
Department of Civil, Geo and Environmental Engineering

Chair of Computational Modeling and Simulation

Prof. Dr.-Ing. André Borrmann

An approach to enrich and validate IFC

models by translating given data into stan-

dardised information requirements

Kilian Speiser

Master’s thesis

of the Master of Science program Civil Engineering

Author: Kilian Speiser

Student umber: 03650363

Supervisor: Prof. Dr.-Ing. André Borrmann

Alex Braun

Date of issue: October 1, 2019

Date of submission: April 1, 2020

kilia
Hervorheben

Abstract

BIM models comprise extensive data that the project team can use to automatise BIM Uses

based on algorithms. However, such an algorithm queries and analyses information regarding

their labelling. As various stakeholders may label the same information differently, project

participants need to update their algorithms for every data exchange manually. These ad-

justments especially result in a high workload when applying multiple BIM Uses on one BIM

model. The thesis presents a novel approach to enrich BIM models, in the form of IFC, by

translating provided information into internally standardised information requirements that

base on Exchange Information Requirements (EIR), but extend them by another dimension:

the labelling requirements. The author proposes the model of Internal Model Information

Requirements (IMIR) to store and maintain both dimensions. Additionally, it introduces hi-

erarchically structured information requirements. The hierarchy is essential as different data

triggers different requirements. For example, the material Concrete requires different infor-

mation than the material Timber. The IMIR-model eventually allows for mvdXML export.

Afterwards, the IMIR-model functions to assign data from an IFC model to data from the

IMIR itself. The Enrich-IFC-model stores these assigned pairs and derives an enriched IFC

model containing both, the original information and the internally standardised information.

Moreover, the Enrich-IFC-model allows for model validation and export of model-related

errors for collaboration in the form of BCF files. The author converts the approach into a

prototype that provides core functionalities of the Enrich-IFC-model, including a graphical

user interface. The thesis compares the innovative approach with a conventional approach

applying them to the BIM Use Cost Estimation to prove the value. The Enrich-IFC approach

does not yet decrease the workload. However, developing the usability of the prototype and

applying it to multiple BIM Uses is expected to minimise manual work intensively. Compared

to the conventional approach, the main benefits of the Enrich-IFC-approach are: (1) coher-

ent and flexible structure of information requirements, (2) comprehensible model validation

supporting BCF communication and (3) the expert only needs to work with one application

instead of multiple.

Zusammenfassung

BIM-Modelle beinhalten umfangreiche Daten, mit denen das Projektteam BIM Anwen-

dungsfälle basierend auf Algorithmen automatisieren kann. Ein solcher Algorithmus fragt

jedoch Informationen bezüglich ihrer Bezeichnung ab und analysiert diese. Da aber ver-

schiedene Stakeholder dieselbe Information unterschiedlich bezeichnen könnten, müssen Pro-

jektteilnehmer ihre Algorithmen für jeden Datanaustausch manuell aktualisieren. Diese

Anpassungen resultieren in einem hohen Arbeitsaufwand, vor allem, wenn ein BIM Model

mehrere BIM Anwendungsfälle abdecken soll. Die vorliegende Masterarbeit präsentiert einen

neuartigen Ansatz zur Anreicherung von BIM Modellen (in Form von IFC), indem vorhandene

Informationen in intern standardisierte Informationsanforderungen übersetzt werden. Diese

Anforderungen erweitern Exchange Information Requirements (EIR) um eine zusätzliche

Dimension: die Beizeichnungsanforderungen. Dazu führt der Autor das Modell der In-

ternal Model Information Requirements (IMIR) ein, welches beide Dimensionen speichert

und pflegt und zusätzlich Informationsanforderungen hierarchisch strukturiert. Diese Hier-

archie ist essentiell, da verschiedene Daten unterschiedliche Anforderungen implementieren.

So erfordert beispielsweise das Material Beton andere Eigenschaften als das Material Holz.

Abschließend ermöglicht das IMIR-Modell den Export von mvdXML. Danach fungiert das

IMIR-Modell als Grundlage, Informationen aus einem IFC-Modell mit Daten aus dem IMIR-

Modell zu verknüpfen. Das Enrich-IFC-Modell speichert die zugewiesenen Paare und er-

stellt daraus ein angereichertes IFC-Modell, das beide Anteile beinhaltet: Die Informationen

aus dem ursprünglichen IFC-Modell sowie die Informationen aus den internen, standard-

isierten Anforderungen. Zusätzlich ermöglicht das Enrich-IFC-Modell das Validieren von

BIM Modellen und den Export von modellbezogenen Fehlern als BCF-Dateien. Der Autor

erstellt aus dem Enrich-IFC-Ansatz einen Prototypen, der die Kernfunktionen des Enrich-

IFC-Modells einschließlich einer grafischen Benutzeroberfläche bereitstellt. Diese Arbeit ver-

gleicht den innovativen Enrich-IFC-Ansatz mit einem konventionellen Ansatz anschließend

am Beispiel des BIM Anwendungsfalls Kostenabschätzung, um den Nutzen nachzuweisen.

Dabei verringert der Enrich-IFC-Ansatz noch nicht den Arbeitsaufwand. Eine deutliche

Minimierung der manuellen Arbeit erwartet der Autor durch die Weiterentwicklung der Be-

nutzerfreundlichkeit des Prototypen sowie durch den Einsatz des selben Modells für mehrerer

BIM Anwendungsfälle. Verglichen mit dem konventionellen Ansatz, punktet der vorgeschla-

genen Enrich-IFC-Ansatz mit folgenden Vorteilen: (1) Schlüssige und flexible Struktur der

Informationsanforderungen, (2) verständliche Modell Validierung, die Kommunikation über

BCF ermöglicht und (3) manuelle Arbeit ist nur in einer Anwendung, anstelle von mehreren,

erfordert.

Preface

The vision of implementing such a license-free software tool grew during my work in the

department of innovation and digitalisation at Geiger. The topic enhanced within the past

year. What for me personally firstly appeared like a problem of information translation,

become more and more a problem of model validation.

This thesis forms the last part of my studies. Both my studies and this work has involved

multiple persons and institutions. For that reason, I want to specially thank

- Christopher Klimesch for supporting me with ideas, hints and critics. It has always

been a pleasure to work with him.

- my supervisors at the Technical University of Munich, Prof. André Borrmann and Alex

Braun. Both have significantly formed my profile with their knowledge and support

throughout my studies, especially while working on this work.

- the Technical University of Munich for providing such an exclusive and comprehensive

range of studies.

- the Technical University of Denmark, where I spent one year of exchange and started

working on this thesis.

- and lastly, my parents and sisters for supporting me throughout my studies.

Kilian Speiser

Sulzberg, 31st of March 2020

V

Contents

1 Introduction 1

1.1 Data Exchange in AEC Industry . 1

1.2 Motivation . 2

1.3 Objectives and Structure . 5

2 Background Information 6

2.1 Industry Foundation Class . 6

2.1.1 The History of IFC . 6

2.1.2 Data Structure . 7

2.2 Level of Development . 9

2.3 Information Management in BIM Projects . 10

2.3.1 Project Perspectives . 10

2.3.2 Information Requirements According to ISO 19650-1 12

2.3.3 The Information Delivery According to ISO 19650 16

2.4 Technical Implementation of EIR . 17

2.4.1 Model View Definitions and Exchange Requirements 17

2.4.2 Purpose and Origin of mvdXML . 18

2.4.3 MvdXML Schema . 19

2.4.4 MvdXML to Validate IFC Documents 22

2.5 Issue Communication in BIM projects . 25

2.5.1 Motivation . 25

2.5.2 Distinction in Markup and Visualisation 25

2.6 Classify and Structure Deliverables . 27

2.6.1 Work Breakdown Structure . 27

2.6.2 Usage in AEC industry . 28

2.7 Summary . 29

3 Current Situation 30

3.1 Ifc Validation Based on MvdXML . 30

3.1.1 Identify EIR . 31

3.1.2 Derive the MvdXml Document . 31

3.1.3 Validation Using XBim Xplorer . 34

3.1.4 Conclusion . 34

3.2 Information Requirements with BimQ . 36

3.2.1 Functionalities . 36

3.2.2 Example . 37

3.2.3 Conclusion . 38

3.3 Summary . 38

4 Enrich-IFC-Approach 40

4.1 Initial State . 40

4.2 Exchange Requirements and Their Structure 42

4.2.1 Overview . 43

4.2.2 Requirements on the Structure of the EIR 44

4.2.3 Convert into MVD . 47

4.2.4 Summary . 47

4.3 Enrich-IFC-Model . 48

4.3.1 Prepare . 49

4.3.2 Entity-Relationships . 50

4.3.3 Add Information to the Model . 52

4.3.4 Validate the Information . 54

4.3.5 Review Errors . 57

4.3.6 Finalise . 58

4.4 Summary . 59

5 Data Model Design 60

5.1 Overview . 61

5.2 Internal Model Information Requirements . 61

5.2.1 Requirements on the Data Model . 61

5.2.2 IMIR Design . 62

5.2.3 Store and Export Data Model . 62

5.2.4 Instance of the IMIR-Data-Model . 65

5.3 Enrich-IFC-Model . 66

5.3.1 Enrich-IFC-Model Design . 67

5.3.2 Instance of a Data Model . 69

5.3.3 Agile Principles . 71

6 Prototype 72

6.1 Ideal System . 72

6.2 Implemented Features . 73

6.2.1 Menu . 74

6.2.2 Information Trees . 75

6.2.3 Assigned Pairs . 75

6.2.4 Validate . 76

6.3 Prototype in Use . 76

6.4 Summary . 80

7 Case-study: Quantity-Takeoff 82

7.1 Using iTWO for QTO . 82

7.2 Enrich-IFC-Approach . 84

7.2.1 Overview . 84

7.2.2 Determine Information Requirements 86

7.2.3 Create Deliverables Library in iTWO 86

7.2.4 Adapt External Model to IMIR . 88

7.2.5 Validate the Model . 89

7.2.6 Execute Quantity-takeoff (QTO) Using iTWO 89

7.3 Conclusion . 90

8 Conclusion and Future Development 92

8.1 Conclusion . 92

8.2 Vision . 93

A MvdXML for Validation 96

B Data Model Design 100

B.1 IMIR UML Diagram . 100

B.2 How to Create an IMIR Model . 101

B.3 Enrich-IFC: UML Diagram . 104

C Case-Study: Floor Plans 105

D Digital Content 107

VIII

List of Figures

1.1 Information exchange during the whole life time of a built asset. 2

1.2 Conventional approach: For every BIM Use, the acting party must adapt

downstream processes. 4

1.3 Enrich -IFC-approach. 4

1.4 The Enrich-IFC-approach. 5

2.1 The four layers of the IFC schema. 8

2.2 This excerpt from the IFC data schema shows the highest levels of the schema. 9

2.3 Levels of Development: the example shows a steel beam connecting to a column. 10

2.4 Information requirements in BIM projects. 11

2.5 Information requirements throughout the asset’s lifecycle. 12

2.6 BEP, TIDP, and MIDP in BIM Projects. 14

2.7 The asset delivery process divides into eight subprocesses. 16

2.8 mvdXML describes a subset of the IFC schema technically. 18

2.9 Schema of the mvdXML. 20

2.10 WBS subdivides the tasks in the smallest possible deliverable. 28

3.1 How to use mvdXML for model validation in a BIM project. 31

3.2 Model validation . 34

3.3 Two walls defining different properties. 35

3.4 Requirements view in BimQ . 37

3.5 Model validation using xBim Xplorer . 38

4.1 Principle of the federated model approach . 41

4.2 The concept of IMIR. 43

4.3 The figure (left) shows the structure of the data model based on references.

Deriving a tree from that creates the WBS codes (right). 46

4.4 Overall Enrich-IFC-approach . 48

4.5 The first step of the approach: Preparation. 49

4.6 Process to assign values from the information requirements model to the IFC

model. 50

4.7 Input and output for model validation. 54

4.8 Process to handle errors in the Enrich-IFC-approach. 57

4.9 Complete the Enrich-IFC-approach. 58

5.1 The roles of the two data models within the Enrich-IFC-approach. 60

5.2 Simplified ML diagram of the IMIR model . 63

5.3 Instance of the IMIR data model. 65

5.4 IMIR-model as tree, including WBS codes. 66

5.5 Reduced UML diagram of the Enrich-IFC-model design 68

5.6 Instance of the Enrich-IFC- model. 69

6.1 Overview of the ideal system design. 73

6.2 Main view of the GUI. 74

6.3 Component 1 from figure 6.2. 74

6.4 Assigned Value Tuples View of the prototype. 75

6.5 3D view of the model. 77

6.6 Tree view of the GUI after reading the data from the IFC model and the MVD. 77

6.7 Assigned Value Tuples view after assigning eight pairs. 78

6.8 Model quality of the enriched IFC model. 78

6.9 WA:06 before (left) and after (right) the enrichment. 79

7.1 3D View of the sample projects. Left: Project A. Right: Project B. 85

7.2 Information requirements for the model. 87

7.3 Define deliverables in iTWO. 87

7.4 Properties of the slab before (left) and after (right) applying the Enrich-IFC-

approach. 88

7.5 Validation: the xBim Xplorer highlights the passed (green) and failed (red)

concepts. 89

7.6 Comparison of the workload for the different tasks of both approaches. 91

C.1 Ground floor. 105

C.2 First floor. 106

X

List of Listings

2.1 Excerpt from a simple file introducing the syntax and structure of XML. . . . 19

2.2 mvdXML: ConceptRoot . 23

2.3 Concept checking properties of objects of the IFC schema 24

2.4 ConceptTemplate tag in a mvdXML document to retrieve property values. . . 24

2.5 BCF: Markup file. 26

2.6 BCF: Visualization Information. 26

3.1 Strict applicability in mvdXML. 32

3.2 Strict heirarchy in mvdXML. 33

5.1 XML file comprising an IMIR model. 64

5.2 BCF export from the Enrich-IFC-model. 70

5.3 Assigned pair in XML generated from the Enrich-IFC-model. 70

6.1 Markuf file of a BCF export. 80

6.2 XML file comprising assigned value tuples. 80

A.1 Strict applicability: the Applicability specifies the subset of the IFC schema,

and the TemplateRules test define tests that apply on the subset. 96

A.2 Strict hierarchy: one concept comprises all rules. The TemplateRules apply to

all elements specified in the applicableRootEntity attribute. 98

B.1 The following listing creates a IMIR data model and saves it as an XML file.

Moreover, it derives a mvdXML file from it. 103

XI

List of Tables

3.1 All external walls must define the properties in the table to the left. If the

component’s ’Material’ equals ’Concrete’ it must also implement the properties

in the table to the right. 31

3.2 Comparison of both options regarding structure, complexity, readability, and

usage. 35

4.1 Exchange information requirements for a beam. 42

4.2 The left table lists the properties of the IFC element and the right table rep-

resents the required information from the MVD. 51

4.3 The model comprises four relationships: Three value to value relationships and

one property to property relationship. Each relationship implies that the IFC

Information matches the Required Information 52

4.4 Final properties of the beam after adding the required information according

to existing information. 53

4.5 Requirements for the data models to convert the process technically. 59

6.1 Summary of the functionalities of the prototype. The numbers refer to the

requirements mentioned in section 6.1. 81

7.1 Excerpt of the deliverables library for the components ’Room’ (left) and

’Ground Plate’ (right). 83

7.2 Time consumption of executed tasks within using the two approaches. 90

XII

Glossary

AEC Architecture, Engineering and Construction

AIM Asset Information Model

AIR Asset Information Requirements

BCF BIM Collaboration Format

BEP BIM Project Execution Plan

BIM Building Information Modelling

bsDD buildingSMART Data Dictionary

CDE Common Data Environment

ER Exchange Requirements

EIR Exchange Information Requirements

GUI Graphical User Interface

GUID Globally Unique Identifier

HVAC Heating, ventilation, and air conditioning

IFC Industry Foundation Class

IMIR Internal Model Information Requirements

ISO Internation Organization for Standardization

IAI International Alliance for Interoperability

LOD Level of Development

LOG Level of Geometry

LOI Level of Information

LOR Level of Reliability

MIDP Master Information Delivery Plan

MVD Model View Definition

OIR Organisational Information Requirements

PIM Project Information Model

PIR Project Information Requirements

QTO Quantity-takeoff

TIDP Task Information Delivery Plan

UML Unified Modeling Language

WBS Work Breakdown Structure

XML Extensible Markup Language

1

Chapter 1

Introduction

What does the above image show? One might see reinforcement, one might see armoring,

and a third person might see armouring, rebar or rebars. Hence, humans use different words

to express the same information. Human intelligence can interpret these words and conclude

that they refer to the same object. Algorithms, however, compare characters and digits and

cannot detect that all words mean the same. Thus, the computer system cannot search,

filter, and analyse the information. But, this is essential to implement Building Information

Modelling (BIM) in construction projects.

1.1 Data Exchange in AEC Industry

Digitalisation has changed industries over the last two decades. This has increased produc-

tivity and product quality tremendously. Architecture, Engineering and Construction (AEC)

industry, however, has dragged behind other sectors. To catch up, AEC adopts digital tools

more frequently to design, construct, operate, and modify built facilities. Those tools process

data which is saved in a Building Information Model. (Borrmann et al., 2018)

1.2. Motivation 2

Figure 1.1: Information exchange during the whole life time of a built asset. (Speiser (2019), based
on Borrmann et al. (2018))

Borrmann et al. (2018) define BIM as a process of creating, maintaining, using, and exchang-

ing in such a model during the lifetime of an asset. Its lifetime divides into five phases.

Figure 1.1 illustrates the stages of BIM and introduces BIM Uses for each stage. A BIM Use

represents the “method of applying BIM during a facility’s lifecycle to achieve one or more

specific objectives“ (CIC, 2011). Especially for projects with multiple BIM Uses, the primary

benefit of BIM becomes operative: using data and information throughout project phases re-

duces the error-prone and time-consuming re-entering of data to the lowest (Borrmann et al.,

2015b).

One of these BIM Uses is Cost Estimation. It aims at estimating exact quantities and costs

(CIC, 2019). Here, an algorithm selects elements from the BIM model, determines quantities,

and derives costs. The algorithm requires information to select the correct elements. However,

if different stakeholders use different words for the same information, how will the algorithm

derive the costs? Hence, the stakeholder must edit the information. But, how does this

decrease the error-prone re-entering of data?

1.2 Motivation

At the beginning of a BIM project, the project delivery team has agreed on a BIM Project Ex-

ecution Plan (BEP). This plan defines all information requirements for every data exchange

1.2. Motivation 3

in Exchange Information Requirements (EIR). Hence, every project participant knows when

to provide what information (ISO 19650-1, 2017).

For meaningful automation of processes, current EIR lack two concepts. For example, Die

Deutsche Bauindustrie (2018) publishes EIR that require a wall to implement the property

’Reinforcement Ratio’. However, a timber wall cannot define this requirement as it does

not comprise reinforcement. Thus, the current EIR lack a hierarchical structure that allows

defining dynamic information requirements depending on other information. The previous

example illustrates that. While the material concrete may require to specify information

about the reinforcement ratio, the material timber may need to define the tensile strength.

The second issue of current EIR is that they indeed rule what information the receiver of

information (appointing party) can expect, but not rule how the provider of information

(appointed party) labels the data. For example, an automated Cost Estimation only works

sensibly if the filters search for keywords that they know. The following example explains

this problem.

A client receives a BIM model from an architect. This model implements the information

requirements from the BEP. To execute the Cost Estimation, the client needs to determine

whether the BIM model complies with the requirements from the BEP or not. This process

is called ’Validation’. For automatised model validation, the algorithm needs to know where

to search for what kind of information. For example, the BEP defines that a component

of type ’Wall’ must define the attribute ’LoadBearing’. However, the architect names this

information ’Structural Usage’. Hence, the client has to adapt the algorithm according to the

labelling standard of the architect. While this may look easy on this scale, it becomes intense

in a real project defining thousands of building components. Nevertheless, after adapting

the algorithm, the client can validate the model. If the model complies with the information

requirements, the client can continue with the Cost Estimation.

The following filter determines the volume of all exterior concrete walls:

Select(ComponentType == ’WALL’(Where(

IsExternal == ’TRUE’ AND

Material == ’CONCRETE’ AND

Level == ’EG’)))

This filter assumes that all concrete elements in the model define the material property with

the value ’CONCRETE’. In a different project, the client receives a model defining the same

material as ’reinforced concrete’. Hence, the client has to adapt the filters and algorithms

that execute the Cost Estimation.

Using the same model for several BIM Uses in different software environments even intensifies

this problem. The receiver of information has to adapt several algorithms in different software

(figure 1.2). However, if the appointing party knew what syntax and labelling the model

1.2. Motivation 4

comprises, they could adjust the filters and algorithms of downstream processes to it. Figure

1.3 illustrates how this thesis proposes to achieve this. The appointing party creates their

internal labelling standard and enriches the external BIM model to that. Enrichment in this

context implies that depending on the given information, the appointed party adds the same

information with their internal labelling preference. For example, if the model comprises a

wall with the material ’RC’, the appointing party adds another property defining that the

material is ’Reinforced Concrete’ (labelling from the internal standard). Now, all downstream

processes know what information they can expect. For that reason, the client develops the

algorithms for the downstream processes only once. Adapting them to the data from the

external BIM model is not required anymore.

Process_1 English

Obtain BIM model

Model-based
QTO

Validation

Model-based
digital fabrication

Adapt algorithm
for model-based

QTO

Adapt algorithm
for model.based
digital fabrication

Adapt algorithm
for model
validation

End

Figure 1.2: Conventional approach: For every BIM Use, the acting party must adapt downstream
processes.Process_2_English

Optimise
internal labelling

standard
End

Enrich-IFC

Enriched IFC
defining

information
according to
the internal

labelling
standard

Automated
model-based

QTO

Automated
model validation

Automated
model-based

digital fabrication

Obtain BIM model

Internal
labelling
standard

Figure 1.3: Enrich-IFC-approach: The BIM model is enriched with the information once. After
that, all downstream processes are executed automatised.

1.3. Objectives and Structure 5

Received

Type Girder

Material Concrete
C30/37

Width 0.20m

Desired

Component
Type

Beam

Material Concrete

Strength C30/37

Thickness 0.20m

Figure 1.4: Left: What the project participant obtains. Right: What they want. The Enrich-IFC-
approach closes this gap.

1.3 Objectives and Structure

To sum up, there are two issues: Firstly, the information requirements shall structure hi-

erarchically. The hierarchy allows defining dynamic requirements depending on different

information. For example, a masonry wall requires different attributes than a concrete wall.

However, a wall always expects to have a material property. Secondly, the receiver of infor-

mation shall establish an internal labelling standard and adapt algorithms and automatised

downstream processes to it. Then, they can enrich received BIM models with this standard

according to given information and execute downstream processes automatised.

Figure 1.4 illustrates the primary objective of this work. A project participant receives a

BIM model comprising a beam which implements information about its material, compressive

strength, width, and component type. This is what the project participant obtains, while

the right part of figure 1.4 shows what they would like to have. They require a BIM model

to follow their internal labelling standard.

This thesis proposes the Enrich-IFC-approach to close this gap. The approach means to

enrich a BIM model by translating given information into standardised data to perform

automatised downstream processes. The author aims at developing an approach that fits in

current regulations and bases on open-based and license-free standards. Moreover, the author

converts this approach into a software tool. The application provides functionalities to create

an enriched BIM model according to their preferences defined in the internal standard.

Therefore, the work firstly introduces background information and significant technical co-

herences about information management in BIM projects according to specific standards.

After that, chapter 3 overviews current solutions on defining information requirements and

validation of BIM models using mvdXML. Chapter 4 summarises the problem and explains

the proposed solution. Chapter 5 sketches the data model design that realises the Enrich-

IFC-approach technically. In chapter 6, the author outlines the workflow of a prototype that

implements the Enrich-IFC-model. This prototype illustrates the usage of the tool by apply-

ing it to a project in chapter 7. Finally, section 8 concludes the outcome and proposes future

work to improve the concepts.

6

Chapter 2

Background Information

This chapter describes topics that significantly relate to the content of the thesis. Firstly, it

overviews the only license-free data schema for information exchange in the AEC industry,

the Industry Foundation Class (IFC). After that, section 2.2 compares different concepts

for the Level of Development (LOD). Thirdly, the chapter investigates information manage-

ment in BIM projects and distinguishes different types of information requirements. Section

2.4 unites the information requirements and the IFC by describing mvdXML. Lastly, the

chapter introduces the Work Breakdown Structure (WBS) after explaining a file format for

collaboration in BIM projects.

2.1 Industry Foundation Class

For collaboration in AEC projects, the participants have two options, working in a closed

or an open BIM environment (Borrmann et al., 2018). While in closed BIM, the project

team agrees to work with the same software, open BIM allows them to choose individual

software applications. However, this only works if all stakeholders agree on a common data

exchange file format to ensure loss-free information flow. An open BIM workflow requires

this to guarantee interoperability (Borrmann et al., 2018). This is the starting point of the

first version of IFC published by buildingSMART in 1997. (Laasko & Kiviniemi, 2012).

2.1.1 The History of IFC

Software vendors developed the first approaches for loss-free information exchange between

different Computer-aided Design systems in the 1970s. These methods, however, only shared

geometry. Thus, various stakeholders wanted to develop a solution for exchanging semantics.

After bureaucratic issues with Internation Organization for Standardization (ISO), a group of

2.1. Industry Foundation Class 7

software vendors, engineering offices, and construction companies founded the International

Alliance for Interoperability (IAI) in 1995 to expedite the standardisation. IAI established

the IFC standard and published IFC 1.0 in 1997. In 1998, the first commercial software used

the standard. IAI released further IFC versions within the next years, although the con-

struction industry questioned the benefit. Thus, IAI changed its vision. Instead of enabling

interoperability in the AEC industry, they aimed at improving communication, quality, time

and cost, throughout the lifecycle of an asset. Since there is no license fee for using IFC, the

standard has popularised over the last decades. (Borrmann et al., 2018; Laasko & Kiviniemi,

2012; Speiser, 2019)

Today, over 160 software products support IFC. Additionally, incorporating IFC in the ISO

Standard contributes to using IFC in the public sector. IFC has become the ultimate standard

for working in an open BIM environment. The open data structure and the neutrality of the

format have convinced most public sector initiatives to use IFC. Currently, IFC primary

covers buildings. However, buildingSMART focuses on developing it for other disciplines,

such as infrastructure. (Borrmann et al., 2018; Laasko & Kiviniemi, 2012; Speiser, 2019)

2.1.2 Data Structure

The IFC schema establishes an object-oriented data schema based on inheritance. It com-

prises objects in four layers that can reference objects of lower layers but not vice versa. The

following paragraphs describe the object hierarchy after overviewing the relations of the four

segments (buildingSMART, 2019c).

2.1.2.1 The Four Layers of the IFC

The IFC data schema implements four layers: Domain Layer, Interoperability Layer, Core

Layer and Resource Layer (figure 2.1). The Core Layer builds the root and contains the kernel

representing general, abstract classes. It provides three extensions: Process Extension, Con-

trol Extension, and Product Extension. The latter defines classes to describe the physique

and space of buildings, e.g., IfcOpeningElement, IfcSpace, IfcBuildingElement. The Interop-

erability Layer stands between the abstract core of the schema and the domain-specific core.

It implements classes that derive from classes of the Core Layer. The Domain Layer describes

domain-specific types (such as HVAC, Architecturea and Structural Analysis). Elements of

other layers cannot reference the classes defined in the Domain Layer. Lastly, the Resource

Layer provides basic elements for the entire IFC model. These elements do not derive from

IfcRoot. For that reason, they cannot exist independently and require other elements to ref-

erence them. Classes of the Resource Layer may define geometries, materials, or topology.

(International Organization for Standardization, 2018; Borrmann et al., 2018; Speiser, 2019)

2.1. Industry Foundation Class 8

D O M A I N
L A Y E R

I N T E R O P .
L A Y E R

C O R E
L A Y E R

R E S S O U R C E
L A Y E R

Material

DateTime

Actor

Profile

Property

Topology

Constraint

Cost

Utility

etc.

A R C H I -
T E C T U R E
D O M A I N

H V A C
D O M A I N

E L E C T R I C A L
D O M A I N

S T R U C T U R A L
A N A L Y S I S

D O M A I N

S T R U C T U R A L
E L E M E N T S

D O M A I N
B U I L D I N G

C O N T R O L S
D O M A I N

P L U M B I N G
F I R E

P R O T E C T I O N
D O M A I N

C O N S T R .
M A N A G E M E N T

D O M A I N

S H A R E D B U I L D I N G
S E R V I C E

E L E M E N T S

S H A R E D
C O M P O N E N T

E L E M E N T S

S H A R E D
M A N A G E M E N T

E L E M E N T S

S H A R E D
B U I L D I N G

E L E M E N T S

S H A R E D
F A C I L I T I E S
E L E M E N T S

C O N T R O L
E X T E N S I O N

P R O D U C T
E X T E N S I O N

P R O C E S S
E X T E N S I O N

KERNEL

Figure 2.1: The four layers of the IFC schema. (Speiser (2019), based on buildingSMART (2019c))

2.1.2.2 IfcRoot and Subclasses

Figure 2.2 depicts the hierarchy of the classes. IfcRoot builds the root of the schema. All

classes from the Domain, Interoperability, and Core Layer derive from IfcRoot. Three abstract

classes form the next level: IfcPropertyDefinition, IfcRelationship, and IfcObjectDefinition.

IfcPropertyDefinition generalises characteristics of objects through property sets. Classes de-

riving from IfcRelationship realise objectified relationships in the IFC. This concept separates

semantic information from the objects themselves. Finally, IfcObjectDefinition generalises all

semantically treated objects. (buildingSMART, 2005)

The two sub-types of IfcObjectDefinition are IfcTypeObject and IfcObject. While IfcObject-

Type describes a type, an IfcObject defines physical objects of a model. IfcProduct inherits

from IfcObject and describes any object that defines geometry or space. Thus, two subclasses

are IfcSpatialStructureElement and IfcElement. IfcSpatialStructureElement provides classes

to organise a building such as IfcBuilding or IfcSpace. IfcElement is the subtype of all com-

ponents related to the AEC industry (such as columns, pipes and chairs). (buildingSMART,

2005)

2.2. Level of Development 9

Figure 2.2: This excerpt from the IFC data schema shows the highest levels of the schema. (Borr-
mann et al., 2015a)

2.2 Level of Development

Project delivery teams define information requirements by using a Level of Development

(LOD). The concept of LOD distinguishes different grades of information. It allows the

recipient to evaluate the reliability of a model. Several institutes have defined their standards

for the LOD. For example, the BIMForum (2019) has established six levels:

LOD 100: No requirements

LOD 200: A generic object with approximated orientation, shape, dimensions

and location

LOD 300: A specific object with accurate information about orientation, shape,

dimensions and location

LOD 350: LOD 300 + relationships to other objects

LOD 400: LOD 350 + information about detailing, assembly and fabrication

LOD 500: Field verified element

These definitions only cover the graphical representation of a component. Beyond that, Die

Deutsche Bauindustrie (2018) introduces the Level of Geometry (LOG) and Level of Infor-

mation (LOI). The LOG concentrates purely on the graphics, and the LOI treats semantics.

Digital Konvergens et al. (2019) extends this concept by another dimension, the Level of

Reliability (LOR). (Speiser, 2019)

Figure 2.3 shows the different LODs for a steel beam. It illustrates that there is no distinct line

between a LOD, LOI, and LOR. For example, a LOD 300 may require material information to

represent the geometry accurately. However, the LOI may also define semantics that requires

2.3. Information Management in BIM Projects 10

LEVEL OF

DEVELOP-

MENT

Visual

Content

A mind map is a diagram used to visually
organise information. A mind map is hierarchical
and shows relationships among pieces of the
whole.

It is often created around a single concept, drawn
as an image in the centre of a blank page, to
which associated representations of ideas

such as images, words and parts of words are added.
Major ideas are connected directly to the central
concept, and other ideas branch out from those.

LOD 100 LOD 100

LOD 300

LOD 400

LOD 100 LOD 200

LOD 350

LOD 500

Figure 2.3: Levels of Development: the example shows a steel beam connecting to a column. (Speiser
(2019), based on BIMForum (2019))

information about the material. Hölzlwimmer (2019) investigates different approaches in

detail. In this work, LOD mainly refers to the semantic information that other institutes

may name LOI.

2.3 Information Management in BIM Projects

This section describes information management in BIM projects by firstly identifying project

perspectives. After that, the chapter explains the different types of information requirements

and information delivery plans, when they occur, and what objectives they follow. Thirdly,

the section describes how the project delivery team generates information during different

phases.

2.3.1 Project Perspectives

Several project participants appear during a construction project. They all define their

requirements on information exchanges. For this reason, the project team defines a common

project structure, including the flow of information. ISO 19650-1 (2017) specifies various

perspectives that occur during the project.

2.3. Information Management in BIM Projects 11

Appointing
Party

Lead-
appointed

Party

Appointed
Party A Appointed

Party B

Appointed
Party B.1

Appointed
Party B.2

EIR
Party A

EIR
Party
B.2

EIR

EIR
Party A

EIR
Party
B.1

defines

retrieves

definesdefines

re
trie

ve
s

re
tr

ie
ve

s

defines defines

re
trie

ve
s re

tr
ie

ve
s

Figure 2.4: Parties define their Information Requirements (EIR). Sub-parties retrieve these and
deliver the information according to the requirements (grey arrows) to their appointing party.

The asset owner takes a strategic, global, and profit-oriented perspective. Regardless of spe-

cific knowledge about construction methods or project execution, this perspective determines

the basis for the expected value. The asset user should meet the requirements of the asset

owner’s business plan by defining Asset Information Requirements (AIR) (compare section

2.3.2). They form the basis for the strategic information requirements. The user perspective

aims at complying with the owner’s schedule and budget during the project delivery phase.

Finally, there is the project perspective defining precise information requirements derived

from the owner’s perspective. Here, several project delivery teams contribute subsets of in-

formation. However, information loss often occurs at crucial decision points. Hence, it is

necessary to clearly define the relevant information to be supplied in terms of quality and

quantity and implement it in the project process beforehand. Thus, project participants need

to define key decision points throughout the asset life cycle to depict the information flow

between project participants and project stages. (ISO 19650-1, 2017; Scheffer et al., 2018)

The project delivery team divides into three levels. The appointing party (usually the client

or asset operator) represents the highest level. They receive approved information from the

lead-appointed party (level 2). The lead-appointed party is responsible for merging data

from all appointed parties (level 3) into the federated model. Level 3 may divide into several

sub-levels as one appointed party may subdivide their tasks. (ISO 19650-2, 2017)

Figure 2.4 visualises the concept of the roles in the project delivery team. Further, we simplify

this scenario and differentiate between two parties: An appointing party (the receiver of

information), and the appointed party (the provider of information).

2.3. Information Management in BIM Projects 12

Figure 2.5: Information requirements throughout the asset’s lifecycle. (based on Scheffer et al.
(2018))

2.3.2 Information Requirements According to ISO 19650-1

BIM project execution requires certain information at certain stages. ISO 19650-1 (2017)

distinguishes in three stages: the definition of information requirements, the planning for

information delivery, and information delivery. The latter generates information in the form

of models that occur in different types, such as 3D models, 2D plans or equipment schedules.

All models must meet the requirements defined by the client. To obtain all the required

information, the client assigns deliverables to the project participants. (Scheffer et al., 2018)

The ISO standards distinguish between information requirements and information delivery

plans. An information requirement specifies how information is produced and what, when

and who it is produced for (ISO 19650-1, 2017). An information delivery plan, however,

regulates how the project delivery carries out specific aspects of the information management

(ISO 19650-2, 2017). The following sections explain both concepts and how they correlate.

2.3.2.1 Information Requirements over the Asset Life Cycle

Figure 2.5 shows the information requirements described in ISO 19650-1 (2017) and depicts

their meaning during the project phases. While Organisational Information Requirements

(OIR) cover the whole lifecycle of an asset, Project Information Requirements (PIR) and AIR

only occur partially. The PIR impact the development of an asset, and the AIR influence

the operation. Lastly, the EIR arise throughout all project phases apart from the first.

The owner or operator of an asset defines the OIR. These aim at realising organisational

goals. OIR base on strategic asset management, regulatory obligations or policymaking.

Concerning the life cycle of the building, the asset management phase influences the life and

resulting costs decisively. Thus, OIR mainly affect the AIR, but also serve as the basis for

defining the requirements for the Project Information Model (PIM). (Scheffer et al., 2018)

2.3. Information Management in BIM Projects 13

Project Information Requirements (PIR) support strategic objectives on a project level.

Thus, the appointing party identifies these information requirements for each critical de-

cision. Additionally, repeat “clients may develop a generic set of PIR that can be adopted,

with or without amendment, on all of their projects“ (ISO 19650-1, 2017).

The Project Information Model (PIM) functions as the basis for the Asset Information Model

(AIM) and affects the project delivery phase as it provides the required information for use

cases such as clash detection, cost estimation or scheduling. (Scheffer et al., 2018)

Asset Information Requirements (AIR) establish the information required to answer the OIR.

They organise in a way that asset management appointments can incorporate them to support

decision-making. The derived Asset Information Model (AIM) supports asset management

processes and represents the interest of the asset owner or operator. The AIM contains both

graphical and non-graphical information. Additionally, an existing AIM may serve as a source

for the PIM. For instance, the AIM delivers information for the project brief. (ISO 19650-1,

2017; Scheffer et al., 2018)

The appointing party specifies EIR. They define the data and information the appointed

party needs to provide during information exchange. EIR mostly cover PIR but may also

include parts of the AIR. As project delivery teams in construction projects typically consist

of sub-appointments with higher hierarchy, the appointed party may sub-divide and pass on

the EIR they have received to sub-appointments. (Scheffer et al., 2018)

2.3.2.2 Information Delivery Plans

PAS 1992-2 (2013) differentiates in three information delivery plans: Task Information Deliv-

ery Plan (TIDP), Master Information Delivery Plan (MIDP) and BEP. Figure 2.6 describes

how they interact with each other. PAS 1992-2 (2013) defines the TIDP as an internal docu-

ment for planning teams. Each team indicates responsible team members for each deliverable.

Furthermore, the TIDP includes milestones aligned with the programs in the MIDP.

According to PAS 1992-2 (2013), the MIDP summarises information deliverables throughout

the project. It includes, amongst others, models, drawings and specifications. The planning

teams develop the MIDP according to their TIDP.

Finally, the project team creates the BEP based on the PIR. The BEP describes how the

team manages and exchanges information during the project. For this reason, the BEP

defines processes to create models in accordance with the EIR. In general, two different

kinds of BEP exist, the pre-appointment and post-appointment BEP.

2.3. Information Management in BIM Projects 14

TidpMidp

D
el

iv
er

y
Ph

as
e

4
- A

pp
oi

nt
m

en
t

Ap
po

in
te

d
Pa

rt
ie

s

Ta
sk

 T
ea

m
 B

Appointed Parties - Task Team B

Establish TIDP

Ta
sk

 T
ea

m
 C

Appointed Parties - Task Team C

Establish TIDP

Ta
sk

 T
ea

m
 A

Appointed Parties - Task Team A

Establish TIDP

Le
ad

 A
pp

oi
nt

ed
 P

ar
ty

Lead Appointed Party

Establish MIDP
Establish

Information
Requirements

Confirm BEP

TIDP
Team A

TIDP
Team B

TIDP
Team C

End

Ap
po

in
tin

g
Pa

rt
y

Appointing Party

Post-
appointment

BEP
MIDP

Figure 2.6: The lead-appointed party confirms the BEP. After establishing the Exchange Require-
ments, each appointed party aligns TIDPs with the BEP. Finally, the lead-appointed party develops
the MIDP.

2.3. Information Management in BIM Projects 15

The pre-appointment BEP extends the EIR at least by the following aspects:

- Project Information Plan

- Project goals regarding collaboration and information modelling

- Major milestones

- Project information deliverables in the PIM

The post-appointment BEP focuses on information management within the project

delivery team. Moreover, it identifies the abilities and limits of each project participant

concerning information management. As projects grow over time and fuzziness decreases

(Abualdenien & Borrmann, 2019), the content becomes more complex, and so do the infor-

mation requirements. For this reason, the post-appointment BEP implements the following

aspects additionally:

- Exchange Information Requirements

- Concerning project management:

· Roles and responsibilities

· Milestones according to the project program

· Authorization and approval of data

- Concerning planning and documentation:

· Revised Project Information Plan to confirm the capability of the supply chain

· Processes for collaboration and information modelling

· Responsibilities throughout the supply chain

· Task Information Delivery Plan

· Master Information Delivery Plan

- Concerning standards and methods:

· Project Information Model orientation and origin

· Naming conventions for files

· Project tolerances

· Abbreviations, annotations, dimensions, and symbols

- Software solutions:

· Software versions

· Data exchange formats

· Data management systems

2.3. Information Management in BIM Projects 16

Information_Management_Iso

Ac
tiv

iti
es

 p
er

 p
ro

je
ct

Ac
tiv

iti
es

 p
er

 a
pp

oi
nt

m
en

t

Ac
tiv

iti
es

 d
ur

in
g

in
fo

rm
at

io
n

pl
an

ni
ng

 s
ta

ge

Activities per appointment - Activities during information planning stage

Phase 5:
Mobilisation

Phase 4:
Appointment

Ac
tiv

iti
es

 d
ur

in
g

in
fo

rm
at

io
n

pr
od

uc
tio

n
st

ag
e

Activities per appointment - Activities during information production stage

Phase 6:
Production of
information

Phase 7:
Information

model delivery

Ac
tiv

iti
es

 d
ur

in
g

pr
oc

ur
em

en
t s

ta
ge

Activities per appointment - Activities duringprocurement stage

Phase 2:
Invitation to

tender
Phase 3:

Tender response

Activities per project

Phase 1:
Assessment and

need

Phase 8:
Project close-

out
Start End

Figure 2.7: The asset delivery process divides into eight subprocesses. (based on ISO 19650-2 (2017))

2.3.3 The Information Delivery According to ISO 19650

This thesis focuses on information management during project delivery. Figure 2.7 shows

how to manage information according to ISO 19650-2 (2017). Especially the first phase is

significant as the project team develops the PIR. The appointing party defines milestones,

project standards, information delivery methods, as well as a Common Data Environment

(CDE). In phase 2, the appointing party determines EIR. Here, they also define the LOG

and LOI (compare section 2.2). In Phase 3, each appointed party responds to the EIR in their

pre-appointment BEP. At this stage, the delivery team must express its methods and strategy

for information management. During the appointment (phase 4), the project team confirms

the BEP, and appointed parties must establish their EIR for expected information exchanges.

During mobilisation (phase 5), the appointing party and the appointed party collaborate to

agree on critical roles, responsibilities and an information delivery plan (UK BIM Alliance,

2019). Throughout both phases, 6 and 7, the project teams generate the actual information

and contribute it to the PIM. If this model complies with the EIR, the appointing party

accepts the model and closes the project in phase 8.

2.4. Technical Implementation of EIR 17

2.4 Technical Implementation of EIR

The section above explained the concepts of ISO standards regulating information manage-

ment in BIM projects. The EIR chiefly receive importance in context with this work. Hence,

to understand the concept better, the following section describes significant relationships of

EIR and puts them into context with the regulations published by buildingSMART. Eventu-

ally, the chapter describes the technical implementation of exchange information requirements

using mvdXML.

Note: The abbreviation EIR may interfere with the abbreviation Exchange Requirements

(ER). Both are widely used in current regulations. While ER rather refer to the technical

implementation of information requirements, EIR instead relate to project management. The

following chapter always uses the abbreviation of the cited work.

2.4.1 Model View Definitions and Exchange Requirements

An IFC model saves multiple topic schemas. Each comprises their persistent idea, e.g.,

scheduling, fabrication or structural analysis, and the IFC schema unites them in one single

model. When it comes to information exchange, however, project participants transfer infor-

mation related to one specific topic. Thus, they need to query the required information of a

BIM model exclusively, as information exchange is smoother whilst sharing fewer data. (Wix

& Karlshøj, 2010; Aram et al., 2010)

The National BIM Standard proposes MVDs to close this gap. A Model View Definition

(MVD) is a subset of the IFC schema containing all the information that a particular exchange

scenario of an AEC project requests (Eastman et al., 2011; Venugopal et al., 2012). Hence,

an MVD brings the information requirements in context with the IFC schema by defining a

subset of the IFC schema. They can be broad and define almost the entire schema but also be

very specific and only define a couple of elements (buildingSMART, 2019d). In general, every

IFC file follows an MVD. Exporting a file from a software follows the MVD that determines

how to export and derive the information.

Within an exchange scenario, one or multiple Exchange Requirements (ER) describe what

information the model must define. ER depend on the topic ideas mentioned above and

determine the required information to exchange data between two business processes (Venu-

gopal et al., 2015). They structure needed properties by model elements. Such a property

can either be optional or mandatory. Moreover, the ER regulate the unit and data type of

properties. (Borrmann et al., 2018; Wix & Karlshøj, 2010)

2.4. Technical Implementation of EIR 18

Model View
Definition

IfcProduct
IfcElement

IfcBuildingElement:
IfcWall

IfcColumn
IfcBeam

IfcFooting
...

Semantics
Points
Vectors

Directions
Curves

Bounding Box
Surface Modeling

Solid Modeling
BRep
CSG

Geometry

mvdXML

Industry Foundation Class

Figure 2.8: mvdXML describes a subset of the IFC schema technically. (Speiser, 2019)

The ER structure into three parts: a header, an overview, and an information section. The

header lists administrative information. The overview section describes the objectives of the

ER textually. Lastly, the information section represents the technical part of the ER. (Wix

& Karlshøj, 2010; Speiser, 2019)

Exchange requirements integrate MVDs into the ISO standard described in section 2.3. Thus,

ER convert EIR in a technical concept (ISO 29481-1, 2016).

2.4.2 Purpose and Origin of mvdXML

mvdXML formalises MVDs and ER in an electronic format (Chipman et al., 2016). Figure

2.8 visualises the purpose of mvdXML within IFC. mvdXML implements two functionalities:

firstly, it defines the partial schema for the MVD based on IFC, and secondly, it validates

IFC data. The features limit the scope of IFC depending on their use case and ease the

querying of data from the model, respectively. In this context, mvdXML for validation

becomes significant. (Chipman et al., 2016)

The mvdXML schema relies on the Extensible Markup Language (XML). XML is a platform-

independent language to store data and structure hierarchical data with ease. Both charac-

teristics have made XML a commonly accepted standard for information exchange. Before

looking into the structure of mvdXML, the following paragraph introduces the basic concepts

of XML. Kahate (2009) provides in-depth information about this topic.

2.4. Technical Implementation of EIR 19

1 <Property DataType=” St r ing ” Desc r ip t i on=”The D i s c p l i n e cor re spond ing to the
IMIR” Code=”1” Name=” e8e877a5−c3e8−4da3−963 f−b1e1beec01eb ” Guid=”

e8e877a5−c3e8−4da3−963 f−b1e1beec01eb ”>
2 <PropertySets>
3 <PropertySet r e f=”078 b8c8c−3721−4038−a5bc−8527b8a62dc0”/>
4 </ PropertySets>
5 <PropertyValues>
6 <PropertyValue r e f=”163 fb8e9−c91e−44fa−92d4−b34e f41 f0340 ”/>
7 <PropertyValue r e f=”406 f4b3c−12ad−46ad−9313−3 fb3e512dc9a ”/>
8 <PropertyValue r e f=”4015 dabf−69c3−4837−9b39−9a9e fc0ea018 ”/>
9 </ PropertyValues>

10 </ Property>

Listing 2.1: Excerpt from a simple file introducing the syntax and structure of XML.

Listing 2.1 shows a short excerpt from an XML file to introduce the standard. In general,

there are three types of information: tags (or elements), attributes, and values. In Listing

2.1, Property represents a tag: they always start with an opening (<) sign and closing (>)

sign. Within both symbols, a tag can define attributes. In Listing 2.1, Property implements

the attribute DataType with the value ”String”. Attributes use the equals symbol (=) to

implement their value that starts and ends with double quotation marks (”). After the >

symbol of an element, this tag can implement further tags of a lower hierarchy. For instance,

PropertySets is tag of the next level. XML does not limit the levels of the hierarchy. To

define an element of the same level, an element must conclude by using the slash symbol (/):

line 4 completes the PropertySets tag (</PropertySets>). (Kahate, 2009)

The mvdXML data structure extends this concept by providing standardised elements and

hierarchies. However, as the structure of both is the same, mvdXML is also platform-

independent and usable for most software applications. (Chipman et al., 2016)

2.4.3 MvdXML Schema

mvdXL represents the root of the schema that implements two main tags: Templates and

Views. These elements sub-divide further. Not all elements are significant in this context.

Thus, figure 2.9 shows a reduced version of the schema that the following section describes

in detail. The overview refers to Chipman et al. (2016) and updates findings from a previous

report from the author (Speiser, 2019).

2.4. Technical Implementation of EIR 20

mvdXML

Templates ConceptTemplate

applicableSchema

applicableEntity

isPartial

Definitions

AttributeRule

AttributeName

RuleID

EntityRules

Constraints

EntityRules

Views ModelView

applicableSchema

BaseView

Definitions

Exchange-
Requirements

Exchange-
Requirement

Roots ConceptRoot

applicable-
RootEntity

Definitions

Applicability TemplateRules

Concepts

Template

Definitions

Requirements

TemplateRules

Figure 2.9: Simplified schema of the mvdXML.

2.4. Technical Implementation of EIR 21

2.4.3.1 Templates

The Templates tag comprises a list of ConceptTemplates. Each ConceptTemplate defines a

graph within a referenced IFC schema starting from an applicable entity. From there, the

graph follows attributes and entities until it reaches individual attributes that contain the

requested information. In summary, the graph comprises the part of the IFC schema needed

for this functionality. Thus, a ConceptTemplate includes the following attributes:

- applicableSchema sets the default IFC schema the template refers to (IFC2x3, IFC4).

- applicableEntity represents the root of the graph. MVD tools use it to filter for partic-

ular entities.

- isPartial indicates if the ConceptTemplate is part of another ConceptTemplate.

- SubTemplates is set of ConceptTemplates that extends a ConceptTemplate by specifying

the graph.

- Rules: a collection of attribute definitions that relate to the root entity or their subtypes.

The Rules element structures in AttributeRules, implementing EntityRules, referring to

AttributeRules, and so on.

An AttributeRule defines “the specification of an attribute on an entity, with related con-

straints, and/or entity rules“ (Chipman et al., 2016). It implements an AttributeName,

RuleID, Constraints, and EntityRules.

- The AttributeName represents the name of an entity in the IFC schema.

- The RuleID optionally defines an identifier that the MVD uses to refer to this concept.

- The Constraints is a set containing Constraint elements. Each implements a restriction

of an attribute.

AttributeRules may reference an EntityRules defining a set of EntityRule elements. Each

EntityRule represents the specification of the referenced entity, enumeration or type. An

EntityRule consists of:

- an EntityName representing the name of the referenced type

- a RuleID

- Constraints

- AttributeRules

2.4. Technical Implementation of EIR 22

2.4.3.2 Views

The Views tag defines a set of ModelView elements. EachModelView explains how to use the

ConceptTemplates and comprises:

- an applicableSchema

- a BaseView that references a base MVD if this ModelView extends another ModelView

- ExchangeRequirements: A collection of ExchangeRequirement elements. Each element

covers the requirements for a specific exchange scenario.

- Roots defining a list of ConceptRoot elements.

A ConceptRoot implements Concepts that define rules on applicable instances of the IFC

schema. A ConceptRoot references an IFC entity that shall derive from IfcRoot. Additionally,

it comprises:

- the applicableRootEntity attribute ruling to which IFC entity the ConceptRoot applies.

- a collection of Concept elements, each defining:

· a Template that references a ConceptTemplate.

· a collection of Requirement elements linking to ExchangeRequirements. This tag

determines whether an ExchangeRequirement applies to this Concept.

· a hierarchically structured tree of TemplateRules. The tree uses logical operators

to link its TemplateRule elements.

- an Applicability specifying the applicable instances of the IFC schema by applying

TemplateRules as conditions.

A TemplateRule specifies rules using standardised grammar. It consists of a Description and

a Parameter. The Parameter uses the RuleID to reference an AttributeRule or EntityRule.

This concept enables the TemplateRule to retrieve data from the IFC model. Section 3.1

describes how to use mvdXML to validate an IFC model by defining TemplateRules and the

Applicability for them.

2.4.4 MvdXML to Validate IFC Documents

Three entities of the schema are of particular interest to validate an IFC model. For that

reason, the following section describes the structure and purpose of them starting from the

bottom.

2.4. Technical Implementation of EIR 23

1 <ConceptRoot uuid=”0 e93f597−f5e1 −475b−87a7−eb007993a50d” name=” Al l External
Walls ” app l i cab l eRootEnt i ty=” I f cWal l ”>

2 <D e f i n i t i o n s />
3 <A p p l i c a b i l i t y>
4 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ”/>
5 < !−− A p p l i c a b i l i t y : apply concepts only to e x t e r n a l wa l l s−−>
6 <TemplateRules operator=”and”>
7 <TemplateRule Parameters=”O PsetName [Value]= ’Pset WallCommon ’

AND O PName [Value]= ’ I sExterna l ’ AND O PSingleValue [Value]=
TRUE”/>

8 </TemplateRules>
9 </ A p p l i c a b i l i t y>

10 <Concepts>
11 <Concept>
12 < !−− Test #1: check e x i s t e n c e o f property1 −−>
13 </Concept>
14 <Concept>
15 < !−− Test #2: check value o f property2 −−>
16 </Concept>
17 </Concepts>
18 </ConceptRoot>

Listing 2.2: This excerpt of an mvdXML file demonstrates the structure of the ConceptRoot entity.
The Applicability selects all objects that the Concepts (listing 2.3) validate.

The ConceptRoot tag implements one ore more Concepts, each defining rules. These rules

check whether an entity conforms to the requirements or not. Listing 2.3, for instance,

rules that the objects of the IFC document must define the value ’Concrete’ or ’Masonry’

in the ’Material’ property of the ’Pset ks’ property set (line 10-13). The mvdXML schema

introduces two possibilities to determine applicable objects for these Concepts within the

ConceptRoot.

Listing 2.4 illustrates an example. Line 1, ’applicableRootEntity=IfcWall’, determines that

all concepts of this root exclusively apply to IFC objects of the IfcExpressType ’IfcWall’

(first possibility). This element represents the root of the graph that defines a subset of

the IFC schema. The Applicability tag specifies this selection. Here, the TemplateRules tag

implements conditions (second possibility). For instance, the rule in line 7 introduces that

the concept only applies to external objects.

To sum up, the Concept in Listing 2.3 validates if all external ’IfcWall’ instances in the IFC

model have either the material ’Concrete’ or ’Masonry’. This is only possible, however, as

the ConceptTemplates tag defines how to retrieve data from the IFC schema. Therefore,

it implements AttributeRules. These rules describe how to access information in the model

and what type they have. Listing 2.4 enforces three rules that apply to the applicable

Entity ’IfcPropertyValue’ (line 1). The first rule retrieves the data of the Attribute ’Name’

(line 3). Their type is ’IfcIdentifier’ (line 5), and within the mvdXML document, it can be

retrieved by using the ID ’PName’ (RuleID, line 3). To access the ’NominalValue’ of the

’IfcPropertySingleValue’, line 13 implements ’PSingleValue’.

2.4. Technical Implementation of EIR 24

1 < !−− Test #1: check value o f Mater ia l property −−>
2 <Concept uuid=”983ddc5d−c0c8−47c9−8491−97add7677139” name=” load bear ing

wa l l s r equ i r ed to have property ’ Mater ia l ’ ”>
3 <D e f i n i t i o n s />
4 < !−− Refe rences aConceptTemplate de f ined in the Templates tag −−>
5 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ”/>
6 <Requirements>
7 < !−− Refe rences a ExchangeRequirement o f the ModelView tag −−>
8 <Requirement a p p l i c a b i l i t y=” export ” exchangeRequirement=” ae70f764

−938b−4cf7−9814−c29a47f56b0e ” requirement=”mandatory”/>
9 </ Requirements>

10 <TemplateRules operator=” or ”>
11 <TemplateRule Desc r ip t i on=” 1 . 1 . 1 ” Parameters=”O PsetName [Value]= ’

Pset ks ’ AND O PName [Value]= ’ Mater ia l ’ AND O PSingleValue [Value
]= ’ Concrete ’ ”/>

12 <TemplateRule Desc r ip t i on=” 1 . 1 . 2 ” Parameters=”O PsetName [Value]= ’
Pset ks ’ AND O PName [Value]= ’ Mater ia l ’ AND O PSingleValue [Value
]= ’ Masonry ’ ”/>

13 </TemplateRules>
14 </Concept>

Listing 2.3: Concept checking properties of objects of the IFC schema

1 <ConceptTemplate uuid=”6655 f6d0−29a8−47b8−8f3d−c9 fce9c9a620 ” name=” S i n g l e
Value” appl icableSchema=”IFC2x3” a p p l i c a b l e E n t i t y=”
I f cPrope r tyS ing l eVa lue ” i s P a r t i a l=” true ”>

2 <Rules>
3 <Attr ibuteRule RuleID=”PName” AttributeName=”Name”>
4 <EntityRules>
5 <EntityRule EntityName=” I f c I d e n t i f i e r ”/>
6 </ Ent ityRules>
7 </ Attr ibuteRule>
8 <Attr ibuteRule AttributeName=” Desc r ip t i on ”>
9 <EntityRules>

10 <EntityRule EntityName=” I f cText ”/>
11 </ Ent ityRules>
12 </ Attr ibuteRule>
13 <Attr ibuteRule RuleID=” PSingleValue ” AttributeName=”NominalValue”>
14 <EntityRules>
15 <EntityRule EntityName=” I f cVa lue ”/>
16 </ Ent ityRules>
17 </ Attr ibuteRule>
18 </ Rules>
19 </ConceptTemplate>

Listing 2.4: ConceptTemplate tag in a mvdXML document to retrieve property values.

2.5. Issue Communication in BIM projects 25

2.5 Issue Communication in BIM projects

Shafiq et al. (2012) state that the inconsistent nature of BIM models impedes collaboration

in BIM projects. Providers of information often do not fulfil requirements. To communicate

missing information with others, buildingSMART has developed the BIM Collaboration For-

mat (BCF) since 2009 (buildingSMART, 2019b). This section describes the motivation of

BCF and the structure of the the generated files.

2.5.1 Motivation

BIM projects require high technical knowledge throughout the contributing disciplines but

also a well-implemented interdisciplinary collaboration. The different disciplines commu-

nicate information such as instructions, comments or issues. However, the data is often

obsolete, ambiguous or inconsistent as different disciplines interact using various platforms

and file formats. (Dossick & Neff, 2011)

For that reason, buildingSMART has introduced BCF for sharing model-based issues by

referring to previously published IFC models. It transfers data about an issue in XML format

from one application to another. This issue references a view, an image, IFC coordinates and

the concerned elements from the IFC model. As the elements are referenced via their Globally

Unique Identifier (GUID), all applications can uniquely interpret BCF. Hence, BCF enables

open-based communication in BIM projects and enhances interoperability. (buildingSMART,

2019b)

2.5.2 Distinction in Markup and Visualisation

An issue using BCF addresses one topic comprising three files: The markup (*.bcf), the

visualisation (*.bcfv), and a snapshot (*.png). The markup and visualisation provide XML-

formatted information. Both are mandatory. An optional image visualising the topic repre-

sents the snapshot. (buildingSMART, 2019a)

Listing 2.5 shows the structure of the markup. Lines 3-7, the header, provides information

about the project the BCF file refers to and the date of generation of the file. Lines 9-11,

the topic, define information about the BCF itself by saving the GUID . Finally, lines 12-17

store the actual communication. Here, the file records discussions between different parties

by using comments. Each comment also obtains its unique identifier. Thus, parties can refer

to previous comments using the GUID of that comment. (buildingSMART, 2019a)

2.5. Issue Communication in BIM projects 26

1 <?xml version=” 1 .0 ” encoding=” utf−8”?>
2 <Markup xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t ance ” xmlns:xsd=”

h t t p : //www. w3 . org /2001/XMLSchema”>
3 <Header>
4 <F i l e I f c P r o j e c t=”3ZGD7y6S5209$mGLi sPlj ” i s E x t e r n a l=” f a l s e ”>
5 <Filename>D:\Dokumente\Uni\Masterarbe i t \GUITestDocuments\

r a c b a s i c s a m p l e p r o j e c t . i f c</ Filename>
6 <Date>2020−03−11 T17:59:17 .4535225+01 :00</Date>
7 </ F i l e>
8 </Header>
9 <Topic Guid=”617 b091c−47c4−4447−b7b8−8bd4dc202b2b”>

10 <T i t l e>I s s u e regard ing 2pfAHb2EL46hq sMVbImE4</ T i t l e>
11 </Topic>
12 <Comment Guid=” f695d686−467c−43a5−bd0a−f c 5b3 fa5c65c ”>
13 <Status>Error</ Status>
14 <Date>2020−03−11 T17:59:17 .4535225+01 :00</Date>
15 <Author>unknown user</Author>
16 <Comment>102 Does not implement the Proper ty : f l o o r f i n i s h</Comment>
17 <Topic Guid=”617 b091c−47c4−4447−b7b8−8bd4dc202b2b” />
18 <ModifiedDate>2020−03−11 T17:59:17 .4535225+01 :00</ Modif iedDate>
19 </Comment>
20 </Markup>

Listing 2.5: The markup file provides general information about the issue and records the commu-
nication.

1 <?xml version=” 1 .0 ” encoding=” utf−8”?>
2 <V i s u a l i z a t i o n I n f o xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t ance ”

xmlns:xsd=” h t tp : //www. w3 . org /2001/XMLSchema”>
3 <Components>
4 <Component I fcGuid=”2pfAHb2EL46hq sMVbImE4” Se l e c t ed=” f a l s e ” V i s i b l e=”

f a l s e ” />
5 </Components>
6 <Lines />
7 <Cl ipp ingPlanes />
8 </ V i s u a l i z a t i o n I n f o>

Listing 2.6: The Visualization Information stores components related to the BCF file.

2.6. Classify and Structure Deliverables 27

The second part of a BCF issue generates the viewpoint visualising the issue (listing 2.6). It

contains information about the related topics, camera settings, and concerned instances from

the IFC model. Besides several optional elements, the ’Components’ tag comprises the only

obligatory element. This tag (lines 3-5) can refer to several elements of the IFC model in

the ’Component’ tag by storing the GUID of the IFC element. Both files meet in one folder.

This folder’s name corresponds to the GUID of the topic.

2.6 Classify and Structure Deliverables

As already mentioned, different people may refer to the same object, using different words.

Several institutions have tackled this problem by classifying terms. For instance, the

buildingSMART Data Dictionary (bsDD) introduces a library to classify objects and prop-

erties related to the AEC industry. But, instead of referring to words, they use a GUID.

Hence, the labelling of information can change without losing meaning. However, a GUID

has a complex syntax: 0GSQP$JDv5PALB8zok7r9q. (buildingSMART, 2020b)

The NBS (2015) also approaches this issue. They published their system ’Uniclass’ to classify

products and objects related to the AEC industry. Besides using terms, they also introduce

unique identifiers using a more straightforward format. For example, ’Stairs’ belong to the

code ’EF 35 10’. This code is unique and follows the structure of a WBS code. The following

sections describe the origin of WBS and explain how to apply them to classifications such as

Uniclass. (The NBS, 2015)

2.6.1 Work Breakdown Structure

Managing projects implies estimating the time and cost of tasks. The uncertainties will

reduce if managers subdivide the tasks hierarchically into small deliverables. This process

eases estimating the cost and time of each deliverable. The concept of subdividing work into

deliverables is called WBS. (Lewis, 2007; Project Management Institut, 2012)

The following example explains the concept. A student wants to clean their apartment. As

the condo comprises several rooms, cleaning each room represents one deliverable. Cleaning

a room can subdivide into further subtasks: clean the curtains, hoover the floor, and dust

furniture. The deliverables describing those tasks are: cleaned curtains, cleaned floor, and

cleaned furniture. The student can subdivide these deliverables again. For instance, a cleaned

floor requires to tidy it, hoover it, and wipe it. Figure 2.10 depicts the example graphically.

(Lewis, 2007)

2.6. Classify and Structure Deliverables 28

CR Clean Room

CR.1 Clean Floor
CR.2 Clean

Curtain
CR.3 Clean
Furniture

CR.1.2 Hoover CR.1.3 WipeCR.1.1 Tidy

CR.1.2.2 Plug in CR.1.2.3 Clean
CR.1.2.1 Take

Hoover

CR.1.2 Hoover CR.1.3 Wipe

Clean Flat

Figure 2.10: WBS subdivides the tasks in the smallest possible deliverable. (based on Lewis (2007))

This figure already assigns codes to the entities. For example, ’Clean Room’ belongs to the

code ’CR’. All sub-elements use this code and add their own code corresponding to the level.

This concept introduces two benefits. Firstly, the codes are unique and, secondly, they can

identify parent entities in a Work Breakdown Structure as the code comprises the codes of

the parent entities. For example, code ’CR.1.2’ implies that its parent is ’CR.1’, and ’CR’

represents its root.

2.6.2 Usage in AEC industry

Uniclass bases on WBS codes. Uniclass subdivides into twelve categories, such as ’Products’,

’Systems’, or ’Tools and Equipment’. Each of them defines several root elements and sub-

elements. For example, Uniclass defines the term ’Stairs’ and assigns it to the code ’EF 35 10’.

This code concludes that

- ’EF 35 10’ is a sub-element of ’EF 35: Stairs and ramps’.

- ’EF 35’ is a root of the category ’EF: Elements/functions’.

- ’EF 35 10’ is unique. (The NBS, 2015)

2.7. Summary 29

2.7 Summary

ISO 19650-1 (2017) and ISO 19650-2 (2017) establish a concept of managing information

in a BIM project during project delivery and asset management. They introduce three

perspectives in such a project: the view of the owner, the user and the project. Talking

about the project’s perspective, the project delivery team generates information that the

asset owner requires for their Project Information Model (PIM). These are defined in the

Project Information Requirements (PIR). ISO 19650-1 (2017) proposes to use a generic set of

PIR for repeat clients. Similar to this, chapter 5.2 describes a data model to specify a generic

set of Exchange Information Requirements (EIR). EIR contain requirements the appointed

party has to provide for an exchange scenario.

ISO 19650-2 (2017) regulates how the project team shall carry out information management.

Therefore, it introduces three delivery plans defining responsibilities and tasks for different

stakeholders. Here, they differentiate between the appointing party, the lead-appointed party,

and the appointed parties. The appointed parties summarise their tasks and deliverables

in a Task Information Delivery Plan (TIDP). The lead-appointed party creates a Master

Information Delivery Plan (MIDP) from it and informs appointed parties to adapt their MIDP

to potential changes. The MIDP is part of the post-appointment BIM Project Execution

Plan (BEP). This plan finally rules information management and exchange to achieve defined

BIM goals. Hence, it implements EIR for each data exchange scenario.

The IFC standard is the only open-based and license-free standard. After initially missing

acceptance, plenty of software vendors implement this standard for information exchange

nowadays. The IFC schema, however, is manifold and complex. Thus, buildingSMART

introduced MVDs. They define a subset of the overall schema, depending on exchange re-

quirements. The mvdXML converts MVDs into a technical format. Moreover, mvdXML

allows validating models whether they correspond to the MVD or not. mvdXML bases on

the XML, which enables exchanging data platform-independently.

This work aims at defining information requirements on data models. Hence, the work relies

on the concept of MVDs. Moreover, section 3.1 tests how to use mvdXML to validate IFC

documents, and section 5.2 introduces how to structure information requirements. For this

chapter, WBS come into play. They provide an opportunity to structure deliverables and

assign unique identifiers to them. Besides this, appointed parties may not provide the data

they have agreed on in the BEP. In this case, the appointing party can communicate the

missing information using the BIM Collaboration Format (BCF).

30

Chapter 3

Current Situation

Information management in BIM projects divides into two aspects: define information re-

quirements and validate if a BIM model implements the required information. This chapter

investigates existing approaches for both. Firstly, it describes the process of creating in-

formation requirements and checking models if they apply to them. Secondly, the chapter

illustrates how to use BimQ for defining information requirements.

3.1 Ifc Validation Based on MvdXML

Figure 3.1 indicates how to validate the information contained in an IFC model using

mvdXML. Firstly, the appointed party identifies relevant information requirements (EIR)

and derives an mvdXML document. Once the project starts, they send EIR to the appointed

party who incorporate the required information to their BIM model. After that, they send

the model to the appointing party. The recipient validates the model by using the mvdXML

file. If some information is missing, the appointed party must revise their model. To sum

up, this process divides into three tasks:

- Identify information requirements

- Derive mvdXML document from the EIR

- Validate 3D model using mvdXML

The next sections explain the process shown in figure 3.1 by applying it to a simplified

scenario.

3.1. Ifc Validation Based on MvdXML 31

Figure 3.1: How to use mvdXML for model validation in a BIM project. (based on Speiser (2019))

Component Type: Wall
Property Example Value

Thickness 0.14m
Material Concrete
Fire Resistance Class REI45
Level 0
LoadBearing true

Property Example Value

Strength C30/37
Production Method prefabricated
Exposure Class XC4

Table 3.1: All external walls must define the properties in the table to the left. If the component’s
’Material’ equals ’Concrete’ it must also implement the properties in the table to the right.

3.1.1 Identify EIR

In this shortened example, all elements of type ’Wall’ must define the properties shown in

table 3.1. If their material is concrete, they have to implement information about their

strength, production method, and exposure class.

3.1.2 Derive the MvdXml Document

Section 2.4.3 describes the mvdXLM schema providing several options for model validation.

This section compares two options structuring the XML tags introduced in section 2.4.4 in a

way that allows mvdXML to validate IFC models. Both options must implement the Con-

ceptTemplates to retrieve data from the IFC model. Listing 2.4 shows one of three Concept

templates. The three templates enable accessing property sets and properties, as well as

retrieving property values from individual elements. Besides this, both options define Con-

ceptRoots, including Applicability and Concepts. These elements differ in both approaches.

While the first one implements strict applicability the second option bases on strict hierarchy.

3.1. Ifc Validation Based on MvdXML 32

1 <ConceptRoot uuid=”0 e93f597−f5e1 −475b−87a7−eb007993a50d” name=” Al l External
Walls ” app l i cab l eRootEnt i ty=” I fcElement ”>

2 <A p p l i c a b i l i t y>
3 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ” />
4 <TemplateRules operator=”and”>
5 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ Mater ia l ’ AND O PSingleValue [Value]= ’
Concrete ’ ”/>

6 </TemplateRules>
7 </ A p p l i c a b i l i t y>
8 <Concepts>
9 <Concept uuid=”983ddc5d−c0c8−47c9−8491−97add7677140” name=”

Mater i a l :Concre t e ”>
10 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ”/>
11 <Requirements>
12 <Requirement a p p l i c a b i l i t y=” export ” exchangeRequirement=”

ae70f764 −938b−4cf7−9814−c29a47f56b0e ” requirement=”
mandatory”/>

13 </ Requirements>
14 <TemplateRules operator =”and”>
15 < !−− Check i f exposure c l a s s , s t r ength and product ion

method e x i s t−−>
16 </TemplateRules>
17 </Concept>
18 </Concepts>
19 </ConceptRoot>

Listing 3.1: Strict Applicability: The Applicability ensures that the concept only applies to elements
defining the material ’Concrete’. The Concept checks if these components implement the required
information (replaced by a comment). Annex A shows the full ConceptRoot.

3.1.2.1 Option 1: Strict Applicability

Strict applicability means that a Concept only applies to instances of the IFC model that

satisfy previous requirements. It also implies that the hierarchy is flat and flexible. In other

words, the Applicability tag of the ConceptRoot lists all prior information requirements, and

the Concepts list the actual information to be tested. Hence, every property that requires

further attributes implements one ConceptRoot entity.

In context with the previously developed information requirements (table 3.1), the derived

mvdXML comprises two ConceptRoots. ConceptRoot A applies to all elements of type ’Wall’

and checks if they implement the properties shown in the left list of table 3.1. ConceptRoot

B only applies to all elements whose material property equals ’Concrete’ and checks the

existence of the right part of table 3.1.

The Applicability tag of ConceptRoot A defines that exclusively elements that implement

the property ’Component Type’ with the value ’Wall’ are applicable for the Concepts of this

ConceptRoot. Besides this, ConceptRoot A defines one Concept that comprises five Tem-

plateRules. These rules make sure that all five required properties exist in every applicable

element.

3.1. Ifc Validation Based on MvdXML 33

1 <Concept uuid=”983ddc5d−c0c8−47c9−8491−97add7677139” name=” Al l Elements”>
2 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ”/>
3 <Requirements>
4 <Requirement a p p l i c a b i l i t y=” export ” exchangeRequirement=” ae70f764

−938b−4cf7−9814−c29a47f56b0e ” requirement=”mandatory”/>
5 </ Requirements>
6 <TemplateRules operator=”and”>
7 < !−−Val idate that ComponentType i s s e t to wa l l−−>
8 <TemplateRules operator=”and”>
9 < !−−Check i f th i cknes s , f i r e rat ing , l oadbear ing and l e v e l

p r o p e r t i e s e x i s t−−>
10 <TemplateRules operator=” or ”>
11 <TemplateRules operator=”and”>
12 < !−−Check i f mate r i a l e x i s t s−−>
13 </TemplateRules>
14 <TemplateRules operator =”and”>
15 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’

AND O PName [Value]= ’ Mater ia l ’ AND O PSingleValue [
Value]= ’ Concrete ’ ”/>

16 < !−−Check i f Strength , Production Method and Exposure
Class Exi s t−−>

17 </TemplateRules>
18 </TemplateRules>
19 </TemplateRules>
20 </TemplateRules>
21 </Concept>

Listing 3.2: Strict hierarchy: One Concept tests all requirements. Hence, the TemplateRules com-
prise all conditions and the Applicability becomes empty.

Listing 3.1 shows ConceptRoot B in a simplified version. It structures similar to ConceptRoot

A. The Applicability rules that the Concept only applies to element defining the material

’Concrete’ (line 2-7) and the Concept tests (line 14-16) if these elements implement the

properties ’Strength’, ’Production Method’ and ’Exposure Class’. The Concept only returns

true if an element passes all TemplateRules. The TemplateRules themselves were replaced by

a comment to show the structure more lucid. Please look at appendix A to find the whole

ConceptRoot A (listing A.1) and and ConceptRoot B (listing A.2).

3.1.2.2 Option 2: Strict Hierarchy

While strict applicability entails flexible hierarchy, strict hierarchy entails flexible applica-

bility. The approach of strict hierarchy implies that one Concept applies to all elements,

and the concept itself determines if the component is applicable or not. In other words, the

Applicability tag of the ConceptRoot does not restrict to which elements the Concepts apply,

and the Concept entity itself regulates that by defining TemplateRules hierarchically.

In context with the previously developed information requirements (table 3.1), the derived

mvdXML comprises one ConceptRoot defining one Applicability and one Concept. This Con-

3.1. Ifc Validation Based on MvdXML 34

Figure 3.2: Validation of the model. Left: Option 1. Right: Option 2. Green implies that the
concept has passed, blue that the concept is not applicable for this element.

ceptRoot applies to all elements. Hence, the Applicability does not restrict the selection. The

Concept lists all further requirements hierarchically.

Listing 3.2 shows an excerpt from the mvdXML of option 2. The first TemplateRule of the

Concept tests if the current element implements ’Wall’ for the property ’Component Type’

(line 7). If not, the concept has failed and the validation stops. For the elements that passed

the first rule, line 9 tests the next level properties (table 3.1 left). As there are further

requirements on all element defining concrete as their material, the Concept introduces a

third level (lines 15 and 16).

3.1.3 Validation Using XBim Xplorer

The open-source software xBim Xplorer implements functionalities to validate an IFC model

using an mvdXML file. The tested model (figure 3.3) consists of two walls with different

properties; a concrete wall, and a masonry wall. The XbimXplorer tool applies the rules

defined in the mvdXML to the model and graphically indicates if elements comply with them.

Figure 3.2 compares the results of both options. The significant difference is that option 1

defines multiple Concepts. Therefore, it is easier to identify error sources. Option 2, however,

only returns one passed/failed for every component. For MVDs with deep hierarchies, it is

more complex to determine what exact information is missing.

3.1.4 Conclusion

Table 3.2 overviews the advantages and disadvantages of the two options. Strict applicability

primarily stands out with the simple structure of the Concept elements. However, the rules

mainly move to the Applicability element. The Applicability tag is empty for strict hierarchy.

Thus, the Concept defines all rules. While the Applicability tag is simple, the Concept

becomes complex.

3.1. Ifc Validation Based on MvdXML 35

Figure 3.3: Two walls defining different properties.

The complexity of the Applicability and Concept tags primarily depends on two indicators:

the depth of the hierarchy and the number of properties. While the strict applicability is

simple for one or two levels, the strict hierarchy approach starts being simple for higher levels.

Finally, strict hierarchy files follow straight-forward rules. Thus, an algorithm can read and

create these files with ease. For strict applicability, however, the algorithm requires referenced

objects and may lose consistency. The last issue represents the reason why the author has

decided to use the approach of strict hierarchy in context with this work.

Strict applicability Strict hierarchy

ConceptRoot One for every property One in total
Concept Simple Concepts One complex Concept

Applicability Complex Applicability for
deep hierarchy

No Applicability

Simple Applicability for low
hierarchy

Algorithm Complex to read and create Simple to read and write
Validation Uniquely possible Only one error for every

component

Table 3.2: Comparison of both options regarding structure, complexity, readability, and usage.

3.2. Information Requirements with BimQ 36

3.2 Information Requirements with BimQ

BimQ is a web-based software application designed by AEC3 supporting clients to define

their Exchange Information Requirements (EIR). It covers the process from the previous

section. Here, the user creates information requirements for components depending on the

project stage and the BIM Use. Moreover, project roles determine what party must deliver

what information. Lastly, BimQ exports mvdXML document defining all the requirements

on an IFC model. These requirements depend on the project role, project stage, and the

BIM Use. This chapter summarises the workflow of BimQ and visualises how to use this for

defining information requirements. The goal is to create an mvdXML document that can

validate IFC models. (AEC3, 2020a)

3.2.1 Functionalities

A project in BimQ comprises three components: actors, project phases and use cases. All

three define a name, code and description. The user is flexible in defining them. Thus,

language or country-specific regulations do not limit the software. After defining the com-

ponents, the user can assign use cases to project phases by using one-to-many relationships.

Thus, one project phase references multiples use cases. This is helpful because one use case

may occur during various project phases. Each relationship represents one exchange scenario

that can implement information requirements. However, before defining requirements, BimQ

asks to create the model components. (AEC3, 2020d)

BimQ enables the user to create their model components. The software tool does not restrict

how to structure them. In their project template, they distinguish in domain-specific models,

model elements, and properties. Multiple model elements are not strictly necessary. It is also

possible to save all entities in one category. However, structuring them by categories eases

filtering. Each model component can reference an IFC entity. For example, the user can

define a property ’m12p1’ and assign that to the property ’Material’. (AEC3, 2020c)

After creating all model elements, the user can define relationships between entities. For

example, they can assign properties to components and components to models. From these

relationships, BimQ derives hierarchically structured requirements. Hence, the final result

is a tree. In this tree, the user can assign the elements to exchange scenarios. From this

selection, the user can derive mvdXML files for one or multiple exchange scenarios. These

files support model validation. (AEC3, 2020b)

3.2. Information Requirements with BimQ 37

Figure 3.4: Requirements view: BimQ can structure elements hierarchically. The user can define
codes and assign IFC entities. In the three columns to the right, the user allocates the elements to
exchange scenarios.

3.2.2 Example

The following example pictures the usage of BimQ by applying it to a case. For the BIM Use

Cost Estimation in the Conceptual Phase, the asset owner defines information requirements.

Therefore, they create one element ’ModelElement’, structuring all information requirements

hierarchically. The owner also assigns the entities to IFC classes. Figure 3.4 shows the

outcome.

All elements of type ’IfcProduct’ must implement a ’Component Type’ property in the

’Pset Shell’ property set. The component type can either have the value ’Wall’, ’Slab’ or

’Column’. Moreover, every wall requires to define the attribute ’Thickness’.

After creating the requirements, the owner can derive an mvdXML file for model validation.

This document saves the requirements in the ConceptRoot entities. What the figure already

indicates with the red warning, confirms looking at the mvdXML file. The generated file does

not structure the rules hierarchically. Even though the user interface shows the tree view, the

mvdXML export creates one Concept for each property. And this Concept does not define

further restrictions regarding the applicability. Hence, the Concepts apply to more elements

than they should. Figure 3.5 visualises this problem.

The model comprises four elements: A wall, a slab, stairs and a column. The column im-

plements the ’ComponentType’ property with the value ’Column’. Defining this property

represents the only requirement for the element. However, as BimQ does not export the hier-

archical structure, the mvdXML also requires the column to define the ’Thickness’ property.

Hence, the mvdXML returns a failed Concept, although the element does comply with all

requirements. This may evoke multiple issues.

3.3. Summary 38

Figure 3.5: Checking the model with the xBim Xplorer visualises the problem: the column only re-
quires to implement its component type (green). However, the mvdXML also requires it to implement
a thickness (blue).

3.2.3 Conclusion

BimQ is a powerful tool to define information requirements. Using the software, in the way

the vendor recommends, does not raise problems. Particularly, the flexibility to create model

elements seems convincing. Its functionalities, however, do not cover the requirements for this

work. The fact that BimQ does not export defined hierarchies represents the primary issue.

Besides this, the author struggled with intense server problems while creating or deleting

elements. Especially the latter seems to cause exceptions and errors as created properties

dis- and reappeared continuously.

BimQ is a commercial software application. However, the author intends to develop a fully

open-based approach using license-free standards such as mvdXML. Thus, BimQ does not

comply with the author’s vision. For that reason establishes chapter 5.2 a data model defining

information requirement hierarchically. The introduced model supports exporting mvdXML

files that include the hierarchy and fully validate IFC models.

3.3 Summary

mvdXML is a convincing standard for model validation. It firstly helps a user to define

information requirements and, secondly, validates BIM models. In between, the project

participants create their models and provide the information. The previous chapter has shown

two approaches to define information requirements using mvdXML. Strict applicability entails

a flexible hierarchy, while a strict hierarchy entails flexible applicability. Both concepts have

their benefits. The main advantage of the strict hierarchy represents the straight-forward

structure of the rules. Thus, an algorithm can read and create these files easily. For that

3.3. Summary 39

reason, the author has chosen to follow this approach in the upcoming chapters. Specifically,

section 5.2 provides a data model that derives mvdXML files supporting the ’strict hierarchy’

concepts.

BimQ supports asset owners to define their information requirements. With this, the user

can create project actors, phases, and use cases and derive exchange scenarios. For each

scenario, the owner can define information requirements and extract them as mvdXML files.

These documents validate BIM models. Hence, the software provides a cohesive approach

from defining requirements to model validation. However, using the tool for specific needs

limits its usage. The author could not apply the functionalities to the given problem. In

particular, the model does not export mvdXML files hierarchically.

40

Chapter 4

Enrich-IFC-Approach

The previous chapters provide the necessary background information to understand the prob-

lem. Besides this, they introduced current solutions and identified lacks. After that, the fol-

lowing chapter proposes the Enrich-IFC-approach to close the described gaps. This approach

separates into two major aspects: the definitions of information requirements, and the enrich-

ment of IFC models by translating given data. However, before introducing the approach,

this chapter overviews the initial state to complete the insight regarding the problem.

4.1 Initial State

The National BIM Standard differentiates BIM projects in three levels. Depending on this

BIM maturity level, the collaboration processes differently (McPartland, 2014). The AEC

industry aims at reaching BIM Level 3. This level implies that project participants work

on the same model at the same time and share data continuously. However, Borrmann

et al. (2018) state, practical experience has shown that level 3 is not yet suitable for several

reasons, e.g., it does not support accountability. Hence, BIM Level 2 is state of the art. Here,

multiple parties work on their models and share them periodically to combine them in one

coordination model. Several guidelines implement this collaborative approach by using the

principle of domain-specific federated models. (Borrmann et al., 2018; Preidel et al., 2018)

The approach based on domain-specific federated models (compare figure 4.1) guarantees

that model authors can only access domain-specific sub-models according to their respon-

sibilities. Those sub-models, called domain-specific models, treat individual topics of the

overall federated model. Hence, in the federated-model-approach, project participants cre-

ate and maintain their domain-specific models exclusively and share them periodically. This

evolves in a tremendous number of data-transition points that the project participants need

to coordinate for assuring validity and consistency. (Preidel et al., 2018)

4.1. Initial State 41

MODEL CREATION BY RESPECTIVE MODEL AUTHORS

DISCIPLINE 1 DISCIPLINE 2 DISCIPLINE 3

MODEL COORDINATION

MODELS ARE FROZEN AND RELEASED

FEDERATED
MODEL

DISCIPLINE 3DISCIPLINE 2

DISCIPLINE 1

QUALITY CHECKS

QUALITY CHECKS

Figure 4.1: Principle of the federated model approach: Authors create domain-specific sub-models
independently while coordinating them continuously. (based on (BCA Singapore, 2013))

Transferring the data from one party to another is called exchange scenario. The BEP

regulates these scenarios. Each exchange scenario implements EIR, where the receiver of

information (appointing party) defines what the provider of information (appointed party)

must deliver (Borrmann et al., 2018; Zhang et al., 2013). Appointing parties and appointed

parties require specific information and unite this in the EIR. The EIR, however, does not

determine what form and syntax an appointed party must provide the data in. It is not yet

common to agree on labelling and structuring standards.

For instance, Die Deutsche Bauindustrie (2018) published EIR defining requirements on se-

veral components. Table 4.1 shows an excerpt from the document. The document does not

define the labelling conventions of information. However, automated processes require this

to interpret the data. Besides this, a wooden beam does, for example, not have properties

like ’Exposition Class’ or ’Reinforcement Ratio’. Rather than that, the wooden beam may

require information about the tensile strength. This receives special attention when it comes

to model validation: How can an algorithm check whether a component must implement

specific properties or not?

To sum up, there are two issues. (1) How to structure information requirements in a way that

enables proper for model validation. (2) How to adapt a model’s information to internal pref-

erences in a way that allows for automatised downstream processes, and validate whether a

model meets the requirements or not. The following sections propose a structure for semantic

information requirements and show how to incorporate them into the regulations developed

by buildingSMART.

4.2. Exchange Requirements and Their Structure 42

Property Example Value

Component Type Beam
Classification Uniclass EF 15 12 2
Height 1.20m
Width 0.30m
Material Concrete
Load Bearing true
Reinforcement Ratio 0.025
Exposure Class XC3
Compressive Strength C25/30
Production Method prefabricated
Fire Resistance Class F90
Visual Quality visual
Level 0
IsExternal false

Table 4.1: Exchange information requirements for a beam. (based on Die Deutsche Bauindustrie
(2018))

4.2 Exchange Requirements and Their Structure

There are two dimensions of requirements for semantic information. The first dimension

demands information to be existent. However, different disciplines may use different terms,

referring to the same information. What an architect may call ’Insulation Factor’, a building

engineer may name ’U-value’, and a product manufacturer may refer to ’Thermal Trans-

mittance’. While all three of them understand that they refer to the same information, a

computer system cannot search, filter, and analyse the data. Thus, the second dimension

introduces how to label information.

To close this gap, buildingSMART (2020b) has developed the bsDD. The bsDD shares a

library of objects and their properties for the AEC industry. It helps to identify objects

and their attributes regardless of language by referring to GUIDs (buildingSMART, 2020a).

Its complexity requires educated users with a high technical understanding (Jönsson, 2015).

This is probably one of the reasons why most companies in the AEC industry do not use the

bsDD. Still, companies define their internal standardisation.

The following sections describe how to unite an internal labelling standard with EIR by

proposing the Internal Model Information Requirements (IMIR) data-model. The primary

motivation of this model is to create an MVD allowing for two activities: Storing information

requirements and labelling requirements, and validating IFC models. Chapter 5.2 explains

the data model itself technically.

4.2. Exchange Requirements and Their Structure 43

BIM Execution
Plan (BEP) defining

several ERs

Information
Requirements

Labelling
Requirements

Organisa-
tional
Level

Project
Level

Data
Exchange

up
da

te
s

Internal
Labelling
Standard

in
fo

rm
s

Generic set of IMIR as template for EIRs

Internal Model Information Requirements (IMIR):
Defines information requirements on a model to

follow internal objectives

Actors

Project team

Appointing party

Appointing
Party

Appointed
Party

ge
ne

ra
te

s

ge
ne

ra
te

s

up
da

te
s

Generic set of
EIRs

Figure 4.2: The appointing party defines information requirements on the project level and labelling
requirements on an organisational level. Moreover, the IMIR functions as a source to create a generic
set of IMIRs on the organisational level.

4.2.1 Overview

The BEP defines information deliverables for each party in a project. Therefore, the BEP

covers the first dimension: Information Requirements. Besides this, it is highly recommended

for every stakeholder to implement their internal labelling standard at least for, but not lim-

ited to, documents, component types, properties and property values (dimension 2: Labelling

Requirements). Both dimensions occur on three levels of information management: the or-

ganisational level, the project level, and the level of data exchange. Figure 4.2 illustrates the

role of IMIR throughout these levels.

The receiver of information (appointing party) maintains an internal labelling standard on

the organisational level. This standard regulates how to name and structure properties and

property values in BIM models. As the appointing party cannot demand other parties to

label information explicitly, this standard only applies to internal processes. Additionally,

the appointing party defines a generic set of information requirements for specific BIM Uses

and exchange scenarios on the organisational level. This set evolves from earlier projects and

functions as a source for the BEP on the project level.

The project level conflates task teams into the project team. Project participants agree on a

BEP (compare section 2.3.2.2), and the appointing party assures that the BEP implements

their Exchange Information Requirements (EIR).

Finally, both, the EIR from the project level and the internal labelling convention from the

organisational level, generate the Internal Model Information Requirements (IMIR) for every

4.2. Exchange Requirements and Their Structure 44

exchange scenario on the data exchange level. The IMIR extends the required information

by the second dimension: how to label information. The appointing party can update their

database on the organisational level from the latest experiences after each data exchange.

The internal labelling standard is, in context with section 2.3.2.1, part of the Organisational

Information Requirements (OIR), and the IMIR specifies EIR. Figure 4.2 illustrates this

concept highlighting that the appointing party should develop a collection of IMIRs for all

their repeat exchange scenarios (ISO 19650-1, 2017).

The following example illustrates the situation: The appointed party sends an architectural

BIM model to the appointing party for QTO. The appointing party has defined a generic set

of IMIRs. These depend on the exchange scenario. One of them regulates the information re-

quirements for QTO. Hence, the appointing party incorporates the information requirements

(not the labelling) from their IMIR into the BEP. After the appointed party created the

model, they issue it to the appointing party, who can now add the internal labelling standard

to the information and verify whether the model meets the requirements or not.

For instance, the appointing party requires all components of the model to define their type.

They incorporate this into the BEP. Additionally, the appointing party has their internal

labelling standard, ruling that every component of the model must contain a property ’Com-

ponent Type’ specifying values such as ’Wall’, ’Slab’, or ’Column’. The appointed party does

not need to use these terms. After sharing the model, the appointing party can use the IMIR

to check the model.

To sum up, IMIR rules the naming of information while EIR only specifies the required

information.

4.2.2 Requirements on the Structure of the EIR

The previous paragraphs described the motivation of developing a new data model to store

EIR. This data model must meet certain criteria for reasonable usage. These criteria arise

from the use cases the model must cover: Firstly, it shall store requirements in a way that

the user can edit and maintain it easily. Secondly, EIR validate BIM models. The following

sections highlight these criteria.

4.2.2.1 Hierarchical Structure for Model Validation

Current EIRs list required properties. This does not suffice for achieving BIM goals. Different

attributes request different information depending on other properties. As already mentioned,

a wooden beam requires different information compared to a steel beam or a concrete beam.

4.2. Exchange Requirements and Their Structure 45

Thus, a hierarchical structure can represent requirements better than a list, which becomes

significant when it comes to model validation.

For model validation, an algorithm needs to know what information which elements of the

BIM model require. Current ERs, however, list them by component type. These component

types mainly depend on other properties. Hence, the algorithm does not have a clear starting

point.

For example, the EIR define the component types, wall and drywall. Each of them requires

specific information. Model validation checks if components of theses types meet the require-

ments. However, an algorithm cannot evaluate which element has the type of wall or drywall

without assigning it beforehand. Hence, finding an algorithm without using machine learning

or artificial intelligence technologies is difficult.

IFC tries to solve this problem by using IfcExpressTypes. The algorithm may use these to

start validating. Applying it to the previous example, however, underlines that this does not

suffice: both, wall and drywall, are types of IfcWall requiring different information. Hence,

the first level of the EIR must also represent a property. This property determines what

further information is relevant, depending on the value of the initial property.

For instance, the first level is a component type. This property allows different values such as

slab, external wall, or internal wall. Each of them requires further information. The slab, for

example, needs to define the thickness, material, and fire rating. Each property defines valid

values. And again, each value may require more information,e.g., the material ’concrete’ has

a certain compressive strength.

The example shows that it is essential to structure information requirements hierarchically.

The hierarchy starts with a property on the first level and defines several property values.

Values can require further properties defining, again, property values requiring properties.

This may continue infinitely.

4.2.2.2 Requirements on Flexible Maintenance

Same properties may characterise different objects within the same model. For instance, all

materials have a density, no matter whether it is ’steel’ or ’concrete’. It requires more effort

to maintain a labelling standard storing the same information repeatedly. Hence, informa-

tion requirements should base on references: The property itself exists once and multiple

properties of higher hierarchy reference to it (compare section 4.2.2.3), which complicates the

creating of unique identifiers using WBS codes.

4.2. Exchange Requirements and Their Structure 46

tree_Example

1 Component
Type

1
component_type

1 drywall 2 structural_wall

3 material
1

acoustic_insulati
on

2 thickness

1. component type
1.1. drywall

1.1.1. acoustic insulation
1.1.2. thickness
1.1.3. material

1.2. structural wall
1.2.2. thickness
1.2.3. material

Figure 4.3: The figure (left) shows the structure of the data model based on references. Deriving a
tree from that creates the WBS codes (right).

Section 2.6 described the concept of WBS. Information requirements represent information

deliverables. Thus, the WBS concept also applies to the requirements structure. Exchange

requirements shall use this concept to create unique identifiers using WBS codes. These codes

ease maintaining the information as every entity refers to the code, not to a value or a word.

The IMIR concept must enable both a reference-based data model and unique WBS codes.

For this reason, every entity receives its code as an integer on a level basis. From that,

the data model derives the unique codes by following entities’ parents up to the root. The

example in the following section explains this in detail.

4.2.2.3 Apply Concepts to an Example

To sum up, exchange requirements need to meet three criteria:

1. Structure hierarchically

2. Base on references

3. Introduce codes as unique identifiers

Figure 4.3 applies these concepts to two types of components. While drywalls require three

properties - the acoustic insulation, thickness, and material - structural walls only need

information about the material and thickness. Thus, thickness and material reference to

both values: ’drywall’ and ’structural wall’. Each entity receives a number as its code. After

generating a tree from these requirements (figure 4.3 r.), each object of the tree has a unique

identifier by combining the code of each parent-node from the data model. In this example,

the WBS code of thickness is ’1.1.2’ or ’1.2.2’. Still, both of them are unique and always

refer to the same entity. This only applies if the model does not comprise the same codes on

the same level. Besides this, knowing the code ’1.1.2’ implies that the property ’thickness’

belongs to the property value ’drywall’ of the property ’component’.

4.2. Exchange Requirements and Their Structure 47

4.2.3 Convert into MVD

In context with this work, EIR aim at (1) storing information requirements and (2) checking

whether an IFC model meets the requirements or not. Both objectives were the purpose of

developing the mvdXML specification for documentation and validation, respectively (Chip-

man et al., 2016). This section describes how to unite both. Hence, the author introduces

how to incorporate the structure described above into the mvdXML standard.

IMIR store information requirements. Therefore, an IMIR shall derive mvdXML files for

better interoperability. These files cover the following criteria:

- Store information requirements in a hierarchy

- Store the WBS code of the entities

- Validate IFC models

Section 3.1.2 describes two options for storing information requirements in an mvdXML file for

validation. The first option proposes to create one ConceptRoot for every required property.

The ConceptRoot determines in the Applicability tag what element of the BIM model this

concept applies to. In the Concept tags, it then adds the rules: either that a value has to be

existent or that property needs to specify a particular value. This option allows for saving

the WBS code of the property in the ConceptRoot ’s ’code’ attribute and the property values’

WBS codes in the Description attribute of the TemplateRule tag. The second option defines

one ConceptRoot element. The root comprises all information requirements in the Concept

tags, and the Description attribute of the TemplateRules stores the WBS codes.

Both variants do not support storing information requirements based on references. The first

option is more complex and produces longer mvdXML files. For that reason, the IMIR model

exports mvdXML files using the second option.

4.2.4 Summary

The previous sections described the core functionalities of the IMIR model. This model must

enable the following activities:

- Store information requirements hierarchically

- Store information based on references

- Create WBS codes for all entities of the model

- Derive MVDs in the form of mvdXML files

4.3. Enrich-IFC-Model 48
Overall_Process

O
ve

ra
ll

Pr
oc

es
s

Ap
po

in
tin

g
Pa

rt
y

D
at

ab
as

e
Appointing Party - Database

Assigned
Values
[.xml]

Internal
Information

Requirements
[.mvdXML]

Internal
Model

[.fc]

Appointing Party

Prepare Complete
Add information

of IMIR to Bim
model

Validate
Valid?

Start End

Assign Values

Review

Ap
po

in
te

d
Pa

rt
y

Appointed Party

External
Model
[.ifc]

Errors
[.bcf]

Include missing
information

Yes

Figure 4.4: Overall process to enrich an IFC model.

4.3 Enrich-IFC-Model

After defining the internal information requirements in an MVD, the next section explains

how to enrich an externally created IFC model with this MVD. This section relates to

the conceptual process of enriching the model, while chapter 5.3 describes the technical

implementation by proposing the Enrich-IFC-model.

Figure 4.4 shows the overall process. Two parties act: the appointed party (provides infor-

mation) and the appointing party (receives the data). Any party of the project team, such as

engineers, contractors, architects, or clients, can take both roles. Hence, it is not significant

which role they represent. However, the process demands the following conditions:

- The project delivery team agreed on a BEP and an open-based collaboration.

- The appointing party developed their internal information requirements and derived an

MVD. The MVD must define a WBS code for each property/property value.

- The appointing party does not aim at adjusting or evaluating the geometry of the

model.

- The appointing party received the BIM model from the appointed party.

4.3. Enrich-IFC-Model 49Prepare

Pr
ep

ar
e

Start Prepare

Read
information from

the external
model

External
Model
[.ifc]

Read internal
information

requirements

Internal
Information

Requirements
[.mvdXML]

End

Figure 4.5: Preparing the process requires two steps: reading the information from the external
BIM model and reading the information requirements from the MVD.

In the beginning, the appointing party receives a BIM model, which triggers the process.

Then, the user executes the steps to prepare the data model. After that, an algorithm adds

the information requirements to the BIM model and validates it. If the model is valid, the

process completes by exporting the enriched IFC model. However, if the model is not valid the

user must review the errors. The following sections describe these activities more precisely.

4.3.1 Prepare

Receiving a BIM model triggers the process for the appointing party. In the first task, they

prepare the information. Figure 4.5 illustrates the two steps: reading the information from

the external model and reading the information and labelling requirements from the MVD.

Applying the process in an open-based environment suggests using the IFC standard for the

BIM model and the mvdXML standards for the MVD.

Reading the information requirements creates a database containing all entities of the MVD.

These can either be properties or property values. For instance, the MVD requires a slab

to implement the property ’thickness’. Besides this, a slab requires defining a specific value

for the material, ’concrete’. Hence, ’concrete’ represents a property value. For adding these

requirements to the IFC model, both, property and property value, need to define, an IfcEx-

pressType, a WBS code and the property set they belong to. As this code specifies a unique

identifier, there is no need to store the entries from the MVD hierarchically. A database

stores all requirements in an unordered list where data can be queried from, using the WBS

code. Chapter 5.3 explains this concept.

Reading the information from the BIM model, stores all property values of that model in an

unstructured database. It assures that no value exists multiple times. Each entry comprises

the IfcExpressType, the name of the property set, the name of the property, and the property

value.

4.3. Enrich-IFC-Model 50Propertyzuordnung durchführen

As
si

gn
 V

al
ue

s

Assign Values

Start

Assigned
values before?

Read Assigned
Values

Assigned
Values
[.xml]

End

ExpressType left?

Choose
IfcExpressType

Requires Information?

Select EIR
Property

Defines
Values?

Find
corresponding

IFC property

Select EIR
Propery Value

Find
corresponding

IFC property
value

All Values
assigned?

Yes

Ye
s

No

No

Ye
s

No

No

N
o

Yes

Figure 4.6: Process to assign values from the information requirements model to the IFC model.

4.3.2 Entity-Relationships

The second sub-process explains how to create relationships between entities of the Enrich-

IFC-model. It can assign information requirements defined in the EIR to properties and

property values from the IFC document. The users can filter and search for values of both

models and assign them to each other, either properties to properties or values to values. The

model then stores the assigned values as value tuples. These tuples consist of a property or

property value from the BIM model and a property or property value from the MVD. Each

tuple supplements information to the external IFC document according to the MVD. Each

value tuple expresses that if the IFC model defines a particular property or property value,

algorithm 1 shall add the assigned property or property value of the MVD to the IFC model.

For example, the value tuple ’IfcValue, MvdValue’ requests that every element of the BIM

model defining the value ’IfcValue’ shall also define ’MvdValue’.

The model can save and export the assigned value tuples as the user does not want to start

from scratch for every data drop during the project. As the provider of the IFC model follows

their labelling standards, they will not change the labelling of the information. This may

also be useful if they work together in future projects. Exporting assigned tuples does not

store the entity of the MVD itself, but only the WBS code for more flexibility. For instance,

in the first data exchange, the IMIR requires to label a property ’thickness’ and assigns it to

4.3. Enrich-IFC-Model 51

Property Value

Component
Type

Girder

Structural Ma-
terial

Concrete
C30/37

IfcExpressType IfcBeam

Width 0.20m

Required Property Required Values

Component Type ’Beam’ ’Slab’
’Window’

Material ’Concrete’ ’Tim-
ber’

Strength ’C20/25’ ’C30/37’

Thickness EXISTS

Table 4.2: The left table lists the properties of the IFC element and the right table represents the
required information from the MVD.

the IFC property ’width’. In the next data exchange, the appointing party decided to name

it ’width’. As the code has not changed, algorithm 1 still adds the information correctly.

Figure 4.6 illustrates the approach for assigning the values. If the appointing party has never

worked with the appointed party, and this is the first data exchange in the project, the

appointing party has to start from scratch. If one of the previous conditions is wrong, the

user can import the assigned values of earlier projects or data exchanges and skip the rest of

this step. In the other case, they have to follow the iterative tasks to ensure that the user does

not forget about any required information. The author suggests selecting an IfcExpressType

from the BIM model. For this type, the user now tries to assign all defined information.

Therefore, they choose a property from the MVD and check whether this property requires

a particular value or only requires to be existent. For the latter, they look for the property

in the BIM model and assign both. Then, the algorithm adds the MVD property of the IFC

model and assigns the value from the IFC model to it. If the property requires specific values,

however, the user must identify the values of the BIM model and assign these.

Table 4.2 illustrates an example. An IFC element implements four properties: ’Compo-

nent Type’, ’Material’, ’IfcExpressType’ and ’Thickness’. The process starts by selecting

the IfcExpressType ’IfcBeam’. After that, the user looks at the information requirements.

They define that the element must implement the properties ’Component Type’, ’Material’,

Strength’ and ’Thickness’. Hence, the user assigns ’Beam’ to ’Girder’. By that, the element

obtains another property. It specifies ’Component Type’ with the value ’Beam’. Besides

this, the ’Structural Material’ attribute of the IFC object defines two required properties:

’Material’ and ’Strength’. Thus, both values can be assigned to this property. Finally, the

’Width’ property of the elements corresponds to the required property ’Thickness’. Table 4.3

lists the final value tuples.

While the first three entities assign property values to property values, the last one assigns a

property to a property. This is possible as the MVD does not require certain values for this

attribute. Algorithm 1 can now select the required property ’Thickness’ from the MVD and

add the property value ’0.20m’ from the IFC model.

4.3. Enrich-IFC-Model 52

IFC information Required information

Value Component Type: Girder Component Type: Beam
Value Structural Material: Concrete C30/37 Material: Concrete
Value Structural Material: Concrete C30/37 Strength: C30/37

Property Width Thickness

Table 4.3: The model comprises four relationships: Three value to value relationships and one
property to property relationship. Each relationship implies that the IFC Information matches the
Required Information

4.3.3 Add Information to the Model

After assigning the values, an algorithm adds the information from the MVD to the IFC

model. Algorithm 1 shows the pseudo-code. Calling the function requires the IFC model

(BimModel) and the assigned value tuples (AssignedTuples) as input. Each value tuple

comprises two entities: a property or property value from the IFC model (IfcEntity) and a

property or property value from the MVD (EirEntity). The algorithm iterates for every tuple

through every object of the IFC model (ModelElements) and checks if the objects define a

value for the IFC property (line 7). If this is false, the algorithm continues with the next

object. If it is true, the object also requires the entity from the MVD, the EirEntity. To add

this information, the function firstly determines the type of the EirEntity. There are two

options: property (line 8) or property value (line 10). For both options, the algorithm adds

the property from the EirEntity to the object. However, the property value is different. If the

EirProperty is a property value, the value of the new property is taken from the MVD. This

means that the element now defines a new property with all information from the EirEntity

(property and value). If the EirEntity is a property however, the element now implements a

new property with the property name from the EirEntity, and the property value from the

object itself.

Going back to the previous example in table 4.3 illustrates how algorithm 1 works. The

model contains one beam with the characteristics shown in table 4.2. The AssignedTuples

consist of four pairs: the first pair comprises the EirEntity ’ComponentType Beam’, and the

IfcEntity ’ComponentType: Girder’. As the current element, the beam, defines the IfcEntity

(line 7), the algorithm checks whether the EirEntity is a property or property value. As it

is a value, the object obtains a new property ’Component Type’ and adds the value ’Beam’

from the EirEntity (line 11). The same procedure applies to the second and third tuple. The

fourth, however, is a property. For that reason, the value is not retrieved from the EirEntity

but from the object itself (line 9). Thus, the element obtains a new property ’Thickness’ with

the value ’0.20m’. Table 4.4 shows the properties of the element after adding the required

information using algorithm 1.

4.3. Enrich-IFC-Model 53

Algorithm 1 Adds the assigned values from the exchange requirements to the IFC model
for each value tuple.

1: function AddValue(BimModel,AssignedTuples)
2: for i = 0 : AssignedTuples.Count− 1 do
3: ModelElements← elements from BimModel
4: IfcEntity ← IfcEntity from AssignedTuple[i]
5: EirEntity ← EirEntity from AssignedTuple[i]
6: for k = 0 : ModelElements.Count− 1 do
7: if ModelElements[k] defines IfcEntity then
8: if EirEntity is type of Property then
9: value← PropertyV alue of IfcEntity from ModelElements[k]

10: else if EirEntity is type of PropertyValue then
11: value← V alue from EirEntity
12: end if
13: Add EirEntity to ModelElements[k] and set Value to value
14: end if
15: k + +
16: end for
17: i + +
18: end for
19: end function

Property Value

Component Type Girder
Structural Material Concrete C30/37
IfcExpressType IfcBeam
Width 0.20m
Component Type Beam
Material Concrete
Strength C30/37
Thickness 0.20m

Table 4.4: Final properties of the beam after adding the required information according to existing
information.

4.3. Enrich-IFC-Model 54

Quality

Errors

MVD
(EIR)

BIM Model

Validate

82%

Figure 4.7: Model validation requires the BIM model and MVD as an input. Validating the model
using an algorithm returns the quality of the model and the failed information requirements.

4.3.4 Validate the Information

Starting the next sub-process, the user has already assigned values from the MVD to the

IFC model. However, the user may have missed some properties, or the IFC model does not

contain all the required information. To identify missing information, this step validates the

model and returns errors for each failed requirement. Hence, it aims at:

- Providing an overview of the IFC’s quality: how many conditions are passed/ failed?

- Listing what components fail what requirements.

- Communicating failed requirements with the responsible appointed party.

Figure 4.7 visualises the input and output of this process step. Using the BIM model and the

MVD, the validation shall return the model’s quality and the failed requirements once the

activity has finished. A computer system in the form of an algorithm executes the validation

itself.

Algorithm 2 shows the pseudo-code validating the model. This code comprises two methods.

The primary function requires the BIM model and the EIR as input and returns the quality

of the model. The quality expresses a ratio of failed conditions in comparison to the total

requirements and lists all failures. From this list, the data model can derive BCF files for

issue communication. The main function iterates through all elements of the BIM model.

For each component, it calls the second method (line 5). This method requires the following

four input sources:

4.3. Enrich-IFC-Model 55

Algorithm 2 The method’s input are information requirements in a tree form. From the
root, the function recursively checks for each element of the IFC model, whether conditions
pass or fail. For fulfilled concepts, the algorithm calls itself. It returns a Quality comprising
a passed/failed ratio and an error entity for each failure.

1: function Validate(EirTree, BimModel)
2: AllElements← elements from BimModel
3: Quality . represents the quality of the BimModel
4: for i = 0 : AllElements.Count− 1 do
5: RecursiveValidate(AllElements[i], root,Quality)
6: . callls the validate recursively until a leaf not is reached
7: i + +
8: end forreturn Quality
9: end function

10: function RecursiveValidate(Element, Root, Quality)
11: Errors← Errors from Quality
12: . Set of all errors. Each representing a failed requirement
13: Properties← all properties from Root
14: for k = 0 : Properties.Count− 1 do
15: Quality.RequiredV alues + +
16: if Element defines Properties[k] then
17: . Element defines the property. Does the property require a specific value?
18: if Properties[k] defines PropertyV alues then
19: . Specific value required . test if value os correct
20: for n = 0 : properties[k].P ropertyV alues.Count do
21: if Element defines properties[k].P ropertyV alues[n] then
22: . Value correct
23: Quality.CorrectV alues + +
24: value← properties[k]← PropertyV alue[n]
25: RecursiveValidate(element, value, Quality)
26: . Check if property value requires further properties
27: else Errors.Add()
28: end if
29: n + +
30: end for
31: else
32: Quality.CorrectV alues. + +
33: end if
34: else Errors.Add()
35: end if
36: k + +
37: end for
38: end function

4.3. Enrich-IFC-Model 56

Element : A single element of the BIM model.

Root : An exchange requirement from the MVD. The MVD structures hierar-

chically. The Root also contains all child requirements, including their

child requirements.

Quality : The quality of the model: the Quality changes every time the recursive

validate method is called. To comply with the before mentioned ob-

jectives of this process, the Quality comprises (1) a number of passed

requirements (CorrectValues), (2) the number of total requirements (Re-

quiredValues) and (3) a list of failed requirements with information

about the related building element of the BIM model (Errors)

Calling this method retrieves all properties the Root requires (line13). The current Element

must define all these properties. Hence, the algorithm iterates through those and increments

the RequiredValues (line 15). Then, the code validates whether the Element defines the

property or not. If not, the concept has failed, and the Errors extend by one (line 34). If the

Element defines the property, the code must check whether the MVD requires the property

to be existent or to defines a specific value (line 18). If the value only needs to exist, the

CorrectValues increment (line 32), and the algorithm continues with the next property (line

14). If the MVD requires a specific value, however, the algorithm queries the value options

from the MVD (line 20), and checks if the value of the BIM model matches one of them (line

21). If not, an error is added. If the test passes, the CorrectValues increment. Finally, the

code has to check whether this specific property value requires further information in the

MVD (if it comprises child nodes). If this is the case, the method calls itself recursively; this

time, with the same Element and Quality but with the current property value as Root.

At the end of the validation, the Quality can express the ratio of correct values to the required

information. However, this is not always very precise. For instance, an EIR tree with many

levels cannot estimate the failed conditions in lower levels if a requirement in a higher level

has failed. For example, a wall requires to have a material. If the material has the value

concrete, it needs to implement a strength. The IFC model comprises one wall with no

information about the material. Calling the method in algorithm 1, returns that zero values

are correct, and one value is required. However, the model actually requires two values. This

example shows that these methods approximate the quality. It is not possible to make it

more precise, as the computer system cannot evaluate how the lower levels affect the overall

quality.

The last objective of this step is to communicate issues with the appointed party. The next

section describes how to achieve this.

4.3. Enrich-IFC-Model 57Review

Select Error

Redundant?

Try to assign to
value from IMIR

Errors left

Create BCF and
issue to

responsible third
party

Error.bcf

Successfull

Start Review

End

Add Value to
IMIR

Is the information missing?Update Internal
Standard

No

Ye
s

Ye
s

N
o

Yes

Ye
s

N
o

N
o

Figure 4.8: Process to handle errors in the Enrich-IFC-approach. For external failures, the user can
communicate via BCF.

4.3.5 Review Errors

Validating the model returns a list of failed requirements. These failures can arise from three

reasons:

1. The user has missed out provided information on the IFC model.

2. The internal information requirements do not cover the provided information.

3. The appointed party has not provided the information they agreed on.

The users should now go through every error message and solve them in this order. In the

beginning, the users shall check if they have missed out information in the IFC model. It is

crucial to start with this, as the other errors require more attention to solve. Figuring out

that the users themselves have failed, may frustrate them even more if they have spent time

on other sources. Hence, they should first go through the properties again and identify if

the model stores the information. For example, the MVD requires a component to define the

property ’Component Type’. The external model names this information ’ct’. As it varies,

the user may have missed it.

Secondly, missing information in the MVD can trigger the error. The IFC model implements

the material ’timber’. As the appointing party has only worked in concrete projects, the

internal information requirements may not cover this possibility. Hence, the second option

to solve an error represents editing the MVD. In this case, it means adding ’timber’ to the

4.3. Enrich-IFC-Model 58

Figure 4.9: Finalising the Enrich-IFC-approach stores progress and updates related data.

MVD. Updating the MVD may represent the most sophisticated issue as certain values may

comprise further requirements - ’timber’ requires information such as the tensile strength or

visual quality. This error may mainly occur during the early stages after implementing this

approach.

Lastly, after the appointing party has eliminated error sources (1) and (2), they can com-

municate issues with the appointed party. To do this, the Enrich-IFC data model allows

for BCF export. These files contain the information that the recipient needs to understand

what information the model misses: the component that lacks information, the missing at-

tribute, and the responsible party. The Enrich-IFC-model shall communicate with a BIM

collaboration platform, automatically upload the BCF files and notify the responsible party.

If there are no errors left, the user can progress to the next step. Having errors triggered by

source (3) refuses that. Then, the appointing party has to wait until the appointed party has

incorporated the missing information to restart with the whole process.

4.3.6 Finalise

After reviewing the errors, the model ideally exhibits a quality of 100%. High quality implies

that the BIM model implements the required information for executing the desired down-

stream processes, e.g., Cost Estimation or Structural Analysis. This part of the approach

exports the adapted IFC model that is the source of truth for internal uses.

Additionally, for later data exchanges, the user wants to save all operations. Hence, the user

exports the assigned value tuples from section 4.3.2 in a database, and the adjusted internal

requirements in an MVD. The MVD automatically uploads changes to a server storing the

IMIRs. The server updates the IMIRs according to potential changes. Figure 4.9 illustrates

this concept.

4.4. Summary 59

IMIR-model Enrich-IFC-model

1. Define property sets, proper-
ties and values in a hierarchical
structure

2. Assign properties to multiple
property sets

3. Derive WBS codes for proper-
ties and property values

4. Create MVD in the form of
mvdXML for model validation

1. Read information requirements
from IMIR or mvdXML files
and derive properties and val-
ues including their WBS codes

2. Read IFC documents and store
property sets, properties, and
property values

3. Assign instances of the IFC
model to instances of the infor-
mation requirements

4. Save value tuples by referring to
the WBS codes

5. Create enriched IFC model

6. Validate model and highlight
missing information

7. Communicate missing informa-
tion with the project team via
BCF

Table 4.5: Requirements for the data models to convert the process technically.

4.4 Summary

Currently, information requirements in the form of EIR define in the BEP what information a

party must provide. They neither cover hierarchical requirements nor labelling requirements.

The previous chapter described how to close this gap. The author proposes the IMIR data

model for defining dynamic information requirements in a hierarchical structure and the

Enrich-IFC data model to supplement IFC models with labelling requirements. To finally

validate whether the enriched IFC document complies with the IMIR, the IMIR data model

derives MVD as mvdXML files.

Table 4.5 summarises the findings from the previous chapter and defines requirements on both

data models. Chapter 5.2 explains the technical implementation of the IMIR data model and

chapter 5.3 of the Enrich-IFC data model, respectively.

60

Chapter 5

Data Model Design

The previous chapter has introduced the novel Enrich-IFC-approach. It concluded with

a list of requirements that a data model shall convert. For that reason, the author has

established two data models. Firstly, the IMIR-model for storing and maintaining information

requirements hierarchically and, secondly, the Enrich-IFC-model to translate given data of

an IFC model into the required information of an MVD (or IMIR). The following chapter

introduces both models after overviewing their role within the Enrich-IFC-approach.

IMIR-model

Level 3:
Assigned Tuples

references

IFC

Enrich-IFC-approach

IFC

EIR mvdXML
(tree-from) Level 1: EIR

Level 2: IFC

Extract property values

references

derives reads

Enrich-IFC-model

IFC

Figure 5.1: The roles of the two data models within the Enrich-IFC-approach.

5.1. Overview 61

5.1 Overview

The Enrich-IFC-approach comprises two data models (figure 5.1) that both are implemented

using C#. The first one, the IMIR-model, provides structures and methods to create and

maintain information requirements. These requirements represent an MVD that the model

can convert into an mvdXML file. The derived file contains a hierarchically structured tree

and provides unique identifiers in the form of WBS codes. The second part, the Enrich-IFC-

model imports the hierarchically assembled information requirements into an unstructured

database. Moreover, it allows for the import of IFC models and creates an unordered database

from all its property values. The Enrich-IFC-model generates value tuples. Each tuple

references two objects; one from the IFC data and one from the requirements data. Using

these tuples, the Enrich-IFC-model translates the information from the IFC into the data

from the MVD and derives an enriched IFC file.

5.2 Internal Model Information Requirements

The Internal Model Information Requirements (IMIR) unite information requirements from

the EIR with the labelling requirements from internal standard. Hence, it specifies the ex-

change requirements of an MVD. IMIR aim at creating and maintaining model requirements

according to the BIM goals of a project. Thus, it describes a subset of the IFC schema that

a BIM model must define. As this represents the exact purpose of MVDs, the IMIR-model

proposes to define exchange requirements and export them into mvdXML afterwards. This

approach extends the concept of EIR by also ruling the hierarchy and labelling of information.

5.2.1 Requirements on the Data Model

The previous chapter identified the requirements for the IMIR data model and summarises

them in table 4.5. These requirements introduce the following features, that the proposed

model shall implement.

- Create, edit and maintain requirements triggered by certain property values.

- Create, edit and assign property sets.

- Create properties, add values to properties, and assign properties to property sets.

- Save and export, read and import the data model.

- Derive mvdXML files.

The IMIR model design means to store information requirements. Therefore, it defines the

required properties and potential property values hierarchically. Each property value may,

5.2. Internal Model Information Requirements 62

in turn, trigger another property. However, properties may not request specific values. The

IMIR model also allows requiring certain properties. Properties and property values are

labelling sensitive. To not mix up two instances, each entity obtains a GUID.

5.2.2 IMIR Design

The design adheres to the object-oriented principles to assure high extendibility and flexibility.

It allows structuring property requirements in any hierarchy. This offers to deal flexibly with

different domains, construction types, and software tools. Moreover, the model provides

a way to query information. Figure 5.2 illustrates the four classes that the data model

introduces: PropertyValue, Property, PropertySet, and Requirements. All four classes have a

GUID comprising 36 digits. Hence, the possibility of creating two of the same is low.

PropertyValue is an abstract class providing basic properties and methods for the generic

PropertyValue< T > class. This class allows creating instances with four different data

types for their Value (bool, int, double, string). The data type is defined in the Property

class. A Property may define several PropertyValues, and references one or multiple Proper-

tySets. Through that, the data-model may assign properties to several property sets. Thus,

it reduces the workload of potential changes in single properties. For example, multiple com-

ponent types implement a ’Material’ Property. Now, the user wants to change the name to

’Structural Material’. By referencing multiple PropertySets, the user only needs to change the

name once. The PropertySet class defines multiple instances of type Property, and references

one Requirements. This is a one to one relationship. Every instance of Requirements may

only refer to one instance of PropertySet. An instance of type PropertyValue may trigger

Requirements, which imply that a component implementing this property value must also

define the requirements. These requirements always reference one PropertySet.

The data model unites all instances in dictionaries. Between several types of collections,

the author decided to implement the data-model using dictionaries as they provide quick

querying by a key (Microsoft, 2015). The key in the dictionaries is either the GUID or the

Requirements entity. Besides querying by the key, the data model also provides methods to

query and filter instances by names and values.

5.2.3 Store and Export Data Model

The data-model implements two interfaces to create and read file formats. The static classes,

XmlReader and XmlCreator, allow for reading and creating XML files respectively. Such an

XML file stores the model, including the referenced structure. Therefore, it saves all model

instances and their GUIDs. The model needs these identifiers to determine dependencies.

5.2. Internal Model Information Requirements 63IMIR_Reduced

DataModel
+ Values :Dictionary<Guid,PropertyValue>
+ Properties :Dictionary<Guid,Property>
+ PropertySets :Dictionary<Guid,PropertySet>
+ Requirements :Dictionary<Requirements,
PropertySet>

Requirements
+ Trigger :PropertyValue
- Guid :Guid
- Description :string

Property
- Name :string
- Description :string
- Guid :Guid
- Code :int
+ DataType :DataType
+ IfcType :string

PropertyValue<T>
+ Value :T

<<enumeration>>
DataType

bool
int
double
string

PropertySet
Name :string
Guid :Guid

PropertyValue
Guid :Guid
Code :int
+ Property :Property
+ Requirements :Requirements
+ IfcType :string

1
1..n

1
0..n

1

im
pl

em
en

ts
1

1 0..n

1

0.
.n

1

1..n

1

implements1

1
1..n

Figure 5.2: Simplified UML diagram of the IMIR-model (appendix B.1 shows the complete diagram).

For example, a Property may reference multiple PropertySets. Now, the XmlReader can

determine where the XML file stores this PropertySet by searching for the GUID.

Listing 5.1 illustrates how the references work. The PropertySet starting at line 11, defines

its attribute Guid. The Property starting at line 19, references this PropertySet by defining

the PropertySet ’s GUID in its ref attribute (line21). Without the reference-based structure,

the XmlReader could not identify the dependency between both entities.

Secondly, the static class MvdXmlCreator supports exporting files in accordance with the

mvdXML standard. mvdXML files exported by the model follow the structure of ’strict

hierarchy’ (compare section 3.1). Therefore, an algorithm converts the IMIR model into a

tree that structures strictly hierarchically. For that reason, it does not base on references.

Hence, it is not possible to recreate the initial IMIR model from this tree. Deriving this tree,

however, is crucial for generating WBS codes. The MvdXmlCreator generates an mvdXML

file that defines all requirements according to this tree. The derived mvdXML document

defines unique identifiers as WBS codes arising from the Code property of the Property and

PropertyValue classes. An algorithm follows the tree from an entity up to the root and strings

the Code integers together. The resulting string represents the WBS code. The following

example illustrates that concept.

5.2. Internal Model Information Requirements 64

1 <IMIR>
2 <AllRequirements>
3 <Requirements Tr igger=”” Desc r ip t i on=” Al l bu i l d i ng components must

implement a componentType Property ” Guid=”6e2a88bc−31d4−4a52−
ba46−c90efdb48d49 ” />< !−−f u r t h e r Requirement (s)−−>

4 </ AllRequirements>
5 <AllValues>
6 <PropertyValue IfcType=” I f cProduct ” Value=”Wall” Guid=”bcb31bd6−

c0e7−4e3a−8c71−92b8731e5478 ” Code=”1” Property=”0814332b−a6b1−49
e4−a86d−e9b8cf3 f1bbd ” Requirements=”ad62b7dd−9fd4−4b1c−b438−80
dc75b862a1” />< !−−f u r t h e r PropertyValues−−>

7 </ Al lValues>
8 <Al lProper tySet s>
9 <PropertySet Guid=”3cdba1e0−9c48−44c0−b4f1−89a1a6be17eb ” Name=”

Pset1 ” Requirements=”6e2a88bc−31d4−4a52−ba46−c90efdb48d49 ”>
10 <P r o p e r t i e s>
11 <Property r e f=”0814332b−a6b1−49e4−a86d−e9b8cf3 f1bbd ” />
12 </ P r o p e r t i e s>
13 </ PropertySet>< !−−f u r t h e r PropertySets−−>
14 </ Al lProper tySet s>
15 <A l l P r o p e r t i e s>
16 <Property IfcType=” I f cProduct ” Guid=”0814332b−a6b1−49e4−a86d−

e9b8cf3 f1bbd ” Name=”Component Type” Code=”1” Desc r ip t i on=”The
Component Type o f the Property ” DataType=” St r ing ”>

17 <PropertySets>
18 <PropertySet r e f=”3cdba1e0−9c48−44c0−b4f1−89a1a6be17eb ” />
19 </ PropertySets>
20 <PropertyValues>
21 <PropertyValue r e f=”bcb31bd6−c0e7−4e3a−8c71−92b8731e5478 ”/>
22 </ PropertyValues>
23 </ Property>< !−−f u r t h e r P r o p e r t i e s−−>
24 </ A l l P r o p e r t i e s>
25 </IMIR>

Listing 5.1: The IMIR export lists all instances of the four major classes of the model: Requirements,
PropertySet, Property, PropertyValue. Green comments replace parts of the file (full version: annex
D).

5.2. Internal Model Information Requirements 65

AllElements :
Requirements

Trigger :null

Pset1 :
PropertySet

Type : Property

Code :1
DataType :String

Wall :
PropertyValue

Code :1

AllWalls :
Requirements

Trigger :Wall

Pset2 :
PropertySet

Thickness:
Property

Code :1
DataType :Double

Material :
Property

Code :2
DataType :String

Masonry :
PropertyValue

Code :1

Concrete :
PropertyValue

Code :2

AllConcrete:
Requirements

Trigger :Concrete

Pset4 :
PropertySet

Strength :
Property

Code :1
DataType :String

Beam :
PropertyValue

Code :2

AllBeams:
Requirements

Trigger :Beam

Pset3:
PropertySet

a
ll
o

w
s

a
ll
o

w
s

re
q

u
ir

e
s

a
ll
o

w
s

a
ll
o

w
s

re
q

u
ir

e
s

Figure 5.3: Instance of the data model comprising four Requirements, four PropertySets, four
Properties, and four PropertyValues.

5.2.4 Instance of the IMIR-Data-Model

Figure 5.3 explains the IMIR-design by applying it to a scenario. All elements must define

the Properties referencing the PropertySet ’Pset1’. This set only references one attribute,

’Type’. The model allows the PropertyValue to either be ’Wall’ or ’Beam’. Both values

trigger the new Requirements ’AllWalls’ and ’AllBeams’, which implement the PropertySets

’Pset2’ and ’Pset3’ respectively. Both reference the property ’Material’. Assigning the same

Property to different PropertySets characterises the IMIR model and improves flexibility and

maintainability. ’Material’ comprises two PropertyValues, ’Concrete’ and ’Masonry’. The

latter requires further data and introduces the third level of the requirements tree.

Listing 5.1 shows how the model exports the requirement into an XML file. This file divides

into four XML elements, one for each main class of the IMIR data model. The first tag stores

all Requirements, the second all PropertyValues, the third tag represents all PropertySets,

and the last one all entities of type Property. The XmlCreator also exports all GUIDs. What

may look unstructured is indispensable as the XmlReader needs this information to assemble

the correct structure of the model.

Lastly, the model creates the mvdXML file. Therefore, the model generates a tree structuring

all elements hierarchically, including their WBS codes. From that tree, the algorithm can

derive an mvdXML file that incorporates requirements in the form of TemplateRules. These

5.3. Enrich-IFC-Model 66

Figure 5.4: The IMIR-model derives a tree (left) to creates an mvdXML file. The excerpt shows
two TemplateRules exemplarily. The Description attribute defines the WBS code.

rules comprise two attributes. Firstly, the Description to store the WBS code, and secondly

the Parameter that stores the information about the Property, PropertySet, and optionally the

PropertyValue. Figure 5.4 shows the tree and an excerpt from the mvdXML file. Moreover,

it illustrates that creating an IMIR model from this tree is not possible as the same entities

have different WBS codes.

5.3 Enrich-IFC-Model

The second model of the Enrich-IFC-approach means to enrich the IFC document by trans-

lating given information of the external IFC model into the Exchange Information Require-

ments (EIR). Therefore, it assigns properties or property values of the external model to

entities of the internal requirements. This enables the model to derive a new IFC document,

including the internal information requirements.

The model introduces three levels: (1) the EIR-level defines the semantic information re-

quirements on an internal model to use it for automated processes. The model saves these

requirements in an unordered database and provides methods to query the data. (2) The

IFC-level represents a list of the property values that exist in the IFC document. (3) The

assigned-data-level defines value tuples combining level (1) and (2). Each tuple references

both, one instance of the EIR-level, and one entity of the IFC-level. The tuples function as

the basis for the model to export the enriched BIM model. Moreover, this level validates

the quality of a BIM model regarding the internally defined EIR from level (1). In case of

insufficient model quality, the data model derives BCF comments for issue communication.

5.3. Enrich-IFC-Model 67

5.3.1 Enrich-IFC-Model Design

Figure 5.5 shows the UML diagram of the design. The Data model comprises the three levels

described above. For level (1) and level (2), the abstract Property represents the origin. It

implements the properties IfcType, PSetName and PropertyName, as well as the interfaces

IXml and IIfcFinder. These interfaces provide methods to read and create XML elements and

find IFC instances respectively. IfcType defines the IfcExpressType of the IFC schema, e.g.

IfcBeam, IfcWall, IfcProject, the object relates to. Both classes, EirProperty and IfcProperty,

inherit from Property.

The data model stores the information requirements in the form of EirProperty and EirProp-

ertyValue objects in a collection. EirProperty extends Property by a Code representing a

unique combination of numbers separated by dots. It follows the concept of WBS codes. To

guarantee that the model does not contain multiple codes, the collection in the data model

is represented by a dictionary with the Code as the key. A Dictionary must not contain mul-

tiple entities of the same key and provides querying the data (Microsoft, 2015). Thus, this

collection guarantees that there are not various objects defining the same Code. Moreover,

EirProperty realises the IError interface to derive an error message. The EirPropertyValue

class extends EirProperty by the Value. As it inherits from EirProperty, the previously

mentioned dictionary can contain both, EirProperty and EirPropertyValue objects.

Secondly, the data model implements a collection of IfcPropertyValue objects. These objects

inherit from IfcProperty that also derives from the abstract class Property. To assign a value

to elements defining this IfcProperty, the class realises the IAssign interface. Objects of

IfcPropertyValue extend IfcProperty by a Value.

An instance of AssignedValues represents the third level of the Enrich-IFC-model. This class

stores value tuples comprising either an IfcProperty and an EirProperty or an IfcProperty-

Value and an EirPropertyValue. Thus, this class assigns entities of the IFC model to entities

of the EIR. The method Run(IfcStore model), adds the values from the EIR to the IFC model

by calling the Add -method from the IAssign interface. Algorithm 1 shows the pseudo-code

of this method. Besides this, the AssignedValues class also implements a method to store

itself in an XML file. Listing 5.3 shows such a file. Section 5.3.2 describes the structure.

Additionally, the data model implements an object of Quality representing the required and

correct conditions of a model depending on information requirements. It consists of a dic-

tionary comprising LevelQualitys with the level as their key. Each LevelQuality specifies the

passed and failed conditions on a specific level. In this context, the level represents the dif-

ference between an entity in the EIR-tree and the root. To estimate the quality of the IFC

model, the Validate(XmlElement tree) method recursively checks the information require-

ments (compare algorithm 2). For each failure, the Quality obtains a BcfError representing

the failed condition. This class allows for deriving BCF files for issue communication. For

5.3. Enrich-IFC-Model 68

AssigningSimple

Assigned Values
AssignedValues :
List<IfcProperty,
EirProperty>

BcfError
+ Guid :string
+ Requirement :IError
+ Message :string

LevelQuality
Required :int
Correct :int

Quality
- author :string
- file :string
- model :string

IfcProperty

IfcPropertyValue
Value :string

EirProperty
Code :string

EirPropertyValue
Value :string

<<interface>>
IXml

<<interface>>
IIfcFinder

<<interface>>
IError

<<interface>>
IAssign

AssigningData-
Model

IfcReader

Property
PSetName :string
PropertyName :string
IfcType :string

MvdXml-
Converter

1 0..n

1
1.

.i

1

0..n

1

n

1

n

1

re
qu

ire
s

0..n

1

0..n

1

re
qu

ire
s

0..n

Figure 5.5: Reduced UML diagram of the Enrich-IFC-model design (full version: appendix B.3).

5.3. Enrich-IFC-Model 69

IfcValue1 :
IfcPropertyValue

PsetName : Pset_ks
PropertyName :Resistance
IfcType :IfcBeam
Value : C20/25

IfcValue2 :
IfcPropertyValue

PsetName : Pset_ks
PropertyName :Resistance
IfcType :IfcBeam
Value :C30/37

Strenght : EirProperty

PsetName : Pset_ks
Code : 1.1.3.1
IfcType :IfcBeam

EirValue1:
EirPropertyValue

PsetName : Pset_ks
Code : 1.1.3.1.1
Value : C20/25
IfcType :IfcBeam
Property :Strength

EirValue2:
EirPropertyValue

PsetName : Pset_ks
Code : 1.1.3.1.2
Value : C25/30
IfcType :IfcBeam
Property :Strength

Example :
Assigning

DataModel

Assigned :
AssignedValues

Tuple1 : ValueTuple
<IfcProperty,
EirProperty>

ModelQuality :
Quality

author : unknown
file : model.ifc
model : Project_xy
Required : 3
Correct :2

Level0 :
LevelQuality

Required :2
Correct :2

Level1 :
LevelQuality

Required :1
Correct :0

Error1 : BcfError

+ Guid :1j43j2l52n5k53n5ki4n32
+ Requirement :Strength
+ Message :Does not implement
the Property "Strength"

Figure 5.6: Instance of the Enrich-IFC- model.

this reason, the class stores the GUID of the IFC entity that does not define the required

information. Moreover, it defines an object of IError to derive the information on what

condition has failed.

Lastly, the model comprises three static classes: MvdXmlConverter, EirReader, and

IfcReader. All three classes provide methods to read data from different file formats. The

MvdXmlConverter can interpret mvdXML files, the EirReader reads XML files that follow

the structure of an IMIR and the IfcReader extracts the information from an IFC model.

5.3.2 Instance of a Data Model

Figure 5.6 shows an example of such a data model. It contains two instances of IfcProper-

tyValue, ’IfcValue1’ and ’IfcValue2’. Moreover, it defines two instances of EirPropertyValue,

’EirValue2’ and ’EirValue2’, as well as the EirProperty ’Strength’. In ’Assigned’, ’EirValue1’

is assigned to ’IfcValue1’. This tuple means that the algorithm adds the ’EirValue1’ to every

instance of the IFC model that defines ’IfcValue1’. The ’ModelQuality’ validates the IFC

model and implements the BcfError ’Error1’. This instance can derive files of the BCF for-

mat for issue collaboration in BIM projects. Besides this, the ’ModelQuality’ comprises two

objects of type LevelQuality representing the quality of the model in corresponding levels of

the EIR.

5.3. Enrich-IFC-Model 70

1 < !−− Excerpt from the Markup f i l e−−>
2 <Topic Guid=”617 b091c−4788−4447−b7b8−8bd4dc202b2b”>
3 <T i t l e>I s s u e regard ing 1 j43 j2 l52n5k53n5k i4n32</ T i t l e>
4 </Topic>
5 <Comment Guid=” f695d686−467c−43a5−bccc−f c 5b3 fa5c65c ”>
6 <Status>Error</ Status>
7 <Date>2020−03−11 T17:59:17 .4535225+01 :00</Date>
8 <Author>Arch i tec tureS</Author>
9 <Comment>102 Does not implement the Proper ty : Strength</Comment>

10 <Topic Guid=”617 b091c−47c4−aaa7−b7b8−8me4dc202b2b” />
11 <ModifiedDate>2020−03−11 T17:59:17 .4535225+01 :00</ Modif iedDate>
12 </Comment>
13 < !−− Excerpt from the V i s u a l i z a t i o n I n f o−−>
14 <Components>
15 <Component I fcGuid=”1 j43 j2 l52n5k53n5k i4n32 ” Se l e c t ed=” f a l s e ” V i s i b l e=”

f a l s e ” />
16 </Components>

Listing 5.2: BCF export from the Enrich-IFC-model.

1 <AssignedPair>
2 <I f c I t em IfcType=”IfcBeam” PsetName=” Pset ks ” PropertyName=” Res i s tance ”

PropertyValue=”C20/25” />
3 <EirItem ExpressType=”IfcBeam” PsetName=” Pset ks ” PropertyName=”

Strength ” PropertyValue=”C20/25” Code=” 1 . 1 . 3 . 1 . 1 . ” />
4 </AssignedPair>

Listing 5.3: Assigned pair in XML generated from the Enrich-IFC-model.

Listing 5.2 illustrates how the model exports BCF issues. The Listing shows excerpts of both

files comprising BCF, the markup and the visualisation info. The BcfError ’Error1’ generates

this file and adds the required information. The title of the topic (line 3) refers to the GUID

of the related component that is also part of the visualisation info (line 15). Besides this, the

model adds a comment that indicates what information is missing (line 9).

The model saves the assigned tuples in an XML document shown in listing 5.3. Each pair

comprises an IfcItem and an EirItem. Those can either represent a property or a value.

Listing 5.3 implements values. Both items convert all their data in XML attributes. The

author decided to export all properties as different purposes may require more information

in the future. For this application, however, exporting the Code would suffice as for reading

the information, the model uses the Code to find their values. Hence, if the attribute has

changed, the Enrich-IFC-model updates the assigned pairs. For instance, after exporting

the file, the user decides to name the property ’Compressive Strength’. Whilst importing it

again, the assigned value uses the updated information as it only refers to the Code. This

fact also implies that the Code must not change to ensure consistency.

5.3. Enrich-IFC-Model 71

5.3.3 Agile Principles

Figure 5.5 illustrates that the design adheres to several agile, object-oriented principles to

assure high extendibility and flexibility. For instance, it implements several interfaces (IXml,

IError, IAssign, IIfcFinder) with single responsibilities to comply with the interface seg-

regation principle defined by Martin (1996). For decoupling modules, the BcfError class

references the IError interface instead of the EirProperty class. This inverts the dependency

(Martin, 1995). This concept enables extending the design by other information require-

ments in the future. For instance, it may implement geometric requirements. To conform

to the substitution principle by Liskov & Wing (1994), the EirPropertyValue and IfcProp-

ertyValue classes inherit from their subtypes in a way that objects of EirPropertyValue and

IfcPropertyValue can replace objects of their subtypes without altering the correctness of the

design.

Additionally, the model follows the principle of single responsibilities and relies on the func-

tionalities of the XBIM package developed by Lockley et al. (2017) to read and edit IFC

documents (Martin, 2002). The author followed agile approaches for software development.

For example, the author identified user stories for each feature and developed the models test-

driven using unit and integration tests (Martin, 2008). The overall test coverage amounts to

87%.

72

Chapter 6

Prototype

To evaluate the proposed approach for practical use, the author implements a software tool,

including a Graphical User Interface (GUI). This chapter describes the prototype by firstly

listing all ideal features and, secondly, explaining the implemented features and core func-

tionalities. Lastly, it leads the user through the prototype by applying it to an example.

6.1 Ideal System

The Ideal system covers the following activities:

1. Define and edit information requirements in the IMIR data model and derive mvdXML

or XML documents

2. Read and export MVDs in the form of mvdXML or IMIR files

3. Read IFC documents and store the semantic information

4. Assign values of the IFC model to entities of the required information

5. Validate the model

6. Handle Errors

- Export BCF files and automatically upload them to a BIM collaboration platform

- Assign values depending on the error message

- Update the information requirements

7. Read and export the assigned values as XML files

8. Create a new IFC file containing the added information

6.2. Implemented Features 73

EIR
GUI

Generic set
of IMIRs

BIM Collaboration
Platform

Expert

IFC Ifc-mapping-
model

Project Team

mvdXML

XML
IFC

mvdXML
XML

IFC

Im
port

Export

Export BCF

Store Ifc
Values

Def
in

e
Re

qu
ire

m
en

ts

As
sig

n
Va

lu
es

Retrieve and

Update

Store

Requirem
ents

Share Errors

Communicate Issues

Store, Edit,

Assign, Validate

Figure 6.1: Overview of the ideal system design.

Figure 6.1 illustrates the system of the ideal solution. The expert accesses the data using

the GUI and executes all activities described above. The system can read and export XML,

mvdXML, and IFC files. Moreover, it automatically uploads issues to a BIM Collaboration

platform using BCF files. From this platform, the project team can retrieve the data.

The central concept is that the users can assign properties and property values from the

required information to specific properties or property values of the external IFC document.

After that, the user can export an IFC file implementing all the required information. The

following section leads through the features of the prototype.

6.2 Implemented Features

The implemented prototype does not cover all the features of the ideal system. Currently, it is

not possible to create information requirements via the GUI. However, the IMIR data model

provides a library to create and maintain these and derive mvdXML documents. Appendix

B.2 describes the core functionalities by creating the data model described in section 5.2.4.

In this context, the prototype starts after the user has created the information requirements.

Figure 6.2 shows the main window of the GUI. The view comprises nine components, which

the following sections overview.

6.2. Implemented Features 74

Figure 6.2: Main view of the GUI.

6.2.1 Menu

The menu shown in figure 6.3 allows the user to open and export different files. The prototype

reads information requirements in the form of MVDs (*.mvdxml) or IMIR (*.xml), IFC

documents (*.ifc), and assigned value tuples (*.xml). To store progress, the user can export

IFC documents (*.ifc) and assigned value tuples (*.xml). Moreover, they can derive BCF

files from error messages. Creating updated information requirements in the form of MVD

or IMIR, however, is not yet supported.

Figure 6.3: Component 1 from figure 6.2.

6.2. Implemented Features 75

6.2.2 Information Trees

Once imported information requirements (MVD, IMIR),

component 2 of figure 6.2 displays a tree that structures

by properties and property values. Clicking on the items

extends or collapses a node. Double-clicking opens the

EIR Info, and the user obtains more information about

the item. This view also lists the property set and Ifc-

ExpressType of an entity (figure to the left).

Opening an IFC model reads information from all elements of type IfcProduct. For each

IfcExpressType, the tree in component 3 of figure 6.2 lists one element on the first level.

The second level builds all property sets that the corresponding IfcExpressType implements.

The third level repeats this concept with the properties of every property set, and lastly, all

property values of the property create the fourth level.

6.2.3 Assigned Pairs

Component 4 in figure 6.2 lists all assigned value tuples. If the user has not imported an

Assigned Values file (*.XML), the list is empty. For assigning the items, the user must import

an IFC document as well as an MVD. Using both trees, the user can assign elements from the

exchange requirements to items of the IFC tree. The user can either assign values to values

or properties to properties. To assign an entity, the user drags the element from component 2

to component 3 and drops it on the required entity. Afterwards, component 4 lists the value

tuple. This list only shows limited information. Thus, the user can click on a button (figure

6.2, component 5) to see further details.

Figure 6.4: Assigned Value Tuples View: provide more information about the assigned pairs.

6.3. Prototype in Use 76

Clicking on the Assigned Pairs button opens a new window, the Assigned Value Tuples view

(figure 6.4). The window lists the assigned pair and provides more information about the

tuples. On the left side, it shows the data of the EIR value and, on the right side, the

information of the linked IFC value.

6.2.4 Validate

If the user wants to receive feedback about the progress, they can click on the Validate button

(figure 6.2, component 6). This button runs the validate method from the Enrich-IFC model.

After that, the progress bars of the main view (component 7) display the overall model

quality.

The four bars represent different levels. While the left one relates to the whole model, the

other progress bars only represent one level of the required information. For each failed

requirement, component 8 shows an error. Every error entry comprises a missing attribute

and a related element. Once clicking on an error message, component 9 displays information

about the associated element. This window is part of the xBim Xplorer repository (Lockley

et al., 2017). This data helps the user to identify whether they can solve this issue or not. If

not, the Export menu enables the user to create BCF files and issue them manually, as the

prototype does not connect to a BIM communication platform yet.

6.3 Prototype in Use

The following example describes the workflow of the prototype by applying it to a recent

project. The project was executed by Geiger, who has provided the model for this thesis

(figure 6.5). As this was a German project, the author translates the German properties and

values where required. In this section, an expert wants to enrich the IFC model in a way

that it complies with the information requirements from figure 5.6.

Once the application has started, the user imports the external IFC and the mvdXML using

the Menu. Figure 6.6 displays the trees. Now, the user wants to assign the component types

to the elements. Hence, they look through the information of the IFC model and identify

overlaps. In this case, the ’Bauteiltyp’ (component type) property of ’Pset AC’ clearly states

that ’Unterzug’ (joist) elements are beams. Therefore, the user drags ’Beam’ and drops it on

’Unterzug’.

6.3. Prototype in Use 77

Figure 6.5: 3D view of the model.

Figure 6.6: Tree view of the GUI after reading the data from the IFC model and the MVD.

6.3. Prototype in Use 78

Figure 6.7: Assigned Value Tuples view after assigning eight pairs.

Figure 6.8: Model quality of the enriched IFC model.

On the second level, the components of type ’Beam’ need information about their material.

The user can find this data in the ’Reference’ attribute of the ’Pset BeamCommon’. All values

imply that the material is concrete (’Beton’). Hence, the user drags the value ’Concrete’ and

drop it on these values. After that, the Assigned Value Tuples view displays the pairs shown

in figure 6.7.

Now, the user clicks the validate button to calculate the overall model quality. The progress

bars displayed in figure 6.8 express that the model quality on level 1 amounts to 79%. The

quality is already high, as we only consider walls and beams in this example. All other

components set the component type to ’OTHER’. For that reason, these components pass

all their conditions. The progress bar for the second level displays a quality of 90%.

Moreover, the GUI lists the errors. The next step is to identify their sources. There are three

potential error triggers: (1) missing information in the IFC model, (2) a missing option in

the information requirements and (3) a missed out value tuple. Firstly, the user shall always

check if they have missed out information. By double-clicking on such an error message,

component 9 (compare figure 6.2) shows the information of the related IFC object. In this

example, all failed conditions related to beams are attributable to (1). Thus, the user derives

BCF files for issue communication.

The mvdXML also requires defining the component type ’Wall’. Looking through the IFC

information shows that the ’Reference’ property of ’Pset WallCommon’ implements this infor-

mation. The three values, ’Wand Stahlbeton’ (concrete wall), ’Wand Mauerwerk’ (masonry

6.3. Prototype in Use 79

Figure 6.9: WA:06 before (left) and after (right) the enrichment.

wall), and ’Holzwand’ (timber wall) imply that these elements are walls. Besides this, they

also express their material. However, the mvdXML does not define a value for the timber

wall. Thus, the user must edit the EIR. The Prototype does not cover this feature. For that

reason, the user must modify the mvdXML file (or the IMIR model) and import it again.

The concrete also needs to implement the compressive strength. Clicking on the error message

shows the properties. The left part of figure 6.9 states that the ’Betonfestigkeit’ property

implements this data. After signing these values, there are two types of errors left: beams do

not define the strength of the concrete and walls do not implement their thickness. As the

model does not contain this information, the user exports the BCF file and sends it to the

project team. The menu (compare figure 6.3) provides this feature.

Listing 6.1 shows the comment of such a BCF file. It highlights the GUID of the related

component and the property that is missing. After sharing the data, the user can save the

files using the menu. Therefore, they shall export the assigned values into an XML file.

Listing 6.2 shows one assigned pair in the format the model exports it. The pair contains

all information. However, once the model rereads the information, it will refer to the code.

Thus, the user can edit the other attributes but not the code to assure consistency. If the

model quality is high enough, the user can also export the enriched IFC document. This file

implements all the information that the user has mapped before. Figure 6.9 shows exemplarily

the properties of a wall before and after the enrichment.

Appendix D provides more details about the previous example, including a screen-cast show-

ing the author interacting with the prototype’s GUI

6.4. Summary 80

1 <Topic Guid=”1be1c406−40a7−4cc9−a736−0b169034e815 ”>
2 <Tit l e>I s s u e regard ing alilWaCeRyxagIrqUrESqz</Ti t l e>
3 </Topic>
4 <Comment Guid=”7198bb70−e776−4195−a995−2b7aa554c85f ”>
5 <Status>Error</Status>
6 <Date>2020−03−27T00 :47:12.2859945+01:00 </ Date>
7 <Author>unknown user</Author>
8 <Comment>WA:80 Does not implement the Property : Thickness</Comment>
9 <Topic Guid=”1be1c406−40a7−4cc9−a736−0b169034e815 ” />

10 <ModifiedDate >2020−03−27T00 :47:12.2859945+01:00 </ ModifiedDate>
11 </Comment>

Listing 6.1: Markuf file of a BCF export.

1 <AssignedPair>
2 <I f c I t em IfcType=”IfcBeam” PsetName=”Pset BeamCommon” PropertyName=”

Reference ” PropertyValue=”Beton , Stahlbeton 600 x 500” />
3 <EirItem ExpressType=” I f cProduct ” PsetName=” Pset3 ” PropertyName=”

Mater ia l ” PropertyValue=” Concrete ” Code=” 1 . 2 . 2 . 1 . ” />
4 </AssignedPair>

Listing 6.2: Assigned pair: the IfcItem defines the information from the IFC model and the EirItem
from the MVD. When reading the file, the algorithm refers to the code attribute of the EirItem.

6.4 Summary

This chapter has described the functionalities of the prototype. The prototype is still un-

der development. Thus, it does not cover all the requirements that the ideal system should

have. Table 6.1 lists the required features from section 6.1 and concludes whether the pro-

totype covers them or not. The prototype lacks the possibility of maintaining information

requirements using a GUI. However, the IMIR-model provides methods to do this.

To conclude, the author has developed a prototype to enrich a model according to informa-

tion requirements. This prototype integrates the most common specification published by

buildingSMART: IFC, mvdXML, and BCF.

6.4. Summary 81

Feature Comment Covered?

(1) Maintain information re-
quirements

IMIR model provides methods;
No GUI implemented

partially

(1) Derive IMIR and mvdXML
files

yes

(2) Read and export IMIR and
mvdXML files

mvdXML import does not cover
the whole schema

partially

(3) Read IFC yes

(4) Assign values yes

(5) Validate the model Approximation of the quality yes

(6) Export BCF files No connection to a BIM collab-
oration platform

yes

(6) Assign values depending on
given information

yes

(6) Update EIR no

(7) Read and export assigned
values

yes

(8)Create enriched IFC file yes

Table 6.1: Summary of the functionalities of the prototype. The numbers refer to the requirements
mentioned in section 6.1.

82

Chapter 7

Case-study: Quantity-Takeoff

The previous chapters have introduced the Enrich-IFC-approach and converted it into a pro-

totype. After showing the general functionalities, the following chapter applies the approach

to a fictive project.

The primary purpose of the Enrich-IFC-approach is to prepare BIM models for automatised

BIM Uses. This case study applies the proposed approach to the BIM Use Cost Estimation.

From the perspective of the main contractor, it compares the conventional approach with the

innovative Enrich-IFC-approach and highlights the benefits.

7.1 Using iTWO for QTO

RIB iTWO is a software application providing solutions for QTO, tendering and more. In

this context, we only focus on QTO. Using iTWO for QTO separates into two levels: tasks

on the organisational level and tasks on the project level. On the organisational level, the

appointing party must maintain a library defining all deliverables from further projects. This

library defines deliverables listed by components. Table 7.1 exemplifies what such a library

can look like. On the project level, applying iTWO to QTO structures in four steps:

1. Check the model quality

2. Define deliverables

3. Assign deliverables to components of the BIM model

4. Calculate quantities

After the main contractor received the external BIM model, they check if it complies with

the information requirements from the BEP. This section does not describe conventional

approaches to validate a model. However, the author highlights that the Enrich-IFC-approach

7.1. Using iTWO for QTO 83

Component Type : Room
Floor finish: parquet [m2]
Floor finish: tiles [m2]
Ceiling finish: suspended [m2]
Ceiling finish: painted [m2]
Wall finish: painted [m2]
Wall finish: plaster [m2]
Wall finish: tiles [m2]

Ground Plate
Framework surface outer parts [m2]
Concrete volume C20/25 [m3]
Concrete volume C25/30 [m3]
Concrete volume C30/37 [m3]
Concrete volume C35/45 [m3]
Reinforcement B500B [t]

Table 7.1: Excerpt of the deliverables library for the components ’Room’ (left) and ’Ground Plate’
(right).

covers both, validation of the model and automating the BIM Use (for this application: Cost

Estimation). Model Validation is also a BIM Use. Hence, this chapter covers two BIM Uses.

For defining the deliverables, the user can upload the library mentioned before from the

organisational level. The two examples in table 7.1 illustrate the idea: the library contains

all deliverables that occurred in previous projects. For a room, these may be different finishes,

and for a slab, volumes of different concrete strengths classes.

After defining the deliverables, the contractor starts assigning them to components of the

BIM model. For this, iTWO provides three options. Firstly, the user can manually

drag deliverables from a table and drop them on selected components. Although this

is the most intuitive way, it is not very suitable due to the high manual workload. A

second option represents creating dynamic filters that generate a selection based on at-

tributes. This is faster than the first option. Moreover, it is more comprehensible to

identify assigned components. Such a filter queries the elements with the following syntax:

Object(@Pset ks/component type ==′ ground plate′). This filter selects all objects that

implement the value ’ground plate’ in the ’component type’ property. Lastly, the user can

assign all components to each deliverable and define the subset in the calculation of the quan-

tities. The main benefit of this option is the centralised filtering as all selection procedures

happen in one equation. However, the filters may become very long and incomprehensible.

Such a filter may look as follows:

QTO(Type := ”V olume”;Unit := ”m3”;Component := ”${Pset ks/component type}
==′ ground plate′ and ${Pset ks/compressive strength} ==′ C25/C30′”)

This filter firstly defines the expected result. In this case, the calculation returns a volume

with m3 as their unit. After that, the ’Component’ argument specifies the instances the

calculation applies to. Here, the equation selects all components of type ’ground plate’ that

also define a compressive strength of ’C25/30’.

7.2. Enrich-IFC-Approach 84

The syntax of the filters perfectly illustrates the problem of this approach and the motivation

of the Enrich-IFC-approach. The filter refers to specific attributes of the IFC model. As

different parties use different naming, the main contractor has to update all filters for every

project. For complex projects, these can easily amount to several hundreds of filters. For that

reason, it is not possible to execute the Cost Estimation automatised. However, if all models

were using the same labelling, the main contractor could adapt the deliverables-library to the

labelling standard. Hence, they could import the IFC model and automatically execute the

QTO. And this is what the Enrich-IFC-approach realises.

7.2 Enrich-IFC-Approach

The previous chapter concluded two issues that foil successful model-based and automatised

QTO: (1) model validation is not automatised and (2) the library of deliverables must be

updated for every project. The Enrich-IFC-approach validates a BIM model by using an

MVD. Besides this, instead of updating the deliverables-library, the approach enables the

contractor to enrich the BIM model and execute the QTO automatised.

7.2.1 Overview

The project is about a building comprising two levels. The ground floor consists of a living

room, a kitchen and four minor rooms. The first floor has three bedrooms, three bathrooms

and a balcony. It has piles as a foundation and connects to a garage. Figure 7.1 shows a 3D

view of the asset, and appendix C illustrates the floor plans. The model is one of Autodesk’s

sample projects (Autodesk, 2020).

The fictive project team consists of two parties: The contractor (appointing party) and the

architect (appointed party). At the beginning of the project, both participants agree on a

BEP. This plan contains the information requirements defined by the appointing party. Here,

both parties agreed that they use the BIM method for Cost Estimation. This guarantees that

the appointed party has to provide all information required to execute a model-based QTO.

Hence, the contractor must define the required data before the architect starts creating the

model and before finalising the BEP.

Applying this BIM Use to projects requires two tasks to be executed on an organisational

level before the project starts:

1. Define IMIR including information and labelling requirements, and derive MVD

2. Create and maintain a library in iTWO defining all deliverables and adapt filters and

equations to the labelling standard

7.2. Enrich-IFC-Approach 85

Figure 7.1: 3D View of the sample projects. Left: Project A. Right: Project B. (Autodesk (2020))

The project delivery starts after that. The architect creates the model and issues it to the

contractor at significant moments. These data drops are also part of the BEP. At every

information issue, the contractor estimates the costs. For that reason, they have to create

rules for quantity take-off. These rules filter objects by their attributes to retrieve quantities.

In this context, the contractor has already implemented a library of filters from other projects

using the internal labelling standard. Thus, they adapt the external model to the IMIR using

the prototype (section 6).

In the last step, before starting with the actual Cost Estimation in iTWO, the contractor

must validate whether the model applies to the IMIR or not. The prototype from section 6

also covers this feature. Additionally, they use the xBIM Xplorer to validate the model twice.

To sum up, there are six tasks:

1. Define IMIR and derive MVD

2. Create library defining deliverables and adapt

filters and equations to (1) Organisational Level

3. Receive external BIM model Project Level

4. Adapt the external model to IMIR and derive

new internal BIM model

5. Validate the internal BIM model

6. Estimate costs

7.2. Enrich-IFC-Approach 86

7.2.2 Determine Information Requirements

The contractor firstly determines the required information by creating an MVD representing

a set of information and labelling requirements. Hence, it specifies an IMIR. The project

described in section 7.2.1 contains architectural and structural elements. It does not include

HVAC equipment. Thus, it must comprise

- all structural and non-structural components.

- shape, size, and location of the components.

- materials, visual quality, production method and fire rating of the components.

The contractor has decided to use the IMIR data model to define the information require-

ments. The component type represents the first level of the model. This property must

define significant component types, such as walls, beams, foundations, and rooms. The sec-

ond level represents the component type-specific properties. For instance, the component type

’ground slab’ requires the properties: ’thickness, ’material’, and ’is external’. The material,

for example, requires further information. Figure 7.2 shows an excerpt of the information

requirements and appendix D provides more information about the IMIR model. This data

model allows deriving an MVD that the contractor can now incorporate to the BEP.

7.2.3 Create Deliverables Library in iTWO

Section 7.1 introduced how to use iTWO for QTO. On the organisational level, the contractor

has developed a library defining deliverables. Figure 7.3 lists all deliverables by component

and shows that the library already selects the elements from the model that are used for

calculating the quantities. The author has decided to use a mixture of the second and third

option (compare 7.1). This generates more flexibility and always makes sure that the correct

elements are selected. Therefore, dynamic filters select all elements of one component type

(figure 7.3, column 4). The calculation of the quantities bases on these selections. However,

the equation to obtain quantities also implement filters for further distinction (figure 7.3,

column 6). The following example illustrates that.

Using the example from table 7.1, the author has created a dynamic filter selecting all elements

of type ’Room’: Object(@Pset ks/component type ==′ room′).

For these elements, the author wants to calculate the area of specific floor finishes, wall

finishes and ceiling finishes. Hence, every deliverable defines a filter in their equation. This

filter selects all elements with the corresponding property. For instance, the following line

shows the equation to calculate the floor area for all rooms with a parquet finish:

QTO(Type := ”FloorArea”;Unit := ”m2”;Component :=

”${Pset ks/floor finish} ==′ parquet′”)

7.2. Enrich-IFC-Approach 87

Figure 7.2: Information requirements for the model.

Figure 7.3: Screenshot from iTWO listing the deliverables and calculating the quantities. Some of
them amount to zero as not all deliverables occur in the project (language is set to German).

7.2. Enrich-IFC-Approach 88

Figure 7.4: Properties of the slab before (left) and after (right) applying the Enrich-IFC-approach.

The author defines those filters and calculation for every deliverable of the library. Still, this

happens on an organisational level and does not belong to the project. Figure 7.3 shows the

deliverables of the project. In the fourth column, the dynamic filter is assigned, and the sixth

column lists the calculation. Column eight already shows the result of the calculation for the

model from figure 7.1. Some results amount to zero as the model does not define elements of

all types. Section 7.2.6 describes the process to obtain these results.

7.2.4 Adapt External Model to IMIR

The main contractor executes the previous steps on an organisational level. Thus, the step is

not project-specific. Now, the project starts and the project team has agreed on a BEP. After

that, the project delivery begins, and the architect issues the model to the main contractor.

However, the architect used their own labelling standard and did not follow the terms in the

MVD. Thus, the contractor must adapt the model to the IMIR.

The author assigns values from the requirements to the external IFC model. This happens

for the whole model and its components. Here, an example illustrates the usage. The model

contains foundation piles that were modelled as ’IfcSlab’ entities. The main contractor can

easily assign this element to the component type ’pile’. Now, poor model quality has not too

much impact. Additionally, the mvdXML created above will check the required information

for piles and not for slabs.

Figure 7.4 illustrates another benefit. The foundation slab requires information about the

material. The external model defines this property as ’Concrete, Cast in Situ’. Hence, one

property stores two characteristics. The author assigns both values to the IMIR, ’concrete’

of ’material’ and ’in situ’ of ’production method’, to ’Concrete, Cast in Situ’.

7.2. Enrich-IFC-Approach 89

Figure 7.5: Validation: the xBim Xplorer highlights the passed (green) and failed (red) concepts.

7.2.5 Validate the Model

After assigning all information, the prototype validates the model. This concludes that the

external model does not define the thickness of the foundation piles. Hence, the user derives

BCF issues and communicates them with the architect.

Even though the prototype implements a validation feature, this section describes the valida-

tion of the model using xBIM Xplorer to double-check the model’s quality. The tool applies

all concepts defined in the MVD and shows graphically if they are fulfilled. Figure 7.5 con-

cludes the same as the prototype: All components of the model comply with the information

requirements of the MVD. The only exceptions are the foundation piles. As they do not

implement the property ’width’, the tool returns that the concept has failed. Due to the

hierarchy of the mvdXML file, the tool only shows that the concept fails, however, it does

not illustrate why. In this example specifically, it expresses that a concepts has failed, but

the user cannot determine what information is missing.

7.2.6 Execute QTO Using iTWO

Section 7.1 introduced how to use iTWO for QTO, and in section 7.2.3, the contractor has

developed a library defining deliverables. All work already happened on the organisational

level. The deliverables refer to the labelling from the internal labelling convention. Hence,

there is no need to adapt the filters or the equations. The user can simply import the

enriched internal IFC model into iTWO. From there they can calculate all quantities. Thus,

the approach is automatised and fully independent. However, the library of deliverables may

not contain all components. Hence, the contractor has to update and extend the library.

That library is growing continuously over several projects.

7.3. Conclusion 90

Task Enrich-IFC Conventional

Create IMIR 5.0 -
Create EIR - 3.0
Enrichment 3,0 -
Validate 0.50 2.50
Deliverables 4.0 4.0
iTWO 1.0 3.0

Total 13.5 12.5

Table 7.2: Time consumption of executed tasks within using the two approaches.

7.3 Conclusion

The author has applied both approaches to the fictive project and compared the time con-

sumption of the different tasks. Table 7.2 and figure 7.6 show the results. Using the conven-

tional approach to the project amounts to a total of 12.5 hours, which represents the reference

value and corresponds to 100%. The Enrich-IFC method exceeds that by 8%. Here, the En-

richment needed 3 hours, the model validation 0.5 hours, and the adjustments in iTWO only

1 hour. In contrast to that, the conventional approach required 2.5 hours for model validation

and 3 hours for calculating the quantities using iTWO.

The required workload illustrates that the primary value of the Enrich-IFC-approach takes

effect when using one model for multiple BIM Uses. While the conventional approach requires

to adjust the algorithms for each BIM Use, the Enrich-IFC-approach enables a company

to create automatised downstream processes. Assuming that the workload for the second

approach also amounts to 3 hours, the Enrich-IFC-approach only increases by 1 hour. Thus,

the Enrich-IFC-approach is already faster in total (14.5 hours) than the conventional approach

(15.5 hours).

These assumptions are highly uncertain. However, there are other potentials to minimise the

workload of the Enrich-IFC-approach. For example, when the IMIR misses a value, the user

must update and reload the IMIR into the prototype. Moreover, the author has detected im-

provements regarding the usability of the prototype. For instance, copying assigned values to

other entities, declaring errors as redundant, or improving the performance of the algorithms

would decrease time consumption.

The author expects the novel approach to become more efficient than the conventional after

improving some of the previously mentioned problems. However, there is no conclusion

possible, as this requires further testing. Still, there are other benefits of the proposed

approach.

7.3. Conclusion 91

0

0,2

0,4

0,6

0,8

1

1,2

Enrich-IFC Conventional

R
e

la
ti

ve
 W

o
rk

lo
ad

IMIR EIR Enrichment Validation Deliverbales iTWO

Figure 7.6: Comparison of the workload for the different tasks of both approaches.

One main difference is the cohesive and flexible structure of the IMIR model compared to

common EIR structures. Changes in the labelling are more comfortable to adjust, and the

hierarchy simplifies model validation by a lot. Thus, the approach secondly establishes a

comprehensible way to validate models and identify information leaks. The missing data can

then be communicated with project participants using BCF. Another benefit is that the user

does not need in-depth knowledge about a software application such as iTWO. There is no

need to write complicated filters or algorithms. The user simply translates information via

drag and drop.

92

Chapter 8

Conclusion and Future

Development

This work has contributed a new approach for structuring both information requirements and

labelling requirements and enrich an IFC document by assigning desired information from

the labelling standard to given information from the IFC model. In the following chapter, the

author discusses the findings of the work and proposes future work to improve the concept.

8.1 Conclusion

One main objective of this work was to provide a cohesive model that covers both storing

information requirements and validating BIM models. Therefore, the author has proposed

the IMIR data model that structures information hierarchically and stores properties based

on references, which eases maintaining the model. The hierarchy extends information re-

quirements by a second dimension: the labelling requirements. These enable an algorithm

to analyse data and decide what element of a model must implement what attributes. To

finally include this model into current regulations, the IMIR model derives mvdXML files.

The second part of the approach begins here. It uses information requirements and enriches

IFC models according to them. The work has illustrated a process to supplement data to an

IFC model according to the given data. The Enrich-IFC-model converts this approach into

a technical concept. It provides methods to execute the process and, eventually, a prototype

that enables a user to interact with the model graphically. This part of the thesis has closed

the gap of how to ’translate’ given information of an IFC model into individual preferences.

Applying the proposed solution to a fictive project and comparing it with a conventional ap-

proach has detected benefits and potential improvements. The prototype lacks an opportunity

8.2. Vision 93

to adjust information requirements using a GUI. Besides this, it experiences performance is-

sues while interpreting large IFC files. But, the approach stands out with a comprehensive

structure for information requirements that minimise maintenance efforts. Additionally, it

eases model validation by including it into the prototype, as well as deriving mvdXML files.

Lastly, realising the automatisation of BIM Uses is impossible without an approach like this.

In summary, the thesis has closed the identified gaps. The Enrich-IFC-approach introduces

conceptual solutions for the mentioned problems and adapts to the current regulations by

buildingSMART as it reads and creates IFC, BCF, and mvdXML files. Finally, it only relies

on open-based standards and software tools, which was the main objective of the author.

Still, some aspects require further investigations:

- The IMIR shall include several LODs. For example, instead of defining several property

values, a property implements different LODs which, again, reference the property

values. This would decrease the workload for maintaining multiple IMIR models.

- The Enrich-IFC-approach does not support updating IMIR models using a GUI. Thus,

the features implemented in the IMIR model shall integrate into the GUI of chapter 6.

- The Enrich-IFC-model requires the full support of mvdXML import. The author has

compared several approaches and proposed using the ’Description’ attribute of Tem-

plateRule to store the unique code of an element. It may be more promising to use

GUIDs instead of WBS codes.

- The prototype does not connect to a BIM collaboration platform what increases the

workload to communicate issues via BCF.

- Machine Learning algorithms may replace the user and assign the values automatically.

In this case, a neural network identifies connections between the two information sources

(IFC and IMIR) and derives the Enrich-IFC data model.

8.2 Vision

The proposed approach has introduced a solution that fits in current regulations. However,

the BIM environment progresses steadily and changes rapidly. The frame for the proposal may

seem tight, and the change of some boundary conditions may decrease its usage. However,

there are more situations where to apply the Enrich-IFC-approach. The following paragraphs

describe three of them.

8.2. Vision 94

1. Model validation before publishing information:

The Enrich-IFC-approach cannot only enrich documents received by other parties, but it may

also enrich IFC models before sending them to the appointing party. The appointed party

can derive IMIR models from the information requirements defined in the BEP and store

them in an mvdXML file. This file then functions as the base to validate IFC models before

sending it to the appointed party. The primary outcome here is that an appointed party

exclusively publishes models that comply with the EIR.

2. Clients oblige planners to follow the client’s internal labelling convention:

Similar to (1), the provider of the model uses the Enrich-IFC-approach. In this case, the

appointed party can still follow their internal labelling standard. After creating the model,

they can supplement it using the proposed approach and issue it to the client. Similar

to the previous scenario, the appointed party makes sure to comply with the information

requirements defined by the client.

3. BIM maturity level 3 becomes a reality:

As mentioned before, the AEC industry currently aims at BIM level 2. This surely is the next

step and is partly implemented yet. Although significant problems simulate impossibility, the

future can always change. So how can the Enrich-IFC-approach contribute to projects where

all participants work on the same model continuously?

This change has an intense impact on the Enrich-IFC-approach and requires adjustments.

Firstly, however, one part still fulfils its purpose: the IMIR model stores information require-

ments and the derived mvdXML check the server-based model continuously.

The second part, the supplement of the IFC model, experiences more impact. Still, on this

BIM level, it is not regulated how to label information. Developing a labelling standard like

the bsDD may solve the issue. However, the Enrich-IFC-approach could also close this gap.

Whenever a model author adds or retrieves information, the Enrich-IFC-model translates the

values in their individual preference. The translation bases on the AssignedValues form the

Enrich-IFC-model. Thus, the user will always see the information in a way they want to see it,

although other project participants see the data differently. As all the collaboration happens

server-based, the Enrich-IFC-model works in real-time. For this situation, it is indispensable

to incorporate the Enrich-IFC-model into CDEs.

The primary difference to the bsDD represents the flexibility in naming the data. While the

bsDD uses a similar concept, it only proposes a few languages. Incorporating the Enrich-IFC-

model into a CDE, however, allows a project participant to still label information according

to their preferences. Besides this, the project participant is more flexible with data that the

bsDD does not cover, as they can simply add internal entities.

8.2. Vision 95

—Appendix—

96

Appendix A

MvdXML for Validation

Listing A.1: Strict applicability: the Applicability specifies the subset of the IFC schema, and the

TemplateRules test define tests that apply on the subset.

1 <ConceptRoot uuid=”0 e93f597−f5e1 −475b−87a7−eb007993a50d” name=” Al l External

Walls ” app l i cab l eRootEnt i ty=” I fcElement ”>

2 <A p p l i c a b i l i t y>

3 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ” />

4 <TemplateRules operator=”and”>

5 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’Component Type ’ AND O PSingleValue [Value]= ’

Wall ’ ”/>

6 </TemplateRules>

7 </ A p p l i c a b i l i t y>

8 <Concepts>

9 <Concept uuid=”983ddc5d−c0c8−47c9−8491−97add7677139” name=” Al l

Elements”>

10 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ”/>

11 <Requirements>

12 <Requirement a p p l i c a b i l i t y=” export ” exchangeRequirement=”

ae70f764 −938b−4cf7−9814−c29a47f56b0e ” requirement=”

mandatory”/>

13 </ Requirements>

14 <TemplateRules operator=”and”>

15 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ Mater ia l ’ AND O PSingleValue [Ex i s t s]=

True”/>

16 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ Thickness ’ AND O PSingleValue [Ex i s t s]=

True”/>

17 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ F i re Res i s tance Class ’ AND

O PSingleValue [Ex i s t s]=True”/>

97

18 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ Level ’ AND O PSingleValue [Ex i s t s]=True”/

>

19 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ LoadBearing ’ AND O PSingleValue [Ex i s t s]=

True”/>

20 </TemplateRules>

21 </Concept>

22 </Concepts>

23 </ConceptRoot>

24 <ConceptRoot uuid=”0 e93f597−f5e1 −475b−87a7−eb007993a50d” name=” Al l External

Walls ” app l i cab l eRootEnt i ty=” I fcElement ”>

25 <A p p l i c a b i l i t y>

26 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ” />

27 <TemplateRules operator=”and”>

28 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ Mater ia l ’ AND O PSingleValue [Value]= ’

Concrete ’ ”/>

29 </TemplateRules>

30 </ A p p l i c a b i l i t y>

31 <Concepts>

32 <Concept uuid=”983ddc5d−c0c8−47c9−8491−97add7677140” name=”

Mater i a l :Concre t e ”>

33 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ”/>

34 <Requirements>

35 <Requirement a p p l i c a b i l i t y=” export ” exchangeRequirement=”

ae70f764 −938b−4cf7−9814−c29a47f56b0e ” requirement=”

mandatory”/>

36 </ Requirements>

37 <TemplateRules operator =”and”>

38 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ Strength ’ AND O PSingleValue [Ex i s t s]=

True”/>

39 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ Production Method ’ AND O PSingleValue [

Ex i s t s]=True”/>

40 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’ Exposure Class ’ AND O PSingleValue [

Ex i s t s]=True”/>

41 </TemplateRules>

42 </Concept>

43 </Concepts>

44 </ConceptRoot>

98

Listing A.2: Strict hierarchy: one concept comprises all rules. The TemplateRules apply to all

elements specified in the applicableRootEntity attribute.

1 <ConceptRoot uuid=”0 e93f597−f5e1 −475b−87a7−eb007993a50d” name=” Al l External

Walls ” app l i cab l eRootEnt i ty=” I fcElement ”>

2 <A p p l i c a b i l i t y>

3 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ” />

4 <TemplateRules operator=”and”>

5 <TemplateRule Parameters=”O PsetName [Ex i s t s]= ’ True ’ ” />

6 </TemplateRules>

7 </ A p p l i c a b i l i t y>

8 <Concepts>

9 <Concept uuid=”983ddc5d−c0c8−47c9−8491−97add7677139” name=” Al l

Elements”>

10 <Template r e f=”5 c252c86−5b f f −4372−9a27−b794069f9fbb ”/>

11 <Requirements>

12 <Requirement a p p l i c a b i l i t y=” export ” exchangeRequirement=”

ae70f764 −938b−4cf7−9814−c29a47f56b0e ” requirement=”

mandatory”/>

13 </ Requirements>

14 <TemplateRules operator=”and”>

15 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’ AND

O PName [Value]= ’Component Type ’ AND O PSingleValue [Value

]= ’ Wall ’ ”/>

16 <TemplateRules operator=”and”>

17 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’

AND O PName [Value]= ’ Thickness ’ AND O PSingleValue [

Ex i s t s]=True”/>

18 <TemplateRules operator=” or ”>

19 <TemplateRules operator=”and”>

20 <TemplateRule Parameters=”O PsetName [Value]= ’

Pset ks ’ AND O PName [Value]= ’ Mater ia l ’ AND

O PSingleValue [Value]= ’ Masonry ’ ”/>

21 </TemplateRules>

22 <TemplateRules operator =”and”>

23 <TemplateRule Parameters=”O PsetName [Value]= ’

Pset ks ’ AND O PName [Value]= ’ Mater ia l ’ AND

O PSingleValue [Value]= ’ Concrete ’ ”/>

24 <TemplateRule Parameters=”O PsetName [Value]= ’

Pset ks ’ AND O PName [Value]= ’ Strength ’ AND

O PSingleValue [Ex i s t s]=True”/>

25 <TemplateRule Parameters=”O PsetName [Value]= ’

Pset ks ’ AND O PName [Value]= ’ Production

Method ’ AND O PSingleValue [Ex i s t s]=True”/>

26 <TemplateRule Parameters=”O PsetName [Value]= ’

Pset ks ’ AND O PName [Value]= ’ Exposure Class ’

AND O PSingleValue [Ex i s t s]=True”/>

27 </TemplateRules>

28 </TemplateRules>

99

29 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’

AND O PName [Value]= ’ F i re Res i s tance Class ’ AND

O PSingleValue [Ex i s t s]=True”/>

30 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’

AND O PName [Value]= ’ Level ’ AND O PSingleValue [Ex i s t s

]=True”/>

31 <TemplateRule Parameters=”O PsetName [Value]= ’ Pset ks ’

AND O PName [Value]= ’ LoadBearing ’ AND O PSingleValue [

Ex i s t s]=True”/>

32 </TemplateRules>

33 </TemplateRules>

34 </Concept>

35 </Concepts>

36 </ConceptRoot>

100

Appendix B

Data Model Design

B.1 IMIR UML Diagram
UML_Overall

DataModel
+ Values :Dictionary<Guid,PropertyValue>
+ Properties :Dictionary<Guid,Property>
+ PropertySets :Dictionary<Guid,PropertySet>
+ Requirements :Dictionary<Requirements,
PropertySet>

Requirements
+ Trigger :PropertyValue
- Guid :Guid
- Description :string

Property
- Name :string
- Description :string
- Guid :Guid
- Code :int
+ DataType :DataType
+ IfcType :string

PropertyValue<
T>

+ Value :T

<<enumeration>>
DataType

bool
int
double
string

PropertySet
Name :string
Guid :Guid

<<interface>>
IDescription

GetDescription () :string
SetDescription (desc :string) :void

<<interface>>
IName

GetName () :string
SetName (name :
string) :void

PropertyValue
Guid :Guid
Code :int
+ Property :Property
+ Requirements :Requirements
+ IfcType :string

<<interface>>
ICode

GetCode () :int
SetCode (code :int) :void

<<interface>>
IExpressType

IfcType ()

<<interface>>
IError

Error () :string
GetGuid () :Guid

MvdXmlCreator

+ Create () :XElement
- CreateConceptRoot () :
XElement
- CreateConcepts () :XElement
- RecursiveRead () :XElement

XmlCreator

+ CreateXml () :bool
- ToXml () :XElement

XmlReader

+ Open ()
+ CreateProperty ()
+ CreatePropertySet ()
+ CreatePropertyValue ()
+ CreateRequirements ()

XmlValidator

ValidateRoot ()
Validate ()
ValidatePropertyValue ()
ValidateProeprty ()
ValidatePropertySet ()
ValidateReferences ()
ValidateRequirements ()
ValidateGuid ()

1

1..n

1 0..n

1
1.

.n

1

im
pl

em
en

ts
1

1
0..n

1

0..n

1

implements1

1

1..n

B.2. How to Create an IMIR Model 101

The following chapter describes the core features of the IMIR DataModel class that functions

to create and maintain information requirements hierarchically. The data model is under

development. Hence, not all features are fully incorporated nor tested. The following table

shows the properties of class and explains their purpose:

B.2 How to Create an IMIR Model

Property Purpose

Values Type: Dictionary < Guid, PropertyV alue >. Contains all Prop-

ertyValues of the data model.

Properties Dictionary < Guid, Property >. Contains all Properties of the

data model.

Sets Dictionary < Guid, PropertySet >. Contains allPropertySets of

the data model.

Requirements Dictionary < Requirements, PropertySet. Contains all Re-

quirements of the data model. Moreover, it contains relationships

between Requirements and PropertySets

The following table describes the methods in the DataModel class. To readability reasons,

the methods do not show their input values. For further information, please check appendix

D.

Method Purpose Returns

GetType() Determines the data type of an object and re-

turns the corresponding enum: 0=Bool, 1=Int,

2=Double,3=String

DataType

ValidateDataType() Checks whether the input value equals to a

DataType or not.

bool

AddRequirements() Adds Requirements to a property value of the

data model. If the value equals null it means

that all elements of the model must implement

these Requirements. Returns false if an error

occured.

bool

CopyRequirements() Copies existing Requirements from the model

and adds them to another PropertyValue. Re-

turns false if an error occurred.

bool

B.2. How to Create an IMIR Model 102

Remove-

Requirements()

Removes Requirements from a PropertyValue.

It does not delete any proeprties. However, the

connected PropertySet also gets erased. Re-

turns false if an error occurred.

bool

CreateProperty() Creates a new Property and adds it to the data

model. The property is not assigned with any

proeprty set yet. Returns false if an error oc-

curred.

bool

AddProperty() Assigns a Property to a PropertySet. bool

RemoveProperty() Removes a Property from a PropertySet. It

does not delete the property from the model.

bool

DeleteProperty() Deletes a Property from the model. It also

updates all PropertySets that referenced this

Property.

bool

AddPropertyValue() Creates a PropertyValue and adds it to an ex-

isting Property

bool

Remove-

PropertyValue()

Removes a PropertyValue from a Property. bool

ToTreeStructure() Recursive method that derives a tree structure

from the model by using XElements. Return

the root of the tree.

XElement

Generate-TreeCode() Creates the WBS code of an entity in the tree

structure. Return the XAttribute defining the

Code

XAttribute

The following listing illustrates how to use the methods to generate an IMIR data model that

contains the information requirements from section 5.2.4.

B.2. How to Create an IMIR Model 103

1 IMIR .DataModel model = new DataModel () ;
2 // Create Requirements v a l i d f o r a l l components
3 model . AddRequirement (null , ” Pset1 ” , ” Al l bu i l d i ng components must implement

a componentType Property ” , out Requirements R1) ;
4 model . CreateProperty (”Component Type” , ”The Component Type o f the Property ”

, 1 , DataType . Str ing , out Property P1) ;
5 model . AddProperty (P1 , R1) ;
6 // Create ComponentTypes
7 model . AddPropertyValue<string>(P1 , ”Wall” , 1 , out PropertyValue<string> V1)

;
8 model . AddPropertyValue<string>(P1 , ”Beam” , 2 , out PropertyValue<string> V21

) ;
9 model . AddPropertyValue<string>(P1 , ”OTHER” , 3 , out PropertyValue<string>

V23) ;
10 //Add requirememts
11 model . AddRequirement (V1 , ” Pset2 ” , ” Al l wa l l s r e q u i r e these p r o p e r t i e s ” , out

Requirements R2) ;
12 model . AddRequirement (V21 , ” Pset3 ” , ” Al l beams r e q u i r e these p r o p e r t i e s ” ,

out Requirements R3) ;
13 // Create P r o p e r t i e s
14 model . CreateProperty (” Mater ia l ” , ” Mater ia l o f an Element” , 2 , DataType .

Str ing , out Property P1 2) ;
15 model . CreateProperty (” Thickness ” , ” Thickness o f an Element” , 1 , DataType .

Str ing , out Property P1 3) ;
16 // Assign P r o p e r t i e s
17 model . AddProperty (P1 2 , R2) ;
18 model . AddProperty (P1 2 , R3) ;
19 model . AddProperty (P1 3 , R2) ;
20 //Add Mater ia l Values
21 model . AddPropertyValue<string>(P1 2 , ” Concrete ” , 1 , out PropertyValue<

string> V2) ;
22 model . AddPropertyValue<string>(P1 2 , ”Masonry” , 2 , out PropertyValue<string

> V3) ;
23 // Create Requirements f o r mate r i a l : Concrete
24 model . AddRequirement (V2 , ” Pset4 ” , ” Concrete r e q u i r e s the se e lements ” , out

Requirements R4) ;
25 model . CreateProperty (” Strength ” , ” Strength o f the mate r i a l ” , 1 , DataType .

Str ing , out Property P1 4) ;
26 model . AddProperty (P1 4 , R4) ;
27 // Create XML f i l e o f IMIR and save i t in a d i r e c t o r y
28 System . Xml . Linq .XElement p = XmlCreator . ToXml(model) ;
29 XmlCreator . CreateXml (p , @”C:\ Ins tanceTest . xml”) ;
30 // Derive t r e e s t r u c t u r e o f the model
31 System . Xml . Linq .XElement t r e e = model . ToTreeStructure () ;
32 // Create mvdXML f i l e from the t r e e and save i t .
33 XElement neu = MvdXmlCreator . Create (t r e e) ;
34 using (XmlWriter xw = XmlWriter . Create (@”C:\ Ins tanceTest . mvdxml” ,
35 new XmlWriterSettings { Indent = true }))
36 {
37 XDocument pr in t = new XDocument() ;
38 pr in t . Add(neu) ;
39 pr in t . Save (xw) ;
40 xw . Close () ;
41 }

Listing B.1: The following listing creates a IMIR data model and saves it as an XML file. Moreover,
it derives a mvdXML file from it.

B.3. Enrich-IFC: UML Diagram 104

B.3 Enrich-IFC: UML Diagram
IfcValues_Realtions

Assigned Values
AssignedValues :
List<IfcProperty,EirProperty>
Remove () :bool
Run () :void
Count () :int
ReadPattern () :void

BcfError
+ Guid :string
+ Requirement :IError
+ Message :string
+ ToXml ()
+ ToBcf ()
- markup ()
- viewpoint ()
- directory ()

LevelQuality
Required :int
Correct :int
+ Quality () :double

Quality
- author :string
- file :string
- model :string
+ Reset () :void
+ SetInformation () :void
+ Validate () :void
- RecursiveVal () :bool

IfcProperty

+ IsPropertyValue () :
bool

IfcPropertyValue
Value :string

EirProperty
Code :string
+ IsPropertyValue () :bool

EirPropertyValue
Value :string

<<interface>>
IXml

ToXml () :XElement
FromXml () :void

<<interface>>
IIfcFinder

GetBuildingElements () :
List<IfcProduct>

<<interface>>
IError

Error () :string

<<interface>>
IAssign

Add () :void
Add () :void

EirReader

Property
PSetName :string
PropertyName :string
IfcType :string

AssigningDataModel

+ AssignProperty () :bool
+ AssignPropertyValue () :bool
+ Find () :bool
+ AddEirValue () :bool
+ ExportXml () :XElement
+ Validate () :void
+ SavePattern () :bool
+ ReadAssignedValues () :bool

IfcReader

+ Open ()
+ ReadPropertyValue ()
+ ReadComponentType ()
+ ReadSingleProperty ()
+ ReadAllPropertySets ()
+ ReadPropertySet ()
+ CreateValueList ()
+ CreateOverallList ()
GetElements ()

MvdXmlConverter

+ Open () :XElement
- RecursiveRead () :void
- readTempRule () :
XElement

1

n

1

n

1

re
qu

ire
s

0..n1

re
qu

ire
s

0..n

1

0..n

1

0..n

1 0..n

1 1..i

105

Appendix C

Case-Study: Floor Plans

-

-

A1053

A104 2

A103

1

1 2 3 4 5 6 7

A

A

B

B

C

C

1

A104

3

A103

D

E

F

G

3000 3000 3000 3000 3000 3000

3
0
0

0
3

0
0

0

Laundry

Bath
73 m²

Kitchen & Dining

101

23 m²

Hall

105

70 m²

Living

106

Mech.

Outdoor Dining

Deck

46

46

46

46

46

46

46

46

105

103

104

106A 106B

Room Legend

Bath

Hall

Kitchen & Dining

Laundry

Living

Mech.

Rain water
collection tanks

-

-

-

-

?

?

?

?

?

?

?

Figure C.1: Ground floor. (based on Autodesk (2020))

106

1 2 3 4 5 6 7

A

B

C

D

E

F

27 m²

Master Bedroom

206

Master Bath
14 m²

Bedroom

204

Bath

Bath

14 m²

Bedroom

202

30 m²

Entry Hall

201

Linen

46

46464646

46 46

206B
206A

204

207

208A

205

203

202

201A

201B

208B

Room Legend

Bath

Bedroom

Entry Hall

Linen

Master Bath

Master Bedroom

Observation Deck

Deck

Walking
bridge to
carport

3000 3000 3000 3000 3000 3000

3
0
0
0

3
0
0
0

3
0
0
0

3
0
0
0

6
0
0
0

Chimney

?

?

?

?

?

Figure C.2: First floor. (based on Autodesk (2020))

107

Appendix D

Digital Content

The following data is available on .

1. ToolV2: The source code of both data-models: IMIR and Enrich-IFC

2. Prototype GUI : .exe file to run the prototype (shortcut to the Release)

3. 03 mvdXML: Information related to Chapter 3:

(a) 01: Information related to chapter 3.1:

- Option1.mvdxml: introducing strict hierarchy

- Option2.mvdxml: introducing strict applicability

- PropertyMapping.txt: adds information to the ifc derived from revit

- Test Wall.ifc: File that was used to compare option 1 and 2

- Test wall.rvt: Revit project comprising the two walls

(b) 02: Information related to chapter 3.2:

- 4Components.ifc: Ifc model comprising the components to test BimQ

- bimQ.mvdxml: information requirements derived from BimQ

4. 05 ModelDesign: Information related to figure 5.3

- InstanceText.xml: Listing 5.1 shows a reduced version of this file

5. 06 GeigerExample Information related to Chapter 6.3:

- BCF: Derived BCF files

- GeigerTestModel.ifc: The Ifc Document provided by Geiger before the supplement.

- GeigerModelExport.ifc: The exported model after the enrichment.

- InstanceTest.mvdxml : The mvdXML file comprising the information requirements

from section 5.3.2

- assignedValues.xml : XML file comprising all assigned value tuples

- SetUp3.cs: Test generating the IMIR model

108

- Screencast.mp4 : Video showing the prototype in Use; also available here:

https://bit.ly/39wfW4N

6. 07 CaseStudy: Information related to chapter 7:

- BCF: folder containing bcf files for the missing information

- 01 SetUp2.cs: testClass to create the imir model

- 02 IMIR.mvdXML: mvdXML derived from the IMIR model

- 03 IMIR.xml : IMIR model exported to an XML file

- 04 externalModel.ifc: external IFC file

- 05 assignedVaues.xml : file storing all assigned value paris

- 06 enrichedModel.ifc: model ernrichment

- 07 InUse.mp4 : video showing the prototype

- 08 RevitProject.rvt :

https://bit.ly/39wfW4N

BIBLIOGRAPHY 109

Bibliography

Abualdenien, J. & Borrmann, A. (2019). A meta-model approach for formal specif-

cation and consistent management of multi-LOD building models. Advanced Engi-

neering Informatics. Retrieved: https://www.sciencedirect.com/science/article/abs/pii/

S1474034618304324. Accessed: 30/03/2020.

Aram, S., Eastman, C. M., Sacks, R., Panushev, I. & Venugopal, M. (2010). Introducing a new

methodology to develop the Information Delivery Manual for AEC projects. Proceedings

of the CIB-W078 2010: 27th International Conference - Cairo, Egypt, 16-18 November .

Retrieved: https://www.irbnet.de/daten/iconda/CIB21885.pdf. Accessed: 30/03/2020.

BIMForum (2019). Level of Development (LOD) Specification Part I & Commentary: For

Building Information Model and Data. Retrieved: https://bimforum.org/lod/. Accessed:

13/02/2020.

Borrmann, A., Beetz, J., Koch, C., Liebich, T. & Muhic, S. (2018). Industry Foundation

Classes: A Standardized Data Model for the Vendor-Neutral Exchange of Digital Building

Models. In: A. Borrmann, M. König, C. Koch, & J. Beetz (Hrsg.), Building Information

Modeling, Volume 17, S. 81–126. Cham: Springer International Publishing.

Borrmann, A., König, M., Koch, C. & Beetz, J. (Hrsg.) (2015a). Building Information

Modeling. Wiesbaden: Springer Fachmedien Wiesbaden.

Borrmann, A., König, M., Koch, C. & Beetz, J. (2015b). Einführung. In: A. Borrmann,

M. König, C. Koch, & J. Beetz (Hrsg.), Building Information Modeling, Volume 1, S. 1–21.

Wiesbaden: Springer Fachmedien Wiesbaden.

Borrmann, A., König, M., Koch, C. & Beetz, J. (2018). Building Information Modeling:

Why? What? How? In: A. Borrmann, M. König, C. Koch, & J. Beetz (Hrsg.), Building

Information Modeling, Volume 145, S. 1–24. Cham: Springer International Publishing.

buildingSMART (2005). IFC2x Edition3. Retrieved: https://standards.buildingsmart.org/

IFC/RELEASE/IFC2x3/FINAL/HTML/. Accessed: 30/03/2020.

buildingSMART (2019a). BCF-XML: File-Based Implementation of BIM Collaboration For-

mat. https://github.com/buildingSMART/BCF-XML.

https://www.sciencedirect.com/science/article/abs/pii/S1474034618304324
https://www.sciencedirect.com/science/article/abs/pii/S1474034618304324
https://www.irbnet.de/daten/iconda/CIB21885.pdf
https://bimforum.org/lod/
https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/FINAL/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/FINAL/HTML/
https://github.com/buildingSMART/BCF-XML

BIBLIOGRAPHY 110

buildingSMART (2019b). BIM Collaboration Format (BCF) - An Introduction. Retrieved:

https://technical.buildingsmart.org/standards/bcf/. Accessed: 30/03/2020.

buildingSMART (2019c). Industry Foundation Classes: Version 4.2 bSI Darst Standard:

IFC Bridge Proposed Extension. Retrieved: https://standards.buildingsmart.org/IFC/

DEV/IFC4 2/FINAL/HTML/. Accessed: 30/03/2020.

buildingSMART (2019d). Model View Definition (MVD). Retrieved: https://technical.

buildingsmart.org/standards/mvd/. Accessed: 30/03/2020.

buildingSMART (2020a). bSDD Content Guidelines. Retrieved: https://docs.google.com/

document/d/1YUiR07A27lK0UB8ImYoaoLKCUvh1QFG1FfcvvLOYdP0/edit. Accessed:

30/03/2020.

buildingSMART (2020b). buildingSMART Data Dictionary. Retrieved: http://bsdd.

buildingsmart.org/. Accessed: 30/03/2020.

Chipman, M., Liebich, T. & Weise, M. (2016). mvdXML: Specification of a standard-

ized format to define and exchange Model View Definitions with Exchange Requirements

and Validation Rules. Retrieved: https://standards.buildingsmart.org/MVD/RELEASE/

mvdXML/v1-1/mvdXML V1-1-Final.pdf. Accessed: 30/03/2020.

CIC (2011). BIM Project Execution Planning Guide Version 2.1.

CIC (2019). Cost Estimation.

Die Deutsche Bauindustrie (2018). BIM im Hochbau: Technisches Positionspapier

der Arbeitsgruppe Hochbau im Arbeitskreis Digitalisiertes Bauen im Hauptverband

der Deutschen Bauindustrie e.V. Retrieved: https://www.bauindustrie.de/presse/

presseinformationen/positionspapier-bim-im-hochbau/. Accessed: 30/03/2020.

Dossick, C. S. & Neff, G. (2011). Messy talk and clean technology: communication, problem-

solving and collaboration using Building Information Modelling. Engineering Project Or-

ganization Journal 1(2), S. 83–93. Retrieved: https://www.tandfonline.com/doi/citedby/

10.1080/21573727.2011.569929?scroll=top&needAccess=true. Accessed: 30/03/2020.

Eastman, C., Panushev, I., Sacks, R., Venugopal, M., Aram, S., See, R. &

Yagmur, E. (2011). A Guide for Development and Preparation of a National

BIM Exchange Standard. Retrieved: http://dcom.arch.gatech.edu/pcibim/documents/

IDM-MVD Development Guide v4.pdf. Accessed: 30/03/2020.

Hölzlwimmer, V. (2019). Prüfung von Fertigstellungsgraden in digitalen Gebäudemodellen.

Diplomarbeit, Technische Universität München. Retrieved: https://publications.cms.bgu.

tum.de/theses/2019 Hoelzlwimmer LOD.pdf. Accessed: 30/03/2020.

https://technical.buildingsmart.org/standards/bcf/
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/
https://standards.buildingsmart.org/IFC/DEV/IFC4_2/FINAL/HTML/
https://technical.buildingsmart.org/standards/mvd/
https://technical.buildingsmart.org/standards/mvd/
https://docs.google.com/document/d/1YUiR07A27lK0UB8ImYoaoLKCUvh1QFG1FfcvvLOYdP0/edit
https://docs.google.com/document/d/1YUiR07A27lK0UB8ImYoaoLKCUvh1QFG1FfcvvLOYdP0/edit
http://bsdd.buildingsmart.org/
http://bsdd.buildingsmart.org/
https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf
https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf
https://www.bauindustrie.de/presse/presseinformationen/positionspapier-bim-im-hochbau/
https://www.bauindustrie.de/presse/presseinformationen/positionspapier-bim-im-hochbau/
https://www.tandfonline.com/doi/citedby/10.1080/21573727.2011.569929?scroll=top&needAccess=true
https://www.tandfonline.com/doi/citedby/10.1080/21573727.2011.569929?scroll=top&needAccess=true
http://dcom.arch.gatech.edu/pcibim/documents/IDM-MVD_Development_Guide_v4.pdf
http://dcom.arch.gatech.edu/pcibim/documents/IDM-MVD_Development_Guide_v4.pdf
https://publications.cms.bgu.tum.de/theses/2019_Hoelzlwimmer_LOD.pdf
https://publications.cms.bgu.tum.de/theses/2019_Hoelzlwimmer_LOD.pdf

BIBLIOGRAPHY 111

International Organization for Standardization (2018). Industry Foundation Classes (IFC)

for data sharing in the construction and facility management industries – Part 1: Data

schema.

Jönsson, E. (2015). Consequences of Implementing the buildingSMART Data Dictionary.

Retrieved: http://www.diva-portal.org/smash/get/diva2:839483/FULLTEXT01.pdf. Ac-

cessed: 30/03/2020.

Kahate, A. (2009). XML & related technologies. Delhi: Dorling Kindersley (India).

Laasko, M. & Kiviniemi, A. (2012). The IFC Standard - A Review Of History, Development,

And Standardization. Journal of Information Technology in Construction 17, S. 134–161.

Retrieved: https://www.researchgate.net/publication/252069448 The IFC Standard - A

Review of History Development and Standardization. Accessed: 30/03/2020.

Lewis, J. P. (2007). Fundamentals of project management (3rd ed. Aufl.). WorkSmart. New

York: American Management Association.

Liskov, B. H. & Wing, J. M. (1994, 11). A Behavioral Notion of Subtyping. ACM Transactions

on Programming Languages and Systems 16. Retrieved: https://www.cs.cmu.edu/∼wing/

publications/LiskovWing94.pdf. Accessed:30/03/2020.

Lockley, S., Benghi, C. & Černý, M. (2017). Xbim.Essentials: A Library for Interoperable

Building Information Applications.

Martin, R. C. (1995). The Dependency Inversion Principle. The C++ Report: Engineer-

ing Notebook 3. Retrieved: https://web.archive.org/web/20110714224327/http://www.

objectmentor.com/resources/articles/dip.pdf. Accessed: 30/03/2020.

Martin, R. C. (1996). The Interface Segregation Principle. The C++ Re-

port: Engineering Notebook 4. Retrieved: https://drive.google.com/file/d/

0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi/

view. Accessed: 30/03/2020.

Martin, R. C. (2002). Agile Software Development, Principles, Patterns, and Practices.

London: Pearson.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. New Jersey:

Prentice Hall.

McPartland, R. (2014). BIM Levels explained. The National BIM Standard . Retrieved:

https://www.thenbs.com/knowledge/bim-levels-explained. Accessed: 30/03/2020.

Microsoft (2015). Collections (C#). Retrieved: https://docs.microsoft.com/en-us/dotnet/

csharp/programming-guide/concepts/collections#BKMK KeyValuePairs. Accessed:

30/03/2020.

http://www.diva-portal.org/smash/get/diva2:839483/FULLTEXT01.pdf
https://www.researchgate.net/publication/252069448_The_IFC_Standard_-_A_Review_of_History_Development_and_Standardization
https://www.researchgate.net/publication/252069448_The_IFC_Standard_-_A_Review_of_History_Development_and_Standardization
https://www.cs.cmu.edu/~wing/publications/LiskovWing94.pdf
https://www.cs.cmu.edu/~wing/publications/LiskovWing94.pdf
https://web.archive.org/web/20110714224327/http://www.objectmentor.com/resources/articles/dip.pdf
https://web.archive.org/web/20110714224327/http://www.objectmentor.com/resources/articles/dip.pdf
https://drive.google.com/file/d/0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi/view
https://drive.google.com/file/d/0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi/view
https://drive.google.com/file/d/0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi/view
https://www.thenbs.com/knowledge/bim-levels-explained
#
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/collections#BKMK_KeyValuePairs
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/collections#BKMK_KeyValuePairs

BIBLIOGRAPHY 112

Preidel, C., Borrmann, A., Mattern, H., König, M. & Schapke, S.-E. (2018). Common

Data Environment. In: A. Borrmann, M. König, C. Koch, & J. Beetz (Hrsg.), Building

Information Modeling, S. 279–291. Cham: Springer International Publishing.

Project Management Institut (2012). A Guide to the Project Management Body of Knowl-

edge (PMBOKr Guide)-Fifth Edition (ENGLISH) (5th ed. Aufl.). Newtown Square, PA:

Project Management Institute.

Scheffer, M., Mattern, H. & König, M. (2018). BIM Project Management. In: A. Borrmann,

M. König, C. Koch, & J. Beetz (Hrsg.), Building Information Modeling, S. 235–249. Cham:

Springer International Publishing.

Shafiq, M., Matthews, J. & Lockley, S. (2012, 10). Requirements for Model Server Enabled

Collaborating on Building Information Models. International Journal of 3-D Information

Modeling 1, S. 8–17. Retrieved: https://www.researchgate.net/publication/262215057

Requirements for Model Server Enabled Collaborating on Building Information Models.

Accessed: 30/03/2020.

Speiser, K. (2019). The Information Delivery Manual and Model View Definitions.

AEC3 (2020a). FUNCTIONALITY. Retrieved: https://bim-plattform.com/en/bimq/

functionality/. Accessed: 30/03/2020.

AEC3 (2020b). Mapping of elements (IFC). Retrieved: https://bimq.centraldesk.com/en/

articles/JI1y-mapping-of-elements-ifc-. Accessed: 30/03/2020.

AEC3 (2020c). Model Components. Retrieved: https://bimq.centraldesk.com/en/categories/

uT5X-model-components. Accessed: 30/03/2020.

AEC3 (2020d). Project Components. Retrieved: https://bimq.centraldesk.com/en/

categories/bxGC-project-components. Accessed: 30/03/2020.

Autodesk (2020). Revit Sample Project Files. Retrieved: https://knowledge.autodesk.

com/support/revit-products/getting-started/caas/CloudHelp/cloudhelp/2019/ENU/

Revit-GetStarted/files/GUID-61EF2F22-3A1F-4317-B925-1E85F138BE88-htm.html.

Accessed: 30/03/2020.

BCA Singapore (2013). Singapore BIM guide - Version 2. Retrieved: https://www.corenet.

gov.sg/media/586132/Singapore-BIM-Guide V2.pdf. Accessed: 30/03/2020.

Digital Konvergens, BIM7AA & BIM i Landskabet (2019). Specification of Building Parts -

for selected building parts in building models. Retrieved: http://www.bim7aa.dk/DIKON

BIM7AA Bygningsdelsspecifikationer UK.html. Accessed: 30/03/2020.

https://www.researchgate.net/publication/262215057_Requirements_for_Model_Server_Enabled_Collaborating_on_Building_Information_Models
https://www.researchgate.net/publication/262215057_Requirements_for_Model_Server_Enabled_Collaborating_on_Building_Information_Models
https://bim-plattform.com/en/bimq/functionality/
https://bim-plattform.com/en/bimq/functionality/
https://bimq.centraldesk.com/en/articles/JI1y-mapping-of-elements-ifc-
https://bimq.centraldesk.com/en/articles/JI1y-mapping-of-elements-ifc-
https://bimq.centraldesk.com/en/categories/uT5X-model-components
https://bimq.centraldesk.com/en/categories/uT5X-model-components
https://bimq.centraldesk.com/en/categories/bxGC-project-components
https://bimq.centraldesk.com/en/categories/bxGC-project-components
https://knowledge.autodesk.com/support/revit-products/getting-started/caas/CloudHelp/cloudhelp/2019/ENU/Revit-GetStarted/files/GUID-61EF2F22-3A1F-4317-B925-1E85F138BE88-htm.html
https://knowledge.autodesk.com/support/revit-products/getting-started/caas/CloudHelp/cloudhelp/2019/ENU/Revit-GetStarted/files/GUID-61EF2F22-3A1F-4317-B925-1E85F138BE88-htm.html
https://knowledge.autodesk.com/support/revit-products/getting-started/caas/CloudHelp/cloudhelp/2019/ENU/Revit-GetStarted/files/GUID-61EF2F22-3A1F-4317-B925-1E85F138BE88-htm.html
https://www.corenet.gov.sg/media/586132/Singapore-BIM-Guide_V2.pdf
https://www.corenet.gov.sg/media/586132/Singapore-BIM-Guide_V2.pdf
http://www.bim7aa.dk/DIKON_BIM7AA_Bygningsdelsspecifikationer_UK.html
http://www.bim7aa.dk/DIKON_BIM7AA_Bygningsdelsspecifikationer_UK.html

BIBLIOGRAPHY 113

ISO 19650-1 (2017). Organization and digitalization of information about buildings and

civil engeneering works, including building information modelling (BIM) - Information

management using building information modelling - Part 1: Concepts and principles.

ISO 19650-2 (2017). Organization and digitalization of information about buildings and

civil engeneering works, including building information modelling (BIM) - Information

management using building information modelling - Part 2: Delivery phase of assets.

ISO 29481-1 (2016). Buidling information models - information delivery manual - Part 1:

Methodology and format.

PAS 1992-2 (2013). Specification for information management for the capital/delivery phase

of construction projects using building information modeling.

The NBS (2015). Uniclass 2015. Retrieved: https://www.thenbs.com/our-tools/

uniclass-2015. Accessed: 30/03/2020.

UK BIM Alliance (2019). Information Management according to BS EN ISO 19650 - Guid-

ance Part 1: Concepts. Retrieved: https://www.ukbimalliance.org/wp-content/uploads/

2019/04/Information-Management-according-to-BS-EN-ISO-19650 -Guidance-Part-1

Concepts 2ndEdition.pdf. Accessed: 30/03/2020.

Venugopal, M., Eastman, C. M., Sacks, R. & Teizer, J. (2012). Semantics of model views for

information exchanges using the industry foundation class schema. Advanced Engineering

Informatics 26(2), S. 411–428. Retrieved: https://www.sciencedirect.com/science/article/

abs/pii/S1474034612000067. Accessed: 30/03/2020.

Venugopal, M., Eastman, C. M. & Teizer, J. (2015). An ontology-based analysis of the

industry foundation class schema for building information model exchanges. Advanced

Engineering Informatics 29(4), S. 940–957. Retrieved: https://www.sciencedirect.com/

science/article/abs/pii/S1474034615001019. Accessed: 30/03/2020.

Wix, J. & Karlshøj, J. (2010). Information Delivery Manual: Guide to Components and

Development Methods. Retrieved: https://standards.buildingsmart.org/documents/IDM/

IDM guide-CompsAndDevMethods-IDMC 004-v1 2.pdf. Accessed: 30/03/2020.

Zhang, C., Beetz, J. & Vries, d. (2013, 07). Towards model view definition on semantic

level : a state of the art review. Proceedings of European Group for Intelligent Com-

puting in Engineering (EG-ICE). Retrieved:https://www.researchgate.net/publication/

260763029 Towards model view definition on semantic level a state of the art review.

Accessed: 30/03/2020.

https://www.thenbs.com/our-tools/uniclass-2015
https://www.thenbs.com/our-tools/uniclass-2015
https://www.ukbimalliance.org/wp-content/uploads/2019/04/Information-Management-according-to-BS-EN-ISO-19650_-Guidance-Part-1_Concepts_2ndEdition.pdf
https://www.ukbimalliance.org/wp-content/uploads/2019/04/Information-Management-according-to-BS-EN-ISO-19650_-Guidance-Part-1_Concepts_2ndEdition.pdf
https://www.ukbimalliance.org/wp-content/uploads/2019/04/Information-Management-according-to-BS-EN-ISO-19650_-Guidance-Part-1_Concepts_2ndEdition.pdf
https://www.sciencedirect.com/science/article/abs/pii/S1474034612000067
https://www.sciencedirect.com/science/article/abs/pii/S1474034612000067
https://www.sciencedirect.com/science/article/abs/pii/S1474034615001019
https://www.sciencedirect.com/science/article/abs/pii/S1474034615001019
https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf
https://www.researchgate.net/publication/260763029_Towards_model_view_definition_on_semantic_level_a_state_of_the_art_review
https://www.researchgate.net/publication/260763029_Towards_model_view_definition_on_semantic_level_a_state_of_the_art_review

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Master-Thesis selbstständig angefertigt habe.

Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt.

Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches kenntlich gemacht.

Ich versichere außerdem, dass die vorliegende Arbeit noch nicht einem anderen Prüfungsver-

fahren zugrunde gelegen hat.

Sulzberg, April 1, 2020

Kilian Speiser

Kilian Speiser

See 9

D-87477 Sulzberg

kilia
Hervorheben

kilia
Hervorheben

	Introduction
	Data Exchange in AEC Industry
	Motivation
	Objectives and Structure

	Background Information
	Industry Foundation Class
	The History of IFC
	Data Structure

	Level of Development
	Information Management in BIM Projects
	Project Perspectives
	Information Requirements According to ISO 19650-1
	The Information Delivery According to ISO 19650

	Technical Implementation of EIR
	Model View Definitions and Exchange Requirements
	Purpose and Origin of mvdXML
	MvdXML Schema
	MvdXML to Validate IFC Documents

	Issue Communication in BIM projects
	Motivation
	Distinction in Markup and Visualisation

	Classify and Structure Deliverables
	Work Breakdown Structure
	Usage in AEC industry

	Summary

	Current Situation
	Ifc Validation Based on MvdXML
	Identify EIR
	Derive the MvdXml Document
	Validation Using XBim Xplorer
	Conclusion

	Information Requirements with BimQ
	Functionalities
	Example
	Conclusion

	Summary

	Enrich-IFC-Approach
	Initial State
	Exchange Requirements and Their Structure
	Overview
	Requirements on the Structure of the EIR
	Convert into MVD
	Summary

	Enrich-IFC-Model
	Prepare
	Entity-Relationships
	Add Information to the Model
	Validate the Information
	Review Errors
	Finalise

	Summary

	Data Model Design
	Overview
	Internal Model Information Requirements
	Requirements on the Data Model
	IMIR Design
	Store and Export Data Model
	Instance of the IMIR-Data-Model

	Enrich-IFC-Model
	Enrich-IFC-Model Design
	Instance of a Data Model
	Agile Principles

	Prototype
	Ideal System
	Implemented Features
	Menu
	Information Trees
	Assigned Pairs
	Validate

	Prototype in Use
	Summary

	Case-study: Quantity-Takeoff
	Using iTWO for QTO
	Enrich-IFC-Approach
	Overview
	Determine Information Requirements
	Create Deliverables Library in iTWO
	Adapt External Model to IMIR
	Validate the Model
	Execute QTO Using iTWO

	Conclusion

	Conclusion and Future Development
	Conclusion
	Vision

	MvdXML for Validation
	Data Model Design
	IMIR UML Diagram
	How to Create an IMIR Model
	Enrich-IFC: UML Diagram

	Case-Study: Floor Plans
	Digital Content

	pbs@ARFix@1:

