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ABSTRACT

In this work the potential for elastic scattering of two nucleons is calculated in chiral
effective field theory at next-to-leading order with coupled NA- and AA-channels. To
solve the coupled channel scattering equation one needs the potentials of all possible
combinations of initial and final states (NN, NA, AN, AA) up to this order. We give
analytic expressions for the spectral functions of the two-pion exchange for all contributing
one-loop diagrams. The contact potentials at leading and next-to-leading order and the
corresponding low energy constants are determined. The rich coupling of the NA and AA
contact potentials to the nucleon-nucleon channels is investigated. We perform a fit of the
low energy constants, which arise from the NN — NN contact potential and contribute
at next-to-leading order to the NN S- and P-waves only. The influence of the A-isobar
dynamics entering through the coupled channels is studied in detail.

ZUSAMMENFASSUNG

In dieser Arbeit wird das Potential fiir die elastische Streuung zweier Nukleonen in chi-
raler effektiver Feldtheorie bis zur nachst fithrenden Ordnung mit gekoppelten NA- und
AA-Kanilen berechnet. Um die Streugleichung mit gekoppelten Kanélen zu 16sen, werden
die Potentiale aller moglichen Kombinationen aus Anfangs- und Endzustand (NN, NA,
AN, AA) bis zu dieser Ordnung benétigt. Wir geben analytische Ausdriicke fiir die Spek-
tralfunktionen des Zweipionaustausches fiir alle moglichen Einschleifendiagramme an. Die
Kontaktpotentiale in fithrender und néchst fithrender Ordnung und die dazugehérigen Para-
meter werden bestimmt. Die umfangreiche Kopplung der NA- und AA-Kontaktpotentiale
an die Nukleon-Nukleon-Kanéle wird untersucht. Wir fithren einen Fit der Niederenergie-
konstanten, die aus dem NN — NN Kontaktpotential stammen und auf néchst fithrender
Ordnung zu den NN S- und P-Wellen beitragen, durch. Der dynamische Einfluss des
A-Isobars, der durch die gekoppelten Kanéle entsteht, wird detailliert untersucht.
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INTRODUCTION

The theoretical description of nuclear forces started in 1935 with Yukawa’s meson exchange
theory [1]. The one-pion exchange led to promising results, whereas multi-pion exchanges
rendered the perturbative expansion uncontrollable because of the large pion-nucleon cou-
pling constant. Many models of nuclear forces came up before the formulation of quantum
chromodynamics (QCD) as the fundamental theory of strong interactions. However, QCD
is highly nonperturbative in the energy regime of nuclear forces. This issue has been
bypassed by the concept of a low-energy effective field theory. As Weinberg suggested,
one should write down the most general Lagrangian consistent with the symmetries of the
underlying theory [2]. In the case of QCD this is the spontaneously and explicitly broken
chiral symmetry. The effective degrees of freedom in chiral effective field theory (ChEFT)
are then pions, nucleons and other hadrons (e.g. vector mesons and baryon resonances),
instead of quarks and gluons. Heavier degrees of freedom are understood to be integrated
out.

In some sense, one is back to Yukawa’s meson theory but with chiral symmetry now
incorporated into the theory as a guiding priciple. The classification of the nuclear
potential by Taketani et al. [3] is still valid, but it has been refined over the years. The
NN-potential can be divided into three parts where different types of interactions dominate,
see Fig. 1.1. The long distance region III is described by one-pion exchange. The force at
intermediate distances (region II) is dominated by two-pion exchange. The short-distance
part in region I is then described in chiral effective field theory by a unresolved contact
interaction. In absence of other information, the unknown low-energy constants of this
contact interaction are then fitted to scattering data.

The calculations within chiral effective field theory started with the calculation of 77 and
7N scattering to one loop order by Gasser and Leutwyler [5,6]. Weinberg’s approach to the
nuclear force [7,8] suggested to calculate the nucleon-nucleon potential perturbatively and
then iterate it to all orders by a scattering equation. Applications of the chiral Lagrangian
to the two-nucleon system using time ordered perturbation theory were performed in
Refs. [9,10] and to the mN-observables in Ref. [11].

The NN potential up to next-to-leading order (NLO) was derived in Ref. [12] using
dimensional regularization. Single and double A-isobar excitations were included in Ref. [13]
as well as next-to-next-to-leading order (N2LO) contributions. In Refs. [14, 15] the two
nucleon potential was calculated up to N2LO with the method of unitary transformations,
including also the A-isobar as an explicit degree of freedom in intermediate states for
the two-pion exchange. Further improvements of the NN potential with and without the
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FIGURE 1.1: Schematic picture showing the nucleon-nucleon potential divided into three regions
where different types of interactions dominate. The distance r is given in units of the pion Compton
wavelength m_—! = 1.4 fm. Adapted from Refs. [3,4]

A-isobar were derived by different groups e.g. in Refs. [16-22] up to dominant N5LO
contributions in Ref. [23] or a N4ALO potential including N5LO contact interactions in
Ref. [24].

A coupled NA-channel approach was used for a phenomenological potential in Refs. [25-27]
and as an extension of the so-called CD-Bonn potential [28] in Refs. [29,30]. The structure
of the chiral effective Lagrangian for pions, nucleons and A-isobars was derived in detail in
Ref. [31] and some parts of this Lagrangian have been worked out in Ref. [32].

In this work, we include the coupled NA- and AA-channels in the calculation of the two
nucleon S-matrix in chiral effective field theory in order to investigate the influence of the
dynamics of the A-isobar. For this purpose, we derive the interaction potential among
nucleons and A-isobars at leading and next-to-leading order and make use of a coupled
channel scattering equation.

In Chapter 2 a brief introduction of quantum chromodynamics and chiral effective field
theory is given. The power counting scheme of ChEFT is discussed. We summarize the
Lagrangians for the interactions among pions, nucleons and deltas in the non-relativistic
heavy baryon limit.

In Chapter 3 we give the general structure of the NN-potential and discuss different types of
scattering equations. The derivation of the so-called local regularization is summarized. The
chapter closes with the method used to perform partial wave projections most conveniently.
In Chapter 4 the LO and NLO potentials are derived in detail. The NLO potentials
are given in terms of spectral functions and dispersion integrals. We derive the relevant
projectors for the decomposition of 27 phase space integrals that contain specific Lorentz
tensors appearing in the calculation of two-pion exchange. The irreducible part of 27
exchange from planar box diagrams is determined by considering the pertinent integrals
over the loop-energy.
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In Chapter 5 the contact terms at LO and NLO are worked out. The contact potential
is projected onto the partial waves for the (NN, NA, AN, AA)-system and the relations
between these two descriptions of the contact-potentials are worked out. The fitted values
of the NN low-energy constants are given. The influence of contact interactions involving
up to four A-isobars is discussed. Only a limited part of these can be determined by the
fit routine.

In Chapter 6 we show our results for the NN-phase shifts and mixing angles. Results for
scattering equations are compared, namely the Kadyshevsky equation and the Lippmann-
Schwinger equation. The results in the coupled channel approach are compared to those
obtained with the next-to-next-to-leading order potential in the delta-less case.

The entire thesis is concluded in Chapter 7.






QUANTUM CHROMODYNAMICS AND CHIRAL EFFECTIVE
FIELD THEORY

The Standard Model of particle physics describes three of the four fundamental forces
in nature. Among them, the strong force between quarks and gluons is described by the
theory of quantum chromodynamics (QCD). Due to its non-abelian nature the coupling
as decreases at high energies and QCD can be treated perturbatively in this regime.
This weak coupling leads to asymptotic freedom of quarks and gluons. However, at low
momentum transfer the coupling gets very strong and the quarks and gluons are confined
into color neutral hadrons. QCD is highly non-perturbative at these low energies. The
nuclear force is part of the QCD dynamics in this low-energy domain. Its description
on the quark level is quite complex, but it can be investigated non-perturbatively with
lattice QCD, where numerical simulations of full QCD are performed on a discretized finite
Fuclidean space-time lattice. Another possibility consist of utilizing color confinement.
The substructure of hadrons is not resolved at sufficiently low energies. So one can build an
effective field theory for point-like hadrons obeying the symmetries of QCD, called chiral
effective field theory. Due to the presence of a small expansion parameter and a power
counting, a perturbative expansion of the nuclear force in this low-energy regime becomes
possible.

In this chapter, we give a short overview of QCD and its symmetries. A short derivation
of chiral effective field theory (ChEFT) is presented, together with the inclusion of the
A-isobar as additional degree of freedom and the resulting power counting scheme. This
chapter follows closely Refs. [11,31,33-35].

2.1 QUANTUM CHROMODYNAMICS
2.1.1 QCD Lagrangian

QCD is the gauge field theory describing the strong interactions with the non-abelian
group SU(3)color as the underlying gauge group. The fundamental degrees of freedom in
QCD are quarks and gluons. Quarks are Spin-% fermions and gluons are massless vector
bosons. The QCD Lagrangian is given by

_ . 1
gQCD = Z qf(lf)/MD/L - mf)Qf - ZG,U,V,aGgV (21)
f=u,d,s,c,b,t
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with the quark fields ¢; (in six flavors: up, down, charm, strange, top, bottom), the
Dirac matrices v, and the quark masses my. Each quark field g is a color triplet, i.e.

qf = (q}ed, q;%reen, q};‘lue). The gauge-covariant derivative is given by

. Ag
D,LL = a,LL — lg?A,UI,CL 5 (22)
and the gluon field strength tensor reads
G,uu,a = a,uAV,a - aVA,u,a + gfabcAu,bAy,c . (23)

Here, A, 4 are the eight gluon fields, g is the strong coupling constant, A, are the Gell-Mann
matrices, and the fu. are the structure constants of the su(3) Lie algebra satisfying the
commutation relations [Ag, A\p] = 2ifapeAc

2.1.2  Symmetries of QCD

In the following we consider only the two lightest types of quarks f = u,d. The quark
fields can be decomposed into their right- and left-handed components,

qr = Prq qr = Prq (2.4)
with the projection operators
1 1
PR:§(1 +’Y5) PL:§(1—’)/5) . (25)

In the so-called chiral limit, i.e. the limit of vanishing quark masses m, = mqg = 0, the
right- and left-handed quark fields decouple in the QCD Lagrangian

. _ . 1
L5cp = RV Duqr + 4y Duqr, — 1 CaGa” - (2.6)

This Lagrangian is invariant under the separate unitary transformations

qr = (Z]]:) — Urqr = exp (i&fT“) <Z§> (2.7)

qL = <Zi> — ULqr = exp (1557a> <Zz> : (2.8)

The matrices 7® generate the su(2) Lie algebra and Ur and Uy, are elements of the flavor
transformation groups SU(2)r and SU(2)y, respectively. The QCD Lagrangian of massless
u- and d-quarks possesses a SU (2) g x SU (2) -symmetry, which is called the chiral symmetry.
Noether’s theorem states that there are six conserved currents. These can be written as
three vector currents

and

Jyt =gyt (2.9)
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and three axial vector currents
IV = gy s (2.10)

By adding the (small) quark mass term —myiu — mgdd to the Lagrangian in Eq. (2.6),
chiral symmetry gets explicitly broken, as the right- and left-handed quark fields are now
mixing. In this case the axial-vector currents are not conserved any longer. However, the
vector currents remain conserved for equal quark masses m, = mg, which corresponds to
the usual isospin SU(2) symmetry.

If a symmetry of the Lagrangian (or Hamiltonian) is not present in the ground state, this
symmetry is called spontaneously broken. The non-observation of parity-doublets in the
(low-energy) hadron spectrum implies that SU(2)r x SU(2), is broken down to SU(2)y .
Therefore, the QCD ground state is invariant only under vector transformations but not
under axial transformations. According to the Goldstone theorem, there have to exist three
massless Goldstone bosons. These are identified with the isospin triplet of the pseudoscalar
pions. In fact, the pions are not massless, because the chiral symmetry is also explicitly
broken by (small) non-zero quark masses.

2.2 CHIRAL EFFECTIVE FIELD THEORY

To obtain an effective field theory of QCD, the soft and hard scales have to be identified.
One chooses the soft scale to be given by the pion mass Q ~ m, and the hard scale as
the chiral symmetry breaking scale A, ~ 1GeV. If v = Q/A, is small, a perturbative
expansion in this parameter can be applied. First, we have to construct the effective
Lagrangian.

2.2.1 Chiral effective Lagrangian

The effective Lagrangian of chiral perturbation theory can be split into a pionic part
Zrr, the pion-nucleon interaction part £y, and interactions between more nucleons (and
pions):

%ffZXﬁﬂ+$ﬂN+... , (2.11)

where Z» and %,y are sorted by the number of derivatives of the pion and nucleon fields:

Le =L 4+ 2W L (2.12)
Ln =L+ LR+ (2.13)

The leading order m7- and wN-Lagrangians, given in Refs. [5, 6], read

2
@ _ Ix ngrt] 1 t
2 = (T [ U0mUT| 4+ m21x [U 4 UT]) (2.14)
20 =y (WDM — My + 92147“75uu> b . (2.15)
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LO
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NLO N Y S Ry
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N2LO .
3 el
N3LO .
gt N, 4 SN

F1GURE 2.1: Contributions to the two- and three-nucleon force ordered by the power-counting
scheme € = Q/A,. Solid and dashed lines denote nucleons and pions, respectively.

The SU(2) matrix U collects the pion fields in the form

U= flw (\/ﬂ—kir'ﬂ') (2.16)

and the chirally covariant derivative reads
D,=0,+T,. (2.17)

The so-called chiral connection I', is defined as

1
=5 |¢hau] = (g*a §+€0:8") = fwf (1 x Q) + O(x) (2.18)

where

(r-m)3 4+, (2.19)

which has the property, £ = 1, and therefore 8M(§§T) = (0,)&"T + €0,£" = 0. The axial
vector quantity w, is defined as
Uy = 1{51" 8u§} =i ({raug - gau{r)

S — 2}?(7 ) (7 - Bum) + O(%) . (2.20)

fx

The leading interaction terms with one and two pion fields read [34]

_ 1
qu(w“@ *MN*E’Y V5T - O — f7%7“7"(7r><8,ﬂr)+---)1[}. (2.21)
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Here, My = 938.9 MeV is the average nucleon mass, m, = 138.03 MeV the average pion
mass, fr = 92.4 MeV the weak pion decay constant and g4 = 1.29 the nucleon axial vector
coupling constant. To account for the Goldberger-Treiman discrepancy we do not use the
experimental value g4 = 1.2723(23) [36] determined in neutron /-decay. Our shifted value of
ga yields g2 /(47) = 13.6 for the charged pion-nucleon coupling constant g,n = gaMy/ fx-.
This value of g,n is consistent with the determination from 7 N-scattering data based on
the Goldberger-Miyazawa-Oehme sum rule g2 /(47) = 13.69 £ 0.20 [37].

2.2.2  A-isobar as explicit degree of freedom

The A(1232) isobar is the lowest exited state of the nucleon. The mass splitting between
the nucleon and the A-isobar is A = Ma — My = 293 MeV. Due to the small mass splitting
and the strong coupling to the pion-nucleon system, the A-isobar should also be included
in the effective field theory and this way the set of small scales gets extended [31,34],

qg my; A
— e, . 2.22

This set defines to the so-called small scale expansion (SSE). The latter is a phenomeno-
logical extension, since the mass difference A does not vanish in the chiral limit. In the
purely nucleonic or A-less theory the effects of the A-isobar are hidden in the constants of
the higher order interactions, as it is shown in Fig. 2.2. Out of the four 7 N-low-energy
constants at N2LO three (cz, c3, c4) are shifted, if the A-isobars are treated explicitly [38].

A-less additional in A-full

LO
g0 =T

N3LO I .-
84 ~-- :~~

FIGURE 2.2: Power counting without and with explicit A-isobar degrees of freedom. The double
lines denote A-isobars. The arrows indicate where the A is hidden in the A-less theory.
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2.2.3 Effective Lagrangian in heavy baryon limit

The nucleon mass My is not small compared to the chiral symmetry breaking scale
Ay =~ My and it does not vanish in the chiral limit (m, — 0). Moreover, the time-
derivative of the relativistic baryon field yields a factor of order E ~ My . This feature
destroys the strict correspondence between the expansion in pion loops and the expansion
in small external momenta. The heavy baryon chiral effective theory (HBChEFT) [39]
solves the issue by following an approach developed originally for systems containing
heavy quarks [40]. In the extreme non-relativistic limit the baryons are treated as static
sources. Then, the energy exchange between baryons is small compared to their momenta.
This restores the one-to-one correspondence between the loop and the small momentum
expansion, i.e. a consistent power counting scheme emerges [11].

The expansion in the heavy baryon limit for nucleons and deltas has been developed in
detail in Refs. [31,32]. We summarize the main steps here.

The nucleon four-momentum p,, can be decomposed as

P = Mnvy + Ky (2.23)
where the four-velocity v, satisfies v? = 1 and k, < My, A,. One defines the projection
operators

P = %(1 1) (2.24)

giving rise to the light N—components and the heavy h—components of the nucleon field
N via the relations

N(z) =exp(iMpnv - x)Pyin(z) , (2.25)

h(zx) == exp(iMnv - z)P_1Yn(x). (2.26)

The nucleon sector

The heavy baryon projection can be combined with path integral methods as outlined in
Ref. [41]. The transitions between the light and heavy components of the nucleon fields
are then described by operators A, B and C and yield the following Lagrangian,

Zen = NANN + hByN + NyoByyoh — hCyh. (2.27)

These operators can be expanded chirally, i.e. A = AD + A®) 4 At their lowest
orders, they read

C](\?) =2My , (2.28)

AV =iv-D+gaS-u, (2.29)

BY = —5(2iS - D+ %‘u ) | (2.30)

C](\}) =iv-D+gaS-u, (2.31)

10
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with the nucleon four-velocity v, and the Pauli-Lubanski spin-vector S,, = %75@“,1)” , Where
0w = 5[Yus Y] For the common choice v* = (1,0) one has S* = (0,0)/2.
For the second order operators, Ref. [32] gives the following expressions,

AQ = e1(x4) + ea(v - u)? + esu? + ea S, Sy (2:32)
BY = —ciyslv-u, 5] (2.33)
C¥) = —|er(xs) + ea(v - w) + esu® + ealS*, S uyu | | (2.34)

where x+ = ulyul £ uxTu. According to Eq. (2.20) u,, includes the pion fields and (...)
denotes a trace in flavor space, such that (x,) = 2m2(UT +U).

The nucleon delta sector

The technology for the heavy baryon projection in the nucleon-delta sector has been
developed in Ref. [31]. One has to work with appropriate spin and isospin projection
operators. Using a simplified notation that suppresses Lorentz and isospin indices, the
effective Lagrangian has the form,

LNA = TANAN + GBNAN + T’}/()D}LVA’yoh + é"}/oC;rVA’yoh + h.c., (2.35)

where T!" describes the light delta and G!' stands for the heavy delta. The field G has five

components. It contains the heavy spin—% component and the heavy and light parts of the

two off-shell spin—% components. The transition operators read in this case

AS\IT)A’,Z;L = Pygana 3Pu0£wflp+ ) (236)
0
—MH&S ‘w' Py
B](\PA’?M = 9gaNA 220 P_~5v,S - w' Py ) (2.37)

—2z9P_ 55,0 - w' P,
(1+ 2z0) Proyv-w' Py

1),
DA, =0, (2.38)
P_w!, 3Py, P-
' 220P_v - w'S,ys Py
C]j\;(Al,);J,Z = grNA (1+ 29)P-v - w'v, P_ , (2.39)

—4(1+3z2 i
B0 p g wis, P

—220P_S - w'v, s Py

with w!, = %(Tiua), 3P = g — v, — %dSMSV in d space-time dimensions and the Py
are the velocity projection operators defined above. There appear two parameters, the

leading pion-nucleon-delta coupling constant g,ya and a so-called off-shell parameter zg.

11
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The delta sector

If one now performs simultaneously the 1/M expansion of the nucleon and delta fields, the
A-N mass splitting remains in the propagator. This is a quantity of order €, so it must be
kept in the expansion. In the heavy baryon approach, the delta Lagrangian takes the form

Lin = TAAT + GBAT + TroBin0G — GCAG (2.40)
where the operator between two light delta fields reads

AV = (i DY~ G 4 1S - u)g (2.41)

We omit the lengthy expressions of B(Al) and C(Al) here. They can be found in Ref. [32].

Elimination of heavy components

In order to integrate out the heavy components, one just needs to shift the corresponding
heavy fields. For the heavy nucleon component this variable shift reads according to
Ref. [41]

_15(01
h— b +Cy'BYN, (2.42)
and Ref. [31] specifies the variable shift for the G¥(x) fields as
150 —15,0
G— G+ BUT + BN (2.43)

After integrating out the heavy components h’ and G’ one arrives at Lagrangians for the
light components

QZZTN = N.ANN + N[’}/olg’jv’yoéﬁllg]\f + 'YOB;FVA’YOCngNA]N , (2.44)
Zon = TAAT + T{'YOBTA'YOCZIBA + Voﬁjm%é&lf?NA}T , (2.45)
Zrna = TANAN + T{’YOb}LVA’YOéKflgN + ’VOBTA’YOCEBNA}N +h.e., (2.46)
where
By = By + CnaCr'Bya (2.47)
Cn =Cn — CnaCriClhia (2.48)
ﬁNA =Dna + CNACEIBA . (2.49)

The leading order is given by the first term for each of these Lagrangians.

12
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TABLE 2.1: Propagators and vertices in the non-relativistic heavy baryon approach, 7 are outgoing
pions, 7 are incoming pions. Here, 7% and o are the usual (isospin and spin) 2 x 2 Pauli matrices.
The transition operators T® and S, as well as the 4 X 4 matrices ©* and X are explained in
Appendix A.2.

i

107

-1
S gy e o)

1
< b
et OV - (Gra + qyo)

N —— L
v-l+1ie
i
A == S
v-l—A+1ie
ga
N apn - _ g4 a
— T * 2f7r0' qT
N — m°A _ 394 gt ga
2V2 fr
A = 70N h __394 g qre
2v2fx
A = TOA H 94 5 q00

2.2.4  Propagators and vertices in non-relativistic limit

In order to take the extreme non-relativistic limit, the Lagrangians in Section 2.2.3 have to
be expanded in the inverse baryon mass M{,l. The expansion of the baryon bilinears in
M ](,1 is summarized in Appendix A.4. This yields the baryon propagators and baryon-pion
vertices collected in Table 2.1.

We use the large Ng-values for the TNA and 7AA coupling constants,

39xNN grNN
_ ’ _ , 2.50
IrNA NG IrAA 3 (2.50)

2.2.5 Power counting in chiral effective field theory
Due to the infinite number of terms in the chiral effective Lagrangian the resulting diagrams

have to be ordered according to their importance to obtain a calculable and predictive
theory. In ChEFT, the diagrams are ordered in terms of powers of the small momentum

13



QUANTUM CHROMODYNAMICS AND CHIRAL EFFECTIVE FIELD THEORY

scale @ over the chiral symmetry breaking scale A: (Q/A,)”. The dimensional analysis
from covariant perturbation theory counts a nucleon propagator as Q! a pion propagator
as Q7 2, a derivative in a vertex as @, and a four-momentum integration as Q*. Following
Weinberg’s works [7,8,42], one obtains for the power of an irreducible diagram [34]

v=-24+24-2C+2L+) A;, (2.51)

)

with A the number of nucleons, C' the number of separately connected pieces, L the number
of loops, and A; the so called index of interaction defined as

Ai:dﬁ—%—Q. (2.52)

Here, d; denotes the number of derivatives or pion mass insertions and n; is the number of
nucleon fields involved in the vertex i. For an irreducible NN diagram (A =2, C' = 1) the
formula simplifies to

v=2L+)Y A;. (2.53)

The contributions at leading order (LO), next-to-leading order (NLO) and next-to-next-to
leading order (N2LO) are shown in Fig. 2.1 for the two- and three-nucleon interaction. In
this work, we perform calculations up to next-to-leading order.

14



NUCLEON NUCLEON POTENTIAL

The nucleon-nucleon (NN) potential is defined as the sum of all (two-particle) irreducible
diagrams arising from the chiral interaction vertices. The reducible components of the
diagrammatic amplitudes are accounted for by iterating the NN potential in a scattering
equation which determines the T-matrix as it is explained in Section 3.1. The NN potential
can be obtained from the Lagrangian by applying the Feynman rules in Table 2.1 to the
diagrams listed in Fig. 2.2. The general decomposition of the NN potential reads (e. g. [12])

Vnn =Vo+ 71 -1oWeo + (Vs + 71 - 12Ws)o1 - o2
+(Vr+71-12Wr)o1-qo2-q
+ (Vos + 711 12Wis)i(o1+ 02) - (@ X p)
+ (Vo +71-12Wg)io1- (g xp)oz- (g xp), (3.1)

where p is the ingoing momentum of one nucleon in the center of mass frame and q is
the momentum transfer between the two nucleons. The superscripts denote the central,
spin-spin, tensor, spin-orbit and quadratic spin-orbit components of the NN potential. For
each component there exists an isoscaler (V) and an isovector (W) part.

To compare the potential obtained in the theoretical framework with experimental results
one needs to calculate the phase shifts and mixing angles. They parameterize the NN S-
matrix Sy;, via the relations for uncoupled (¢ = ¢’ = j) spin-singlet (s = 0) and spin-triplet
(s = 1) states

S71 = exp(2i07) (3.2)

and for coupled (¢,¢ = j £+ 1) spin-triplet partial wave channels

S Sl _ cos(2¢;) exp(2i657 ) —isin(2¢;) exp(id} | +i67,)
S Sian —isin(2¢;) exp(id3” | +107 ;) cos(2¢;) exp(2i67) ;)
(3.3)

in the so called Stapp convention [43]. The total isospin I = 0 or 1 is determined in each
partial wave by the condition that I + s + ¢ is odd. Note that the S-matrix is unitary
and symmetric, due to time-reversal invariance. The minus sign in the off diagonal matrix
elements is due to our convention in the relation between the S-matrix and the (one-pion
exchange) potential.
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NUCLEON NUCLEON POTENTIAL

v D
V. D
= + + 174 + ...
V
v D

FIGURE 3.1: Scheme of a NN scattering equation

T T,
C v > C W C Vs D

FIGURE 3.2: Scheme of a (NA,AA)-coupled channel scattering equation

3.1 SCATTERING EQUATIONS

The NN S-matrix is calculated from the T-matrix by

M2
S=1+i—P2N T (3.4)

872, /p% + M3,

where the latter follows from a scattering equation of the form
T=V+VGT (3.5)

written in operator notation. This resummation of the iterated diagrams is shown schemat-
ically in Fig. 3.1. In practice, the Lippmann-Schwinger equation is further more projected
onto states with total spin s = 0, 1, total angular momentum j and allowed orbital angular
momenta [. After that projection, it reads

T, p) =Vl () + >
l//

oo . .
dp//p//2 lfl]” (p/, p//)T;/Jl (p”,p) 26
( (3.6)
0

3 T
27‘1’) 92 /p2+M]2V_2 /p//2+M]2v+17]
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3.1 SCATTERING EQUATIONS

and in the non-relativistic approximation this simplifies to [44]

. . // //2 M .
A, p) =V, p)+ / I, ") —————T5 (0", p) - 3.7
i (0',p) = Vil (0, p) lZ Vi, p Vr gy e P) (3.7)

This equation contains a sum over all coupled partial waves. It can be extended by the
inclusion of other intermediate states, namely the channels NA and AA with total isospin
I = 0,1 which couple to NN.

TP PI (0 0 WY = VPP (4 dp” ”2 AN TN, 24y TP Psd (!
@ p, W) =V, (0 p) + 0" — 1L, (0", p)
Doy — P4 1n
l/”

(3.8)

where j stands for the total angular momentum, v denotes the two-particle channels,
and p = (s,f) labels the partial waves. W is the center of mass energy and u, the
appropriate reduced baryon mass. The masses of the baryons contributing to the two-
particle channels v are denoted as Mp, , and Mp, . The on-shell momentum p,, is given

by W = \/ M%LV +p2 + \/ M%Q,u + p2 [45,46]. The coupled particle channel equation is

shown schematically in Fig. 3.2. Another possibility is the Kadyshevsky equation [47,48]
formulated for coupled channels,

T V)= M, i, [ VA )
p// =, 1,0 2, 0 (277')3 E1E2(2p0 _El E2 —|—177)

(3.9)

with energy variables pg = y/p? + M3, and E1o = ,/p"? + M%”V”. This equation

is a modification of the non-relativistic Lippmann-Schwinger equation which includes
relativistically improved kinematics.

The Kadyshevsky equation is expected to have a milder UV behavior in the limit of
large integration momenta than the corresponding Lippmann-Schwinger equation [49]. A
comparison of results from these two equations will be given in Section 6.4.

Following Ref. [50], one can modify the integral equation by replacing the T-matrix with
the K-matrix. The T-matrix is complex because of the Cauchy-type singularity in the
denominator of the scattering equation. The corresponding K-matrix is defined through
the principal value of the integral and is thus real by definition. The S-matrix is related to
the K-matrix via

-1
. pMy . pMy
S=|1+i K||1-i K| . (3.10)
( 1672 /p? + M3 ( 1672 /p? + M3

Note that S is unitary if K is hermitian. This is the case if the potential V' is hermitian.
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I I II1 v A% VI VII
NN — NN NN — NA NA — NA AN — NA NN — AA NA — AA AA — AA

IR

)

o

o

FIGURE 3.3: One-and two-pion exchange diagrams contributing to the coupled channel equation.
The mrNA-vertex in the shaded diagrams appears at higher order in the chiral Lagrangian. Solid,
double and dashed lines denote nucleons, deltas and pions, respectively.

The Kadyshevsky equation (3.9) gives also rise to a real equation of the form K = V+VGK,
It can be written in matrix form for the different particle channels v [49], which emphasizes
the coupling between these channels,

Knvny Knnva KEnnaa

K = | Knanny Knvanva Kyaaa | (3.11)
Kaann  Kaana Kaaaa

18



3.2 TREATMENT OF PRINCIPLE VALUE INTEGRALS

VNNNN  Vnna  Vvnvaa

V=1|Vnanny Vnana Vyaaa |, (3.12)
Vaann  Vaana Vaaaa
GNN 0 0

G=| 0 Gxa 0 |, (3.13)
0 0  Gan

with the two-baryon propagator

1 MBI,UMBQ,V

Grj(FE) = )
11(E) E\Ey Ey + Es — 2p,

(3.14)

To solve these coupled channel equations we need in addition to the usual NN potential
also the potentials containing one or two A-isobars in the final and/or initial state. Up
to next-to-leading order in the usual power counting scheme, see e.g. [34, 35], we have to
calculate the pion exchange contributions listed in Fig. 3.3. In Chapter 4 we will present
the potentials arising from all these diagrams. The contact interactions depicted in Fig. 2.1
are treated later in Chapter 5. Note that the delta introduces a rich coupling between
different partial waves and two-particle channels. This is caused by the maximum spin
of the two delta state, a spin of 3, that couples with the angular momentum ¢ to j. The
angular momentum and spin quantum numbers, and the number of A-isobars for the
coupled channels contributing to the NN partial waves for given total angular momentum
j, total isospin I and parity 7 are listed in Appendix B.

3.2 TREATMENT OF PRINCIPLE VALUE INTEGRALS

There is a pole appearing in the integral in the Kadyshevsky and also in the Lippmann-
Schwinger equation for the term with the two-nucleon intermediate state. The corresponding
integral has to be treated by the principle value prescription. Following Ref. [50] it can be
treated by adding “zero” to the integrand and utilizing the weighted sum of the numerical
integration. For the principal value integral involving the NN intermediate state in the
Kadyshevsky equation (3.9), this prescription reads

o0

, (k2 +m3)(po — \/k? + M%)
o 24 M2 k24 M2 2 24 VM2
K (kyp) V2 kéf,,}é R - pPV (P, p) K (p,p) e
— N N
g[ (p? — k?)

AL D)2y 1)

(p* +my) (p* — k?)

=3 wik? V(p', ki) K (ki, p)

w; i
: (k2 +m3)(po — \/k2 + M%)
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NUCLEON NUCLEON POTENTIAL

A

1
= k? +][dk k2> : (3.15)
0

where the last two lines refer to the numerical treatment and the remaining principal value
integral can be solved analytically by introducing the cutoff parameter A,

A

7[ _ 1 At
(p*—k?) 2p A-p’

0

For the Lippmann-Schwinger equation (3.8) one arrives at

K2V (o, k) K (,
uNN][dk: ' k) K(k,p) _

2\/p? + M%
+p2V(p’,p)K(p,p)<

p? —I—m%\,

P2 — k2
K2V (0, kK (k, p) — p2V (0, p) K (p, T V. p)K(p,
:MNN][dk (', k) K ( p2) P ¥, p) (pp)+MNN][dkp (p2p) 2(plv)
p*—k p*—k
0
V(p', ki) K (k;,
_NNNszkZ (v, )k(Q D)
1. A+p
2 /
i —In 1
+unnp?V (0, p) K < Zw T AT p) (3.16)

This method avoids unstable results from the numerical principal value integration close
to the pole and replaces the singular part by an analytical known value, leading to a
numerically stable evaluation of the integral.

3.3 REGULARIZATION

The potentials derived from chiral effective field theory need to be regularized to cut
off unphysical high energy components: V(p,p’) — fr(p)V(p,p")fr(p)). Two common
approaches are a sharp regulator, fr(p) = ©(A% — p?), or an exponential regulator,
fr(p) = exp(—p?*/A?"). We employ the local regulator of Ref. [24] following an approach
in Ref. [51]. There, the regularization is implemented by replacing the Feynman propagators
for pions by spectral integrals,

1 _>/°°duz pw?) | faaxle) (3.17)
0

q’ +m} ¢@+pr @ tm]

It is required, that the residue of the static pion propagator is not modified at the pion
pole and consequently the long range part of the pion exchange remains unchanged by this
regularization. A good choice for the regulator of the one-pion-exchange is

Faie(q) = exp [—(® +m2)/A?] . (3.18)
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3.4 PARTIAL WAVE PROJECTION

In a 1/A?-expansion the regularization has the same effect as adding some short-range
contact interactions to the unregularized pion exchange.

A generic three-momentum loop integral appearing in two-pion exchange calculations can
be rewritten such that it resembles the product of two pion propagators with the energies

w12 = \/lig + m2 of the two pions [51].

y 3 3
I(q) :_/ dA ((;7:)13 ((;7:)23 (27)%0(q — Iy — 1) (w%H?)l(ng?) x(.),  (3.19)

where q is the nucleon momentum transfer. With the definitions I = 1 — I and w4 =
V(g £ 1)2 + 4M?2 and the transition to regularized pion propagators Eq. (3.18), one arrives
according to Ref. [24] at

7 Bl e (P+HE+am2+422)/(202)

“(‘5’>:2/CM (2m)3 (W 4+ 4X2) (w2 +4X2) X (),

— 00

(3.20)

As the two-pion-exchange is given in terms of spectral functions and dispersion integrals,
this method leads to a regularization already at the level of the spectral integral by replacing
V(q) with Vi(q)

22 [ pImV(ip) a2
V(g) = Valg) = e 207 — / duwe T (3.21)

2may

where subtraction can be omitted. We choose the cutoff parameter A in the range
350 ...800 MeV.

3.4 PARTIAL WAVE PROJECTION

For the partial wave decomposition, we follow Ref. [52]. Since isospin mixing is excluded in
our calculation, the potential is first projected onto the isospin states |I'mj) with I =0, 1,

(I'mly [V | Imp) = 6118, V. (3.22)
The matrix element in spin-space is given by the four-fold integral
(p'(I's")jm; | v | p(ls)jm;) :/dQ’/dQ ZC(Z’,S’,j;mE,mj —mj,m;)
m

X Zc(lasaj;mlamj - mlvmj) Yﬁmg(elv¢/) Yzml(ea¢)

my

X <s’mj —my Vl(p’,p)‘ smj — ml> , (3.23)

where the C(l, s, j;my, mj — my, m;) are the standard Clebsch-Gordan coefficients, and
Yim, (0, ¢) the spherical harmonics. The angles 0, ¢ and ', ¢’ correspond to the directions
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NUCLEON NUCLEON POTENTIAL

of the momenta p’ and p, respectively. The transition matrix element does actually not
depend on mj, so instead one can calculate the average

j
H(l',s1,s,7) Z '(I's")jm; V] p(ls)jm;) (3.24)

where the isospin index I = 0,1 is now dropped. For the momenta p and p’ we choose the
directions

p=(0,0,p),
"=(p'V1-22,0,p'2)
with
z =cosf
and
q=p'—p.

As the integrand is a scalar now, the number of integrals can be reduced to one,

Z Z c(', s, j;my,m; —mj,m;)

m;=—j mz* 4

1
s Lsg) =3 [ e

I
x > C(l,s,jimy,mj — my, m;) Yy (arccos z, 0) Yy, (0,0)

myp=—1
x (s'm; —my |V (q)| sm; —my) . (3.25)
The integrand of
1
HU L) = [ denlls'ls,giz) (3.26)
-1

can be further simplified to

2/ R+ DRI +1) &
h(l S,Z,S j, ) 7['\/ 2;__’_1 i Z Z C 3/7j3m27mj_m27m]‘)

mj——j ml

(- mz)!
@+ mp!

!
my

x C(l,8,7;0,mj,mj) P, (2) (s'my — my |V (q)| smy)

(3.27)
The remaining transition matrix elements in spin-space (s',m; —m; |V (q )|s,m; —my)

can be calculated directly with the help of the well-known coupled spin-multiplet states
|0,0), |1,ms), |2, ms) and |3, ms) represented by products of one-body spin states.
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ONE- AND TWO-PION EXCHANGE

The one- and two-pion exchange potentials at leading and next-to-leading order for NN—NN
are well known. We extend this description by calculating the additional diagrams in
Fig. 3.3 and expressing the NN two-pion exchange diagrams in our new notation.

4.1 ONE-PION EXCHANGE POTENTIALS

The one-pion exchange potentials for the diagrams involving up to four A-isobars, shown
in line (a) of Fig. 3.3, follow straightforwardly from the NN—NN potential in Eq. (4.1) by
replacing the coupling constants and the spin and isospin matrices. This way we arrive at

VGE = o Do D) ()
e = RS e @
VPl = Ao 0 0, g, 13
VAN ENA = 993;5;; q;qi(f% Dy, .11 . (4.4)
ViR Gaa = 9g,2§;§§q-2qi(i%2r)- q)T§ T}, (4.5)
VKt = SAEL O 0 o, ()
VOPE  _ 94(Z1-q) (B2 - Q)@l .0, . (4.7)

SATAS T 100f2(g2 + m3)

The (iso)spin-(transition-)matrices are listed in Appendix A.2. We have used the coupling
constants defined in Eq. (2.50).

4.2 TWO-PION EXCHANGE POTENTIALS

The amplitudes of Feynman diagrams in ChEFT possess the analytic structure required to
be rewritten as dispersion integrals, see Refs. [53,54]. By means of dispersion relations one
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ONE- AND TWO-PION EXCHANGE

FIGURE 4.1: Schematic figure of a two-pion exchange process with momentum transfer ¢ and loop
momentum [

can calculate the full scattering amplitude (or just its real part) from the corresponding
imaginary part. By unitarity, this imaginary part arises from the propagation of on-shell
intermediate states. In the general form the dispersion relation reads

/ FRALEICON (4.8)

s — s —ie
Sthr

where s and s’ are energy parameters and sy, is the threshold for the occurrence of the
lowest hadronic intermediate state. In order to determine the interesting part of f(s)
corresponding to small s, the imaginary part has to be known for all s’. Subtractions at
s = 0 reduce the influence of high energy part and increase the weight of the low energy
part of Im f(s).

The non-polynomial or finite-range terms are determined by the imaginary parts of the
N N-amplitudes. The dispersion relation and its once or twice subtracted version read for
the 27m-exchange (setting s = —¢? and s’ = p?)

2 [ pwlm F(ip)
F(q) = apt 4.9
=2 [t (4.9
2may
2¢> r Im F(ip)
Flg)= ¢ — 2L [ g, =220 4.10
0= T Pu? + ) (410
2¢* yi Im F(ip)
F(q) =c1+ 2+/d. 4.11
(q) &1 C2q T ,UJM3(,UJ2+Q2) ( )

2may

We will use the unsubtracted dispersion relation Eq. (4.9) since the local regulator Eq. (3.21)
that enters at the level of the 2m-spectral functions F'(iu), has a similar effect on the high
energy part as a subtraction.

For the calculation of the imaginary parts of the two-pion exchange we follow the approach
in Ref. [16] by using the Cutkosky cutting rules [55] (see also Ref. [56]). These imaginary
parts refer to an analytical continuation of the loop-amplitude to timelike momentum
transfers q-q¢ = p? > 4m2, corresponding formally to lq| = ip + 0T. The 2m-exchange
contribution is worked out as integrals of NN — 27 — NN transition amphtudes over
the Lorentz-invariant 2m-phase space, which reduces to an angular integral fil dz in the
27 center-of-mass frame. The imaginary parts or spectral functions of the 2m-exchange

24



4.2 TWO-PION EXCHANGE POTENTIALS

diagrams are then given via the integral over the two S-matrices A and B for the left and
right 27-baryon interaction, shown schematically in Fig. 4.1. With the following definitions
in the 27 center-of-mass frame

qM = (M70)7 JURSS MN 5
lO = g 5
1 2 2
’l’ = 5 B = 4"77’7r )
o = (0,iv) ,
’U’: )
vl =—ix|l|,
v-qg=0, (4.12)
one arrives at
' 1
ImV =— 4 /dxA-B. (4.13)
16mp
-1

In a representation of the NN-interaction by local coordinate-space potentials,
Vr) =Va(r) + 71 -TQWC(T) + [‘75(7') + 71T Ws(r)} o109
+ [Vr(r) + 71 T2 Wr(r)] Bo1-7os-7— 01 02) (4.14)

these imaginary parts play the role of mass spectra in a continuous superposition of Yukawa
potentials

- 1 T —ur .

Vo(r) = 22y /d'uﬂ@ H Im Ve (ip) (4.15)
2my

_ 17 o . .

Vs(r) = 4.3, / dpe e |22 T V(i) — 3 T Vis(ip)| (4.16)
2M

- T 7 . .

Vr(r) =53 / dppre™ (3 + 3ur + p°r?) Im Vi (ip) . (4.17)
2m

Analogous representations hold for the isovector potentials I’/Ivfc,s,T(r).

The planar box diagrams (lines (b) to (g) in Fig. 3.3) include reducible parts which are
also generated by the iteration of the Lippmann-Schwinger equation, therefore these parts
have to be excluded from the potential. We come back to this issue in Section 4.2.3.

The diagrams in Fig. 3.3 include many combinations of spin and isospin (transition)
matrices. With the isospin and spin matrices and their relations defined in Appendix A.2
we obtain the isospin and spin factors for each diagram as listed in Tables 4.1 and 4.2.
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ONE-

TABLE 4.1: Isospin matrices of the relevant Feynman diagrams. An asterisk indicates, that this diagram does not exist at leading or

next-to-leading order.

NN —+ NN NN - NA NA— NA AN — NA NN — AA NA — AA AA — AA
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4.2 TWO-PION EXCHANGE POTENTIALS

4.2.1 Lorentz tensors and pertinent projectors

The phase space integral for two-pion exchange can be split into terms containing up to four
powers of the loop momentum I#. For each term we find the resulting Lorentz structure
and give the integrals for the coefficients together with the corresponding projectors. With
the definitions of the four-momenta ¢, v and [ (in the 27 center-of-mass frame) given in
the previous section, one can derive simplified expressions for these integrals.

Integrals involving I*

The first case concerns one power of the loop momentum [#. The corresponding 27 phase
space integral [ d® has the form

/dCD(. LM =g" Ay + "By (4.18)

where the ellipsis stands for further factors coming from baryon propagators. The second
Lorentz structure on the right hand side vanishes when contracted with spin-operators.
Moreover, since v - ¢ = 0 the projector on A; is given by

qu
Pri ==+ . 4.19
.2 (4.19)

Applying this projector on Eq. (4.18) yields the following expression to calculate the

coefficient Ay,
Alz/@(...)cﬂ'f):/d@(...)é, (4.20)

where we used the definitions in Eq. (4.12) in the last step.

Integrals involving I*1¥

For two powers of the loop momentum [* we decompose the second rank Lorentz tensor
resulting from the phase space integration

/d(I)(. )Y = — g Ay + ¢"¢" By + ..., (4.21)

where the dots on the right hand side include terms with v*, that are not needed. The
ansatz for the projectors on As (and Bs) reads

Pry = aquq, + bvyvy, + cg"’ + d (quy + quuy) - (4.22)

The detailed derivation of these projectors and those for all subsequent coefficients are
given in Appendix A.5. After solving the four linear equations for a, b, ¢ and d, one finds
for the two coefficients of interest the following expressions

Ay —/dfﬁ(...)(—lj + (1252)2 + ;(l-v)Q)

:/d(I)(. L) é (22 = 1) (4m2 - 1) (4.23)
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and

B 2 3(1-9)%2 (I-v)?
Bzz/d@(...)<—2u2+ (2MZ) N (W) )

:/d<1>(. L) dma (2 - 1;/;2 pe (et =3) (4.24)

using 12 =m2 and | - ¢ = p?/2.

Integrals involving (*1¥1P

The phase space integral including three powers of the loop momentum is decomposed as
/d‘P(- L) = (=" — q" 9" — q"g"") A3 + """ Bs + . .. (4.25)

and we take

Prs = a(—=qp9uw — @wup — Quvp) + b 0uqqp + c v 0,0, ,
+d (_Upg;w — UwGup — UuQup) +e (QVQpUu + qugpVy + qMQVUp)
+ [ (gpvuvy + @Vuv, + quosv,) (4.26)

as an ansatz for the projector on /Ig or fj’g.
The coeflicients of interest are calculated as follows

Zgz/d@(...)(_125-2q+ (Z'Q)3+l~q(l.v)2>

24 2ut 242
:/dq)(‘ ) % («* 1) (4m2 - ) . (4.27)
~ 3121 - 5(1-0)  31-q(l-v)2
Bs I/d@(. i )(— 2M4q + (2lug> + giﬁ ) )
:/O@(, Ly Lemh @ 1)6:;@2 (5-32%) aos)

Integrals involving I*1¥1P1°
The phase space integral with four loop momenta has the following Lorentz structure,

/ AP (... )IMV1P17 = (g " + gM'Pg" + g7 g"") Ay

o vp_ UV /5]

+ (=44 9" —q"q¢° 9""— " 4" 9""— 4" " 9" — 4" 4" 9" — " q" g"" ) B4
+ "¢’ Cy+ ... . (4.29)
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The ansatz for the projector reads now

Pry = a(9uw9po + GupGvo + Guoduve)
+0b <_QpQUg,uz/ — QWwqo9up — ulo9vp — Qv9p9ue — QudpGve — QuQVng)
+ € Quvqpo + d VULV V,
+ € (=UpVo g — VwVsGup — VuVoGup — VwUpGuo — VuUpYve — UplyGpo)
+ [ (49000 + QeeVuv)p + 4uioVuVp + GipUpVe + QudpVvVo + QuduVpUs)
+ 9 (=9 (Govp + 4pVs) = Gup (o0 + @Vs) — Gup (4oVp + quvo)
~ 9o (4pVv + @wVp) = Guo (QpVu + 4uvp) = Gpo (QVu + quvy))
+ h (9990 + QudploVv + QuivloVp + 4udvqpVs)
+ J (qo0u000)p + QUuVLVe F+ QULVPV + QLU ) (4.30)

We find for the coefficients of interest the following expressions

214_/d<1>(...)<—w - ilz(l~v)2+ (2)? . (1-q)* . (1-9)%(1 - v)? +;(l'v)4>

442 8 8ut 42
1 2 2
= a0 g (o= 1) (12 - am2)” (431)
2
§4=/d<1>( )<(l2) _ 39 B(-v)? 59t 30-@)*(-v)? (l~v)4>
I\ 82 4pt 4p? 8ub 4pt 82
_ (2% = 1) (n® = 4mZ) (p (2° = 5) — 4m7 (2* — 1))
_ / da(...) e , (4.32)
and
G :/d(I)( )<3(z2)2 1P 30w 35( )’
* AT 476 I 88
15(1-q)%(1-v)?  3(1-v)*
+ 6 + 4
4p S
B / an(...) 48mi (22 — 1) — 24p®m2 (z* — 622 +5) + p (3z* — 3022 + 35)
= 388 .
(4.33)
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ONE-

TABLE 4.2: Spin matrices of the relevant Feynman diagrams. An asterisk indicates, that this diagram does not exist at leading or next-
to-leading order. For the crossed box diagrams the matrices are the same as for the planar box diagrams only with the indices k£ and [
interchanged as indicated in these rows

NN - NN NN -—-NA NA—-NA AN —->NA NN -—-AA NA-—-AA AA—= AA

---- 0{0% JngT a§2§ S%S%T SiTS?L SiTEg Z%Eg
I cicioksl  oioiSMol  sigishiel  gigighisl  Sitgigkisl  gitgighial  gifgd kgl
J 1

,>:\I otolobab k<1

[ J
17771 clolshsi ololstsi  olofshsl  oisivhsy  silo{shsi  siofsisy  sitsivgs,

:>::u kol

7Y sisitsgsy sisfisgsy sisi'mhwy  simivgs) wmis{sisi wisiiwivl siviviw)

:>::u kol
« » 1®1 * 191 * * * 1®1
0:1:1 1® kol ]l®5’2 ol ]l®S§TS£ * * * 1@55*55
o] 108 1evisl  1emin s s s 10 3k5L
0771 sisllobob sisiishloh sislsiish  sivisiiol wisi'sifol misfisiisy wim{sjis)
n:>: I k<l
I::::. ool @1 * ool @1 * * Sl & Sisi @1
Joe sislfer * sisite1 . * Yisiteo1 Sixiel
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4.2 TWO-PION EXCHANGE POTENTIALS

4.2.2  Phase space integral including spin matrices

We apply the procedure described above to the two-pion exchange box diagrams. For a
planar TPE box diagram the phase space integral with inclusion of the spin-operators
reads

/d@(...)sjjsglzi(q g -1 = /dcb(...)sfjsgl {ykqqugg +¢'¢¢"¢' By
— (674" + 6%/ + 07*'q") A3 — ¢’/ q"q' Bs
- («quj ¢+l qt + oMgig ) A3 — ¢'¢’¢"q'Bs
+ (5z‘j5kl 4 §ikgit +5il6jk) 114
+ <5ijqkql+5ikqqu+5jkqiql+5ilqjqk+5jlqiqk+5quiqj> §4
+4'¢ qkql@] : (4.34)
where the respective spin operator
S e {o'0?, 8ol 07, 5197, §1 S SIGIT, §ix s §4T S 5y, (4.35)

depends on the type of planar box diagram. The corresponding crossed diagram has the
structure Sy’ S¥1i(q — 1)7(q — 1)'1¥, so we can combine the calculation of the planar and
crossed box diagrams.

As the spin structure gets more complicated when the A-isobar enters the calculation,
we cannot carry over the common decomposition of the NN potential in Eq. (3.1) to the
A-sector. For the box diagrams split for the box diagrams the product of spin matrices Sék
and the product of isospin matrices 75" belonging to the second baryon into a symmetric
and an antisymmetric part (under the exchange of the upper indices). In combination
with the spin and isospin operators of the first baryon one can construct the even and odd
operators

St SV (; S % Sék:) , (4.36)
S — Si’j (;Sécl _ ;Sé’“) , (4.37)
T+ =T <;7-2/u n ;75]1> ’ (4.38)
T — T (;7—53 _ ;7‘2]) _ (4.39)
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By applying these definitions and merging planar and crossed box diagrams, the imaginary
part of the two-pion exchange potential from box diagrams can be split into four different

parts
Imv++:T+S+1m(I___I+I >< I) ,

(4.40)
mv =7t (J777-1<)) (4.41)
(4.42)
(4.43)

I\

I\

ImV_+:T_S+Im<I I I D
ImV™" =7"8 Im II+I’I ’

where the symbolic diagrams in parenthesis represent the irreducible part of the planar box
and the crossed box without their spin and isospin operators. The sign combination on
V*E tells whether these diagrams are added or subtracted. V*+ and V™~ equal to zero
for purely nucleonic intermediate states, because such combinations of diagrams vanish
in this case. In the case of the NN—NN 27-exchange potential this corresponds to the
conventional notation in Eq. (3.1) as follows

V++

ImV+
ImV~—"
ImV~™

(ip) o< Im Ve (ip)
(ip) oc Im Vo (ip)
(i) o< Im We(ip)

“(ip) o< Im W (ip) . (4.44)

For a two-pion exchange triangle diagram the 27 phase space integrals read

; l ST

0:1_1—>ImV= —HLLL-gT-(]l@Sz])[qijA’l —5”A'2—qijBé} : (4.45)
N l iy o . .

I_:::.—>ImV: _1tl)7r’u T- (S ®]l)[qlqu'1 —5”A’2—qlqu§} . (4.46)

where g denotes the product of coupling constants and T stands for the isospin factor. The
diagram containing two Tomozawa-Weinberg vertices is most easily evaluated

1

l 1 3

o !%ImV——l-g T- 2/dx4x2|l|2:— YT, (4.47)
—1

-- 16mp 9671t

where |l| = w/2. The resulting contributions for the triangle and bubble diagrams are
listed in Section 4.4.

4.2.3 Irreducible 2w-exchange from planar box diagrams
The set of planar and crossed box diagrams is shown in lines (b) to (g) of Fig. 3.3. Reducible

parts of planar box diagrams will be generated by iteration of the 1m-exchange potentials
in the coupled channel scattering equation, and therefore they have to be excluded from

32



4.2 TWO-PION EXCHANGE POTENTIALS

the 2m-exchange potentials. To identify the irreducible parts of the planar box diagrams
we calculate the [p-integral over the baryon and pion propagators. Here, w; and we denote
the on-shell energies of the two exchanged pions for the three types of planar box diagrams
and their crossed partners. By applying residue calculus as outlined in Refs. [12,13], we
find the following results for the three different intermediate states NN, NA, AA:

dlp 1
I I / 27i (I + 16)(*[0 +i€) (13 — w? + ie) (I3 — w3 + ie)

1 w? + wiws + w2
- - o 2 (4.48)
fwi  2wiwd(wr + ws)
I e I . / dly 1
2mi (lo + i€) (—lo + i€) (I3 — w? + ie) (I3 — w3 + ie)
_ w1 + wiw2 +w§ (4.49)
C 2wiwd(wy +wa) )
11 [ !
--- 2mi (lp — A +ie)(—lo +i€) (I3 — w? + ie) (I3 — w3 + ie)
1 Wit wiws +wh 4 Awr +wa) (4.50)
Aw?w? 202w (w1 + we) (w1 + A)(wg + A) )
o] — [ 2 !
g 2mi (lp — A +ie)(lp + i€) (13 — w? + ie) (I3 — w3 + ie)
_ witwiws +wi+ A(wr +ws) (4.51)
202w (w1 + wa) (w1 + A)(wg + A) )
11— [ 1
--- 2mi (lp — A +ie)(—lp — A +ie) (I3 — w? + ie) (I3 — w3 + ie)
_ 1 B wW? 4+ wiws + w3 + A(wr + wa) (4.52)
2AW2w2  2wiw3(wy + wa) (w1 + A)(wa + A) '
o] — [ 2 |
g 2mi (lp — A +i€)2(12 — wi +ie) (12 — w3 + ie)
w} + wiws + w3 + 2A (w1 + wa) + A? (4.53)

- 2wiwa (w1 + wa) (w1 + A)2(w2 + A)2

The reducible part is identified either by the inverse of the nucleon kinetic energy difference
between intermediate and initial or final state (here just 1/€) or by the 1/A-dependence.
The irreducible part of the planar NN-diagram is equal to the negative of the crossed
NN-box, as it was also shown in Ref. [12]. By comparison with Eq. (4.51), one makes
the interesting observation that the irreducible parts of the planar NA and AA boxes are
equal, and coincide with the negative of the crossed NA box. The crossed AA box in
Eq. (4.53), however, reveals a different structure. So we arrive at the following expressions
for the baryon propagators of the combined planar and crossed box diagrams

. . 2
I I I >’I —1xl—61xll+e+<—ix;—e> =0,
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2
. i i ( i ) _ 2
—ixl —eixl + ¢ —ixl — € (—izl —€)?

I
o

)_> i ( —i L i )
—izl —e\—ixl — A —izl— A
) (s - x) — (775 7o)
—ixl—e\—izl— A —ixzl—A) \Il =z l zl —iA
) Lo = ( i )2
—ixl — e —ixl — A —izl — A
1 1 i -1 1
= (ﬂ’x * z‘“"”)) d—ia T @A
. . . 2
- . - i —i B i
(H———ﬂ_n’>\n)_> —izl —e—izl — A <—i:1:l—A>

1 1 im -1 1
= (ﬂ’x * 15(“>) T-iA @ —iA)e (454)

4.3 CONTRIBUTIONS OF TWO-PION EXCHANCE BOX DIAGRAMS

The phase space integrals for the coefficients (Eqgs. (4.20), (4.24), (4.28) and (4.33)) taking
into account the propagators of the two intermediate baryons (Eq. (4.54)) give rise to the
following list of imaginary parts. The labels denote the intermediate state NN, NA or
AA and the relative sign between the planar and crossed box diagram.

ImAéVN_ =— 781:77
NN-— w
3
NN- w
I BNN— _ _ p? —2m3
2 4p3wm
2 2
NN— _ M —3mg
Im B3 =— T
[ BNN— _ 1= BPma + dmz
4 243w
4 2,2 4
NN- pt —4pTmz + 2m
m M- = - T — (4.55)
1
Im AYA~ :32A,u77 {—QAw - gw2 + (4A% 4+ w?) arctan 212}
1
Im A4~ ~61hum {—2Aw - ng + (4A% + w?) arctan ;UA}
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1 [ 10 us
NA— _ L | gA3, AU A3 Ty 2 w
Im A, 12007 | 8A°w SAw 5 W + (4A% + w?)? arctanQA]
1 [ us
NA— _ _ T g2 a2 2 42 w
Im B, ~3onr | 2Aw + 5 (4m?2 — 3u?) + (4A% — 4m?2 + 34°) arctan QA}
1 [ us
NA- _ 2 2 2 2
Im B; N _fGAw + 5(127’% —5pu%) + (12A% — 12m2 + 5p2) arctan ZA]
1 2 T
NA-_ 4 =2 2 _ 2 2y _ T 4 _ 4
Im By ~S19Ann [ 3Aw(12A 20ms 4+ 17p%) 5 (16my; — 24mqp + 5u°)
+ (4A% — 4m?2 + p)(4A% — 4m? + 5p42) arctan ;UA}
1
Im CNA- =SToA5r [—2Aw(12A2 —20m2 +29u%) — —(48m —120m2 p? + 354%)
+ (48(A2 — m2)2 + 120(A2 — m2)u? + 3542) arctan ;ﬂ (4.56)
1 m w
Im A32" = —6Aw — sw? + (1247 + w? ]
m A5 64A,u77[ 6Aw 5w + ( —|—w)arctan2A
1 us w
AA— _ _ T 2 2 w
Im A5 ~128Am { 6Aw FW T+ (12A*% 4+ w*) arctan QA]
m ADAT = -1 { gAw(GOA2 —52m?2 4+ 13p?) — 7w
1024Apm | 3 T 2
+ (4A% + w?)(20A% + w?) arctan ;UA}
1 12A2 —12m2 +5p° 7
AA— g H ™ 2 9,2
Im By 64A,u v { 2 w? + 4A2 * 2 (4mz — 3u7)
+ (12A% — 4m?2 + 3p%) arctan 2A]
1 36A% — 36m2 + 112
AA—- _ -~ | _
Im B; ~T28An [ 2Aw 07 L AN t3 (12m 5u°)
+ (36A2 — 12m2 4 542) arctan ZA}
1 2 T
Im BAA- — _ - 2 _ 2 1 2042) — T (16mt — 24m?2 2
m By 1024Au37r[ 3Aw(60A 52m; + 49u”) 2( 6m, — 24m; + 5u”)
+ (80A% — 96A%m2 + 72A% 4% + 16m2 — 24m?2 1 + 5put) arctan 212]
medd- - L [—QAw (GOA2 — 52m2 + 85u% + 8“2)
1 1024 A pS7 i w? + 4A2
- g(4sm;$ — 120m2 12 + 354%) + (240A* — 288A%m2 + 360A2y>
+ 48m2 — 120m2 % 4 35u) arctan 212} (4.57)
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Im ASAF :64A1,u77 {QAw - gw2 + (—4A? + w?) arctan QwA}
Im A$A :1281Amr [QAw — ng + (—4A?% + w?) arctan QU)A]
Im APA = — 20481A,u7r {4Aw(12A2 + w?) — win — 2(12A% — w?)(4A% + w?) arctan %
Im BSAF :m [4Aw 4A2w_2 Z:_mjrA—; 3° + (4m?2 — 3u*)
— 2(4A% + 4m?2 — 34%) arctan 212}
Im BYAT :m [4Aw12A2w2 :lei; el + (12m2 — 5p*)m
— 2(12A% 4 12m2 — 54%) arctan ;UA]
Im BRAT :10241Au37r {ZAw(IQAQ — 4m2 + 5p%) + g(—mm;‘r +24m2 p? — 5put)
+ (—48A% 4+ 32A%m2 — 24A?p? + 16m2 — 24m2 p® + 5u) arctan ;UA]
Im Cp2* :W [4Aw(4A2 +20m + 35° + IQ%QA:Z‘EF )2)
— (48mE — 120m2 12 + 35uM)m — 2(144A" — 96A%m2 + 120A2 2
— 48m2 +120m2 % — 35u%) arctan % (4.58)

with the abbreviation w = \/u? — 4m?2.

These basic results feed into the calculation of two-pion exchange potentials. The potentials
are labeled as follows: Viszu’fti, where both + refer to the sign of the decomposition from
Eqs. (4.40) to (4.43). The subscripts in and out denote the two ingoing and outgoing
baryons, respectively, and int refers to the intermediate baryon pair. The ¢-dependent
functions A;, B; and C; have to be calculated numerically as (regularized) dispersion
integrals from their imaginary parts. The isospin factors ﬁf’gjt in front of the potentials
can be calculated with little effort for total isospin I = 0,1 and are collected in Table 4.3.
It is worth mentioning, that nonvanishing potentials V' and V= exist only for the AA
intermediate state. This is a consequence of the negative sign of the irreducible part from

planar NN and NA boxes.

I) NN—NN:

4
VINN _7+NN 9gA

NN—/ i j i j 2 i i
NNNN NNNN 16f4A2 (d'q 0103 — ¢ o10%)
™
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4
VoiNN _g7—NN ga
N

2[ ANN— NN—_ ANN-
NNN ZINNNN g |4 [Az +10(B, "= A7)

+ (BN 2B N+ CjVN*)} + 15A51VN}

4

Y-NA _++NA S94 (NA—/ 2 i i i g

VNNNN _TNNNN32f4 2 (q 0’102—qq]010’2)
i

_ _ 994 2 _ _ _
VARNY =TwNvgars |30 A28+ 10087 AYA)

3

+ A(BYA—2BNA— o A—)] +104Y A—}

4

L-AA _tAA A 4 AAT G i G 2 i i

VNNNN = NNNN64f4 2 (¢'¢oioy — g 010%)
T

9¢*

++AA +AA A AA+ AAE L AA+

VANNN =TNNNN 167 {qz [AQ +10(By7 = A7)
™

+ R(BAME_gpRAL, oAAE )] + 15400

II) NN—NA:

_ 394 _ o S
NN NN A 4ANN—/ 2
VJNNA = J\JerNA 3272 f4 2 (g ‘715? - qlqjaiséf)

NN NN —3V39h i ity [ NN NN-— NN—
Vinna =Tvvna 321 (q'q?S5"") |Ay " = TA3" T+ 7B,
i

+ (BN 2B V)|

_ 394 R .

NA NA A 4NA

Vinna =Tvnna 32/2/1 2 (d'd ot Sy — a1 Sy)
™

—4+NA _NA V39N, i i NA— NA— NA—
Vanna =TNNNA 30 f4A (¢'¢ SQJT)[AQ —TA3 77+ T7B)
T

FP(BYA - 2B O]

9¢g4 S o

+—AN _4+AN 9A NA— 2

Vinna =TNnna 61y 12 (d'do1 83" — ol sy
i

(4.59)
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—27\/§g4 L

“4AN _—AN NA— NA— NA—

Vanna =Twana 6aft A(QZQJSEJT)[AQ —TA= "+ 7B}
s

FR(BYA - 2B )]

9q4 o o

+—AA +AA g AA

VNNNA = NNNA64\/§f4A2 jF(q%iSéT—qujUiS%T)
™

NNNA — NNNA7160f# q.q o3 2 3 4

+¢*(By - 2B CPET) (4.60)

IIT) NA —NA:
+-NN +NN 39&1 NN—/ i j i 2 iy
VNana = NANA64f4A2 (¢'¢’01%5 — q°01%5)
™
—+NN —NN 39%4 i jsid NN— NN-— NN—
Vvana = NANA3ZY ¢l —(¢'d'%s )[AQ —TA3" T+ 7B,

+ (BN 2B N+ OV )| 4 2[4V 1045V 10BN

+ P(BYN = 2BYN 4 o) + 15AiVN‘]

4
+—NA _++NA 9 NA—/ i § i 2 i
VNANA = NANA4OOf4A2 (¢'d’o1%h — ¢°o1%5)
s

Vo+HNA _g—NA 9?21
NANA — NANA400f;4r

Aq' gD [AYA = TANA L 7B A
+¢*(BYA —2BY A+ o A‘)} +5¢° [AQV A 10AYA 10BN~

+ A(BYA—2BNA—L oF A—)} + 75AY A—}

9g% o L

—AN AN A ANA—/ 2

VKFANA = JANA 128f4A2 (g 01X — qlq]UiEJz)
s

9g% S

—+A —A 9 A— A— A—

ViANA =TNANA 32}44 {_(qlqulgj) [Aév — TAYA+7BY
™

+ A (BYA = 2B A7+ A7) + 2[4y A= 1045 A+ 1084~

+ A(BYA—2BNA— O A—)] +154% A—}
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_ 394 o

L_AA AA AA

Vyana =TNana 800?4 AT (oS — d'd ol s)
s

4

VEHAA AN 394
NANA — NANA4OOJL‘4
T

+ A(BAAE_ opRaEy CfAi)] +5¢° [Agﬁi— 1045251 10BRA*

A/ sl [AQMi— TASAEYL TRAAE

+ A(BAAE_ opRaEy cf“)] + TARAE (4.61)
IV) AN—NA:
_ 994 P o
— 4NN NN 2794 [, NN- NN— NN—\( i j ik cikt
VANNA = ANNA Gy f4 (Ay "= 44" T+ 4By T )(q'¢ 5178y )
i
+2ANN (Y ST + (BYN = 2BYN T+ OV (g F ' ST ST
LONA _iNA 990 NA- 2ci it i g i it
VANNA =TanNa 128f4A2 (¢°515" — q'¢? S153")
i
—+NA —NA 279544 NA— NA— NA—\( i j ik qjkt
VANNA :TANNA732OJC4 (A 57— 4A 7 +4B,y 77 )(¢'¢ S1757)
+2AY A7 (SYSYT) + (BYA— 2BY A+ O A7) (¢’ dF ' ST S5
_ 9g4 _ oo S
VANNA =Tiwnagggpadz  (@*S18Y —d'dSish)
i
_ - 2794 B B IR
VANRA :TA]€]]\¥A7320?4 (ANA~— 4AY A+ ABY A7) (¢! SiFSIM)
i
+ 24187 (SY ST + (BY A= 2By A7+ Y A7) (' dt ! S ST
L AA _an 994 aaT i jaicit | 2qigit
VANNA =TANNA 128f4A2 (a'q 5155 —q 5152)
2744 S
++AA AA g AA+ AA+ AA+ k ajk
Vinna =TAnNA 1600;1‘4 (ASAE— 4ADAEL ABRAE) (¢ ST ST
iy
+2APME(SY S + (B2 2B+ CPA) (¢ 'SP S| (4.62)
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V) NN— AA:
_ 9g% PR Y
NN NN NN
VJdT—NAA = JNAA 128;1”4142 (quJS?S%T —QQS?S;T)
iy
—+NN —NN 279%4 NN-— NN-— NN—\( i jqikt gjkt
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+ 24N (VST + (BT 2B T O ) (' g 515

_ 9g4 3 y C
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VJ;/"FNAA :TJ\—/”’—NAA128f4A2 (qQSiTS;T - qlq]SiTS%T)
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274" o

_ A —NA g A— A_ A_ k i

VNNAA = Nz]\rVAA320f4 (ANA=— 4AVA L ABNA ) (¢ gf ST 5IM)
™

+ 24V A7 (SYTSYN + (BY A= 2By A+ OV A ) (@ P e ST SET)

- 994 o . . .

+-AA +AA A 4AA

Vanaa =TuNan 128f4A2 (qlqjsfsy - qzsiTSg)
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27¢') o
£+AA _+AA 9A AAE AN+ AAE kt qik
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™

+ 24885 (S7TSYT) + (BRAF - 2BRA P29 (¢ ' 57183
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NN NN A ANN

Viana =Tnaaa 128\/§f4A2 (@*S{5% - ¢'¢? S{Ted)
™
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4.3 CONTRIBUTIONS OF TWO-PION EXCHANGE BOX DIAGRAMS

V=+NA _r-NA —3v39%
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AND TWO-PION EXCHANGE

ONE-

TABLE 4.3: Isospin factors evaluated for the total isospin I = 0,1 as described in the text.

NN NN NN-—-NA NA—-NA AN — NA NN — AA NA - AA AA — AA
THNN 3 0 1 —31 75 (6(1-1) — V5I) —3 §(T—4D)
T-NN 8] 2,/21 5T 17 LGBU-D+vEI)  —L/or 52y
T+NA 2 0 15 51 J5(5(1-1) = V/5I) 2v/101 —5+8I
T-NA 24 8] —10,/21 107 —31 ~55(3(1=1) + V/5I) —2\f1 535l
THAN 9 0 2 ~3I %(( I) —+/5I) —\/2I —5+81
T-AN 94 8f —2,/21 —2] —-327 if( (1—1) 4 /5I) 23 5—41
THAA 4 0 10 51 T5(5(1—1) — V/5I) 2/101 195 — 961
T-AA 28y 130\/;1 ~107 By —25(B(L=1) +V5I)  10,/31 30 — 81
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4.4 TRIANGLE AND BUBBLE DIAGRAMS
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+16¢'¢? DFDY(ASAF- 4ADAEL ABRAE 4 3287 0 ADAE
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+ ¢ (BSAE- 2BfAEL OPA%)| 4 25[15 454+

+ @° (AP = 1045254 10BPAF) + ¢*(Bf ™ 2B9 5+ Cfﬁi)H (4.65)

4.4 TRIANGLE AND BUBBLE DIAGRAMS

The set of contributing 2m-exchange triangle diagrams is shown in lines (h) and (i) of
Fig. 3.3. The triangle diagrams have a single baryon (N or A) in the intermediate state
and the corresponding imaginary parts arising from the phase space integrals in Eqgs. (4.20)
and (4.24) are given by the following expressions

ImA{V: ad ,
16mp
3
Im AY = v ,
9671
w
Im BY = ——(p> —m? 4.
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ONE- AND TWO-PION EXCHANGE

Im B5 =

vo| 8

1
{ — Aarctan —

487ru 2A
1 w
= 12A%0 + 2w® — 6A(4A% 4+ w? }
192”#[ w + 2w” — 6A( + w*) arctan INE
1
9670 [6A2w + 4w — 3A(4A% — 4m? + 3p?) arctan ZA] (4.67)

with w = \/u? — 4m2. Using the general forms of the 27 phase space integrals in Eqs. (4.45)
and (4.46), the 2m-exchange potentials from the triangle diagrams with a nucleon interme-

diate state read

2
Vinky =2 (41 - 3) @AY - 347 - BY |

T
2

Viy =2 8f1 A (4 - 3) CJQA{V — 34 — ¢*BY } :

NNNA Tg NoTE

=I:I 15\/>9A z]’r

A= 20 1yt g al - 594y — 4By

Sy {qiqu{V—WAéV—qiquﬂ :

5
Vi, = 8?)1] QAN 34N QBéV},
Tz 3fg i i i i
V]EZAAA 16f4AISJT{ q]AiV—CSJAéV—qq]Bﬂ,
o:::I _3\/>9A

AAAA _m
I.

(15— D)y [ 4 - 5945 - o' By

3ng ( 5_ 41571 {qiqu{V _5AY — qiquév] : (4.68)

and those from triangle dlagrams with a A intermediate state take the form

.::j]

NNNN

H::::.

NNNN

=

NNNA —

o]

NANA —

H::::o

NANA —

H:Z::.

NAAA
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4.4 TRIANGLE AND BUBBLE DIAGRAMS

- 2 .. .. . . .. . .
vika =5 ()964f4 (41 — 15) (505 + 4%7) {qlq]AlA — 5 A7 - qlqﬂBﬂ :
2
Tl g i id i i i
vﬁMA :W(u —15)(567 +4%7) [q PAD — 5T AS — ¢ Bﬂ , (4.69)

where I = 0,1 is the total isospin. The left and right triangle diagram have been carefully
distinguished, although they give in some cases identical results.
The 27-exchange bubble diagrams with identical initial and final states are shown in line
(j) of Fig. 3.3 and the general form of the 27 phase space integral is given in Eq. (4.47).
The imaginary parts for the three non-vanishing potentials read

-- 3
1:;_:. w
Im Vyynw :m@ —4I),
< 5w?
ImVNANA :768!}0#7'('#]
« e w3

The numerical results for NN phase shifts based on these potentials which have been given
in Sections 4.3 and 4.4 will be presented in Chapter 6. Before that the contact interactions
for the coupled NN, NA, AN, AA system are derived in Chapter 5.
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CONTACT POTENTIAL

The NN contact interactions are built from four nucleon legs and no pion fields. These
contact terms describe the short-range part of the nuclear potential as mentioned in
Chapter 1. Due to parity conservation, only vertices with even powers of momenta are
allowed. In this chapter, we give the LO and NLO contact potentials for all relevant
N-A combinations and evaluate their matrix elements in those partial waves where they
contribute. We present the results of the fits and investigate the influence of contact
potentials which include deltas.

5.1 DEFINITION OF CONTACT POTENTIAL AND LOW-ENERGY CONSTANTS

The contact term of the two-nucleon potential up to next-to-leading order takes for initial
and final momenta p and p’ the form

Va(p,p') =V + VP (p, ) (5.1)

The leading order contributions for the different combinations of particles were first given
in Ref. [57] by

(0) _ ~(0) T
Vct,NNNA =Ly NNNA 1 Sy

0 0
VcESJ)VANA = CiJ)VANA + Cé,])VANA o1 -3

0 —c (0)
V;(t,NNAA = Cé,NNAA St si+ Cs Nvaa Sitsy!
(0) _ ~(0) (0) it
Vanaaa = Covaaa ST 3+ C3 Naan b

¢
(0) _ 0 (0)
Vaanaa = C1 anan T Co annn X1 - 22
0 o 0 S
+ ng,iAAA IHOW IS Cz&,iAAA DS (5.2)
The spin (transition) matrices o, S, ¥ and their combinations with multiple indices are

defined in Appendix A.2. The LO contact potential is momentum independent. Finally,

the potential chtoj)v nyna does not contribute due to the limitations imposed by the Pauli
exclusion principle, which requires the initial NN state to be either (s =0, I =1) or (s =1,
I =0) for [ = 0, whereas the final NA state has spin s = 1, 2 and isospin I = 1,2. We use
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CONTACT POTENTIAL

the definitions ¢ = p’ — p and k = %(p’ + p). Following the notation for the LO terms, we
obtain the NLO contact potentials as:

2 2 2 2 2
Vc(t,J)VNNN _C{ J)\/NNNq + Cé ])VNNNkQ + (C?(,,])VNNNqQ + Ci,Z)VNNNkz) 0102

- iCE(),])VNNN (@ xk)-(o1+02)
+ Cé?J)VNNN (01-q)(o2-q) + C’g?])VNNN (o1-k) (o2 k)
V::(t?])VNNA = (Cz)(,,zz)VNNAq2 + Cf])VNNAk2> o1 Sh— iCE()?])VNNA (q x k) - S}
+ CéQJ)VNNA (o1-9) (S; : q) + Cé?J)VNNA (01-k) (S; : k)
Vihana =Cnana® + Cinanak’ + (C?()?J)VANqu + CfJ)VANAkQ> o1 X
- 1CE(>,21)\/ANA (g x k) (014 32) — iCéQ_),NANA (g x k) (o1 —%2)
+Cana (@1°0) (Z2- @) + CPaya (01 k) (S2 k)
chJ)VNAA = (C?E,QJ)VNAAQQ + CfJ)VNAAkQ) st s}
+ Cé,z])VNAA (51 ‘ Q) (55 ‘ q) + C§,21)\7NAA (51 ‘ k) (55 : k)
+ (v wand” + Connank®) S7Tsy"
+ (C%?NNAAqiqk + CS?NNAAkikk) S
Vc(t?J)VAAA = (C?E,QJ)VAAqu + CAE,QJ)\/AAAkZ) CHED PR icé,g])VAAA (g x k) S}
+ C((s,zz)VAAA (Sy : q) (22-9) + CSJ)VAAA (SI ' k’) (32 k)
+ (Cé,zJ)VAAAqQ + ng,QJ)VAAAkz) S
+ (C%?NAAAqiqk + CS?NAAAkikk) szkj
V::(E)AAAA :C{,QgAAAQQ - Cé,?iAAAkz - (Ca(; Aaaad + CzEaAAAkz) DRI
- ics(ngAA (@ x k) (31 +X2)
+ Chnnn (B1-0) (B2 @)+ O pnn (B1-k) (T2 k)
+ (Ca(;ngAA 2+ CéngAAk2) £y
( 10, AAAAq "+ CQAAAA’“%]C) £Yxy’
( 12, 'aasad + C§3)AAAAIC2) zPe ey
( 14, Panand'd + C£5)AAAA]€%I) st syt (5.3)
The potential V( ])\,ANA is the only one to which a term of the form (g x k) - (81 — S2)
contributes, Where S; are the appropriate spin operators. The standard spin-orbit term

(g X k) - (81 + S2) appears in NN—NN, NA—NA, and AA — AA, whereas in NN—NA
and NA — AA only the part (g x k) - ST exists.
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5.1 DEFINITION OF CONTACT POTENTIAL AND LOW-ENERGY CONSTANTS

The contact potentials in Egs. (5.2) and (5.3) contribute to certain (low) partial waves as
verified in the following equations. The constants in each partial wave carry also the index
related to the particular two-baryon channel which we have dropped for better readability:

NN — NN:

(sl
s

ISU+C So p _|_p/2

Vet NNNN‘ Po

ot NNNN’ So

)=0 (r
ctNNNN‘ Sl> SI+C S1(p2 42 <3
)=¢ &
)=¢ (s

)=C

Vet NNNN‘ P2> C’Prpp
)=C
)=C

3 _3
<P1 ctNNNN‘ Pi)= ctNNNN‘ Dy D1=%81),
3 _3
<3 ctNNNN‘ Py)= ctNNNN’ Sq Dy 81 12
(5.4)
NN — NA
3 5 _3
<3P0 Vet NNNA 3P0> =Copyf <5P2 Vct,NNNA‘ 3P2> = P2 Py
3 5 _1
(P Vs 1) = P (%00 [V 50) = GBS0
3 5q,_1
<3P2 V;:t,NNNA 3P2> =C PZPP’ <5SQ ‘/ct,NNNA‘ 1D2> — 52 D2p2
5 _3
<5P1 Vet NNNA 3P1> CP Py

(5.5)
NA— NA:

s

3
*Po [Vanana|*Po) = C Popp/

Py [V NANA) P

( )=

<5P2 Vet NANA‘ P2>
Py |Vnvanal|*Pr1) = CPipy! <5P3 VctNANA’ P3>
Py |Vunana|"Pr) = C PPy <5S2 Vet NANA‘ D2> C°S2="Dz )2

( )=

( )=

{ )=

"S2) =
( )
( )
( )
<5P1 Vet, NANA 3P1> = C°P1="P1py
( )
{ )
( )

5
So |V NANA’ Do

5
P1|Vanana|"Pr) =C  rpy/ 3D,

Vet NANA‘ So

3
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CONTACT POTENTIAL

NN— AA:

7 3 3P -7p /
Po (Vi nnan| P2 2= 2y

'S 1S
Ct JZNNAA 0
< 381 3Dy, 2

(5.7)

)=¢ ) | )=¢
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5.1 DEFINITION OF CONTACT POTENTIAL AND LOW-ENERGY CONSTANTS
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The relations between the constants for the partial wave matrix elements and those in the
underlying potentials are given in Appendix C.1.

One sees that the contact potential VA(2A) Aa contains fifteen low-energy constants which
feed into 31 partial wave matrix elements. Thus there is no unique mapping between
these two sets of constants. Consequently, the LECs in the spectroscopic notation are
not independent from each other. This happens also in the other NLO contact potentials
containing one, two or three deltas. We list the relations in Appendix C.2. If the delta
LECs were to be fitted, this needs to be done simultaneously in all the partial waves in
question, while respecting the relations between them.

The contributions of low-energy constants to the partial waves of the nucleon-nucleon
potential with coupled (NA, AN, AA)-channels are listed in Tables 5.1 and 5.2 at leading
and next-to-leading order. At leading order there are at most three LECs per NN-partial
wave channel. Only two of these four channels receive contributions from the delta-less
potential V]S,QK, yn- The inclusion of the deltas extends the outreach of the contact potential
to higher partial waves. At NLO there are up to fifteen LECs per NN channel. The purely
nucleonic potential reaches up to the 3Fa-wave due to its coupling to the 3Pa-wave. The
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CONTACT POTENTIAL

TABLE 5.1: LO LECs contributing to the partial waves of the NN potential with coupled (NA, AN,
AA)-channels. j is the total angular momentum, I the isospin and 7 the parity for each channel.

channel 5 I 7 LO LECs

1Sy 0 1 1 éjlvsj(\)rNNv éjlvsz%AAv (leSAOAA
36, -3D; 1 0 1 éj\;S]bNN, éj\fﬁfAAv éSASAlAA

Dy 2 1 1 O un O2an O30
D3 —3Gs 3 0 1 é;SXAA

TABLE 5.2: NLO LECs contributing to the partial waves of the NN potential with coupled (NA,
AN, AA)-channels. For notation see Table 5.1. In addition we list the number of LECs per channel.

channel j I w # NLO LECs

1 = = 180 189—5Dg 180—5Dg 180
SO 0 1 1 7 C(N]\/]\/']V’ C(NNNA’ CNNAA’ CNNAA P Y NAAA 0 Y AAAA»
CISO*SDO
AAAA
3p 0 1 <1 6 Cayw Caitnar Cabnns Cabtans Cab8 s A Ca0
0 - NNNN°» ¥NNNA> ¥“NANA> ¥“NNAA> ¥ NAAA 'Y AAAA
3 381 331—3Dy 381 351-3D, 331-"Dy 381
Sl 1 0 1 8 CNNNN’ CY]V]\/]\/vN ’ CNNAA’ CNNAA ) CNNAA ’ CAAAA’

038173]31 38177[)1
AAAA 0 Y AAAA

1 Py py 1p;—5P; py 5Py p, 5P,
P1 L0 -1 6 CNNNN’ CNNAA’ CNNAA » Y AAAA? CAAAA’ CAAAA
3 3Py 3py 3p,—5Py 3py 3P, —°P 5Py
Pl 1 I -1 10 CNNNN’ CNNNA’ CNNNA ) CNANA’ CNANA ’ CNANA’
C3P1 C P 03P1—5P1 C3P1
NNAA» ¥ NAAA» “NAAA » Y AAAA
1 535—1D, 532 532—3Dy 535,—5Dy 532—1Dy 53,
Dy 2 1 1 12 CNNNlA ’ CNAN3A’ Cnana s Onana s Cnnan s Cnanaas

5827 Do So—°Do So—°Dy 582 So—"Do 58275]32
CNAAA ’ CNAAA ’ CNAAA ’ CAAAA’ CAAAA » Y AAAA
3 3 ) 3Py 3Py—5P; 3Py 3Py—5P; 5Py
Py—="F, 2 1 -1 15 CNNNN’ CNNNAv CNNNA ) CNANAv CNANA g CNANA’

3P2 3P2—7P2 3P2 3P2_5P2 31:)2_51::2 5P2—7P2
CYNNAA7 CNNAA ’ CNAAA’ CNAAA ’ CNAAA ’ CNAAA ’

C3P2 CSP2_7P2 7P2
AAAANY Y AAAA 0 Y AAAA

3 3 7S3—3D3 7Ss 7S3—°D3 7S3—"D3
D3 —"Gz 3 0 1 4 CNNAA’ AAAA> CAAAA7 AAAA

Fs 3 0 -1 1 CF.
5 5 _T 7
3F3 3 1 -1 3 CNPAgNA7 CNPAgAAP % CAPAgAA

7
SFy—%Hy 4 1 -1 1 Chiaa
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5.2 FITS OF LOW-ENERGY CONSTANTS

full contact potential reaches even the 3F4-3Hy-coupled NN channel because there is a
AA-TP,-wave which couples to this NN channel due to the additional spin states of the
A-isobar.

5.2 FITS OF LOW-ENERGY CONSTANTS

At next-to-leading order the short distance part of the NN potential is fitted to empirical
phase shifts up to 100 MeV, see Ref. [20], this means to six data points per partial wave
including mixing angles. Most of the NN-partial waves contain too many constants for a
proper fit to the Nijmegen PWA [58]. Therefore, we decided to omit all contact potentials
involving A-isobars and only fit the NN contact terms. The effects of the other contact
terms are subleading compared to the NN potential as they enter only the iterated part in
the coupled channel equation as it will be investigated in Sections 5.2.2 and 5.2.3.

5.2.1 Fits to Nijmegen phase shifts

In the fits, the values for the constants are obtained in the spectroscopic notation. From
this the C; in the NN-potential in Egs. (5.2) and (5.3) can be determined via Eq. (C.1) as
the mapping in the NN-sector is one-to-one. We find for the low-energy constants in the
purely nucleonic case the values listed in Table 5.3, and with coupled channels the values
listed in Table 5.4 for different choices of the cutoff parameter A.

TABLE 5.3: Low-energy constants from fits of the purely nucleonic chiral potential to the Nijmegen
PWA. The leading order constants C' are in units of 10* GeV 2, while the next-to-leading order C
are in units of 10% GeV ™%,

350 400 450 500 550 600 650 700 750 800

C¥oyy 0153 0147 0138 0123 0110 0079 0.067 0.007 -0.018 -0.324
Co0un  -0.829 -0.820 -0.813 -0.823 -0.565 -0.656 -0.472 -0.547 -0.438 -0.723
Cltyny 0152 0.166 0.173 0129 0170 0113 0.048 -1.344 -1.252 -0.396
Cltun 0110 -0.291 -0.769 -0.455 -0.801 -0.592 -0.599 -1.481 -1511 -0.648
CRLUPT L0104 0020 -0.214 -0.295 -0.026 -0.178 -0.245 -1.004 -0.598 -0.381
Cioun  -0.094 -0.188 -0.253 -0.309 -0.367 -0.441 -0.551 -0.750 -1.221 -3.667
C\liyy  -0.788 -0.637 -0.528 -0.445 -0.379 -0.325 -0.280 -0.242 -0.210 -0.182
Cihiun <0341 -0.267 -0.220 -0.190 -0.170 -0.157 -0.150 -0.147 -0.147 -0.150
Ccilz oy 0335 0278 0237 0206 0.181 0160 0142 0126 0.112  0.099
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TABLE 5.4: Low-energy constants from fits including coupled NA-, AN- and AA-channels in the
chiral potential to the Nijmegen PWA. The leading order constants C are in units of 10* GeV ™2,
while the next-to-leading order C' are in units of 10% GeV ™.

350 400 450 500 550 600 650 700 750 800

Cloyny 0151 0144 0134 0119 0.095 0046 -0.084 -1.234 -12.077 -16.096
CPoyn 0823 -0.804 -0.782 -0.773 -0.790 -0.855 -1.034 -2.064 -5.012 -4.786
C¥tyy 0471 0156 0139 0122 0.103 0081 0055 0017 -0.062  -0.77
C¥lyy  -0.606 -0.638 -0.619 -0.588 -0.560 -0.542 -0.540 -0.566 -0.650 -1.272
CRluPr L0502 -0.351 -0.246 -0.167 -0.101 -0.041 0.020 0.087 0175  0.420
Cilo v -0.148 -0.265 -0.362 -0.462 -0.588 -0.783 -1.173 -2.470 -2.844  1.654
C\liyny 0854 -0.732 -0.657 -0.614 -0.594 -0.597 -0.626 -0.693 -0.825 -1.111
Ciliuny 0362 -0.302 -0.273 -0.262 -0.264 -0.278 -0.303 -0.341  -0.401  -0.498
CcPa v 0307 0239 0187 0.146 0.111 0.083 0059 0039 0021  0.006

The natural size of the LECs in the spectroscopic notation has been estimated in Refs. [20,24]
as

47
f2
47
F2AG

|Ci| ~ 0.15 x 10* GeV 2,

|Cs] ~ 0.4 x 10*Gev (5.10)
where the breakdown scale of the chiral expansion is taken as A ~ 600 MeV. Then for
cutoff parameters A 2 700 MeV some of the low energy constants would become unnaturally
large.

5.2.2  Fits of leading order contact potentials in coupled channel approach

In the 'Sy partial wave, there are two additional leading order contact terms contributing in
the coupled particle channels: 5']1\,81(\’, Ap and C~'1ASA° Aa- In the fitting procedure they can cause
an eigenvalue of close to 1 in the matrix VG introduced in Section 3.1. Then (1 — VG)~!
becomes very large in such a way that one of the data points from the Nijmegen partial
wave analysis is nearly hit which then leads to a minimum in x2. This feature is shown in
Fig. 5.1. Once C~’]1VS](\’[ Ap and C~’1ASA° An are treated as additional fit parameters, the phase shift
shows spikes for most of the selected cutoff parameters. Which data point of the Nijmegen
PWA is hit by the fitted phase shift depends on the maximum lab energy Ti,ax chosen for
the fit. For the 'Sy, this is shown in Fig. 5.2. We choose the maximal lab energy of the fit
in the range Thax = 50MeV ...300MeV. The obtained LECs are given in Table 5.5. This

behavior is not only observed in the 'Sy but also, for example, in the 'Dy-wave (Fig. 5.3).

54



5.2 FITS OF LOW-ENERGY CONSTANTS

'S

LR L B B B LR B ARG L L B B B B 800

60_‘ N 60 F 3 750

L ] . ] 700

40__ _ 401 ] 650
E 20:— — 20:_ _ 6()0%
< [ : ] [ ] 550 =
or T o] Or 2 o] 500
—20F 1 —20F . 450
[ 1 L B 400

S I SN I N S SN I R [ ) O S N SN S SN S 350

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Nab [MeV] Nab [MeV]

FIGURE 5.1: The 'Sy phase shift with different sets of contact interactions fitted to the Nijmegen
PWA [58] up to Tmax = 100 MeV is shown for different cutoff parameters A. Left: Adjustable

constants 5]1\,%‘\), N and C’;VSI‘Q, nn only, Right: C~’11VSJQ, A and élASAO An are additionally adjusted.
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FIGURE 5.2: The 'S, phase shift with the LO contact potential in the coupled NA channels fitted
to the Nijmegen PWA [58] is shown for different Ty,q. at a cutoff A = 450 GeV.

TABLE 5.5: Additional 'Sy LECs for different T},q, at A = 450 GeV used in Fig. 5.2.
Tinaz 50MeV  100MeV  150MeV  200MeV 250 MeV 300 MeV

O A 0032  -0.047  -0043  -0.040  -0.037  -0.034
C.. 0714 092 0884 0845 0805  0.765
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FIGURE 5.3: The 'D, phase shift with the LO contact interactions in the coupled NA channels
fitted to the Nijmegen PWA is shown for different T},,, at A = 500 GeV
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FIGURE 5.4: The 'Sy phase shift for different sets of the LECs 611\781(\)1AA and élASAOAA at A = 500 GeV.
The graph for both LECs equal zero is marked in red.

In addition, we have investigated, whether this behavior is a consequence of the fitting
procedure. Fig. 5.4 shows the results for 20 different sets of 6’11\,8]‘\’, an and 6’IASA° Aa- None of
these choices yields the behavior of Figs. 5.1 and 5.2, even though the LECs in Table 5.5
are within the range of these sets. Finding the best values for these LECs is a tedious
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work, since the condition that the phase shift needs to be a smooth curve, cannot be easily
implemented into our fitting procedure. As we will point out in the next section in more
detail, the contact potentials involving A-isobars have little impact on the resulting NN
phase shift. We therefore refrain from determining these low-energy constants.

5.2.3 Influence of contact interactions involving deltas

The 'F3 NN-channel and the coupled (3F4,°Hy, €4) NN-channels receive contributions

from one low-energy constant in the contact potential VA(ZA) aa only. The coupled (3G3,%D3,

€3) NN-channels are affected by a contribution from the LO potential VA((R Ap-  For
these waves the NLO contact potential VA(2A) AA 18 non-vanishing in the matrix elements
<5P3 ‘Vct,AAAA| 5P3> = C5p3pp, and <7P4 “/ct,AAAA‘ 7P4> = C7P4pp, and the LO contact
potential VAOAAA is non-vanishing in the matrix element ("S3 |V anan|7Ss) = 6’753.

In the case of the 'F3 wave there are five coupled equations for the T-matrix. We need to
solve

1F31F3 . 1F31F3 1F31F3 1F31F3
TNNNN _VNNNN + VNNNN GNN TNNNN

'F3'F3 'F3'F3 1F3°P3 SP3'F3
T Vunanr Gana TaRvn +Vnaa Gaa Tadvy
1F35F3 SF3lF3 1F35H; SH3'F3
+ Vnaa Gan TaRnn + Vivvas Gaa Taxny » (5.11)
which depends on four other T-matrices. Each of these is defined via a similar scattering
equation, where one of them reads

SP3lF; _ 1,5P3'F; 5P3lF; 1F3'F3
TAANN _VAANN + VAANN GNN TNNNN

5P3lF; 1F3lF3 5P3°P3 5P3lF;
+ Varan Gan TaRnN T Varan Gan Tapny

5p35F, 5F3lFs 5p35H3 SH3lF3
+ Vaaan Gana TARyy + Vasnan' Gaa TaAnNNN - (5.12)

This scattering equation for the T-matrix contains the low-energy constant contributing to
the potential

VA =Csp,pp’ + VQZSQZ%OPE + VAOZ‘XIZTPE . (5.13)
Since in these cases the fit algorithm is not able to find LECs which differ from an arbitrary
starting value, we tested NLO LEC-values in the range —107GeV~%-.. 4+ 107GeV—* and
LO LEC-values in the range —10°GeV~2- .. +105GeV~2 for two different cutoff parameters
A. The results are shown in Figs. 5.5 to 5.7, where the red band depicts the variation
of the cutoff parameter A = 400...800MeV with the LECs set to zero. The different
values for the cutoff are shown in blue for A = 500 MeV and in green for A = 700 MeV.
Up to Tiap, = 100 MeV the change of the 'Fs-, 3F4- and ®Ds-phase shifts by varying the
LECs is negligible. For higher Ti,1, the different lines split up, but still are within the band
produced by changing the cutoff parameter except for one case in the 3F4-wave. For the
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3Hy- and the 3Gg-wave and the two mixing angles (e3 and ¢,) the different choices of the
LECs cannot be distinguished from each other.

Due to the small effects of the contact potentials involving deltas, we omit these contact
potentials in the following.

||||||?
0 50 100 150 200 250 300
Tlab[MeW

FIGURE 5.5: The NLO contact potential contributes to the AA — AA 3Ps-wave and couples to
the 3F3 NN-channel. The variation of the LEC is shown for A = 500 MeV (blue) and A = 700 MeV
(green). The red band depicts the variation of the cutoff A.
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FIGURE 5.6: The NLO contact potential contributes to the AA — AA 3P4-wave and couples to
the 3F4-3H, coupled NN-channel. For notation see Fig. 5.5.

58



5.2 FITS OF LOW-ENERGY CONSTANT

S

d[deg]

Tap[MeV] Tapy[MeV]

€3
b ET T T T T T T
; ol ]
; A ]
4 2k 4
1 I I I 1 1 1 £ I I I I I 13 Or I I 1 1 I 1]
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Tap[MeV]

FIGURE 5.7: The LO contact potential contributes to the AA — AA 7Ss-wave and couples to the

3D3-2G3 coupled NN-channel. For notation see Fig. 5.5.
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In this chapter, we present our results for phase shifts and mixing angles. In addition,
we investigate the influence of NA-, AN- and AA-coupled channels in the total coupled
channel result. We present a comparison of the Kadyshevsky and the Lippmann-Schwinger
equation and explore the next-to-next-to leading order purely nucleonic result and its
differences and similarities to the explicit inclusion of the deltas and their coupled channels
dynamics.

We compare all our results of the purely nucleonic and the coupled NA-, AN- and AA-
channels to the Nijmegen partial wave analysis [58].

6.1 PERIPHERAL PHASE SHIFTS

The peripheral phase shifts are independent of the NN-contact potential except for the
3

3F,-wave and ey due to the mixing with 3Py. However, the influence of C NP]\Q, NN on the

F-wave is nearly negligible, even at the highest energy Tj,p ~ 300 MeV.

6.1.1 F-waves

The F-wave phase shifts and the mixing angle €3 are shown in Fig. 6.1. Except for the
3F,-wave the coupled particle channel corrections are closer to the Nijmegen PWA result
than the A-less case. The 'Fz-wave is better described by the coupled channel potential
at energies Ti,1, < 170 MeV, whereas for higher energies the deviation from the empirical
PWA results increases. The 3F3 phase shift improves substantially over the entire energy
range Tap, < 300 MeV, whereas for the >F4 phase shift the corrections due to the coupled
delta channels fill half of the gap between the purely nucleonic NLO calculation and the
Nijmegen PWA for Ti,p > 50 MeV. The mixing angle e3 can be reproduced very well. In
the purely nucleonic calculation the data points lie at the lower edge of the band, whereas
with coupled delta channels included the data points are located just in the middle of the
band. In general the cutoff dependence for F-waves is rather weak. Note that by increasing
the cutoff A, the interaction potentials get somewhat stronger and thus phase shifts tend
to grow in magnitude.
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FI1GURE 6.1: F-wave NN phase shifts and mixing angle €3 versus the nucleon lab kinetic energy
Thap for a cutoff variation A = 450...700 MeV. The blue band (\\-hatching) and the red band
(//-hatching) show the results of the calculation with chiral NN potentials only and with the
full coupled (NN, NA, AN, AA) channels at NLO, respectively. The filled circles stem from the
Nijmegen PWA [58].

6.1.2 G-waves

The G-waves phase shifts and the mixing angle ¢4 are shown in Fig. 6.2. The coupled
channel approach leads to some improvements in the waves 'Gy, 3G3 and 3Gy at energies
Tiab > 200 MeV. The 3Gs phase shift changes from approximately —1.0° to a phase shift
of —0.7° at 300 MeV lab energy, but it still does not reproduce the curvature behavior of
the Nijmegen PWA. The reproduction of this delicate feature is observed only at higher

62



6.1 PERIPHERAL

PHASE SHIFTS

1.5

— 1.0

O[deg

0.5

0.0

50

100 150

50

100 150

0.0
——0.5
o0
O
=
—1.0
—1.5

200

250

300 0 50

50

100 150 200 250
Tlab [I\’IQV}

150 200 250 300

FIGURE 6.2: G-wave NN phase shifts and mixing angle ¢4 versus the nucleon lab kinetic energy
Tiap for a cutoff variation A = 450...700 MeV. For notation see Fig. 6.1.

orders in the chiral expansion (see comparison of N2LO calculations with two different
choices of ¢ 34 parameters in Fig. 6.13). The cutoff dependence of the G-wave phase shifts
decreased significantly compared to lower partial waves.

6.1.3 H-waves

For the H-waves the coupled channel approach leads to a slightly better agreement with
the Nijmegen PWA for higher lab energies than the A-less phase shifts except for Hy as
we show in Fig. 6.3. The mixing angle €5 is nearly unaffected by the coupled channels.
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FI1GURE 6.3: H-wave NN phase shifts and mixing angle €5 versus the nucleon lab kinetic energy T,y
for a cutoff variation A = 450...700MeV. The dark blue (dashed) and red (solid) line show the
results of the calculation with chiral NN potentials only and with the full coupled (NN, NA, AN,
AA) channels at NLO, respectively. The filled circles stem from the Nijmegen PWA [58]. There is
no visible cutoff dependence in these peripheral phase shifts.
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Only 3Hy can have a contribution from the contact potential VA( A

2

Section 5.2.3 that this effect is negligible.

6.1.4 IT-waves

AAs but it was shown in
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FIGURE 6.4: I-wave NN phase shifts and mixing angle eg versus the nucleon lab kinetic energy 1.1,
for a cutoff variation A = 450...700 MeV. For notation see Fig. 6.3.

By including coupled channels, the I-waves in Fig. 6.4 show only very small deviations
from the purely nucleonic chiral potentials. Due to the high orbital angular momentum
£ = 6 these phase shifts are mostly dominated by the one-pion exchange between nucleons.
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Both the I- and H-waves and the corresponding mixing angles show no visible dependence
on the cutoff parameter A.

6.2 PHASE SHIFTS IN LOW PARTIAL WAVES

In the partial waves with orbital angular momentum ¢ < 2, the NN contact potentials at
LO and NLO affect the interaction in the S- and P-waves and also in the 3D;-wave through
the channel coupling 3S; < 3D;.

6.2.1 S-waves

With increasing £ in the peripheral partial waves, the cutoff dependence decreases rapidly.
However, in the low partial waves the cutoff plays a major role but this regularization
dependence is balanced in the S- and P-waves to a large extent by the NN contact potentials
with their adjustable strength. The S-wave phase shifts are shown in Fig. 6.5. One has to
perform separate fits in the coupled (NN, NA, AN, AA)-channel approach and the purely
nucleonic calculation in order to account for the differences of the 17- and 27-exchange
potentials. Due to the strong influence of the NN low-energy constants the effect of the
coupled particle channels is almost negligible, as one can see from the overlapping bands in
Fig. 6.5. The fitted values of the low-energy constants can be found in Tables 5.3 and 5.4.

T 150F 3

1 100} ]

50 ]

oo ]

030100 150 200 250 300 0 50 100 150 200 250 300
Ty, [MeV] Ty, [MeV]

FIGURE 6.5: S-wave NN phase shifts versus the nucleon lab kinetic energy Ti.;, for a cutoff variation
A =450...700MeV. The blue band (\\-hatching) and the red band (//-hatching) show the results
of the calculation with chiral NN potentials only and with the full coupled (NN, NA, AN, AA)
channels at NLO, respectively. The filled circles stem from the Nijmegen PWA [58].

6.2.2 P-waves
The P-wave phase shifts and the mixing angle €; are shown in Fig. 6.6. They are also

influenced by NN-contact potentials. The corresponding constants are listed in Tables 5.3
and 5.4. The 3Py-wave coupled NA channel result deviates a bit more from the Nijmegen
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FIGURE 6.6: P-wave NN phase shifts and mixing angle €; versus the nucleon lab kinetic energy
Tap for a cutoff variation A = 450...700MeV. For notation see Fig. 6.5.
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data points than that of the purely nucleonic calculation for Ti,;, > 150 MeV. In the 'P;-
wave phase shift the coupled NA channels lead to a better agreement with the Nijmegen
PWA up to Tiap ~ 200 MeV. The 3P; and the 3Py phase shifts receive corrections which
move the rather narrow bands towards the data and the cutoff dependence is reduced
significantly for the ®Py phase shift. At low lab energies Ti,p < 50 MeV the mixing angle
€1 comes out closer to the empirical values in the coupled channel approach, but with
increasing energies the cutoff dependence of €; grows in the same way for the calculation
with and without coupled channels, such that the two bands overlap.

We show the influence of the variation of the NN-LEC CJSVP]\(}NN = —4623GeV~* in
Fig. 6.7, where we increased or decreased the value of the LEC by 100 GeV ™, 500 GeV ™4,
1000 GeV~* and 2000 GeV 2. The four bands display the change from dark to light colors,
respectively. The blue line shows the best fit to the data up to T, = 100MeV. The
data points at higher lab energy lie close to the C;VPZ{} NN 1000 GeV~* line. However, this
boundary line does not describe the data in the best way for low lab energies Ti,p.

Py
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FIGURE 6.7: 3Pg-wave: Variation of C?{J:NN = —4623 GeV~* by (100, 500, 1000, 2000)GeV ™ as
explained in the text. The blue line is the result of the fit.

6.2.3 D-waves

The D-wave phase shifts and the mixing angle €5 are shown in Fig. 6.8. Except for the 3Dy
phase shift, there is no influence of NN contact potentials on the D-waves. All corrections
of the coupled NA channels tend into the right direction. For the *Dy-wave and the mixing
angle ez, the Nijmegen PWA results lie within the band obtained in the coupled NA
channel approach. The bands resulting from the cutoff variation widen in most cases with
increasing Tia,. Only for the 3D; phase shift, which is influenced by the part of the NN
contact potential with low-energy constants 5’381, C*S1 and ¢*S1="D1 through the channel
coupling 3S; <+ 2Dy, this cutoff dependence is strongly counterbalanced. The result of
the coupled (NN, NA, AN, AA) channel approach for the D3 phase shift represents a
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FIGURE 6.8: D-wave NN phase shifts and mixing angle €5 versus the nucleon lab kinetic energy

Tiap for a cutoff variation A = 450...700 MeV. For notation see Fig. 6.5.

significant improvement over that of the calculation with the purely nucleonic chiral NN
potential at NLO. Especially, for higher cutoffs A > 650 MeV the calculated phase shifts
lie close to the empirical points from the Nijmegen PWA.
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6.3 INFLUENCE OF THE NA-COUPLED CHANNELS

1‘9() 3P()
50F 1F
@ 0
= of o —10F i 3
—20 9 ® ]
0100 200 300 0100 200 300 0100 200 300 0 100 200 300
D, A ‘
10 pr—————
—_— L] ¢
20
=,
Lae)
E]
=
S0 100 200 300 C0 100 200 300 0 100 200 300
3HG l-[G
: : 1 0.4 : :
%‘0 -0 0.2F 0.2F
= —04
710 |
: - L 0.0 . ! s 0.0 . ! ' | | |
0100 200 300 0 100 200 300 0 100 200 300 0100 200 300
Tlab [I\IOV} Tlab [A\[CV} Tlab [I\ICV] Tldb [I\lCV]

FIGURE 6.9: Contribution of NN coupled channels (blue dotted), additional NA (light blue dashed)
and additional AA coupled channels (red) in partial waves with isospin I =1 for A = 550 MeV

The NN-waves with total isospin I = 1 are coupled to the NA- and AA-channels. The
contribution of the NA-channels to these waves and mixing angles is depicted in Fig. 6.9.
For example, the addition in the 3Pg-wave, the 3Fs-wave and the mixing angle ey is
dominated by the NA-channels whereas in the !Dy-wave the NA-contribution is negligible.
The 3P;-, 3Pa-, 3F3- and 3F -waves show an almost equal contribution from the NA- and
AA-channels. The S-wave and the partial waves with j > 5 show only little or no effect by
switching on the coupled channels. In the isospin I = 0 NN-waves there exists only the
coupled AA channel. Results for these waves are shown in Fig. 6.10. Up to j = 3 and
in the 3G-wave, the inclusion of the coupled channels shows a noticeable difference. It is
important to note that these effects of the AA-channel cannot be produced by the LECs
acting in the lower partial waves.
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FIGURE 6.10: Contribution of NN coupled channels (blue dotted) and additional AA coupled
channels (red) in partial waves with isospin I = 0 for A = 550 MeV. The NA channels do not
contribute to isospin I = 0.

6.4 COMPARISON OF RESULTS FOR TWO SCATTERING EQUATIONS

A comparison of the Kadyshevsky and the Lippmann-Schwinger equation for nucleon-
nucleon scattering has been performed in Ref. [59] for phenomenological potentials. It was
shown that the Kadyshevsky equation reproduces some features of other relativistic wave
equations, e.g the Bethe-Salpeter equation [60].

We compare the Kadyshevsky equation (3.9) with the Lippmann-Schwinger equation for
coupled channels (3.8) for the potential at next-to-leading order. The influence of the
chosen scattering equation is shown in Fig. 6.11. The difference between these two equations
in the purely nucleonic case is minor in most of the partial waves. In the coupled NA
channel approach the Kadyshevsky equation leads to damped effects in the region of higher
energy, compared to the Lippmann-Schwinger equation. In most of the partial waves the
cutoff dependence decreases for the Kadyshevsky equation, the cutoff bands for selected
waves are shown in Fig. 6.12.
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FIGURE 6.11: Selected partial waves for A = 600 MeV. Red curves: with coupled delta channels,
light blue: without coupled delta channels, dashed lines: Lippmann-Schwinger equation, solid lines:
Kadyshevsky equation.
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FIGURE 6.12: Selected partial waves for A = 400...800MeV. Red bands with //-hatching:
Kadyshevsky with coupled channels, blue bands with \\-hatching: Lippmann-Schwinger with
coupled channels
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6.5 NEXT-TO-NEXT-TO-LEADING ORDER EFFECTS

As shown Fig. 2.2 the effects of the A(1232)-resonance are hidden in the low-energy
constants ¢y 34 of higher derivative 2rNN-vertices of the pure NN-sector [12]. These
additional A-isobar interactions at NLO in the coupled channel approach are transferred in
the NN sector as a part of the pion-nucleon low-energy constants. We compare the A-less
theory at N2LO to our coupled channel result.

At next-to-next-to-leading order we take the spectral functions from Ref. [12], which read

2 _ 2
mi —

344 2
9A [2m72r(201 — 03) + uzcg] T ,

ImVe = Gafd
™

ga_, Ami—

87T g

ImWr = :QImWS = (6.1)
The potentials Vo(g) and Wsr(g) are again constructed through the regularized spectral
representation in Eq. (3.21). We employ the 7 N-LECs ¢; taken from the fit in Ref. [61],
which were also used in Ref. [20]: ¢; = (—0.8140.15)GeV !, c3 = (—4.6941.34)GeV ! and
cy = (3.40i0.04)GeV_1. In addition, we also consider a second set of values, that represent
the parts arising solely from the A(1232)-resonance excitation, taken from Refs. [38,62]:
c1=0,c3=—2c4 = —g4/(2A) = —2.84 GeV !, evaluating this relation for our choice of
ga. The pion-nucleon LEC ¢; is related to explicit chiral symmetry breaking and receives
no contribution from the A-resonance. The results are shown in Fig. 6.13. The results
of our coupled (NN, NA, AN, AA) channel approach lie in between the NLO and N2LO
calculations with purely nucleonic potentials for both choices of the low-energy constants
c134. As expected, the second set of LECs gives smaller changes of the phase shifts
compared to NLO than the first set.

For the phase shifts in the partial waves 'F3, 3Gs, 3Gy, G5, 3Hg, and in all I-waves, as well
as for the mixing angles €3 and €4, the coupled NA channel result agrees reasonably well
with N2LO for set two. In the D-wave phase shifts the coupled NA channels are too weak
compared to N2LO for set two. On the other hand, the pion-nucleon low-energy constants
13,4 (set two) yield too strong effects in the 3F4-, 3F3- and 3Hy-waves, whereas the results
of the coupled channel approach agree much better with the empirical phase shifts. The
coupled (NN, NA, AN, AA) channel dynamics generates (through infinite iterations)
higher order corrections to the interaction strength represented by the low-energy constants
c3,4, and apparently these corrections go in the opposite direction. Such a reduction of
the delta dynamics encoded in c3 4 is favorable for some partial waves but disfavorable for
others. This mixed findings point to the need for N3LO or even N4LO calculations [20-22]
in order to get an accurate description of elastic nucleon-nucleon scattering in all partial
waves.

73



PHASE SHIFTS
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FIGURE 6.13: Selected NN phase shifts and mixing angles for a cutoff A = 450 MeV. Red solid
curves: NLO calculation with coupled NA-channels, dark blue dotted curves: NLO calculation
with chiral NN potentials only, green dashed curves: N2LO calculation with empirical low-energy
constants c; 34, orange dash-dotted curves: N2LO calculation with ¢; = 0, c5 = —2¢c4 = —g%/(24).
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SUMMARY AND CONCLUSION

In this thesis, we have extended the chiral expansion of the two-nucleon potential at
next-to-leading order by the inclusion of coupled (NN, NA AN, AA)-channels into the
scattering equation. This extension requires the calculation of six additional one-pion
exchange diagrams at leading order and about 60 two-pion exchange diagrams at next-to-
leading order. Due to the small mass splitting of the nucleon and the delta, and the strong
coupling of the delta to the m/N-system, the delta is a natural candidate for an extension
of the heavy baryon chiral effective field theory. This is a phenomenological extension,
because the AN mass splitting is not related to explicit chiral symmetry breaking.

First, we have given a brief overview of QCD and the construction of chiral effective field
theory. We have summarized the chiral Lagrangians including the A-isobar. Together
with Weinberg’s power counting scheme, we have identified the Feynman diagrams that
are relevant for the calculation of the NN-potential. In addition, we have discussed
scattering equations and regularization methods needed to obtain the T-matrix (or S-
matrix) from the NN-potential. The Kadyshevsky equation, which is a scattering equation
with relativistically corrected kinematics, is used together with a local regulator. This
regulator acts already at the level of the spectral integrals and there are no subtractions
needed for the 2m-exchange potential.

We have constructed the chiral one- and two-pion exchange potentials. The analytic
expressions of the one-pion exchange potentials and of the two-pion exchange spectral
functions for the seven different combinations of initial and final (NN, NA, AN, AA)-states
and the nine possible intermediate states have been given. The reducible components of
the two-pion exchange planar box diagrams have been identified and excluded from the
potential. The pertinent rule is: The irreducible parts of the NA and the AA planar box
diagram are equal and coincide with the negative of the NA crossed box diagram.

The NLO contact potentials have been derived and the low-energy constants have been
identified in the spectroscopic notation. Only the purely nucleonic LECs have a one-to-one
correspondence in the two notations. The relations between the other LECs in spectroscopic
notation have been worked out. We have performed a fit of the NN LECs. As there are
more LECs in the potentials which involve A-isobars, than data points for the fit, we
omitted these LECs. In particular, the LECs arising from the potentials that include
deltas, show only a subleading effect in the resulting phase shifts. Furthermore, the fitting
procedure led to some undesired behavior after the delta LECs had been included as
adjustable parameters in the fit.
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SUMMARY AND CONCLUSION

We have solved the Kadyshevsky equation and the non-relativistic Lippmann-Schwinger
equation with our coupled NA channel potential to obtain NN phase shifts and mixing
angles for several cutoff parameters in the local regulator. We have found that in some of
the partial waves and mixing angles, the N2LLO contribution attributed to the A-isobar can
be obtained already at NLO with coupled NA channels included. The inclusion of these
coupled channels has also led to a reduction of the regularization cutoff dependence in
some partial waves. Compared to the purely nucleonic results at next-to-leading order, the
coupled NA channels improve in most partial waves the description of the empirical phase
shifts and mixing angles, although the corrections by the inclusion of coupled NA channels
are still too weak at higher lab energies, especially for 'Ds, 3D3, 3Fy4, 3G5 and Hg.

This coupled channel approach can be continued also to higher orders in the chiral expansion.
Then one has to consider also the 77NA vertex, which introduces the (shaded) triangle
and football diagrams in Fig. 3.3. At N2LO one needs to find appropriate values for the
pion-nucleon LECs, which do not contain contributions from hidden deltas any longer.
It is worth to note that there exist no additional LECs for the (NN, NA, AA) contact
potentials at N2LO.
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CONVENTIONS

A.1l GENERAL CONVENTIONS

o We use natural units, setting ¢ = h = 1.

e We use the Einstein summation convention: summation over repeated indices is
implicitly understood.

 The metric tensor in Minkowski space is g,,, = diag(1,—1, -1, —1).

e The contravariant components of the space-time four-vector x in Minkowski space
are z=(t,)” and its covariant components are =g’ =(t, —x)’.

o The Gell-Mann matrices A, forming a basis of the su(3) Lie algebra are

010 0 -i 0 1 0 O
AM=1]1 0 0], =i 0 0], AX3={(0 -1 0],
0 0 0 0 0 0 0O 0 O
0 0 1 0 0 -i
M=]0 0 0|, As=1]0 0 0], (A1)
1 00 0 0
0 00 0 0 O 1 0 0
Xe= |0 1,»:00—1,&:%010
010 0 i O 00 -2
They fulfill the following commutation relations
)\a )\b . rabe )\c
[27 2] =if ?7 (A~2)

with the totally antisymmetric structure constants f°°. Up to permutations, their
non-vanishing values are

_ V3

1
123 147 165 246 257 345 376 _ 458 678
=1, = .
f [frh=rr=rrhe=rrt=rr=y 9 =7 B
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CONVENTIONS

e The gamma matrices v* read in Dirac representation

1 0 0 o
0 _ 2 k _ k

where k runs from 1 to 3 and o are the usual Pauli spin matrices.

o The Feynman slash abbreviates the 4 x 4 matrix ¢ = v a,,.

A.2 SPIN AND ISOSPIN MATRICES AND RELATIONS

This section collects the properties of the spin (transition) matrices ¢, S*, Sit and Xt All

definitions and relations apply in exactly the same way for the isospin (transition) matrices
78, T8 T and ©°.

e The spin—% matrices are the Pauli matrices o’

ol = <(1) (1)> , 0% = (? 3) , 0% = (é _01> . (A.4)

e The transition matrices for spin—% to spin—% read

2 —-i(v3 01 0
Ve\L0 1 0 v3)°
oo L0290 s

and their hermitian conjugates S*' serve for the reverse transition spin—% to spin—%.

e The spin—% matrices take the form

0 vV3 0 0
- V3 0 2 0
10 2 0 V3|
0 0 V3 0
0 V31 0 0
9 3i 0 -2 0
X = 0 2i 0 V3|’
0 0 3i 0
30 0 0
01 0 0
=100 -1 0 (A-6)
00 0 -3
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A.2 SPIN AND ISOSPIN MATRICES AND RELATIONS

o We use additional spin-matrices defined in Ref. [57], which are symmetric in the
multiple indices 4, j, k € {1,2,3},

y 1 Y .
St = — —_ (8T 4 §itgY) |
v )
. 1 . o
SY=——(c'5" +075"),
7! )
N =2 (S5 + 35 - 100V1) =61 - 5(5”51 + 57187
I (5(2@?2"? NED Yab 30 2ANED 37} b SNED 31 3 3V
361/3
+SISISR 4RSI  8a(igik 4 s 4 2’95@‘3‘)) . (A7)
e The products of two matrices fulfill the following relations
ool = 691 + ik gt |

L 3 1 ..
Sigd = —\/;9”* - 51&’“5"?* :

o'sI = —\/gsij - %'eijksk :

L 1 ... 1 .. 1 ..
it Qi — 25U — =W . z]kzk
SS 5 3 + Gle ,
. 1 .. ..
Si1§IT = g(25”]1 —iekgh)

»igit = —\/gsm + gieif'ks’fT :

L 3 .. 5 .
SiYI = —\/;9” + 516”’65’“ ,
Y = 5691 + 4329 4 {eIFRR
»2 =151,
yivkyt = 115k (A.8)

which are verified by using their explicit representations in Eqs. (A.4) to (A.6).
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CONVENTIONS

A.3 ISOSPIN MATRIX ELEMENTS

In isosinglet and isotriplet states one finds

(0,0 7 ® 75 10,0) = —3 @Hﬂ®ﬂWLD=—%
L1rfergnl = 1 (1,1\T1“T®@g\1,1>:—2\/§
(0,010¢ © 0310,0) =—15  (0,0] T & 75" |0,0) = 5f
L1Of©egL 1) =-11 (11T o1 |1,1) = _V;O
(L1 oy L) = 2¢§ <LuTﬁ®zﬁﬁuJ>:_g
(L7 ®©63[1,1) = =5 1,1 7" @ 088 |1,1) = —V/10
oo o1 0,.0) = V2 (0ePeeyion= *
1T @ T3 1,1) = J?)TO (1,1]0% @ 0%°1,1) = g (49)

where the tensor product symbol ® indicates that the operators act in a product of two
isospin-spaces.

A.4 NON-RELATIVISTIC EXPANSION

e The free Dirac spinors have the form
E,+ M -p’ E,+ M 1
By = g o N(“,—”’ ) = |, ) (Ad)
2Mn E; + My 2MpN B, + My

with
B = /M +p2, Bi=yMy+pt (A1)

where My denotes the nucleon mass.

o The expansion of the baryon bilinears (uzI'ju1) or (usI'ous) in the inverse large
nucleon mass up to order O(q?) yields [11,63]:

p2+p/2 U-pla'-p
8M% AM%
p2+p/2+0"p,0"p
8M?, AMZ,
(p+p)+ip—p')xo
IMy ’

uilu; =1 +

ﬁiyouj ~1 +

uyu; ~ 0 +
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A.5 PROJECTORS ENTERING TWO-PION PHASE SPACE INTEGRALS

o-(p—p')
oMy

o-(p+p)
oMy

p2+p/2 O'p/O'O'p

sz O T Ay
(pl o p/l) 4 ielmn(pm 4 p/m)o.n
2M N ’

2 /2 /I -m
B kimP~ TP kim@ P 0" 0 -P

ﬂfy5u]' ~0 +

uiy s ~ 0 +

Ui YYsU; = O +

0l

uioou; ~0 + 1

A.5 PROJECTORS ENTERING TWO-PION PHASE SPACE INTEGRALS

We list the projectors used to obtain the coefficients of interest from tensorial 27-phase
space integrals over [#, [*]Y [*IY]P and [*{¥IP1° in Section 4.2.1.

P?“Xl:ﬁq‘u

Pr+ = —quq —I—EUU—fg

Ap g2 RV T g TR g IRy

Pr= = —quq —I—va—ig

Bo 2u4“’/ QMQ#V 2112 HY

P?“~=L(—qg — Qup — Y )+iqqq +i(qfuv + QU + quUyU,)

As G2 pYuv vYup nYvp 2M4#Vp 6.2 pUuly vUuUp wUuUp

PT~=L(—qg — Qup — quY )+iqqq +i(qfuu + QU + quUyU,)

By — 24 pIpv viup udvp 2M6#VP 2 pluly vPutp wlrlp
1

Pr§4 = BY (g,uugpa + GupGrve + guagl/p)
1
+ w (_QpQUg/w — Q@Y 9up — Quldo9vp — 9v9p9puo — 4udpYve — ququgpa)

+ w 41909090 + é Vp Uy VpUs
1
+ BY (—VpVsGpv — VuVoGup — VuVoGup — VwUpGuo — VpVpGve — UpluGpo)

1
+ 24H2 (QPQUUI/UV + QqocVuVp + QuqsVVp + qQpUu Vs + AuqpUv Vs + quql,vpva)
1
By W (9uv9po + GupGve + GuoGup)
1
+ m (_QpQUguV — 9v909up — Qubo9vp — QdpGuc — Qudp9ve — q,qugpa)

D 1
+ w 41:9v9p90 + W Vp Uy VpUs
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1

+ 24,2 (_Upvaguu — VUsGup — YuVo9vp — Ww¥pGuo — VuVpGue — qul/gpa)

1
+ % (QpQUUuUV + @ 9eVuVp + QudoVuVp + QuQpVpVs + quipVy Vs + qquUpUg)

1
P’I“54 = w (gw,gpg + 9up9ve + g,U«UgVP)

+ % (_qPQUgw/ — Q90 9up — Qul4o9vp — Qvdp9uc — Qup9ve — Q,u%/gpo)
35 3
+ @ 419v9p90 + 87#4 VU VpVs

1
+ 8pl (_vpvag,ul/ — UVeGup — VuVoGvp — VwVpGuo — VuUpGuve — U,uvugpa)

)
+ w (QpQUUuUV + v 9eVuVp + QudoVuVp + QuqpVpVs + QuipVvVs + qquUpUg)
(A.13)

In each case the coefficients in front of the tensors (built with g,,,, ¢, and v,) are found by
solving systems of linear equations.
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QUANTUM NUMBERS OF COUPLED CHANNELS

For each partial wave denoted by the total angular momentum j, the total isospin I and
the parity 7, the number of coupling channels n is given together with the set of quantum
numbers for each channel. These channels are labeled by their angular momentum ¢, their
spin s and the number of A-isobars d in this channel.

S0
J=0,I=1,rm=1,n=4
£ 0 2 0 2
s 0 2 0 2
d 0 1 2 2

3p,
1=0,I=1,mr=-1,n=4
¢ 1 1 1 3
s 1 1 1 3
d 0 1 2 2

381—D1
j=1,1=0,1r=1,n=26
¢ 0 2 0 2 2 4
s 1 1 1 1 3 3
d 00 2 2 2 2

1p,
j=1L,1=0r=-1,n=4
¢ 1 1 1 3
s 0 0 2 2
d 0 2 2 2

3p,
j=1,I=1,7r=-1,n=26
¢ 1 1 1 3 1 3
s 1.1 2 2 1 3
d 01 1 1 2 2
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QUANTUM NUMBERS OF COUPLED CHANNELS

d 0 2 2 2

1D2

2, I=1,7m=1,n=9
£ 2 2 0 2 4 2 0 2 4

J

2 2 2 0 2 2 2

0 1

S

2 2 2 2

1

1

3P2—3F2

1 2 2 1 1 3 3 3
1 1

1
1

2 2 2 2 2

1

d 0 0

3D3-3G3

8
3 3 3 3

4
1
d 0 0 2 2 2 2 2 2

1F3

—-1,n=5

00 2 2 2

d 0 2 2 2 2

3F3

3 3
1 3 3 3
2 2 2 2

3
2 2 2

3
1

3,1
3
1

1

1

3G4

4,1=0,r=1,n=5

1 3 3 3

1
d 0 2 2 2 2

j=
l
s

1G4

4, I=1,7=1n=9
¢ 4 4 2 4 6 4 2 4 6

J

2 2 2 0 2 2 2

0 1

S

2 2 2 2

1

1
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RELATIONS FOR LOW ENERGY CONSTANTS

C.1 DEFINITION OF LECS IN SPECTROSCOPIC NOTATION

In this chapter we list the relations for the LECs in the partial wave scheme. All of the
constants below carry also the index of the potential specified in the headings, which we
omitted here again for readability.

NN—» NN:
C'S0 = 47 (Cs — 3C7)
C’S' = 47 (Cs + Cr)
C'S0 = 1(4Cy + Cy — 12C5 — 3Cy — 4Cq — C)
'St = %w(lQCl +3Cy 4 12C5 + 3Cy + 4Cs + Cr)
Cc'Pr = %(401 — Cy — 1205 + 3Cy — 4Cq + C7)
P §W(4Cl Oy +4Cy — Cy + 4C5 + 8C5 — 2C7)
C’Fo = %(401 — Cy 4 4C3 — Cy + 8C5 — 12C6 + 3Cy)
C’Pr = %(401 — Cy + 4C5 — Cy — 4C5)
D181 — gﬂn(w{; +Cy) (C.1)
NN— NA:
C’Fo = ?)\z/gw(—wcg + 40y — 4C5 — 12Cg + 3C+)
P = 3\1/671'(—3203 +8Cy — 4C5 — 4Cq + Cy)
C°P2 = 3\1/6”(_3203 +8Cy + 4C5 — 12Cq + 3C7))
PP ;\/gw(wg, —12C5 + 3Cy)
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RELATIONS FOR LOW ENERGY CONSTANTS

1
C°P2—"P2 = —7(4C5 + 4Cs — C7)

V6
C5D0_ISO = \/27-((406 +Cy)
502 = 2 ey + o) (C.2)
= 15 6 7 :

NA— NA:

0" = 4 (C1” 4 305"

C"52 = 1(4C) + Cy + 12C5 + 3Cy + 4Cs + Cy)
2
C’Po — —3m(4C) — G — 2005 + 5C; + 8C5 — 12C5-)

1
C’Pr = —~5m(8C1 — 20y — 40C; + 1004 + 8C5 — 125 — 2005 + 5C7)

C°P1="P1 \fw(405_ — 12C4 + 3C7)

C’P = —éw(scl —2Cy +24C3 — 6Cy + 24C5 — 12C5_ — 2005 + 5C7)

: 1
P2 — 57(~8C1 + 205 + 40C; — 10C; + 8C5 — 12C5 +12C5 — 3C7)
C°P2="P2 — 1(4C5_ + 4Cs — Cr)
1
C°P2 — —37(8C1 = 2C5 + 24C5 — 6Cy + 8C5 — 4C5 + 36C — 9C7)

2
CP3 = Zx(—4Cy + Cy — 1205 + 3Cy + 8C5 — 4C5_)

3
C"S2—"D2 _ —\/En(wﬁ + C7)
C*82="Dz \/?w(w@- +Cy) (C.3)

NN— AA:

88

4
'S0 :gﬂw(—3c§°> + 505

~ z
St — _ §\/ﬁw(céo) + C§0))

C'So :\fw(—%cg —9C, — 12Cs — 3C7 + 60Cs + 15Cy + 20C10 + 5C11)
oS — _ \/glioﬂ(lgc?) +3Cs +4Cs + C7 + 12C5 + 3C9 + 4C10 + Ci1)

*Po — _ \él;oﬂ(gocw — 5C11 + 6(—4C3 + Cy — 4C5 + Cy))

C'PL— _ Qz‘fﬂ(zocm —5C11 + 3(—12C5 + 3Cy — 4C + C7 4 20Cs — 5Cy))



C.1 DEFINITION OF LECS IN SPECTROSCOPIC NOTATION

P 217 5 7(44C19 — 11011 + 6(8C5 — 2Cy + 4Cs — C7 + 8C5 — 2Cy))
1
P2 = 240C5 — 60Cy + 72Cs — 18C+ + 240Cs — 60Cy + 52C
27\/E7T( 3 4+ 6 7+ 8 9+ 10
—13C11)
CSP1_5P \2/757'('(2406 — 6C7 —28C10 + 7011)
CSP2_7P2 :;\/Z’/T(QZIC(; —6C7 +4Cqo — Cll)
1
C*$1="D1 — .~ 1(28C0 + TCh1 + 8C + 2C
9\/57T( 10 11 6 7)
s 1
C*S2="D2 — _ 28C10 + 7Ch1 — 24C5 — 6C
gmw( 10 11 6 7)
1
C"S3—"Ds _ 4C40 + Oy + 24C5 + 6C
Smﬂ( 10 11 6 7)
1
C'S0="Do — _ _~_7(28Cy + 7Cy1 — 24Cs — 6C
9\@%( 10+ 7C11 6 7))
) ) 1
C*1="D1 — _ " 1(28C0 + TCh1 + 8C + 2C
9\/571'( 10 11 6 7)
: 1
C*$1—"D1 :9\/Z7T(4C10 + C11 +24Cs + 6C7) (C.4)
NA— AA:
0"z = an(-2v3C5" + v2c?)
5 1
752 = §7r(—24\/§C3 — 6V/3C, — 8V3Cs — 2v/3C7 + 3v2(4Cs + Co)
+ 4\/5010 +2C11)
C*Po — 5 (32f C3 — 8V6C, + 8V6C5 — 24v/6Cs + 6v/6C7 + 96Cs — 240y
+ 4010 - Cn)
1
c’T = 36\/271(2(32\/503 — 8V6Cy + 4V6C5 + 28V6Cs — TvV6C7 + 96Cs — 24Cy)
+92C10 — 23C11>
11
P2 — %ﬁﬂ(?ﬂo\/écg — 80v6Cy — 40V6C5 + 72605 — 18V/6C7 + 960Cs — 240Cy
+292C9 — 73C11)
C*P1="P1 72 m(—4v/3(4C5 + 12C5 — 3C7) + 84v/2C1 — 21v201)
C*Pa="P2 — 7(6v/2(~4C5 + 4C5 — Cy) — 28v/3C10 + TV3C)
12\F
03P2_7P2 — 6\/;77(2\/6(—406 + C7) 4+ 12C19 — 3C11)
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C5P2_7P2 = 1\/Z7T(2\/6(205 —12Cs + 307) +4Chg — 011)

9
1
C™Fs"Ps = S (4V/3(4Cs + 1205 — 3Cr) — 4v2010 + V2On)
1
C'%0="Do — _—_1(2V/6(4Cs + Cr) — 28C — 7C
6\@77( V6(4Cs + Cr) 10 1)
1
C°S2—°D2 _ _ 7(18V2(4Cs + C7) + 28V/3C10 + TV3C11)
125
1
CFSe—Ds _ L gﬂ(lgcm 1301 — 2V6(4Cs + 7))
1
C™2="D2 =~ (_98Cy — TCh1 + 2V/6(4Cs + C
6m7r( 10 11 (4Cs 7))

AA — AA:
'S0 = %(60{0) —9005” + 4505” — 700C")
C*St = 220" — 2205” + 3¢ + 140C”)
OS2 = §W(6C£0) — 180" — 27 — 140C")

C"Ss — gw(ﬁcﬁ)) + 540 + 905" + 200")

1
C'So = T5™(72C1 + 18C, — 1080C; — 2703 — 360C5 — 90C; + 540Cs

(C.5)

+ 135C9 + 180C1 + 45C11 — 8400C12 — 2100C13 — 2800C14 — 700C15)

: 1
'S = (2401 + 602 — 264C5 — 66C, — 88Cs — 2207 + 36Ck
+9Cy + 12C1o + 3C11 + 1680C15 + 420C,5 + 560C 4 + 140C5)
1
C™S2 = g (7201 +18Cy — 2160 — 54C, — 7205 — 1807 — 324Cs
— 81Cy — 108C}o — 27C11 — 1680C 5 — 420C15 — 560C14 — 140C5)
1
C'Ss — 157(72C1 + 18C; + 648C;5 + 162C; + 216C; + 54C7 + 108Cs
+ 27Cqy + 36C1g + 9C11 + 240C12 + 60C13 + 80C14 + 20015)
1
C3PO = §7T(—2401 + 6C5 + 264C5 — 66Cy — 48C5 + 360Cs — 90C7 — 36Cyg
+9C9 — 96C10 + 24C11 — 1680C15 + 420C3 + 784C14 — 196015)
1
C'P1 = —n(=72C; + 18C5 + 1080C; — 270C, + 360Cs — 90C; — 540Cs

27

+ 135C9 — 180C10 + 45C11 + 8400C12 — 2100C13 + 2800C14 — 700C15)

1
Cc’P = —{gT(48C1 — 120y — 528C5 + 132C, + 48C5 + 96C5 — 2407 + 7205
— 18Cy — 60C1g + 15C1; + 3360C15 — 840C13 + 2464C14 — 616C}5)
1
C’Fr = — £ m(144C) — 36C; — 432C5 + 108C; + 43205 — 1152C5 + 288Cs
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C.1 DEFINITION OF LECS IN SPECTROSCOPIC NOTATION

CIP1_5P1

o'P2

P2

03P2_7P2

C°Ps

C'Ps

o'Pa

Clsoi’Do
0351—3]31
0351*7D1
0552_1]32
0552—5D2
075373133

C7SS_7D3

— 648C% + 162C9 + 36C19 — 9C11 — 3360C 5 + 840C 3 + 224C'14
— 56C)5)

= 4\gﬁﬁ(—1206 + 3C7 + 56C14 — 14C45)

1
90 m(—240C" + 60Cy + 2640C5 — 660C, + 240C5 4+ 1152Cs — 288C'7

— 360Cs + 90Cy — 204Co + 51C711 — 16800C72 + 4200C 13 — 4256C'14
+ 1064C5)

1
135 m(—360C + 90C, — 3240C3 + 810C, — 1440C5 + 1512Cs — 378C

— 540Cs + 135Cy + 36C1o — 9C11 — 1200C42 + 300C13 — 16C14 + 4015)

2
= \/> 7(8Cs — 2C7 + 4Ch0 — C11 + 16C14 — 4Ch5)

1
= 27 ( 72C1 + 18C5 + 216C5 — 54Cy + 144C5 + 216Cs — 54C7 + 324C%

—81Cy + 72C1p — 18C11 + 1680C12 — 420C 3 + 368C14 — 92C'5)

01 m(—144C + 36Cy — 1296C5 + 324Cy — 144C5 — 1728C¢ + 432C7

— 216Cs + 54C9 — 180C o + 45C711 — 480C 12 + 120C13 — 352C14
+ 88C15)

8 m(—48C + 12C5 — 432C5 + 108Cy + 144C5 — 72C%

+ 18C9 — 12C10 + 3C11 — 160CT2 + 40C13 — 32C14 + 8015)
4
= 3m(—=12C = 3C7 + 56C14 + 14Cis)

1
_ _Ww(—mcﬁ — 68CY + 84C1o + 21Cy; — 1344C)4 — 336C5)

2
= —‘!w(soﬁ +2C7 +4C10 + Ch1 + 16C14 + 4C)5)

= 12Cs — 3C7 + 56C14 + 14C
3\[( 6 7 14 15)

1

7
=3 / EW(*48C6 —12C7 4+ 12C1 + 3C11 + 64C14 + 16C5)

2
= —iﬂ'(806 + 2C7 +4C1 + Cq1 + 16C14 + 4015)

1
= 15\/?:7'((43206 + 108C7 + 36C10 + 9C11 + 64C14 + 16C15) (C.6)
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RELATIONS FOR LOW ENERGY CONSTANTS

C.2 RELATIONS FOR LECS IN SPECTROSCOPIC NOTATION

In the purely nucleonic sector, there are seven constants at next-to-leading order. These
constants are contributing to seven matrix elements. For the contact interactions with one
or more A-isobars the number of matrix elements is larger than the number of constants in
the potential. Therefore, the following relations between the LECs at NLO in the partial

wave naming scheme can be obtained from Egs. (C.2) to (C.6).

NN — NA:
15070 — 150771 — 3v/BC°P1 P 4 100722 = 0
15C°P1 4 3v/5C7P =P 4 507 15072 =
\/505[)0—180 . 50582_1D2 _ O
NA — NA:
SVECHID1 4 507
\/£C3S175D1 _ 50582*5132 —0
ﬁ0582—3D2 + \/50552—5132 -0
VB(5C° 0 — 5C°PT — 7P 4 0P8y — 100" P =
15C P11 1 /5307 — ¢"P2 P2 5P 1 90"y = ¢
VBCP1 — 4P RO+ O - 7P =0
NN — AA:
\/50331—7131 _ \/?0783—3]33 =0
\/50150—5D0 _ 50582—3]32 =0
3\60351—3131 + ﬁCSSl—7D1 _ 50552—3D2 =0
301P1—5P1 + 2\/503132 _ 2\/503% _ ﬁ03P2—7P2 =0
2C°F0 + 3C°P1 — 5072 =
NA — AA:

VB S0 Do _ 5™z — g

VI0C™$17Pr 4 200"~ D2 4 5\/14C"52 D2 = ¢

4\/50582—%2 + \/EC5S2—5D2 . \/50552—?@2 -0

21V/10C"T1="P1 4 2y/7(—10C° T2~ P2 4 3P~ P2y _7/2C P2 P2 = ¢
56v2C° P2 ="P2 4 10y/7C" P2 P2 4 2/7C7P2 P2 4 7y/T0C PP =
21V20°F1 4+ 98v2C° 2 7"P2 4 2/7(4C™P2 P2 4 3PPy - 0115072 = 0
98C°P0 4 38v/14C" T2~ P2 — 21C°P1 — 77C°P2 — 45\/14C"T2 P2 =
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C.2 RELATIONS FOR LECS IN SPECTROSCOPIC NOTATION

AA — AA:

V580~ _ 5"S2'Da
12VT4C°" 4 5 (8V1AC™P 4 40C™2~"P2 4 9v/TAC™)
—VI4(52C™" 4 45C"F3) = 0
60v/10C P1="P1 4 48¢°P1 1 108C"1 + 63C P4
—48C™P0 — 80C"F2 — 28C"Fs — 630" =
126C°P1 + 70C°P2 4 135C P4 — 196C°P3 — 1000 "2 — 35C™P3 = 0
10C°Po 4 15C°P1 4 140"Ps — 25C°P2 — 9C"F1 — 50°P2 = ¢
6v7C S1="D1 4 57007527 'D2 4 14y/50"2="P2 _ 7,/2C"$1="D1 =
V31D 7085 Ds —
4/3C"1 P14 37085~ Ps _ \/30C752 P2 = @ (C.11)

The existence of these many relations is remarkable, but follows from the possible spin-
structure of the NLO contact potentials.
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