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A B S T R A C T

For real-world civil infrastructure systems that consist of a large number of functionally and statistically de-
pendent components, such as transportation systems or water distribution networks, the Bayesian Network (BN)
can be a powerful tool for probabilistic inference. In a BN, the statistical relationship between multiple random
variables (r.v.’s) is modeled through a directed acyclic graph. The complexity of inference in the BN depends not
only on the number of r.v.’s, but also the graphical structure. As a consequence, the application of standard BN
techniques may become infeasible even with a moderate number of r.v.’s as the size of an event set exponentially
increases with the number of r.v.’s. Moreover, when the exhaustive set that is required for full quantification of a
discrete BN node becomes intractably large, only approximate inference algorithms are feasible, which do not
require the full (explicit) description of all BN nodes. We address both issues in discrete BNs by proposing a
matrix-based Bayesian Network (MBN) that facilitates efficient modeling of joint probability mass functions and
flexible inference. The MBN is developed for exact as well as approximate BN inference. The efficiency and
applicability of the MBN are demonstrated by numerical examples. The supporting source code and data are
available for download at https://github.com/jieunbyun/GitHub-MBN-code.

1. Introduction

The disaster-resilience of urban communities relies heavily on the
post-disaster performance of urban infrastructure systems [1]. Decision-
making to manage the disaster-resilience of such systems requires
probabilistic modeling and analysis because of significant uncertainties
in the system and component performances encountered in the after-
math of a disaster. However, real-world civil systems such as trans-
portation systems or water distribution networks make probabilistic
modeling and analysis challenging because of a large number of com-
ponents and their statistical dependence.

Bayesian Networks (BNs) have been proposed as a tool for prob-
abilistic modeling and reliability analysis of infrastructure systems, in
particular for post-disaster decision support [2,3]. BNs can provide an
intuitive way for model representation, by using a directed acyclic
graph (DAG) in which random variables (r.v.’s) are represented through
nodes and their statistical dependences through links. In addition, BNs
allow for efficient Bayesian updating when observations become
available on parts of a system, e.g. detection of damages. The com-
plexity of BN modeling and inference depends on the number of r.v.’s

and the graphical structure, which limits the BN's applicability to real-
world problems involving a large number of r.v.’s and complex inter-
dependencies [4].

In order to make modeling and inference of BNs less sensitive to
graphical structures, various methodologies have been proposed to
exploit the regularity in the state of a r.v. that is a function of other
r.v.’s, which is often encountered in problems with a large number of
r.v.’s [5–8]. Although these methodologies may provide efficient al-
ternatives, they still have some limitations in that the modeling meth-
odologies have been developed for a limited class of problems, and the
specialized formulations may hamper their applications to various
types of BN inference. Another difficulty arising from the large number
of r.v.’s is that the information may not be available to fully quantify
the entire event space. In this case, these alternative methodologies are
inapplicable as their formulations are valid only when the exhaustive
set of an event is known. To address these two issues and extend the
applicability of BNs, this paper proposes the matrix-based Bayesian
Network (MBN), in which the conditional probability matrices (CPMs)
are introduced to model discrete BNs and perform probabilistic in-
ference. The development of MBN can be regarded as the unification of
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the previous efforts that have been proposed to address these issues
separately into one methodology which is more general and compatible
with standard BN techniques.

The rest of the paper is organized as follows. Section 2 provides a
brief introduction of the BN methodology in general and raises central
issues addressed in this paper, along with the overview of the related
works. Section 3 then develops definitions for the proposed CPM con-
cept, and illustrates its efficient procedure of BN construction. New
inference algorithms are developed for the proposed MBN in Section 4,
and the applicability and efficiency of the MBN are demonstrated by
numerical examples with various sizes in Section 5. Finally, Section 6
summarizes the paper with concluding remarks.

In this paper, an assignment refers to the specific values assigned to a
set of r.v.’s corresponding to one of the possible outcomes. A r.v. and its
assignment are respectively denoted by upper and lower cases, e.g. X
and x, which are set in bold to denote a set of r.v.’s. For simplicity, xk

and P(xk) respectively denote the assignment of value k to the r.v. X and
the probability of the assignment =X k, i.e. =P X k( ). The set of values
that a r.v. X can take is denoted Val(X). It is also noted that as this paper
mainly considers discrete BNs, the notation P( · ) refers to a probabilistic
mass function (PMF), not a probabilistic density function (PDF). There
is an exception in Section 2.1 where the general BN methodology is
discussed, and P( · ) applies to both PMFs and PDFs.

2. Background and related work

2.1. Bayesian Network

BNs are based on DAGs in which the r.v.’s are represented by nodes
while their statistical dependence is depicted by directed arcs con-
necting the nodes, as illustrated in Fig. 1. The nodes from which the
arcs are initiated and to which they are pointed, are respectively termed
as the parent nodes (X1 and X2) and the child nodes (X3). In the following
discussions, the term node is used synonymously with r.v..

In a BN, the joint distribution of the r.v.’s is formulated as the
product of the conditional distributions given the parent nodes. If there
are no parents for a node, its marginal distribution is used instead. For
instance, the distributions quantifying the BN of Fig. 1, are P(X1), P(X2),
and P(X3|X1, X2), and the joint distribution P(X1, X2, X3) is the product
of these three distributions. In general, the joint distribution re-
presented by a BN over a set of r.v.’s X is

=XP P X Pa( ) ( | )
XX

X
(1)

where PaX is the set of parent nodes of X.

2.2. Conditional probability tables (CPTs)

In discrete BNs, conditional probability tables (CPTs) are used as
data structures for storing the conditional probability mass functions
(PMFs) quantifying the nodes of a BN. CPTs store only the probability
values while the corresponding assignments on the r.v.’s are inferred
from their locations in the table. For example, consider the example BN
in Fig. 1 and suppose that =Val X( ) {0, 1}i for =i 1, 2, 3. Then, the
CPT for the conditional PMF P(X3|X1, X2) can be constructed either as a
third-order tensor [9]

= =p P x x x i j k( | , ) for , , 1, 2ijk
i j k
3 1 2 (2)

or arrays. A possible two-dimensional array [7] of pijk in Eq. (2) is

p p p p
p p p p

111 112 121 122

211 212 221 222 (3)

while the one-dimensional array [10] is

p
p
p
p
p
p
p
p

111

211

112

212

121

221

122

222 (4)

The straightforward construction and implementation make CPTs
particularly favorable in developing general-purpose software programs of
BN modeling. However, as indicated in Eqs. (2)–(4), the CPT formulations
only implicitly assign the probability values to each outcome of the r.v. by
their location in the tables. Such characteristic requires that the prob-
abilities of all possible assignments be explicitly enumerated, which can
be infeasible when a node has a large number of parents as the number of
the assignments exponentially increases with the number of parents.

2.3. Converging structure in Bayesian Network and related research efforts

The table-based representation using CPTs is inefficient when a BN
has a converging structure, i.e. a node XS has a large number of parent
nodes, which is frequently encountered when modeling a system whose
state is determined by the joint state of its components. This is due to
the exponential increase in the number of possible combinatorial as-
signments of the parent nodes, raising the following two major issues.

The first issue is that the memory required to store the parameters of
P X Pa( | )S XS quickly becomes unaffordable even with a moderate number
of parent nodes. To address this issue, various approaches have been
proposed to exploit the regularity and redundancy in the description of
an event, which commonly takes place under the presence of a large
number of r.v.’s. For instance, it was proposed to modify the graphical
structure of BNs to reduce the maximum number of parent nodes in
system reliability problems such as network connectivity problems, and
series and parallel systems [5,11,12]. This approach is advantageous in
that CPTs and the existing BN methodologies using CPTs, are still ap-
plicable after the modification. However, the global structure has to be
modified to a less intuitive one, and the strategies for structure mod-
ifications have been developed only for a limited class of problems.

Another approach to deal with the memory issue is to exploit the
local structure, i.e. the regularities within a joint PMF P X Pa( , )S XS , for
efficient storage of PMFs. The network polynomial [8] factors the
parameters of each assignment, and for inference, establishes an ar-
ithmetic circuit to carry out the algebraic operation of these factorized
parameters. Boutilier et al. [6] proposed a tree-based representation,
which models a PMF as a tree-structured diagram. Alternatively, Tien
and Der Kiureghian [10] employ data compression techniques to reduce
the memory required for storing PMFs. In these methodologies, the
complexity of the inference can be reduced if the supplementary models
are cleverly designed in a way to exploit the local structure. However,
there is no general rule to design supplementary models, which may
hamper general implementations for various types of BN inference.

As an alternative to exploiting the local structure, a rule-based re-
presentation [7] aims to store the outcomes more efficiently by ex-
plicitly storing the associated assignments together with probability
values. This type of representation makes the modeling straightforward
with the given information and facilitates developing a general in-
ference rule. However, the data structure is not conducive to an effi-
cient implementation. In Section 3.4, the approaches discussed above

Fig. 1. Example BN.
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are compared by means of a numerical example.
The second issue is the infeasible computational cost to analyze all

possible outcomes in the joint space of XS and all its parents. In this case,
a rule-based representation is not applicable as the method requires that
all possible outcomes be expressed, i.e. the probabilities of the con-
sidered outcomes must sum up to unity. As an alternative, various ap-
proximate methods have been proposed to carry out inference only with
a subset of the joint outcome space of XS and its parents in the context of
reliability analysis. Those outcomes can be selected either deterministi-
cally [13–16] or stochastically [17–19]. Despite the extensive application
of these methods, there have been only a few efforts to systematically
connect the approximate methods with probabilistic inference [20–22]
and a formal linkage to BN methodologies is not available.

This paper aims to propose a new data structure of PMFs, which
addresses the representation of the full P X Pa( | )S XS . Approximate in-
ference algorithms are formulated based on the proposed PMF re-
presentations, to enable applications of existing approximate inference
methodologies to BNs representing a wide class of problems.

3. Proposed data structure of PMF: conditional probability
matrices (CPMs)

The proposed MBN uses conditional probability matrices (CPMs) as
an alternative data structure of the PMFs in a discrete BN. These CPMs
have the same structure as the matrices introduced in the matrix-based
system reliability (MSR) method [23,24]. In the MSR method, event
and probability vectors of matrix form are introduced jointly to store
the assignment and probability of each outcome separately. The BN
modeling and inference of the MBN can be regarded as an extension of
the rule-based representation, where rules are used as the bases to
construct the modeling structure of BNs.

3.1. Definitions for conditional probability matrices

First, the following new definitions of rules are introduced to build
the concept of CPMs in MBN:

Definition 1–1. (Rule in the MBN): A rule in the MBN, μ is a pair 〈c; p〉
where c is a vector representing an assignment to a set of r.v.’s X and
p ∈ [0, 1] is the corresponding probability. Inversely, X is defined as the
scope of μ, denoted by Scope[μ].

In addition, the MBN can feature a “−1” state as explained below. In
the following, for a set of r.v.’s Y and the assignment c defined for
another set of r.v.’s X, c〈Y〉 denotes the subset of the assignment in c
corresponding to the intersection of the r.v. sets, i.e. X∩Y.

Definition 1–2. (Rule in the MBN): For a PMF P(X) and an associated
assignment x over X, suppose a subset of r.v.’s Y⊆X leads to

=x X Y y y YP p Val( , ) , ( ) (5)

for some p ∈ [0, 1], where =X Y X Y c and x X Y denotes the
part of x corresponding to X Y following the aforementioned
definition of bracket 〈 · 〉 with assignments, i.e.

= = =x X Y y X Y x X Y Y yP P( , ) ( , )c c . Then, the vector c
in the rule =µ pc; is defined by the following two subsets:

= = ×c X Y x X Y c Y YY1and ,Y1 (6)

where ×1m n is an m× n matrix with values “−1” and |Y| denotes the
cardinality of the set Y.

When a node has multiple parent nodes, the condition of Eq. (5) is
often observed, i.e. under a specific assignment x to some r.v.’s, the
assignment to the other r.v.’s Y has no effect on the probability value.
Therefore, by skipping the set of assignments over Y altogether, the
required memory can be significantly reduced. In the traditional rule-
based representation, the assignments over Y in Eq. (5) are simply

omitted while only those over X Y are stored. This strategy is in-
efficient for implementation as the rules in a set have assignments on
the inconsistent sets of r.v.’s, i.e. the data structure is not optimal from a
practical perspective. By contrast, CPMs impose the “−1” state on Y, as
illustrated in Eq. (6), by which all rules have assignments over all r.v.’s
in X and as a result, can be collected in a matrix.

Additionally, the compatibility between assignments in MBN is
defined as follows.

Definition 2. (Compatibility in the MBN): An assignment c1 to X is
compatible with an assignment c2 to Y if for =V X cV V{ : 1}1
and =W Y cW W{ : 1}2 , the following equality holds:

=c V W c V W1 2 (7)

In this paper, the compatibility between assignments c1 and c2 is de-
noted as c1∼ c2. To check the compatibility between assignments, the
index function can be used to check if the assigned values over V∩W are
identical. Furthermore, Definition 2 implies the equivalence between the
following two statements: (1) the outcomes represented by two assignments
are disjoint to each other; and (2) two assignments are not compatible.

Using the rules in Definition 1, the CPM is finally defined for
conditional PMFs P(X|U) as follows. When a marginal distribution of X
is considered, U becomes an empty set.

Definition 3. (Conditional probability matrix): A CPM of PMF P(X|U) is a
set of rules = c c cp p p{ ; , ; , , ; }k k1 1 2 2 introduced such that:

• Each rule µ has = X UScope µ[ ] which is also defined as
Scope [ ].

• For each of the assignments (x, u) to X∪U with no “−1” states, there
is either only one rule c p; such that c is compatible with (x,
u), in which case =x uP p( | ) ; or no rule in , in which case

=x uP ( | ) 0.
• CPM is represented as a pair 〈C; p〉 where the rows of the matrix
C and the corresponding elements in the vector p are respectively c
and p of the rules = cµ p; .

In analogy to the matrix of the event vectors in the MSR method [25],
each column of C represents the assignments to the corresponding r.v.
in Scope [ ].

The second condition of Definition 3 implies that the rules in a CPM
must be mutually exclusive while they do not necessarily need to be
exhaustive. Such exhaustiveness is required in the original rule-based
representation. This relaxation of the necessary condition for the validity
of a set of rules is required so that only the rules that affect the inference
results can be stored. Specifically, the rules that always have zero
probabilities do not appear in CPMs, which is particularly advantageous
under the presence of deterministic functions, i.e. a single outcome has a
conditional probability of one and all others have probability zero. In
addition, as discussed in Section 4.2, CPMs are valid for the case of ap-
proximate inference as well, in which only a subset of an event is
quantified. It is also noted that although a CPM is a set of rules, its data
structure for implementation takes the form of matrices. Therefore, the
union and subtraction of two CPMs, i.e. 1 2 and 1 2, refer
to the addition and exclusion of rows in the corresponding matrices.

The extra overhead required for CPMs compared to CPTs is the storage
of C required in addition to that of p, and the use of the index function
introduced to check compatibility during inference as illustrated in
Section 4. Accordingly, when most instances have non-zero probabilities
and the size of a given problem is small enough so that all instances can be
explicitly enumerated, CPTs are preferable to the MBN. In contrast, when
most instances have zero probabilities or the CPTs cannot be quantified
due to the large size of a BN node, the gain from selective inclusion of
events in quantifying PMFs often dominates the additional cost caused by
the storage of C. Moreover, in such large BNs, the high demand on
memory is usually the principal problem rather than the computational
cost required for inference, which makes MBN the preferable choice.
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3.2. Strategy to identify disjoint rules for conditional probability matrices

To construct a valid CPM, the second condition of Definition 3 must
be satisfied. However, the use of the “−1” state may obscure whether
or not all rules in a CPM have exclusive assignments to each other. One
possible way to check this is to examine every pair of the rules in a CPM
and confirm that their assignments are not compatible with each other,
following the definition of compatibility. Aside from such an elemen-
tary check, this section discusses an example strategy to identify a set of
disjoint rules.

Using the “−1” state, a set of outcomes can be expressed by one
rule. This strategy is classified as implicit enumeration, because in-
dividual outcomes are implicitly quantified. A number of methodolo-
gies have been proposed to this end, ranging from general methodol-
ogies such as fault tree [26], event tree [27], and branch and bound
[28] to problem-oriented ones such as decomposition algorithms for
network connectivity [15], network flow [29], and structural systems
[14]. Underlying these methodologies is the common idea of parti-
tioning an event into the smallest number of disjoint subsets for which
the elements can be specified without further investigation.

For example, we here illustrate the branch and bound method, ap-
plied to the reliability block diagram (RBD) example of Fig. 2 [5,11].
The r.v.’s Xi, =i 1, 2, , 8 take value 0 when the i-th component has
failed and value 1 when it is in operation, while the r.v. X9 representing
the system state, takes value 0 when the source and sink nodes are
disconnected and 1 when they are connected, which is determined in
function of =X X X X{ , , , }c 1 2 8 .

Fig. 3 illustrates the process of branch and bound to identify the dis-
joint subsets of the event associated with P(X9|Xc). Each subset (marked as
a node) arising during this process is branched (marked as an arrow) based
on the assignment of each r.v. Specifically, for x8

0, the RBD is disconnected,
i.e. resulting in x9

0, regardless of the assignments of X X{ }c 8 . Therefore,
the branching is terminated for the subset represented by the assignment
c1 over Xc that specifies the failure of X8. However, for x8

1, the value of X9

still depends on the assignment of the r.v.’s in X X{ }c 8 , so the branching
is continued. Since r.v. Xi cannot take values 0 and 1 simultaneously, this
branching strategy guarantees that all generated subsets are disjoint. As
portrayed in Fig. 3, a total of nine subsets, represented by ci for

=i 1, 2, , 9, suffice to cover the entire event set of P(X9|Xc).
Consequently, the CPM = C p; with these rules

=µ x pc( , );i i9 , =i 1, , 9 is

=

=

C

p

0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 1 1 1
0 0 0 0 1 1 0 1 1
1 0 0 0 1 1 1 1 1

and

1
1
1
1
1
1
1
1
1 (8)

where the columns of C sequentially correspond to the r.v.’s x9 and xi,
=i 1, , 8. As should be evident from this simple example, the order of

r.v.’s according to which the event is partitioned determines the effi-
ciency of the decomposition, i.e. the smaller the set of components that
determines the system state, the more efficient the quantification be-
comes. Multiple specialized algorithms have been developed to find the
optimal order [14,29], e.g. the recursive decomposition algorithm
(RDA) [15,16].

3.3. Construction of conditional probability matrices for deterministic
functions

In order to illustrate the construction of CPMs and demonstrate their
efficiency, the CPMs for three basic types of deterministic functions are
discussed – namely, conjunction, disjunction, and a general if-then
logic. In the following, values of 1 and 0 respectively represent the true
and false states. First, the conjunction event of a set of r.v.’s is true if
and only if the states of all r.v.’s are true. This condition corresponds to
series systems, which are in operation only when all components are in
operation. With the branch and bound scheme, the event of + XP X( | )N 1 c
where the r.v. +XN 1 is the conjunction of the r.v.’s =X C C C{ , , , }Nc 1 2 ,
is decomposed as illustrated in Fig. 4.

As a result, the CPM = C p; of + XP X( | )N 1 c is modeled with the
rules = + cµ x p( , );i N i1 , = +i N1, , ( 1) as

= =C p

0 0 1 1 1
0 1 0 1 1
0 1 1 0 1

0 1 1 1 0
1 1 1 1 1

and

1
1
1

1
1 (9)

where the columns of C correspond to the r.v.’s +xN 1 and xi,
= +i N1, , ( 1) in sequence. It is noted that the number of parameters

in the CPM of Eq. (9) is + × +N N( 1) ( 2) while an exhaustive enu-
meration would require 2N parameters. This is because an assignment
with the “−1” state over a subset of r.v.’s Y stands for Val Y| ( )|YY
number of assignments.

When the r.v. +XN 1 is the disjunction of the r.v.’s Xc, +XN 1 is false if
and only if all r.v.’s in Xc are false. A parallel system corresponds to a
disjunction event as the system fails only when all of its components
fail. Since this logical relationship is equivalent to the negation of
conjunction, the CPMs are modeled by switching 0 and 1 in + XX{ }N 1 c
of Eq. (9).

For the if-then logic, consider the statement

= =X x Y yIf , then .if if then then (10)

for two sets of r.v.’s Xif⊆X and Ythen⊆Y. Eq. (10) leads to the rule
= cµ p; associated with P(Y|X) as

= = =
= =

×

×

c X x c Y c X X 1
c Y Y 1 p

y, ,
and 1

X X

Y Y

if if then then if 1 ,

then 1 ,

if

then (11)

As illustrated by Eq. (11), any if-then statement can be summarized into
a single rule while implying the outcomes amounting to

val Z| ( )|X Y X YZ {( ) ( )}if then
. For example, In Section 3.2, the logical

statement corresponding to the first row in Eq. (8) is

= =X XIf 0, then 0.8 9 (12)

which covers 27 outcomes. Since any deterministic function is equiva-
lent to a set of if-then logical statements, Eq. (11) is applicable to
general functions.

3.4. Application of other methodologies to the reliability block diagram
example

In this section, the event of X9 conditioned on Xc in the RBD ex-
ample of Section 3.2 is modeled by four methodologies [5,6,8,32] other

Fig. 2. RBD example.
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than the MBN discussed in Section 2.3. The formulation by the MBN –
Eq. (8) – and the general comparison between methodologies can be
found in Section 2.3.

First, Fig. 5 illustrates the naïve, but most intuitive graphical
structure of BN corresponding to the RBD. It is noted that in this naïve
modeling, the node X9 has eight parent nodes, resulting in the CPT
quantified by 29 parameters, despite the clear regularity identified in
Section 3.2. In order to exclude such redundancy, it has been proposed
to modify the graphical structure to reduce the number of parent nodes
[5,11]. To this end, “super components” are introduced: SC1 and SC2

are the series systems respectively of {X4, X5, X6} and {X7, X8}; and SC3

is a parallel system of {X1, X2, X3, SC1}. Thereby, the system event
becomes a series system of {SC3, SC2} as illustrated by the modified BN
structure in Fig. 6. This alternative representation can reduce the
maximum number of parent nodes although the graphical representa-
tion becomes less intuitive.

In describing the following three methodologies, i.e. the network
polynomial [8], tree-based PMFs [6], and rule-based PMFs [33], the
disjoint cut- and link-sets identified in Section 3.2 are utilized. First, the
network polynomial formulates the BN inference as the computation of
a multilinear function. To this end, two types of variables are in-
troduced – namely, evidence indicators λx and network parameters θx|u

– for each assignment (x, u) over a r.v. X and its parent nodes U. λx is 1
when the assignment x is compatible with a given context, and 0
otherwise, while θx|u is the probability P(x|u). The BN inference over
the r.v.’s X is then formulated with these variables as

=f
x X u x

uNP
Val x

x x
( ) ( , )

|
(13)

where fNP is equivalent to the probability of any assignment for which
λx are set. In order to efficiently compute Eq. (13), Darwiche [8] pro-
posed to construct an arithmetic circuit to exploit the identified reg-
ularity in the given event.

For the RBD example, the circuit can be constructed as illustrated in
Fig. 7. The circuit has become more efficient, i.e. involves less nodes
and arrows, utilizing the knowledge of the event. Specifically, the cir-
cuit is directly connected to the evidence indicators of X9 whenever the
assignment of X9 is confirmed, e.g. the multiplication node * of x8

0 is

directly connected to that of x9
0 as x8

0 immediately leads to x9
0.

On the other hand, Boutilier et al. [6] proposed to represent a PMF
by a tree structure as illustrated in Fig. 8. The tuples at each end of
arrows denote c cP x P x( ( | ), ( | ))9

0
9
1 for given context c over Xc. In both

methodologies of the network polynomial and tree-based representa-
tion, it is not always straightforward to construct an efficient structure
based on the available knowledge. Moreover, their specialized in-
ference methodologies limit their applicability.

Finally, in the original rule-based representation, the rules for P
(X9|Xc) are quantified as

x x
x x
x x x
x x x
x x x x
x x x x
x x x x x
x x x x x
x x x x x x
x x x x x x
x x x x x x x
x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x

: , ; 1
: , ; 0
: , , ; 1
: , , ; 0
: , , , ; 0
: , , , ; 1
: , , , , ; 0
: , , , , ; 1
: , , , , , ; 0
: , , , , , ; 1
: , , , , , , ; 1
: , , , , , , ; 0
: , , , , , , , ; 1
: , , , , , , , ; 0
: , , , , , , , , ; 1
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(14)

where = c p;i , =i 1, 2, , 18 denote the rules with the assignment c
over {X9}∪Xc and the corresponding probability p. These rules are

Fig. 3. Branch and bound method to decompose the system
event of the RBD example.

Fig. 4. Branch and bound method to decompose the conjunction event of
+P XX( | )N 1 c .

Fig. 5. Naïve BN modeling of the example RBD in Section 3.2.

Fig. 6. BN of the RBD example proposed by Bensi [5].
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defined similarly to those in the MBN, but also include those with zero
probability, doubling the number of rules. Furthermore, the incon-
sistent lengths of those rules make the data structure inefficient for
implementation.

These comparisons highlight the efficiency of the MBN in quanti-
fying a given PMF, compared to the existing. Specifically, the CPM can
be modeled with the least number of outcomes compared to the ex-
haustive quantification and the original rule-based representation.
Furthermore, the modeling of the MBN reflecting the regularity in a
system is straightforward compared to the other methodologies that
employ certain specialized structures [5,6,8,11]. Finally, the data
structure of matrix allows the efficient implementation of the MBN
compared to the original rule-based representation.

4. Probabilistic inference using the matrix-based Bayesian
Network

4.1. Basic operations for inference using the matrix-based Bayesian
Network

In this section, basic operations, i.e. conditioning, sum, and product,
are formulated for the MBN so that the proposed methodology becomes
compatible with existing BN inference methodologies such as variable
elimination (VE), clique tree (CT), or conditioning [7]. The developed
concepts are similar to their counterparts in the original rule-based
representation, but expanded to fit the definitions of rules introduced
for the MBN.

The conditioning operation allows to introduce evidence (observa-
tions) e on nodes in the BN. The definition of conditioning for the MBN
is as follows.

Definition 4. (Conditioning operation in the MBN): Consider a CPM
= C p; with = XScope [ ] and a context =E e. Let us consider a

reduced CPM

= = =c c eµ p C p* { ; : } *; * (15)

Then, is conditioned on =E e, by setting

= =e c X E E e cp p[ ] { * , ; * : *; * *} (16)

After sorting out the rules whose assignments are compatible with
the given context =E e as indicated by Eq. (15), Eq. (16) implies that
the “−1” state assigned to the r.v.’s in E has to be altered to e.

The sum operation marginalizes out a r.v. from a given distribution,
and is defined in the MBN as follows.

Definition 5. (Sum operation in the MBN): Let Y be a variable and μi,
=i k1, 2, , be a rule of the form = =cµ Y y p, ;i i i . Then for

= µ µ µ{ , , , }k1 2 , the sum is defined as = =c p;Y i
k

i1 .

The definition above leads to the following algorithm of sum op-
eration.

Finally, the product operation of two rules in the MBN is defined as
follows.

Definition 6. (Product operation in the MBN): Let = cµ p;1 1 1 and
= cµ p;2 2 2 be two rules respectively with scopes X and Y. If c1∼ c2,

then their product

= = =c X Yµ µ µ p p Scope µ* · ; · with [ *]1 2 1 2 (17)

where for Z ∈ X∪Y, =c
c X c

c Y X cZ
Z Z Z

Z Z Z
, if and 1

, if and 1
1, otherwise

1 1

2 2

Fig. 7. Arithmetic circuit of the network polynomial for the example RBD.

Fig. 8. Tree-based representation of P(X9|Xc) of the RBD example.

Algorithm 1
Sum using CPMs.

Procedure CPM-sum (
// CPM

Y // r.v.’s to be summed out
)

1 +

2
3 while +

4 Select +c such that
5 = = =c Y y c Y yp p{ , ; , , , ; }k kc 1 1
6 (no other +µ is compatible with c)
7 Y c

8 + + c
9 return
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The corresponding algorithm for the product operation is then de-
signed as follows.

In Algorithms 1 and 2, the rules with compatible assignments must
be identified for each iteration, which is required O (| | )2 and
O (| |·| |)1 2 times, respectively.

4.1.1. Example of the inference using the matrix-based Bayesian Network
Using the three basic operations developed in Section 4.1, the VE

algorithm for the MBN can be developed as follows.

Similarly, other BN inference algorithms such as CT or conditioning,
can also be developed for the MBN by applying the newly defined basic
operations to existing algorithms.

4.2. Approximate Bayesian Network inference using non-exhaustive
conditional probability matrices

When only a subset of an event is used for inference due to either
infeasible computational cost or excessive memory demand for storing
all outcomes, approximate inference can be carried out to compute the
bounds of the quantity of interest. The derivation of these bounds de-
pends on how the subset has been chosen, i.e. either deterministically
[13–16] or stochastically [16–18,29–31]. In this section, the meth-
odologies for both cases are developed in the framework of the MBN.
Their specific applications are illustrated by the RBD example (Fig. 2)
later in Section 4.2.3, and a real-world benchmark network in
Section 5.2. In the following, a non-exhaustive CPM refers to the CPM
having some missing rules with non-zero probabilities.

4.2.1. Non-exhaustive CPMs by deterministic selection
When a subset of outcomes are selected deterministically, the

bounds of an estimate is computed deterministically as well. A joint
PMF derived under the presence of non-exhaustive CPMs, ends up being
non-exhaustive, i.e. it does not sum up to one. Therefore, the result of
inference with such joint PMF provides the lower bound of the quantity
(Chapter 12.5 in [7]). Similarly, the upper bound can be computed by
subtracting the lower bound of the complementary event from unity,
leading to the bounds formulated as

x x xP P P˜ ( ) ( ) 1 ˜ ({ } )c (18)

where =x X xVal{ } ( ) { }c , and P(x) and P̃ (·) respectively refer to the
probability of interest and the inference result under the presence of
non-exhaustive CPMs. Likewise, the bounds for the posterior distribu-
tion

=x e x e
e

P P
P

( | ) ( , )
( ) (19)

can be derived as follows using the bounds of P(x, e) and P(e) computed
based on Eq. (18):

x e
e

x e x e
e

P
P

P P
P

˜ ( , )
1 ˜ ({ } )

( | ) 1 ˜ ({( , )} )
˜ ( )c

c

(20)

It is noted that when the bounds either on x eP̃ ({( , )} )c or eP̃ ( ) are wide,
the upper bound of Eq. (20) can exceed one, in which case it is set to
one.

4.2.2. Non-exhaustive CPMs by stochastic selection
As a generalization of sampling using BNs, sampling and analytic

inference can be concurrently applied respectively over two disjoint
subsets of r.v.’s. When one of the two sets is empty, it corresponds to
either sampling-based or exact inference of BNs. This strategy is called
Rao–Blackwellizing [28], and the expectation of a function f(x) of as-
signment =x x x e( , , )p d with regard to a posterior distribution P(X|E) is
computed as

=

=

=

=

x x x e x x e

x x e
e

x x e

e
x

x x e
x

x x e

e
x

x e
x

x x e x x e

E f P f

P
P

f

P
Q

P
Q

f

P
Q

P
Q

P f

[ ( )] ( , | ) ( , , )

( , , )
( )

( , , )

1
( )

( )
( , , )

( )
( , , )

1
( )

( )
( , )

( )
( | , ) ( , , )

x e
x x

x x

x x

x x

P p d p d

p d
p d

p
p d

p
p d

p
p

p
d p p d

( | )
,

,

,

p d

p d

p d

p d

(21)

where Xp is the set of r.v.’s for which samples are generated from the
importance sampling density Q(Xp), and =X X Xd p are the set of
r.v.’s over which the exact inference is carried out. Defining the weight
of each sample as =x x e xP Q( ) ( , )/ ( )p p p , Eq. (21) is written in short
notation as

= [ ]x
e

X x x eE f
P

E E f[ ( )] 1
( )

( ) [ ( , , )]x e X x x eP Q p P p d( | ) ( ) ( | , )p d p (22)

When the marginal distribution P(e) cannot be computed without the
CPMs whose scopes include some r.v.’s in Xp, P(e) in the denominator is
derived as

= = =e x e x
x e

x
XP P Q

P
Q

E( ) ( , ) ( )
( , )

( )
[ ( )]

x x
Xp p

p

p
Q p( )

p p
p

(23)

leading to the formulation

Algorithm 2
Product using CPMs.

Procedure CPM-product (
1, 2 // CPMs to be product

)
1
2 for each = cµ p;i i i

1

3 Select c 2 such that
4 = c cp p{ ; , , ; }k kc 1 1
5 (no other µ 2 is compatible with ci)
6 c cp µ p µ{ ; · , , ; · }i k k i1 1
7 return

Algorithm 3
Sum-product variable elimination using CPMs.

Procedure CPM-sum-product-VE (
M // Set of CPMs
Z // Set of r.v.’s to be eliminated
≺ // Ordering on Z

)
1 Let Z1, ⋅⋅⋅, Zk be an ordering of Z such that
2 Zi≺Zj if and only if i < j
3 for =i k1, ,
4 M← CPM-Sum-Product-Eliminate-Var (M, Zi)
5 * M
6 return *

Procedure CPM-Sum-Product-Eliminate-Var (
M // Set of CPMs
Z // Variable to be eliminated

)
1 M M Z Scope{ : [ ]}
2 M M M
3 M
4 Z
5 return M { }
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=x

X x x e

X
E f

E E f

E
[ ( )]

( ) [ ( , , )]

[ ( )]x e

X x x e

X
P

Q p P p d

Q p
( | )

( ) ( | , )

( )

p d p

p (24)

which corresponds to normalized importance sampling (IS). Otherwise,
when P(e) can be analytically computed without interfering with Xp, i.e.
can be computed only with the CPMs whose scopes are the subsets of
Xd, Eq. (22) corresponds to the formulation of an unnormalized IS
(Details about IS using probabilistic graphical models can be found in
Chapter 12 of [7].)

In order to compute Eq. (22) or (24), the data set of M samples

=
=

=x x x
x x x e
m m µ m

µ m E f m
{( [ ], ( [ ]), ( [ ]))}

where ( [ ]) [ ( [ ], , )]x x e

p p d p m
M

d p P m p d

1

( | [ ], )d p (25)

needs to be generated by computing μd(xp[m]) for each sample using
any analytical BN inference methodology. To this end, the identical BN
inference procedure over Xd should be applied to each sample with the
MBN conditioned on the assignment (xp, xd, e). This leads to the fol-
lowing algorithm for Rao–Blackwellizing using the MBN.

Although the VE is employed in Algorithm 4 for the exact inference
over Xd, any exact BN inference method is applicable.

As a result, the expectation of Eq. (24) is estimated as

= =

=

x x
x

µ
m µ m

m
^ ( [ ])· ( [ ])

( [ ])
m
M

p d p

m
M

p

1

1 (26)

with the variance estimated as

= =

=

x x

x

m µ m µ

m
^ ( [ ]) { ( [ ]) ^}

{ ( [ ])}
m
M

p d p

m
M

p

2 1
2 2

1
2

(27)

On the other hand, when P(e) can be analytically computed, the ex-
pectation of Eq. (22) can be estimated – note that each μd(xp[m]) is
already divided by P(e) in the proposed algorithm – as

=
=

x xµ
M

m µ m^ 1 ( [ ])· ( [ ])
m

M

p d p
1 (28)

with the sampling variance

=
=

x x
M

m µ m µ^ 1 { ( [ ]) ( [ ]) ^}
m

M

p d p
2

1

2

(29)

When there is a correlation between samples, as is the case for some
sampling techniques, in particular Markov Chain Monte Carlo methods
[17,19,31], the variances in Eqs. (27) and (29) need to include the auto-
covariance terms additionally.

4.2.3. Approximate inference of the reliability block diagram example by
MBN

This section demonstrates the approximate inference using non-ex-
haustive set of events by estimating P x x( | )1

1
9
1 in the RBD example. In the

following, the BN in Fig. 5 is assumed to have the CPMs 〈C; p〉 of P(Xi),
=i 1, 2, , 8 where

= =
x
x

C p, 0.1
0.9

i

i

0

1 (30)

First, as a non-exhaustive CPM with deterministically selected rules,
consider the CPM of P(X9|Xc) in Eq. (8) with the last two rows missing.
The inference results of P x x( , )1

1
9
1 and P x( )9

1 are then computed as

=
=

=
=

P x x
P x x
P x
P x

˜ ( , ) 0.7290
˜ ({ , } ) 0.2703
˜ ( ) 0.8092
˜ ({ } ) 0.1901

9
1

1
1

9
1

1
1 c

9
1

9
1 c (31)

Accordingly, the bounds of P x x( | )1
1

9
1 are evaluated by Eq. (20), i.e.

= =P x x0.7290
1 0.1901

0.9001 ( | ) 1 0.2703
0.8092

0.90181
1

9
1

(32)

To demonstrate the stochastic approach inference following
Section 4.2.2, we consider the following 10 samples of

= =P x xm Q m{ [ ]; ( [ ]) }p p m 1
10 with =X Xp c, where the assignments of Xc

have been drawn from the binomial distribution with probability 0.9:

=

= ×
= ×
= ×
= ×
= ×
= ×
= ×
= ×
= ×
= ×

P

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

( , , , , , , , ); 0.9 ·0.1 5.314 10
( , , , , , , , ); 0.9 ·0.1 4.783 10
( , , , , , , , ); 0.9 ·0.1 4.305 10
( , , , , , , , ); 0.9 ·0.1 4.783 10
( , , , , , , , ); 0.9 ·0.1 4.783 10
( , , , , , , , ); 0.9 ·0.1 4.305 10
( , , , , , , , ); 0.9 ·0.1 4.783 10
( , , , , , , , ); 0.9 ·0.1 4.305 10
( , , , , , , , ); 0.9 ·0.1 4.305 10
( , , , , , , , ); 0.9 ·0.1 4.783 10
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0 7 1 2 (33)

Under each xp[m] for =m 1, 2, , 10, the assignment of =X X{ }d 9 is
determined by the observation whether the system is connected,
leading to the CPM 〈C〈X9∪Xc〉; p〉 for P(X9|Xc) as

Algorithm 4
Rao–Blackwellizing in the MBN.

Procedure MBN-Rao–Blackwellizing (
P // Set of M tuples 〈xp; Q(xp)〉
M // Set of CPMs
f // Function to be estimated

=E e // Context on E
Z // Set of r.v.’s to be eliminated (The r.v.’s that do not affect the value of f)
≺ // Ordering on Z

)
1 Let Y be M X E ZScope [ ] p
2
3 for each tuple 〈xp, Q(xp)〉 ∈ P
4 Reduce-and-VE (M, 〈xp, e〉, Z, ≺)
5 〈ω, μd〉← Compute-particle ( Y xQ f, , ( ),p )
6 µ{ , }d
7 return

Procedure Reduce-and-VE (
M // Set of CPMs

=E e // Context on E
Z // Set of r.v.’s to be eliminated
≺ // Ordering on Z

)
1 Reduce M as
2 =M e e{ [ ], , [ ]}k1
3 CPM-sum-product-VE (M, Z, ≺)
4 return

Procedure compute-particle (
// CPM

Y // Set of r.v.’s over which expectation is computed
Q(xp) // Probability of xp being sampled from Q(Xp)
f // Function whose expectation is to be estimated

)
1 P(xp, e)← CPM-Sum ( Y, )
2 ω← P(xp, e)/Q(xp)
3 μd←0
4 for each rule =µ pc;
5 +µ µ p f c· ( )d d
6 μd← μd/P(xp, e)
7 return 〈ω, μd〉
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= =C p

1 0 1 1 1 1 0 1 1
1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1
0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 0

,

1
1
1
1
1
1 (34)

with the columns of C that sequentially represent the r.v.’s x9 and xi,
=i 1, ,8. The rules in Eq. (34) are reduced to five as some instances

appear several times in P of Eq. (33). Following Algorithm 4 for the
query P x x( | )1

1
9
1 , along with the set of CPMs M of the CPMs for Xi,

=i 1, 2, , 8 in Eq. (30) and the CPM 〈C; p〉 for P(X9|Xc) in Eq. (34),
the other input variables are set as

=
= =
= =

E e
Z

f x x
X x
X X X X X X X X X

X X X

II[( , )]
{ }, { }
{ , , , , } { , } { , , , }, and

1
1

9
1

9 9
1

9 1 2 8 9 1 2 3 8

2 3 8 (35)

where II[ · ] is the index function, i.e. having the value 1 when the given
statement is true and 0 otherwise. With this setting, the operation to get
the CPM = C p;1 1 1 on P(X1, X9) for the first sample

M e x ZReduce and VE( , , [1] , , )p1 (36)

leads to

= = = ×C p[0 1] and [0.9 ·0.1 5.314 10 ]1 1
6 2 3 (37)

while the same operation for the second sample yields the CPM
= C p;2 2 2 with

= = = ×C p[1 1] and [0.9 ·0.1 4.783 10 ]2 2
7 1 2 (38)

Then, the next operation on the first sample of

x x xµ Q( [1]), ( [1]) Compute Particle( , , ( [1]))p p p1 (39)

computes

= =x xµ( [1]) 0 and ( [1]) 0p p (40)

as there remain no rules compatible with x x( , )1
1

9
1 , the result for the

second sample is

= ×
×

= = ×
×

=x xµ( [2]) 4.783 10
4.783 10

1, and ( [2]) 4.783 10
4.783 10

1p p
2

2

2

2

(41)

whose computation is also trivial as there is only one rule.
Consequently, in this simple example, the data set

= =x xm µ m{ ( [ ]), ( [ ]) }p d p m 1
10 is derived from the deterministic re-

lationship between S and C, as

= =x xm P x m( [ ]) 1, if ( | [ ]) 1
0, otherwisep

p9
1

(42)

and

= = =x x xµ m P x m m X x( [ ]) 1, if ( | [ ]) 1 and [ ]
0, otherwisep

p p9
1

1 1
1

(43)

Finally, P x x( | )1
1

9
1 is estimated as

= =µ̂ 7
8

0.8750 (44)

with the sampling variance ^2 and coefficient of covariance ^

= =

= =

+^ 0.01367 and

^ 0.04725
µ

2 7·(1 0.8750) 1·(0 0.8750)
8

1
^

^
8

2 2
2

2

(45)

The final number of samples is decreased to eight as reflected in
Eq. (45) as two samples are rejected because of their inconsistency with
the context e. The results well approximate the exact result of

=P x x( | ) 0.90089
1

1
1 , which demonstrates that using the MBN, the BN

methodologies of modeling and inference can be extended to the ap-
proximate inference. Such capability of general probabilistic inference
demonstrates the utility of BN as well, especially compared to standard
analysis methodologies such as fault tree analysis [26].

5. Numerical examples

5.1. MBN application to connectivity of random graphs

To demonstrate the efficiency of the MBN, the connectivity of
random graphs [34] is modeled and investigated using CPMs. The size
of these graphs is increased from 11 nodes and 22 uni-directional links
to 21 nodes and 55 links by adding the nodes and links such that
roughly 10% of possible links are randomly selected. Fig. 9 depicts the
final graph after the random additions of nodes and links.

It is assumed that the links are the only components that can fail, i.e.
the nodes do not fail. The system is considered to have survived if there
is at least one path between the source node 1 and the terminal node
11, and failed otherwise. Since the connectivity is determined by the
states of the links, the graphical structure of the BN is modeled by a
converging structure as in Fig. 5 with the number of parent nodes equal
to that of links, denoted by N. Therefore, this naïve formulation re-
quires +2N 1 parameters to describe the PMF of the child node – the r.v.
that represents the connectivity of the graph – if a CPT is used for such
BN.

On the contrary, the MBN can be modeled by identifying the disjoint
rules employing the RDA [15,16], which systematically identifies the
disjoint subsets of an event for network connectivity problems. The
methodology follows an equivalent principle with the branch and
bound framework illustrated in Section 3.2. The order of r.v.’s ac-
cording to which the event is decomposed is determined by sequentially
searching the shortest paths from the source to the terminal nodes.
Then, the CPM for P(X12|Xc) can be constructed based on these iden-
tified paths.

For example, let us suppose that among the 11 links
=X X X X{ , , , }c 1 2 11 , the RDA identifies that failure of X1, X5, and X7

results in the disconnection of the system (X12). This cut-set corre-
sponds to the rule = Xµ Xc p{ } ;12 c with

=
=

c
p

[0 0 1 1 1 0 1 0 1 1 1 1] and
[1] (46)

where the value 0 denotes failure of the corresponding link or the
system, and the elements of c sequentially represent the assignments
over the r.v.’s x12 and xi, =i 1, , 11. Fig. 10 shows the number of
disjoint subsets identified by the RDA until the entire event space is
covered. It is noted that each identified subset produces one rule, and

Fig. 9. The example random graph with 21 nodes and 55 links.
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the comparison between the number of parameters required for the
MBN – the elements in the CPMs – and the naïve formulation is pro-
vided in Fig. 11. Furthermore, the probability of disconnection +P x( )N 1

0

and the conditional probability +P x x( | )N22
0

1
0 are evaluated assuming that

the r.v.’s Xi, =i N1, 2, , have CPM 〈C; p〉 with

= =C p0
1 and 0.1

0.9 (47)

where X22 corresponds to the link that connects nodes 7 and 11. Fig. 12
shows the inference results of the two probabilistic quantities for each
graph.

The results confirm that the MBN can model the BN much more
efficiently than the naïve formulation, and facilitate straightforward
exploitation of the given information on an event. This suggests that the
MBN can extend the applicability of BNs to larger systems.

5.2. MBN application to connectivity of Sioux Falls benchmark network

In order to demonstrate MBN-based approximate inference of a
large-size network, we investigate the connectivity between the source

and terminal nodes of the Sioux Falls network [25], illustrated in
Fig. 13. The network consists of 24 nodes and 76 uni-directional links,
wherein the state of each link is determined by a reinforced concrete
(RC) bridge, and the links are the only components that can fail. Fig. 14
describes the graphical structure of the BN for the network where the
r.v.’s M and L respectively are the magnitude and location of an
earthquake, and X77 represents the connectivity of the system – taking
the value 1 for connection and 0 for disconnection between the source
and terminal nodes. In addition, Di represents the deterioration state (1
for being deteriorated and 0 otherwise), Ii the result of inspection (1 for
being observed as deteriorated and 0 otherwise), and Xi the bridge
operation state (1 for being in operation and 0 for failure) of the i-th
link, =i 1, , 76.

Due to the large number of links, exact inference by BN is infeasible,
and thus the CPM for P(X77|Xc) remains non-exhaustive. The prob-
ability queries of interest in this example, are P x( )77

0 and P x x i( | , )38
0

77
0

38
1 .

We apply deterministic approximate inference, wherein we identify the
rules in the CPM for P(X77|Xc) by the RDA, and stochastic inference.

Fig. 10. The number of disjoint subsets identified by the RDA for the random
graphs.

Fig. 11. The number of parameters required for the MBN and the CPT of naïve
formulation.

Fig. 12. The probabilities +P x( )N 1
0 and +P x x( | )N22

0
1

0 in the random graphs.

Fig. 13. The Sioux Falls network and the hypothetical epicenter locations.
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5.2.1. Conditional probability distribution of each random variable
The magnitude M is assumed to follow the truncated exponential

distribution [35] as

=f m m m m( ) , for

0, elsewhere
M

m m
m m p

exp[ ( )]
1 exp[ ( )] 0

0
0

(48)

where the parameter β, and the minimum m0 and the maximum mp are
respectively set to 0.76, 6.0, and 8.5. M is discretized into five states
with intervals ( , 6.5], (6.5, 7], (7, 7.5], (7.5, 8], and (8, ∞). For L,
ten discrete locations of epicenter are considered, each having prob-
ability 0.1. The locations range from −2.0 km to 2.5 km in x-coordinate
and 2.5 km to −2.0 km in y-coordinate as illustrated in Fig. 13.

P(Di) for =i 1, 2, , 76 are determined by simplifying the RC
column deterioration model proposed by Choe et al. [36]. The formula
for time Tcorr when the chloride concentration at the cover depth of the
reinforcement reaches the critical chloride concentration is simplified
to

=T C X
k

I
corr

e (49)

where XI, ke, and C respectively refer to the model uncertainty coeffi-
cient to account for the idealization of Fick's second law, the environ-
mental factor, and the coefficient that summarizes the other terms in
the original formulation. In this example, ke and C are assumed to be
constant while XI is the only r.v., following a lognormal distribution
with mean 1 and the standard deviation 0.05. C is assumed to be 100,
while ke is 0.924 for bridges under tidal condition (Links 37, 38, 39, 42,
62, 64, 65, 66, 69, 70, 71, 72, 73, 74, 75, and 76), 0.265 for bridges
under splash condition (Links 7, 33, 34, 35, 36, 40, 41, 44, 45, 46, 57,
59, 61, 63, 67, and 68), and 0.676 for bridg under atmospheric con-
dition (the other links). These values are the mean values proposed by
Choe et al. [36]. The probability of deterioration taking place after time

=t 20 years is computed as

=
= =

P d P T t
P d P d i

( ) ( ) and
( ) 1 ( ), 1, 2, ,76

i

i i

1
corr

0 1 (50)

On the other hand, P(Ii|Di) for =i 1, 2, , 76 are given as

= = = =P i d P i d P i d P i d( | ) 0.9, ( | ) 0.1, ( | ) 0.2, and ( | ) 0.8i i i i i i i i
0 0 1 0 0 1 1 1

(51)

The construction of P(Xi|Di, M, L) for =i 1, 2, , 76, follows the pro-
cedure illustrated in the numerical example of Lee et al. [25]. The
failure probability of the links is computed based on the approximate
bivariate seismic fragility model proposed by Huang et al. [37] along
with the geometry and material properties of [37]. Using the fragility
model, the probability that the drift capacity level of 4% is attained or
exceeded, is computed as the failure probability of each link, given the
values of two earthquake intensity measures, the normalized pseudo-
spectral acceleration (PSA) PSA/g, and the normalized peak ground
velocity (PGV) PGV · T1/Hc; therein g is the acceleration of the gravity,

=H 6.7056 mc is the height of the bridge column, and T1 is the first
mode period of the bridges, estimated respectively as 0.9616 and
1.0106 s for di

0 and di
1. Furthermore, the assignment of di

1 is assumed to
result in 10% reduction in the reinforcement diameter while the full
reinforcement area is considered for di

0. The intensity measures PSA
and PGV that each bridge experiences given each assignment of {M, L},
are computed following [25].

5.2.2. Approximate inferences of probabilistic queries
For the deterministic construction of the CPM of P(X77|Xc), 5,000

disjoint rules are searched by RDA. Based on this CPM and the ones
illustrated in Section 5.2.1, all r.v.’s but X77 are marginalized for the
query P x( )77

0 , and all r.v.’s other than X77, X38, and I38 for P x x i( | , )38
0

77
0

38
1 .

Then, the bounds are computed as

P x P x P x˜ ( ) ( ) 1 ˜ ( )77
0

77
0

77
1 (52)

and

P x x i
P x i

P x x i P x x i
P x i

˜ ( , , )
1 ˜ ({( , )} )

( | , ) 1 ˜ ({( , , )} )
˜ ( , )

38
0

77
0

38
1

77
0

38
1 c 38

0
77
0

38
1 38

0
77
0

38
1 c

77
0

38
1 (53)

For the evaluation of the joint probabilities in Eq. (53), we use the VE
algorithm of Algorithm 3. The inference results – upper and lower
bounds – of the two quantities are summarized in Table 2.

For stochastic construction of the CPM of P(X77|Xc), 100,000 sam-
ples of Xc are generated by sampling Xi for =i 1, 2, , 76 in-
dependently from the binomial distribution with probability 0.95 of
taking value 1. x77

0 is observed in 832 of those samples. This IS density is
selected for illustrative purposes and is not optimized; we note that the
selection of an appropriate IS density should be further investigated in
the future.

Table 1 tabularizes the input variables to Algorithm 4 for estimating
the queries other than P and M, where =I I I I{ , , , }1 2 76 and

=D D D D{ , , , }1 2 76 . Thereby, as E is an empty set when evaluating
P x( )77

0 , its estimation corresponds to the unnormalized IS, while
P x x i( | , )38

0
77
0

38
1 is estimated as the normalized IS. Computation of the

normalizing P x i( , )77
0

38
1 requires the CPMs of P(Xi|Di, M, L) for

=i 1, 2, , 76, and P(X77|Xc).
The inference results – the mean value and coefficient of variation

(c.o.v.) of the estimates – are summarized in Table 2, and they agree
with the results evaluated both by the deterministic approach and by
direct Monte Carlo Simulation (MCS) with 1,000,000 samples. The
latter performs better in the unconditional case (which is to be expected
given the higher number of samples), but worse in the conditional case
where MCS is not efficient as many samples are rejected.

Fig. 14. The BN for the Sioux Falls network.

Table 1
Input variables of Algorithm 4 for the Sioux Falls network example.

Query f =E e ≺ on Z

P x( )77
0 xII[ ]77

0 ∅ I≺D≺M≺L≺Xc

P c x i( | , )38
0

77
0

38
1 c x iII[( , , )]38

0
77
0

38
1 =X I x i{ , } ( , )77 38 77

0
38
1 I D XI M L X{ } { }38 c 38
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It is noted that 5,000, 100,000, and 1,000,000 rules are utilized to
quantify the CPM of P(X77|Xc) respectively for deterministic inference,
IS, and MCS, while other CPMs remain identical. Since the number of
rules is the parameter that controls the computational cost of inference
as discussed in Section 4.1, the results suggest that the deterministic
approach is more efficient in this example. It is expected that this is the
case whenever there exists an efficient way to extract context-specific
independence of component events in describing a system event, i.e.
when the CPM of a system event can be constructed using the “−1”
state. The RDA can identify such a construction in a connectivity pro-
blem, as demonstrated in this example. However, for general problems,
e.g. delayed time due to congestion in transportation networks, this
construction might not be available, in which case sampling methods
are the only alternative.

6. Concluding remarks

In this paper, a matrix-based Bayesian Network (MBN) has been
developed for efficient memory storage and flexible inference in mod-
eling and evaluation of discrete Bayesian Networks (BNs). The MBN
unifies previous research efforts to achieve efficiency in BN applications
and is compatible with standard BN techniques. In MBN, the concept of
conditional probability matrix (CPM) is introduced to quantify the
probability mass functions (PMFs.) In CPMs, the assignments and
probabilities are separately stored as matrices. CPMs can provide more
compact and straightforward representation of PMFs by: (1) excluding
the outcomes that have no effect on inference results from the storage,
and (2) using “−1” state to denote the context-specific independence.
In addition, the matrix form of the data structure in the MBN enables
efficient and general implementations. With the operations and algo-
rithms proposed to facilitate MBN-based inference, the MBN can re-
place the role of conditional probability tables in existing BN meth-
odologies. Another distinct feature of the MBN is that CPMs do not
require identifying the exhaustive set of events by either deterministic
or stochastic algorithms. Thereby, the MBN enables general applica-
tions of BNs to approximate inferences especially as multiple non-ex-
haustive sets of events can be systematically taken into account. A
simple reliability block diagram has been investigated to illustrate the
procedure of modeling and inference using the MBN, and to compare
the MBN with existing methodologies. Furthermore, we apply the MBN
to two examples of large-size systems, which demonstrate its applic-
ability and efficiency to such systems.

With its efficient modeling and flexible application, the MBN can
model and analyze more complex and larger real-world systems than
existing BN approaches. Since the BN methodology in general can
achieve intuitive models of complex systems through its graphical re-
presentation and provide a systematic procedure for inference, such
extension is expected to expand the BN-based probabilistic modeling
and analysis to a broader range of civil systems. The MBN can be ex-
panded to applications with system performance functions other than
network connectivity, e.g. structural systems and flow of networks, or
can be combined with advanced methodology for identifying optimal IS
density. The expansion to other types of inferences, e.g. the evaluation
of the maximum a posteriori estimator, will facilitate a wider range of
queries on real-world civil systems to support decision-making, e.g. on

strengthening bridges against seismic risk. However, the BN size is still
a bottleneck in quantifying and inferencing BN, which is implied in
Fig. 10 by the increasing number of required subsets as the number of
links increases. The inference methodology can be further developed to
address such limitation and handle even larger systems.
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