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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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large set of part variants. Thus, the required effort for logistics planning and, in particular, for packaging planning is increasing. This paper 
proposes an approach to automate the assignment of packaging for an individual part based on its characteristics using machine learning. We use 
the historical data of product parts and their packaging specifications to train our two-step machine learning model. Consequently, the model is 
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1. Introduction 

The manufacturing industry is highly affected by trends of 
mass customization and dynamics of product life-cycles [1]. 
Consequently, the variety of individual parts, sub-assemblies 
and product components increased to meet customers’ 
requirements [1]. To overcome these challenges, the 
manufacturing industry has developed an integrated supply 
chain network to enable a continuous supply of parts [2]. When 
supplying parts, the packaging (1) enables the transport and 
storage of parts, (2) protects both the parts and the environment 
and (3) enables the identification of parts [3,4]. However, each 
part has its individual characteristics (e.g. geometry, weight) 
and requires suitable packaging. Thus, the effort and 
complexity for logistics and packaging planning has increased 
dramatically.  

In contrast, within the last years, machine learning (ML) has 
been adapted successfully across various industries. ML 
algorithms aim to optimize the performance criterion which 
evaluates the efficiency of fulfilling a given task by learning 
from (historical) data [5]. The field of ML can be separated into 

supervised and unsupervised ML. Unsupervised ML tries to 
discover unknown patterns (e.g. clustering), while supervised 
ML requires a set of labels to classify or regress the labels using 
algorithms [6].  

Nevertheless, it is far from trivial to formulate, develop and 
implement a ML model. This requires both business and data 
understanding, as well as the right algorithms and concepts. 
Also, for production planning, a variety of applications and 
case studies exists [7,8]. However, none of the approaches 
focuses on the packaging planning process.  

This paper seeks to propose an approach to automate 
packaging planning by formulating a packaging planning 
problem using supervised ML. It also contributes to the 
literature by: 

 
• Identifying and developing relevant features both for part 

and packaging characteristics using the literature. 
• Translating underlying decisions into separate ML models: 

packaging classification and fill rate regression. 
• Evaluating the feasibility of the approach using real-world 

data of the automotive industry. 
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The remainder of this paper is organised as follows. Sec. 2 
briefly summarises the packaging planning theory. Then, the 
approach is presented in Sec. 3 and applied within a case study 
in Sec. 4. Sec. 5 discusses the advantages and limitations. 
Finally, Sec. 6 concludes this paper and presents an outlook for 
future work. 
 

2. Packaging planning theory 

This section presents a short overview of the current practice 
of packaging planning. This includes related definitions and 
packaging concepts, the packaging planning process, and the 
packaging decision-making. 

2.1. Definitions and concepts 

The term packaging is frequently used in different 
applications and scenarios, and consequently there are various 
definitions and perspectives. This issue has been identified and 
addressed by the DIN 55405 (2014). We briefly summarise the 
definitions as follows [9]: 

• Packaging goods: the parts which are packed 
• Packaging: the container which holds the packaging goods 
• Package: the packaging including the packaging goods 
• Packaging aids: protective layers inside the packaging 

 
Packaging is separated into primary packaging (e.g. small 

load carrier) and secondary packaging (e.g. load unit for 
transport). According to Rosenthal (2016), the main packaging 
characteristics are size (e.g. small load carriers), type (e.g. 
standard or special packaging) and material (e.g. plastic or 
metal) [10]. Consequently, the set of possible packaging 
designs is large. In this paper, we focus on primary packaging. 

2.2. Packaging planning process 

The packaging planning process aims to select a packaging 
and to determine the fill rate of parts. The current practice 
presents various packaging planning processes with individual 
activities. Existing packaging planning processes share the 
main activities of characterizing the parts, comparing and 
evaluating existing packaging concepts, and selecting the most 
suitable packaging. Only in case of special requirements (e.g. 
oversized parts), will a special packaging type be developed. 
When packaging with its characteristics (e.g. size) is defined, 
the fill rate of parts per packaging can be calculated. The whole 
packaging planning process is repeated for each individual part 
and the results are documented in related information systems. 
During the planning progress, the rough planning result is 
transferred to a detailed planning result. We summarize the 
process in Fig. 1.   
 

 

Fig. 1. Packaging planning reference process based on [10, 11, 12]. 

2.3. Packaging decision making 

During this process, two main decision points can be 
identified: (1) select a certain packaging and (2) calculate the 
fill rate. According to Boeckle [13] and Schulz [14], the part 
(e.g. size, weight) is the main driver for the packaging decision 
[13, 14]. Other factors include the logistics functions, the 
suppliers and the legal conditions [13,14,15].  

Based on the packaging decision, the fill rate of parts can be 
calculated. In operations research, the container loading 
problem (CLP) has been formulated. CLP aims to maximize 
the number of parts with the geometric constraints that parts lie 
entirely inside the packaging bin and they do not overlap [16]. 
However, it has to be stated that more than the geometric 
characteristics have to be considered [16, 17]. Furthermore, 
with very few exceptions, publications in the area of CLP deal 
with small rectangular items [16]. 

Thus, in the automotive industry, both physical and virtual 
simulation techniques are applied. Physical simulation requires 
physical prototypes of the parts and is cost-intensive [18]. 
Virtual simulation uses existing computer-aided design (CAD) 
files of parts and determines the fill rate [10,11,18]. To do so, 
a detailed CAD file is required, and the experience of 
packaging planners is required to select the packaging. 

2.4. Interim conclusion 

We conclude that the packaging planning process is a 
standardized process to select the packaging and calculate the 
fill rate. The process is repeated for each part. Further on, the 
decision-making requires additional information (e.g. weight, 
quality requirements) besides the mathematical optimization of 
the geometric objective function. It can be stated that the 
process can be supported using software but expert knowledge 
is still required.  
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3. Approach 

In the following section, we formulate the packaging 
planning process and the decision-making within the process 
using supervised ML. Our approach and the structure of this 
section are based on the well-known cross-industry standard 
process for data mining (CRISP-DM) framework [19]. 

3.1. Data understanding 

The decision-making of the packaging and the fill rate is 
significantly influenced by the part characteristics (cf. Sec. 
2.3). To apply ML, we need to understand and formulate the 
characteristics as features for the ML algorithm. Thus, we 
reviewed existing literature of packaging planning with focus 
on part characteristics. Other factors, e.g. supplier, are not in 
the scope. The findings are used to develop the part and 
packaging model shown in Fig. 2. 

 

 

Fig. 2. Part and packaging relation model based on [12, 14, 20-23]. 

 
We translated the findings into a set of 11 part features. 

Additionally, we calculated the volume, three shape features 
and the bounding box density (cf. Table 1). 

Table 1. Prepared feature set of part characteristics. 

Category Feature Description 

Dimensions Length Length of the bounding box 

 Width Width of the bounding box 

 Height Height of the bounding box 

 Volume Bounding box volume 

Shape Length/Width Part shape 

 Height/Length Part shape 

 Height/Width Part shape 

Weight Weight Weight of the product 

 Weight/Volume Bounding box density 

Quality / 
sensitivity 

Quality index Quality requirements 
indicator 

 Electrostatic Electrostatic protection 

Price Part price Part price 

Dangerous goods Dangerous goods Dangerous goods indicator 

3.2. Data preparation 

The step of data preparation aims to prepare the existing data 
into the predefined schema for ML. For our given problem, we 
decide to use supervised ML because we want to train the ML 
model based on historical packaging assignments of planners. 
To apply supervised ML, we need to prepare the input data into 
a set of features. In contrast, the label represents the outcome 
of the model.  

Therefore, we use the prepared feature set of part 
characteristics and merge the historical packaging planning 
results. We use the packaging and the fill rate as labels. This is 
required to enable the algorithm to learn from the knowledge 
of packaging planners. To complete the step, the master data of 
the packaging are extended (e.g. size). 

Afterwards, invalid data has to be cleaned (e.g. drop empty 
rows). Finally, we created a set of 11 features, two labels and 
additional packaging information. 

3.3. Modelling 

We present an approach to formulate an ML model based on 
the labelled feature set. Based on the understanding of the 
packaging planning process and the underlying decision 
making, we split the model into two sub-models: 

• Packaging classification model: Which packaging is 
suitable based on the part characteristics? 

• Fill rate regression model: What is the expected fill rate of 
parts for the selected packaging? 

 
Based on the part and packaging relation model, we 

formulated the input features for both tasks (cf. Sec 3.2). 
Firstly, the packaging classification model uses the 11 features 
and the packaging label for training. Thus, it can classify an 
unknown packaging (e.g. for future planning activities). 
Secondly, the fill rate regression model uses the 11 features and 
the fill rate label. However, as the fill rate mainly depends on 
the size of the packaging itself, the result of the classification 
(the packaging) is used as input for the regression model. The 
proposed design of the ML model is shown in Fig. 3. 

 

 

Fig. 3. Design of the ML model. 
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In addition to the design of the model, both ML sub-models 
require the selection of an ML algorithm and the related hyper 
parameters. Subsequently, we need to select an algorithm for 
the classification model (e.g. decision tree, support vector 
machine) and the regression model (e.g. linear regression). In 
theory, there are plenty of different algorithms with a variety of 
hyper parameters that can be combined with boosting or 
ensemble techniques. In industry, the random forest (RF) 
algorithm is applied widely due to its robustness and ease-of-
application [24]. For now, we decided to use the RF both for 
the classification (RF classifier) and the regression (RF 
regressor). To select the right parameters, we applied a grid 
search of the (1) number of trees in the forest, (2) the maximum 
depth of each tree, (3) the maximum set of features, (4) 
bootstrapping and (5) the internal quality measurement and 
split criterion. For the regression, we applied a one hot encoder 
for the packaging categories to translate the categorical feature 
into separate features. 

4. Case study 

Within this section, we outline the application and 
evaluation of the approach within a case study. The case study 
has been conducted at an original equipment manufacturer 
(OEM) in the automotive industry.  

Before working on the ML model, we conducted four 
workshops with experts to understand the packaging planning 
process, the relevant criteria for decision-making and the 
historical data. The experts broadly agreed on the process found 
in the literature, and additionally, that decision-making is 
mostly based on historical packaging. Within this stage, we 
analyzed, cleaned (e.g. part weight of 0.0) and prepared the 
data. In total, we selected a random set of 2,500 parts with 
packaging assignments. Thus, no conclusion of the overall 
distribution about parts and packaging can be made.  

To assess the quality of the ML model, we separate 500 parts 
for testing purposes. The remaining 2,000 parts are split into a 
training and validation set, and are evaluated using cross 
validation (3-fold cross validation). Next, we present the results 
of the classification model (cf. Sec. 4.1) and the regression 
model for the fill rate (cf. Sec. 4.2).  

4.1. Packaging classification model 

The packaging classification model aims to classify a 
packaging based on the features of each part (cf. Sec. 3.3).  

During the interviews and the data exploration, we 
identified 293 different packaging variants for the 2,500 parts. 
Only 9.3% is standardized packaging (e.g. small load carrier), 
but the standardized packaging covers 71% of all parts. Due to 
the high variance of existing packaging, we categorized the 
packaging into 9 categories for this case study (cf. Table 2). 

 
  
 

 
 
 
 

Table 2. Packaging categories used in the case study. 

Category Size Dimensions  

Small load carrier (SLC) Small <= 400mm x 300m 

 Medium <= 600mm x 400mm  

 Large > 600mm x 400mm 

Large load carrier (LLC) Normal <= 1200mm x 800mm 

 Extra large > 1200mm x 800mm 

Heavy Load - -  

Special Small <= 400mm x 300m 

 Medium <= 600mm x 400mm  

 Large > 600mm x 400mm 

 
 

Further on, a quality index is not available in the data. 
However, the experts mentioned that the part price can be used 
to reflect the quality requirements: the more expensive a part, 
the higher the probability that there is a higher quality 
requirement. Thus, we used the part price of the product as a 
quality indicator. After the grid optimization, the average 
accuracy of the packaging classification model on the test data 
(n = 500) is 84.4%. The result of the classification model is 
displayed in the confusion matrix in Fig 4 which outlines three 
findings. Firstly, the invalid classifications are mostly related 
to the same packaging categories (e.g. SLC, special packaging) 
with different sizes (e.g. small, medium, large). Secondly, the 
heavy load packaging was classified with a high accuracy. The 
ML model learned the relation between volume and packaging 
weight. Thirdly, the overall distribution between standardized 
packaging and special packaging has been learned very well.  

 
 

 

Fig. 4. Confusion matrix of the classification model on the test data. 

 
Finally, we evaluate the importance of the individual 

features. The feature importance ranking of the classification 
model is shown in Fig. 5. The most important feature of the 
trained model is the part price which reflects the quality 
requirements. The second group covers volume, length and 
weight of the part. Thus, we can conclude that the ML model 
successfully learned a valid set of important features. Also, the 
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ML model strengthens the understanding in the literature, 
namely that the problem cannot be reduced to the mathematical 
optimization of the volume of the part and packaging.  

 

 

Fig. 5. Feature importance of the packaging classification model. 

4.2. Fill rate regression model 

The objective of the fill rate regression model is to calculate 
the fill rate based on the part characteristics and the packaging. 
As the fill rate depends on the packaging, e.g. dimensions of 
the packaging (cf. Sec. 3.3), we provide the correct packaging 
for the evaluation. To do so, we compared three different 
scenarios (cf. Table 3). 

Table 3. Feature set for the regression model. 

Scenario Total number of 
features 

Root squared 
mean error 
(RSME)  

1. Packaging volume 12 529 

2. Packaging length, width 
and height 

14 524 

3. Packaging length, width, 
height and category 

14 + 9 (hot 
encoded) 

542 

 
 
The regression model performs the best in the second 

scenario with the packaging length, width and height (root 
squared mean error (RSME) of 583). A possible reason might 
be that the variety of input features in scenario 3 cannot be 
learned in a sufficient manner when using the training set size. 
This can be underlined by the fact, that the distribution of the 
fill rate is very large (median 64, while the maximum is 
25,000). 

To further interpret the range of validity, we compare the 
actual fill rate (based on packaging planners) and the predicted 
fill rate (cf. Fig. 6). This allows us two findings: Firstly, the 
lower the fill rate, the lower the absolute error. With an 
increasing fill rate, also the deviation between the actual fill 
rate and predicted fill rate increases too. Secondly, there are 
still outliers with invalid predictions in both directions 
(prediction is higher than the actual fill rate, and vice versa). To 
summarize, the regression model is less robust than the 
classification model.  

 

 

Fig. 6. Actual vs. predicted fill rate of regression model on the test data. 

 

5. Discussion 

In the following section, we discuss the strengths and 
weaknesses of the model both from the technical machine 
learning perspective and from the packaging planning 
perspective. 

We can identify three strengths of the ML model. Firstly, the 
approach can automate activities during the rough planning 
stages. However, the detailed planning cannot be replaced. In 
addition to the packaging planning process, experts highlighted 
the chance to use the approach for other planning cases (e.g. 
during the change management process). Secondly, the 
approach is capable to learn and predict using the bounding box 
of the part, and does not require a precise CAD file or other 
information (e.g. CLP). Thirdly, as the process can be 
automated, the bottlenecks of manual evaluation can be 
eliminated. Thus, the process can be reengineered so that, for 
example, every change of the product structure and underlying 
parts, are evaluated instantly. Consequently, the risk of 
outdated planning results decreases. 

Nevertheless, the approach shows limitations. Firstly, 
currently only part characteristics are considered. Existing 
supplier information and special requirements are neglected. 
Secondly, with the dependency between the two sub-models, 
the result of the packaging classification has a significant role 
on the fill rate. Currently, there is no validation of packaging 
result yet. Thirdly, the performance of the regression model 
varies. Especially when the fill rate is high, the error rate 
increases. Thus, the packaging planning experts have to 
evaluate the fill rate after the prediction, in particular for high 
fill rates. Fourthly, if the packaging process changes, the ML 
model has to be trained with updated data. 
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6. Conclusion and outlook 

In this paper, we provide an approach to automate packaging 
planning. Therefore, we reviewed the existing packaging 
planning theory to understand the process and the underlying 
information required for decision making. Our proposed model 
combines a classification and regression model to determine 
the packaging and the fill rate. To do so, we reviewed the 
literature to provide and construct relevant features. We 
successfully evaluated the approach with real-world data. 
While the classification model performs with an overall 
accuracy of 84.4%, the regression model has an overall RSME 
of 524. 

Our research provides an initial approach and future 
research is required. Firstly, additional features, such as 
including the supplier or logistics process, have to be 
integrated. Secondly, different algorithms other than the RF 
and sampling techniques have to be evaluated. Thirdly, we only 
focused on the ML model. In the future, a combination of our 
approach with existing techniques such as CLP or simulation 
have to be integrated and evaluated. 
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