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Cosmology and Particle Physics in Heterotic
Orbifolds

Kosmologie und Teilchenphysik in heterotischen Orbifaltigkeiten

Andreas N. Mütter

Abstract

Orbifold compactifications of the heterotic superstring can yield realistic models of particle
physics. This thesis aims to study the properties of the resulting four-dimensional field
theories. In particular, we show that the cosmological constant in heterotic orbifold
theories motivates N = 1 supersymmetric theories. We also provide a rigorous way to
study discrete flavor symmetries as remnants of higher-dimensional gauge symmetries.
Finally, we show that massive string states provide a viable candidate for dark matter.

Zusammenfassung

Heterotische Superstrings, die auf Orbifaltigkeiten kompaktifiziert sind, können realistische
Modelle für die Teilchenphysik liefern. Die vorliegende Arbeit untersucht die daraus resul-
tierenden, vierdimensionalen Feldtheorien. Wir zeigen, dass die kosmologische Konstante
in heterotischen Orbifaltigkeitstheorien N = 1 Supersymmetrie motiviert. Darüber hinaus
geben wir eine rigorose Methode an, mit der diskrete (Flavor-)Symmetrien als Überreste
einer höherdimensionalen Eichtheorie verstanden werden können. Schließlich zeigen wir,
dass schwere Stringzustände einen realistischen Kandidaten für Dunkelmaterie darstellen
können.
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1

Introduction

Today, the standard model of particle physics (SM) is by far one of the most thoroughly
tested theories known to mankind. It successfully describes the interactions of the known
elementary particles in the language of quantum field theory (QFT), where the fundamental
entities of our world are point particles. The predictions of the SM have been tested
(and confirmed) experimentally to an astonishing precision, with the capstone being the
discovery of a scalar boson at the Large Hadron Collider (LHC) in 2012, whose properties
match those of the Higgs boson predicted in the 1960s [1, 2].

Despite its tremendous success in explaining observed phenomena in the domain of
high-energy particle physics, the standard model is known to have various shortcomings,
both of conceptual nature and by being unable to explain some observed phenomena (like,
e.g., the origin of dark matter). A commonly agreed viewpoint is that the SM might only
be an effective theory valid at low energies, and it is expected that new physics will enter at
some energy scale that lies well above the electroweak scale. Throughout the literature, the
conceptual shortcomings and their possible solutions have been used as guiding principles
on the lookout for signatures of new physics. Among the various conceptual questions
being left unanswered by the SM are the following two issues, which we will discuss now
in more detail as they will play a major role in the remainder of this thesis. The first issue
arises from the following question [3]: due to the fact that the Planck and the electroweak
scale are separated by 16 orders of magnitude, the values for the Higgs mass have to be
tuned up to an “unnatural” precision in order to obtain the observed value also after
including quantum corrections, if new physics effects are expected to enter at a high energy
scale. This is commonly referred to as the hierarchy problem. The reason for this fact lies
in the corrections to the Higgs mass by its self-interaction, which goes roughly as Λ2, where
Λ is the high energy new physics scale. One of the arguably most elegant solutions to this
problem is supersymmetry (SUSY). There, it is postulated that all particles (e.g. in the
standard model) have a so-called superpartner that has the exact same quantum numbers
except that it obeys the opposite spin-statistics. For each bosonic degree of freedom, there
must exist a fermionic one in the same representation of the gauge algebra, and vice versa.
It has been shown by both direct calculations and by general theorems that this symmetry
removes the quadratic dependence of the Higgs boson mass on the cutoff scale, leading
to a situation where much less finetuning is needed in order to match observations. Not
only does supersymmetry solve the hierarchy problem, it also makes specific predictions
of new physics: as the superpartners of the SM particles are charged under the gauge
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2 Chapter 1. Introduction

symmetry, it is expected that they will eventually show up in collider experiments like the
LHC. As of today, and unlike the standard model matter, no superparticle has been found
by experiment, putting the entire framework of SUSY to question. The second issue is
of rather different nature: when examining the renormalization group (RG) evolution of
gauge couplings in (supersymmetric extensions of) the standard model, they seem to meet
at an energy scale of around 1015 GeV. This fact has been interpreted to indicate that the
gauge symmetries of the standard model might descend from a more fundamental theory,
which is then called a grand unified theory (GUT). Since the conception of GUTs in the
1970s, they have received a lot of attention, as their unifying power proposes a particularly
elegant way to describe the intricate dynamics of the standard model. However, there does
not exist “the” GUT theory, as there exist various ways to combine the SM matter and
gauge bosons to a unified theory. The most straightforward possibility is to place the SM
matter in representations of SU(5) [4], however also SO(10) [5] and E6 [6] conventionally
appear in the GUT literature. Much like supersymmetry, also the concept of GUTs makes
predictions for new physics, such as that the proton might not be stable, a possibility that
is actively being looked for e.g. in the planned HyperKamiokande experiment [7]. Although
no observation has been made so far, signatures of nucleon decay remain a “smoking gun”
for the search of new physics, allowing one to efficiently constrain the parameter space of
new physics models. In particular, combining supersymmetry and grand unification leads
to very specific predictions concerning proton stability.

All shortcomings of the SM discussed so far have typically been problems that arise
within the field of particle physics. However, one of the conceptually biggest issue lies
elsewhere: The connection of particle physics described by quantum field theories and
gravity described by general relativity (GR) remains an unsolved question to this day. There
is no a priori reason why one should not be able to describe gravity on the same footing as
the known gauge forces. On the other hand, such a description is definitely desirable for a
more complete understanding of our world. Likewise, the known description of gravity in
terms of GR does not allow for a study of quantum effects in gravity. Unfortunately, so
far all approaches trying to describe gravity using the framework of conventional quantum
field theory suffer from ultraviolet divergences and therefore cannot be the final answer. It
has been argued that an ansatz going beyond standard field theory has to be made. One
proposed solution in this context is string theory, which replaces the conventional point
particles known in QFT by one-dimensional objects. When propagating in spacetime,
these one-dimensional objects sweep out a two-dimensional worldsheet, rather than a
one-dimensional worldline in the case of a point particle in conventional QFT. On this
worldsheet, one now defines a conformal field theory (CFT) in 1+1 dimensions. The fields
of the CFT then carry indices of the spacetime the string is embedded in. Hence, studying
string constructions amounts to first choosing an appropriate particle content of the
CFT, and then an embedding into spacetime. Originally conceived as a theory describing
interactions of hadrons, it was soon realized that string theory gives rise to a spin 2 particle
whose dynamics is determined by the Einstein equations of GR, the graviton. Over the last
decades, string theory has been celebrated as a perturbative theory of quantum gravity,
as it has been shown explicitly that the divergences appearing in field theories of gravity
are mitigated. On the particle physics side, it has been shown that the known particle
spectrum of the standard model can be accommodated in various string constructions,
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therefore string theory may serve as a framework for successful model building. Likewise,
concepts like supersymmetry and grand unification arise from string theory constructions
in a very natural manner, especially for the heterotic superstring, as will be demonstrated
in the course of this thesis. Due to consistency conditions of the underlying CFT, string
theory requires itself to live in more than the four spacetime dimensions we observe. In case
of the five classical superstring theories, the critical dimension is ten, which means that
the worldsheet degrees of freedom need to be embedded into a ten-dimensional spacetime.
In order to make contact with the real world, six dimensions have to be hidden from
observation by compactification, that is, by rolling up six dimensions on radii so small
that the energy needed to probe them is sufficiently high. From a worldsheet point of
view, that means that some of the fields see non-trivial boundary conditions. On the other
hand, it is expected that compactification gives rise to myriads of four-dimensional vacua,
the so-called landscape [8]. The length scale of the compact dimensions sets the scale
where new physics can be expected to appear, namely the energy scale for heavy string
modes that would ultimately be needed in order to prove or disprove string theory. As
this so-called string scale is expected to lie at values up to the GUT or the Planck scale,
direct detection of heavy string modes is notoriously hard, if not impossible, to be seen
by experiment. This fact has led to the criticism that string theory by construction lacks
predictive power.

However, in recent years it has become clear that not every self-consistent quantum
field theory can be compatible with string theory, or any UV-complete theory of quantum
gravity. In a context that differs from the scope of this thesis, this is referred to as the
swampland program and has attracted much attention in the field over the past decade
(see e.g. [9] for a recent review). Turning this logic around, string theory has the potential
to give valid input for new ideas in particle physics and cosmology. To be specific, the
predictivity of bottom-up models often suffers from the plethora of possible extensions of
the standard model, in absence of a guiding principle. In this thesis, it shall be argued
that string theory can indeed provide such a guiding principle. This becomes clear as
soon as one notices that string-derived models (i.e. effective field theories of string models)
cannot necessarily accommodate all properties one might think of from a bottom-up
perspective. Often the situation in string model building is that requiring a certain feature
to be present implies that some other feature also appears (be it desired or undesired).
It has been found that some phenomenologically appealing properties generically arise
from compactified string theories, the so-called “stringy surprises” [10]. In other cases, it
turns out that realizing some property may not be possible at all in string-derived models,
which is where the swampland program lies its focus on. Along these lines, the study of
string-inspired theories, which are field theory models that by design match the properties
of string-derived ones (e.g. in the form of orbifold GUTs), has proven itself to be a fruitful
playground for approaches to new physics [11], both by constraining the possibilities, and
by implicitly ensuring the connection to a perturbative theory of gravity.

As the setup on the string theory side, we choose the heterotic E8 × E8 superstring,
compactified on toroidal orbifolds. This choice is made for a number of reasons: Firstly,
because unlike in smooth Calabi–Yau (CY) compactifications, orbifolds allow one to trace
the effects due to heavy string modes all the way down to four dimensions, as they possess
a solvable CFT. That is, one is able to write down a four-dimensional string theory, before
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taking an appropriate field theory limit. This is in contrast to smooth CY compactifications,
where one is forced to make a supergravity approximation in ten dimensions and to work
then with a dimensionally reduced field theory. Specifically, contributions of heavy string
modes on scattering amplitudes are particularly well understood in orbifold models, a
situation that is still to be achieved in smooth CY compactifications. The second reason
that makes heterotic string theory a good playground is that it has been shown that it is
possible to obtain the exact (MS)SM spectrum from compactifications of the heterotic
string with relative ease, especially in its E8 × E8 version. Thus, technical problems that
arise from the string construction itself are largely avoided, allowing us to focus on the
phenomenological aspects. The final reason to pick the E8 × E8 heterotic superstring is
that it has many phenomenologically interesting features already built in, among them
supersymmetry and grand unified theories, as most known GUT groups are subgroups of
E8. Since these frameworks are both theoretically compelling and yet to be confirmed or
falsified by experiment, they will be in the focus of our studies.

Outline. The present thesis aims to show the potential of the heterotic E8×E8 superstring
to act as a guiding principle for new physics using examples from both elementary particle
physics and cosmology. The plan of this thesis is as follows:

First, we introduce the heterotic string in Chapter 2, where its formulation in ten
dimensions and its compactification on toroidal orbifolds is presented along with some
technical results that will be needed in the remainder of this thesis.

In Chapter 3, the relation of supersymmetry in heterotic compactifications and the
cosmological constant problem is studied. The idea put forward in this chapter is the
following: In ten dimensions, the heterotic E8 × E8 theory has N10 = 1 supersymmetry.
If dimensionally reduced to four dimensions, this would correspond to N4 = 4 SUSY, a
non-chiral theory which cannot describe the world we see. Hence, the compactification
has not only to incorporate the reduction of dimensionality, but also for some amount
of SUSY breaking. While usually the orbifold geometry is chosen such as to lead to
N4 = 1 supersymmetry in four dimensions [12], it is well possible to break all SUSY
by orbifolding and obtain non-supersymmetric four-dimensional string models. However,
with the breakdown of SUSY, also the cosmological constant problem re-arises: while for
supersymmetric string theories the cosmological constant is exactly zero (and is expected
to get field theory contributions after SUSY breaking, in order to obtain its small but
finite observed value), we show that in non-supersymmetric orbifolds all computational
control of the cosmological constant using the known methods is lost. In particular, we
are able to trace the unconstrained contributions back to the group theory of the orbifold
geometry, allowing us to formulate the (non-)vanishing of the cosmological constant in the
language of the representation theory of finite groups.

In Chapter 4, we turn our attention to the study of discrete symmetries as they
appear in field theory model building. These symmetries play an important role in many
model building scenarios, where they are needed in order to suppress dangerous couplings,
appear as flavor symmetries, or realize CP violation. Due to general quantum gravity
arguments [13], these symmetries, which appear as global symmetries in the low-energy
theory, should ultimately be gauged, i.e. be discrete remnants of a gauge symmetry that is
broken. While it has been well studied how these symmetries can in fact descend from
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(four-dimensional) gauge theories that are broken by Higgsing, the situation is less clear
for gauge symmetry breaking by orbifold boundary conditions. However, understanding
remnant symmetries in orbifold models is desirable, as in these models problems like
e.g. the doublet-triplet splitting problem have a simple solution. We begin this chapter
with model-independent considerations, where we show how discrete remnants of a gauge
symmetry in higher dimensions can survive the orbifolding, and how to enumerate residual
symmetry generators systematically. In particular, we are able to create a connection
of remnant discrete symmetries and the Weyl group of the unbroken Lie algebra. We
conclude the chapter with a discussion of possible applications of this formalism for flavor
model building.

Chapter 5 discusses one possibility of realizing dark matter in string theory. We build
upon the observation that the spectrum of string theory compactifications generically
contains (massive) standard model singlets. Furthermore, some of these singlets can be
stabilized by a Z2 symmetry that ultimately arises from string selection rules. To be
specific, we discuss the realizations of Planckian interacting dark matter (PIDM) [14] in
a string-derived scenario. In the original, field-theoretic PIDM scenario, it was assumed
that the dark matter particle interacts with the standard model (and hence the thermal
bath) only via gravitational interactions. However, we show that in string models, there
are always heavy string modes that can also act as mediators and therefore lead to a
sizable contribution to the dark matter production rate, competing with gravitational
interactions. This effect is only possible by taking stringy effects into account, and links
observational constraints on the dark matter relic abundance to free parameters (moduli)
of the compact space.

Chapter 6 is devoted to a final discussion of the findings of this thesis in the context of
(string) model building and particle cosmology.
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2

Heterotic string theory on orbifolds

In this chapter, we review textbook knowledge [21, 22, 23] to the extent that is needed to
follow the remainder of this thesis. To be specific, we will concentrate on the construction
of heterotic strings in ten dimensions in bosonized formulation. Then, toroidal orbifolds
will be introduced, and the compactification of closed strings on orbifolds will be discussed.
We close our discussion by constructing the heterotic partition function on orbifold spaces,
which will be used in the subsequent chapters.

2.1 Overview
Before we dive into more detail, we give an overview of the construction of four-dimensional
heterotic string models here. There are five distinct superstring theories: Type I, type
IIA/B and the two heterotic theories (with gauge groups E8 × E8 and SO(32)). While
the type I and II theories may contain open strings, the two heterotic strings have only
closed strings in their spectra. As we will see later, it is only possible to formulate a
consistent superstring theory in ten dimensions. Therefore, any string model building
necessarily involves the specification of a six-dimensional compactification space. Some
of the superstring theories are dual in ten dimensions (i.e. they yield equivalent physics),
while others are shown to become equivalent upon compactification (see e.g. [24] for a
pedagogical review). In fact it is believed that all five theories descend from a common
eleven-dimensional theory called M -theory (cf. [25] for an introduction).

In this work, we will concentrate on heterotic strings only, and in particular lay our
focus on the heterotic E8 × E8 theory. Hence, our starting point is a theory with a gauge
group E8 × E8 in ten dimensions. Now, there are two ways to proceed. The first one
is to perform the so-called supergravity limit (i.e. integrate out all heavy string states)
to obtain a ten-dimensional field theory which can then be compactified on a suitable
six-dimensional manifold, e.g. a Calabi–Yau (CY) threefold. The other possibility is to
compactify the ten-dimensional string theory on a compact space on which the conformal
field theory (CFT) on the worldsheet is solvable, to obtain a four-dimensional string
theory. A popular example for such compact spaces are orbifolds, which—unlike CY
manifolds—have singular points and are no manifolds in the common sense. The resulting
four-dimensional string theory has its own field theory limit then. This construction allows
one to trace stringy contributions to couplings and scattering amplitudes more directly
than the CY constructions.

7



8 Chapter 2. Heterotic string theory on orbifolds

In orbifold constructions, a particular field theory limit (its gauge group and matter
content) depends on the choice of the orbifold geometry as well as the so-called gauge
embedding of the geometric orbifold action. Hence, the unique ten-dimensional heterotic
superstring can result in an entire landscape of string-derived field theories with different
properties. It should be noted that taking the field theory limit of the four-dimensional
theory is not yet the end of the story: In order to find a true string theory vacuum, one
would need to stabilize the geometric moduli and give vacuum expectation values (VEVs)
to various standard model singlets in the theory.

2.2 Heterotic strings in ten dimensions
We start our discussion with the uncompactified heterotic string. As mentioned in the
introduction, the starting point of any (super-)string theory is to discuss its underlying
worldsheet CFT. As heterotic string theory has closed strings only, our discussion will
omit open strings.

2.2.1 The worldsheet action
The same way as a point particle lives on its worldline, the one-dimensional string sweeps
out a two-dimensional worldsheet that has (for closed strings) the topology of a cylinder.
It has become clear that in order to describe the dynamics of the string, one has to define
and quantize a conformal field theory on this worldsheet. This construction is not limited
to a bosonic theory, one can define a SUSY transformation on the worldsheet and have
worldsheet bosons and fermions alongside each other. The most general worldsheet action
(after gauge fixing) reads

S = 1
4πα′

∫
d2σ∂aX

i∂bX
jηabηij + iψiγa∂aψjηij . (2.1)

Here, the fields X i(z, z) are worldsheet bosons, and their indices i, j are just labels from
the perspective of the worldsheet theory. The ψi are worldsheet fermions. The integration
goes over the worldsheet time direction σ1 and the direction along the string σ2.

Let us for the moment focus on the bosonic side. There, one can define closed string
boundary conditions as

X i(σ1, σ2 + 2π) = X i(σ1, σ2) . (2.2)

The equations of motion of the theory read(
∂2

1 − ∂2
2

)
X i(σ1, σ2) = 0 . (2.3)

Together with the boundary conditions, one observes that solutions to these equations
of motion can be split into functions of σ1 + σ2 and σ1 − σ2, called left- and rightmovers,
respectively, such that one can write (using obvious notation)

X i(σ1, σ2) = X i
L(σ1 + σ2) +X i

R(σ1 − σ2) . (2.4)
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Then, the solutions take the general form of Fourier expansions

X i
L(σ1 + σ2) = xiL + piL

2 (σ1 + σ2) + i
∑
n6=0

αin
n

e−i(σ1+σ2)n , (2.5)

X i
R(σ1 − σ2) = xiR + piR

2 (σ1 − σ2) + i
∑
n6=0

αin
n

e−i(σ1−σ2)n . (2.6)

The first terms in each expansion are the contributions to the center of mass coordinate
xi = xiL + xiR and the zero modes (momenta) pi = piL + piR. In a quantized theory, the
oscillators αin and αin are eigenvalues of operators αin and αin. Canonical quantization
amounts to requiring the usual commutation relations for position and momentum operators

[xi,pj] = i ηij (2.7)

and for the Fourier modes, which in our case take the form

[αin,αjm] = n ηijδn+m,0 , (2.8a)
[αin,αjm] = n ηijδn+m,0 . (2.8b)

One can now express the Hamiltonian of the quantized string action in terms of these
oscillators

H = 2
α′

(
L0 +L0 + 2a

)
, (2.9)

where we introduced the Virasoro generators Lm and Lm for a bosonic theory

Lm = 1
2
∑
n∈Z

: αm−n ·αn : , (2.10a)

Lm = 1
2
∑
n∈Z

: αm−n ·αn : , (2.10b)

and the colons stand for normal ordering. For L0, the normal ordering constant a has to
be incorporated.

Similar observations can be made for the worldsheet fermions. In particular, it is
as well possible to separate the fermionic modes into left- and rightmovers ψiL and ψiR.
However, due to the double cover, the boundary conditions have a richer structure by
allowing for extra signs

ψiL(σ1, σ2 + 2π) = ± ψiL(σ1, σ2) , (2.11)
ψiR(σ1, σ2 + 2π) = ± ψiR(σ1, σ2) . (2.12)

The choices for the signs are known as Ramond (for sign +1) and Neveu–Schwarz (for
sign −1). Depending on the sign choice, the modes have different Fourier expansions

ψiL(σ1, σ2) =
√
α′
∑
r∈Z
bir e−i(σ1+σ2)r (R) , (2.13)

ψiL(σ1, σ2) =
√
α′

∑
r∈Z+ 1

2

dir e−i(σ1+σ2)r (NS) , (2.14)
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with similar expressions for the rightmovers. The Fourier modes now fulfill anticommutation
relations{

bir, b
j
s

}
= ηijδr+s,0 , (2.15a){

dir,d
j
s

}
= ηijδr+s,0 . (2.15b)

While both sectors are fermions on the worldsheet, only Ramond sector states are target-
space fermions, while Neveu-Schwarz sector states are target-space bosons.

We now turn our attention to one-loop partition functions (see [26] for an introduction),
which will serve two purposes. First, they are an important tool to understand the
construction of heterotic strings, both in ten dimensions and for their compactifications.
Second, the partition function will be the main topic of interest in our chapter 3. In
general, the one-loop partition function can be viewed as the vacuum-to-vacuum amplitude
of a (string) theory. For closed strings, the worldsheet has, as mentioned before, the
topology of a cylinder. This cylinder can be closed to form a torus which corresponds to
the aforementioned one-loop amplitude, which can also be seen as choosing a boundary
condition not only for the coordinate σ2 (as in (2.2)), but also for the worldsheet time
coordinate σ1. Like any torus, this torus is characterized by a complex structure τ . Then,
the partition function for a theory with left- and rightmover Hamiltonians HL,R is defined
as

Z(τ, τ) = TrH qHL qHR , (2.16)

where q = e2πiτ and H = HL ⊕HR is the Hilbert space of the theory. Note that not only
physical (i.e. level-matched) states contribute to the partition function. Note now that on
a geometric level, the worldsheet torus is invariant under modular transformations of τ .
More specifically, two complex structures τ and τ ′ span the same torus if they are related
by a PSL(2,Z) transformation

τ ′ = aτ + b

cτ + d
, where

(
a b
c d

)
∈ PSL(2,Z) . (2.17)

The projective special linear group PSL(2,Z) is understood as the quotient

PSL(2,Z) = SL(2,Z)/ {1,−1} . (2.18)

A convenient pair of generators for SL(2,Z) is

T =
(

1 1
0 1

)
and S =

(
0 1
−1 0

)
, (2.19)

which are referred to as the modular T - and S-transformations, respectively. Hence, as the
geometric torus stays invariant, the partition function must be invariant as well, which is
known as modular invariance. We will see how modular invariance can constrain the theory
when constructing and compactifying the heterotic superstring, but first we introduce the
particular contributions of worldsheet bosons and fermions to the string partition function.
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Let us start with the discussion of the partition function of a free bosonic mode. In
the absence of zero modes, a leftmoving boson is labeled by its oscillator excitations
nk, k = 1, ... and contributes with

Z(τ)bos = TrH qL0− 1
24 = q−

1
24 TrH q

∑∞
k=1 knk = q−

1
24

∞∏
k=1

1
1− qk = 1

η(τ) , (2.20)

where the Dedekind eta-function is introduced (see appendix A for details). The above
expression contains only the contributions from stringy oscillators. One can also incorporate
zero modes. Assume we consider d bosons, which means that we also have to sum over
d-dimensional zero modes P that lie in a certain d-dimensional lattice Λ. Then, the
partition function reads

Z(τ)bos = 1
η(τ)d

∑
P∈Λ

q
1
2P

2
. (2.21)

Here, the requirement of modular invariance permits us to make two important constraints
on the lattice Λ. Namely, invariance under the modular T transformation requires the
lattice to be even, i.e. P 2 ∈ 2Z, and invariance under S implies that Λ must be self-dual.

For fermionic states, the partition function is a little more complicated, as one can have
periodic and anti-periodic boundary conditions in order to close the cylinder to a torus,
just like for the boundary condition in the σ2 direction. It turns out that periodic boundary
conditions can be achieved by inserting a factor (−1)F , where F is the target-space fermion
number in the trace. Let us indicate periodic and anti-periodic boundary conditions by a
superscript + or −, respectively. For a left-moving fermion in the Neveu–Schwarz sector,
the partition function for anti-periodic boundary conditions reads

Z(τ)−NS = TrH qL0− 1
48 =

√
ϑ3(τ)
η

. (2.22)

Here, we introduced the Jacobi theta-function (cf. appendix A)

ϑ3(τ) =
∑
n∈Z

q
1
2n

2
. (2.23)

In the same way, a fermionic leftmover with periodic boundary conditions in σ1 direction
and NS boundary conditions in the σ2 direction contributes with

Z(τ)+
NS = TrH qL0− 1

48 (−1)F =
√
ϑ4(τ)
η

, (2.24)

where

ϑ4(τ) =
∑
n∈Z

q
1
2n

2eiπn . (2.25)

By the same token, the contribution of a left-moving fermion in the Ramond sector yields

Z(τ)−R = TrH qL0+ 1
24 =

√
ϑ2(τ)
η

, (2.26)
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where

ϑ2(τ) =
∑
n∈Z

q
1
2 (n+ 1

2 )2
. (2.27)

Moreover, we find that Z(τ)+
R = 0. One can now examine the transformation behavior of

these expressions under the modular group. One finds that (up to phases)

Z(τ)−R
S←→ Z(τ)−NS

T←→ Z(τ)+
NS , (2.28)

hence, in order to build a modular invariant theory, all three sectors must be present.

2.2.2 Heterotic strings
As mentioned above, heterotic strings [27, 28, 29] are always closed. Therefore, like in any
theory of oriented closed strings, the equations of motion of the worldsheet split into a left-
and a rightmover part. However, this does not imply that the left- and rightmoving sector
have to resemble each other. Instead, it is possible to define the heterotic superstring to
consist of a 26-dimensional bosonic leftmover and a ten-dimensional rightmover. In what
follows, we will elaborate on this structure more thoroughly.

Leftmover

The heterotic leftmover is a bosonic string with critical dimension 26. Hence, in order
to match the ten dimensions of its rightmoving counterpart, 16 dimensions have to be
compactified, so that in these 16 dimensions, zero modes have to be taken into account.
These zero modes, as discussed in the previous section, have to lie in a 16-dimensional even
and self-dual lattice. There are only two 16-dimensional lattices fulfilling that requirement:
the root lattices of SO(32) and the one of E8×E8. Let us focus on the latter case, especially
on the partition function of eight bosons on an E8 lattice. In the bosonic language, the
partition function for one E8 is given by

ZE8(τ) = 1
η8

∑
P∈ΛE8

q
1
2P

2
, (2.29)

where ΛE8 denotes the E8 lattice. This is basically the partition function of eight leftmoving
bosons compactified on an E8 lattice. However, it is useful for our purposes later, especially
in chapter 3, to bring this partition function to a different form. Namely, ZE8(τ) can be
rewritten as a sum over all n ∈ Z8 instead of the rather cryptic, implicit summation over
ΛE8 vectors. However, not all vectors in Z8 are also in the ΛE8 lattice, and the other way
around there are ΛE8 vectors that are not captured by simply summing over Z8. We will
demonstrate here how this problem can be solved systematically. Recall that there are
two classes of vectors in ΛE8 . These classes are parametrized by ni ∈ Z and

(n1, . . . , n8) with
∑
i

ni = even , (2.30)(
n1 + 1

2 , . . . , n8 + 1
2

)
with

∑
i

(
ni + 1

2

)
= even . (2.31)
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Hence, the partition function (2.29) can be rewritten by summing over all n ∈ Z8, possibly
shifting, and then projecting onto vectors that lie either in n ∈ ΛE8 or n + s8 ∈ ΛE8 .
Inserting appropriate projectors yields

ZE8(τ) = 1
η8

∑
n∈Z8

q
1
2 |n|

2 1
2
(
1 + e2πin·s8

)

+
∑

n∈Z8

q
1
2 |n+s8|2 1

2
(
1 + e2πi(n+s8)·s8

) , (2.32)

where we defined the simultaneous half-integer shift in N dimensions

sN =
(1

2 , . . . ,
1
2

)
︸ ︷︷ ︸

N entries

. (2.33)

Now, this expression can be further simplified by noticing that none of the eight dimensions
is special. Hence, rewriting it in terms of the various entries ni of n we get

ZE8(τ) = 1
2

1
η8

 8∏
i=1

∑
ni∈Z

q
1
2n

2
i +

8∏
i=1

∑
ni∈Z

q
1
2n

2
i e2πini 1

2

+
8∏
i=1

∑
ni∈Z

q
1
2(ni+ 1

2)2

+
8∏
i=1

∑
ni∈Z

q
1
2(ni+ 1

2)2

e2πi(ni+ 1
2 ) 1

2


= 1

2
1
η8

ϑ[0
0

]8

+ ϑ

[1
2
0

]8

+ ϑ

[
0
1
2

]8

+ ϑ

[1
2
1
2

]8 = 1
2

1
η8

1∑
r,s=0

ϑ

[
r
2
s
2

]8

, (2.34)

where we used the definitions of the Jacobi theta-functions given in appendix A. As one
observes, this is the partition function of 16 leftmoving fermions. Putting the two E8s
and the ten-dimensional leftmoving bosons together, we arrive at the following partition
function for the uncompactified heterotic leftmover

ZL(τ) = 1
4

1
η24

 1∑
r,s=0

ϑ

[
r
2
s
2

]82

. (2.35)

The CFT vertex operator of states counting towards this sector reads
(
∂X i

)Ni (
∂X ı̄

)Ñı̄ e2πiP ·X , (2.36)

where Ni and Ñı̄ are oscillator numbers and P is an E8×E8 vector. In principle, there can
be contributions from zero-modes, however those will be neglected here as the resulting
states are generically massive.

Rightmover

Let us now turn to the heterotic rightmover. From a worldsheet perspective, heterotic
string theory has eight bosons and eight fermions in the rightmoving sector, leading to a
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partition function

ZR(τ) = 1
2

1
η12

[
ϑ

4
2 − ϑ

4
3 − ϑ

4
4

]
. (2.37)

Let us briefly discuss how this result, especially with the relative minus signs, comes about.
We may as well go to a bosonized language in which the eight (worldsheet) fermions can
be described by four (worldsheet) bosons, each associated to one complex plane. Their
zero-modes are bound to lie in the weight lattice of SO(8). Hence, in that case the partition
function (including a factor η8 for the rightmoving bosons) is given by

ZR(τ) = 1
η12

∑
Q∈ΛSO(8)

q
1
2Q

2 · (−1)F , (2.38)

where the space-time fermion operator (−1)F has to be inserted because the zero-modes
Q run over bosonic and fermionic contributions. The SO(8) weight lattice ΛSO(8) is the
direct sum of the bosonic (“vector”) lattice 8v and the “spinorial” 8s lattice

ΛSO(8) = Λ8v ⊕ Λ8s . (2.39)

These lattices are in turn given by

Λ8v =
{

n ∈ Z4 |
∑
i

ni = odd
}
, (2.40)

Λ8s =
{

n + s4 |n ∈ Z4,
∑
i

ni = even
}
. (2.41)

All states in the Λ8v lattice are space-time bosons and have F = even, whereas all states
in the Λ8s lattice have F = odd as they carry half-integer spin. Thus, one gets a relative
minus sign between the NS and R sector of the theory. From here on we can follow the
same steps as for the E8 × E8 lattice and find that

ZR(τ) = 1
2

1
η12

1∑
r,s=0

(−1)r+s+rs ϑ
[
r
2
s
2

]4

, (2.42)

which coincides with (2.37) and where we can identify (−1)r+s+rs with the GSO projector
needed for modular invariance. It is interesting to notice that the fermionic partition func-
tion (2.37) vanishes identically (by virtue of Jacobi’s “abstruse” identity, see appendix A),
which is a manifestation of intact target-space supersymmetry. The corresponding vertex
operator for a worldsheet fermion in bosonized formulation reads

e2iq·H , (2.43)

where H is a set of four bosonized coordinates whereas the so-called H-momentum q is an
SO(8) weight vector from either Λ8v or Λ8s .1

1This naming is by convention. Of course, the H-momentum must not be confused with the exponenti-
ation of the worldsheet modulus q = e2πiτ .
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Spectrum

Let us here discuss the physical states |Φ〉 in ten-dimensional heterotic string theory,
especially the massless ones. One first studies the possible left- and rightmover states |Φ〉L
and |Φ〉R separately and then considers their tensor products

|Φ〉 = |Φ〉L ⊗ |Φ〉R , (2.44)

where we have to insist that the masses of the left- and rightmovers have to be equal due
to the level-matching condition. We start with the leftmover where a generic state |Φ〉L is
labeled by

|Φ〉L = αI1−m1 . . . α
Ik
−mk |P 〉L , (2.45)

hence by the action of a set of oscillators αIi−mi on a ground state with E8×E8 momentum
P . Let us now have a look at the leftmover mass equation with the total leftmoving
oscillator number NL

1
4ML = NL + P 2

2 − 1 , (2.46)

where we set α′ = 1/2 and from which we see that a massless state can either have one
oscillator αIi−1 and P = 0 or no oscillator and P 2 = 2. For the rightmover in bosonized
formulation, a general state is given by bosonic oscillators acting on a ground state labelled
by a certain H-momentum q from ΛSO(8), hence with q2 ≥ 1

|Φ〉R = αI1−m1 . . . α
Ik
−mk |q〉R . (2.47)

As the mass equation for the rightmover reads
1
4MR = NR + q2

2 −
1
2 , (2.48)

we observe that a massless string cannot have rightmoving oscillators and therefore a
massless rightmover is labeled by its H-momentum q only. Now, physical states are
obtained by tensoring any of the left- and rightmovers we just described with the same
mass together. In ten dimensions, if we fix the rightmover to be |Φ〉R = |q2 = 1〉, the most
prominent states arising from the various possible choices for the leftmover are:

1. Choosing |Φ〉L = αµ−1 |P = 0〉 with a space-time index µ yields the gravity multiplet,
hence a symmetric traceless tensor for the graviton, an antisymmetric tensor for the
Kalb–Ramond B-field, and the scalar dilaton.

2. Choosing |Φ〉L = αI−1 |P = 0〉 with an index I in the E8 × E8 coordinates yields the
Cartan generators of E8 × E8, whereas

3. Choosing |Φ〉L = |P 2 = 2〉 gives rise to the ladder operators of the E8 × E8 Lie-
Algebra.

Together with their superpartners, these states are the only massless string states in ten
dimensions. From a four-dimensional perspective, the resulting theory looks like an N = 4
supergravity with an E8 ×E8 gauge symmetry. This theory is unattractive because N = 4
is non-chiral. Moreover, one needs to reduce the number of space-time dimensions from
ten to four observed dimensions.
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2.3 Orbifolds
The purpose of this section is twofold: first, we will introduce toroidal orbifolds as compact
spaces, and afterwards we discuss the boundary conditions of closed strings compactified
on them. At the end of the chapter, we discuss how the non-chiral ten-dimensional string
spectrum gets altered by compactification. In particular, we show how it can yield a chiral
four-dimensional spectrum that has ultimately the chance to resemble the (supersymmetric)
standard model.

2.3.1 Geometric construction
Formally, orbifolds (initially called V-manifolds) are defined as topological Hausdorff spaces
with certain properties [30]. For us, a more practical definition in terms of tori will be
useful. In particular, a d-dimensional orbifold can be defined in two steps

1. Define a d-dimensional lattice Λ, and divide out Rd/Λ. This compactifies Rd to
a d-dimensional torus Td

Λ with underlying lattice Λ. In particular, one chooses a
vielbein e, i.e. a d× d matrix containing a set of basis vectors of Λ as columns. Then,
the lattice can be parametrized as

Λ =
{
em | m ∈ Zd

}
. (2.49)

2. The lattice Λ may possess some isometries, that can be divided out as well. These
isometries can be represented as discrete rotations that can (in some cases) be
accompanied by translations by fractional lattice vectors (roto-translations). The
rotations form a finite discrete group, the point group P which can be Abelian
(e.g. ZN ,ZN × ZM), but also non-Abelian (e.g. S3 or A4). Dividing out these
isometries yields the orbifold O = Td

Λ/P .

This procedure can be reduced to a single step by dividing out the so-called space group S.
Elements of the space group can be used to define an equivalence relation for points in Rd

X ∼ X ′ ⇔ ∃g ∈ S : X = g X ′ . (2.50)

Furthermore, elements of the space group can be written to have a rotational (coming
from the rotations in the point group P ) and a translational part (coming from the lattice
Λ and possibly the roto-translations). Therefore, one can denote a general space group
element g by

g = (θ |nα eα + tθ) . (2.51)

Here, θ is taken to be an element of the finite discrete group P , while tθ is a possible
roto-translation. Usually, tθ is a fractional lattice vector. The eα, α = 1, . . . , d are the
basis vectors of Λ, and nα ∈ Z. For reasons of readability, we ignore the possibility of
roto-translations for the moment, and just keep in mind that they transform as vectors
under the rotations. Then, the multiplication law for two space group elements reads

(θ1 |nα eα) · (θ2 |mα eα) = (θ1θ2 |nα eα +Dv(θ1)mα eα) , (2.52)
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where we introduce the vector representation Dv of the point group P , i.e. its geometric
action on the lattice vectors in the vielbein e (more on this in chapter 3)

e
θ7−→ Dv(θ) e . (2.53)

Because of the group property, there exists a unique identity element (1 | 0), and hence for
each element g =

(
θk
∣∣∣nα eα) there is also its unique inverse

g−1 =
(
θ−1

∣∣∣−Dv(θ−1)nα eα
)
, (2.54)

such that g−1g = (1 | 0). Here, a few comments are in order:

• Even if the point group P is chosen to be Abelian, the space group is in general
non-Abelian.

• While the number of elements in S is infinite, elements with non-trivial rotational
part can be arranged in a finite number of conjugacy classes.

For our later purposes we will need orbifolds with an even number of dimensions. Therefore,
it is useful to switch from d real coordinates to d/2 complex ones, and work with the d/2
resulting complex planes rather than pairs of real coordinates. In that setup, it is also
useful to diagonalize the d× d rotation matrices to read

Dv(θ) = diag
(

e2πiv(1)
θ , e2πiv(2)

θ , . . . , e2πiv(d/2)
θ

)
, (2.55)

for some element of the point group θ and where vθ is then (in the string literature) referred
to as the twist vector.2 In our case, where we consider ten-dimensional superstrings, we
need a six-dimensional orbifold with three complex planes.

At this point, it is natural to ask which lattices and point groups exist in six dimensions.
In fact, a comprehensive enumeration and classification of all possible orbifolds has been
performed in the carat-classification [31, 32]. Moreover, there exists a complete classifi-
cation of the subset of those orbifolds that allow for N = 1 target-space supersymmetry in
[33]. In general, the classification process is performed in the following manner: First, one
picks an (abstract) point group P and makes a choice how this group acts geometrically
(i.e. one specifies the vector representation Dv of P ), which gives the so-called Q-class.
Note that in general, there can be more than one inequivalent geometric action for an
abstract point group (for example with P = Z6, there are the well studied Z6−I and Z6−II
orbifolds). Then, one specifies a lattice (in terms of a vielbein e), which yields the so-called
Z-class. Finally, a given point group acting in the specified way on a lattice may allow for
a number roto-translations and different actions of the point group on the lattice. Fixing
this (i.e. making a choice for the roto-translations) yields the affine class.

2By abuse of notation, one often denotes the twist vector of a space group element g by vg, where in
fact, one means the twist vector of the rotational part of g.
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2.3.2 Closed strings on orbifolds
If one considers a closed string theory on a given manifold, one has to take any closed string
boundary condition possible on that manifold into account, for reasons of self-consistency
(see below for details). On orbifolds, the equivalence relation of identified points (2.50)
allows one to find more general closed string boundary conditions than (2.2), namely

X(σ1, σ2 + 2π) = g X(σ1, σ2) . (2.56)

In other words, the string closes only up to a translation or rotation (or a combination
thereof) from the space group S. One can now make a useful distinction between different
classes of strings on orbifolds:

1. Bulk strings. These strings are closed already in ten dimensions and have hence the
trivial constructing element g = (1 | 0). However, generically not the entire spectrum
is orbifold invariant, so that some of the ten-dimensional states are projected out.

2. Winding strings. In this case, the string closes up to a lattice vector (i.e. already on
the torus), hence the boundary condition reads

X(σ1, σ2 + 2π) = X(σ1, σ2) + nαeα . (2.57)

As with the bulk strings, some states only exist on the torus but not on the final
orbifold. Because their non-trivial winding enters the mass equation, these strings
are massive at generic points of the moduli space. However, at special values of the
orbifold radii, some winding states can become massless.

3. Twisted strings. Finally, if the boundary condition involves a rotation, one finds
strings that only close on the orbifold. These states are always associated with a
non-trivial monodromy around a curvature singularity, in most cases these are fixed
points.

2.3.3 Geometric eigenstates
For any string fulfilling (2.56), this boundary condition can be rewritten using another
space group element h to read

hX(σ1, σ2 + 2π) = hgh−1hX(σ1, σ2) . (2.58)

Then, by using the fact that X and hX are identical by definition of the orbifold, this
yields

X(σ1, σ2 + 2π) = hgh−1X(σ1, σ2) , (2.59)

which is the same as the original boundary condition (2.56) but with g replaced by hgh−1.
Hence, physical states are not in one-to-one correspondence to particular space group
elements, but rather to conjugacy classes of space group elements, and a general g-twisted
state can be written as

|[g]〉 =
∑
h

α(g, h) |hgh−1〉 , (2.60)
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with phases α(g, h) that need to be fixed. Conventionally, these phases are parametrized
as α(g, h) = e−iπγ(g,h), where the γ-phase is introduced. The next thing one can read off
is that if g and h commute, any physical state must be invariant under the action of h
for reasons of consistency. This will become important for the orbifold projection. Note
that γ(g, h) = 0 if g and h commute, hence this phase will play no role for the orbifold
projection. To each conjugacy class representing a physical state with boundary condition
g, there is the corresponding CFT vertex operator σg [34].

2.3.4 Orbifold partition function

Considering the partition function, the same types of orbifold boundary conditions can be
chosen for closing the worldsheet cylinder to a torus. With that regard, the discussion
closely resembles that of the fermion partition function. However, if g is the constructing
element, any element h that is used to close the cylinder to the torus must commute with
g, or in the language of group theory, lie in the centralizer of g in the space group. Then,
the orbifold partition function can be decomposed into sectors (g, h),

Zorb(τ, τ) =
∑
g,h

Z
[
g

h

]
(τ, τ) , (2.61)

where the sum over g runs over the entire space group and the sum over h is restricted to
the centralizer Cg. In a (g, h) sector, h is usually called the projecting element. This is
because, as we just discussed, g-twisted states must be invariant under the action of any
commuting element h. In the partition function, this can be made visible if one takes the
double sum in equation (2.61) apart

Zorb(τ, τ) =
∑
g

(
Z
[
g

1

]
(τ, τ) + Z

[
g

h1

]
(τ, τ) + Z

[
g

h2

]
(τ, τ) + . . .

)
. (2.62)

As one can see, for each element g (which gives the boundary condition (2.56)), one
sums over the unprojected part (g,1) and then all elements from the centralizer so that
ultimately only the orbifold-invariant states in a sector with constructing element g survive.
However, this arrangement in terms of constructing elements becomes meaningless once
one studies the transformation behavior of particular g-twisted sectors under modular
transformations on τ as they translate into permuting the (g, h) sectors. Specifically, under
an SL(2,Z) element γ, the partition function transforms as

Z
[
g

h

]
(γτ) = Z

[
gahc

gbhd

]
(τ) for γ =

(
a b
c d

)
. (2.63)

The important point to notice here is that modular transformations exchange twisted
and untwisted sectors: for example, the S transformation maps a (g,1)-twisted sector to
a (1, g)-twisted one. Therefore, any modular invariant theory must contain twisted and
untwisted sectors alongside each other.
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2.4 Heterotic strings on orbifolds

Having seen heterotic superstrings in ten dimensions, we are now prepared to see their
compactification on orbifolds [35, 36], for other expositions of the formalism see [37, 38].
The key points will be the following: The first step is to study the geometric action of
translations and rotations on the six coordinates that lie in the orbifold. Second, one may
then embed this geometric action in the E8 × E8 gauge sector, thereby breaking the gauge
group to some subgroup. Finally, one may put these parts together and—by requiring
invariance—study the resulting allowed states. One observes that not all states that exist
in ten dimensions survive the orbifolding, hence this step is referred to as the orbifold
projection.

2.4.1 Gauge embedding

In what follows, we assume that we are dealing with Abelian ZN or ZN×ZM orbifolds. The
construction of gauge embeddings in non-Abelian orbifolds is significantly more involved,
but will play no role in the remainder of the thesis and is hence omitted.

Recall that the orbifold space group consists of geometric translations nαeα and rotations
parametrized by some element of the point group θ. These geometric transformations can
be embedded into the E8 × E8 gauge sector by making simultaneous transformations. The
translations are embedded as

X i

XI

 7−→
X

i + 2πnαeiα
XI + πnαW

I
α

, (2.64)

where we introduced the Wilson lines Wα [39]. Likewise, one can define the so-called shift
Vθ associated to a rotation

X i

XI

 7−→
Dv(θ)ijXj

XI + πV I
θ

. (2.65)

In general, one can associate the local shift Vg = Vθ + nαWα to each space group element
g = (θ |nαeα). This way to embed the space group into the gauge degrees of freedom has
the nice property that elements from the same conjugacy class automatically have the
same gauge embedding Vg = Vhgh−1 because the gauge embedding only acts by translations
in the E8 × E8 coordinates.

Both the shifts and the Wilson lines are fractional lattice vectors, i.e. an integer multiple
of them lies in the E8 × E8 lattice again, so that

NαWα ∈ ΛE8×E8 , (2.66)

where Nα is then called the order of the Wilson line. The order of a shift is defined in an
analogous manner. As we are going to see later on in this chapter, the shifts and Wilson
lines have to fulfill a set of constraints from modular invariance.
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2.4.2 Twisted states
For strings with constructing element g, the action on the vertex operators is the following:
First, the oscillator numbers Ni and Ñı̄ introduced in equation (2.36) can take fractional
values for twisted states. The H-momenta of a twisted state get shifted according to

qsh = q + vg . (2.67)

Moreover, the E8 × E8 momenta P get shifted by the gauge embedding (the local shift)

Psh = P + Vg . (2.68)

In general, a non-trivial Psh indicates that the corresponding state is charged under some
of the unbroken gauge symmetries.

2.4.3 The heterotic orbifold projection
Now, we turn to the action of projecting elements. Let us start with the geometric action.
One needs to consider the oscillator part in equation (2.36) and the bosonized fermions
in equation (2.43). Under the action of a space group element h, the bosonic oscillator
excitations transform according to

(
∂X i

)Ni (
∂X ı̄

)Ñı̄ h7−−→
(
∂X i

)Ni (
∂X ı̄

)Ñı̄ e2πivih(Ni−Ñı̄) . (2.69)

Likewise, the three components of the H-coordinates in equation (2.43) that lie inside the
orbifold transform as

H i h7−−→ H i − πvih . (2.70)

In the same fashion, the gauge embedding causes the E8 × E8 coordinates to shift

XI h7−−→ XI + πV I
h . (2.71)

In principle, if the constructing element does not commute with the “projecting” h, the
geometric eigenstate picks up a phase

|[g]〉 h7−−→ e2πiγ(g,h) |[g]〉 . (2.72)

However, as we mentioned earlier, only commuting elements need to be projected on. In
total, projecting on a commuting element h, which means requiring invariance under the
orbifold, amounts to the condition

Psh · Vh −
(
qsh +N − Ñ

)
· vh + Φvac(g, h) = 0 mod 1 . (2.73)

Here, we define the so-called vacuum phase Φvac(g, h) = 1/2 (Vg · Vh − vg · vh) whose
introduction becomes clear in the next section.
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2.4.4 The heterotic partition function on orbifolds
In general, the partition function of heterotic strings on orbifolds can be factorized as

Z = ZMink(τ, τ)Zint(τ, τ) , (2.74)

where the non-compact part ZMink corresponds to the uncompactified bosonic coordinates
in the Minkowski space-time, and in light-cone gauge reads

ZMink(τ, τ) = 1
τ2

∣∣∣∣∣ 1
η2(τ)

∣∣∣∣∣
2

. (2.75)

The internal part Zint can be organized in (g, h)-twisted sectors as in equation (2.61),3
where the particular blocks read

Zint

[
g

h

]
= Zψ

[
g

h

]
(τ)ZX

[
g

h

]
(τ, τ)ZE8×E8

[
g

h

]
(τ) e2πiΦvac(g,h) , (2.76)

where Zψ(τ) is the contribution of the rightmoving fermions (including those in the
non-compact directions), ZX(τ, τ) is the partition function of the six internal bosonic
coordinates, and finally ZE8×E8(τ) is the contribution of the leftmoving gauge coordinates.

Modular invariance of the orbifold partition function then requires the following
conditions on the gauge embedding [36, 40, 41]:

gcd(Ni, Nj) (Vi · Vj − vi · vj) = 0 mod 2 , (2.77)
gcd(Ni, Nα)Vi ·Wα = 0 mod 2 , (2.78)

gcd(Nα, Nβ)Wα ·Wβ = 0 mod 2 . (2.79)

Note how the first condition (2.77) mixes properties of the rightmover partition function
Zψ(τ) and the gauge coordinates ZE8×E8(τ). In effect, neither Zψ nor ZE8×E8 need to be
modular invariant on their own, but only their combination. In reality, it turns out that
orbifold geometries where Zψ and ZE8×E8 can be constructed to be separately modular
invariant are the exception rather than the rule. Therefore, in all other cases one is forced
to embed the geometric twist vi into the gauge degrees of freedom with a non-trivial Vi.
The inclusion of the vacuum phase becomes necessary to ensure consistency under TN .

3In fact, it was shown in [40] that for a number of orbifold geometries one can introduce discrete torsion
phases ε(g, h) 6= 1, so that (for a given set of shifts and Wilson lines) the internal partition function reads

Zint =
∑
g,h

ε(g, h)Z
[
g

h

]
.

However, these phases can be compensated by making an appropriate choice of shifts and Wilson lines [41].
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2.5 Heterotic model building
Finding a heterotic four-dimensional vacuum starts with a two-step procedure: First, one
chooses one of the admissible orbifold geometries, and second one picks a gauge embedding
consisting of shifts and Wilson lines. Apart from reducing the dimensionality to four
dimensions, and possibly breaking supersymmetry (see the next chapter for details), the
effect of the orbifolding on the ten-dimensional heterotic string is then also twofold.

First, not all ten-dimensional states survive the orbifold projection (2.73). Most notably,
a non-trivial gauge embedding leads to projection conditions on the E8 × E8 gauge bosons

P · Vh != 0 mod 1 . (2.80)

Because the gauge bosons have trivial boundary conditions g = (1 | 0), this condition
needs to be fulfilled for all h ∈ S. One observes that the Cartan generators (with Psh = 0
and an oscillator) trivially survive this projection, and only certain ladder operators
(corresponding to simple roots of E8 × E8) can be projected out. Consequently, the gauge
group can be broken to subgroups of E8 × E8 with rank 16.

On the other hand, we have seen that any self-consistent orbifold theory has to have
twisted states in its spectrum. Generically, these localized states transform under non-
trivial representations under the unbroken gauge symmetry (namely when their Psh 6= 0),
and also they have the chance to be chiral. Moreover, this chiral matter is also charged
under the unbroken subgroup of E8 × E8.

The interplay of the breaking of the ten-dimensional E8 × E8 to subgroups and the
emergence of charged matter open up the road for heterotic model building: If one makes
the right choices for the gauge embedding acting on the leftmoving degrees of freedom,
one can end up with e.g. the chiral spectrum of the MSSM (provided that the remaining
target-space supersymmetry is N = 1) as it was successfully demonstrated in [42, 43, 44].
The emergent picture is that all admissible (i.e. modular invariant) solutions for the gauge
embeddings create an entire landscape of models. Those models that give rise to MSSMs
are then embedded in this landscape. As studied first in [42, 44], some subsets of the
landscape are more likely to host an MSSM than others, giving rise to so-called “fertile
islands”, for a depiction see figure 2.1. The statistics of MSSMs versus non-MSSMs were
studied in [45], whereas novel approaches to the identification of fertile patches in the
heterotic string landscape building on methods from machine learning include [20, 46, 47],
see ref. [48] for a comprehensive review of machine learning approaches in string theory.
The connection between heterotic orbifold models and heterotic CY model building has
been studied e.g. in [49].
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Figure 2.1: A depiction of the heterotic landscape as it is seen by a neural network. In both
frames, blue and green dots represent non-MSSM models, whereas red triangles
denote three-generation MSSMs. Upper panel: A small subset of MSSMs is used
to identify fertile islands (marked in green). Lower panel: A large portion of all
MSSMs indeed lives on these fertile islands, apart from some outliers. Figure
adapted from [20].



3

The cosmological constant in
non-supersymmetric
compactifications

In our current view of cosmology, a tiny but non-zero cosmological constant drives the
accelerated expansion of the universe today [50]. So far, no definite answer has been found
why the cosmological constant is many orders of magnitude smaller than the other known
scales of fundamental physics, like the Planck, GUT or electroweak scale. As all attempts
to compute the cosmological constant in quantum field theory lead to unrealistic results,
it is assumed that a UV complete quantum theory of gravity is necessary to determine
its value from first principles. In many instances, string theory has been proposed as
such a theory. In the case of the heterotic string, the one-loop values of the cosmological
constant and the dilaton tadpole are related. As anything but a small dilaton tadpole
would either thwart vacuum stability, or, if it is cancelled [51, 52] drastically modify the
structure of the resulting model, any physically meaningful heterotic model must have a
tiny, if not vanishing, cosmological constant as well. In situations like these, a symmetry
is often called to the rescue. Ideally, this symmetry would require an exactly vanishing
cosmological constant as long as it is intact. Once it is broken (e.g. spontaneously), small
values for the cosmological constant would then be generated.

In fact, all these problems would be solved by a symmetry, namely target-space
supersymmetry: not only does the cosmological constant (along with the dilaton tadpole)
vanish identically at one loop in SUSY theories, one also has good reasons to assume that
this property persists to all orders in perturbation theory. Then, an eventually broken SUSY
would reintroduce a small but finite value for the cosmological constant. In recent years,
this scenario has lost some of its attractiveness due to the non-observation of superpartners
in experiments like e.g. the LHC. As the SUSY breaking scale is driven to higher and higher
values in order to match experimental observations, more and more finetuning is necessary
for the cosmological constant. In the light of this fact, non-supersymmetric string models,
after their conception in [53, 54], have received renewed interest in recent years, especially
on the heterotic side. It has been demonstrated in various instances that it is well possible
to construct non-supersymmetric string models with almost exactly the spectrum of the
standard model, both by considering the manifestly non-supersymmetric O(16)×O(16)
string or in compactifications that break supersymmetry [53, 55]. However, while there

25
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have been constructions with exponentially small cosmological constants [56, 57], heterotic
models with a vanishing one have yet to be constructed.

The purpose of this chapter is to study why it is so hard to achieve a vanishing
cosmological constant in non-supersymmetric heterotic orbifolds. To this end, we start
with a discussion of how the model-independent vanishing of the cosmological constant is
linked to certain properties of the one-loop partition function, namely that the partition
function vanishes in each twisted sector separately. Then, we discuss how this property
depends on whether or not a model has target-space supersymmetry. In fact, it turns out
that the partition function automatically vanishes sector by sector once there is at least
N = 1 SUSY, and that it can never do so once SUSY is broken, which follows from generic
arguments. However, as we also show explicitly, it is well possible to construct models
where the global amount of supersymmetry is N = 1, but where each twisted sector admits
N = 2 or higher. One is tempted to ask why it should be impossible to have N = 0
globally but at least N = 1 in each twisted sector, which would cause the partition function
to vanish (and with it the cosmological constant and the dilaton tadpole). This idea has
been successfully applied to asymmetric compactifications of non-supersymmetric type II
strings [58, 59]. The reason why this idea does not work in the case of heterotic orbifolds
is shown to lie in the way target-space rotations act on world-sheet spinors. Hence, we
are able to formulate the problem of a non-vanishing partition function in terms of the
representation theory of the orbifold point group and its possible spinor embedding(s).
Therefore, the rest of the chapter is devoted to a discussion of the group-theoretical
properties of finite discrete groups. We show that the sector-per-sector vanishing of the
partition function would require the existence of four-dimensional representations of the
point group (corresponding to the action of the point group on space-time spinors) that
have to fulfill a set of necessary conditions. However, it turns out that, as expected,
none of the spinor embeddings has the required properties. Moreover, it is impossible
to construct any representation with precisely these properties for any of the possible
point groups in six-dimensional orbifolds. Moreover, we show that the non-existence of
these representations seems to be independent of string compactifications and is hence
formulated as a general group-theoretical conjecture. However, we also observe that there
are often sectors in the non-supersymmetric partition function that, although there is no
overall SUSY, vanish by themselves, thereby providing valuable input for more involved
scenarios. This chapter is in parts based on ref. [15].

3.1 The cosmological constant in heterotic orbifolds
Much like in quantum field theory, the cosmological constant in heterotic orbifold models
is defined as the zero-point or vacuum energy. At one-loop level, it is proportional the
integral over the partition function

Λ ∼
∫
F

d2τ

τ 2
2
Z(τ, τ) =

∫
F

d2τ

τ 2
2
ZMink(τ, τ)

∑
g,h

Zint

[
g

h

]
(τ, τ) . (3.1)

Here, F = {τ | − 1
2 < τ1 <

1
2 , τ2 > 0, |τ | > 1} denotes the fundamental domain of SL(2,Z)

and τ−2
2 d2τ is the modular invariant Poincaré measure. As discussed in the introduction,
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observations indicate that the value of Λ takes a finite but tiny value. Moreover a non-zero
value of the integral (3.1) would also imply non-vanishing dilaton tadpoles. Therefore, it
seems desirable that the cosmological constant given by the integral (3.1) should vanish at
the string level, and receive non-zero contributions only by low-energy physics. Therefore,
one’s primary interest lies in constructions where the integral in (3.1) vanishes. Here,
different levels of abstraction come to mind:

1. The integrand of (3.1) vanishes, because each (g, h)-sector in the internal
partition function vanishes identically by itself.
This option is the most straightforward one and is realized for supersymmetric
compactifications. In the SUSY case, the partition function vanishes due to general-
izations of Jacobi’s abstruse identity (referred to as Riemann identities). We will
show that for generic reasons only the fermionic partition function can vanish at all,
both in the supersymmetric theories and in the non-SUSY case. In any case the result
does not depend on the gauge embedding and is therefore rather model-independent.

2. The full partition function vanishes, but some (g, h)-sectors in the inter-
nal partition function are non-zero.
Because ZMink is non-zero, the full partition function can only vanish if the internal
partition function does so. Hence, as we assume that some of the (g, h)-sectors yield
non-zero contributions, there need to be non-trivial cancellations between them.
This option will therefore depend not only on the geometric action of the orbifold
but also on the gauge embedding.

3. The integrand of (3.1) is non-vanishing, however it integrates to zero over
the fundamental domain F .
This possibility has been considered in the context of (generalized) Atkin–Lehner
symmetry [60, 61], and in general requires (like option 2.) special properties of the
entire partition function. Moreover, there exist no-go theorems [62] that indicate
that it might be either impossible or at least very hard to construct non-vanishing
partition functions that integrate to zero over F using the known Atkin–Lehner
mechanism in models with broken SUSY.

We will see that already due to generic arguments, the partition function cannot vanish
once SUSY is broken. Options 1. and 2. are therefore ruled out, and the last hopes for an
exactly vanishing cosmological constant in non-supersymmetric heterotic strings lie in a
version of the third option, which is, as we mentioned, already challenged by the fact that
the known constructions do not work. However, finding generalizations or alternatives
to the Atkin–Lehner construction that avoid the no-go theorems is a daunting task that
certainly requires a detailed understanding of the non-supersymmetric orbifold partition
function. Therefore, the remainder of this chapter is devoted to a study where and why
exactly option 1. fails.

The remainder of this chapter is structured as follows. First, we examine the relation
of supersymmetry to the representation theory of the orbifold point group. We find
that the amount of surviving supersymmetry is related to the number of Killing spinors
(i.e. invariant spinors), and see that it is well possible that locally (i.e. in a particular
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(g, h)-twisted sector), the number of surviving Killing spinors is higher than globally. Then,
we proceed with a discussion of the properties of the partition function and find that the
vanishing of a particular (g, h)-twisted sector depends on the fermionic partition function
of the sector, as all other contributions are generically non-zero. Finally, we observe that
the fermionic partition function in a (g, h)-twisted sector vanishes if and only if g and h
admit at least one compatible Killing spinor, which allows us to link the vanishing of the
partition function to the representation theory of the point group P .

3.2 Compactification and supersymmetry
The purpose of this section is to clarify how the action of rotations in the orbifold
dimensions on target-space vectors and spinors are related. With this information at hand,
we will show how the amount of surviving supersymmetry depends on the embedding of
the geometric twist living in SO(6) into Spin(6).

3.2.1 Representation theory of the geometric point groups
At this point, it is useful to quickly recall the definition of the point group P in section 2.3.1.
The action of a point group element θ is defined as its geometric action on the lattice
vielbein e via a six-dimensional representation Dv

θ : e 7→ Dv(θ) e , (3.2)

where (for proper rotations) Dv(θ) fits in a six-dimensional representation 6 of SO(6)1 and
the subscript “v” indicates that we are talking about the action of the twist on target-space
vectors, which is its geometric action. Each rotation can be block-diagonalized by a change
of the lattice basis vectors in the vielbein e to read

Dv(θ) =


e2πiv(1)

θ
J12

e2πiv(2)
θ

J34

e2πiv(3)
θ

J56

 , (3.3)

with the generators of rotations in the (X2a−1, X2a)-planes J2a−1,2a. Once we switch to
complex coordinates Za = X2a−1 + iX2a, the action of the rotation can be written as a
simple multiplication by phases

Za 7→ e2πivaθ Za . (3.4)

Here, one can observe that the entries of the twist vector are—from a geometric point
of view—only defined up to the addition of integers, as vaθ and vaθ + 1 generate the same
rotation. As we will observe shortly, this is no longer true for the twist action on spinors.

1There are, in fact, quite many instances of geometric orbifolds where the point group is in O(6) rather
than SO(6). However, these are out of the picture for phenomenology, as one cannot even speak about
spinors on these (non-orientable) manifolds, and hence will be neglected in what follows.
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3.2.2 Action of twists on target-space spinors
Since the worldsheet fermions transform trivially under translations on the orbifold, the
rotations generated by the point group P already encode the entire relevant information
for the orbifold projection in this sector. Each geometric rotation can be embedded into
the target-space spinors by the action of

Ds(θ) = e2πiv(1)
θ

1
2σ1 ⊗ e2πiv(2)

θ
1
2σ2 ⊗ e2πiv(3)

θ
1
2σ3 . (3.5)

The first thing to notice here is that the spinor embedding is no longer degenerate under
the addition of integers to vaθ , but is only invariant under the addition of even integers.
This is precisely the double cover property of Spin(6) compared to SO(6). From the
viewpoint of representation theory, the spinor representation Ds(θ) can be decomposed
into the direct product of four dimensional representations

Ds(θ) = D4(θ)⊕D4(θ) , (3.6)

which fit in a 4 of SU(4) (as SU(4) and Spin(6) are isomorphic). The spinor representation
is then related to the vector representation Dv(θ) by

6 = [4]2 , (3.7)

where [ · ]2 denotes the two-times antisymmetrized tensor product. The two four-dimensional
representations D4(θ) and D4(θ) are not independent and can be obtained from Ds(θ) by
making a chiral projection that yields either of the two, depending on whether one projects
on chiral or antichiral spinors. Again, one observes that +D4(θ) and −D4(θ) yield the
same geometric 6, reflecting the double cover property once more.

Another useful way to understand this relation, which naturally makes the connection
to the heterotic partition function is via the SO(8) lattices 8v and 8s introduced in the
previous chapter, by studying the lattice vectors of length 1. Notably, vectors in the
weight lattice with unit length correspond to eight-dimensional representations of SO(8).
Beginning with the bosonic vector lattice, we note that the lattice vectors with length 1
can be written as

Λ8v ⊃
{

(±1, 0, 0, 0) ,
(
0,±1, 0, 0

)}
, (3.8)

where the underline indicates that all permutations are to be included. We have split the
vectors because in our setting with a six-dimensional orbifold, the first entry gives the
four-dimensional spin, while the other three entries correspond to one of the three complex
planes of the orbifold. The eight ten-dimensional vectors at this level in 8v decompose into
two four-dimensional vectors (with opposite helicity) and six scalars. In terms of SO(8)
representations, the branching into SO(6) precisely predicts this behavior (see e.g. [63])

8v → 11 ⊕ 1−1 ⊕ 60 , (3.9)

where the subscripts are the space-time spins. It becomes clear that the two space-
time vectors are singlets under SO(6) because all their entries corresponding to orbifold
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dimensions are zero, so there is no non-trivial transformation behavior. One can proceed
for the fermionic lattice in a very similar way. Here, the splitting is chosen as

Λ8s ⊃
{(

+1
2 ,+

1
2 ,−

1
2 ,−

1
2

)
,
(

+1
2 ,+

1
2 ,+

1
2 ,+

1
2

)}
(3.10)

∪
{(
−1

2 ,−
1
2 ,+

1
2 ,+

1
2

)
,
(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2

)}
.

This results in four space-time spinors and their partners with opposite helicity. In the
words of representation theory, the resulting branching into SU(4) representations reads

8s → 4+ 1
2
⊕ 4− 1

2
. (3.11)

The SO(6) representation 60 and the SU(4) representation(s) 4± 1
2
are precisely what we

identified with Dv and D4 (or D4). It is also clear that, as they transform non-trivially
under the orbifold twists, some of the degrees of freedom may be projected out by the
orbifold projection, depending on what the precise form of the various Dv(θ) and D4(θ)
matrices is for all θ ∈ P .

Let us note here that because P is a discrete subgroup of SO(6) (and SU(4)), the
vector representation 6 and the spinor representation 4 in turn decompose into irreducible
representations of P . The precise form of the vector representation is fixed by the way
the rotations act geometrically on the orbifold lattice. Generically, there are then two
or more choices for the spinor embedding, which has to match the action of the vector
representation via equation (3.7).

3.2.3 Killing spinors and supersymmetry breaking

Put simply, supersymmetry relates space-time fermions and bosons via a transformation
that is fermionic itself. In our setup, SUSY therefore has to mediate between the 8v and
8s lattices. In ten dimensions, this mapping is facilitated by a set of four supercharges

Q =
(

+1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
. (3.12)
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By labelling the entries of Q by Qi (with the plus sign at the ith entry), one can
schematically draw the following diagram for the unbroken ten-dimensional case

(1, 0, 0, 0)

Q1 Q2

(
1
2 ,

1
2 ,

1
2 ,

1
2

) (
1
2 ,

1
2 ,− 1

2 ,− 1
2

)

Q2 Q1

(0, 1, 0, 0)

Q4

Q3

(
1
2 ,− 1

2 ,− 1
2 ,

1
2

)

Q2 Q1

(0, 0, 0, 1)(0, 0,−1, 0)

Q1 Q2

(
− 1

2 ,
1
2 ,− 1

2 ,
1
2

)

(
− 1

2 ,
1
2 ,

1
2 ,− 1

2

)

Q2 Q1

(0, 0, 1, 0) (0, 0, 0,−1)

Q1 Q2

(
1
2 ,− 1

2 ,
1
2 ,− 1

2

)

Q4

Q3

(−1, 0, 0, 0)

Q1 Q2

(
− 1

2 ,− 1
2 ,

1
2 ,

1
2

)(
− 1

2 ,− 1
2 ,− 1

2 ,− 1
2

)

Q2 Q1

(0,−1, 0, 0)

(3.13)

where an arrow labelled by Qi indicates that the respective supercharge is added to the
weight at the start of the arrow. In particular, it is straightforward to classify pairs of
weights as four-dimensional N = 1 chiral or vector multiplets according to their first entry.
It also becomes clear why ten-dimensional N = 1 SUSY is equivalent to four-dimensional
N = 4. Just like the components of 8v and 8s, also the Qi potentially transform non-
trivially under P . Indeed, the set of the Qi together with the −Qi transforms as an 8c
under SO(8), which has a branching into non-trivial SU(4) representations as well.

It is now important to make the connection between surviving supercharges and the
spinor representation Ds. In particular, we have to make clear what it means when we
say that a certain Killing spinor survives at a fixed point. To this end, one needs to
distinguish between locally and globally preserved Killing spinors, which are defined as
follows: To define the number of globally and locally preserved Killing spinors and to
understand their distinction better, we first discuss how to determine the number of
Killing spinors preserved by some subgroup G ⊂ P . For example, this may be a ZNθ
subgroup G = 〈θ〉 ⊂ P generated by any θ ∈ P or the whole point group, G = P . Using a
four-dimensional Weyl representation D4 obtained via a chiral projection from Ds, each
G-invariant Weyl spinor Ψinv. satisfies the condition

D4(θ) Ψinv. = Ψinv. , (3.14)

for all θ ∈ G. Consequently, the G-invariant spinor eigenspace can be found using the
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projection operator

PG = 1
|G|

∑
θ′ ∈G

D4(θ′) , (3.15)

which is defined such that D4(θ)PG = PG for all θ ∈ G. Then, the number of G-invariant
Killing spinors, namely the dimension of the G-invariant subspace is counted using the
trace of the projection operator

NG = Tr
(
PG

)
= 1
|G|

∑
θ′ ∈G

Tr (D4(θ′)) . (3.16)

In particular, N 〈θ〉 determines the number of local Killing spinors compatible with the
point group element θ ∈ P , while N = N P gives the number of global Killing spinors and
hence the amount of target-space supersymmetry.

The situation is a little more involved for the number of Killing spinors in a (g, h)-
twisted sector. There, one has to filter for Killing spinors that are allowed by both the
constructing element g and the projecting element h. One has to consider the ZN groups
generated by both elements: let us call Gg = 〈θg〉 and Gh = 〈θh〉, where θg,h is the
rotational part of the respective element. Then, a necessary but not sufficient condition
is that both NGg ≥ 1 and NGh ≥ 1. However, in this case one still has to show that
in both invariant subspaces there are two Killing spinors that are compatible. Luckily,
the partition function consists only of (g, h)-sectors where g and h commute and hence
can be block-diagonalized simultaneously. Then, each of the spin embeddings is readily
described by the entries of the twist vector v. Indeed, the possible eigenvalues of Ds(θg)
are exp(±2πi ṽ(a)

g ), a = 1, 2, 3, where

ṽg = 1
2


v(1)
g + v(2)

g + v(3)
g

−v(1)
g + v(2)

g + v(3)
g

v(1)
g − v(2)

g + v(3)
g

v(1)
g + v(2)

g − v(3)
g

 , (3.17)

and likewise for h. Preserving compatible Killing spinors can be boiled down to the
condition that ṽg and ṽh must vanish (modulo integers) at the same entry.

Remark on Scherk–Schwarz breaking. The way to break SUSY via rotations we
describe here is not the only way to realize non-supersymmetric, consistent (heterotic)
string theories. Another way is via the so-called Scherk–Schwarz mechanism, which has
been (in the heterotic context) studied extensively in [56, 57]. The core idea is to have
a translation on the orbifold that is equipped with a special Wilson line. Unlike the
Wilson lines we have introduced so far for gauge symmetry breaking, this special Wilson
line leads to different transformation phases for space-time fermions and bosons, thereby
breaking supersymmetry (very much the same way as we break the gauge symmetry).
These constructions have the interesting feature that the mass splitting between fermions
and bosons is proportional to the radius of the cycle along the translation. In this setup,
models with an exponentially suppressed cosmological constant at one (or even two loops)
have been constructed, however none with an exactly vanishing one. It is yet to be shown
that these results truly persist in perturbation theory.
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3.3 Vanishing of the partition function
In this section, we examine under which conditions a (g, h)-twisted sector in the partition
function vanishes. In particular, we show that in order for the (g, h)-twisted sector to
vanish, g and h must admit at least one common Killing spinor. To this end, we must
first determine what the various components of (g, h)-twisted sectors look like (cf. (2.76)),
once g and h are chosen to be non-trivial.

3.3.1 Heterotic partition function with twists and gauge embed-
ding

The purpose of this section is to identify the parts of the partition function that can vanish
at all, and under which conditions that is possible.

Leftmover. We start with the observation that the leftmover partition function cannot
vanish under any circumstance, but rather contains a 1/q term in its Fourier expansion
that cannot be canceled [56, 64]. To this end, we first have a closer look at the leftmoving
heterotic partition function, that is the contribution of leftmoving bosons both in spacetime
and in the gauge coordinates. Of particular interest are sectors where g = 1 (we will
explain towards the end of the section why), where one projects the untwisted sector on
some projecting element h. In what follows, it makes a difference if the rotational part of h
leaves some of the three complex planes fixed. We count the non-integer entries in vh with
r ∈ {0, 1, 2, 3}, and reshuffle vh such that all non-trivial entries come first. Furthermore,
the gauge embedding of h is split as Vh =

(
V

(1)
h , V

(2)
h

)
according to the first and second

E8. Schematically, the left-mover partition function for a (1, h)-twisted sector then takes
the form

Z
[
1

h

]
L

(τ) =
(

1
η2

)4−r

· ηr

∏r
i=1 ϑ

 1
2

1
2 − v

(i)
h


·
(

1
η8

∑
P

q
1
2P

2 e2πiP ·V (1)
h

)
·
(

1
η8

∑
P

q
1
2P

2 e2πiP ·V (2)
h

)
. (3.18)

In this expression, the first line is the combined contribution of the non-compact dimensions
and the coordinates in the orbifold, whereas the second lines are the appropriate versions of
the E8 partition function (2.29) after an appropriate projector e2πiP ·V (i)

h has been included.
Let us first concentrate on the two E8 factors in eq. (3.18). There, the terms that

contribute to the partition function at lowest order in q have P = 0. Hence, each E8 factor
gives a contribution

1
η8

∑
P

q
1
2P

2 e2πiP ·V (a)
i = 1

η8 (1 + . . .) = q−
1
3 + . . . (3.19)

where the dots indicate the omission of (model dependent) higher weight terms that are
irrelevant for our discussion. Moreover, the existence of the q− 1

3 factor is independent of
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the chosen gauge embedding V (a)
i for a = 1, 2, as long as the term inside the parentheses

in the first identity in equation (3.19) does not vanish. We will show later, when we have
developed appropriate tools to study the vanishing of such terms, that sensible heterotic
theories always have non-vanishing contributions from each E8. For now, as we have two
E8 factors, these two contributions combine to a q− 2

3 contribution.
We make use of the product identity for the Jacobi theta-functions with arbitrary

spin-structures α and α′ in order to analyze the first line in (3.18)

ϑ

[
α

α′

]
η

= e2πiαα′ q
α2
2 −

1
24

∞∏
n=1

(
1 + qn+α− 1

2 e2πiα′
) (

1 + qn−α−
1
2 e−2πiα′

)
. (3.20)

Using the inverse of this relation and applying it to our case, we can expand the term
giving the contribution of the orbifolded coordinates according to

ηr

∏r
i=1 ϑ

 1
2

1
2 − v

(i)
h

 = q−
r
12

r∏
i=1

e−πi
(

1
2−v

(i)
h

)
∞∏
n=1

1

1 + e2πi
(

1
2−v

(i)
h

)
qn

1

1 + e−2πi
(

1
2−v

(i)
h

)
qn−1

= q−
r
12

r∏
i=1

e−πi
(

1
2−v

(i)
h

)
+ . . . , (3.21)

because the products at the end of this expression may be written in terms of a geometric
series, and where the dots again indicate irrelevant terms that are skipped. Furthermore,
the contribution of the uncompactified leftmovers in eq. (3.18) can be expanded by using
the definition of the Dedekind eta-function (2.20) as

(
1
η2

)4−r

= q−
4−r
12 + . . . . (3.22)

When putting both contributions (3.21) and (3.22) together, note that the last model-
dependence appearing the exponents of q, namely the number of rotated planes r drops
out at lowest order as the q− r

12 factor in (3.21) cancels with an appropriate term in (3.22).
Combining these two expansions with the contribution of the E8s (twice (3.19)), one finds

Z
[
1

h

]
L

(τ) ∼ ch
q

+ . . . , (3.23)

where ch is a non-zero constant. In particular, ch = 1 for h = 1. This result has important
implications. The first observation is that sectors of the type studied here (with one
element the identity and the other potentially chosen non-trivial) are always present, as
every element of the space group commutes with the identity. If one insists that every
(g, h)-sector vanishes on its own, in particular these (1, h)-sectors must do so. As we
have seen, these sectors generically have a non-vanishing 1/q term from their leftmover.
Therefore, because the leftmover does not vanish, we can conclude that the rightmover
partition function in each sector must vanish if the (g, h)-sector vanishes.
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Rightmover. For the same reasons as for the bosonic leftmover, we can restrict our-
selves to (1, h)-sectors. We start the discussion of the rightmovers by noticing that the
contribution of the rightmoving bosons both in the non-compact dimensions as well as
in the orbifold essentially looks the same as its leftmoving counterpart (up to complex
conjugation). This part is expected to show the same behavior as the first line in eq. (3.18),
just with q replaced by q. Therefore, we can make the same reasoning as for the leftmovers
and, using (3.20), arrive at the same result as eq. (3.21), namely that these degrees of
freedom generically give a contribution proportional to q− 1

3 and hence do not vanish. By
result, if the (1, h)-sector vanishes, it can only do so if the contribution from the worldsheet
fermions vanishes. Hence, the discussion in the remainder of this chapter will be centered
around this contribution.

We are now going to prove an identity that will allow us to relate the vanishing of
the fermionic rightmover partition function in a (g, h)-twisted sector to the existence
of Killing spinors compatible with both g and h. To this end, we carefully construct
the orbifold analog to the ten-dimensional fermionic partition function presented around
equation (2.37). As we have to deal with non-supersymmetric twist vectors, we have to
pay special attention to phases in the partition function that would vanish in the SUSY
case. In what follows, let us consider twist vectors of the form

vg =
(
0, v(1)

g , v(2)
g , v(3)

g

)
, (3.24)

with an analog convention for vh. Then, the partition function for rightmoving worldsheet
fermions reads

Zψ
[
g

h

]
(τ) = 1

η4

∑
Q

q
1
2 (Q+vg)2

e2πi(Q+vg)·vh(−1)F , (3.25)

where we include a projector term due to a non-trivial h and where Q is either in the
vector lattice Λ8v (for F = 0) or the spinor lattice Λ8s (F = 1) of SO(8). In the previous
chapter, we showed how such a sum over lattice vectors can be rewritten in terms of
Jacobi theta-functions, which is also possible here. By shifting the spin-structures of the
theta-functions appropriately, we can argue that this will become

Zψ
[
g

h

]
(τ) = 1

2η4

1∑
s,s′=0

(−1)s+s′ Φ
[
g, s

h, s′

] 3∏
i=0

ϑ

 s
2 + v(i)

g

s′

2 + v
(i)
h

 , (3.26)

where we yet have to determine the phases Φ in order to match with the initial defini-
tion (3.25). To this end, we rewrite (3.25) as a constrained sum over vectors in Z4

Zψ
[
g

h

]
(τ) = 1

2η4

3∏
i=0

∑
ni∈Z

q
1
2

(
ni+v(i)

g

)2

e2πi
(
ni+v(i)

g

)
v

(i)
h

− 1
2η4

3∏
i=0

∑
ni∈Z

q
1
2

(
ni+v(i)

g

)2

e2πi
(
ni+v(i)

g

)
v

(i)
h e2πini· 12

− 1
2η4

3∏
i=0

∑
ni∈Z

q
1
2

(
ni+ 1

2 +v(i)
g

)2

e2πi
(
ni+ 1

2 +v(i)
g

)
v

(i)
h . (3.27)
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We observe that this expression can be indeed rewritten in terms of theta-functions with
the right spin-structures. However, in the second line, we have to add a phase in order to
achieve this. The result takes exactly the form of (3.26) with the phases fixed to

Φ
[
g, s

h, s′

]
= e−2πis′

∑
i
v

(i)
g · 12 . (3.28)

Here, we have reached an interesting point, because for SUSY twists one can always go
to a basis where ∑i v

(i)
g = 0 mod 2, which means that precisely this phase can be safely

neglected. For non-SUSY twists, this is no longer guaranteed and the fermionic rightmover
partition function then reads

Zψ
[
g

h

]
(τ) = 1

2η4

1∑
s,s′=0

(−1)s+s′ e−2πis′
∑

i
v

(i)
g · 12

3∏
i=0

ϑ

 s
2 + v(i)

g

s′

2 + v
(i)
h

 . (3.29)

We will see later on that this phase plays a key role in the (non-)vanishing of the
non-supersymmetric partition function. For convenience, the product over the four theta-
functions can be rewritten in terms of vector-valued theta-functions

Zψ
[
g

h

]
(τ) = 1

2η4

1∑
s,s′=0

(−1)s+s′ e−2πig eT4 ·v
s′
2 ϑ

[ s
2e4 + vg
s′

2 e4 + vh

]
(4)

, (3.30)

where we define eT4 = (1, 1, 1, 1) and the vector-valued theta-functions with arbitrary spin
structures according to

ϑ

[
α

α′

]
(d)

=
d−1∏
i=0

ϑ

[
αi

α′i

]
. (3.31)

This concludes the construction of the fermionic rightmover partition function. With
this result at hand, one now would like to know under which conditions on vg and vh
this partition function vanishes, similar to the vanishing of the ten-dimensional partition
function (2.42).

3.3.2 A Riemann identity for vanishing rightmover partition
functions

We can now examine how the expression (3.30) for the fermionic rightmover partition
function can be simplified. Using the definition of the Jacobi theta-functions we observe
that the vector-valued theta-functions read

ϑ

[
α

α′

]
(4)

=
∑
n∈Z4

q
1
2 |n+α|2e2πi(n+α)Tα′ . (3.32)

It is central to notice that this expression only depends on inner products. In order to
rewrite it we can now introduce the orthogonal symmetric matrix S whose choice will be
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come clear eventually

S = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 with S = ST = S−1 . (3.33)

The idea now is to transform the right hand side of (3.32) using S in such a way that it
matches the fermionic partition function (3.30), such that the sum over theta-functions
in (3.30) can be expressed by a single theta-function. Inserting 1 = ST S in all the inner
products of (3.32) one obtains

ϑ

[
α

α′

]
(4)

=
∑
ñ

q
1
2 |ñ+α̃|2e2πi(ñ+α̃)T α̃′ , (3.34)

where all twiddled quantities are defined by ũ = S u. We observe that the twist vectors
undergo the same transformation as in (3.17), which means that we are on a good way of
linking our discussion here to the existence of compatible Killing spinors. Moreover, in
order to proceed, it is important to notice on a technical level that by the S-transformation,
ñ is no longer in Z4. However, the summation over ñ may still be carried out after noticing
that one can parametrize it as follows

ñ = m+ s

2e4 , where m ∈ Z4 , s = 0, 1 . (3.35)

Then, the summation over all ñ can be performed by summing over m and s if one enforces
the additional condition that eT4 m

!= 0 mod 2. As usual, guaranteeing this property is
achieved by the introduction of a projector. Inserting the projector via another sum over
s′, we arrive at a result that can be written in terms of a sum over Jacobi theta-functions
(as desired) and find

ϑ

[
α

α′

]
(4)

= 1
2

1∑
s,s′=0

∑
m∈Z4

q
1
2 |m+ s

2 e4+α̃|2e2πi(m+ s
2 e4+α̃)T α̃′e2πi s

′
2 (m+ s

2 e4)
T
e4 (3.36)

= 1
2

1∑
s,s′=0

e−2πi s
′

2 α̃
T e4 ϑ

[ s
2e4 + α̃
s′

2 e4 + α̃′

]
(4)

. (3.37)

Now, all we have to do is to match the spin-structures α and α′ appearing in this expression
to those in the partition function (3.30) and take care that all phases are correct. Because
S is its own inverse, one may interchange twiddled and non-twiddled vectors. Furthermore,
one notices that shifting the zero-component of a non-twiddled spin-structure by an
integer, α0 7→ α0 + 1, amounts to a simultaneous half-integer shift in the twiddled one,
α̃ 7→ α̃ + e4

2 . By making this replacement for both α and α′, and using that for physically
sensible situations α0 is an integer (we actually chose it to be zero at the beginning of this
discussion), we can generate the (−1)s+s′ GSO phase appearing in (3.30). Finally, one
arrives at the identity

ϑ

[ e4
2 + α̃
e4
2 + α̃′

]
(4)

= 1
2

1∑
s,s′=0

(−1)s+s′e−2πi s
′

2 α
T e4 ϑ

[ s
2e4 + α
s′

2 e4 + α′

]
(4)

, (3.38)
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which is a generalization to Jacobi’s “abstruse” identity. Comparing the Riemann identity
(3.38) to the rightmover partition function (3.30), we first notice that the phase in front of
the theta-functions already strongly resembles the non-SUSY phase (3.28). All we have
to do is to plug in the spin-structures from (3.30) in place of α and α′ and obtain the
following simplified expression for the fermionic partition function

Zψ
[
g

h

]
(τ) = 1

η4ϑ

[
e4
2 + ṽg
e4
2 + ṽh

]
(4)

. (3.39)

Let us now examine the properties of this simplified expression. One observes that whenever
ṽg and ṽh have a vanishing entry (modulo integers) at the same position, the partition

function is proportional to ϑ
[1

2
1
2

]
= 0 and therefore vanishes, whereas it is guaranteed to

be a non-zero function otherwise. As we have noted earlier, it is precisely the existence
of a Killing spinor that causes an entry of ṽ to vanish (modulo integers). Hence, we can
conclude that the partition function vanishes if and only if both ṽg and ṽh admit the same
Killing spinor.

With this statement, we can make the desired connection between the vanishing of the
partition function on one side, and the supersymmetry properties of the spin embedding.
We can now formulate the (non-)vanishing of the various (g, h)-twisted sectors in the
partition function entirely in terms of the representation theory of the point group. To this
end, we now identify the minimal necessary conditions that need to be met if we insist that
all (g, h)-twisted sectors of a given model vanish. However, let us first make a remark on
possible applications of generalized Riemann identities on the leftmover partition function,
especially the E8 × E8 part there.

Remark on Riemann identities for leftmovers. So far, we have derived a Riemann
identity (3.38) that can be applied to a set of four fermions with a Z2 spin structure.
As we show in appendix B, our Riemann identity (3.38) can be generalized to sets of d
fermions with Zd/2 spin structures. Given that the leftmoving gauge sector of the heterotic
string can be understood as an ensemble of 16 fermions (in the fermionic formulation),
the possibility that the leftmover partition function vanishes by the virtue of a generalized
Riemann identity deserves to be studied.

The first point to notice here is that the generalized Riemann identities cannot be
applied to the “standard” Spin(32)/Z2 or E8×E8 theories, as these theories involve either
a set of 16 fermions with a Z2 spin structure or two sets of each eight fermions equipped
again with Z2 spin structures. The fact that generalized Riemann identities cannot be
invoked to achieve a vanishing leftmover partition function does not come as a surprise, in
fact we have derived the existence of a q−2/3 term in the Fourier expansion of the gauge
sector partition function in the foregoing section. In order to put the generalized Riemann
identities to work in the leftmoving gauge sector, one would have to consider more exotic
settings that have to be invoked:

1. One might take four sets of four fermions, each of which is equipped with a Z2 spin
structure, and make use of (3.38).
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2. Moreover, going to more exotic spin structures, one can take two sets of eight fermions
with a Z4 spin structure, or

3. Consider all 16 fermions with a Z8 spin structure.

4. Finally, also a combination of 1. and 2. is conceivable, i.e. two sets of four fermions,
each with a Z2 spin structure plus one set of eight fermions with a Z4 spin structure.

While the generalized Riemann identities corresponding to these cases can yield vanishing
partition functions, all these theories necessarily suffer from an even worse problem: The
exotic spin structures necessarily imply that the ground state (i.e. the leftmoving vacuum)
is projected out. However, the massless graviton is then projected out, too, which means
that a vanishing cosmological constant is no longer an issue.

3.3.3 Types of orbits and a minimal condition
We notice that there are two types of (g, h)-twisted sectors. Recall that a (g, h)-sector alone
is not invariant under modular transformations, but rather gets mapped to a (g′, h′)-sector,
cf. (2.63), where g′ and h′ depend on g, h and the modular transformation. Then we notice
that there are two types of (g, h)-twisted sectors: there are (g, h)-twisted sectors that are
connected to a sector of the form (1, h′) by a sequence of modular transformations, for an
appropriately chosen h′, and some that are not.

The first observation one can make is that as soon as the point group P has only one
generator (as for Abelian ZN orbifolds), all (g, h)-sectors are of the first kind. However,
in ZN × ZM or non-Abelian orbifolds, sectors of the second kind can generically appear.
As we have argued already in the previous section, the existence of sectors of the second
kind is tied to the condition that g and h commute not only on the point group level,
but also on the space group level. With that, we mean that while the rotation matrices
θg and θh corresponding to g and h can commute, one can still achieve that g and h do
not commute by turning on an appropriate roto-translation, and therefore remove this
particular (g, h)-twisted sector from the partition function. Note that this trick does
precisely not work for sectors of the first kind, because the space group identity commutes
with any space group element, with or without roto-translation. Let us demonstrate the
power of this trick by an example, showing how the amount of local SUSY can be enhanced
by its application.

An N = 1→ N = 2 example. Our example is set in globally N = 1 supersymmetric
Z2 × Z2 orbifolds. There are two generators of the point group θ and ω which are taken
to have twist vectors

vθ =
(

0, 0, 1
2 ,−

1
2

)
, (3.40)

vω =
(

0, 1
2 ,−

1
2 , 0

)
. (3.41)

Note that each of these twists has a two-dimensional invariant spinor space, so one
might be tempted to think at first that the model is globally N = 2 supersymmetric.
However, only one spinor is invariant under both twists, and hence there is only a
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global N = 1 supersymmetry. Does that mean that there are (g, h)-sectors with only
N = 1 supersymmetry locally? The answer to this question depends on if there are
roto-translations associated with the corresponding space group elements gθ and gω or not.
If there are none, the answer to the above question would be yes, namely precisely sectors
of the type (gθ, gω). However, if we choose gθ and gω to have roto-translations

gθ =
(
θ
∣∣∣∣ 1

2e2

)
, (3.42)

gω = (ω | 0) , (3.43)

gθ and gω no longer commute and we have indeed realized a model with N ≥ 2 supersym-
metry in each (g, h)-twisted sector but only N = 1 in the intersection.

It is very tempting to hope that a similar construction as in this example might as
well work in non-supersymmetric cases, namely that one could be able to enhance a global
N = 0 to N ≥ 1 supersymmetry in each (g, h)-twisted sector, which, as we just showed,
would imply the existence of at least one common Killing spinor and hence cause the
cosmological constant to vanish due to generalized Riemann identities. As we just argued,
(g, h)-sectors of the second kind are a potential obstacle in this construction, but they can
possibly be avoided by the introduction of roto-translations. A minimal condition for the
idea of local but not global SUSY is the following

Conditions for local but not global Killing spinors

(i) Every (g, h)-twisted sector admits at least one Killing spinor locally. In
effect, the partition function vanishes sector per sector provided there are
no (dangerous) type 2 sectors.

(ii) Not all (g, h)-twisted sectors preserve the same Killing spinor(s). That is,
each element h in the space group must admit at least one local Killing
spinor, that is incompatible with the Killing spinor in at least one other
(g, h)-sector of the first kind. By result, it is impossible to define any globally
invariant spinor. Therefore target-space supersymmetry is broken, and our
model is N = 0.

The purpose of the next section is to translate this statement to the language of group
theory, specifically to the representation theory of the point group P .

3.4 Group theoretical non-existence proof
In the previous section we saw that a necessary condition to ensure the existence of a
large class of non-supersymmetric heterotic orbifold theories with vanishing cosmological
constant is the following property: For each point group element separately some amount
of supersymmetry is preserved but globally, i.e. for the full point group, no Killing spinor
exists. In this section we will show that there are no such toroidal orbifolds. As our
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discussion will be centered around the properties of the point group P , we start out with
a study which discrete groups are admissible as point groups at all.

3.4.1 Survey of point groups for toroidal orbifolds

Let us have a look at all possibly available point groups P . Here, we can follow the carat-
classification of (heterotic) orbifold point groups [31, 32, 33]. As mentioned in chapter 2,
the classification of orbifolds goes all the way down to affine classes, hence specific lattices
and roto-translations. However, the previous section shows that the rightmover partition
function (and with it our minimal condition) only depends on the rotational part of the
space group. Hence, out of the 28,927,915 affine and 85,308 Z-classes, we only consider the
7,103 Q-classes that appear. Let us note here again that Q-classes and (abstract) point
groups are not in one-to-one correspondence: one abstract point group may possess several
inequivalent realizations as Q-classes, which becomes clear once one notices that the 7,103
Q-classes are generated by only 1,594 abstract discrete groups. Hence, one should strictly
think of Q-classes as representations rather than groups.

We find that quite many point groups are already ruled out, because they live in O(6)
rather than SO(6), so spinors cannot be defined. Out of the remaining ones, again the
majority cannot be considered as solutions, because there is no Q-class that implements
them in such a way that any element of the point group rotates at least two orbifold planes
at once. An element that only rotates one plane however necessarily projects out all four
candidates for Killing spinors. This is because it always gives rise to a −16 element in the
geometric point group, and therefore automatically violates condition (i) presented in the
foregoing section. This reduces the number of admissible Q-classes to 106. See table 3.1
for details of this reasoning.

Now, we can use equation (3.7) to construct the various possible spinor representations
D4 of each element separately and then apply equation (3.16) to find the number of
allowed local SUSY, see appendix C.1. Note that this allows for element-specific basis
changes, and is hence not suitable to identify global properties of the spin embedding,
which in turn would require a consistent choice for all elements simultaneously. All in all,
one finds by explicit constructions that only 63 of the remaining 106 Q-classes allow for a
Killing spinor in every (g, h)-sector. However, 60 of these 63 Q-classes have already been
identified to allow for global Killing spinors, i.e. N = 1 supersymmetry. Hence, there are
two ways to tackle the issue of local but not global SUSY

1. Look for globally non-supersymmetric realizations in the 60 SUSY orbifolds that
retain the property of local SUSY in each sector.

2. In the remaining three Q-classes, check if there exists a spinor embedding such that
there indeed exists a Killing spinor in each (g, h)-sector.

This is a very tedious task, and moreover one cannot always be sure that all solutions to
the defining condition (3.7) have been checked. In the next section we will follow another
route, namely via the representation theory of the point group P .
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# Q-classes Restriction
7,103 All inequivalent geometrical point groups P ⊂ O(6)
1,616 Orientable geometrical point groups P ⊂ SO(6)
106 No element of P rotates in a two-dimensional plane only
63 Each element θ ∈ P admits a choice with N 〈θ〉 ≥ 1 local Killing

spinors
60 Geometrical point group compatible with N ≥ 1 global Killing

spinors

Table 3.1: Statistics of Q-classes fulfilling various restrictions on six-dimensional toroidal
orbifolds.

3.4.2 Group-theoretical conditions
As we will work with abstract groups now, it easily happens that one forgets to incorporate
the necessary condition that the vector representation Dv and the spinor representation
Ds have to generate groups that are isomorphic in order to admit any (local and global)
Killing spinors. We demonstrate the failure of any attempt to achieve a vanishing partition
function with an example in appendix C, and from now on make the implicit assumption
that the groups generated by Dv and Ds are isomorphic whenever we speak of the point
group P . Then, we can be sure that the number of Killing spinors allowed by the spinor
representation Ds is in fact the number of Killing spinors preserved by the entire model.
Let us now reformulate the conditions (i) and (ii) from the previous section in terms of
representations of P . In particular, recall that the number of Killing spinors compatible
with the action of a group G is counted by the dimension of a G-invariant subspace,
obtained by an appropriately chosen projector, see the discussion around equation (3.16).
Now, the trace appearing in (3.16) can be rewritten in terms of the character of the
representation, TrD4(θ) = χ4(θ) [65]. Then, (3.16) can be recast to read

NG = 1
|G|

∑
θ′ ∈G

χ4(θ′) = 〈χ4, χ1〉G = nG1 . (3.44)

Here, we have made use of various group-theoretical concepts: First, we use the fact
that the character of the trivial one-dimensional representation 1 is a vector of ones only
χ1 = (1, . . . , 1). Moreover, we make use of the fact that the characters of irreducible
representations are pairwise orthogonal with respect to the inner product 〈 · , · 〉G. Hence,
the number of Killing spinors allowed by a group G can be determined by counting the
number of trivial singlets of G appearing in the branching of the four-dimensional (generally
reducible) representation 4 into irreducible representations of G.

Now, this observation can be used for our purposes of determining whether a model
preserves local and global supersymmetries by making different choices for the group G in
(3.44).

Local Killing spinors. If we take G to be the ZN subgroup of the point group P that is
generated by some point group element θ, we see that the existence of local Killing spinors
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is precisely given by the number of trivial ZN singlets contained in the four-dimensional
spinor representation 4

N 〈θ〉 = n
〈θ〉
1 . (3.45)

Our condition (i), that there is at least one Killing spinor in each sector in order for the
partition function to vanish, can be mapped to the condition that the spinor representation
4 branches into at least one trivial singlet of each ZN subgroup generated by the elements
of P . In other words,

n
〈θ〉
1 ≥ 1 , ∀ θ ∈ P , (3.46)

is a minimal condition that needs to be met.

Global Killing spinors. When making statements about global properties with respect
to supersymmetry, we set G = P and consider the full point group at once in (3.44).
Following the discussion so far, it is evident that the number of allowed SUSY is given by

N = nP1 . (3.47)

It is obvious that nP1 ≥ 1 also implies nH1 ≥ 1 for all subgroups H ⊂ P , in particular those
ZN subgroups that are generated by all elements θ ∈ P , simply because the trivial singlet
of P branches into the trivial singlet of all subgroups. This is in line with the intuition
that globally preserved Killing spinors are also preserved locally.

In summary, we can now reformulate the conditions of the previous section as

Conditions for local but not global Killing spinors
(group theory version)

The spinor representation Ds of P must have the following properties

(i) The four-dimensional chiral representation 4 associated with Ds must
branch into at least one trivial singlet of every ZN subgroup generated by
the elements of P .

(ii) The four-dimensional representation does not decompose into a trivial
singlet of the entire point group P .

(iii) The group generated by Ds is isomorphic to the group generated by Dv.

Obviously, these conditions are straightforward to check for a given group P and a
given spinor representation.

3.4.3 Non-existence proof by enumeration
At the beginning of this section, we have seen that the main result of the carat-
classification of crystallographic orbifolds is that there is only a finite number (namely
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7,103) inequivalent six-dimensional representations acting as orbifold twists. As we dis-
cussed in the previous paragraph, it would be sufficient to iterate over this list of Q-classes,
construct all possible spinor representations for every Q-class, and then check if any of
these spinor embeddings fulfills the desired properties. However, if we make use of the
group-theoretical considerations we just have presented, we can simplify this process con-
siderably. Namely, the 7,103 Q-classes are representations of only 1,594 distinct discrete
groups. If we assert that the geometric and the spinorial action are isomorphic, any
four-dimensional representation fulfilling the conditions for local but not global SUSY must
be a four-dimensional (possibly reducible) representation of one of these 1,594 discrete
groups. Therefore, our strategy also works by iterating over the list of distinct discrete
groups, generating all four-dimensional representations of the group, and checking whether
the necessary properties are fulfilled for each representation. The upshot of this approach
is that one rarely ever needs to work with the explicit 6× 6 matrices of the Q-classes, but
instead with the abstract properties of the discrete groups and their representations, that
are all encoded in the character table. Moreover, all relevant discrete groups and their
properties are classified and accessible e.g. in the SmallGroups GAP package [66]. In
order to prove that none of the possible four-dimensional representations admitted by any
of the possible abstract point groups fulfills the required conditions, we performed these
steps in an automated fashion, using the GAP programming language.

Let us now discuss the procedure of the non-existence proof. From an algorithmic
point of view, it pays off to adopt the following order of steps for each discrete group G in
the list:

1. Generate all four-dimensional representations of the group G.

2. For each representation 4:

2.1 Check if there is a trivial singlet of G in 4. If yes, then it can be discarded.

2.2 Check if det 4 = 1 to make sure it is a spinor representation after all. If no, the
representation cannot fulfill all conditions and is discarded.

2.3 Check if the representation 4 branches into a trivial singlet of each ZN subgroup
generated by the elements of G. Again, if the answer is no, the representation
can be discarded.

2.4 Finally, if all foregoing steps were evaluated positive, check if the two-times
antisymmetrization [4]2 corresponds to a geometric action 6. If yes, one has
found an example for a non-supersymmetric orbifold that fulfills the minimal
condition for a vanishing cosmological constant and dilaton tadpole.

We observe that none of the admissible groups possesses four-dimensional representations
that pass step 2.1, 2.2 and 2.3, such that step 2.4 is never invoked. Therefore, already the
minimal condition for a vanishing partition function, namely that at least all (1, g)-twisted
sectors must allow at least one Killing spinor is always violated. Hence, we conclude that
there are no symmetric toroidal heterotic orbifolds with N = 0 target-space supersymmetry
and vanishing cosmological constant and dilaton tadpole.
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3.5 Loopholes beyond toroidal symmetric orbifolds
So far, we have elaborated on a no-go result that applies to heterotic strings on symmetric
toroidal orbifolds only. As a first idea for more general compactifications beyond symmetric
toroidal orbifolds, one could think about compact spaces where the underlying geometry
is not a torus but e.g. a smooth Calabi–Yau n-fold, which in turn has to allow for some
automorphisms of finite order. Apart from that, one should keep in mind that the type II
counterpart of our idea only works in asymmetric orbifolds. It is therefore natural to ask
whether an asymmetric action point group action may possibly be the missing ingredient.
We will comment on these two possibilities and the conditions necessary for them to work
here.

Calabi–Yau manifolds with finite automorphisms. Think about a Calabi–Yau
threefold (e.g. an N = 2 supersymmetric K3×T2) with special features, namely that it
has an automorphism of finite order, which we assume is a rotation (any translational
components will not have any action on target-space spinors whatsoever, so we can ignore
this). We also assume that this symmetry exists at least at some point in the Calabi–Yau
moduli space. The idea would be now that the finite rotations preserve a set of (common!)
Killing spinors that are, however, disjoint from the set of Killing spinors on the Calabi–Yau.
That way, one circumvents the negative result of the previous sections, namely that
discrete rotations seem to be unable to preserve local Killing spinors without permitting
also global ones. On the other hand, one cannot keep too much hope for this construction,
for the following reason: It is known that many Calabi–Yau manifolds (especially the
phenomenologically favored complete-intersection CYs (CICYs)) can be deformed in one or
more ways to look like a (toroidal) orbifold by going to an appropriate limit in moduli space
referred to as orbifold point. In our example, the K3 two-fold possesses orbifold limits to
e.g. T4/Z2 or T4/Z4. There is no reason why this deformation should no longer be allowed
if the discrete automorphism is modded out. Hence, any orbifold limit of a Calabi–Yau
with the discrete automorphism modded out will yield just one of the symmetric toroidal
orbifolds for which we have already shown that the desired construction (with local but
not global Killing spinors) does not exist, and therefore this construction does not seem to
provide a promising way out.

Asymmetric (toroidal) orbifolds. Let us now discuss asymmetric orbifolds. Unlike
in the type II construction, where this precisely did the trick, the action of the asymmetric
twist on the leftmover has practically no influence on the result, because, as we have
seen, the only thing to look at is the rightmover partition function. However, allowing for
asymmetric constructions still brings us beyond the excluded cases, because the number
of available point groups is now by far bigger than in the symmetric case, cf. [67]. For
example, in two dimensions, the maximally allowed order of discrete rotations in symmetric
orbifolds is six, while it is twelve in the asymmetric case [68, 69]. One can assume that
there is a fairly large number of discrete groups we have not looked at so far, that might
possibly possess precisely the properties we are looking for to ensure a vanishing one-loop
partition function. However, as we will argue in the next section, we cannot be optimistic
that any discrete group possesses the right four-dimensional representation at all.
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3.6 Conjecture for general discrete groups

Recall one of the observations from the computer-aided non-existence proof in section
3.4.3, namely that we never got so far to check if any of the generated four dimensional
representations matches a six-dimensional geometric rotation via [4]2 = 6. This might
be just by coincidence, however, given the sheer number of tested point groups in the
carat-classification, we still find it intriguing. In particular, the fact that the requirement
of an associated geometric action does not matter seems to indicate that this result is in
fact independent of orbifold compactifications. However, we do not have a rigorous proof
for this statement. Hence, we formulate this claim in the form of the following

Conjecture. For any given finite group H, any representation D of H can
fulfill no more than three out of the following four properties.

1. The dimension of the representation is four.

2. D has trivial determinant, that is ∀θ ∈ H, it holds that detD(θ) = 1.

3. D does not contain a trivial singlet of H.

4. D branches into at least one trivial singlet of any ZN subgroup of H.

Note that any requirement of isomorphy to a geometric six-dimensional action has
disappeared completely. The only connections to heterotic orbifolds are the dimension of
the representation (stemming from SU(4) ∼= Spin(6)) and the condition on the determinant
(in order to define spinors). As we will show shortly, both these conditions are crucial for
the conjecture to hold, as otherwise counter-examples are easily constructed.

We have extended our computer-aided search for four-dimensional representations
fulfilling all conditions on the conjecture beyond the 1,594 discrete groups appearing in the
carat-classification to O(100, 000) other discrete groups from the SmallGroups library
of GAP with order less than 500. None of the checked groups possesses a four-dimensional
representation that would invalidate our conjecture. Given the fact that the groups in the
carat-classification have orders of up to 103,680, we regard the non-observation of any
such four-dimensional representation as a strong piece of evidence for our conjecture.

Although we have formulated and tested the conjecture without making any references
to physics, it would still have physical consequences if it were ultimately true for all finite
groups, as then also the last loophole, namely asymmetric orbifolds, would be ruled out,
because there are simply no discrete groups that act on the rightmover in the desired
manner.

Let us now examine why stronger versions of the conjecture, i.e. where some of the
requirements on the properties of the representation are lifted, cannot be formulated.
In particular, we have seen in the previous sections that once a representation violates
condition 3., namely contains a trivial singlet of the group H, condition 4. is automatically
satisfied, no matter what the dimension or the determinant of the representation is (“local
Killing spinors are also global ones”). Hence, we will focus on the requirements on the
dimensionality and the determinant, which are less intuitive.
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Lifting the constraint on the dimensionality. At the first sight, there seems to be
no reason why the dimension of the representation matters for its branching behavior.
However, as we shall show here, it is possible to construct a five-dimensional representation
(violating condition 1.) that still fulfills the conditions 2., 3. and 4. in the conjecture. To
this end, we consider the quaternion group Q8 (see e.g. [70]) and take the five-dimensional
representation to decompose into irreducible representations of Q8 according to

5 = 1+− ⊕ 1−+ ⊕ 1−− ⊕ 2 . (3.48)

Specifically, in this way, the two generators θ1 and θ2 of Q8 take the explicit form

D5(θ1) =


1
−1

−1
−i

−i

 , and D5(θ2) =


−1

1
−1

−1
1

 .

(3.49)

Note that the representation has unit determinant, and that it does not contain the trivial
Q8-singlet 1++. Moreover, in each branching into the various ZN subgroups generated by
the elements of Q8, there is at least one trivial element of that subgroup [70]. Therefore,
all conditions of the conjecture are fulfilled, except the dimensionality. Hence, in order for
the no-go statement of the conjecture to hold, it is imperative to insist on four-dimensional
representations.

Lifting the constraint on the determinant. As with the dimensionality, this con-
straint could be taken as an artifact coming from the spinor interpretation, and it is not
clear how this requirement should constrain the branching behavior as predicted by the
conjecture. To prove this claim, we again construct an example that fulfills all but one of
the conditions in the conjecture, namely in this case conditions 1., 3. and 4., while 2. is
violated.

This time, we use a representation of the group T7 of order 21, for details on this
group see e.g. [70]. The irreducible representations of T7 are the following: There are
two three-dimensional representations 3 and 3 that are related by complex conjugation.
Moreover, aside from the trivial singlet 10 there are two non-trivial ones, 11 and 12. The
elements of T7 generate two different ZN subgroups: a Z7 and a Z3. As for the branching,
a singlet 1q, q ∈ {0, 1, 2}, always branches into a 1q of Z3 and in the trivial singlet of Z7.
On the other hand, the branching of the triplets into Z7 representations never contains a
Z7-singlet, whereas the branching of the triplets into Z3 representations always contains a
10 of Z3. Using this information, we choose the following four-dimensional representation
as our counter-example

4 = 3⊕ 11 , (3.50)

which does not contain a trivial singlet but does not have determinant one. As for the
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branching, we find that

4 = 3 ⊕ 11 of T7

↓ ↓
10 ⊕ 11 ⊕ 12 ⊕ 11 of Z3

11 ⊕ 12 ⊕ 14 ⊕ 10 of Z7

(3.51)

and hence that the representation 4 branches in one ZN -singlet for each ZN subgroup of
T7. Therefore, all conditions except the lifted condition on the determinant are fulfilled,
which again tells us that condition 2. in the conjecture is indeed needed in order to make
the no-go statement.

3.7 Concluding remarks
In this chapter, we study under which conditions the one-loop cosmological constant (and
with it the dilaton tadpole) of heterotic string models on symmetric toroidal orbifolds
vanishes. In this setup, the cosmological constant is given as the modular integral over the
one-loop partition function. As it is known that the partition function (and then of course
also the integral over it) vanishes identically for supersymmetric compactifications, we put
a special focus on non-supersymmetric orbifolds. We first identify the various possibilities
for the vanishing of the cosmological constant that are tied to properties of the one-loop
partition function, which is an expansion in terms of (g, h)-twisted sectors, where g, h can
be any pair of commuting space group elements. In general, the heterotic partition function
of a (g, h)-twisted sector has a complicated dependence on the specific gauge embedding
consisting of shifts and Wilson lines acting on its leftmoving degrees of freedom. We find
that if we insist that the cosmological constant vanishes in a model-independent manner
(i.e. to some degree independent of the gauge embedding), the (fermionic) rightmover
partition function in each (g, h)-twisted sector needs to vanish on its own.

We then proceed to study under which conditions the rightmover partition function
vanishes sector per sector. We find that the (non-)vanishing of a (g, h)-sector depends on
the embedding of the geometric orbifold twist in spinor space. Specifically, by studying
Riemann identities for Jacobi theta-functions appearing in the rightmover partition function,
we identify the condition that the spin embedding of the geometric twist must be such
that each commuting pair g, h can preserve at least one common Killing spinor. This
condition is automatically satisfied in supersymmetric compactifications, whereas the
situation is not so clear if SUSY (corresponding to a Killing spinor compatible with all
space group elements g) is absent. However, if we were able to find an orbifold where
the geometric twist acts on spinors such that each (g, h)-twisted sector preserves at least
one “local” Killing spinor but none globally, we would have indeed found an example
of a non-supersymmetric heterotic string compactification with a nevertheless vanishing
cosmological constant.

Our motivation to look for spinor embeddings with the required properties comes from
(asymmetric) compactifications of type II superstrings. It is known that a duality between
heterotic and type II strings arises as a side-effect of compactification. It is believed
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that this duality continues to exist also in non-supersymmetric compactifications [71].
Moreover, there do exist models with a vanishing one-loop cosmological constant in type
II constructions [58, 72, 73], although it is debated whether or not this result can truly
persist in perturbation theory [74], and it is also not clear if cosmological constant of
the heterotic dual receives non-perturbative contributions [75]. At any rate, the type II
constructions work because precisely every twisted sector vanishes on its own, while still
not preserving a global supercharge, by choosing an asymmetric orbifold action that causes
either the rightmover or the leftmover in each (g, h)-twisted sector to vanish. We show in
this chapter that the same construction cannot work in the heterotic case, simply because
choosing a gauge embedding that causes the leftmover to vanish would also project out the
massless graviton and hence render the model phenomenologically unattractive. Still, the
positive type II result may cause one to believe that a similar construction has a chance to
work on the heterotic side as well, specifically with an appropriate spin embedding acting
on the rightmover.

In order to determine whether or not there exists a non-supersymmetric heterotic
orbifold with vanishing partition function in each sector, we find that we have to check if
the spin embedding of any of the admissible orbifold geometries (tabulated by the carat-
classification) has the desired properties concerning locally preserved Killing spinors. In
principle, this could be done by explicitly constructing the set of possible spinor embeddings
for each geometry and then checking each (g, h)-sector for locally preserved Killing spinors
as well as the entire space group to ensure the non-existence of globally preserved Killing
spinors. However, instead of constructing the explicit representation matrices, we make
use of the fact that both the geometric orbifold twist and its embedding into spinor space
are representations of a discrete group. In particular, we are able to map the conditions on
the spinor embedding to constraints on the representations of the respective finite group,
which greatly simplifies the procedure and removes any ambiguity coming from the double
cover properties of the spin embedding.

Unlike what one might expect from the type II case, the result of our analysis is that
none of the available orbifold point groups admits a spinor embedding that both breaks
SUSY globally but still lets the partition function vanish sector per sector. In particular,
even the weakest necessary condition, namely that each element g of the space group
has to preserve some Killing spinor (which corresponds to the requirement to that all
(1, g)-twisted sectors and their images under modular transformations vanish) appears to
be violated and hence the rightmover partition function does precisely not vanish sector per
sector as soon as one considers a non-supersymmetric compactification. We also comment
on how this no-go result may carry over to more involved constructions, such as quotients
of Calabi–Yau manifolds by some finite group where the Killing spinors preserved by the
CY are incompatible with those of the finite group, or asymmetric orbifolds.

While iterating over the finite set of admissible discrete point groups, we make the
observation that our failure to find a four-dimensional representation with the desired
properties does not depend at any point on the fact that the geometric counterpart of the
spinor action has to act crystallographically on a lattice. This fact prompts us to formulate
the observed non-existence of such representations as a mathematical conjecture that is
conceived to hold for any finite group. Specifically, we conjecture that no finite group
possesses a representation that is (a) four-dimensional, (b) has determinant one, (c) does
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not contain a trivial singlet of the group but (d) branches into at least one trivial singlet of
each cyclic subgroup. While we do not have a rigorous proof, we check a large number of
discrete groups and find no counterexample. We do, however, easily find counterexamples
as soon as one of the mentioned conditions (a-d) is removed. Hence, we believe that our
conjecture is formulated in the strongest version possible (i.e. with the minimal set of
assumptions).

Outlook. Let us now start by discussing the impact of our results on constructions
that aim to have a vanishing or small cosmological constant in a model-independent way,
i.e. mostly independent of the gauge embedding. Given that the no-go result of this chapter
seems to extend to any non-supersymmetric heterotic string construction, it motivates
constructions with an exponentially suppressed cosmological constant. As mentioned
earlier, heterotic models with a small but finite cosmological constant have already been
constructed [56], even so with a positive one [76]. In particular, there are constructions
where one is able to interpolate between SUSY and non-SUSY models by varying a modulus
on the orbifold [64, 77, 78, 79], and some that solve the decompactification problem (see
for example [80]).

On the other hand, our general group theory conjecture may be applied in Calabi–Yau
constructions without toroidal limits that can be described as gauged linear sigma models
(GLSMs) [81, 82] or non-supersymmetric Gepner models [83, 84]. It could also prove
useful in the study of more exotic orbifold-like constructions [85]. Finally, studying the
representations of the point group (and especially their branching into Abelian subgroups)
may find its application in (supersymmetric) heterotic model building on non-Abelian
orbifolds [86, 87].
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Discrete gauge symmetries from
orbifolds

4.1 Introduction

Discrete symmetries play an important role in all particle physics model building—especially
in bottom-up models. Often, discrete symmetries are invoked in order to forbid dangerous
couplings that would otherwise render a theory unrealistic, or to address the flavor problem.
Importantly, there exist good reasons to believe that ultimately all global symmetries—
discrete or continuous—should be gauged [13].

On the other hand, discrete symmetries frequently arise from gauge symmetries when
a gauge symmetry is broken. In four-dimensional physics, breaking a gauge symmetry is
often achieved by employing a Higgs mechanism that spontaneously breaks the gauge group
G to a (continuous) subgroup H. Along with the unbroken gauge group H, also discrete
symmetries can survive, which then act as outer automorphisms of H. Within the context
of heterotic model building (or in models with more than four spacetime dimensions in
general), especially when constructing models that contain grand unified theories (GUTs)
as intermediate steps, one would of course like to look for similar realizations. However,
spontaneous symmetry breaking is notoriously hard to achieve in (heterotic) string vacua.
The reason is that the necessary large representations of the gauge group are often not part
of the spectrum. For example, in order to break an SO(10) GUT to the Pati–Salam group,
one needs a Higgs in a 54 of SO(10), but there is no known stringy SO(10) model that
possesses a Higgs in a 54 in its spectrum, making it impossible to achieve the corresponding
gauge symmetry breaking by a vacuum expectation value for the Higgs.

However, it is known that in models with extra dimensions, gauge symmetries cannot
only be broken spontaneously, but alternatively by orbifolding [35, 36, 88], namely by
building on the fact that some of the higher-dimensional gauge bosons may not survive
the orbifold projection as soon as non-trivial shifts and Wilson lines are turned on. In
these settings, one starts with an “upstairs” gauge theory that lives in extra dimensions,
and then compactifies the theory on an orbifold. If the orbifold is chosen such that it
acts non-trivially on the gauge degrees of freedom, this allows one to break the upstairs
gauge group to some subgroup. Roughly, the picture is then the same as for spontaneous
symmetry breaking, namely that the low-energy theory has a smaller symmetry, whereas
the full (UV) symmetry eventually gets restored once the relevant energy scales surpass a
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certain threshold. It also turns out that—as in the case of spontaneous breaking—there can
be discrete symmetries that survive the breaking along with the continuous ones. These
discrete symmetries (that are global from a low-energy perspective) have the appealing
feature that they ultimately descend from a gauge theory, which is why they are often called
discrete gauge symmetries [89, 90]. With the existence of these discrete gauge symmetries,
the idea of gauge symmetry breaking through orbifold boundary conditions was popularized
by the observation that many problems in GUT model building, such as the doublet-triplet
splitting, can be solved in a simple fashion [91, 92, 93, 94, 95, 96, 97, 98]. While the
unbroken low-energy continuous gauge symmetries are studied thoroughly [36, 97, 99], the
same cannot be said about the gauge origin of discrete remnant symmetries that survive
the orbifold projection along with the continuous ones.

Another way to study discrete symmetries in orbifold theories is directly via string
theory. In a full string model, the possible couplings between orbifold-invariant states
are restricted by the so-called string selection rules. The two most prominent examples
for this class of restrictions are the point group and space group selection rules. These
selection rules allow or forbid couplings between strings based on their localization on
the orbifold, by considering whether or not a given set of strings can split and join on a
geometrical level. Therefore, these symmetries arise from the constructing space group
elements of states in the theory. Specifically, the string selection rules operate on the level
of conjugacy classes of space group elements. From a four-dimensional perspective, these
conjugacy classes correspond to orbifold-invariant states in the low-energy effective (field)
theory. The low-energy states carry their localization in the orbifold dimensions (bulk
versus brane fields) as additional quantum numbers. On these quantum numbers, the
stringy point group and space group selection rules generically act as finite groups. It
has been demonstrated in various instances how phenomenologically interesting discrete
groups can arise from this construction. However, it is unclear if this approach captures all
surviving discrete symmetries or whether some are overlooked. Moreover, in this setting,
it is not obvious how the origin of the discrete symmetries can lie in a conventional gauge
symmetry. While there have been attempts to make this link within string theory (in the
context of symmetry enhancement) [100], the results are hard to carry over to a generic
field theory model. The reason for this is that by far not every conceivable gauge symmetry
can be realized by symmetry enhancement (only simply-laced groups are possible), and
that the intuition is that one should be able to study the survival of a discrete remnant
symmetry from a gauge symmetry no matter how the gauge symmetry is realized.

Therefore, the purpose of this chapter is to study the emergence of discrete symmetries
that survive an orbifolding procedure from gauge symmetries. We start with a purely
field-theoretic discussion that is largely independent of the localized matter and focuses on
the origin of discrete remnant symmetries in higher-dimensional gauge theories. To this
end, we study the compactification of six-dimensional Yang–Mills first on a torus and then
on an orbifold in section 4.2. In section 4.3, we revisit the known conditions for unbroken
continuous gauge symmetries, and explain how these conditions have to be modified to
capture the existence of all discrete symmetries surviving the orbifold projection that were
overlooked previously. After the theoretical foundations are in place, we then study the
applications to orbifold GUT model building. In particular, we demonstrate how a SO(10)
GUT that is broken to its Pati–Salam subgroup by orbifolding exhibits a discrete left-right
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parity (referred to as D-parity) at low energies. Moreover, we present two examples with
promising properties for flavor model building in orbifold GUT models. This chapter is in
parts based on ref. [16, 18].

4.2 Gauge theories in extra dimensions
In this section, we will review the relevant setup for the study of remnant symmetries
after orbifolding. To this end, we will study a six-dimensional Yang–Mills theory with
gauge group G which we will refer to as the upstairs theory. Then, we will discuss how
this theory can be compactified to four dimensions on a toroidal T2/ZN orbifold.

In terms of the field content, the upstairs theory contains gauge bosons V M(x, y),
M = 0, . . . , 5 associated with the upstairs gauge group G, and possibly their fermionic
superpartners. For our purposes, it is sufficient to study the bosonic degrees of freedom
only, whose Lagrangian is the standard one and reads

L = − 1
2 tr

(
FMNF

MN
)
. (4.1)

Here, FMN denotes the field strength tensor. As we are dealing with a non-Abelian
gauge theory, the gauge bosons can be expanded in terms of the generators Ta of the Lie
algebra associated with G. A particularly useful basis for the Lie algebra generators is
the Cartan–Weyl basis T(CW)

a . It consists of the Cartan generators HI , I = 1, . . . , rank(G),
that span the maximal commuting subalgebra, that is [HI , HJ ] = 0. Moreover, there
are the ladder operators Ew, where w is an element of the set W that consists of the
non-trivial roots of G. By expanding V M(x, y) in terms of these operators

V M(x, y) =
∑
I

V M
I (x, y)HI +

∑
w∈W

V M
w (x, y)Ew =

∑
a

V M
a (x, y) T(CW)

a , (4.2)

we obtain the component fields V M
I (x, y) and V M

w (x, y) associated with the corresponding
Lie algebra generators. We choose this particular spitting because, as we will see later
on, the fields associated with Cartan generators will transform differently than those
associated with ladder operators.

As we will eventually consider compactifications of the six-dimensional theory to four
dimensions, we can also split the vector field V M(x, y) depending on the value of the
vector index M . For notational simplicity, we have already split the spacetime coordinates
into coordinates x in the Minkowski spacetime and coordinates y = (y1, y2)T that will
eventually lie in the extra dimensions. In particular, we take the basis vectors of y to
coincide with the lattice basis of a two-torus T2 that will later be orbifolded to a T2/ZN
orbifold, as described in section 4.2. To this end, we also have to split the gauge fields
V M (x, y) into components with indexM = µ in the four-dimensional Minkowski spacetime
and with index M = 4, 5 in the internal compact dimensions on the torus/orbifold. In
order to perform this splitting, let us recall that if the setting would descend from a
heterotic string model, the rightmoving H-momenta of the six-dimensional vector fields
V M(x, y) would be

q ∈
{(
±1, 0, 0, 0

)}
. (4.3)
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For the two cases M = 0, . . . , 3 and M = 4, 5, the vector fields V M(x, y) get split into
four-dimensional gauge bosons

V µ(x, y) with q ∈ {(±1, 0, 0, 0)} , (4.4)

and a pair of complex four-dimensional scalars

χ±(x, y) = 1√
2
(
V 4 ± iV 5

)
with q ∈ {(0,±1, 0, 0)} , (4.5)

all of which transform in the adjoint representation of the upstairs gauge group G. Let us
note, however, that because the scalar fields χ originate from a higher dimensional vector,
they still carry a vector index in the extra dimensions, and hence are going to transform
non-trivially under rotations in these dimensions.1 Let us now discuss the compactification
of this theory on a T2/ZN orbifold. We will follow the usual procedure and consider first
the compactification on a torus.

Torus compactification. As discussed in chapter 2, compactifying on a torus amounts
to imposing periodicities for the coordinates y

y ∼ y + e1 , (4.6)
y ∼ y + e2 , (4.7)

where “∼” indicates that two points are now identified and where we have introduced the
two linearly independent basis vectors ei that span the lattice of the torus T2. Depending
on the orbifold, we will choose different torus metrics Gij = ei · ej. In order to span the
entire lattice of the T2 one can now take a general, integral linear combination niei for
ni ∈ Z, where summation over i = 1, 2 is implied. Because the space has a periodicity, we
also have to impose boundary conditions on the fields V µ

a (x, y) and χa(x, y). Specifically,
torus periodicity implies that for all ni ∈ Z

V µ
a (x, y + niei) = A(ni)V µ

a (x, y)A(ni)−1 , (4.8)
χa(x, y + niei) = A(ni)χa(x, y)A(ni)−1 . (4.9)

Here, the matrices A(ni) are discrete gauge transformations and can be parametrized as

A(ni) = An1
1 A

n2
2 , (4.10)

where we used that [Ai, Aj] = 0 for consistency. In a UV-complete model descending
from the heterotic string, A1 and A2 would be in one-to-one correspondence with discrete
Wilson lines. However, in our case we will choose A1 = A2, since this choice of boundary
conditions corresponds to the case of a torus with trivial gauge background fields, i.e. with
trivial Wilson lines. Hence, the boundary conditions (4.8) and (4.9) then imply that the
fields V µ

a (x, y) and χa(x, y) are periodic on the torus. Therefore, the usual Kaluza–Klein
1It is nice to notice here that the vector fields VM , together with their fermionic superpartners,

fit into a six-dimensional N = 1 representation. However, upon dimensional reduction, the resulting
four-dimensional vectors and scalars (again together with their superpartners) fit into a four-dimensional
N = 2 vector multiplet. The extra supersymmetry is later on broken by the orbifold twist.
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expansion yields zero-modes V µ
a (x) and χa(x), for both V µ

a (x, y) and χa(x, y), which are
constant functions in the extra dimensions and massless from the four-dimensional point
of view. Because there are zero-modes for V µ

a , the upstairs gauge symmetry G remains
unbroken after torus compactification, i.e. the vector and scalar fields in the fundamental
representation see transformations of the full gauge group G

V µ G7−−→ U V µ U−1 − i
g

(∂µ U) U−1 , (4.11)

χ
G7−−→ U χU−1 , (4.12)

where U = U(x) is in the fundamental representation of G and g denotes the associated
gauge coupling. Let us now proceed to the orbifolding, i.e. dividing out a discrete rotational
symmetry, in the next step.

Orbifold GUT breaking. As we have seen in the string theory construction, a geometric
orbifold twist can in general be accompanied by a non-trivial action on the gauge degrees
of freedom. In the same spirit, we will now consider a purely geometric rotation and then
study the inclusion of a simultaneous gauge transformation. In order to divide out the
discrete geometric rotation, we have to choose the torus-lattice such that it exhibits a
ZN rotational symmetry ϑ with ϑN = 1. In two dimensions, the allowed orders of the
wallpaper groups for ϑ are N = 2, 3, 4, 6. In the case N = 2 the basis vectors e1 and e2
simply have to be linear independent. For all other orders we set ϑ e1 = e2. In order
to orbifold the two-torus T2 to a T2/ZN orbifold, we mod out this ZN symmetry, by
identifying points y on T2 which are related by a (360/N)◦ rotation generated by ϑ,

y
Z

geom.
N7−−−−−→ ϑ y ∼ y . (4.13)

Note that this rotation is an element of the higher-dimensional Lorentz group. Hence,
under this geometrical action our six-dimensional fields transform according to

V µ(x, y)
Z

geom.
N7−−−−−→ V µ(x, ϑ−1 y) , and χ(x, y)

Z
geom.
N7−−−−−→ exp

(2πi
N

)
χ(x, ϑ−1 y) , (4.14)

where, as discussed above, the χ fields obtain an extra phase because they transform as
the internal components of the six-dimensional vector V M(x, y) of the six-dimensional
Lorentz symmetry. Now, let us discuss how the ZN orbifold can be extended from its pure
geometric action (4.13) to include a discrete ZN transformation from the gauge symmetry
G. In addition to the geometric action (4.13), we take the generators of the Lie algebra of
G to transform non-trivially under the gauge embedding

T(CW)
a

Z
gauge
N7−−−−−→ P T(CW)

a P−1 with PN = 1 , (4.15)

where P ∈ G acts as a discrete gauge transformation. That is, we set U(x) = U = P =
constant in (4.11). Because we take P to be an element of G, we project on an inner
automorphism. We hereby exclude the possibility to choose the gauge action P as an
element of the outer automorphism group of G, which is studied in [97]. Moreover, the
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order of P can in general differ from the order of ϑ. Like any Lie group element, P can be
written as the exponentiation of a linear combination of Lie algebra generators

P = exp
(
2πiVaT(CW)

a

)
. (4.16)

Since we restrict ourselves to Abelian point groups, P must always be an element of the
maximal torus of G, i.e. an element of the maximal Abelian subgroup which is isomorphic
to a U(1)rank(G). Therefore, we can always choose the Cartan–Weyl basis such that P can
be expanded exclusively in the Cartan generators

P = exp (2πiV ·H) , (4.17)
where the vector V is “quantized” such that PN = 1. In this way, one can achieve that—as
soon as explicit matrices are considered—the explicit matrix form of P is always a diagonal
matrix. As we will see below, making this choice of basis in order for P being diagonal has
the effect that the orbifold boundary conditions for the V µ and χ fields are automatically
diagonal. Again, in a model derived from the heterotic string, the vector V would be
associated with a shift vector.

All in all, the orbifold action O, generated by Zorb.
N is then given by the simultaneous

action of the geometric Zgeom.
N on the extra-dimensional coordinate y and the discrete

gauge transformation Zgauge
N generated by P . In particular,

O :
(
V µ(x, y)
χ(x, y)

)
7−→

(
P V µ(x, ϑ−1 y)P−1

exp
(

2πi
N

)
P χ(x, ϑ−1 y)P−1

)
. (4.18)

Then, in order to retain a four-dimensional zero-mode, fields must have zero-modes on the
torus (4.8) and (4.9), and be invariant under the action of O.

Orbifold conditions. Let us now discuss the boundary conditions for the six-dimensional
fields V µ and χ that arise from the combined action of (4.13) and (4.15). One observes
that in addition to the torus boundary conditions (4.8) and (4.9), the V µ and χ fields
have to fulfill the following orbifold boundary conditions

V µ(x, ϑ y) = P V µ(x, y)P−1 , (4.19)

χ(x, ϑ y) = exp
(2πi
N

)
P χ(x, y)P−1 , (4.20)

to be invariant under O. If the gauge action P is chosen to be non-trivial, not all zero-modes
of V µ that exist on the torus can survive the orbifolding, which means that the gauge
group gets broken to some subgroup. For any zero-mode of the scalar χ fields to survive,
a non-trivial P is necessary to cancel the exp

(
2πi
N

)
phase that arises from the vector index

of the χ fields in the orbifold plane. It is apparent that the boundary conditions for the
component fields V µ

a and χa depend on the commutator of the respective T(CW)
a with P .

Now, in order to write down closed expressions for the boundary conditions, one makes
use of the commutation relations of the Lie algebra in Cartan–Weyl basis

[HI , HJ ] = 0 , (4.21)
[HI , Ew] = wI Ew , (4.22)

[Ew, Ew′ ] =

Ew+w′ if w + w′ ∈ W
0 else

, (4.23)
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where W denotes the set of roots. Because P can be expanded in terms of the Car-
tan generators (see eq. (4.17)), one finds that transformation of the component fields
corresponding to Cartan generators induced by P is trivial

P HI P
−1 = HI . (4.24)

This is in accordance with the situation in string theory, where the breaking of E8 × E8 to
subgroups by shifts and (discrete) Wilson lines has no effect on the Cartan generators. On
the other hand, the ladder operators acquire a phase

P Ew P
−1 = exp (2πiV · w) Ew , (4.25)

where w denotes the root vector of Ew. By rewriting the boundary conditions (4.19) and
(4.20) in terms of the component fields V µ

a and χa using this information, we obtain the
following diagonal boundary conditions for the four-dimensional vector fields

V µ
I (x, ϑ y) = V µ

I (x, y) , (4.26)
V µ
w (x, ϑ y) = exp (2πiV · w) V µ

w (x, y) , (4.27)

and for the scalars χa

χI(x, ϑ y) = exp
(2πi
N

)
χI(x, y) , (4.28)

χw(x, ϑ y) = exp
(

2πi
(
V · w + 1

N

))
χw(x, y) . (4.29)

We observe that because the V µ
I (x, y) have zero-modes on the torus, and moreover have

only trivial orbifold boundary conditions, they always have four-dimensional zero-modes
even after orbifolding. Hence, the unbroken gauge symmetry after orbifolding is at least a
U(1)rank(G), that is, the rank of the unbroken gauge group is always equal to the rank of
G. If some of the fields V µ

w (x, y) corresponding to ladder operators have trivial orbifold
boundary conditions as well, namely when

V · w = 0 mod 1 , (4.30)

the unbroken gauge symmetry can also be non-Abelian. In the next section, we will study
a systematic approach to determine the unbroken gauge group, that in addition reveals any
discrete remnant that survives the orbifold action O along the continuous gauge symmetry.
On the other hand, whenever

V · w = − 1
N

mod 1 , (4.31)

we know that there are massless scalars in the four-dimensional spectrum, that are coming
from the corresponding χw(x, y) fields. However, in what follows we will focus on the
unbroken gauge symmetry and hence we will be more interested in surviving modes of V µ

rather than the χ fields.
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4.3 Residual gauge symmetries
Let us now study the surviving modes of the six-dimensional gauge symmetry G in more
detail. We have already seen that Cartan generators always survive provided the ad hoc
condition (4.30) in order to obtain a non-Abelian unbroken continuous gauge symmetry
after orbifolding is fulfilled. We now consider also the possibility to retain unbroken discrete
symmetries from G in addition to the continuous ones. To this end, we study under which
circumstances a global transformation U ∈ G is compatible with the orbifolding procedure.
In particular, a surviving symmetry transformation from G has to commute with the
orbifold boundary conditions (4.19) and (4.20) in order to remain unbroken, i.e.

(U ◦O)(f) != (O ◦ U)(f) , (4.32)

for every field f in the theory. Note that this condition amounts to the requirement that U
must be a homomorphism of the orbifolded theory. Therefore, this condition ensures that
orbifold invariant states come in well-defined representations of any symmetry generated
by the various surviving elements U . In terms of the four-dimensional vector fields V µ

a (x, y)
this condition becomes

V µ
a (x, y)Ta V µ

a (x, ϑ−1 y)P Ta P
−1

V µ
a (x, ϑ−1 y)U P Ta P

−1 U−1

V µ
a (x, y)U Ta U

−1 V µ
a (x, ϑ−1 y)P U Ta U

−1 P−1 ,

G

O

G

!=

O

(4.33)

where the global transformation U ∈ G is defined according to (4.11), with U(x) ≡ U and
hence (∂µU)U−1 = 0. Because the transformation of the χa(x, y) fields is the same up the
the exp

(
2πi
N

)
phase, the corresponding condition is automatically fulfilled once (4.33) is

satisfied. We now observe that the component fields V µ
a (x, ϑ−1 y) in (4.33) can be factored

out, so that the resulting condition can be formulated in terms of P , U and the Lie algebra
generators T(CW)

a . It then reads

T(CW)
a

(
P−1 U−1 P U

)
=

(
P−1 U−1 P U

)
T(CW)
a . (4.34)

Hence, the combination P−1 U−1 P U has to commute with all Lie algebra generators.
Now, Schur’s lemma states that any matrix that commutes with all generators of a Lie
algebra must be proportional to the identity, hence it follows that

P−1 U−1 P U =: [P,U ] ∝ 1 . (4.35)

Here, we used the definition of the group-theoretical commutator [101]

[A,B] = A−1B−1AB (4.36)

for two group elements A,B ∈ G (as opposed to the usual commutator for Lie algebra
elements). To fix the proportionality in (4.35), we use that P is of order N (i.e. PN = 1).
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Since [1, U ] = 1 for any U , we see that the proportionality factor in (4.35) can be at most
an N -th root of unity. This yields our main condition for any unbroken symmetries after
orbifolding

[P,U ] = ωk 1 for k ∈ {0, 1, . . . , N − 1} , (4.37)

where ω = exp 2πi
N
. In order for a transformation U to survive the orbifolding, it does

not have to completely commute with the gauge action P (which would correspond to
[P,U ] = 1), it only has to do so up to an element that is proportional to the identity
(corresponding to the solutions where k 6= 0). In the existing literature, this fact has not
been appreciated yet.

However, we can immediately derive a simple necessary condition for when (4.37) can
have such non-trivial solutions. Because P,U are both elements of G, also their commutator
[P,U ] must be from G. On the other hand, Schur’s lemma requires that [P,U ] ∝ 1, which
means that [P,U ] must be an element of the center Z(G) of G. That is, the condition
(4.37) can only have non-trivial solutions if

ωk 1 ∈ Z(G) for some k ∈ {0, 1, . . . , N − 1} . (4.38)

Depending on the properties of the group G, this condition constrains the allowed values of
k. Clearly, as every group contains the identity, the value k = 0 is always allowed. However,
it may be that no other solutions with k 6= 0 exist. Let us illustrate the restrictiveness
of this conditions for the two classes of gauge groups that appear most frequently in
GUT-related model building, namely SU(M) and SO(2M).

We start by considering an example where G = SU(M) and we use a ZN orbifold
for compactification. As it is well known, the center of SU(M) is ZM . In order for the
commutator ωk1 to be in the center of SU(M) for k 6= 0, we have to require the dimension
of the group M and the order of the orbifold twist N to be not coprime.

For the choice G = SO(2M) the conditions are even more restrictive. As the center of
an SO(2M) is always a Z2, we immediately observe that the order of the orbifold twist
has to be even in order for solutions to (4.37) with non-zero k to exist.

Note that these conditions are only necessary ones, which do not automatically guar-
antee that any discrete remnants survive. To this end, we examine the possible solutions
to the condition (4.37) in more detail now. Let us start with the continuous symmetries
from G that survive the orbifolding.

4.3.1 Unbroken continuous gauge symmetries
We start with the continuous gauge symmetries as they are the main link to the usual
Higgs mechanism employed in four-dimensional field theory. Moreover, in practical model
building, one often has specific choices in mind for both the upstairs group G and the
continuous subgroup it is broken to (one would for example want to break an SO(10) to
the Pati–Salam group, see example 4.4.1). There exist two equivalent methods to identify
the unbroken continuous gauge symmetries that survive the orbifolding.

The first, well known, way is by noticing that the unbroken continuous gauge interactions
are mediated by the zero-modes of the higher dimensional gauge bosons. In our T2/ZN
setup, these are the modes that fulfill trivial boundary conditions on both the torus (4.8)
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and the orbifold (4.26) and (4.27). Thus, as discussed already earlier, the gauge bosons
V µ
I (x, y) which are associated with the Cartan generators HI together with those gauge

bosons V µ
w (x, y) that are associated with roots w for which V ·w ∈ Z, have trivial boundary

conditions and therefore generate the unbroken continuous gauge group in four dimensions
as they possess massless modes.

Our main condition (4.37) provides a second way to identify the unbroken continuous
symmetries as already noted in [97]. In particular, the unbroken continuous symmetries
are continuously connected to the identity U = 1. Hence, we observe that in order to find
the continuous gauge symmetries that survive the orbifold projection, we have to set k = 0
in (4.37). Then, we expand a general transformation U to linear order around the identity

U = exp
(
iαa T(CW)

a

)
≈ 1+ iαa T(CW)

a . (4.39)

Here, we assume for the moment that the parameters αa are constant, i.e. they do not
depend on the spacetime coordinate x. This is necessary in order to make contact with the
commuting diagram in equation (4.33), where the transformation U was taken to be global
(and hence no (∂µU)U−1 term appears there). However, as we take U to be continuously
connected to the identity, there exists no obstruction to promote the solutions we are
about to find to local symmetries later on. Equation (4.37) yields the condition that needs
to be fulfilled by the various generators of the unbroken gauge symmetry

P−1
(
αa T(CW)

a

)
P = αa T(CW)

a . (4.40)

It is now straightforward to verify that this condition is equivalent to the requirement
of trivial boundary conditions. Since the gauge action associated with the orbifold twist
P is expanded in terms of the Cartan generators HI , as defined in (4.17), one can make
use of the definition of the Zgauge

N transformation (4.24) to confirm that both the Cartan
generators HI and the generators Ew with V · w ∈ Z satisfy (4.40), and remain unbroken
after orbifolding.

One may now be tempted to believe that all solutions to (4.37) with k = 0 are
automatically elements of the unbroken continuous gauge group, and only the ones with
k 6= 0 are discrete gauge symmetries. However, as we shall see now, this is not true.

4.3.2 Unbroken discrete gauge symmetries
As we have seen in the previous section, the condition (4.37) can be used to identify
generators that survive the orbifold projection and hence have trivial boundary conditions.
In particular, one needs to set k = 0 to obtain such zero-modes, which then are propagating
degrees of freedom and give rise to continuous gauge symmetries. Now, in order to
determine which discrete symmetries survive along with the continuous ones, one examines
the condition (4.37) for additional solutions, for both k = 0 and k 6= 0.

Let us start with the case k 6= 0 because it is more straightforward. Solutions to (4.37)
for some k 6= 0 do not correspond to zero-modes of the higher dimensional gauge field.
Hence, these symmetries look like global symmetries from a four-dimensional perspective,
as they do not correspond to dynamical gauge fields. Moreover, as they are not connected
to the identity, they give rise to discrete symmetries.
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In addition, there is also the possibility to obtain discrete symmetries from solutions
to (4.37) with k = 0. In order to see this, assume that the continuous surviving subgroup
of upstairs gauge group G after orbifolding is H. Now, H might not a simple, but rather a
semi-simple Lie group that can be written as

H = H1 ×H2 × . . . , (4.41)

where each Hi is a simple Lie group. Then, it can happen that some solution U that
fulfills the condition (4.37) with k = 0 is not an element of any of the gauge factors Hi. In
particular, the elements R of H are always block-diagonal

R =


R1

R2
. . .

 , (4.42)

where the individual submatrices Ri are elements of the factor groups Hi. However, it is
well possible that some solution U has a similar block-diagonal form, U = diag(U1, U2, . . . ),
but the various Ui are not elements of the corresponding Hi factor groups of H. Then, the
transformation U does not correspond to a propagating gauge boson of H. Hence, this
symmetry again gives rise to a discrete symmetry that looks like a global symmetry from
the four-dimensional perspective, and whose local nature only becomes clear by its origin
in the gauge group G.

We will now study a set of examples that illustrate the appearance of discrete remnants
as solutions to the condition (4.37) from a higher-dimensional gauge group G. To this
end, we consider discrete remnants from the case k = 0 in 4.4.1, where we show how the
known left-right parity in Pati–Salam GUT models can have a gauge origin. Moreover, we
also present how solutions from cases with k 6= 0 can provide valuable input for e.g. flavor
model building in section 4.4.2.

4.4 Examples and applications

In this section, we show how solutions to the main condition (4.37) can be obtained in
various orbifold GUT scenarios. We start our discussion with an example for discrete
symmetries from a solution with k = 0 in (4.37) that yields an Abelian symmetry.
Afterwards, we show how non-Abelian discrete symmetries can be generated by solutions
with k 6= 0.

4.4.1 Gauge origin of D-parity and left-right parity
In GUT model building, the Pati–Salam model [102] has the continuous gauge group

GPS = SU(4)× SU(2)L × SU(2)R . (4.43)

The idea here is that the SU(4) can be broken to the standard model SU(3)C group. In
addition, matter charged under GPS then falls into complete standard model generations
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of chiral matter. Moreover, GPS can be understood as an intermediate step when breaking
an SO(10) GUT to the standard model, as it fits into the sequence

SO(10) −→ GPS −→ GLR −→ SU(3)C × SU(2)L . (4.44)

Here we also introduced the left-right symmetric subgroup GLR of GPS

GLR = SU(3)C × SU(2)L × SU(2)R × U(1)B−L . (4.45)

Apart from these continuous symmetries, the Pati–Salam model also has a Z2 symmetry
that exchanges SU(2)L with SU(2)R and acts as complex conjugation on SU(4) repre-
sentations. In the literature, this symmetry is referred to as D-parity on the level of
the Pati–Salam group. There are field-theoretic models [103, 104] in which the D-parity
originates as part of the SO(10) supergroup that contains GPS. In particular, there are
four-dimensional GUT models where this symmetry can be preserved by breaking the
SO(10) GUT by giving a VEV to an appropriate Higgs field that transforms as a 54-plet
of SO(10). Moreover, the D-parity in general also survives the breaking of GPS to its
left-right symmetric subgroup GLR. At the level of the left-right symmetric subgroup this
Z2 is the well-known left-right parity [105]. Hence, the full symmetry of these settings,
including both continuous and discrete ones, is

[SU(4)× SU(2)L × SU(2)R]oZ2 or [SU(3)C × SU(2)L × SU(2)R × U(1)B−L]oZ2 . (4.46)

We will now demonstrate how this Z2 symmetry can be obtained as part of an SO(10)
GUT that is broken to GPS by orbifold boundary conditions rather than by Higgsing,
which to our knowledge has been overlooked in the existing literature on orbifold GUTs.

To this end, we will consider a theory with an upstairs gauge symmetry G = SO(10) in
higher dimensions that is then compactified on a Z2 orbifold. We will implicitly assume to
work with a T2/Z2 orbifold, but for this case we could have as well picked a five-dimensional
setting that is then compactified on a one-dimensional S1/Z2 orbifold. We choose the
gauge action associated with the Z2 twist that breaks the GUT by boundary conditions
to be

PPS = diag(−16;14) . (4.47)

This setting has been studied earlier in [98], where it was shown that the continuous gauge
symmetry after orbifolding indeed is the Pati–Salam group GPS. However, we now show
that there is an additional Z2 symmetry.

To this end, we will carefully rederive the result of [98] by using the methods described
earlier, and see how besides the continuous gauge group also a discrete Z2 survives. In
this setting, our main condition (4.37) yields

[PPS, U(k)] = (−1)k 1 for k ∈ {0, 1} , (4.48)

and we search for unbroken elements U(k) that are elements of SO(10). Let us first show
that setting k = 1 in our main condition (4.48) does not yield further unbroken symmetries.
To show this, let us parameterize U(1) to read

U(1) =
(
O6 A
B O4

)
. (4.49)
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Then, the condition (4.48) with k = 1 amounts to

O6 = O4 = 0 , (4.50)

and requiring U(1) to be an orthogonal matrix yields, among other conditions, that

AT A = 16 , (4.51)

which does not have a solution. Hence we have to focus on symmetries that commute with
the orbifold boundary condition. If we set k = 0, our condition (4.48) reads

PPS U(0) = U(0) PPS . (4.52)

The most general SO(10) matrix satisfying this condition is block-diagonal, with a six-by-six
and a four-by-four block

U(0) =
(
O6 0
0 O4

)
∈ SO(10) . (4.53)

As U(0) must be an element of SO(10), the six-by-six and the four-by-four block are subject
to conditions on their determinants. In particular, we find the conditions

OT
6 O6 = 16 and OT

4 O4 = 14 and detO6 = detO4 = ± 1 . (4.54)

The individual blocks are in general elements of O(6) and O(4), respectively. However, the
continuous subgroup of SO(10) that survives the orbifolding generates only an SO(6)×
SO(4), that is where both blocks have determinant one. Taking now U(0) with detO6 =
detO4 = +1 yields

O6 ∈ SO(6) ' SU(4) and O4 ∈ SO(4) ' SU(2)L × SU(2)R . (4.55)

Now, we precisely find ourselves in the case described in the previous section, namely
where the unbroken continuous gauge group consists of more than one simple Lie group.
Moreover, we observe that the solutions with negative determinants in both blocks of U(0)
(i.e. with detO6 = detO4 = −1) can be generated from the same SO(6) and SO(4) we just
found, namely by multiplying each of these solutions with an appropriate matrix

O6 = diag(1, 1, 1, 1, 1,−1)O′6 and O4 = diag(1, 1, 1,−1)O′4 , (4.56)

where again O′6 ∈ SO(6) ' SU(4) and O′4 ∈ SO(4) ' SU(2)L × SU(2)R, and where it
should be noted that the “'” means “up to Z2 factors”. These Z2’s should not be confused
with the D-parity we are going to discuss next. That is, there is a matrix D′

D′ = diag(1, 1, 1, 1, 1,−1; 1, 1, 1,−1) (4.57)

that facilitates the transition from detO6 = detO4 = −1 to detO6 = detO4 = 1. Note
that this matrix is not an element of SO(6) × SO(4). Hence, we have found a discrete
symmetry that survives the orbifold projection and is not an element of the low-energy
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continuous gauge group, but rather acts as an outer automorphism of SO(6)× SO(4). As
a result, the Z2 orbifold boundary condition PPS breaks the SO(10) GUT to

GPS = [SU(4)× SU(2)L × SU(2)R] o Z2 . (4.58)

Here the additional Z2 remnant symmetry does not commute with the gauge transforma-
tions, hence there is a semidirect product instead of a direct one. Now, as we will shortly
look at how the extra Z2 acts on matter fields sitting in fundamental representations of
the gauge group, let us note that we can choose another, more suggestive generator D for
the Z2 instead of D′

D = diag(−1, 1, 1, 1, 1, 1; 1,−1,−1,−1) . (4.59)

This suggestive form of D is chosen because it makes the action of the D-parity on the
fundamental representations of the Pati–Salam group GPS more obvious. In terms of
group theory, we could have chosen any diagonal ten-by-ten matrix with entries ±1, with
the only condition that the number of −1’s in the first six-by-six block and the second
four-by-four block must be odd.

Let us now discuss the action of the D-parity on fundamental representations of GPS.
We start by considering the SO(4) ' SU(2)L×SU(2)R subblock. Note that we have chosen
the corresponding subblock of D in (4.59) such that it resembles the parity transformation
in 4D Euclidean spacetime. In that spirit, it can be understood as the action of parity
on 4D spinor representations (1/2, 0)⊕ (0, 1/2) of SU(2)L × SU(2)R. As is well known, the
parity interchanges these SU(2) representations. Applied to the Pati–Salam model, the
D-parity acts on representations (rL, rR) of SU(2)L × SU(2)R according to

(rL, rR) D7−−→ (rR, rL) , (4.60)

see also appendix D for an explicit discussion how the D-parity acts on representations
of SU(2)L × SU(2)R. In a similar fashion, we can study how the D-parity acts on the
SO(6) ' SU(4) subgroup. In our definition of D in (4.59), we have chosen the action on
this subgroup such that it acts in analogy to an Euclidean version of time reversal by
choosing the first entry to be −1. Hence, for any SU(4) representation r4 we find that D
acts as charge conjugation

r4
D7−−→ r4 (4.61)

on the fundamental representation of SU(4). Altogether a representation (r4, rL, rR) of
SU(4)× SU(2)L × SU(2)R transforms under D as

(r4, rL, rR) D7−−→ (r4, rR, rL) . (4.62)

Among the rest, the interesting representations of the Pati–Salam group are (4,2,1)s
and (4,1,2)s, which (upon further breaking) give rise to the usual standard model
representations for matter. On the SO(10) side, one (4,2,1) and one (4,1,2) make up a
16 of SO(10). From the action of D-parity on representations (4.62) one deduces that it
exchanges the (4,2,1) and (4,1,2) representations. In terms of standard model matter,
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that means that the left- and right-handed matter fields get exchanged. In effect, this
field-theoretic orbifold GUT implements the well-known left-right parity [105]. As we
show, its origin lies in a full SO(10) GUT theory and is hence a discrete remnant of the
upstairs gauge symmetry. The way it acts motivates the terminology of a “parity” [105],
although it must not be mixed up with the ordinary spacetime parity: Despite its name,
the left-right symmetric model is chiral and therefore does not preserve the conventional
spacetime parity even in its unbroken phase.

Let us summarize the findings of this section. We have shown that if an SO(10) GUT
gets broken to the Pati–Salam group by orbifold boundary conditions, there is an additional
Z2 symmetry that survives the breaking

SO(10) Z2 orbifold−−−−−−→ [SU(4)× SU(2)L × SU(2)R] o Z2 . (4.63)

This Z2 corresponds to the left-right parity and is in particular a non-trivial outer
automorphism of GPS. A thorough discussion of the phenomenological implications of the
Z2 is given e.g. in [106] and references therein.

4.4.2 Non-Abelian residual symmetries
We now come to two examples of discrete remnant symmetries that commute with the
orbifold boundary condition only up to a non-trivial element from the center, i.e. they
fulfill the condition (4.37) with k 6= 0. In effect, the higher-dimensional gauge group gets
broken to a semidirect product of the unbroken remnant continuous gauge symmetry with
some discrete ZN symmetry. As in the Pati–Salam example presented above, this ZN
may have implications on the phenomenology of the resulting four-dimensional model.
Although we do not consider matter fields, one can observe (from a group-theoretical point
of view), that the additional ZN in our examples acts on matter representations of the
GUT group as a flavor symmetry.

T
2/Z4 Orbifold GUT

For the torus in our first example, we choose two base vectors e1 and e2 with the same
length, |e1| = |e2|, that form an orthogonal lattice, that is e1 · e2 = 0. By doing so, we
ensure that the lattice possesses a rotational Z4 symmetry generated by a rotation ϑ

ϑ :
(
e1
e2

)
7−→

(
e2
−e1

)
(4.64)

that we mod out in order to construct a T2/Z4 orbifold. On this orbifold, we compactify
a six-dimensional theory with gauge symmetry G = SU(2). To this end, we choose the
gauge action P associated with the geometric rotation ϑ to be given by

P =
(

i 0
0 −i

)
∈ SU(2) where P 4 = 1 . (4.65)

Following the discussion leading to the general condition (4.37), we find that the unbroken
symmetries correspond to those matrices U(k) of SU(2) that satisfy the condition

[P,U(k)] = exp
(

2πi k
4

)
1 where k ∈ {0, 1, 2, 3} . (4.66)
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For which non-zero values of k can we now expect to find solutions? Because both P and
U(k) are elements of SU(2), so must be the right-hand side of (4.66). However, we have
also seen earlier that the right-hand side of (4.66) must be an element of the center Z(G)
of the upstairs gauge group. Because the center Z(SU(2)) of SU(2) is only a Z2 (rather
than a Z4), the possible values of k are now restricted, and therefore (4.66) can at most
allow for solutions with k ∈ {0, 2}. Of course, as we have seen in the earlier example,
the existence of solutions (especially with non-zero values of k) is not guaranteed by this
restriction.

In order to find all solutions of (4.66) for both choices of k, we now explicitly construct
a general ansatz for U(k) and then require that the condition (4.66) must be fulfilled. To
this end, we use the parameterization of a general SU(2) matrix U(k)

U(k) =
(
pk qk
−q̄k p̄k

)
∈ SU(2) with det(U(k)) = |pk|2 + |qk|2 = 1 , (4.67)

where the two parameters pk, qk ∈ C have to be fixed. In this explicit form, condition
(4.66) becomes

[P,U(k)] =
(
|pk|2 − |qk|2 2p̄kqk
−2pkq̄k |pk|2 − |qk|2

)
!= exp

(
2πi k

4

)
1 . (4.68)

Solving this equation, we find the following constraints on the parameters pk and qk

|pk|2 − |qk|2 != exp
(

2πi k
4

)
(4.69)

for the diagonal entries, and, from the off-diagonal elements

p̄kqk
!= 0 . (4.70)

Now, because the diagonal entries |pk|2 − |qk|2 ∈ R, we immediately observe that (4.68)
cannot possess any solutions for k ∈ {1, 3}, as we predicted earlier, where we argued that
any solution with k ∈ {1, 3} would not lie in the center of SU(2) and would therefore not
be admissible.

By setting k = 0 in (4.69), we find the unbroken gauge symmetry. The solution for
k = 0 requires |p0|2 = 1, and consequently q0 = 0. The most general solution U(0) is
therefore a function of a single free parameter α

U(0) ≡ U(0)(α) =
(

eiα 0
0 e−iα

)
∈ SU(2) , (4.71)

where α ∈ [0, 2π). Because there are no further constraints, this yields an unbroken U(1)
gauge symmetry. This result was to be expected: It is easy to identify the generator of
this U(1) symmetry with the Cartan generator of SU(2).

On the other hand, as opposed to the Pati–Salam example we have seen earlier, there
are now solutions also for non-zero k. In particular, setting k = 2 in the main condition
(4.69) yields p2 = 0 and |q2|2 = 1. Hence, we set q2 = ieiα, and obtain

U(2) =
(

0 ieiα

ie−iα 0

)
, (4.72)
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where again α ∈ [0, 2π). However, this solution is not fully independent of the one we
found for k = 0 as it only differs up to the multiplication with a constant matrix

U(2)(α) =
(

eiα 0
0 e−iα

) (
0 i
i 0

)
= U(0)(α)

(
0 i
i 0

)
. (4.73)

Consequently, the orbits in gauge space parameterized by U(0)(α) and U(2)(α) cannot be
disentangled completely and the full unbroken symmetry arising from the original SU(2)
is generated by a U(1) generator and a discrete Z4, which are given by

U(0)(α) =
(

eiα 0
0 e−iα

)
and U(2) =

(
0 i
i 0

)
. (4.74)

The orbits of these generators are interlinked, as one can observe that

(U(2))2 = −1 = U(0)(π) ∈ U(1) . (4.75)

Although the order of the matrix U(2) is four, its square is connected with the identity up to
a U(1) gauge transformation. This fact needs to be taken into account when determining
the full residual symmetry, and becomes even more apparent in the action of the Z4
transformation U(2) on the gauge bosons. Namely, U(2) acts only as a Z2 on the gauge
bosons, i.e.

V µ
a (x, y) T(CW)

a 7→ V µ
a (x, y)U(2) T(CW)

a U−1
(2) , (4.76)

see diagram (4.33).
In summary, the six-dimensional SU(2) gauge theory is broken by the Z4 orbifold

boundary conditions to

SU(2) Z
orb.
4−−−−→ (U(1) o Z4) /Z2 , (4.77)

where “mod Z2” addresses the fact that the additional Z4 acts only as a Z2 on the gauge
boson level. Note that we have not incorporated matter fields in this example. Adding
both localized and bulk matter can be done in an ad hoc fashion in field theory (where
one at most has to worry about anomalies arising from a certain charge assignment), or in
a more systematic way in string theory (where the matter content of the theory is fixed by
the original ten-dimensional heterotic string spectrum). In the string theory case, one also
has no freedom to choose the charges of the respective matter fields.

One may now break this symmetry further, e.g. by breaking the U(1) factor to some
ZN , so that in the end one arrives at

SU(2) Z
orb.
4 +VEV−−−−−−−−→ (ZN o Z4) /Z2 . (4.78)

In field theory, this additional breaking can be performed by Higgsing. On the other hand,
as we will see later, in string theory the U(1) factor can be broken to some subgroup by
giving a certain vacuum expectation value to geometric moduli. Then, this setup can
give rise to a variety of discrete groups. For example, it is possible to obtain the binary
dihedral groups Q2N with N = even as subgroups [70], including the quaternion group for
N = 4.
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T
2/Z3 Orbifold GUT

Next, we consider another setup where solutions with k 6= 0 exist, namely again a two-
dimensional torus with a Z3 orbifold action. This setting has been studied in the context
of string theory before, e.g. in [100]. There, identifying the residual symmetry is not very
straightforward, because there is no analogue to our field theoretical condition (4.37), and
one has to rely in studying potentially accidental symmetries of the matter spectrum (e.g.
via stringy selection rules for couplings) instead, which makes the true gauge nature of
the resulting discrete symmetry a little unclear. Moreover, our discussion so far gives rise
to the intuition that the residual (discrete and continuous) symmetry should be largely
independent of any matter fields present in the upstairs theory. It is interesting to see
how the findings in the string theory setup are supported by the more rigorous methods
available in field theory orbifolds.

For this example, we choose our six-dimensional gauge symmetry of the upstairs theory
to be G = SU(3). For the torus, we make again the choice that the two lattice vectors
have equal length |e1| = |e2| but enclose an angle of 120◦, that is e1 · e2 = −|e1|2/2. This
lattice has a Z3 rotational symmetry ϑ that acts according to

ϑ :
(
e1
e2

)
7−→

(
e2

−e1 − e2

)
, (4.79)

hence a 120◦ counter-clockwise rotation. This rotation is modded out in order to construct
a T2/Z3 orbifold.

Note that this setting can be achieved in a string theory setup in a very particular way,
by starting with a U(1) × U(1) theory on this special torus. Then, one sets the overall
size of the torus to a special value (the so-called self-dual point), which upon fixing the
Kalb–Ramond background as well, amounts to fixing the Kähler T -modulus at a particular
value. Because of this special choice for the radii, a set of stringy states becomes massless,
which enhances the U(1)×U(1) gauge symmetry to an SU(3) on the torus. This SU(3) is
then broken by the Z3 boundary conditions. In the string theory setup, the transformation
behavior of the various gauge bosons of SU(3) is fixed by their geometric (i.e. localization)
properties, as opposed to a generic field theory setup, where the choice for the gauge action
P associated with the geometric rotation is not restricted by first principles. In order to
compare the outcomes of the string and field theory constructions, we choose our gauge
action P in this example in such a way that it produces the same breaking patterns as the
string theory setup.

If one were to match the transformation behavior of particular states in the string
theory setup, one would have to choose an off-diagonal P , because in string theory, the
boundary conditions are non-diagonal. However, a diagonal P can be chosen by making a
basis change in the Lie algebra of the string theory construction, which also amounts to
diagonalizing the string theory boundary conditions. As the results are basis-independent,
the resulting breaking patterns are the same. To be specific, the diagonal gauge embedding
P associated with ϑ is chosen as

P =

ω 0 0
0 ω2 0
0 0 1

 ∈ SU(3) with P 3 = 1 , (4.80)
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where ω = exp 2πi/3. It is instructive for later uses to study the adjoint action of this
gauge embedding on the Lie algebra generators in the Cartan–Weyl basis. To this end,
we fix the basis by arranging the Cartan generators and ladder operators of SU(3) in an
eight-dimensional vector of matrices defined as

T(CW) =
(
H1, H2, E(1,0), E(−1,−1), E(0,1), E(−1,0), E(1,1), E(0,−1)

)T
. (4.81)

On this basis, the gauge embedding P then acts by an eight-by-eight matrix according to

T(CW)
a

Z
orb.
37−−−−→ (Rorb.))ab T(CW)

b where Rorb. =

12 0 0
0 ω 13 0
0 0 ω2 13

 , (4.82)

where we have arranged the ladder operators in such a way that they are grouped according
to their transformation phases. Following the same steps as in the foregoing examples,
the unbroken symmetry is given by the set of matrices U(k) from SU(3) that satisfy the
condition

[P,U(k)] = exp
(

2πi k
3

)
1 where k ∈ {0, 1, 2} . (4.83)

As before, since P,U(k) ∈ SU(3), also their commutator (i.e. the right-hand side of (4.83))
has to be an element of SU(3). And, because [P,U(k)] ∝ 1, the right hand side of (4.83)
has to be from the center Z(SU(3)) of SU(3), which is a Z3. Because the order of the
center and the order of the orbifold twist coincide, the values of k are not restricted and
(4.83) may allow for solutions for all possible cases k ∈ {0, 1, 2}.

Let us now study the solutions to condition (4.83) for all possible values of k. Setting
k = 0, one observes that the unbroken continuous symmetry is generated by matrices of
the form

U(0) =

ei(α+β) 0 0
0 ei(α−β) 0
0 0 e−2iα

 ∈ SU(3) , (4.84)

which gives rise to a U(1)× U(1) gauge symmetry. This U(1)× U(1) is generated by the
two Cartan generators of SU(3), and is the minimal continuous gauge symmetry preserved
by any diagonal orbifold boundary condition, because the gauge fields corresponding to the
Cartans are always guaranteed to have trivial boundary conditions. For the two non-zero
values of k, we find the following solutions

U(1) =

 0 0 ei(α+β)

ei(α−β) 0 0
0 e−2iα 0

 and U(2) =

 0 ei(α+β) 0
0 0 ei(α−β)

e−2iα 0 0

 .

(4.85)

As in the T2/Z4 example, these two solutions are not independent of the U(1) × U(1)
generated by U(0), but yield two discrete transformations in addition to the continuous
remnants

U(1) =

0 0 1
1 0 0
0 1 0

 ∈ SU(3) , U(2) =

0 1 0
0 0 1
1 0 0

 ∈ SU(3) . (4.86)
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Note that these two transformations are as well not independent

U(2) = (U(1))2 . (4.87)

As (U(1))3 = 1, we find that there is an additional unbroken Z3 generated by U(1). Like in
the T2/Z4 example, this Z3 does not commute with the unbroken gauge symmetry but
rather acts as an outer automorphism. As a result, the upstairs theory with a SU(3) gauge
symmetry in six dimensions is broken by the Z3 orbifold according to

SU(3) Z
orb.
3−−−−→

[
U(1)× U(1)

]
o Z3 , (4.88)

which is the same result found for the string theory equivalents (see cf. [100, 107]). As
discussed above, the emergence of the two U(1) factors can be understood by the standard
discussion of gauge symmetry breaking via orbifold boundary conditions by taking only the
commuting subgroup into account, see for example [97, equation (6)]. We note, however,
that a rigorous derivation of the non-commuting Z3 factor without relying on accidental
symmetries of the matter spectrum is not possible without our condition (4.37).

As in the T2/Z4 example, the resulting
[
U(1)× U(1)

]
o Z3 symmetry may be broken

further, by breaking the two U(1)s to discrete ZN subgroups. A particularly interesting
case is obtained when both U(1)s are broken down to Z3 symmetries. In this case, one
is left with a [Z3 × Z3] o Z3 symmetry, which is known as ∆(27) and has found various
applications as a flavor symmetry, see e.g. [108, 109], and within the context of CP
violation [110].

Larger remnant symmetries with outer automorphisms. As it has been noted
already in the string setup [100, 107, 111, 112, 113], it is possible to obtain a larger
symmetry than just

[
U(1)× U(1)

]
o Z3. This possibility opens up if the matter content

of the upstairs theory is chosen appropriately, which results in a situation where the
remnant symmetry is more model-dependent than in the previous examples. However, in
string-derived models the matter content (which is fixed and cannot be chosen at will),
seems to allow for these extra symmetries in most known cases. In particular, if the matter
charged under the SU(3) gauge symmetry is symmetric under SU(3) charge conjugation,
the full upstairs symmetry is not just SU(3) but SU(3) oZ2, where the additional Z2 acts
in the Lie algebra generators according to

T(CW)
a

Z
out.
27−−−−→ −

(
T(CW)
a

)T
. (4.89)

Hence, it maps the adjoint 8 of SU(3) to itself, while it interchanges the fundamental
representation 3 with its conjugate 3. Therefore, in order for this symmetry to be present
in the first place, the number of 3s and 3s in the upstairs theory must be equal (the
same is of course true for any other representation that transforms non-trivially under the
Z2). On the generators in the Cartan–Weyl basis (where we fixed all basis choices), the
corresponding action can be determined to be

HI
Z27−−→ sIJHI , (4.90)

Ew
Z27−−→ − Eρ−1

s w , (4.91)
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where the matrix s is given by

s =
(

1 0
0 −1

)
(4.92)

and ρs is a GL(2,Z) matrix such that se = eρs. In a full string orbifold picture, the Z2 has
a geometric interpretation. However in order to understand the resulting discrete groups
after orbifolding, one does not have to rely on such a geometric interpretation. Explicitly,
the outer automorphism acts on the Cartan–Weyl generators as an eight-by-eight matrix
Rout. which is given in the basis (4.81) by

T(CW)
a

Z
out.
27−−−−→

(
Rout.

)
ab

T(CW)
b . (4.93)

The explicit matrix representing this transformation is given by

Rout. =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0


, (4.94)

where we have indicated the two-by-two block of the Cartan generators in the upper
right, followed by the two three-by-three blocks containing the ladder operators with
orbifold transformation phases ω and ω2, respectively, cf. the matrix Rorb. in equation
(4.82). Because it is an outer automorphism, the Z2 action cannot be represented by
conjugation with SU(3) matrices. Therefore, whether or not it survives the orbifold
boundary conditions is not captured by our condition (4.37). Using the analog of the
commuting diagram (4.33) in this case, one arrives at the condition that in order for the
Z2 outer automorphism to survive the orbifolding procedure, the matrices Rorb. and Rout.

have to commute, which is indeed the case, given their respective block-structures.
If this non-commuting Z2 factor is included in the upstairs theory (i.e. if the matter

content allows it to be present), the full remnant symmetry after orbifolding may be as
large as

SU(3) o Z2
Z

orb.
3−−−−→

([
U(1)× U(1)

]
o Z3

)
o Z2 . (4.95)

Now, if the two U(1) factors are broken to Z3s, the resulting discrete group is a ∆(54), which
is also known to be the basis of many (bottom-up) models of flavor physics [114, 115, 116],
as well as top-down approaches to CP violation [117].
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4.5 Discrete remnant symmetries from Weyl reflec-
tions

Let us put our results so far into perspective. We have seen that, given an upstairs gauge
group G any matrix U from G survives the orbifold boundary conditions given by the
gauge embedding P if the two simultaneous conditions are satisfied

[P,U ] = ωk1 , (4.96)
ωk1 ∈ Z(G) , (4.97)

for some k ∈ {0, . . . , N − 1}, where N is the order of the orbifold twist. Using this
condition, it is therefore a straightforward task to decide whether or not a given matrix
U is part of the unbroken gauge symmetry after orbifolding. On the other hand, behind
every beautiful thing, there is some kind of pain:2 performing an exhaustive enumeration
of all matrices U for a given P can be very hard, because U can be any element of the
(infinite) group G.3 For the determination of the residual continuous gauge symmetries,
one can still use the standard approach and check only the finite number of Lie algebras
for invariant linear combinations that commute with the orbifold boundary conditions,
but for the discrete ones there is no other way but to solve the condition (4.37). In our
examples, it was still fairly straightforward to find all solutions, either because G was small
enough to allow for an explicit parametrization (as in the SU(2) example), or because the
boundary condition P was chosen in a particularly simple way (as in the SO(10) example).
For a general P and a large group, e.g. E6, this approach stops being viable because of the
multitude of possible transformations U that need to be checked. These problems would
be largely mitigated if there were (except for the continuous gauge symmetries from the
k = 0 sector) only a large but finite number of additional possibilities as candidates for a
surviving transformation U that needs to be taken into account.

Luckily for us, our findings support the intuition that the set of possible candidates for
additional discrete symmetries is given by the action of Weyl reflections in the Lie algebra
root lattice. A Weyl reflection wα with respect to a root α acts on the root system of a
Lie algebra g as the reflection along the hyperplane perpendicular to α [118], that is, for
some β from the root system

wα(β) = β − 2〈α, β〉〈α, α〉α , (4.98)

where 〈·, ·〉 denotes the Euclidean scalar product. On the level of the Lie group G associated
with g, the set of all Weyl reflections on g gives rise to the Weyl group W (G), which is
a finite group. In all our examples, the discrete remnant symmetries are in fact Weyl
reflections with respect to roots that are broken by the orbifold boundary conditions.
Instead of having to check the infinite number of elements of an upstairs gauge group
G, one only has to check the finite number of transformations that correspond to Weyl

2Quote attributed to Bob Dylan.
3In that sense, the task of determining the unbroken discrete symmetry strongly resembles problems

from the complexity class NP in theoretical computer science: while verifying the correctness of a proposed
solution is easy, finding a solution can be hard.
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reflections at broken roots, which yields the desired shortcut. Let us illustrate this
procedure in the three examples presented earlier.
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Figure 4.1: A depiction of the root lattices of the so(5) (left) and the so(4) = su(2)L ⊕ su(2)R
algebra (right). It is evident that a Weyl reflection at the plane perpendicular
to αso(5)

(2) exchanges the su(2) algebras. Therefore, the action of the D-parity on
su(2)L ⊕ su(2)R can be understood as a Weyl reflection at the broken root αso(5)

(2) of
so(5).

D-parity in the Pati–Salam model. The interpretation of the D-parity in terms of
a geometric reflection in the so(10) root lattice is most interesting for the su(2)L ⊕ su(2)R
sublattice, where one would like to observe how the two su(2)s get interchanged by the
action of the D-parity.

It turns out that this particular property can be understood already by considering a
lower-dimensional example that is easier to visualize. To this end, we consider a specific
SO(5) subgroup of SO(10). The breaking of an SO(5) upstairs theory to an SO(4) can be
facilitated by a Z2 orbifold boundary condition

P5 = diag(1,−1,−1,−1,−1) ∈ SO(5) . (4.99)

The root lattice of so(5) is two dimensional (so(5) corresponds to the non-simply-laced B2

in the Dynkin classification of Lie algebras), where the two roots αso(5)
(1) and αso(5)

(2) can be
chosen according to∣∣∣αso(5)

(1)

∣∣∣2 = 2 , (4.100)∣∣∣αso(5)
(2)

∣∣∣2 = 1 , (4.101)

α
so(5)
(1) · α

so(5)
(2) = − 1 . (4.102)

The corresponding root lattice is shown on the left panel of figure 4.1. Of the two simple
roots, the shorter one, αso(5)

(2) , is broken by the orbifold boundary condition, leading to the
coarser sublattice of so(4) shown in the right panel of figure 4.1. This coarser sublattice of
the original so(5) lattice is spanned by the two simple roots of so(4), or equivalently by
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the roots of su(2)L ⊕ su(2)R. In particular, the two su(2) roots are given in terms of the
so(5) roots as

α
su(2)L
(1) = α

so(5)
(1) , (4.103)

α
su(2)R
(1) = α

so(5)
(1) + 2αso(5)

(2) . (4.104)

However, the Weyl reflection wα(2) with respect to the hyperplane orthogonal to the
“broken” root αso(5)

(2) acts on the roots of so(5) according to

α
so(5)
(1)

wα(2)7−−−−→ α
so(5)
(1) + 2αso(5)

(2) , (4.105)

α
so(5)
(2)

wα(2)7−−−−→ − αso(5)
(2) . (4.106)

This transformation is a symmetry of the su(2)L ⊕ su(2)R sublattice, and in particular it
exchanges all generators of the su(2) algebras, as depicted in figure 4.1.

We can lift this action such that it holds also in the full Pati–Salam example, because
the so(5) lattice can be seen as a particular two-dimensional projection of the so(10) lattice.
An explicit depiction of the transformation D as a Weyl reflection is more difficult in this
case since the rank of so(10) (and hence the required dimensionality of the visualization)
is five. Let us now study how also the residual transformations in the examples k 6= 0 can
be understood as elements of the Weyl group of the upstairs Lie algebra.

T
2/Z4 Orbifold GUT. In this example, we make an explicit choice for the Cartan–Weyl

basis of the SU(2) upstairs theory as T(CW) = (H,E+, E−) with

H = 1√
2
σ3 , (4.107)

E± = 1
2 (σ1 ± iσ2) . (4.108)

The su(2) Lie algebra possesses a single reflection in its root lattice, namely with respect
to the hyperplane perpendicular to E+ (or, equivalently, to E−) that gives rise to the Weyl
group W (SU(2)) ∼= Z2. This reflection w acts on the generators according to

w :

HE+
E−

 w7−−→

−HE−
E+

 = Rw

HE+
E−

 , with Rw =

−1 0 0
0 0 1
0 1 0

 (4.109)

and survives the orbifold boundary conditions. The action of the boundary condition P
on this basis is given by the three-by-three matrix

Rorb. = diag (1,−1,−1) . (4.110)

Note that both E+ and E− are broken by the orbifold boundary condition. One observes
that the orbifold action Rorb. and the Weyl reflection Rw commute and hence the Weyl
transformation is left unbroken. It is straightforward to verify that Rw is precisely the
adjoint action of the unbroken element U(2) in (4.76). This remnant symmetry can be
understood as the action of the unbroken element w of the Weyl group of su(2).
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T
2/Z3 Orbifold GUT. As in the previous examples, the surviving discrete transfor-

mations can be traced back to specific elements of the Weyl group of SU(3). Let us denote
the Weyl reflection with respect to the root α by wα. Then, the Weyl group of SU(3) acts
on the roots of su(3) as

wα(1) :
(
α(1)
α(2)

)
7−→

(
−1 0
1 1

)(
α(1)
α(2)

)
, (4.111)

wα(2) :
(
α(1)
α(2)

)
7−→

(
1 1
0 −1

)(
α(1)
α(2)

)
. (4.112)

As both α(1) and α(2) are broken by the orbifold twist, we must in principle check any
composition of the Weyl reflections wα(1) and wα(2) , hence, the entire Weyl group. To this
end, let us first determine the Weyl group of SU(3) in terms of these two Weyl reflections.
We first note that, although both wα(1) and wα(2) are order two matrices, they do not
commute and give rise to a larger group. If we make the replacement

a = wα(1)wα(2) , (4.113)
b = wα(1)wα(2)wα(1) , (4.114)

we observe that a3 = b2 = 1 and that bab = a2, so that the full group can be obtained by

W (SU(3)) =
{
1, a, a2, b, ab, a2b

}
, (4.115)

which is an S3 that is generated by the order three element a and the order two element b.
Not all elements of this group survive the orbifold boundary condition. In particular, the
explicit form of the adjoint action of b on the generators in the Cartan–Weyl basis is given
by

Rb =

r
b
H

rbE
rbE

 , (4.116)

where the various blocks are given by

rbH =
(

1
2 −

√
3

2
−
√

3
2 −1

2

)
and rbE =

0 0 1
0 1 0
1 0 0

 . (4.117)

It is easy to verify that this matrix does not commute with the orbifold boundary conditions
Rorb. and hence does not survive. On the other hand, the action of the Z3 generator
a = wα(1)wα(2) can be shown to be exactly the same as conjugating each generator with
U(1). Therefore, the unbroken Z3 symmetry generated by U(1) can be identified with the
Weyl reflection wα(1)wα(2) .
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4.6 Summary
In this chapter, we are concerned with the emergence of discrete symmetries in a low-energy
effective theory from a gauge theory that is broken towards lower energies by orbifold
boundary conditions. In order to illustrate this mechanism, we consider field theory
settings that are inspired by string theory compactifications. In particular, we consider
setups where a gauge theory in higher dimensions (the “upstairs” theory) is compactified
to four dimensions on an orbifold. As in string theory, the orbifold twist is chosen to
have a non-trivial action on the gauge degrees of freedom. Then, the orbifold boundary
conditions break the higher-dimensional gauge group to some subgroup, which yields the
“downstairs” theory. As in conventional scenarios (e.g. spontaneous symmetry breaking),
discrete remnants can survive along with the unbroken continuous gauge group. In the
upstairs theory, these discrete remnants are still part of the continuous gauge group, hence
they are inner automorphisms of the upstairs theory. However, in the downstairs theory,
they act as outer automorphisms.

In order to identify these discrete remnant symmetries, we study the group-theoretical
conditions that need to be fulfilled in order to preserve a remnant symmetry. As our
findings show, discrete remnants do not have to commute with the orbifold boundary
condition, but only have to fulfill a weaker condition. Let us consider an upstairs gauge
group G and denote the orbifold boundary condition by P , where the order of P is taken
to coincide with the order of the orbifold twist, that is PN = 1 for a ZN orbifold. A
transformation U ∈ G survives the orbifolding procedure if it fulfills the condition that it
has to commute with the boundary condition only up to a diagonal element, i.e.

P−1U−1P U = ωk 1 , (4.118)

where ω is an N -th root of unity and k = 0, . . . , N − 1. Additionally, the diagonal element
on the right hand side of (4.118) must be an element of the center of G

ωk1 ∈ Z(G) , (4.119)

which restricts the admissible values of k, depending on the properties of the group G.
The fact that U does not strictly have to commute with P is the consequence of the
representation theory of Lie algebras. The case k = 0 amounts to the “standard” case
where the transformation U and the boundary condition P commute and includes the
unbroken continuous gauge group (among possible additional discrete symmetries). On
the other hand, the cases with k 6= 0 have been overlooked by the existing literature and
always correspond to discrete remnants of the gauge symmetry.

We apply this set of rules to a few examples and find solutions for residual discrete
symmetries in both k = 0 sectors (the so-called left-right or D-parity of the Pati–Salam
model from an SO(10) GUT), and in k 6= 0 sectors, where the resulting remnant symmetries
are candidate for a flavor symmetries, e.g. ∆(27) or ∆(54), and may also address the
issue of CP violation. Additionally, it is conceivable that the Z3 symmetry that permutes
the SU(3)s in trinification models (where E6 is broken to SU(3)× SU(3)× SU(3)) can be
explained in a similar fashion.

However, we find that this approach has an important drawback at this level. Namely,
while it is easy to check whether conditions (4.118) and (4.119) are fulfilled for a given U ,
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making an exhaustive enumeration of all transformations U from G that are left unbroken
is hard, because one would have to check an infinite number of matrices. By studying
the existing examples in more detail, we are able to restrict the candidates for unbroken
discrete remnants to a finite set, namely to elements of the Weyl group of G. In particular,
one only has to check elements of the Weyl group that involve Weyl reflections with respect
to roots that are broken by the orbifold boundary conditions.

Our results show that it is possible to identify large classes of phenomenologically
interesting discrete symmetries as remnants of a UV gauge symmetry. While we base our
derivation on a field-theoretical approach, we believe that the results also apply to string
constructions on orbifolds as well, because the crucial steps lie in the group-theoretical
properties of the upstairs theory and the orbifold boundary conditions.

In contrast to existing approaches on the string theory side, our results do not rely
on the presence and nature of twisted matter. However, as we quickly comment, making
assumptions on the representations of twisted and bulk matter (and the multiplicities),
may allow one to build even more interesting models. On a more conceptual level, the
inclusion of charged matter is necessary, for example should one ever try to attack the
ultimate goal of making predictions (or at least deriving implications) on the measured
CP phases e.g. in the standard model CKM matrix. Moreover, on a technical level, we
make the explicit simplifying assumption that the order of the gauge embedding P is equal
to the order of the orbifold twist. It would be interesting to see which patterns emerge
if this restriction is relaxed. Finally, the relation of the discrete symmetries constructed
in this chapter with modular symmetries appearing in flavor model building [119, 120]
deserves to be studied, especially in connection with string theory [121, 122, 123, 124].





5

String scale interacting dark matter

5.1 Introduction

There is a wide array of observational evidence for the existence of a non-luminous but
gravitating matter component that couples at most weakly to the standard model, called
dark matter (DM) [125]. It has been shown that the most straightforward models of dark
matter involve some species of dark matter that is cold at present-day [126] in order to
allow for the formation of large-scale structures. The Lambda–Cold Dark Matter (ΛCDM)
model has proven itself as successful in explaining cosmological phenomena as the standard
model of particle physics. However, the microscopic nature of dark matter has not yet
been explained.

It is known that dark matter makes up the majority of the matter content in the
universe today [50]. Therefore, a successful explanation for particle dark matter must
provide that the dark matter candidate is produced to sufficient amounts in the early
universe. However, the dark matter candidate must also be long-lived enough to persist
until present times, instead of simply decaying. Otherwise it cannot explain the observed
relic density. Among other mechanisms that ensure the longevity of the population of
dark matter particles, symmetries (e.g. Z2s) are often invoked in order to stabilize the
dark matter candidate against decay.

There exist various ways to produce dark matter, but the most prominent (and for
many years most promising) one is freeze-out production (see e.g. [127] for a pedagogical
introduction). There, the dark matter candidate is in thermal equilibrium with the
heat bath of the universe right after inflation. As the universe expands and cools down,
equilibrium is maintained for some time, for example, by a 2→ 2 scattering with other
particles in the bath. However, at some point this scattering becomes inefficient and the
dark matter species drops out of thermal equilibrium, which causes its relic density to
remain essentially constant from that time on. The prime example for a dark matter particle
which is produced by freeze-out is the weakly interacting massive particle (WIMP) [128].
While the paradigm of WIMP dark matter has become very popular by the observation
that a weak-scale particle naturally yields the correct relic abundance (“WIMP miracle”),
some tension has built recently due to the non-observation of WIMPs in experiments [129].
Much as the WIMP is not the only dark matter candidate, freeze-out is not the only
mechanism for (thermal) production. The freeze-out mechanism relies on the fact that the
dark matter candidate is in thermal equilibrium for at least some time before freezing out
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eventually. However, if the dark matter particle is heavy enough (or its cross section with
the other particles is sufficiently small), it will never attain thermal equilibrium, making
freeze-out production infeasible. In this case, it may still be produced non-thermally in
sizable amounts, e.g. by gravitational production [130, 131], or during reheating [132, 133].
Moreover, it has become clear that sufficient amounts of a dark matter species may also
be produced thermally even if it never attains thermal equilibrium (“freeze-in”) [134],
provided that the temperature reached during reheating is high enough. A very peculiar
type of dark matter produced in this way comes from Planckian interacting dark matter
(PIDM) [14, 135, 136, 137], where the dark matter candidates are extremely heavy (with
masses above the GUT scale) and have couplings that are suppressed by 1/m2

Pl.
The ideas presented in this chapter mainly build on this observation. In particular, any

string model has heavy states with masses above the GUT scale as part of its spectrum.
It is generically not a hard task to find such heavy states that are complete standard
model singlets, and only couple to the thermal bath with couplings that are suppressed
by 1/m2

s , where ms is the string scale that lies between the GUT and the Planck scale.
These couplings can either be the exchange of gravitons (as in the pure PIDM scenario) or
be the result of stringy interactions. Moreover, as we have already seen in the foregoing
chapters, discrete symmetries appear frequently in heterotic string models on orbifolds.
If the topology of the compact space has the right properties, it is straightforward to
obtain a setup where a subset of these extremely heavy string states is stable [138], e.g. as
the consequence of an Abelian Z2 symmetry [139]. Hence, in string models like these,
situations that are very similar to those of the PIDM scenarios are very common, and it
deserves to be studied how these models can give rise to realizations of dark matter in
string theory. It is then interesting to compare these setups to other attempts to explain
dark matter in the context of string theory and extra dimensions [140, 141, 142, 143].

Outline. The goal of this chapter is to show how a large class of string models give rise to
a dark matter candidate produced by freeze-in in a very generic way. To this end, we first
review the freeze-in production of dark matter, in particular for the production of multi-
component dark matter with coannihilations. Then, we explain how a topologically stable
string state can be constructed. For specificity, we consider a setup in the framework of
heterotic string theory with six extra dimensions compactified on a special class of orbifolds,
but as we shall comment later, it is conceivable that our scheme is valid more generally.
In our setup, the dark matter candidate becomes stable by winding around a certain
non-contractible cycle in the extra-dimensional compact space. From the viewpoint of the
low-energy effective field theory, this winding gives rise to a charge under an exact discrete
symmetry. This symmetry originates from the topological property of the compactification
space to be non-simply connected. The resulting discrete symmetry is exact on the classical
level and it is believed that any possible anomaly may be cancelled by a (generalized)
Green–Schwarz mechanism. Therefore, the discrete stabilizing symmetry can only be
broken non-perturbatively due to the discrete anomaly [144, 145]. Due to the winding,
the stable string state is generically very heavy (with a mass at the compactification or
GUT scale). We proceed to study its interactions with the standard model and other
massless states in the thermal plasma. On the one hand, these interactions are mediated
by gravity, but we find that also the exchange of other heavy winding modes contributes
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to the 2 → 2 scattering cross section. We find that these extra contributions can come
from both Kähler and superpotential terms in the effective Lagrangian. In particular, we
show that the contribution coming from Kähler terms is present in any scenario, unlike the
superpotential terms that are subject to a special choice of the localization of certain fields.
The Kähler terms can be traced back to the exchange of a massive U(1) gauge boson,
where the charges of the standard model particles and dark matter are not fixed by first
principles and can be varied without affecting the unification of the standard model gauge
couplings. We then consider the freeze-in production of our winding dark matter candidate
via the operators obtained from this effective field theory. Demanding that the relic density
of our dark matter candidate matches the observed value allows one to relate the coupling
strength of the dark matter candidate to the thermal bath with the Hubble rate after
inflation, which is constrained to lie below a certain bound due to the non-observation
of tensor modes in the cosmic microwave background (CMB) by experiments like Planck
and Bicep. We observe that for large portions of the parameter space, it is possible to
obtain the correct observed relic abundance for dark matter without violating any existing
observational bounds from the CMB. However, this situation might change in the near
future due to refined bounds from experiment. We conclude our discussion by studying
how well our specific model generalizes to a generic string model that contains variable
numbers of (vector-like) standard model exotics and hidden sector matter in its spectrum.
We are able to show that due to the nature of freeze-in production, the required values of
the cosmological parameters change only marginally if such model-dependent details are
taken into account, which means that our results can be expected to hold in more or less
any string-derived model if the topological properties of the compact space are chosen in
the right way. Hence, the model-dependence enters mostly on the cosmology side, i.e. how
inflation and reheating are realized. This chapter is in parts based on ref. [17].

5.2 Thermal production of dark matter
Here, we review the thermal production mechanisms for (cold) dark matter in the early
universe. We shall closely follow [127] (for the general setup and freeze-out production)
and [134] (for freeze-in production).

5.2.1 Boltzmann equation
If the production of a particle species χ is considered, the fundamental object of interest
is its phase space distribution fχ(pµ, xµ). Then, the dynamics of this distribution are
governed by a Boltzmann equation, which takes the general form

L[fχ] = Cχ[fχ] . (5.1)

Here, the (relativistic) Liouville operator L describes the evolution of the phase space
density in an expanding universe in terms of cosmological quantities. On the other hand,
the collision term Cχ takes care of all particle physics interactions the particle χ is involved
in. Therefore, it is not only model-dependent but (by contrast to the Liouville operator)
may also vary in its form for different particle species in a given model, hence we include
the subscript χ.
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In a general relativistic case, the Liouville operator incorporates the geometry of
space-time via the affine connections (i.e. the Christoffel symbols) and reads

L = pµ
∂

∂xµ
− Γµαβpαpβ

∂

∂pµ
. (5.2)

In an spatially isotropic homogeneous Friedman–Lemaître–Robertson–Walker universe
with scale factor a, the Boltzmann equation can be significantly simplified by noticing first
that the phase space density fχ(pµ, xµ) in this case takes a simplified form

fχ(pµ, xµ) ≡ fχ(E, t) , (5.3)

which can be used to rewrite the Liouville operator in a more concise form. By using
that most of the partial derivatives in the Liouville operator vanish (all but the ∂x0 and
∂p0 derivatives) due to the simplified form, and that the Christoffel symbols in Cartesian
coordinates are given by Γ0

ij = H(t)gij in terms of the Hubble rate H(t) = ȧ/a, we arrive
at the following expression for the Liouville operator

L = E
∂

∂t
−H(t)|~p|2 ∂

∂E
. (5.4)

In order to eventually compare the final result with observed quantities, it is advantageous
to switch from the phase space density fχ to the particle number density nχ

nχ = g
∫ d3~p

(2π)3fχ(E, t) , (5.5)

where g counts the internal (spin) degrees of freedom of χ. Using this substitution, the
Boltzmann equation becomes

ṅχ + 3H(t)nχ = g
∫ d3~p

(2π)3E
Cχ[fχ] , (5.6)

where, due to the momentum-space integration, only reactions that change the number
density of χ contribute to the right-hand side of the equation. The left-hand side of this
equation now has the desired form in terms of observable quantities. The remainder of
this section will be devoted to a discussion of the right hand side of this equation. To
this end, we need to specify the overall form of the collision terms. The overall form of
the final Boltzmann equation depends on what type of reaction involving the species χ
appears in the collision term. As we are ultimately interested in an application of this
formalism to a dark matter scenario, we will always assume that there is some stabilizing
symmetry that forbids decays of the particle χ and allows only annihilations. To simplify
the discussion, we will make no distinction between χ and its antiparticle χ. When
considering annihilations, it is useful to distinguish two cases:

1. A particularly simple but instructive case arises if the only reactions appearing in
the collision term are of the form

χχ ↔ ψaψb , (5.7)
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where ψa and ψb can be any other particle species in the thermal bath, i.e. standard
model particles. As we will see in the later course of this section, this case already
captures most of the relevant dynamics of thermal dark matter production in both
freeze-out and freeze-in scenarios.

2. In general, a dark sector is not made up by a single particle species. In particular,
in supersymmetric models, particles and their superpartners carry either strictly the
same charges under the stabilizing symmetry, or the stabilizing symmetry would
be an R-symmetry (like e.g. the R-parity in the most naive models of LSP dark
matter). In any case, e.g. if a supersymmetric dark sector is stabilized by a non-R-
symmetry, but also in other scenarios with multi-component dark matter, there can
be interactions of the form

χiχj ↔ ψaψb , (5.8)

where χi and χj are fields from the dark sector. These interactions are usually
referred to as coannihilations. The complication in this case arises from the fact that
the Boltzmann equations followed by the number densities of each of the species χi
and χj are now coupled through common collision terms on the right hand sides.
Note that distinguishing between a dark sector particle χ and its antiparticle χ may
be seen as a special case of coannihilations.

In what follows, we will first derive the general result for the final form of the Boltzmann
equation in the simpler situation of case 1, and then discuss how this result can be
generalized to include coannihilations as well. At first, we also consider only a single
channel for the interaction χχ ↔ ψaψb as it is straightforward to include a variable number
of channels, i.e. different pairs of thermal bath particles coupling to the dark sector via
2→ 2 scattering. Our final assumption throughout this section is that all particles coupling
to the dark sector are themselves in thermal equilibrium, i.e. fa,b(Ea,b, t) = f eq.a,b (Ea,b, t).
This assumption is well justified if the thermal bath particles are sufficiently light and
tightly coupled enough in order to maintain thermal equilibrium at least longer than the
dark matter particle. This condition is in general fulfilled for standard model particles,
as they are (at the energy scales of the early universe) massless and couple sufficiently
strongly to one another through the standard model gauge couplings.

Under these assumptions and simplifications, the right hand side of the Boltzmann
equation containing the collision terms can be rearranged as a phase-space integral to read

g
∫ d3~p

(2π)3E
Cχ[fχ] = −

∫
dΠχdΠ′χdΠadΠb (2π)4 δ(4)

(∑
pi
)
|Mψaψb↔χχ|2

· [fχ(E, t)fχ(E ′, t)− fψa(Ea, t)fψb(Eb, t)] , (5.9)

where Fermi-blocking has been taken care of by standard methods and where we used that
the spin-averaged matrix elements for the reaction ψaψb ↔ χχ are the same no matter in
which direction the reaction takes place (due to assumed CP invariance)

|Mχχ→ψaψb|2 = |Mψaψb→χχ|2 ≡ |Mψaψb↔χχ|2 . (5.10)
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Using now that the particles ψa and ψb are in thermal equilibrium, and moreover making
use of the principle of detailed balance, one obtains

fψa(Ea, t)fψb(Eb, t) = f eq.ψa
(Ea, t)f eq.ψb

(Eb, t) = f eq.χ (E, t)f eq.χ (E ′, t) , (5.11)

which already simplifies the collision term (5.9). While the equilibrium densities actually
follow either Bose–Einstein or Fermi statistics, it turns out that taking them to follow
a Maxwell–Boltzmann statistic is a good approximation. This approximation is nearly
perfect for freeze-out production, where the relevant temperature scales are sufficiently far
below the dark matter mass. For the case of freeze-in production, the final relic abundance
may be suppressed or enhanced by a few percent as noted in [146], which does not
noticeably alter our findings. Plugging in the equilibrium densities f eq.a,b (Ea,b, t) = e−Ea,b/T
and performing the phase space integrals one finally arrives at

ṅ+ 3H(t)n = − 〈σv〉
(
n2 − n2

eq

)
. (5.12)

Here, 〈σv〉 is the effective thermally averaged cross section for the 2 → 2 dark matter
production. It is given by an appropriate integral over the Mandelstam variable s

〈σv〉 = T

n2
eq

g2

8π4

∫ ∞
4m2

χ

ds
√
s p2σχχ→ψaψb K1

(√
s

T

)
, (5.13)

where σχχ→ψaψb is the spin-averaged cross section for the process χχ → ψaψb and K1 is
the modified Bessel function of the second kind of order 1. The equilibrium density neq is
given by

neq = T

2π2 g m
2
χK2

(
mχ

T

)
, (5.14)

where K2 is the modified Bessel function of the second kind of order 2. Finally, the relative
momentum of the annihilating dark matter particles is given by

p =
√
s

4 −m
2
χ . (5.15)

It is now straightforward to generalize this result to the case where the dark matter particle
couples to multiple states in the thermal bath, i.e. more than one pair of ψa, ψb. Then,
the spin-averaged cross section σχχ→ψaψb in the thermal average (5.13) gets replaced by

σtot. =
∑
a,b

σχχ→ψaψb , (5.16)

that is by the sum over all possible final states in the thermal bath.

Coannihilations. Let us now consider the more general case where more than one
particle species exists in the dark sector. We make the simplifying assumption that all
particles in the dark sector have the same mass, which is always the case in the models
with intact supersymmetry considered in this chapter. We work with a set χi in the dark
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sector and denote their number densities by ni. As mentioned earlier, each of the number
densities fulfills then its own Boltzmann equation that follows the form of (5.12)

ṅi + 3H(t)ni = −
∑
j

〈σijvij〉 (ninj − ni,eqnj,eq) , (5.17)

where the index j runs over all fields in the dark sector, and where the cross sections σij
correspond to the various coannihilation processes, each individually summed over its
final states in the thermal bath. Note how the non-coannihilation case (5.12) is naturally
included by i = j. While already solving the simpler Boltzmann equation (5.12) can
be numerically hard, solving the coupled system of Boltzmann equations (5.17) for an
arbitrary set of off-diagonal cross sections 〈σijvij〉 is infeasible. However, oftentimes one
is not interested in the evolution of the individual number densities. In particular, if
one wants to determine the total dark matter relic abundance, one is only interested in
the evolution of their sum n = ∑

i ni. By taking the sum over the individual Boltzmann
equations (5.17), one finds that the sum of the individual number densities obeys the
Boltzmann equation

ṅ+ 3H(t)n = − 〈σeffv〉
(
n2 − n2

eq

)
, (5.18)

which has the same convenient form as the Boltzmann equation in the case without
coannihilations. Here, n is the number density of all states in the dark matter sector, and
on the right hand side 〈σeffv〉 is the effective thermally averaged cross section for the various
2→ 2 dark matter production channels, taking also coannihilations into account [147, 148].
In terms of the coupled cross sections it reads

〈σeffv〉 =
∑
i,j

〈σijvij〉
ni,eqnj,eq
n2
eq

(5.19)

which, using mi = mχ can be recast to become

〈σeffv〉 = T

n2
eq

1
8π4

∫ ∞
4m2

χ

ds
√
s p2

∑
i,j

gigjσij(s)
 K1

(√
s

T

)
. (5.20)

Here, gi counts the internal degrees of freedom of each species χi, which in contrast to the
mass, can vary in the dark sector. In particular, gi = 2 for a Weyl fermion and gi = 1 for a
real scalar, and as before the summation indices i and j is understood as an unrestricted
sum over all fields in the dark sector. The total cross sections σij(s) given by

σij =
∑
a,b

σij→ψaψb , (5.21)

where the contributions

σij→ψaψb = 1
16πs

(
s− 4m2

χ

) ∫ t+

t−
dt |Mij→ψaψb(t)|2 . (5.22)

Here t± = −
(√

s/4∓
√
s/4−m2

χ

)2
andMij→ψaψb(t) denotes the (spin-averaged) matrix

element for the respective process. The equilibrium density neq is given by

neq =
∑
i

T

2π2 gim
2
iK2

(
mi

T

)
= T

2π2 m
2
χK2

(
mχ

T

)∑
i

gi , (5.23)
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where we again used that the only thing that may vary over the spectrum of the dark sector
is the spin but not the mass of the various particles. In order to obtain an equality between
the sum over the coupled Boltzmann equations (5.17) and the simplified expression (5.18),
we have to demand that all individual number densities deviate from their particular
equilibrium densities by roughly the same factor, or in other words that

ni
ni,eq

' nj
nj,eq

∀i, j and hence ni
ni,eq

' n

neq
. (5.24)

This assumption is fulfilled in all practicable cases, especially when (in addition to the
masses) all the couplings of dark sector particles are roughly equal, which is again
guaranteed in a supersymmetric model.

5.2.2 Freeze-out production
Although we will not make direct use of it, let us introduce the production of dark matter
via freeze-out, as it is by far the most thoroughly understood way of thermal production
of particle species (not just dark matter) in the early universe. To this end, it is useful to
rewrite the Boltzmann equation in terms of the so-called yield Y = n/s, where n is the
particle number density and s is the entropy density. Moreover, instead of spelling out
the time dependence of all quantities, one often switches to the dimensionless variable
x = mχ/T instead, where the time-dependence is implicitly given by the time-dependence
of the temperature T . Then, the Boltzmann equation (5.18) becomes

dY
dx = − λ 〈σeffv〉

x2

(
Y 2 − Y 2

eq

)
, (5.25)

where λ represents a set of constants that arises from the introduction of Y . Note that this
non-linear differential equation (called the Riccati equation) does not have an exact closed
analytic solution and has to be solved numerically in practice. The idea behind freeze-out
production is now that the dark matter particle is in thermal equilibrium at early times,
or equivalently that Y ∼ Yeq. During this time, the yield can be approximated to be

Y = Yeq + x2

2λ 〈σeffv〉
, (5.26)

hence it is always strictly larger than the equilibrium yield Yeq. Often, it is an excellent
approximation to assume that 〈σeffv〉 is constant in x. Then, one observes that the gap
between Y and Yeq grows with x2 and that at some point the approximation that Y ∼ Yeq
is no longer valid. The picture is then that the dark matter particle is able to maintain
thermal equilibrium for some time until it is diluted so much that the 2→ 2 scattering
becomes too inefficient to keep it in equilibrium with the thermal plasma. Let us assume
that the dark matter particle falls out of thermal equilibrium at x = xf. Then, instead of
being tied to Yeq, the actual yield is much larger than the equilibrium yield and becomes
constant after some time. In fact, one can show that Y∞ = c Y (xf) for some O(1) constant
c. The longer the dark matter particle can keep up thermal equilibrium, the lower is the
value of Y (xf), because Yeq has a negative slope throughout. However, as we have just
seen, the dark matter can stay longer in thermal equilibrium for larger cross sections, as
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the thermally averaged cross section enters (5.26) with negative power. Hence, the main
feature of freeze-out production is that weaker coupling leads to larger relic densities of a
particle species.

5.2.3 Freeze-in production
If the dark matter particle is either so heavy or so weakly coupled that it never attains
thermal equilibrium, its production via the freeze-out mechanism is not possible. However,
as first demonstrated in [134], it can still be produced thermally in large quantities, via
freeze-in, a process that largely differs from freeze-out production. The most notable point
is that in contrast to freeze-out which takes place mostly during the radiation dominated
phase of the expansion of the universe, the amount of dark matter produced via freeze-in
depends on the specific dynamics of inflation and especially reheating as it takes place
only at the highest temperatures. This dependence is more pronounced if the dark matter
candidate is very heavy. Instead of starting with a non-zero value for the number density
at early times, one assumes that n = 0 directly after inflation. Then, starting from the
onset of reheating, the production of dark matter can take place. We will come back to
the specific dependence on the reheating dynamics later in more detail. If we start with
n = 0 after inflation, this means that the actual density in the freeze-in case is always
much smaller than the equilibrium one, n � neq. Then, the right hand side of the full
Boltzmann equation (5.18) can be approximated to sufficient accuracy by neglecting n2

compared to n2
eq, and hence the Boltzmann equation in this case becomes

ṅ+ 3H(t)n = 〈σeffv〉 n2
eq , (5.27)

which will turn out to be much simpler to solve as it is a linear equation. Much like the
yield helped solving the freeze-out case, one can proceed like in ref. [14] and simplify the
discussion by introducing the dimensionless abundance

X = na3

T 3
rh
, (5.28)

where a is the scale factor and Trh is the reheating temperature. This parameterization
proves its usefulness after noticing that

dX
dt = a3

T 3
rh

(ṅ+ 3H n) = a3

T 3
rh
〈σeffv〉 n2

eq , (5.29)

where we used the approximated Boltzmann equation (5.27). Moreover, if one has to take
different phases of expansion into account, the time dependence of the temperature (and
hence the cross section and the Hubble rate) gets complicated soon. Here, it proves useful
to replace the time derivative by a derivative with respect to the scale factor, so that
dX/dt can be replaced by ȧ(dX/da) and the entire Boltzmann equation becomes

dX
da = a2

H(a)T 3
rh
〈σeffv〉 n2

eq . (5.30)
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This relation can be simply solved by separation of variables and yields after integration

X∞ = 1
T 3
rh

∫ ∞
1

da a2

H(a) 〈σeffv〉 n
2
eq . (5.31)

Here, we adopted the convention that the scale factor at the end of inflation can be chosen
to be 1, and that the abundance of dark matter immediately after inflation vanishes. Note
that by contrast to the freeze-out scenario, the final relic density is now larger for a greater
cross section. Moreover, one has to be aware that the abundance X becomes comparable
to the equilibrium abundance Xeq at some point during the integration (5.31). However,
this crossing takes place at late times at which the thermal production is already inefficient
and X(a) is practically constant. In order to compare to the observed dark matter relic
density ΩXh

2 = 0.12 [50], one can use (cf. [135])

Xcrit.
∞ = 0.29 · 10−5 · GeV

mχ

· ΩXh
2 , (5.32)

where we assumed that the massless matter content of the thermal bath is the three-
generation MSSM (with three right-handed neutrinos). Hence, for a GUT scale dark
matter particle (mχ ∼ 1016 GeV), the critical abundance is of order 10−23. It has been
shown in various instances how this scenario can indeed yield the correct relic abundance,
even for particles with masses up to the Planck scale and highly suppressed couplings.

5.3 Stable dark matter at the string scale
We now turn our attention to massive string states that are stabilized by a discrete
symmetry and hence can in principle give rise to a dark matter candidate. To this end,
we first introduce the stabilizing symmetry that arises from stringy selection rules and is
ultimately the result of the geometry of the underlying orbifold.

5.3.1 Non-contractible cycles and stable particles
In order to construct a stable dark matter candidate, we first determine which topological
properties the orbifold needs to fulfill. In field theory discussions, often the so-called
Kaluza–Klein parity is cited as a stabilizing symmetry without further specification of the
geometry. Typically, it is argued, that a field with an odd Kaluza–Klein number cannot
decay into fields with an even Kaluza–Klein number, leading hence to a Z2 symmetry with
charge

qKK = (−1)nKK , (5.33)

where nKK is the KK number of the field. As this symmetry survives the orbifold boundary
conditions in most cases, it is then typically assumed that the stabilizing nature of this
symmetry persists even when brane fields are introduced. It is instructive to study under
which circumstances this is actually the case. Let us start with a very simple non-working
example that, in spite of its simplicity, exhibits all interesting features and lays out a route
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to a possible solution. Consider the S1/Z2 orbifold whose space group S is generated by
the constructing elements

S = 〈(1 | v) , (θ | 0)〉 , (5.34)

where v is some arbitrary lattice vector and the twist θ acts as θ : v 7→ −v. This simple
orbifold possesses two conjugacy classes of fixed points that correspond to brane fields Φ1
and Φ2. As representative space group elements, it is customary to choose

Φ1 ↔ (θ | 0) (5.35)
Φ2 ↔ (θ | v) . (5.36)

In what follows, we are going to argue that an untwisted state χ with odd KK number
can decay in these two brane fields via a stringy operator that is not obvious to appear in
a pure field theory. In order to study the couplings, it is useful to go to a T -dual picture,
where the KK state is instead a winding state with constructing element (1 | v). Then,
the decay of this state in the brane fields is allowed if the space group selection rule [149]

[(1 | v)] · [(θ | v)] · [(θ | 0)] ⊃ (1 | 0) , (5.37)

is satisfied, where [ · ] denotes the conjugacy class of the respective space group element.
Indeed, we find that this condition is fulfilled if we choose (1 | −v), (θ | v) and (θ | 0) as
representatives, and hence decay processes of the type

χ → Φ1Φ2 (5.38)

are allowed, causing χ to be unstable despite its odd charge under KK parity. Note that
it is in general hard to explain the appearance of such couplings in field theory because
Φ1 and Φ2 are localized at different points in the orbifold. To see why this type of decay
operator happens to be allowed, let us examine the condition (5.37) a little closer. We
observe that the coupling of the winding state to the brane fields becomes possible because
the cycle around which χ is winding can be generated by a combination of the constructing
elements of the brane fields. In other words, we could have generated the space group S
by using brane fields only

S = 〈(θ | 0) , (θ | v)〉 . (5.39)

In the language of orbifold topology, the subset of S generated by brane fields is called
the fixed point set 〈F 〉. We observe that the winding/KK states in the S1/Z2 orbifold
are not stabilized because every available cycle on the orbifold is already contained in the
fixed point set, which allows one to construct decay operators of winding/KK states to
brane fields by fulfilling (5.37). More formally, this is because the fundamental group π1,
defined as

π1 = S/〈F 〉 (5.40)

is the trivial group for the S1/Z2 orbifold as S = 〈F 〉 in this case. Hence, if we are looking
for topologically stable strings, we have to restrict ourselves to orbifolds (or in general,
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compact spaces) with non-trivial π1. The non-trivial fundamental group π1 is in one-to-one
correspondence with a so-called freely-acting element (often called τ in the literature). As
we have seen by studying the condition (5.37), any string with winding or Kaluza–Klein
momentum in this freely-acting direction is guaranteed to be stabilized against decay
into brane fields, leading to topologically stable strings as first noted in [138]. In fact,
it has been shown in a field-theoretic setting that orbifold with this property exhibit an
interesting phenomenology [150], where it is referred to as non-local gauge symmetry
breaking. The construction of MSSM-like string models on this type of geometry has been
studied in [151, 152, 153, 154, 155, 156]. In the string setups, the appealing phenomenology
usually appears if one turns on a Wilson line in the freely-acting direction, which breaks
some intermediate orbifold GUT to the standard model. This type of symmetry breaking
naturally appears also in smooth Calabi–Yau compactifications [157], which makes the
concept of stabilizing particles by winding them around freely-acting cycles even more
general.

5.3.2 Stable dark matter in the Z2 × Z2–5–1 orbifold
For definiteness, we will pick an explicit example geometry. To be specific, we consider a
string model compactified on the so-called Z2 × Z2–5–1 orbifold in the classification of
ref. [33]. The Z2 × Z2–5–1 orbifold can be constructed in three steps. First, one defines a
set of basis vectors ei, i = 1, . . . , 6 that span a six-torus T6 that factorizes into three T2

tori. If one would now mod out isometries of this torus via discrete rotations, the resulting
orbifold would have a trivial fundamental group π1 and would hence be no good for our
purposes. However, before we mod out any twist, we first define another lattice vector
that is going to become the freely-acting cycle on the orbifold. We denote it by τ and
choose it to be

τ = 1
2(e2 + e4 + e6) , (5.41)

which, when it is added as a seventh lattice vector, leads to a non-factorizable orbifold
lattice. In principle, one could use the additional lattice vector τ to replace one of the old
lattice vectors e2, e4 or e6. However, our discussion is simpler if we keep all seven lattice
vectors and restrict nτ to nτ ∈ {0, 1}. Now, one can divide out a Z2 × Z2 twist generated
by

θ ↔ vθ =
(

0, 0, 1
2 ,−

1
2

)
(5.42)

ω ↔ vω =
(

0, 1
2 ,−

1
2 , 0

)
. (5.43)

Then, any element of the space group with nτ = 1 is not an element of the fixed point
group and the resulting orbifold has fundamental group π1 = Z2. This can be understood
by noting that any such element necessarily has some winding in the fixed torus of a twist,
because the τ -element has components in all three orbifold planes.

As discussed in detail in [139], the stringy selection rules give rise to a Z4 symmetry
with charges

Q = nτ + 2(n2 + n4 + n6) mod 4 , (5.44)
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such that Q ∈ [0, 1, 2, 3]. Because any element with nτ 6= 0 is not in the fixed point set,
the corresponding states are generically massive due to the winding in the fixed torus.
Upon examining the charge assignment of the Z4 symmetry, one discovers that all massless
states (including states from the standard model) have even Z4 charges, while some of the
massive ones have odd charge. Hence, the Z4 possesses a subgroup ZDM

2 with charges

Q
Z

DM
2

= nτ mod 2 . (5.45)

This Z2 symmetry stabilizes any string state whose constructing element has nτ = 1 mod 2
against decay into massless particles. Hence, the lightest state with an odd Z4 charge
(corresponding to a non-trivial ZDM

2 charge) is completely stable as long as the discrete
symmetry is intact. Therefore, we choose our dark matter candidate to be a winding string
along the τ direction,1 i.e. with constructing element

gDM = (1 | τ) . (5.46)

In fact, there is an entire class of stable particles that share this constructing element
but differ in their choices for the KK momentum. We assume the dark matter candidate
to be the lightest representative of this class. Because of the winding, the dark matter
candidate is in general charged under some of the E8 × E8 gauge bosons, depending on
the choice for the Wilson line Wτ . It is possible to choose the Wilson lines such that the
dark matter particle is a complete standard model singlet. We assume that this is the
case in the remainder of this chapter. However, it is also possible to choose the Wilson
line configuration such that the dark matter candidate is an SU(2) doublet with zero
electric charge.2 As we discuss in more detail in the appendix, the mass of the dark matter
candidate lies between the GUT and the string scale, i.e. around 1016 GeV. In contrast to
other winding strings, we find that it is hard to make the dark matter candidate much
lighter than that without going to extreme (and unrealistic) points in parameter space.

5.4 Interactions between dark matter and the stan-
dard model

While we construct a stable dark matter candidate in the previous section, we now consider
its couplings to other states, especially the standard model, in the theory. These couplings
are crucial to ensure that the dark matter candidate is produced in sufficient quantities in
the early universe.

As in many other instances, the dark matter production is expected to be dominated
by 2→ 2 processes. In principle, one would now have to compute the relevant four-string
amplitudes for any DM2 → SM2 process. However, it is to be expected that the stringy
nature of these couplings has only a subleading effect on the overall outcome. Therefore,
we instead concentrate on the construction of an effective field theory that contains all

1It is certainly possible to construct a dark matter candidate with constructing element gDM =
(
θkω`

∣∣ τ).
However, because this state would be localized, its couplings to the massless states (which can be localized
and bulk states) are highly model-dependent and do not generalize very well to other geometries.

2In this case, one might refer to it as a “String-Scale Interacting Heavy Higgsino”.
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Figure 5.1: Dark matter production mediated by the exchange of a field M .

relevant fields and couplings, and captures all relevant properties of the model. As a result
of the constraining Z4 symmetry, the most general coupling of dark matter to thermal
bath particles looks like the diagram in the left panel in figure 5.1, where the blob is
representative for any allowed operator. At tree level, this reduces to the exchange of
mediator fields M , cf. the diagram in the right panel of figure 5.1, which is expected to
give the dominant contribution. Notably, the full four-string amplitude allows for a similar
(s-channel) factorization. One can now identify which string states are allowed as mediator
fields, and then turn on the corresponding couplings in the field theory model.

The analysis of allowed string couplings shows that there are two classes of mediator
fields, corresponding to their orbifold boundary conditions. To be specific, these classes
correspond to solutions gM to the conditions

[gDM] · [g−1
DM] · [gM ] ⊃ (1 | 0) (5.47)

[gSM] · [g−1
SM] · [gM ] ⊃ (1 | 0) , (5.48)

where we denoted the constructing elements of standard model matter with gSM. These
two conditions basically state whether or not the SM2 −M and DM2 −M vertices in the
right panel of figure 5.1 are allowed. The solutions to this conditions are on the level of
space group elements

1. Bulk states with trivial constructing element. One example for this class are gravi-
tational interactions, where the exchanged particle is the graviton. This case has
been studied extensively in the PIDM program [14, 135] and, as we will see, will
give in our setup a contribution that is in general subdominant. Another notable
representative of this class are (at the string level) massless gauge bosons. As we
have chosen our dark matter candidate to be a standard model singlet, only gauge
bosons from a hidden gauge group come into question here. The standard model
couplings of these hidden sector interactions are severely restricted by experiment
(i.e. the absence of additional long-range forces), so that these gauge bosons must be
given a mass (e.g. through SSB) in any realistic low-energy model. Moreover, the
hidden gauge bosons must couple both to the dark matter and the standard model,
which makes their role as mediators rather model-dependent.3 In what follows, we

3Given our choice for the dark matter candidate, it is a lot easier to construct a full string model where
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hence assume that hidden sector gauge interactions play no role for the production
of our superheavy dark matter candidate.

2. Winding states with a certain winding along such that the couplings to the dark
matter candidate and to the standard model are allowed by stringy selection rules.
This possibility opens up once (part of) the standard model is localized, i.e. gSM =(
θkω`

∣∣∣ v) for some lattice vector v. As they are winding, the mediators are very
massive at generic points in the orbifold moduli space. However, depending on their
choice of KK momenta, they can also be massless at special values for the radii,
while (if no special choice is made) the upper bound for their mass lies a little below
twice the mass of the dark matter candidate. Unlike the hidden sector gauge bosons,
the winding mediators are generically present, and we will base all forthcoming
considerations on these states.

The string construction allows the winding mediators to come either in N = 1 chiral or
vector multiplets, and we will consider both options in our field theory model. Moreover,
there are actually three independent solutions to the stringy selection rules that couple to
different subsets of localized standard model matter, which we will (for simplicity) treat as
one and the same field. As both the dark matter candidate and the mediator are massive,
we know that their CP partners must exist, too, in order to write down a mass term in
the superpotential. As the mediator is a complete gauge singlet, and it has Z4 charge 0,
we assume that it is its own mass partner, while we have to introduce a second field for
the dark matter candidate. Table 5.1 shows all relevant fields for the model. We now turn
our attention to the couplings of these fields to each other. As we work with an N = 1
supersymmetric theory, we have to distinguish between couplings arising from the Kähler
and the superpotential.

superfield type of strings Z4 charge
SM Φi = (fi, f̃i) localized 0 or 2

DM ΦDM = (χ, ϕ) τ -winding 1
Φ′DM = (χ′, ϕ′) −τ -winding 3

mediator ΦM = (χM,M) winding 0
V (M) = (Vµ, λ) winding 0

Table 5.1: Summary of the relevant (on-shell) fields for the effective field theory model, and
their origin in string theory. Φ′DM denotes the mass partner of the dark matter
multiplet ΦDM. We omit the auxiliary fields.

there is no hidden sector gauge boson that couples to both dark matter and the SM, than constructing a
model where a hidden sector gauge boson can act as mediator.
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5.4.1 Kähler potential terms
In order to determine the possible couplings of the dark matter candidate, we start with
the most general Kähler potentials for both the standard model and the dark matter
sector. For the standard model, we find

KSM ⊃ Φ†i
[
e2g1V (M) + g′1

Λ
(
ΦM + Φ†M

)
+ ig′′1

Λ
(
ΦM − Φ†M

)]
Φi . (5.49)

As one can see, all allowed couplings except for that of the vector multiplet V (M) = (Vµ, λ)
with coupling g1 are non-renormalizable, and therefore only the coupling to the vector
multiplet will be considered in what follows. The vector superfield corresponds to a massive
U(1). As all couplings of the standard model to the chiral superfield are ruled out, we also
consider only the vector superfield V (M) for the coupling to the dark matter candidates
ΦDM and Φ′DM in the dark sector Kähler potential

KDM ⊃ Φ†DM e2g2V (M)ΦDM + Φ′†DM e−2g2V (M)Φ′DM . (5.50)

If we parameterize the SM chiral multiplets as in table 5.1 as Φi = (fi, f̃i) and the dark
matter multiplets as ΦDM = (χ, ϕ) and Φ′DM = (χ′, ϕ′), the relevant Lagrangian for the
2→ 2 production of dark matter from the D-terms of the Kähler potentials in terms of
the component fields reads

L ⊃ KSM

∣∣∣∣
D

+KDM

∣∣∣∣
D

(5.51)

⊃ g1V
(M)
µ

[(
f iσ

µfi + 2if̃ †i ∂µf̃i
)

+ g2
(
χσµχ+ 2iϕ†∂µϕ

)]

+
√

2g1
(
f̃iλ f i + f̃ †i λfi

)
+
√

2g2
(
ϕλχ+ ϕ†λχ

)
+

 χ↔ χ′

ϕ↔ ϕ′

g2 ↔ −g2

 . (5.52)

Each of these terms gives rise to a three-point vertex that connects either two dark matter
particles or two standard model fields with a mediator. Moreover, there exists also a
four-scalar vertex that arises from the auxiliary field of the mediator. In particular, the
relevant part of the Lagrangian that contains the auxiliary field DM in the mediator
multiplet V (M) reads

L(DM) = 1
2D

2
M + g1DM|f̃i|2 + g2DM|ϕ|2 − g2DM|ϕ′|2 + . . . . (5.53)

As usual, the auxiliary field DM has algebraic equations of motion. If it is set on-shell, the
Lagrangian yields

L(DM) = − 1
2
(
g1|f̃i|2 + g2|ϕ|2 − g2|ϕ′|2

)2
+ . . . , (5.54)

and hence, we obtain a four-scalar vertex for the bosonic components of the dark matter and
the standard model multiplets with a coupling g1g2. Let us briefly discuss the conceivable
range of values for the couplings g1 and g2. In supersymmetric gauge theories, each gauge
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coupling is given by a gauge kinetic function f . For example, in the case of the U(1)
associated with the mediator field V (M)

µ we have

fU(1) = S + ∆U(1)(Ti, Ui) , (5.55)

where S is the heterotic axio-dilaton and the threshold correction ∆U(1) is a stringy one-loop
contribution [158] that is in general a complicated function of the geometric moduli Ti
and Ui, see ref. [159]. In particular, the form of the threshold depends on the Wilson line
configuration and the underlying lattice [160]. However, for the non-factorizable orbifold
with arbitrary Wilson lines we are considering, the precise form of ∆U(1) is unknown. Still,
we expect that by varying the geometric moduli, one can generate wide ranges of effective
couplings for the mediator U(1). The couplings of the standard model gauge group follow
a similar pattern

fGSM,a = S + ∆GSM,a(Ti, Ui) , (5.56)

where a labels the SU(3)C, SU(2)L and U(1)Y gauge factors in the standard model gauge
group. However, the threshold corrections ∆GSM,a for the standard model have in general
a different functional dependence on the geometric moduli than ∆U(1). Hence, it is
conceivable that the mediator couplings can be varied without spoiling the unification of
the standard model gauge couplings. This is always the case when varying the geometric
moduli(

Ti
Ui

)
7−→

(
T ′i
U ′i

)
(5.57)

induces a large variation in the threshold corrections of the coupling of the mediator U(1),
which can be formulated as∣∣∣∆U(1)(T ′i , U ′i)−∆U(1)(Ti, Ui)

∣∣∣ �∣∣∣∆U(1)(Ti, Ui)
∣∣∣ , (5.58)

but at the same time the threshold corrections for the standard model gauge couplings,
that need to be unified at or around the traditional GUT scale remain practically constant

∆GSM,a(T ′i , U ′i) ∼ ∆GSM,a(Ti, Ui) . (5.59)

Even without studying the threshold corrections for a general string theory compactification
in detail, it seems conceivable that a large range of couplings for the massive U(1) can be
generated by this mechanism. Hence, we treat the couplings g1 and g2 as free parameters of
our model. As our results will show, extreme values for the couplings have indeed the power
to make the model unrealistic. However, we will also see that the required cosmological
parameters do not change drastically for wide ranges of the couplings. Therefore, we
believe that the lack of a precise prediction for the values of the couplings does not affect
the predictivity of our approach.

5.4.2 Superpotential terms
The couplings via the the Kähler potential terms are not the only way to couple the dark
sector to the standard model (or, more generally, to the thermal bath). Specifically, one
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can write down couplings of the mediator to the standard model superpotential via Higgs
portal and neutrino-portal-like terms. From a stringy point of view, these couplings can
only exist if the Higgs field is localized, as otherwise the selection rules cannot be satisfied.
Moreover, for the neutrino portal, the Higgs field has to live at the same fixed point as one
of the three lepton doublets. In principle, it could live at a different fixed point in the same
sector, but then the couplings would be suppressed exponentially by the Kähler modulus.
At the same time, they would be forbidden if the Higgs doublets and all lepton doublets
would live in different twisted sectors. Similarly, ternary superpotential couplings of the
mediator to the dark matter candidate can be constructed. As in the Kähler potential
case we make again the assumption that the mediator couples to all SM states with the
same coupling constant. Then the terms containing the mediator in the corresponding
superpotential read

W = WM +WDM +WHiggs-portal +Wneutrino-portal (5.60)

= mM

2 Φ2
M + λM

3 Φ3
M + mDM

2 ΦDM Φ′DM + λDM ΦM ΦDM Φ′DM

+ λH ΦM Ĥu Ĥd + λN ΦM Ĥu L̂ . (5.61)

Here, we denote the SM Higgs superfields by Ĥu,d = (H̃u,d, Hu,d) the lepton doublet by
L̂ = (`, ˜̀). As in the Kähler potential case, we are interested in three-point interactions
involving two dark matter or standard model states. Again, there appear also four-boson
interactions if the auxiliary field of the mediator multiplet is set on-shell. If we collect
only the relevant terms from the F terms of this choice for the superpotential, we find the
following terms in the Lagrangian

L ⊃ −mMM
†
[
λDM

(
1 + mDM

mM

)
ϕϕ′ + λHHuHd + λNHu

˜̀
]

− λDMϕ
†ϕ′†

(
λHHuHd + λNHu

˜̀
)

+ λDM [χMχϕ
′ + χMϕχ

′ +Mχχ′]

+ λH
[
χMH̃uHd + χMHuH̃d +MH̃uH̃d

]
+ λN

[
χMH̃u

˜̀+ χMHu`+MH̃u`
]

+ h.c. , (5.62)

where the first two terms arise from the scalar potential of the mediator multiplet. If the
couplings λN,H are chosen to be of the same order of magnitude as the U(1) couplings
g1,2 in the Kähler potential, it turns out that the superpotential couplings happen to
contribute numerically a little less to the dark matter production rate than the Kähler
terms. As a result, the superpotential terms do not allow to probe a much larger portion
of the parameter space and hence do not provide much insight. On the other hand, their
existence is rather model-dependent (because of the need of a specific localization of the
Higgses), and therefore we will ignore this possibility by putting the Higgs into the bulk
(thereby forbidding all superpotential couplings for DM production) and concentrate on
the Kähler terms only.
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5.5 Dark matter production from Kähler potential
terms

Let us now study the dark matter production via freeze-in through 2→ 2 scattering by
Kähler potential terms. Using the dark matter–mediator and standard model–mediator
couplings in the Lagrangian (5.51) and (5.54), at tree-level, we find the relevant channels
for the non-gravitational interactions of dark matter with the standard model are given by
the processes shown in fig.s 5.2–5.7. Note that we only show production channels for the
dark matter multiplet ΦDM, of course analogous diagrams exist also for its mass partner
multiplet Φ′DM.

Ultimately, we are interested in the total number of dark sector particles produced,
i.e. in the number density

n = nχ + nχ† + nϕ + nϕ† + nχ′ + nχ′† + nϕ′ + nϕ′† , (5.63)

and hence we can apply the methods introduced above to deal with the coannihilations
e.g. in fig. 5.7. Considering these processes, the non-vanishing cross sections σij for the
production of dark sector states are given by

σχχ = σχχ→fif i + σχχ→f̃if̃†i
(5.64)

σϕϕ† = σϕϕ†→fif i + σϕϕ†→f̃if̃†i
(5.65)

σχϕ† = σχϕ†→fif̃†i
(5.66)

σχϕ = σχϕ† , (5.67)

plus the corresponding terms for χ′, ϕ′. Together with the condition that σij = σji, these
are all non-zero contributions to the total cross section. With these preparations in place,
one can perform the thermal averaging eq. (5.20) numerically (cf. figure 5.8). Using this
result for the effective thermally averaged cross section, one can observe that the dark
matter candidate is too heavy to attain thermal equilibrium even for largish couplings as
the reaction rate

ΓDM = 〈σeffv〉n (5.68)

is too small compared to any conceivable value of the Hubble rate in the very early
universe. Therefore, one can only hope to produce the various particles in the dark sector
via freeze-in.

Modeling (pre)heating. Unlike the freeze-out production, a freeze-in scenario depends
on the chosen model for inflation, especially on the reheating at the end of inflation.
Different scenarios for inflation and reheating lead to different maximal temperatures Tmax
during reheating. As one can see from the temperature dependence of the integrand for
the relic abundance X∞ (i.e. the cross section in figure 5.8 times the equilibrium density
squared), the production of dark matter quickly becomes inefficient for temperatures below
the dark matter mass scale. As a result, the maximal value for the relic abundance is
obtained if the maximal temperature Tmax is as high as possible, or, in other words, if
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reheating phase after inflation is as short as possible. Realizing a near-instantaneous
reheating requires

Hi

Γ ∼ 1 , (5.69)

where Hi is the Hubble rate at the end of inflation (i.e. just before reheating starts) and Γ
denotes the inflaton decay rate. If this instantaneous scenario is realized, the reheating
temperature Trh (i.e. the temperature at the end of reheating) and the highest temperature
attained during reheating Tmax coincide and are given in terms of the Planck mass and
the Hubble rate Hi by

Trh ≈ 0.25
√
mPlHi . (5.70)

The most straightforward way to achieve a near-instantaneous reheating is by employing
non perturbative scenarios [161]. There, even Planck scale particles may be produced
non-thermally during (pre)heating, a feature that is absent in perturbative models for
reheating. Moreover, these scenarios are certainly not the most generic ones. Instead,
we will assume that a near-instantaneous reheating is achieved perturbatively (along the
lines of [135], where it is shown that this can indeed be realized), which is followed by
a radiation-dominated phase during which the thermal production of dark matter takes
place. Among all perturbative scenarios, the near-instantaneous scenario sets an upper
limit on the amount of thermally produced dark matter for a given Hubble rate after
inflation Hi. On the other hand, this can yield a lower bound on the Hubble rate Hi

needed in order to explain the observed relic density ΩXh
2 by our dark matter candidate

only.
While a certain value for the Hubble rate is needed to produce enough dark matter,

the non-observation of tensor modes in the cosmic microwave background (CMB) by the
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Figure 5.8: The effective thermally averaged cross section for the 2 → 2 production of dark
matter, for a mediator mass mM = 1.8mχ and all couplings set to unity. The cross
section approaches a constant value for T � mχ. It should also be noted that the
typical reheating temperatures lie at values up to 0.7mχ (corresponding to x = 1.4),
so that the cross section cannot be approximated as being constant at the relevant
temperature scales.

Planck satellite combined with constraints from Bicep2 and Keck set an upper bound on
the Hubble rate Hi. In particular, there is an upper bound on the tensor-to-scalar ratio
r < 0.056 [162] using the latest available data. The resulting bound on the Hubble rate
constrains the maximally allowed reheating temperature to lie a little below the GUT scale

Trh < 5.8 · 10−4mPl ≈ 7 · 1015 GeV . (5.71)

It is expected that this bound becomes much tighter in the next few years [163]. If we
adopt the convention that the scale factor after inflation ai can be set to 1, the temperature
and the Hubble rate depend on the scale factor as

T (a) = Trh

a
, H(a) = Hi

a2 (5.72)

during the radiation-dominated phase after reheating. As a result, the relic abundance
eq. (5.31) can be seen as a function X∞(Hi, g1g2,mχ,mM) of the Hubble rate at the end
of inflation Hi, the (product of the) involved couplings g1g2, the dark matter mass mχ and
the mediator mass mM.

A “self-tuning” mechanism of freeze-in production. Before we dive into the ex-
plicit results, let us note that the Hubble rate Hi required to obtain the observed relic
abundance remains almost constant even if vectorlike SM exotics are added due to the na-
ture of freeze-in production. The required value of Xcrit.

∞ grows with the number of degrees
of freedom in the thermal bath g∗, as they eventually produce entropy. On the other hand,
more states in the thermal bath also lead to more production channels for the production
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of dark matter. Therefore, if the couplings of all contributing chiral multiplets are roughly
equal, the Hubble rate needed to match the correct final abundance is determined by the
contribution x∞ = X∞/NΦ of a single multiplet to the final abundance. Consequently, the
critical contribution per chiral multiplet can be expressed as

xcrit.
∞ = g∗

NΦ
R , (5.73)

where g∗ counts the number of degrees of freedom in the thermal bath at Trh and NΦ is
the number of contributing chiral multiplets. For the case of the MSSM with three right
handed neutrinos, we have g∗ = 240 and NΦ = 48, leading to the value (5.32). Now, if a
given model has vectorlike exotics, these values change. In particular, adding nV vectorlike
pairs of exotics leads to

g∗ 7→ g∗ + 7.5nV and NΦ 7→ NΦ + 2nV . (5.74)

Hence, adding an arbitrary number of vectorlike exotics, i.e. sending nV →∞, lowers xcrit.
∞

by at most 25%. For the Hubble rate Hi, this entails only a small adjustment (up to a few
percent) and hence our results are largely insensitive to the full particle content of a given
model.

5.6 Results
Let us now discuss the resulting relic abundances that arise from our setup. In order to
determine the final abundances X∞, we solve the integral (5.31) numerically, with the aid
of methods developed in [164]. Because we chose the simplified reheating scenario, the only
cosmological parameter that appears in the final relic abundance is the Hubble rate Hi

after inflation. As our model does not provide us with a preferred value for Hi (only with
an upper bound), we will use the other parameters to infer the value Hi has to attain in
order to obtain the observed relic density. On the particle physics side, the relic abundance
predominantly depends on the dark matter mass mχ and the product of the couplings
g1g2. In addition, there is also a mild dependence on the mediator mass mM, however it
turns out that this parameter has only a minor effect, especially for largish values of the
couplings g1 and g2. As the dark matter mass lies necessarily around the GUT scale (at
most a little above), the product of the couplings is the only free parameter of the model,
and we will use it to make predictions on the required Hubble rate. In particular, we are
interested in determining for which cases the required Hubble rate comes into conflict with
the existing and projected bounds.

We display our results for two values of the dark matter mass in figure 5.9. In order to
probe the allowed range of values for the Hubble rate, we vary the product of the couplings
g1g2 over a broad range. For each value of the product of the couplings, we determine
the value of Hi that is required to produce the critical dark matter relic abundance Xcrit.

∞ ,
eq. (5.32), that matches the observed dark matter relic density. We perform this scan
using two values of the mediator mass in order to demonstrate the relative insensitivity of
the results on this parameter.

Examining the trajectory of the critical Hubble rate, one first notices that the required
value for Hi lies within the same order of magnitude for any value of the product of
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the couplings g1g2 greater than 10−8, namely around 1011 to 1012 GeV for a GUT scale
dark matter particle. It becomes apparent that the Hubble rate required to match the
observed dark matter relic density exceeds the CMB bounds [162] if the couplings are made
sufficiently small. However, if the couplings are that small, the thermal production of dark
matter is in fact dominated by the exchange of gravitons (presented in ref. [14, 135]) rather
than the stringy mediators, so that our initial assumption (namely that the gravitational
component can be merely neglected) is violated. As a result, we can only probe the
cosmological parameter space if the product of the couplings g1g2 is greater than 10−6.
Our results show that for any sensible dark matter mass, the present CMB bounds are
out of reach because the corresponding value for Hi would imply an overproduction of
dark matter through graviton exchange already. The current bounds may at most be
probed with a less efficient reheating scenario. On the other hand, it is possible to probe
the projected bounds with a dark matter mass of mχ ∼ 3 · 1016GeV or larger. In this
case, the smallest possible value for the couplings is g1g2 = 10−4, which corresponds to a
Hubble rate of Hi ∼ 1012 GeV. Note that for this choice of parameters, the contribution of
graviton exchange is sufficiently suppressed so that it can be neglected. Moreover, for this
mass range also the gravitational production through variations of the metric (cf. [131]) is
inefficient and plays no role.

While the mediator mass has some influence on the precise required value of the Hubble
rate at the end of inflation (and makes the bounds become tighter for lower values of
mM), we observe that the induces change in the required value for Hi is at most 20%,
which—given the crudeness of all our assumptions—is not a large effect.
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Figure 5.9: Relation between the critical Hubble rate at the end of inflation and the product of
the couplings. We display the critical Hubble rate for a dark matter mass of 1016GeV
(left) and 3 · 1016GeV (right). The blue and orange curves indicate a mediator
mass of 1.9mχ and 1.0mχ, respectively. The red area at the top is excluded by the
currently observed bound for the tensor-to-scalar ratio in the CMB. Additionally,
the projected sensitivity of CMB experiments is shown as the dashed red line. The
critical Hubble rate of graviton exchange [14] is indicated by the blue dashed line.
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5.7 Conclusions

The goal of this chapter is to demonstrate that once one assumes string theory to be a valid
solution for quantum gravity, it can also solve other problems of fundamental physics along
the way (without being specifically designed to do so). One of these problems that may be
solved implicitly is a microscopic explanation for the existence of dark matter, which has
been tackled in the broader context of string theory [165, 166, 167]. In this chapter, we
build upon two interlinked observations regarding the properties of generic string models,
namely that (i) the appearance of (heavy) standard model singlets with masses at or above
the GUT scale is very common, and (ii) the topological properties of the compactification
space (be it an orbifold or a Calabi–Yau) yield a stabilizing symmetry for at least a subset
of these heavy singlets. Hence, as far as particle physics is concerned, these heavy singlets
provide a viable dark matter candidate if there exists a mechanism that produces them in
large enough quantities. Because it is generically heavy, our stringy dark matter candidate
never attains thermal equilibrium and hence cannot be produced via the usual freeze-out
process. However, building on the initial observations in ref. [134], it has been shown in
ref. [14] that the thermal production of dark matter with masses almost up to the Planck
scale can be realized via freeze-in production, even with suppressed couplings of the dark
matter sector to the particles in the thermal bath. Hence, one has reasons to believe that
the stringy dark matter candidate may be produced in sufficient quantities as well.

In order to prove and quantify these statements, we have to pick a specific model, which,
however, is constructed in such a way that its generalization to a generic string model is
more or less clear. Our specific model is based on an orbifold with non-trivial fundamental
group π1, and the dark matter candidate is then a winding string around a non-contractible
cycle (whose existence is guaranteed by the non-trivial fundamental group). An analysis of
the allowed string couplings reveals that this special class of winding strings is stabilized
against decay. The stringy selection rules also reveal that the dark matter candidate
couples to thermal bath particles (like, e.g. the standard model) both via gravity (as in the
original PIDM scenario), but also via stringy mediators that are themselves winding strings
and that are uncharged under the SM gauge symmetries. These stringy states give rise to
2→ 2 scattering amplitudes that have the potential to dominate over graviton exchange
channels. In order to study the freeze-in production of dark matter via these channels,
we avoid the in-depth calculation of the stringy 2→ 2 scattering amplitudes but instead
build an effective N = 1 supersymmetric field theory that captures all necessary couplings
and charges. In this effective field theory, we find that contributions to the production of
dark matter can arise from the Kähler potential and—if the localization of the standard
model Higgs doublet is chosen right—also from superpotential terms. In order to keep
our results most general, we opt for the more model-independent contributions from the
Kähler potential. We find that the Kähler potential terms stem from a massive U(1) gauge
symmetry under which both the dark matter candidate and the standard model matter are
charged. Unlike for the dark matter candidate, there exist points in moduli space where
the U(1) gauge bosons become massless. We observe that the U(1) gauge couplings depend
on the precise values of the geometric moduli and can be varied almost at will without
spoiling the unification of the standard model gauge couplings at the traditional GUT scale.
Hence, we view these couplings as free parameters of the theory. If we insist that strictly
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the observed amount of dark matter is produced, a Hubble rate at the end of inflation of
order 1012 GeV is necessary to do so for most of the sensible part of the parameter space.
In principle, future CMB experiments are sensitive enough to restrict the possible range of
the gauge couplings under the massive U(1) gauge symmetry by restricting the maximally
allowed value of the Hubble rate after inflation due to the non-observation of tensor modes
in the spectrum. Hence, that means that the paradigm of string scale interacting dark
matter can in principle be ruled out as soon as future experiments become sensitive enough
and place tighter bounds on the tensor-to-scalar ratio in the CMB. For now, we observe
that the precise value of the gauge couplings only has a minor effect on the outcome, as
long as these charges do not take extreme values. Moreover, also the (moduli-dependent)
mass of the mediator fields has no qualitative influence on the overall outcome. This leads
us to believe that our results are on a certain level model-independent. On the other hand,
also the spectrum of our model, i.e. the possible appearance of vector-like standard model
exotics is shown to affect the necessary value of the Hubble rate after inflation only up
to a few percent. Together with the fact that the existence of non-contractible cycles is
rather common in semi-realistic string models, we believe that our findings carry over
very well to other explicit constructions, for example Calabi–Yau compactifications with
freely-acting Wilson lines [168, 157, 169, 170].

Outlook. What we have presented here is a rough proof of concept that can be expanded
in many ways, on the string theory, the particle physics and the cosmology side of the
problem. Within the context of string theory, we restrict ourselves to models where the
ten-dimensional E8 × E8 gauge symmetry was broken locally, i.e. where the Wilson line
associated with the non-contractible cycle is not responsible for the breaking of some
intermediate GUT to the SM gauge group. This was necessary to keep the dark matter
candidate a complete SM singlet. It would be interesting to see if it is possible to construct
an explicit orbifold model where the gauge symmetry is broken non-locally without giving
the dark matter candidate a charge under the standard model gauge group. Moreover, the
stringy origin of the four-point amplitudes from which the 2→ 2 production of dark matter
arises deserves attention. On the particle physics side, an interesting class of models may
arise when the assumption of the dark matter candidate being a complete standard model
singlet is dropped and it is placed in an electrically neutral SU(2) doublet instead. Then,
it is interesting to study how the 2→ 2 production channels by the exchange of SU(2) and
massive stringy U(1) gauge bosons interfere. By taking things a step further, one may even
allow for a multi-component dark matter scenario where dark matter candidates that are
SM singlets are produced alongside an SU(2) charged dark matter component. Another
important generalization would be to allow for non-Abelian stringy mediators instead of
simply a U(1). On the cosmological side, we make the simplification of near-instantaneous
reheating. It is known that more realistic models (at least the more generic ones) allow
for a finite duration of reheating, which leads to models where the maximal temperature
reached during reheating is lower than in the instantaneous case. It is tempting to see how
the allowed parameter space for the stringy gauge couplings is further reduced in these
scenarios.





6

Discussion

In this thesis, we explore the physics of orbifold compactifications of heterotic string theory.
Especially in chapters 4 and 5, we put an emphasis on string-inspired field theory models.
These string-inspired models are designed such that they reflect the collective properties
of wide ranges of string-derived models (i.e. low energy field theories of one particular
superstring vacuum), and may therefore count as generic.

For many years, retaining N = 1 supersymmetry in four dimensions has been the
leading paradigm in string model building. However, in the light of the fact that current
experiments have not yet provided any evidence for the existence of low-scale supersym-
metry, the study of non-supersymmetric string theories has gained renewed interest in the
past years [55]. Chapter 3 deals with the consequences of breaking supersymmetry already
at the string level. Of particular interest in the context of heterotic constructions is the
prediction for the cosmological constant at one loop. As it is proportional to the dilaton
tadpole, keeping it small is strictly necessary to obtain a stable vacuum. While the cosmo-
logical constant (and with it the dilaton tadpole) vanishes identically in supersymmetric
models, it may attain large values once SUSY is broken at the compactification scale. In
this context, the logical question arises whether or not a SUSY-breaking compactification
necessarily implies a non-vanishing cosmological constant, or whether there are certain
models with no target-space supersymmetry but with a zero cosmological constant. At
one-loop level, the relevant object to study is the modular integral over the one-loop string
partition function. The partition function on an orbifold can be organized as a sum in
terms of boundary conditions (the so-called sectors), and each sector in turn factorizes
into a contribution coming from left- and rightmoving modes of the string. The vanishing
of the cosmological constant can now be realized in various ways, ranging from a non-zero
string partition function that integrates to zero over the domain of integration (which is
the most involved case) to the most simplistic case, where the integrand vanishes sector
per sector already. As it turns out, the more involved ways to obtain a vanishing partition
function are difficult (if not impossible) to realize, and even if they existed, they would
be extremely model-dependent, so that obtaining realistic particle physics would turn
out to be very difficult. Hence, we concentrate on the simplest case where the partition
function is supposed to vanish sector per sector. The starting point for our analysis is
to study which of the factors of a sector can potentially vanish. By deriving a set of
general Riemann identities for the number-theoretic functions that appear in the partition
function, we are able to show that only the rightmover partition function can vanish in
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any sensible (heterotic) string model. In particular, we show that the vanishing of the
partition function depends on how the discrete rotations on the orbifold act on target
space spinors. Hence, the problem of vanishing or non-vanishing sectors in the partition
function can in fact be understood by studying the group theoretical properties of the
spinor embedding of the orbifold point group. In our study, we show that the partition
function in a non-supersymmetric string model cannot vanish sector per sector, and hence
it has to be assumed that the same is true for the cosmological constant and the dilaton
tadpole. We provide a proof for this statement in two ways: First, by constructing the
spinor embeddings for each admissible space group explicitly and then showing that none
of the possible spinor representations fulfills the necessary conditions. A second, more
abstract way of proving the no-go statement can be obtained by re-formulating the problem
in terms of the representation theory of discrete groups and then showing that none of
the point groups possesses any representation (no matter if it corresponds to an actual
orbifold geometry) that has the desired properties. These properties mainly concern the
branching of the (four-dimensional) spinor representation into the various ZN subgroups
of the point group. In order to break SUSY, the representation must not contain a trivial
singlet of the point group, while it has to branch into at least one trivial singlet of each ZN
subgroup in order for the partition function to vanish. While we show the non-existence
of representations with these properties by simply enumerating all four-dimensional repre-
sentations of all admissible point groups, we also find evidence that the statement might
hold for any discrete group, not just the ones that may act as orbifold point groups. The
corresponding statement is formulated as a conjecture that, once proven, may prove useful
in model building with discrete groups. On the other hand, the no-go result for vanishing
partition functions in non-supersymmetric compactifications of the heterotic string may be
interpreted to suggest that a generic, stable superstring vacuum necessarily descends from
a supersymmetric theory, and hence motivates the existence of supersymmetry beyond
the TeV scale in string-inspired models.

Chapter 4 is devoted to the study of the emergence of discrete symmetries as remnants
of higher-dimensional gauge theories. While discrete symmetries are ubiquitous in bottom-
up model building, there exist arguments from quantum gravity that any symmetry must
be ultimately gauged [13]. Hence, any successful top-down approach should give rise to
discrete remnants of broken gauge symmetries in its low-energy limit. As opposed to the
unbroken continuous gauge symmetries, the rigorous derivation of the discrete remnants is
not as straightforward, and it easily happens that a surviving symmetry is overlooked. In
this chapter, we use a typical string-inspired setup, namely a higher-dimensional gauge
theory that gets compactified to four dimensions on an orbifold. In this setting, the
higher-dimensional gauge symmetry is broken by orbifold boundary conditions of the
gauge fields. Whenever possible, we put an emphasis on the connection between this
field-theoretic model and a full string-derived setup, which can be achieved by choosing
the orbifold boundary conditions accordingly. In order to study the unbroken symmetries
in the low-energy regime, we provide a general framework that can be used to identify
discrete remnants of the broken higher-dimensional gauge symmetry. We are able to
show that indeed the situation for discrete remnants is more complex than for continuous
symmetries, because the discrete symmetries have to fulfill only a more liberal condition
than the continuous ones. If we parametrize the gauge action of the orbifold boundary
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conditions by P , an element U of the higher-dimensional gauge group G survives the
orbifolding if

[P,U ] ∈ Z(G) , (6.1)

where Z(G) denotes the center of the group G. Notably, the usual conditions only
capture those transformations U that strictly commute with the boundary conditions
and hence leave many surviving transformations aside. We demonstrate the application
of this condition in various setups. There, we observe in how far our condition gives
rise to discrete symmetries that can be useful in the context of CP and flavor model
building. Along these lines, we observe that finding solutions to our condition can be
arbitrarily difficult if the group G is large and the boundary condition P does not take
a particularly simple form, because in general one has to check an infinite number of
candidate transformations. However, we provide an ansatz to reduce the set of possibly
surviving transformations to a finite number of candidates by making use of the Weyl
reflections in the root lattice of the group G. In particular, we show that every discrete
remnant symmetry found in our examples can be traced back to an element of the Weyl
group of G that is no longer an element of the Weyl group of the unbroken low-energy
continuous gauge symmetry. While our general approach is independent of the matter
content of the theory, we shortly comment on the inclusion of matter in our framework,
again in such a way that the connection to a full-fledged string construction is clear. All in
all, our approach provides the model building community with a powerful tool to construct
realistic top-down models of flavor and CP , where both the connection to the UV-complete
theory (i.e. string theory) and bottom-up models are straightforward to perform.

Finally, the topic of chapter 5 is to explore how a generic string model can give rise
to a viable candidate for dark matter. In our approach, we make use of the fact that
heavy standard model singlets frequently appear in generic string models. Moreover, large
classes of compactification spaces M (in particular Calabi–Yau manifolds, but also certain
orbifolds) automatically guarantee the stability of these singlets. This stability originates
from a discrete ZN symmetry which in turn is the result of certain topological properties
of the compactification space, namely that the so-called fundamental group π1(M) is
non-trivial. Hence, the singlet becomes a natural candidate for dark matter. However, as
this dark matter candidate has masses at or above the GUT scale, it is not clear a priori
whether it can be produced in sufficient quantities in order to explain the dark matter relic
density observed today. In particular, the high mass prevents this dark matter candidate
from ever attaining thermal equilibrium, so that its production via the traditional freeze-
out mechanism is infeasible. On the other hand, it has been demonstrated previously
that—given the right conditions in the early universe—the production of massive dark
matter candidates with masses almost up to the Planck scale seems possible without them
ever being in thermal equilibrium, via freeze-in production, as shown in particular in the
context of Planckian Interacting Dark Matter (PIDM) [14]. While the PIDM program only
takes the exchange of gravitons as mediators into account, other channels may appear in a
string theory setup. In order to study these additional contributions (and their relative
importance compared to graviton exchange), we picked an explicit model derived from
heterotic strings on a special class of orbifolds. In this explicit model, we realize the
stable dark matter candidate as a winding string that winds around a non-contractible
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cycle on the orbifold. If the thermal bath states are taken to be brane fields, we show
that different stringy couplings of the dark matter candidate to the standard model fields
are present, ranging from gravitons and hidden gauge bosons to purely stringy couplings
via the exchange of other heavy string states. The latter ones are shown to dominate
over graviton exchange in the absence of hidden gauge bosons under which both the
DM candidate and the SM fields are charged, which we take as the generic case. We
make use of the analysis of the couplings allowed by string theory in order to build an
effective N = 1 supersymmetric field theory that captures all relevant fields and their
couplings. In this string-inspired field theory, we then analyze the thermal production
of dark matter through 2→ 2 scattering via freeze-in. While there can be contributions
from the superpotential, we find that the contributions from the Kähler potential terms
are more generic, and furthermore that the superpotential terms do not provide a greater
insight and we therefore consider only the Kähler terms in the remainder of our analysis.
These Kähler terms are then shown to correspond to the exchange of a massive U(1) gauge
boson, that is massive at generic points in the moduli space, but may become massless
at special points. We find that the relevant particle physics parameters of our model are
then only the mass of the dark matter candidate and mediator, which are both functions
of the geometric moduli, as well as the couplings of the dark matter candidate and the
standard model fields to the massive U(1). While the dark matter mass is shown to lie
around the GUT scale, we demonstrate that there is no prediction for the couplings from
first principles, i.e. they can be varied almost at will without spoiling the unification of the
standard model gauge couplings. These particle physics parameters can be used to infer
the necessary values of the cosmological parameters, which—if we make the simplifying
assumption of a near-instantaneous reheating scenario—consist solely of the Hubble rate
at the end of inflation. On the other hand, the Hubble rate after inflation is constrained
by observations of the cosmic microwave background. In effect, if we insist that the stringy
dark matter candidate makes up all of dark matter in the present universe, this allows us
to directly probe the string theory parameter space. We observe that it is indeed possible
to achieve the observed dark matter relic density for a high enough Hubble rate, which
makes our heavy string state a viable dark matter candidate. All in all, in contrast to
other proposals for stringy dark matter candidates, our approach provides both a stable
string state as a dark matter candidate and a set of stringy interactions through which
the candidate is produced.

The results derived in this work allow for a better characterization of string-inspired
models of particle physics: We can motivate the existence of supersymmetry even at high
scales in order to retain computational control over the cosmological constant. In effect,
supersymmetry may serve a purpose even if it does not address the hierarchy problem as
effectively as it was once believed. We also provide a rather complete toolbox for top-down
flavor model building with discrete gauge symmetries. Finally, we show that string-inspired
models give rise to a vast playground for dark matter model building. It is interesting to
compare the results of this thesis to the study of the heterotic orbifold landscape using
techniques from machine learning. In [20], the intuition that phenomenologically viable
models cluster together in a number of fertile islands in the landscape was verified using
an autoencoder neural network. It certainly deserves to be studied if the fertile patches
can be characterized by physical properties, e.g. the presence of promising flavor groups.
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Jacobi theta-functions: Definitions
and useful identities

The Dedekind eta- and the Jacobi theta-functions are the main building blocks of (heterotic)
string partition functions. They arise from the study of number-theoretic problems (like,
e.g. counting the number of integer partitions). This appendix lists their definitions
and basic properties, especially their behavior under modular transformations. For more
references see e.g. [171, 172, 173]. The Jacobi theta-functions are defined as
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]
(τ, z) =
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n∈Z

q
1
2 (n+a)2e2πi(n+a) (b+z) , (A.1)

where q = e2πiτ , z ∈ C and a, b are called characteristics. Based on these definitions one
observes that
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Furthermore, one can trade a non-zero lower characteristic for a shift in the variable z
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(τ, z + b) . (A.4)

In our string partition functions, we can usually set z = 0 and in this case simply write
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]
(τ). The theta functions quite often appear together with Dedekind

eta-functions. In this case, one has the very useful identity
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Moreover, characteristics of ten dimensional string partition functions are always α, α′ ∈
{0, 1

2} and one defines

ϑ1(τ) = ϑ

[1
2
1
2

]
(τ, 0) =
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n∈Z
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2 ) 1

2 = 0 (A.6)
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In terms of these functions, there exist two useful identities. The first one is the “aequatio
identica satis abstrusa” [174], the abstruse identity by Jacobi

ϑ4
3 − ϑ4

4 − ϑ4
2 = 0 , (A.10)

which in our string theory application translates to a vanishing rightmover partition
function in ten-dimensional supersymmetric theories. The second one is the so-called triple
product identity

ϑ2 ϑ3 ϑ4 = 2 η3 , (A.11)

which obviously identifies the Dedekind eta-function as a product of theta-functions. Under
modular transformations, one finds that the Dedekind eta-function transforms as

η
T−−→ e iπ

12η η
S−−→
√
−iτ η (A.12)

and the Jacobi theta-functions as
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A more general Riemann identity

In this appendix, we derive a generalization to the Riemann identity (3.38). In particular,
we study products of d Jacobi theta-functions (corresponding to d complex fermions
in physics applications), where d is taken to be an even number. We assume that the
d fermions obey Zd/2 spin structures, i.e. they show non-trivial boundary conditions
parametrized by a Zd/2 action. What we will show here is that the modular invariant sum
over d/2 products of d theta-functions can be recast to a single theta-function.

As in the special case with d = 4, we build our approach on an orthogonal matrix S

ST = S , STS = 1d . (B.1)

which we insert in any appearing Euclidean inner product. A possible, systematic choice
for S is

S = 2
d
wwT − 1d , (B.2)

where w is a d-dimensional vector with non-zero integer entries that fulfills w2 = d. The
most straightforward choice is to take w = ed, i.e. the d-dimensional vector with all entries
set to one. Let us use the shorthand ν = d/2 as it appears frequently. As we chose d to
be even, ν is always an integer. In what follows, we are interested in summations over
integer lattices. In that regard, it is useful to observe that a general integer vector n after
multiplication with S is in general no longer integer. However, it can be split

ñ = S n = 1
ν

(∑
i

ni

)
ed − n != t

ν
ed +m , (B.3)

into a part that is still an integer vector m plus a fractional part, in which we take
t = 0, . . . , ν − 1. We observe that, because of the special form of S, m and t are related

eTdm+ t ∈ ν Z . (B.4)

In all that follows, we work with d-dimensional theta-functions that are products of the
usual ones
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We now rewrite this expression in terms of characteristics α = Sα̃ by exploiting the
expression (B.3). We find

ϑ

[
α̃

α̃′

]
(d)

=
ν−1∑
t=0

∑
m∈Zd

δνZ(eTdm+ t) e2πi
{
τ
2

(
m+ t

ν
ed−α

)2
+
(
z−α′

)T(
m+ t

ν
ed−α

)}
, (B.6)

where we enforce the constraint (B.4) by inserting an appropriate projector

δνZ(β) = 1
ν
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e2πi t
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ν
β . (B.7)

By writing out the projector, we can rewrite the summand in terms of d-dimensional
theta-functions again, which brings us to the desired connection
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The result can be brought in an even more useful form, namely by noticing that one can
equivalently make the replacements α 7→ 1

2 ed − α and α̃ 7→ 1
2 ed − α̃. With this shifts in

the characteristics, our final Riemann identity reads
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Group-theoretical appendix

C.1 Vector and spinor representations
In this appendix, we collect all necessary definitions for the construction of the vector
representation Dv, the spinor representation Ds and the embedding of the latter into
SU(4).

The vector representation. The vector representation is generated by the so(6) Lie
algebra with generators

(Jij)kl = δikδjl − δjkδil i, j = 1, . . . , 6 . (C.1)

In principle it would be sufficient to restrict oneself to i < j in order to obtain a basis for
antisymmetric 6× 6 matrices. In terms of these generators, the vector representation of a
generic point group element θ is given by

Dv(θ) = exp
(

1
2 ω(θ)ij Jij

)
, (C.2)

where the sum over i, j is implicit and the factor 1/2 accounts for double counting.

The spinor representation. For the spin embedding, we need the six-dimensional (Eu-
clidean) Clifford algebra which consists of eight-by-eight matrices Γi, i = 1, . . . , 6. Together
with the chirality operator Γ̃ = i Γ1 Γ2 . . .Γ6, they fulfill the following anticommutation
relations{

Γi,Γj
}

= 2 δij 18 , Γ̃2 = 18 ,
{

Γi, Γ̃
}

= 0 . (C.3)

For our purposes, we need the charge conjugation matrix C

C ΓiC−1 = ΓTi , C Γ̃C−1 = − Γ̃T , C† = − CT = C . (C.4)

Then, the spinor representation of an element θ of the point group is

Ds(θ) = exp
(

1
2 ωij Σij

)
with C Ds(θ)C−1 = Ds(θ−1)T = Ds(θ)∗ , (C.5)
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where the spin generators Σij are defined as

Σij = − Σji = 1
4

[
Γi,Γj

]
, C Σij C

−1 = − ΣT
ij , and Tr(Σij) = 0 . (C.6)

In detail, the relation between the vector and the spinor representation is

Ds(θ)T CΓiDs(θ) =
[
Dv(θ)

]
ij
CΓj . (C.7)

While the spinor representation determines the vector representation without any ambiguity[
Dv(θ)

]
ij

= 1
8 Tr

[
Ds(θ−1) ΓiDs(θ) Γj

]
, (C.8)

one observes that Ds(θ) and −Ds(θ) give rise to the same vector representation, reflecting
the double cover property.

Chiral spinor representations. The eight-dimensional spinor representation Ds still
contains redundant degrees of freedom because it is reducible. Using projectors

P (±) = 1± Γ̃
2 (C.9)

we can define irreducible chiral representations D(±)
s (θ) = P (±)Ds(θ)

D(+)
s (θ) =

(
D4(θ) 0

0 0

)
, D(−)

s (θ) =
(

0 0
0 D4̄(θ)

)
, (C.10)

where

D4(θ) = exp
(

1
2 ωij σij

)
D4(θ) = exp

(
1
2 ωij σ̄ij

)
(C.11)

are elements of SU(4). Here, the generators σij are defined in terms of su(4) generators as

σij = 1
4(γ̄iγj − γ̄jγi) and σ̄ij = 1

4(γiγ̄j − γj γ̄i) . (C.12)

We can work with either D4(θ) or D4(θ). If we pick, D4(θ), its relation t the vector
representation is

D4(θ)T cγiD4(θ) = [Dv(θ)]ij cγj , (C.13)

which exhibits the same double cover properties as Ds.

C.2 An example with non-isomorphic spinor and vec-
tor groups

In this section, we provide an explicit example for a spinor action that is not isomorphic
to the action on vectors.
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The quaternion group Q8. The quaternion group has the following presentation

〈θ1, θ2 | θ4
1 = θ4

2 = 1 , θ2
2 = θ2

1 , θ1 θ2 θ1 = θ2〉 . (C.14)

The group Q8 has eight elements in five conjugacy classes. If we introduce θ3 = θ1θ2 for
notational simplicity, these conjugacy classes are

[1] = {1} , [θ1] = {θ1, θ
3
1} , [θ2] = {θ2, θ

3
2} , [θ3] = {θ3, θ

3
3} , [θ2

1] = {θ2
1} .

(C.15)

The quaternion group has five irreducible representations. There is the trivial singlet
representation 1++ as well as three non-trivial singlets 1+−, 1−+, 1−−. Moreover, there is
a doublet representation 2. It is noteworthy that the doublet representation is faithful,
i.e. it generates a matrix group isomorphic to Q8. The explicit matrices of the generators
in the various representations can be chosen to be

D1ab(θ1) = a 1 , D1ab(θ2) = b 1 , D1ab(θ3) = a·b 1, D2(θa) = − iσa , (C.16)

where a,b = ± and σa are the Pauli matrices. For our example, we need the tensor
products between the various irreps which read (see [175, 176] for a discussion of the
two-times antisymmetrization)

1ab ⊗ 1cd = 1a·c b·d , 1ab ⊗ 2 = 2 , 2⊗ 2 =
⊕

a,b=±
1ab , [2]2 = 1++ .

(C.17)

A Z2×Z2 orbifold with a Q8 spinor action. In this example, we will show that an
Abelian Z2×Z2 orbifold can have an action on spinor space that is if fact a representation
of Q8 and therefore not isomorphic to the vector representation. We start by choosing the
spinor action

D4 = 2⊕ 2 , (C.18)

which can be realized by choosing the following matrices for the generators

D4(θ1) =
(
−iσ1 0

0 −iσ1

)
, D4(θ2) =

(
−iσ2 0

0 −iσ2

)
. (C.19)

This representation is in SU(4) and hence is guaranteed to be a spinor representation.
However, the analysis of the tensor product 6 = [4]2 shows that the associated six-
dimensional vector representation consists of Q8 singlets only

[2⊕ 2′]2 = [2]2 ⊕ [2′]2 ⊕ (2⊗ 2′) = 1++ ⊕ 1++ ⊕ 1++ ⊕ 1+− ⊕ 1−+ ⊕ 1−− .
(C.20)

In effect, the representation matrices can be chosen to be

Dv(θ1) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


, Dv(θ2) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1


, (C.21)
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which do not generate a Q8 but only a Z2 × Z2. In the spinor representation, the defining
relations of Q8 are realized as

D4(θ1)2 = − 14 , D4(θ2)2 = − 14 , D4(θ1)D4(θ2) = −D4(θ2)D4(θ1) ,
(C.22)

which shows that −18 ∈ Ps and hence all supersymmetries are broken. Note that the same
relations look differently in the non-isomorphic vector representation

Dv(θ1)2 = 16 , Dv(θ2)2 = 16 , Dv(θ1)Dv(θ2) = Dv(θ2)Dv(θ1) . (C.23)

which makes it clear where the two representations differ on a group-theoretical level.



D

D-parity in Pati–Salam from
orbifolding

The goal of this appendix is to demonstrate the action of the D-parity derived in chapter
4 on an explicit representation of SO(4).

In section 4.4.1, we showed that among the unbroken continuous gauge symmetries,
also a Z2 survives. In the SO(4) block, the D-parity acts by conjugation with the matrix

UZ2 = diag(1, 1, 1,−1) . (D.1)

we will now study the consequences of this transformation on an explicit representation,
starting from the Lie algebra so(4). The elements of the so(4) algebra are generated by six
antisymmetric matrices Mi, i = 1, 2, 3 and Ni, i = 1, 2, 3 which fulfill the following relations

[Mi,Mj] = i εijkMk , [Ni, Nj] = i εijkMk , [Mi, Nj] = i εijkNk . (D.2)

An explicit set of matrices that fulfills these relations is

M1 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , M2 =


0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 , M3 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 ,

(D.3a)

N1 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 , N2 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 , N3 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 .

(D.3b)

As the so(4) Lie algebra is the direct sum of two su(2) Lie algebras, one can make the
basis change W±

i := 1
2 (Mi ±Ni), which yields the two orthogonal su(2) algebras[

W+
i ,W

+
j

]
= i εijkW+

k ,
[
W−
i ,W

−
j

]
= i εijkW−

k ,
[
W+
i ,W

−
j

]
= 0 , (D.4)

by which we separate so(4) into su(2)L⊕ su(2)R. However, one observes that the action of
conjugation by UZ2 is

W+
i 7→ UZ2 W

+
i U

−1
Z2 = W−

i , W−
i 7→ UZ2 W

−
i U

−1
Z2 = W+

i . (D.5)
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This proves our claim that our remnant Z2 exchanges su(2)L and su(2)R, and can hence
be identified with the D-parity.



E

Massive U(1) gauge bosons from
string theory

In this appendix, we study the realization of massive U(1) gauge bosons acting as mediators
between a winding dark matter candidate and localized standard model fields in more
depth. Following the discussion in [34, 149], a coupling needs to fulfill the following
condition if it is allowed

(1, 0) ∈ [g1] · [g2] · [g3] , (E.1)

where each [gi] is the conjugacy class of gi. As discussed, the mediator needs to have
trivial Z4 charge, which, for winding strings reduces to n2 + n4 + n6 = 0 mod 2. Moreover,
the mediators need to have psh = 0 for gauge invariance. We observe that there are several
winding strings that fulfill the space group selection rule

1. There are winding strings that couple to both the dark matter candidate and localized
SM states

• On the dark matter side, we find that e.g.
(
1
∣∣∣ 1

2(e2 − e4 − e6)
)
∈ [(1 | τ)]

and
(
1
∣∣∣−1

2(e2 + e4 + e6)
)
∈ [(1 | −τ)]. Hence, (1 | 0) ∈ [(1 | τ)] · [(1 | −τ)] ·

(1 | e4 + e6) and the coupling is allowed.
• On the standard model side, (1 | −τ) (θ | 0) (1 | τ) = (θ | −e4 − e6) ∈ [(θ | 0)].

Hence, (1 | 0) ∈ (1 | e4 + e6) · [(θ | 0)] · [(θ | 0)], allowing the coupling.

2. Using the properties of the Wilson lines in this geometry [151], their local shift is a
lattice vector, so that psh = 0 can be chosen.

We have just seen that there are winding heavy winding mediators (which can be chosen
to have space-time spin 1) that couple both to the dark matter candidate and to localized
strings in the θ-twisted sector.

In a field theory interpretation, these states are gauge bosons of a massive U(1) gauge
symmetry. This can be understood by noting that for special values of the geometric
moduli, these states can become massless, provided that the winding strings also carry
appropriate Kaluza–Klein numbers. Therefore, one can compare these states very well to
a gauge symmetry that is broken spontaneously if certain fields attain a non-trivial VEV.
In our case, the gauge symmetry is broken by a VEV of the Kähler moduli. Following
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the discussion in [100], one can argue that both the dark matter candidate and localized
SM matter should be charged under the massive U(1). The argument goes as follows:
When the U(1) gauge bosons become massless at special points in moduli space, they
become the ladder operators of a larger, non-Abelian gauge symmetry through symmetry
enhancement. In a string theory setup, it is apparent that there exist winding and twisted
strings that transform in non-trivial representation of the enhanced gauge group. Hence,
in a generic setting, they will have also non-trivial charges under the U(1)s generated by
the particular ladder operators.

Similar mediators also exist for the ω- and θω-twisted sector. In total, we find the
winding numbers for the mediator states displayed in table E.1. Note that these winding
strings in general carry KK momenta besides the winding, which makes them truly stringy
states that cannot be explained in a purely field-theoretic setup.

sector of SM θ ω θω
g ∈ S of mediator (1 | e4 + e6) (1 | e2 + e6) (1 | e2 + e4)

Table E.1: Constructing elements of mediator strings fulfilling the space group selection rules.
Note that the physical states usually also carry KK numbers.
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