be involved, since bats fly very silently, but its extensive and rigorous experiments
convinced him; an example that even a man of the Catholic Church has to surrender to the
scientific method. The exact scientific principle was to be demonstrated only in 1944 by two
American biologists Donald Griffin and Robert Balambos, when the term echolocation was
coined. The reason for Spallanzani’s surprise was then clear; animal echolocation is based on
sound waves at frequencies up to 200 kHz, far above the human hearing limit of 20 kHz. In
the same decade, taking inspiration from these observed phenomena in nature, sound waves
were becoming a fundamental tool for the navigation of human-made machines with the
introduction of the sonar (sound navigation and raging).

The use of ultrasonic waves as a diagnostic tool has become a reality since 1942, when Austrian
neurologist Karl Theo Dussik attempted to detect brain tumors transmitting an ultrasound
beam through a human skull. A first commercial medical device would be released in 1963 by
Meyerdirk & Wright, making ultrasound imaging generally available for clinical use. Since
then, medical ultrasound imaging has become one of the most available and used imaging
modalities, with a plethora of clinical applications. An in-depth presentation of the historical
steps that brought ultrasound imaging to its current state is available in [87].

2.1 Ultrasound Physics

Ultrasound Wave Properties

Acoustic waves propagating through a medium can be distinguished into two types: longitu-
dinal and transversal waves. The latter, also called shear-waves, are less frequently used in
ultrasound imaging, although they are gaining more importance as their use is introduced in
advance modalities, such as ultrasound elastography [88].

Longitudinal waves can be identified by a back-and-forth particle motion that is parallel to the
wave direction. As already mentioned, ultrasound waves exist above the human perceptible
limit of 20 kHz. For medical use, ultrasound frequencies are commonly between 1 and 20 MHz,
depending on the particular application. Materials characterized by the piezoelectric effect
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can produce ultrasound waves. Certain materials, in fact, respond to a mechanical force
by generating an electric charge in response, a phenomenon depicted in Fig. 2.1. At the
same time, a mechanical deformation can be induced by applying an electric field to the
same material. For medical imaging devices, lead zirconate titanate is commonly used as a
piezoelectric element. Since a singular piezoelectric element produces a limited amount of
energy, ultrasound transducers are composed of a series of elements stacked into layers. That
is, an ultrasound transducer is then able to transform electric energy into mechanical pulses
and vice versa.

v >

Visual representation of the piezoelectric effect, meterials characterized by this effect produce an
electric charge in response to a mechanic stress. In this example, a disc produces a certain voltage due
to the induced deformations (exaggerated for the visualization).

We can define as period the time for an ultrasound wave to conclude one cycle, while its
wavelength is the space traveled during that time. The wavelength A can be put in relation to
the wave frequency f, i.e., the number of cycles repeated in a second, as

A= 2.1)

C

i
Where c is the acoustic velocity, i.e., the speed at which waves travel through a medium,
which depends on the material density and stiffness. In anatomical tissue this velocity ranges

between 1400 and 1640 m/s, although in most modern systems this values is approximated to
the constant value of ¢ = 1540m/s.

Ultrasound waves produced by piezoelectric elements exhibit a self-focusing property, which
concerns the narrowing of the produced beam at a certain distance. The area near the element
where this phenomenon takes place is called the near field or Fresnel zone, contrary to the
far field or Fraunhofer zone where the beam, instead, diverges. In the near field, the beam
diameter is constant, and the field size depends on the signal wavelength and the crystal size
d. Thus the near field length can be computed as:

2

Near field length = Z—/\ (2.2)

The length defines the range best suited for imaging, as focus quality and thus resolution
decrease after that. Modern ultrasound transducers, which are composed of multiple piezo-
electric elements, can achieve a dynamic focus by introducing a time delay between electrical
pulses on the individual elements. This can be modified electronically to achieve an optimal
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focusing at multiple depths within the human body. Modern systems also employ a technique
called apodization to weight the elements signal amplitude across the whole transducer.

Spatial resolution in ultrasound imaging, i.e., the ability to distinguish between two points at
a defined depth in tissue, is characterized by axial and lateral resolution and strongly coupled
to the signal wavelength.

The axial resolution, R,, is the minimum distance that can be distinguished between two
reflectors along the scan line direction. It is equal to half the overall pulse length L,, which,
in turn, is the product of the number of excitation pulses (n € {2,3} in practice) and the
wavelength:

L
R, = ?p = — 2.3)

The lateral resolution, i.e., across the imaging plane, is primarily determined by the beam
width of the ultrasound wave. Intuitively, the lateral resolution is high when the beam’s width
is narrow, and it is therefore influenced by the aforementioned concepts of near and far-field,
and focusing.

Tissue Interaction

A fundamental concept in ultrasound imaging is acoustic impedance, a physical property of
tissue that describes the resistance an ultrasound wave encounters as it passes through it. It is
based on the product of the tissue density p and the speed of sound in the medium,

Z = pc. (2.4)

Intuitively, impedance increases as the tissue density does so. Examples of impedance values
for bodily tissues are presented in Table 2.1. The effect of acoustic impedance in medical
ultrasound becomes visible at interfaces between tissue types with different impedance. A
significant difference in tissue impedance would resolve in the reflection of the ultrasound
wave. Considering a wave passing orthogonally through two tissue layers, the amount of
reflection can be expressed as

 Za— 7

_ -4 2.5
7y 1 71 (2.5)

where Z; and Z, are the impedance values for the first and second tissue, respectively.

2.1 Ultrasound Physics
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Since not all the ultrasound wave would be reflected, the remaining intensity passed to the
second tissue layer can be represented with the transmission factor

27,

T=—"". 2.6
7o 1 7 (2.6)

Material Type p [kg/m?] c [m/s] Z [MegaRayls]

Air 0.0012 330 0.0004
Fat 928 1,430 1.327
Water (20°C) 998 1,481 1.482
Brain 1,035 1,562 1.617
Kidney 1,050 1,560 1.638
Muscle 1,041 1,580 1.645
Heart 1,060 1,554 1.647
Liver 1,050 1,578 1.657
Bone 1,990 3,198 6.364

Density (p), speed of sound (¢) and impedance (Z) values for various anatomical tissue types, from
[89].

From the data available in Table 2.1, one can observe that, as an example, only less than 1%
of an ultrasound wave would be reflected at an interface between fat and liver tissue, while
most of it would be lost passing through lung tissue, due to the presence of air.

In reality, most of the acoustic waves do not hit tissue interfaces orthogonally. Part of the
ultrasound is, in fact, reflected according to the Snell’s law. Similarly to optical reflection, the
reflection angle 6,. is equal to the incidence angle 6;, the transmission angle 6, can be obtained
from the ratio between the tissue speeds of sound:

sin 0; _a 2.7

sinf, ¢y

Leading to a general formulation of acoustic impedance and transmission:

_ Zacost); — Zy cos by
" Zycosb; + Zy cosB,’
_ 275 cosb;

"~ Zycosb; + Zy cosby

A directional change of the ultrasound wave across tissue interfaces, i.e., §; # 6; # 0, is
refereed as refraction.

The interaction with objects that are of a smaller size than the signal wavelength, instead,
generates diffuse reflections, a phenomenon called scattering. The reflections themselves
would then cause further disturbances by expanding over all directions, causing the familiar
speckle noise that can be observed in ultrasound images. Finally, part of the wave energy is
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dissipated in the form of heat by absorption, which, again, is highly correlated to the medium
that is traversed.

2.2 2D Image Formation

Ultrasound Image Modes

In medical imaging, different ultrasound modes are used for various applications, mainly: A-
(amplitude) mode is mostly used to differentiate tissue types [90, 91]. It represents the echoes
produced by a single pulse over time, in a one-dimensional diagram. Doppler mode makes use
of the Doppler effect to estimate the blood flow through blood vessels [92]. M- (motion) can
visualize the movement of body structures, such as hearth valves [93], in a wave-like shape.

For the scope of this thesis, instead, the focus is only on B-mode ultrasound, which is the
most used ultrasound mode to acquire general anatomical information. B-mode (brightness
mode), in fact, produces a 2D grayscale image of a body area emitting ultrasound waves
simultaneously from an array of piezoelectric elements. The intensity of the grayscale values
within an image represents the amplitude of the received echoes. It is used for a large variety
of clinical applications, both in diagnostics [87] and interventional [94] scenarios, and it is
also the only ultrasound image modality used throughout all the contributions presented in
this work.

Ultrasound Transducers

As already mentioned, ultrasound imaging makes use of arrays of piezoelectric elements,
rather than individual ones. Ultrasound transducers come in different shapes, sizes, and
features, depending on the clinical application they are targeting. The characteristics that
can help distinguish different transducers are mainly the arrangement of the piezoelectric
elements and their frequency range. The most common types of ultrasound transducers are
shown in Fig. 2.2:

* Linear transducers, in which the piezoelectric elements are arranged linearly, resulting
in a rectangular shape of the generated ultrasound beam. These probes usually have
a good near-field resolution, and their frequency ranges between 2.5 MHz and 12 MHz.
Common clinical applications that use linear transducers are thyroid, breast, and tendon
imaging.

* Curvilinear transducers are characterized by having their elements aligned along a
circular arc of a fixed angle. The produced beam is convex and ideal for in-depth
examinations, which makes this the probe of choice for abdominal imaging. Their
frequency ranges between 2.5 MHz and 7.5 MHz.

Other, more specialized, transducers are also available for intra-corporeal ultrasound imaging,
e.g., trans-rectal, trans-vaginal or intra-vascular probes, or with more specialized elements,
e.g. phased array transducers. Overall, the contributions presented in this work make use of

2.2 2D Image Formation
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Representation of common ultrasound transducers and examples of ultrasound images obtain using
them. Top row: A linear transducer. Bottom row: a curvilinear transducer. Notice how the acquired
images reflect the geometry of the probes’ piezoelectric elements.

only linear or curvilinear transducers. Their main characteristics, such as footprint and used
frequency, are reported in the respective publication.

B-mode Image Formation

The self-focusing characteristics of piezoelectric elements have already been mentioned.
Modern systems make use of a time-delay method to dynamically adjust the focus on the
ultrasound beam and optimize the lateral resolution. An extensive discussion about this
process, defined as beamforming, and more advanced techniques can be found in [87].

After the transmission of the ultrasound pulses, the same elements in the transducer are used
to listen to the returning waves, which are affected by the interactions described in 2.1. The
readings from multiple elements are then aligned and summed for additional processing.

Given Z(t), the acquired raw signal, two scaling factors are applied at the first processing

step:

.’L‘(t) = F() Fl(t) i‘(t) (28)

Chapter 2 Ultrasound Imaging



F, represents a global gain factor, while F} (¢) is known at time-gain-compensation (TGC) and
includes multiple scaling factors that are based on the time of arrival of the returning wave
to the elements, effectively depending on the depth level to which the produced ultrasound
wave initially traveled. In practice, TGC adjustment is available on most ultrasound machines
to dynamically reduce the signal loss at greater depths. The instantaneous amplitude of the
ultrasound signal is then obtained by envelope detection. Considering the Hilbert transform

Hz(t)] =L / o m(TldT, (2.9)

where p is the Cauchy principal value. We can represent z(¢) in complex notation as:

2(t) = z(t) + iH[z(t)] = a(t)e’*®. (2.10)

Where a(t) = /[z(t)]?> + [H[z(t)]]? and ¢(t) = arctan[Hffg)]] are, respectively, the instanta-

neous amplitude and phase of the signal. The time derivative of ¢(t)

wity = 222 2.11)

is instead the instantaneous frequency of x(¢). After applying the Hilbert transform, the real
party of z(t) represents the original signal:

x(t) = a(t)eifw(t)dt. (2.12)

At this stage, the signal is commonly further enhanced, using more advanced filters to reduce
noise. The variation in amplitude of the ultrasound signal can be relatively high, causing few
high amplitude values to suppress the others. Therefore, the signal cannot be linearly mapped
to the gray-scale values. A logarithmic compression is rather used to adjust dynamic range.
Considering a gray-scale image with N bit color depth, image intensities are obtained from

_ Inxz(t) — Inmingx(t) N
I = In mazx(t) — lnmingx(t) 1), (2.13)
with the dynamic range defined by the denominator
R=n a0, (2.14)
min,z(t)

The obtained intensities are composed in the final two-dimensional image. While this is
more trivial for linear transducers, due to their simple geometry; curvilinear transducers

2.2 2D Image Formation
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require a scan conversion step, to interpolate the resulting intensities values in a rectified
image according to the specific probe geometry.

2.3 3D Ultrasound Imaging

Although 2D images are the most accepted form to display and analyze ultrasound images,
their two-dimensional nature has some limitations. When imaging a complete portion of
the anatomy, e.g., an entire kidney or the liver, it is required for physicians to mentally map
the acquired 2D images and create a spatial relationship between them. This task is not
only time-consuming and mentally demanding but also introduces a high variability, purely
depending on the operator skills.

Since the 1980s [95], 3D ultrasound imaging has been developed to address these issues and
allow a tomographic reconstruction using ultrasound, similar to what is done with CT or MR
imaging. In broad terms, the main idea is to reconstruct a volume from a set of 2D ultrasound
images, acquiring knowledge regarding their spatial location. With respect to classic 2D
images, 3D ultrasound can improve the accuracy and reduce the variability in the geometrical
analysis of anatomical parts. 3D ultrasound acquisitions are also more repeatable, as acquiring
an entire 3D volume allows to easily obtain the same information that has already been
acquired in previous acquisitions. Over the past three decades, studies using 3D ultrasound
have shown its benefits on a large set of clinical applications [95, 96, 97].

Ultrasound Transducer Tracking

3D ultrasound volumes are generated by interpolating 2D ultrasound images based on some
knowledge of their spatial relationship. In this sense, several modalities can be used to track
the position of the ultrasound transducer during 2D data acquisition.

The most common technique is the so-called free-hand ultrasound [98, 99], which is based
on two main technologies that rely on the use of a marker attached to the ultrasound probe:
optical or electromagnetic (EM) tracking, also illustrated in Fig. 2.3. An optical marker or
EM sensor is attached and calibrated to the ultrasound transducer, while an external sensing
system (an infrared camera or an EM field generator) can track their location over time.
Optical tracking is quite precise, with a sub-millimeter tracking accuracy, but it commonly
suffers from line of sight issues and a limited field of view. EM tracking is less accurate, it is
limited to the active area of the EM field and, although it allows for obstructions between the
generator and the marker, the readings can be disturbed by the presence of other ferromagnetic
items in the vicinity. A variation of the optical tracking paradigm that uses an external camera
is the inside-out optical tracking technique, which is characterized by the use of an optical
sensor attached to the tracked object. In this case, information about the scene are captured
by the sensor and used to re-localize the object with respect to it. In [2], the author of this
thesis showcased this technology for 3D ultrasound compounding.

Employing free-hand ultrasound, since images are still obtained manually by a user, the
acquisition usually presents a non-uniform spacing and might capture the anatomy only
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Fig. 2.3.

Tracking devices for free-hand 3D ultrasound. Left: an EM sensor is attached to an ultrasound linear
transducer (white element inserted in the green casing), an EM field is emitted by the generator (cube on
the top right) and the sensor position with respect to it obtained. Right: An optical marker is attached
to the transducer, while an external camera emits infrared signals and captures their reflections from the
marker’s spheres.

sparsely. This disadvantage is due to the fact that it is hard for a human to optimize the
acquisition, in terms of path, the pressure used, etc., using their sensing, and the images
themselves are feedback. Another technique for the tracking of ultrasound transducers is
attaching them to a mechanical device, e.g., linear stages, and perform their tracking using
the information provided by the motors or encoders. Mechanical tracking can make use of
more advanced mechatronic hardware to not only track the probe but guide it along the
patient surface with great precision and repeatability. It is the case of robotic ultrasound
systems that can use various sensing information to improve the produced ultrasound volumes
and guarantee a constant optimal acquisition, as explored in this thesis. A major drawback
of mechanical tracking solutions is their bulkiness and high cost, compared to free-hand
techniques.

Exploratory techniques for ultrasound compounding also include sensor-less tracking, which
attempts to regress the spatial relationship between 2D ultrasound frames using image-based
[100, 101] or learning-based techniques [102]. Finally, pyramidal 3D volumes can be directly
obtained using a 2D ultrasound array, although they are very expensive, have a small footprint,
and their clinical use is currently quite limited.

Compounding Techniques

Upon acquisition of tracked 2D ultrasound data, a reconstruction technique has to be employed
to obtain a complete 3D volume. Only in rare cases, trivial methods to stack the 2D images
can be used, since they required smooth, uniform acquisitions along a straight line. In all
other cases, a method to interpolate between the available images has to be integrated.

Compounding methods can be distinguished into two categories:
* Forward or pixel methods reconstruct a 3D volume visiting each pixel of the 2D ultra-

sound images. On a first step, the methods visit each pixel of all the 3D ultrasound
images. Based on the available spatial information, the nearest 3D voxel of the recon-
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structed volume is filled with the respective value. The values of multiple pixels that
correspond to an individual voxel are normally averaged. Since this step can produce
holes in the final volume, a hole-filling phase is then executed by using the average,
median, maximum, or minimum value across voxel neighbors. While these methods can
reconstruct the 3D volume rapidly, they tend to cause blurred results and might lose
some information from the 2D images. Modern techniques attempt to recover some of
these drawbacks, using a fast marching method [103] or Olympic operation [104] to
interpolate the empty voxel accurately.

* Backward or voxel methods build a regular Cartesian grid from the acquired 2D ultra-
sound images. In this case, the voxel grid is traversed, and the nearest pixel value for the
set of 2D images is inserted in the respective voxel. The voxel grayscale intensity value
is computed as a weighted average of the neighbor pixel values. In this case, the original
texture is preserved, holes avoided, and alternative views not available in the 2D set can
be generated. However, if volume voxels are reconstructed using pixel values too distant
from each other, large reconstruction artifacts can be introduced, a fine sampled volume
is therefore required.

Extensive reviews of ultrasound reconstruction algorithms are also available in [99, 105, 106,
107].

2.4 Intensity-based registration

Image registration has, in general, the task of aligning two or more images, bringing them to
a common reference frame, and enable to match anatomical information available in them.
Medical image registration represents a very active field of research on its own [108, 109,
110]. For the scope of this thesis, the focus of this section is on the general framework to
achieve intensity-based registration between ultrasound and CT or MRI volumes since it is one
of the main building blocks leveraged by many of the contributions presented in this thesis.

Given two images Iy and I,,, intensity-based registration relies directly on the image intensities
to align them. Fixing the image I, the aim is to find the optimal transformation 7 to apply
to the moving image I,,,:

T* = argmax a(l;, T(I;,)). (2.15)
T

Being « : (I7,I,,) — R a similarity metric between the two images. It provides a measure of
how well the two images are aligned.

This process, illustrated in Fig. 2.4, is an iterative optimization: the optimizer takes into
account the value of « at each iteration to find the set of parameters for 7* that maximize the
similarity between the two images. If a similarity gradient can be obtained, gradient-based
methods such as gradient descent, or Gauss-Newton can be employed. Other optimization
techniques include BOBYQA [111] and NEWOA [112], in the case the similarity is not
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Fig. 2.4.

differentiable. The number of parameters to optimize depend on the transformation model.
For rigid transformations, there are six degrees of freedom, while affine ones include three
additional parameters for scaling. Non-linear deformation can also be address using techniques
such as free-form deformations (FFD) [113], thin-plate splines [114] or energy-based methods
[115].

Moving Image I, Fixed Image I

Similarity

Interpolator
Measure (a)

Transformation T Optimization

[
1
I
1
I
I
I

\ Optimization Loop /

A generic framework for intensity-based registration methods. An initial transformation 7' is applied
to the moving image. A similarity metric is used to compute the similarity between the moving image
and the fixed one. An optimization technique refines the transformation to maximize the similarity until
convergence.

Similarity Metrics

A similarity metric a(I}, I,,) measures how well the transformed image I,, = T'(,,) matches

m

the fixed image I, with T the transformation obtained by the current iteration of the optimizer.
The corresponding pixels or voxels from the overlapping area 2 of the two images are
compared according to a chosen function f, and the result is integrated over the area:

I, I,)) = /f (2.16)

Classic chosen functions f are the Sum of Squared Differences (SSD),

SSD(x) = (In(x) — I,,(x))?, (2.17)

or the Sum of Absolute Differences (SAD),

SAD(z) = |In(x) — I, (x)]. (2.18)

2.4 |Intensity-based registration
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For both these metrics, however, holds the assumption that both images include intensity
values in the same range, which is often not true even for images of the same modality. To
overcome the different illumination level of the two images, Normalized Cross-Correlation
(NCQ) is commonly used:

Nee() - T =m0~ ) (2.19)

)
OfOm

with 1 and o, the mean and standard deviation of the image intensities, respectively. NCC
is a valid metric for intra-modal registration, i.e., registration of two images acquired with
the same modality, since it assumes the intensities of both images to have a linear correlation.
In fact, in the case of multi-modal registration, such as ultrasound and MRI, bright areas in
one modality are not necessarily represented with the same intensity range in the other. To
handle this non-linear correlation, various similarity metrics have been proposed, such as
Mutual Information (MI) [116], based on the Shannon entropy formulation from information
theory

— " pilogp;. (2.20)

p;(I) is the probability distribution of an image pixel having intensity i. For two images,
instead, the joint probability distribution can be taken into account, and the joint entropy

o) = = 2 2 P, (5D 0811 5 (2:21)

has to be minimized to achieve an optimal alignment of the two images. For robustness, MI is
commonly formulated as

MI(Ip,I.) = H(In) + H(L,) — H(In,I.) = Zzplm, i, j)log ’()Im‘”()j) (2.22)

and maximized instead. MI has been proven a powerful metric for multi-modal registration
but has not been very successful when used for the registration of ultrasound imaging with
other tomographic modalities.

Defined specifically for registration between ultrasound and MRI acquisition, the Linear
Correlation of Linear Combination (LC?) metric [117] has been employed in many of the
contributions presented in Chapter 5 of this thesis, such as [7] and [1]. This similarity method

Chapter 2 Ultrasound Imaging



correlates the MRI intensities p and gradient magnitudes g = |Vp| to the ultrasound intensity
values. For each pixel z; in an ultrasound image, the intensity function f(z;) is defined as

f(zi) = api + Bgi +7, (2.23)

where y; = «, 3, are the unknown parameters that represent the influence of p; and g; in
a neighborhood of z;. These coefficients can be approximated by minimizing the difference
between y; and the ultrasound intensities u;:

a Uy pt g1 1
Mlp|—|: andM=|: © [, (2.24)
vy Um Pm Gm 1

solving for y; using ordinary least squares with the pseudo-inverse of M. The final local
similarity is then

Yo, Hus(zi) — Myl

S, Var(lys(z:) (2.25)

LC?*(Iys, M) =1 —

In [118], the LC? similarity metric has been shown applicable for rigid, affine, and deformable
registration, delivering high robustness and a wide convergence range.

2.4 |Intensity-based registration
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Force Control for Robot
Manipulators

The ability to physically interact with the surrounding environment is fundamental for robotic
systems in many applications. In the medical domain and in particular for robotic ultrasound
applications, this is even of greater importance. As seen in Chapter 2, contact with the patient
is always required to acquire ultrasound images in real-time. In the case of robotic actuated
ultrasound transducers, it is crucial for the system to be able to measure the force that has
been applied to the examination area and adapt it as needed.

Pure motion control for robotic manipulators is not adequate in these situations since errors
in the control modeling could create severe damages to the patient; force sensing and force
control are therefore mandatory. This chapter explores the main techniques that allow robotic
manipulators, like the one employed during the development of this thesis, to interact with
patients’ anatomies safely.

3.1 Fundamental Concepts

Research focusing on the modeling of the interaction with the environment by robotic systems
has been very active in the past decades. As discussed in Chapter 4, a common strategy is to
employ visual sensing to map the robot’s surroundings. However, many applications require
finer information on the interaction with objects, especially in telemanipulation, for which
force sensing was introduced to help the remote handling of items without damaging them.

A pure position control strategy would result in unwanted force being applied to the robot
parts and the contact object in the case of constrained motions since the controller would only
attempt to adjust its end-effector position by applying more torque to the motors. Ensuring a
compliant behavior of the system can reduce this effect.

Passive Compliance

Passive compliance is obtained by limiting the contact forces by means of mechanical compli-
ance of the robot components. A typical solution is employing a remote center of compliance
(RCC), which is a compliant end-effector mounted onto a robot’s rigid body [119]. This
approach doesn’t use external sensing, so it is faster and less complex than adapting the
control algorithm in real-time using feedback from sensors. However, it requires the design of
a custom mechanical component that adapts precisely to the task at hand, which makes the
concept hard to generalize for tasks where the environment response is not known a priori,
e.g., patients’ bodies have a large variability.
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Active Compliance

Active compliance involves the use of contact forces and torques measurements as feedback
signals for the control schema. They are used to dynamically adapt the generated robot
trajectory according to the interaction with the environment. Since this approach requires
more complex and, therefore, computationally demanding control systems, it is usually paired
with some extend of passive compliance, such that damage from the applied forces can be
avoided while they are not yet compensated for in the control loop.

Force Sensing

Six components (three translational force elements and three rotational torque ones) are
required to obtain optimal contact information. One strategy is to attach a force/torque sensor
between the robot end-effector and the tool, simply measuring the contact forces applied by
the equipped tool [121, 122]. External torques can also be estimated via joint torque sensors
[120, 123, 124], which provide not only information about the force applied by any tool, but
also the ones obtained by the contact of other robot links with external objects. The last one is
the typical approach for modern robotic manipulators that are certified for human interaction.
This technology, in fact, allows to also react to collision with humans that might be operating
in the vicinity of the robot and collide with its body. One drawback of this approach is that
the computation of forces applied to the tool is limited by the resolution of the joint sensors,
which are propagating their errors; an additional force sensor is often added to the robot wrist
to combine the two approaches. Both force sensing approaches are displayed in Fig. 3.1 on
the robotic manipulator employed throughout all the contributions presented in this thesis.

Hardware for force sensing with an industrial manipulator. Left: a robotic arm equipped with a
6D force/torque sensor mounted at its flange (marked in yellow) and joint torque sensors for each
of its seven joints (marked in red). Top right: a particular of the force/torque sensor at the robot’s
end-effector. Bottom right: the design of the robot joints including the torque sensor, reprinted from
[120] with kind permission from Emerald Publishing Limited.
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3.2 Force Control Strategies

Without aiming at completeness, the main control strategies for systems with active compliance
are now explored. The reader should refer to the fundamental literature in the field for a
complete and formal introduction to the topic [125, 126].

The two main categories for control schemes are indirect and direct force control. Strategies in
the first category do not directly include force feedback into the control loop, making only use
of motion control techniques. The ones in the second category, instead, are able to control the
applied forces directly.

3.2.1 Indirect Force Control

A robot manipulator that uses indirect force control strategies can be characterized by a
mass-spring-damper system with configurable parameters. In general, using these control
systems, the introduction of a contact force translates into a deviation of the final desired
end-effector position, to which the control can react to by either applying forces to compensate
for it or by enforcing a change of the desired pose.

Considering a robot with n joints, its joint state ¢ € R”, the measured end-effector position
pe € R3 and rotation 6. € R? in Euler angles; the measured end-effector velocity can be
computed as

ve = J(q)q, 3.1

with ¢ € R™ the joint velocity and J € R6*" the end-effector geometric Jacobian matrix. The
measured end-effector wrench can instead be represented as

he = (fo me)7, (3.2)

with f. € R3 and m. € R? the linear forces and angular momentum, respectively.

The dynamic model of such manipulator can be described in its operational space as:

L'(q)ve + Z(q,d)ve +n(q) = he — he, (3.3)

with the inertia matrix

P(q) = (JH(¢)~'J")™ (3.4)

3.2 Force Control Strategies
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and the overall external joint wrench

Z(q,q) = J'Clg,q)J " = T(q)JJ 1, (3.5)

including the centrifugal H(q), Coriolis C(q, ¢) and gravitational forces n(q) = J* g(g) both
in task and joint space. The value h. = J~!7 represents the controlled end-effector wrench
when applying the joint torques 7.

Stiffness Control

Defining the current and the desired end-effector pose as

Te = (pe Ue) and x4 = (pq 04), (3.6)

respectively, the error between the two poses is

AZge = Tg — Te. 3.7)

In the case of a generic proportional-derivative (PD) controller with gravity compensation
(See Sec. 8.5.1 of [127]), the motion control schema can be expressed as

hc = A_T(ee)Kprde - KDve + 77(61)7 (38)

with Kp, Kp € R%6 symmetric and positive-definite,

A(f.) = , (3.9)

and T'(6.) € R3*3 mapping rotation and angular velocities, i.e., w, = T(6,)f.

In the case of a total of zero external forces (i.e., h, = 0), there would be a correspondence
between the desired and effective end-effector pose (i.e., Azx4. = 0). It can be demonstrate
that the system is asymptotically stable in that state [126]. Applying a constant value h.,
instead, it results in a non-zero Az g.:

Axde = Kp_lAT(ee)hey (310)
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and therefore

he = A71(0.) KAz ge. (3.11)

From 3.10, it is clear that the behavior of such a system is equivalent to the reaction of a
spring under the application of the wrench k., with K, acting as the stiffness matrix of the
spring model. K, !, therefore, would act as a compliance component, giving a desired pose p
an acceptable deviation from this command. Az,4. can be achieved exerting a certain force on
to the environment; this is the fundamental approach behind stiffness control.

The selection of the stiffness matrix parameters is complex and usually depends on the task at
hand. Notice that since the end-effector pose is described with six components, it is possible
to select different stiffness values along the degrees of freedom, achieving different behavior
in the respective (angular) directions. In any case, stiffness control is only based on a static
relationship between the desired end-effector position and the contact forces.

Impedance Control

A more dynamic behavior can be achieved via impedance control. This time a acceleration-
based motion control approach is used, to decouple the robot dynamics using an inverse
dynamics control law. In this case, Eq. 3.3 varies into:

L(q)a+ Z(q,q)q +n(q) = he — he, (3.12)

with « an acceleration control input defined with respect to the robot end-effector.

Setting « as

a=vq+ Ky (KpAvge + ha — he), (3.13)

the closed-loop system can be expressed as

Ky Avge + KgAvge + ha = he. (3.149)

With K,,, Kp € R%%® symmetric and positive definite, vy and 7, the velocity and acceleration
of a desired frame X4, Avge = Vg — Ve, AvVge = vq — v. and ha the total elastic wrench in the
case of a displacement between the end-effector and the desired frame.

3.2 Force Control Strategies
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Eq. 3.14 describes a generic mechanical impedance model. Again, in the case of h, = 0
the system would be in a stable equilibrium and in the presence of a non-zero wrench, a
displacement of the desired end-effector pose would take place. In this case, choosing

K,, = , (3.15)

and Kp a diagonal matrix with 3 x 3 blocks, Eq. 3.14 would represent a mechanical spring
with mass m and inertia M € R®*3, having damping Kp.

An impedance controller would use the acceleration input « based on the position and force
feedback from the sensors, as defined in Eq. 3.13. The dynamic control law in Eq. 3.12 is then
used to compute the joint torques 7 = J7 h.. A compliant behavior is produced according to
Eq. 3.14 in the case of external forces from the environment.

3.2.2 Hybrid Force/Motion Control

Under the category of direct force control techniques lays one of the most common modern
control strategies, hybrid force/motion control. In the case of partially constraint motions, it
is possible to split the control task into two, one including free motion in space along the
unconstrained degrees of freedom, and one focused on force control along the ones in contact
with the environment.

Many control schemes have been proposed in the literature for hybrid force/motion control.
For conciseness, this section focuses on the formulation of the typical force/position controller
that has been employed throughout the work presented in this thesis. Since direct force
control methods require to include a model of the interaction task, the formulation is usually
categorized based on the interaction with a rigid or compliant environment. For simplicity,
and since in practice modeling of the individual patient body is unrealistic for the task at hand,
the following presentation focuses on the rigid case. The interested reader should further
refer to classic motion control textbooks [125, 127] and to the current review literature on
the topic [128].

Considering a robot’s end-effector frame, its force h. and velocity v, can be obtained by
specifying the vectors A\ € R® and v € RS, respectively. Generally, they can be mapped to the
measured forces and velocities using

he = SpA (3.16)

and

Ve = SyU. (3.17)
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Fig. 3.2. A ultrasound acquisition performed by a robotic arm. In this over-simplified example, the task can
be described as sliding the ultrasound probe along the x; axis while exerting a fixed force along z;.

The matrices Sy € R®*™ and S,, € R6*5~™ are commonly known as selection matrices, and
they describe the task, i.e., the degrees of freedom controlled by the force or the motion control
part. Considering a task reference frame, an interaction can be defined along each of its axes,
either using a desired force/torque or linear/angular velocity. Since there are 6 degrees of
freedom in total, the dimensionality of S; and S, is set once the m positional constraints are
set, i.e., if m = 6 then the controller aligns with a classical position controller.

As pictured in Fig. 3.2, a simplified ultrasound acquisition along one direction has some
resemblance to the typical task of sliding an object on a planar surface. We define z; as the axis
along which the movement is executed and z; the axis along which a force has to be applied.
The task would have 3 motions constraints, i.e. non-zero velocity along x;, zero velocity along
y; and z;, and 3 force constrains, i.e. non-zero force along z;, zero torques about x; and y;.
The resulting matrices Sy and S, would then be

0 0 O 1 00
0 0 O 01 0
1 0 O 0 0 O
Sy = and S, = (3.18)
01 0 0 0 O
0 0 1 0 0 O
0 0 0 0 0 1

3.2 Force Control Strategies
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The block diagram in Fig. 3.3 provides a simplified description of a typical hybrid force/motion
control. It can be proved, and it is represented in the diagram, that a complete decoupling
between the force and motion control is indeed possible, leading to the following equalities:

UV=aq,

A= fx,

(3.19)

with a,, and f) the control inputs of the controller. Providing the desired velocity v, can be
obtained using the control law:

t
oy =Vg+ Kpy(vg —v) + KIZ,/ (va(p) — v(p))dp. (3.20)
0

While the desired force \; can be achieve via the control law:

x=2Xa+ Kpx(Aa — ) (3.21)

or

¢
x=Xa+ K1 / (Xa(p) — X(p))dp. (3.22)
Jo

The respective matrices K p and K are positive definite gain matrices. Adding feedback from
the end-effector force/torque measurements can be obtained from

A= S}he, (3.23)
T
A St
1 Force fA S
d Control f h
+ e
a . >
®—> Manipulator
Motion S + Ve
Va Control a, v
A
Vv T
A

Fig. 3.3. Example of a block diagram of an hybrid force/motion controller.
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with S} a weighted pseudo-inverse of S;. In a similar fashion, an hybrid force/position
controller can be achieved using instead the control law:

a, = pag+ Kpp(Pa — 1) + Kpp(pa — p), (3.24)

with pg4 the desired end-effector position.

3.2 Force Control Strategies
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3D Visual Sensing

A complete knowledge about the environment is crucial for robotic tasks. A robotic system
has to be able to interact with or navigate in dynamic scenes with high precision. This is
important for general robotics tasks such as indoor navigation [129, 130], collision detection
and avoidance [131, 132], object grasping [133], and more. It assumes an even more
important role in the medical domain, where information regarding the position of the patient
position, the medical staff, and other equipment are essential for conducting safe and efficient
procedures successfully. Moreover, these environments are often very dynamic, and therefore
a real-time update is necessary.

The main principle behind range measurement, triangulation, has been used more than 2000
years ago by Eratosthenes to measure the earth’s circumference from shadows created by
sunlight. As for many technologies, a great boost came from the military during the two
world wars. Later in the 1970s and 1980s, the larger availability of electronic components
and optical apparatuses made more affordable the introduction of the first 3D sensor systems
for industrial applications. The technologies behind the systems developed in those years
were similar to the ones used in more modern systems: laser scanning, pattern projection,
and time-of-flight sensors, but the costs and the lack of miniaturization were still the primary
limits for the development of commercial systems. A revolution in the field has been the
introduction of the Microsoft Kinect sensor in 2010 as the first 3D sensor available for the
consumer market [134]. Since then, a large number of companies have introduced sensors to
the market, enabling the use of this technology for many applications.

3D information are commonly represented in so-called depth images. They are componsed of
a matrix, like a 2D image, but it additionally includes a depth value for each image pixel, with
respect to the sensor location. A depth information is available for every object located in the
field of view of the sensor. A depth estimation for each image pixel results in a dense depth
map. This section introduces the main techniques used to obtain that information, focusing on
the ones used within the contributions presented in this thesis. Some technologies are omitted
since they are not commonly used in medical applications, e.g., laser scanners, due to their
large size and the presence of moving parts. An in-depth description of the presented topics is
available at [135].

4.0.1 Passive Stereoscopy

Stereoscopic methods, in general, rely on two cameras and achieve the computation of depth
information from the relationship between two projection rays from the two cameras, taking
inspiration from the human binocular vision system.
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Fig. 4.1 represents an exemplary stereo camera system. For a point captured by the two
individual sensors, its projection onto the two image planes is characterized by a displacement
in position between them. This difference d = x; — z, is called disparity, obtaining this
information for the the whole image set generates a disparity map.

The depth information about each point can be then obtained via triangulation as

b-f

7= —-—""
d- plmelsize ,

“4.1)

where b is the baseline, i.e., the distance between the two camera centers, f is the cameras focal
length and pizel,;.. is the pixel size of the image sensors. This represents a trivial case since it
is assumed that the two cameras are identical, i.e., the same focal length, they are horizontally
aligned, that the images are acquired at the same instant, and they are rectified, i.e., no lens
distortion. In practice, all these possible influences have to be taken into account.

Z[m]‘

X [pixels]

X [m:]

b

< »
< >

A point in space is captured by the two sensors of a stereo camera system. The distance of the
point with respect to the cameras can be estimated using the system baseline (b), its focal length (f) and
the pixel coordinates in the two cameras (x;andz;,.).

The described approach relies on finding the the corresponding point in the two stereo
images, a task defined as correspondence problem or stereo matching. Establishing these
correspondences is itself a fundamental problem that is the subject of a large literature on
stereo vision [136, 137]. Classic strategies for this problem perform a comparison of pixel
blocks between the two images, using, for instance, similarity metrics such as the one described
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in Sec. 2.4. In general, it can be computationally expensive, limiting early-stage depth from
passive stereo algorithms to powerful machines of dedicated hardware.

A variation of passive stereoscopy, called depth-from-motion, uses multiple frames (typically
from videos) to analyze differences between consecutive ones [138], enabling depth extraction
also from monocular sensors [139, 140]. Depth-from-focus, instead, is particularly popular in
microscopic imaging, where a different focus setting is used to acquire multiple images [141,
142].

4.0.2 Structured Light

A solution to the challenges in stereo matching for passive stereoscopic methods is given by
active methods based on structured light sensors. The needed correspondences are, in fact,
obtained using a projected pattern onto the scene. To avoid ambiguities in the correspondence
extraction, time- or color-multiplexing can be employed to project multiple patterns [143],
or a pseudo-pattern is used, so that the distortion given by its projection onto objects can
be analyzed, as the dot pattern employed by the Microsoft Kinect in its first release [134].
Typically, an infrared pattern is projected to avoid interfering with other computer vision tasks,
while an infrared camera captures its deformation.

4.0.3 Time-of-Flight Imaging

Depth information can be obtained by using a light source that illuminates the scene at certain
intervals. The distance between the sensor and an object is measured based on the time
difference between the light emission and the detection of the reflected light.

The Time-of-flight principle can be used with various types of signals, including sound. The
same principle is used since decades for LIDAR (Light Detection and Ranging) imaging. Only
in the recent years solid state LIDAR scanners have been introduced, enabling a broader use
of this type of sensors since the presence of mechanical moving parts was limiting it.

Time-of-flight cameras enable the acquisition of very dense depth images, with the rapid
computation of distance information for multiple image pixels at the same time. Compared
to depth from stereo, the need for additional computations is limited, making these sensors
suitable for high dynamic environments.

4.1 Feature-based registration

Regardless of the acquisition method, the scene is represented by the resulting depth map.

This contains a set of N points in 3D, a so-called point cloud, P = [p1,p2,---,Pn],p € R%. It
is common to obtain 3D information from multiple sensors or sources and require to match
them so that they can be referred to a common reference frame. For instance, in [7] and
[81, 3D point clouds are obtained from structured light sensors and extracted from available
pre-operative medical volumes, Fig. 4.2. Both points sets would contain a representation

4.1 Feature-based registration
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Fig. 4.2.
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of the current patient surface. The ability to match this information would then enable to
accurately and safely guide robotic devices to the patient.

Pre Registration Post Registration

Feature-based registration is used to match two point sets. In blue a point cloud extracted from a
full-body MR, in red one obtained from a 3D vision system. The two point sets undergo a deformable
registration, its result is shown on the right side.

Image registration, in general, is a problem already described in Chapter 2.4, with a focus
on intensity-based approaches for medical images. An alternative is to employ feature-based
methods. While the previous ones, as we have seen, are based on the analysis of the image
intensities, the later ones use distance measures based on features extracted from the input
images to be aligned. Given a source point set S and a moving one M, the general problem,
in the rigid case, can be formulated as:

M=Rx%S+t, (4.2)

with R € R®*3 the rotation matrix, and the translation vector t € R**!, necessary to align the
two sets. While the entire point sets can be employed, robust feature points are commonly
extracted to guide the registration, and a plethora of feature descriptors for 3D point clouds
have been presented in literature [144, 145]. Once these are chosen, geometric transformation
methods are employed to minimize the distance measure between the two point clouds.

In general, feature-based registration has been extensively discussed in the literature, with an
intense use in the medical field [146, 147, 148].
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Iterative Closest Point (ICP)

Initially presented by Besl and McKay [149], this classic algorithm registers the moving point
set M iteratively applying a series of rigid transformations, estimating the points nearest-
neighbor correspondences at each step. Formally,

1 n
dist(R,t) = Nz |Rm;i +t — si||°, (4.3)
=1

is minimized at each step until an optimal transformation is obtained. A large number
of variations of the ICP algorithm have been proposed throughout the years. To optimize
the error minimization step, EM-ICP [150] makes use of the Expectation-Maximization
technique [151] rather than the quadratic function built from the Euclidean distance of the
point correspondences as in the original formulation; while LM-ICP [152] uses a Levenberg-
Marquard optimization. Other works address the need of ICP for an accurate initialization to
be able to achieve an optimal solution [153]. Variations of the ICP algorithm to handle the
non-rigid registration between point sets are also available in literature [154, 155]. Flavors of
the ICP algorithm have been used in [7] and [1], as presented in Chapter 5 of this thesis.

Gaussian Mixture Model (GMM)

This algorithm, [156], describes the two point sets as two Gaussian mixture densities [157]
and performs their registration by minimizing their L2 norm:

dp,(S, M, 0) = / (gmm(S) — gmm(T(M, 0)))2dz. 4.4)

That is, the algorithm attempts to optimize the statistical divergence between the two Gaussian
mixtures. For point sets with low dimensionality, closed-form solutions exist for this problem,
making the computation efficient. This is, in general, a particular case of the kernel correlation
approach [158], but in practice, Gaussian kernels are the most used as they can effectively
model many real-world problems.

Coherent Point Drift

It is a probabilistic approach similar to the one from GMM, which is agnostic to the used
transformation model and can be employed for both rigid and deformable registration [159].
Rather than directly using the points from the set M, this algorithm employs its GMM centroids.
For a given data point, its correspondence is the maximum of the GMM posterior probability
when the two sets are aligned. The centroid motions in enforced to be coherent during the
optimization process, such that the topological structure of the moving points set is preserved.
This technique has been employed in the contribution presented in Sec. 5.3.1.

4.1 Feature-based registration
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The probability density function for a point s € S is

M+1

p(s) = Z P(i)p(s]i), (4.5)

with p(s|i), the Guassian distribution centered on the centroid m; € M in D dimensions:

. 1 —m||?

The posterior probability of the GMM centroid m; corresponding to the data point s; is then

P(i)p(s;i)

Pils;) = =05

4.7

Re-parametrizing the GMM centroids location with the parameters 6, one has to maximizing
the probability likelihood, or rather minimizing the log-likelihood to find the set of optimal
parameters:

M+1

N
E6,0%) = — Zlog Z P(i)p(sli). (4.8)

To find these optimal parameters, the original formulation makes use of the Expectation-
Maximization (EM) algorithm [151]. The E-step estimates the values of § and employs the
Bayes’ theorem to compute the mixture posterior probability distributions P°!4(i, s;). During
the M-step, updated values of § are computed, minimizing the cost function:

N M+

1 . N,D
Q0,0°%) = %97 Z Z P (i, 55)||s; — T(my, 0)]]* + %logaz7 4.9)
j=1 i=i
with
Np =" Pualils;) < N. (4.10)

This function decreases coherently with the negative log-likelihood FE, leading to a set of
optimal parameters 6.
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Contributions

With respect to the state-of-the-art presented in Sec. 1.3, the robotic ultrasound systems
initially proposed in the literature were mostly used as pure mechanical devices to achieve
spatial tracking of 2D transducers, facilitate stable and uniform movements while being
manually maneuvered by an operator, or allow for teleoperation. The research focus was
initially only on mechanical design and on the definition of proper control strategies to
achieve smooth and safe acquisition. More importantly, all systems were considered an aid or
remote extension for manual acquisitions, concepts of autonomous robotic acquisition were
not explored. Following the advances in computer vision, many works targeted the analysis
of the acquired ultrasound images to perform visual servoing tasks. While this initiated
the development of functionalities that allow the control of robotic systems based on visual
feedback (e.g., to maintain the visibility of anatomical target in the ultrasound field of view),
their application in clinical procedures has been very limited.

In the literature prior to the following contributions, robotic ultrasound systems were not
integrating all available sensing information to achieve optimal, safe, and robust autonomous
acquisition. That is, autonomous systems for ultrasound imaging require more precise knowl-
edge about their surrounding environment and accurate planning to reach their designated
anatomical target. The author’s contributions aim at the definition of a workflow to integrate
multiple sensors and introduce the information they provide in the robot control loop. The
final task is to obtain a system where the robotic components (kinematics, force sensing,
control) and the imaging ones (ultrasound images, external 3D sensing) behave coherently to
acquire the planned imaging target. Rather than focusing on the individual systems, the aim is
to let them work in a symbiotic way, allowing them to benefit from each other’s information
and optimize their individual tasks.

The first two presented contributions focus on the definition of the basic concepts for this
integration, i.e., using imaging sensing to optimize the behavior of a robotic manipulator
and using force sensing from the manipulator to optimize the acquired images. The last
two contributions, instead, showcase how these techniques can be leveraged to perform
specific clinical procedures in the field of vascular surgery, targeting both a diagnostic and
an interventional scenario. A summary of each work is presented, directly preciding the
respective complete original publication, as requested by the Doctoral regulations.
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5.1 Diagnostic Target Definition and Acquisition
(TMI 2016)

Diagnostic Imaging
(MRI)

Trajectory Planning

, k | SDSF(’;tri]ent
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Planning of Robotic
Acquisition

planned
acquisition

US Acquisition and
3D Reconstruction

US-to-MRI
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observed
RGB-D data,‘

Update of Patient Calibration

MRI-to-US
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Left: Robot kinematics and external 3D sensing information are fused in a common reference frame and
visualized in a 3D environment. It is possible to notice the current patient location with respect to the
manipulator. The acquisition planned using a pre-operative volume is transfer to the same environment
by point-set registration. Right: The proposed workflow for autonomous robotic ultrasound acquisitions.
It includes planning steps based on pre-operative diagnostic images (blue), a series of calibration
between external camera to robot and robot to patient (green), and the actual acquisition and calibration
refinement steps (red).

The task of defining the diagnostic target for robotic ultrasound acquisitions had not been
targeted yet in literature. To achieve this task, one has to transfer the anatomical information
obtained by some other means into the current robotic workspace. This work defines a com-
plete clinical workflow (See Fig. 5.1, right side) to obtain this information for patient-specific
acquisitions. The anatomical target can be defined on a previously available tomographic
imaging modality (e.g., CT or, in this case, MRI), the proposed method relies on techniques
addressed in Sec. 4.1 to align sets of 3D points. That is, a representation of the patient’s
surface can be extracted from the volumetric image at hand and matched with the current
patient position via rigid registration. To achieve so, external 3D sensing is employed in
the form of a calibrated RGB-D sensor overlooking the scene. Trajectories that are selected
within the MRI volume can then be transferred onto the current patient location and followed
completely autonomously by the robotic system. The structured-light 3D scanner, therefore,
requires a patient-to-robot and image-to-patient calibration that allows for a proper trajectory
initialization in the robot coordinate system. Further refinement of the overall calibration can
be achieved via 3D registration of the first acquired ultrasound volume and the initial MRI one,
with methods described in Sec. 2.4. This work demonstrates how a distance of only 0.97 mm
between the planned acquisition and the actual one can be achieved using this follow-up
adjustment. On the left side of Fig. 5.1, it is shown how the hand-eye calibration between the
robotic system and the 3D camera allows to match their information in a common reference
frame and transfer the planned acquisition into the scene.
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Towards MRI-Based Autonomous Robotic US
Acquisitions: A First Feasibility Study

Christoph Hennersperger*, Bernhard Fuerst, Salvatore Virga, Oliver Zettinig, Benjamin Frisch,
Thomas Neff, and Nassir Navab

Abstract— Robotic ultrasound has the potential to
assist and guide physicians during interventions. In this
work, we present a set of methods and a workflow to
enable autonomous MRI-guided ultrasound acquisitions.
Our approach uses a structured-light 3D scanner for patient-
to-robot and image-to-patient calibration, which in turn is
used to plan 3D ultrasound trajectories. These MRI-based
trajectories are followed autonomously by the robot and are
further refined online using automatic MRI/US registration.
Despite the low spatial resolution of structured light scan-
ners, the initial planned acquisition path can be followed
with an accuracy of 2.46 + 0.96 mm. This leads to a good
initialization of the MRI/US registration: the 3D-scan-based
alignment for planning and acquisition shows an accuracy
(distance between planned ultrasound and MRI) of 4.47 mm,
and 0.97 mm after an online-update of the calibration based
on a closed loop registration.

Index Terms— Automatic imaging, image-guidance, med-
ical robotics, multi-modal registration, robotic ultrasound,
ultrasonic imaging.

|. INTRODUCTION

LTRASOUND (US) has become one of the standard

medical imaging techniques and is widely used both
within diagnostic and interventional applications. Examples
for these areas include e.g. the utilization of ultrasound for
vascular imaging of the carotid and abdominal arteries with
respect to diagnostic purposes, or needle insertion for liver
biopsy and ablation, where ultrasound imaging is used to guide
the insertion process throughout the procedure. In general,
clinical US is mostly based on 2D-images (except cardiac
and obstetric applications), requiring a manual navigation
of the probe. The resulting high operator-variability of the
manual guidance is not only challenging for the application
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Fig. 1.
the ceiling, observing the scene with the patient lying on the examination
bed. The robotic arm is approaching the patient from above and is
equipped with a curvilinear ultrasound probe.

In the presented system setup, a RGBD-camera is mounted on

described above, but impairs a wider clinical acceptance of
ultrasound for the extraction of quantifiable parameters from
these data [1]. 3D ultrasound can potentially overcome these
limitations, and is performed either using native 3D probes
or by tracking 2D images in space, using a tracking target
attached to the ultrasound probe (tracked freehand 3D ultra-
sound) [2]. While systems using native 3D probes are still
not widely available in clinical practice, tracked ultrasound
is easily accessible and can also be interpolated with respect
to a regular grid [3]. When comparing native and freehand
3D ultrasound, both techniques have their merits. Native 3D
ultrasound allows, on the one hand, for live 3D volume
acquisitions in real-time and thus for a direct analysis of
volume changes over time; a property which is especially
exploited for 3D echocardiography [4]. On the other hand,
the systems are expensive and only allow for the imaging of
comparably small volumes restricted by the probes’ field of
view. Freehand 3D ultrasound does not pose limitations with
respect to volume sizes, anatomies and trajectories, but can
be potentially distorted by varying pressure applied by the
operator, or changing anatomy caused by breathing or cardiac
pulsation.

0278-0062 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,

but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



HENNERSPERGER et al.. TOWARDS MRI-BASED AUTONOMOUS ROBOTIC US ACQUISITIONS: A FIRST FEASIBILITY STUDY

While ultrasound acquisitions are mostly performed by
physicians or medical staff, data collection for both 2D and
3D ultrasound might be improved by automating the acqui-
sition process. This goes in hand with the demands of the
healthcare system, showing that current freehand ultrasound
scanning techniques suffer from high inter-operator variability,
hindering the overall clinical acceptance, especially of 3D
applications [1], [5].

In this work, we focus on the improvements robotic tech-
nology could provide for interventional ultrasound imaging.
While we propose a general system for automatic robotic 3D-
US acquisitions (see Fig. 1), the advantages of robotic technol-
ogy become intuitively apparent by considering a possible clin-
ical workflow, e.g. for the aforementioned application of liver
needle placement: To place the tip of a needle at the target site,
the needle is advanced carefully under US-guidance to reach
a final target position in current practice. Thereby, the proce-
dure is heavily based on pre-interventional X-ray Computed
Tompgraphy (CT) or Magnetic Resonance Imaging (MRI)
datasets. Throughout the insertion, it is important to maintain
steady ultrasound views, providing an overview of all essential
structures in the abdomen (tumor, vessels, lung, liver tissue).
A robotic ultrasound system could replace the current setup,
where the interventionalist has to manually hold the US
probe and ’cognitively’ fuse the data with the interventional
plan. 3D-US reconstructions of the target anatomy performed
periodically throughout the procedure can be used to guide
the insertion process through 3D visualization, but also to
compensate for patient and breathing motion [6]. After each
3D-US acquisition, CT or MRI datasets available from the
interventional planning are automatically co-registered to the
acquired 3D-US scans. This allows for a careful advancement
of the needle based on the US data, where fused data can
also be employed to identify the target and potential risk
regions.

To this end, a fully automatic system to acquire 3D
ultrasound datasets could avoid the high inter-operator vari-
ability and resource demands of current clinical systems.
Other applications include e.g. the localization of suitable
entry-points for port-placement, automatic acquisitions of a
pre-defined anatomy, patient-positioning for radiotherapy, or
teaching of ultrasound based on robotic acquisitions and
guidance. By addressing limitations of today’s ultrasound
techniques using a robotic framework, this would not only
open up the way for new applications in an interventional
setting, but also for potential society-wide screening pro-
grams using non-invasive ultrasound imaging [1], [7]. In this
view, autonomous acquisitions have the potential both to
facilitate clinical acceptance of robotic imaging techniques
by simplifying the workflow as well as to reduce the scan-
ning time and the necessary amount of manual operator
input.

First attempts aiming at automatized ultrasound acquisitions
used mechanical stepper motors, moving the ultrasound probe
in a controlled fashion [8]. More recently, different robotic
systems were developed in the context of clinical ultrasound,
including applications to imaging, surgical interventions and
needle guidance [9], [10]. While freehand ultrasound scanning

enables a fast and dynamic acquisition and screening of
several anatomies, modern compact and lightweight robotic
arms can further support the physician, i.e. by automatically
maneuvering a second imaging probe or tool in order to enable
live image fusion [11]. Moreover, such systems eventually
incorporate pressure, hand tremor or movement correction [6],
or an automatic servoing for tissue biopsy based on a regis-
tration to prior US acquisitions [12]. With the goal of fully
automatic acquisitions, however, a prior planning of the actual
target area of interest is a prerequisite, since whole-body
ultrasound scans are impractical and time-consuming. In a
clinical interventional setup, planning should be performed
by the medical expert based on anatomical data, as given
by MRI and CT. Given an appropriate target, (several) 3D
ultrasound datasets can then be acquired autonomously during
an intervention, without requiring the presence of medical
staff guiding the robot. We acknowledge that there have
been attempts in the past to incorporate tomographic image
information into robotic systems to improve the visualization
of ultrasound image information to physicians. However, to
our knowledge an integration of these data to enable planning
and the automatic acquisition of 3D US datasets has not been
considered so far.

In this work, we aim at closing this gap in the workflow
of current robotic support systems in order to allow for fully
automatic 3D ultrasound acquisitions using a robotic imaging
system. We present the path towards an autonomous robotic
ultrasound system to assist clinicians during interventions by
performing multiple and especially reproducible examinations
based on pre-interventional planning. To this end, we introduce
a first concept for a robotic ultrasound system consisting of
a lightweight robotic arm, a clinical ultrasound machine, and
a RGB-D camera which is used to observe the scene. This
enables the direct planning of a patient-specific trajectory by
selecting its start- and endpoints in the patient’s MR (or CT)
image. A registration of the actual patient position to the
MRI allows for the automatic acquisition of 3D ultrasound
data. By using intensity-based image registration, we can
close the loop and perform an online-update of the patient-to-
world registration, accounting for inaccuracies of the RGB-D
information as well as patient movement. Thus, the overall
goal is to perform fully autonomous image acquisitions within
a closed control loop by utilizing 3D surface information, pres-
sure estimations of the robotic system, and image-based servo-
ing, to image regions of interest defined by pre-interventional
data.! The workflow showing the main steps of the proposed
solution is depicted in Fig. 2.

The remainder of this work is organized as follows:
Section II will give an overview of related work in the field of
autonomous robotic ultrasound acquisitions. We introduce our
proposed system and all corresponding and necessary steps
in Section III, before experiments and results are presented
in Section IV. Finally, opportunities and challenges associated
to the system are discussed in Section V, before we draw final
conclusions in Section VI.

ISupplementary video material to this manuscript is available at
http://ieeexplore.ieee.org, provided by the authors. It features a brief overview
of the acquisition setup and workflow with the distinct steps.
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Diagnostic Imaging
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3D Patient
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3D Reconstruction
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Update of Patient Calibration
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Fig. 2. The proposed workflow for autonomous acquisitions includes
a planning based on diagnostic images (blue), calibration of both robot
and patient to the world reference (green), and interventional acquisition
(red). During acquisition, a 3D patient scan using a structured-light 3D
scanner is used for the initial patient to world alignment and robot to world
calibration. Following the autonomous robotic ultrasound acquisition,
a US to MR registration is conducted to refine the patient to world
alignment.

Il. RELATED WORK

Over the past two decades, research groups have focused
on improving ultrasound image acquisition systems in terms
of accuracy, usability, remote controllability as well as by a
synchronization with pre-operative planning. For this purpose,
(medical) robots have been introduced for different applica-
tions. Inspired by [9], we differentiate between situation aware
robotic systems, and surgical assistant systems.

Surgical assistant systems primarily serve as advanced tools
and are directly controlled by the surgeon, mostly acting in
a master-slave fashion. Thereby, these systems are used to
augment the operator’s ability to perform a specific task,
e.g. by allowing precise, jitter-free movements, or the applica-
tion of constant desired pressure. Systems targeted to specific
applications, such as carotid imaging [13], have been explored
recently. Furthermore, ultrasound has been added as a tool to
the more general surgical da Vinci platform for several appli-
cations [14], [15] using specialized drop-in ultrasound probes
which can be picked up by the surgeon intra-operatively.
Following this concept, a general system providing tele-
operated ultrasound using different robotic arms is currently
being developed [16]. For a more detailed overview of surgical
assistants in ultrasound, the reader is referred to [9].

In contrast to these systems, situation aware robotic system
perform at least one task autonomously based on a pre-
defined situation-specific model, requiring an awareness of
the task and its surrounding environment. In the following,
we will focus our review on this area, as it is the primary
target area of this work. In order to do so, we differen-
tiate between Automatic Robotic Support Systems (ARSS)

providing automatic support for a defined task, as well as
Automatic Data Acquisition Systems (ADAS), targeting fully
automatic robotic imaging.

A. Automatic Robotic Support Systems

Boctor et al. [17] originally proposed a dual robotic arm
setup holding a needle in one arm and a US probe in the
second, in order to facilitate an accurate placement of the nee-
dle to perform liver ablations. In a later work [18], the robotic
arm holding the US probe was replaced by a freehand 3D ultra-
sound setup to improve general usability while still enabling
accurate placement. With respect to an integration of tomo-
graphic image data into the robotic ultrasound environment,
Zhang et al. [19] propose a system combining a robotic arm
with ultrasound, optical tracking and MRI data manually regis-
tered to the system in order to improve the accuracy of needle
placement. Targeting at optimal robotic ultrasound acquisi-
tions to cover a predefined volume of interest, a planning-
framework is presented in [20] to perform automatic robotic
imaging trajectories. Other groups have focused more on a
direct integration of the resulting images into the robot con-
trol, facilitating visual servoing based on robotic ultrasound.
Abolmaesumi et al. [21] were among the first exploring the
combination of robotic arms and ultrasound imaging based
on visual servoing by combining an experimental robotic arm
holding an ultrasound probe with vessel feature tracking to fol-
low vessels during the ultrasound scan. Krupa et al. [6] further
explored visual servoing towards an application to ultrasound
by using ultrasonic speckle as a main characteristic feature to
compensate for potential patient motion both in-plane and out-
of-plane with respect to the ultrasound probe. These concepts
were later adapted to fully automatic needle insertion under
ultrasound guidance [22] and automatic probe positioning in
order to allow for an optimal skin coupling with respect to the
current position [23]. Recently, a servoing approach using live
ultrasound to ultrasound registration was presented, targeting
at screw placement in spine surgery [12], [24]. Another intra-
operative application of robotic ultrasound was presented for
the mobilization and the resection of the internal mammary
artery in the course of coronary artery bypass grafting [25],
following a servoing approach using color Doppler ultrasound
images. For a comprehensive and detailed background of
visual servoing, the reader is further referred to [26], [27],
where concepts and basic approaches are explained in detail.

B. Automatic Data Acquisition Systems

While all approaches described above perform ultrasound
acquisitions semi-automatically or under direct physician guid-
ance, they either require a manual positioning of the US
probe, or a proper definition of the working area. A first
step towards fully autonomous scanning of ultrasound tra-
jectories [28] combines a designed pneumatic probe holding
case with optical tracking in order to enable scanning of a
small volume of interest. While this approach has a high
potential for certain applications, it still requires manual
placement of the autonomous holding cage on the patient and
does not enable fully automatic scanning. Using two robotic
arms holding separate ultrasound probes, a system for 3D
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robotic tomographic imaging pioneers the idea of localized
3D tomographic ultrasound imaging [29]. With respect to
an intra-operative setting, however, the positioning of two
robotic arm seems challenging, which is why the major field
of applications for this technique might lie in the imaging
of smaller structures. Focusing on vascular applications, a
targeted scanning system for the automatic acquisition of
vascular 3D ultrasound is presented in [30], combining pres-
sure compensation with vessel tracking mechanisms. Finally,
another system focusing on automatic data acquisition for
liver screening was recently presented [31], combining RGB
cameras for an automatic determination of liver scanning
regions, followed by an automated acquisition workflow using
different scanning directions. While this system operates fully
automatically, it is limited to 2D images only and performs
acquisition based on classified body features, which are prone
to an erroneous feature determination, limiting the practical
applicability of the system.

With this work, we focus explicitly on a system which
enables fully autonomous robotic 3D ultrasound acquisitions
based on an individual planning from tomographic image data
(performed before the intervention). Thereby, the system does
not rely on an initial probe positioning, manual registration
of image data, or feature tracking in ultrasound or RGB-
images. Instead, we use an initial patient-to-robot registration
to perform 3D US acquisitions, which are then used in order
to refine the overall registration and calibration. To do so, an
intensity-based image registration of the pre-aligned 3D US
and tomographic image data is used to retrieve a refined and
updated patient-to-robot registration. Using the robot’s built-
in force and torque sensors, this further allows ultrasound
acquisitions with optimal skin force, providing repeatable 3D
ultrasound volumetric datasets.

Ill. METHODS

This section first introduces the main component of
the robotic ultrasound hardware setup in III-A. Next,
III-B describes the pre-interventional imaging as well as trajec-
tory planning for autonomous acquisitions. Following our pro-
posed application, all required calibration steps and procedures
are defined in III-C, before the interventional workflow for
robotic acquisitions is explained in detail in III-D, including
robotic control strategies, updates, ultrasound acquisitions and
refinement of world-calibrations based on US acquisitions.

A. Hardware Setup

Our system consists of a lightweight robot, the ultrasound
device, and a structured light RGB-D 3D scanner. Figure 3
shows a schematic overview of the relevant system compo-
nents with the necessary coordinate transformations employed
throughout this work. While the ultrasound transducer is
directly mounted onto the end-effector of the robotic arm, the
3D scanner is attached to the ceiling and serves as a vision
system allowing for the direct calibration and registration of
all system parts.

1) Robotic Arm: Based on developments of the German
space center (DLR) [32], KUKA introduced a robotic plat-
form targeted at direct human-machine interaction, referred

Camera

Patient

Tool

Surface normal
n,, for P,

(Robot) World

-

Fig. 3. Using the 3D scan of the patient M~/T ~ and the transformation
from world to the camera €Ty, the world-to-patient transformation
MRIT,,, is estimated. The tool (transducer apex) reaches the patient's
surface (orange) by applying the tool-to-patient transformation under
consideration of the surface normals nm. The discrepancy between the
estimated position and the real position of patient is indicated by PTMR,,
which is detected by intensity-based registration (red).

to as ’Intelligent industrial work assistant’ - iiwa (KUKA
Roboter GmbH, Augsburg, Germany). This system consists
of a 7 joint robotic arm with corresponding control units
and consequently enables one redundant degree of freedom
(6+1 in total). As a result of this design, the robot provides
dynamic movement and flexible adaption of trajectories to the
working environment. With respect to robotic ultrasound, the
incorporated high-accuracy torque sensors in each of the seven
joints are evenly important, as a robotic ultrasound platform
has to be fully compliant to both patient and staff. Based on
significant safety measures for collision detection, the robot
subsystem is certified for human-machine-collaboration due
to the compliance to standards for functional safety. Thus
it is considered to be safe for use in direct interaction with
humans. Detailed specifications and design choices can be
found in [33].

The KUKA native Sunrise.OS and its Sunrise.Connectivity
module allow for the full low-level real-time control of the
KUKA iiwa via UDP at rates up to 1 kHz, acting similar to the
Fast Research Interface (FRI) [34] as proposed for the previous
generation of the KUKA LWR robot arms. In this work, a
publicly available software module? developed in our lab is
utilized to enable a direct interaction between Sunrise.OS and
the Robot Operating System® (ROS) framework. By doing
so, low-level functionality and control provided by the robot
manufacturer can be integrated with RGD-D information and
high-level robotic interaction through ROS, as required for the
proposed system.

2) Structured-Light 3D Scanner: The Kinect 3D cam-
era (Microsoft Corporation, Redmond, Washington, USA)
allows for the recording of color images and depth data

2https:// github.com/SalvoVirga/iiwa_stack
3http://www.ros.org/
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(RGB-D) at 30 frames per second. The system contains one
camera for color video, an infrared laser projector for the
projection of a structured light pattern and a camera to record
said pattern. This device has been used for several medical
applications, such as for a touch-less interface [35], for image-
to-patient registration [36], or to provide initialization to
US/MRI registration [37]. In the proposed system setup, the
camera is attached to the ceiling, focusing on the robotic
system and examination bed. The RGB-D data is used in
order to i) align the camera within the world coordinate system
(camera-to-world calibration - Sec. III-C), and to ii) register
the patient lying on the examination bed to the world reference
frame (patient-to-world calibration - Sec. III-C).

3) Ultrasound System: In general, any ultrasound device
could be incorporated within an autonomous system by using
the video output of an arbitrary clinical US device and record-
ing those images using hardware frame-grabbers connected to
the device. In practice, such systems provide a partially dimin-
ished image quality due to compression artifacts and - more
importantly for robotic acquisitions - a temporal lag between
the acquired image by the US machine and the recorded frame
via frame-grabber. To enable direct acquisitions and advanced
servoing in real-time, we favor ultrasound devices providing
direct interfaces for retrieving acquired ultrasound data with
minimal temporal delay. An Ultrasonix RP ultrasound machine
(Analogic Corporation, Peabody, Massachusetts, USA) is used
in combination with a 4DC7-3/40 4D Convex curvilinear
transducer used in single-plane mode. The system provides the
ulterius* API, enabling both the streaming of ultrasound data
to a client as well as the control of US acquisitions parameters
remotely through the Ethernet connection.

B. Diagnostic Imaging and Trajectory Planning

The goal of an autonomous 3D ultrasound acquisition is to
perform a robotic-ultrasound trajectory based on a planning on
pre-interventional images. With respect to a fast and intuitive
planning, a physician wants to see either i) the region around
a specific target, such as for liver or lymph node biopsy,
or ii) scan a defined region, such as an organ, in order to
perform a diagnosis based on these images. In this work we
focus on the general case, where the operator can select the
region of interest (ROI) directly. For our setup, a T2-weighted
MRI volume is used as basis to determine the ROI for the
ultrasound scan. The physician simply selects the start- and
endpoint Pg, P, of a trajectory in the MRI data, where the
acquisition path direction d; is defined by these points:

C_jt=Pe_Ps~ (1)

To enable both the transfer of the planned acquisition path to
the robot world coordinate system and the initialization of the
MRI/US registration, the patient’s surface is extracted from
the MRI by thresholding the image. Based on the patient-to-
world calibration (see Section III-C), the trajectory direction
and points can be directly transformed into world coordinates.
Consequently, the segmented patient surface is exploited to

4http://www.ultrasonix.com/wikisonix/index‘php/Ulterius
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determine the points of interest for the autonomous ultra-
sound scan.

C. System Calibration

1) US Tool Configuration and Calibration: The trans-
formation TTg from the robot end-effector to the transducer
tool tip can be obtained directly from the CAD models used for
manufacturing of a customized mount for the rigid attachment
of the US probe to the robot end-effector. The probe mount
utilized for the robotic system is shown in Fig. 4 and is tailored
to the ultrasound transducer for optimal and rigid attachment.

To perform ultrasound acquisitions, a second spatial trans-
formation YSTr, pointing from the probe tool tip to the US
image origin, is defined by the image scaling (transformation
from px to mm) and size with respect to the US probe apex

Sy 0 0 syty
0 sy 0 sy1y
001 0 |” @
0 00 1

T
Tys =

where sy, s, determine the resolution of the ultrasound image,
and fy, t, the translation from the apex, defined by the center
of curvature, to the image origin. If an additional refinement of
the transformation from the ultrasound image to the transducer
apex is required, a standard ultrasound to tracking calibration
technique can be applied [38].

As the used lightweight robot provides force sensors in
each joint, an additional calibration with respect to the weight
and center of mass of the tool is necessary to allow the
force controlled motion. For an accurate load calibration, a
proprietary calibration algorithm provided with the robot is
used to determine these values in 3D.

2) Camera-to-World Calibration: This calibration step
allows for the control of the robot - representing the world
reference frame - as observed in camera coordinates. In the
case of RGB-D cameras, this transformation relates from the
camera to the robot arm, and can be computed either by using
the 2D RGB images or the 3D information obtained by the
depth sensor. An accurate calibration can be achieved with
both techniques, although the 3D case requires more effort,
user interaction and processing time [39]. Alternately, in [20],
an additional optical tracking system is used to achieve a good
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calibration between robot and camera. However, by leveraging
the 2D RGB images, it is possible to compute the transfor-
mation “Tyw between the robot base and the RGB-D camera
by using a standard hand-eye calibration method [40] in its
‘eye-on-base’ variant, without requiring an additional optical
tracking system. To do so, an Augmented Reality (AR) marker
is placed on the robot flange and the transformation between
the marker and the camera estimated using the ArUco [41]
tracking library. Several tracked poses combining random
(non co-linear) movements around several rotation axis are
recorded and used as correspondence pairs for calibration.
The robot forward kinematics and the presented transformation
TTE complete the chain of transformations from the camera
reference frame to the US transducer. It should be noted that
by using this calibration, the exchange of the US transducer
with another one does not require a full camera recalibration,
but only recomputing the last transformation of the chain
between the end-effector and the US probe TTg. Furthermore,
the AR marker-based calibration is used for the camera-to-
world calibration only, allowing for a fully marker-free data
acquisition and update. The transformation between the RGB
and the depth sensors of the Kinect can be obtained as
proposed by [42]. For the hardware used, this relates to a
translation of 2.5 cm along the transverse axis of the camera.

3) Patient-to-World Calibration: With respect to a fully
autonomous acquisition, it is necessary to transfer trajectories
planned in a tomographic image to the actual position and
orientation of a patient lying on the bed. To do so, acquired
3D RGB-D information of the patient (Sec. III-A) provides
surface information, which can be extracted simultaneously
from the tomographic images. These data can then be used
directly for aligning both surfaces and consequently determin-
ing their spatial transformation. In the following section, we
will describe the necessary steps to enable such a calibration
in detail.

Surface Extraction from MRI Data: To extract the patient
(or phantom) skin surface from the MRI images, we employ
an approach which does not require complex segmentations, as
the extracted and matched surfaces will be refined throughout
the acquisition process using image-based registration. There-
fore, tomographic data (in this work T2-weighted MRI) is
thresholded first, neglecting all values / < 7. Throughout all
our experiments, 7 = 100 provided a sufficient discrimination
between the patient and the background (acquisition table
and room around patient). As the resulting mask contains
holes and is partially irregular, a morphological closing is
performed on the thresholded image containing of subsequent
dilation and erosion. The surface can then be retrieved from the
image data [43], where only the connected surface component
covering the highest ratio of total pixels is kept for further
processing

Qp=argmax » Qi, Q={x1,x2, ..xm}, (3
i

with x,, being the surface positions of the points contained in
the component Q; in 3D space.

Spatial Change Detection in RGB-D Data: To separate the
patient from the background and other objects within the view

of the camera, a spatial change detection is performed. Octrees
are often used in computer graphics to partition a volume
by recursively dividing cubes [44]. First, a background point
cloud is recorded and added to an octree. After positioning
the patient on the bed, a second point cloud is retrieved and
added to another octree. The differences in the tree structure
allow the efficient determination of newly added points, which
represent the background-subtracted object, in our case the
patient. To increase robustness and compensate for noise,
a minimum of n pixels (experimentally set to 2) must be
contained in each tree node.

Surface Matching: The alignment of surfaces can either be
achieved using Iterative Closest Points (ICP), a non-linear
derivative of ICP, or by directly aligning features. As the
patient surface shape deviates strongly from the shape of the
background (e.g. table or ultrasound scanner) a feature align-
ment process is applicable. On the foundation of the calibra-
tion refinement using intensity-based registration (Sec. III-D),
our framework automatically accounts for local deformations
and inaccuracies. Consequently, we employ ICP as surface
matching method, as it provides a robust and especially highly
efficient global alignment, which is then used to initialize the
intensity-based registration.

Result of the surface-matching between extracted MRI and
RGB-D information will be a rigid transformation from MRI-
space to RGB-D camera space

PC = CTyypy PMRI = (MRIT )=1 pMRI ()

with PI.M RT Pic being the surface points in MRI and camera-
space respectively.

D. Autonomous US Acquisition

Following the workflow as shown in Fig. 2, this section
will describe all steps carried out to perform one or multiple
autonomous acquisitions.

1) Planning of Robotic Acquisition: Based on the
alignment of both camera and patient within the world ref-
erence (Sec. III-C), the next step is to transfer the previously
planned image trajectory to a robotic control trajectory which
can be executed by the robotic arm. To allow accurate and
safe trajectories, a proper force control strategy of the robotic
manipulator, and the planning of the acquisition are necessary.

Stiffness and Force Control: The manipulator is mainly
operated using a stiffness controller, which represents a Carte-
sian virtual spring between the desired (setpoint) position X,
and current (measured) position x,,s,. The control law for this
strategy is defined by the transposed Jacobian matrix J7

TCmd = JT(kc(xset — Xmsr) + D(dc)) + fdyn(‘]a q,q), (5)

where k. is the Cartesian stiffness of the virtual spring
ke(xser — Xmsr). The damping term D(d.) is dependent on
the normalized damping value, while the dynamic model
of the manipulator fy4y,(q, ¢, §) is predefined by the man-
ufacturer [34]. The resulting joint torque is computed by a
Cartesian law using J7.

In order to allow for compliant force applied in the US
probe direction, the force control is modified such that the
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force term D(d.) is set to a high damping in the respective
probe direction, allowing for a compliant movement. Thus the
high accuracy torque sensors and real-time forward kinematics
computation of the system are exploited in this view in order to
provide an acoustic force coupling without applying excessive
forces (>25 N) on the skin. The stiffness controller allows
to achieve an indirect force control [45], considering the
relationship between the deviation of the end-effector position
and orientation from the planned motion as well as the contact
force and moment. The online parametrization of the virtual
spring values makes it possible to maintain the contact force
constant. The Cartesian stiffness along the direction of the
US probe is set in the range [125-500] N/m according to the
anatomy of the patient, and the force desired is parametrized
as 5 N. The stiffness and forces in the other directions are
parametrized to 2000 N/m and O N accordingly. If an excessive
force > 25 N occurs, the robot’s internal subroutine will
automatically stop the acquisition process. This feedback loop
enables the compliant motion constrained by the patient or
other objects.

Planning of Acquisition Path: Based on the selected points
(see Section III-B) and corresponding surface normals pro-
vided by the RGB-D data, the acquisition path is planned. The
selected start and end points of the trajectory Ps,P, define the
direction vector of the trajectory (see Eq. (1)), which is used
to define equidistant sampling points Q'!, Q2,..., Q' along
the line with a distance of 2 cm. For each sampling point,
the closest surface point Q' — P¥ is retrieved by a nearest-
neighbor search. Along with the corresponding surface normal
directions ny, the points can then be used directly as target tool
poses for robotic movements. It should be noted that the force
controller implicitly commands the robot to adapt the tool
position until the surface is reached. As the robot approaches
the next trajectory point P¥*! the direction of the transducer
is stepwise changed to the subsequent surface normal position
defined by PX, P¥+! by the robot control.

2) US Acquisition and 3D Reconstruction: The live
streams of robot tracking data and ultrasound images are
transmitted via Ethernet, therefore the offset between tracking
and US data is small compared to the framework over-
head. In order to enable 3D registration with the diagnos-
tic image, a volume compounding is performed using a
backward normalized-convolution approach following [46],
yielding regular-spaced 3D volume data from the arbitrarily
sampled ultrasound frames in 3D space.

3) US-to-MRI Alignment: Making use of all previously
estimated transformations from camera to MRI YR/ T world
to camera € Ty and ultrasound to tool 7 Ty g, we can transform
both ultrasound and MRI data into the world space using
the respective transformations from both image spaces to the
world reference frame

-1 _
Ty = M Ty = MRT Ty (©)
YTys="Tg - FTr - TTys. )
Both image datasets will be roughly aligned after transfor-

mation into the world coordinate frame, relying on prior
ultrasound and patient to world calibrations.

4) MRI-to-US Registration: Supposing a rough overlap
of MRI and US images as described above, an intensity-
based MRI/US registration can directly be initialized in order
to obtain an updated transformation between ultrasound and
tomographic images.

The LC 2 similarity method allows for the registration of
MRI and US images by correlating the MRI intensities and
gradient magnitudes to the US intensity values. High robust-
ness, wide convergence range and the application for rigid,
affine and deformable registration have been shown in [47].
This approach is utilized in a two-step process. Based on the
calibration and transformation chain, we can bring recorded
ultrasound volume data directly into the MRI reference frame
(or both into the world reference frame)

MRIm, g =MRITY Wy = VTyr) ™ "Tus.  (8)

In a second step, LC 2 is used to determine the rigid
transformation component, aligning the transformed US and
MRI images in world space in reference to the actual patient
position

Py = PTyr MR Ty, 9

with P Tyr1 being the updated transformation to compensate
for patient movement, deformation, as well as tracking and
detection inaccuracies of €Ty r; with respect to the world
reference frame, c.f Eq. (7). Optionally, a second step con-
sisting of an affine and deformable registration using the same
similarity measure can be performed, resulting in a precise
and direct correspondence between voxels in the compounded
3D-US and reconstructed MRI volumes, which finally closes
the loop of the autonomous ultrasound acquisition system and
enabling MRI guided interventions. We evaluate both rigid
and affine registrations; the decision whether both are required
relies on the specific application in mind. For instance, if bony
structures are to be scanned rather than soft tissue, a rigid
alignment would be sufficient based on our experience.

5) Update of Patient Calibration: Based on the esti-
mated transformations from the (robotically) acquired 3D
ultrasound data and the MRI aligned to the world, the trans-
formation from tomographic imaging to ultrasound space can
be refined, in order to enable a more precise initialization of
subsequent acquisitions. This becomes especially interesting as
such acquisitions can be performed for an on-line refinement
of the whole system calibration through an image-based feed-
back and update. In an interventional setup, an initial acquisi-
tion is performed at the beginning to optimize the robot- and
patient-to-world calibrations. Subsequent planned trajectories
can then be performed automatically based on an updated
calibration. Making use of the estimated rigid transformation
PTuri aligning the US and MR volumes in world space
as described above, the patient-to-world calibration can be
updated accordingly to

Prys = PTyrr - MR Te - CTw - WTys. (10)

On the one hand, this reduces processing time, as no rigid
alignment is required for those US volumes. On the other hand,
the comparability of subsequent records is fully maintained by
this approach, as images are provided for the identical anatomy
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Fig. 5. From the colored point cloud (depth camera), individual checker-
board corner points on the uneven surface are manually selected as
target points. The points can be targeted with an accuracy of 2.46 mm
in x-y-direction, and 6.43 mm in z-direction.

and planned trajectory. For an exemplary application of US-
guided liver biopsy, several acquisitions of the liver could be
conducted throughout the procedure, enabling a reliable 3D
image-guidance during needle insertion.

IV. EXPERIMENTS AND RESULTS
A. Robot/Camera Calibration and Robot Control

Utilizing the depth images augmented with color informa-
tion, we evaluate the accuracy of the tool and camera-to-
world calibrations by equipping the robot manipulator with
a rigid acuminate tool and moving the tool tip onto selected
points on a realistic rigid surface. In this view, after tool
configuration, the camera-to-robot calibration is performed to
obtain the required transformations as described in Sec. III-C,
where 13 poses are used in total for the calibration. Next, the
RGB-D data of an upper torso phantom surface is recorded and
the surface normals computed. The planned acquisition path
is defined by manually selecting multiple intersection points
on a printed checkerboard attached to the phantom’s curved
surface, see Fig. 5. The robot is commanded in position control
mode to move onto the individual points and the distances
to the actual intersection points are measured manually with
a caliper. The experiment is performed twice by selecting
10 points in each run and recalibrating the whole system in
between the two sessions. For the first run, the results yielded
an average accuracy |Xxser — Xpgr| Of 2.42+ 1.00 mm on the
x-y plane and 7.20%+ 3.30 mm along the z-axis (camera’s
depth axis). For the second one, the accuracy was estimated
as 2.5+ 0.90 mm (x-y plane) and 5.64+ 4.04 mm (z-axis).
Overall, accuracies were 2.47 + 0.96 mm (x-y) and 6.43 +
3.68 mm (z). During all experiments, the camera was placed
at around 1.5 m distance to the phantom. This shows that the
calibration yields reproducible results, while the inaccuracies
are dependent on the RGB-D camera information. It should be
noted that these values are in line with the reported average
spatial resolution of the camera, being 3.0 mm (x-y plane) and
10 mm (depth axis) for a camera at 2.0 m from its target [48].
It is also important to notice that while the x — y accuracy
directly affects the robot poses, the z errors are effectively
compensated by the desired-force control of the robot. In this
view, the resulting system layout can compensate for the
inaccuracies of the RGB-D camera. Based on these accuracies,
the calibration and overall system accuracy is anticipated to be
sufficient for the initialization of an image-based registration,
and thus also for the full system.

Fig. 6.

Scanning setup showing the real system setup scanning a
volunteer (left) as well as the visualization of all involved components
accordingly with the point cloud given by the RGB-D camera.

B. MRI/US Image Acquisition and Registration

To allow for an evaluation of the overall system, we first use
a triple-modality 3D abdominal phantom (Model 057A, Cirs
Inc., Norfolk, Virginia, USA), which provides anatomically
correct objects such as the liver, cysts, ribs and vertebrae. The
phantom is targeted at MRI, CT, and ultrasound imaging and
provides realistic image properties for all modalities. We then
perform similar automatic robotic US acquisitions on two
healthy volunteers, for whom an MRI scan was performed
prior to this work.

Following the workflow presented, the MRI images are
transformed into the world reference frame by matching the
3D scanned surface with the MRI surface (see Sec. III-C).
Based on this global registration, trajectories are planned in
the MRI by selecting start- and endpoint. Figure 6 shows the
actual scanning setup for a healthy volunteer, where the robot
arm performs an automatic acquisition based on a planned
trajectory. Given a perfect system accuracy, i.e. a system
with perfect calibration and without any tracking or imaging
inaccuracies, an automatic acquisition of a 3D ultrasound
volume by the robotic system would yield a perfect overlap
between reconstructed 3D US data and tomographic imaging.
In reality, however, the image alignment will be affected,
which is why an intensity-based registration is then performed
in order to detect the offset and correct for system inaccu-
racies. The alignment by intensity-based registration is first
performed first rigidly (accounting for tracking, calibration,
patient registration, and movement), followed by an affine
improvement (accounting for image scaling as well as patient
and tissue movement/deformation). Due to the fixed direction
of the trajectory and a constant skin-pressure, an affine reg-
istration is sufficient for this application. The resulting rigid
transformation directly indicates the accuracy of the overall
3D scanning system based on the alignment of planned and
real acquisition (distance between desired and actual US).
In a second step, we then use the rigid transformation part
of the registration to refine the overall system and robot
calibration according to Eq. (9). The experiment is repeated
with a second planned trajectory, followed by an evaluation of
rigid and affine registrations between the calibration-updated
scans and the tomographic data. The hypothesis is that by
using the rigid part of the intensity-based registration, we
can align the pre-interventional MRI with the interventional
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TABLE |
QUANTITATIVE RESULTS BASED ON REGISTRATION

Translation [mm]
Phantom Human
Rigid scan #1 || 4.69 +1.35 4.39 + 2.47
Rigid scan #2 || 1.18 £0.52 0.89 £0.84
Affine scan #1 || 1.30 & 1.06 0.92+£0.75
Rotation [°]
Rigid scan #1 || 3.66 + 1.99 4.79 4+ 2.42
Rigid scan #2 || 0.40 £0.32 1.30£0.74
Affine scan #1 || 0.46 +£0.19 1.37 £ 1.60

US data. This closes the loop between world calibration and
robotic-system, where the system calibration can be refined
online. In order to also evaluate the errors of the system
in different situations, we repeat the overall experiment two
times for the phantom, and between each experiment the
phantom is moved on the examination bed. For the scans on
volunteers, we repeat the overall experiment three times per
person, where the person stands up and lies down between
each run, evaluating also potential variabilities based on the
patient-to-world calibration. Robotic acquisitions are taken at
a similar speed as freehand acquisitions, such that a normal
acquisition requires <30 s. Ultrasound scans are planned
in the the abdominal region and contain organs (e.g. liver,
kidney) and vessels. Acquisitions may also contain ribs, where
the robot follows the natural curvature of the body surface
without exceeding the maximal force applied. Ultrasound
parameters are set manually, although modern US systems
provide automatic adaption allowing for a direct optimization
of settings. Coupling gel is also applied manually, and the
volunteers must hold their breath during the scan. The internal
subsystems incorporated in the KUKA lightweight system stop
actions automatically if the desired force is exceeded, thus
allowing for an safe evaluation in the constrained experimental
environment. The patient-to-world calibration is performed
once before each acquisition, but could be also updated
online in future. The global alignment between the patient
and MRI surface requires less than 10s, and the intensity-
based refinement of the registration requires less than 30s to
complete.

For all acquisitions of the phantom and humans combined,
the average translation between the initial US-volume and MRI
is 447 £ 2.15 mm for iteration one (without calibration-
update) compared to 0.97 £ 0.76 mm in the second run after
the overall patient calibration is updated. Similarly, the rota-
tional part clearly improves after the update of the calibration
(4.50 £ 2.24° before update, versus 1.08 £ 0.76° after), where
the rotational error is determined as the Euclidean norm of
the three rotation angles. For an additional affine registration
after the initial rigid registration, the average translation results
in 1.02 £ 0.77mm, which shows that the initial registration
successfully accounts for potential tracking and point cloud
inaccuracies (rotation errors are 1.43 £ 1.42°). Resulting
ultrasound datasets and registrations are depicted in Fig. 7
for a volunteer acquisition, and all results of the different
experiments are listed in Table I.

rigid

swee 2

=
-
-

reproducibility

D e

Fig. 7.  Left column: axial plane; right column: saggital plane. The
initial calibration shows partial misalignment (orange box), while the
registrations for sweep #1 and #2 account for this offset. An overlay of
both scans also shows the high reproducibility of the sweeps.

Thereby, initial, rigid and affine refer to the initial US scan,
the registration based on the calibration update, and the affine
registration after rigid registration, respectively.

V. DISCUSSION

Based on the millimeter accuracy achieved on repeated
acquisitions with an updated calibration, our results suggest
the feasibility of the overall approach as well as a potential
path for a clinical integration of the presented system. The
initial system-calibration using RGB-D information showed a
maximum error below 1 cm, which ensures that the acquired
3D-US datasets will lie within the capture range of the
intensity-based registration [47]. Therefore, the system should
be able to deal with challenging clinical settings, where
a higher deviation might lead to local minima during the
registration optimization. As the position and orientation of
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the acquired ultrasound images are aligned with the diagnostic
image, US data can be correlated directly to the underlying
tomographic image data, aiding the medical expert in terms
of ultrasound visualization. The results of the intensity-based
registration (Table I) show the overall translation/rotation of
the US volume with respect to the MRI data, where the affine
registration of the second scan appeared to perform worse
than the rigid registration after calibration-refinement. While
the quantity of data is too little to allow for a statistical
meaningful judgement, the local deformation of tissue by
the robotically held US probe is the primary reason for this
discrepancy in our experience. In view of a specific clinical
application in mind, it is thus important to analyze and adapt
the utilized registration tools further, especially with respect
to a deformable registration of soft tissue.

The integration of ROS and Sunrise.OS as used in this
work allows for a full control of the KUKA APIs directly
from components being available within ROS. Furthermore,
a direct access to the robot state is provided by the KUKA
APIs, including native features such as self collision avoid-
ance. In this regard, the utilized approach allows for the
best combination of both worlds. This facilitates the rapid
development of new approaches, but also ensures safety of the
robot environment, i.e. by collision detection and emergency
halt features.

In view of a clinical integration, it should be noted that our
results provide only a first feasibility evaluation, where future
work clearly needs to focus not only on healthy volunteers
but also diseased and pathological anatomy. Methods such
as patient surface extraction and dynamic registration will
require further adaptions, aiming at a clinical integration in
the future. Our experiments also showed that the currently
used examination bed is not optimal for the robot working
space, as the end-effector is moving almost at the base of the
robot. With respect to a clinical application, we thus suggest
a height-adjustable bed, which could be directly integrated
with the imaging system, such that the optimal height would
be adjusted based on the planned acquisition. Besides that,
acoustic coupling between the US probe and patient surface
needs to be explored, facilitating US scans with either auto-
matic gel application, or the exploration of other alternatives.

To this end, our future work will also focus on the possi-
ble online-optimization of the trajectory based on the initial
planning, as we partially experienced suboptimal US image
quality for the selected trajectories in this work. In this view,
also an automatic change of the applied coupling force with
respect to the target surface (e.g. fat vs. muscle) is analyzed
in ongoing efforts.

VI. CONCLUSION

We have presented a path to an autonomous robotic ultra-
sound system in order to enable imaging and support during
interventions. The set of methods presented shows the basic
feasibility of the automatic scanning framework, allowing fast
and efficient robotic 3D ultrasound acquisitions based on pre-
interventional planned trajectories. On the foundation of an
integrated system consisting of a baseline tomographic image
with 3D RGB-D information, we automatically register patient

data and perform automatic robotic acquisition. We introduced
a closed-loop calibration update based on image-based regis-
tration to facilitate the acquisition of reproducible 3D US data.
Our results show that the overall accuracy of the system is
sufficient for clinical applications. Despite challenges which
need to be overcome before such systems could be used in
daily routine, this work will hopefully facilitate the clinical
acceptance of automatic and autonomous robotic ultrasound
scanning systems in the future.
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5.2 3D Deformation Correction Leveraging Force
Sensing (IJCARS 2018)

The need for a tight contact between an ultrasound transducer and the patient has already
been discussed in Chapter 2: lack of contact would result in a loss of ultrasound signal since
it cannot propagate in air. Therefore, force control techniques (Chapter 3) are required
in robotic ultrasound systems to be able to apply the required contact force and, in an
optimal implementation, to maintain that force constant. This applied force, therefore,
impacts the resulting ultrasound images of any anatomy. That is, the tissue undergoes a
certain deformation due to this force, the acquired images reflect this deformation. Using a
constant force during a 3D acquisition enables to limit the variability in deformation along
the performed trajectory, but an overall deformation is still present. In many cases, the
accurate localization and the geometric analysis of anatomical structures can be impaired by
these deformations, especially in the case of 3D reconstructed volumes, using methods from
Sec. 2.3.

In this work, a method to estimate and partially correct these deformations is proposed, target-
ing the deformation recovery of an entire 3D ultrasound volume. The 2D tissue displacement
(along the image plane) is estimated at sampled locations along an executed trajectory. This
process uses an image-based tracking approach that relies on the registration of subsequent
images acquired at forces that are increasing over time. Information on how the applied force
deforms each pixel is then obtained sparsely along the robot movements, and these sparse
measurements are then represented using a 3D graph. An exhaustive information regarding
the overall 3D volume is completed expanding the available data using an anisotropic diffusion
approach along the graph structure. A high diffusion is allowed along the direction of the
performed trajectory, while a small one is enforced along the image plane, to avoid blurring.
The output of the method is a full 3D un-deformation field, providing information on how
each voxel in the volume should move if a different (or no force) would have been applied
instead.

An extensive validation of the method is also presented. A public dataset of 30 volumes
acquired on human volunteers is created, including ground truth undeformed volumes ac-
quired without any contact to the patient’s surface (using the equivalent of a water bath).
The proposed technique is able, when using a 5 N force for the acquisition, to regenerate 3D
volumes that have an error of 3.39(186) mm with respect to the relative ground truth. Note
that the method relies on all the components of the system presented in Sec. 5.1, without
requiring the use of additional hardware or complex bio-mechanical models.

5.2 3D Deformation Correction Leveraging Force Sensing (IJCARS 2018)
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Abstract

Purpose Ultrasound acquisitions are typically affected by deformations due to the pressure applied onto the contact surface.
While a certain amount of pressure is necessary to ensure good acoustic coupling and visibility of the anatomy under
examination, the caused deformations hinder accurate localization and geometric analysis of anatomical structures. These
complications have even greater impact in case of 3D ultrasound scans as they limit the correct reconstruction of acquired
volumes.

Methods In this work, we propose a method to estimate and correct the induced deformation based solely on the tracked
ultrasound images and information about the applied force. This is achieved by modeling estimated displacement fields of
individual image sequences using the measured force information. By representing the computed displacement fields using
a graph-based approach, we are able to recover a deformation-less 3D volume.

Results Validation is performed on 30 in vivo human datasets acquired using a robotic ultrasound framework. Compared to
ground truth, the presented deformation correction shows errors of 3.39 + 1.86 mm for an applied force of 5 N at a penetration
depth of 55 mm.

Conclusion The proposed technique allows for the correction of deformations induced by the transducer pressure in entire
3D ultrasound volumes. Our technique does not require biomechanical models, patient-specific assumptions or information
about the tissue properties; it can be employed based on the information from readily available robotic ultrasound platforms.

Keywords Robotic ultrasound - Deformation correction - Compounding - Inpainting

Introduction after surgical interventions, such as in the case of STS where

there is a high risk of recurrence of STS [1].

Ultrasound (US) imaging is extensively used in both diagnos-
tic and interventional scenarios. The high accessibility of US
systems and their low costs make US the modality of choice to
obtain real-time imaging of various anatomies. In the case of
soft tissue applications and subcutaneous pathologies, such
as soft tissue sarcomas (STS), US yields morphological infor-
mation about the target tumor [15], e.g., tumor heterogeneity
or vascularization. Being free of ionizing radiation, US is
also an ideal imaging modality for follow-up acquisitions
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To achieve optimal acoustic coupling of the US transducer
and obtain good visibility of the target anatomy, it is neces-
sary to apply a certain force onto the contact surface. This
naturally results in an unavoidable deformation of the imaged
tissues. For certain clinical applications, the induced defor-
mation can be exploited to infer mechanical properties of the
imaged tissue by means of a static or dynamic excitation—a
concept exploited in classical US elastography [12]. On the
other hand, this deformation can hamper the exact localiza-
tion of anatomies of interest, such as STS tumor masses, as
well as the precise assessment of their geometry and volume.
Additionally, as these deformations do not usually remain
constant during free-hand 3D ultrasound acquisitions, dif-
ferent deformations across the individual 2D images of an
US sweep eventually impair the volumetric reconstruction.
Despite the advantages free-hand 3D-US could provide in
several clinical settings, in both diagnostic [13] and inter-
ventional scenarios [11], these drawbacks impair a higher
acceptance of such approaches in practice. To overcome
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these deformation-induced problems, the inhomogeneous
deformation created in free-hand 3D US is reconstructed in
[18] through a combination of probe tracking information
and non-rigid image-based registration, although limited to
the deformation in the axial direction. Similarly, in [2,21]
nonlinear tissue distortions produced during long 3D US
acquisitions are corrected via subsequent elastic registrations
of image pairs. All these methods, however, do not aim at
removing the tissue deformation, but to make it homoge-
neous along the entire US volume.

Recently, robotic platforms for US imaging (rUS) have
been proposed [5,17]. It is common for these platforms to
include force sensing, either via force and torque sensors
attached to the robot end-effector, or coupled with elastic
joints, such as in [8]. Therefore, contrary to free-hand US,
such platforms are able to apply a constant pressure onto
the examined anatomy and thus maintain a nearly constant
deformation, which significantly alleviates volumetric recon-
struction. However, the deformation will still be present due
to the necessary contact force. This is of particular interest in
an interventional scenario, when registering preoperatively
acquired tomographic image data (e.g., MRI or CT) to intra-
operatively acquired 3D US data, as the amount of deforma-
tion between the two volumes is directly proportional to the
required computational effort and thus precious runtime.

Related work

Existing methods for correcting for the induced deformation
in US make use of a combination of various types of infor-
mation such as the US image data, the position of the US
transducer (via a tracking system) and the applied force. A
group of proposed works additionally employs biomechan-
ical models that reproduce the mechanical properties of the
tissue under examination. These include models based on
the finite element method (FEM) to predict and correct for
the deformation [3]. However, FEM-based methods require
a priori knowledge of the tissue properties to obtain an accu-
rate representation and often require specific density, elastic
moduli, or similar. In practice, such indices are complex to
be retrieved, especially in pathological indications. Besides
FEM modeling, 3D mesh models are also used to estimate
the deformation [14]. Although these models are not patient-
specific itself, the method requires the acquisition of the
surface of interest during the procedure, using laser scan
technology or similar techniques. Furthermore, both meth-
ods assume that deformations are present only along the axial
direction of the US transducer. In [4], a proof of concept
is proposed to obtain mechanical parameters specific to the
examined tissue using mutual information between the US
images, avoiding the use of generalized parameters. Finally,
a recent method proposed in [16] solely uses tracked US
images and the applied force in order to extrapolate the tis-
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sue deformation and eventually recover deformations in the
axial and lateral direction. However, both methods are pre-
sented for 2D images only and validated only on simulations.

Contributions

We present an image-based approach to obtain
compression-free 3D US volumes based on robotic acqui-
sitions (see Fig. 1). We do not employ a technique based on
biomechanical models, as these require the retrieval of addi-
tional parameters that impairs their usability, especially since
a patient-specific model is required. It is noticeable, in fact,
that these limitations are reflected in the validation of such
methods, which is very often performed on synthetic data
only—both regarding tissue models and US images—except
[14], which is validated on one clinical case.

The robotic platform presented in the following facilitates
accurate tracking of the US transducer position and provides
control over the applied force via direct force control tech-
niques. The latter ensures that the necessary force to visualize
the anatomy of interested is applied as well as that informa-
tion about the applied force can be obtained along the whole
scan trajectory. With regard to the mentioned state of the art,
our proposed method features the following aspects:

(a) it makes use of the tracked 2D US images and the force
information only, i.e., no additions to a generic robotic
US setup are required;

(b) itis able to recover deformations in both axial and lateral
direction,;

(c) it uses a novel deformation interpolation (3D inpainting)
of sparsely measured elastic information to retrieve a full
deformation-corrected 3D US volume.

We provide validation for our method on 30 3D acquisitions
performed on volunteers and evaluate the corrected volumes
against ground truth US data. Table 1 categorizes this work
and the related state of art according to their characteristics.
Finally, to allow a better comparison of different methods
for deformation correction and to improve reproducibility,
the human acquisitions that were performed to validate this
work are publicly available.

3D Reconstruction

Deformation field
interpolation
T
v

3D volume
compounding

2D Deformation Estimation

N different forces

T —

Pixel Polynomial Deformation
tracking fitting estimation

Ultrasound
Acquisition [

Fig. 1 Proposed workflow for deformation correction of 3D US vol-
umes. For an acquisition of length L, K 2D deformation estimations
are performed
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Table 1 Comparison with related work

2D 3D Axial def. Lateral def. Force sensing No biomech. model In vivo validation
Burcher et al. [3] v v v v
Pheiffer et al. [14] v v v v
Dahmani et al. [4] v v v
Sun et al. [16] v v v v v
Ours v v v v v v v

Categorized based on the characteristics of available methods: deformation correction in 2D, in 3D, ability to cope with axial and/or lateral
deformations, use of force sensing and/or biomechanical models and in vivo validation

Methods

The aim of the presented method is to obtain a 3D US vol-
ume free of the deformation induced by the contact force
from the US transducer during the acquisition performed by
a rUS platform. Following an image-based approach, this
requires to correct for the induced deformation of each indi-
vidual 2D image that forms the 3D volume, which would
imply extensive acquisition and computation time depend-
ing on the length of the trajectory. To maintain high clinical
usability, we propose to perform the 2D deformation estima-
tion sparsely along the planned trajectory, while providing
a complete 3D deformation correction employing a novel
3D-inpainting scheme. A schematic representation of the
overall workflow is shown in Fig. 1. Initially, 2D US images
are acquired along a linear trajectory of length L. During
the whole acquisition, the position of the US transducer is
tracked via the forward kinematics of the robotic manipu-
lator, as well as the fixed base force Fpase applied onto the
surface. At each designated position, we estimate the 2D
deformation induced by the transducer pressure as described
in “2D deformation estimation” section. This estimation is
performed at K equidistant locations (separated by a distance
of L/(K — 1)). Then, the estimated sparse 2D deformation
fields are inpainted using a graph-based representation of
the whole US sweep in order to obtain a volumetric defor-
mation field. Using this approach allows for filling in the
missing information where the direct estimation was not per-
formed. Finally, the undeformed 3D volume is reconstructed
as described in “3D reconstruction” section.

2D deformation estimation

While the transducer is moved along the planned trajectory
and the base force Fpage is applied, for each of the K loca-
tions, the tissue deformation due to the applied pressure is
examined. Inspired by the approach proposed by Sun et al.
[16], 2D deformation fields are generated from a series of 2D
images acquired at the same location with N different forces
F; € [Fstart, Fenda] Wherei = 1, ..., N. These contact forces
are increased by Fitep after a small temporal interval fgep, s.t.

20

F/[N]

t/[s] 10 20

Fig. 2 Exemplary force profile and induced deformation. Forces
applied during 2D deformation estimation (left), resulting force-
dependent deformed US images for 2N in red, and 8§ N in blue (right)

Fi = Fotart + (@ — 1)Fstep: (1

yielding N force-dependent 2D images [; (i = 1,..., N)
as illustrated in Fig. 2. We retrieve the resulting deforma-
tion between [; and [; 4 at each pixel using a preconditioned
fluid-elastic diffeomorphic demons as described in [19,20]
with the following parameter settings: standard deviation for
elastic demons o, = 1, standard deviation for fluid demons
oy = 1 and step size T = 0.05. The parameters for the dif-
feomorphic demons algorithm have been chosen to reach a
meaningful compromise between speckle size and degree of
desired regularity: while increasing both standard deviations
decreases the contributions of individual speckle patterns, too
small standard deviations do not achieve satisfactory regular-
ization results. In addition to this, it needs to be considered
that by adjusting o, the regularity of the entire solution,
i.e., the deformation field, can be changed and by adjusting
o s one can influence the regularity of the individual updates,
i.e., how susceptible the algorithm is to spurious and noisy
local deformations.

To finally allow for a continuous modeling of the expected
tissue displacements as a function of the applied force, a
regression function is fitted to the sampled points. In our
case, we model the force-dependent deformations using
fourth-order polynomial functions in order to regress the
deformation field corresponding to the force-free configu-
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Fig.3 Qualitative comparison of model quality. The evaluation shows
the position of a single tracked sample for all measured incremental
force steps in reference to evaluated models based on first-, second- and
third-order polynomial

ration, i.e., at zero force. It is important to note that while
the method in [16] utilizes median filtering on the obtained
deformation fields to guarantee spatial consistency, the pro-
posed reconstruction in “3D reconstruction” section ensures
this property in an implicit manner. In conclusion, we obtain
a model of the tissue deformation with respect to the applied
force. Since each 3D acquisition is performed using Fpase
(e.g., 5 N)—with the exception of the location where the 2D
estimation is computed—we will use the regression model
to estimate the position at zero force for each volume voxel.
Examples of such model obtained by pixel tracking are shown
in Figs. 3 and 4.

3D reconstruction

As the 2D deformation estimation takes most of the time
during a 3D US acquisition (see “Acquisitions” section)

Fig. 4 2D deformation tracking: 5 pixels are tracked—manually and
using the demons-based approach—while forces from Fiiart to Feng are
applied. The points are marked on the first (left) and last (center) frame

@ Springer

and acquiring them in a dense sampling is impractical, it
is performed at K equidistant sampling positions along the
scanning trajectory in order to facilitate the proposed method
to be applied in a clinical scenario. Thus, the obtained 2D
deformation fields have to be propagated or inpainted at
the image position where no sampling has been performed.
Inpainting can be described as the process of augmenting a
set containing missing values with ones based on the sur-
rounding known samples. There are several mathematical
approaches to model inpainting, one of which is the solution
of a set of partial differential equations (PDEs), where the
known values represent the Dirichlet boundary conditions.

It is possible to solve discrete PDE-like problem with a
graph-based method as the one proposed by Hennersperger
etal. [9], which was introduced for the solution of a quadratic
optimization problem. Differently from the original formu-
lation, our inpainting problem requires the generation of
new graph nodes to interpolate the missing information. We
choose anisotropic diffusion of the deformation fields over
the graph structure, such that we can better define the required
diffusivity properties for our problem, i.e., high diffusion in
the elevational direction and low speed of information prop-
agation in axial and lateral direction. That is, we want the
deformations to propagate more over the sweep direction
than within the image plane. This can be efficiently imple-
mented over the irregular graph that is built by the method,
i.e., the optimization over the graph is performed as local
operation. The irregular nature of the graph also allows us to
employ non-parallel acquisitions.

For our problem, the boundary conditions (the known
values) are the sparse 2D deformation fields. Inpainting is
performed over the deformation fields component-wise using
apreconditioned conjugate gradient (PCG) with a Jacobi pre-

15+

Depth in US image / [mm]
w w n n
(8} o [ o

N
o

N
(6]

0 5 10 15 20
Force / [N]
of the sequence. On the right, their position in axial direction is dis-

played: manually tracked trajectory (full line) and tracked via demons
(dashed line)
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conditioner as optimizer. Weights inside the images were
fixed to e~ to inhibit blurring within them, while weights
between different images were set as described by the orig-
inal authors [9], applied to the axial and lateral deformation
components.

This graph-based inpainting results in a final deformation
field that describes how each pixel along the acquired volume
is affected by the applied force (forward deformation field).
We invert this field to correct for the deformation induced
by Fpase during the acquisition. Inversion of an explicit field
is not possible in the general case, but due to the employed
tracking scheme, the resulting field is diffeomorphic, i.e.,
invertible. Itis inverted numerically using an iterative method
based on an open-source implementation.! After applying
the inverse deformation field to the individual images from a
full acquisition, a 3D volume is created using an US recon-
struction method. We employed a voxel-based interpolation
method, in which for each voxel a scalar is computed as
weighted interpolation of the relevant US image samples.
This approach is described in [ 7] for advanced reconstruction
using tensors instead of scalar values. The resulting unde-
formed 3D volume thus appears as acquired using no force.

Hardware setup and experiments
Hardware setup

We make use of a robotic platform for autonomous US
acquisitions: the system is composed of a manipulator, a
KUKA LBR iiwa R800 (KUKA Roboter GmbH, Augs-
burg, Germany), controlled using the ROS? framework. The
robotic arm is equipped with torque sensors at its joints,
which allow for the estimation of the forces and torques
applied by (or to) the robot’s end-effector. B-mode US
images are acquired using an Ultrasonix RP US machine
(BK Ultrasound, Peabody, MA, USA) and a linear trans-
ducer (frequency: 3.3 MHz, depth: 55 mm, gain: 50%) which
is attached to the robot’s flange. Images are transferred using
the OpenIGTLink communication protocol? to a workstation
(Intel Core 17, NVIDIA GTX 1080), where they are synchro-
nized to the transducer tracking and force stream.

Acquisitions

3D US volumes were acquired on the thighs of five healthy
volunteers (age 26-30, 4 males, 1 female). We selected the
volunteers’ thighs as the area for our experimental acquisi-
tions, since extremities are prone to be affected by soft tissue

! https://itk.org.
2 http://Www.r0s.org.

3 http://openigtlink.org/.

pathologies, such as STS [10], and therefore often subject to
US examination. For each volunteer, six volumetric acquisi-
tions of length L = 70 mm were performed, for an average of
265 each and a total of 30 US volumes. Different base forces,
applied orthogonally to the contact surface, were employed
during the different US sweeps: Fpase € {2, 5, 8, 10, 12, 15}
Newton. A 2D deformation field, as described in “2D defor-
mation estimation” section, was estimated for K = 15
positions along the planned trajectory, with Fggar¢ = O N and
Fena = 20 N. Fytep was varying between 0.25 and 1 N during
a single estimation, since smaller variation steps were found
beneficial to better capture deformations of the initial tissue
layers at lower forces. That is, those layers tend to undergo
high deformations with low forces already, using small steps
at the beginning of the evaluation allows to better track pixel
movements. The required computation time to compute a 2D
deformation field from the images acquired at one location
was in average of 1865, with a maximum memory usage of
approximately 21 GB for the computations of a full acquisi-
tion.

A ground truth volume, free from any compression from
the US transducer, was also acquired for every individual by
maintaining the probe at about 5 mm from the contact surface
while applying a thick layer of US gel to guarantee acoustic
coupling. The precise and stable movement required for the
ground truth volume acquisition is made possible by the use
of such robotic system. It is important to notice that previous
works on the topic do not validate their result using real
undeformed US images or volumes, but rather using synthetic
ones or via registration with other image modalities. On the
other hand, due to the missing contact to the patient surface,
while the ground truth volumes do not present deformations,
the visibility of the underlying anatomy is strongly impaired.

Validation

To validate the framework for deformation-compensation,
we assess the quality of the individual components as well
as the overall system:

— 2D deformation estimation We validate the pixel
tracking and deformation regression on 5 deformation
sequences. For each, 5 points are manually selected on
the first frame and their displacement tracked over the
successive ones. The position of the same points is also
manually annotated, such that the absolute accuracy of
the automatically tracked trajectory can be compared.

— Deformation field interpolation To evaluate our pro-
posed sparse sampling scheme, we validate how sparsely
a 2D deformation estimation can be performed while still
obtaining a valuable volumetric deformation correction,
as a trade-off between quality and acquisition time is
needed. Based on 15 deformation fields estimated per
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volume, we first compare different subsamplings (leave-
one-out) and compute the Euclidean norm of the resulting
difference in deformation for 18 volumes. Second, for a
given volume, we exclude the computed central deforma-
tion field and interpolate the remaining ones to obtain it.
We perform this 7 times, incrementally removing more
neighboring fields, until only the first and last sample
are used for interpolation. The resulting field in the cen-
tral location of the volume is then compared to the one
directly computed by the (ground truth) 2D estimation.

— 3D volume undeformation We validate the quality of the
overall method using the target registration error (TRE)
between the compounded US ground truth volume and
the final undeformed volumes acquired applying differ-
ent forces (2, 5, 8 and 15N).

Results
2D Deformation Estimation

The 2D deformation estimation, as performed along the
planned US trajectory (“2D deformation estimation” sec-
tion), allows to track the displacement induced by the applied
force of the individual image pixels. As can be seen in Fig. 3,
the computed displacement is characterized by a nonlinear
behavior, with a stronger deformation at lower forces due
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Fig.5 2D tacking error: Mean and standard deviation of the Euclidean
error [mm] between demons-based and manual tracking. 5 points over
5 sequences (25 points in total) of 35 force steps were evaluated, a
subsample of the results (10 force values of 35) is shown

to the compression of the superficial and more elastic tissue
layers. Therefore, while in [16] the authors propose to model
this displacement using quadratic functions, we instead pro-
pose to use fourth-order polynomials to better capture the
high flexibility of the subcutaneous and other relevant tissue
layers.

In Fig. 4, the 5 points selected for validation of one spe-
cific sequence are shown at the beginning and at the end of
the deformation sequence together with the resulting models
obtained from the demon-based tracking and a ground truth.
For the 25 points selected over 5 different sequences, the error
between their computed trajectory and the ground truth was
found to be 0.64 &+ 0.57 mm. Note that information on the
tissue state at N is already sampled in our model, so that we
do not need to extrapolate to reach the undeformed state. In
Fig. 5, the distribution of modeling errors is depicted for the
evaluated force steps. The error from our tracking approach
tends to accumulate over multiple force steps, with some
sharp increases at instants where tissue layers yield to the
increasing pressure.

Deformation field inpainting

The results of the validation of our inpainting strategy using
different subsampling of the available deformation fields are
presented in Fig. 7. For displacement fields sampled at a
distance of 35mm, an average error of 1 mm is obtained.
The possibility to sample tissue deformation so sparsely also
helps reducing the computational costs of a full acquisition
and the clinical feasibility of the proposed method. We also
validate the accuracy of the inpainting method computing
a known displacement field that is not used during interpo-
lation, together with a subset of its neighbors. In Fig. 6, the
original deformation field, computed with the 2D estimation,
is shown alongside the magnitudes of the Euclidean error
between the inpainted fields and the baseline. As also shown
in Table 2, the mean error increases with the number of neigh-
boring samples that are removed from the inpainting process,
as expected. The error obtained is comparable to thatin Fig. 7.

3D volume undeformation

We validate the performance of the proposed deforma-
tion correction method using target registration error (TRE)
between the compounded ground truth and the undeformed
volumes acquired with different forces (2, 5, 8 and 15 N—
20 volumes in total). Anatomical landmarks were manually

Table 2 Quantitative inpainting

. 2 Neighbors
accuracy: error in mm (average

4 Neighbors

6 Neighbors 8 Neighbors 10 Neighbors 12 Neighbors

and SD) of an interpolated
deformation field with respect to

0.94+0.83 0.95+0.84

1.11 +£0.87 1.20 +£0.87 1.40 £0.97 1.62 +1.00

respective estimated one

The deformation field for the same location is interpolated incrementally removing neighboring fields. Errors

are shown for 2, 4, 6, 8, 10, and 12 fields being removed symmetrically around the selected one
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Fig.6 Qualitative inpainting accuracy: on the left, an exemplary defor-
mation field computed by the 2D deformation estimation is shown.
Inpainting is performed with the attempt of reproducing the computed
deformation as accurately as possible, while incrementally removing the
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Deformation sampling / [mm]
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Fig.7 Deformation subsampling: mean and SD of the Euclidean norm
of difference between dense and sparsely sampled deformation estima-
tion

selected with an average of 142 £ 14 fiducial points per
volume pair. Table 3 summarizes the measured distances
between the chosen points, an increase from 3.11 + 1.55
to 6.27 £ 2.59 mm can be observed with increasing force.
The achieved correction is also shown in Fig. 8.

Discussion and conclusion

The obtained results show that the proposed method is able
to capture the deformation induced by the US transducer
during a 3D robotic acquisition and effectively correct for
it. While a direct comparison to the current state of art is
difficult due to variations in the acquisition protocols, the
reported deformation correction for a clinical case [14] is
3.5 £ 0.4 mm, which is comparable to our findings for SN

-

|

[ Sy
0.5 1 15 2 2.5 3

surrounding neighboring fields to assess how sparse sampling affects
output quality. The error magnitudes of the interpolated deformation
field with respect to the one on the left are shown in the center (remov-
ing 2 neighbors) and on the right (removing 12 neighbors)

Table 3 Target registration error

2N SN 8N I5N

3.11 £ 1.55 3.39+1.86 4.65+1.92 6.27 +2.59

Average and SD [mm)] (3 subjects). The force values used for acquisi-
tions allow the visualization of subcutaneous masses in a large set of
body type

in Table 3. Such an error would be clinically acceptable for
the target application, since diagnosed STS have an average
size of 10cm [6].

To improve the reproducibility of this work and allow
future comparative evaluations, we release the acquisitions
acquired on volunteers.* The dataset contains synchronized
US images, tracking data and force information.

It is clear that the overall deformation estimation was able
to better correct for low forces, since the estimated deforma-
tions from our fitted model are inherently subject to noise
due their local nature. Resulting undeformed volumes may
contain artifacts at the interface of different tissue layers,
as noticeable in Fig. 8, as the tracking of the deformation
is more difficult due to the diverse response to the applied
force. This effect could be reduced by a better regularization
of the obtained deformation fields. It is valuable to note that
we do not aim to compensate for all the possible sources of
deformations that might be present during an US acquisition,
e.g., breathing motion, vascular pulsation, but—similarly to
the state of the art—we tackle the deformation caused by

4 http://campar.in.tum.de/files/virga/dataset.zip.
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Fig.8 Comparison of deformed and undeformed volumes. Axial and lateral views of deformed (left), ground truth (center) and undeformed (right)

volumes

the probe pressure only. Future work will include improve-
ments in the model to incorporate constrains on the resulting
deformation fields and integrate information on elastic tissue
behavior. Additionally, a validation of the method for multi-
modal volumetric registration would be beneficial to assess
its potential in additional clinical settings. Also, a prospective
validation on clinical patients would be beneficial to evaluate
the deformation on pathological tissue, opening the way to
clinical impact of robotic US imaging.
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5.3 Applications in Vascular Surgery

The contribution described in Sec. 5.1 included the description of a whole system for au-
tonomous robotic ultrasound acquisitions and analyzed the integration with external 3D
sensing for an accurate trajectory planning. On the other hand, in Sec. 5.2, the focus has
been on leveraging the force sensing information to enhance the ultrasound acquisitions.
The following contributions aim at showcasing the use of all the presented methodologies in
specific clinical cases. In Sec. 1.3, some of the clinical applications that robotic ultrasound
addresses in literature have already been presented, in this case, we target applications in
the vascular surgery domain, specifically, for both diagnostic and treatment of an Abdominal
Aortic Aneurysm (AAA).

In brief, AAA is characterized by the enlargement of the main artery in the human body, the
aorta, in its abdominal section. Although it is commonly an asymptomatic condition, it causes
the weakness of the vessel’s wall and increases the chances of its rupture, which would cause
a rapid patient’s death.

5.3.1 Diagnosis of Abdominal Aortic Aneurysm (IROS2016)

The diagnosis of AAA is commonly reached via unrelated analyses carried out while investi-
gating other pathologies. Typically, an abdominal CT or MRI, acquired for other indications,
leads to the discovery of the pathology by chance. Ultrasound imaging is a valid alternative
for the diagnosis and staging of AAA: it is a non-invasive imaging modality, and it is highly
available. However, as already discussed in Sec. 1.1, the need for a manual acquisition of the
images limits its use on a large scale. Implementing a screening program for AAA, which is
suggested for all males above 60 years of age, would require a large workforce and, so far, has
been therefore unsuccessful.

This work proposes an autonomous robotic system that can acquire a full 3D ultrasound
volume of the abdominal aortic tract without any manual interaction with the patient. The aim
is to allow a seamless analysis of the patient’s aortic diameters and plan for further acquisitions
(for AAA staging) or for an intervention to mitigate the risk of a vessel rupture. Based on the
system presented in Sec. 5.1, the anatomical area of interest is here selected from a statistical
MRI atlas. That is, since it is not possible to assume the availability of a pre-operative volume
of a patient undergoing screening, the closest available individual in the atlas (in terms of
body size, age, BMI, etc.) is used and the abdominal region of the aorta selected. In this case,
a deformable registration (See Sec. 4.1) is employed to match that trajectory to the current
patient location.

Showing the potential of integrating multiple sensing in such a system, the proposed solution
takes also advantage of the live ultrasound image information to optimize the force control
strategy. During the acquisition, in fact, the system attempts to find the best patient-specific
force value to be applied such that the image quality is maximal with respect to the aortic
area, Fig. 5.2. The concept of ultrasound confidence maps [160] is used to assess the visibility
of the aortic tract at the current force level, so that the force control scheme can be optimized

Chapter 5 Contributions
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The presented system autonomously selects the best suitable force to apply onto the patient surface to
achieve an optimal visibility of the target anatomy. On the top left the live ultrasound image acquired by
the robot is shown, together with its respective confidence map. The average confidence value around
the aortic region is used as input for the used force control strategy.

for the task at run-time. Additionally, the out-of-plane orientation of the ultrasound probe is
also optimized during the trajectory execution, again, to maximize the aorta visibility.

Performing a validation on human volunteers, the contribution shows that, with such a system,

it is possible to achieve identical measurements of the aortic diameters with respect to the
ones obtained by an expert vascular surgeon using manual ultrasound acquisitions.

5.3 Applications in Vascular Surgery
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Abstract— Ultrasound (US) imaging is commonly employed
for the diagnosis and staging of abdominal aortic aneurysms
(AAA), mainly due to its non-invasiveness and high availability.
High inter-operator variability and a lack of repeatability of
current US image acquisition impair the implementation of
extensive screening programs for affected patient populations.
However, this opens the way to a possible automation of
the procedure, and recent works have exploited the use of
robotic platforms for US applications, both in diagnostic and
interventional scenarios. In this work, we propose a system for
autonomous robotic US acquisitions aimed at the quantitative
assessment of patients’ vessel diameter for abdominal aortic
aneurysm screening. Using a probabilistic measure of the US
quality, we introduce an automatic estimation of the optimal
pressure to be applied during the acquisition, and an online
optimization of the out-of-plane rotation of the US probe to
maximize the visibility of the aorta. We evaluate our method
on healthy volunteers and compare the results to manual
acquisitions performed by a clinical expert, demonstrating the
feasibility of the presented system for AAA screening.

I. INTRODUCTION

Ultrasound (US) imaging has become the first-line imag-
ing modality for multiple medical indications, including the
focused assessment with sonography for trauma (FAST) as
a routine emergency workflow or general vascular condi-
tions [1], [2]. Due to its non-invasiveness and swift imaging
capabilities, ultrasound is well suited for screening applica-
tions. One target area with a high associated benefit from
routine screening would be the abdominal aortic aneurysm
(AAA), a dilation (ballooning) of one of the major vessels
in the human body. The major risk of an AAA is the rupture
of the aneurysm, which is associated with high mortality
rates up to 50%. The probability for rupture depends on the
size, shape and stress of the aneurysm, with a substantially
increased risk for diameters above 6 cm [3]. Ultrasound is
already employed as a standard diagnostic tool for the imag-
ing of the aorta, and US-based staging is widely accepted
in clinical practice [4]. However, challenges with respect
to inter-operator variability and standardized measurement
approaches still impair the implementation of national or
international sonography-based screening programs [4], [5],
[6]. In contrast to conventional clinical 2D ultrasound, 3D
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US showed an improved localization of aneurysm-shape

and endoleak after Endovascular Aortic Repair (EVAR)

compared to 2D US, using contrast-enhanced imaging [7].

Based on the extraction of quantitative values from these

data, a 3D ultrasound scanning system with reproducible and

constant acquisition quality could facilitate the establishment
of screening frameworks. While the patient benefit from an
early detection and regular check for aortic aneurysms is ob-
vious in such a program, discussions about the overall cost-
effectiveness of potential screening activities remain [8]. The
full automation of the acquisition using robotic technology
would reduce personnel costs a major factor for the data
acquisition while achieving full comparability of acquired
data. In addition, work-related musculoskeletal discomfort

of US examiners could be reduced [9].

In the past decades, attempts for generating operator-
independent 3D ultrasound data focused on motorized
probes [10], freehand 3D approaches [11], partially also
combined with ECG-gating [12] and more recently pulse-
oximetry [13] to remove artifacts due to vessel pulsation.
While today’s methods achieve higher repeatability of the
acquired data, they lack an automation of the acquisition
itself. In view of servoing approaches, US probes are used
and guided by robotic systems for needle placement [14], as
well for showing a constant anatomical position by breathing
compensation [15], an automatic optimization of the US
probe direction for optimal acoustic coupling [16] and the
automatic servoing based on live image registration [17].
Finally, first attempts for fully automated ultrasound acqui-
sitions used RGB skin feature detection following a rigid
acquisition protocol for liver ultrasound [18], and performed
acquisitions based on previously planned trajectories on
tomographic image data [19].

In this work, we present a fully autonomous framework
to acquire abdominal 3D US images to facilitate AAA
screening in clinical routine. Designed to cope with a high
anatomical variety in the general population, our system
aims to adapt the performed US trajectory to the individual
patient. To this end, we elastically register the patient to a
generic MRI-based atlas, and autonomously perform a force-
optimized robotic US scan of the abdominal aortic region,
allowing for manual diameter measurements. In particular,
our contributions are as follows:

a) In contrast to [19], a deformable registration in combina-
tion with a generic patient atlas is employed to account
for various body sizes and shapes. In this way, patients
for whom no tomographic imaging data is available can
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a) System setup showing the robot, the US transducer mounted to its end-effector, the RGB-D camera on the ceiling, the patient, a coronal slice

of the MRI atlas, and all required transformations, including the camera-to-robot (CTW) and extrinsic US probe calibrations (TTE ). The red-dotted line
indicates the scan trajectory. b) Close-up of the US transducer, showing the US imaging plane (thick black line) and the out-of-plane rotation angle a.

undergo the proposed screening protocol.

b) Similarly, due to the great variety of possible patient
conditions, there is a need for an adaptive parametrization
of the employed contact force of the US transducer onto
the skin [4]. In this work, we propose to utilize confidence
maps [20] to automatically determine the optimal force
for the US scan.

c) Finally, we propose a control law based on confidence
maps as an adapted version of [16] targeted at our applica-
tion. In this regard, we initially estimate and continuously
adjust the out-of-plane rotation of the US transducer
during the acquisition. This enables the optimization of
the image quality at specified penetration depths (e.g.
aorta), compensating for shadowing artifacts due to the
presence of bowel gas.

II. METHODS

The presented autonomous screening system consists of
a robotic manipulator, allowing for force estimation at its
end-effector by means of internal joint torque sensors, and
a rigidly attached US transducer. In addition, a structured-
light RGB-D camera is mounted at the ceiling of the exam-
ination room, as illustrated in Fig. la. In this section, we
first describe the registration between the MR-atlas and the
patient using RGB-D data in Sec. II-A. Then, we summarize
in Sec. II-B how the signal loss in US images is estimated
in the form of confidence maps. While in Sec. II-C, the
overall robot control scheme is introduced, specific details
concerning the force estimation and out-of-plane control are
described in Sec. II-D and II-E, respectively.

A. Patient Registration and Trajectory Transfer

The aim of a global patient-to-world registration is to
gather knowledge about the current patient position with
respect to the system setup, so that accurate and safe motions
of the robotic arm can be achieved. We exploit the sensing

information of a RBG-D camera to transfer a generic trajec-
tory aimed at the aorta of an atlas onto the current patient.

For camera-to-robot calibration, we employ a technique
based on augmented reality markers similar to the approach
in [19] to determine the transformation €Ty (cf. Fig. 1a).
Note that the computer vision notation for transformations,
i.e. 4x4 homogeneous matrices, are used in this work.

Given the wide target population of a screening program,
it is not feasible to assume the availability of individual
tomographic images for each patient. Hence, we propose
to leverage a statistical MRI atlas based on physical and
anatomical characteristics, such that the anatomy of each
patient can be taken into account for the trajectory plan-
ning [21]. A surface point cloud Pjsr; extracted from a
selected MRI atlas image can be elastically registered to the
live point cloud Prgpp obtained from the RGB-D camera.
We make use of an implementation of the Coherent Point
Drift algorithm [22], a probabilistic non-rigid registration
method that fits a Gaussian Mixture Model (GMM) to the
moving point set. The GMM is initialized using the target
points Prapp and a coherent velocity is enforced to its
motion so that a smooth non-linear transformation ®¢ras :
R* — R* can be computed using spline interpolation. Both
point sets are subsampled by a factor fs for this process,
allowing for an optimal trade-off between the fitting accuracy
and the computational performance.

By a projection of the start- and endpoint (ps,p. € R*) of
the aortic region of interest from the atlas to its surface, the
robotic trajectory on the patient surface (p’,p.) is obtained
by transfering these points to the world coordinate system

P, = Ty - ®aum [fun(Ps,e.)] ()

where e, = (0,0,1,0) is the vertical unit vector, and
fnn(p,n) computes the nearest element of the point cloud
Parrr to the ray p 4+ An, A € Ry (analogous for pl).



B. US Acquisition and Confidence Map Computation

In our framework, a series of 2D B-mode frames I; € R2
are acquired using a convex transducer suited for abdominal
scans. For an estimation of the ultrasound quality, we employ
confidence maps as introduced by [20]. In short, a graph is
constructed between the pixels of the B-mode image, with
source (1) and sink (0) nodes at the transducer elements and
the bottom of the image, respectively, and edge weights based
on the US intensities between pixels. The confidence map
C; € R? — [0, 1] is then defined as the equilibrium diffusion
solution, i.e. the probability of a random walk starting from a
particular pixel to rather reach the transducer than the bottom
(see Fig. 3a). We refer the reader to [23] for further details.
For any given US frame, we denote with the feature

1
C=1m > Clay), ©))

(z,y)ER

the average confidence in the rectangular region R, centered
around the estimated world-coordinate location of the aorta
in the corresponding B-mode frame I. Since the spine and
the aorta are almost incompressible, it can be estimated from
the atlas as in Eq. 1 and considered constant regardless of
the current force onto the patient. The averaging copes with
the inherent level of noise in confidence maps [24].

C. Robot Control Scheme

The overall goal of the robot control scheme is threefold:
First, the US sweep acquisition requires following a prede-
fined trajectory on the patient. Second, the force exerted by
the US transducer onto the tissue is intended to not only
be sufficient but also optimal over time, achieving good
acoustic coupling throughout the sweep. Third, the out-of-
plane rotation needs to be adjusted on-line to maintain high
image quality even in the presence of bowel gas, shadowing,
and other artifacts. Considering the desired tool-tip pose

P, = |:R(Oz,0ﬂ,’y) ;:| (3)

with translation t = (z,y,z) and rotation R using the
Euler angles (a, 3,7), it is possible to decouple the three
tasks. A standard position controller is used to command
translations (x,y) in the horizontal plane, guided by the
planned trajectory.

D. Adaptive Force Estimation

The downward translational component z is controlled by
a force controller as already demonstrated in prior art [16],
[17], [25]. Constant force control for manipulators with
elastic joints is typically achieved by balancing external
Cartesian forces Feox¢ acting on the end-effector with a
desired force Fgq so that Fext — Fq = 0, as historically
described in [26]. For real-time behavior, torque sensors in
all robotic joints are utilized to compute the external forces
using both the Jacobian and the known inverse dynamics
system of the manipulator.

Although the area of general robotic force control has
been extensively discussed throughout the last decades, the

choice of an appropriate force Fq for a particular medical
scenario depended on a manual parametrization up to now.
While too little pressure will compromise good acoustic
coupling and sufficient image quality during US acquisitions,
excessive force might overly deform the anatomy or even
harm the patient. In the view of a fully autonomous robotic
system for US screening, an optimal force value cannot be
known a priori but has to be estimated online to cope with a
variety of patients constitution and tissue density. Therefore,
we propose an online adaptive force estimation based on
confidence values presented in II-B. During initialization,
we vertically approach the start pose p’, until skin contact
(Faop = 0). Next, the desired force exerted onto the tissue
is increased iteratively by F, until a mean confidence
threshold © is reached (H is the Heaviside step function):

Fdi+1 =Fq; + Fstep -H (@ - C’L) . “4)

E. Optimization of Out-of-Plane Rotation

The Euler angles («, 3,7) of the pose P4 can be inter-
preted as out-of-plane rotation, in-plane rotation, and rotation
around the transducer axis, respectively. Contrary to the
target anatomies investigated in [16], [17], axial aortic scans
benefit only marginally from in-plane or transducer axis
rotation: On the one hand, turning the US probe around its
axis does not avoid acoustic obstacles between the transducer
and the aorta. On the other hand, an in-plane rotation during
axial scans constitutes lateral tilting, quickly translates the
aorta away from the image center, and is not considered
helpful in clinical routine [7]. Thus, we define 5 = ~v = 0
for all experiments and concentrate on the more challenging
out-of-plane rotation « for image quality optimization.

Initially, a sweep is acquired with angles between
[@min; Qmaz], Where the confidence feature (, is recorded
for each rotatory pose. The optimal out-of-plane rotation ay
for the start point of the sweep is then defined as the angle
that maximizes confidence at the aorta: ag = argmax, (q.

Throughout the acquisition, we aim to maintain an optimal
echoing pose. As the direction to tilt the probe out of its plane
cannot be directly inferred from 2D frames, we propose to
compute the following parameters for each frame. First, the
binary parameter x indicates a drop in confidence below the
average of the preceding M frames

=
k=H| G- szi;/[_lg . &)

It is used to determine whether the current probe orientation
provides sufficient image quality. Second, the parameter s €
{—=1,1}, so = 1, states the direction the probe should tilt to:

i—1
—siiq i G < Gioar A sl =M

s = ' Lo j:z‘;vpl ! (6)
Si—1 else .

As a result, s will change sign only if there has not been
a change in the previous M iterations, and the current
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Results of force adaptation experiments for one subject, including the measured vertical position of the transducer and the corresponding force

(figures on the left), and axial (fop) and sagittal (bottom) slices of the compounded US volumes. Without proper force onto the tissue (5 N experiment,
left image column), the US quality at the aorta, in particular its posterior wall, is poor (orange box). Quality improves with the adaptive force estimation
(20 N experiments, center column). Results also show that the force controller can successfully account for breathing motion and allows for steady aortic
acquisitions, even if the US image of tissue directly underneath the skin becomes unusable (right image column). Yellow arrows indicate the scan direction.

confidence dropped below the one M iterations ago. Alto-
gether, the desired out-of-plane rotation can be computed by
combining these factors o; = ;1 + K - S - Qustep. Updates
of « as thus not continuous but are handled by the position
controller in a smooth fashion as in [19].

III. EXPERIMENTS AND RESULTS
A. Material and Experimental Setup

The robotic manipulator used in this work is a KUKA
LWR iiwa R800 (KUKA Roboter GmbH, Augsburg, Ger-
many) with the KUKA Sunrise.Connectivity software pack-
age. A software module' developed by the authors allows a
direct control of the robot functionalities via the Robot Op-
erating System? (ROS) framework. The methods presented
in Sec.Il are implemented in custom ROS modules, which
forward their control output to the KUKA robot controller.
For US acquisition, an Ultrasonix® Sonix RP US system
equipped with a 4DC7-3/40 curvilinear transducer (Ana-
logic Corporation, Peabody, MA, USA) is used (frequency:
3.3 MHz, depth: 140 mm, gain: 50%). The US probe is
attached to the robot flange using a custom designed holder
(cf. Fig. 1b). Spatial and depth information are acquired
using a Kinect camera (Microsoft Corporation, Redmond,
WA, USA) placed above the patient. Experiments ran on a
workstation (Intel Core i5, NVIDIA GTX 970) connected
to the aforementioned systems. Medical image processing
is performed within the ImFusion Suite 1.2.16 (ImFusion
GmbH, Munich, Germany). The performed camera-to-robot
calibration led to an average error of 2.46 +0.96 mm on the
x-y plane and 6.42+3.67 mm along the camera’s depth axis.

We evaluated our method on five different healthy vol-
unteers (age 24-27, 2 female, 3 male), scanning the aorta

' https://github.com/SalvoVirga/iiwa_stack
2 http://www.ros.org/

from slightly inferior of the rib cage in downward direction
roughly until the navel (scanning time approx. 2 minutes per
patient). The atlas consisted of a T2-weighted MR image
(resolution 1.2x1.2x6 mm) of one healthy individual (age
26, male), which was deemed sufficient for this volunteer
study due to the similar anatomical condition. Similar to [19],
the Hausdorff distance between Pz pp and the warped atlas
surface mesh was on average 3.7 mm (maximum 9.8 mm),
robustly allowing the visualization of the aorta in the US
frame without further compensation. For all experiments, the
following set of parameters was used: fy = 0.01, Fyp =
2N, Frar = 25 N, agpep = 2°, M = 4 and the region
R comprised an area of 10 x 10 px. The robot moved with
v =5 ™"/, during sweeps, and © was empirically set to 0.2.

B. Validation of Force Estimation

For all subjects, patient registration and several US acqui-
sitions were performed. In a first sweep, a minimum force
for US screening (5 N) was applied statically. For a second
sweep, the force estimation as described in Sec. II-D was
used, greatly improving the image quality as illustrated in
Fig. 2. As expected [16], the confidence is dependent on the
exerted force on the tissue, as visualized in Fig. 3b. In total,
the estimated force g was 14.8+6.4 N for all volunteers. In
a final sweep (only one volunteer), we tested the capabilities
of the robot controller to compensate for motion in real-
time to maintain a constant force. Therefore, we asked the
volunteer to perform one deep chest inhalation and then
breath abdominally throughout the acquisition. Results show
that the force controller maintained the desired force with an
average error of 0.17+0.24 N, and that a steady acquisition of
the (almost incompressible) aorta is possible while breathing.
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Fig. 3. a) Exemplary B-mode frame of the aorta, corresponding confidence
map, and expected center of the aorta (red). b) Confidence values at the
depth of the aorta during initial force estimation for one representative
subject, showing a degressive dependency on the exerted force. The final
force of 20 N was reached after the confidence exceeded © = 0.2 (circled).

C. Optimization of Out-of-plane Rotation

In a next set of experiments, we evaluated the impact of
the proposed out-of-plane rotation estimation. A first US
sweep was performed with static rotation, i.e. o« = 0. A
representative case is depicted in Fig. 4. In particular in the
beginning of the sweep, shadowing artifacts made the aorta
not detectable. In contrast, the initial rotation estimation for
a second sweep determined an optimal angle of @ = 9.2°,
which led to a significantly increased confidence within the
first 30 mm of the sweep. For the remaining trajectory, our
controller gradually lowered the out-of-plane rotation and
maintained high confidence. For all subjects, the optimal
initial rotation was found to be ag = 3.2 £ 8.0°.

D. Aortic Diameter Measurements

In all five volunteers, the aortic diameter was measured
by a medical expert in the compounded US volumes in
sagittal and axial slices according to the guidelines in [4]. For
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Fig. 4. Comparison between static out-of-plane rotation and optimization
based on confidence for one representative subject. The proposed method
avoids the shadowing in the beginning of the trajectory (orange box).
Throughout the acquisition, optimization of the rotation (top left) maintains
high confidence (top right). Yellow arrows indicate the scan direction.

Fig. 5. Result of manual measurement as in clinical routine. a) M-mode
frame showing cross-section of the aorta over time, allowing for the selection
of B-mode frames corresponding to systole (S) and end-diastole (ED). b)
B-mode frame with zoomed window of the aorta, showing how inner (/),
outer (2), and leading-edge diameters (3) were determined.

comparison, a medical expert blind to formerly mentioned
measurements performed a standard US scan on each volun-
teer according to the clinical protocol as in [7] (see Fig. 5). In
particular, inner diameters d;,, (without walls), outer diame-
ters doq: (With walls) and leading-edge diameters d;. (with
closer wall only) were measured. Table I reports the results
obtained in both scenarios. On average, the error between
manual US scan measurement and the ones performed in
the robotically acquired volumes was 0.5£0.3 mm.

IV. DISCUSSION

With regards to the aortic diameter measurement, our
results indicate that the proposed framework allows for the
same quantitative measurements as obtained in current clini-
cal practice (cf. Tab. I). The results also validate the adaptive
choice of the optimal contact force for the procedure, as the
values estimated by our method resulted in a superior image
quality. A low force would have led to an overall less visible
aorta, while a too high force could have compressed it, thus
affecting the diameter measurements. Additionally, the high
standard deviation of our automatic force estimation shows
the importance of a patient-specific pressure estimation. It
should be noted that in this work, all volunteers were within
a close range of age and physique, such that much higher
variations of various tissues layers can potentially impact
the overall ultrasound image quality and contact force for
more diverse patient populations. It is further interesting
that a good imaging of the aorta was also possible under
normal patient breathing (cf. Fig. 2). This might open up the
way for optimizations of the current acquisition protocol,
in the prospect of a system exploiting normal breathing.
With respect to the out-of-plane rotation of the transducer,

TABLE 1
AVERAGE DIAMETER MEASUREMENT RESULTS [MM] (5 SUBJECTS)

Robotic Scan Manual Scan Error
S ED N ED S ED
din 13.50 | 11.68 | 13.38 | 11.58 | 0.324+0.13 | 0.54+0.22
dout 16.68 | 15.00 | 16.68 | 14.84 | 0.48+0.28 | 0.5640.34
die 15.08 | 13.34 | 15.00 | 13.08 | 0.52+0.38 | 0.4640.15




obtained results demonstrated that the choice of an optimal
angle at the beginning, coupled with an ongoing optimization
throughout the sweep, leads to an overall improved image
quality (cf. Fig. 4). This is in line with clinical practice,
where the transducer is regularly tilted to avoid bowel gas
and to follow a potential curvature of the aorta [7]. It needs to
be noted, however, that reaching and maintaining the globally
optimal orientation is not guaranteed by the control scheme.
A more in-depth analysis of control stability and confidence
convergence is suggested for future studies.

Finally, the presented system allows for a further extension
to other applications, such as more complex diagnostic
procedures in the vascular domain. Beyond that, the system
could facilitate a broader implementation of robotic systems
for repetitive and already standardized medical practices.

V. CONCLUSION

In this work, we introduced a fully autonomous robotic
system aimed at ultrasound screening for abdominal aortic
aneurysms. We have demonstrated a generalized approach
to cope with the large variety of anatomies involved in
a screening program. Our results show improved quality
of 3D US acquisitions, and the clinical validation shows
comparable diameter measurements to the ones obtained fol-
lowing current standard of care. This work demonstrates the
potential impact of robotic systems on the medical domain,
especially in contexts demanding flexibility and adaptation
to individual patients. We believe that the generality of the
system, based on the foundations of prior work, enables its
extension to additional clinical applications and further helps
to promote the use of robotic systems in standard medical
care.
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Fig. 5.3.

5.3.2 Treatment of Abdominal Aortic Aneurysm (IROS2019)

To reduce the mortality rate in case of aortic rupture, endovascular procedures (e.g., Endovas-
cular Aneurysm Repair) are commonly carried out to insert a catheter into the vasculature
and deploy a stent-graft. Visual feedback during the stent insertion is fundamental to ensure
its optimal placement. The aim is to cover the entire aneurysm area with the stent sheet, such
that the stent would channel the blood flow in case of rupture, but also avoid to obstruct any
secondary vessel that branches out from the main aortic tree. The use of live X-ray fluoroscopy
imaging is the current gold standard in clinical practice, with the unavoidable risk linked to
ionizing radiation exposure. Ultrasound imaging is a potential alternative to fluoroscopy, but
a manual acquisition would have to be performed directly by the operating vascular surgeon
or an assistant. More importantly, the visual analysis of the ultrasound images to observe and
follow the catheter insertion can be a difficult task, as only expert sonographers would be able
to do so. Once again, robotic ultrasound can remove the need for a physical manipulation of
the imaging device.

Y/ S

The presented system in action during a mock-up endovascular intervention on a phantom. Left:. The
system tracks and follows the inserted catheter, the tracking output is fed to the control loop to adjust the
transducer position accordingly. Top right: The live ultrasound image acquired by the robotic system,

the catheter is tracked based on this visual information using a template-matching algorithm. Bottom
right: The current catheter location is displayed to the used within a 3D model of the vasculature tree.

The presented contribution takes leverage of the discussed robotic ultrasound system for
autonomous catheter tracking and navigation in this type of procedure. Spatial information
about the vasculature is first extracted pre-operatively patient volumetric imaging data,
commonly acquired in this for this procedure, and then registered to the current patient
location using an initial 3D ultrasound volume, a combination of point set and image-based
registration is used in this case. During the procedure, the catheter is localized in the live
2D ultrasound images, and its position referred to the global map obtained by the initial
registration. Using a hybrid force/motion control technique, a constant force is applied onto
the patient body while the ultrasound transducer follows at all times the tracked catheter tip
(Sec. 3.2.2). Experiments are performed both on healthy volunteers as well as a custom-built
phantom to assess the precision of the catheter tracking system, showing an average tracking
error of the moving catheter tip of 1.78(102) mm. Fig. 5.3 displays one of the experiments
performed on a phantom and the visualization of the final catheter location within the
geometrical structure of the vasculature.

5.3 Applications in Vascular Surgery
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Robotic Ultrasound for Catheter Navigation in Endovascular Procedures

Fernanda Langsch®!, Salvatore Virga*™!, Javier Esteban', Riidiger Gobl' and Nassir Navab!:2

Abstract— Endovascular procedures require real time vi-
sual feedback on the location of inserted catheters. This is
currently achieved by means of X-ray fluoroscopy, causing
exposure to radiation. This work presents a robotic ultrasound
system for catheter tracking and navigation in endovascular
interventions, focusing on Endovascular Aneurysm Repair. It
relies on registration of pre-operative images to provide both a
tracking trajectory and visual feedback of the real-time catheter
position. The solution is validated on healthy volunteers as
well as on a phantom including a realistic vessel structure,
showing an average tracking error of the moving catheter tip
of 1.78 + 1.02 mm.

I. INTRODUCTION

An Abdominal Aortic Aneurysm (AAA) is a vascular
condition that is characterized by the enlargement of a
portion of the aorta, leading to the weakening of its walls and
a possible vessel rupture. With a worldwide incidence rate
ranging between 4 and 11% per year and a mortality rate of
80% in case of rupture [1], AAA presents a significant health
risk for a vast part of the population, particularly for males
over 65 years. AAA is typically treated via Endovascular
Aneurysm Repair (EVAR), a minimally invasive procedure
in which a catheter is guided to the site of the aneurysm
and used to deploy a stent graft that captures the blood flow,
reducing the mechanical stress onto the vessel’s walls and
preventing rupture [2]. Pre-surgical planning is commonly
based on pre-operative images, typically Computed Tomog-
raphy Angiography (CTA), to determine the appropriate stent
graft’s dimensions and manufacture it accordingly. During
the procedure, the stent graft has to be precisely guided to
a location that guarantees full coverage of the aneurysm. At
the same time, occlusion of other vessel branches, such as
the renal arteries, has to be avoided. For EVAR procedures,
fluoroscopy imaging is the standard modality for catheter
localization and navigation; causing exposure to ionizing ra-
diation for the patient and the medical staff and requiring the
use of contrast agent.. Additionally, pre-operative imaging is
typically not integrated into the intra-operative navigation,
forcing the surgeon to perform a mental mapping between
the two modalities, fluoroscopy and CTA.

In contrast to fluoroscopy, ultrasound (US) is a widely
available non-ionizing imaging modality that allows for a
clear view of the aorta, and it is already employed in
screening programs for AAA diagnosing in some countries

*These authors contributed equally to this work.

1Computer Aided Medical Procedures, Technische Universitit Miinchen,
Munich, Germany fernanda.langsch@tum.de

2Computer Aided Medical Procedures, Johns Hopkins University, Bal-
timore, MD, USA

Catheter

Fig. 1. System overview. Top: autonomous robotic US on volunteer; bottom
left: catheter view in US; bottom right: navigation view of catheter location.
We refer the reader to the provided supplementary material for an additional
view of the proposed solution in action.

[3]. It has, however, the limitation of being a highly user-
dependent modality yielding poor reproducibility. As a so-
Iution to this problem, robotic systems allow for precise
and repeatable acquisitions, and they naturally provide the
tracking information needed to obtain 3D US volumes from
conventional 2D scanners. This work aims to investigate
the potential of robotic US imaging as a replacement for
fluoroscopy in endovascular procedures.

The introduction of mechatronic platforms aimed at au-
tomatizing US acquisitions and allowing telemanipulation of
US transducers has been the focus of research for almost two
decades [4]. The research efforts in the field extend from the
design of specific end-effectors for the steering of US probes
[5] to the introduction of complete systems for the imaging
of arbitrary human anatomies using MRI-based trajectories
[6]. Specifically for AAA, a robotic solution for autonomous
diagnosis using US has also been proposed [7]. An overview
of the state-of-the-art in the field of robotic US research is
available in [8].

When considering US-based guidance for endovascular
procedures, the main goal is to provide the surgeon with
the live position of the inserted catheter at all times based
on its detection in the available images. Approaches for
visual servoing of medical robots based on live tracking and
detection of surgical devices have been proposed for various
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Fig. 2. Diagram of system workflow. A 3D US volume acquired with robotic US and its detected vessel centers (US Vessel Detection), together with the
pre-operative image data go through registration (intensity-based and feature-based), yielding the location of vessel centers in the robot frame (Two-step
Registration). The robot performs catheter tracking by moving over the computed vessel locations (Robot US Servoing). Image-based catheter detection
is facilitated by reducing the search space with knowledge of the vessel location (US Catheter Detection). Finally, the catheter position is displayed over

segmented vessel for navigation (Visual Navigation).

scenarios. The automatic alignment of an US probe to the
insertion path of a surgical needle has been presented in
[9], while in [10] the tip of a flexible needle is followed
by a robotic system for minimally invasive procedures.
Other approaches, instead, focus on the direct servoing of
steerable catheters based on visual information obtained
from 3D US [11]. A review of visual servoing techniques
in medical robotics is also available [12]. Most notably, a
robotic system for US-based tracking on manually inserted
catheters has been presented in [13]. The system comprises
a robotic manipulator equipped with a linear transducer and
a custom catheter with a built-in US active element on its
tip. That is, the tracking of the catheter is not performed by
means of visual processing, but by detecting the US signal
received by the single piezo-electric element installed onto
the catheter. While this technique simplifies the tracking
problem and might out-perform vision-based tracking, it
requires modifications to standard clinical catheters and the
consequent integration of additional hardware. Additionally,
the proposed method, as presented in [13], does not allow
for a seamless bi-directional tracking of the catheter position,
and it does not combine the tracking information into any
form of visual navigation for the user.

In this work, a complete robotic US system targeted at
integrating US-based catheter tracking and visualization to
enable radiation-free navigation for EVAR procedures is
presented. To achieve this, standard pre-operative volumes
are processed to segment the vessel structure of interest
and obtain its centerlines. 3D US volumes of the target
anatomy are registered to the pre-operative data to create
a correspondence of the known vasculature to the intra-
operative setting. The computed vessel path is then used to
guide the US probe during the manual insertion of a catheter.
Image-based catheter detection within the US frames is
employed for real-time tracking, allowing to retrieve the
position of the catheter along the known path. Finally, the
location of the catheter tip is visualized within the segmented
vessel structure, providing intuitive navigation feedback to

the end-user. The proposed registration scheme is validated
on simulated catheter motions for four healthy volunteers,
and the complete system is demonstrated on a custom
phantom, realistically mimicking both the tissue structure
and contours of a human body. In this way, it is shown
that the system is able to follow bi-directional motion of
the catheter, and visualize its current position precisely.

II. METHODS

The following section describes the individual components
that enable the system to perform catheter navigation for
EVAR procedures using a robotic US platform. The re-
quired preprocessing of the pre-operative data is described
in Sec. II-A while Sec. II-B provides details on how the
computed path along the vessel centerlines is matched to the
current patient position. Sec. II-C presents the image-based
catheter detection employed and the correspondent visual
servoing strategy. An overview of the system components
and their interaction is also shown in Figs. 1 and 2.

A. Data Preprocessing

The abdominal vessel tree is segmented from an input
pre-operative volume and its centerlines are computed. This
includes the abdominal tract of the aorta, a short portion
of the iliac arteries after the aorta bifurcation and the
main renal arteries. Segmentation and centerline extraction
are performed using the methods provided by the Vascular
Modelling Tool Kit (VMTK)!, which are based on active
contour level set segmentation and on a weighted geodesic
search over a Voronoi diagram [14], respectively. The output
of this process is a set of centerline points C C R? that will be
used to guide the robot motions during the catheter tracking
phase. That is, as the catheter position will be naturally
constrained by the vessel geometry, we can limit the robot
motions and the catheter tracking to the computed locations.

"http://www.vmtk.org
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Fig. 3.
to the vesselness response, e) estimated vessel centerline by ellipse fitting.

B. Patient Registration

1) US Compounding: A regular-spaced 3D US volume is
obtained by combining the live tracking information supplied
by the robot and the 2D US images. A backward normalized-
convolution technique is employed, as in [15]. The initial
intra-operative acquisition can be performed by moving the
robotic arm equipped with a US probe manually or executing
a planned trajectory autonomously as in [7].

2) Image-based Registration: To spatially align the two
available volumes (pre- and intra-operative) an image-based
registration based on the LC? similarity measure [16] is
used. This is beneficial to cope with the two pre-operative
modalities used for the proposed validation, i.e. CT for a
phantom and Magnetic Resonance Imaging (MRI) for human
volunteers. In fact, in the US/CT case, US intensities are
correlated to the output of an US simulation from the CT
volume; while in the US/MRI case, the MRI intensities and
gradient magnitudes are associated to the US intensity values.
In contrast to [16], we only perform a rigid registration. A
deformable registration using the same similarity method is
feasible, but difficult due to the high deformation induced to
the soft tissue in the case of human US acquisitions. LC?-
based registration is employed to provide an initialization for
the feature-based method described in II-B.4, which focuses
on the optimal alignment of the vessel structures visible in
both modalities.

3) Centerline Extraction from US: To extract the vessel
centerline from the 3D US volume acquired as in Sec. II-
B.1, a slice-wise approach is pursued. A typical method for
the detection of tubular structures in medical images is to
apply a Frangi filter [17], to enhance the vessel structures.
In the case of 2D images, the original formulation of the
Frangi vesselness filter is dedicated to highlight longitudinal
vessel structures. In detail, the vesselness response for bright
vessels at a certain scale s can be defined as

Vessel detection steps. a) Original US image, b) vesselness response using the modified Frangi filter, c) intensity dip mask, d) binary mask applied

0, if Ao >0

Vi(s)= {exp (;g})@ — exp (‘QTSZZ)) otherwise M

| A1 /
= d =4/A2 4+ )\2 2
Rp |)\2| an S 11+ A3, (2)

where |A;| < |Ao| are the eigenvalues of the Hessian
matrix of the US image and 8 and c¢ are constants.

Since our 2D images provide cross-sectional views of the
vessels, the vesselness response needs to be altered so that
it provides strong responses to circular structures instead of
tubular ones. A modification to the definition of R is hereby
proposed as

Rp =X — A\ (3)

That is, the original formulation of Rp would lead to
a high response for elliptical structures (i.e., |A1| < [A2]),
while our variation does so for circular ones (i.e., A1 & A»).
Additionally, enforcing V(s) = 0,if A;, A2 < O filters out
undesired bright circular structures and saddle points.

As remarked in [18], the Frangi filter yields poor responses
for US images. For this reason, the results obtained using
the formulation above are further refined by an intensity
dip mask [19], that relies on the computation of average
intensities in the image along its columns, given a certain
vessel diameter. Intuitively, the average intensity along a
column for a region of a given size will be the lowest if
the region is centered around dark pixels (i.e., the center
of a vessel) rather than bright ones (i.e., including other
tissue or the vessel walls). The obtained binary mask is then
applied to the vesselness response, such that the center of
ellipses fitted to the resulting regions can be considered as




part of the vessel centerline. Fig. 3 outlines the computation
of the vesselness response, dip mask and subsequent vessel
detection for a given 2D US image. A similar approach for
the segmentation of liver vasculature has also been presented
in [20].

4) Point-based Registration: A feature-based registration
between the two point sets is performed using the classic
Iterative Closest Point (ICP) [21] with a RANSAC initial-
ization. Since the centerline point set extracted in Sec. II-
B.3 could contain false positives points (e.g., other vessels
present in the US images could be detected), possible outliers
are preventively excluded using a statistical approach [22].

C. Catheter Tracking and Robot Servoing

Given our aim to provide a complete system for the navi-
gation of catheters in EVAR procedures based on robotic US
imaging, the robotic arm equipped with the US transducer
has to autonomously explore the patient anatomy, seeking
to maintain the inserted catheter in view at all times. The
registration process presented in Sec. II-B provides a knowl-
edge of the position of the centerline points extracted from a
pre-operative volume in the current robot coordinate frame.
Therefore, assuming that during the actual procedure the
catheter will be located inside the vessel tree, the controlled
tool-tip position can be limited to the ones of the computed
centerlines. Only a subset of equidistant centerline points
is used during the catheter tracking phase; these points are
used both to autonomously guide the US transducer and to
perform the catheter detection step on the respective US
images. Their distance can be adjusted at runtime, so that a
more sparse or dense set can be used during the procedure.
This allows, for instance, to have larger movements (e.g.,
10 mm) of the transducer when a large movement of the
catheter takes place; or, on the other hand, to have very
fine motions (e.g., 2 mm) that allow for a better catheter
tip detection.

1) Robot Control Scheme: Given a centerline point in the
current subset ¢; € C € C C R3, the desired transducer
pose is determined as follows. The distance vector between
subsequent centerlines points is computed as

d=cit1—¢. “4)

Fixing the Z-axis to

z = (0707_1)Ta (5)
the X-axis is computed as the vector rejection of d on z
(daydy, 0" o
x=—_—HP R’ (6)
|(ds, dy, 0)7|
while the Y-axis is simply
y=2zXX. @)

The final transducer pose is composed as

P:[x y z ci]. (8)

That is, the US probe is always kept above the current
point in an downright position, oriented to follow the cen-
terline direction. A hybrid position/force controller [23] is
used throughout the robot motion, such that a chosen fixed
force is applied onto the patient surface to maintain acoustic
contact for US imaging and prevent harm. The Z component
of the commanded pose will be effectively ignored as the
controller will adjust it to fulfill its primary task and apply
a constant force.

2) Catheter Detection: At the current position c;, an
attempt to detect the catheter in the current 2D US image is
performed. A template matching algorithm using normalized
cross correlation [24] is employed. A synthetic template that
simulates the appearance of a catheter inside a vessel in US is
created, as shown in Fig. 4. To minimize the search space,
we can assume that the catheter will lay inside the vessel
and can be located around the computed centerline point.
Consequently, an image patch surrounding the vessel center
will be considered for the detection algorithm. Formally,
given a 2D US image I, a Region of Interest (ROI) I € R*¥**
is chosen. We define the template matching function as

T™: RF¥F 5 R 9)

and consider a point to match when

™(I) > 7, (10)

with k = 150 and 7 = 5 x 10% in our case. According
to the detection response, the index of the centerline point
guiding the robot motion is updated as

_ ie + 1
7 =
R P

if match in T

else .

(1n

An additional indexing is used for the tracking of the
catheter tip location,

i
AR PR

That is, while the robot will continuously be in motion to
capture any catheter movements in both possible directions,
the location of the catheter is updated to the centerline point
c; that is closest to the location of its last detection. As
a remark, since the distance between the used centerline

if match in T (12)
else .

Fig. 4. Catheter detection. Synthetic template (left), selected ROI (center)
and the response from template matching (right).



Fig. 5. Experiments are performed on a phantom mimicking a human
figure (left) and containing a realistic vessel tree (right). Vessel branches
marked in green represent the femoral arteries, in blue the abdominal aortic
tract and in red the renal arteries.

points can be chosen at run-time, the accuracy of the catheter
location can be increased or decreased according to the
procedure’s phase. As a feedback to the user, the tracked
catheter location is displayed in 3D, overlayed over the vessel
model extracted from the pre-operative volume, as shown in
Fig. 8. This enables the user to easily identify the current
position with respect to the patient anatomy and use this as
guidance information.

III. RESULTS
A. Materials and Experimental Setup

We make use of a KUKA LBR iiwa R800 manipulator
(KUKA Roboter GmbH, Augsburg, Germany) controlled
via the Robotic Operating System? (ROS) using a custom
software interface’. The robot’s end-effector is equipped
with a curvilinear US transducer C5-2/60 connected to an
Ultrasonix® Sonix RP US system (Analogic Corporation,
Peabody, MA, USA). Image processing and robot control is
performed on a workstation (Intel i5, NVIDIA GeForce GTX
970) and implemented by custom software plugins integrated
to the visualization framework provided by the ImFusion
Suite* platform (ImFusion GmbH, Munich, Germany). The
transmission of US images to the processing station is
achieved using a custom messaging library>.

B. Evaluation

To assess the quality of the proposed system, we individ-
ually validate the involved components.

1) Patient Registration: To evaluate system performance
on a phantom, as well as on human volunteers, multiple
modalities are used for the acquisition of pre-operative data.
3D Turbo Field Echo MRI (TFE, a gradient echo pulse
sequence for contrast enhancement of the vasculature) vol-
umes are acquired for the volunteers; while a CT volume is
obtained for the experiments performed on the phantom. For
trials on volunteers, the methodology described in Sec. II-
A (Data Preprocessing) and Sec. II-B (Patient Registration)

Zhttp://www.ros.orq/
3https://github.com/IFL-CAMP/iiwa_stack
‘https://www.imfusion.de/
Shttps://github.com/IFL-CAMP/simple
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Fig. 6.  Tracking validation. The catheter tip location computed by the
system (yellow dot) is compared to a manual annotated tip location (red
line). Distances are computed along the centerline.

was performed in all its phases to achieve an optimal
registration between the vessel centerlines extracted from the
MRI and US volumes. Autonomous robotic US servoing is
then performed, using simulated catheter motions. That is, a
small subset of points is extracted from the computed vessel
centerline and the robot is commanded to their positions,
simulating the possible path of an inserted catheter.

At certain intervals, the simulated servoing is paused to
acquire small 3D volumes around the current robot loca-
tion. Assuming a correct registration, this validation volume
should already be spatially aligned to the pre-operative
volume. In Fig. 7, examples of validation volumes and
their spatial relation with the correspondent registered pre-
operative volume are shown. The strong agreement between
the vessel structures in the US and MRI volumes suggests
that the employed registration pipeline allows for a fine guid-
ance based on pre-operative data. In all these autonomous
US acquisitions, the hybrid position/force controller was
commanded to apply a force of 5 N along the end-effector Z-
axis. For the US, following parameters were used: frequency:
3.3 MHz, depth: 100 mm, gain: 62%. 3D US volumes were
compounded using a 0.196 mm voxel spacing.

2) Catheter Tracking and Robot Servoing: To evaluate
the accuracy of the catheter tracking and subsequent robot
servoing methodology, a full set of experiments is performed
on a US-compatible phantom, shown in Fig. 5. It is built
using a 1.7% agar-water mix. Graphite is added to generate
stronger US responses, inducing more contrast and speckle
noise in the acquired images. The complete pipeline shown
in Fig. 2 is executed during these experiments, using a pre-
operative CT of the phantom and a clinical vascular catheter
(Abbott FlexAbility , Chicago, IL, USA).

Once the registration steps are performed, the catheter
is inserted from either one of the two vessels simulating
the human iliac arteries (marked in blue in Fig. 5). Once
inserted, the catheter is navigated through the vessel tree
while the robot follows its path according to the output of the
catheter detection algorithm. Forward and backward motions
were performed with the catheter, showing the bi-directional
capability of the solution. During large movements of the
catheter, points had a distance of 5mm from each other,



Fig. 7. Registration validation on volunteers. US sweep overlapped with MRI (transverse view - left column, coronal view - center column), and 3D view
of a validation sweep with the respective vessel segmented from MRI (right column).

while during a fine search of the catheter tip, we adjust their
distance to be 1 mm.

At 25 random locations, the catheter is stopped and a
small 3D US volume is acquired around its last detected
location. For each of these volumes, we compute the distance
between the estimated tip location and a manually annotated
ground truth position. This distance is computed only along
the longitudinal direction of the vessel, as that represents the
error of interest. In Fig. 6 an exemplary measurement of the
tracking error is presented. A mean error of 1.78 + 1.02 mm
for the localization of the catheter tip has been found. To
provide a feedback on the current tracked catheter location
to the user, a 3D visualization is provided, an example is
given in Fig. 8. The phantom was submerged in water for
all experiments, and the following US settings were used:
frequency: 5 MHz, depth: 140 mm, gain: 60%.

IV. DISCUSSION

With the performed experiments, we assessed all parts of
the proposed workflow. In all simulated catheter insertions
performed on human volunteers, the targeted vessel structure
was consistently centered in the 2D US images, demonstrat-
ing that the proposed methods are able to successfully follow
target vessels in real procedures. This is, in part, due to the
high quality of the achieved registration between the pre-
operative data and the intra-operative 3D US volumes. The
examples in Fig. 7 exhibit the resulting image alignment.

During the catheter tracking, we observed strong reflec-
tions in US close to the metallic catheter tip, as shown in
Fig. 6, where a weaker but still relevant response can be
observed to the right of the red line. Those artifacts are a
result of the physics underlying US imaging. It is likely they
influenced the manual selection of the catheter tip during
the validation phase, as well as the used catheter detection
method. Nevertheless, the observed tracking error for the
detection of the inserted catheter is below 2 mm on average,
which is in line with other presented systems for the tracking
and navigation of catheters in endovascular procedures [25].

It is also worth mentioning that any component of the

Catheter Catheter

/

Fig. 8. The vasculature “road map” as displayed to the end-user for visual
navigation during endovascular catheter insertions.
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presented system could be exchanged for other techniques
that provide a similar output without the need to incur in
considerable modifications of the system; displaying the high
modularity and flexibility of our solution.

While US imaging of the aorta on volunteers has been
proven feasible, there is a high variability in the quality of the
resulting images due to various factors (e.g., intestinal gas,
lack of gel coupling). These are challenges future intelligent
robotic US systems will need to tackle to achieve the required
robustness for their introduction into clinical routine. For
instance, methods to quantify the overall visibility of the
target anatomy could be employed to detect possible failure
cases. Yet, even without the use of those measures we could
show the feasibility of the proposed system.

V. CONCLUSIONS

As of now, endovascular procedures heavily rely on fluo-
roscopic X-ray imaging for catheter guidance within patient
vasculature. This work explores how robotic US can be inte-
grated into the intra-operative workflow to provide catheter
visualization and intuitive navigation. By combining knowl-
edge of the vascular structure obtained from pre-operative
data with interventional 3D US, the system proposed in
this work enables for planning of robot trajectories over the
targeted vessels, in order to provide live catheter tracking
and navigation without exposure to ionizing radiation.

Autonomous robot servoing over the target anatomy was
demonstrated by simulating catheter insertions on healthy
volunteers and performing them on a custom phantom. An
inter-modality two-step registration pipeline was validated
during human experiments while the catheter detection and
tracking performance were assessed through experiments
performed on a phantom. In conclusion, this work demon-
strates the potential of the integration between robotic sys-
tems and medical imaging to provide full solutions for in-
terventional applications. It establishes ground concepts that
cover the existing medical requirements, exemplifying the
envisioned future role of robotics in endovascular procedures.

ACKNOWLEDGMENT

We thank ImFusion GmbH, Munich, Germany, for their
image processing framework and their continuous support.

REFERENCES

[1]1 X.Li, G. Zhao, J. Zhang, Z. Duan, and S. Xin, “Prevalence and trends
of the abdominal aortic aneurysms epidemic in general population—a
meta-analysis,” PLOS One, vol. 8, no. 12, 2013.

[2] E. L. Chaikof, J. D. Blankensteijn, P. L. Harris, G. H. White, C. K.
Zarins, V. M. Bernhard, J. S. Matsumura, J. May, F. J. Veith, M. F.
Fillinger et al., “Reporting standards for endovascular aortic aneurysm
repair,” J VASC SURG, vol. 35, no. 5, pp. 1048-1060, 2002.

[3] M. Davis, M. Harris, and J. J. Earnshaw, “Implementation of the
national health service abdominal aortic aneurysm screening program
in england,” J VASC SURG, vol. 57, no. 5, pp. 1440-1445, 2013.

[4] S. E. Salcudean, W. H. Zhu, P. Abolmaesumi, S. Bachmann, and
P. D. Lawrence, “A robot system for medical ultrasound,” in Robotics
Research, 2000, pp. 195-202.

[5] L. Lindenroth, A. Soor, J. Hutchinson, A. Shafi, J. Back, K. Rhode, and
H. Liu, “Design of a soft, parallel end-effector applied to robot-guided
ultrasound interventions,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2017.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

C. Hennersperger, B. Fuerst, S. Virga, O. Zettinig, B. Frisch, T. Neff,
and N. Navab, “Towards mri-based autonomous robotic us acquisi-
tions: A first feasibility study,” IEEE T MED IMAGING, vol. 36, no. 2,
pp. 538-548, 2017.

S. Virga, O. Zettinig, M. Esposito, K. Pfister, B. Frisch, T. Neff,
N. Navab, and C. Hennersperger, “Automatic force-compliant robotic
ultrasound screening of abdominal aortic aneurysms,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2016, pp.
508-513.

R. Elek, T. D. Nagy, D. A. Nagy, B. Takécs, P. Galambos, 1. Rudas,
and T. Haidegger, “Robotic platforms for ultrasound diagnostics and
treatment,” in IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2017, pp. 1752-1757.

P. Chatelain, A. Krupa, and M. Marchal, “Real-time needle detection
and tracking using a visually servoed 3d ultrasound probe,” in /IEEE
International Conference on Robotics and Automation, 2013, pp.
1676-1681.

G. J. Vrooijink, M. Abayazid, and S. Misra, “Real-time three-
dimensional flexible needle tracking using two-dimensional ultra-
sound,” in IEEE International Conference on Robotics and Automa-
tion, 2013, pp. 1688-1693.

S. B. Kesner and R. D. Howe, “Robotic catheter cardiac ablation
combining ultrasound guidance and force control,” INT J ROBOT RES,
vol. 33, no. 4, pp. 631-644, 2014.

M. Azizian, N. Najmaei, M. Khoshnam, and R. Patel, “Visual servoing
in medical robotics: a survey. part II: tomographic imaging modalities—
techniques and applications,” INT J MED ROBOT COMP, vol. 11,
no. 1, pp. 67-79, 2015.

Q. Ma, J. D. Davis, A. Cheng, Y. Kim, G. S. Chirikjian, and E. M.
Boctor, “A new robotic ultrasound system for tracking a catheter
with an active piezoelectric element,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2016, pp. 2321-2328.
L. Antiga, “Patient-specific modeling of geometry and blood flow in
large arteries,” Politecnico di Milano, 2002.

C. Hennersperger, A. Karamalis, and N. Navab, “Vascular 3d+ t free-
hand ultrasound using correlation of doppler and pulse-oximetry data,”
in International Conference on Information Processing in Computer-
Assisted Interventions, 2014, pp. 68-77.

B. Fuerst, W. Wein, M. Miiller, and N. Navab, “Automatic ultrasound—
mri registration for neurosurgery using the 2d and 3d Ic2 metric,” MED
IMAGE ANAL, vol. 18, no. 8, pp. 1312-1319, 2014.

A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever,
“Multiscale vessel enhancement filtering,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention,
1998, pp. 130-137.

C. Hennersperger, M. Baust, P. Waelkens, A. Karamalis, S.-A. Ah-
madi, and N. Navab, “Multi-scale tubular structure detection in ultra-
sound imaging,” IEEE T MED IMAGING, vol. 34, no. 1, pp. 13-26,
2015.

G. P. Penney, J. M. Blackall, M. Hamady, T. Sabharwal, A. Adam, and
D. J. Hawkes, “Registration of freehand 3d ultrasound and magnetic
resonance liver images,” MED IMAGE ANAL, vol. 8, no. 1, pp. 81-91,
2004.

Y. Song, J. Totz, S. Thompson, S. Johnsen, D. Barratt, C. Schneider,
K. Gurusamy, B. Davidson, S. Ourselin, D. Hawkes et al., “Locally
rigid, vessel-based registration for laparoscopic liver surgery,” INT J
COMPUT ASS RAD, vol. 10, no. 12, pp. 1951-1961, 2015.

P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor Fusion IV: Control Paradigms and Data Structures, vol.
1611, 1992, pp. 586-607.

R. B. Rusu, “Semantic 3d object maps for everyday manipulation in
human living environments,” KI-Kiinstliche Intelligenz, vol. 24, no. 4,
pp. 345-348, 2010.

M. H. Raibert and J. J. Craig, “Hybrid position/force control of
manipulators,” J DYN SYST MEAS CONTROL, vol. 103, no. 2, pp.
126-133, 1981.

J. P. Lewis, “Fast template matching,” in Vision interface, vol. 95, no.
120123, 1995, pp. 15-19.

Q. M. de Ruiter, F. L. Moll, and J. A. Van Herwaarden, “Current
state in tracking and robotic navigation systems for application in
endovascular aortic aneurysm repair,” J VASC SURG, vol. 61, no. 1,
pp. 256-264, 2015.






Part Ill

Conclusions and Outlook






Summary of Findings

The presented contributions base their strength on the three technological pillars already
discussed in Chapters 2 to 4. Ultrasound imaging is the core technique used to obtain live
information about the observed anatomy. Force sensing is employed to ensure a contact force
that is safe for the patient and clinically valid for the required acquisition. 3D visual sensing
provides information about the system surroundings and the current patient position, enabling
planned information to be accurately transferred onto the targeted anatomical area.

Autonomy in Robotic Ultrasound With respect to the presented literature in the field of
robotic ultrasound, the overall work demonstrates various improvements and brings novelty.
As an initial groundwork, in [7], a complete system for autonomous robotic ultrasound is
presented. To benefit the research community, a rigorous definition of the required tasks (e.g.,
calibration steps among the various components) to reproduce such a system is proposed. As a
first in literature, to the best of the author’s knowledge, this work introduces the definition of
an autonomous robotic task to be performed on a human based on pre-operative information.
A complete workflow to achieve that in a safe and robust manner is presented. It is leveraging
all the technical components described in this thesis that such a system is able to achieve
precise acquisitions comparable to the ones acquired by a professional figures trained in
ultrasound imaging. While most of the previous state-of-the-art focused on teleoperation of a
robotic system or on individual tasks to solve specific problems (e.g., anatomy or tool tracking),
this work introduces the concept of autonomy for this type of imaging procedures, end to end.
In this case, vision sensing controls the manipulator actions and decision-making, while force
sensing satisfies the clinical requirements of patient and staff safety (i.e., controlling the force
applied onto the patient and external force applied onto the robot in case of collision).

Force Sensing to Improve Image Quality Control strategies can leverage visual information,
as shown by [7] and many other works focused on visual servoing. The aspect of using force
sensing to improve the imaging output of such a system, instead, was rarely investigated. That
is, in [4] the key to achieve better clinical results is the haptic sensing of a robotic system.
The lack of a human operator in robotic ultrasound tasks can often be seen as a limiting
factor. The use of haptic sensing, in fact, is natural for a human and can provide significant
information in the case of ultrasound acquisition, i.e., palpation of the examined area is often
common. Feeling a change in tissue stiffness by using hand contact can lead to a more precise
diagnostic outcome. In this sense, leveraging this sensing information, not only to perform
safe and compliant acquisitions but also to add value to the system’s output is an absolute
need. In [4], we demonstrate this concept by producing 3D ultrasound volumes that are not
strongly deformed by the applied contact force. Force and visual feedback are here employed
together to achieve the result: vision-based techniques are used to characterize the tissue
movements with respect to changes in force sensing. While other techniques are also shown
to be able to recover the induced deformation (e.g., using biomechanical models or additional
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sensing), we demonstrate with this contribution how the system introduced in [7] has all the
sensing capabilities necessary to achieve so, effectively adding an additional benefit from the
use of force information. Not only a mere input parameter for the control loop strategy but an
integral part of the imaging pipeline.

From Concept to Clinical Application The development and validation of the technology
behind a fully autonomous robotic ultrasound system would be a pure scientific exercise
without demonstrating its abilities in targeted clinical applications. Many applications would
benefit from such a system, and literature has already explored some of them. As a contribution
to the field, this thesis aims at establishing the role of such robotic platform both in diagnostic
and interventional scenarios. Vascular surgery applications have been presented in [8] and
[1]. The former extends the concepts from [7] to streamline a repetitive operation to be
performed on a large scale during AAA screening programs. The system shows capabilities
in the assessment of the current patient state that are equivalent to the ones of an expert
vascular surgeon. Potentially, AAA screening programs that are not implemented for the lack
of personnel could be transformed by the introduction of a completely automatic system.
From a technical standpoint, this work introduces the online optimization of the used hybrid
force/motion control algorithm based on live ultrasound data in a complete patient-specific
way. The ultrasound acquisition is, therefore, not anymore based on the static transfer of
a planned trajectory and its blind execution. Intelligent adaptation of the probe position
and orientation, as well as the applied force, during the whole movement, allows for a more
dynamic and less error-prone execution. The latter work, instead, focuses on the treatment
of the diagnosed pathology. The presented task is a pure visual servoing one: to track and
follow a catheter inserted into the vasculature. The system validation demonstrates that the
achieved tracking accuracy can support the use of such a system in clinical practice, while the
modular approach of the used methods allows to dynamically exchange any of the components
with different techniques. An essential aspect of the introduction of autonomous ultrasound
systems in interventional settings would be reducing the dependency from expert operators
being available on-site during the operation and reduce the use of X-ray radiation. All the
techniques discussed, implemented, and validated by the presented contributions move the
technology towards the application of such systems into real clinical scenarios.

An important aspect to note is that throughout all the contributions of this dissertation, the
author chose to validate, in complete safety and following ethical standards, his proposed
solutions on human volunteers. In fact, to the best of the author’s knowledge, extremely few
robotic ultrasound systems have been assessed on humans in the available literature prior
to [7]. The use of synthetic validation often minimizes the impact of some technological
solutions, it is important, instead, for roboticists in the medical field to be aware of the needs
and complexities that real clinical applications have and strive for the integration of their
solution in real practice. Noteworthy is that an extension of the system used in the presented
contributions has been successfully applied in a neurosurgical application on actual human
patients [3].

Chapter 6 Summary of Findings



Future Directions

With the presented contributions, the author hopes to have exposed the technological potential
for ultrasound imaging to become a more reproducible and less user-dependent imaging
modality. A system similar to the one presented could potentially be perfected to become a
truly clinical device for autonomous acquisition, filling the gap with other modalities (e.g., CT
and MRI) that already reached that autonomy.

Many improvements and future work could be beneficial to this final goal. From a complete
system design perspective, current robotic ultrasound systems often translate into a pure
integration task. It is, in fact, a complex task to assemble the various system components (i.e.,
ultrasound machine, robotic manipulator, external sensor) into a coherent system, with the
constant need of various calibration steps. Looking back to the previous literature in Sec. 1.3,
after a first large wave of research was oriented on the design of custom robotic systems
for ultrasound imaging. Since the advent of modern robotics design (i.e., robots capable
of human-robot interaction) in commercial systems, new designs are less and less frequent.
The author believes that the current research has made full use of the current hardware
characteristics, while new custom designs that specifically target ultrasound imaging could
be introduced. Modern designs should, in fact, target at the direct assembly of all system
components into an individual one, by construction. A focus on specialized end-effector
design could provide a seamless solution to manipulate and exchange multiple ultrasound
transducers. After all, the current design of ultrasound probes is strictly linked to their
hand-held use, transducers designed for robotic systems could have very different features.
Additionally, the inclusion on data transmission capabilities within the manipulator body is
also a possibility since modern ultrasound image generation pipelines can be integrated into
custom embedded platforms; this solution would result in a cable-free ultrasound connection,
reducing control strategy complexity, since the external torques applied by a floating cable are
hard to model. Finally, an acceptance of the system into the current clinical practice would
also be easier with smaller form factors and integration of the kinematic structure into the
medical beds used for examinations.

Regarding the technology used in this work, especially in the area of Computer Vision, many
techniques do not take leverage of modern data-driven approached. The strong focus of the
research community in the definition and application of machine learning algorithms has led to
significant advancements in the field and generated a plethora of available solutions. Various
image analysis tasks have been targeted by solutions using learning techniques, including
classification, segmentation, detection, registration and quality assessment, and focusing
of various anatomical structures, such as prostate, breast, liver, heart, spine, etc. Reviews
of the current state-of-the-art in the field are available [161, 162, 163]. Due to the high
accuracy and success rate of such methods, their integration to the sensing pipeline of a robotic
ultrasound system could spark its use in further applications or enable more sophisticated
control strategies. An exciting learning approach, already largely employed in the robotic
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research field, is reinforcement learning. This rewards-based learning technique has shown
promising results in the definition of robotic tasks based on simulated extensive trials [164].
In ultrasound imaging, a reinforcement-learning technique to achieve a desired anatomical
view in manual transducer guidance has been proposed in [165]. The integration of such a
technique into a robotic motion control loop would be a natural extension, providing to an
autonomous system the ability to perfect its position and guarantee the desired acquisition
from a rough initial trajectory. Other learning-based techniques could be employed to estimate
the tissue deformation computed in [4], strongly reducing the computation costs of the current
solution; or to introduce real-time motion compensation techniques (e.g., for respiratory
motion) to obtain artifact-free ultrasound volumes. In general, a modular approach in the
design of the system software architecture allows for the integration of new algorithms with
ease and should always be preferred.

The autonomous manipulation of an ultrasound device opens to the possibility of combining
multiple imaging modalities imaging during the same diagnostic or intervention procedure,
an opportunity that could target either combined robotic imaging systems or approaches
based human-robot collaboration. In the first case, robotic systems for other modalities
(e.g., cone-beam CT using robotic C-Arm systems) and a robotic ultrasound system could be
co-calibrated to perform their acquisition simultaneously, effectively augmenting the imaging
output with more information. Moreover, the two imaging modalities could support each other
in optimizing their acquisition, e.g., the live imaging provided from the ultrasound system
could be used to compensate for patient movements. Multi-modal collaborative approaches
have already been explored in literature [166], although without taking into account possible
physical interactions between humans and the system.

Finally, an essential component, often neglected in the literature, is the social and ethical
impact of such technology and its acceptance by the clinical staff and the patients. The social
aspect of human-robot interaction is, in general, a field of study on its own [167, 168, 169],
although with limited coverage of medical robotic systems. Studies in this field would allow
to better design hardware and software that can be welcomed into the clinical practice, for
instance, taking into account possible patient discomfort and act in real-time to minimize it
or adjust the mechanical design of the current system to accommodate the everyday needs
of interventional rooms. Often, pure engineering approaches strive for technical correctness
without including any feedback from the end-users and recipients of the final system. The
contributions presented in this dissertation have always been developed in close collaboration
with medical experts, and the author strongly encourages the research community to leverage
such a valuable asset, following the example of excellence research groups that are more and
more directly integrated into the medical facilities and faculties.
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Abstracts of Publications not
Discussed in this Dissertation

Markerless Inside-Out Tracking for 3D Ultrasound
Compounding [2]

Benjamin Busam, Patrick Ruhkamp, Salvatore Virga, Beatrice Lentes, Julia Rackerseder,
Nassir Navab and Christoph Hennersperger

Tracking of rotation and translation of medical instruments plays a substantial role in many
modern interventions and is essential for 3D ultrasound compounding. Traditional external
optical tracking systems are often subject to line-of-sight issues, in particular when the region of
interest is difficult to access. The introduction of inside-out tracking systems aims to overcome
these issues. We propose a marker-less tracking system based on visual SLAM to enable tracking
of ultrasound probes in an interventional scenario. To achieve this goal, we mount a miniature
multi-modal (mono, stereo, active depth) vision system on the object of interest and relocalize
its pose within an adaptive map of the operating room. We compare state-of-the-art algorithmic
pipelines and apply the idea to transrectal 3D ultrasound (TRUS). Obtained volumes are compared
to reconstruction using a commercial optical tracking system as well as a robotic manipulator.
Feature-based binocular SLAM is identified as the most promising method and is tested extensively
in challenging clinical environments and for the use case of prostate US biopsies.

Point-Of-Care Ultrasound Workshop Held in Conjunction with MICCAI 2018, Granada, Spain (2018)

Robotic Ultrasound-Guided Facet Joint Insertion [3]

Javier Esteban, Walter Simson, Sebastian Requena Witzig, Anna Rienmiiller, Salvatore
Virga, Benjamin Frisch, Oliver Zettinig, Drazen Sakara, Yu-Mi Ryang, Nassir Navab and
Christoph Hennersperger

Purpose. Facet joint insertion is a common treatment of chronic pain in the back and spine. This
procedure is often performed under fluoroscopic guidance, where the staff’s repetitive radiation
exposure remains an unsolved problem. Robotic ultrasound (rUS) has the potential to reduce or
even eliminate the use of radiation by using ultrasound with a robotic-guided needle insertion.
This work presents first clinical data of rUS-based needle insertions extending previous work of
our group.

Methods. Our system implements an automatic US acquisition protocol combined with a
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calibrated needle targeting system. This approach assists the physician by positioning the needle
holder on a trajectory selected in a 3D US volume of the spine.

Results. By the time of submission, nine facets were treated with our approach as first data
from an ongoing clinical study. The insertion success rate was shown to be comparable to
current clinical practice. Furthermore, US imaging offers additional anatomical context for needle
trajectory planning.

Conclusion. This work shows first clinical data for robotic ultrasound-assisted facet joint insertion
as a promising solution that can easily be incorporated into the clinical workflow. Presented
results show the clinical value of such a system.

International Journal of Computer Assisted Radiology and Surgery (2018)

3D Ultrasound Registration-Based Visual Servoing for
Neurosurgical Navigation [5]

Oliver Zettinig, Benjamin Frisch, Salvatore Virga, Marco Esposito, Anna Rienmdiller,
Bernhard Meyer, Christoph Hennersperger, Yu-Mi Ryang and Nassir Navab

Purpose. We present a fully image-based visual servoing framework for neurosurgical navigation
and needle guidance. The proposed servo-control scheme allows for compensation of target
anatomy movements, maintaining high navigational accuracy over time, and automatic needle
guide alignment for accurate manual insertions.

Method. Our system comprises a motorized 3D ultrasound (US) transducer mounted on a robotic
arm and equipped with a needle guide. It continuously registers US sweeps in real-time with a
pre-interventional plan based on CT or MR images and annotations. While a visual control law
maintains anatomy visibility and alignment of the needle guide, a force controller is employed for
acoustic coupling and tissue pressure. We validate the servoing capabilities of our method on a
geometric gel phantom and real human anatomy, and the needle targeting accuracy using CT
images on a lumbar spine gel phantom under neurosurgery conditions.

Results. Despite the varying resolution of the acquired 3D sweeps, we achieved direction-
independent positioning errors of 0.35 * 0.19 mm and 0.610 = 0.450, respectively. Our
method is capable of compensating movements of around 25 mm/s and works reliably on human
anatomy with errors of 1.45 * 0.78 mm. In all four manual insertions by an expert surgeon, a
needle could be successfully inserted into the facet joint, with an estimated targeting accuracy of
1.33 = 0.33 mm, superior to the gold standard.

Conclusion. The experiments demonstrated the feasibility of robotic ultrasound based navigation
and needle guidance for neurosurgical applications such as lumbar spine injections.

International Journal of Computer Assisted Radiology and Surgery (2017)
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Acoustic Window Planning for Ultrasound Acquisition [7]

Ridiger Gobl, Salvatore Virga, Julia Rackerseder, Benjamin Frisch, Nassir Navab and
Christoph Hennersperger

Autonomous robotic ultrasound has recently gained considerable interest, especially for collab-
orative applications. Existing methods for acquisition trajectory planning are solely based on
geometrical considerations, such as the pose of the transducer with respect to the patient surface.
Purpose. This work aims at establishing acoustic window planning to enable autonomous ultra-
sound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart.
Methods. We propose a fully automatic approach for the planning of acquisition trajectories,
which only requires information about the target region as well as existing tomographic imaging
data, such as X-ray computed tomography. The framework integrates both geometrical and
physics-based constraints to estimate the best ultrasound acquisition trajectories with respect
to the available acoustic windows. We evaluate the developed method using virtual planning
scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a
tissue-mimicking phantom.

Results. The proposed method yields superior image quality in comparison with a naive planning
approach, while maintaining the necessary coverage of the target.

Conclusion. We demonstrate that by taking image formation properties into account acquisition
planning methods can outperform naive plannings. Furthermore, we show the need for such
planning techniques, since naive approaches are not sufficient as they do not take the expected
image quality into account.

International Journal of Computer Assisted Radiology and Surgery (2017)

Optimal C-Arm Positioning for Aortic Interventions [9]

Salvatore Virga, Verena Dogeanu, Pascal Fallavollita, Reza Ghotbi, Nassir Navab and
Stefanie Demirci.

Due to the continuous integration of innovative interventional imaging modalities into vascular
surgery rooms, there is an urgent need for computer assisted interaction and visualization solutions
that support the smooth integration of technological solutions within the surgical workflow. In this
paper; we introduce a new paradigm for optimal-view controlled maneuvering of Angiographic
C-arms during thoracic endovascular aortic repair (TEVAR). This allows the semi-automatic
pre-computation of well-defined anatomy-related optimal views based on pre-operative 3D image
data and automatic interventional positioning of the imaging device relative to the patient’s
anatomy through inverse kinematics and CT to patient registration. Together with our clinical
partners, we have evaluated the new technique using 5 patient datasets and are able to show
promising results.
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