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Abstract

This Ph.D. thesis is concerned with the investigation of structure-preserving, spatio-temporal discretiza-
tions and temporal semi-discretizations for approximating PDEs with gradient flow structure. We are
considering evolution problems on the space of probability measures equipped with some optimal trans-
port distance implied by a family of cost functions that include in particular p-Wasserstein cost s 7→ 1

p |s|
p

and flux-limiting cost functions like s 7→ γ

(
1−

√
1−

∣∣∣ sγ ∣∣∣2
)

for |s| ≤ γ. We will investigate variational

formulations to receive a one-dimensional Lagrangian scheme, a multi-dimensional Eulerian scheme with
entropic regularization and a temporal semi-discretization of order two with entropic regularization. We
show preservation of qualitative properties of the PDE under discretization. In particular, non-negativity,
free energy monotonicity, mass conservation, comparison principles, etc. . In each case, convergence to a
solution of the PDE with vanishing discretization parameters is the main result.

Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit strukturerhaltenden Raum-Zeit-Diskretisierungen und
Zeit-Diskretisierungen zur Approximation von partiellen Differentialgleichungen die eine Gradienten-
flußstruktur besitzen. Wir betrachten dabei insbesondere Probleme auf dem Raum der Wahrschein-
lichkeitsmaße mit Metriken die durch Probleme optimalen Transports bzgl. einer Familie von Kosten-
funktionen gegeben sind die insbesondere p-Wasserstein Kosten s 7→ 1

p |s|
p

und flussbegrenzende Kosten

s 7→ γ

(
1−

√
1−

∣∣∣ sγ ∣∣∣2
)

for |s| ≤ γ beinhaltet. Wir untersuchen variationelle Formulierungen um ein

eindimensionales Lagrangesches Schema, ein mehrdimensionales Eulersches Schema mit entropischer Reg-
ularisierung und eine zeitliche Diskretisierung der Ordnung zwei mit entropischer Regularisierung zu er-
halten. Wir zeigen, dass einige Eigenschaften von Lösungen der PDE von den Schema erhalten werden.
Insbesondere Nichtnegativität, Monotonie bzgl. der freien Energie, Massenerhaltung, Vergleichssätze,
usw. . In jedem der drei Fälle ist das Hauptresultat die Konvergenz der Approximation gegen eine
Lösung der PDE mit verschwindenden Diskretisierungsparametern.
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Chapter 1

Introduction and Main Results

In this thesis will consider schemes for approximation of solutions to the following family of non-linear
parabolic equations

∂tρ = div [ρ · A (∇[u(ρ) + v + w ∗ ρ])] (1.0.1)

where ρ is a curve in the space of probability measures on an open set Ω ⊂ Rd. Here A : Rd → Rd
will be a – possibly non-linear – map given by A = ∇(c∗). c∗ denotes the Legendre transform c∗(z) =
supy 〈z, y〉−c(y) of a cost function c : Rd → [0,∞]. u, v and w will be internal energy potentials, external
potentials and interaction potentials respectively. These functions are subject to further hypothesis in
each chapter.

To motivate the schemes we will be investigating, we will start at the JKO-scheme or minimizing
movement scheme (c.f. [23]) which is a well established scheme for temporal discretization of solutions
for equations with gradient flow structure. Incidentally, (1.0.1) possesses a gradient flow structure on
the set of probability measures on Ω w.r.t. a suitable optimal transport distance Tc,τ , equipped with a
time-step parameter τ , for a free energy functional E .

We will give a short sketch of the JKO-scheme for our equation (1.0.1) and introduce Tc,τ and E in
the process. Assume ρ∗ is a solution of this equation, then the JKO-scheme defines, for a time step τ > 0,

a sequence of approximations ρ
(n)
τ of ρ∗(t) at times t = nτ by inductive solution of

ρ(n)
τ ∈ arg min

ρ
τTc,τ (ρ, ρ(n−1)

τ ) + E(ρ) , (1.0.2)

where Tc,τ (ρ, µ) is an optimal transport distance between two probability measures ρ, µ on Ω for cost c
with parameter τ defined via the minimization problem

Tc,τ (ρ, µ) = inf
γ∈Π(ρ,µ)

¨
Ω2

c

(
x− y
τ

)
dγ(x, y) . (1.0.3)

Π(ρ, µ) denotes the set of all transport plans from µ to ρ i.e. probability measures γ on Ω×Ω with first
and second marginal ρ and µ respectively. Furthermore E(ρ) is a free energy functional of the form

E(ρ) =

{´
Ω

u(ρ) + v + w ∗ ρdx if ρ is a.c. w.r.t. Lebesgue

+∞ otherwise
(1.0.4)

where

u(s) = um(s) =

{
s log(s) if m = 1

1
m−1s

m if m > 1
(1.0.5)

1



2 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

and s log(s) is assumed to be continuously extended to [0,∞). Furthermore v and w will be an external
and an interaction potential assumed to be C2(Rd). Note that (1.0.1) can be rewritten to read

∂tρ = div

[
ρ · A

(
δE
δρ

)]
where δE

δρ denotes the first variation of E .
Our goal is to actually calculate approximate solutions. But applying a naive discretization in space

using some constant mesh to arrive at a fully discrete scheme will result in a scheme that is expensive
in each step. This can easily be seen by the encapsulated second minimization problem Tc,τ in the
minimization problem that is to be solved in each step. A main goal of this thesis was to consider
schemes that, already as temporal semi-discretization, do not suffer from this problem and therefore the
corresponding spatio-temporal discretization do not suffer from this problem, too.

One possible way of completely getting rid of the minimization in Tc,τ , which is examined in Chapter
3, is to consider equation (1.0.1) in one spatial dimension. Then the inner minimization problem is
explicitly evaluable and the infimum amounts to

Tc,τ (ρ, µ) =

ˆ
Ω

c

(
Xρ(ξ)−Xµ(ξ)

τ

)
dξ (1.0.6)

where Xρ, Xµ are the inverse cummulative distribution functions of ρ and µ respectively. This is explained
in more detail in Subsection 2.2.3. As we can see, this new form does not involve any minimization
in the optimal distance any more, leaving our JKO-scheme with one minimization only, which can be
calculated in each step with a reasonable amount of effort. This method is utilized in Chapter 3 to define
a Lagrangian scheme for finding approximate solutions of (1.0.1). The family of cost functions considered
therein is quite general and includes also particular cost functions that result in (1.0.1) becoming the
one-dimensional p-Laplace equation

∂tρ = ∂x(|∂xρ|q · ∂xρ) . (1.0.7)

or Rosenau’s relativistic heat equation on the line

∂tρ = ∂x

ρ ∂xρ√
ρ2 + |∂xρ|2

 . (1.0.8)

The second way to handle the difficulty of the two nested minimizations of the basic JKO-scheme is to
apply the powerful machinery of entropic regularization. Replace Tc,τ with the corresponding entropic
regularized optimal transport cost, which consists of adding the ε-scaled negative entropy

H(γ) :=

¨
Ω2

γ(x, y) log (γ(x, y)) d(x, y) (1.0.9)

where H(γ) = +∞ if γ does not admit a density w.r.t. Lebesgue, of the transport plans γ in the optimal
transport minimization problem:

T(c,τ,ε)(ρ, µ) = inf
γ∈Π(ρ,µ)

¨
Ω2

c

(
x− y
τ

)
dγ(x, y) + εH(γ) . (1.0.10)

Then combine the two minimization problems in (1.0.2) in one minimization problem involving the first
and second marginal (Px)#γ, (Py)#γ of a probability measure γ on Ω× Ω in the following way

γ(n) ∈ arg min
γ∈P(Ω×Ω)

Ψn
τ,ε(γ) (1.0.11)
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where the argument of the minimization problem is given by

Ψn
τ,ε(γ) := τε

¨
Ω2

γ(x, y) log

(
γ(x, y)

Kε,τ (x, y)

)
d(x, y) + E((Px)#γ) + 1ρ(n−1)((Py)#γ) . (1.0.12)

Here Kε,τ (x, y) := e−
c(
x−y
τ

)

ε and 1µ(ρ) is the indicator-function that amounts to 0 if ρ = µ and +∞
otherwise. This minimization problem can then be solved very efficiently in terms of Dykstra’s projection
algorithm and the so found minimizer gives us our sought for ρ(n) as its first marginal. This procedure
will be considered in detail in Chapter 4 where we consider a family of flux-limiting cost functions,
explicitly including Ω = Rd, in particular including Rosenau’s relativistic heat equation

∂tρ = div

(
ρ

∇ρ√
ρ2 + ‖∇ρ2‖

)
. (1.0.13)

Finally, in Chapter 5 we want to apply entropic regularization again, this time to a temporal
discretization of (1.0.1) by means of the backward differentiation formula 2 (BDF 2 scheme for short).
The JKO scheme can be considered as a BDF 1 scheme (or backward Euler method), and in this spirit,
we can define a discretization for approximating solutions to (1.0.1) that can be considered to be a BDF
2 scheme. In finite dimensions, the BDF 2 scheme results in faster convergence of the approximate
solutions than the backward Euler method. This is the reason why we consider an analogue of the finite
dimensional BDF 2 scheme. We want to illustrate how to arrive at this BDF 2 scheme, coming from the
finite dimensional backward Euler method.

We start by considering a gradient flow in Rd

ẋ = −∇E(x)

in the energy landscape of E : Rd → R, a convex function. Then one possible way to find an approximate
solution to a solution of this gradient flow would be the backward Euler method. For some time-step size
τ > 0 and initial vector x0, in each step the equation

x− xn−1

τ
= −∇E(x)

is solved for x to receive xn as approximation for a solution curve x∗ : [0, T ]→ Rd at time x∗(nτ). This
equation can be considered to be the first order condition of a minimization problem. xn solves the above
equation if

xn ∈ arg min
x∈Rd

∥∥x− xn−1
∥∥2

2τ
+ E(x)

holds (c.f. (1.0.2)). Now this backward Euler method can be viewed as the first of a family of backward
methods called backward differentiation formulas. The recursion problem of the second one reads: find
xn such that

3xn − 4xn−1 + xn−2

2τ
= −∇E(xn) (1.0.14)

holds. Its first order condition is then

xn ∈ arg min
x∈Rd

1

τ

(∥∥x− xn−1
∥∥2 − 1

4

∥∥x− xn−2
∥∥2
)

+ E(x) .
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Now taking this over to our case of probability measures with the optimal transport distance and our
functional E corresponding to (1.0.1), we arrive at the following recursion

ρ(n)
τ ∈ arg min

ρ
τ

(
Tc,τ (ρ(n)

τ , ρ(n−1)
τ )− 1

4
Tc,τ (ρ(n−2)

τ , ρ(n)
τ )

)
+ E(ρ) . (1.0.15)

Finally replacing the optimal transport distances again by entropic regularized ones, we arrive at the
scheme that we will refer to as entropic regularized BDF 2 scheme

ρ(n)
τ ∈ arg min

ρ
τ

(
T(c,τ,ε)(ρ

(n)
τ , ρ(n−1)

τ )− 1

4
T(c,τ,ε)(ρ

(n−2)
τ , ρ(n)

τ )

)
+ E(ρ) (1.0.16)

for approximating solutions to (1.0.1). This is the scheme that will be investigated in Chapter 5.

In each of the above cases, our main result will be the convergence of a sequence of approximate
solutions. Let us describe the plan of each of these chapters and their main contribution as well as the
plan of proof a bit more in detail.

Chapter 3

In [32, 34], Matthes and Osberger applied a one-dimensional Lagrangian scheme to the (non-linear)
Fokker-Planck equation initially suggested by L. Gosse and G. Toscani in [22]. In the first chapter we
pick up this concept and extend the results from quadratic cost functions to a family of quite general

cost functions, including p-cost s 7→ 1
p |s|

p
and flux-limiting cost s 7→ 1−

√
1− |s|2 , and as was already

mentioned above, this choice of cost will include the q-Laplace equation and Rosenau’s relativistic heat
equation in the family of equations that are investigated.

The main result is the convergence of a fully-discrete approximation in terms of inverse cummulative
distribution functions to a solution of (1.0.1). Additionally, monotonicity in the free energy functional,
non-negativity, mass conservation and comparison principles are shown for the approximate solutions.
Numerical experiments and in particular a numerical convergence analysis are also included.

The proof of convergence consists of steps that are standard in the analysis of gradient flows by means
of the JKO-scheme. First we establish the existence of a minimizer, then the Euler-Lagrange equation
of said minimizer is calculated and by the a priori estimates we arrive at the classical estimates, giving
us enough compactness to pass to a limit with our approximate solution by means of an Aubin-Lions
argument. Finally, passing to the limit in our Euler-Lagrange equation will show that the limit curve
satisfies (1.0.1) in a weak sense. Non-standard, however, is that we will step from the formulation of
(1.0.1) in terms of probability measures ρ to the formulation in terms of inverse (cumulative) distribution
functions (IDF) and all these steps described above are then taken in this IDF-framework.

Chapter 4

McCann and Puel proved in [36] the applicability of the JKO-scheme to flux-limiting equations including
Rosenau’s relativistic heat equation. In particular, that an approximate solution obtained by means of
a JKO-scheme converges to a solution of a flux-limiting instance of (1.0.1). After Cuturi introduced in
[16] efficient solvers for the entropic regularized optimal transport problem, Peyré demonstrated in [42]
their applicability to solve efficiently the minimization problem in an entropic regularized JKO-step. We
prove the convergence of an approximate solution obtained from an entropic regularized JKO-scheme
to an approximate solution obtained by an unregularized JKO-scheme by means of Γ-convergence. A
description of the numerical scheme and numerical experiments are presented at the end, in particular
involving a non-convex domain.
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The plan of proof in this chapter was to show that the functionals Ψn
τ,ε admit a Γ-convergence limit,

which turns out to be the functional that is subject to minimization in an unregularized JKO-step

Ψn
τ,0(γ) := τ

¨
Ω2

c

(
x− y
τ

)
dγ(x, y) + E((Px)#γ) + 1ρ(n−1)((Py)#γ) . (1.0.17)

Consequently, the minimizers of Ψn
τ,ε converge narrowly to minimizers of Ψn

τ,0 and their first marginals
converge in the same way to minimizers of the unregularized JKO-scheme. The main hurdle in showing
the Γ-convergence was the construction of the recovery sequence needed for the

”
lim sup“-condition. The

construction consists of several involved steps and is surprisingly delicate.

Chapter 5

In [33, 43] the BDF 2 scheme introduced above in (1.0.15) was presented and analysed and just as in

these articles, we will consider this scheme with cost function c(s) = 1
2 |s|

2
. As was already mentioned

above, this scheme can be considered to be a higher order version of the JKO-scheme. As in Chapter 4
we want to allow for the entropic regularization to be applied to this higher order scheme, so a recursive
sequence defined by (1.0.16) is considered. Proof of convergence to a solution of (1.0.1) in the limit of
vanishing time-step and entropic regularization is the main result here.

As in Chapter 3 the proof follows the standard steps for proving convergence in the JKO-case, but
this time we have to overcome additional difficulties. In particular, the negative distance in (1.0.16)
will on the one hand obscure the fact that the argument of the arg min in (1.0.16) is in fact narrowly
lower semi-continuous in ρ. When this lower semi-continuity is established, it will lead to the existence
of a minimizer as easily as in the JKO-case. On the other hand additional regularity of the entropic
regularized optimal transport distance is required to receive the Euler-Lagrange equation. This is again
due to the negative distance appearing in the scheme. Both problems will be solved by decomposition of
the entropic regularized optimal transport distance, a decomposition which the author was advised of by
Guillaume Carlier.
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Chapter 2

Notation and Preliminaries

2.1 Function spaces

In this thesis Ω ⊂ Rd will denote an open, connected domain with Lipschitz-boundary. Further restrictions
will be stated in the corresponding chapters.

Let us begin with some basic notation. Let f : X → R and g : Y → R be two functions on some
spaces X and Y . Then we will denote with f ⊕g the direct sum of the two functions (f ⊕g) : X×Y → R
that is given by (f ⊕ g)(x, y) = f(x) + g(y). Define ⊗ accordingly as the direct product. Furthermore the
usual definitions of weak- and weak-*-convergences are used. Let us now introduce some function spaces
and their notation.

Continuous functions

Let C(Ω) be the space of continuous functions f : Ω → R, C(Ω,Rd) the space of continuous vector
fields ξ : Ω → Rd, Cb(Ω) the space of continuous, bounded functions, Cc(Ω) the space of continuous
functions with compact support in Ω, Ck(Ω) the space of k-times continuously differentiable functions
and C∞(Ω) :=

⋂
k∈N C

k(Ω) as well as C0(Ω) := C(Ω). Define Cb(Ω,Rd), Cc(Ω,Rd), Ck(Ω,Rd) and

C∞(Ω,Rd) analogously for vector fields. Combinations are to be defined as suitable intersections, for
example C∞c (Ω) = Cc(Ω) ∩ C∞(Ω). The space of continuous functions and its subspaces are to be
equipped with the uniform norm

‖f‖∞ := sup
x∈Ω
|f(x)| .

The Ck-spaces are equipped with

‖f‖Ck(Ω) :=
∑
|α|≤k

‖∂αf‖∞ .

Again the definition for the vector-field spaces is to be made accordingly.

Lp-spaces

Denote by Ld the d-dimensional Lebesgue-measure on the domain Ω. We will call a function f Lebesgue-
measurable iff the f−1(A) is measurable for every Lebesgue-measurable set A ⊂ R. For p ∈ [1,∞) the
Lp-norm of a Lebesgue-measurable function f is defined as

‖f‖pLp(Ω) :=

ˆ
Ω

|f(x)|p dLd(x)

7
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where we will usually abbreviate dLd(x) = dx. For p = ∞ we introduce the set of essentially bounded
functions L∞(Ω) with the norm

‖f‖L∞(Ω) := ess sup
x∈Ω

|f(x)| .

Lp(Ω) denotes the set of all Lebesgue-measurable functions with finite Lp-norm.
Lp(Ω) is a Banach space for every p ∈ [1,∞] and for p ∈ [1,∞) its dual is given as Lq(Ω) where q is

the Hölder-conjugate of p given by the equation 1
p + 1

q = 1. We define the corresponding spaces Lp(Ω,Rd)
of p-integrable vector fields analogously.

Functions of bounded variation.

For a given open domain Ω a function f ∈ L1(Ω) is called a function of bounded variation iff

V (f,Ω) := sup
{ˆ

Ω

f(x) div(ξ(x)) dx | ξ ∈ C∞c (Ω,Rd), ‖ξ‖∞ ≤ 1
}
<∞

(c.f.[21]). The set of all functions of bounded variation is denoted by BV (Ω) with the norm:

‖f‖BV (Ω) = ‖f‖L1(Ω) + V (f,Ω).

For open sets Ω ⊂ Rd the set BV (Ω) is a Banach space.

Sobolev spaces.

We say a Lebesgue-measurable scalar function f is k-times weakly differentiable if for each multi-index
α of order k there exists a function gα : Ω→ R lying in L1(K) for every K ⊂ Ω compact such that

ˆ
Ω

f∂αψ(x) dx = (−1)|α|
ˆ

Ω

gαψ(x) dx ∀ψ ∈ C∞c (Ω).

In this case gα is unique and we denote gα = ∂αf . Then for k ∈ N and p ∈ [1,∞] the Sobolev space
Wk,p(Ω) is defined as the set of all Lebesgue-measurable functions f such that ∂αf exists for all multi-
indices |α| ≤ k and

‖f‖Wk,p(Ω) :=
(
‖f‖pLp(Ω) +

∑
|α|≤k

‖∂αf‖pLp(Ω)

)1/p

<∞.

For any k ∈ N and any p ∈ [1,∞] the Sobolev space Wk,p(Ω) is a Banach space with the norm ‖·‖Wk,p(Ω).

Bochner spaces and convergence in measure

We will now consider (not necessarily continuous) curves u : [0, T ]→ V in a Banach space V with norm
‖·‖V . We will call such a curve simple if it is piecewise constant on a finite decomposition of [0, T ] in
measurable subsets (c.f. [29]).

We say that a curve u : [0, T ]→ V is measurable iff there is a sequence of simple curves un : [0, T ]→ V
such that un(t)→ u(t) in V for a.e. t ∈ [0, T ]. The set of measurable curves will be denotedM(0, T ;V ).

We say a sequence (un)n∈N inM(0, T ;V ) converges in measure therein to a limit curve u∗ if and only
if

lim
n→∞

L1({t ∈ [0, T ] | ‖un(t)− u(t)‖V ≥ ε}) = 0 for all ε > 0 .



2.1. FUNCTION SPACES 9

We will say that a sequence is relatively compact in M(0, T ;V ) if each subsequence possesses a subsub-
sequence converging in measure in M(0, T ;V ).

Furthermore for p ∈ [1,∞) we define the Bochner space Lp(0, T ;V ) as the set of all u ∈ M(0, T ;V )
such that

‖u‖Lp(0,T ;V ) :=


( ´ T

0
‖u(t)‖pV dt

)1/p

if p ∈ [1,∞)

ess supt∈[0,T ] ‖u(t)‖V if p =∞

is finite.

The space of probability measures

Let Ω ⊂ Rd. We define the set P(Ω) to be the set of all probability measures on Ω. The subset of
probability measures admitting a density w.r.t. Lebesgue measure are denoted Pac(Ω). Usually we will
not distinguish notationally between a measure ρ ∈Pac(Ω) and its density w.r.t. Lebesgue, except when
the identification is not clear from the context. Let T : Ω → Ω be a measurable map, then we define
the push-forward of a measure ρ ∈P(Ω) as T#ρ given by T#ρ(B) = ρ(T−1(B)) for all measurable sets
B. Consider the product space Ω × Ω = Ω2 and the projections Px,Py : Ω2 → Ω given by Px(x, y) = x
and Py(x, y) = y. Therefore, given a γ ∈P(Ω2), the first and second marginal distributions of γ can be
written as (Px)#γ and (Py)#γ and we define for ρ, µ ∈P(Ω) the set

Π(ρ, µ) := {γ ∈P(Ω2) | (Px)#γ = ρ, (Py)#γ = µ} . (2.1.1)

Let ρ, µ ∈P(Ω) then the product measure ρ⊗µ is the measure (ρ⊗µ) ∈P(Ω2) defined by (ρ⊗µ)(A×B) =
ρ(A)µ(B) for all measurable sets A,B ⊂ Ω. Note that for ρ, µ with densities r,m this implies that the
density of ρ⊗ µ is given by the direct product of the densities r ⊗m, making this notation consistent.

The notion of convergence we will consider in P(Ω) will be narrow convergence of measures. That is,
for a sequence and a limit ρk, ρ∗ ∈P(Ω) we say ρk converges narrowly to ρ∗, ρk ⇀ ρ∗, iff for all bounded
continuous functions φ ∈ Cb(Ω)

lim
k→∞

ˆ
Ω

ϕ(x) dρk(x) =

ˆ
Ω

ϕ(x) dρ∗(x) . (2.1.2)

Since for bounded Ω the spaces Cb(Ω) and C(Ω) coincide, the notion of narrow convergence can be
adjusted in that case.

2.1.1 An extension of the Aubin-Lions theorem

We will specify Theorem 2 from [45] to our needs. This will be the main tool in Chapters 3 and 5 to
conclude convergence. Let us define two objects first, that will be needed in stating the theorem.

Definition 2.1. Let V be a Banach space with norm ‖·‖V . Then we will call F : V → [0,∞] a normal,
coercive integrand if

1. F is measurable w.r.t. to the Borel subsets of V ;

2. the map u 7→ F(u) is lower semicontinuous;

3. the map u 7→ F(u) has compact sublevels in V .

We will call g a pseudo-distance on V w.r.t. F if

1. for all u, v ∈ F−1([0,∞)) the equation g(u, v) = 0 implies u = v;
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2. the map (u, v) 7→ g(u, v) is joint lower semi-continuous.

Example 2.2. An example for a pair F and g that satisfies the above definition if Ω is bounded with
V = Lm(Ω), is

F(ρ) =

{´
Ω
|ρ(x)|m + ‖∇ρ(x)‖m dx if ρ ∈W 1,m(Ω)

+∞ otherwise

and g(ρ, µ) = T2(ρ, µ).
The result that F and g are indeed a pair of a normal, coercive integrand with a compatible pseudo-

distance was shown in [26] [18] and [8].

Now we can adapt Theorem 2 of [45]

Theorem 2.3 (Extension of Aubin-Lions). Let V be a Banach space with norm ‖·‖V . Let F : V → [0,∞]
be a normal coercive integrand and g : V × V → [0,∞] be a pseudo-distance (c.f. Definition 2.1). Let
(uτ (t))τ∈J be a family of measurable curves uτ : [0, T ]→ V such that

sup
τ∈J

ˆ T

0

F(uτ (t)) dt <∞ (2.1.3)

and

lim
h↘0

sup
τ∈J

ˆ T−h

0

g(uτ (t+ h), uτ (t)) dt = 0 . (2.1.4)

Then (uτ ) is relatively compact in M(0, T ;V ).

2.2 Optimal transport

We want to give a short introduction to concepts from optimal transport we will be dealing with in this
thesis. To that end we begin with stating the optimal transport problem of Kantorovich followed by
the corresponding dual problem. Then we will consider the transport problem on the line, which will be
central in Chapter 3 followed by the entropic regularization for our OT problems, which will be central
in Chapter 4 and 5.

2.2.1 The optimal transport problems

This thesis is concerned with different aspects of the optimal transport distance. We want to introduce
here the Monge problem, its relaxation, the Kantorovich problem, state some general results concerning
existence and then move on to the properties of these on the real line as well as the entropic regularization
of the Kantorovich problem

The history of optimal transport began with Gaspard Monge, who proposed a problem in [38]. It
reads as follows.

Definition 2.4 (The Monge problem). Let Ω ⊂ Rd and ρ, µ ∈ P(Ω). Then the Monge problem of
transporting µ to ρ with cost c is to minimize

ˆ
Ω

c(x− S(x)) dµ (2.2.1)

among all measurable S : Ω→ Ω with the property S#µ = ρ. These S are called transport maps.
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We stated the problem here in more generality than Monge, who only considered c = ‖·‖2 and
dimensions 2 and 3. The Monge problem was long unsolved, which is due to its constraint S#µ = ρ
which is non-linear and therefore complicates the matter as is for example pointed out in [46].

Up until 1942 little progress was made w.r.t. the optimal transport problem and no progress in the
question of the existence of a minimizer at all, when in [25] Leonid Kantorovich looked at the problem
from a linear programming point of view. He arrived at the following problem, nowadays called the
Kantorovich problem.

Definition 2.5 (The Kantorovich problem). Let Ω ⊂ Rd and ρ, µ ∈ P(Ω). Then the Kantorovich
problem of transporting µ to ρ with cost c reads as follows.

Tc(ρ, µ) := inf
γ∈Π(ρ,µ)

¨
Ω2

c(x− y) dγ(x, y) . (2.2.2)

The set Π(ρ, µ) ⊂P(Ω2) was defined in (2.1.1) as the set of probability measures γ with first and second
marginal ρ and µ respectively. These γ are called transport plans. Let us furthermore denote with T2

the particular Tc with c = 1
2 ‖·‖

2
2 and an optimal transport problem refers to the Kantorovich problem.

The following is a well known result for the optimal transport problem which shows existence of a
minimizing transport plan. A proof can for example be found in [46, Theorem 1.7.].

Proposition 2.6. Let ρ, µ ∈ P(Ω) and c : Ω2 → [0,∞] a proper, lower semi-continuous and bounded
from below. Then the Kantorovich problem admits a minimizer.

Sketch of proof. First, γ 7→ 〈c, γ〉 is l.s.c. w.r.t. narrow convergence since c is. Furthermore Π(ρ, µ)
is tight, implying narrow compactness. The bound from below on c implies a bound from below on
γ 7→ 〈c, γ〉 and then we can apply the direct method of the calculus of variation to conclude the existence
of a minimizer.

2.2.2 The Dual problem

Let us state the dual problem to our Kantorovich problem above.

Definition 2.7 (The dual problem). Let c, ρ, µ as in Definition 2.5. Then the dual problem is defined
as

D(ρ, µ) := sup
φ,ψ∈Cb(Ω)
φ⊕ψ≤c

ˆ
Ω

φ(x) dρ(x) +

ˆ
Ω

ψ(y) dµ(y) . (2.2.3)

We can make this definition plausible by a short calculation. Let us express the constraint in the
Kantorovich problem, γ ∈P(ρ, µ), in a variational way:

sup
φ,ψ∈Cb(Ω)

ˆ
Ω

φdρ+

ˆ
Ω

φdµ−
¨

Ω2

φ⊕ ψ dγ =

{
0 if γ ∈ Π(ρ, µ)

+∞ otherwise.

Now assuming we can exchange inf and sup, and denoting with M+(Ω2) the set of non-negative Borel
measures on Ω2, we arrive at

Tc(ρ, µ) = inf
γ∈M+(Ω2)

¨
Ω2

c(x− y) dγ + sup
φ,ψ∈Cb(Ω)

{ˆ
Ω

φ dρ+

ˆ
Ω

ψ dµ−
¨

Ω2

φ⊕ ψ dγ

}
= sup
φ,ψ∈Cb(Ω)

ˆ
Ω

φdρ+

ˆ
Ω

ψ dµ+ inf
γ∈M+(Ω2)

¨
Ω2

c(x− y)− φ⊕ ψ dγ .
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Now as soon as φ⊕ ψ > c somewhere, γ could concentrate more and more on a neighbourhood showing
that the inf results in −∞ contradicting our sup. Therefore φ⊕ψ ≤ c is letting the inf-expression vanish
and resulting in our definition above.

Let us finish this part by stating the connection between the Kantorovich and the dual problem which
holds under quite general assumptions (c.f. [2, Theorem 6.1.1]).

Proposition 2.8 (Duality). Let c : Ω2 → [0,∞] be a proper l.s.c. function. Then

D(ρ, µ) = Tc(ρ, µ) .

2.2.3 One-dimensional optimal transport

Considering optimal transport problems in one dimension admits some special features not found in
dimensions two and up. In one dimension, the problem of moving, lets say one probability density to
another one, can be described procedurally. The optimal way consists in starting from one end of the
real line and, as you move along, you pick up the particles of µ and put them, also coming from the same
end of the real line, where the next particle of ρ is supposed to be. As it turns out, for the families of cost
functions considered in Chapter 3, this description always yields the optimal transport plan rendering
it independent from the cost function.

Since this part is preparing for Chapter 3, we will restrict ourselves here to I = [a, b] a compact
interval and probability densities that are bounded from above and away from zero, i.e. µ ∈Pac(I) such
that its density satisfies µ+ 1

µ ∈ L
∞(I).

Consider some µ ∈ P(Ω). Then the cumulative distribution function Uµ is defined as
´ x
a

dµ(x) and
the corresponding inverse (cumulative) distribution function (IDF for short) as Xµ = U−1

µ : [0, 1] → I.

Since the density m of our µ is bounded from above and away from zero, Xµ is a.c. and X ′µ = 1
m◦Xµ

holds a.e. .

Proposition 2.9 (Adapted from Chapter 2 [46]). Let ρ, µ ∈ Pac(I) with densities bound from above
and away from zero. Let c : R→ R continuous and strictly convex. Then dγ(x, y) = (Xρ, Xµ)# dL(x) is
the optimal transport plan of Tc(ρ, µ) and consequently

Tc(ρ, µ) =

ˆ
[0,1]

c (Xρ(ξ)−Xµ(ξ)) dξ

holds.

This in particular means, that in the one-dimensional case, there is no minimization problem to be
solved in Tc, since the optimal plan can be computed in terms of the IDFs of ρ, µ. Chapter 3 will rely on
this fact to arrive at a numerical scheme that does not suffers from a minimization problem encapsulated
in another one.

2.3 Entropic regularized optimal transport

Adding an entropic regularization penalty to the original OT problem, we arrive at the so called entropic
regularized OT which will be central in Chapter 4 and 5. This regularization admits some very nice
properties. In particular, in fully discrete schemes it allows for highly efficient calculation of the minimizer
by means of Dykstras projection algorithm with Bregman divergences (c.f. [42]).

The entropic regularized optimal transportation problem stated below is related to the Schrödinger
problem as was pointed out by Christian Léonard in [28]. The connection of the entropic regularized
problem to the unregularized problem is investigated therein as well.

As a possibility to receive efficient solvers for our JKO-schemes, the entropic regularized JKO-scheme
was introduced by Gabriel Peyré in [42] and then analysed in [8].
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The entropic regularized distance

Definition 2.10. The entropic regularized optimal transport distance for some cost function c is defined
as

Tc,ε(ρ, µ) := inf
γ∈Π(ρ,µ)

¨
Ω2

c(x− y) dγ(x, y) + εH(γ) . (2.3.1)

We want to define the relative entropy, also known as Kullback-Leibler divergence, here, too,

H(ν | η) =

ˆ
X

log

(
dν

dη

)
dν (2.3.2)

if ν << η and +∞ else. Here dν
dη denotes the Radon-Nikodym derivative of ν w.r.t. η.

As with Proposition 2.6, we want to state the existence of a minimizer in (2.3.1) and give a short
sketch of the proof.

Proposition 2.11. The minimization problem in (2.3.1) where c : Ω2 → [0,∞] is proper, lower semi-
continuous and bounded from below, admits exactly one minimizer.

Sketch of proof. The proof is similar to the one of Proposition 2.6. Again, we begin with noting that
γ 7→ 〈c, γ〉 is l.s.c. w.r.t. narrow convergence and so is H(γ) =

˜
Ω2 h(γ) d(x, y) by l.s.c. , convexity

and superlinearity of h at infinity. Consequently, 〈c, γ〉 + εH(γ) is l.s.c. , too. Furthermore, when Ω is
bounded, H can be bounded from below. Now, 〈c, γ〉 can be bounded from below, too, Π(ρ, µ) is tight,
and consequently the direct method of the calculus of variation can be applied. Finally, noting that
γ 7→ 〈c, γ〉+ εH(γ) is strictly convex in γ, since 〈c, γ〉 is linear and H is strictly convex, we can conclude
uniqueness of the minimizer.

Remark 2.12. Note that it is, at least formally, just a matter of a simple calculation to see, that for
γ ∈Pac(Ω2) with density G, i.e. dγ = G · dL2d

¨
Ω2

c(x− y) dγ(x, y) + εH(γ) =

¨
Ω2

G(x, y) (c(x− y) + ε log(G(x, y))) d(x, y)

= ε

¨
Ω2

G(x, y) log

(
G(x, y)

Kε(x, y)

)
d(x, y)

= εH(γ | Kε)

holds, where

Kε(x, y) = e−
c(x−y)

ε . (2.3.3)

With this consideration at hand, it is easy to see an alternative definition of the entropic regularized OT
distance as

T2
c,ε(ρ, µ) = inf

γ∈Π(ρ,µ)
εH(γ | Kε) . (2.3.4)

Note that we, slightly abusing notation, denoted with Kε the measure on Ω with density given by Kε(x, y).
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Chapter 3

1D Lagrangian Scheme

3.1 Introduction and preliminary results

This chapter is based on [47], the joint work of the author with Oliver Junge. It is concerned with
the convergence of a Lagrangian numerical scheme in one spatial dimension for solution of equation
(1.0.1). The scheme itself will consist of a spatio-temporal discretization founded in the formulation of
the equation in terms of (pseudo-)inverse (cumulative) distribution functions (a.k.a. quantile function)
which we will abbreviate as IDF.

The main result consists of two parts. Both results state that an approximate solution calculated
by means of the spatio-temporal discretization will converge to a solution of (1.0.1) for vanishing mesh
size. The first convergence result concerns a family of cost functions that resemble p-Wasserstein cost
s 7→ 1

p |s|
p
. The second convergence result will rely on additional assumptions to show that the result

then still holds even when flux-limiting cost are considered.
While proving the convergence results we will receive additional properties of this discretization that

it shares with the continuous flow, like entropy monotonicity, mass preservation, a minimum/maximum
principle and flux-limitation in the case of the corresponding cost.

In the final part of this chapter the discretization is applied to some problems and additionally a
numerical convergence analysis is appended.

3.1.1 Restating the problem

Let us restate (1.0.1). We want to find approximate solutions for the non-linear Fokker-Planck equation
with no-flux boundary conditions in one spatial dimension

∂tρ = ∂x (ρ · A [∂xu
′(ρ) + v′ + (w′ ∗ ρ)]) in (0, T )× [a, b]

ρ(0, ·) = ρ0 in [a, b]

∂xρ = 0 on [0, T ]× {a, b}
(3.1.1)

where A, u, v and w are specified now. We begin with the families of cost functions that will lead up to
A.

Definition 3.1 (p-Wasserstein like cost). We will call a cost function c : R→ [0,∞) p-Wasserstein like
if it is even, strictly convex, with c(0) = 0 as well as c ∈ C1(R) ∩C3(R \ {0}) and satisfies the following
bounds.

There are constants α, β > 0 such that

α |s|p ≤ c̃(s) ≤ β |s|p (3.1.2)

15
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holds for every s ∈ R and where we abbreviated

c̃(s) = sc′(s) . (3.1.3)

Definition 3.2 (flux-limiting cost). We will call a cost function c : R → [0,∞] flux-limiting if it is
strictly convex and even with c(0) = 0. Furthermore it is assumed to have a proper domain of the form
c−1(R) = [−γ, γ] for some γ > 0 the flux-limitation (or

”
lightspeed“), its derivative is assumed to be

diverging at the boundary
lim
s→±γ

c′(s) = ±∞ (3.1.4)

as well as c ∈ C0([−γ, γ])∩C3((−γ, γ)) and it satisfies the bounds from Definition 3.1 with p = 2, i.e.
there are constants α, β > 0 such that

α |s|2 ≤ c̃(s) ≤ β |s|2 (3.1.5)

holds for every s ∈ [−γ, γ].

Before we can specify A, we have to introduce the Legendre transform. Though we will only need it
as a result for functions on the real line, let us state this definition for functions on Rd.

Definition 3.3. Let f : Rd → R∞ be convex. Then the Legendre transformation f∗ : Rd → R of f is
given as

f∗(y) := sup
x∈Rn

〈x, y〉 − f(x) . (3.1.6)

Legendre transforms of differentiable convex functions enjoy some useful properties.

Proposition 3.4 (Adapted from Box 1.12. in [46]). Let f : Rd → R∞ be convex and differentiable. Let
∇f be furthermore a C1-diffeomorphism. Then (∇f)−1 = ∇(f∗) holds and ∇(f∗) is monotone in the
sense that for all x, y ∈ dom(∇f), the domain of ∇f

〈∇(f∗)(x)−∇(f∗)(y), x− y〉 ≥ 0

holds.

Now we can go on with the definition of A.

Definition 3.5 (Specifying A, u, v and w). The maps A : R → R, u : [0,∞) → [0,∞), v : R → R and
w : R→ R are assumed to have the following properties.

1. There is a cost function c : R→ [0,∞] satisfying either Definition 3.1 or 3.2 such that

A = (c∗)′ . (3.1.7)

2. u is defined as (c.f. 1.0.5)

u(s) =

{
s log(s) if m = 1

1
m−1s

m if m > 1.
(3.1.8)

3. v ∈ C3(R) is convex.

4. w ∈ C3(R) is convex and even.

Assumption 3.6. The combination of c and the two potentials v and w are subject to the following
restrictions.
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• If v and w are not both constants, c′′ has to be bounded away from zero i.e. there is c′′ > 0 such
that

c′′(s) ≥ c′′ for s 6= 0 . (3.1.9)

This restriction is due to (c∗)′ being no longer Lipschitz in general, if this prerequisite is not met.
The problem (3.1.1) might not be well-posed as soon as there is a potential (external or interaction)
involved.

• If c is flux-limiting, ∂xρ0, the weak spatial derivative of our initial data, has to be bounded.

Examples 3.7. We present three PDEs arising from choosing certain parameters and potentials.

• Let q ∈ N with q > 1. Then choose p ∈ (1, 2) such that 2−p
p−1 = q and pick m = 3 − p > 1. For

any constant external & interaction potential, the equation becomes the q-Laplace equation already
stated in (1.0.7)

∂tρ = ∂x(|∂xρ|q · ∂xρ) . (3.1.10)

• Let p = 2 and m > 1. Then the equation is a Fokker-Plank equation

∂tρ =
1

m
∂2
xρ
m + ∂x(ρv′) + ∂x(ρ(w′ ∗ ρ)) . (3.1.11)

• Let

c(s) =

γ
(

1−
√

1−
∣∣∣ sγ ∣∣∣2

)
for |s| ≤ γ

+∞ elsewhere.

(3.1.12)

Then we recover, for m = 1; v,w = 0 Rosenau’s relativistic heat equation already introduced in
(1.0.8) (c.f. [44])

∂tρ = ∂x

ρ ∂xρ√
ρ2 + |∂xρ|2

 . (3.1.13)

Remark 3.8. The equation (3.1.1) can be written as a transport equation

∂tρ = div (ρ ·V[ρ]) (3.1.14)

where the velocity V[ρ] = A [∂xu
′(ρ) + v′ + (w′ ∗ ρ)] consists of a non-linear diffusion term u, an external

potential v and an interaction potential w.

3.1.2 Variational Formulation and Discretization

We will see that solutions to our PDE can be approximated by minimizing movement sequences in the
energy landscape of E where, for ρ ∈Pac(Ω) it is defined as

E(ρ) = U(ρ) + V(ρ) +W(ρ) (3.1.15)

and where E is taken to be +∞ otherwise. Here the internal, external and interaction energies, U ,V and
W, are defined as

U(ρ) :=

ˆ

[a,b]

u(ρ(x)) dx; V(ρ) :=

ˆ

[a,b]

v(x)ρ(x) dx W(ρ) :=

¨

[a,b]2

ρ(x)w(x− y)ρ(y) d(x, y) . (3.1.16)
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with respect to the optimal transport distance (c.f. Proposition 2.9).

Tc,τ (ρ, µ) = inf
γ∈Π(ρ,µ)

ˆ
[a,b]2

c(x− y) dγ(x, y) (3.1.17)

Now rewriting these functionals w.r.t. the quantile function Xρ we arrive at the energy expressed in
terms of IDF which reads as follows:

E(ρ) =

ˆ

[0,1]

u∗(∂ξXρ) dξ +

ˆ

[0,1]

v(Xρ) dξ +

¨

[0,1]2

w(Xρ(ξ)−Xρ(ζ)) d(ξ, ζ) . (3.1.18)

Here u∗(s) = su( 1
s ).

Concerning the optimal transport distance (c.f. Proposition 2.9)

Tc,τ (ρ, µ) =

ˆ
[0,1]

c(Xρ(ξ)−Xµ(ξ)) dξ . (3.1.19)

Finally we discretize the X piecewise constant on a equidistant mesh {0 = ξ0, . . . , ξk = 1} ⊂ [0, 1]
of strictly increasing values ξi = i

k receiving strictly increasing vectors x = (a = x0, x1, . . . , xk = b)
representing a discrete X in the following way

x 7→ X(ξ) =

k−1∑
i=0

x
(n)
i 1(ξi,ξi+1)(ξ) (3.1.20)

where x has to lie in the set Xk([a, b]) defined as

Xk([a, b]) := {x = (x0, x1, . . . , xk) ∈ Rk+1 | a = x0 < x1 < · · · < xk = b} . (3.1.21)

furthermore we also represent the derivative of X by a piecewise constant function

x 7→ δξX(ξ) =

k−1∑
i=0

δx
(n)
i 1(ξi,ξi+1)(ξ) .

Applying this discretization to our functionals we arrive at the discrete minimizing movement scheme,
which is our fully discrete scheme.

minimize x 7→ Φ(τ ; x(n−1),x) (3.1.22)

where

Φ(τ ; x(n−1),x) := τTx
c,τ (x(n),x(n−1)) + Ex(x(n))

= τTx
c,τ (x(n),x(n−1)) + Ux(ρ) + Vx(ρ) +Wx(ρ)

with

Ux(x(n)) := hk

k−1∑
i=0

u∗(δx
(n)
i−1); Vx(x(n)) := hk

k∑
i=0

v(x
(n)
i ); Wx(x(n)) := hk

k∑
i=0

hk

k∑
j=0

w(x
(n)
i − x(n)

j )

and

Tx
c,τ (x(n),x(n−1)) := hk

k∑
i=0

c

(
x

(n)
i − x(n−1)

i

τ

)
.

We note the following result concerning Vx and Wx.
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Remark 3.9. The convexity assumption of v and w imply the the following convexity for the potentials.

〈∇F(x),x− y〉 ≤ F(x)−F(y)

for F either Vx or Wx specified in (3.1.18).

Remark 3.10. A short remark on the choice of piecewise constant spatial discretization opposed to
piecewise affine discretization is advisable. Usually the IDF X is discretized in a piecewise affine way.
This way the corresponding densities are piecewise constant on (xi, xi+1) with the same mass on each of
these intervals. Anticipating the Euler-Lagrange equation, we see that the r.h.s. and the l.h.s. would not
fit together by non-linearity of (c∗)′ when considering the discretized IDF. One way to circumvent this
problem is to consider piecewise constant discretized IDF, which is exactly what we do.

To simplify the expressions appearing in the following claims and proofs, we abbreviate the finite

forward difference quotient of our vectors x(n) = (x
(n)
0 , . . . , x

(n)
k ) ∈ Xk([a, b]) as

δx(n) = (δx
(n)
0 , . . . , δx

(n)
k−1) where δx

(n)
i =

x
(n)
i+1 − x

(n)
i

hk
for i = 0, . . . , k − 1 .

Furthermore we now define the second symmetric difference quotient as

δ2x(n) = (δ2x
(n)
1 , . . . , δ2x

(n)
k−1) where δ2x

(n)
i :=

x
(n)
i+1 − 2x

(n)
i + x

(n)
i−1

h2
k

for i = 1, . . . , k − 1 .

This way δ[δx
(n)
i−1] = δ2x

(n)
i holds.

We state a result allowing the approximation of the weak derivative of a function with the just
introduced finite differences. It is adapted from [20, Chapter 5.8.2].

Proposition 3.11 (Finite differences and the weak derivative). Let δz = δz,k be the finite forward
difference operator in direction of space z = ξ or time z = t w.r.t. to the step size in space hk or time τk
respectively.

Let furthermore fk : (0, T )× (0, 1) → R be a sequence in Lp((0, T )× (0, 1)) with p ∈ (1,∞) such
that fk ⇀ f∗ in Lp((0, T )× (0, 1)) and δzfk is bounded w.r.t. ‖·‖Lp((0,T )×(0,1)). Then δzfk ⇀ ∂zf∗ ∈
Lp((0, T )× (0, 1)).

If δxfk ⇀ ∂xf∗ and δtfk ⇀ ∂tf∗ hold, then fk → f∗ strongly w.r.t. Lp((0, T )× (0, 1)).

Proof. We will prove the claim for z = ξ. The proof for z = t is virtually the same.
By Banach-Alaoglu theorem and reflexivity, for each subsequence of δξ,kfk there is a subsubsequence

converging weakly to some g∗ in Lp((0, T )× (0, 1)) . Now let ε > 0. Then for said (unrelabelled)
subsubsequence and all φ ∈ C∞c ((0, T )× (0, 1)) with suppφ ⊂ [0, T ]× [ε, 1− ε] we can calculate

ˆ
Ω

g∗φ = lim
k→∞

ˆ
Ω

δξ,kfkφ

= − lim
k→∞

ˆ
Ω

fkδ
−
ξ,kφ

= −
ˆ

Ω

f∗∂ξφ

where we denoted the backwards finite difference operator as δ−ξ,k, used that g∗ is the weak limit of δξ,kfk,
integration by parts for the finite difference operator and assuming hk < ε to be able to neglect the
boundary-terms of the integration by parts.
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This shows that g∗ = ∂ξf∗ on [0, T ] × (ε, 1 − ε) holds and by uniqueness of the weak derivative, the
original sequence δξ,kfk converges to ∂ξf∗ on [0, T ]×(ε, 1−ε). Since ε > 0 was arbitrary, we can conclude
that these results hold on (0, T )× (0, 1).

Finally, if δξfk ⇀ ∂ξf∗ and δtfk ⇀ ∂tf∗ hold, as well as the assumed fk ⇀ f∗, then fk converges
weakly in W 1,p((0, T )× (0, 1)) to f∗ and the Rellich–Kondrachov theorem implies the strong convergence
we stated above.

3.1.3 Main Theorem

The main result concerning the sequence Xk approximating the IDF is given in the following theorem.
It states that the limit of our sequence Xk is a weak solution to (3.1.1) rewritten in terms of inverse
distribution functions X:

∂tX(t, ξ) = (c∗)′
[
∂ξu
′
∗(∂ξX(t, ξ)) + v′(X(t, ξ)) +

ˆ 1

0

w′(X(t, ξ)−X(t, ζ)) dζ

]
on (0, T )× (0, 1)

X(0, ξ) = X(0) on (0, T )

(3.1.23)

where we additionally assume that X(t, ·) is a IDF a.e. on [0, 1].

Theorem 1. Let k ∈ N, τk > 0 be a sequence monotonically converging to zero and c a cost function

satisfying Definition 3.1. Let x
(0)
k be a sequence in k with

1. x
(0)
k ∈ Xk(I) (where Xk(I) is defined in (3.1.21));

2. The piecewise affine interpolation of x
(0)
k as defined in (3.1.20) converges pointwise to an IDF X(0);

3. The energy Ex(x
(0)
k ) is uniformly bounded in k;

4. There are upper and lower bounds 0 < δx(0) < δx(0) such that δx(0) < δx
(0)
k < δx(0) holds for all k.

Let finally the sequence Xk : [0, T ]× [0, 1]→ R be the piecewise constant interpolation of the x
(n)
k created

with initial data x
(0)
k and the recursion (3.1.22).

Then the sequence Xk has the following properties. There is an unrelabled subsequence such that Xk

converges in Lq([0, T ]× [0, 1]) to X∗ ∈ W 1,∞((0, T )× (0, 1)) ∩ C0,α(0, T ;L1([0, 1])) for every q ∈ [1,∞),
where α = 1/p, ∂ξX∗ ∈ L1(0, T ;W 1,p′((0, 1))) and p′ = 1

1−1/p denotes the Hölder conjugate. The limit

X∗ solves the following weak formulation of (3.1.23):

−
ˆ T

0

ˆ 1

0

X∗(t, ξ)∂tϕ(t, ξ) dξ dt

=

ˆ T

0

ˆ 1

0

(c∗)′
(
∂ξu
′
∗(∂ξX∗(t, ξ))− v′(X∗(t, ξ))−

ˆ 1

0

w′(X∗(t, ξ)−X∗(t, ζ)) dζ

)
ϕ(t, ξ) dξ dt

holds for all ϕ ∈ C∞c ((0, T )× (0, 1)). Additionally the initial data are assumed continuously limt↘0X∗(t) =
X(0) in Lp([0, 1]) and X∗(t, ·) is an IDF for a.e. t ∈ [0, 1].

As already mentioned, a similar theorem can be stated for the family of flux-limiting cost.

Theorem 2. Let the prerequisites of Theorem 1 hold, except c does this time satisfy Definition 3.2 instead
of 3.1. Additionally we assume finite bounds

−∞ < δ2x(0) < δ2x(0) <∞ such that δ2x(0) < δ2x
(0)
k < δ2x(0) holds for all k

Then convergence to a weak solution of (3.1.23) holds in the sense of Theorem 1 with p = 2 and the
initial data are again assumed continuously.
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3.2 Variational properties of the minimization problem

In this section we want to lay the foundation for the successive section, which will show the crucial
convergences that are needed for the main theorem. First of all, we will show that the sequences x(n) are
indeed well defined. This is followed by the Euler-Lagrange equation for the minimization problem .

Finally we will show two estimates. The first estimate is a maximum-/minimum principle for the

forward differences
x
(n)
i+1−x

(n)
i

hk
giving us control over u∗

(
x
(n)
i+1−x

(n)
i

hk

)
and u′∗

(
x
(n)
i+1−x

(n)
i

hk

)
. This bound

itself corresponds to bounding the probability density ρ itself from above and away from zero.

The second estimate will be a second comparison principle bounding the second order central dif-

ferences δ2x
(n)
i =

x
(n)
i+1−2x

(n)
i +x

(n)
i−1

hk
which in turn corresponds to a bound for the spatial derivative of

ρ.

The second one is derived by a descent-in-energy argument in combination with displacement convexity
of our internal energy term U which corresponds in our IDF terms to convexity of Ux. This estimate
yields in combination with properties of v and w a bound for the r.h.s. of the Euler-Lagrange equation
and will guarantee convergence of the corresponding sequence of functions to some limit.

3.2.1 Existence and uniqueness

Lemma 3.12. The minimization problem has a unique minimizer

x = (x0, . . . , xk) ∈ Xk([a, b]) .

Proof. The set Xk([a, b]) is bounded in Rk+1 and Φ(τ ; x(n−1),x) is continuous in X ([a, b]) and lower semi-
continuous in X ([a, b]). Furthermore X ([a, b]) is compact, so there exists a minimizer xmin = (x0, . . . , xk).

x = x(n−1) generates a finite value in Φ, so at each minimizer Φ(τ ; x(n−1), ·) is finite. Additionally, the
functional is strictly convex, since all summands are and τ > 0, so said minimizer is unique.

Note that u∗ is monotonously decreasing and furthermore

inf
x∈Xk([a,b])

Vx(x) =: Vx > −∞

as well as

inf
x∈Xk([a,b])

Wx(x) =:Wx > −∞

holds by properties of Xk([a, b]), v and w.

This way we have for j = 0, . . . , k − 1:

C ≥ Φ(τ ; x(n−1),xmin)

≥ τTx
c,τ (xmin,x

(n−1)) + Ex(xmin)

≥ hk
k−1∑
i=0

u∗

(
x

(n)
i+1 − x

(n)
i

hk

)
+ Vx +Wx

≥ hku∗

(
x

(n)
i+1 − x

(n)
i

hk

)
+ hk(k − 1)u∗

(
b− a
hk

)
+ Vx +Wx

(3.2.1)

This yields a bound from above for
x
(n)
i+1−x

(n)
i

hk
for every i since u∗(s) diverges to +∞ for s↘ 0.
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Now that we know that the minimization is well defined, we can establish the following result, which
is the standard a priori estimate based on x(n) being a descending sequence in the energy landscape of
Ex showing that our sequence is indeed monotonously descending in Ex.

Corollary 3.13. Let x(n−1) ∈ Xk([a, b]) and x(n) the minimizer of our minimization problem. Then

Tx
c,τ (x(n),x(n−1)) ≤ Ex(x(n−1))− Ex(x(n)) (3.2.2)

holds.

Proof. Plugging in the feasible x = x(n−1) in the minimization problem combining it with x(n) being a
minimizer and with Tx

c,τ (x(n−1),x(n−1)) = 0 yields the result after rearranging.

This result in particular shows, that our sequence x(n) is monotonously descending in the energy
landscape of E .

3.2.2 The Euler-Lagrange equation

The Euler-Lagrange equation of our minimization problem will form a substantial part of the foundation
for our calculations. In the case of p-Wasserstein cost, the proof is straight forward. In the case of
flux-limiting cost, however, we have to make sure the minimization problem in some sense does not see
the discontinuity. Unfortunately this cannot be done a posteriori with the second maximum-/minimum
principle since the proof of the principle does rely on the Euler-Lagrange equation.

Lemma 3.14. In the case of flux-limiting cost, the minimizer x(n) lies in{
x
∣∣∣x ∈ Xk([a, b]),

∣∣∣xj − x(n−1)
j

∣∣∣ < γτ for j = 0, . . . , k
}
.

Proof. Let P :=
{
i ∈ {0, . . . , k} |

∣∣∣x(n)
j − x(n−1)

j

∣∣∣ = γτ
}

. We can omit the cases
∣∣∣x(n)
j − x(n−1)

j

∣∣∣ > γτ ,

since they don’t occur at a minimizer. Let P ⊂ {0, 1, . . . , k} and define a partial convex combination of
x(n) and x(n−1) w.r.t. P as

xε :=

{
(1− ε)x(n)

i + εx
(n−1)
i if i ∈ P

x
(n)
i if i /∈ P .

We will now show that if P 6= ∅, then for a suitable ε the partial convex combination xε is a feasible
candidate with Φ(τ,x(n−1),xε) < Φ(τ,x(n−1),x(n)) contradicting x(n) being a minimizer in the first place.

We note that xε ∈ Xk([a, b]) for ε small enough, since x(n) ∈ Xk([a, b]) and Xk([a, b]) is open w.r.t.
{a} × Rk−1 × {b}.

Furthermore recall the behaviour of c′ at the boundary (c.f. Definition 3.2).

Define two index sets as follows.

P+ := {i ∈ {0, . . . , k} | i /∈ P, i+ 1 ∈ P} and P− := {i ∈ {0, . . . , k} | i ∈ P, i+ 1 /∈ P} .

We will consider Φ(τ ; x(n−1),x(n))− Φ(τ ; x(n−1),xε) and we can see that, since xε → x(n) for ε↘ 0
and since v and w are both continuous, that the corresponding expressions are bounded.
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Recall c and u∗ are strictly convex functions in C1(I), which allows us to calculate now only for the
remaining expressions

hk

k∑
i=0

c

(
1

τ
(x

(n)
i − x(n−1)

i )

)
− c

(
1

τ
(xεi − x

(n−1)
i )

)

+ hk

k−1∑
i=0

u∗

(
x

(n)
i+1 − x

(n)
i

hk

)
− u∗

(
xεi+1 − xεi

hk

)

> εhk

(∑
i∈P

c′
(

1

τ
(xεi − x

(n−1)
i )

)
1

τ

(
x

(n)
i − x(n−i)

i

)
+ hk

∑
i∈P\P−

u∗

(
xεi+1 − xεi

hk

)(
δx

(n)
i − δx(n)

i−1

)

+ hk
∑
i∈P−

u∗

(
x

(n)
i+1 − xεi
hk

)
k
(
x

(n−1)
i − x(n)

i

)
+ hk

∑
i∈P+

u∗

(
xεi+1 − x

(n)
i

hk

)
k
(
x

(n)
i − x(n−1)

i

))
.

By continuity, the expressions u∗
(
xεi+1−x

ε
i

hk

)
, u∗

(
x
(n)
i+1−x

ε
i

hk

)
u∗

(
xεi+1−x

(n)
i

hk

)
and u∗

(
xεi+1−x

(n)
i

hk

)
are bounded

in ε for ε↘ 0. On the other hand,

c′
(

1

τ
(xεi − x

(n−1)
i )

)(
x

(n)
i − x(n−1)

i

)
→∞ for ε↘ 0 .

Note that by continuity of v and w, the differences Vx(x(n)) − Vx(xε) and Wx(x(n)) −Wx(xε) are
bounded too.

So we know that, for ε small enough, Φ(τ ; x(n−1),x(n))−Φ(τ ; x(n−1),xε) will be positive which is our
sought for contradiction.

Lemma 3.15 (Euler-Lagrange equation). Let M,M ∈ (0,∞) and x(n−1) ∈ Xk([a, b]). Let x(n) be the
minimizer of our minimization problem. Then it satisfies the system of equations

x
(n)
i − x(n−1)

i

τk
= (c∗)′

[(
∇Ux(x(n))

)
i
−
(
∇Vx(x(n))

)
i
−
(
∇Wx(x(n))

)
i

]
(3.2.3)

where

(
∇Ux(x(n))

)
i

=

u′∗

(
x
(n)
i+1−x

(n)
i

hk

)
− u′∗

(
x
(n)
i −x

(n)
i−1

hk

)
hk(

∇Vx(x(n))
)
i

= v′(x
(n)
i )(

∇Wx(x(n))
)
i

= 2hk

k∑
j=0

w′(x
(n)
i − x(n)

j )

for each i = 1, . . . , k − 1. Note that the above equation reduces to
x
(n)
i −x

(n−1)
i

τk
= 0 for i ∈ {0, k}.

Remark 3.16. We will abbreviate the argument of (c∗)′ above:

a
(n)
i,k :=

u′∗

(
δx

(n)
i

)
− u′∗

(
δx

(n)
i−1

)
hk

− v′(x
(n)
i )− 2hk

k∑
j=0

w′(x
(n)
i − x(n)

j ) . (3.2.4)
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Proof of Lemma 3.15. The functional Φ(τk; x(n−1), ·) is continuously differentiable on Xk([a, b]) = {x |
a = x0 < x1 < · · · < xk = b} with gradient

∂xjΦ(τ ; x(n−1),x)

= hkc
′
(

1

τ
(xj − x(n)

j−1)

)
+ u′∗(δxj−1)− u′∗(δxj) + hkv′(xj)

+ h2
k

k∑
j=0

w′(x
(n)
i − x(n)

j )− w′(x
(n)
j − x(n)

i ) .

(3.2.5)

At our minimizer x = x(n) this has to be equal to zero, and rearranging the resulting equation yields
(3.2.3), using that the Legendre transform satisfies (c∗)′ = (c′)−1.

Note that we use that w is an even function, making w′ an odd function which allows us to combine

w′(x
(n)
i − x(n)

j )− w′(x
(n)
j − x(n)

i ) = 2w′(x
(n)
i − x(n)

j ) to achieve the final result.

3.2.3 The discrete minimum/maximum principle

The minimum/maximum principles shown in this section hold in a more general way than we need.
Indeed we know that v′′ and w′′ are non-negative since v and w are assumed to be convex. But for this
section we drop this assumption and show the minimum/maximum principles only for the assumption
that v,w ∈ C2(R).

We will prove the first discrete minimum/maximum principle next. It bounds the forward difference

quotient of x
(n)
k uniformly from above and away from zero, if we have initial data as described in Theorem

1 (4). This initial condition corresponds to ρ0 being bound from above and away from zero.

Lemma 3.17. Let x(n−1) ∈ Xk([a, b]). Let x(n) be the minimizer of Φ(τ ; x(n−1),x).

1. The first maximum-/minimum principle.
The following inequality chain holds for every j ∈ {0, . . . , k − 1}

e−κ1τ min
i
δx

(n−1)
i ≤ δx(n)

j ≤ eκ1τ max
i
δx

(n−1)
i

where

κ1 :=

{
0 if v′′ + w′′ ≥ 0

(c∗)′′(v′′ + w′′) if v′′ + w′′ < 0 .

κ1 :=

{
0 if v′′ + w′′ ≤ 0

(c∗)′′(v′′ + w′′) if v′′ + w′′ > 0 .

2. The second maximum-/minimum principle.
Let

κ2 := (c∗)′′ · (v′′ + w′′)

κ2 := (c∗)′′ · (v′′ + w′′)

κ3 := ([(c∗)′′v′′]′ + [(c∗)′′w′′]′ )

κ3 := ([(c∗)′′v′′]′ + [(c∗)′′w′′]′ ) .

with the modulation that for j = 2, 3 κj is replaced by 0 if it is positive and the same holds for κj
if it is negative. The following holds for every j ∈ {1, . . . , k − 1}.



3.2. VARIATIONAL PROPERTIES OF THE MINIMIZATION PROBLEM 25

• Either δ2x
(n)
j ≤ 0 or

(1 + τκ2)δ2x
(n)
j + τκ3δx

(n)
j ≤ δ2x

(n−1)
j

holds.

• Either δ2x
(n)
j ≥ 0 or

(1− τκ2)δ2x
(n)
j + τκ3δx

(n)
j ≥ δ2x

(n−1)
j

holds.

Remark 3.18 (The global maximum-/minimum principle). The first max/min principle has a global
form. Inductively applying the inequality-chain we receive

e−κ1T min
i
δx

(0)
i ≤ δx

(n)
j ≤ eκ1T max

i
δx

(0)
i .

This clearly bounds δx
(n)
i from above and away from zero uniformly in i, n, τ, hk as soon as the initial

data are bounded from above and away from zero.

Remark 3.19 (The second global maximum-/minimum principle). The second maximum-/minimum
principle implies a global-in-time bound as follows. Inductively , we receive

(1 + τκ2)δ2x
(n)
i + τκ3δx

(n)
i ≤ δ2x

(n−1)
i

(1 + τκ2)2δ2x
(n)
i + τκ3(1 + τκ2)δx

(n)
i + τκ3δx

(n−1)
i ≤ δ2x

(n−2)
i

...

(1 + τκ2)nδ2x
(n)
i + τκ3

n−1∑
l=0

(1 + τκ2)lδx
(l+1)
i ≤ δ2x

(0)
i

Now by the first max./min. principle we can estimate δx
(l+1)
i ≤ maxi δx

(0)
i . Then we note that the

remaining sum
∑n−1
l=0 (1 + τκ2)l is part of a geometric series, at least for τ < 1

κ2
since κ2 ≤ 0 by

definition. So
∣∣∣∑n−1

l=0 (1 + τκ2)l
∣∣∣ ≤ 1

1−τκ2
→ 1 for τ ↘ 0. So we can assume

∑n−1
l=0 (1 + τκ2)l ≤ 2,

therefore arriving at

δ2x
(n)
i ≤ max

{
e−Tκ2 max

i
δ2x

(0)
i + 2κ3 max

i
δx

(0)
i , 0

}
and

δ2x
(n)
i ≥ min

{
eTκ2 min

i
δ2x

(0)
i + 2κ3 min

i
δx

(0)
i , 0

}
.

These two bounds, as in the first case, δ2x
(n)
i from above and below uniformly in i, n, τ, hk as soon as the

initial data are bounded from above and away from zero.

Proof of Lemma 3.17. We will only consider the bounds from above, since the bounds from below can
be achieved by the same calculations, mutatis mutandis.

We begin with a general result concerning the finite forward difference of the r.h.s. of the Euler-
Lagrange equation. Taylor’s formula gives us some vector (ζ0, . . . , ζk−1) such that

Dδ(c∗)′(a
(n)
i,k ) = D

[
(c∗)′′(ζi) δa

(n)
i,k

]
. (3.2.6)
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Here D denotes either Id for the first, and δ applied at i − 1 for the second principle. ζi is some point

between a
(n)
i,k and a

(n)
i+1,k.

The proof will now rely upon assuming that we are at i such that δx
(n)
i ≥ δx(n)

j for all j (or δ2x
(n)
i ≥

δ2x
(n)
j for all j), proving a suitable upper bound for δx

(n)
i which then carries over to all x

(n)
j .

The first maximum-/minimum principle is achieved by the calculation (remember, δ is the finite
forward difference w.r.t. i)

δa
(n)
i,k = δ

δu′∗(δx(n)
i−1)− v′(x

(n)
i )− hk

k∑
j=0

w′(x
(n)
i − x(n)

j )


= δ2u′∗(δx

(n)
i )− δv′(x(n)

i )− hk2

k∑
j=0

δw′(x
(n)
i − x(n)

j )

≤ 0− v′′δx
(n)
i − w′′δx

(n)
i

= −(v′′ + w′′)δx
(n)
i

where we used the monotonicity of u′∗ which translates the maximum of δx
(n)
i in i to a maximum of

u′∗(δx
(n)
i ) in i and therefore its second symmetric finite difference is not positive. Furthermore the

positivity of δx
(n)
i was used to estimate the terms involving v′ and w′.

Let’s consider (3.2.6) again and we see, that if v′′+w′′ ≥ 0 we can estimate−(c∗)′′(ζ)(v′′+w′′)δx
(n)
i ≤ 0

and if it is not, then we arrive only at −(c∗)′′(ζ)(v′′+w′′)δx
(n)
i ≤ −(c∗)′′(v′′+w′′)δx

(n)
i . Recall, that (c∗)′′

is only finite, since we have bounded c′′ away from zero in Assumption 3.6. So let us define accordingly

κ1 :=

{
0 if v′′ + w′′ ≥ 0

(c∗)′′(v′′ + w′′) if v′′ + w′′ < 0 .

Plugging this back in (3.2.6) and using 0 < (c∗)′′ ≤ (c∗)′′ <∞, we arrive at

δx
(n)
i − δx(n−1)

i

τ
≤ −κ1δx

(n)
i

and therefore, for every j ∈ {0, . . . , k − 1} we have

eκ1τδx
(n)
j ≤ eκ1τδx

(n)
i ≤ (1 + κτ)δx

(n)
i ≤ x(n−1)

i ≤ max
j
x

(n−1)
j

which is the estimate we wanted to show.
The second maximum-/minimum principle can be shown similarly. But the terms will cause more

work which is why we will split them up in this calculation.

Again we begin with assuming that i is such that δ2x
(n)
i ≥ δ2x

(n)
j for all j and, since otherwise nothing

is left to show, we assume δ2x
(n)
i > 0. By linearity, we have three terms to consider.

The internal pressure term can be dealt with as follows. Consider

(c∗)′′(ζi)
(
δ[u′∗(δx

(n)
i )]− δ[u′∗(δx

(n)
i−1)]

)
+ (c∗)′′(ζi−1)

(
δ[u′∗(δx

(n)
i−1)]− δ[u′∗(δx

(n)
i−2)]

)
h2
k

.

We will show that the terms in the big brackets are smaller than zero and we will carry out the calculation
representatively for the left one.
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By the assumptions on δ2x
(n)
i we know δx

(n)
i > δx

(n)
i−1. Consider the following two cases

If δx
(n)
i+1 > δx

(n)
i , then δ2x

(n)
i+1 > 0. We can then apply Taylors theorem to receive

δ[u′∗(δx
(n)
i )]− δ[u′∗(δx

(n)
i−1)] = u′′∗(ζ̂i)δ

2x
(n)
i+1 − u′′∗(ζ̂i−1)δ2x

(n)
i

where ξ̂i > x
(n)
i > ξ̂i−1 and therefore, by monotonicity, u′′∗(ζ̂i) < u′′∗(ζ̂i−1). Consequently

u′′∗(ζ̂i)δ
2x

(n)
i+1 − u′′∗(ζ̂i−1)δ2x

(n)
i < u′′∗(ζ̂i−1)(δ2x

(n)
i+1 − δ

2x
(n)
i ) ≤ 0

by our assumptions on δ2x
(n)
i and u′′∗ > 0.

Now if δx
(n)
i+1 < δx

(n)
i , this implies together with δx

(n)
i−1 < δx

(n)
i and by monotonicity of u′∗

δ[u′∗(δx
(n)
i )]− δ[u′∗(δx

(n)
i−1)] =

u′∗(δx
(n)
i+1)− 2u′∗(x

(n)
i ) + u′∗(x

(n)
i−1)

hk
≤ 0

right away.
Since (c∗)′′ > 0 the internal pressure term is taken care of.
Concerning the external potential term, we have to make use of a discrete version of the product rule

of differentiation. We receive

δ
[
(c∗)′′(ζi−1)δv′(x

(n)
i−1)

]
= δ

[
(c∗)′′(ζi−1)v′′(ζ̂i−1)δx

(n)
i−1

]
= δ

[
(c∗)′′(ζi−1)v′′(ζ̂i−1)

]
δx

(n)
i

+ (c∗)′′(ζi−1)v′′(ζ̂i−1)δ2x
(n)
i

≥ [(c∗)′′v′′]′ δx
(n)
i + (c∗)′′ · v′′δ2x

(n)
i .

Here we used the lower bound on (c∗)′′′ which leads to the finiteness of [(c∗)′′v′′]′ by means of product

rule and the bounds from above and below for (c∗)′′ and v′′ respectively where we assume for the moment
that v′′ ≤ 0 which will be explained later on. Especially the usage of the latter bounds depend on our

assumption δ2x
(n)
i ≥ 0.

Finally, basically the same calculation as the one above leads to the bounds

δ

(c∗)′′(ζi−1)δhk

k∑
j=0

w′(x
(n)
i−1 − x

(n)
j−1)

 ≥ [(c∗)′′w′′]′ δx
(n)
i + (c∗)′′ · w′′δ2x

(n)
i .

The main difference between the calculation concerning v and w is that we have to pull out hk and the

sum by linearity first and note that the x
(n)
j−1 are removed by the estimates on w as well as hk and the

sum cancel out by definition of hk.
We define κ2 and κ3 as

κ2 := (c∗)′′ · (v′′ + w′′)

κ3 := ([(c∗)′′v′′]′ + [(c∗)′′w′′]′ ) .

with the modulation that for j = 2, 3 κj is replaced by 0 if it is positive.
This explains the assumption on v′′ above, since we can carry out the calculations above for v and w

together and then the particular part of v′′ above will be played by v′′ + w′′.
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We plug these results together to arrive at

δ2x
(n)
i − δ2x

(n−1)
i

τ
≤ −κ2δ

2x
(n)
i − κ3δx

(n)
i

which can be rewritten as

(1 + τκ2)δ2x
(n)
i + τκ3δx

(n)
i ≤ δ2x

(n−1)
i .

3.3 A priori estimates

Note that the calculations below are more general than needed in the case of c ∈ C3(R). For these results
c ∈ C2(R) suffices. In that case, we could simply retreat to the known consequence of the optimality of
Φ(τ ; x(n−1),x(n)) in comparison to Φ(τ ; x(n−1),x(n−1)) which leads directly to

τTx
c,τ (x(n),x(n−1)) ≤ Ex(x(n−1))− Ex(x(n)) . (3.3.1)

With this we can achieve basically the same Hölder type inequality as below. Furthermore the second

minimum/maximum principle implies uniform bounds on
∣∣∣a(n)
i,k

∣∣∣ and
∣∣∣(c∗)′(a(n)

i,k )
∣∣∣ independent of N, k as

in Lemma 3.23 with p, p′ =∞.

3.3.1 One time-step

The special structure of x(n) as a minimizer of the functional Ex penalized with some distance allows us
to estimate the distance covered in a step x(n−1) to x(n) in terms of the descent in energy Ex(x(n−1)) to
Ex(x(n)).

Proposition 3.20. Let x(n−1) ∈ Xk([a, b]) and x(n) the unique minimizer of Φ(τ ; x(n−1), ·). Let us
furthermore treat the flux-limiting cost as p = 2. Then

τhk

k∑
i=0

c̃

(
x

(n)
i − x(n−1)

i

τ

)
≤ Ex(x(n−1))− Ex(x(n)) . (3.3.2)

holds.

Proof. We begin with the system of equations we received as our Euler-Lagrange equations in Lemma
3.15

hkc
′

(
x

(n)
i − x(n−1)

i

τ

)
=
(
∇Ux(x(n))

)
i
−
(
∇Vx(x(n))

)
i
−
(
∇Wx(x(n))

)
i

multiply it by (x
(n−1)
i −x(n)

i ) and sum it up over i to receive by the convexity of Ex which was established
in Remark 3.9

τhk

k∑
i=0

c̃

(
x

(n)
i − x(n−1)

i

τ

)
=
〈
∇Ex(x(n)),x(n) − x(n−1)

〉
≤ Ex(x(n−1))− Ex(x(n)) .
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3.3.2 Multiple steps and the Hölder type inequality

A corollary of Proposition 3.20 is the corresponding inequality with several time-steps.

Corollary 3.21. Let m1 < m2 be two integers in {0, . . . , N}. Let x(m1) ∈ Xk([a, b]) and x(n) for
n ∈ {m1, . . . ,m2} be a sequence of recursively defined minimizers of Φ. Under the assumptions of
Proposition 3.20 on τ the inequality

τhk

m2∑
n=m1+1

k∑
i=0

c̃

(
x

(n)
i − x(n−1)

i

τ

)
≤ Ex(x(m1))− Ex(x(m2)) (3.3.3)

holds.

Proof. This is a direct consequence of summing up the inequality in Proposition 3.20, minding the
telescopic sum on the r.h.s. .

With this estimate at hand, we can show the following estimate that will ultimately give us in-time
compactness.

Proposition 3.22 (Hölder-type estimate). Let m1,m2 and τ be as in the corollary above. Let furthermore
t1 = m1τ and t2 = m2τ . Then

hk

∥∥∥x(m−1) − x(m−2)
∥∥∥
p
≤ (t2 − t1 + τ)1/p′ 1

p
√
α

(
Ex(x(0))− Ex(x(N))

)1/p

. (3.3.4)

Note that the expression Ex(x(0)) − Ex(x(N)) is positive can be bounded from above uniformly in τ and
hk by

sup
k
Ex(x(0))− Ex

since supk Ex(x(0)) is assumed to be bounded and Ex is bounded from below.

Proof. The proof relies on the Hölder-inequality as well as the multiple-steps-inequality above. We receive

hk

∥∥∥x(m−1) − x(m−2)
∥∥∥
p
≤ τhk

m2∑
n=m1+1

∥∥∥∥1

τ
(x(n) − x(n−1))

∥∥∥∥
p

≤

(
m2∑

n=m1+1

τ

)1/p′ (
τhk

m2∑
n=m1+1

∥∥∥∥1

τ
(x(n) − x(n−1))

∥∥∥∥p
p

)1/p

≤ (t2 − t1 + τ)1/p′

(
1

α
τhk

m2∑
n=m1+1

k∑
i=0

c̃

(
x

(n)
i − x(n−1)

i

τ

))1/p

≤ (t2 − t1 + τ)1/p′ 2
p
√
α

(
Ex(x(0))− Ex(x(N))

)1/p

.

Finally we want to bound the r.h.s. (c∗)′(a
(n)
i,k ) and its argument a

(n)
i,k of our Euler-Lagrange equation.

Lemma 3.23. Let τ,N be constants and x(n) be a sequence as in Corollary 3.21. Then

τhk

N∑
n=1

k−1∑
i=0

∣∣∣a(n)
i,k

∣∣∣p′ ≤ p−1
√
β

(
sup
k
Ex(x(0))− Ex

)

τhk

N∑
n=1

k−1∑
i=0

∣∣∣(c∗)′(a(n)
i,k )
∣∣∣p ≤ 1

α

(
sup
k
Ex(x(0))− Ex

)
holds.
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Proof. Since by assumption c̃(s) ≥ α |s|p we receive by Euler-Lagrange equation the bound

τhk

N∑
n=0

k∑
i=0

α
∣∣∣(c∗)′(a(n)

i,k )
∣∣∣p ≤ τhk N∑

n=0

k∑
i=0

c̃

(
x

(n)
i − x(n−1)

i

τ

)
≤ sup

k
Ex(x(0))− Ex

right away.
On the other hand, using the Euler-Lagrange equations and c̃(s) = sc′(s) we see

a
(n)
i,k (c∗)′(a

(n)
i,k ) = c′

(
x

(n)
i − x(n−1)

i

τ

)
x

(n)
i − x(n−1)

i

τ
= c̃

(
x

(n)
i − x(n−1)

i

τ

)
which bounds

τhk

N∑
n=1

k−1∑
i=0

a
(n)
i,k (c∗)′(a

(n)
i,k ) ≤ sup

k
Ex(x(0))− Ex .

The assumption sc′(s) ≤ β |s|p implies the upper bound s(c∗)′(s) ≥ 1
p−1
√
β
|s|p

′
. Applied to our case this

yields

τhk

N∑
n=1

k−1∑
i=0

∣∣∣a(n)
i,k

∣∣∣p′ ≤ p−1
√
β

(
sup
k
Ex(x(0))− Ex

)

3.4 Convergence of the approximate solution

The limits that are ultimately important for us are the limit of the two sides of the Euler-Lagrange
equation for our approximations, stated in (3.2.5). The l.h.s. is an easy task, whereas receiving the limit
of the r.h.s. will be most of the remaining chapter. The reasons for this are first Vk is a non-linear
function applied to Ak and we do not have enough compactness to pass with the limit of Ak through
this non-linearity. This section will only find the limit of Ak and state that Vk has some limit V∗ which
will identified in a subsequent section by means of the so-called Browder-Minty trick, a monotonicity
argument.

3.4.1 The approximate solution

The approximate solutions of our PDE (3.1.1) will be introduced next. To that end, let I(n)
i,k : [0, T ]× [0, 1]→

R with I(n)
i,k (t, ξ) = 1((n−1)τ,nτ ])(t)1(ξi,ξi+1)(ξ).

Let τk, hk > 0, x(0) feasible initial data and x = (x
(n)
i )n∈{0,...,N}

i∈{0,...,k}
the sequence recursively defined as

minimizers of Φ(τ ; x(n−1), ·).
Though it is notational heavy, it will abbreviate some definitions, so let us furthermore define the

map P mapping a sequence y = (y
(n)
i )n∈{0,...,N}

i∈{0,...,k}
to the corresponding quantile functions

Xy(t, ξ) = P[y](t, ξ) :=

k−1∑
i=0

N∑
n=0

y
(n)
i I

(n)
i,k (t, ξ) .

Then we define the approximate solution to our (3.1.1) in terms of quantile functions as

Xk(t, ξ) = P[x](t, ξ) =

k−1∑
i=0

N∑
n=0

x
(n)
i I

(n)
i,k (t, ξ) . (3.4.1)



3.4. CONVERGENCE OF THE APPROXIMATE SOLUTION 31

Furthermore let us define the approximate first and second spatial derivative of Xk as well as the approx-
imate first temporal derivative and the argument of the r.h.s. and its argument of the Euler-Lagrange
equation

δξXk(t, ξ) = P[δx](t, ξ)

δ2
ξXk(t, ξ) = P[δ2x](t, ξ)

δτXk(t, ξ) = P[δτx](t, ξ)

Ak(t, ξ) = P[Ak](t, ξ)

Vk(t, ξ) = (c∗)′(Ak(t, ξ)) .

(3.4.2)

where Ak := (a
(n)
i,k )n∈{0,...,N}

i∈{0,...,k}
, c.f. (3.2.4) and Vk is the approximation of the velocity V in our transport

equation reformulation (3.1.14), hence the notation.
If the vector applied to P is too short, as is for instance δx, then the value at the missind indices is

to be taken as zero.

3.4.2 Restating the results

We will recap some results from Section 3.2 & 3.3 in terms of our approximate solution Xk.
The Euler-Lagrange equation reads as follows

δτXk(t, ξ) = (c∗)′(Ak(t, ξ)) . (3.4.3)

Anticipating the convergence results below, we can say, that every subsequence possesses a subsubse-
quence together with limits of the left and right hand side ∂tX∗ and V∗ such that in the limit

∂tX∗ = V∗ (3.4.4)

holds on (0, T )× (0, 1).
Furthermore, the maximum/minimum principles imply the bounds

0 < M1 ≤ δξXk ≤M1 <∞ (3.4.5)

−∞ ≤M2 ≤ δ2
ξXk ≤M2 <∞ (3.4.6)

where the different M do not depend on k.
Xk is approximately Hölder continuous, that is to say

‖Xk(t1, ·)−Xk(t2, ·)‖1 ≤ (|t1 − t2|+ τk)1/p′ p

√
2

α

(
Ex(x(0))− Ex(x(N))

)1/p

(3.4.7)

holds for all t1, t2 ∈ [0, T ]. Note that p

√
2
α

(
Ex(x(0))− Ex(x(N))

)1/p
does not depend on k.

3.4.3 Convergence results

Some convergence results can be received right away.

Lemma 3.24. We have, up to the extraction of the same subsequence in each case, the existence of
an increasing X∗ : [0, 1] → R and the following convergences for k → ∞ where q = p or q ∈ (1,∞),
depending on the regularity assumption of c.

1. Xk → X∗ w.r.t. strong Lp((0, T )× (0, 1))-topology and X∗ ∈W 1,q((0, T )× (0, 1)).
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2. δτXk ⇀ ∂tX∗ and δξXk ⇀ ∂ξX∗ w.r.t. Lq((0, T )× (0, 1)).

3. Ak lies in a subset of Lp
′
([0, T ]× [0, 1]) that is compact w.r.t. the weak topology.

4. Vk lies in a subset of Lp([0, T ]× [0, 1]) that is compact w.r.t. the weak topology.

Proof.

1. Xk is uniformly bounded in Lq([0, T ]× [0, 1]) for every q ∈ [1,∞], it has a subsequence that weakly
converges to X∗. By the result stated in 2. together with Proposition 3.11, we arrive at strong
convergence in Lp((0, T )× (0, 1)). In turn we can use a pointwise convergent subsequence together
with the uniform bounds to receive strong convergence in Lp((0, T )× (0, 1)) for each p ∈ [1,∞], as
well as X∗ ∈W 1,q((0, T )× (0, 1)).

2. By the Euler-Lagrange equation above (3.4.3) and with the uniform Lp([0, T ]× [0, 1]) bound on Vk

from Lemma 3.23, we see that δτXk lies in a set that is compact w.r.t. weak Lp([0, T ]× [0, 1])-
topology.

The sequence δξXk, on the other hand, is uniformly bounded in Lq([0, T ]× [0, 1]) for every q ∈
[1,∞] by the maximum-/minimum principle, implying compactness w.r.t. to weak Lq([0, T ]× [0, 1])
convergence.

Now using Proposition 3.11 we receive that the limits of δξXk and δτXk are in fact the corresponding
weak derivatives of X∗.

3 & 4 These are both direct consequences of the uniform bounds found in Lemma 3.23 together with

‖Ak‖p
′

Lp′ ((0,T )×(0,1))
= τhk

N∑
n=1

k−1∑
i=0

∣∣∣a(n)
i,k

∣∣∣p′

‖Vk‖pLp((0,T )×(0,1)) = τhk

N∑
n=1

k−1∑
i=0

∣∣∣(c∗)′(a(n)
i,k )
∣∣∣p .

Indeed since we have these uniform bounds and p, p′ 6= 1,∞, Banach-Alaoglu yields the results.

Strong convergence of δξXk

Lacking pointwise convergence in δξXk, we cannot conclude strong convergence of this sequence imme-
diately. It will be the result of this subsection to establish this convergence.

3.4.4 Strong convergence of δξXk

To achieve strong convergence of δξXk on [0, T ]× [0, 1] we will make use of Theorem 2.3, which will
basically consist in three steps. First we will choose suitable F and g such that Definition 2.1 is met and
then we show that the preliminaries of Theorem 2.3 are fulfilled. Finally we conclude compactness of our
piecewise constant curve and then improve the compactness by the estimates we have already established.

We will use the definition of the set of functions of bounded variation on an open set Ω, BV (Ω) and
of the total variation Var(f,Ω) of such a function as was introduced in [17].
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Tightness w.r.t. F

Consider the functional F : L1([0, 1])→ [0,∞] defined as

F(Y ) :=

{
Var(Y, (0, 1)) if Y ∈ BV ((0, 1))

+∞ elsewhere.
(3.4.8)

Lemma 3.25. The functional F defined in (3.4.8) is normal and coercive in the sense of [45, (1.7 a-c)]

Proof.

1. normal: Var(·, (0, 1)) is lower semicontinuous w.r.t. L1-convergence [21, Thm. 1.9].

2. coercive: Consider Ac := F−1((−∞, c]). By definition of F, Ac ⊂ BV ((0, 1)) and the BV -norm
of elements of Ac is uniformly bounded by c. Consequently, by [21, Thm. 1.19], Ac is L1((0, 1))-
strongly compact.

The above lemma makes sure that F is suitable. Now we show that δξXk is tight w.r.t. F.

Lemma 3.26. Our sequence δξXk is tight w.r.t. F, that is to say

sup
k∈N

ˆ T

0

F(δξXk(t, ·)) dt <∞ . (3.4.9)

Proof. We begin with

ˆ T

0

F(δξXk(t, ·)) dt =

ˆ T

0

Var(δξXk(t, ·), (0, 1)) dt

= τk

Nk∑
n=1

Var(δξXk(nτk, ·), (0, 1)) .

Now note that for every t ∈ [0, T ] we have that Xk(t, ·) : [0, 1]→ R is a piecewise constant function and
therefore its total variation can be calculated as the sum over the modulus of the jumps. This gives us

τk

Nk∑
n=1

Var(δξXk(nτk, ·), (0, 1)) = τk

Nk∑
n=1

k−1∑
i=0

∣∣∣δx(n)
i+1 − δx

(n)
i

∣∣∣
= τk

Nk∑
n=1

hk

k−1∑
i=0

∣∣∣∣∣δx
(n)
i+1 − δx

(n)
i

hk

∣∣∣∣∣ .
Now our goal is to utilize the estimates concerning a

(n)
i,k from Lemma 3.23. To that end we see that by

maximum-/minimum principle, positivity and monotony of u′′∗ we receive a D > 0 such that we have the
lower bound ∣∣∣δx(n)

i+1 − δx
(n)
i

∣∣∣ ≤ D ∣∣∣u′∗(δx(n)
i+1)− u′∗(δx

(n)
i )
∣∣∣ .
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Incorporating this estimate we arrive at

ˆ T

0

F(δξXk(t, ·)) dt = τk

Nk∑
n=1

hk

k−2∑
i=0

∣∣∣∣∣δx
(n)
i+1 − δx

(n)
i

hk

∣∣∣∣∣
≤ Dτk

Nk∑
n=1

hk

k−1∑
i=1

∣∣∣∣∣u′∗(δx
(n)
i )− u′∗(δx

(n)
i−1)

hk

∣∣∣∣∣
≤ Dτk

Nk∑
n=1

hk

k−1∑
i=1

∣∣∣a(n)
i,k

∣∣∣+Dτk

Nk∑
n=1

hk

k−1∑
i=0

∣∣∣v′(x(n)
i )
∣∣∣

+Dτk

Nk∑
n=1

hk

k−1∑
i=0

hk

k∑
j=0

2
∣∣∣w′(x(n)

i − x(n)
j )
∣∣∣ .

Now the first sums are bounded by Lemma 3.23 and the second sums are by continuity of v′ as well as

w′ together with the bounds on x
(n)
i .

This shows the sought for bound and therefore δξXk is tight w.r.t. F.

Equiintegrability w.r.t. the pairing g.

Now let Y ∈ L1([0, 1]). Then we can define I[Y ](ξ) := a+
´ ξ

0
Y (ζ) dζ where I[Y ] ∈W 1,1((0, 1)).

Next we consider the functional g : Lp([0, 1])× Lp([0, 1])→ [0,∞) defined as

g(Y, Z) := ‖I[Y ]− I[Z]‖L1([0,1]) . (3.4.10)

Then the following lemma holds

Lemma 3.27. g is lower semicontinuous w.r.t. strong Lp([0, 1])× Lp([0, 1]) topology.

Proof. Let Yk
Lp([0,1])−−−−−→ Y and let Ŷ = I[Yk]. Then Ŷk(0) = 0 and ∂ξŶk = Yk. This already implies that

Ŷk
Lp([0,1])−−−−−→ Ŷ where Ŷ ∈W 1,p((0, 1)) with ∂ξŶ = Y .

Now consider two sequences Yk, Zk converging in Lp([0, 1]) to Y and Z respectively. Then I[Yk] −
I[Zk] = I[Yk−Zk]−a converges in Lp([0, 1]) to I[Y −Z]−a and the L1([0, 1])-norm is lower semicontinuous
w.r.t. Lp([0, 1]) convergence.

Finally we show the equiintegrability w.r.t. g.

Lemma 3.28. The sequence δξXk is equiintegrable w.r.t. g, that is to say

lim
r↘0

sup
k∈N

ˆ T−r

0

g (δξXk(t+ r), δξXk(t)) dt = 0 . (3.4.11)
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Proof. First we establish an estimate concerning I[δξXk] and Xk. Let t ∈ [0, T − r] and j(ξ) = bξ/dkc

‖I[δξXk(t+ r)]− I[δξXk(t)]‖L1([0,1])

=

ˆ 1

0

∣∣∣∣∣
ˆ ξ

0

δξXk(t+ r, ζ)− δξXk(t, ζ) dζ

∣∣∣∣∣ dξ

=

ˆ 1

0

∣∣∣∣∣Xk(t+ r, j(ξ)k )−Xk(t, j(ξ)k ) +

ˆ ξ

j(ξ)/k

δξXk(t+ r, ζ)− δξXk(t, ζ) dζ

∣∣∣∣∣ dξ

≤
ˆ 1

0

∣∣∣Xk(t+ r, j(ξ)k )−Xk(t, j(ξ)k )
∣∣∣ dξ

+
1

hk

ˆ 1

0

ˆ ξ

j(ξ)/k

∣∣∣Xk(t+ r, j(ξ)+1
k )−Xk(t+ r, j(ξ)k )− (Xk(t, j(ξ)+1

k )−Xk(t, j(ξ)k )) dζ
∣∣∣ dξ

≤ ‖Xk(t+ r)−Xk(t)‖L1(J)

+

k−1∑
j=0

∣∣Xk(t+ r, j+1
k )−Xk(t, j+1

k )
∣∣+
∣∣(Xk(t+ r, jk )−Xk(t, jk ))

∣∣ˆ (j+1)dk

jdk

ξ − j
k

hk
dζ

≤ 3 ‖Xk(t+ r)−Xk(t)‖L1([0,1]) .

Together with the Hölder-estimate from Proposition 3.22, this yields, for some constant C such that

lim
r↘0

sup
k∈N

ˆ T−r

0

g (δξXk(t+ r), δξXk(t)) dt = lim
r↘0

sup
k∈N

ˆ T−r

0

‖I[δξXk(t+ r)]− I[δξXk(t)]‖L1([0,1]) dt

= 3 lim
r↘0

sup
k∈N

ˆ T−r

0

‖Xk(t+ r)−Xk(t)‖L1([0,1]) dt

≤ 3 lim
r↘0

sup
k∈N

ˆ T−r

0

r1/pC dt

= 3 lim
r↘0

sup
k∈N

r1/p(T − r)C

= 0

holds, proving the claim.

Strong convergence

Proposition 3.29. The sequence δξXk is sequentially compact w.r.t. strong Lp
′
((0, T )× (0, 1)) conver-

gence.

Proof. This will be an application of Theorem 2.3. Note that t 7→ δξXk(t) is a sequence of Lp([0, 1])-
valued functions. The functional F is normal and coercive in the sense of Definition 2.1 as was shown in
Lemma 3.25 and Lemma 3.27 shows that the substitute distance g satisfies the joint lower semi-continuity.
Additionally, our sequence is tight w.r.t. F and it is equiintegrable w.r.t. g which was shown in Lemma
3.26 and Lemma 3.28 respectively and therefore the preliminaries of Theorem 2.3 are met. All that is
left to show is the compatibility of g with F.

To show the compatibility, let Y,Z ∈ L1([0, 1]) with F(Y ),F(Z) <∞. Then ‖I[Y ]− I[Z]‖L1([0,1]) = 0

implies that I[Y ] = I[Z] a.e. and consequently Y = Z. So Theorem 2.3 is applicable and we receive a
subsequence of δξXk that converges in measure as a curve δξXk : [0, T ]→ L1([0, 1]) to some limit curve
Y .
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Furthermore, since δξXk is dominated on [0, T ] by the maximum-/minimum principle, we can enhance

this result, possibly by passing to a subsubsequence, to strong convergence in Lp
′
([0, T ]× [0, 1]).

Finally we have to establish a connection between the cluster points of δξXk and X∗, the limit of Xk.

Corollary 3.30. δξXk converges strongly w.r.t. Lp
′
([0, T ]× (0, 1)) to ∂ξX∗, the weak spatial derivative

of X∗.

Proof. We already know that this sequence converges weakly to this limit, so the uniqueness of the limit
proves the claim.

Since we will need it later on, we state here, that the strong convergence of δξXk can be carried over
the non-linearity of u∗ and u′∗ to receive the following result.

Corollary 3.31. Every subsequence of δξXk has a (unrelabeled) subsubsequence such that u∗(δξXk) →
u∗(∂ξX∗) and u′∗(δξXk)→ u′∗(∂ξX∗) in Lp([0, T ]× [0, 1]).

Proof. Since δξXk converges strongly, it has a subsequence that converges pointwise and by continuity,
this pointwise convergence carries over through u∗ and u′∗. Now we see that the dominated convergence
theorem yields our claim.

3.4.5 The limit of Ak

In this part, we will show that the limit of Ak is indeed unique and equal to ∂ξu
′
∗(∂ξX∗(t, ξ))−v′(X∗(t, ξ))−

2
´ 1

0
w′(X∗(t, ξ)−X∗(t, ζ)) dζ.

By the consideration above we will consider the u′∗ summands and the summands including v′ and w′

separately, by means of

Ak(t, ξ) =
u′∗(δξXk(t, ξ + hk)− u′∗(δξXk(t, ξ)

hk

−
(

v′(Xk(t, ξ)) + 2

ˆ 1

0

w′(Xk(t, ξ)−Xk(t, ζ)) dζ

)
=: Ak(t, ξ)−Ak(t, ξ) .

To avoid ambiguity: Ak corresponds to the quotient of u′∗ and Ak to the brackets with v′ and w′.

Proposition 3.32. We have the following convergences

1. Ak converges w.r.t. Lq((0, T )× (0, 1))-norm, where q ∈ [1,∞), to its limit

A∗(t, ξ) := v′(X∗(t, ξ)) + 2

ˆ 1

0

w′(X∗(t, ξ)−X∗(t, ζ)) dζ .

2. Ak converges w.r.t. to weak Lp
′
((0, T )× (0, 1)) topology to the limit

A∗ := ∂ξu
′
∗(∂ξX∗) .

Proof. To abbreviate w′(Xk(t, ξ)−Xk(t, ζ)) in this proof, we will simply write w′(Xk −Xk).
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1. By a standard argument, v′(Xk) and w′(Xk −Xk) converge strongly in Lq((0, T )× (0, 1)).

Indeed since Xk converges strongly in L1((0, T )× (0, 1)) as was shown in Lemma 3.24 it converges
pointwise to X∗ and consequently, by continuity of v′ and w′, v′(Xk) and w′(Xk − Xk) converge
pointwise to v′(X∗) and w′(Xk −Xk) respectively.

Combining this with the dominated convergence theorem, the uniform bounds on Xk and the
continuity of v′ and w′ we arrive at the sought for strong convergence for v′.

We also know by strong convergence that we have pointwise convergence of the map

ξ 7→
ˆ 1

0

w′(Xk(t, ξ)−Xk(t, ζ)) dζ

to the corresponding limit.

Now using the dominated convergence theorem again, we arrive at the strong convergence for the
w′-part of Ak, too.

2. Since both, Ak and Ak converge at least weakly w.r.t. Lp
′
((0, T )× (0, 1))-topology, Ak = Ak −Ak

converges in the same way, too, and is therefore bounded in Lp
′
((0, T )× (0, 1)).

So we have on the one hand, by Banach-Alaoglu, the weak convergence of the finite forward dif-
ference of u′∗(δξXk) and on the other hand, we already know u′∗(δξXk) converges to u′∗(δξX∗) by
Corollary 3.31. Applying Proposition 3.11 now takes care of identifying the limit.

3.5 Identification of the non-linear limit

In the preceeding section we have established some convergence results for Xk, δξXk, Ak and Vk, some
only up to subsequences. In this section we assume that Xk etc. are already non-relabelled subsequences,
such that all of the above convergence results hold. In particular, since Vk lies in a compact set w.r.t.
weak Lp((0, T )× (0, 1)) topology, we can assume it to converge to a limit V∗.

So far we have shown that our Euler-Lagrange equation admits a limit, but the limit of the r.h.s. is,
by nonlinearity of (c∗)′ still not identified. To identify this limit and therefore receive our IDF X∗(t) as
a weak solution of (3.1.1) in terms of IDF we will make use of a Browder-Minty argument.

We want to sketch the argument first. Let xk → x∗ and let f some nonlinear, monotone function. We
suspect f(xk) → f(x∗) but the convergence of xk is too weak to receive this result right away. Instead
we only know f(xk) converges to some y. Now the Browder-Minty argument considers

0 ≤ 〈f(xk)− f(x∗ − εz), xk − (x∗ − εz)〉 (3.5.1)

which holds by monotony of f for every ε > 0 and z in some set Z. If we can show

lim sup
k→∞

〈f(xk)− f(x∗ − εz), xk − (x∗ − εz)〉 ≤ 〈y − f(x∗ − εz), εz〉 (3.5.2)

we can establish y = f(x∗) as soon as εz converges for ε↘ 0 nicely enough to imply f(x∗− εz)→ f(x∗).
Indeed we can in that case divide the inequality

0 ≤ 〈y − f(x∗ − εz), εz〉

by ε and let ε↘ 0 to receive 0 ≤ 〈y − f(x∗), z〉 which already implies

0 = y − f(x∗)
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if Z is big enough.
In our case the role of f , xk and y will be played by (c∗)′, Ak and V∗ respectively. Z will be specified

later on.
The monotonicity inequality we want to consider will be

0 ≤ ((c∗)′(Ak(t, ξ))− (c∗)′(A∗(t, ξ)− εψ(ξ)))(Ak(t, ξ)− (A∗(t, ξ)− εψ(ξ))) (3.5.3)

where ε > 0 and ψ ∈ C∞([0, 1]).
Since the above inequality holds for every (t, ξ) ∈ (0, T )× (0, 1) we can integrate it weighted in time

with some non-negative u ∈ C∞c ((0, T )) and making use of the abbreviation Vk to arrive at

0 ≤
ˆ T

0

ˆ 1

0

(
Vk(t, ξ)− (c∗)′(A∗(t, ξ)− εψ(ξ))

)(
Ak(t, ξ)− (A∗(t, ξ)− εψ(ξ))

)
u(t) dξ dt (3.5.4)

which will be our specific instance of (3.5.1).
In order to prove the limit (3.5.2), we will expand the expression. Expressed in terms of the sketch

of the argument, we will show lim supk 〈f(xk), xk〉 ≤ 〈y, x∗〉, lim infk 〈f(x∗ − εψ), xk − (x∗ − εψ)〉 ≥
〈f(x∗ − εψ), x∗ − (x∗ − εψ)〉 and lim infk 〈f(xk), x∗ − εψ〉 ≤ 〈y, x∗ − εψ〉 in this order. Plugging together
these results and using subadditivity of the lim sup then shows the sought for estimate (3.5.2) or in our
particular instance

lim sup
k→∞

ˆ T

0

ˆ 1

0

(Vk(t, ξ)− (c∗)′(A∗(t, ξ)− εψ(ξ)))(Ak(t, ξ)− (A∗(t, ξ)− εψ(ξ)))u(t) dξ dt

≤
ˆ T

0

ˆ 1

0

[V∗(t, ξ)− (c∗)′(A∗(t, ξ)− εψ(ξ))] εψ(ξ)u(t) dξ dt .

(3.5.5)

3.5.1 lim supk 〈f(xk), xk〉 ≤ 〈y, x∗〉
This part will be singled out, since it includes the most work.

We begin with splitting up Ak = Ak −Ak
ˆ T

0

ˆ 1

0

Vk(t, ξ)Ak(t, ξ)u(t) dξ dt

=

ˆ T

0

ˆ 1

0

Vk(t, ξ)Ak(t, ξ)u(t) dξ dt−
ˆ T

0

ˆ 1

0

Vk(t, ξ)Ak(t, ξ)u(t) dξ dt .

The second integral can be treated easily, since Ak → A∗ strongly w.r.t. Lp
′
([0, T ]× [0, 1]) by Proposotion

3.32. Together with the convergence of Vk from Lemma 3.24 we receive a subsequence with

lim
k→∞

ˆ T

0

ˆ 1

0

Vk(t, ξ)Ak(t, ξ)u(t) dξ dt =

ˆ T

0

ˆ 1

0

V∗(t, ξ)A∗(t, ξ)u(t) dξ dt

right away.
To deal with the remaining integral will require more work. Indeed we will have a product of two

weakly converging sequences, which, without further structure, can not be expected to converge to a
limit.

We begin by applying the Euler-Lagrange equation (3.4.3) to the integral to receive

ˆ T

0

ˆ 1

0

Vk(t, ξ)Ak(t, ξ)u(t) dξ dt =

ˆ T

0

ˆ 1

0

δτXk(t, ξ)Ak(t, ξ)u(t) dξ dt .
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From here on, we will rewrite this integral by using its piecewise constant structure. The result will then
be subject to summation by parts, a convexity estimate and again summation by parts and we will arrive
at a integral which has a limit we can receive by the convergences we attained in the last section.

We begin with exploiting the piecewise constant structure

ˆ T

0

ˆ 1

0

δτXk(t, ξ)Ak(t, ξ)u(t) dξ dt

=

ˆ T

0

ˆ 1

0

Nk∑
n=1

k−1∑
i=1

x
(n)
i − x(n−1)

i

τk

u′∗(δx
(n)
i )− u′∗(δx

(n)
i−1)

hk
I(n)
i,k (t, ξ)u(t) dξ dt

= hk

Nk∑
n=1

k−1∑
i=1

x
(n)
i − x(n−1)

i

τk

u′∗(δx
(n)
i )− u′∗(δx

(n)
i−1)

hk

ˆ nτk

(n−1)τk

u(t) dt .

We will abbreviate the integral in the last line as Zun :=
´ nτk

(n−1)τk
u(t) dt.

Now we apply summation by parts w.r.t. i, a convexity estimate and summation by parts w.r.t. n to
receive

Nk∑
n=1

k−1∑
i=1

u′∗(δx
(n)
i )− u′∗(δx

(n)
i−1)

hk

x
(n)
i − x(n−1)

i

τk
hkZ

u
n

= −
Nk∑
n=1

k−1∑
i=1

u′∗(δx
(n)
i )

δx
(n)
i − δx(n−1)

i

τk
hkZ

u
n

≤ −
Nk∑
n=1

k−1∑
i=1

u∗(δx
(n)
i )− u∗(δx

(n−1)
i )

τk
hkZ

u
n

=

Nk∑
n=1

k−1∑
i=1

u∗(δx
(n)
i )hk

Zun+1 − Zun
τk

=

ˆ T

0

ˆ 1

0

Nk∑
n=1

k−1∑
i=1

u∗(δx
(n)
i )I(n)

i,k (t, ξ)
u(t+ τk)− u(t)

τk
dξ dt

=

ˆ T

0

ˆ 1

0

u∗(δξXk(t, ξ))
u(t+ τk)− u(t)

τk
dξ dt

where the inequality is justified by the convexity of u∗.

Now as was shown, u∗(δξXk) converges strongly to u∗(∂ξX∗) and since u ∈ C∞c ((0, T )) the difference
quotient converges uniformly in k. Consequently we receive in the limit

lim
k→∞

ˆ T

0

ˆ 1

0

u∗(δξXk(t, ξ))
u(t+ τk)− u(t)

τk
dξ dt =

ˆ T

0

ˆ 1

0

u∗(∂ξX∗(t, ξ))∂tu(t) dξ dt .

Now we would want to get the partial differentiation w.r.t. t back to the u∗ again to receive by chain rule
a possibility to get our V∗ back. Unfortunately the expression u∗(δξX∗) does not have enough regularity
to allow for that.
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But we can help ourselves by undoing the limit of just the difference quotient again. We receiveˆ T

0

ˆ 1

0

u∗(δξX∗(t, ξ))∂tu(t) dξ dt = lim
k→∞

ˆ T

0

ˆ 1

0

u∗(δξX∗(t, ξ))
u(t)− u(t− τk)

τk
dξ dt

= lim
k→∞

−
ˆ T

0

ˆ 1

0

u∗(δξX∗(t+ τk, ξ))− u∗(δξX∗(t, ξ))

τk
u(t) dξ dt

≤ lim
k→∞

−
ˆ T

0

ˆ 1

0

u′∗(δξX∗(t, ξ))
δξX∗(t+ τk, ξ)− δξX∗(t, ξ)

τk
u(t) dξ dt

where we used summation by parts w.r.t. n disguised in t+ τk and convexity of u∗.
Now since u′∗(δξX∗(t, ξ)) is weakly differentiable w.r.t. ξ for every t ∈ (0, T ) we can integrate by parts

to receive

− lim
k→∞

ˆ T

0

ˆ 1

0

u′∗(δξX∗(t, ξ))
δξX∗(t+ τk, ξ)− δξX∗(t, ξ)

τk
u(t) dξ dt

= lim
k→∞

ˆ T

0

ˆ 1

0

∂ξu
′
∗(δξX∗(t, ξ))

X∗(t+ τk, ξ)−X∗(t, ξ)
τk

u(t) dξ dt .

Note that X∗(t + τk, 0) −X∗(t, 0) = X∗(t + τk, 1) −X∗(t, 1) = 0 for every t by construction of Xk and
the pointwise limit.

Finally we recall that ∂ξu
′
∗(δξX∗(t, ξ))u(t) ∈ Lp

′
([0, T ]× [0, 1]) and X∗ ∈ W 1,p((0, T )× (0, 1)), so

the temporal difference quotient of X∗ converges at least weakly in Lp((0, T )× (0, 1)) to the equation
∂tX∗ = V∗ which holds in the sense of Lp((0, T )× (0, 1)) and which legitimises the last step

lim
k→∞

ˆ T

0

ˆ 1

0

∂ξu
′
∗(δξX∗(t, ξ))

X∗(t+ τk, ξ)−X∗(t, ξ)
τk

u(t) dξ dt

=

ˆ T

0

ˆ 1

0

∂ξu
′
∗(δξX∗(t, ξ))V∗(t, ξ)u(t) dξ dt .

3.5.2 lim inf 〈f(x∗ − εψ), xk − (x∗ − εψ)〉 ≥ 〈f(x∗ − εψ), εψ〉& lim inf 〈f(xk), x∗ − εψ〉 ≥
〈y, x∗ − εψ〉

The inequality we want to show next is

lim inf
k→∞

ˆ T

0

ˆ 1

0

(c∗)′
(
A(t, ξ)− εψ(ξ)

)
(Ak(t, ξ)− (A(t, ξ)− εψ(ξ))) dξ dt

≥
ˆ T

0

ˆ 1

0

(c∗)′
(
A(t, ξ)− εψ(ξ)

)
εψ(ξ) dξ dt .

Basically all of the work has already been done in the preceding sections, so all that is left to do is plug
them together to receive the above inequality.

Note that we receive the sought for result not only in the lim inf but actually in the limit. Recall Ak
converges w.r.t. Lp

′
([0, T ]× [0, 1]) weakly to A∗ (Proposition 3.32). So we have established the sought

for inequality as equation for the limit as soon as we can show (c∗)′
(
A∗ − εψ

)
∈ Lp([0, T ]× [0, 1]).

The assumption α |s|p ≤ sc′(s) implies 1
p−1
√
α
|r|

1
p−1 ≥ |(c∗)′(r)| by means of (c′(s))−1 = (c∗)′(s).

With this estimate we receiveˆ T

0

ˆ 1

0

∣∣(c∗)′(A∗(t, ξ)− εψ(ξ)
)∣∣p dξ dt ≤ 1

p−1
√
α

ˆ T

0

ˆ 1

0

|A∗(t, ξ)− εψ(ξ)|p
′

dξ dt

=
1

p−1
√
α
‖A∗ − εψ‖p

′

Lp′ ([0,T ]×[0,1])
.
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Now since ψ is a test-function, ‖A∗ − εψ‖p
′

Lp′ ([0,T ]×[0,1])
<∞ and consequently (c∗)′

(
A∗−εψ

)
∈ Lp([0, T ]× [0, 1]).

The final inequality we will show to identify the limit V∗ of Vk is

lim inf
k→∞

ˆ T

0

ˆ 1

0

Vk(t, ξ)(A∗(t, ξ)− εψ(ξ)) dξ dt ≥
ˆ T

0

ˆ 1

0

V∗(t, ξ)(A∗(t, ξ)− εψ(ξ)) dξ dt .

Lemma 3.24 which states Vk → V∗ weakly in Lp([0, T ]× [0, 1]). Again we receive the sought for limit
inferior estimate as an equation for the limit since we already confirmed that A∗−εψ ∈ Lp

′
([0, T ]× [0, 1]).

3.5.3 Identification of the limit V∗

Plugging together the above calculations we arrive at (3.5.5). Combining this with (3.5.4) we receive

0 ≤
ˆ T

0

ˆ 1

0

[V∗(t, ξ)− (c∗)′(A∗(t, ξ)− εψ(ξ))] εψ(ξ)u(t) dξ dt

which holds for every ε > 0, u ∈ C∞c ((0, T )) with u ≥ 0 and ψ ∈ C∞c ((0, 1)). Dividing by ε > 0 and
exchanging ψ ↔ −ψ we receive the equation

0 =

ˆ T

0

ˆ 1

0

[V∗(t, ξ)− (c∗)′(A∗(t, ξ)− εψ(ξ))]ψ(ξ)u(t) dξ dt .

Finally we send ε↘ 0 and receive, since εψ converges uniformly to zero for ε↘ 0,

0 =

ˆ T

0

ˆ 1

0

[V∗(t, ξ)− (c∗)′(A∗(t, ξ))]ψ(ξ)u(t) dξ dt

which then implies

V∗ = (c∗)′ ◦A∗ a.e. .

3.6 Solution of our PDE

We will consider, as with the cost functions, two cases. The one corresponding to cost defined as in
Definition 3.1, which will be dealt with first, and cost defined as in Definition 3.2 which will need a
regularization argument made possible by our second maximum-/minimum principle will be dealt with
thereafter.

3.6.1 Solution of our PDE

We will now show that the limit X∗ is indeed a solution to our PDE (3.1.1) in terms of IDF, that is to
say it satisfies a weak formulation of (3.1.23).

To that end we have to show that X∗(t) is an inverse distribution function for every t ∈ [0, T ], that is
to say that it is non-decreasing and X∗(t, 0) = a as well as X∗(t, 1) = b holds for all t ∈ [0, T ].

Consider the sequence Xk(t) for some t ∈ (0, T ). By construction of Xk(t), we know Xk(t) is non-
decreasing and that Xk(t, 0) = a, Xk(t, 1) = b holds, so Xk(t) converges pointwise to X∗ and the limit is
again non-decreasing. Furthermore, X∗(t, 0) = a as well as X∗(t, 1) = b holds, too.

We have to show that the initial data are assumed X∗(t)→ X
(0)
∗ for t→ 0. To that end, we will show

that X∗ is Hölder continuous as a curve in L1([0, 1]). This will be a consequence of Corollary 3.22.
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Indeed, written in terms of Xk, this inequality reads, for every t1, t2 ∈ [0, T ] as

‖Xk(t1)−Xk(t2)‖Lp([0,T ]) ≤ |t2 − t1 + τk|1/p
′
p

√
2

α

(
EX(X

(0)
k )− Ex

)1/p

.

Now we know on the one hand, that Xk(t) converges strongly in L1([0, 1]), and that EX(X
(0)
k ) is bounded.

This implies in the limit the following inequality for every t1, t2 ∈ [0, T ]

‖X∗(t1)−X∗(t2)‖Lp([0,T ]) ≤ C |t2 − t1|
1/p′

for some C > 0. So our limit curve X∗ is 1
p′ = p−1

p -Hölder continuous as a curve in Lp([0, 1]).

In particular this implies limt↘0X∗(t) = X(0) in the Lp([0, 1]) sense.
Finally we have already shown that X∗ is a weak solution of the PDE corresponding to (??) in terms

of IDF, or more explicitly we have shown that for every ϕ ∈ C∞c ((0, T )× (0, 1)) the equation

−
ˆ T

0

ˆ 1

0

X∗(t, ξ)∂tϕ(t, ξ) dξ dt

=

ˆ T

0

ˆ 1

0

(c∗)′
(
∂ξu
′
∗(∂ξX∗(t, ξ))− v′(X∗(t, ξ))−

ˆ 1

0

w′(X∗(t, ξ)−X∗(t, ζ)) dζ

)
ϕ(t, ξ) dξ dt

holds.

3.6.2 The flux-limiting case

To prove Theorem 2, we will show that, given the prerequisites of Theorem 2, the flux-limiting cost
functions can be regularized to be actually p-Wasserstein cost without changing the minimizers of our

algorithm steps. The bound on δ2x
(n)
k we receive from Lemma 3.17 will play the central role.

Let us assume c, x
(0)
k are as in Lemma 3.17. Then by the very same result, the bounds for δ2x

(0)
k

hold for all δ2x
(0)
k , too. As a first consequence, this yields finite bounds from above and below for a

(n)
i,k .

Indeed, by the properties of u∗ we receive

a
(n)
i,k ∈

[
δ2x(0) · u′′∗

(
δx(0)

)
, δ2x(0) · u′′∗

(
δx(0)

) ]
if δ2x(0) < 0 < δ2x(0). If it is the case that δ2x(0) and δ2x(0) lie on the same side of zero, one of the
bounds in the interval has to be replaced with zero.

Now since (c∗)′ is monotonously increasing, we receive bounds for the discrete temporal backward
difference

x(n)ni − x(n)n− 1i
τk

= (c∗)′(a
(n)
i,k ) ∈

[
(c∗)′

(
u′′∗(δx

(0))δ2x(0)
)
, (c∗)′

(
u′′∗(δx

(0))δ2x(0)
)]

again with the appropriate corrections if δ2x(0) and δ2x(0) lie on the same side of zero. So to summarize,
there are uniform bounds

C := (c∗)′
(
u′′∗(δx

(0))δ2x(0)
)
> −γ; and C := (c∗)′

(
u′′∗(δx

(0))δ2x(0)
)
< γ

such that for every k, n our minimization problem in the algorithm can be narrowed down to a minimiza-

tion over x such that x(n)ni−x(n)n−1i
τk

∈ [C,C]. This allows us in particular to regularize the flux-limiting

cost c outside of [C−γ2 , C+γ
2 ] to satisfy Definition 3.1

This shows that the above results hold for flux-limiting cost as well, as soon as we have initial data
that satisfies the additional regularity assumption from Theorem 2.
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3.7 Numerical experiments

3.7.1 Implementation

We perform the minimization of F : x 7→ Φ(τ ; x(n−1),x) by a damped Newton scheme

pj = −HF (xj)
−1∇F (xj)

xj+1 = xj + hjpj , j = 0, 1, . . .

for the gradient of F . The choice of the step size hj in each step is realized by an Armijo-type heuristic,
i.e. we choose hj as the largest value from the sequence {1, 1

2 ,
1
4 , . . .} for which

xj + hjpj ∈ {x ∈ Rk+1 | a = x0 < x1 < · · · < xk = b, |xi − x(n−1)
i | ≤ τ},

i.e. such that the next iterate xj+1 is still an IDF and has a well defined optimal transport distance in
the flux limited case.

A Matlab code for the following experiments is given in the Appendix.

3.7.2 Linear diffusion

We start with the case m = 1, i.e. the case of the Boltzmann entropy for the internal energy potential.
All experiments have been carried out with k = 1000 grid points and time step τ = 0.01. Figs. 3.1 and
3.2 show the evolution of an initial distribution with localized support over the time interval [0, 2] for
Wasserstein costs with p = 7, while Fig. 3.3 shows the same evolution for the flux limited case with c
given by (3.1.12), γ = 1.

In Fig. 3.4 (left), we depict the L1-error of the computed density in dependence of the mesh size.
The error is estimated by computing the exact L1 difference to a reference solution on a grid with 10000
points, the same initial condition as for Fig. 3.1 has been used. The experiments suggest that the error
decreases linearly with the grid size. To the right in this figure, the L1-error of the computed density
(on a grid of 1000 points) in dependence of the time step is plotted. Again, we estimate this error by
comparing to a reference solution, here with time step τ = 0.001. The result clearly suggests a linear
dependence of this error on the time step.

3.7.3 Porous medium equation

As a second experiment, we consider the case of nonlinear diffusion with m = 5
3 . We choose p = 4

3 so

that we obtain the q-Laplace equation with q = 2−p
p−1 = 2. Fig. 3.5 shows the evolution of the densities

and the associated characteristics.

3.8 Auxiliary convergence results

3.8.1 Difference quotients and weak derivatives

(c.f. [20, Chapter 5.8.2])
Let fk : Ω→ R be a sequence of real valued functions on a open rectangle Ω ∈ R2, rk ↘ 0 a sequence and
let p ∈ (1,∞) as well as e1, e2 be the canonical basis vectors. If fk is uniformly bounded w.r.t. Lp and,

for some i = 1, 2, δifk(x) := fk(x+rkei)−fk(x)
rk

1Ωrk,i
(x) with Ωε,i := {x ∈ Ω | x ± εei ∈ Ω} is uniformly

bounded w.r.t. Lp(Ω), then fk → f∗ in Lp(I) and δifk
weakly−−−−→ ∂xif∗ on Ω.
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Figure 3.1: Experiment: p-Wasserstein cost, linear diffusion. Left: Approximate densities u(t, ·) at
t = 0.01 · 10k, k = 0, 0.12, 0.24, . . . , log10(200), initial mass uniformly distributed on [−0.3, 0.3]. Right:
the corresponding characteristics.

Proof. The uniform bounds of fk and δifk in Lp imply weak convergences of an (unrelabeled) subsequence
of fk, δifk to some limits f∗ : Ω→ R and g : Ω→ R respectively, in Lp.

Furthermore, we receive for every ε > 0, φ ∈ C∞c (Ωε,i) and k big enough such that rk < ε

ˆ
Ωε,i

g(x)φ(x) dx = lim
k→∞

ˆ
Ωε,i

fk(x+ rkei)− fk(x)

rk
φ(x) dx

= − lim
k→∞

ˆ
Ωε,i

fk(x)
φ(x− rkei)− φ(x)

rk
dx

= −
ˆ

Ωε,i

fk(x)∂xiφ(x) dx .

This argument holds for every ε > 0 so the claim follows by uniqueness of the weak derivative.

3.8.2 Strong convergence and Lipschitz-functions

Let fk : Ω → W be a sequence of real valued functions on an open Ω ∈ Rn with values in some closed
W converging strongly w.r.t. Lp(Ω) for some p ∈ (1,∞) to f∗ : Ω → R. Let furthermore g : R → R be
Lipschitz on W . Then g(fk)→ g(f∗) in Lp(Ω).

Proof. Strong convergence of fk implies uniform boundedness for every subsequence a subsubsequence
converging pointwise to some limit. By continuity of g this carries over to g(fk) and said subsubsequences
thereof. On the other hand, fk being bounded in Lp implies, by Lipschitz-continuity g(fk) being bounded
in Lp and therefore, by the dominated convergence theorem, the pointwise convergence of said subsub-
sequences of g(fk) is actually a convergence w.r.t. Lp. Finally, since fk converges to f∗. all the cluster
points of g(fk) are g(f∗), which implies the claim.
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Figure 3.2: Experiment: p-Wasserstein cost, linear diffusion. Left: Approximate densities u(t, ·) at
t = 0.01 · 10k, k = 0, 0.12, 0.24, . . . , log10(200), initial mass uniformly distributed on [−3,−2.4]. Right:
the corresponding characteristics.

Figure 3.3: Experiment: relativistic cost, linear diffusion. Left: Approximate densities u(t, ·) for t =
0.01 · 10k, k = 0, 0.12, 0.24, . . . , log10(200), initial mass uniformly distributed on [−0.3, 0.3]. Right: the
corresponding characteristics (dashed: speed of light).
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Figure 3.4: Convergence analysis: relativistic cost, linear diffusion. L1-error of the inverse distribution
function in dependence of the grid size (left), and in dependence of the time step (right).

Figure 3.5: Experiment: q-Laplace (p = 4
3 ,m = 5

3 ). Left: Approximate densities u(t, ·) for t = 0.01 · 10k,
k = 0, 0.12, 0.24, . . . , log10(200), initial mass uniformly distributed on [−0.3, 0.3]. Right: the correspond-
ing characteristics.



Chapter 4

Entropic regularized relativistic heat
equation

4.1 Introduction

This chapter follows very closely the joint work of the author with Daniel Matthes [35]. The main
difference to [35] consists of the generelization of the free energy functional E and therefore the family of
equations (4.1.1).

4.1.1 General idea

In the field of numerical solution of transportation problems — like estimation of Wasserstein distances,
computation of barycenters, or parameter estimation — entropic regularization has been proven a versatile
and impressively efficient tool. Based on Cuturi’s adaptation of the Sinkhorn algorithm for “lightspeed
computation of optimal transport” [16], a huge variety of highly efficient methods for various current
applications of transport theory have been developed, see the recent book [41] for an overview. The focus
has been mainly on image and data science, but the ideas have been applied for numerical approximation
of gradient flows as well, see e.g. [42, 8]. Here, we develop this approach further to define an efficient
scheme for approximation of solutions to flux-limited equations of the type

∂tρ+∇ ·
[
ρ a
(
∇ [h′(ρ) + v + (w ∗ ρ)]

)]
= 0, ρ(0, ·) = ρ0. (4.1.1)

In that problem, the sought solution ρ is a time-dependent probability density, either on Ω = Rd with
finite second moment, or on a bounded domain Ω ⊂ Rd with no-flux boundary conditions. The given
function h : R≥0 → R is convex and super-linear, the external and interaction potentials v and w are
positive, bounded and in C2(Rd) while w is symmetric in the sense that w(−z) = w(z) for all z ∈ Rd and
a : Rd → B is a monotone map into the closed unit ball B of Rd. This implies the aforementioned flux
limitation, since (4.1.1) can be considered as a transport equation with velocities a(∇h′(ρ)) of modulus
less than one. The expression (w ∗ ρ) denotes the convolution of w with ρ

(w ∗ ρ)(x) =

ˆ
Ω

w(x− y)ρ(y) dy .

Our primary example will be Rosenau’s relativistic heat equation [44],

∂tρ = ∇ ·

(
ρ

∇ρ√
ρ2 + |∇ρ|2

)
, (4.1.2)

47
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which is (4.1.1) with h(r) = r(log r − 1), v = const. = w and a(p) = (1 + |p|2)−1/2p. This equation has
been analyzed in great detail, mostly by Caselles and collaborators, see [13, 3, 4] and references therein.
Schemes for numerical solution of (4.1.2) have been developed as well, see e.g. [9], however, these are
very different from the approach taken here.

In the definition of the entropic regularization of (4.1.1), its discretization in space and time, and
the efficient numerical implementation, we closely follow the blueprint laid out in [42] for gradient flows
in the L2-Wasserstein metric. In order to make that variational approach feasible, we require a special
structure of a, namely that it can be written in the form

a(p) = ∇C∗(−p), (4.1.3)

where C∗ is the Legendre transform of a convex cost function C : Rd → R ∪ {+∞}. The flux limitation
is implemented by requiring further that C is continuous on the closed unit ball B, equal to one on the
boundary ∂B, and is +∞ outside of B. As observed by Brenier [7], the relativistic heat equation (4.1.2)
fits into that framework, by choosing C(v) = 1−

√
1− |v|2 for v ∈ B.

4.1.2 Gradient flow structure

With the assumption (4.1.3) on a, (4.1.1) can be considered as a gradient flow on the space P(Ω) of
probability measures on Ω, at least formally. We briefly recall the basic idea in a language that is
suitable for formulation of our approximation later. We refer e.g. to [2, 1, 7, 37] for further details on
the variational structure of (4.1.1).

The potential of that gradient flow is the energy functional

E(ρ) :=

ˆ
Ω

h(ρ) + ρ(v + 1
2 (w ∗ ρ)) dx. (4.1.4)

And the respective dissipation D(ρ; q) for a given “tangential vector” q at ρ ∈ P(Ω) — that is, q ∈ L1(Ω)
is of zero average — is defined by

D(ρ; q) := inf
q=∇·(ρv)

ˆ
Ω

C(v)ρdx. (4.1.5)

Here the infimum runs over all vector fields v : Ω→ Rd for which q = ∇· (ρv), and equals infinity if there
is no such v. The integral in (4.1.5) represents the friction resulting from the infinitesimal motion of all
mass elements in ρ along the vector field v; taking the infimum over v’s means that the infinitesimal mass
elements move in the least dissipative way to realize the macroscopic change determined by q.

A curve ρ : R≥0 → P(Ω) is of steepest descent in E’s landscape with respect to D if at each instance
t0 > 0, the derivative ∂tρ(t0) is such that the sum

D
(
ρ(t0); ∂tρ(t0)

)
+

d

dt

∣∣∣
t=t0
E
(
ρ(t)

)
(4.1.6)

is minimized, i.e., the decrease in energy is optimal with respect to the induced dissipation. Assuming that
ρ(t0) is smooth and positive everywhere, then a straight-forward calculation shows that the minimizing
∂tρ(t0) = ∇ · (ρ(t0)v(t0)) is determined by the vector field v(t0) that minimizes

v 7→
ˆ

Ω

[
C(v)ρ(t0) +

[
h′
(
ρ(t0)

)
+ v + (w ∗ ρ(t0))

]
∇ ·
(
ρ(t0)v

)]
dx.

In view of (4.1.3), this produces the evolution equation (4.1.1).
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4.1.3 Discretization and regularization

To connect to the variational framework of optimal transport, we perform a time-discrete approximation
of (4.1.6) in the spirit of the minimizing movement scheme [2], which is often refered to as JKO method
[23] in the context of optimal transport. For a given time step τ > 0, a sequence (ρn)∞n=0 is constructed
inductively: given an approximation ρn−1 of ρ((n−1)τ), i.e., the solution ρ to (4.1.1) at time t = (n−1)τ ,
choose as approximation ρn of ρ(nτ) the minimizer of

ρ 7→ inf
γ

¨
Ω×Ω

cτ (x, y) dγ(x, y) +
1

τ

[
E(ρ)− E(ρn−1)

]
. (4.1.7)

Above, the infimum runs over all probability measures γ ∈ P(Ω×Ω) on the product space Ω×Ω whose first
and second marginal, denoted by X#γ and Y#γ, respectively, equal to ρn−1 and ρ. Further, cτ (x, y) is
the C-induced cost of the transport from x to y in time τ ; if Ω is convex, then simply cτ (x, y) = C(y−xτ ),
i.e., cτ (x, y) is the average dissipation induced by the motion of a unit mass element with constant
velocity v = y−x

τ . The general definition of cτ is given in Section 4.2.4. In the language of optimal
transport, γ is a transport plan from ρn−1 to ρn: roughly speaking, γ(x, y) determines the amount of
ρn−1’s mass at position x to be moved to ρn’s mass at position y. The double integral in (4.1.7) is visibly
an approximation of the integral in (4.1.6).

The difficulty in the numerical implementation of (4.1.7) is to calculate the infimum of the integral
for given ρn−1 and ρ, and its variation with respect to ρ. A common approach is to go to the Lagrangian
formulation, using that the optimal γ is typically concentrated on the graph of a transport map T : Ω→ Ω.
This is extremely efficient in one space dimension [6, 32, 31], but becomes significantly more cumbersome
— and difficult to analyze — in multiple dimensions [5, 11, 10, 24]. Various alternatives to the Lagrangian
approach are available, including finite volume methods [30], blob methods [12] etc.

Here, we use the “lightspeed computation” of the optimal plan γ by employing entropic regularization
to the minimization problem. Recall that γ’s negative entropy is

H(γ) =

¨
Ω×Ω

G(x, y) logG(x, y) d(x, y) (4.1.8)

if γ = GLd is absolutely continuous, and H(γ) = +∞ otherwise. Adding this as a regularization inside
the dissipation term in (4.1.7), we arrive at the new minimization problem

ρ 7→ inf
γ

[¨
Ω×Ω

cτ (x, y) dγ(x, y) + εH(γ)

]
+

1

τ

[
E(ρ)− E(ρn−1

τ )
]
, (4.1.9)

ε ≥ 0 being the parameter of the regularization. Finally, we discretize the problem (4.1.9) in space
by restricting minimization to Pδ(Ω), the set of absolutely continuous ρ’s whose densities are piecewise
constant on the cells Q of a given tesselation Qδ of Ω; here δ > 0 parametrizes the size of the cells Q,
and δ → 0 is the continuous limit. It is further admissible to approximate cτ by a more convient cost
function cτ,δ. E.g., in the actual numerical experiments, we use a cτ,δ that is piecewise constant on the
products Q×Q′ of cells Q,Q′ ∈ Qδ; this makes the minimization feasible in practice since it then suffices
to consider only absolutely continuous γ’s that are piecewise constant on Q×Q′.

In summary, for given ε ≥ 0 and δ ≥ 0 — corresponding to a tesselation Qδ and a cost function cτ,δ
— a time-discrete approximation (ρn)∞n=0 of a solution to (4.1.1) is defined inductively by

ρn := Y#γn, with γn := arg min Eτ,ε,δ
(
γ
∣∣ρn−1

)
, (4.1.10)

where, using the indicator functional ιQ that is zero if Q is true, and +∞ otherwise,

Eτ,ε,δ
(
γ
∣∣ρ̄) =

¨
Ω×Ω

cτ,δ(x, y) dγ(x, y) + εH(γ) +
1

τ
E(Y#γ) + ιX#γ=ρ̄ + ιY#γ∈Pδ(Ω). (4.1.11)
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4.1.4 Convergence result

Our analytical result concerns the joint limit of infinitely refined spatial discretization δ → 0 and vanishing
entropic regularization ε→ 0.

Theorem 3. Assume Ω = Rd, and that ρ0 has finite second moment. Assume further that h(r) = rm

with some m > 1.

Fix a time step τ > 0, and non-negative sequences (εk) and (δk) of entropic regularizations and spatial
discretizations, respectively, that converge to zero. Under hypotheses on the tesselations Qδk and cost
functions cτk,δk that are detailed in Section 4.2.5 below, the inductive scheme in (4.1.10), with ε = εk
and δ = δk, is well-defined and produces time-discrete approximations (ρnk )∞n=0 for each k. Moreover,
ρnk → ρn narrowly and weakly in Lm(Rd) as k →∞, for each n, and (ρn)∞n=0 is a sequence of minimizers
in (4.1.7).

We emphasize that the special cases εk ≡ 0 (spatial discretization without entropic regularization)
and δk ≡ 0 (entropic regularization without spatial discretization) are included. Further, we remark that
the choice Ω = Rd is mainly made for definiteness; the proof is actually slightly more difficult than in the
case of bounded Ω. Also, h(r) = rm has been chosen to simplify the presentation; the method of proof
would apply to any convex h : [0,∞)→ R with h(0) = 0 that has superlinear growth at infinity.

The proof is based on the Γ-convergence of the functional in (4.1.11) to the one in (4.1.7) without
E(ρn−1), which is made precise in Proposition 1 below. That Γ-limit would be fairly easy to obtain in
the situation of regular cost functions, i.e., when C is a continuous and strictly convex function on all
of Rd. In the flux limited situation that we consider here, the construction of the recovery sequence is
surprisingly delicate.

We emphasize that we do not consider the passage τ → 0 from the JKO method (4.1.7) to a solution
of the PDE (4.1.1). That kind of limit has been studied extensively, albeit rarely in the flux-limited
case. Particularly for L2-Wasserstein gradient flows, corresponding to C(v) = 1

2 |v|
2 and to a(p) = p, the

existing literature is huge, and also covers much more general nonlinearities in (4.1.1) than just h′(ρ).
The JKO method has been used to construct solutions to linear and non-linear Fokker-Planck equations
[40], to degenerate fourth order parabolic equations [39], to PDEs with non-local terms [6], to coupled
systems [27], and many more. There are fewer results on a JKO-like variational approximation of (4.1.1)
with a non-linear power functions a(ξ) = |ξ|p−2ξ, with p 6= 2; this includes in particular the p-Laplace-
equations. The corresponding theory of gradient flows in the Lq-Wasserstein metric with C(v) = 1

q |v|
q

(with q = p′ 6= 2) has been developed in [2, 1]. Finally, concerning the situation of interest here, which is
(4.1.1) with flux-limitation: the analysis is significantly more challenging in that situation, but still, the
limit τ → 0 has been carried out successfully on the JKO-like variational approximation of the relativistic
heat equation in a work of McCann and Puel [37]. The techniques developed therein should apply to the
more general class (4.1.1) considered here.

To the best of our knowledge, our result is the first one that rigorously shows the stability of the
minimizers in the JKO scheme under entropic regularization. In a related problem, namely for (4.1.1)
with a(ξ) = ξ, i.e., in the L2-Wasserstein case, the combined limit of τ → 0 and ε → 0 (without
spatial discretization, δ = 0) has been carried out by Carlier et al [8]. Also there, the Γ-limit of an
entropically regularized transport is studied, however in a different sense, namely for fixed marginals,
and for quadratic costs, both of which makes the analysis much easier. We remark further that a joint
limit of spatio-temporal refinement has been performed recently [47] for a structurally different fully
discrete approximation of the relativistic heat equation in one space dimension, using Lagrangian maps.
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4.2 Notations and general hypotheses

Below, we summarize several basic notations and hypotheses, most of which have been mentioned in the
introduction in an informal way.

4.2.1 Domains and measures

In the proof of Theorem 3, Ω = Rd. In the numerical experiments, Ω ⊂ Rd is an open, bounded and
connected set with Lipschitz boundary. Ld is the d-dimensional Lebesgue measure on Ω.

For a measurable subset M of an euclidean space Rm, we denote by P(M) the affine space of proba-
bility measures on M that have finite second moment (which is irrelevant if M is bounded). By abuse of
notation, we shall frequently identify absolutely continuous µ = ρLd ∈ P(M) and their Lebesgue-densities
ρ ∈ L1(M).

For a measurable map T : M → M ′, the push-forward T#µ ∈ P(M ′) of µ ∈ P(M) is defined via
T#µ[A] = µ[T−1(A)] for all measurable sets A ⊂ M . Canonical projections X,Y : M ×M → M are
given by X(x, y) = x and Y (x, y) = y. With these notations, the two marginals of γ ∈ P(Ω × Ω) are
given by X#γ, Y#γ ∈ P(Ω), respectively.

The natural notion of convergence in P(M) is narrow convergence, that is weak convergence as
measures in duality to bounded continuous functions ϕ ∈ Cb(M). For M = Rm, we shall occasionally use
a slightly stronger kind of convergence, namely convergence in W2 (the Wasserstein distance is recalled
below), which means narrow convergence plus convergence of the second moment.

4.2.2 Wasserstein distance

The L2-Wasserstein distance between ρ0, ρ1 ∈ P(M) is given by

W2(ρ0, ρ1) =

(
inf

γ∈P(M×M)

[¨
M×M

|x− y|2 dγ(x, y) + ιX#γ=ρ0 + ιY#γ=ρ1

])1/2

.

The infimum above is actually a minimum, and minimizers γ are called optimal plans for the transport
from ρ0 to ρ1. We use the following fact: if ρ0 is absolutely continuous, then there exists a measurable
T : M →M , called an optimal map, such that T#ρ0 = ρ1, and

W2(ρ0, ρ1) =

(ˆ
M

|T (x)− x|2ρ0(x) dx

)1/2

.

W2 is a genuine metric on P(M). Convergence in W2 is equivalent to narrow convergence and conver-
gence of the second moment.

4.2.3 Energy functional

By abuse of notation, the definition of E : P(Ω)→ R∪{+∞} in (4.1.4) has to be understood in the sense
that if µ = ρLd is absolutely continuous, then E(µ) = E(ρ) is given by the integral, and E(µ) = +∞
otherwise. Since h is convex, l.s.c. and super-linear at infinity, the map ρ 7→

´
Ω
h(ρ) dx is is lower

semi-continuous with respect to narrow convergence.
By v,w ∈ Cb(Ω) the map ρ 7→

´
Ω
ρ(v + (w ∗ ρ)) dx is continuous w.r.t. narrow convergence. Indeed

the part involving v is directly by definition.
For the part involving w we note the map γ 7→

˜
Ω2 w(x−y) dγ(x, y) is by definition continuous w.r.t.

to narrow convergence in P(Ω2) and the map ρ 7→ ρ⊗ρ is a map that is continuous as a map from P(Ω)
to P(Ω2). Here ρ ⊗ µ ∈ P(Ω2) is the measure defined by ρ ⊗ µ(A × B) = ρ(A)µ(B) for all Borel-sets
A,B ⊂ Ω. Consequently E is lower semi-continuous with respect to narrow convergence.
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The methods we present are suited to study general energy functionals of the form (4.1.4) with a
smooth and convex function h of superlinerar growth at infinity. In the proof of Theorem 3, we restrict
ourselves to h(r) = rm with m > 1 to facilitate readability. In the numerical experiments, we additionally
use h(r) = r(log r − 1).

4.2.4 Derived cost function

We assume that C : Rd → [0,∞] is strictly convex, continuous and bounded on B, and +∞ outside of B,
with unique minimum C(0) = 0. For technical reasons, we further assume that C ≡ 1 on ∂B. Then the
gradient of the Legendre dual C? lies in B.

The cost function c : Ω× Ω→ [0,∞] is derived from C via

cτ (x, y) = inf

{
1

τ

ˆ τ

0

C(ż(t)) dt

∣∣∣∣ z : [0, τ ]→ Ω differentiable, z(0) = x, z(τ) = y

}
. (4.2.1)

If Ω is convex (e.g., Ω = Rd), then thanks to the convexity of C,

cτ (x, y) = C

(
y − x
τ

)
. (4.2.2)

4.2.5 Spatial discretization

We assume that for each δ > 0, a tesselation Qδ of Ω is given. That is, Qδ consists of finitely (if Ω
bounded) or infinite-countably (if Ω = Rd) many open non-overlapping cells Q such that the union of
their closures Q cover Ω. We further require that there is a constant r > 0 such that

diam(Q) ≤
√
dδ and |Q| := Ld(Q) ≥ (rδ)d for all Q ∈ Qδ. (4.2.3)

A canonical example for Ω = Rd is — setting r := 1 —

Qδ =
{
δ({j}+K) | j ∈ Zd

}
where K := (− 1

2 ,
1
2 )d .

Accordingly, we define Pδ(Ω) as the space of those ρLd ∈ P(Ω) for which ρ is constant on each Qi ∈ Qδ.
Further, Pδ(Ω × Ω) consists of those γ ∈ P(Ω × Ω) for which Y#P ∈ Pδ(Ω). We emphasize that the
condition is only on the y-marginal Y#γ, not on the x-marginal X#γ, which does not even need to be
absolutely continuous. For convenience, we set P0(Ω) := P(Ω).

For a probability density ρ̄ ∈ L1(Ω), let

Γδ(ρ̄) =
{
γ ∈ Pδ(Ω× Ω) ; X#γ = ρ̄Ld

}
be the subset of measures with ρ̄Ld as first marginal.

Moreover, we assume that for each δ > 0, a function cτ,δ : Ω×Ω→ [0,∞] is given that approximates
the cost function cτ as follows: there are ατ,δ ∈ (0, 1) with ατ,δ → 0 as δ → 0 for fixed τ > 0, such that

|cτ,δ(x, y)− cτ (x, y)| ≤ ατ,δ for |x− y| ≤ τ , and (4.2.4)

cτ,δ(x, y) ≥ 1− ατ,δ +
1

ατ,δ

(
|y − x| − τ

)2
for |x− y| > τ. (4.2.5)

Naturally, one can always take cτ,δ ≡ cτ . Note that any cτ,δ with cτ,δ = +∞ on |x−y| > τ automatically
satisfies (4.2.5).

For brevity, we write ck for cτ,δk , and accordingly αk for the constants ατ,δk appearing in (4.2.4)&(4.2.5).
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4.3 Proof of Theorem 3

The proof of Theorem 3 immediately follows from a Γ-convergence result that we formulate below.

Proposition 1. In addition to the hypotheses of Theorem 3, let a sequence (ρk)∞k=1 of densities ρk ∈
P2(Rd) be given such that ρk converges in W2 to some ρ∗ ∈ P2(Rd), and supk E(ρk) <∞. Let furthermore
δk > 0 be a sequence tending to zero slowly enough such that

εk log(δ−1
k )→ 0 (4.3.1)

holds. Then the sequence of functionals Eτk : P(Ω× Ω)→ [0,+∞] with, c.f. (4.1.11),

Eτk (γ) := Eτεk,δk,ck(γ|ρk)

Γ-converges in the narrow topology to Eτ∗ : P(Ω× Ω)→ [0,+∞] with

Eτ∗ (γ) =

¨
Ω×Ω

cτ,δ(x, y) dγ(x, y) +
1

τ
E(Y#γ) + ιX#γ=ρ∗ .

Moreover, each Eτk possesses a (unique, if εk > 0) minimizer γ̂k ∈ Γδk(ρk), and a subsequence of these
minimizers converges in W2 to a minimizer γ̂ ∈ Γ(ρ) of Eτ (·; ρ∗).

Remark 1. Note that (4.3.1), which is needed for 4.4.3. Limsup condition, imposes no additional
restriction if the tesselation Qδ is made of identical cubes, since then Γδ′(ρ̃) ⊆ Γδ(ρ̃) if δ′ > 0 is an
integer multiple of δ > 0, or is arbitrary if δ = 0, — recall that the additional condition induced by δ
is only on the Y -marginal, not on the X-marginal — and we can replace (δk) by a sequence (δ′k) with
δ′k ≥ δk that still goes to zero and satisfies (4.3.1), and the recovery sequence γk ∈ Γδ′k(ρk) that we obtain
is clearly also a recovery sequence with γk ∈ Γδk(ρk).

It is now easy to conclude Theorem 3 by induction on n. Trivially, ρ0
k = ρ0 converges to ρ0

∗ = ρ0.
Assume that for some n = 1, 2, . . ., there is a (non-relabeled) subsequence (ρn−1

k )∞k=1 that converges in W2

and weakly in Lm(Rd) to a limit ρn−1
∗ . That sequence (ρn−1

k )∞k=1 satisfies the hypotheses of Proposition
1, since weak convergence in Lm(Rd) implies that E(ρn−1

k ) = ‖ρn−1
k ‖mLm remains bounded. Hence the

respective functionals Eτk with ρk := ρn−1
k Γ-converge narrowly to Eτ∗ , with ρn−1

∗ in place of ρ∗, and a
(non-relabeled) subsubsequence (γnk )∞k=1 of the minimizers converges to a limit γn∗ in W2. It is obvious
that ρn∗ := Y#γn∗ is a minimizer in (4.1.7). It is further obvious that for the subsubsequence under
consideration, the convergence of γnk in W2 is inherited by the marginal ρnk−1. Finally, to conclude the

weak convergence in Lm(Rd), possibly after passing to yet another subsequence, observe that the γn−1
k

are minimizers of the respective Eτk , that ‖ρk‖mLm = E(ρk) ≤ Eτk (γn−1
k ) by definition of Eτε,δ,c, and that

Eτk Γ-converges to Eτ∗ . Alaoglou’s theorem allows us to select a subsequence that converges weakly in
Lm(Rd).

The rest of the analytical part of this paper is devoted to proving Proposition 1.

4.4 Proof of Proposition 1

Throughout the proof, let a sequence (ρk)∞k=1 be fixed that satisfies the hypotheses of Proposition 1, i.e.,
ρk ∈ P2(Rd), supk E(ρk) <∞, and ρk → ρ∗ in W2.

The proof is divided into three steps. First, we prove the liminf-condition for Γ-convergence: if
γk ∈ Γδk(ρk) converges to γ∗ ∈ Γ(ρ∗) narrowly, then

Eτ∗ (γ∗) ≤ lim inf
k→∞

Eτk (γk). (4.4.1)
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Second, and by far more difficult, is the construction of a recovery sequence: if γ∗ ∈ Γ(ρ∗) is such that
Eτ∗ (γ∗) <∞, then there are γk ∈ Γδk(ρk) such that γk → γ∗ narrowly, and

Eτ∗ (γ∗) ≥ lim sup
k→∞

Eτk (γk). (4.4.2)

These two steps together verify the Γ-convergence of the Eτk . In particular, it follows that if γ̂k are
minimizers of the Eτk which converge to γ̂ ∈ Γ(ρ∗), then γ̂ is a minimizer of Eτ∗ . Now, in the final step,
we verify that each Eτk actually possesses a minimizer γ̂k ∈ Γδk(ρk), and that a subsequence of those
converges narrowly to a limit γ̂ ∈ Γ(ρ∗), which then is necessarily a minimizer of Eτ (·|ρ∗).

4.4.1 Preliminary results

Before starting with the core of the proof, we draw two immediate conclusions from the hypotheses stated
above.

Lemma 1. The ρk have k-uniformly bounded second moments, and
´
Rd ρk(x) log ρk(x) dx is k-uniformly

bounded from above and below.

Proof. By hypothesis, ρk converges to ρ∗ in W2, which implies in particular the convergence of ρk’s second
moment to the one of ρ∗. Boundedness of the integral is obtained by means of a classical estimate: first,

observe that r log r ≥ −d+1
e r

d
d+1 for all r > 0. By Hölder’s inequality, it follows that

ˆ
Rd
ρ(x) log ρ(x) dx ≥ −d+ 1

e

ˆ
Rd
ρ(x)

d
d+1 dx

≥ −d+ 1

e

(ˆ
Rd

dx(
1 + |x|2

)d
) 1
d+1 (ˆ

Rd
ρ(x)

(
1 + |x|2

)
dx

) d
d+1

,

which yields a finite lower bound that only depends on the second moment of ρk. An upper bound easily
follows from the k-uniform boundedness of E(ρk) and the fact that r log r ≤ 1

(m−1)er
m for all r > 0.

For the next result, recall that αk = ατ,δk are the quantities that appear in conditions (4.2.4)&(4.2.5).

Lemma 2. There is a constant C such that — uniformly for all k large enough — the second moment
of each γ ∈ Γ(ρk) is controlled via

¨
Rd×Rd

(
|x|2 + |y|2

)
dγ(x, y) ≤ C

(
1 + αkEτk (γ)

)
, (4.4.3)

and Eτk is bounded from below as follows,

Eτk (γ) ≥ (τ − Cαkεk)

¨
Rd×Rd

ck dγ + E(Y#γ). (4.4.4)

In particular, Eτk is non-negative for all sufficiently large k such that Cαkεk ≤ τ .

Proof. On the one hand, with the same idea as in the proof of Lemma 1 above, we find for every
γ = GLd ⊗ Ld that

H(γ) ≥ −Cd
(

1 +

¨
Rd×Rd

(
|x|2 + |y|2

)
dγ(x, y)

)
,
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where

Cd :=
2d+ 1

e

(¨
Rd×Rd

d(x, y)(
1 + |x|2 + |y|2

)2d
) 1

2d+1

is a finite constant that only depends on d. On the other hand, using hypothesis (4.2.5) on ck, it follows
that ¨

Rd×Rd
|y|2 dγ(x, y) ≤

¨
Rd×Rd

[
|x|+

(
|y − x| − τ

)
1|y−x|≥τ + τ

]2
dγ(x, y)

≤ 2

¨
Rd×Rd

|x|2 dγ(x, y) + 4τ2

¨
Rd×Rd

dγ(x, y) + 4

¨
|y−x|≥τ

(
|x− y| − τ

)2
dγ(x, y)

≤ 2

ˆ
Rd
|x|2ρk(x) dx+ 4τ2 + 4αk

¨
Rd×Rd

ck dγ,

which yields ¨
Rd×Rd

(
|x|2 + |y|2

)
dγ(x, y) ≤ 4

[
τ2 +

ˆ
Rd
|x|2ρk(x) dx+ αk

¨
Rd×Rd

ck dγ

]
. (4.4.5)

In view of Lemma 1 above, the second moment of ρk is uniformly controlled, and therefore

H(γ) ≥ −C
(

1 + αk

¨
Rd×Rd

ck dγ

)
, (4.4.6)

with a k-independent C. This induces the bound (4.4.4). The other bound (4.4.3) follows for all k such
that, say, Cαkεk ≤ τ/2, by re-inserting (4.4.4) into (4.4.5) and using once again the uniform bound on
ρk’s second moment.

4.4.2 Liminf condition

Proposition 2. Assume that a sequence of measures γk ∈ Γ(ρk) converges narrowly to γ∗ ∈ Γ(ρ) Then
(4.4.1) holds.

Proof. Recall from Lemma 2 that Eτk is non-negative for k large enough. And if Eτk (γk) → +∞, there
is nothing to prove. Hence, it suffices to consider a sequence (γk) such that Eτk (γk) converges to a finite
value. From (4.4.4), one directly concludes k-uniform boundedness of

˜
ck dγk. Thanks to the bound

(4.2.5) on ck, it follows for every t > 0 that γk’s mass in |x− y| ≥ τ + t goes to zero as k →∞. Thus, γ∗
is supported in |x− y| ≤ τ .

Define the continuous function c̃ : Rd × Rd → R by ĉ(x, y) = c(x, y) for |x − y| ≤ τ , and ĉ ≡ 1
otherwise. From (4.2.4) and (4.2.5) it is clear that ck ≥ ĉ− αk, and so¨

Rd×Rd
ck dγk ≥

¨
Rd×Rd

(
ĉ− αk

)
dγk =

¨
Rd×Rd

ĉ dγk − αk
k→∞−→

¨
Rd×Rd

ĉ dγ∗ =

¨
Rd×Rd

c dγ∗.

So, by (4.4.4),

lim inf
k→∞

Eτk (γk) ≥ τ
¨

Rd×Rd
c dγ∗ + lim inf

k→∞
E(Y#γk). (4.4.7)

Finally, since the projection Y is a continuous map, the push-forwarded measure Y#γk converges narrowly
to Y#γ∗, and since r 7→ rm is a convex function and v,w are bounded continuous functions, it follows
that

lim inf
k→∞

E(Y#γk) ≥ E(Y#γ∗),

so the sum on the right-hand side of (4.4.7) is greater or equal to Eτ (γ∗|ρ∗).
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(a) The density of 1 − θ0k in R2.

}
}

(b) The density of ϑβ(1 − θ0k) in R2 for β = (+1,+1).

Figure 4.1: The two smoothed indicator functions used in Step 2 to cup up the transport map γ
(1)
k

displayed for d = 2. Note that the set, on which both have density 1 has been emphasized by an
additional black border and a small step in the grayscale.

4.4.3 Limsup condition

Proposition 3. For every γ∗ ∈ Γ(ρ∗) with Eτ (γ∗|ρ∗) <∞, there exists a sequence of γk ∈ Γδk(ρk) such
that γk → γ∗ narrowly, and (4.4.2) holds.

For future reference, define η∗ := Y#γ∗. From our hypothesis E(Y#γ∗) <∞ together with v,w being
bounded it follows that η∗ ∈ Lm(Rd).

Construction of the recovery sequence

In the following, let k = 1, 2, . . . be fixed. We are going to construct γk ∈ Γδk(ρk) in several steps.

Step 1: Modify γ∗ into γ(1) such that X#γ
(1)
k = ρkLd and Y#γ

(1)
k = η∗Ld.

To that end, let Tk : Rd → Rd be an optimal map for the transport from ρ∗ to ρk in W2; such
a map exists since ρ∗ is a probability density, and both ρk and ρ∗ have finite second moment. Then

γ
(1)
k := (Tk ◦X,Y )#γ∗ has the desired marginals. For later use, define

ωk :=

(ˆ
Rd
|Tk(x)− x|2ρ∗(x) dx

) 1
2

= W2(ρ∗, ρk), (4.4.8)

which goes to zero by our hypothesis that ρk converges to ρ∗ in W2.

Step 2: Decompose γ
(1)
k into the sum of 2d non-negative measures γ

(2,β)
k — each of which fits into

the cylinder |x− y| ≤ τ after proper translation — and a remainder γ
(2,0)
k of small mass.

This is done with the help of several cut-off functions that we define now: for each β ∈ {+1,−1}d,
choose ϑβ ∈ C∞(Rd) such that
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• 0 ≤ ϑβ ≤ 1 and ∑
β

ϑβ = 1 on Rd,

• ϑβ is supported on the set where βjxj ≥ − τ
4d for all j = 1, . . . , d.

Thus, each ϑβ is essentially a smoothed indicator function for one of the 2d orthants in Rd. The label β
corresponds the signs of the d coordinates in the respective orthant. Next, let θ0

k ∈ C∞(Rd) be a smoothed
indicator function of the complement of the closed ball Bτ of radius τ with the following properties:

• 0 ≤ θ0
k ≤ 1 and |∇θ0

k| ≤ 3ω
−1/2
k ,

• θ0
k vanishes on Bτ+

√
ωk/2, and is identical to one on the complement of Bτ+

√
ωk .

Now define θβk := ϑβ(1− θ0
k) for all β ∈ {−1,+1}d, which are smoothed indicator functions of the sectors

of the ball Bτ corresponding to the respective β-orthant (c.f. Figure ?? (b)). Note that

θ0
k +

∑
β

θβk = 1 on Rd. (4.4.9)

For brevity, introduce further Θβ
k(x, y) = θβk (x− y) as well as Θ0

k(x, y) = θ0
k(x− y), and define

γ
(2,β)
k := Θβ

kγ
(1)
k , γ(2,0) := Θ0

kγ
(1)
k .

From (4.4.9), it follows that

γ
(2,0)
k +

∑
β

γ
(2,β)
k = γ

(1)
k . (4.4.10)

Roughly speaking, γ(2,0) contains the part of γ(1) corresponding to transport with speed that exceeds —
by
√
ωk/τ or more — the limit set by the flux limitation. The part γ(2,β) corresponds to transport that

either respects the flux limitation, or violates it by — no more than
√
ωk/τ — in the β-directions.

Step 3a: Translate each of the γ
(2,β)
k in y-direction to obtain a γ(3,β) that fits in the cylinder |x−y| ≤

τ − δk.
With

σk := 12
(
δk +

√
ωk
)
,

we define γ
(3,β)
k := (X,Y −σkβ)#γ

(2,β)
k . The fact that γ

(3,β)
k is supported in the aforementioned cylinder

is not completely obvious, and is verified in Lemma 5 below.

Step 3b: From the remainder γ
(2,0)
k , define a measure γ

(3,0)
k , which has the same first marginal as

γ
(2,0)
k and a smooth second marginal, and is supported in the cylinder |x− y| ≤ τ/2.

Let λ be a some smooth probability density on Rd with support in Bτ/2. Consider the product measure

γ
(2,0)
k ⊗λ on Rd×Rd×Rd. With (X,X+Z) being the map Rd×Rd×Rd 3 (x, y, z) 7→ (x, x+z) ∈ Rd×Rd,

one easily sees that γ
(3,0)
k := (X,X + Z)#(γ

(2,0)
k ⊗ λ) has the desired properties. Intuitively, on each

vertical fiber {x} × Rd, one redistributes the disintegrated mass of γ(2,0) in a smooth way around the
point y = x.

In summary of Steps 1–3, define

γ
(3)
k := γ

(3,0)
k +

∑
β

γ
(3,β)
k .
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Step 4: Project γ
(3)
k ∈ Γ(ρk) onto a γk ∈ Γδk(ρk).

For each Q ∈ Qδk , consider the Borel measure γQk on Rd defined by γQk (A) := γ
(3)
k (A × Q) for each

measurable A ⊂ Rd. Since ∑
Q∈Qδk

γQk = X#γ
(3)
k = ρkLd, (4.4.11)

it follows that γQk possesses a non-negative Lebesgue density gQk ∈ L1(Rd). From the gQk , we define a
probability density function Gk ∈ L1(Rd × Rd) via

Gk(x, y) :=
gQk (x, y)

|Q|
where Q ∈ Qδk is chosen such that y ∈ Q. (4.4.12)

Our final definition of the recovery sequence is γk := GkLd ⊗ Ld.

Properties of the recovery sequence

We prove various properties of the sequence (γk) that eventually allow to conclude (4.4.2).

Lemma 3. γk ∈ Γδk(ρk). Moreover, its second moment is k-uniformly bounded.

Proof. This is essentially clear from the construction.

First, γk is a probability measure since the construction is a combination of push-forwards (Steps
1 and 3), decomposition into a finite sum of non-negative measures (Step 2), re-arrangement of these
components (Step 3), and finally a projection (Step 4), each of which is easily checked to preserve non-
negativity and total mass of the measure.

Second, the X-marginal of γk is ρkLd, since Step 1 is made such that X#γ(1) = Tk#(X#γ∗) =
Tk#(ρ∗Ld) = ρkLd, and all further steps keep the X-marginal fixed.

Third, γk has finite and, in fact, even k-uniformly bounded second moment. Indeed, since γk is
supported in |x − y| ≤ τ (which follows from the purely geometric considerations in Lemma 5 below),
one has γk-a.e. that

|y|2 = |x+ (y − x)|2 ≤ 2|x|2 + 2τ2

and therefore, recalling that γk has X-marginal ρkLd,
¨

Rd×Rd

(
|x|2 + |y|2

)
dγk ≤

¨
Rd×Rd

(
3|x|2 + 2τ2

)
dγk = 2τ2 + 3

ˆ
Rd
|x|2ρk(x) dx.

The last expression is finite, and is even k-uniformly bounded since the same is true for ρk’s second
moment, see Lemma 1.

Lemma 4. There is a constant C such that

¨
Rd×Rd

Gk(x, y) logGk(x, y) d(x, y) ≤ C + d log(δ−1
k ).

Consequently, εkH(γk)→ 0.
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Proof. By definition of Gk,

¨
Rd×Rd

Gk(x, y) logGk(x, y) d(x, y) =
∑

Q∈Qδk

¨
Rd×Q

(
gQk (x)

|Q|

)
log

(
gQk (x)

|Q|

)
d(x, y)

=
∑

Q∈Qδk

[ˆ
Rd
gQk (x) log gQk (x) dx− log(|Q|)

ˆ
Rd
gQk (x) dx

]

≤
ˆ
Rd
ρk(x) log ρk(x) dx− d log(δk)

ˆ
Rd
ρk(x) dx,

where we have estimated |Q| ≥ δdk on grounds of (4.2.3), and have used (4.4.11) in combination with the
superadditivity of the function s 7→ s log s, that is,

a log a+ b log b ≤ (a+ b) log(a+ b) for arbitrary a, b ≥ 0.

The latter is an immediate consequence of the monotonicity of the logarithm. Recalling Lemma 1 and
our assumption (4.3.1), the convergence follows.

Lemma 5. For all k large enough, the γk are supported in |x− y| ≤ τ .

Proof. The main step is to show that the measures γ
(3)
k are supported in |x− y| ≤ τ − δk. The function

θβk is supported on the set

Sβ :=
{
y ∈ Rd ; βjyj ≥ −

τ

4d
for all j, |y| ≤ τ +

√
ωk

}
.

We show that the translate Sβ − σkβ is a subset of Bτ−δk . Observe that Sβ is the convex hull of the
point oβ := − τ

4dβ and the spherical cap

Sβ =
{
y ∈ Rd ; βjyj ≥ −

τ

4d
for all j, |y| = τ +

√
ωk

}
.

Since Bτ−√ωk is convex, it thus suffices to verify that the translate of oβ , i.e., the point −
(
τ
4d + σk

)
β,

and the translate of the cap, i.e., Sβ − σkβ, belong to Bτ−δk . For all k large enough so that σk ≤ τ
4d ,

the claim −
(
τ
4d + σk

)
β ∈ Bτ−δk is obvious. To prove that also Sβ ⊂ Bτ−δk , consider an arbitrary point

x ∈ Sβ . Observing that

β · x =
∑
j

βjxj ≥
∑
j

(
|xj | −

τ

2d

)
=
∑
j

|xj | −
τ

2
≥ τ +

√
ωk −

τ

2
≥ τ

2
,

it follows that

|x− σkβ|2 = |x|2 + σ2
k|β|2 − 2σkβ · x ≤

(
τ +
√
ωk
)2

+ dσ2
k − τσk.

Recall that k is large enough such that σk ≤ τ
4d ; on the one hand, this yields that

dσ2
k − τσk ≤ −

3

4
τσk,

and on the other hand, we obtain(
τ +
√
ωk
)2 − (τ − δk)2 =

(
2τ +

√
ωk − δk

)(√
ωk + δk

)
≤ 3τ

(√
ωk + δk

)
≤ τ

4
σk.
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In summary, we conclude that

|x− σkβ|2 ≤
(
τ − δk

)2
,

which verifies that Sβ − σkβ ⊂ Bτ−δk .

By definition, γ
(2,β)
k is supported in the region where y − x ∈ Sβ . Its translate γ

(3,β)
k = (X,Y −

σkβ)#γ
(2,β)
k is therefore supported where y−x ∈ Sβ−σkβ ⊂ Bτ−δk , where the inclusion is a consequence

of the considerations above.

This proves that each γ
(3)
k is supported in |x−y| ≤ τ − δk. From the construction of γk it is clear that

supp γk intersects {x} ×Q for some x ∈ Rd and Q ∈ Qδk only if supp γ
(3)
k intersects {x} ×Q. Since the

distance of two points in Q is less than δk by (4.2.3), it follows that γk is supported in |x− y| ≤ τ .

Lemma 6. γ
(2,0)
k ’s total mass does not exceed 4ωk.

Proof. Recall that |x−y| ≤ τ for γ∗-a.e. (x, y). Hence |Tk(x)−y| ≥ τ +
√
ωk/2 implies that |Tk(x)−x| ≥

√
ωk/2 for γ∗-a.e. (x, y). Consequently, recalling that γ

(2,0)
k = Θ0

k (Tk ◦X,Y )#γ∗:

γ
(2,0)
k [Rd × Rd] =

¨
Rd×Rd

θ0
k(Tk(x)− y) dγ∗(x, y)

≤
¨

Rd×Rd
1|Tk(x)−y|≥τ+

√
ωk/2 dγ∗(x, y)

≤
¨

Rd×Rd
1|Tk(x)−x|≥√ωk/2 dγ∗(x, y)

=

ˆ
Rd

1|Tk(x)−x|2≥ωk/4 ρk(x) dx

≤ 4

ωk

ˆ
Rd
|Tk(x)− x|2ρk(x) dx = 4ωk,

where we have used the definition (4.4.8) of ωk in the last step.

Lemma 7. γk converges narrowly to γ∗, and moreover,

¨
Rd×Rd

ck dγk →
¨

Rd×Rd
c dγ∗. (4.4.13)

Proof. To start with, we show that γ
(1)
k converges to γ∗ narrowly. Since both each γ

(1)
k and the proposed

limit γ∗ are probability measures, it suffices to show convergence in distribution, i.e., for all test functions
ψ ∈ C∞c (Rd × Rd). Since ωk → 0 in (4.4.8), it follows that Tk converges to the identity map in measure
with respect to ρ∗, and hence also (Tk ◦X,Y ) converges to (X,Y ) in measure with respect to γ∗. And
— ψ being smooth and compactly supported — ψ(Tk ◦X,Y ) converges to ψ in measure with respect to
γ∗. By the dominated convergence theorem,

¨
Rd×Rd

ψ dγ
(1)
k =

¨
Rd×Rd

ψ(Tk ◦X,Y ) dγ∗ →
¨

Rd×Rd
ψ dγ∗.
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Next, we show that also γ
(3)
k converges to γ∗:

¨
Rd×Rd

ψ(x, y) dγ
(3)
k (x, y) =

¨
Rd×Rd

ψ(x, y) dγ
(3,0)
k (x, y) +

∑
β

¨
Rd×Rd

ψ(x, y) dγ
(3,β)
k (x, y)

=

¨
Rd×Rd

[ˆ
Rd
ψ(x, x+ z)λ(z) dz

]
dγ

(2,0)
k (x, y)

+
∑
β

¨
Rd×Rd

ψ(x, y − σkβ) dγ
(2,β)
k (x, y)

=

¨
Rd×Rd

ˆ
Rd
ψ(x, x+ z)λ(z) dz −

∑
β

ψ(x, y − σkβ)ϑβ(x− y)

 dγ
(2,0)
k (x, y) (4.4.14)

+
∑
β

¨
Rd×Rd

ψ(x, y − σkβ)ϑβ(x− y) dγ
(1)
k (x, y). (4.4.15)

Here we have used that, by definition of γ(2,β) from γ(1) in Step 2,

dγ
(2,β)
k = ϑβ(x− y)

(
1− θ0

k(x− y)
)

dγ
(1)
k (x, y) = ϑβ(x− y) dγ

(1)
k (x, y)− ϑβ(x− y) dγ

(2,0)
k (x, y).

The integral in (4.4.14) converges to zero thanks to Lemma 6; observe that the expression inside the
square brackets is a continuous function that is bounded independently of k. Concerning the sum in
(4.4.15), observe that ψ(x, y − σkβ) → ψ(x, y) uniformly in (x, y) since ψ is compactly supported, and

recall from above that γ
(1)
k converges to γ∗ narrowly. This suffices to conclude that

¨
Rd×Rd

ψ(x, y) dγ
(3)
k (x, y)→

∑
β

¨
Rd×Rd

ψ(x, y)ϑβ(x− y) dγ∗(x, y) =

¨
Rd×Rd

ψ(x, y) dγ∗(x, y),

where we have used that the smooth expressions ϑβ(x− y) sum up to unity on the support of γ∗.

As the last step, we show that γk converges to γ∗ as well. For each Q ∈ Qδk , define ΨQ
k ∈ Cc(Rd) by

ΨQ
k (x) =

1

|Q|

ˆ
Q

ψ(x, y) dy.

Note that there is one common compact set on which all the ΨQ
k are supported. From the definition of

γk, it follows that
¨

Rd×Rd
ψ(x, y) dγk(x, y) =

∑
Q∈Qδk

ˆ
ΨQ(x)gQk (x) dx =

∑
Q∈Qδk

¨
Rd×Q

ΨQ(x) dγ
(3)
k (x, y)

=

¨
Rd×Rd

ψ(x, y) dγ
(3)
k (x, y) +

∑
Q∈Qδk

¨
Rd×Q

[
ΨQ(x)− ψ(x, y)

]
dγ

(3)
k (x, y).

Now since the term in square brackets converges uniformly to zero as the mesh is refined, and since γ
(3)
k

converges to γ∗ narrowly, distributional — and subsequently narrow — convergence of γk to γ∗ follows.
Finally, in combination with the fact that — thanks to Lemma 5 — all the γk are supported inside

|x− y| ≤ τ , where ck converges to c uniformly by hypothesis (4.2.4), the claimed convergence (4.4.13) is
proven.

Lemma 8. Y#γ
(3)
k has a Lebesgue density η

(3)
k ∈ Lm(Rd), and η

(3)
k → η∗ in Lm(Rd).
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Proof. By Step 3b, Y#γ
(3,0)
k = η

(3,0)
k Ld for a smooth density η

(3,0)
k ∈ L1 ∩ L∞(Rd). Moreover, for each

β ∈ {−1,+1}d, the marginal Y#γ
(3,β)
k is a translate of Y#γ(2,β), and from (4.4.10) it follows that

Y#γ
(2,0)
k +

∑
β

Y#γ
(2,β)
k = Y#γ

(1)
k = η∗Ld,

hence Y#γ(3,β) has a Lebesgue density

η
(3,β)
k ≤ η∗(·+ σkβ) ∈ L1 ∩ Lm(Rd). (4.4.16)

Define further ηβ∗ as the density of Y#(Θβ
kγ∗); this definition is independent of the index k, since γ∗ is

supported in the region |x− y| ≤ τ where θ0
k(x− y) vanishes. Obviously

η∗ =
∑
β

ηβ∗ , η
(3)
k = η

(3,0)
k +

∑
β

η
(3,β)
k . (4.4.17)

In the convergence proof that follows, we use the dual representation of the norm on Lq(Rd):

‖f‖Lq = sup

{ˆ
ψ(x)f(x) dx ; ψ ∈ Cc(Rd), ‖ψ‖Lq′ ≤ 1

}
,

where q′ = q
q−1 is the Hölder conjugate exponent of q > 1.

To begin with, observe that η
(3,0)
k converges to zero in Lm(Rd). For that, let ψ ∈ C(Rd) with

‖ψ‖Lm′ ≤ 1. Then, with the help of Hölder’s inequality and Lemma 6 above,

¨
Rd×Rd

ψ(y) dγ
(3,0)
k (x, y) =

¨
Rd×Rd

[ˆ
Rd
ψ(x+ z)λ(z) dz

]
dγ

(2,0)
k (x, y)

≤
¨

Rd×Rd
‖ψ‖Lm′‖λ‖Lm dγ

(2.0)
k ≤ 4‖λ‖Lmωk.

Next, we show that η
(3,β)
k → ηβ∗ in Lq(Rd), for each β, where q := 2m

m+1 < m; note that q′ = 2m′. For

ψ ∈ C(Rd) with ‖ψ‖Lq′ ≤ 1, we have

ˆ
Rd
ψ(y)

[
η

(3,β)
k (y)− η(3,β)

∗ (y)
]

dy =

¨
Rd×Rd

[
ψ(y − σkβ)Θβ

k(Tk(x), y)− ψ(y)Θβ
k(x, y)

]
dγ∗(x, y)

=

¨
Rd×Rd

[ψ(y − σkβ)− ψ(y)]Θβ
k(x, y) dγ∗(x, y)

+

¨
Rd×Rd

ψ(y − σkβ)
[
θβk (Tk(x)− y)− θβk (x− y)

]
dγ∗(x, y)

≤
ˆ
Rd

[ψ(y − σkβ)− ψ(y)]ηβ∗ (y) dy

+

(ˆ
Rd
|ψ(y − σkβ)|2ηβ∗ (y) dy

) 1
2
(
‖∇θβk‖

2
L∞

ˆ
Rd
|Tk(x)− x|2ρ∗(x) dx

) 1
2

≤
¨

Rd×Rd
ψ(y)

[
ηβ∗ (y + σkβ)− ηβ∗ (y)

]
dy + ‖ψ‖

1
2

L2m′‖η∗‖
1
2

Lm‖∇θ
β
k‖L∞ωk

≤
∥∥(id− σkβ)#ηβ∗ − ηβ∗

∥∥
Lq

+ 3‖η∗‖
1
2

Lmω
1
2

k .
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In the last step, we have used that ∇θβk = (1− θ0
k)∇ϑβ − ϑβ∇θ0

k, and hence ‖∇θβk‖L∞ ≤ 4ω
−1/2
k by our

hypotheses on θ0
k and ϑβ , at least for all sufficiently large k. The first term of the final sum above goes

to zero, since σk → 0, and the translation semi-group is continuous in Lq(Rd); the second term goes to
zero since ωk → 0.

From this, we conclude convergence of η
(3,β)
k to ηβ∗ in Lq(Rd), and in particular also in measure.

Further, from the bound (4.4.16), it follows that η
(3,β)
k is equi-integrable in Lm(Rd). Hence η

(3,β)
k → ηβ∗

also in Lm(Rd). In view of (4.4.17), this verifies the claim.

Lemma 9. Define ηk by ηk(y) =
´
Rd Gk(x, y) dx, with Gk from (4.4.12). Then ηk ∈ Lm(Rd), and ηk → η

in Lm(Rd). Consequently, E(Y#γk)→ E(Y#γ∗).

Proof. First, we recall two properties of the linear projection operator Πδ : Lm(Rd)→ Lm(Rd) given by

Πδ[f ](y) =

 
Q

f(y′) dy′ where Q ∈ Qδ is such that y ∈ Q.

Namely,

(a) ‖Πδ[f ]−Πδ[g]‖Lm(Rd) ≤ ‖f − g‖Lm(Rd) for all f, g ∈ Lm(Rd);

(b) Πδ[f ]→ f in Lm(Rd) for each f ∈ Lm(Rd) as δ ↘ 0.

Indeed, claim (a) is an easy consequence of Jensen’s inequality:

∥∥Πδ[f ]−Πδ[g]
∥∥m
Lm(Rd)

=
∑

Q∈Qδk

∥∥Πδ[f ]−Πδ[g]
∥∥m
Lm(Q)

=
∑

Q∈Qδk

ˆ
Q

∣∣∣∣ 
Q

[
f(y′)− g(y′)

]
dy′
∣∣∣∣m dy

≤
∑

Q∈Qδk

ˆ
Q

[ 
Q

∣∣f(y′)− g(y′)
∣∣mdy′

]
dy =

∑
Q∈Qδk

‖f − g‖mLm(Q) = ‖f − g‖mLm(Rd).

Concerning claim (b), we use that thanks to hypothesis (4.2.3), arbitrary y′ ∈ Q lie in a ball of radius δk
around any given y ∈ Q

∥∥Πδ[f ]− f
∥∥m
Lm(Rd)

=
∑

Q∈Qδk

∥∥Πδ[f ]− f
∥∥m
Lm(Q)

=
∑

Q∈Qδk

ˆ
Q

∣∣∣∣ 
Q

[
f(y′)− f(y)

]
dy′
∣∣∣∣m dy

≤
∑

Q∈Qδk

ˆ
Q

[ 
Q

∣∣f(y′)− f(y)
∣∣mdy′

]
dy ≤

ˆ
B

∥∥f − f(·+ δkz)
∥∥m
Lm(Rd)

dz.

The norm inside the final integral goes to zero as δk → 0, since f(· + δkz) → f in Lm(Rd), uniformly
with respect to z ∈ B.

To connect this auxiliary result to the claim of the Lemma, recall that η
(3)
k → η∗ in Lm(Rd) by Lemma

8 above, and observe that ηk = Πδk [η
(3)
k ]. Therefore,

‖ηk − η∗‖Lm ≤ ‖Πδk [η
(3)
k ]−Πδk [η∗]‖Lm + ‖Πδk [η∗]− η∗‖Lm ≤ ‖η(3)

k − η∗‖Lm + ‖Πδk [η∗]− η∗‖Lm

tends to zero.
From Lemma 7 we have the narrow convergence of γk and consequently of Y#γk = ηk which passes

through
´

Ω
ηk(v + (w ∗ ηk) dx and concludes this proof.
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4.4.4 Existence and convergence of minimizers

Lemma 10. For each k large enough, Eτk has a (unique if εk > 0) minimizer γ̂k ∈ Γδk(ρk).

Proof. We use the estimates from Lemma 2: thanks to (4.4.4), the Eτk are bounded below for all sufficiently
small k. And thanks to (4.4.3), the γ’s in the sublevels of Eτk have uniformly bounded second moment,
hence are relatively compact with respect to narrow convergence. Moreover, it is easily seen that Eτk
is the sum of three convex (in the sense of convex combinations of measures) functionals, and thus is
lower semi-continuous with respect to narrow convergence. Moreover, H is a strictly convex functional
on Γ(ρk), so Eτk is strictly convex if εk > 0. This together allows to invoke the direct methods from the
calculus of variations and conclude the existence of a minimizer, which is unique if εk > 0.

Lemma 11. Let γ̂k ∈ Γδk(ρk) be minimizers of the respective Eτk . Then a subsequence of (γ̂k) converges
in W2 to a minimizer of Eτ (·|ρ∗).

Proof. We begin by showing that the second momenta of the γ̂k are k-uniformly bounded. In view of
estimate (4.4.3), it suffices to show that Eτk (γ̂k) is k-uniformly bounded. But this is a consequence of
Γ-convergence: since Eτ (·|ρ∗) is not identically +∞ — for instance, Eτ ((X,X)#ρ∗Ld|ρ∗) = E(ρ∗) < ∞
— there is a recovery sequence γk such that Eτk (γk) is bounded, and hence also Eτk (γ̂k) is bounded.

Consequently, there is a subsequence that converges narrowly to a limit γ̂∗. Since X#γk = ρkLd →
ρ∗Ld narrowly by hypothesis, and since the projection X is continuous, it follows that γ∗ ∈ Γ(ρ∗). Thus,
by the fundamental properties of Γ-convergence, γ∗ is a minimizer of Eτ (·|ρ∗).

It remains to be shown that actually γ̂k → γ̂∗ in W2. It suffices to verify that γ̂k’s second moment
converges to that of γ̂∗. The second moment of γ̂k amounts to

¨
Rd×Rd

(
|x|2 + |y|2

)
dγ̂k = 2

¨
Rd×Rd

|x|2 dγ̂k +

¨
Rd×Rd

|y − x|2 dγ̂k + 2

¨
Rd×Rd

x · (y − x) dγ̂k.

(4.4.18)

Thanks to Lemma 1,

¨
Rd×Rd

|x|2 dγk =

ˆ
Rd
|x|2ρk(x) dx→

ˆ
Rd
|x|2ρ∗(x) dx =

¨
Rd×Rd

|x|2 dγ∗.

Further, recalling the lower bound (4.2.5) on ck and estimate (4.4.4), we obtain for all sufficiently large
k that

¨
|y−x|≥2τ

|y − x|2 dγ̂k ≤ 4

¨
|y−x|≥2τ

(
|y − x| − τ

)2
dγ̂k ≤ 4αk

¨
Rd×Rd

ck dγ̂k ≤
8αk
τ
Eτk (γ̂k),

which converges to zero as k →∞ since Eτk (γ̂k) is bounded. In the same spirit, also∣∣∣∣∣
¨
|y−x|≥2τ

x · (y − x) dγ̂k

∣∣∣∣∣ ≤
√
αk
2

¨
Rd×Rd

|x|2 dγ̂k +
1

2
√
αk

¨
|y−x|≥2τ

|y − x|2 dγ̂k

converges to zero. The continuous function |y − x|2 is bounded on the set where |y − x| ≤ 2τ , so narrow
convergence γ̂k → γ̂∗ implies

¨
|y−x|≤2τ

|y − x|2 dγ̂k →
¨

Rd×Rd
|y − x|2 dγ̂∗.
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Finally, for |y − x| ≤ 2τ , the function x · (y − x) is bounded in modulus by 2τ |x|. Since the γ̂k have
k-uniformly bounded second momenta, Prokhorov’s theorem yields

¨
|y−x|≤2τ

x · (y − x) dγ̂k →
¨

Rd×Rd
x · (y − x) dγ̂∗.

In summary, we can pass to the limit k → ∞ in each term on the right-hand side of (4.4.18), obtaining
the second moment of γ̂∗.

4.5 Numerical scheme

4.5.1 Formulation of the minimization problem

Throughout this section, we assume that the following are fixed: a bounded domain Ω ⊂ Rd, a tesselation
Qδ of Ω with cells of diameter at most δ > 0, see (4.2.3), an entropic regularization parameter ε > 0, a
time step τ > 0, and an approximation c̃ := cτ,δ of the distance cost function c, which is such that c̃ is
constant (possibly +∞) on each Q×Q′ where Q,Q′ ∈ Qδ, and such that c̃(x, y) <∞ at each (x, y) with
|x − y| ≤ τ . We assume that the elements Qi of Qδ are enumerated with an index i ∈ I, where I is a
finite index set, and for each i ∈ I, a point xi ∈ Qi is given.

We need to fix some further notations: indexed quanties u = (ui)i∈I are considered as (column)
vectors, quantities g = (gi,j)i,j∈I with double index as matrices. Below, we use � to denote the entry-
wise products of vectors and matrices, [u� v]j = ujvj and [g � h]i,j = gi,jhi,j , respectively. In the same
spirit, u

v and g
h denote entry-wise division. Further, for a vector u, we denote by diag (u) the diagonal

matrix with the vector u on the diagonal [diag (u)]i,j = uiδi,j where δi,j denotes the Kronecker delta. For
the sake of disambiguation, the usual matrix-vector product is written as g · u, i.e., [g · u]i =

∑
j gi,juj ,

and u⊗ v denotes outer product of the vectors u and v, that is [u⊗ v]i,j = uivj .

Remark 2. With the xi at hand, a practical choice for c̃ that conforms with (4.2.4) and (4.2.5) is the
following:

c̃(x, y) = c̃i,j := C

(
|xi − yj |
τ + δ

)
for all x ∈ Qi, y ∈ Qj , (4.5.1)

and extend c̃ by lower semi-continuity to all of Rd×Rd. The modified denominator τ +δ has been chosen
such that c̃ is finite on each 2d-cube Qi ×Qj that intersects the region |x− y| ≤ τ .

A density ρ ∈ Pδ(Ω) is the conveniently identified with the vector r = (ri), where ri is the constant
density on Qi. Now, if ρ ∈ Pδ(Ω), and if γ = GLd ⊗ Ld is a minimizer of Eτε,δ,c̃(·|ρ) on Γδ(ρ), then
G is constant on each 2d-cube Qi × Qj ; this follows by Jensen’s inequality and strict convexity of H.
Accordingly, the set of all possible minimizers γ can be parametrized by matrices g, where gi,j is the
constant value of γ’s density on Qi ×Qj .

For notational simplicity, introduce the vector Iδ with [Iδ]j = |Qj | for all j, so that

[ITδ · g]j =
∑
i

|Qi|gi,j , [g · Iδ]i =
∑
j

|Qj |gi,j .

In this notation, the constraint X#γ = ρLd then becomes g · Iδ = r, and we have

H(γ) =
∑
i,j

|Qi||Qj |
[
gi,j log gi,j − gi,j

]
, E(Y#γ) =

∑
j

[
|Qj |h

(∑
i

|Qi|gi,j

)]
.
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In terms of the notations introduced above, the variational problem (4.1.10) turns into

gn = arg min
g=(gi,j)

(
ε
∑
i,j

[
|Qi||Qj |

(τ
ε
c̃i,j + log gi,j

)
gi,j − gi,j

]

+
∑
j

[
|Qj |h

(∑
i

|Qi|gi,j

)]
+ ι(r̄(n−1)−gIδ)

)
,

(4.5.2)

where r̄n−1 = gn−1 · Iδ encodes the datum from the previous step.

4.5.2 Excursion: Dykstra’s algorithm

In this section, we briefly summarize the concept of the generalized Dykstra algorithm that is the basis
for the efficient numerical approximation of Wasserstein gradient flows in the spirit of [42].

Let F : X → R be a convex differentiable function defined on a Hilbert space X, and let F ∗ be its
Legendre dual. Below, we identify at each x ∈ X the differentials F ′(x), (F ∗)′(x) ∈ X ′ by their respective
Riesz duals in X. The Bregman divergence DF (x, y) of x ∈ X relative to y ∈ X is defined by

DF (x|y) = F (x)− F (y)− 〈F ′(y), x− y〉. (4.5.3)

By convexity, DF (x|y) ≥ 0. Further, let φ1, φ2 : X → R ∪ {+∞} be two proper, convex and lower
semi-continuous functionals on X, and consider, for a given y ∈ X, the variational problem

DF (x|y) + φ1(x) + φ2(x) −→ min . (4.5.4)

In this setting, the generalized Dykstra algorithm for approximation of a minimizer x∗ ∈ X is the
following. Let x(0) := y and q(0) := q(−1) := 0, and define for k = 0, 1, 2, . . . inductively:

x(k+1) := arg min
x∈X

[
DF

(
x
∣∣(F ∗)′(F ′(x(k)) + q(k−1))

)
+ φ[k](x)

]
,

q(k+1) := F ′(x(k)) + q(k−1) − F ′(x(k+1)),
(4.5.5)

where [k] = 1 if k is even, and [k] = 2 if k is odd. In the special case that F (x) = 1
2 〈x, x〉 and φ1, φ2

are the indicator functions of two convex sets with non-empty intersection, then (4.5.5) reduces to the
original Dykstra projection algorithm.

Under certain hypotheses (for instance, if X is finite-dimensional), it can be proven that x(k) converges
to a minimizer x∗ of (4.5.4) in X. The core idea of the convergence proof is to study the dual problem
for (4.5.4), for which the iteration (4.5.5) attains a considerably easier form. We refer to [42, 8, 14] for
further discussion of the algorithm, including questions of well-posedness and convergence, in the context
of fully discrete approximation of gradient flows.

4.5.3 From the minimization problem to the iteration

In this section, we follow once again closely [42] with the goal is to rewrite (4.5.2) in the form (4.5.4), and
then to apply the algorithm (4.5.5) to its solution. The Hilbert space is that of matrices g = (gi,j)i,j∈I
endowed with the scalar product

〈g, g′〉 =
∑
i,j

|Qi||Qj |gi,jg′i,j ,
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and we shall choose F in (4.5.3) as

F (g) =
∑
i,j

|Qi||Qj |gi,j log gi,j ,

with the convention that 0 log 0 = 0 and r log r = +∞ for any r < 0, which has Legendre dual

F ∗(ω) =
∑
i,j

|Qi||Qj |eωi,j ,

and respective derivatives — recall that we identify the functional F ′(g) with its Riesz dual —[
F ′(g)

]
i,j

= log gi,j ,
[
(F ∗)′(ω)

]
i,j

= expωi,j .

The corresponding Bregman distance is the Kullback-Leibler divergence,

KL(g|ω) := DF (g|ω) =
∑
i,j

|Qi||Qj |
[
gi,j(log gi,j − logωi,j)− gi,j + ωi,j

]
,

which is defined for matrices g and ω with non-negative entries. The correct interpretation of the loga-
rithmic terms is the following: if ωi,j = 0, then the entire term in square brackets is +∞ unless gi,j = 0
as well, in which case this term is zero.

Next, we rewrite our minimization problem (4.5.2) in the form (4.5.4). As the reference density
ξ = (ξi,j) for the divergence, we choose

ξi,j =

{
exp

(
− τε c̃i,j

)
if c̃i,j is finite,

0 if c̃i,j = +∞.

Thus τ c̃i,jgi,j = −εgi,j log ξi,j , with the convention that 0 log 0 = 0, but (−a) log(−a) = +∞ and
−a log 0 = +∞ for any a > 0. The sum of the first two terms in the variational functional (4.5.2) takes
the convenient form∑

i,j

[
|Qi||Qj |

(τ
ε
c̃i,j + log gi,j − 1

)
gi,j

]
=
∑
i,j

|Qi||Qj |gi,j
(

log gi,j − log ξi,j − 1
)

= KL(g|ξ)−
∑
i,j

|Qi||Qj |ξi,j .

Recall that KL(g|ξ) ≥ 0 by construction, and that KL(g|ξ) = +∞ unless gi,j = 0 for all (i, j) with
c̃i,j = +∞. Neglecting irrelevant factors and constants, the minimization problem (4.5.2) attains the
form

gn = arg min
g

[
εKL(g|ξ) + φ1(ITδ · g) + φn2 (g · Iδ)

]
, (4.5.6)

where

φ1(s) = Eδ(s) =
∑
j

|Qj |h(sj), φn2 (r) = ι(r̄n−1−r) =

{
0 if r = r̄(n−1),

+∞ otherwise.
.

Using that for our choice of F ,[
(F ∗)′

(
F ′(x) + q

)]
i,j

= exp
(

log xi,j + qi,j
)

= (x� s)i,j , with si,j := eqi,j ,
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Dykstra’s algorithm (4.5.5) translates into the following: from g(0) = ξ and s(0) = s(−1) ≡ 1, define
inductively

g(k+1) = Φ[k](g
(k) � s(k−1)), s(k+1) =

g(k) � s(k−1)

g(k+1)
, (4.5.7)

again with [k] = 1 for even k, and [k] = 2 for odd k, where Φ1(ω) and Φ2(ω) are, respectively, the
solutions to the minimization problems

εKL(g|ω) + φ1(ITδ · g)→ min and εKL(g|ω) + φn2 (g · Iδ)→ min . (4.5.8)

These minimization problems can be solved almost explicitly. Their respective Euler-Lagrange equations
are, at each (i, j) with ωi,j > 0,

0 = ε log
gi,j
ωi,j

+ h′

(∑
i

|Qi|gi,j

)
, and 0 = ε log

gi,j
ωi,j

+ λi,

where the λi are Lagrange multipliers to realize the constraint g ·Iδ = r̄n−1. After dividing these equations
by ε, taking the exponential, and evaluation of the marginals, one obtains in a straight-forward way the
following representation of the minimizers in (4.5.8):

Φ1(ω) = ω · diag

(
H−1
ε (ITδ · ω)

ITδ · ω

)
, and Φ2(ω) = diag

(
r̄n−1

ω · Iδ

)
· ω,

where [H−1
ε (η)]j for given ηj ≥ 0 is the solution z to the nonlinear relation

Hε(z) = zexp

(
h′(z)

ε

)
= ηj ;

note that the equations for the components of H−1
ε (η) are decoupled.

Finally, a significant reduction in the computational complexity of the algorithm is achieved by taking
advantage of the Dyadic structure of g and s that is inherited from each iteration to the next: at each
stage k, there are vectors α(k), β(k) and u(k), v(k) such that

g(k) =
(
α(k) ⊗ β(k)

)
� ξ, s(k) = u(k) ⊗ v(k). (4.5.9)

Inserting this special form into (4.5.7), one obtains iteration rules for α(k), β(k) and u(k), v(k), that are
summarized below.

Proposition 4. Initialize α
(0)
i = β

(0)
j = 1 and u

(0)
i = u

(−1)
i = v

(0)
j = v

(−1)
j = 1 for all i, j, and calculate

inductively α(k), β(k) and u(k), v(k) for k = 1, 2, . . . from

α(k+1) =

{
α(k) � u(k−1) if k odd,

r̄n−1

ξ·(β(k+1)�Iδ)
if k even,

β(k+1) =

H−1
ε

(
(ξT ·(α(k+1)�Iδ))�β(k)�v(k−1)

)
ξT ·(α(k+1)�Iδ)

if k odd,

β(k) � v(k−1) if k even,

u(k+1) =
α(k) � u(k−1)

α(k+1)
, v(k+1) =

β(k) � v(k−1)

β(k+1)
,

with the understanding that for odd k, one calculates α(k+1) first and β(k+1) next, and the other way
around for even k. Further, the quotient 0

0 is interpreted as 0.

Then (4.5.9) produces the iterates g(k) and s(k) of (4.5.7).
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Proof. We assume that g(`) = (α(`) ⊗ β(`)) � ξ and s(`) = u(`) ⊗ v(`) are in the form (4.5.9) for all
` = 0, 1, 2, . . . , k; we show that with α(k+1), β(k+1) and u(k+1), v(k+1) defined as above, g(k+1) = (α(k+1)⊗
β(k+1))� ξ and s(k+1) = u(k+1) ⊗ v(k+1) satisfy the original induction formula (4.5.7).

First, note that

g(k) � s(k−1) = (α(k) ⊗ β(k))� ξ � (u(k−1) ⊗ v(k−1)) =
(
(α(k) � u(k−1))⊗ (β(k) � v(k−1))

)
� ξ.

Further, we shall use the rule that for arbitrary vectors p, q and x, and matrices h,

[(p⊗ q)� h] · x = p� [h · (q � x)].

Now, if k is odd, then

α(k+1) ⊗ β(k+1) =
r̄n−1

ξ · (β(k+1) � Iδ)
⊗ β(k+1)

=

(
rn−1

α(k) � u(k−1) � (ξ · (β(k) � v(k−1) � Iδ))
� α(k) � v(k−1)

)
⊗ (β(k) � v(k−1))

= diag

(
rn−1

(g(k) � s(k−1)) · Iδ

)
· g

(k) � s(k−1)

ξ
=

Φ1(g(k) � s(k−1))

ξ
=
g(k+1)

ξ
.

In the same spirit, for k even, one shows that

α(k+1) ⊗ β(k+1) = (α(k) � u(k−1))⊗

(
β(k) � v(k−1) �

H−1
ε

(
(ξT · (α(k+1) � Iδ))� β(k) � v(k−1)

)
(ξ·(α(k+1) � Iδ))� β(k) � v(k−1)

)

=
Φ2(g(k) � s(k−1))

ξ
=
g(k+1)

ξ
.

Finally,

u(k+1) ⊗ v(k+1) =
α(k) � u(k−1)

α(k+1)
⊗ β(k) � v(k−1)

β(k+1)

=
(α(k) ⊗ β(k))� ξ � (u(k−1) ⊗ v(k−1)

(α(k+1) ⊗ β(k+1))� ξ
=
g(k) � s(k−1)

g(k+1)
= s(k+1).

4.5.4 Implementation

Based on the discussion above, we introduce a numerical scheme for approximate solution of the initial
value problem for (4.1.1) as follows. Choose a spatial mesh width δ > 0 and an entropic regularization
parameter ε > 0. Further, define a suitable approximation c̃ of the cost function c that is constant on
cubes Qi × Qj , for instance as in (4.5.1), and an approximation r0 of the initial condition, for instance
r0
i =

ffl
Qi
ρ0(x) dx.

From a given rn−1, the next iterate rn is obtained as second marginal, rnj =
∑
i |Qi|gni,j , of the

minimizer gn to the variational problem (4.5.2) or, equivalently, (4.5.6). To calculate gn from rn−1, we
use Dykstra’s algorithm (4.5.7) as shown in Proposition 4 above. That is, we calculate alternatingly the
scaling factors α(k), β(k), and the auxiliary vectors u(k) and v(k), using the iteration from Proposition
4 with r̄ := rn−1. The updates of α(k+1), u(k+1) and v(k+1) are obviously very efficient. To calculate
the term involving H−1

ε in the update for β(k+1), we use a Newton iteration, which converges in few
steps. The iteration in k is repeated until the changes in α and β from one iteration to the next meets a

smallness condition. Then gni,j := α
(k)
i ξi,jβ

(k)
j .
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(a) The initial proba-
bility density ρ(0).

(b) The density after
the first iteration ρ(1).

(c) The density after
the second iteration
ρ(2).

(d) The density after
the third iteration ρ(3).

(e) The density after
the fourth iteration
ρ(4).

Figure 4.2: A support of the density propagates at most with “light speed”. The greyscale possesses a
step from black (representing density 0) to the darkest displayed gray (representing the smallest double-
precision floating-point number greater than 0) in order to illustrate the support of ρ moving with
finite speed. The Iteration was performed on a grid of 400 × 1200 uniformly distributed gridpoints on
[−1, 1]× [−3, 3] ⊂ R2 with parameters τ = 1, ε = 0.5, m = 2 and lightspeed 1. As initial distribution we
used ρ(0) with its mass equally distributed on its support, a ball with radius 0.8 centered at (0,−2.8).
This way, the uppermost points in the support of ρ(0) have ordinate y = −2 and the propagation with
lightspeed can be observed over the displayed plots.

4.5.5 Numerical experiments

In our expriments, we study the application of our discretization method to the equation

∂tρ = ∇ ·

[
ρ

∇ρ√
1 + |∇ρ|2

]
,

which is (4.1.1) with the relativistic cost C(v) = 1−
√

1− |v|2 and the energy from (4.1.4) with h(r) =
r2/2. Naturally, all experiments are carried out on finite domains Ω, which are either of dimension d = 1
or d = 2.

Finite speed of propagation

In the first experiment, we study how the flux limitation becomes manifest numerically. We consider the
rectangular box Ω = (−1, 1) × (−3, 3) in R2, and a discretization by squares of edge length 0.005. Our
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(a) The initial proba-
bility density ρ0.
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(b) The density after
two iterations ρ2.
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(c) The density after
four iterations ρ4.
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(d) The density after
five iterations ρ5.
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(e) The density after
six iterations ρ6.

Figure 4.3: Evolution of a density around a obstacle. Grayscale as in Figure ?? . The iteration was
performed on the remaining part of a 100× 300, equidistant, quadrilateral grid on [−1, 1]× [−3, 3], after
the obstacle points were removed. The parameters were τ = 0.5, ε = 0.1, m = 2 and again, lightspeed
set to 1. As initial distribution we used ρ0 with its mass equally distributed over a small ball with center
(x, y) = (2, 1.2).

time step is τ = 1. The chosen discrete approximation c̃ to the cost function c is of the type (4.5.1), so
in particular we set ξi,j = 0 if |xi − xj | > 1. We chose a (discontinuous) initial condition ρ(0) that is a
uniformly distributed on a ball.

Figure ?? shows (from left to right) the initial density, and then the solution at t = τ, 2τ, 3τ and
t = 4τ . In order to make the finite speed of propagation of the support visible, we set the grayscale to
black for ρ(x) = 0, and to a gray visibly lighter than black as soon as ρ(x) > 0. Additionally, the support
of the initial density is chosen as a ball, positioned at (0,−2.8) and with radius 0.8. This way, ρ(0) is
supported in y ≤ −2 and the propagation of the support with lightspeed can easily be observed as the
support increases its radius by 1 in each step.

Motion around obstacles

The algorithm we used here allows for an easy implementation of impentrable obstacles in the domain.
The only thing that has to be altered is the matrix ξ. There the columns and rows corresponding to a
point lying within the obstacle have to be set to zero and components of ξ corresponding to a pair of
points whose connecting line segment crosses the obstacle have to be recalculated (c.f. (4.2.1)).

In Figure ?? we have realized a impenetrable box and a density flowing around it. Again we have
used the step in the grayscale to illustrate the support of ρ and again we can observe the finite speed of
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(a) Comparison between Linear diffusion and porous medium diffusion with parameter m = 5.
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(b) Magnification of the comparison.

Figure 4.4: The iteration for the same discontinuous initial data depicted by a solid line. The Iteration is
performed on an equidistand grid with 1000 grid points with time-step τ = 0.02 and time horizon T = 1
and entropic regularization parameter ε = 0.04.

propagation.

Comparison: Linear diffusion and porous medium diffusion

The iteration can be carried out with porous medium as well as with linear diffusion. In Figure ?? some
features of the two different diffusions can be compared. The figure shows the result of iterating both
with the same initial data. Note that the iteration is already advanced enough that the fronts that can
be expected with flux-limitation and such discontinuous initial data are already dispersed.

Porous medium diffusion disperses the mass faster than linear diffusion where there is a high density
and is slower when there is low density which results in the lower density for our porous medium evolution
around x = 0 compared to linear diffusion. On the other hand, as can clearly be seen in the magnification,
linear diffusion disperses the mass faster for densities close to zero.

Finally, though it can not be observed easily in the plots, the support of both, the linear diffusion
evolution and the porous medium evolution, expands with the same velocity, which is our lightspeed.

Edge effect

Our last experiment is posed on a one-dimensional interval [0, 10], which is discretized with 1000 intervals
of equal length. The result in Figure ?? highlights an undesired effect at the edges: although we initialize
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(a) The initial probability density ρ(0).
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(b) The density after the first iteration ρ(1).
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(c) The density after the fourth iteration ρ(4).
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(d) The steady state corresponding to this initial vector.

Figure 4.5: The edge effect caused by the blurring with the Gibbs kernel. Iteration performed on a
1000 grid points equidistantly distributed on [0, 10] with parameters τ = 2, ε = 2, m = 2. As initial
distribution we used ρ0

i = 1. The horizontal, dotted lines are drawn at x = 0 + τ and 10 − τ and mark
the width of the edge effect.

with a uniform distribution (which corresponds to a stationary solution), the density becomes non-
homogeneous near the boundary points very quickly. In first order, the solution represents the second
marginal of the matrix ξ; since the matrix is “cut off” at the boundary, there is a lack of mass near the
end points. The energy introduces a second order effect, which tries to compensate the primary effect by
transporting mass from the bulk to the edges.

This effect is the stronger, the larger the entropic regularization parameter ε > 0 is; the pictures have
been produced for a “huge” value ε = 2.
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Chapter 5

Entropic regularized BDF-2 Scheme

5.1 Introduction and preliminary results

5.1.1 Introduction

This chapter is concerned with well-posedness and convergence of an entropic regularized BDF 2 (Back-
wards Differentiation Formula 2) scheme, a semi-discretization in time which was, as an unregularized
scheme, introduced and analysed in [33, 43]. We motivated the derivation of this scheme in the intro-
duction of this thesis, also introducing the entropic regularized BDF 2 scheme (1.0.16), which we will be
considering in this chapter.

Our goal is to apply this scheme to the non-linear Fokker-Planck equation, i.e. (1.0.1) with A = Id.

∂tρ = ∆(p(ρ)) + div (ρ∇[V + (W ∗ ρ)]) on (0,∞)× Ω (5.1.1)

n · ∇ρ = 0 on (0,∞)× ∂Ω (5.1.2)

ρ(0, ·) = ρ0 on Ω (5.1.3)

on some open, convex, bounded set Ω ⊂ Rd with Lipschitz boundary, where we denote with n the outward
pointing unit normal vectorfield to ∂Ω and ρ0 ∈Pac(Ω) with finite entropy H(ρ0) <∞ the initial datum.
Furthermore the connection of p to u is given by p(s) = su′(s)− u(s), so p(s) = sm. u is again defined as
in (1.0.5) where u : [0,∞)→ R with

u(s) = um(s) =

{
h(s) if m = 1

1
m−1s

m if m > 1

and h is given as

h(s) :=

{
s log(s) for s > 0

0 for s = 0 .
(5.1.4)

In this chapter we assume v ∈ C2(Ω) and w ∈ C2(Rd). Furthermore w is to be even, implying

∇w(−z) = −∇w(z). We will only be considering one cost function, that is c(s) = 1
2 ‖s‖

2
. The notation

for the corresponding optimal transport distance and its entropic regularization will be T2,τ and T(2,τ,ε)

respectively. Let us adapt (1.0.3)

T2,τ (ρ, µ) = inf
γ∈Π(ρ,µ)

¨
Ω2

1

2

∥∥∥∥x− yτ
∥∥∥∥2

2

dγ(x, y) . (5.1.5)

75
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and (1.0.10)

T(2,τ,ε)(ρ, µ) = inf
γ∈Π(ρ,µ)

¨
Ω2

1

2

∥∥∥∥x− yτ
∥∥∥∥2

2

dγ(x, y) + εH(γ) (5.1.6)

to our specific cost c(s) = 1
2 ‖s‖

2
2. Recall the definition of the (negative) entropy functional H from

(1.0.9): Let γ ∈P(Ω2) be some probability measure on Ω2 then

H(γ) =

¨
Ω2

γ(x, y) log(γ(x, y)) d(x, y)

if γ admits a density w.r.t. Lebesgue measure and +∞ otherwise and define H(ρ) analogously for ρ, a
probability measures in P(Ω).

Note that, as opposed to general cost functions, we can extract the time-step parameter τ completely
from the entropic regularized optimal transport, after absorbing τ2 in ε (c.f. (5.1.12) which assumes
ε ≤ Cτ2), by

τT(2,τ,ε)(ρ, µ) = τ

(
inf

γ∈Π(ρ,µ)

¨
Ω2

1

2

∥∥∥∥x− yτ
∥∥∥∥2

2

dγ(x, y) + εH(γ)

)

=
1

τ

(
inf

γ∈Π(ρ,µ)

¨
Ω2

1

2
‖x− y‖22 dγ(x, y) + εH(γ)

)
=:

1

τ
T2
ε(ρ, µ) .

Analogously

τT2,τ (ρ, µ) =
1

τ

¨
Ω2

1

2
‖x− y‖22 dγ(x, y) =:

1

τ
T2

2(ρ, µ) .

Let us recall the recursion that was introduced in (1.0.16) to receive approximations ρ
(n)
τ,ε for a solution

ρ(nτ) and apply the just found possibility to extract τ from the optimal transport distances. We then

arrive at the scheme we will be investigating in this chapter. Given a pair of initial data ρ
(−1)
τ,ε , ρ

(0)
τ,ε,

minimize recursively the functional

Φnτ,ε(ρ) := Φτ,ε(τ ; ρ(n−1)
τ,ε , ρ(n−2)

τ,ε , ρ) :=
1

τ

(
T2
ε(ρ, ρ

(n−1)
τ,ε )− 1

4
T2
ε(ρ, ρ

(n−2)
τ,ε )

)
+ E(ρ)

in ρ over P(Ω) to receive ρ
(n)
τ,ε . Here E is again given as

E(ρ) = U(ρ) + V(ρ) +W(ρ)

if ρ is absolutely continuous w.r.t. Lebesgue measure and +∞ if it is not. We recall the definition of the
functionals

U(ρ) =

ˆ
Ω

u(ρ(x)) dx , V(ρ) =

ˆ
Ω

v(x)ρ(x) dx and W(ρ) =

ˆ
Ω2

ρ(x)w(x− y)ρ(y) dy dx

and the relative entropy from (2.3.2) which reads for γ, η ∈P(Ω2)

H(γ | η) =

¨
Ω2

log

(
dγ

dη

)
dγ(x, y) (5.1.7)

if γ << η and +∞ otherwise. Here dγ
dη denotes the Radon-Nikodym derivative of γ w.r.t. η. Again, this

is definined for probability measures in P(Ω) analogously.
Finally, with Ld, the d-dimensional Lebesgue measure, we note

H(γ) = H(γ | Ld) .
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5.1.2 The main result

Let us specify the recursion’s initial data, ρ
(0)
τ,ε and ρ

(−1)
τ,ε . They are assumed to be given as absolutely

continuous probability measures approximating ρ0 in the Wasserstein-2-distance with order τ , that is to
say

T2
2(ρ(−1)

τ,ε , ρ0),T2
2(ρ(0)

τ,ε, ρ
0) = O(τ) for τ ↘ 0 . (5.1.8)

Furthermore we assume both to have uniform bounded entropy, and energy i.e.

H(ρ(−1)
τ,ε ),H(ρ(0)

τ,ε), E(ρ(−1)
τ,ε ), E(ρ(0)

τ,ε) ≤ C <∞ . (5.1.9)

Definition 5.1 (The in-time approximation). Let τ, ε > 0 be the time-step and entropic regularization

parameter, T > 0 be a time horizon and let N := dTτ e. Let ρ
(−1)
τ,ε , ρ

(0)
τ,ε be given initial data with the prop-

erties described above. Let furthermore τ, ε > 0 be the time-step and entropic regularization parameter.

Define the sequence ρ
(n)
τ,ε , n = −1, 0, 1, . . . , N with the initial values given above and the recursion

ρ(n)
τ,ε ∈ arg min

ρ∈P(Ω)

Φnτ,ε(ρ) (5.1.10)

inducing an in-time approximation ρτ,ε : [0, T ] → P(Ω) for a solution of (5.1.1) by means of piecewise
constant interpolation

ρτ,ε : [0, T ]→Pac(Ω) with ρτ,ε(t) = ρ(n)
τ,ε for t ∈ ((n− 1, τ, nτ ] . (5.1.11)

Let us state the main result of this chapter.

Theorem 4. Let C be some positive constant. Let τ, ε > 0 go to zero in a way that satisfies

0 ≤ ε, ε |log(ε)| ≤ Cτ2 . (5.1.12)

Let furthermore ρ
(−1)
τ,ε , ρ

(0)
τ,ε be sequences of suitable approximate initial data in particular satisfying

(5.1.8) and (5.1.9).

Then the (ρ
(n)
τ,ε )n spawned by the entropic regularized BDF 2 scheme and ρτ,ε defined in Definition 5.1

have the following properties.

1. The sequence ρ
(n)
τ,ε is well defined, that is to say Φnτ,ε(ρ) in (5.1.10) has a minimizer for each n.

2. The sequence of approximate solutions ρτ,ε possesses a subsequence converging w.r.t. strong Lm((0, T )×
Ω)-topology to a limit curve ρ∗ ∈ Lm((0, T )× Ω).

3. Furthermore ρ∗ satisfies a weak formulation of (5.1.1): For every ϕ ∈ C∞c ((0, T )×Ω), ρ∗ satisfies

T̂

0

ˆ

Ω

ρ∗(t, x)∂tϕ(t, x) dxdt

= −
T̂

0

ˆ

Ω

p(ρ∗(t, x))∆ϕ(t, x) dx dt+

T̂

0

ˆ

Ω

〈ρ∗(t, x)∇[v(x) + (w ∗ ρ∗)(t, x)],∇ϕ(t, x)〉 dxdt .

4. Finally ρ∗ is 1/2-Hölder-continuous in time w.r.t. the quadratic optimal transport distance T2 and

assumes the initial value ρ0, the limit of ρ
(−1)
τ,ε and ρ

(0)
τ,ε given above, continuously w.r.t. T2, i.e.

lim
t↘0

T2(ρ∗(t), ρ
0) = 0 .
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The rest of this chapter will consist of proving Theorem 4 showing the well-definedness of the recursion

(5.1.10) in Section 5.3 followed by some properties of the sequence ρ
(n)
τ,ε in Section 5.4 and Section

5.5. Finally we establish convergence of ρτ,ε and show that the limit curve is indeed a solution of (5.1.1)
in Section 5.6. So the first claim of the above theorem is shown in Section 5.3 . The last three are
shown in Section 5.6 .

5.2 Preliminary results

We will show some properties of Tε now. First of all, taking the infimum in the definition is actually
a minimization, as was shown for example in [8, Proposition 2.3] and recalled in Proposition ?? in the
preliminaries of this thesis. Let us restate

Proposition 5.2 (Adapted from [8]). Let ρ, µ ∈ Pac(Ω) with H(ρ),H(µ) < ∞. Then there is exactly
one minimizing γ∗ such that

T2
ε(ρ, µ) =

¨
Ω2

‖x− y‖22 dγ∗(x, y) + εH(γ∗) .

5.2.1 Bounding Tε with T.

This part is concerned with bounds for Tε. We begin with two bounds that can be received by brief
calculations. Note that we will sometimes use the abbreviation

〈c, γ〉 :=

¨
Ω2

‖x− y‖22 dγ(x, y) .

Lemma 5.3. Let ρ, µ ∈Pac(Ω) with finite entropy H(ρ),H(µ) <∞. Then we can bound T2
ε(ρ, µ) from

below by

T2
ε(ρ, µ) ≥ T2(ρ, µ) + εH(γε) ≥ −ε log(

∣∣Ω2
∣∣) (5.2.1)

where γε denotes the optimal transport plan in Tε(ρ, µ).

Proof. Let us denote the optimal transport plan in the unregularized OT problem T2
2(ρ, µ) as γ∗. The

inequality
T2
ε(ρ, µ) ≥ T2(ρ, µ) + εH(γε)

can then be seen immediately when considering that 〈c, γ∗〉 ≤ 〈c, γε〉 by the optimality of γ∗ and since
γε is a competitor in the minimization of T2

2(ρ, µ).
To arrive at the second inequality we will invoke T2(ρ, µ) ≥ 0 and Jensen’s inequality together with

h being convex. Indeed

T2(ρ, µ) + εH(γε) ≥ ε
∣∣Ω2
∣∣¨

Ω2

h(γ(x, y))
1

|Ω2|
d(x, y)

≥ ε
∣∣Ω2
∣∣ h(¨

Ω2

γ(x, y)
1

|Ω2|
d(x, y)

)
= −ε log

(∣∣Ω2
∣∣) .

holds. In particular we note

H(ρ) ≥ − log(|Ω|) (5.2.2)

holds for every ρ ∈P(Ω).
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Bounding Tε with the block approximation

Bounding Tε from above with T2 will need more work than the bound from below and a specific con-
struction. We will establish the following proposition.

Proposition 5.4. Let ρ, µ ∈Pac(Ω) ∩ L logL(Ω). Then

T2
ε(ρ, µ) ≤ εĈ + 2dε log ε+ T2

2(ρ, µ) (5.2.3)

holds.

Proof. Since we cannot use the unregularized transport plan γ∗ as a competitor on Tε to arrive at suitable
estimates because it has infinite entropy, we will, by block approximation construct a specific γδ such that,
on the one hand, we can control εH(γδ) and on the other hand admits the limit 〈c, γδ〉 → 〈c, γ∗〉 holds in
a suitable order of δ. This construction has already been used in [8, Definition 2.9], where it received its
name

”
block approximation“, and was used in the proof of Γ-convergence to construct a recovery sequence.

We want to mention beforehand that ultimately we will choose δ = ε, but since this construction can be
made general, we will carry it out for a general δ > 0.

The calculations of this proof, up until the estimate for the entropy of γδ, follow along the lines of
section 2 of [8].

We begin with considering the tessellation QΩ
δ of Ω given as

QΩ
δ =

{
δ({j}+K) ∩ Ω | j ∈ Zd

}
where K := [− 1

2 ,
1
2 )d

and QΩ2

δ := {Q× P | Q,P ∈ QΩ
δ }.

Now let γ∗ be the optimal transport plan of T2(ρ, µ). Then we can reshape γ∗ on each Q ∈ QΩ2

δ in
such a way that the marginals remain unchanged while the entropy will have a finite value.

For readability and to ease calculations later on, let the tessellation of Ω be enumerated QΩ
δ = {Qi}i

where i lies in a suitable subset of N and let QΩ2

δ = {Qi,j}i,j be enumerated accordingly.

The construction on one Qi,j ∈ QΩ2

δ is carried out here representatively. We take the restrictions of ρ
and µ to Qi and Qj respectively and rescale them to be probability measures again. Then we take their
product measure, a probability measure on Ω2 with support in the closure of Qi×Qj , and finally rescale

it to have mass γ∗(Qi ×Qj). Repeating this procedure on each Qi ×Qj in QΩ2

δ we arrive at γδ which is
given as

γδ(x, y) = γ∗(Qi ×Qj)
ρ(x)µ(y)

ρ(Qi)µ(Qj)
if (x, y) ∈ Qi ×Qj .

Furthermore we set γδ = 0 on Qi ×Qj if either ρ(Qi) or µ(Qj) equals 0. Let

Jρ := {i | Qi ∈ QΩ
δ and ρ(Qi) 6= 0}

and Jµ accordingly, as well as J 2
ρ,µ := Jρ × Jµ. This way we can write

γδ(x, y) =
∑

(i,j)∈J 2
ρ,µ

γ∗(Qi ×Qj)
ρ(x)µ(y)

ρ(Qi)µ(Qj)
1Qi×Qj (x, y)

We want to show some properties of γδ now. First and foremost, γδ lies in Pac(Ω) and is a competitor
in Tε(ρ, µ), that is to say its marginals equal ρ and µ respectively and it has finite entropy.

We can see that the marginal constrained is satisfied since for some x ∈ Ω either ρ(Qi) = 0 on the
corresponding Qi 3 x and consequently

´
Ω
γδ(x, y) dy = 0 = ρ(x) by construction of γδ or, if ρ(Qi) > 0
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we can calculate

ˆ
Ω

γδ(x, y) dy =
∑
j∈Jµ

γ∗(Qi ×Qj)
ρ(Qi)

ρ(x)

ˆ
Qj

µ(y)

µ(Qj)
dy

=
∑
j∈Jµ

γ∗(Qi ×Qj)
ρ(Qi)

ρ(x)

=
γ∗(Qi × Ω)

ρ(Qi)
ρ(x)

= ρ(x)

and analogously the second marginal of (Py)#γδ = µ is recovered.

We will formulate an intermediate result for the entropy next.

Lemma 5.5. For the γδ constructed above

H(γδ) ≤ H(ρ) +H(µ) + 2 log(|Ω|) + 2d log(δ) (5.2.4)

holds.

Proof of Lemma 5.5. To show this, we have to take several steps.

Let us begin with decomposing

h

(
γ∗(Qi ×Qj)

ρ(x)µ(y)

ρ(Qi)µ(Qj)

)
= γ∗(Qi ×Qj)

ρ(x)µ(y)

ρ(Qi)µ(Qj)

(
log(γ∗(Qi ×Qj)) + log

(
ρ(x)µ(y)

ρ(Qi)µ(Qj)

))
which is justified by h(sr) = sr log(sr) = sr(log(s) + log(r)). As integrand, this yields

H(γδ) =

¨
Ω2

h(γδ(x, y)) d(x, y)

=
∑

(i,j)∈J 2
ρ,µ

¨
Qi×Qj

γ∗(Qi ×Qj)
ρ(x)µ(y)

ρ(Qi)µ(Qj)

(
log(γ∗(Qi ×Qj)) + log

(
ρ(x)µ(y)

ρ(Qi)µ(Qj)

))
d(x, y)

=
∑

(i,j)∈J 2
ρ,µ

γ∗(Qi ×Qj) log(γ∗(Qi ×Qj))

˜
Qi×Qj ρ(x)µ(y) d(x, y)

ρ(Qi)µ(Qj)

+
∑

(i,j)∈J 2
ρ,µ

γ∗(Qi ×Qj)
¨
Qi×Qj

ρ(x)µ(y)

ρ(Qi)µ(Qj)
log

(
ρ(x)µ(y)

ρ(Qi)µ(Qj)

)
d(x, y) .

For the first sum we can easily see

∑
(i,j)∈J 2

ρ,µ

γ∗(Qi ×Qj) log(γ∗(Qi ×Qj))

˜
Qi×Qj ρ(x)µ(y) d(x, y)

ρ(Qi)µ(Qj)
=

∑
(i,j)∈J 2

ρ,µ

γ∗(Qi ×Qj) log(γ∗(Qi ×Qj)) ≤ 0

since log(γ∗(Qi ×Qj)) ≤ 0.
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The argument of the second sum can be split up one more time

∑
(i,j)∈J 2

ρ,µ

γ∗(Qi ×Qj)
¨
Qi×Qj

ρ(x)µ(y)

ρ(Qi)µ(Qj)
log

(
ρ(x)µ(y)

ρ(Qi)µ(Qj)

)
d(x, y)

=
∑

(i,j)∈J 2
ρ,µ

γ∗(Qi ×Qj)

( ˆ
Qj

µ(y)

µ(Qj)

ˆ
Qi

ρ(x)

ρ(Qi)
log

(
ρ(x)

ρ(Qi)

)
dxdy

+

ˆ
Qi

ρ(x)

ρ(Qi)

ˆ
Qj

µ(y)

µ(Qj)
log

(
µ(y)

µ(Qj)

)
dy dx

)

=
∑

(i,j)∈J 2
ρ,µ

γ∗(Qi ×Qj)

( ˆ
Qi

ρ(x)

ρ(Qi)
log

(
ρ(x)

ρ(Qi)

)
dx+

ˆ
Qj

µ(y)

µ(Qj)
log

(
µ(y)

µ(Qj)

)
dy

)

Let us take a closer look at∑
(i,j)∈J 2

ρ,µ

γ∗(Qi ×Qj)
ˆ
Qi

ρ(x)

ρ(Qi)
log

(
ρ(x)

ρ(Qi)

)
dx

=
∑
i∈Jρ

∑
j∈Jµ

γ∗(Qi ×Qj)
ρ(Qi)

ˆ
Qi

ρ(x) log(ρ(x)) dx− γ∗(Qi ×Qj) log(ρ(Qi))

=
∑
i∈Jρ

ˆ
Qi

ρ(x) log(ρ(x)) dx− ρ(Qi) log(ρ(Qi))

= H(ρ)−
∑
i∈Jρ

ρ(Qi) log(ρ(Qi)) .

Therefore, plugging everything back together, we arrive at

∑
(i,j)∈J 2

ρ,µ

γ∗(Qi ×Qj)
¨
Qi×Qj

ρ(x)µ(y)

ρ(Qi)µ(Qj)
log

(
ρ(x)µ(y)

ρ(Qi)µ(Qj)

)
d(x, y)

= H(ρ) +H(µ)−
∑
i∈Jρ

ρ(Qi) log(ρ(Qi))−
∑
j∈Jµ

µ(Qj) log(µ(Qj))

In a final step, in order to establish the sought for estimate onH(γδ), we want to bound
∑
i∈Jρ ρ(Qi) log(ρ(Qi))

and
∑
j∈Jµ µ(Qj) log(µ(Qj)) from below to arrive at the sought for inequality. To that end, replace ρ

by a piecewise constant approximation on QΩ
δ defined as ρ(x) =

∑
i∈J ρ(Qi)

1
δd

1Qi(x) and then use
ρ(Qi) = ρ(Qi) by construction and the bound from below for H (c.f. (5.2.2)), to arrive at∑

i∈Jρ

ρ(Qi) log(ρ(Qi)) =
∑
i∈Jρ

ρ(Qi) log(ρ(Qi))

=

ˆ
Ω

ρ(x) log

(
ρ(x)

1

δd

)
dx

=

ˆ
Ω

ρ(x) log(ρ(x)) dx+

ˆ
Ω

ρ(x) log

(
1

δd

)
dx

≥ − log(|Ω|)− d log(δ) .
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Analogously we receive ∑
j∈Jµ

µ(Qj) log(µ(Qj)) ≥ − log(|Ω|)− d log(δ)

and plugging everything back together we arrive at

H(γδ) ≤ H(ρ) +H(µ) + 2 log(|Ω|) + 2d log(δ)

which is the estimate (5.2.4) we wanted to show.

Finally, we want to compare 〈c, γδ〉 with the optimal T2
2(ρ, µ) = 〈c, γ∗〉. To that end, let us consider

some Qi × Qj where (i, j) ∈ J 2
ρ,µ and the optimal transport problem T2

2(γ(∗,i,j), γ(δ,i,j)) where γ(·,i,j) =
γ(·) |Qi×Qj . In other words, we consider the problem to transport the mass on Qi × Qj distributed
according to γ∗ to the same mass distributed according to γδ.

Since γ(δ,i,j) has by construction a density w.r.t. Lebesgue measure, i.e. it does not give mass to
small sets, so the Monge problem of transporting the mass of T2

2(γ(∗,i,j), γ(δ,i,j)) has a solution and we
receive a measurable map S : Qi × Qj → Qi × Qj pushing γ(δ,i,j) forward to γ(∗,i,j), that is to say
S#γ(δ,i,j) = γ(∗,i,j). That this map is indeed realizing a optimal transport is secondary for us.

By the domain and image of S(x, y) = (S1(x, y), S2(x, y))T ∈ Qi ×Qj , by Qi ×Qj ⊂ Ω2 and by ‖·‖22
being Lipschitz with constant L > 0 on the bounded domain, we receive∣∣∣‖S1(x, y)− S2(x, y)‖22 − ‖x− y‖

2
2

∣∣∣ ≤ L ‖(S1(x, y)− x)− (S2(x, y)− y)‖2 ≤ L2
√
dδ

and with it we can calculate∣∣∣ 〈c, γ(δ,i,j)

〉
−
〈
c, γ(∗,i,j)

〉 ∣∣∣
=

∣∣∣∣∣
¨
Qi×Qj

‖x− y‖22 d[S#γ(∗,i,j)](x, y)−
〈
c, γ(∗,i,j)

〉 ∣∣∣∣∣
≤
¨
Qi×Qj

∣∣∣‖S1(x, y)− S2(x− y)‖22 − ‖x− y‖
2
2

∣∣∣ dγ(∗,i,j)(x, y)

≤ 2
√
dLδ |Qi| |Qj | .

Summing up to receive a result for γ∗ and γδ we arrive at

|〈c, γδ〉 − 〈c, γ∗〉| ≤
∑

(i,j)∈J 2
ρ,µ

2
√
dLδ |Qi| |Qj | ≤ 2

√
dL |Ω|2 δ .

We will combine the above results now in an estimate for Tε(ρ, µ) from above by T2(ρ, µ).
Let γε denote the optimal entropic regularized transport plan and γ∗ the optimal transport plan

w.r.t. to quadratic distance. Let furthermore γδ be the block approximation of γ∗ as above. Then we
can calculate, using the minimizing property of γε together with γδ ∈ Π(ρ, µ)

T2
ε(ρ, µ) = 〈c, γε〉+ εH(γε)

≤ 〈c, γδ〉+ εH(γδ)

= εH(γδ) + 〈c, γδ〉 − 〈c, γ∗〉+ T2
2(ρ, µ)

≤ ε [H(ρ) +H(µ) + 2 log(|Ω|) + 2d log(δ)]

+ 2
√
dL |Ω|2 δ + T2

2(ρ, µ) .



5.2. PRELIMINARY RESULTS 83

Since δ is at our disposal, choose δ = ε and abbreviate

Ĉ := H(ρ) +H(µ) + 2 log(|Ω|) + 2
√
dL |Ω|2

to arrive at

T2
ε(ρ, µ) ≤ εĈ + 2dε log ε+ T2

2(ρ, µ) .

Bounding Tε with the tensor-product plan.

The tensor-product plan ρ⊗µ ∈P(ρ, µ), minimizes the negative entropy H(γ) among the set of transport
plans γ ∈P(ρ, µ). Indeed, as was shown in [15, Theorem 1.2], the entropic regularized OT plans converge
narrowly to the tensor-product plan ρ⊗ µ for ε→∞.

Since it is on the one hand the minimizer of H on the set of transport plans from ρ to µ and on
the other hand a feasible candidate in the minimization problem T2

ε(ρ, µ), we arrive at the following
estimates.

Lemma 5.6. Let ρ, µ ∈Pac(Ω) with finite entropy, ε > 0 and γε the optimal transport plan of T2
ε(ρ, µ).

Then

〈c, γε〉+ ε (H(ρ) +H(µ)) ≤ T2
ε(ρ, µ) ≤ 〈c, ρ⊗ µ〉+ ε (H(ρ) +H(µ))

holds.

Proof. This is merely a matter of plugging in the tensor-product plan as a minimizer of H, to receive the
bound from below, and as a feasible candidate in Π(ρ, µ) for minimization in Tε to receive the bound
from above. In both cases we can see

H(ρ⊗ µ) =

¨
Ω2

ρ⊗ µ log(ρ⊗ µ) d(x, y)

=

ˆ
Ω

ρ log(ρ)

(ˆ
Ω

µdy

)
dx+

ˆ
Ω

µ log(µ)

(ˆ
Ω

ρdx

)
dy

= H(ρ) +H(µ) .

5.2.2 A stability result for the Kantorovich potentials

The entropic regularized OT distance T2
ε(ρ, µ) admits a decomposition which will be needed in the

subsequent proofs of the existence of a minimizer and in establishing the Euler-Lagrange equation. The
decomposition consists of rewriting T2

ε as the sum of a
”
distance“ S2

ε similar to T2
ε and the entropy of

the marginals ρ, µ. This new S2
ε will furthermore be shown to be continuous w.r.t. narrow convergence.

In the proof of continuity we will make extensively use of properties of S2
ε established in [19].

We begin with recalling Remark 2.12 which stated

T2
ε(ρ, µ) = inf

γ∈Π(ρ,µ)
εH(γ | Kε) . (5.2.5)

Now we define a similar expression.

Definition 5.7. Let ρ, µ ∈Pac(Ω) with finite entropy. Define

S2
ε(ρ, µ) := inf

γ∈Π(ρ,µ)
εH(γ | Kερ⊗ µ) (5.2.6)



84 CHAPTER 5. ENTROPIC REGULARIZED BDF-2 SCHEME

(c.f. (5.2.5)) where

H(γ | Kερ⊗ µ) =

¨
Ω2

G(x, y) log

(
G(x, y)

Kε(x, y)

)
d(ρ⊗ µ)

holds due to γ = Gρ⊗ µ.
Define the dual problem Dε(ρ, µ) of S2

ε(ρ, µ) as

Dε(ρ, µ) := sup
φ,ψ∈L∞(Ω)

Dε(φ, ψ, ρ, µ) (5.2.7)

where the argument of the supremum is defined as

Dε(φ, ψ, ρ, µ) :=

ˆ
Ω

φ(x)ρ(x) dx+

ˆ
Ω

ψ(y)µ(y) dy − ε
¨

Ω2

e
φ(x)+ψ(y)

ε Kε(x, y) d(ρ⊗ µ)(x, y) .

For (φ, ψ) ∈ L∞(Ω)2 define the Sinkhorn iteration map Sε by

Sε(φ, ψ; ρ, µ) = (φ̂, ψ̂)

where φ̂, ψ̂ are calculated as follows:

φ̂ := −ε log

(ˆ
Ω

e
ψ(y)−c(x−y)

ε dµ(y)

)
ψ̂ := −ε log

(ˆ
Ω

e
φ̂(x)−c(x−y)

ε dρ(x)

)
.

Proposition 5.8. Let ρ, µ ∈Pac(Ω) with finite entropy. Then the following holds.

1. Sε and T2
ε are connected by

T2
ε(ρ, µ) = S2

ε(ρ, µ) + εH(ρ) + εH(µ)

(c.f. Lemma 1.5. in [19]).

2. Sε and Dε admit optimal elements γopt ∈Pac(Ω2) ∩ Π(ρ, µ) and (φ∗, ψ∗) ∈ L∞(Ω)2 where γopt is
unique and (φ∗, ψ∗) is unique up to recalibration (φ∗, ψ∗)→ (φ∗+ a, ψ∗− a). The recalibration can
always be chosen such that ‖φ∗‖∞ , ‖ψ∗‖∞ ≤

3
2 ‖c‖∞. (c.f. Section 2., in particular Lemma 2.7.,

Theorem 2.8. and Lemma 2.10. in [19]).

3. Duality between Sε and Dε holds in the following way

S2
ε(ρ, µ) = Dε(ρ, µ)

and, let γopt, (φ∗, ψ∗) be optimal in Sε,Dε, then

Sε(φ∗, ψ∗, ρ, µ) = (φ∗, ψ∗)

holds and this is a sufficient condition for (φ∗, ψ∗) to be optimal in Dε(ρ, µ). Furthermore

γopt(x, y) = eφ
∗(x)/εKε(x, y)eψ

∗(y)/ε(ρ⊗ µ)(x, y)

holds (c.f. Lemma 2.10. and Proposition 2.11. in [19]).
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Remark 5.9. We want to make Proposition 5.8.1. plausible with a short formal calculation while skipping
the measure theoretic considerations. Let γ ∈ Pac(Ω2) with density G̃ w.r.t. Lebesgue measure and G
w.r.t. ρ ⊗ µ. By ρ, µ ∈ Pac(Ω), this entails G̃(x, y) = G(x, y)r(x)m(y) where r,m denote the densities
of ρ and µ respectively. We can now calculate

H(γ | Kε) =

¨
Ω2

G̃(x, y) log

(
G̃(x, y)

Kε(x, y)

)
d(x, y)

=

¨
Ω2

G(x, y) log

(
G(x, y)r(x)m(y)

Kε(x, y)

)
d(ρ⊗ µ)(x, y)

=

¨
Ω2

G(x, y) log

(
G(x, y)

Kε(x, y)

)
d(ρ⊗ µ)(x, y) +

ˆ
Ω

r(x) log (r(x)) dx+

ˆ
Ω

m(y) log (m(y)) dy

= H(γ | Kε(ρ⊗ µ)) +H(ρ) +H(µ) .

The definitions of T2
ε and S2

ε now imply the result Proposition 5.8.1. .
By a short formal calculation, the duality result in Proposition 5.8.3. can be made plausible, too.

Indeed, let γ ∈ Π(ρ, µ) ∩Pac(Ω2) and let φ, ψ ∈ L∞(Ω). Then

εH(γ | Kε(ρ⊗ µ))

=

¨
Ω2

(
‖x− y‖22 + ε log (G(x, y))− φ(x)− ψ(y)

)
G(x, y) d(ρ⊗ µ)(x, y) +

ˆ
Ω

φdρ+

ˆ
Ω

ψ dµ

≥ −ε
¨

Ω2

e
φ(x)+ψ(y)−‖x−y‖22

ε −1 d(ρ⊗ µ) +

ˆ
Ω

φdρ+

ˆ
Ω

ψ dµ

= Dε(φ, ψ, ρ, µ)

where we absorbed the −1 as ε in one of the two Kantorovich potentials. The inequality in this calculation
is justified by noting that t 7→ (s+ε log(t))t is convex for all s and has its unique minimizer at t = −e−

s
ε−1.

So identifying s = ‖x− y‖22 − φ − ψ and t = G ≥ 0 we arrive at the inequality in the calculation above

and see furthermore that εH(γ | Kε(ρ⊗ µ)) = Dε(φ, ψ, ρ, µ) iff dγ = e
φ+ψ
ε Kε d(ρ⊗ µ).

With these results at hand, we can state the first consequence towards our stability result.

Lemma 5.10. Let µ, ρ∗, ρk ∈ Pac(Ω) with uniformly bounded entropy. Let furthermore ρk ⇀ ρ∗
narrowly in P(Ω) and denote a sequence of corresponding optimal Kantorovich potentials (φk, ψk) of
Dε(ρk, µ). Note that we assume the Kantorovich potentials to be chosen such that in particular the
estimate in Proposition 5.8.2. holds.

Then we can recalibrate the sequence (φk, ψk)→ (φk+ak, ψk−ak) with a sequence supk |ak| ≤ 3 ‖c‖∞
in such a way that the components of the recalibrated sequence converge

lim
k→∞

φk = φ∗ and lim
k→∞

ψk = ψ∗

uniformly. Additionally, the limit (φ∗, ψ∗) is an optimal pair in Dε(ρ∗, µ) such that a relaxed version of
the estimate in Proposition 5.8.2. holds for (φ∗, ψ∗), too.

Proof. We will establish, in addition to ‖φk‖∞ , ‖ψk‖∞ ≤
3
2 ‖c‖∞, that these sequences are, as sequences

of continuous functions on the bounded Ω, uniformly equicontinuous. That will be shown by establishing
a uniform Lipschitz constant for both sequences. Consequently, by Arzela-Ascoli, these sequences are
compact w.r.t. uniform convergence.

To establish this Lipschitz constant we will follow along the lines of the proof of [19, Proposition
2.4.1].
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We can establish, by boundedness of Ω, the Lipschitz estimate∣∣∣‖x1 − y‖22 − ‖x2 − y‖22
∣∣∣ ≤ 2 diam(Ω) ‖x1 − x2‖2

where the upper bound can for example be seen by z1 = x1 − y, z2 = x2 − y

‖z1‖22 − ‖z2‖22 = (‖z1‖2 − ‖z2‖2)(‖z1‖2 + ‖z2‖2) ≤ 2 diam(Ω) ‖z1 − z2‖2

and we used the binomial theorem and the inverse triangle inequality.
By Proposition 5.8.3. we have that (φk, ψk) is a fixed point of Sε(φ, ψ, ρk, µ), and so for our Kan-

torovich potential φk we can write

φk(x1)− φk(x2) = −ε
(

log

(ˆ
Ω

e
ψk(y)−c(x1−y)

ε dµ(y)

)
− log

(ˆ
Ω

e
ψk(y)−c(x2−y)

ε dµ(y)

))
= −ε

(
log

(ˆ
Ω

e
ψk(y)−c(x2−y)+c(x2−y)−c(x1−y)

ε dµ(y)

)
− log

(ˆ
Ω

e
ψk(y)−c(x2−y)

ε dµ(y)

))
≤ 2 diam(Ω) ‖x1 − x2‖2 − ε

(
log

(ˆ
Ω

e
ψk(y)−c(x2−y)

ε dµ(y)

)
− log

(ˆ
Ω

e
ψk(y)−c(x2−y)

ε dµ(y)

))
= 2 diam(Ω) ‖x1 − x2‖2

and the other way round

φk(x1)− φk(x2) ≥ −2 diam(Ω) ‖x1 − x2‖2

by virtually the same calculation, giving us a Lipschitz constant L = 2 diam(Ω) for φk not depending on
ρk, µ or k.

The same calculation holds for ψk and so does the estimate. We can therefore conclude that the two
sequences φk, ψk are on the one hand uniformly bounded in ‖·‖∞ and on the other hand are uniformly
equicontinuous, allowing us to apply Arzela-Ascoli to receive that these sequences are compact w.r.t.
uniform convergence. That is to say, that in particular each subsequence of (φk, ψk) has a subsubsequence
such that its components converge uniformly to some φ∞, ψ∞.

We want to show that (φ∞, ψ∞) is an optimal pair for Dε(ρ∗, µ). By Proposition 5.8.3. this is
equivalent to showing that the limit is a fixed point of Sε(·, ·, ρ∗, µ). We have

φ∞ = lim
k→∞

φk = lim
k→∞

−ε log

(ˆ
Ω

e
ψk(y)−c(x−y)

ε dµ(y)

)
ψ∞ = lim

k→∞
ψk = lim

k→∞
−ε log

(ˆ
Ω

e
φk(x)−c(x−y)

ε dρk(x)

)
.

So by the integrals being bounded away from 0 and by continuity of log, what we have to show is

lim
k→∞

ˆ
Ω

e
ψk(y)−c(x−y)

ε dµ(y) =

ˆ
Ω

e
ψ∞(y)−c(x−y)

ε dµ(y)

lim
k→∞

ˆ
Ω

e
φk(x)−c(x−y)

ε dρk(x) =

ˆ
Ω

e
φ∞(x)−c(x−y)

ε dρ∗(x) .

We will representatively show the second limit, since the sequence ρk makes this one a little harder than
the first one.

We have the uniform bound ‖φk − c‖L∞(Ω2) ≤
5
3 ‖c‖L∞(Ω2) by Proposition 5.8.2. and triangle in-

equality, so we can assume e to be uniform continuous in our case which then implies that the uniform
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convergence of φk carries over to e
φk(x)−c(x−y)

ε . Finally, since ρk converges narrowly, we receive for every
y ∈ Ω

lim
k→∞

ˆ
Ω

e
φk(x)−c(x−y)

ε dρk(x) =

ˆ
Ω

e
φ∞(x)−c(x−y)

ε dρ∗(x) .

For ψ∞ we receive the same result, showing that φ∞, ψ∞ are actually optimal Kantorovich potentials in
Dε(ρ∗, µ).

Now let us assume that there are two subsequences converging to two different optimal pairs (φ∗, ψ∗)
and (φ∗+ a, ψ∗− a). Then we can assume the two subsequences to be disjoint and simply recalibrate the
latter subsequence by a, perhaps weakening the estimate ‖φ∗‖∞ , ‖ψ∗‖∞ ≤

3
2 ‖c‖∞ but not enough to

break our argument above, and receive that this recalibrated subsequence actually converges to (φ∗, ψ∗).
Finally, since limit points of the initial sequence cannot lie further apart than 3

2 ‖c‖∞ in the L∞(Ω)-
norm, we can always choose the a ∈ [−3 ‖c‖∞ , 3 ‖c‖∞] (where the 3 is chosen for good measure) and can
apply this to all remaining disjoint subsequences converging to another optimal pair to receive a sequence
actually having (φ∗, ψ∗) as the limit.

Corollary 5.11. Let ρk, ρ∗, µ ∈ Pac(Ω) with finite entropy and let ρk ⇀ ρ∗ narrowly in P(Ω). Let
furthermore γk be the sequence of optimal transport plans in S2

ε(ρk, µ) and Gk their density w.r.t. ρk⊗µ.
Then the Gk are continuous and converge uniformly to G∗, the density w.r.t. ρ∗ ⊗ µ of the optimal
transport plan γ∗ of S2

ε(ρ∗, µ).

In particular

lim
k→∞

S2
ε(ρk, µ) = S2

ε(ρ∗, µ) . (5.2.8)

Proof. We consider the sequence (φk, ψk) of optimal potentials established in Lemma 5.10. Then φk, ψk
are Lipschitz and uniformly bounded: ‖φk‖∞ , ‖ψk‖∞ ≤

3
2 ‖c‖∞. The structure ofGk(x, y) = eφk(x)+ψk(y)/εKε(x, y)

allows us to conclude that Gk converges uniformly and its limit has the form

G∗(x, y) = e
φ∗(x)+ψ∗(y)

ε Kε(x, y).

The fact that the limit G∗ is indeed optimal is a direct consequence (φ∗, ψ∗) being optimal potentials
and Proposition 5.8.3. .

Let us proceed with Gk. By boundedness of Ω there is a uniform upper bound on c. In combination,
this gives us a uniform bound away from zero for Gk and G∗, showing the uniform convergence of Gk

passes on to Gk log
(
Gk
Kε

)
.

Finally, we can calculate

lim
k→∞

Sε(ρk, µ) = lim
k→∞

ε

¨
Ω2

Gk(x, y) log

(
Gk(x, y)

Kε(x, y)

)
d(ρk ⊗ µ)(x, y)

= ε

¨
Ω2

G∗(x, y) log

(
G∗(x, y)

Kε(x, y)

)
d(ρ∗ ⊗ µ)(x, y)

= Sε(ρ∗, µ)

where, as we have seen Gk(x, y) log
(
Gk(x,y)
Kε(x,y)

)
converges uniformly to G∗(x, y) log

(
G∗(x,y)
Kε(x,y)

)
and ρk ⊗ µ

narrowly to ρ∗ ⊗ µ.
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5.3 Existence of a minimizer

The existence of a minimizer in each recursion step is usually a result that can be shown more or less
effortlessly in the JKO-case, for there the summands of the functional that is the subject of minimization
are all themselves l.s.c. and therefore the direct method of the calculus of variation can be applied almost
immediately.

In the BDF2 case on the other hand, the negative term − 1
4T2

ε(ρ, ρ
(n−2)
τ,ε ) provides a substantial hurdle,

since the lower semicontinuity is no longer immediate to obtain. But with the results from the preceeding

section, we can see T2
ε(ρ, ρ

(n−1)
τ,ε )− 1

4T2
ε(ρ, ρ

(n−2)
τ,ε ) is semi-continuous in ρ w.r.t. to narrow convergence.

We will begin with showing that Φτ,ε(τ ; ρ
(n−1)
τ,ε , ρ

(n−2)
τ,ε , ρ) is bounded from below in ρ. Then we will

show n.l.s.c. of the energy functional E(ρ). Finally we will establish n.l.s.c. of the kinetic term and
conclude with plugging these results together to the existence of the minimizer.

5.3.1 Bound from below for Φτ,ε.

Now for the bound from below, let us for a moment only consider T2
ε(ρ, ρ

(n−1)
τ,ε )− 1

4T2
ε(ρ, ρ

(n−2)
τ,ε ). Then

we can use Lemma 5.6 to receive the estimate

T2
ε(ρ, ρ

(n−1)
τ,ε )− 1

4
T2
ε(ρ, ρ

(n−2)
τ,ε )

≥
〈
c, γ(n−1)

τ,ε

〉
+ ε

(
H(ρ) +H(ρ(n−1)

τ,ε )
)
− 1

4

(
〈c, ρ⊗ µ〉+ ε

(
H(ρ) +H(ρ(n−2)

τ,ε )
)]

≥ 3

4
εH(ρ)− 1

4
‖c‖L∞(Ω2) − ε

(
log(|Ω|) +

1

4
H(ρ(n−2)

τ,ε )

)
≥ −1

4
‖c‖L∞(Ω2) − ε

(
7

4
log(|Ω|) +

1

4
H(ρ(n−2)

τ,ε )

)
where we used 0 ≤ 〈c, γ〉 ≤ ‖c‖L∞(Ω2) as well as (5.2.2).

As an intermediate result we receive, from the next to the last line, the bound

3

4
εH(ρ) ≤ T2

ε(ρ, ρ
(n−1)
τ,ε )− 1

4
T2
ε(ρ, ρ

(n−2)
τ,ε ) +

1

4
‖c‖L∞(Ω2) + ε

(
log(|Ω|) +

1

4
H(ρ(n−2)

τ,ε )

)
. (5.3.1)

The energy term can be estimated from below as well by means of Jensen’s inequality

U(µ) =

ˆ
Ω

u(µ(x)) dx ≥ |Ω| u
(

1

|Ω|

)
and by the properties of v and w the values v := minΩ v(x) and w := minx,y∈Ω w(x − y) exist and are
finite so we receive

V(µ) +W(µ) ≥ v + w

for every µ ∈P(Ω) right away. Plugging everything together and abbreviating E := |Ω| u
(

1
|Ω|

)
+ v + w

we arrive at

Φτ,ε(τ ; ρ(n−1)
τ,ε , ρ(n−2)

τ,ε , ρ) ≥ − 1

4τ

(
‖c‖L∞(Ω2) + 7ε log(|Ω|) + εH(ρ(n−2)

τ,ε )
)

+ E .

So there is a bound from below for Φτ,ε that only depends on τ, ε, u, v,w, c andH(ρ
(n−2)
τ,ε ) and in particular

not on ρ.
Picking up the intermediate result (5.3.1) again we receive the following result.
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Lemma 5.12. Let τ, ε > 0 and let ρk ∈Pac(Ω) be a minimizing sequence of ρ 7→ Φτ,ε(τ ; ρ
(n−1)
τ,ε , ρ

(n−2)
τ,ε , ρ).

Let furthermore the initial data ρ
(n−1)
τ,ε , ρ

(n−2)
τ,ε have finite entropy and energy

H(ρ(−1)
τ,ε ), E(ρ(−1)

τ,ε ),H(ρ(0)
τ,ε), E(ρ(0)

τ,ε) ≤ C <∞ .

Then there is a subsequence ρkl with uniformly bounded entropy and energy H(ρkl), E(ρkl) ≤ C <∞.

Proof. Since ρ
(n−2)
τ,ε is a feasible candidate in the minimization problem, we know that for k big enough

we have

Φτ,ε(τ ; ρ(n−1)
τ,ε , ρ(n−2)

τ,ε , ρk) ≤ Φτ,ε(τ ; ρ(n−1)
τ,ε , ρ(n−2)

τ,ε , ρ(n−2)
τ,ε ) + 1

where the +1 has to be there in case ρ
(n−2)
τ,ε is itself a minimizer. Now on the one hand we have by (5.3.1)

Φτ,ε(τ ; ρ(n−1)
τ,ε , ρ(n−2)

τ,ε , ρk) =
1

τ

(
T2
ε(ρk, ρ

(n−1)
τ,ε )− 1

4
T2
ε(ρk, ρ

(n−2)
τ,ε )

)
+ E(ρk)

≥ 1

τ

(
3

4
εH(ρk)− 1

4
‖c‖L∞(Ω2) − ε

(
log(|Ω|) +

1

4
H(ρ(n−2)

τ,ε )

))
+ E(ρk)

=
3ε

4τ
H(ρk) + E(ρk)− ε

4τ
H(ρ(n−2)

τ,ε ) + Cc,τ,ε,Ω

and on the other hand we have with Lemma 5.6

Φτ,ε(τ ; ρ(n−1)
τ,ε , ρ(n−2)

τ,ε , ρ(n−2)
τ,ε ) =

1

τ

(
T2
ε(ρ

(n−2)
τ,ε , ρ(n−1)

τ,ε )− 1

4
T2
ε(ρ

(n−2)
τ,ε , ρ(n−2)

τ,ε )

)
+ E(ρ(n−2)

τ,ε )

≤ 1

τ

(〈
c, ρ(n−2)

τ,ε ⊗ ρ(n−1)
τ,ε

〉
+ ε

(
H(ρ(n−2)

τ,ε ) +H(ρ(n−1)
τ,ε )

)
− ε

2
H(ρ(n−2)

τ,ε )
)

+ E(ρ(n−2)
τ,ε )

≤ ε

2τ
H(ρ(n−2)

τ,ε ) + E(ρ(n−2)
τ,ε ) +

ε

τ
H(ρ(n−1)

τ,ε ) +
1

τ
‖c‖∞ .

Plugging this together yields

3ε

4τ
H(ρk) + E(ρk) ≤ 3ε

4τ
H(ρ(n−2)

τ,ε ) + E(ρ(n−2)
τ,ε ) +

ε

τ
H(ρ(n−1)

τ,ε ) + Cc,τ,ε,Ω + 1 .

Iteratively this yields a bound for 3ε
4τH(ρk)+E(ρk) that depends on the energy and entropy of ρ

(n−1)
τ,ε , ρ

(n−2)
τ,ε

and c, τ, ε,Ω and n, making this estimate uniform in k.
Now since H and E are both bounded from below, this estimate shows that H(ρk) and E(ρk) are each

on its own uniformly bounded from above.

Note that this bound might decay with τ, ε, but we only need it to establish existence of a minimizer,
which is done for fixed τ, ε > 0.

5.3.2 Weak lower semi-continuity of the kinetic term and E.
As was shown for example in [46, Proposition 7.1 & 7.2], V and W are continuous w.r.t. to narrow
convergence of probability measures. Furthermore [46, Proposition 7.7] implies that U and H are lower
semicontinuous w.r.t. narrow convergence as well since h and u are both continuous, convex and super-
linear at infinity.

Lemma 5.13 (Adaption from Section 7 in [46]). We have that

ρ 7→ E(ρ) and ρ 7→ H(ρ) (5.3.2)

are n.l.s.c. .
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Showing that the kinetic term, T2
ε(ρ, ρ

(n−1)
τ,ε )− 1

4T2
ε(ρ, ρ

(n−2)
τ,ε ), will take the detour over Sε.

We begin by using Proposition 5.8.1. to rewrite our kinetic term.

T2
ε(ρ, ρ

(n−1)
τ,ε )− 1

4
T2
ε(ρ, ρ

(n−2)
τ,ε )

= S2
ε(ρ, ρ

(n−1)
τ,ε )− 1

4
S2
ε(ρ, ρ

(n−2)
τ,ε ) +

3

4
εH(ρ) + εH(ρ(n−1)

τ,ε )− 1

4
εH(ρ(n−2)

τ,ε )

(5.3.3)

where we used that for µ ∈Pac(Ω) we have H(µ | Ld) = H(µ).

Now we can see, the last two terms are constant w.r.t. ρ. The first two have been shown to be
continuous in ρ w.r.t. to narrow convergence in Pac(Ω) with uniform bounded entropy in Corollary
5.11. And finally the third term, the negative entropy of ρ is n.l.s.c. by Lemma 5.13.

In conclusion, we have established that Φnτ,ε(ρ) consists of summands that are all n.l.s.c., which implies
that Φnτ,ε(ρ) is n.l.s.c. in ρ.

5.3.3 Existence of a minimizer.

Showing the existence of a minimizer follows now the standard way by the direct method of the calculus
of variation.

We have shown that ρ 7→ Φτ,ε(τ ; ρ
(n−1)
τ,ε , ρ

(n−2)
τ,ε , ρ) is bounded from below and lower semicontinuous

w.r.t narrow convergence of ρ. So let us abbreviate Φnτ,ε(ρ) := Φτ,ε(τ ; ρ
(n−1)
τ,ε , ρ

(n−2)
τ,ε , ρ) and let us assume

a minimizing sequence ρk. Then, since P(Ω) is narrowly compact by boundedness of Ω, we can assume
ρk to be narrowly converging to some ρ∗. By Lemma 5.12 we can assume this sequence to lie in Pac(Ω)
and have uniformly bounded entropy. We receive for every ρ ∈P(Ω)

Φnτ,ε(ρ) ≥ lim
k→∞

Φnτ,ε(ρk) = lim inf
k→∞

Φnτ,ε(ρk) ≥ Φnτ,ε(ρ∗)

implying that φ∗ is a minimizer of Φnτ,ε.

The first inequality is here implied by ρk being a minimizing sequence and the second inequality is
derived from the n.l.s.c. of Φnτ,ε.

This shows part 1. of Theorem 4 .

5.4 The Euler-Lagrange equation

To establish the Euler-Lagrange equation is the next step we take towards showing convergence of our
approximate sequence to a solution of the initial equation.

Establishing the equation will consist of three distinct steps. First we will restate a well known
result concerning the variation of our energy functional E along solutions of the transport equation
∂λρλ = div (ρλξ).

Then we will establish, a similar result for the kinetic term ρ 7→ 1
τ

(
T2
ε(ρ, ρ

(n−1)
τ,ε )− 1

4T2
ε(ρ, ρ

(n−2)
τ,ε )

)
.

This step is a little more involved and consists of rewriting the kinetic term first w.r.t. Sε as we did in
(5.3.3), then shift to the dual problem Dε of Sε and finally using the stability result Lemma 5.10 and
Corollary 5.11 for the corresponding Kantorovich potentials and the density of the optimal transport
plans. Plugging these results together we will arrive at an estimate for the difference quotient of the
variation along solutions of the transport equation.

Finally, by a standard argument, we establish the Euler-Lagrange equation utilizing the minimizing

property of ρ
(n)
τ,ε .
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5.4.1 The variation of the energy functional and H

To achieve these equations, we will vary our optimal ρ
(n)
τ,ε along the transport equation

∂λµλ = div (µλ∇ζ)

with initial value µ0 = ρ
(n)
τ,ε . It is well known (e.g. [2, Chapter 6] or [46, Chapter 4]) that the solution

curve µλ can be written as a push-forward of ρ
(n)
τ,ε in the sense that µλ = (Zλ)#ρ

(n)
τ,ε and Zλ is given as a

solution of

Z0 = idΩ; ∂λZλ = ∇ζ(Zλ) .

Lemma 5.14. Let ρ
(n)
τ,ε ∈ Pac(Ω) ∩ Lm(Ω) and ζ ∈ C∞c (Ω,R). Consider µλ as given above. Then the

first variation of E along the curve µλ is given as

∂λ

∣∣∣
λ=0
E(µλ) = −

ˆ
Ω

p(ρ(n)
τ,ε )div (∇ζ) dx−

ˆ
Ω

ρ(n)
τ,ε (x)(∇v + 2(∇w ∗ ρ(n)

τ,ε ))∇ζ(x) dx

where p(s) = su′(s)− u′(s).
As a direct consequence is the variation of the entropy along solutions of the transport equations

∂λ

∣∣∣
λ=0
H(µλ) = −

ˆ
Ω

ρ(n)
τ,εdiv (∇ζ) dx . (5.4.1)

Proof. Writing µλ = (Zλ)#ρ
(n)
τ,ε and minding the regularity, we receive the representation µλ =

ρ(n)
τ,ε

det(DZλ) ◦
Z−1
λ which is well defined for small λ. Here DZλ ∈ C(Ω,Rd×d) is the Jacobian of Zλ.

Now we can write

U(µλ) =

ˆ
Ω

u

(
ρ

(n)
τ,ε

det(DZλ)

)
det(DZλ) dx

and for deriving the determinant, there is Jacobi’s formula yielding

∂λ det(DZλ) = div (∇ζ(Zλ)) det(DZλ)

so we arrive, with u being a monomial of order m and the dominated convergence theorem, at

∂λ

∣∣∣
λ=0
U(µλ) =

ˆ
Ω

p(ρ(n)
τ,ε )∆ζ dx

where p abbreviates the product rule struck u by p(s) = su′(s)− u(s).
The remaining parts V and W are easier to vary. Indeed, by linearity and the regularity of v as well

as ζ having compact support in the open Ω, we receive

∂λ

∣∣∣
λ=0
V(µλ) = lim

λ↘0

ˆ
Ω

v
µλ − µ0

λ
dx

=

ˆ
Ω

v div (ρ(n)
τ,ε∇ζ) dx

=

ˆ
Ω

div (ρ(n)
τ,ε∇v)ζ dx .
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The calculation for W is very similar, after expanding

¨
Ω2

µλ(x)w(x− y)µλ(y)− µ0(x)w(x− y)µ0(y)

λ
d(x, y)

=

¨
Ω2

µλ(x)− µ0(x)

λ
w(x− y)µλ(y) d(x, y) +

¨
Ω2

µ0(x)w(x− y)
µλ(y)− µ0(y)

λ
d(x, y) .

Now by nearly the same arguments as above, we receive, after incorporating the symmetry and regularity
of w,

∂λ

∣∣∣
λ=0
W(µλ) = 2

ˆ
Ω

div (ρ(n)
τ,ε∇ζ)w ∗ ρ(n)

τ,ε dx

= 2

ˆ
Ω

div (ρ(n)
τ,ε (∇w ∗ ρ(n)

τ,ε ))ζ dx .

Finally, when choosing u = h, v = w = 0 in E we see that E(ρ) = H(ρ) for all ρ ∈ P(Ω). Therefore
the variation we just calculated holds for H, too, and minding p(s) = s in the case of u(s) = s log(s), we
arrive at (5.4.1).

5.4.2 The variation of the kinetic term

Showing a suitable estimate for the variation of the kinetic term requires a little more work. The plan
consists of rewriting the kinetic term again as

Tε(ρ, ρ
(n−1)
τ,ε )− 1

4
Tε(ρ, ρ

(n−2)
τ,ε )

= Sε(ρ, ρ
(n−1)
τ,ε )− 1

4
Sε(ρ, ρ

(n−2)
τ,ε ) + ε

3

4
H(ρ) + εH(ρ(n−1)

τ,ε )− 1

4
εH(ρ(n−2)

τ,ε )

and splitting this up in terms that can be handled one by one. First we note that the entropies of

ρ
(n−1)
τ,ε and ρ

(n−2)
τ,ε are constant w.r.t. ρ and therefore play no role in the variation. Furthermore, the

first two summands can, by similarity, be handled by similar arguments. Concerning the remaining part,

Sε(ρ, ρ
(n−1)
τ,ε )− 1

4Sε(ρ, ρ
(n−2)
τ,ε ), we will use the stability results and the dual formulation from Lemma 5.8

and Corollary 5.11. Finally, the entropy of ρ has already been taken care of by Lemma 5.14. as we will
point out right away.

Lemma 5.15. Let ρ
(n−1)
τ,ε , ρ

(n−2)
τ,ε ∈ Pac(Ω) with finite entropy and ρ

(n)
τ,ε the minimizer of Φnτ,ε(·). Let

ζ ∈ C∞c (Ω,R) and consider µλ the solution of ∂λµλ = div (µλ∇ζ) with initial value µ0 = ρ
(n)
τ,ε . Then an

estimate of the first variation of ρ 7→ Sε(ρ, ρ
(n−1)
τ,ε )− 1

4Sε(ρ, ρ
(n−2)
τ,ε ) at ρ = ρ

(n)
τ,ε is given as

lim sup
λ↘0

1

λ

[
1

τ

(
Sε(µλ, ρ

(n−2)
τ,ε )− 1

4
Sε(µλ, ρ

(n−2)
τ,ε )

)
− 1

τ

(
Sε(µ0, ρ

(n−2)
τ,ε )− 1

4
Sε(µ0, ρ

(n−2)
τ,ε )

)]
≤ 1

τ

(
−
¨

Ω2

2 〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y) +

1

4

¨
Ω2

2 〈x− z,∇ζ(x)〉 dγ(n−2)
τ,ε (x, z)

)
.

Proof. Let us begin with the variation of Sε(ρ, ρ
(n−1)
τ,ε ). Recall the dual problem Dε and its functional

Dε defined in Definition 5.7 and let us denote by φλ, ψλ the Kantorovich potentials of Sε(µλ, ρ
(n−1)
τ,ε ),

φ, ψ := φ0, ψ0 and G = eφ0+ψ0/εKε the density w.r.t. µ0 ⊗ ρ(n−1)
τ,ε of the optimal transport plan γ∗ of
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Sε(µ0, ρ
(n−1)
τ,ε ). We receive for the difference quotient for λ > 0 small enough the estimate

1

λ

(
Sε(µλ, ρ

(n−1)
τ,ε )− Sε(µ0, ρ

(n−1)
τ,ε )

)
=

1

λ

(
Dε(µλ, ρ(n−1)

τ,ε )−Dε(µ0, ρ
(n−1)
τ,ε )

)
=

1

λ

(
Dε(φλ, ψλ, µλ, ρ

(n−1)
τ,ε )−Dε(φ0, ψ0, µ0, ρ

(n−1)
τ,ε )

)
≤ 1

λ
(Dε(φλ, ψλ)−Dε(φλ, ψλ))

=

ˆ
Ω

φλ
µλ − µ0

λ
dx− ε

¨
Ω2

eφλ(x)+ψλ(y)/εKε(x, y) d[(
µλ − µ0

λ
)⊗ ρ(n−1)

τ,ε ](x, y)

=

ˆ
Ω

φλ
µλ − µ0

λ
dx− ε

¨
Ω2

Gλ(x, y) d[(
µλ − µ0

λ
)⊗ ρ(n−1)

τ,ε ](x, y) .

This is exactly where the stability result Lemma 5.10 and the subsequent corollary is needed, since we
have to pass to the limit with the argument of the integral and the measures against which we are
integrating. Consequently we receive in the limit λ↘ 0 by the uniform convergence of φλ and Gλ

lim sup
λ↘0

1

λ

(
Sε(µλ, ρ

(n−1)
τ,ε )− Sε(µ0, ρ

(n−1)
τ,ε )

)
≤
ˆ

Ω

φ div (ρ(n)
τ,ε∇ζ) dx− ε

¨
Ω2

G(x, y)div (ρ(n)
τ,ε (x)∇ζ(x))ρ(n−1)

τ,ε (y) d(x, y) .

Now let us consider for a moment the marginal constraints of the optimal transport plan γ∗ = G · Ld.
We have

γ∗(x, y) = G(x, y)ρ(n)
τ,ε (x)ρ(n−1)

τ,ε (y)

since ρ
(n)
τ,ε , ρ

(n−1)
τ,ε ∈Pac(Ω) and consequently

ρ(n)
τ,ε (x) = ρ(n)

τ,ε (x)

ˆ
Ω

G(x, y)ρ(n−1)
τ,ε (y) dy

implying on supp(ρ
(n)
τ,ε )

1 =

ˆ
Ω

G(x, y)ρ(n−1)
τ,ε (y) dy a.e. . (5.4.2)

Anticipating the calculation to follow, we calculate the gradient of G w.r.t. x now, which exists since G
and φ are both Lipschitz. Minding ∇x ‖x− y‖22 = 2(x− y) we receive

ˆ
Ω

∇xG(x, y)ρ(n−1)
τ,ε (y) dy =

1

ε

(
∇φ(x)

ˆ
Ω

G(x, y)ρ(n−1)
τ,ε (y) dy −

ˆ
Ω

2(x− y)G(x, y)ρ(n−1)
τ,ε (y) dy

)
.

By the very same regularity, we can integrate by parts, minding ζ ∈ C∞c (Ω), to arrive on the one
hand at

ˆ
Ω

φdiv (ρ(n)
τ,ε∇ζ) dx = −

ˆ
Ω

∇φρ(n)
τ,ε∇ζ dx
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and on the other hand at

−ε
¨

Ω2

G(x, y)ρ(n−1)
τ,ε (y)div (ρ(n)

τ,ε (x)∇ζ(x)) d(x, y) = ε

ˆ
Ω

(ˆ
Ω

∇xG(x, y)ρ(n−1)
τ,ε (y) dy

)
ρ(n)
τ,ε (x)∇ζ(x) dx

=

ˆ
Ω

(
∇φ(x)

ˆ
Ω

G(x, y)ρ(n−1)
τ,ε (y) dy −

ˆ
Ω

2(x− y)G(x, y)ρ(n−1)
τ,ε (y) dy

)
ρ(n)
τ,ε (x)∇ζ(x) dx

=

ˆ
Ω

∇φρ(n)
τ,ε∇ζ dx−

¨
Ω2

2 〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y) .

Plugging these two terms together we receiveˆ
Ω

φ div (ρ(n)
τ,ε∇ζ) dx− ε

¨
Ω2

G(x, y)ρ(n−1)
τ,ε (y)div (ρ(n)

τ,ε (x)∇ζ(x)) d(x, y)

= −
¨

Ω2

2 〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y)

where we denote with γ
(n−1)
τ,ε the optimal transport plan of Sε(ρ

(n)
τ,ε , ρ

(n−1)
τ,ε ).

Note that in the next to the last equality we used (5.4.2) to cancel out the first and last integral.

Establishing the variation of − 1
4Sε(ρ

(n)
τ,ε , ρ

(n−2)
τ,ε ) follows virtually the same lines of argument with one

difference. The first estimate has to be made in the other direction, due to the negative sign, giving us

− 1

λ

(
Sε(µλ, ρ

(n−2)
τ,ε )− Sε(µ0, ρ

(n−2)
τ,ε )

)
≤ − 1

λ

(
Dε(φ0, ψ0, µλ, ρ

(n−1)
τ,ε )−Dε(φ0, ψ0, µ0, ρ

(n−1)
τ,ε )

)
= −

(ˆ
Ω

φ
µλ − µ0

λ
dx− ε

¨
Ω2

eφ0(x)+ψ0(y)/εKε(x, y) d[(
µλ − µ0

λ
)⊗ ρ(n−1)

τ,ε ](x, y)

)
.

So from here on, the calculations are actually easier than before, since we only have to deal with arguments
in our integrals that are constant w.r.t. λ.

This being the only difference in the considerations of Sε(ρ
(n)
τ,ε , ρ

(n−1)
τ,ε ) and Sε(ρ

(n)
τ,ε , ρ

(n−2)
τ,ε ), we can

establish

lim sup
λ↘0

−Sε(µλ, ρ
(n−2)
τ,ε ) ≥

¨
Ω2

2 〈x− z,∇ζ(x)〉 dγ(n−2)
τ,ε (x, z)

where γ
(n−2)
τ,ε denotes the optimal transport plan of Sε(ρ

(n)
τ,ε , ρ

(n−2)
τ,ε ) and we renamed y → z to avoid

ambiguity.
Plugging these results together we arrive at the following estiamte of the variation of the kinetic term

lim sup
λ↘0

1

λ

[
1

τ

(
Sε(µλ, ρ

(n−2)
τ,ε )− 1

4
Sε(µλ, ρ

(n−2)
τ,ε )

)
− 1

τ

(
Sε(µ0, ρ

(n−2)
τ,ε )− 1

4
Sε(µ0, ρ

(n−2)
τ,ε )

)]
≤ 1

τ

(
−
¨

Ω2

2 〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y) +

1

4

¨
Ω2

2 〈x− z,∇ζ(x)〉 dγ(n−2)
τ,ε (x, z)

)
.

Proposition 5.16. The Euler-Lagrange equation of the minimization problem Φnτ,ε(ρ), varied in direction

of the transport equation ∂λµλ = div (µλ∇ζ) with initial value µ0 = ρ
(n)
τ,ε , is given as

0 =
1

τ

(¨
Ω2

2 〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y)− 1

4

¨
Ω2

2 〈x− z,∇ζ(x)〉 dγ(n−2)
τ,ε (x, z)

)
(5.4.3)

− 3ε

4τ

ˆ
Ω

ρ(n)
τ,εdiv (∇ζ) dx−

ˆ
Ω

p(ρ(n)
τ,ε )div (∇ζ) dx−

ˆ
Ω

ρ(n)
τ,ε (x)(∇v + 2(∇w ∗ ρ(n)

τ,ε ))∇ζ(x) dx

(5.4.4)
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Proof. Plugging the results of this section together, we receive for the variation an estimate from above

and together with the minimizing property of ρ
(n)
τ,ε in Φnτ,ε, we receive

0 ≤ lim sup
λ↘0

1

λ

(
Φnτ,ε(µλ)− Φnτ,ε(µ0)

)
≤ 1

τ

(¨
Ω2

2 〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y)− 1

4

¨
Ω2

2 〈x− z,∇ζ(x)〉 dγ(n−2)
τ,ε (x, z)

)
− 3ε

4τ

ˆ
Ω

ρ(n)
τ,εdiv (∇ζ) dx+

ˆ
Ω

p(ρ(n)
τ,ε )div (∇ζ) dx−

ˆ
Ω

ρ(n)
τ,ε (x)(∇v + 2(∇w ∗ ρ(n)

τ,ε ))∇ζ(x) dx

Now this expression is linear in ζ and flipping ζ → −ζ now shows the claim.

5.5 A priori estimates

In this section we will assume τ, ε > 0 and ρ
(n)
τ,ε to be a sequence spawned by initial data ρ

(−1)
τ,ε , ρ

(0)
τ,ε ∈

Pac(Ω) with finite entropy and the recursion

ρ(n)
τ,ε ∈ arg min

ρ∈P(Ω)

Φnτ,ε(ρ)

which has been shown to spawn a sequence of ρ
(n)
τ,ε ∈Pac(Ω) with uniformly bounded entropy.

We want to establish an analogue to the energy diminishing property of the JKO scheme next, though,
as was pointed out in [33, Section 4.], we cannot hope for our sequence to be truly energy diminishing.
We will however receive a almost-energy-diminishing property of our sequence alike the one in [33].

The entropic regularized distance has one major disadvantage which incidentally is one of the reasons
why it is not an actual distance: Tε(ρ, ρ) 6= 0 in general. This fact also avoids us from using the standard
technique to achieve the classical a priori estimates. To circumvent this problem we will make use of
Proposition 5.4 which we achieved with the block approximation.

To arrive at the classical estimate, the minimizing property of ρ
(n)
τ,ε is used to compare it to ρ

(n−1)
τ,ε

which, when ρ
(n)
τ,ε is replaced by it, sets (one of the) kinetic terms to zero and the desired estimate follows.

Since transport plans (Id, Id)#ρ
(n−1)
τ,ε have infinite entropy, we cannot use this approach but have to

retreat to our results from (5.2.1) and Proposition 5.4, stating that we can bound T2
ε from above and

below by T2 in the following way:

T2(ρ, µ) + εH(γε) ≤ T2
ε(ρ, µ) ≤ εĈ + 2dε log ε+ T2(ρ, µ) . (5.5.1)

With this estimate at hand, we can establish the following result.

Lemma 5.17 (One step). Fix some C > 0. Let τ, ε > 0 such that (5.1.12) holds which reads

0 < ε, ε |log ε| ≤ Cτ2 .

Then we have

1

2
T2(ρ(n)

τ,ε , ρ
(n−1)
τ,ε )− 1

4
T2(ρ(n−1)

τ,ε , ρ(n−2)
τ,ε ) ≤ τ2C + τ

(
E(ρ(n−1)

τ,ε )− E(ρ(n)
τ,ε )
)
. (5.5.2)

Proof. By the minimizing property of ρ
(n)
τ,ε we have

T2
ε(ρ

(n)
τ,ε , ρ

(n−1)
τ,ε ) ≤ T2

ε(ρ
(n−1)
τ,ε , ρ(n−1)

τ,ε )− 1

4

(
T2
ε(ρ

(n−1)
τ,ε , ρ(n−2)

τ,ε )−T2
ε(ρ

(n)
τ,ε , ρ

(n−2)
τ,ε )

)
+ τ

(
E(ρ(n−1)

τ,ε )− E(ρ(n)
τ,ε )
)
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and consequently, by (5.5.1) we receive for the l.h.s.

T2(ρ(n)
τ,ε , ρ

(n−1)
τ,ε )− 2ε log(|Ω|) ≤ T2

ε(ρ
(n)
τ,ε , ρ

(n−1)
τ,ε )

and for the first summands of the r.h.s.

T2
ε(ρ

(n−1)
τ,ε , ρ(n−1)

τ,ε )− 1

4

(
T2
ε(ρ

(n−1)
τ,ε , ρ(n−2)

τ,ε )−T2
ε(ρ

(n)
τ,ε , ρ

(n−2)
τ,ε )

)
≤ (ε+ ε |log(ε)|)C − 1

4

(
T2(ρ(n−1)

τ,ε , ρ(n−2)
τ,ε ) + (ε+ ε |log ε|)C −T2(ρ(n)

τ,ε , ρ
(n−2)
τ,ε )− 2ε log |Ω|

)
≤ (ε+ ε |log(ε)|)C − 1

2
ε log |Ω|+ 1

2
T2(ρ(n)

τ,ε , ρ
(n−1)
τ,ε ) +

1

4
T2(ρ(n−1)

τ,ε , ρ(n−2)
τ,ε ) .

where we used the triangle inequality for the squared Wasserstein-2-distance

T2(ρ(n)
τ,ε , ρ

(n−2)
τ,ε ) ≤ 2T2(ρ(n)

τ,ε , ρ
(n−1)
τ,ε ) + 2T2(ρ(n−1)

τ,ε , ρ(n−2)
τ,ε )

which is founded in the usual triangle inequality, the binomial theorem and youngs inequality for products
with p, q = 2.

Plugging these together we arrive, after moving 1
2T2(ρ

(n)
τ,ε , ρ

(n−1)
τ,ε ) + 1

4T2(ρ
(n−1)
τ,ε , ρ

(n−2)
τ,ε ) to the l.h.s.

and −2ε log(|Ω|) to the r.h.s.

1

2
T2(ρ(n)

τ,ε , ρ
(n−1)
τ,ε )− 1

4
T2(ρ(n−1)

τ,ε , ρ(n−2)
τ,ε ) ≤ (ε+ ε |log(ε)|)C +

3

2
ε log |Ω|+ τ

(
E(ρ(n−1)

τ,ε )− E(ρ(n)
τ,ε )
)
.

Finally including the estimates from (5.1.12), we arrive at

1

2
T2(ρ(n)

τ,ε , ρ
(n−1)
τ,ε )− 1

4
T2(ρ(n−1)

τ,ε , ρ(n−2)
τ,ε ) ≤ τ2C + τ

(
E(ρ(n−1)

τ,ε )− E(ρ(n)
τ,ε )
)
.

So we see our sequence is almost energy diminishing, having a small defect τ2C+ 1
4T2(ρ

(n−1)
τ,ε , ρ

(n−2)
τ,ε )

in each step. The 1
4T2(ρ

(n−1)
τ,ε , ρ

(n−2)
τ,ε ) will not play a major role as can be seen in the following corollary,

summing up over the individual steps.

Corollary 5.18 (Classical estimate, several steps). Let N = bTτ c+ 1. Then with (5.1.8),

1

4

N∑
n=1

T2(ρ(n)
τ,ε , ρ

(n−1)
τ,ε ) ≤ τ(T + τ)C + τ

(
E(ρ(0)

τ,ε)− E(ρ(N)
τ,ε )

)
(5.5.3)

holds.

Proof. Summing up the l.h.s. of (5.5.2) over n, we receive, when minding the telescopic sum,

N∑
n=1

1

2
T2(ρ(n)

τ,ε ,ρ
(n−1)
τ,ε )− 1

4
T2(ρ(n−1)

τ,ε , ρ(n−2)
τ,ε )

=
1

4
T2(ρ(N)

τ,ε , ρ
(N−1)
τ,ε )− 1

4
T2(ρ(−1)

τ,ε , ρ(0)
τ,ε) +

1

4

N∑
n=1

T2(ρ(n)
τ,ε , ρ

(n−1)
τ,ε )

≥ −1

4
T2(ρ(−1)

τ,ε , ρ(0)
τ,ε) +

1

4

N∑
n=1

T2(ρ(n)
τ,ε , ρ

(n−1)
τ,ε )
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the sum of the r.h.s. then yields

N∑
n=1

τ2C + τ
(
E(ρ(n−1)

τ,ε )− E(ρ(n)
τ,ε )
)
≤ τ(T + τ)C + τ

(
E(ρ(0)

τ,ε)− E(ρ(N)
τ,ε )

)
.

plugging in (5.1.8), which implies by triangle inequality

T2(ρ(−1)
τ,ε , ρ(0)

τ,ε) ≤ Cτ

after moving 1
4T2

2(ρ
(−1)
τ,ε , ρ

(0)
τ,ε) to the r.h.s. we arrive at the claim.

Lemma 5.19 (Hölder-type estimate). Let m1,m2 ∈ N with m2 > m1. Then there is a C < ∞ not
depending on τ, ε,m1 or m2 such that

T(ρ(m2)
τ,ε , ρ(m1)

τ,ε ) ≤ (τ(m2 −m1))1/2C

holds.

Proof. We can calculate by triangle and Hölder type estimate

T(ρ(m2)
τ,ε , ρ(m1)

τ,ε ) ≤
m2∑

n=m1+1

T(ρ(n)
τ,ε , ρ

(n−1)
τ,ε )

≤

(
m2∑

n=m1+1

τ

)1/2(
1

τ

m2∑
n=m1+1

T2(ρ(n)
τ,ε , ρ

(n−1)
τ,ε )

)1/2

≤ (τ(m2 −m1))1/22
(

(T + τ)C +
(
E(ρ(0)

τ,ε)− E(ρ(N)
τ,ε )

))1/2

.

Since E is bounded from below and since E(ρ
(0)
τ,ε) is bounded from above, we can find a C <∞ such that

2
(

(T + τ)C +
(
E(ρ

(0)
τ,ε)− E(ρ

(N)
τ,ε )

))1/2

≤ C.

5.5.1 The interpolated solution

In this section we will define our approximate solution ρτ,ε to our equation (5.1.1) by means of the

sequence ρ
(n)
τ,ε and a piecewise constant in time interpolation.

The entropic regularized BDF2 scheme spawns for every pair τ, ε > 0 and initial data ρ(0), ρ(−1) ∈
Pac(Ω) with finite entropy a sequence (ρ

(n)
τ,ε )n∈[N ] in Pac(Ω), as we have seen.

Definition 5.20 (Approximate solution). Let τ, ε > 0. We will denote the joint convergence minding
(5.1.12) from now on by (τ, ε) ↘ 0. Analogously, sup(τ,ε) assumes a sequence (τk, εk) minding (5.1.12)

and takes the supremum over its elements. Let ρ
(n)
τ,ε the corresponding sequence. Then the piecewise

constant in time interpolation ρτ,ε : [0, T ]× Ω→ R is defined as

ρτ,ε(t, x) := ρ(n)
τ,ε (x); if t ∈ ((n− 1)τ, nτ ] .

5.5.2 Compactness of the interpolated solution

Anticipating the use of Theorem 2.3 we show that the assumptions of Theorem 2.3 hold. Recall Example
2.2 where F and g were defined as

F(ρ) =

{´
Ω
|ρ(x)|m + ‖∇ρ(x)‖m dx if ρ ∈W 1,m(Ω)

+∞ otherwise

and g(ρ, µ) = T2(ρ, µ).
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Lemma 5.21. Let ρτ,ε be an approximate solution as stated above. Then

1. ρτ,ε satisfies the following equiintegrablility condition

lim
h↘0

sup
(τ,ε)

ˆ T−h

0

T2
2(ρτ,ε(t+ h), ρτ,ε(t)) dt = 0

where the supremum runs over feasible (τ, ε) for our family of approximate solutions ρτ,ε.

2. ρmτ,ε ∈ L1(0, T ;BV (Ω)) and it is bounded therein uniformly w.r.t. (τ, ε), that is to say

sup
(τ,ε)

ˆ T

0

F(ρτ,ε(t)) dt <∞ .

Proof. 1. This will be a consequence of Lemma 5.19. Indeed let h > 0 and t ∈ [0, T − h]. Then we
have m1,m2 ∈ N such that m1 = b tτ c and m2 = b t+hτ c and

T2
2(ρτ,ε(t+ h), ρτ,ε(t)) = T2

2(ρ(m2)
τ,ε , ρ(m1)

τ,ε ) ≤ (τ(m2 −m1))1/2C .

With this estimate at hand, an argument analogue the the one in the proof of [18, Proposition 4.8]
shows the claim.

2. Let us rearrange our Euler-Lagrange equation (5.4.3)

ˆ
Ω

µ(n)
τ,εdiv (∇ζ) dx

=
1

τ

(¨
Ω2

2 〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y)− 1

4

¨
Ω2

2 〈x− z,∇ζ(x)〉 dγ(n−2)
τ,ε (x, z)

)
−
ˆ

Ω

ρ(n)
τ,ε

(
∇v + 2(∇w ∗ ρ(n)

τ,ε )
)
∇ζ dx

(5.5.4)

where we defined µ
(n)
τ,ε (x) := 3ε

4τ ρ
(n)
τ,ε (x) + p(ρ

(n)
τ,ε (x)).

The plan will be to show that µ
(n)
τ,ε is bounded in L1(Ω) uniformly w.r.t. τ, ε and n and then showing

a bound on
∣∣∣´Ω

µ
(n)
τ,εdiv (ξ) dx

∣∣∣ ≤ C ‖ξ‖∞ for all ξ ∈ C∞c (Ω,Rd) where C > 0 does not depend on τ, ε

nor n and showing on the other hand, that
´

Ω
µ

(n)
τ,εdiv (ζ) =

´
Ω
θζ for some θ ∈ L1(Ω). Consequently

the distributional derivative of µ
(n)
τ,ε is actually an element of L1(Ω). This way we have on the one

hand shown that µ
(n)
τ,ε ∈W 1,1(Ω) for every n and on the other hand have the estimates at hand to

show that the regularity carries over to ρτ,ε which turns out to be bounded in L1((0, T );W 1,1(Ω)),
which is actually a stronger result than our claim. This is due to us having to pass through fτ,ε

with our result to pass it from µ
(n)
τ,ε to ρτ,ε.

First we see, that since ρτ,ε is uniformly bounded in E , we have that µ
(n)
τ,ε is uniformly bounded in

L1(Ω) right away. Let us prepare the inequality we want to show next.
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First we note that

N∑
n=1

∣∣∣∣¨
Ω2

〈x− y, ξ(x)〉 dγ(n−1)
τ,ε (x, y)

∣∣∣∣ ≤ N∑
n=1

¨
Ω2

‖x− y‖2 dγ(n−1)
τ,ε (x, y) ‖ξ(x)‖L∞(Ω)

≤
N∑
n=1

√
d

(¨
Ω2

‖x− y‖22 dγ(n−1)
τ,ε (x, y)

)1/2

‖ξ(x)‖L∞(Ω)

=
√
d

N∑
n=1

τ1/2

(
1

τ

〈
c, γ(n−1)

τ,ε

〉)1/2

‖ξ(x)‖L∞(Ω)

≤
√
d

(
N∑
n=1

τ

)1/2( N∑
n=1

1

τ

〈
c, γ(n−1)

τ,ε

〉)1/2

‖ξ(x)‖L∞(Ω)

≤
√
dT 1/2C ‖ξ(x)‖L∞(Ω)

Where this constant C is derived on the one hand from T2
ε(ρ

(n)
τ,ε , ρ

(n−1)
τ,ε ) =

〈
c, γ

(n−1)
τ,ε

〉
+εH(γ

(n−1)
τ,ε )

which in combination with Proposition 5.4, (5.1.12) and (5.5.3) yields

1

τ

〈
c, γ(n−1)

τ,ε

〉
≤ τC +

1

τ
T2

2(ρ(n)
τ,ε , ρ

(n−1)
τ,ε ) ≤ τC +D

for some C,D not depending on τ, ε nor n. And in the same way we can estimate

N∑
n=1

∣∣∣∣¨
Ω2

〈x− z, ξ(x)〉 dγ(n−2)
τ,ε (x, z)

∣∣∣∣ ≤ T 1/2C ‖ξ(x)‖L∞(Ω) .

By regularity of v and w we see

ˆ
Ω

∣∣∣ρ(n)
τ,ε

(
∇v + 2(∇w ∗ ρ(n)

τ,ε )
)∣∣∣ dx ≤ ‖∇v‖L∞(Ω) + 2 ‖∇w‖L∞(Ω) <∞ .

Plugging these estimates together we arrive, with (5.5.4) at

ˆ T

0

∣∣∣∣ˆ
Ω

µ(n)
τ,εdiv (ξ(x)) dx

∣∣∣∣ dt

≤
ˆ T

0

1

τ

∣∣∣∣¨
Ω2

〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y)

∣∣∣∣+
1

4τ

∣∣∣∣¨
Ω2

〈x− z,∇ζ(x)〉 dγ(n−2)
τ,ε (x, z)

∣∣∣∣
+

∣∣∣∣ˆ
Ω

ρ(n)
τ,ε

(
∇v + 2(∇w ∗ ρ(n)

τ,ε )
)
∇ζ dx

∣∣∣∣ dt

=

N∑
n=1

∣∣∣∣¨
Ω2

〈x− y, ξ(x)〉 dγ(n−1)
τ,ε (x, y)

∣∣∣∣+
1

4

N∑
n=1

∣∣∣∣¨
Ω2

〈x− z, ξ(x)〉 dγ(n−2)
τ,ε (x, z)

∣∣∣∣
+

N∑
n=1

τ

ˆ
Ω

∣∣∣ρ(n)
τ,ε

(
∇v + 2(∇w ∗ ρ(n)

τ,ε )
)∣∣∣ dx

≤
(

2T 1/2C + T (‖∇v‖L∞(Ω) + 2 ‖∇w‖L∞(Ω))
)
‖ξ(x)‖L∞(Ω) .
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Now to show that
´

Ω
µ

(n)
τ,εdiv (ξ) is actually just a L1(Ω)-function integrated against ξ, we rewrite

by use of the disintegration theorem as well as the fact that γ
(n−1)
τ,ε and ρ are a.c. w.r.t. Lebesgue

¨
Ω

〈x− y, ξ(x)〉 dγ(n−1)
τ,ε (x, y) =

ˆ
Ω

〈ˆ
Ω

(x− y) d(γ(n−1)
τ,ε )x(y), ξ(x)

〉
ρ(x) dx .

so this expression is ξ integrated against x 7→
´

Ω
(x−y) d(γ

(n−1)
τ,ε )x(y)ρ(x). To see that this is indeed

a L1(Ω) function, we calculate

ˆ
Ω

∥∥∥∥ˆ
Ω

(x− y) d(γ(n−1)
τ,ε )x(y)ρ(x)

∥∥∥∥
2

dx ≤
¨

Ω2

‖x− y‖2 dγ(n−1)
τ,ε (x, y)

≤
(¨

Ω2

‖x− y‖22 dγ(n−1)
τ,ε (x, y)

)1/2

≤ C

as we have seen above. So
˜

Ω
〈x− y, ξ(x)〉 dγ

(n−1)
τ,ε (x, y) is can be seen as ξ integrated against

a L1(Ω)-function. The same holds for
˜

Ω
〈x− z, ξ(x)〉 dγ

(n−2)
τ,ε (x, z). Finally, since v and w are

C2, the same holds for
´

Ω
ρ

(n)
τ,ε

(
∇v + 2(∇w ∗ ρ(n)

τ,ε )
)
ξ dx, which shows by (5.5.4) our claim that´

Ω
µ

(n)
τ,εdiv (ξ) is actually ξ integrated against a L1(Ω) function implying that µ

(n)
τ,ε ∈ W 1,1(Ω) for

all τ, ε and n. Note however, that we have not shown that this is a uniformly bounded sequence in
W 1,1(Ω), since there is still the factor 1

τ in front of the kinetic terms.

Next we want to show that these results hold for ρmτ,ε, too. To that end, consider the map fτ,ε(s) :=
3ε
4τ s+ p(s). Note that fτ,ε(ρ

(n)
τ,ε ) = µ

(n)
τ,ε and furthermore, p(s) = sm for any m ∈ [1,∞).

This shows that ρ
(n)
τ,ε ∈ Lm(Ω) is uniformly bounded therein and consequently ρmτ,ε ∈ L1((0, T )×Ω).

Additionally we see that fτ,ε is a smooth diffeomorphism on [0,∞) and furthermore its inverse is
Lipschitz with constant L = 4τ

3ε and has the derivative

f ′τ,ε(s) =
1

3ε
4τ +m(f−1

τ,ε (s))m−1
.

Now we arrive at

∣∣∣∇ρ(n)
τ,ε (x)

∣∣∣ =
∣∣∣(f−1
τ,ε )′(µ(n)

τ,ε (x))∇µ(n)
τ,ε (x)

∣∣∣ ≤
∣∣∣∇µ(n)

τ,ε (x)
∣∣∣

m(ρ
(n)
τ,ε (x))m−1

which rearranges by means of m(ρ
(n)
τ,ε )m−1∇ρ(n)

τ,ε = ∇((ρ
(n)
τ,ε )m) to∣∣∣∇(ρ(n)

τ,ε (x)m)
∣∣∣ ≤ 1

m

∣∣∣∇µ(n)
τ,ε (x)

∣∣∣ .
Consequently,

ˆ T

0

ˆ
Ω

∣∣∇(ρmτ,ε(t, x))
∣∣ dx dt ≤ τ

N∑
n=1

ˆ
Ω

∣∣∣∇(ρ(n)
τ,ε (x))m

∣∣∣ dx ≤ 1

m
τ

N∑
n=1

∥∥∥∇µ(n)
τ,ε

∥∥∥
L1(Ω)

≤ 1

m
TC̃

where C̃ = 2T 1/2C + T (‖∇v‖L∞(Ω) + 2 ‖∇w‖L∞(Ω)). In combination we have achieved

ρτ,ε ∈ L1(0, T ;W 1,m(Ω)) .
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5.6 Convergence to the PDE

5.6.1 Convergence

In Lemma 5.21 we have shown some of the prerequisites of Theorem 2.3. We want to make the use of
this theorem now rigorous. Let us define F : P(Ω)→ [0,∞], g as in Example 2.2, that is to say

F(ρ) =

{´
Ω
‖ρ‖BV (Ω) if ρm ∈ BV (Ω) and ρ ∈Pac(Ω)

+∞ otherwise

and g(ρ, µ) = T2(ρ, µ). Then by Example 2.2, F is a normal, coercive integrand and g is a pseudo-
distance, both in the sense of Definition 2.1. Furthermore by Lemma 5.21 the remaining prerequisites of
Theorem 2.3 are met, so we can conclude the following proposition.

Proposition 5.22. Let ρτ,ε be a sequence of approximate solutions as defined above for feasible inital
data and ε, τ such that (5.1.12) is satisfied. Then, up to a subsequence, ρτ,ε converges to some ρ∗ w.r.t.
strong Lm((0, T )× Ω) topology.

Proof. As already explained, all prerequisites of Theorem 2.3 are met and consequently, ρτ,ε is compact
w.r.t. M(0, T ;Lm(Ω)) and uniformly bounded in Lm((0, T ) × Ω). By dominated convergence theorem,
this yields our claim.

5.6.2 The limit is a solution to the PDE

From here on we denote without relabelling with ρτ,ε the converging subsequence.

The first form of our Euler-Lagrange equation will now be the key to show that this converging
subsequence actually converges to a solution of our PDE.

Let us restate the Euler-Lagrange equation (5.4.3) but with some modifications. First we receive for
the kinetic integrals

¨
Ω2

〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y) =

¨
Ω2

(ζ(x)− ζ(y)) dγ(n−1)
τ,ε (x, y) + I1

=

ˆ
Ω

(ρ(n)
τ,ε (x)− ρ(n−1)

τ,ε (x))ζ(x) dx+ I1

where

I1 =

¨
Ω2

1

2
∇2ζ(λx,y)(x− y)2 dγ(n−1)

τ,ε (x, y)

with λx,y a feasible point on the line segment from x to y.

Analogously we receive

¨
Ω2

〈x− z,∇ζ(x)〉 dγ(n−2)
τ,ε (x, z) =

ˆ
Ω

(ρ(n)
τ,ε (x)− ρ(n−2)

τ,ε (x))ζ(x) dx+ I2

with

I2 =

¨
Ω2

1

2
∇2ζ(λx,z)(x− z)2 dγ(n−2)

τ,ε (x, z) .
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Now plugging these two results together we arrive, for the kinetic term, at

1

τ

(¨
Ω2

〈x− y,∇ζ(x)〉 dγ(n−1)
τ,ε (x, y)− 1

4

¨
Ω2

〈x− z,∇ζ(x)〉 dγ(n−2)
τ,ε (x, z)

)
=

1

τ

(ˆ
Ω

(ρ(n)
τ,ε (x)− ρ(n−1)

τ,ε (x))ζ(x) dx− 1

4

ˆ
Ω

(ρ(n)
τ,ε (x)− ρ(n−2)

τ,ε (x))ζ(x) dx+ I1 −
1

4
I2

)
=

ˆ
Ω

(
3

4

ρ
(n)
τ,ε − ρ(n−1)

τ,ε

τ
− 1

4

ρ
(n−1)
τ,ε − ρ(n−2)

τ,ε

τ

)
ζ dx+

1

τ
I1 −

1

4τ
I2 .

Furthermore we want to modify the integral incorporating u. We rewrite

ˆ
Ω

p(ρ(n)
τ,ε )div (∇ζ) dx = −

ˆ
Ω

ρ(n)
τ,ε (x)∇u′(ρ(n)

τ,ε )∇ζ(x) dx . (5.6.1)

The modified Euler-Lagrange equation then reads as follows. For every ζ ∈ C∞c (Ω) we have

0 =

ˆ
Ω

(
3

4

ρ
(n)
τ,ε (x)− ρ(n−1)

τ,ε (x)

τ
− 1

4

ρ
(n−1)
τ,ε (x)− ρ(n−2)

τ,ε (x)

τ

)
ζ(x) dx

−
ˆ

Ω

ρ(n)
τ,ε (x)

(
∇[u′(ρ(n)

τ,ε ) + v + 2(w ∗ ρ(n)
τ,ε )]

)
∇ζ(x) dx

+
1

τ
I1 −

1

4τ
I2 − J

holds, where

J :=
3ε

4τ

ˆ
Ω

ρ(n)
τ,εdiv (∇ζ) dx =

3ε

4τ

ˆ
Ω

ρ(n)
τ,ε∆ζ dx .

Our aim is to show that the Euler-Lagrange equation converges pointwise in the space of test functions
ζ and ξ, which will suffice to conclude that the limit of the Euler-Lagrange equation holds for the limit
curve ρ∗, showing part 3 of Theorem 4 .

We will now give estimates on the three integral expressions I1, I2 and J first, which show that they
will vanish in the limit (τ, ε)↘ 0.

First we can bound |J |, since ζ ∈ C∞c (Ω) with Ω bounded, so

|J | ≤ 3ε

4τ
‖∆ζ‖L∞(Ω) .

Concerning I1 we can estimate with ζ ∈ C∞(Ω) and our a priori estimate

|I1| ≤
∥∥∇2ζ

∥∥
L∞(Ω)

¨
Ω2

‖x− y‖2 dγ(n−1)
τ,ε (x, y)

=
∥∥∇2ζ

∥∥
L∞(Ω)

T2
ε(ρ

(n)
τ,ε , ρ

(n−1)
τ,ε )

≤
∥∥∇2ζ

∥∥
L∞(Ω)

(
T2

2(ρ(n)
τ,ε , ρ

(n−1)
τ,ε ) + εC + ε |log ε|C

)
≤
∥∥∇2ζ

∥∥
L∞(Ω)

(
T2

2(ρ(n)
τ,ε , ρ

(n−1)
τ,ε ) + τ2C

)
where the last inequality is derived from (5.1.12). We receive a similar estimate for |I2| as well.



5.6. CONVERGENCE TO THE PDE 103

Now let us include the temporal aspect as well. Let ξ ∈ C∞c ((0, T )) and let τ be small enough such
that supp(ξ) ⊂ (2τ,N − 2τ). Then we receive from our Euler-Lagrange equation

ˆ T

0

ˆ
Ω

(
3

4

ρτ,ε(t, x)− ρτ,ε(t− τx)

τ
− 1

2

ρτ,ε(t− τ, x)− ρτ,ε(t− 2τx)

τ

)
ξ(t)ζ(x) dx

+

ˆ T

0

ˆ
Ω

ρτ,ε(t, x) (∇[u′(ρτ,ε(t, x)) + v + 2(w ∗ ρτ,ε)(t, x)])∇ζ(x)ξ(t) dxdt

=

N∑
n=1

τξ
n
(

1

τ
I1 −

1

4τ
I2 − J

)

where ξ
n

=
´ nτ

(n−1)τ
ξ(t) dt.

First off,

τ

N∑
n=1

ξ
n
(

1

τ
I1 −

1

4τ
I2 − J

)

≤ ‖ξ‖L∞([0,T ])

(
N−2∑
n=2

[
T2(ρ(n)

τ,ε , ρ
(n−1)
τ,ε ) + τ2C

]
− 1

4

N−2∑
n=2

[
T2(ρ(n−1)

τ,ε , ρ(n−2)
τ,ε ) + τ2C

]
+
N−2∑
n=2

3ε

4
‖∆ζ‖L∞(Ω)

)

where we can see that each sum in the large brackets goes to zero with order τ for τ ↘ 0.

We take a look at the l.h.s. of the equation. We can rearrange, using that supp ξ ⊂ (2τ, T − 2τ), to
arrive at

ˆ T

0

ˆ
Ω

(
3

4

ρτ,ε(t, x)− ρτ,ε(t− τx)

τ
− 1

2

ρτ,ε(t− τ, x)− ρτ,ε(t− 2τx)

τ

)
ξ(t)ζ(x) dx

=

ˆ T−2τ

2τ

ˆ
Ω

ρτ,ε(t, x)

[
3

4

ξ(t)− ξ(t+ τ)

τ
− 1

4

ξ(t+ τ)− ξ(t+ 2τ)

τ

]
ζ(x) dx dt

Minding that ρτ converges strongly in Lm((0, T ) × Ω) for (τ, ε) ↘ 0 and recalling that the brackets
converge uniformly in τ to ∂tξ we see that

lim
(τ,ε)↘(0,0)

ˆ T

0

ˆ
Ω

(
3

4

ρτ (t, x)− ρτ (t− τx)

τ
− 1

2

ρτ (t− τ, x)− ρτ (t− 2τx)

τ

)
ξ(t)ζ(x) dx

=

ˆ T

0

ˆ
Ω

ρ∗(t, x)∂tξ(t)ζ(x) dxdt

holds for every ξ ∈ C∞c ((0, T )) and ζ ∈ C∞c (Ω).

Finally, let’s consider the integral corresponding to the free energy, i.e. the integral on the r.h.s. . We
recall that ρmτ,ε converges strongly in L1((0, T )× Ω) to ρm∗ and receive, after switching back the integral
incorporating u′ to its representation in terms of p(ρτ,ε) with (5.6.1),

lim
(τ,ε)↘(0,0)

ˆ T

0

ξ(t)

ˆ
Ω

p(ρτ,ε(t, x))div (∇ζ(x))− ρτ,ε(t, x) 〈∇v(x) + (∇w ∗ ρτ,ε)(t, x),∇ζ(x)〉 dxdt

=

ˆ T

0

ξ(t)

ˆ
Ω

p(ρ∗(t, x))div (∇ζ(x))− ρ∗(t, x) 〈∇v(x) + (∇w ∗ ρτ,ε)(t, x),∇ζ(x)〉 dx dt .
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Plugging these results together, we see that for every ξ ∈ C∞c ((0, T )) and ζ ∈ C∞c (Ω) the limit ρ∗
satisfies

−
ˆ T

0

ˆ
Ω

ρ∗(t, x)∂tξ(t)ζ(x) dx dt

=

ˆ T

0

ˆ
Ω

p(ρ∗(t, x))∆ζ(x)− ρ∗(t, x) 〈∇v(x) + (∇w ∗ ρτ,ε)(t, x),∇ζ(x)〉 ξ(t) dxdt

which is the weak formulation of our PDE on (0, T )× Ω.
As already mentioned, this shows part 3. of Theorem 4 .

5.6.3 The initial data are assumed continuously

Finally we will show that the initial value is assumed continuously, which will be a consequence of the
Hölder type estimate Lemma 5.19. Indeed for ρτ,ε at two distinct points in time t1, t2 ∈ [0, T ] we have
the estimate

T2(ρτ,ε(t1), ρτ,ε(t2)) ≤ (|t1 − t2|+ τ)1/2C

a direct consequence of said lemma. [2, Prop. 7.1.5.] in combination with the Lm((0, T )×Ω) convergence
of ρτ,ε and the continuity of T2 w.r.t. to the weaker narrow convergence implies the estimate

T2(ρ∗(t1), ρ∗(t2)) = lim
τ,ε↘0

T2(ρτ,ε(t1), ρτ,ε(t2)) ≤ lim
τ,ε↘0

(|t1 − t2|+ τ)1/2C = |t1 − t2|1/2 C

showing that the limit curve ρ∗ is 1/2-Hölder-continuous, and since this estimate holds for t1 = 0, too,

and ρτ,ε(0) = ρ
(0)
τ,ε converges w.r.t. T to the initial value ρ0, we arrive at the result, that the initial value

ρ0 is assumed continuously by the curve ρ∗ w.r.t. T-distance in the space Lm(Ω).
Finally this shows part 4. of Theorem 4 and concludes this chapter.
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[6] Adrien Blanchet, Vincent Calvez, and José A. Carrillo. “Convergence of the mass-transport steepest
descent scheme for the subcritical Patlak-Keller-Segel model”. In: SIAM J. Numer. Anal. 46.2
(2008), pp. 691–721. issn: 0036-1429. doi: 10.1137/070683337. url: https://doi.org/10.1137/
070683337.

[7] Yann Brenier. “Extended Monge-Kantorovich theory”. In: Optimal transportation and applications.
Springer, 2003, pp. 91–121.

[8] Guillaume Carlier et al. “Convergence of entropic schemes for optimal transport and gradient flows”.
In: SIAM Journal on Mathematical Analysis 49.2 (2017), pp. 1385–1418.

[9] J. A. Carrillo, V. Caselles, and S. Moll. “On the relativistic heat equation in one space dimension”.
In: Proc. Lond. Math. Soc. (3) 107.6 (2013), pp. 1395–1423. issn: 0024-6115. url: https://doi.
org/10.1112/plms/pdt015.

[10] J. A. Carrillo and J. S. Moll. “Numerical simulation of diffusive and aggregation phenomena in non-
linear continuity equations by evolving diffeomorphisms”. In: SIAM J. Sci. Comput. 31.6 (2009/10),
pp. 4305–4329. issn: 1064-8275. url: https://doi.org/10.1137/080739574.
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