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Abstract. In this contribution we present a strategy to investigate the vibrations of onshore
wind turbines subjected to simultaneous aerodynamic loads and seismic loads. The latter result
from the propagation of seismic waves through the underlying soil and are governed by the
Lamé’s equations.

The structure and its foundation as well as parts of the soil are modeled by Finite Element
Method (FEM). The infinite half-space is discretized by Scaled Boundary Finite Element
Method (SBFEM). Both methods are coupled at the common interface. The seismic excitation
is expressed as a 3D seismic wave field and transformed into boundary tractions, which are then
applied at the interface between the near and far fields. The aerodynamic actions are generated
with an additional aerodynamic tool and are applied at the tower head.

The proposed method can be used also to investigate the 3D nonlinear response of the near
field, where nonlinear material properties can be assigned to any element of FEM part.

1. Introduction
Recent standard codes (e.g. [7]) introduced the seismic load combination for the design of wind
turbines, which considers a reasonable likelihood of earthquake occurrence during the operational
state or an emergency shutdown. A large part of the south European coastal areas presents
high seismic hazard and wind conditions, that are sufficiently suitable for financial returns from
modern wind turbines. In these areas, the seismic load combination may govern the tower and
the foundation design.
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It is important to consider the interaction between the structure and the underlying soil for
achieving a realistic estimation of the seismic response of wind turbines [19, 21]. The simulation
of the Soil-Structure-Interaction (SSI) issues for operating wind turbines involves two different
mechanical problems: on the one hand, the vibrations due to aerodynamic loads excite the
structure of the wind turbine and its foundation and, on the other hand, the vibrations are
transferred into the surrounding infinite half-space, a process which is governed by the Lamé’s
equations. For such a complex problem, no analytical or semi-analytical solution is available, so
that numerical models are used. For seismic analysis, an important aspect is the simulation of
the loading generated by the earthquake. The seismic waves originate in the far field and travel
towards the soil-structure interface, where a first part of the energy passes to the structure and
a second part is reflected backwards. The wave pattern is further complicated by the presence
of layers (or other inhomogeneities), which cause scattering and diffraction.

The aim of this study is to present a numerical model for the simulation of turbine-soil
systems, subjected to simultaneous earthquake and aerodynamic loading. The wind turbine can
be modeled by using standard methods such as the Finite Element Method (FEM). In contrast,
the infinite soil cannot be represented by means of discrete models, as they do not satisfy the
radiation condition for which the wave energy must dissipate to infinity. Therefore, we proposed
a method based on the coupling between the FEM and the Scaled Boundary Finite Element
Method (SBFEM). A detailed derivation of the SBFEM and its coupling to the FEM can be
found in Schauer [13].

Most of the studies about the FEM/SBFEM considered only external loads applied to the
near field. Few research works presented a method for including both external loads and the
earthquake actions caused by the propagation of scattered seismic waves.

Seiphoori et al. [16] studied the nonlinear seismic analysis of concrete faced rockfill dam,
obtaining the scattered motion and interaction forces along the canyon using the SBFEM. The
dam was subjected to spatially variable P, SV, and SH waves, in order to evaluate the effect of
dam–foundation interaction and the reservoir water effects.

Also Bazyar and Song [2] transformed seismic waves into surface tractions at the interface
between the near and far field system. They considered incident fields of obliquely plane waves
coming from the far field, where the seismic wave inputs are formulated as boundary tractions
applied to the near field.

Syed and Maheshwari [17] presented a rigorous algorithm for the computation of ground
interaction forces at the interface between near and far field. These are obtained solving a
convolution integral between the acceleration unit-impulse matrix and the relative accelerations,
which are obtained as the difference between the seismic scattering accelerations and the
absolute accelerations at the near-far field interaction nodes. Unfortunately, this rigorous
approach with non-locality in both time and space (due to the convolution) results in significant
computation effort. For this reason, Syed and Maheshwari proposed an improvement of the
seismic FEM/SBFEM [18], where two different approximation techniques – one in time and
one in space - helped to reduce the computational time to only 5% of that required using the
conventional method.

In the present work, the FEM/SBFEM coupling after Schauer [13] is enhanced with a function
for computing the seismic boundary tractions, which simulate the three-dimensional scattered
earthquake loading. Efficiency and feasibility of the method are key aspects for the seismic
simulation of turbine-soil systems. Therefore, the new feature for the computation of the seismic
forces was conceived as independent as possible from the existing ”‘non-seismic”’ algorithm and
it is an elegant approximation, based on simple principles of wave propagation.
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2. Numerical Method
For the seismic simulation of the operating wind turbine we use a sub-structuring method, where
the problem is subdivided into two sub-systems (cf. fig.1). The structure and its foundation
as well as parts of the soil (the near field) are modeled by FEM. The infinite half-space (the
far field) is simulated with the SBFEM. The sub-systems are coupled at the common interface
Γ [22].

∞ ∞
Ω

Γ

SBFEM:
Scaling center
Interface
Far field

FEM:
Structure

Foundation
Soil (near field)

.

Figure 1: Problem definition [12].

2.1. FEM-SBFEM Coupling
The FEM-SBFEM coupling is described briefly, more information about the theoretical
background and its efficient implementation can be found in Schauer [13] [14]. The displacement-
based FEM in time domain can be derived by the energy theorem

−δW =−
∫

Ω
δεTσdΩ−

∫
Ω
δuT

(
κ
du

dt
+ ρ

d2u

dt2

)
dΩ (1)

+
∫

Ω
δuTfdΩ +

∫
Γ
δuT tdΓ = 0 (2)

here the vectors u, du
dt = u̇ and d2u

dt2 = ü represent displacement, velocity and acceleration,
respectively. κ and ρ denote damping ratio and density. Applied tractions and forces are given
by t and f . After inserting the strain displacement relation ε = Du and the stress strain
relation σ = Eε in eq. (1) and introducing shape functions the given energy theorem can be
rewritten in the matrix-vector form:[

MΩΩ MΩΓ
MΓΩ MΓΓ

]
ü+

[
CΩΩ CΩΓ
CΓΩ CΓΓ

]
u̇+

[
KΩΩ KΩΓ
KΓΩ KΓΓ

]
u =

[
pΩΩ
pΓΓ

]
(3)

where M , C and K denotes mass, damping and stiffness matrix, respectively. pΩΩ are the
forces applied to the structure (such as the aerodynamic loads) and to the near field; the pΓΓ
are the forces applied at the interface between near and far field (such as the seismic loads).
The damping properties are introduced according to the Rayleigh representation, so that the
damping matrix is a combination of weighted mass matrix and stiffness matrix

C = cMM + cKK . (4)
The influence of the infinite half-space is described by SBFEM. The interacting forces at the

interface Γ are given by the vector

pb(tn) = γ∆tM∞
0 ün +

n−1∑
j=1

M∞
n−j (u̇j − u̇j−1) , (5)
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here γ is a parameter introduced by the time integration scheme. The unit acceleration impulse
matrices M∞ are assumed to be constant within one time step ∆t and they are computed in a
pre-process.

The vector of eq. (5) can be added to the right hand side of eq. (3) in order to get a direct
and bidirectional coupled FEM-SBFEM formulation

[
MΩΩ MΩΓ
MΓΩ MΓΓ + γ∆tM∞

0

]
ü+

[
CΩΩ CΩΓ
CΓΩ CΓΓ

]
u̇+

[
KΩΩ KΩΓ
KΓΩ KΓΓ

]
u =

=

 pΩΩ

pΓΓ −
n−1∑
j=1

M∞
n−j (u̇j − u̇j−1)

 . (6)

The computation in time domain is conducted by executing the generalized-α time stepping
algorithm [5].

2.2. Seismic loads
In seismic analyses, the rigorous procedure to compute the interaction forces at the interface
Γ would require to use the relative quantities in Eq. 5 in place of üj and u̇j . However, this
requires a modification of the existing algorithm and a higher computation effort. As an efficient
approximation, we consider the seismic forces as external loads contained in the vector pΓΓ in
Eq. 6. We assume that the seismic wave propagates through the far field at a constant speed
horizontally or inclined with a certain angle.
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Figure 2: Propagation of horizontal and inclined wave fronts as represented in the numerical
model (simplified sketch of the principle).

A first function computes the distribution of the accelerations due to the propagating wave
front at each time step in the far field, using the SBFEM on its own. It is possible to input
arbitrary time-dependent accelerograms for the wave front. The wave front reaches the near
field and accelerates the interactions nodes at different time steps depending on the position of
the nodes, which are located on the coupling surface shaped as an half sphere (see Fig. 2). Only
the accelerations applied to the outer nodes are considered and the wave front is transferred
homogeneously to the near field. In Fig. 2, the nodes in the shadow areas are not loaded during
the wave propagation process to avoid inhomogeneous effects.

A second function translates the accelerations at the outer nodes at each time step n into
loads, which are compatible with the FEM/SBFEM coupling and are saved into the vector pΓΓ.
The loads can be computed as:

pΓΓ(t) = M1a(t) , (7)
where M is the mass matrix, as defined before. 1 is a vector that contains ’1’ at the degrees of
freedom accelerated by the wave front and a(t) contains the scalar information of acceleration.
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2.2.1. Demonstration based on the propagation of an Heaviside-like wave front in a free field
A horizontal wave front propagates through a free field (a homogeneous half space without
the structure) and the time-dependent amplitude of the accelerations varies as an Heaviside
function with a maximum acceleration of 1 ms−2 (see Fig. 3a). The front propagates from
the negative towards the positive x-coordinates (from −200 m to 200 m). The free field is
modeled as a homogeneous isotropic half space with the material parameters: Young’s modulus
E = 1.173 ·108N/m2, Poison’s ratio ν = 0.28 and density ρ = 1937 kg/m3, and therefore a
P-wave velocity of cp = 246.12 m/s. Fig. 3b shows the discretization of the free field, made up
of the near field modeled as a half sphere of radius 200 m with 3438 nodes and 324 elements and
the far field modeled an an excavated half space. The far field is evaluated only at the nodes of
the interaction nodes on the surface of the half sphere, where the two sub-systems are coupled.

At the time 0 s, the wave front reaches the outermost node at x = −200 m and gradually
it accelerates all the other outer nodes. These boundary accelerations are transformed into
boundary loads for the near field and the displacements at the free field surface are evaluated at
different x-coordinates. Fig. 3c and Fig. 3d shows the displacements at x = 0 m and x = 75 m
respectively. Fig. 4 shows the three dimensional visualization of the wave propagation in the
near field.
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Figure 3: (a) Time dependency of the amplitude of the horizontal wave front; (b) map of the
investigated nodes; displacements along a line perpendicular to the propagation direction for (c)
x = 0 m and (d) x = 75 m.

2.3. Aerodynamic loads
The estimation of the aerodynamic loads is carried out according to [20]. It is a common
approach to uncouple the tower-foundation structure and the rotor-nacelle system. From a
structural point of view, for a specific wind speed and turbulence class, the rotor-nacelle system
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Figure 4: Displacements of the near field due to an horizontal wave front which travels in the
positive x-direction and varies in time as an Heaviside function, plotted at different time steps.

transforms the turbulent wind (the input) into tower top loads (the output). The output of the
rotor-nacelle system analysis, that is the tower top aerodynamic loads, become the input for the
second sub-system, which is the tower-foundation-soil system.

Deriving the aerodynamic loads independently of the seismic motion implies two main
assumptions:
• the aerodynamic loads are not noticeably influenced by the SSI and can be computed for a

fixed base tower;
• the system remains linear and the superposition principle is applicable.
The validity of the first assumption depends on the focus of the investigation and the

magnitude of the seismic load. Here, the focus of the investigations lies on the demonstration
of the strategy for 3D seismic excitations rather than on the aerodynamics. The aerodynamic
loads are computed with FAST [8], and then applied to the beam head.

3. Implementation
To analyze the seismic behavior of wind turbines different third-party software packages as well
as different in-house computer codes are combined. The general work flow is shown in Fig. 5.
Finite element meshes and scaled boundary finite element meshes are generated by using the
geometry and mesh generation toolkit CUBIT [11]. Here the geometry is created as well as
the final meshes. To conduct the analysis of the full model of wind turbine, its foundation and
the surrounding soil, preliminary steps are required. At first the eigenvalue problem is solved
using GNU Octave [6] to compute the eigenvalues and eigenvectors of the wind turbine and its
foundation. From the eigenvalues of the system the damping coefficients for the coupled problem
are derived. Secondly the response of the infinite half-space is computed, the M∞ matrices are
stored in compressed binary format. The aerodynamic loads are generated by using FAST [10]
from National Renewable Energy Laboratory. The process, which solved the coupled FEM-
SBFEM computation, has accesses to all previously generated files. The FE-model is build up
and the information of the SBFE-model is used to determine the coupling nodes in order to
apply the influence of the infinite half-space to the boundary of the FE-mesh. The aerodynamic
loads acting on the rotor and nacelle are applied to the tower top. The earthquake loads are
generated and applied to the near field according to Sec. 2.2.

Even if the seismic forces are computed with an efficient approximation technique, the SSI
interaction forces pb in Eq. 5 are computed rigorously with a convolution integral, which is
memory and time consuming. To handle the high memory consumption and the computational
effort, model reduction techniques and parallel computing techniques are used [14]. Also with
the same objectives in mind, a projection method for using non-matching meshes at the near-
field/far-field interface [15] will be introduced in future works.

Different third party libraries are used to achieve reasonable performance. The program
which computes the infinite half-spaces response has to handle dense and sparse matrices as
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Figure 5: Flow diagram of virtual wind turbine analysis. Boxes filled in gray are commercial or
open source software packages.

well, that is why ScaLAPACK [3] builds the main core of it. The finite element matrices are
sparse and handled with PETSc [1].

At first all input files are parsed to set up the virtual model. This includes in case of the
FEM: nodes, elements, material parameters, damping coefficients, boundary conditions, nodal
load and nodal accelerations as well as initial conditions. With this information the description
of the FEM part is complete. For the SBFEM, nodes and elements are processed and M∞

matrices are read. Afterward, the interface is initialized and coupling nodes are defined. Then
the system matrices M , K, and D are assembled. Here these matrices stay constant during the
simulation, since linear elastic material behavior and only small displacements of the structure
are assumed. The simulation is conducted with a time step length ∆t until the total time T is
reached. Within this time loop, three major steps are processed. At first the response of the
infinite half space is computed. The resulting forces are added to the force vector, which contains
also the aerodynamic forces and the seismic forces. After solving the equation of motion, by
using a generalized-α time stepping scheme (cf. [5]), the velocities at the interface are stored to
use them to evaluate the future time steps.

4. Case Study
For the considered case study, the stiffness and mass properties distribution of the wind turbine
properties are summarized in Tab. 1. The rotor blades,the nacelle and the gear box were idealized
as a stubby rigid element of 1 m at the top of the tower. The tower is made of steel using the
following material parameters: Young’s modulus E = 2.1 · 1011 N/m2, Poisson’s ratio ν = 0.3
and density ρ = 7850 kg/m3. The wind turbine is founded on a monopile embedded in the soil
for a length of 38 m and with the same properties of the tower.

The soil is assumed to be homogeneous and consists of sand with a shear modulus of
Gs = 7.64 · 107 N/m2, a Poisson’s ratio of νs = 0.28 and a density of ρs = 1937 kg/m3.
Control and regulation issues ensure an operational service within the desired and safe range of
rotational speeds, inclinations of the blades to the wind and power outputs. These aspects were
not considered as analysis parameters of this study and were not included in the model.

4.1. Model
The tower with the monopile is modeled as a cantilever Euler-Bernoulli beam. 11 elements, with
bending and axial flexibility as well as torsion are used. Each nodes has six degree of freedom
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Table 1: Structural properties of the wind tower, where
x is the axial direction and y and z are the bending
directions, in local coordinates [9].

h [m] A [m2] Ix [N/m2] Iy [N/m2] Iz [N/m2]
79↔80 8.042477193 10.0E+20 10.93776898 10.93776898
70↔79 0.620464549 10.0E+20 1.210293661 1.210293661
60↔70 0.665075165 10.0E+20 1.490537861 1.490537861
50↔60 0.709999940 10.0E+20 1.813419721 1.813419721
40↔50 0.754924714 10.0E+20 2.179857947 2.179857947
30↔40 0.799849490 10.0E+20 2.59260854 2.59260854
20↔30 0.844774264 10.0E+20 3.054427499 3.054427499
10↔20 0.889699040 10.0E+20 3.568070826 3.568070826
0↔10 0.934623814 10.0E+20 4.136294519 4.136294519
-38↔0 0.934623814 10.0E+20 4.136294519 4.136294519

6 Numerische Untersuchung des Bodeneinflusses auf Tragwerksschwingungen

Aus diesem Grund werden zwei Lagerungen betrachtet, um die Einspannwirkung des Monopiles
im Boden ausreichend genau abzubilden und zu vergleichen. Die Abbildungen 6.11 und 6.12
stellen die zwei Lagerungsarten dar.

�x � �y � �z � �

Abbildung 6.11: Lagerung ϕx =
ϕy = ϕz = 0

�z � �

Abbildung 6.12: Lagerung ϕz = 0

Einerseits wird eine vollständige Verdrehung (ϕx = ϕy = ϕz = 0) des Pfahles in 38,1 m Tiefe
angenommen. In diesem Zusammenhang wird vorausgesetzt, dass ein Kippen des Pfahles nicht
einsetzen kann. Andererseits wird in einem zweiten Schritt eine Verdrehung des Punktes in
38,1 m Tiefe vorausgesetzt. Lediglich die Rotation um die z-Achse wird weiterhin behindert
(ϕz = 0). Infolgedessen ist hier auch ein Kippen des Pfahles möglich.

6.1.3.1 Numerische Lösung der Windkraftanlage unter Ersatzlastbeanspruchung
(Typ2)

Wie bereits beschrieben, wird der Pfahl zunächst mit den normativ berechneten Ersatzlasten
belastet (vgl. Abbildung 6.4), um Unterschiede aus der nach DIN EN-1998-1 angenommenen
statischen Lagerung zu erfassen. In diesem Zusammenhang werden als erstes die Verschiebungs-
verläufe aus der Ersatzlastbeanspruchung infolge des horizontalen Antwortspekktrums des Typ 2
in 38,1 m Tiefe und bei 0 m dargestellt. Es werden beide angenommenen Lagerungsbedingungen
betrachtet (vgl. Abbildungen 6.13 bis 6.14).

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

·10−2

Zeit [s]

V
er
sc
hi
eb
un
g
x
[m
]

DichterSand
FelsTGranito
SteiferTon

(a) Verschiebung der WEA in 0 m

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6
·10−3

Zeit [s]

V
er
sc
hi
eb
un
g
x
[m
]

DichterSand
FelsoGranit)
SteiferTon

(b) Verschiebung der WEA in 38,1 m
Tiefe
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82

Figure 6: FEM part of the model.

(DOF), three to descibe translation and three to descibe rotation. Six DOF are coupled to
the surrounding soil, three at the towers base and three at the monopile’s bottom. Rotational
DOF are not coupled with the soil. The side-side and fore-aft direction are analyzed separately
without considering coupling effects. The rotations φi, with i = x, y, z, of the monopile are set
equal to zero at z = −38 m. The finite element mesh of the soil part (near field) is discretized
by hexahedron elements and it is fine in the center and becomes more coarse to the outside. So
that the complete model consists of 447 nodes and 1341 DOF. The surrounding soil (the near
field) is modeled as a homogeneous isotropic half-sphere with a radius of 102 m. Fig. 6 shows
the FEM near field including the monopile foundation.

The far field is represented using scaled boundary finite elements. The nodes and elements are
located at the common interface between the finite element (near field) and the scaled boundary
finite element (far field). Since only the surface is discretized 97 nodes, with 3 DOF each, are
needed. The scaling center is located in the domains center at the tower base with the global
coordinates SC = {0, 0, 0}.

4.2. Loads
For the computation of the turbulent aerodynamic loads with FAST, a reference speed of 12 m/s
was used. The turbulent wind field model used corresponds to the spectral and exponential
coherence model of Kaimal, which also meets the requirements of the standards [4]. The resulting
loads Fx and Fy act in fore-aft direction and side-side direction, respectively. Fz acts in axial
direction. The moments Mx, My, and Mz are roll, pitch and yaw moments, respectively.

As explained in Sec. 2.2, a pre-step for the estimation of the seismic loads pΓΓ at the
interaction nodes is necessary. Here a strong earthquake event has been chosen to conduct
the numerical analysis. Fig. 8 shows the acceleration-time-plot of the Kobe, Japan earthquake
in 1995. It has a moment magnitude scale of Mw = 7.2.

4.3. Damping
The presented model uses Rayleigh damping and the coefficients cM and cK are needed to build
the damping matrix (cf. Eq. (4)). It is possible to compute cM and cK by evaluating the
damping coefficient

δi = cM
4πfi

+ cKπfi . (8)

The terms cM
4πfi

and cKπfi prescribe mass proportional damping and stiffness proportional
damping, respectively. We considered the first two natural frequencies are f1 = 0.714 Hz and
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Figure 7: Aerodynamic loads: (a) operating forces (b) operating moments.
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Figure 8: Earthquake acceleration Kobe, Japan, 1995.

f2 = 3.811 Hz and we assume a damping coefficient of δi = 5% for both frequencies. This yield
to the Rayleigh damping coefficients cM = 0.0601 and cK = 0.022 and the damping matrix
D can be assembled. Fig. 9 shows the response of the tower subjected to aerodynamic loads
with and without damping. In the further paragraphs, all the calculations are carried out for a
damped system.

4.4. Results
The case study is conducted with a time step length of ∆t = 0.001 s for a total period of
T = 360 s. First, the tower is subjected only to the seismic actions. Then, the tower is
subjected to operating aerodynamic loads (as in Fig. 9) and, additionally, at the time t = 100 s
the seismic action is triggered. All the plot shows the different components of the displacements
of the tower.
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Figure 9: Undamped and damped response of the operating wind turbine subjected only to
aerodynamic loads.
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Figure 10: Tower displacements due to a seismic excitation:(a) base (b) top.

4.4.1. Turbine under seismic loads Fig. 10 depicts the results of the towers top and base
displacements in the x-, y- and z-direction, when the tower is subjected to a seismic excitation.
The horizontal wave front propagates in the near field in x-direction and excites the tower mainly
in x-direction. However, the propagation generates also a non-negligible vertical component at
the tower base. The amplitude of the base displacements reaches an absolute maximum of 4 cm.
The double integral of the accelerations in Fig. 8 can be interpreted as an approximation of the
seismic root point excitation without considering the spatial propagation of the wave and it leads
to a value of ca. 20 cm, which is 5 times bigger than the computed maximum base displacement.
This is due to the three-dimensional effects considered when generating the seismic loads. The
maximum top displacements in x-direction is about 15 cm.

4.4.2. Turbine under aerodynamic and seismic loads At t = 100 s the seismic excitation is
applied in form of tracions at the near field boundary. Fig. 11 shows the tower displacements.
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Figure 11: Comparison of the horizontal top displacements between 90 s and 130 s for two
different load scenarios :(a) base (b) top.

The additional seismic loads results, as expected, into an increase of the towers top displacement
during the seismic event and leads to a maximum top displacement of ca. 37 cm. After the
seismic event is subsided, the towers motions returns to values comparable to the aerodynamic
response without seismic event, shown is Fig. 9 for the damped case.

5. Conclusions
In this article we presented a strategy to simulate operating wind turbine subjected to seismic
excitation, considering the soil-structure-interaction, with the aid of a coupled FEM-SBFEM
approach in time domain. The proposed method is able to represent the salient aspects of the
SSI interaction and allows arbitrary transient loading conditions, such as aerodynamic loads,
seismic loads and the combinations of them.
The seismic loading is expressed as a 3D seismic wave field and transformed into boundary
tractions, which are then applied at the interface between the near and far fields. This allows
a scattered representation of the incoming seismic wave field and lead to more realistic simula-
tions.
Each simulation lasted few hours running on a personal computers. This strategy helps to com-
pute more realistic design loads for the case of a simultaneous interplay of aerodynamic and
seismic loads. It can be used to verify if the design loads computed with a standard combina-
tion of the sum of the maxima based on independent aerodynamic and seimsic simulations are
reasonable or too conservative. This would likely have important implications on the turbine
design.
In future works, nonlinear effects shall be taken into account, thanks to the suitability of this
strategy for transient time-domain analysis. The nonlinearities can be accounted for in the
structure, in the near field and at the soil-structure interface. Concerning the soil (near field)
nonlinearity, most of the models used in practice consider a simple one-dimensional behavior.
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The proposed method is able to investigate the 3D nonlinear response of the near field, as the
nonlinearity can be assigned to any element of the model. More sophisticated FEM tower mod-
els, with openings or non-axial-symmetrical shapes including SSI can be easily investigated with
the proposed strategy.

[1] Balay S.; et al.: PETSc Users Manual, Argonne National Laboratory, ANL-95/11 - Revision 3.6,
http://www.mcs.anl.gov/petsc, 2015.

[2] Bazyar, M. H.; Song, C.: Analysis of transient wave scattering and its applications to site response analysis
using the scaled boundary finite-element method. Soil Dynamics and Earthquake Engineering Vol. 98, pp.
191-205, 2017.

[3] Blackford, L.S.; et al.: ScaLAPACK Users Guide. Society for Industrial and Applied Mathematics,
Philadelphia, 1997.

[4] DIN EN 61400-1:2011-08: Windenergieanlagen - Teil 1: Auslegungsanforderungen; in German, 2011.
[5] Chung, J.; et al.: A Time Integration Algorithm for Structural Dynamics with Improved Numerical

Dissipation: The Generalized-α Method, Journal of Applied Mechanics, 60, 372–375, 1993.
[6] GNU Octave Scientific Programming Language https://www.gnu.org/software/octave/
[7] IEC. 61400-1 ed. 3: Wind turbines - part 1: Design requirements. Technical report,International

Electrotechnical Commission, 2005.
[8] Jonkman, J.; et al.: FAST User’s Guide, Technical Report, NREL/TP-500-38230, 2005.
[9] Jonkman, J.; et al.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical

Report, NREL/TP-500-38060, 2009.
[10] NREL National Renewable Energy Laboratory: FAST v7 https://nwtc.nrel.gov/FAST.
[11] Sandia National Laboratories: New Mexico, CUBIT 13.2 https://cubit.sandia.gov/index.html.
[12] Schauer, M.; Langer, S.; Roman, E.J.; Quintana-Ort́ı, E.S.: Large Scale Simulation of Wave Propagation in

Soils Interacting With Structures using FEM and SBFEM. Journal of Computational Acoustics, Vol. 19,
No. 1, pp. 75–93, 2011.

[13] Schauer, M.; Roman, E.J.; Quintana-Ort́ı, E.S.; Langer, S.: Parallel Computation of 3-D Soil-Structure
Interaction in Time Domain with a Coupled FEM/SBFEM Approach. Journal of Scientific Computing,
Vol. 52, pp. 446–467, 2012.

[14] Schauer, M.; Langer, S.: Implementation of an Efficient Coupled FEM-SBFEM Approach for Soil-Structure-
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