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Abstract

In this thesis, we investigate the heterotic orbifold landscape under phenomenological consider-
ations. The reason for a non-vanishing cosmological constant in non-supersymmetric heterotic
orbifolds is studied. For supersymmetric orbifold compactifications, we apply machine learning
methods to improve the search for MSSM-like string models. We use autoencoder neural net-
works to draw a chart of the heterotic orbifold landscape and identify islands where MSSM-like
models accumulate. Furthermore, we utilize contrast mining to observe constraints that dras-
tically reduce the landscape by excluding areas with a tiny probability of holding MSSM-like
models. We show that the phenomenological characteristics of MSSM-like models depend on the
specific orbifold compactification. Thus, we can utilize a predictive model to infer the orbifold
origin of the MSSM.

Zusammenfassung

In dieser Arbeit untersuchen wir die heterotische Stringlandschaft unter phänomenologischen
Aspekten. Zu Beginn analysieren wir den Grund für eine nicht verschwindende kosmologische
Konstante in nicht supersymmetrischen heterotischen Orbifaltigkeiten. Für supersymmetrische
Orbifaltigkeit-Kompaktifizierungen werden Methoden des maschinellen Lernens angewendet, um
die Suche nach MSSM ähnlichen Modellen zu verbessern. Wir nutzen Autoencoder neuronale
Netze, um eine Karte der heterotischen Orbifaltigkeits-Landschaft zu erstellen und identifizieren
dabei Inseln, auf denen sich MSSM ähnliche Modelle ansammeln. Darüber hinaus entwickeln
wir mittels Contrast-Mining Bedingungen, welche die Landschaft drastisch reduzieren, indem
Bereiche mit einer geringen Wahrscheinlichkeit für MSSM ähnliche Modelle ausgeschlossen wer-
den. Wir zeigen, dass die phänomenologischen Eigenschaften von MSSM ähnlichen Modellen
entscheidend von der spezifischen Orbifaltigkeits-Kompaktifizierung abhängen. Daher können
wir ein Vorhersagemodell entwickeln, um auf die Orbifaltigkeit des MSSM zu schließen.
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danken. Eure wertvollen Anregungen haben diese Arbeit erst zu dem gemacht, was sie ist.
Vielen Dank für eure Zeit und Mühe!
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Chapter 1

Introduction

In 2020 we are looking back at a memorable decade of scientific discoveries in fundamental
physics. Two of them especially praise the synergy between theoretical and experimental physics.
On July 4 in 2012, the ATLAS and CMS experiments at CERN’s Large Hadron Collider (LHC)
announced the observation of a new particle consistent with the Higgs boson [1, 2]. On February
11 in 2016, LIGO Scientific Collaboration and the Virgo Collaboration announced the first direct
observation of gravitational waves [3–8].

These two dates are milestones of modern physics. Interestingly, their origins lie deep in
the past. In the 1960s, physicists developed an understanding of the Brout-Englert-Higgs mech-
anism. This mechanism allows to describe the electroweak sector of particle physics in the
Standard Model (SM) [9–13], by predicting a particle called the Higgs boson. The prediction of
gravitational waves lies even further back in the past. Albert Einstein first described them in
1916 as an outcome of the theory of general relativity [14]. The relation of those experimental
discoveries to theoretical considerations implies that those events not only mark essential steps
on the journey to unveil the operations of nature. Indeed, they honor the immense predictive
power of these theoretical models that goes far beyond the known phenomena they were built
on to express the underlying laws of nature.

Especially the SM is in impressive agreement with experiment, and all ingredients, like an
effective Higgs field, have been found. However, similar considerations, like in the past, motivate
physicists to improve this model. The SM describes the strong and electroweak interactions of
the known elementary particles. The simple fact that it requires as many as 28 parameters [15],
which are exclusively determined by experiment, implies the need for a more fundamental un-
derstanding of nature. Additionally, some observations are not understood within the SM, e.g.
the origin of dark matter or the number of generations of quarks and leptons. Unfortunately,
the LHC was not able to produce significant signals of new physics so far. Equally, the theory
of general relativity reveals shortcomings under certain conditions. Quantized theories describe
high energy physics to astonishing precision. This quantization is a big hurdle for general rela-
tivity since canonical quantization leads to an unrenormalizable theory. This issue is the missing
piece of quantum gravity.

In order to tackle the mysteries of physics beyond the SM, there are two approaches. One is
the bottom-up construction. Here, the SM is modified in a modest way such that the effects of
certain injections can be classified to evaluate their value in describing aspects of nature. The
approach taken in this thesis is the top-down approach. There, we make use of a mathemat-
ical framework that incorporates the two most fundamental theories of our Universe: on the
one side, the already mentioned SM as a realization of Quantum Field Theory (QFT), which
currently dominates our understanding of physics, on the other side, general relativity. These

9



Chapter 1. Introduction

two complementary descriptions of nature should ultimately be unified into one fundamental
theory. In order to get a UV-complete theory of quantum gravity, there are a few different
approaches known. For this thesis, the framework in favor is string theory, which unifies gravity
and QFT in a higher dimensional quantum theory. The reason for having chosen string theory
is that it does not only quantize gravity, like the asymptotic safety approach [16]. It is far more
restrictive and unifies all fundamental particles to be excitation modes of a more fundamental
object, i.e. a string. This concept is significantly more restrictive and leads to a framework with
only one parameter: the string length ls. Additionally, the value of string theory in this thesis is
connected to the possibility of computing the low energy spectrum of a particular model, which
describes the spectrum of a QFT. The resulting particle spectrum can then be compared to
the SM. This possibility would not be given in other competitive approaches like loop quantum
gravity [17].

The predictive power of string theory goes even further. In order to be a consistent theory,
i.e. Weyl anomaly free, the framework demands certain values for the space-time strings can
propagate in. Since a QFT can, a priori, be formulated in any dimension, experiments determine
this value for the SM to three space and one time dimension. Considering that string theory
also has to reproduce the observed 4D laws of physics, the extra dimensions have to be hidden
from direct experimental observation. This can be achieved by the so-called compactification
technique, which ‘wraps’ up these extra dimensions, thus making them inaccessible to today’s low
energy range. This compactification comes with a huge drawback: it gives rise to the so-called
string landscape. The number of possibilities to compactify the extra dimension is enormous and
was estimated early on to ∼ 101500 [18]. However, we will see that this large number of possible
choices does not lead to phenomenological valid 4D theories in general. Actually, the amount
of possible compactifications that come close to describing the known phenomena is a very tiny
fraction of the possible compactifications that are consistent in the string theory framework.
Once the compactification is selected, the physics is determined completely, i.e. the complete
particle content as well as all couplings and remnant discrete symmetries that are possible
flavor symmetries. This implies that each compactification choice leaves its particular imprint
in the resulting 4D spectrum. Thus, the selection of such a compactification configuration
is not comparable to fitting a parameter to experiment. Instead, the opportunity to select a
compactification compares to deciding for the concrete model inside the string theory framework.
This immense constraining power of the string theory framework could guide us towards QFTs
that ultimately match to an UV-complete theory. More importantly, it might provide hints
towards the origin and interplay of the parameters needed in the SM.

From the phenomenological side of ‘bottom-up’ constructions, a very promising extension
of the SM is to introduce a new kind of symmetry, i.e. supersymmetry. In contrast to the
known symmetries, this transformation has a spinorial generator and introduces a symmetry
between fermions and bosons. The popular extension of the SM, the minimal supersymmetric
standard model (MSSM), then predicts superpartners for the known particles. If those exist,
their contributions cancel various divergent effects that would appear in the SM. However, space-
time supersymmetry is not demanded by the string theory framework in general. There exist
well-defined non-supersymmetric string theories. Moreover, even if we start with supersymmetric
string theory, the concept of compactification does not preserve 4D supersymmetry in general.
These string theories suffer from a non-vanishing cosmological constant at one-loop. The absence
of supersymmetric observations at LHC reintroduces the interest to those non-supersymmetric
theories even though they come along with problematic effects. As the purpose of this thesis is
to link string theory and physics beyond the SM, both cases are considered, and we will study
non-supersymmetric and supersymmetric string theory.
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In chapter 3, the first topic we are going to investigate using non-supersymmetric string
theory is the issue of the non-vanishing cosmological constant in the context of the so-called
orbifold compactification method. We determine the exact terms of the partition function that
do not vanish and contribute to the cosmological constant. Furthermore, we show how this
is connected to a conjecture of finite group theory. For all relevant finite groups in heterotic
orbifolds as well as for an even broader set of groups using the SmallGroups Library of gap [19],
the conjecture is explicitly verified.

Rather than generic properties, the search for an explicit realistic 4D model from string the-
ory is an essential proof of concept. Most work on this issue is done in the string theory literature
in the context of MSSM-like models. In chapters 4 to 8, we continue the thesis with a search
for realistic MSSM-like models in the vast landscape of string compactifications. Concretely,
we investigate the existence of MSSM-like models in the E8 × E8 heterotic orbifold landscape
with orbifold compactifications that lead to N = 1 supersymmetric models. In the past, such
searches have been conducted by a purely random sampling of the heterotic orbifold landscape.
We are going to study the properties of the landscape by using techniques from data mining,
more concretely machine learning, and deep learning. These methods are especially suitable
to find patterns in large high dimensional datasets. Hence, the vast landscape of possible 4D
string vacua, each specified by O(100) compactification parameters, represents a prime exam-
ple of applying these techniques. In chapter 5, the starting point will be the application of an
autoencoder neural network to the landscape, which will identify fertile patches. The success
of the autoencoder approach shows that there are hidden patterns in the string landscape that
have to be obeyed in order to connect string theory to the observable world.

Due to this, in chapter 6 we have chosen to incorporate the ‘bottom-up’ approach by inform-
ing the search algorithm about the phenomenological needs of the models during search time.
Namely, we compute the intermediate physical properties of our string model while it is con-
structed and determine early on if the current subspace of the heterotic landscape can generate
a model that fulfills the phenomenological needs. Furthermore, we study the symmetries of the
string landscape and reduce the search space heavily by excluding the Weyl symmetry from the
search process. This kind of study should ultimately promote the landscape to a practically
finite search problem, such that all inequivalent physical models can be extracted from the land-
scape. On top of the previous improvements, we will use contrast mining. In this scenario, we
make use of traditional machine learning algorithms that lead to a more direct knowledge gain
in terms of interpretability. On the one hand, these contrast patterns allow us to find novel
MSSM-like models in the landscape that were never observed nor believed to exist in the past.
On the other hand, the contrast patterns are constraints on physical properties and lead to new
insights on the particle spectrum of MSSM-like models from string theory.

Furthermore, the ‘bottom-up’ models can be tightly intertwined with the string landscape, as
it is possible to infer the orbifold origin of ‘bottom-up’ models in the landscape (chapter 7) based
on their phenomenology. It turns out that specific extensions of the MSSM particle spectrum
can only be realized in particular subspaces of the string landscape. Hence, the origin of these
extensions, as well as the exact MSSM (that has not been found in string theory compactifications
so far), can be guided to specific regions of the string landscape.

Finally, before we conclude in chapter 9, the interplay of the different machine learning
approaches is analyzed in chapter 8, where we also outline further improvements by synergy
effects between the approaches.

As a closing remark, all procedures developed for the supersymmetric case can straightfor-
wardly be transferred to the non-supersymmetric case by obtaining and studying those datasets.
Notably, the analytic reduction constraints we derive are necessary conditions for the SM and
not exclusively for the MSSM.
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Chapter 2

The string theory framework

The upcoming chapter summarizes the most important aspects this thesis relies on and sets
the notation. In this, we strongly rely on [25–28] for general string theory. Focused on the
phenomenological implications the textbook [29] is recommended. Finally, especially related to
the heterotic orbifold compactification process are [30–32]. The reader is referred to these for a
more detailed discussion of the matter.

2.1 Heterotic string theory

String theory is an ambitious approach towards unifying the theories of fundamental physics
into a single quantum-theoretical framework. The core observation that led to this idea is the
ability to quantize gravity within string theory. From quantized strings, there emerges a spin-2
particle that can be identifed with the graviton [33, 34] as it provides the proper interactions at
low energies [35]. Linking the string coupling and 4D gravitational couplings, this association
demands that the string scale Ms is of the order of the Planck scale.

The UV-completeness of string theory arises from a simple but effective concept. Switching
the description of the most fundamental objects from point-particles towards one-dimensional
objects. These one-dimensional objects are so-called strings. The different vibrational modes of
these strings then correspond to the particles of an effective quantum field theory. The main
advantage of this idea is based on the world-sheet covered by a propagating string. This world-
sheet can be parameterized by σ0 and σ1 for the propagation time and the spatial extension
of the string, respectively. Hence, for one-loop amplitudes of closed strings, this world-sheet
spreads out a two-torus. This two-torus is commonly parameterized by two parameters τ1, τ2 or
in the complex plane by the modular parameter τ = τ1 + iτ2. Equivalent tori are connected by
modular transformations, i.e. the group SL(2,Z) [30], which is generated by,

T : τ → τ + 1, S : τ → −1

τ
. (2.1)

The string one-loop amplitude should not be affected by this re-parametrization of the world-
sheet torus. Therefore, modular invariance is a necessary consistency condition of string the-
ory [26–29]. For example the vacuum amplitude version of the one-loop diagram computes
the Casimir energy density, i.e the 4D cosmological constant Λ. At the one-loop level Λ is
proportional to

Λ ∼
∫

F

d2τ

τ2
2

Zfull(τ, τ̄) . (2.2)
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Chapter 2. The string theory framework

The integrand Zfull and the measure d2τ
τ22

are modular invariant by themselves. We will refer

to the integrand as the full one-loop partition function. A particular consequence of these
modular transformations is that they relate UV regimes to IR regimes of the dual channels.
In detail, for the integration of the one-loop diagram over all inequivalent tori the modular
transformations eq. (2.1) have to be taken into account, in order to avoid overcounting on
equivalent tori. Hence, the modular integral is reduced to the fundamental domain of the world-
sheet torus F = {τ = τ1 + iτ2 | − 1

2 ≤ τ1 <
1
2 , τ2 > 0, |τ | > 1}. The modular parameter τ is now

defined modulo modular transformations. This shows that the UV region τ ' 0, which describes
energetic strings propagation for a very short time, is excluded from the fundamental domain,
i.e. it is mapped by modular transformations to τ → −1/τ . Hence, the modular symmetry
induced by the spatial extension of the string cuts off the potential UV divergence.

A controversial aspect of string theory is that in order to be a consistent theory it predicts
additional space-like dimensions, i.e the space-time embedding functions Xµ(σ0, σ1) for the
world-sheet to the target-space require more than the common four Minkowski dimensions.
For details let us focus on the special type of string theory used in this thesis, i.e. heterotic
string theory. Here, the bosonic and superstring theory are combined, i.e. the left-moving
degrees of freedom are formalized by the bosonic string and hence have a 26D target-space,
whereas the right-moving degrees of freedom relate to the supersymmetric string theory and
propagate in 10D [25]. In order to make sense of this combination, the 16 extra dimensions
of the bosonic string are compactified1 on a torus T16. Invariance under the modular group
generated by eq. (2.1) demands a self-dual lattice for the torus and the only lattices that can
fulfill this condition and give rise to N = 1 supersymmetry are the root lattices of E8 × E8

and SO(32) [25]. This gives a very appealing 10D gauge theory as the starting point of the
heterotic string theory approach. The combination of the bosonic and supersymmetric string is
possible because heterotic string theory only contains closed strings. Their equation of motions
are governed by wave equations. Thus the solutions are superpositions of left (L) and right (R)
movers, i.e. it is possible to decompose the degrees of freedom to,

Xµ(σ0, σ1) = Xµ
R(σ0 − σ1) +Xµ

L(σ0 + σ1) . (2.3)

Moreover, closed strings are subject to boundary conditions along the spatial extension. Without
compactification, the embedding function has to be (anti-)periodic with respect to one circulation
along the string:

Xµ(σ0, σ1 + π) = Xµ(σ0, σ1) , (2.4)

Ψµ
R(σ0 − (σ1 + π)) = ± Ψµ

R(σ0 − σ1) , (2.5)

where world-sheet fermions Ψµ
R can have periodic (R: Ramond) or anti-periodic (NS: Neveu-

Schwarz) boundary conditions. Hence, we can write physical states as tensor products of right
and left-moving states. This is encoded in the bosonization formalism as,

|q〉R ⊗ |p〉L , (2.6)

which might be affected by oscillator excitations αm, for the right, or α̃m for the left-mover.
They obey the creation and annihilation operator algebra. The subscript m labels the frequency
of the vibrational mode. With the help of the GSO projection [36] the fermionic representations
were combined to q, the right-moving momentum vector. Thus, q ∈ SO(8) is in the vector
(spinor) weight lattice for world-sheet fermions Ψµ

R in the NS (R) sector. This appears from the

1Technical details on torus compactification are given in section 2.2.1.
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2.2. Heterotic orbifold compactification

M3,1 M6 E8 × E8

|q〉R
Xµ

R Xµ
R

Ψµ
R Ψµ

R

|p〉L Xµ
L Xµ

L XI
L

µ = 0, . . . , 3 µ = 4, . . . , 9 I = 1, . . . , 16

Table 2.1: Left- and right-mover notation.

light-cone gauge X± = 1√
2
(X0 ±X1) which reduces the Lorentz SO(9, 1) symmetry to SO(8).

Whereas p corresponds to the left-moving momenta and is quantized according to the E8×E8 or
SO(32) lattice. For the quantized heterotic string in light-cone gauge one obtains mass equations
for right- and left-movers,

M2
R

4
=

q2

2
+N + ER

0 ,
M2

L

4
=

p2

2
+ Ñ + EL

0 . (2.7)

The zero point energy E0 for the 10D right and 26D left-movers, are given by ER
0 = −1

2 and
EL

0 = −1, respectively. The oscillator number of the right-moving states is denoted by N

whereas for the left-moving states Ñ is used,

N =
∞∑

n=1

α−n · αn , Ñ =
∞∑

n=1

α̃−n · α̃n , (2.8)

counting the number of oscillators, i.e. N ∈ N. Additionally, physical states have to obey the
level matching condition M2

R = M2
L such that no point on the closed string is special.

Massive string states have masses of the order of the Planck mass and therefore are too
heavy to contribute to the effective field theory of the (MS)SM. Hence, only massless string
states are considered for the low energy spectrum. However, to describe the 4D world, 6D of
the left and right moving strings require to be compactified. In the upcoming section, a specific
technique for compactification, i.e. orbifold compactification, will be reviewed. Hereafter, the
main purpose of this work is to improve the knowledge of how to obtain 4D phenomenologically
promising models from a compactified heterotic string.

2.2 Heterotic orbifold compactification

In order to make contact to the observable world, it is necessary to hide the extra dimensions
from experimental measurements at the current energy scales. In the case of the 10D E8 × E8

heterotic string these extra dimensions aggregate to six spatial dimensions,

M10 = M3,1 ⊗M6 . (2.9)

In this thesis, the favoured method for compactification are 6D toroidal orbifolds2 O [44, 45].
Those allow for a conformal field theory world-sheet formulation of string theory in the compact-

2As a remark let us mention that orbifolds can also be used in a field-theoretic context where they are used
for GUT breaking [37–44] and can lead to discrete symmetries [22].
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Chapter 2. The string theory framework

ified theory. Other scheme use supergravity approximations after compactification, see e.g. [46–
56].

Starting from the definition of toroidal orbifolds and their geometrical action on the six
spatial dimensions, it is crucial to extend the action to the gauge degrees of freedom in order to
obey modular invariance under the modular transformations eq. (2.1). Hence, we will obtain a
so-called gauge embedding (formalized in a gauge embedding matrix M) of the orbifold geometry
O that acts on the sixteen gauge degrees of freedom XI

L. Compared to the geometrical action
of the orbifold O, this gauge embedding comes with a vast ambiguity, and it appears that it is
far less restricted than its geometrical companion. This gauge embedding will be the reason for
the issue of the heterotic orbifold landscape.

2.2.1 Geometrical toroidal orbifolds

An orbifold is defined by identifying points of a manifold that differ by certain equivalence
relations. In case of toroidal orbifolds, one starts by defining a linearly independent basis of
vectors eα that build a lattice Γ,

Γ =

{
n∑

α

nαeα, nα ∈ Z
}

, (2.10)

on the space Rn. Points that differ by an integer combination of the lattice vectors are identified.
Hence, any point in the plane can be mapped to a fundamental region. In case of modding out
the lattice Γ, this fundamental domain describes a torus Tn = Rn/Γ with metric

Gαβ = eα · eβ . (2.11)

Choices for the lattice Γ can be the root systems of simple Lie algebras, where one can utilize
the simple roots as basis eα. This first step is illustrated for the 2D case in fig. 2.1a, where the
lattice was chosen to be spanned by the simple roots of SU(3) denoted by Γ = SU(3).

For a more interesting structure, a new equivalence relation is introduced by the point group
P , which is a discrete lattice automorphism of Γ, i.e. it maps the lattice to itself. Modding out
P from the torus results in an orbifold O,

O = Tn/P . (2.12)

Combined, the action of the lattice translations and the point group rotations build S, the space
group of the orbifold,

S = P n Γ . (2.13)

An element of S is denoted by g = (θ, nαeα) with θ ∈ P and nαeα ∈ Γ where summation over
α is implied. This very illustrative simplification as semidirect product in eq. (2.13) holds, if
there exist no roto-translations. A roto-translation combines the action of a point group element
θ ∈ P with a simultaneous translation by a fractional lattice vector [57], i.e. nα ∈ Q.

An element g ∈ S acts on the a point X ∈ Rn as

gX = θX + nα eα . (2.14)

For space group elements g′, g ∈ S we find the following product rule,

g′ g =
(
θ′, n′αeα

)
(θ, nαeα) =

(
θ′ θ, n′αeα + θ′ nαeα

)
. (2.15)

Note, that the space group is in general non-Abelian, even if the point group is Abelian.
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2.2. Heterotic orbifold compactification

e1

e2

(a) fundamental domain T2 (b) two-dimensional torus T2

e1

e2

(c) fundamental domain T2/Z3 (d) two-dimensional orbifold T2/Z3

Figure 2.1: Illustration of an orbifold compactification in 2D

Crystallographic classification of 6D orbifolds

Fortunately, all point groups and all space groups relevant for toroidal orbifolds in 6D have been
classified in [58, 59], as crystallographic actions in 6D. Given that θ ∈ P is an automorphism of
the torus lattice one finds,

θ e = e θ̂ with θ̂ ∈ GL(6;Z) , (2.16)

where for convenience we introduce the vielbein e as matrix with the columns given by the lattice
vectors eα. The hatted notation of θ̂ indicates that it is an integral matrix, i.e. the so-called
twist in the lattice basis. Consequently, the group in the lattice basis representation is denoted
by P̂ . In this classification, the geometrical space groups are sorted according to

• Q-classes: The geometrical point groups P in terms of the lattice basis P̂ , see eq. (2.16).

• Z-classes: Possible lattices Γ for a given P̂ .

• Affine-classes: The possible roto-translations of the lattices.

It turns out that in 6D, there are 7 103Q-classes, which are a subset of the 85 308 Z-classes, and a
total of 28 927 915 affine-classes, i.e. the affine-classes label all geometrically inequivalent toroidal
orbifolds in 6D. The collection of this data is available in the carat package [58]. However, we
will see later that only a tiny fraction of these possibilities can lead to meaningful string theory
compactifications when physical considerations, e.g. N = 1 target-space supersymmetry, are
taken into account.

Details on the point group

In the physics literature of orbifold compactifications the automorphism on the lattice Γ is
called point group P . However, the point group P is more precisely given as the six-dimensional
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Chapter 2. The string theory framework

representation of an abstract finite group H,

Dv : H → P ⊂ SO(6) (2.17)

a 7→ Dv(a) = θ ,

where different representations, i.e. Q-classes, for a single abstract group H can exist. The
elements θ of P then are called rotations. The smallest positive integer,

Nθ = min
({

N ∈ N\{0} | θN = 1
})

, (2.18)

i.e. θNθ = 1, is called the order of the point group element θ. For each element θ ∈ SO(6)
separately it is possible to block-diagonalize this element by a basis transformation. Then, this
element acts as a rotation in the three orthogonal planes, that are given by (X1, X2), (X3, X4)
and (X5, X6). Rewriting it in complex coordinates Za = X2a−1+iX2a for a = 1, 2, 3 the rotation
is represented by

θ =




e2πi v1g 0 0

0 e2πi v2g 0

0 0 e2πi v3g


 . (2.19)

One obtains the local twist vector vg =
(
0, v1

g , v
2
g , v

3
g

)
, which parameterizes the representation.

Note, we introduced an additional entry v0
g = 0 for later use. This parametrization will be

frequently used in this thesis.
Even though some considerations on non-Abelian orbifolds will be discussed in the context

of the cosmological constant in chapter 3, the explicit construction of non-Abelian orbifolds is
not entirely understood (see [60] for an example). Hence, for explicit constructions we will use
Abelian point groups. In the case of Abelian point groups, the abstract finite groups H are
limited to the cyclic groups ZN1 and ZN1×ZN2 [61, 62]. Thus, P consists of rotations generated
by θ and ω, such that θN1 = 1 and ωN2 = 1. For the Abelian case the block-diagonalization
from eq. (2.19) can be performed on all elements P simultaneously and the local twist vector
for the element θk1ωk2 reads vg = k1v1 + k2v2. Hence, it simplifies towards the twist vectors v1

and v2 associated to the generators of ZN1 × ZN2 , respectively. To label the different orbifold
geometries, we use the concise notation of [57]. For example, the orbifold of particular interest in
this thesis is Z6-II (1,1), where Z6 defines the cyclic group H and ‘II’ refers to the second type of
embedding this action in 6D eq. (2.17). In detail, this part encodes the Q-classes and hence the
point group P = Z6-II is parametrized by the second twist vector, i.e. v = (1/6, 1/3, 1/2). The first
number of (1,1) enumerates the possible lattices (Z-classes) and the second is the enumeration
of possible roto-translations (affine-classes). A value of one in the second slot stands for no
roto-translations.

Fixed points

The interesting structure of orbifolds arises most prominently on the special coordinate singu-
larities, so-called fixed points. These special corners of the manifold still allow for a consistent
definition of string propagation [44], and moreover introduce a particular behavior of the strings
localized at these curvature singularities (see section 2.4.2). If the point group action P is said
to be not freely acting on the manifold, there exist fixed points zf defined by,

gzf = θzf + nαeα = zf , (2.20)
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2.2. Heterotic orbifold compactification

T(1), vθ = ( 16 ,
1
3 ,− 1

2 )

e1

e2

×

e3

e4

×

e5

e6

Figure 2.2: First twisted sector T(1) of the Z6-II (1, 1) orbifold. The torus lattice is Γ =
SU(3) × SU(3) × (SU(2))2 and the twist vector v = (1/6, 1/3, 1/2). The dots in blue, indicate the
position of the fixed points in the projection of each sub-torus, i.e. T2/Z6 × T2/Z3 × T2/Z2.
One obtains 1× 3× 4 = 12 fixed points in the first twisted sector.

with g ∈ S. Hence, each fixed point is associated to the space group element g that maps
the coordinate to itself. These special points are illustrated in fig. 2.1d as the corners of the
orbifolded space. Concretely, this will become important in the context of the Z6-II (1,1)
orbifold. Therefore, the fixed point structure is illustrated in fig. 2.2 in detail.

At this point, let us investigate under which condition two elements describe the same action
on the orbifold. Assume that g1zf1 = zf1 and g2zf2 = zf2 . These two fixed points are certainly
equivalent if they are related by another element of the space group h ∈ S, i.e. hzf2 = zf1 . This
situation is related to

g1zf1 = hzf2 = hg2h
−1zf1 , (2.21)

and hence for equivalent fixed points the associated elements lie in the same conjugacy class

[g] =
{
h g h−1

∣∣ ∀h ∈ S
}
. (2.22)

Then g is a representative of the whole set [g].

2.2.2 Gauge embedding

In the last section, we have considered the geometrical action of the orbifold, i.e. the action
on the six spatial dimensions. However, remember from section 2.1 that there are also internal
gauge degrees of freedom. It turns out that the orbifold action intertwines the modular invari-
ance conditions of the space-time and gauge group E8 × E8 part of the heterotic string [30].
Consequently, they are no longer modular invariant by themselves. In order to make the whole
theory modular invariant again, the geometrical orbifold action has to be embedded into the
gauge degrees of freedom (d.o.f.). An additional benefit of this embedding is that it allows for
breaking the gauge group of E8×E8. From the geometrical action of the space group on the six
spatial dimensions µ = 4, . . . , 9, one can infer conditions on the embedding equivalents of θ and
eα. Acting with a generic element g = (θk, nαeα) we obtain,

geometrical: Xµ → (θkX)µ + nαe
µ
α , (2.23)

gauge d.o.f.: XI
L → XI

L + kV I + nαW
I
α , (2.24)

where I = 1, . . . , 16 and the embedding is realized by a shift embedding [44]. This is possible
since in general the action of the space group on the gauge degrees of freedom corresponds to an
inner automorphism. V is the so-called shift vector and encodes the action of the point group
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vector order Nk additional constraint

V1 6
V2 1 not present, i.e. V2 = (016)

W1 1 W1 = (016)
W2 1 W2 = (016)

W3 3
W3 = W4W4 3

W5 2
W6 2

Table 2.2: Geometrical constraints for the gauge embedding, i.e shift vectors and Wilson lines,
in the case of the Z6-II (1,1) orbifold geometry.

generator θ, while Wα are the Wilson lines [63] which correspond to the lattice shifts eα. From
the action of the geometrical counterparts, we can infer four kinds of consistency conditions for
the gauge embedding of the space group. For the case of a point group build on ZN1 they can
be summarized by,

θN1 = 1 ⇒ N1V1 ∈ ΓE8×E8 ,
θNα−1eα + θNα−2eα · · ·+ eα = 0 ⇒ Nα ·Wα ∈ ΓE8×E8 ,
θeα + eα ⇒ 2Wα ,
θ(nαeα) = nβeβ ⇒ nαWα = nβWβ .

(2.25)

These can be understood as follows: Acting N1 times with g = (θ, 0) gives a trivial action in
the geometrical embedding, hence the shift vector V1 that corresponds to θ has to act trivially,
i.e. as a lattice vector of ΓE8×E8 . Similarly, the space group element g = (θ, eα)Nα = (θNα , 0)
implies the order Nα of the Wilson line Wα. Acting two times with g = (θ, eα) shows that θeα
corresponds to Wα as does eα. This implication has consequences on the last line of eq. (2.25),
in detail this correspondence forces certain Wilson lines to be identical. For an example that
illustrates the intuitively given explanation above, see table 2.2, where the geometrical conditions
for Z6-II (1,1) are summarized. Let us stress the fact that the Wilson lines W3 = W4 are related
due to the fact that the Z3 action in the second tori relates θe3 = e4, see fig. 2.2.
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2.2. Heterotic orbifold compactification

Parametrization Z128 for E8 × E8

For later convenience in the data science approach to the landscape, chapter 6, let us introduce
a practical parametrization that was first developed in [21]. Therefore, we start by obtaining
that in E8 ×E8 the sixteen-dimensional shift vector V1 or Wilson line Wα consists of two eight-

dimensional vectors V
(1)

1 and V
(2)

1 or W
(1)
α and W

(2)
α , which act on the first and second E8 factor,

respectively. Then a gauge embedding is determined by a gauge embedding matrix M ,

M =




V
(1)

1

V
(1)

2

W
(1)
1

W
(1)
2

W
(1)
3

W
(1)
4

W
(1)
5

W
(1)
6

V
(2)

1

V
(2)

2

W
(2)
1

W
(2)
2

W
(2)
3

W
(2)
4

W
(2)
5

W
(2)
6




. (2.26)

The sixteen-dimensional shift vectors and Wilson lines remain in ΓE8×E8 , which provides a basis
in terms of the simple roots αI of E8×E8. Then, one can expand the sixteen-dimensional vectors
in terms of this basis as,

Mk =
1

Nk

16∑

I=1

ck I αI . (2.27)

Here, Nk defines the order (see eq. (2.25) and eq. (2.18)) of the shift vector or Wilson line and
ck I ∈ Z for k = 1, . . . , 8 and I = 1, . . . , 16 are integers. While this would be the canonical
approach, it will turn out in chapter 6 that some ambiguities, i.e. symmetries of the landscape,
are challenging to track in this basis.3 In fact, it will be beneficial to expand the sixteen-
dimensional vectors in terms of the dual simple roots α∗I , I = 1, . . . , 16, which are defined as
α∗I · αJ = δIJ . We obtain,

Mk =
1

Nk

16∑

I=1

dk I α
∗
I . (2.28)

Here dk I ∈ Z for k = 1, . . . , 8 and I = 1, . . . , 16 are integers and parameterize the gauge
embedding. However, the interpretation of these integers is very different from the ckI , i.e. the
dk I are proportional to the Dynkin labels. Nonetheless, both choices give a basis of the (self-
dual) root lattice ΓE8×E8 of E8×E8. A particular choice for the simple and dual roots is explicitly
given in appendix D.1. Consequently, a gauge embedding matrix M corresponds to a point in
d ∈ Z128 since M has 8× 16 = 128 dk I -coefficients. Note that the constructions, eq. (2.27) and
eq. (2.28), inherently ensure the correct order of the vectors Mk derived in eq. (2.25). In detail,
we have

NkMk ∈ ΓE8×E8 ∀ k = 1, . . . , 8 . (2.29)

3Note this basis is useful to have control over the addition of lattice vectors. However, this transformation is
not an exact symmetry in general.
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Chapter 2. The string theory framework

The other geometrical conditions are induced directly, i.e. for vanishing Wilson lines the corre-
sponding dkI are set to zero and for related Wilson lines the dkI -coefficients are equal during
model construction. All 138 orbifold geometries with Abelian point groups and N = 1 super-
symmetry [57] are stored in so-called geometry-files where the geometrical conditions are stated
explicitly. These geometry-files can be found as ancillary files to [64].

2.3 Strings on orbifolds

After having defined the general set-up for orbifold compactifications, we can now get into the
details of strings propagating on these special geometries in the extra dimensions. In heterotic
string theory, the 6D toroidal orbifold geometry extends the closed string boundary conditions
eq. (2.4) for the corresponding coordinate fields X = (Xµ), with µ = 4, . . . , 9. In detail, strings
on toroidal orbifolds can close up to the action of an element g = (θ, nαeα) ∈ S,

X(σ0, σ1 + π) = gX(σ0, σ1) = θX(σ0, σ1) + nαeα . (2.30)

In such a case, the element g is associated to the string configuration as in the case of fixed
points. Then, g is called the constructing element of the string. The specific form of the element
g gives rise to so-called

• twisted strings: The corresponding boundary condition is connected to an element g with
θ 6= 1.

• untwisted strings: The corresponding boundary condition is connected to an element g
with θ = 1.

Untwisted strings are said to “live” in the untwisted sector U while the twisted strings “live”
in the twisted sectors T(k) associated to θk. As they correspond to the fixed point structure
they are organized in the different twisted sectors k for vg = kv. For an illustration of the
twisted sectors in case of Z6-II (1,1) see fig. D.1. These concepts directly extend to ZN1 × ZN2

orbifold geometries, i.e. the twisted sectors are labeled according to the local shift vector T(k1,k2).
However, as discussed in the gauge embedding section 2.2.2 the action of the orbifold also
extends to the gauge degrees of freedom. Hence, associated to each constructing element g =
(θk1ωk2 , nαeα) ∈ S there exist so-called local shift vectors Vg associated to fixed points. This
implies the local shift

Vg = k1 V1 + k2 V2 + nαWα (2.31)

of the gauge degrees of freedom.
Finally, the states are in general not inequivalent for each element h ∈ S. Assume that

[g, h] = 0 and g is the constructing element of X(σ0, σ1),

X(σ0, σ1 + π) = gX(σ0, σ1) , (2.32)

it then follows that h has to act trivially on the string state X since

h(gX(σ0, σ1)) = g(hX(σ0, σ1)) , (2.33)

and hence X and hX are associated to the same constructing element. Thus, they describe the
same physical state. This is related to the centralizer Cg of g,

Cg =
{
h ∈ S

∣∣ [g, h] = 0
}
. (2.34)

The trivial action under all elements of the centralizer Cg will lead to projection conditions for
the string states.
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2.3.1 Transformation under the space group

From the vertex operator representation one can infer that a string state acquires a phase on
the orbifold. All the transformations can be decomposed into phases acquired under an element
h ∈ S,

|q〉R 7→ e−2πi q·vh |q〉R (2.35)

|p〉L 7→ e2πi p·Vh |p〉L (2.36)

α̃a−1 7→ e2πivah α̃a−1 (2.37)

α̃ā−1 7→ e−2πivah α̃ā−1 . (2.38)

Note, the oscillator excitations α̃µ−1 that act in the compactified directions µ = 4, . . . , 9 are here
represented in the complex directions a = 1, 2, 3. Moreover, we introduced the holomorphic a
and antiholomorphic ā index where the antiholomorphic transforms in the complex conjugate
representation. Combining these building blocks, we get the phase,

Φ = e2πi(p·Vh−q·vh)+(Ñ0−Ñ∗0 )vh Φvac with Φvac = e2πi(Vg ·Vh−vg ·vh) , (2.39)

where the vacuum phase Φvac stems from geometrical considerations and details can be found in
[65]. The entries of Ñ0 and Ñ∗0 are integer oscillator numbers, counting the number of excitations

in the holomorphic and antiholomorphic directions, e.g. Ñ∗0 = (0, Ñ ā=1
0 , Ñ ā=2

0 , Ñ ā=3
0 ). In the

upcoming sections we will refer to these transformations and especially in the twisted sector
some generalizations are introduced.

2.3.2 Physical constraints on the orbifold compactification

The orbifold compactification discussion so far did not include all consistency conditions or
phenomenological considerations. In this subsection, supersymmetry and modular invariance
will inject strong constraints on the possible orbifold compactifications in heterotic string theory.

Supersymmetry N = 1

The amount of 4D supersymmetry after orbifold compactification is determined by the number
of spinors that are invariant under the action of P . Hence, the task is to embed P ⊂ SO(6)
into spinor-space Spin(6). As Spin(6) ∼= SU(4) the representation acts as a four-dimensional
representation 4 of SU(4). The spinor representations

Ds : P ⊂ SO(6) → Ps ⊂ Spin(6) (2.40)

θ 7→ Ds(θ) ,

can be constructed using the explicit spinor basis eq. (A.16). Then Ds(θ), associated with the
element g, is given in the following form,

Ds(θ) = e2πi v1g
1
2
σ3 ⊗ e2πi v2g

1
2
σ3 ⊗ e2πi v3g

1
2
σ3 . (2.41)

We find that the spinor representation is parameterized by the local twist vector vg as in case
of the geometrical point group eq. (2.19). To determine the amount of 4D supersymmetry it
is sufficient to compute the decomposition of 4. In detail, the amount of invariant spinors
corresponds to the number of trivial singlets contained in the decomposition. This relates the
holonomy group of a 6D torus orbifold directly to the amount of supersymmetry. If P ⊂ SU(3),
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Chapter 2. The string theory framework

i.e. the holonomy group is SU(3), this ensures that the four-dimensional representation of SU(4)
decomposes in a three dimensional, maybe reducible, and a one-dimensional representation:

4 = 3⊕ 1 . (2.42)

If P = SU(3) exactly4 the only one-dimensional representation is the trivial representation, i.e.
we have a covariantly constant spinor. However, since P is a discrete group embedded in SU(3)
we have different choices for the one-dimensional representation, i.e. we can take non-trivial one-
dimensional representations. An example will be discussed around table 3.3. Hence, one has
some freedom and has to make a choice. To fix the condition such that a trivial singlet appears,
one can take the viewpoint of the orbifold phase acting on the right-moving momentum q that
is associated to the spinors, and finds

θ : |q〉R 7→ e−2πi q·v |q〉R , (2.43)

where we have q =
(
±1

2 ,±1
2 ,±1

2 ,±1
2

)
with even number of plus signs. The underline of the

vector indicates that all permutations are considered. Hence, one obtains that the following
condition

q · v = 0 mod 1 , (2.44)

summarizes the projection condition on the spinors associated to q. While, several equations
relate to the above condition, for the notation in [57], the weight q =

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
is chosen to

survive the projection. Together, with the simplified special solution to vanish exactly,

v1 + v2 + v3 = 0 , (2.45)

instead of modulo integers. If the holonomy group is SU(3) this choice ensures a trivial phase of
the chosen spinor and hence N = 1. Let us stress that all 138 orbifold geometries with Abelian
point groups and N = 1 supersymmetry with the special twist vector choice eq. (2.45) have
been classified in [57].

Modular invariance

The amount of supersymmetry can be directly related to the geometrical action of the orbifold,
which comes from the fact that solely the right-movers are based on a supersymmetric string.
Moreover, the right-movers are not involved in the gauge degrees of freedom. However, the
orbifolding of the geometrical part breaks the modular invariance of the theory and demands
that certain constraints on the gauge embedding M repair the situation. In order to obtain a
consistent string compactification we have to impose conditions on the gauge embedding matrix
M . These conditions, developed in [66], read

N1

(
V 2

1 − v2
1

)
= 0 mod 2 ,

N2

(
V 2

2 − v2
2

)
= 0 mod 2 ,

gcd(N1, N2) (V1 · V2 − v1 · v2) = 0 mod 2 ,

gcd(Nα+2, N1) (Wα · V1) = 0 mod 2 , (2.46)

gcd(Nα+2, N2) (Wα · V2) = 0 mod 2 ,

Nα+2

(
W 2
α

)
= 0 mod 2 ,

gcd(Nα+2, Nβ+2) (Wα ·Wβ) = 0 mod 2 (α 6= β) ,

4This is the case for Calabi-Yau constructions.
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2.4. Spectrum computation

for α, β = 1, . . . , 6 and where v1 and v2 denote the twist vectors of ZN1 × ZN2 . In addition,
gcd in eq. (2.46) denotes the greatest common divisor. Note that, included in these conditions
are consistency constraints on the vacuum phase Φvac developed in [66]. These Diophantine
conditions are very restrictive and already forbid a huge fraction of points in the space Z128.
Illustrations and a detailed discussion of this behavior is given in chapter 4 where a statistical
approach to the solutions of eq. (2.46) is discussed.

2.4 Spectrum computation

Massive strings have masses of the order of the Planck scale and therefore are too heavy to
contribute to the effective field theory of the (MS)SM. Hence, only massless string states are
considered for the low energy spectrum and limit the solutions of the mass equations eq. (2.7).
Moreover, we have to consider the orbifold projections by the acquired phases from eq. (2.35).
These conditions are investigated for the untwisted sector or ‘bulk’ and the twisted sector in the
following subsections.

2.4.1 Untwisted sector

Remember that untwisted strings correspond to those strings that close already under a con-
structing element with θ = 1. Hence, they have the same mass equations as the uncompactified
string.

Mass equation

For the low energy spectrum only massless strings can contribute5, i.e. ML = 0 = MR

0 =
q2

2
+N − 1

2
, 0 =

p2

2
+ Ñ − 1 . (2.47)

The only solutions are given for q2 = 1 and N = 0 in combination with the solutions for the
left-mover that are p2 = 0 and Ñ = 1 or p2 = 2 and Ñ = 0.

Orbifold projection

Additional to the mass conditions, the states have to be invariant under the orbifold action,

|q〉R ⊗ |p〉L → e2πi(p·Vh−q·vh) |q〉R ⊗ |p〉L . (2.48)

For the untwisted sector we have the trivial constructing element with θ = 1. Since the central-
izer of this trivial constructing element is the whole space group S, this transformation has to
act trivially for all elements of S,

p · Vh − q · vh = 0 mod 1 ∀h ∈ S . (2.49)

Let us take a closer look on the case for p2 = 2 and Ñ = 0 since this will become of importance
during this thesis. This case corresponds to the breaking of the E8×E8 gauge group and results
in the 4D charged fields.

5Kaluza-Klein and Winding numbers are zero for massless strings at a generic point in moduli space.
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Chapter 2. The string theory framework

Charged gauge bosons

The first case is given for q · vh = 0. As for a special choice of N = 1 condition we have a
surviving spinor that is invariant under the orbifold eq. (2.43). The common choice is positive
signs in the mod condition eq. (2.45). Hence, q = (±1, 0, 0, 0) or q = ±

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
lead to this

case. Then, only states that are tensored to roots p of E8 × E8 that fulfill,

p ·Mk = 0 mod 1 ∀k = 1, . . . , 8 (2.50)

can survive the orbifold action. Note that we have rewritten the condition eq. (2.49) for each
Vh with h ∈ S to its irreducible conditions.

Untwisted charged matter U-sector

Contrary to the case above, the second part of the orbifold phase is non-vanishing for the values

q =
(
0,±1, 0, 0

)
or q = ±

(
−1

2 ,−1
2 ,

1
2 ,

1
2

)
and we find different conditions for the particular q

that correspond to the so called U -sectors. The conditions read,

p ·M1 − q(a) · v1 = 0 mod 1 (2.51)

p ·M2 − q(a) · v2 = 0 mod 1 (2.52)

p ·Mk = 0 mod 1 for k = 3, . . . , 8 (2.53)

for the unbroken roots p of E8. The q(1) = (0,−1, 0, 0), q(2) = (0, 0,−1, 0) and q(3) = (0, 0, 0,−1)
are then associated to the Ua-sectors with a = 1, 2, 3. They correspond to the three directions of
the internal vector-boson index of the ten-dimensional E8 ×E8 gauge bosons and have different
R-charges [31].

2.4.2 Twisted sector

For the case of a non-trivial rotation as part of the constructing element the situation becomes
much more involved. As zero modes of twisted sectors T(k1,k2) are associated to fixed points and

hence to the constructing element g = (θk1ωk2 , nαeα) ∈ S related to them. In detail, this effects
the mode expansion of the left and right-movers such that the center of mass of the twisted
strings is localized at the fixed points. Additionally, the appearance of twisted oscillators with
fractional frequency leads to a shift in the zero point energy [30] by

∆Eg =
1

4

3∑

a=1

ωag (1− ωag ) , (2.54)

where one can define ωag = (vg)
a mod 1 and ω̄ag = − (vg)

a mod 1. Note, that the shift in
the zero point energy is dependent on the local shift vector and hence on the particular twisted
sector. This indicates the subscript label g of the constructing element.

Mass equations

The twisted oscillators also lead to a shift of the right moving momenta q such that the mass
equation reads together with eq. (2.54),

(q + vg)
2

2
− 1

2
+ ∆Eg = 0 (2.55)
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2.4. Spectrum computation

Similarly, the right handed momentum p is shifted by the action of the corresponding local shift
vector Vg. Since the shift in the zero point energy eq. (2.54) is the same for the left-movers, one
obtains

(p+ Vg)
2

2
+ Ñ(g) − 1 + ∆Eg = 0 , (2.56)

with the fractional number operator Ñ(g) according to the twisted sectors.

Orbifold projection

As the orbifold phase for commuting elements, i.e. centralizer elements, relate identical physical
states, the combined phase from section 2.3.1 has to act trivially and vanish.6 This results in
the orbifold projection condition for twisted states as,

psh · Vh − qsh · vh + (Ñg − Ñ∗g ) · vh − 1
2(Vg · Vh − vg · vh)

!
= 0 mod 1 (2.57)

where we introduced the notation qsh = q + vg and psh = p + Vg. Analogous to eq. (2.39) Ña
g

and Ñ∗ ag , a = 0, . . . , 3, are the integers counting the number of oscillators and are the entries of

Ñg and Ñ∗g . They are given by splitting the eigenvalues of the fractional number operator Ñ(g)

according to

Ñ(g) =
3∑

a=1

ωag Ñ
a
g + ω̄ag Ñ

∗ a
g . (2.58)

2.4.3 Local GUTs

So far, we directly considered the full orbifold action on the physical states in order to get the 4D
perspective of our massless states. An approach that contains more information about the inner
structure of the orbifold is given by a local inspection. Concretely, it is possible to consider the
matter content on a single fixed point and inspect the local gauge group at this fixed point. This
leads to the concept of so-called local GUTs [67–77], where the fixed points are equipped with a
GUT (grand unified theory). If there is no further orbifold projection for the states at the fixed
points, then by considering the complete orbifold, the gauge group of the local GUT branches
group theoretically in representations of the 4D gauge group. This particular situation can be
found in the first twisted sector of ZN orbifolds. First of all, there are no roto-translations in the
space group. Those can lead to a non-local breaking of the local GUTs. Moreover, in the case
of the first twisted sector T(1) in ZN1 orbifolds the special situation arises that the centralizer
of g is trivial, i.e. only powers of gm ∈ Cg with m ∈ N are included. Hence they correspond to
the same fixed point. This would not be the fact for higher-order twisted sectors as there exist
fixed tori. They insert an ambiguity on the constructing element g, which is defined only up
to lattice vectors in the fixed torus. Then, additional elements appear in the centralizer of g.
However, the special situation for the centralizer in T(1) of ZN orbifolds ensures the local GUT
breaking and the invariance of the local matter states under orbifold projection phases [32].

For example there exist shift vectors such that a SO(10) gauge group with matter content
in 16 survives on a fixed point [78]. For the desired SM gauge group SU(3) × SU(2) × U(1)Y ,
this breaks into one generation of quarks and leptons, including a right-handed neutrino

16 = (3,2)1/6 + (3,1)−2/3 + (3,1)1/3 + (1,2)−1/2 + (1,1)1 + (1,1)0 . (2.59)

6Note, in principle also the case of [h, g] 6= 0 has to be investigated. However, for the massless spectrum a
so-called γ phase for a given state can be chosen such that these cases always remain in the spectrum [32].
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Chapter 2. The string theory framework

It was possible to turn this concept into a guiding principle for MSSM-like searches in the
heterotic orbifold landscape. In particular, the Z6-II (1,1) orbifold was studied with two kinds
of shift vectors V1 that ensure a SO(10) with 16-plet GUT or an E6 27-plet GUT, respectively.
This led to a fertile area in the heterotic landscape with a significantly increased probability of
obtaining MSSM-like models and was named Mini-Landscape [75, 79].

In chapter 5 we will build upon these findings and study the inner structure of local GUTs
with neural networks.

2.5 The Orbifolder

After we have chosen an orbifold geometry O and found a consistent gauge embedding matrix
M , it is possible to compute the low energy 4D orbifold model denoted by model(M). As
the orbifold geometry O is mostly held fixed and we investigate the space of gauge embedding
matrices M , we also name M orbifold model. However, some details of the models are not
yet understood in a concise formalism, e.g. the Yukawa couplings. Nonetheless, already the
spectrum computation seen in section 2.4 is rather involved and takes a considerable amount
of time. Fortunately, this procedure was automated in the orbifolder [80] project. This
program searches for consistent gauge embedding matrices M and returns the massless string
spectrum, denoted by spectrum(M). This spectrum consists of the left-chiral matter with all
non-Abelian gauge charges. Also, the allowed couplings according to the string selection rules
as well as discrete symmetries, can be analyzed. Furthermore, the orbifolder can be used
to identify equivalent orbifold models based on their massless particle spectra. Two orbifold
models, model(M) and model(M ′), are said to be equivalent if their massless spectra coincide
on the level of the non-Abelian representations7, i.e.

spectrum(M) = spectrum(M ′) ⇒ model(M) ∼ model(M ′) . (2.60)

In detail, the orbifolder can produce an ID label to identify different models. This ID label
consists of,

• The number of generations of quark-like and lepton-like states, i.e. this value indicates for
MSSM-like models the necessary three generations.

• Number of non-Abelian singlets charged under U(1).

• The number of representations of the left-chiral matter in the orbifold sectors, ordered in
ascending order. This contains some information about the allowed couplings since the
string selection rules allow only for certain couplings between the different sectors.

• The non-Abelian gauge groups in 4D.

• A value indicating if there is an anomalous U(1).

• The left chiral matter spectrum in terms of their representations under the non-Abelian
gauge groups. For a comparison of the ID labels, this entry needs to be basis independent.
Therefore, the spectrum is sorted according to its representation content.

7In case of MSSM-like models the U(1)Y hypercharge can also be used.
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2.6 Definition of MSSM-like models

Using the orbifolder package it is possible to quickly search the Z128 space of dkI coefficients
for consistent gauge embedding matrices M as defined in section 2.2.2. However, the resulting
particle spectra are in general very different from the (MS)SM. Hence, let us first state the
MSSM spectrum in representations of the SU(3)C × SU(2)L × U(1)Y gauge symmetry and the
left-chiral matter as,

3× [(3,2)1/6 + (3,1)−2/3 + (3,1)1/3 + (1,2)−1/2 + (1,1)1] + (2.61)

1× [(1,2)−1/2 + (1,2)1/2] ,

where the subscript indicates the U(1)Y hypercharge. Possible right-handed neutrinos (1,1)0

are not included. In general a large number of additional fields are generated as remnants from
the orbifolding procedure. Indeed, there is no known heterotic orbifold compactification that
exactly reproduces the (MS)SM as low energy spectrum without additional particles. However,
it is possible to define MSSM-like models which allow for additional particle content that is not
a priori fatal for the model in the sense that it introduces phenomenological forbidden effects.
In detail, it is possible to allow for exotic particles that are vector-like with respect to the SM.
These exotic particles are matter that is charged under the SM. In order to be vector-like, each of
these exotic particles has a mass-partner transforming in the complex conjugate representation
with respect to the SM. The charges of the particles may be different from the ones known in the
SM and hence are exotic particles. However, in this context an additional vector-like particle
pair which is, e.g. charged like a down-type quark, will be accounted to the set of vector-like
exotic particles. Interestingly, it turns out that all types of vector-like exotics that appear in
the orbifold landscape amount to 43 different types. They are listed in table D.1 and table D.2.

As the MSSM is defined without any vector-like exotics, these particles eventually have to
decouple from the effective field theory spectrum. We let X and X̄ denote a pair of vector-like
exotics. Usually, these exotics can become very massive through terms in the superpotential.
They are of the form W ⊃ (MPlanck)1−p (s0)pX X̄, where p ∈ N+ and s0 is a SM singlet (1,1)0.
The SM singlet can acquire a large non-vanishing vacuum expectation value (VEV), which
generates a mass term, that can be close to the Planck scale MPlanck, for the vector-like exotics
X and X̄. Thus, besides three (chiral) generations of quarks and leptons, a Higgs-pair and SM
singlets a MSSM-like orbifold model can be equipped with vector-like exotics.

Finally, let us comment on the U(1)Y that is normalized such that it results from an SU(5)
GUT. In detail, the non-Abelian gauge factors SU(3)×SU(2) for which the three generations of
quark-like states appear are embedded into a SU(5) space where the generator that defines the
U(1)Y is the orthogonal direction with respect to SU(3) × SU(2) in this SU(5) spaces. Hence,
the U(1)Y is normalized such that it is consistent with gauge coupling unification.
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Chapter 3

Non-supersymmetric heterotic
orbifolds with supersymmetric
substructure

Supersymmetry is a promising extension of the SM that introduces a degeneracy of bosons
and fermions. This theoretically appealing symmetry is so powerful that the question arises
if a highly constrained framework, such as string theory, predicts its existence from quantum
gravity. While supersymmetry is itself widely assumed in string theory, the setting of heterotic
string theory provides a well defined non-supersymmetric SO(16)×SO(16) string [44, 81–83].
Compactifications of the SO(16)×SO(16) string [18, 50, 84–94] lead to low-energy spectra close
to the SM [95–100]. However, in this non-supersymmetric theories the issue of the cosmological
constant arises. As discussed below eq. (2.2) the 4D cosmological constant is proportional to
the one-loop vacuum to vacuum amplitude in string theory. This amplitude is expressed in
terms of the so-called partition function. In the case of supersymmetry, the partition func-
tion vanishes, and hence the cosmological constant vanishes, too. Thus a small breaking of
supersymmetry would introduce a small cosmological constant as it is observed in the uni-
verse [101, 102]. However, missing signs of supersymmetry at the LHC [103], demand that also
non-supersymmetric theories are explored and understood. Unfortunately, the partition function
in non-supersymmetric string theories does not vanish at one loop by default and induces a con-
siderably too high value for the cosmological constant. This issue is tackled in various attempts
and will also be the main concern in this chapter. In the literature there already exist attempts
for a exponentially suppressed cosmological constant at one loop [91, 99, 104–108] trying to re-
duce the problem. Moreover, there exist non-supersymmetric constructions in the type II string
theory with a vanishing cosmological constant at one-loop, see [93, 109–112]. For the type II
construction, it was crucial that the compactification was done on asymmetric orbifolds.1 While
it was argued in [99] that heterotic non-supersymmetric string theories induce a non-vanishing
cosmological constant, the type II example is the motivation for a detailed understanding of
this issue. The goal of this chapter is to investigate the inner structure of symmetric orbifold
compactifications on the heterotic string that construct 4D non-supersymmetric models.

1Note that this cancellation may not persist towards higher loop orders as in supersymmetric models [113].
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substructure

3.1 Conditions for a vanishing one-loop cosmological constant

In this chapter, we will connect the vanishing of the one-loop cosmological constant to a group
theoretical question. Hence, we will focus on the group theory part here and refer the reader for
details on the partition function to [24]. As the goal of this section is to find the minimal dif-
ference between the supersymmetric and non-supersymmetric case, let us start by investigating
the overall structure of the full one-loop partition function that is the integrand of the modular
integral eq. (2.2). The full partition function can be factorized into a 4D non-compact part Z3,1

and the orbifold O compactified internal part Zint.,

Zfull(τ, τ̄) = Z3,1(τ, τ̄) Zint.(τ, τ̄) . (3.1)

Moreover, the world-sheet that describes the one-loop partition function is given by a torus.
Hence, the closed string eq. (2.30) has to satisfy a second boundary condition from the element
h ∈ S,

X(σ0 + πτ1, σ1 + πτ2) = hX(σ0, σ1) , (3.2)

where τ = τ1+iτ2 parameterizes the world-sheet torus [30]. In order to ensure that the boundary
condition eq. (2.30) is compatible with eq. (3.2), the associated space group element h ∈ S has
to lie in the centralizer of Cg, i.e. [h, g] = 0 with g ∈ S the constructing element according to
the boundary condition eq. (2.30). Then, the internal orbifold partition function can be formed
as a sum over (g, h)-sectors,

Zint.(τ, τ) =
1

|P |
∑

g

∑

h∈Cg

Zint.

[g
h

]
(τ, τ) . (3.3)

Finally, the individual terms of the sum in the internal partition function, i.e. each (g, h)-twisted
sector, can be factorized in left- and right-moving parts

Zint.

[g
h

]
(τ, τ) = ZΨR

[g
h

]
(τ)ZXR

[g
h

]
(τ, τ̄)ZXL

[g
h

]
(τ) , (3.4)

related to the supporting world-sheet fields ΨR, XR and XL. The explicit form of the contri-
bution from the gauge degrees of freedom ZXL

in eq. (3.4) depends on the gauge embedding
(see section 2.2.2). Hence, this part is conditioned on the specific model and needs detailed
computations for each specific case.

The structure of the partition function reveals that the direct computation of the one-loop
cosmological constant eq. (2.2) is, in general, connected to the particular compactification pa-
rameters and hence complicated and model-dependent. Analogous to the supersymmetric case
where the full partition function vanishes, we ask here for model-independent situations with
a vanishing cosmological constant. One possibility is to force the integral to be zero by a par-
ticular symmetry of the partition function. A suggestion in this context was the Atkin-Lehner
symmetry [114–117]. However, this requires a detailed understanding of the modular proper-
ties of the full partition function which is not generically known. The next option would be a
vanishing partition function. As the non-compact space-time part of the partition function is
non-vanishing, the full partition function Zfull in eq. (3.1) only vanishes, if the internal partition
function Zint. is zero. From eq. (3.3) one can infer the trivial realization as Zint.

[g
h

]
= 0 ∀ (g, h)-

sectors. However, there exists also the possibility that some Zint.

[g
h

]
6= 0. This option involves a

non-trivial cancellation between the contributions from the various twisted sectors in eq. (3.3)
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and hence needs further understanding of the model-dependent details. Since these options
involve intricate cancellations, we focus on the model-independent option and demand that

Zint.

[g
h

]
= 0 for all pairs [g, h] = 0 . (3.5)

This condition directly implies that we restrict ourselves to supersymmetric heterotic string
theories, i.e. the E8 × E8 or the SO(32) string. This is due to the one-loop (g, h)-sector corre-
sponding to (1,1). As this 10D sector is modular invariant, it has to vanish by itself. A fact
that would not be given for the non-supersymmetric heterotic SO(16)× SO(16) string. In other
words, the only way to have a model-independent vanishing integrand is to have supersymmetry
at least at the string scale and breaking it by orbifolding to a 4D non-supersymmetric theory.

The internal partition function eq. (3.4), consists for (g, h) 6= (1,1) of a product of three
parts. Thus, it vanishes whenever one factor is zero. However, the part of the partition function
associated with the right-moving fermions ΨR in eq. (3.4) encodes all the information about
target-space supersymmetry. The (g, h)-twisted partition function ZXR

[g
h

]
is associated with

the internal orbifold geometry and has no relation to supersymmetry. Hence, it is in general
non-zero. Then ZΨR

[g
h

]
is the last factor that can yield a model-independent vanishing of the

partition function. This factor only depends on the space group S, but not on the particular
gauge embedding. Furthermore, ZΨR

[g
h

]
(τ) depends only on the local twist vectors vg and vh

corresponding to the commuting space group elements g and h, respectively, and not on the
torus lattice Γ, see [24]. Thus, according to the classification of 6D orbifolds in section 2.2.1 it
is the same for a vast collection of orbifold models.

3.1.1 Vanishing right-moving fermionic partition functions

The right-moving fermionic partition function ZΨR

[g
h

]
in eq. (3.4) vanishes iff the corresponding

(g, h)-sector admits at least one Killing spinor. This can be shown using Riemann identities (see
Appendix A of [24]),

ZΨR

[g
h

]
(τ) = 0 ⇔ The space group elements g, h ∈ S admit

at least one common Killing spinor.
(3.6)

Thus, in order to investigate a vanishing partition function we can study the spinor embedding
of the geometrical twist θ of g = (θ, nαeα) ∈ S. For the spinor representation eq. (2.41), we
observe that the possible eigenvalues of Ds(θ) are exp(±2πi ṽag ) with a = 1, 2, 3, 4, where

ṽg =
1

2




v1
g + v2

g + v3
g

−v1
g + v2

g + v3
g

v1
g − v2

g + v3
g

v1
g + v2

g − v3
g




, (3.7)

and similarly for h = (ρ,mαeα) ∈ S with h ∈ Cg. Consequently, Ds(θ) and Ds(ρ) have a common
invariant eigenvector if the same components ṽag and ṽah are integer valued. This eigenvector
corresponds to a preserved Killing spinor. Thus the (g, h)-twisted sector preserves some amount
of supersymmetry in this substructure, such that the right-moving fermionic partition function
ZΨR

[g
h

]
is zero. Hence, if a Killing spinor is invariant under a point group element Ds(θ),

the corresponding (g,1)-sector vanishes and we say that a Killing spinor exists locally for the
ZNθ Abelian subgroup generated by θ ∈ P . These considerations make it evident that the
partition function of any supersymmetric orbifold vanishes. Concretely, the supersymmetric
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case corresponds to one globally defined constant spinor, which implies a spinor that is invariant
for all Ds(θ) with θ ∈ P . Such a Killing spinor will be called global. The term supersymmetry is
avoided to point out that these concepts do not relate to local and global supersymmetry. The
vanishing of the right-moving fermionic partition function ZΨR

[g
h

]
for all (g, h)-sectors is in case

of 4D supersymmetric orbifolds related to a global Killing spinor. However, there could exist
non-supersymmetric toroidal orbifold compactifications with vanishing right-moving partition
function in each (g, h)-twisted sector separately, due to the existence of different supersymmetries
in each (g, h)-sector. It is sufficient to demand:

i. There exists a local Killing spinor in every (g, h)-sector. In other words, each
orbifold sector preserves by itself at leastN(g,h) = 1 space-time supersymmetry.

ii. The (g, h)-sectors preserve distinct Killing spinors, such that it is impossible
to define a globally invariant spinor. Hence, target-space supersymmetry is
broken, N = 0.

(3.8)

However, the no-go result in the upcoming sections will be that such a construction is not
possible. Hence, non-supersymmetric toroidal orbifolds for each possible space group S will
always break supersymmetry entirely in at least one (g, h)-sector.

3.1.2 Non-isomorphic embeddings

Another complication of eq. (3.5) is related to the double cover ambiguity for embedding the
geometrical action into the spinor representation. As discussed in section 2.3.2, the action of
the point group has to be embedded into the eight-dimensional spinor representation. The
spin group Spin(6) is the double cover of the orthogonal group SO(6), hence any element θ
of the geometrical point group P has two representatives in the Spin(6) group as ±Ds(θ), see
eq. (A.8). Therefore, if the geometrical point group P has a set of K generators, there exist
2K possibilities for the action of the point group on spinors. These different embeddings are in
general inequivalent.

Note, that this ambiguity can lead to a non-isomorphic embedding. For example, if the
order Nθ of a generator θ is odd, then the order of the corresponding spin generator depends
on the choice of embedding sign. If Ds(θ) has the same order Nθ as θ ∈ P , then we find that
−Ds(θ) is of order 2Nθ. However, this non-isomorphic embedding, in the case of odd generators,
can be generalized to the defining conditions of finite groups. In particular, this can happen
for groups which have only even generators. Concretely, each finite group H is defined by a
so-called presentation, i.e. by several defining relations between its generators. We can bring
these to the form of a product of generators of H that equals the identity,

θ1 · · · θn = 16 . (3.9)

Inserting eq. (3.9) into eq. (A.8) and using the relation to the charge conjugation matrix defined
in eq. (A.7) we observe that the corresponding spinor element of eq. (3.9) has to commute with
all gamma matrices Γi eq. (A.14) that build the basis of the Clifford algebra,

[
Ds(θ1) · · ·Ds(θn), Γi

]
= 0 , (3.10)

for all i = 1, . . . , 6. However, the eight-dimensional Γi matrices generate the so-called extraspe-
cial finite group of order 128, with (GAP ID [128, 2327]). This group has 64 one-dimensional
irreducible representations and one eight-dimensional irreducible representation. The eight di-
mensional representation is the only one which can satisfy the Clifford algebra and is given by
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the gamma matrices Γi. Using this observation we can apply Schur’s lemma for irreducible
representations of a finite group. Hence, it follows that any element Ds(θ1 . . . θn) of Ps that has
to commute with all Γi and is not the zero matrix, has to be proportional to the identity matrix
Ds(θ1 . . . θn) = a18 with a ∈ C. This condition in combination with eq. (A.8) results in a2 = 1.
Thus, we obtain that the defining relation for the corresponding group Ps in spinor space, can
take two forms,

Ds(θ1) · · ·Ds(θn) = ± 18 . (3.11)

Hence, any non-isomorphic embedding of P in Ps contains the element −18. Otherwise, if all
defining relations for Ps are the same as those of P , then Ps and P are isomorphic P ' Ps.
Thus, for non-isomorphic embeddings the space group element g with Ds(θ) = −18 has no
invariant spinor according to the condition on the eigenvalues, see eq. (3.7). Since the right-
moving fermionic partition function has to vanish in each (g, h)-sector, we have to avoid this
situation. Hence, we restrict ourselves to those cases where the point group P and Ps in spinor
space are isomorphic,

P ∼= Ps . (3.12)

However, even for the isomorphic case, several embeddings exist. Those correspond to inequiv-
alent models that might have different cosmological constants. Thus, the various isomorphic
embeddings are of interest for the following investigations.

3.2 Local Killing spinors in non-supersymmetric orbifolds

Recall that all geometrical point groups that act crystallographically (eq. (2.16)) on 6D tori are
classified in carat and accordingly labeled from 1 to 7 103 for all Q-classes. The generators
for each Q-class are given in some (unspecified) lattice basis e, as GL(6;Z) matrices denoted
by θ̂ ∈ P̂ . The task is to find a lattice basis e and the corresponding SO(6) representation.
We start with the relation between the generators in the lattice basis and the geometrical O(6)
generators,

θ = e θ̂ e−1 . (3.13)

Using the orthogonality property θT θ = 16 and the definition of the torus metric eq. (2.11) this
leads to the condition,

G = θ̂ T G θ̂ , (3.14)

for all θ̂ ∈ P̂ . A solution to the equation above is given by

G =
∑

ρ̂∈ P̂

ρ̂T ρ̂ . (3.15)

This solution can be verified by explicit insertion in eq. (3.14) and the simple observation that
the action of θ̂ ∈ P̂ shuffles the individual terms of the sum. Next carat provides with the
FORM SPACE function a option to find a basis of all G’s that are solutions to eq. (3.14). From
there, one could choose a lattice basis, to get the best approximation to a diagonal representation
for the generators. In this specific case, it is sufficient to utilize a CholeskyDecomposition of
G in order to find a lattice basis e, according to eq. (2.11). This basis allows us to transform
the θ̂ by eq. (3.13). Checking the determinant, we find the θ that are actually in SO(6).

However, the geometrical point group P determined does not fully specify the action on
the spinors because of the double cover ambiguities. Each orthogonal matrix θ can be written
in terms of the Lie algebra as in eq. (A.2). Then, using eq. (A.7) we obtain both possible
representations ±Ds(θ) in spinor space.
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# Q-classes Restriction

7 103 All Q-classes in six dimensions, i.e. all inequivalent point groups P ⊂ O(6).

1 616 Orientable geometrical point groups P ⊂ SO(6)

106 No element from P rotates in a two-dimensional plane only

63 For each element θ ∈ P there is an SU(3)θ ⊂ SO(6) in which θ lies, but not
necessarily P ⊂ SU(3)

60 All elements of the point group lie in the same SU(3), which allows for a
choice of Ps with N ≥ 1 supersymmetry in four dimensions

Table 3.1: Q-classes that survive various requirements for local and global Killing spinors.

3.2.1 Number of invariant spinors

The global and local Killing spinors correspond to the invariant Killing spinors of the whole
group Ps and the ZNθ subgroups generated by the individual elements Ds(θ) ∈ Ps, respectively.
Therefore, it is necessary to understand the number of Killing spinors preserved by some sub-
group A ⊂ Ps. As Spin(6) is isomorphic to SU(4), the point group action in spinor space is
fully specified in a four-dimensional irreducible representation 4 of SU(4). This so called Weyl
representation is given by the chiral projection of Ds(θ) to D4(θ) or its conjugate, see eq. (A.13).
Thus, any A-invariant four-dimensional Weyl spinor Ψinv. is left invariant under the elements of
the subgroup D4(θ) ∈ A,

D4(θ) Ψinv. = Ψinv. , (3.16)

To obtain the eigenspace of A-invariant spinor spinors, we can define the projection operator by
D4(θ)PA = PA for all D4(θ) ∈ A. This condition is satisfied by,

PA =
1

|A|
∑

D4(θ)′ ∈A

D4(θ′) . (3.17)

Since the projection operator eigenvalues are limited to 0 or 1, we can take the trace over the
projection operator to get the dimension of the invariant subspace. Thus we can count the
number of A-invariant Killing spinors,

NA = Tr
(
PA
)

=
1

|A|
∑

D4(θ′)∈A

Tr
(
D4(θ′)

)
. (3.18)

For A = 〈θ〉, N 〈θ〉 computes the number of local Killing spinors according to the ZNθ subgroup of
Ps. Consequently, for N = NP we obtain the number of global Killing spinors which determines
the amount of target-space supersymmetry.

3.2.2 Point groups admitting local Killing spinors

The definitions for the explicit construction of the spinor representation allows us to investigate
the 7 103 Q-classes associated with the geometrical point groups in 6D. However, a huge fraction
of these possibilities will not survive the most basic physical considerations as we will discuss
next. These considerations are summarized in table 3.1.

Beginning with the essential condition on the geometrical point group to preserve the ori-
entation P ⊂ SO(6) in order to allow for a definition of spinors at all. This mere constraint
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carat-Index Group Generator relations Order Local twist vectors

3375 Z3 o Z4 θ4
1 = θ3

2 = 1, θ2 θ1 θ2 = θ1 12
(

1
4 ,

1
4 ,−1

2

)
,
(

1
3 ,−1

3 , 0
)

5751 Q8 θ4
1 = 1, θ2

1 = θ2
2, θ1 θ2 θ1 = θ2 8

(
1
4 ,

1
4 ,−1

2

)
,
(

1
4 ,−1

4 , 0
)

6737 SL(2, 3) θ3
1 = θ4

2 = 1, (θ2 θ1)2 = θ2
1 θ2 24

(
1
3 ,

1
3 ,−2

3

)
,
(

1
4 ,−1

4 , 0
)

Table 3.2: The three Q-classes for which all elements have an individual SU(3) embedding but
not simultaneously. Note that the two local twist vectors are obtained from two different bases
since these groups are all non-Abelian.

reduces the number of possible point groups to only 1 616. However, even more point groups
are to be disregarded for our approach. From the remaining point groups, only 106 are able to
get a trivial eigenvalue for a Killing spinor. The rest of the instances rotate only in one complex
plane. In this case, the local twist vector vg defined in eq. (2.19) is given by vg = (0, v1

g , 0, 0).
Hence, for a non-trivial rotation v1

g none of the eigenvalues in the spinorial representation Ds(θ),
eq. (2.41), is one and thus, Ds(θ) has no invariant Killing spinors. These trivial considerations
already reduce the possible set of situations we can investigate massively. However, there is
more that we can demand at this point. In [57, 118] a check on the holonomy group of P was
performed to find the Q-classes that allow for N ≥ 1 supersymmetry compactifications. This
check leaves only 60 point groups. However, in our case, we can ease this constraint on the holon-
omy group and modify the requirement such that each element fits into an individual SU(3). It
turns out that only 3 additional geometrical point groups benefit from this non-trivial change
in the SU(3)-check. Even though each point group element can be embedded individually into
spinor space to preserve at least one Killing spinor, not all the required choices can be made at
the same time for all elements in Ps. Hence, those 3 geometrical point groups do not allow for
supersymmetry. They are the natural first guess to be a possible solution to our investigation
and are given in table 3.2.

However, it is not clear whether the 60 point groups with SU(3) holonomy also allow for
another choice of the spin embedding Ps such that different Killing spinors are preserved in the
various sectors. Thus they would break supersymmetry globally but keeping invariant Killing
spinors locally. Eventually, it is necessary to construct, for each of the 63 geometrical point
groups P , all possible spinor space embeddings. However, it turns out that in each embedding,
there always exists at least one element that does not preserve a local Killing spinor if Ps has no
global Killing spinor. Note that the relevant elements can change between the different embed-
dings. Consequently, this explicit check provides a nonexistence proof for non-supersymmetric
orbifolds with local Killing spinors for each point group element. We exemplify this analysis for
the Q8 orbifolds in section 3.4. In the following section, we will connect this no-go result to the
representation theory of finite groups.

3.3 Finite group theoretical non-existence proof

The main take away so far is that the amount of supersymmetry is not fixed by the condition
P ⊂ SU(3) alone, but only the specific representation in spinor space determines the amount
of supersymmetry. As this connects supersymmetry to the specific representation, explicit con-
structions are computationally intensive. Hence, we show that it is possible to use finite group
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theory instead. Let us state the necessary facts of group theory to follow the upcoming sections
next.2

3.3.1 Elements of finite group theory

The representation theory of a finite group H is based on characters. For each representation
R the corresponding character is given by the trace χR : H → C for the elements b ∈ H

χR(b) = Tr(DR(b)) . (3.19)

Since the trace is invariant under conjugation the characters of the conjugacy classes3 fully
determine the representation. For finite groups the number of conjugacy classes is given by the
number of irreducible representations, c. Hence, a vector of length c defines the representation R

χR =
(
χR([b1]), . . . , χR([bc])

)
. (3.20)

For convenience the first entry of this vector is dedicated to the identity element, since χR(1) =
|R| determines the dimension of R. For representations constructed by direct sums or tensor
products, the characters are computed by normal sums and products of the corresponding
characters

χR⊕R′(b) = χR(b) + χR′(b) , χR⊗R′(b) = χR(b)χR′(b) . (3.21)

Furthermore, the k times anti-symmetrized tensor products, denoted by [R]k, can be expressed
in terms of the characters of the representation R. Using the expressions derived in [120, 121]
we get

χ[R]2(b) =
1

2

(
(χR(b))2 − χR

(
b2
))

, (3.22)

χ[R]4(b) =
1

4!

(
(χR(b))4 − 6χR

(
b2
)

(χR(b))2 + 8χR

(
b3
)
χR(b) + 3

(
χR

(
b2
))2 − 6χR

(
b4
))

.

The power of this approach is that one can define the following inner product

〈χR, χR′〉H =
1

|H|
∑

b′ ∈H
χR(b′)χR′

(
b′
)
, (3.23)

for any two character vectors associated with representations R and R′ of H. With respect to
this inner product the characters of irreducible representations rx are orthonormal,

〈χrx , χry〉H = δxy . (3.24)

Thus, the irreducible representations build a simple basis of the space of representations. This
inner product efficiently computes the coefficients nx of the decomposition of any representation
R in irreducible representations,

R =

c⊕

x=1

(rx⊕)nx , (3.25)

2 Details on finite group theory can be found for example in [119].
3Defined as in the case of inequivalent fixed points in eq. (2.22).

38



3.3. Finite group theoretical non-existence proof

where (rx⊕)nx = rx ⊕ · · · ⊕ rx and nx ∈ N0. Using eq. (3.21) and the orthogonality of the
irreducible characters eq. (3.24) we find that

χR(b) =

c∑

x=1

nx χrx(b) , with nx = 〈χrx , χR〉H . (3.26)

Furthermore, the characters can be used to compute the branching to ZN representations. For
the Abelian group ZN , all N group elements commute and thus lie in distinct conjugacy classes.
Since the dimension squared of all irreducible representations equals the order of the finite
group,

∑c
x=1(χrx(1))2 = |H|, there are N one-dimensional irreducible representations of ZN .

They are denoted by 1q for q = 0, . . . , N − 1 and 10 labels the trivial representation. Since
all representations are one dimensional the characters are simultaneously the representations,
i.e. χ1q(b) = D1q(b) = exp (2πiq/N) for the ZN generator b. Thus, for a ZN subgroup that is
generated by b ∈ H, we can give the branching of the representation R of H into the irreducible
representations of the ZN -subgroup, using the character inner product eq. (3.23) for the subgroup
ZN ,

nR;q = 〈χR, χ1q〉ZN =
1

N

∑

b′ ∈ZN

χR(b′)χ1q

(
b′
)
. (3.27)

nR;q counts how often the irreducible representation 1q appears in the branching. Therefore, we
had to use the characters with respect to two different groups, i.e. χR are the characters of the
full group H while χ1q are the characters of the irreducible group from the ZN -subgroup.

3.3.2 Spinor representation and Q-classes

From eq. (2.17), one can infer that the 7 103 Q-classes of 6D orbifolds provided by carat are
possible six-dimensional representations 6 of finite groups H. Those finite groups that make up
all Q-classes amount to only 1 594. In general, there exist several inequivalent realizations as
integral 6× 6-matrices with different eigenvalues for a given finite group H. For this reason, we
may take the different abstract finite groups H, underlying the Q-classes, as our starting point.

From section 3.2.1, it is clear that we are interested in representations 4 of these finite groups
H, that are reducible in general. However, not all four-dimensional representation 4 of one of
these finite groups corresponds to a spinor representation that can be connected with a 6D
toroidal orbifold. The representation can originate from U(4) instead of SU(4). Moreover, the
resulting six-dimensional representation,

6 = [4]2 , (3.28)

connected to the two-times anti-symmetrized tensor product of 4 (see section 3.3.1), not neces-
sarily corresponds to one of the vector representations listed in the carat classification. Thus,
two conditions need to be fulfilled:

1. det (D4(b)) = 1 for all b ∈ H

2. The representation matrices associated with eq. (3.28) are isomorphic to a
Q-class.

(3.29)

In order to circumvent the explicit construction of representation matrices, it is beneficial to
observe that the determinant is the fully anti-symmetrized one-dimensional representation of a
group [121]. Thus the determinant condition is linked to the the four-times anti-symmetrization
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of the 4. In other words, if the resulting singlet representation from [4]4 is the trivial one-
dimensional representation: χ[4]4 = (1, . . . , 1) the determinant for all elements b ∈ H is one.
This can be checked easily using the four-times anti-symmetrized character formula eq. (3.22).
Similarly, the isomorphism to a Q-class can be checked using the character formula of two-times
anti-symmetrized representations eq. (3.22) to compute the character χ6 = χ[4]2 . This character
values χ6 have to match the characters χv of a H related Q-classes from the carat list. Hence,
by utilizing finite group characters, we can check the conditions without the need to construct
any representation matrix explicitly.

3.3.3 Killing spinors and singlet representations

The approach of counting the number of A-invariant spinors NA by taking the trace of the
corresponding projection operator eq. (3.18) (see section 3.2.1), connects now trivially to the
concept of characters that are defined by the trace eq. (3.19). Thus we obtain,

NA =
1

|A|
∑

b′ ∈A
χ4(b′) = 〈χ4, χ1〉A = nA1 , (3.30)

where in the first step, the trivial representation 1 was inserted, to make use of the inner product
eq. (3.23). According to eq. (3.27) this computes the coefficient in the branching of 4 for the
trivial representation of A. Thus, the number of A-invariant spinors equals the number nA1 of
trivial singlet representations 1 from A in the branching of 4.

Let us specify the general subgroup branching eq. (3.30) for local and global Killing spinors.
First, for the case of a ZNb subgroup of H, which is generated by a single element b ∈ H. Hence,
we identify A = 〈b〉, and recognize, that the number of trivial singlets in the branching equals
the amount of preserved spinors by b. Thus, we determine the amount of supersymmetry in this
substructure by,

N 〈b〉 = n
〈b〉
1 . (3.31)

Secondly, if we identify A = H we observe,

N = nH1 . (3.32)

Hence, the amount of target-space supersymmetry, i.e. the number of global Killing spinors, is
given by the decomposition coefficient eq. (3.26) for the irreducible trivial singlets of H in 4.
In case the spinor representation 4 includes a trivial singlet 1 of H in its decomposition, this
trivial singlet 1 will branch for any subgroup into the trivial singlet of that subgroup eq. (3.30),
in particularly for the ZNb subgroups generated by each element b ∈ H. Hence, if an orbifold
has a global Killing spinor, each (g, h)-sector has a local Killing spinor.

3.3.4 Nonexistence proof

With the above results, we can use finite group theory to prove that non-supersymmetric toroidal
orbifolds only admit Killing spinors locally in all (g, h)-sectors, if there exists a global Killing
spinor. Therefore, the procedure is:

1. Consider all faithful 4’s of H, that do not contain a trivial singlet representation of H in
order to avoid global Killing spinors by eq. (3.32).

2. Reject those representations 4 that can not satisfy the conditions in eq. (3.29). In particu-
larly, the four-dimensional representation D4 should be a subgroup of SU(4) and [4]2 = 6
should result in a six-dimensional representation of the Q-classes.
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3. Construct, all ZN ⊂ H subgroups, and compute the number of trivial ZN -singlet in the
branching.

This method shows that none of the 1 594 different abstract groups H can fulfill all requirements.
Equivalently, as in the explicit approach, for each 4 remaining after the first two steps, there
is at least one cyclic subgroup, for which 4 does not branch to a trivial ZN -singlet. Hence, for
all non-supersymmetric 6D toroidal orbifolds, there is always a (g, h)-sector without any local
Killing spinor.

The power of the finite group theoretical proof lies especially in the clear and fast perfor-
mance, i.e. no numerical difficulties arise with this approach. In the next section, the explicit
construction and the finite group theoretical method will be illustrated in the case of the Q8

finite group. However, in section 3.5 the group theoretical considerations will be extended far
beyond the limits of 6D toroidal orbifolds.

3.4 Examples with Q8 point group

In order to illustrate several of the abstractly discussed concepts above, we utilize in this sec-
tion the example of H = Q8. Note, this group connects to one of the three exceptional cases
table 3.2 that allow for each element an SU(3) embedding but not all simultaneously. First, the
group structure of Q8 is reviewed in section 3.4.1. Afterwards, in section 3.4.2 the conditions
of representation theory (section 3.3) are determined and illustrated. It turns out that only
the representation of Q8 orbifolds with carat-index 5750 can fulfill all conditions simultane-
ously. Hence, this Q-class is used in the explicit construction to emphasize that there are four
inequivalent embeddings of the same geometrical Q8 action into spinor-space, see section 3.4.3.

3.4.1 Group Q8 and its representations

For the quaternion group Q8 with 8 elements (gap-ID [8, 4]) the generators b1 and b2 fulfill the
following defining conditions

Q8 =
〈
b1, b2

∣∣ b41 = 1, b22 = b21, b2 b1 b
−1
2 = b−1

1

〉
. (3.33)

It turns out that Q8 has five conjugacy classes given by:

[1] = {1} , [b1] = {b1, b31} , [b2] = {b2, b32} , [b3] = {b3, b33} , [b21] = {b21} , (3.34)

where we used b3 = b1b2 as convenient notation. Q8 has 5 irreducible representations which are
denoted by 1++ for the trivial one-dimensional representation, 1+−, 1−+, 1−− for the three non-
trivial one-dimensional representations, and a single faithful two-dimensional representation 2.
The characters for the conjugacy classes [b] lead to the character table T of Q8 given in table 3.3.
The matrix representations of the elements ba, a = 1, 2, 3 read

D1ab(b1) = a 1 , D1ab(b2) = b 1 , D1ab(b3) = a·b 1 and D2(ba) = − iσa , (3.35)

for a,b = ± and σa are the Pauli matrices. The representation R of Q8 can be decomposed in
terms of the irreducible representations

R =
⊕

a,b=±
(1ab⊕)n(ab) ⊕ (2⊕)n(2) . (3.36)
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T = χr([b]) [b] = [1] [b1] [b2] [b3] [b21]

r = 1++

1+−

1−+

1−−

2




1 1 1 1 1

1 1 −1 −1 1

1 −1 1 −1 1

1 −1 −1 1 1

2 0 0 0 −2




Table 3.3: Character table T of the quaternion group Q8.

From this general Ansatz of the decomposition we can compute the character of the represen-
tation R using table 3.3 and eq. (3.26) to obtain

χR = χR

(
[1] , [b1] , [b2] , [b3] , [b21]

)
(3.37)

=

(
n(1∗) + 2n(2) ,

∑

a,b=±
an(ab) ,

∑

a,b=±
bn(ab) ,

∑

a,b=±
a·bn(ab) , n(1∗) − 2n(2)

)
,

where n(1∗) = n(++) + n(+−) + n(−+) + n(−−) is the total number of one-dimensional represen-
tations in the decomposition of R. Rearranging the relations one can obtain the total number
of singlets n(1∗) and the number of doublet n(2) representations in terms of the characters χR

of [1] and [b21]. This yields

n(1∗) =
χR([1]) + χR([b21])

2
, n(2) =

χR([1])− χR([b21])

4
. (3.38)

On the other hand, the assignment of the various types of singlets is encoded in the character χR

evaluated on [b1], [b2] and [b3]. For the five irreducible representations of Q8, the rules of tensor
products read:

1ab ⊗ 1cd = 1a·c b·d , 1ab ⊗ 2 = 2 , 2⊗ 2 =
⊕

a,b=±
1ab , [2]2 = 1++ . (3.39)

These properties arise from the characters of table 3.3 and the tensor product rules of characters
eq. (3.21). In the second relation the zero entries for the conjugacy classes [ba] in the character
vector of 2 annihilate the characters of the specific singlet involved. Moreover, since χ2⊗2 =
(4, 0, 0, 0, 4), it follows from the generic equation for the number of doublets in R, eq. (3.38),
that n(2) = 0 for 2 ⊗ 2. Consequently, n(1∗) = 4 and hence, shows that this tensor product
decomposes into singlet representations. The characters show that only the combination of
all four irreducible singlet representations can realize the zeros in the character vector of 2.
Finally, the relation for [2]2 of eq. (3.39) can be confirmed by using the character formula for
anti-symmetrized representations eq. (3.22).

The explicit branching of the irreducible representation of Q8 for its cyclic subgroups is given
in table 3.4. In total there exist three maximal subgroups isomorphic to Z4 generated by b1,
b2, b3, as well as a Z2 generated by the elements b21 = b22 = b23 of the fourth non-trivial conjugacy
class.

3.4.2 Spinorial interpretation of 4 of Q8

The criteria on four-dimensional representations of a finite group H to ensure that a heterotic
orbifold can be obtained, which admits Killing spinors locally, can now be applied to the possible
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Subgroup 1++ 1+− 1−+ 1−− 2

ZN gen. ↓ ↓ ↓ ↓ ↓
Z4 b1 10 10 12 12 11 ⊕ 13

Z4 b2 10 12 10 12 11 ⊕ 13

Z4 b3 10 12 12 10 11 ⊕ 13

Z2 b21 10 10 10 10 11 ⊕ 11

Table 3.4: Branching of the irreducible representations of Q8 into the irreducible representa-
tions 1q of the three maximal subgroups that are isomorphic to Z4 as well as the Z2 generated
from the non-trivial conjugacy class of Q8, see eq. (3.27).

four-dimensional representation 4 of Q8. For this particular abstract group exist four Q-classes
with carat-indices 5750, 5751, 6100, and 6101. The generators of theQ-classes and some details
are listed in table 3.5. We begin by analyzing if the described toroidal orbifold is orientable.

For the Q-classes with carat-indices 6100 and 6101 there exist generators with det
(
θ̂2

)
= −1

and det
(
θ̂1

)
= −1, respectively. Remember that this condition relates to the property of

toroidal orbifold geometries not admitting spinors. Hence, only the Q-classes with carat-
indices 5750 and 5751 do. Next, the question of a faithful four-dimensional representation is
investigated. As the highest irreducible representation of Q8 is of dimension two, any four-
dimensional representation is reducible. As the only irreducible and faithful representation of
Q8 has to be in the decomposition, i.e. 2, faithful decompositions for 4 read

n(1∗) = 2 ; n(2) = 1 , n(1∗) = 0 ; n(2) = 2 . (3.40)

D4(Q8) ⊂ SU(4)

In order to interpret 4 as spinor representation, it is necessary that D4(b) ∈ SU(4) for all b ∈ Q8.
As discussed below eq. (3.29) this is the case if the character vector of [4]4 equals the trivial
one-dimensional representation. Using the anti-symmetrized character relations eq. (3.22), for
the realizations eq. (3.40), it turns out that χ[4]4([1]) = χ[4]4([b21]) = 1. From here, we proceed
with a case differentiation. Therefore, let us start with

4 = 2⊕ 2 . (3.41)

Here, we have χ2⊕2([ba]) = χ2([ba]) + χ2([ba]) = 0 for a = 1, 2, 3. Hence, it follows from the
anti-symmetric relations eq. (3.22), that also the other three conjugacy classes fulfill

χ[2⊕2]4([ba]) =
1

4!

(
3
(
χ2⊕2

(
b2a
))2 − 6χ2⊕2

(
b4a
))

= 1 , (3.42)

as χ2⊕2

(
b2a
)

= −4 and χ2⊕2

(
b4a
)

= χ2⊕2(1) = 4, see table 3.3. Thus, the determinant criterion,
i.e. χ[2⊕2]4 = χ1++ , is satisfied and eq. (3.41) results in a four-dimensional representation which
admits a spinor interpretation.

For the other faithful realization, 4 = 1ab ⊕ 1cd ⊕ 2, requiring that χ[1ab⊕1cd⊕2]4([ba]) = 1
for all a = 1, 2, 3 leads to three equations

χ1ab⊕1cd⊕2([ba])
4 + 8χ1ab⊕1cd⊕2([ba])

2 − 48 = 0 . (3.43)
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Q-class Lattice basis generators Det Decomposition of v

carat-ind. θ̂1 θ̂2 |θ̂1| |θ̂2| and its character

5750




−1 −1 −1 1 0 0

1 1 0 −1 0 0

1 1 0 0 0 0

0 1 −1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1







0 −1 1 0 0 0

0 0 −1 1 0 0

−1 0 −1 1 0 0

−1 −1 −1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




1 1
1++ ⊕ 1++ ⊕ 2⊕ 2

χv = (6, 2, 2, 2,−2)

5751




0 1 −1 0 0 0

0 0 1 −1 0 0

1 0 1 −1 0 0

1 1 1 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1







−1 −1 −1 1 0 0

1 1 0 −1 0 0

1 1 0 0 0 0

0 1 −1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




1 1
1−+ ⊕ 1−+ ⊕ 2⊕ 2

χv = (6,−2, 2− 2,−2)

6100




0 0 1 1 0 0

1 0 0 1 0 0

−1 1 1 1 0 0

0 −1 −1 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1







1 −1 −1 0 0 0

1 −1 −1 −1 0 0

1 0 0 1 0 0

−1 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 −1




1 −1
1++ ⊕ 1+− ⊕ 2⊕ 2

χv = (6, 2, 0, 0,−2)

6101




1 −1 −1 0 0 0

1 −1 −1 −1 0 0

1 0 0 1 0 0

−1 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 −1







0 0 1 1 0 0

1 0 0 1 0 0

−1 1 1 1 0 0

0 −1 −1 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1




−1 1
1+− ⊕ 1−− ⊕ 2⊕ 2

χv = (6, 0,−2, 0,−2)

Table 3.5: Table of the four Q-classes based on the finite group Q8. The first column gives
their carat-index. The second column provides the GL(6,Z) matrices of the two generators.
The third column gives the determinants. The last column states the characters χv and the
decomposition eq. (3.36) of the six-dimensional representations.

From table 3.3 we observe that the finite groupQ8 contains no complex characters in its character
table. Thus, the solution in R to these equations are given by χ1ab⊕1cd⊕2([ba]) = ±2 for
a = 1, 2, 3. Inserting this in eq. (3.37) and solving for the number of singlet representation
in χ1ab⊕1cd⊕2([ba]), we obtain that two identical singlet representations are necessary, i.e.

4 = 1ab ⊕ 1ab ⊕ 2 , (3.44)

for a,b = ±. Hence, there survive four different realizations.

Resulting six-dimensional representation defines a Q-class

In order to be a valid four-dimensional representation 4 of toroidal compactification, 4 has to
fulfill the property of constructing [4]2 = 6 a six-dimensional representation that corresponds to
a Q-class, representation v, in table 3.5. Hence, for each six-dimensional representation, we will
check the condition, if it is possible to find a four-dimensional representation of Q8, by using
the anti-symmetric character relation eq. (3.22). The first cross-check is the dimension of the
representation. This value is given by the character of 1 : χ[4]2([1]) = (42− 4)/2 = 6 = χ6([1]).
Next, we observe that χ6([b21]) = −2 for all Q8 Q-classes listed in table 3.5. Using eq. (3.37)
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3.4. Examples with Q8 point group

together with χ4([b41]) = χ4([1]) = 4 ,

χ6([b21]) = 1
2 χ4([b21])2 − 2

!
= − 2 , (3.45)

which implies χ4([b21]) = 0. Consequently, we have for the other three conjugacy classes [ba],
a = 1, 2, 3, of Q8:

χ6([ba]) = 1
2 χ4([ba])

2 , (3.46)

using b2a = b21. The right-hand-side is non-negative. Thus, for negative χ6([ba]), there exists no
related four-dimensional representation. From table 3.5, we observe that the vector represen-
tations defined by the Q-classes 5751 and 6101 have negative characters, which rules out the
connection to a four-dimensional representation of Q8.

Resulting spinorial embedding

Altogether, a four-dimensional representation 4 of Q8 admits a spinorial interpretation if either
4 = 2⊕ 2 or 4 = 1ab ⊕ 1ab ⊕ 2:

• For 4 = 2 ⊕ 2 we get χ2⊕2 = (4, 0, 0, 0,−4). This directly implies χ2⊕2([b21]) = −4 6= 0
and hence eq. (3.45) is violated and this can not be realized in any Q8 toroidal orbifold
geometry.

• For 4 = 1ab ⊕ 1ab ⊕ 2 we have χ1ab⊕1ab⊕2 = (4,a · 2,b 2,a · b · 2, 0). Thus, eq. (3.45) is
satisfied by χ1ab⊕1ab⊕2([b21]) = 0. Moreover, eq. (3.46) leads to χ6([ba]) = 2 for a = 1, 2, 3,
which correspond to the Q-class with carat-index 5750, see table 3.5.

Summarizing, the only combination that satisfies all conditions is the spinorial embedding
4 = 1ab ⊕ 1ab ⊕ 2 together with the Q-class 5750 as geometrical point group.

3.4.3 Double cover embeddings

The analysis above resulted in the Q8 Q-class with carat-index 5750, as the only class that
allows for four-dimensional spinorial representations, that are connected to toroidal orbifolds.
These 4’s are stated in eq. (3.44). There exists still the freedom to choose the non-trivial one-
dimensional representations by the signs of a,b = ±. Since all different choices correspond
to the same six-dimensional representation, this ambiguity can be understood as the different
double cover embeddings of SO(6) into Spin(6): Q8 has two generators, and thus, there are
22 = 4 possible embeddings. We will show this freedom in the spinor embedding explicitly by
applying the methods of section 3.2.

Explicit spinorial embeddings

We begin with the Q8 group generators as GL(6,Z) matrices θ̂1, θ̂2 in an unspecified lattice basis
e. To derive the vielbein e, we make use of eq. (3.15) to find an instance of the metric G and
then apply a CholeskyDecomposition. This results in,

G =




16 8 8 −8 0 0

8 16 0 −8 0 0

8 0 16 −8 0 0

−8 −8 −8 16 0 0

0 0 0 0 8 0

0 0 0 0 0 8




, e = 2




2 1 1 −1 0 0

0
√

3 − 1√
3
− 1√

3
0 0

0 0 2
√

2
3 −

√
2
3 0 0

0 0 0
√

2 0 0

0 0 0 0
√

2 0

0 0 0 0 0
√

2




. (3.47)
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Decomposition of Number of Killing spinors locally Globally

the spinorial repr. N 〈1〉 N 〈b1〉 N 〈b2〉 N 〈b3〉 N 〈b21〉 NQ8

4++ = 2⊕ 1++ ⊕ 1++ 4 2 2 2 2 2

4+− = 2⊕ 1+− ⊕ 1+− 4 2 0 0 2 0

4−+ = 2⊕ 1−+ ⊕ 1−+ 4 0 2 0 2 0

4−− = 2⊕ 1−− ⊕ 1−− 4 0 0 2 2 0

Table 3.6: Table of the the four spinorial representations 4 and their decompositions for the
Q-class 5750 associated with Q8. Given are the locally preserved Killing spinors for each Abelian
subgroup generated by the representatives of the five conjugacy classes [1], [b1], [b2], [b3], [b21] and
the globally preserved Killing spinors of Q8.

Then the SO(6)-representation matrices are obtained by the conjugation eq. (3.13),

θ1 =




0 − 1√
3
−
√

2
3 0 0 0

1√
3

0 0 −
√

2
3 0 0

√
2
3 0 0 1√

3
0 0

0
√

2
3 − 1√

3
0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, θ2 =




0 − 1√
3

1√
6

1√
2

0 0

1√
3

0 − 1√
2

1√
6

0 0

− 1√
6

1√
2

0 1√
3

0 0

− 1√
2
− 1√

6
− 1√

3
0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, (3.48)

in the Euclidean basis. From this representation, we use the logarithmic map to the so(6) Lie
algebra element for these generators. Here the basis can be used to compute the coefficients
of the Lie algebra decomposition eq. (A.2) for both generators. These coefficients, together
with the spin Lie algebra generators eq. (A.7) are used in the exponential map to observe the
eight-dimensional spinor representation Ds. At this point, it is convenient to use the positive
chirality projector introduced in eq. (A.4) to express the obtained spinor representation in the
Weyl-basis, as a four-dimensional matrix representation, namely

D4ab(θ1) = a




1 0 0 0

0 − i√
3

√
2
3 0

0 −
√

2
3

i√
3

0

0 0 0 1



, D4ab(θ2) = b




1 0 0 0

0 − i√
3

− i√
2
− 1√

6
0

0 − i√
2
+ 1√

6
i√
3

0

0 0 0 1



. (3.49)

The different double cover embeddings are parameterized by the prefactor a,b = ±. The factors
arise in the above procedure from the complex logarithm of the geometrical group that is not
unique but leaves the freedom to add integer numbers to the coefficients. Adding those integers
leaves the geometrical action invariant but results in a sign for the spinor representation. This
corresponds to the four inequivalent decompositions eq. (3.44) of 4 of Q8 that admit a spinorial
interpretation. Thus, the abstract representation theory and the explicit construction yield the
same result.

Number of local and global Killing spinors

To determine the number of Killing spinors, we can utilize either the explicit spinorial repre-
sentation matrices from eq. (3.49) or the decompositions in eq. (3.44) of the four-dimensional
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representation 4 of Q8 for the local, and global case. We use eq. (3.31) applied to any representa-
tive of each of the five conjugacy classes and eq. (3.32) for the whole Q8 point group. Table 3.6
summarizes the results for the four inequivalent choices in the double cover.

The last column of this table reveals that the choice ab = ++ returns N = 2 supersymmetry.
Contrary, the other three situations produce N = 0 in 4D, as these 4’s do not contain any trivial
singlet representation 1++ of Q8. For these cases, there always exist two conjugacy classes, which
do not allow any Killing spinors. This illustrates the impossibility to build a toroidal Q8 orbifold
without global Killing spinors, but where each group element by itself admits invariant spinors.

3.5 A finite group conjecture

At this point, we have already excluded the idea of local Killing spinors that do not lead to
a global Killing spinor for 6D toroidal orbifolds. However, condition 2. in eq. (3.29) is, in
fact, obsolete. In other words, the no-go result decouples from the idea to be related to a
crystallographic action associated with some 6D toroidal orbifold. Moreover, it appears that the
conditions build up a pure group theoretical no-go. More specifically, even if no relation to the
Q-classes is assumed, it is impossible to find the desired branching into trivial singlets for ZN
subgroups. This allows us to strengthen the no-go result and connect it to a group theoretical
conjecture:

Conjecture 1 There does not exist any finite group H that has a four-dimensional representa-
tion D4 with trivial determinant, i.e. det (D4(b)) = 1 for all b ∈ H, such that:

i. D4 does not contain the trivial singlet representation of H.

ii. The branching of D4 to all ZN ⊂ H subgroups always contains the trivial ZN -singlet
representation.

Note already at this point how exceptional the constellation of this conjecture is. Below, we
illustrate the importance of our assumptions for conjecture 1 and how sensitive it is to small
variations. However, the conjecture is not only based on the finite groups from the carat set.
Additional support comes from checks performed on the list of finite groups of order up to 500
from the SmallGroups Library of gap [19]. In total, this amounts toO(100 000) finite groups that
were verified to fulfill the conjecture. The orders of 1 594 finite groups from the carat Q-classes
range from order one for the trivial group to order 103 680 for Z2 × (O(5, 3)oZ2) with carat-
index 2804. Moreover, 443 groups of the set are of order 501 or higher, and extend the subset
of the SmallGroups Library. We went through the whole list of finite groups and constructed
for each group H the faithful four-dimensional representation 4, such that the decomposition
into irreducible representations of H does not contain the trivial singlet. Furthermore, the
determinant constraint D4(b) ∈ SU(4) for every element b ∈ H was checked by computing the
four-times anti-symmetrized character eq. (3.22) and demand to obtain the trivial singlet of H.
Then, the branching of 4 of H to every ZN subgroup was considered with respect to the number
of trivial ZN singlets. It turned out that for all cases there exists at least one ZN subgroup
of H for which 4 does not branch into a trivial singlet. This provides strong evidence for the
conjecture.

Exceptional constellation of the conjecture

The above inspections for a wide variety of finite groups increase the confidence for conjecture 1.
However, let us illustrate how extraordinary the constellation of this conjecture is. For this, we
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will show two examples where the defining conditions of conjecture 1 are relaxed, i.e. the dimen-
sion of the representation and the unit determinant are allowed to deviate from the situation in
string theory.

Five-dimensional representations

For the first example, we take the five-dimensional representation,

5 = 1+− ⊕ 1−+ ⊕ 1−− ⊕ 2 , (3.50)

of Q8 that does not contain a trivial singlet in its decomposition. Furthermore, using the explicit
matrix representation of the irreducible representations of Q8 from eq. (3.35), we can express
the generators of this representation as,

D5(b1) =




1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 0 −i

0 0 0 −i 0



, D5(b2) =




−1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 0 −1

0 0 0 1 0



, (3.51)

and check that the determinant det(D5(b)) = 1 for all b ∈ Q8. This five-dimensional repre-
sentation eq. (3.50) has no global Killing spinor, i.e. does not contain the trivial singlet 1++.
Contrary to the situation for four-dimensional representations, we find that all three non-trivial
singlets 1ab, ab 6= ++, in this representation, ensure the trivial singlet 10 in each branching
to Z4 subgroups, as table 3.4 shows. Hence, we have shown that this 5 of Q8 does fulfill three
conditions of conjecture 1. Consequently, the assumption of four-dimensional representations is
crucial to our conjecture 1.

Representation without unit determinant

Similar to the above case, it is possible to construct an example where the determinant condition
is violated, i.e. det(D4) 6= 1, but the remaining conditions from the conjecture are fulfilled. We
choose as suitable example the finite group T7. This group has five irreducible representations:
Namely, one three-dimensional representation 3 and its complex conjugate 3̄, as well as the
trivial singlet 10 and two non-trivial singlets 11,12, see [122]. Additionally, the ZN subgroups
of T7 are of order three and seven. The one-dimensional representation 1q (q = 1, 2) of T7

branches to 1q of Z3 and to 10 of Z7, respectively. Thus, to ensure the trivial singlet for the Z7

subgroup and obtain a faithful representation of T7 we choose a four-dimensional representation
4 that decomposes into,

4 = 3⊕ 11 . (3.52)

This representation is constructed such that it does not contain a trivial singlet. However, it
turns out that the faithful 3 provides the trivial singlet for the Z3 subgroup, i.e.

4 = 3 ⊕ 11 of T7 .

↓ ↓
10 ⊕ 11 ⊕ 12 ⊕ 11 of Z3

11 ⊕ 12 ⊕ 14 ⊕ 10 of Z7

(3.53)
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Therefore, by neglecting the condition on the determinant, it is possible to construct a repre-
sentation that has exactly the branching behavior we were looking for, i.e. a trivial singlet of
each ZN .

In combination with the Q8 example, this shows how unfortunate the situation for the
vanishing of the cosmological constant is connected to the representation theory of finite groups.

3.6 Chapter summary

In this chapter, we investigated the conditions for a vanishing cosmological constant at one-loop
level, for symmetric heterotic orbifolds that lead to non-supersymmetric 4D theories. For a
model-independent vanishing of the cosmological constant it turns out that the right-moving
fermionic partition function has to preserve in each (g, h)-sector a so-called local Killing spinor.
We proof the non-existence of these constructions as a local Killing spinor in each (g, h)-sector
inevitably leads to a preserved global Killing spinor, which results in a N = 1 4D theory. We
extend this non-existence result to a finite group theory conjecture and verify it for a wide
variety of finite groups. This gives strong indications that the no-go result extends beyond
symmetric toroidal orbifolds, e.g. to asymmetric orbifolds. Hence, the results seem to be in
conflict with the vanishing one-loop cosmological constant for the non-supersymmetric type II
string theory. For the type II string the left- and right-moving string is supersymmetric and
hence they can preserve supersymmetry in an alternating pattern. Such a construction is not
possible for the heterotic string. Finally, we developed a number of new techniques to study
non-Abelian orbifolds systematically. These might prove useful to investigate heterotic model
building on non-Abelian orbifolds more explicitly than in the past [118, 123].
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Chapter 4

Statistics of the heterotic orbifold
landscape

As we have seen in the previous section, supersymmetric compactifications of string theories
avoid several complications. However, even if we restrict ourselves to the 138 orbifold geometries
with Abelian point group (i.e. ZN1 or ZN1 × ZN2), that preserve the SU(3) holonomy and
hence can be chosen to lead to N = 1 supersymmetric 4D theories [57], a significant difficulty
arises, the so-called string landscape; a name chosen to describe the huge number of possible
compactifications. Early estimates on the lower bound of possible inequivalent constructions led
to ∼ 101500 [18, 124] possible 4D theories from strings. This huge but finite number seems at
first sight to be a weak spot of string theory. However, once a compactification configuration is
chosen, the resulting theory is completely fixed. Indeed, the complete particle content and all
couplings are set. In the following it will become clear that the counting of these models takes
into account the most basic consistency conditions, and includes all resulting 4D theories, even
those that are not in accordance with the phenomenology of the SM. The analytic construction
of realistic 4D models from the heterotic orbifold landscape is complicated and follows some
rules that are yet to be discovered. In this thesis, we will focus on the construction of MSSM-
like models (section 2.6) that are very appealing for beyond the SM physics. In the past many
efforts were made to identify 4D string models close to the MSSM, see e.g. [46–54, 75, 79, 125–
127]. These searches in the string landscape were based on random scans [126–128]. Over time
physical intuition led to guiding principles in the search for realistic models, like the pattern
of local GUTs [75, 79, 125]. Computer-aided techniques to improve the search are based on
genetic algorithms [129], network science [130] and in general techniques from machine learning
(see e.g. [131–142]).

4.1 Solving modular invariance consistency conditions

A particularly difficult problem in the context of heterotic orbifolds is to solve the Diophantine
equations of the modular invariance conditions eq. (2.46). To sample a set of 128-compactification
parameters for the gauge embedding matrix M eq. (2.26) at once, is doomed to fail. Testing the
set against the modular invariance conditions will certainly lead to a violation of the conditions.
The reason is the low probability of success, as we will show in this section. A more elaborated
procedure to create a model is to do this step by step and draw one 16-vector Mk after another,
always checking the relevant modular invariance conditions of the vectors drawn so far. This
procedure is illustrated in fig. 4.1. Recall that we can expand the 16-vectors either in terms of
the simple roots eq. (2.27), with coefficients ckI ∈ Z, or in the dual basis eq. (2.28), with coeffi-
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create V1 create V2 create W1 create W6

MI MI . . . MI

consistent gauge embedding M

no

yes

no

yes

no

yes

Figure 4.1: Flowchart of the construction of shift vectors and Wilson lines, starting with the
shift vector V1 at step n = 1 and ending with the Wilson line W6 at step n = 8. At each
step n = 1, . . . , 8, the vector Mn is chosen randomly (eq. (4.1)) and the corresponding modular
invariance (MI) conditions are tested.

cients dkI ∈ Z. Since the upcoming chapters will make use of the dkI -coefficients, we will focus
on them. However, for certain investigations in this section the simple roots basis coefficients ckI
are more convenient. To sample the dkI -coefficients a discrete uniform distribution, eq. (B.4),
based on the order Nk of Mk is chosen,

dkI ∼ U {−βNk, βNk} i.i.d. for I = 1, . . . , 16 , (4.1)

where for a given k the dkI are drawn independently from the same distribution and hence are
said to be independent and identically distributed (i.i.d.). The parameter β scales the search
space and is set to the standard value β = 4, if not stated differently.

Additionally, for non-Abelian symmetries between the matter on the fixed points, which
could be used for flavor symmetry, it is beneficial to turn off Wilson lines [143]. Moreover,
it turns out that a vanishing Wilson line has a positive effect on the probability of finding
MSSM-like models [79], hence an adjustment of the joint probability seems to be appropriate.
Therefore, we increase the chance for a zero vector by modifying the joint probability with an
additional chance for drawing a zero vector,

Pr(dkI = 0 ∀ I) = 2 · 10−5 . (4.2)

Sampling from this distribution ensures an even exploration of the compactification parameter
space Z128 of the landscape. However, when processed by the successive search fig. 4.1, the re-
sulting output probability distribution is a highly non-trivial joint probability distribution of the
coefficients dkI . Projecting the resulting distribution on the various coefficients (histograms) or
combinations of two coefficients yields random uniform (bivariate) distributions. Consequently,
the joint probability distribution that leads to modular invariant models is susceptible to the ex-
act high dimensional combination of the coefficient. Simple patterns, like a different distribution
for sampling the coefficients dkI , can not be inferred from the data at this stage.1

However, for further studies of the landscape, and the application of various techniques,
it is useful to estimate the probability Pr(M = MI) that a gauge embedding M fulfills the
modular invariance conditions (MI) from eq. (2.46). The probabilistic underlying principle for
the success of the successive search strategy, fig. 4.1, is given by the product rule eq. (B.2). One
can decompose Pr(M = MI) into,

Pr(M = MI) =

8∏

k=1

Pr
(
Mk = MI

∣∣∣ {Mi}k−1
i=1 = MI

)
, (4.3)

1For the projection, we use pairplot from seaborn [182].
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where {Mi}k−1
i=1 = {M1, . . . ,Mk−1} is the set of all gauge embedding 16-vectors Mi that were

previously drawn and fulfill the corresponding modular invariance conditions. Each of these
sub-probabilities is measured during model generation in the successive search. Therefore, the
number of trials to generate a 16-vector is counted until a 16-vector is drawn that fulfills the
related modular invariance conditions. This can be done at free cost as it is a side-product of
performing the actual successive search to find modular invariant gauge embedding matrices M .
This can be used to model each sub-probability with a binomial distribution, as is explained
in detail in appendix B.4. In order to compute the margin of error for Pr(M = MI), the sub-
probabilities with 95% confidence intervals for each step of the successive creation are estimated.
The details of this statistical method are provided in appendix B.5. On a dataset of 9 981 245
successively constructed modular invariant models, we find for the Z6-II (1,1) orbifold geometry
that,

Pr(M = MI) = 1.439 · 10−8 ± 3.395 · 10−10 (4.4)

with 95% confidence interval. This probability of a point in Z128 to be modular invariant,
emphasizes the substantial restriction of the landscape given by the modular invariance condi-
tions. However, this probability is more than just illustrative. For the application of explorative
algorithms, such as reinforcement learning, it is crucial to keep this sparseness of the landscape
in mind. As an example, the neighborhood of an MSSM-like model is examined in fig. 4.2. The
definition of a reward function for the direct study of the compactification space will result in
only very few positive responses, a so-called sparse reward signal problem [184]. The assumption
for this argument is that the compactification space is tested on an euclidean path.

4.2 Symmetries of the landscape

Subsequent to successfully creating a modular invariant gauge embedding M , one can compute
the spectrum of massless particles spectrum(M), using the orbifolder (see section 2.5). Unfor-
tunately, even though it is difficult to find such a solution, it is by no means guaranteed to find
physically inequivalent solutions. This relates to the fact, that there is only direct access to the
compactification parameters dkI of Z128, but not to the space of inequivalent physical spectra.

Due to the symmetries of the landscape, the current search strategy produces several equiv-
alent physical models, i.e., the function mapping from Z128 to the physical spectrum is not
injective, and the complexity of finding novel physical models is a growing function of explo-
ration time. An important issue that arises with this complication was studied in [144], where
the term “floating correlations” is introduced. It refers to the fact, that the statistics of the
landscape are non-trivially related to the inequivalent physical models. A technique to compute
reliable statistics of the inequivalent physical models, taking the floating of correlations into
account, is suggested in [144]. However, since this procedure itself requires a substantial amount
of data, it is not practical in the context of this thesis. However, we take the floating of cor-
relations serious, and statistics are estimated on the equivalent physical models. The statistics
of equivalent models is not affected by this complication and still, provides guidance towards a
refined search strategy.

The primary source behind the floating of correlations for inequivalent physical models are
symmetries on the compactification parameters [145], which relate different numerical gauge
embedding matrices M such that the same physics emerges. In the next subsections, the primary
sources of such symmetries are described.

2Constructing the local neighborhood of all equivalent MSSM-like models found by the search of fig. 6.3 did
not increase the total amount of inequivalent MSSM-like models stated in table 6.6.
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(a) Direct neighborhood of an MSSM-like model
in Z64, i.e. generated by ckI 7→ ckI±1. 22 MSSM-
like models which result in 4 inequivalent MSSM-
like models.2 68 models are with no generation.

(b) Lattice translation neighborhood of an MSSM-
like model, i.e. ckI 7→ ckI ±Nk. 4 467 MSSM-like
models, which result in 1 inequivalent MSSM-like
model.

Figure 4.2: Neighborhood of an MSSM-like model in the Z6-II (1,1) orbifold geometry. In red,
MSSM-like models. In blue, modular invariant models with no generation of quarks and leptons.
In black, points in Z64 that are not modular invariant. For Z6-II (1,1) the geometrical conditions
in table 2.2 show that 64 free parameters ckI can be chosen, hence Z128 reduces to effectively
Z64. From the MSSM-like model in the center each distinct radius represents the correspondent
three L1 distances (in fig. 4.2a in terms of the integers, in fig. 4.2b in terms of complete lattice
vectors) of the models on these 64 integers. This corresponds to 357 889 points in Z64 that were
created. The not modular invariant points are too dominant, and it is necessary to downsample
those. Concretely, in the second radius, a black point corresponds to ∼ 8 and in third (last)
radius to ∼ 34, not modular invariant parameter configurations. Note, the azimuth angle has no
information about the position of models. The points randomly distribute along this direction.
Created with Gephi [183].

4.2.1 Translations

In the basis of the root lattice of E8 × E8 with the coefficients ckI , eq. (2.27), it is possible to
see that the adding of an integer linear combination of lattice vectors

Mk 7→Mk + nkIαI with nkI ∈ Z (4.5)

leaves most of the equations invariant. However, there are two substantial exceptions. In general
the addition of lattice vectors does not fulfill the modular invariance conditions, see fig. 4.2b. Fur-
thermore, translations can lead to brother models [66], since the projection conditions eq. (2.57)
might get modified. While the second case does not apply to the orbifold geometry Z6-II (1, 1),
i.e. brother models are not possible, this possibility of different physical models has to be kept
in mind for the extension of any approach towards other orbifold geometries. Getting back to
the first exception, the violation of modular invariance conditions can lead to the exclusion of
several models. Particularly, if one restricts the search space such that no addition of lattice
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vectors is possible, such as searching in the fundamental domain of the torus T16,

ckI ∼ U { 0, Nk − 1} i.i.d. ∀ I (4.6)

this area does not guarantee to generate all physical models. There might exist a combination
of compactification parameters that violates modular invariance and hence is not allowed in the
fundamental torus domain. However, this model can get valid as soon as one adds special lattice
vectors that do not lead to brother models. Even more symmetries might relate these combina-
tions of points towards another combination of compactification parameters in the fundamental
torus domain. However, the physically attractive MSSM-like models show a particular taste of
finely balanced compactification parameters which makes them rare occasions in general. In a
practical approach, a successive search in terms of fig. 4.1 is performed sampling the coefficients
ckI from the torus domain, i.e. from eq. (4.6). This procedure shows a good behavior lowering
the number of inequivalent models and leads to an improvement in the number of MSSM-like
models which is related to the fact that sampling from eq. (4.6) enhances the probability of
drawing a zero 16-vector significantly.

Altogether, this approach leaves considerable uncertainty about the completeness of the total
number of physical models while still being appealing for taking care of a significant amount of
symmetry. Moreover, further study of the landscape results in a more sophisticated technique
(section 6.1.1) that divides out another symmetry of the landscape, namely the Weyl symmetry.
This technique outperforms the strategy of eq. (4.6).

Finally, let us stress that for constructed models, the points above have to be reconsidered.
In the case of Z6-II (1, 1) constructing a set of gauge embedding matrices M results in special
numerical values. For machine learning approaches, the symmetry of adding lattice vectors will
significantly increase the complexity when they do not have access to the resulting physics of
M . This is the case in the unsupervised learning approach in chapter 5, and hence we will find
a representation of M such that lattice translations do not change the numerical representation.

4.2.2 Geometrical redefinitions

The fixed point structure of orbifolds allows for certain redefinitions that correspond to per-
mutations of the local shift vectors Vh. This can be seen as a relabeling of the fixed points.
However, the resulting physics is entirely equivalent. These redefinitions correspond to adding
the fractional lattice vectors Mk that correspond to the Wilson lines, to the model M itself.

To make this concrete, let us investigate the fixed point structure of the first twisted sector
T(1) of Z6-II (1, 1) from fig. 2.2. Here, the three fixed points of the T2/Z3 from model M are
permuted in the orbifold M ′ that is shifted in the origin,

V1 7→ V1 +W3 . (4.7)

This new orbifold is physically equivalent. However, the local shift vectors Vh are permuted
in an anti-clockwise direction. For example, for h = (θ, 0) we have for the fixed point at the
origin V(θ,0) 7→ V(θ,0) + W3 = V(θ,e3). Hence, the same local shift vector acts in these two
gauge embedding matrices in different fixed points. This changes the position of the local
twisted matter but not the global spectrum of the orbifold compactification, neither the allowed
interactions. This can be repeated, and hence such a transformation can be seen as the generator
of a Z3 permutation symmetry of the Z6-II (1, 1) landscape. Together with the redefinition of
the Wilson line,

W3 7→ W3 +W3 , (4.8)
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which corresponds to a Z2, they generate the complete S3 permutation group of the three
fixed points. Finally, let us mention the special Z2 between the first and second E8 factor.
Interchanging the E8 factors results in the same physics as it only interchanges the sorting
of the gauge groups. All of these permutations lead to the same physics and together with
the permutations of the other T2 sectors, we will develop in section 5.1.1 a method to chose a
unique representative M of all equivalent gauge embeddings in the symmetry cycle of geometrical
redefinitions.

4.2.3 Weyl symmetry

Another source of symmetry is given by the Weyl group [146]. It is a symmetry of the root
system Φ of simple Lie algebras, in our case E8×E8. The Weyl group is generated by reflections
on the hyperplanes orthogonal to the simple roots αI and are accordingly named fundamental
Weyl reflections wI . Applied to the gauge embedding vector Mk, which can be expanded in
terms of the E8 × E8 simple roots, the transformation is defined as,

wI(Mk) = Mk − 2
(Mk · αI)
αI · αI

αI , (4.9)

for I = 1, . . . , 16. Then, with (αI)
2 = 2 one obtains

wI(Mk) · wI(M`) = Mk ·M` . (4.10)

Hence, Weyl reflections leave the modular invariance conditions eq. (2.46) invariant if each Mk is
simultaneously transformed by the same Weyl reflection wI . Note that this allows constructing
an element of the Weyl group such that the first and second E8 transform differently. Further-
more, one can show that these are symmetries of the full string theory

M ′ = wI(M) ⇒ model
(
M
)

= model
(
M ′
)
, (4.11)

where wI acts simultaneously on all shift vectors and Wilson lines encoded in M . Hence, the
gauge embedding matrices M and M ′ = wI(M) are equivalent for all Weyl reflections.

In more technical terms, the fundamental Weyl reflections wI of the Weyl group divide the
root space into different so-called Weyl chambers. These are open cones that can be transformed
into each other by applying a series of fundamental Weyl reflections wI . A special one among
these is the fundamental Weyl chamber, which is framed by the fundamental Weyl reflections.
A consequence of this is that a vector that lies in the fundamental Weyl chamber must have
positive Dynkin labels. Dynkin labels are defined as the coefficients of the expansion in the dual
basis eq. (2.28), and hence are given by dkI/Nk in our case. To extract the values of the Dynkin
labels, one can use the relation between the simple root basis and the dual basis α∗I · αJ = δIJ .
Hence, a 16-vector Mk lies in the fundamental Weyl chamber if

Mk · αI ≥ 0 ∀ I . (4.12)

Each fundamental Weyl reflection maps a vector of the current Weyl chamber into another
chamber if the vector does not lie on the boundary of these two chambers.

For the E8 × E8 root lattice the generated group has O(1017) elements. Consequently, the
Weyl group of E8×E8 yields an enormous redundancy between physically equivalent models in
the heterotic orbifold landscape. In the upcoming analysis, this redundancy is dealt with in two
different ways:
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• In section 5.1.1: The issue is tackled by constructing an approximate representation of the
gauge embedding M that is completely invariant under the symmetries of the landscape.

• In section 6.1.1: The search space is restricted to an extended definition of the fundamental
Weyl chamber towards the gauge embedding matrix M , i.e. it is in general not possible
to simultaneously map several 16-vectors Mk to the fundamental Weyl chamber. This
technique allows searching directly in a search space that holds only one representative M
of all Weyl reflected duplicates of M in the landscape.
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Chapter 5

Clustering of MSSM-like models

In this section, autoencoder neural networks (see appendix C.7.2 for details) are applied to the
string landscape in order to discover novel patterns. This is done in the Z6-II (1,1) orbifold
geometry. In the past, physical intuition led to the so-called Z6-II (1,1) Mini-Landscape [75,
79]. In this spirit, the aim is to discover new patterns that lead to fertile islands in the landscape.
Since the patterns observed by the neural network method are obtained by studying a dataset,
the concept is highly transferable to other orbifold geometries. This generalization property is
not given for the physical intuition approach, since the special property that in Z6-II (1,1) the
matter at the fixed points of the first twisted sector is not subject to further orbifold projections
is crucial (see section 2.4.3).

The basic working principle of autoencoder networks is to generate a non-linear map onto a
lower-dimensional space, so-called latent space. This dimensional reduction forces the network
to uncover correlations inside the dataset at hand, such that the projection into the lower
dimensional space does keep as much information as possible. The arrangements made in order
to keep the approach transferable to other orbifold geometries O is to start with a coarse sample
that is not computationally intensive. From this dataset, patterns are obtained, which are
orbifold specific. Hence to transfer the results to other orbifold geometries, an orbifold specific
new dataset is needed. In order to evaluate the extrapolation properties of the found patterns,
a large scan in the Z6-II (1,1) is performed and discussed.

5.1 Dataset of inequivalent models in the landscape

For the generation of data, we use the orbifolder. A sample of O(7 000 000) inequivalent mod-
els from the random sampling method depicted in fig. 4.1 is obtained. However, as discussed
in section 4.2, several symmetries of the landscape exist. Unfortunately, these symmetries gener-
ate numerically different representations in Z128 of the same physics. This leads to a challenging
task for the autoencoder.

To conjecture the effect of the symmetries, an autoencoder neural network is trained on the
Z128 representation of the compactification parameters. After the training, we encode multiple
Weyl reflected duplicates of a single model M into the latent space. The duplicates start to
populate the whole latent space. The encoding of the autoencoder is not informed about this
ambiguity and hence could not prepare for this case. This test verifies the assumption and shows
that separate treatment of the landscape symmetries is necessary to get a physically meaningful
lower-dimensional space.

However, since the number of possible duplicates is enormous, e.g., the Weyl group gives
rise to O(1017) duplicates for each model, it is not practical to inform the neural network about
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symmetries by including transformed gauge embeddings M into the dataset.
Indeed, the strategy is to transform the compactification parameters into a representation

that is invariant under the symmetries of the landscape. This representation is based on the
local GUTs, section 2.4.3, of the first twisted sector of Z6-II (1, 1). The details are explained in
the upcoming subsections.

5.1.1 Invariant feature representation of Z6-II (1,1) orbifold models

In this section, we will derive a 26 dimensional representation, i.e. Z26, that is invariant under the
symmetry transformations of the landscape, described in section 4.2. This new representation
will be connected to the local GUTs and is collected in a so-called feature vector F . This refers
to features in machine learning that are useful quantities extracted from the raw data. The full
Z128 gauge embedding M represents the raw data in our case (see appendix C). However, this
leads to the drawback of an non-injective mapping Dzf ,

Dzf : Z128 → Z26 (5.1)

M 7→ Dzf (M) = F ,

that takes care of the Weyl symmetry and lattice translations, i.e. M ′ 7→ Dzf (M) = F if M and
M ′ are related by Weyl symmetry of lattice translations. Furthermore, a second non-injective
mapping DP,

DP : Z26 → Z26 (5.2)

F 7→ DP(F ) = Finv. ,

is necessary to find a unique representative under geometrical redefinition. In detail, two equiv-
alent models under these symmetries will be mapped to the same feature vector Finv., while for
some cases, two distinct Z6-II (1,1) models are mapped to the same feature vector Finv..

Invariance under lattice translations and Weyl reflections

To begin with, we define quantities that are invariant under the choice of E8 × E8 basis vectors
and the addition of arbitrary E8 × E8 lattice vectors [145]. Hence, these quantities have to be
manifestly invariant under Weyl transformations and the addition of lattice vectors. A quantity
that is invariant under those transformations is the 4D gauge group G4D. Furthermore, for
Z6-II (1,1) orbifolds the 4D gauge group can be split into a 4D gauge group for each E8 factor

G4D = G
(1)
4D × G

(2)
4D. In order to have a numerical representation of this group we decide to

compute the number of unbroken roots p that build the root systems of the surviving gauge
groups that combine to G4D. This is related to eq. (2.50) and we can compute the number of
unbroken roots of G4D as,

N (α)
ur (M) =

∑

p∈ΦE8

(
n=8∏

k= 1

δ
(
p ·M (α)

k

))
, δ(x) =

{
1 if x ∈ Z
0 else

(5.3)

for α = 1, 2 corresponding to both E8 factors and ΦE8 is defined as the root system of E8 with
240 roots p. Furthermore, the subindex “ur” in eq. (5.3) denotes unbroken roots.

As this mapping alone would destroy too much information about the inner structure of the
orbifold we extend this concept towards the local GUTs. G4D is given by the intersection of the
local GUTs at the fixed points of the T(1) twisted sector of the Z6-II (1,1) orbifold [70]. Thus,
we additionally consider these 12 local GUTs.
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Therefore, we start with the local shift vectors Vh of these fixed points. From section 2.2.2
we recall the geometrical constraints for Z6-II (1,1) that are summarized in table 2.2. Due to
these constraints, we have four independent 16-vectors in the Z6-II (1,1) orbifold, namely the
shift V and the Wilson lines W3, W5 and W6, which build the local shift vectors. In detail, for

each constructing element ga = (θ, n
(a)
β eβ) the corresponding local shift vector is given by,

Vga = V + (n
(a)
3 + n

(a)
4 )W3 + n

(a)
5 W5 + n

(a)
6 W6 . (5.4)

This 16-vector is again split into two 8-vectors Vga = (V
(1)
ga , V

(2)
ga ) corresponding to the first and

second E8 factor. For each of the 24 local GUTs G
(α)
a with a = 1, . . . , 12 and α = 1, 2, we count

the number of unbroken roots p,

Ng
(α)
a

ur (M) =
∑

p∈ΦE8

δ
(
p · V (α)

ga

)
, (5.5)

in analogy to eq. (5.3). As the centralizer of the T(1) sector is trivial, see section 2.4.3, the

number of unbroken roots can be computed only by the local shift vector V
(α)
ga . Finally, we

obtain a 26-dimensional feature vector of integers F that is invariant under the addition of
E8 × E8 lattice vectors and Weyl reflections,

F =







(0, 0, 0, 0)(1)

(0, 0, 1, 0)(1)

(0, 0, 0, 1)(1)

(0, 0, 1, 1)(1)







(0, 0, 0, 0)(2)

(0, 0, 1, 0)(2)

(0, 0, 0, 1)(2)

(0, 0, 1, 1)(2)







(1, 0, 0, 0)(1)

(1, 0, 1, 0)(1)

(1, 0, 0, 1)(1)

(1, 0, 1, 1)(1)







(1, 0, 0, 0)(2)

(1, 0, 1, 0)(2)

(1, 0, 0, 1)(2)

(1, 0, 1, 1)(2)







(1, 1, 0, 0)(1)

(1, 1, 1, 0)(1)

(1, 1, 0, 1)(1)

(1, 1, 1, 1)(1)







(1, 1, 0, 0)(2)

(1, 1, 1, 0)(2)

(1, 1, 0, 1)(2)

(1, 1, 1, 1)(2)




N
(1)
ur (M) N

(2)
ur (M)




. (5.6)

For clarity the 12 fixed points are represented by the parameters of the constructing element.

As an example Ng
(α)
a

ur (M) with g
(α)
a = (θ, n

(a)
β eβ)(α) is represented by (n

(a)
3 , n

(a)
4 , n

(a)
5 , n

(a)
6 )(α), i.e.

g
(1)
1 = (θ, 0) corresponds to (0, 0, 0, 0)(1). The specific block structure encodes the number of

fixed points in the second (T2/Z3 with three fixed points) and third (T2/Z2 with four fixed
points) complex plane and is of relevance in the next subsection.

This first part of the mapping, i.e. Dzf eq. (5.1), to the 26-dimensional feature vectors F
is not injective. From all Z6-II (1,1) models under consideration, i.e. O(7 000 000) inequivalent
models on the level of the spectrum, the transformation of models reduces this number by
0.5% for inequivalent vectors F . However, there is still some ambiguity due to geometrical
redefinition in this representation. Hence, the second mapping DP is intended to sort F to a
unique representation.
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Fixed point permutations

As described in section 4.2, geometrical redefinitions permute the local shift vectors Vh of the
fixed points. However, these transformations lead to equivalent orbifold models in terms of the
particle spectrum and the full theory. Hence, we have to take care of those ambiguities as well.
In the case of the first twisted sector T(1) of the Z6-II (1,1) orbifold there exists the following
three symmetries:

• Z2 between the first and second E8 factor.

• S3 permutation symmetry of the three fixed points in the T2/Z3 plane.

• D8 permutation symmetry of the four fixed points in the T2/Z2 plane.

For the purpose of an efficient computational implementation, one can formulate the symmetry
actions in a computational vectorized matrix multiplication scheme. Then the Z2 action that
interchanges the E8 factors, is given by,

F 7→ F

(
0 1
1 0

)
, (5.7)

where the multiplication from the right hand side enables the permutation of the columns
of F . The S3 fixed point interchange on the T2/Z3 plane is generated by V1 7→ V1 + W3 and
W3 7→W3 +W3. The corresponding Z3 permutation and Z2 reflection act on F as,

F 7→




14

14

14

1


F and F 7→




14

14

14

1


F , (5.8)

respectively. Finally the transformations V1 7→ V1 + W5, V1 7→ V1 + W6 and the interchange
W5 ↔ W6 give rise to three Z2 generators in the T2/Z3 plane that combine to the action of a
D8 permutation symmetry. In terms of the feature vector F this reads as,

F 7→




Rx
Rx

Rx
1


F , (5.9)

with Rx, x = 1, 2, 3, given by the permutations of the four local shift vectors:

R1 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , R2 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 and R3 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (5.10)

To conclude, for the symmetries described above each instance F is subject to a non-Abelian
permutation group Z2 × S3 ×D8 of order 2 × 6 × 8 = 96. The above considerations were used
in the following implementation of a sorting algorithm for F :

1. Order the values corresponding to the fixed points, i.e. Fij with i = 0, . . . , 12 and j = 0, 1,
for each j independently in ascending order to obtain FA.
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5.1. Dataset of inequivalent models in the landscape

2. Compare element-wise FAi1 and FAi2 from i = 0 to 12. For the smallest value of i where
FAi1 6= FAi2 keep the present ordering if FA1j < FA2j . Otherwise act with the non-trivial Z2 on
F and interchange the E8 factors, e.g. like in eq. (5.7). This method is a computationally
efficient approximation of dividing out the Z2 of the E8 factors. Note that there exist some
rare corner cases, i.e. Ncases = 9 326 out of the O(7 000 000), where both ascended sorted
E8 vectors are equal. There remains the possibility that those cases have a definite order
in their E8 factors, if the constrained positioning of the F entries, i.e. S3 ×D8 symmetry,
is considered in detail. However, for computational reasons we will exploit this speed up
and accept these rare occasions that will be part of our dataset in both configurations.

3. Multiply out all 48 copies with S3 ×D8 acting on F . Than all transformed versions of F
are compared and only the one F ′ that is smaller then all other transformed images F

′′
of

F , i.e. F ′ < F ′′ is kept. F ′ and F ′′ indicate two different transformation of F by nontrivial
elements of S3 × D8. We define the metric for F ′ < F ′′ according to F ′i1 < F ′′i1 for the
smallest value of i. In case F ′i1 = F ′′i1 a tiebreak is taken into account, i.e. the second E8

factor is considered F ′i2 < F ′′i2. If neither of these two decision conditions is positive, i.e.
the values are equal, the next value of i is considered until the smaller F of this comparison
of two images is found. This is done for the set of all 48 copies of F .

4. For the special cases where Fi1 = Fi2 for i = 0, . . . , 12 we act again with Z2 of E8 such
that the smaller 4D gauge group F13 j is assigned to F13 1. Otherwise, the E8 ordering of
step 2 is kept.

This results in the feature vector Finv. which is a special choice to reduce the symmetries
acting on the objects described above. The combined action of Dzf and DP on the O(7 000 000)
models yield 84% distinct feature vectors Finv. .

5.1.2 Encoding of integer valued data

The transformations eq. (5.1) and eq. (5.2) consider the symmetries and the feature vectors
Finv. ∈ Z26 are ready for use in the machine learning approach. However, it turns out that the
autoencoder does not perform well on this representation. This issue may arise from the fact
that the target set of values from the number of unbroken roots eq. (5.5) and eq. (5.3) is integer
valued. This complication for the machine learning approach refers to integer programming or
constrained optimization.

In constrained optimizations, the optimization procedure to find a solution is even more
difficult. An auxiliary condition, here, the restriction of the solution to integers, has to be
fulfilled too. A common way to improve the performance on such problems is given by a
particular encoding procedure, so-called one-hot encoding OHEnc (see eq. (C.2)). This technique
is commonly used in classification tasks to encode abstract types of classes numerically. Even
though in the case of the Z26 representation, the different values are already numerical, one-hot
encoding is a common strategy to express integer data (e.g., used in PixelCNN [185]). It turns
out that this also increases the performance of the autoencoder in this unsupervised machine
learning task.

To summarize, the 26 features are each separately one-hot encoded. Each entry of the feature
vector Finv. transforms into a 37-dimensional vector, where the 37 entries refer to the 37 unique
values that can appear in the whole dataset D regardless of their position in Finv.. This strategy
is chosen to keep the best generalization of this approach towards new data. In a traditional
one-hot encoding approach, each feature is encoded separately into an n-dimensional vector
where n is dependent on the number of categoricals that appear for a certain feature. As we
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Chapter 5. Clustering of MSSM-like models

encode each feature with the maximal number of inequivalent integers that appeared, we have a

better generalization towards new models with different local GUTs, i.e. new values for Ng
(α)
a

ur .
This is necessary as the one-hot encoding, and the autoencoder can not dynamically adjust to
new input values and dimensions, after training. This will get handy when we map models from
other machine learning approaches (see chapter 8) into the same latent space, i.e. the latent
space we train with the autoencoder in the next section. Hence, the input for the autoencoder
is a 26× 37 = 962 dimensional vector F OHEnc

inv. .

5.2 Dimensional reduction via autoencoder

After the preparation in the previous section the data is ready to be used in a deep autoencoder
neural network [186]. The data |D| ∼ O(7 000 000) is first split into |DAE| ∼ O(700 000) and
|Dtest| ∼ O(6 300 000). Thus, DAE represents the coarse sample that contains only 10% of the
whole dataset. Then the data for the autoencoder construction |DAE| is split into |Dtrain| ∼
O(400 000) and |Dval| ∼ O(300 000). The machine learning background of this data splitting is
discussed in appendix C.

For a short introduction in the generic properties of neural networks see appendix C.7 and
in particular for details on autoencoders appendix C.7.2. For the ongoing discussion, these
basics are less important, and only some details on the concrete autoencoder model and training
are part of the main text. The purely physics interested reader can take the viewpoint of an
autoencoder as an algorithm to derive a deterministic highly non-linear projection from the 26-
dimensional data space into a lower-dimensional space. In this particular application the lower
dimensional latent space, is fixed to 2-dimensions. This constraint arises from the requirement
to get an interpretable and visualizable, lower-dimensional representation of the data. Higher
values of this latent space would demand the use of further machine learning techniques in order
to handle the new lower-dimensional space. This additional part of abstraction through machine
learning should be avoided. Also, our experiments showed that a higher dimension of the latent
space does not significantly increase the information stored in the latent dimension.

The autoencoder is implemented using the TensorFlow [187] package. In order to obtain a
maximally informative 2-dimensional representation, the architecture (layer size and number of
hidden layers) is varied. The manual selection of the best architecture results in fully connected
layers with seven hidden layers. The activation function of the hidden layers is the SELU acti-
vation function [188] that automatically accounts for batch normalization and hence makes the
training process faster. For the latent layer, as well as the output layer, the identity activation
function (id) is chosen. In summary, we have two mappings,

AEencoder : F(962) → SELU(F(100))→ SELU(F(26))→ SELU(F(13))→ id(F(2)) (5.11)

AEdecoder : F(2) → SELU(F ′(13))→ SELU(F ′(26))→ SELU(F ′(100))→ id(F ′(962)) (5.12)

where ‘→’ is a linear mapping and SELU (id) act element-wise. The subindex of F gives the
dimension of the space. Note that AEencoder and AEdecoder are independent functions with inde-
pendent parameters, i.e. F(x) and F ′(x) for x ∈ {13, 26, 100, 962} have the same dimension but
can describe different representations. The objective function for training is given by the L2

loss,

L2 =
1

|B|
∑

Finv.∈ B

||F OHEnc
inv. − AEdecoder

(
AEencoder

(
F OHEnc

inv.

))
||2 , (5.13)
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where || · ||2 is the euclidean norm and B is a so-called batch, i.e. a partition of the whole
dataset. Then, the autoencoder is trained iteratively on all batches B of Dtrain to minimize
the L2 loss, until the loss value converges on the computational time scales. This convergence
was also visually controlled by plotting the latent space, like in fig. 5.1, during training. Here,
the emergence of clusters can be traced, and the freezing of those movements was obtained.1

Also, through several re-trainings with different weight initializations, it was verified that the
process is stable and gives very similar clustering maps. The reproducibility of very similar
latent space structures refers to the fact that our model has a small variance but a significant
bias and supports the interpretation of the 2-dimensional bottleneck as a strong regularization.
During training, the autoencoder was applied to the Dval set to keep track of overfitting of
the training data Dtrain. However, the number of correctly reproduced features of the 26-
dimensional representation did not decrease at any time of the training for Dval. The lack of
capacity to overfit is most likely related to the strong regularization of the autoencoder, i.e.
the small latent space dimension. An exact reproduction of any model, even for training data,
seems to be impossible with such a strong constraint for the neural network. The final decoder
can reproduce on average 16.3 out of 26 features Finv., which corresponds to L2 = 0.013 on
Dval . While this reproduction rate is astonishing, it is still far from a perfect reproduction and
underlines the strong regularization of the latent space dimensions.

5.2.1 A chart of Z6-II (1,1) models and cluster selection

For visual analysis of the projection, all O(700 000) models of the Dtrain and Dval set are
transformed by the encoder mapping, AEencoder, to obtain their two-dimensional representation
from the latent layer. The results are illustrated in fig. 5.1. The projection of the landscape
turns out to cluster in various isolated islands. The 18 MSSM-like models in DAE are emphasized
by red triangles in fig. 5.1. Interestingly, the MSSM-like models accumulate in the lower region
and do not separate over the entire chart. Note that the training was unsupervised. Still,
the MSSM-like Z6-II (1,1) models indicate that physically similar models cluster. Hence, it
seems that the autoencoder was able to identify common properties among the models in the
26-dimensional representation that correlate with physical properties.

Consequently, the next step is to select those islands in fig. 5.1 that contain at least one
MSSM-like model. This selection is made by inspection by eye instead of applying any clustering
algorithm. The qualitative criteria of the selection are to collect only models in a cluster that
are close by and to keep the clusters as small as possible, in order to reduce the landscape
significantly. The constraint to project into a 2-dimensional space allows for this simplification.
The different shapes and distances between the clusters would imply a machine learning problem
by itself. In total, this selection results in eleven fertile islands. In the following, the models
cluster affiliation is used as a classification label, to find a refined search strategy for MSSM-like
Z6-II (1,1) models.

5.2.2 Knowledge extraction using a decision tree

The projection towards the latent space AEencoder can be used as a filter for orbifold construc-
tions, to predict, if they can lead to MSSM-like models or not. The primary goal of this section is
to extract knowledge from the clustering. Therefore, we fit a decision tree to the 26-dimensional,
i.e. not one-hot encoded, representation Finv. with the corresponding cluster labels Ri as the

1The video is available at http://users.ph.tum.de/ga74vir/AutoencoderTrainingVid.html or by contacting
the author.
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Chapter 5. Clustering of MSSM-like models

Figure 5.1: Projection of the symmetry invariant representation F OHEnc
inv. to the autoencoder

latent space. The O(700 000) points correspond to Z6-II (1,1) models. The special MSSM-like
models are highlighted as red triangles. It appears that the MSSM-like models populate eleven
isolated islands. We color these islands in green and label them by Ri for i = 1, . . . , 11. The
Z6-II (1,1) models outside these islands are colored in blue and defined to reside in the region
R0. Figure adapted from [23].

target values. In this context, the unsupervised clustering can be seen as a method to gener-
ate meaningful labels, i.e. less restrictive than the binary label MSSM-like or not MSSM-like
(����MSSM-like). It is possible to find rules based on these softened labels.

Therefore, the classical decision tree algorithm is chosen due to the high interpretability of
this technique. For details on the working principle and further explanations on decision trees
see appendix C.6. The trained decision tree DTCluster

DTCluster : Z26 → {Ri}11
i=0 , (5.14)

can predict the region Ri a given Z6-II (1,1) model belongs to. The tree only uses individually
simple and interpretable threshold conditions on the 26 features, i.e. (Finv.)ij < t with t ∈ Z.
For the decision tree, the software scikit-learn [189] is used. As before the O(700 000) random
models are split into train and validation set. This time 33% of the models are assigned to
the validation set Dval. Additionally, the individual data points are weighted such that the
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DT depth # nodes f1-macro

A 6 119 0.503

B 10 599 0.693

C 15 1257 0.887

D 25 1787 0.993

E 50 1887 0.995

Table 5.1: Table of trained decision trees ( DT) with regularized depth of training. Note it
was beneficial for the classification task to give individual labels to the fertile patches, i.e. for
a binary classification ’fertile vs. R0’ the decision tree performed slightly worse for the same
hyperparameter. For the definition of the f1-macro performance measure see appendix C.5.

classification task is balanced according to the label of the regions Ri. Thus, the clear numerical
superiority of the blue region R0 does not bias the decision tree. Several hyperparameters, i.e.
constraints on the complexity of the decision tree, were tried, and the resulting performance can
be found in table 5.1. Unfortunately, it turned out that in order to get a very good prediction
of the corresponding region Ri the tree needs a lot of splits. This resulted in a decision tree
with 1 887 nodes. The performance on Dval estimates how well the rules found by the tree
generalize to the whole Z6-II (1,1) landscape. Details of the misclassifications can be extracted
from the so-called confusion matrix given in table 5.2 (see appendix C.5 for details on this
concept to analyze classification tasks). A scalar value to estimate the performance is provided
by f1-macro=0.995, which is close to one and indicates a very good classification performance.
Unfortunately, the simple decisions in such a huge tree are branched in a complex way and it is
not possible to extract easy rules. However, one advantage of the very good performance is that
DTCluster acts directly on the 26-dimensional representation. This avoids the one-hot encoding
and gives a very fast prediction.

5.3 Evaluation of the landscape projection

So far the machine learning workflow and the performance of the algorithm on the validation set
Dval were analyzed. Now the lab environment is left and the generalization to the whole Z6-II
(1,1) landscape is the goal of this section. Especially the behavior of the MSSM-like models
from the whole Z6-II (1,1) landscape is of interest. In detail, on a qualitative level, we ask if the
MSSM-like models cluster on the fertile islands. On a quantitative level, it is interesting how
many MSSM-like models within the whole Z6-II (1,1) landscape are projected onto the eleven
fertile islands. This result implies the number of models that are neglected if the search restricts
to fertile islands. For this evaluation, we analyze two kinds of test sets. First, the evaluation set
Dtest containing O(6 300 000) Z6-II (1,1) models. Hence, it provides a much larger and refined
brute force search of the landscape. These models are not only physically inequivalent towards
each other but also physically inequivalent to the models used for training. Secondly, the dataset
Dtest

MiniL of O(30 000) Z6-II (1,1) models from the four patches of the Mini-Landscapes [75, 79].

The evaluation set Dtest contains 177 MSSM-like models in contrast to the 18 MSSM-
like models that where used to classify the fertile islands and label the Z6-II (1,1) models
accordingly. The mapping of these models into the 2-dimensional projection is plotted in fig. 5.2.
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predicted region
R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

R0 198 994 10 39 10 24 1 7 17 3 16 4 13

tr
u

e
re

gi
on

R1 11 3 107 1 2 0 0 0 0 0 0 0 0
R2 19 3 9 667 2 1 0 0 0 0 0 0 0
R3 24 2 1 5 256 3 0 0 0 0 0 0 0
R4 31 2 4 1 6 430 0 0 0 0 0 0 0
R5 0 0 0 0 0 3 138 0 0 0 0 0 0
R6 3 0 0 0 0 0 994 0 0 0 0 0
R7 15 0 0 0 0 0 0 848 0 0 0 0
R8 0 0 0 0 0 0 0 0 1 139 0 0 0
R9 10 0 0 0 0 0 0 0 0 1 491 0 0
R10 2 0 0 0 0 0 0 0 0 0 3 333 0
R11 10 0 0 0 0 0 0 0 0 0 0 984

Table 5.2: The confusion matrix C (appendix C.5) of our decision tree DTCluster eq. (5.14)
evaluated for the validation set Dval. The entries give the number of Z6-II (1,1) models that are
predicted by DTCluster to lie in the ‘predicted region’ but actually belong to the ‘true region’. For
example, there are 11 cases where DTCluster predicted a model to be in region R0, while the true
region was R1.

region
coarse evaluation

total
sample DAE set Dtest

R0 0 65 65

fe
rt

il
e

is
la

n
d

s

R1 4 44 48
R2 4 17 21
R3 1 10 11
R4 2 16 18
R5 1 5 6
R6 1 2 3
R7 1 1 2
R8 1 1 2
R9 1 0 1
R10 1 11 12
R11 1 5 6

total 18 177 195

Table 5.3: Classification of MSSM-like Z6-II (1,1) models from either the coarse sample DAE

or from the evaluation set Dtest as predicted by the decision tree DTCluster eq. (5.14).

Astonishingly, the majority of MSSM-like models are joining the known MSSM-like models
inside the fertile islands. For a more quantitative statement the decision tree is applied to all
177 + 18 = 195 MSSM-like models to obtain the cluster predictions given in table 5.3. The
complementary group of MSSM-like models in the evaluation set, that are classified by the
decision tree to region R0, i.e. the blue region in the projection labeled as ����MSSM-like , would be
missed if the search focuses only on the defined fertile islands. However, overall the decision tree
DTCluster maps 130 of all 195 MSSM-like models to the fertile islands. Therefore, the predictive
model based on a small set of only 18 MSSM-like models, can extrapolate, to reach 2/3 of the
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5.3. Evaluation of the landscape projection

Figure 5.2: Projection of all 195 MSSM-like models (red triangles) from the evaluation set
Dtest and the coarse sample DAE to the latent space. We color in green the eleven fertile islands
Ri, and in blue the whole Z6-II (1,1) landscape. It turns out, that the fertile islands generalize
to the whole set of MSSM-like models. Figure adapted from [23].

MSSM-like models. Mainly the fertile island R1 contains in total 48 MSSM-like models, i.e. 25%
of all MSSM-like models, yet this island contains only 1.3% of the whole Z6-II (1,1) landscape.
Thus, the fertile islands provide a search strategy with a 20 times increased chance to find
MSSM-like models.

Another critical question is how this data-driven approach connects to the Mini-Landscape
found in [75, 79]. In fig. 5.3, one can observe that the MSSM-like Z6-II (1,1) models from
all four different Mini-Landscapes do not distribute over the whole chart. Instead, they are
concentrated on the machine learning fertile islands. Let us also analyze the performance of our
decision tree DTCluster on the MSSM-like Z6-II (1,1) models of the Mini-Landscape. Table 5.4
shows that nearly 2/3 of the MSSM-like Z6-II (1,1) models from the Mini-Landscape accumulate
in the fertile islands. Intriguingly, the classification indicates a close connection between the two
SO(10) patches of the Mini-Landscape and the R1, R2, and R3 islands. In particular, models
with shift vector V SO(10),1 are most likely located on the island R2, while the islands R1 and R3

hold most of the models with shift vector V SO(10),2.
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Figure 5.3: Projection of the Mini-Landscape MSSM-like models (red triangles) to the latent
space. We color in green the eleven fertile islands Ri, and in blue the whole Z6-II (1,1) landscape.
Similar to fig. 5.2, the MSSM-like models from the Mini-Landscape accumulate in the fertile
islands. In particular, the islands R1, R2 and R3 contain many MSSM-like models from the
Mini-Landscape. Figure adapted from [23].

5.4 Chapter summary

In this chapter, we showed how patterns in the heterotic orbifold landscape are obtained from
a general data level. The method is transferable to other orbifold geometries O and would lead
to geometry specific fertile islands. This geometry dependence also holds for the transforma-
tions eqs. (5.1) and (5.2) towards the symmetry invariant fixed point local GUTs representation
Finv.. The representation then differs in the number of fixed points and the types of landscape
symmetries. Note, there exist geometries that allow for brother models. These models differ in
their particle spectrum but relate to each other by a lattice transformation. Thus, the mapping
towards the local GUTs can not distinguish between brother models as these quantities are
invariant under the addition of lattice vectors. The information loss, i.e. the non-injective prop-
erty of the mapping, would increase for this kind of geometries. Finally, this part of the method
is not data-driven and hence requires to be engineered by hand for most of the geometries.

Furthermore, one should be aware that a significant part of the clustering arises from the
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region V SO(10),1 V SO(10),2 V E6,1 V E6,2

R0 50 37 2 1

fe
rt

il
e

is
la

n
d

s

R1 12 16 0 0
R2 60 1 0 0
R3 2 24 2 0
R4 3 8 4 0
R5 10 0 0 0
R6 0 8 0 4
R7 0 0 0 0
R8 0 1 0 1
R9 0 0 0 0
R10 0 0 0 0
R11 0 0 0 0

% found 64% 61% 75% 83%

Table 5.4: Classification of Mini-Landscape MSSM-like Z6-II (1,1) models as predicted by
the decision tree DTCluster eq. (5.14). They are grouped according to the patches of the Mini-
Landscape, i.e. in terms of the local GUT shift vectors V SO(10),1, V SO(10),2, V E6,1 and V E6,2,
see [75].

particular 26-dimensional representation Finv.. For the autoencoder eqs. (5.11) and (5.12), a pro-
jection into the 2-dimensional plane must carry information about the 26-dimensional numerical
structure in order to reconstruct as many features as possible. Hence, since the MSSM-like
models cluster, they should have a similar numerical structure in the 26-dimensional represen-
tation. Therefore, investigating the 26-dimensional representation with competitive projection
algorithms, e.g. t-SNE [190], or direct exploration in the 26-dimensional space, can lead to
different insights about the MSSM-like fixed point structure.

Connected to this, let us comment on the possibility of drawing parameters from the 2-
dimensional plane and reconstructing the corresponding gauge embedding matrices M . While
this procedure is very appealing, there are two main obstacles. First, the autoencoder has to
be improved significantly, i.e. the reproduction rate has to be increased to decode the latent
space into accurate representations of the 26-dimensional space. Secondly, the mapping from
the 26-dimensional representation to the matrices M is not unique. Recall that the mapping
is not injective. Thus, to find a corresponding matrix M is computationally costly as multiple
realizations can correspond to the same Finv. representation.

Finally, we want to point out that it can be beneficial for the clustering of the MSSM-like
models, to introduce a latent loss [191, 192]. This concept informs the neural network about
the physical model behind the feature vector. Thus, the autoencoder could focus on clustering
physically and numerically similar models. Caution is necessary for the definition of the latent
loss metric. This measure should be generic in the distinction between particle spectra. A trivial
latent loss, e.g. a metric based on the number of generations, will quickly be circumvented by the
neural network, which directly memorizes the small set of MSSM-like models that are contained
in the training set.
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Chapter 6

The phenomenologically viable part
of the landscape

Analyzing the decision tree DTCluster of chapter 5 reveals that the learned conditions are very
advanced and tightly coupled. Further investigations, based on the spectrum of the data, lead
to the insight that many models do not fulfill basic phenomenological properties. Concretely,
they do not have a 4D gauge group G4D, that can host the SM gauge group.

Those necessary phenomenological constraints can be implemented in the successive search
fig. 4.1. Demanding the analytic constraints will reduce the variety of data and may have a
data cleaning effect, such that the autoencoder clustering yields a down-scaled decision tree.
However, before reconsidering this approach, the concept of the analytic constraint is extended
towards a statistical analysis. The dataset is examined concerning so-called contrast patterns.
Those patterns are based on statistical considerations and are used to distinguish data points
from different classes. In this section, the two classes are the set of MSSM-like models and the
complementary set of ����MSSM-like models. It will turn out that several of those contrast patterns
exist and that the successive search can be massively improved taking them into account during
model construction.

6.1 Reduction of the search space

In this section, we investigate physical considerations to reduce the search space for gauge em-
beddings M (section 2.2.2). The first action is to divide out the Weyl symmetry from the search
space, such that only one representative of all M ’s connected by the Weyl group remains in
the minimized parameter space. In the second part of this section, we inform the search algo-
rithm about basic phenomenological constraints, i.e. about the the necessity that a constructed
physical model has to have the ability to host the gauge group of the SM.

6.1.1 Excluding redundant parameters

As described in section 4.2, the symmetries of the landscape interfere with the search goal to
find many inequivalent physical models. A particularly large amount of symmetry is related to
the Weyl group (section 4.2.3). Hence, a detailed understanding of the Weyl group action can be
used to correlate a vast amount of parameters on the landscape. Therefore, a specialized search
technique is developed, which accounts for this symmetry and restricts the search space towards
a unique region of the orbifold landscape. This approach is more generic than the consideration
of the Weyl group in section 5.1.1, since the restriction is directly on the search space Z128 and
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α1

α2

α∗
2

α∗
1

(a) Fundamental Weyl chamber of SU(3).

α1

α2

V1

α∗
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(b) Domain for W1 after a specific V1 was
chosen.

Figure 6.1: Illustration of the algorithm to divide out the Weyl symmetry from the search
process. The root space of SU(3) serves as an example. In fig. 6.1a the fundamental Weyl
reflections w1 and w2 define the the fundamental Weyl chamber of SU(3) (shaded area). Thus,
w1 and w2 restrict the first vector V1 to lie in the shaded region. Thus, d1 I ∈ N0 for I = 1, 2. In
fig. 6.1b a specific vector V1 along the direction of α∗2 was chosen. Consequently, the vector V1 is
invariant under the Weyl reflection w1, i.e. w1(V1) = V1. Hence, this choice for V1 has broken
w2 of the Weyl symmetry and leaves w1 as remnant. Thus, the Weyl reflection w1 restricts the
search space for W1 to the broken Weyl chamber (shaded area) which is defined by W1 · α1 ≥ 0.
Hence, we can constrain the coefficient d2 1 ∈ N0 of W1, while d2 2 ∈ Z. Figures adapted from
[21].

completely divides out this symmetry. For this task, a new technique based on the concept of
the fundamental Weyl chamber is developed. As discussed in section 4.2.3 this special chamber
is uniquely related to a choice of simple roots. Once this choice is fixed there exists an algorithm
(see [146]) based on the successive application of the fundamental Weyl reflections such that any
vector in the root space is mapped to the fundamental Weyl chamber. Hence, this space is a
reference parameter space for the whole root space. Remember that the defining property of the
fundamental Weyl chamber is that all Dynkin labels are non-negative, i.e. Mk · αI ≥ 0 ∀ I.
Although the action of the Weyl group in combination with Wilson lines is more involved than
for a single vector in the root space, the new search strategy is named after this consideration,
the fundamental Weyl chamber search.

To motivate the idea behind the algorithm, let us start with the inverse problem. Starting
from a gauge embedding matrix M , one can apply the algorithm of [146]1 such that the shift

1The algorithm computes the Dynkin labels of the root vector. It applies the fundamental Weyl reflection that
corresponds to the first negative Dynkin label. The action switches the sign of this Dynkin label and has side
effects on the non-orthogonal simple roots of the Dynkin diagram. This procedure is repeated for the transformed
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6.1. Reduction of the search space

vector V1 is rotated to the fundamental Weyl chamber. In order to leave the resulting physics of
the orbifold model unchanged, the fundamental Weyl reflections have to act simultaneously on all
vectors Mk of the gauge embedding matrix. Hereafter, the shift vector V1 may be invariant under
certain fundamental Weyl reflections. Therefore, some Weyl symmetry of the complete model
M is left. These unbroken Weyl reflections are those that leave V1 invariant, i.e. wI(V1) = V1 if
and only if V1 · αI = 0, since

wI(V1) = V1 − (V1 · αI)︸ ︷︷ ︸
=d1I/N1

αI , (6.1)

i.e. d1 I = 0. These remnants of the Weyl group generate the symmetry group for the next
16-vector. In the case of Z6-II (1,1) the Wilson line W3. Corresponding to the broken Weyl
symmetry, W3 can only be mapped to a broken Weyl chamber instead of the fundamental Weyl
chamber. The reduced symmetry relates fewer parameters of the root space. Thus the broken
Weyl chamber is defined regarding those fundamental Weyl reflections that leave V1 invariant.
As a result of mapping Wilson line W3 to the broken Weyl chamber, the Dynkin labels W3 · αI
that correspond to the Weyl reflections wI that leave the shift vector V1 invariant are non-
negative. This logic is reapplied to the next vectors until no Weyl reflection is left, which leaves
all previous 16-vectors invariant.

The general procedure above leads us towards a method to directly choose gauge embedding
matrices M that have the first vector in the fundamental Weyl chamber, and the subsequent
vectors in the respective broken fundamental Weyl chamber, as illustrated in fig. 6.1. For this
the dual basis expansion eq. (2.28) in terms of α∗I is needed. In this basis the constraints on the
Dynkin labels can directly be imposed to the coefficients dk I of the gauge embedding matrix M ,
as Mk · αI = 1

Nk
dk I . For the first vector, i.e. the shift vector V1, we have the complete Weyl

group and can draw this vector directly from the fundamental Weyl chamber

V1 · αI =
d1 I

N1
≥ 0 ⇔ d1 I ∈ N0 , (6.2)

for I = 1, . . . , 16. Then, it is necessary to compute the unbroken Weyl symmetry that restricts
the parameter space of the second vector. This unbroken Weyl symmetry is generated by
those fundamental Weyl reflections that leave V1 invariant. As V1 lies in the fundamental
Weyl chamber, it can only be invariant under a Weyl reflection if V1 lies on the boundary of
the fundamental Weyl chamber. The hyperplanes of the simple roots define the fundamental
Weyl reflections wI and yield this boundary [146]. Consequently, only those fundamental Weyl
reflections wI , which leave all previously chosen vectors Mk invariant, can still restrict the search
space. Therefore, at step n in fig. 4.1 the coefficients dn I can be constrained for the vector Mn

in eq. (2.28) as

dn I ∈ N0 if dk I = 0 for all k = 1, . . . , n− 1 , (6.3)

dn I ∈ Z if dk I 6= 0 for any k = 1, . . . , n− 1 . (6.4)

Translating these constraints to the distribution, eq. (4.1), for sampling the coefficients leads to
the distribution for V1,

d1I ∼ U {0, βN1} i.i.d. ∀ I (6.5)

root vector until all Dynkin labels are non-negative.
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Chapter 6. The phenomenologically viable part of the landscape

and to the case dependent sampling for any subsequently drawn Mk, where the dkI -coefficients
are drawn from,

dkI ∼ U {0, βNk} in case (6.3) (6.6)

dkI ∼ U {−βNk, βNk} in case (6.4) . (6.7)

For the range coefficient β, the commonly used value for upcoming searches is β = 4, in order
to consider an extensive area that does allow for a wide variety of physical models.

level
frequency

first appearance of models with special properties
of occurrence

1 8 008 gauge group U(1)16 (with 218 matter fields)

19 1 915 non-Abelian gauge group (SU(2)×U(1)15)

635 114 SU(3)× SU(2)

739 10 SU(3)C × SU(2)L ×U(1)Y with 1 generation

747 2 SU(3)C × SU(2)L ×U(1)Y with 2 generations

748 1 MSSM-like model

Table 6.1: Special models from the Z6-II (1,1) orbifold geometry, ordered by their frequency
of occurrence in a set of 107 random models. Note that the first column displays the label of
the frequency of occurrence levels. Each level is degenerate by different physical models with the
same frequency of occurrence. We list the first appearances of models with special properties that
are given in the last column.

6.1.2 Phenomenological constraints

Beyond the restriction of the landscape due to symmetries, there exists also gauge embedding
matrices M that do not fulfill basic phenomenological properties. Of particular interest in this
section are orbifold models with 4D gauge symmetry G4D(M) that do not contain the SM
gauge group. Hence, these models are unable to match the SM with their effective QFT. The
reason why this situation becomes important is that the main part of created heterotic orbifold
landscape models is of the type described above. A search of 107 random models in the Z6-II (1,1)
orbifold geometry, verified this. The models correspond to approximately 3.5 · 106 inequivalent
massless spectra. The frequency of occurrence for the inequivalent spectra is visualized in
fig. 6.2 and some special properties of the models are given in table 6.1. Astonishingly the
phenomenologically excluded models turn out to have the highest repetition values, and the
most interesting models are the rarest. To avoid these invalid models in our search for MSSM-
like orbifold models seems to be necessary. Therefore, the upcoming sections show how the
constraints can be taken into account during the search and focus on those areas of the heterotic
orbifold landscape that at least satisfy the necessary condition of the SM gauge group.

The pseudo-GUT constraint Gn(M) ≥ G′
SM

Phenomenologically uninteresting models that have a gauge group smaller than the non-Abelian
SM gauge group factors G′SM = SU(3) × SU(2) can be circumvented by checking the gauge
group Gn(M) at each step n = 1, . . . , 8. This extends the algorithm fig. 4.1 naturally. Together
with further constraints developed in the upcoming sections, this algorithm is illustrated in
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6.1. Reduction of the search space

Figure 6.2: Frequency of occurrence of inequivalent Z6-II (1,1) orbifold models. The inequiv-
alent models are enumerated from 1 to 3 690 513, on the horizontal axis. On the vertical axis
we see the corresponding frequency of occurrence, i.e. model # 1 has a frequency of 8 008. For
more details on some of these models see table 6.1. Moreover, the different frequencies of occur-
rence levels from 1 to 748 are indicated. At level 748 the first MSSM-like model appears with a
frequency of occurrence of 1. Figure adapted from [21].

fig. 6.3. The reason why this extension is easy to implement, is that additional vectors, e.g.Mn+1,
break the gauge group further or leave it equal, i.e. Gn+1(M) ⊆ Gn(M). Hence, the SM gauge
group provides a lower bound on the breaking pattern at each step n. A quick option to control
the size of the remaining gauge group Gn(M) is to compute the number of unbroken roots Nur.
In eq. (5.3) we computed Nur for the full gauge embedding matrix M . As we here want to check
this quantity at each step of constructing M we define,

N (α)
ur (Mn) =

∑

p∈ΦE8

(
n∏

k= 1

δ
(
p ·M (α)

k

))
, δ(x) =

{
1 if x ∈ Z
0 else

. (6.8)

Note, that the product runs from k = 1, . . . , n. We introduced the shorthand notation that n
labels the number of vectors that have been chosen to specify a consistent gauge embedding
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Chapter 6. The phenomenologically viable part of the landscape

matrix M . For of the SM, the SU(3) holds six unbroken roots while we get plus two unbroken
roots from the SU(2) factor, i.e. Nur(G

′
SM) = 8. This defines a lower bound at each step n in

the production of a model M for the first E8 factor, i.e.

N (1)
ur (Mn) ≥ 8 at each step n , (6.9)

which is called the pseudo-GUT constraint. The second E8 factor is unconstrained and free to
produce any hidden gauge groups. Hence, we force the model to be able to host the MSSM
spectrum in the first E8. Different constraints on the E8 factors have the additional benefit to
divide out their Z2 symmetry from the search space, see section 4.2.

However, due to some special cases we have to extend this check. First of all SU(2) ×
SU(2) × SU(2) × SU(2) could fulfill the constraint eq. (6.9) but can not host the SM gauge
group. Therefore, the gauge factors of Gn(M) are forced to contain a root system Φ that allows
for SU(3), i.e. there exists |Φ| ≥ 6. There are also the special cases SO(8) and SU(4), which can
not be broken to G′SM. Before we consider these situations we introduce another consistency
constraint in the following subsection.

An important factor is the response of the algorithm if a newly chosen vector Mk results
in a gauge group breaking below these lower bounds. Several strategies are reasonable: A
straightforward strategy would be to replace the current vector Mk by the zero vector, which
automatically satisfies the modular invariance conditions (eq. (2.46)) for Wilson lines and leaves
the gauge group unbroken for this step. Another could be to take the coefficients dkI of the
insufficient vector Mk and set individual coefficients to dkI = 0 mod Nk in order to ease the
breaking of roots. However, these approaches deform the distribution massively and seem to be
not conservative enough for an even exploration of the compactification parameter space. The
strategy in this investigation is to neglect the vector Mk and draw the dkI coefficients again
from the distribution eq. (6.5) and eq. (6.6), until they fulfill the constraints.

The Standard Model gauge group constraint: SU(3)× SU(2) ⊆ G4D(M)

For a model to contain the non-Abelian gauge group factors G′SM, the pseudo-GUT constraint
is a necessary condition. However, the search focuses on MSSM-like models with SU(3)C ×
SU(2)L × U(1)Y gauge symmetry in 4D. Hence, after we have chosen the last vector Mk, we
have to check that the model M has a 4D gauge symmetry

G4D(M) = SU(3)× SU(2)×Ghidden . (6.10)

We denote this constraint by,

SU(3)× SU(2) ⊆ G4D(M) . (6.11)

The geometrical conditions eq. (2.25) make this condition geometry specific. In particular, the
initial step is to identify the last shift vector or Wilson line that can be chosen independently,
i.e. which is not of order one Nk = 1 and not related to a former 16-vector. For the Z6-II (1,1)
orbifold geometry, this results in the Wilson line W6, see table 6.1. However, for other orbifold
geometries, e.g. Z3×Z6 (2, 2) the geometry fixes all Wilson lines and the second shift vector V2

has to enable the constraint eq. (6.11). The constraint is checked by calculating the unbroken
roots from the first E8 factor and the sizes of the orthogonal root systems. Concretely, this
implies that in order to contain SU(3)× SU(2) at least two root systems ΦSU(3),ΦSU(2), one of
size six |ΦSU(3)| = 6 and another of size two |ΦSU(2)| = 2, are included in the set of root systems
of G4D(M). Note, extra gauge group factors are allowed.
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Now we can come back to the SO(8) and SU(4) gauge groups, which can not be broken to
G′SM. They occur on rare occasions, and in order to keep the search fast, a separate check is
only applied previously to the last freely selectable vector Mk. In the case of Z6-II (1,1) this is

before the Wilson line W6. If it appears that the gauge group G
(1)
7 (M) has only one root system

and this root system is of size N
(1)
ur (SO(8)) = 12 or N

(1)
ur (SU(4)) = 24 the construction of the

model is discarded and starts from scratch. This method avoids trying to find the impossible
last vector Mk that breaks towards G

′
SM.

The phenomenological constraints from eq. (6.9) and eq. (6.11) implemented into the search
algorithm get applied to the test case of Z6-II (1,1) orbifold models. It turns out that the
proportion of MSSM-like models increases from 1

10 000 000 = 10−7 in the case without the phe-
nomenological constraints to 3

2 665 463 ≈ 10−6 in the case with phenomenological constraints. The
proportions are computed based on the equivalent models in order to avoid “floating correla-
tions”(see [144]). A cross-check on the increase of MSSM-like models is the fact that ≈ 90%
of all models of the fundamental Weyl chamber search do not fulfill the essential gauge group
constraint. Hence, this approach reduces the landscape parameter space to a tenth. Let us
stress that such direct implications on the proportions are entirely trustworthy for the set of
equivalent models. However, this makes no direct implications on the probability of finding more
inequivalent MSSM-like spectra. In upcoming sections, this issue arises, and specific analysis
is needed to find patterns for inequivalent models. In addition, the empirical observation that
MSSM-like models are often related to a vanishing Wilson line [79] is the reason for a second
search with W5 = (016). The results are summarized in table 6.2 (the corresponding dataset is
called phenomenology).

6.2 Contrast patterns for Z6-II (1,1) orbifolds

In the previous section, phenomenological constraints that can be checked easily during the
search for MSSM-like orbifold models were discussed. Importantly, these conditions are nec-
essary for a model to be MSSM-like while not sufficient. An extension of this procedure is
introduced to include new constraints for MSSM-like models by exploiting methods from con-
trast data mining [193]. This specific type of data mining focuses on finding so-called contrast
patterns that allow distinguishing between different types of classes. A statistical approach will
determine these new constraints. Thus, demanding them can potentially miss MSSM-like models
even though the probability for this to happen is tiny. In other words, the new constraints have
not yet an analytical origin, but they have strong statistical evidence and remarkably enhance
the probability for a constructed model to be MSSM-like. Utilizing the contrast patterns will
further reduce the heterotic orbifold landscape, to the subspaces of MSSM-like models. The
conventional search algorithm fig. 4.1 rarely reaches some of these subspaces since the distri-
bution for sampling has to be strongly deformed. The additional constraints from the contrast
patterns will allow accessing these subspaces with a much higher probability by deforming the
probability mass function according to those subspaces.

A contrast pattern c can be defined as a pattern with significantly different supports for
distinct datasets [193]. The support is defined as

supp(c,D) =
|{M ∈ D | M satisfies c}|

|D| , (6.12)

where D is a set of data points, i.e. orbifold models, and c is a set of specified constraints that
have to be fulfilled. Particularly, the two datasets are DMSSM-like and D���MSSM-like, which is the
set of MSSM-like models and the complementary set, respectively. We seek for constraints c
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added
constraint dataset condition # models

# MSSM-like

equiv. inequiv.

tr
ad

it
io

n
al eq. (6.3)

fundamental
Weyl chamber 10 000 000 1 1

eq. (6.13) phenomenology
2 665 463 3 3

130
W5 =(016) 2 551 272 509 129

co
n
tr

as
t

p
a
tt

er
n
s eq. (6.24) hidden E8

2 543 415 12 11
136

415

468

W5 =(016) 2 609 872 863 135

eq. (6.31)
dynamic
hidden E8

1 876 273 3 299 245

395W5 =(016) 1 231 608 8 455 321

W3 =(016) 378 604 7 2

eq. (6.35) U-sector
4 793 146 4 953 357

459
W5 =(016) 3 046 262 17 406 358

Table 6.2: Table of all datasets constructed in the Z6-II (1,1) orbifold landscape. In terms of
the applied constraints the datasets are sorted in ascending order, i.e. a new dataset incorporates

all of the previous constraints. Note that in the dynamic search N
(2)
ur ≥ X from section 6.2.3

the case X = 6 was disregarded since it was already sampled in the hidden E8 dataset. We also
made use of the additional conditions W5 = (016) or W3 = W4 = (016), where W5 = (016) is
known to be beneficial for finding MSSM-like models [79].

that are satisfied for (almost) all MSSM-like models while a considerable fraction of ����MSSM-like
models violate them.

In the ideal case, one can identify contrast patterns c with supp(c,DMSSM-like) = 1 and
supp(c,D���MSSM-like) = 0. As an example, one can reformulate the phenomenological constraints
from section 6.1.2 as perfect contrast patterns,

cGn(M)≥G′SM =
{
N (1)

ur (M) ≥ 8, ∃ |Φ| ≥ 6
}
, (6.13)

cG′SM⊆G4D(M) =
{
∃ Φ1,Φ2 ⊆ ΦG4D(M)

∣∣∣ |Φ1| = 6 and |Φ2| = 2
}
, (6.14)

cphenomenology =
{
cGn(M)≥G′SM , cG

′
SM⊆G4D(M)

}
, (6.15)

i.e. they have no uncertainty since they are derived from analytical conditions rather than
statistics. Furthermore, from the previous section we can infer that all MSSM-like models but
only a tenth of the ����MSSM-like models can survive the constraint, i.e.

supp(cphenomenology, DMSSM-like) = 1 , (6.16)

supp(cphenomenology, D���MSSM-like) ≈
1

10
. (6.17)

However, in the case of contrast patterns that are derived from statistics one should be careful
if the found patterns generalize to all (or at least other) MSSM-like physical spectra, or if the
contrast pattern restricts the whole landscape only to the type of MSSM-like models that are
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create V1

create V2

create W1

create W6

...

MI G1(M)≥G′
SM CP

MI G2(M)≥G′
SM CP

MI G′
SM⊆G8(M) CP

consistent gauge embedding M

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

yes

Figure 6.3: Successive creation of a gauge embedding matrix M. The flowchart illustrates the
new construction algorithm that is an extension of the search strategy fig. 4.1. Additionally, to
the modular invariance (MI) conditions, two extra types of conditions are imposed at each step
n of the construction:
(i) As discussed in section 6.1.2 the gauge group Gn(M) in terms of the root system eq. (6.8) is
computed using the already chosen vectors Mk for k = 1, . . . , n. If Gn(M) satisfies the pseudo-
GUT condition eq. (6.9) to allow for the non-Abelian gauge group factors G′SM = SU(3)×SU(2)
of the SM, the construction process continues with the next vector Mn+1.
(ii) The new contrast mining constraints from section 6.2, the contrast patterns (CP) are im-
posed.
Finally, for the last Wilson line that is not constrained by geometrical conditions, e.g. table 2.2,
the 4D gauge group G4D(M) must contain G′SM, see section 6.1.2. Here illustrated for the last
Wilson line M8 = W6. Figure adapted from [21].

included in the statistical analysis. For example, imagine the extreme case where DMSSM-like

contains only one model and the contrast mining algorithm is allowed to use any feature, e.g.
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the individual coefficients dkI of the gauge embedding matrix M . Indeed, this can lead to
an overfitted pattern cdkI that enforces exactly the set of coefficients dkI of the one MSSM-
like model to the search algorithm. For the support we obtain supp(cdkI , DMSSM-like) = 1 and
supp(cdkI , D���MSSM-like) = 0. However, this contrast pattern would certainly show poor generaliza-
tion performance, applied to the heterotic orbifold landscape. Hence, too promising constraints
should raise suspicion and demand an analytical explanation. Due to this, a conservative ap-
proach should be taken when mining for contrast patterns.

The generic goal of contrast mining can be formalized by defining the growth rate

gr(c,DMSSM-like, D���MSSM-like) =
supp(c,DMSSM-like)

supp(c,D���MSSM-like)
, (6.18)

which has to be maximized. In the following, gr(c) is used for convenience if the datasets
DMSSM-like and D���MSSM-like are clear from the context. To get some intuition for the growth
rate, we rewrite it in terms of the probability p̂. Here, the hat indicates that the probability is
estimated by the sample proportion p̂(Y ) = NY

N , where the label Y ∈ {MSSM-like, ����MSSM-like}
and the total sample size is given by N = NMSSM-like + N���MSSM-like. For a reminder on the

connection of sample proportions and probabilities see appendix B.1. In detail p̂c(Y ) =
Nc
Y

Nc

with N c
Y = |{M ∈ DY | M satisfies c}| is the probability of a model being Y = MSSM-like or

Y = ����MSSM-like given the constraints c. The corresponding probability without imposing the
constraints c is denoted by p̂(Y ). It follows for p̂c(MSSM-like) as a function of p̂(MSSM-like),

p̂c(MSSM-like) =
gr(c) p̂(MSSM-like)

1 + (gr(c)− 1)p̂(MSSM-like)
. (6.19)

As the probability for MSSM-like models is typically very small, one can observe:

p̂(MSSM-like) � 1 : p̂c(MSSM-like) = gr(c)p̂(MSSM-like) +O
(
p̂(MSSM-like)2

)
, (6.20)

where the Taylor expansion in eq. (6.20) converges if p̂(MSSM-like) < 1
|gr(c)−1| . Thus, for

gr(c) < 1 the proportion of MSSM-like models in the constrained space is expected to decrease.
For gr(c) = 1 the effects on both classes cancel each other and for gr(c) > 1 one expects a
higher probability to find MSSM-like models in the subspace defined by the contrast patterns
c. However, before the search for contrast patterns c can start, one has to define some (phys-
ical) quantities that possibly can lead to such patterns. This is known as feature engineering,
see appendix C.2 for a conceptual introduction.

For further convenience, only the impactful features are stated. Furthermore, it is essential
to realize that the features have to be controllable in the sense that they are testable during the
successive construction. Thus, physical quantities related to the bulk (see section 2.4.1) turn
out to be useful. Content from the twisted sector is strongly related to the exact combination
of shift vectors and Wilson lines by depending on the local shift vectors Vh, see section 2.4.2.
Hence, these quantities change non-linearly the projection conditions on the physical states,
which makes them challenging to implement even though patterns in the final orbifold model
might exist. From section 6.1.2 it is known that the 4D gauge group has a significant impact
and it can be checked easily at every step in the production of a model, by estimation of the

number of unbroken roots N
(α)
ur (M) see eq. (6.8). Hence, we expect that further features can be

obtained from the 4D gauge group. Additionally, the numbers of orbifold-invariant bulk matter
fields, eq. (2.51), will be used as features. They are calculated similar to the number of unbroken
roots of the gauge group in eq. (6.8), with the difference of the action of the geometrical twist
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vector v (see section 2.4.1). Thus, at each step n of our search algorithm displayed in fig. 6.3,
we compute

N
(α)
Ua

(Mn) =
∑

p∈ΦE8

n∏

k= 1

δ
(
p ·M (α)

k −Θ(2− k) q(a) · v(k)

)
, (6.21)

for α = 1, 2 and a = 1, 2, 3. Note that the term q(a) · v(k) in eq. (6.21) vanishes for the Wilson

lines M
(α)
k , k = 3, . . . , 8, due to

Θ(x) =

{
0 if x < 0

1 if x ≥ 0
. (6.22)

Furthermore, the twist vectors in eq. (6.21) are geometry dependent and are given for Z6-II
(1,1) orbifold geometry by v(1) = (0, 1

6 ,
1
3 ,−1

2) and v(2) = (04). Finally, the setup is ready for the

first E8 hidden E8

feature N
(1)
ur N

(1)
U1

N
(1)
U2

N
(1)
U3

N
(2)
ur N

(2)
U1

N
(2)
U2

N
(2)
U3

Table 6.3: Table of the features for contrast mining.

mining of contrast patterns from the features listed in table 6.3. A decision tree (appendix C.6)
is applied to the defined feature space of our datasets, in order to identify threshold conditions on
the features that correlate with the property of a model being MSSM-like. If such a correlation
exists, the corresponding threshold condition can be used as a contrast pattern in our search
algorithm for MSSM-like orbifold models.

However, a decision tree is not able to model any function precisely, especially with the small
feature space we provide here. Thus, we can distinguish between two types of errors, i.e. cases
where Ycorrect(M) 6= Ypredicted(M). They are called:

• false positives: Ycorrect(M) = ����MSSM-like but Ypredicted(M) = MSSM-like

• false negatives: Ycorrect(M) = MSSM-like but Ypredicted(M) = ����MSSM-like

Every classification task (appendix C.5) attempts to minimize the number of false predictions.
Nonetheless, at a certain point it always comes to a trade-off between false positives and false
negatives. Thus, the decision is unavoidable whether one wants to suppress one of them for
the inconvenience of raising the other one. In our case, a false positive classification by the
decision tree is less problematic, since afterwards we can check each of these orbifold models
explicitly, using the orbifolder. A single verification takes only a very short time. Certainly,
the purpose of this investigation aims towards excluding vast regions, i.e. huge combinatory
possibilities. As long as the reliably excluded region is substantial, the explicit checks do not
lower the effectiveness of this procedure.

However, in the case of a false negative classification, the consequence would be that we
neglect areas in which MSSM-like orbifold models exist. Because these MSSM-like orbifold
models are the primary goal, we want to minimize the number of false negatives by all means,
while we want to keep the number of false positives as low as possible. Therefore, a loss matrix
l teaches the machine learning algorithm about the different rank of specific models [194]. This
reads,

l =

(
0 106

1 0

)
, (6.23)
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where the values Ypredicted(M) being either MSSM-like or not correspond to the two columns and
the two rows correspond to the correct value Ycorrect(M) being either MSSM-like or not. Then,
l12 corresponds to the false negative cases of MSSM-like orbifold models M that have been
classified by the decision tree as Ypredicted(M) = ����MSSM-like. As this should be avoided, the
arrangement is penalized with a high loss value of l12 = 106. The other potential error of a false
positive classification is not as problematic. Consequently, we set l21 = 1. This will supervise
the decision tree algorithm towards suppressing the false negative cases such that (almost) all
MSSM-like orbifold models are correctly classified.

The concrete realization of this loss matrix is given by a python dictionary handed to the
class weight argument of the DecisionTreeClassifier from the scikit-learn package [189],
i.e. class weight={ MSSM-like : 106, ����MSSM-like : 1 }. Note, that the value of l12 is not fixed
for all upcoming investigations but can be adjusted as a hyperparameter in order to balance the
trade-off between the false negatives, as well as, to give the decision tree enough flexibility to
cut off larger areas of the landscape. A concrete example of this will appear in section 6.2.5.

To quantify the quality of the predictions we use the so-called Recall(MSSM-like) score.
It is defined in detail in appendix C.5 and is given as the ratio between the number of cor-
rect predictions of the MSSM-like class and the total number of MSSM-like orbifold mod-
els. Thus, if the number of false negatives for MSSM-like orbifold models is zero, we find
Recall(MSSM-like) = 1.00. This is analyzed on the validation set Dval and all MSSM-like orb-
ifold models are expected to be assigned with the correct value Y = MSSM-like. In upcoming
sections, we will transform our data to the defined feature space and apply decision trees to this
representation in order to obtain contrast patterns.

6.2.1 The hidden E8 contrast pattern

For the machine learning setup the dataset phenomenology from table 6.2 is split randomly in
Dtrain and Dval with a validation size of 33%. However, a necessary modification is added to the
dataset to avoid data leakage. Data leakage refers to a corrupted data mining process, through
a confusion in the dataset arrangement (appendix C). Such a mistake can emerge if there exists
an MSSM-like spectrum that completely dominates DMSSM-like with all of its equivalent copies.
Then, this model would appear most likely in both, Dtrain and Dval. Thus, the algorithm
can already use the characteristics of this model during training. Moreover, the same model
would dominate the classification result of this algorithm on the Dval and pretend that the
learned predictions generalize to generic MSSM-like models. (Recall that the performance of
any machine learning approach is estimated on the validation set Dval.) However, it is sufficient
that this particular MSSM-like model is predicted correctly by the method. Therefore, the
dataset has to be adjusted to be in accordance with the true target of this analysis. Especially,
the patterns we are aiming for should generalize to inequivalent MSSM-like models. Hence, only
inequivalent MSSM-like models from the dataset phenomenology are used and split to Dtrain

and Dval. Then the performance on Dval will evaluate how the approach generalizes towards
MSSM-like models with distinct matter spectra from the MSSM-like models used for training.

Contrary, for the ����MSSM-like models, it is required to keep the equivalent models. The
frequency of occurrence gives a notion on the size that these models occupy in the landscape,
i.e. in the space of compactification parameters Z128. A split of the decision tree is thus especially
valuable for reduction if it excludes a considerable region in Z128. As each equivalent ����MSSM-
like model is a particular point in Z128, the reduction in the search space correlates with the
exclusion of equivalent ����MSSM-like. Hence, in terms of the space of compactification parameters,
our goal is to exclude as many points in Z128 as possible, regardless if they are related to many
different inequivalent physical models or not.
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As the defined features directly depend on spectrum(M) and not on the coefficients dkI of
Z128 the decision tree performs its splits based on these features. Here an additional advantage
of this approach emerges. A specific split in the decision tree will exclude all points Z128 that
give rise to the same forbidden feature values. Due to this, a small restriction in feature space
can give rise to a massive effect in the space Z128 of gauge embedding matrices M . In cases of
many equivalent models, the restriction of the feature space can be kept minimal. The advantage
is that enough room for the discovery of novel MSSM-like models is left available in the feature
space. In opposition, if only inequivalent ����MSSM-like models are used, the decision tree would
not consider excluding a single physical model, e.g. U(1)16, even though it might correspond
to a vast area in Z128, i.e. a lot of equivalent copies are produced during the search of the
landscape, remember fig. 6.2.

The decision tree is trained on Dtrain, such that the hyperparameters are tuned to realize
Recall(MSSM-like) = 1.00, eq. (C.9), on Dval. This corresponds to the case of no false nega-
tives, hence all MSSM-like models are assigned to the correct class. The reason for this strong
restriction is that the focus lies on contrast patterns that are satisfied by all MSSM-like models,
and the performance on Dval gives this estimate. For example lowering the loss value l12 to 105

already leads to undesirable false negatives.

During training, the decision tree identifies areas in the feature space and assigns the two
classes MSSM-like or ����MSSM-like to them. However, the goal is that the decision tree assigns
the class ����MSSM-like only to those areas that are highly populated with ����MSSM-like models.
Thus, it can be ensured that the probability of an MSSM-like model is extremely small in these
areas of ����MSSM-like models. Therefore, only the very first cuts of the tree where a lot of data is
available are considered. From fig. 6.4 we can infer the pattern for a lower bound on the number
of unbroken roots from the hidden E8 factor,

chidden E8 =
{
N (2)

ur (M) ≥ 6
}
, (6.24)

for a model M to be MSSM-like. According to its origin, this constraint is called hidden E8

contrast pattern. In principle, the decision tree keeps splitting the feature space to separate
the data further. However, these separations are based on fewer data and hence have a larger
margin of error. In order to only consider splits with very high confidence, we stop the tree
after the first and most crucial division. Later, we collect new data and revisit the subsequent
splits of the tree. Before we implement the new contrast pattern hidden E8, we can estimate
the growth rate on the training set Dtrain from our phenomenology dataset,

gr (chidden E8 , DMSSM-like, D���MSSM-like) =
1

896 169+551 319
3 494 867

≈ 2.4 , (6.25)

using eq. (6.18) with supp(chidden E8 , DMSSM-like) = 1 for our phenomenology dataset and the
numbers for supp(chidden E8 , D���MSSM-like) can be read off from figure fig. 6.4. Thus, the contrast
pattern eq. (6.24) provides a method to exclude a vast area of the Z6-II (1,1) orbifold landscape.
Statistically, it is highly unlikely for this area to lead to MSSM-like models. The computational
resources can be focused on searching in areas where the proportion of a model to be MSSM-like
is nonzero.

The hidden E8 contrast pattern can easily be implemented into the search algorithm displayed
in fig. 6.3. The collected dataset is called hidden E8 and summarized in table 6.2. One recognizes
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Figure 6.4: Visualization of the decision tree trained on the phenomenology dataset from
table 6.2. The numbers are evaluated on the training set Dtrain. We can extract the contrast

pattern N
(2)
ur ≤ 5 for ����MSSM-like models from the first node in the right branch. For MSSM-like

models the threshold condition can be inverted to N
(2)
ur ≥ 6. The informative labels shown at

each node state: (i) the threshold condition, e.g. G′SM in both E8? (ii) total number of models
in this node, e.g. samples=3 494 956 (iii) the number of MSSM-like and ����MSSM-like models in
this node, e.g. value = [89, 3 494 867] (iv) the class assigned to all models in the node, e.g.
class = MSSM-like. The final prediction for the models is given by the leaf nodes, i.e. the last
nodes without further splitting. Figure adapted from [21].

the increase for the probability to detect an MSSM-like model from

p̂(MSSM-like in Dphenomenology) =
512

5 216 735
≈ 10−4 to (6.26)

p̂(MSSM-like in Dhidden E8) =
875

5 153 287
≈ 2 · 10−4 , (6.27)

which is consistent with the estimated growth rate in eq. (6.25). However, these are the ex-
pectations of obtaining any MSSM-like model. Thus, they are not necessarily inequivalent to
the previously identified MSSM-like models. Unfortunately, the collected total number of in-
equivalent MSSM-like models was not adequate. The increase from 130 inequivalent MSSM-like
models in the phenomenology dataset to 136 in the hidden E8 dataset is rather small. Before we
will investigate the reasons for this and present a solution that will lead to many new inequiv-
alent MSSM-like models, the next section is dedicated to estimating the probability of missing
MSSM-like models due to this constraint.

6.2.2 Confidence intervals on contrast mining patterns

To neglect areas of the heterotic orbifold landscape on statistical reasoning gives rise to the
question of how reliable these constraints are. The possibility to miss MSSM-like models that
are hidden in between the overwhelming amount of phenomenologically excluded models is still
present, as no analytical solution exists. This analytic solution might be discovered by generating
a lot of different MSSM-like models and recognizing the underlying pattern. However, until this
can be done, it is possible to quantify the uncertainty by assigning confidence intervals to the
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resulting contrast mining patterns. Therefore, the probability of events that did not occur at all
can be modeled by a binomial distribution. (Details on this and a derivation of the formula can
be found in appendix B.6). For a confidence interval of 95% it turns out that the probability of
an event A that did not occur in the sample is,

Pr(A) ≤ 1− n
√

(0.05) (6.28)

where n is the number of samples. Thus it is possible to assign a maximal probability to events
related to finding MSSM-like models in the excluded area. From the dataset phenomenology
with W5 = (016) of table 6.2 one can infer that

Pr
(
∃ M : M ∈ DMSSM-like but N (2)

ur (M) � 6
)
≤ 1− 509

√
0.05 = 0.0059 . (6.29)

This is the probability that a new point in Z128, which is MSSM-like, violates the contrast mining
condition, eq. (6.24). Note that this probability only applies to MSSM-like models, which are
very rare and difficult to find in the first place. Therefore, one can also set a probabilistic
limit to the hypothetical case of actually finding an MSSM-like model in the excluded region.
Concretely, to be able to filter such a model against the background of ����MSSM-like models. This
refers to compute the probability to find the Z128 configuration for the MSSM-like model in this
region,

Pr (MSSM-like models in excluded area) ≤ 1− Nexc
√

0.05 ≈ 3 · 10−6 , (6.30)

where Nexc =
∣∣∣
{
M ∈ DW5=(016)

phenomenology

∣∣∣N (2)
ur (M) < 6

}∣∣∣ ≈ 106 is the number of models that

reside in the excluded region. Let us explain why the estimates are based on the subset with
W5 = (016) of the whole dataset phenomenology. A detailed analysis shows that the constraint
chidden E8 eq. (6.24) is actually based on data points from the subset W5 = (016). Hence, the
subset without W5 = (016) would lead to a higher value for the constraint chidden E8 . Thus, it is
embedded into the more significant dataset, and the analysis for the second subset would have to

take the higher value for N
(2)
ur into account. As a remark, throughout the thesis and especially in

chapter 8 we show that we are unable to find counterexamples to the derived contrast patterns
even with an immense search effort.

6.2.3 The dynamic hidden E8 contrast pattern

In order to understand why the improved probability to find MSSM-like models did not equally
increase the number of inequivalent MSSM-like models, the next step is to analyze the effect
of the hidden E8 contrast pattern in more detail. To do so, the equivalent MSSM-like Z6-II
(1, 1) models from the hidden E8 dataset are visualized with respect to the number of equiv-

alent MSSM-like models that appear for various values of N
(2)
ur (M) and inequivalent spectra,

spectrum(M). Hence, in fig. 6.5 every inequivalent spectrum is represented by an individual
bar. The bar height gives the number of models M that have the same spectrum in the dataset.

From fig. 6.5, it is clear that the models with small numbers of unbroken roots N
(2)
ur (M) ∈

{6, . . . , 14} are frequently sampled in the hidden E8 dataset, while it seems to be very difficult

to construct models with N
(2)
ur (M) ≥ 30. This can be understood as an effect of the chosen

search strategy. What appears in the contrast patterns is that the uniformly drawn coefficients
for the gauge embedding matrix M , on average, cause a too strong breaking of the visible
and hidden gauge group in order to allow for MSSM-like models. By redrawing again from the
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Figure 6.5: Frequency of occurrence for inequivalent MSSM-like Z6-II (1,1) models for the

number of unbroken roots N
(2)
ur (M) from the hidden E8. Based on the dataset hidden E8 with

the contrast pattern N
(2)
ur (M) ≥ 6. In detail, each bar represents an inequivalent MSSM-like

model M . The number of duplicates of each model is shown by the height of the bar. As an

example, for the green bars at N
(2)
ur (M) = 10 there are three inequivalent MSSM-like models,

each represented by one bar. These inequivalent models have 6, 6 and 7 duplicates in the whole
dataset, respectively. Note that in this chart only those MSSM-like models appear that have G′SM
exclusively in the first E8. Figure adapted from [21].

uniform distribution, the probability mass function of the coefficients is cut-off for the constraint
value. However, the newly drawn coefficients do then accumulate very close to the lower bound
since these combinations have a higher likelihood to emerge. Nevertheless, it is unintended to
modify the probability mass function since for further conservative investigations of the heterotic
orbifold landscape an even exploration of the space Z128 is desired, and only the exception is
made for the known pattern to set a Wilson line to zero. This pattern is easy to handle and

compare. Moreover, especially for N
(2)
ur (M) = 22, the bar chart shows a lot of distinct bars.
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X 6 8 10 12 . . . 20 22 . . . 30 32 . . . 40 42

gr(N
(2)
ur (M) ≥ X) 1 5 6 6 . . . 12 26 . . . 48 75 . . . 73 82

Table 6.4: Growth rate gr for different threshold values X of the contrast pattern N
(2)
ur (M) ≥ X,

estimated on the hidden E8 dataset.

This proposes that the diversity of inequivalent MSSM-like models lies in subspaces of the Z6-II
(1,1) orbifold landscape where models have larger hidden sector gauge groups. Those areas
are especially unlikely to reach due to the distribution for sampling. Furthermore, based on the
dataset hidden E8, it is possible to simulate the effect of higher threshold values X by computing

the change of the growth rate for the contrast pattern N
(2)
ur (M) ≥ X. This leads to table 6.4.

Therefore, it is not only the variety of models that seems to lie in the region with higher threshold
values X, but also the growth rate is increasing and indicating that such models are easier to
uncover as soon as the search reaches this subspace. Thus, it seems very promising to change

the threshold value X = 6 of the contrast pattern N
(2)
ur (M) ≥ X into a dynamic variable X,

and in referring to this, the new constraint is named dynamic hidden E8,

cdynamic hidden E8(X) =
{
N (2)

ur (M) ≥ X
}
. (6.31)

A search based on the dynamic hidden E8 contrast pattern for various values of the threshold X
and different constraints on the Wilson lines is performed. The new type of pattern, i.e. the
dynamic variableX, introduces some freedom on the parameter handling in the search procedure.
Details on this are postponed to the next section 6.2.4 in order to give a concise result discussion
here. For evaluation of the contrast pattern the new dataset dynamic hidden E8 is obtained,
see table 6.2. Compared to the hidden E8 dataset with 136 inequivalent MSSM-like Z6-II (1,1)
models in total, it is now possible to find 415 inequivalent MSSM-like models with comparable
search effort, i.e. a similar size of the dataset. This is already more than in any existing Z6-II
(1,1) search [75, 79, 126, 127]. Hence, a significant improvement of the search for inequivalent
MSSM-like models in the Z6-II (1,1) heterotic orbifold landscape is achieved. Moreover, this
search is also able to solve the long-standing puzzle of the absence of MSSM-like models in the
case W3 = W4 = (016). So far, it was not possible to find any MSSM-like model if M5, of
order N5 = 3, is turned off, even though there is no theoretical obstruction for such a model to
exist. The strongly increased probability to find MSSM-like models leads to the possibility of

identifying two MSSM-like Z6-II (1,1) models with W3 = W4 = (016), M
W3=(016)
1 and M

W3=(016)
2 ,

as can be seen in table 6.2. These models have hidden gauge groups,

G
(2)
4D

(
M

W3=(016)
1

)
= SU(3)× SU(3)×U(1)4 , (6.32)

G
(2)
4D

(
M

W3=(016)
2

)
= SU(5)×U(1)4 . (6.33)

In particular, N
(2)
ur (M

W3=(016)
1 ) = 12 and N

(2)
ur (M

W3=(016)
2 ) = 20 and consequently heavily benefit

from the dynamic hidden E8 contrast pattern, as these models reside in regions of the landscape
with high X value. Additionally, due to the vanishing Wilson lines in the T2/Z3 plane, these
models are equipped with a phenomenologically appealing ∆(54) flavor symmetry [143]. Still
note that the probability of finding a MSSM-like model with the condition W3 = W4 = (016) is
far below the probabilities for the other Wilson line conditions.

In order to understand why the new search strategy is so successful and audit the first
estimations made at the beginning of this section, a detailed analysis of the results is reasonable.
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Figure 6.6: Frequency of occurrence for inequivalent MSSM-like Z6-II (1,1) models for the

number of unbroken roots N
(2)
ur (M) from the hidden E8. Based on the dataset dynamic hidden

E8 with the contrast pattern N
(2)
ur (M) ≥ X. For details see fig. 6.5. Note that increasing

the threshold value X leads to a more intense search in those areas of the Z6-II (1,1) orbifold
landscape that were insufficiently sampled by the static search with X = 6. Figure adapted from
[21].

Astonishingly, it turns out that a huge fraction of the diversity of MSSM-like models lies in
subspaces of the heterotic orbifold landscape where the hidden sector gauge group is large, see
fig. 6.6. In more detail, using the dynamic hidden E8 contrast pattern it is feasible to obtain

novel MSSM-like models with N
(2)
ur (M) = X for X ∈ {34, 36, 44, 46, 56, 60, 62, 72, 74, 84} and

uncover plenty MSSM-like models for higher X values, e.g. with X ∈ {30, 40, 42}. The reason
for this improvement, compared to the non-dynamic hidden E8 (fig. 6.5), is that the new search
strategy that led to fig. 6.6, adjusts to the regions with higher X values by constraining the
probability mass function of the gauge embedding matrix M , i.e. parameters dkI accordingly.
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Figure 6.7: Effect of the dynamic hidden E8 search. On the vertical axis the number of
inequivalent MSSM-like models and on the horizontal axis the number of equivalent MSSM-like
models are given. They are chronologically ordered with respect to the search time. The dotted

lines mark the X value used for the N
(2)
ur (M) ≥ X constraint.

6.2.4 Inverse search strategy

Random searches are, in general, not exhaustive. This also accounts for the search developed in
this thesis. During any random search process, the number of inequivalent MSSM-like models
will follow a saturation curve [144]. This behavior is indicated by the first part X ≥ 6 of fig. 6.7
where the inequivalent versus equivalent MSSM-like models are plotted. It shows a decreasing
gradient of the function. Consequently, the effort for creating a new inequivalent MSSM-like
model grows exponentially during sampling time. The same applies to the dynamic hidden E8

search. However, it is possible to generate a small steep increase of novel MSSM-like spectra by
changing the value for X, e.g. X = 16. After some time, the new constrained search follows
the same behavior. Thus, any attempt to reach these results using a basic random search would
take an unfeasible amount of computing time and is only a theoretical possibility rather than
an alternative approach. Although it is possible to generate the steep increases, it remains an
open question of how much computational effort should be invested for a certain value of X.
Furthermore, the growth rates in table 6.4 and the actual search show, that it is much more
efficient to search for high values of X, in order to get novel MSSM-like spectra quickly. Hence,
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Figure 6.8: Inverse search strategy for the dynamic hidden E8 search. Plotted is a part of the
cumulative function of new MSSM-like models. On the vertical axis the inequivalent number of
MSSM-like models and on the horizontal axis the number of equivalent MSSM-like models are
given. They are chronologically ordered with respect to the search time. The dotted lines mark

the X value used for the N
(2)
ur (M) ≥ X constraint.

this leads to the suggestion of inverting the search process starting from high values of X and
then easing the constraint until we hit the lower bound X ≥ 6. As the lower regions always
include the deeper ones this search gets broader and broader.

Additionally, this is supported by the fact that precisely the models in the higher X regions
are the ones with very low probability to appear in an unconstrained random search. These mod-
els are the ones that pop up occasionally in the long tail of the saturation curve. This indicates
the search to proceed since these models have compactification parameter configurations that
are very unlikely to appear and hence need a long exploration time. The graph of inverse search
in fig. 6.8 indicates that the inverse search rather strictly indicates if a particular subspace still
has some novel MSSM-like models left or generates just already known ones, see e.g., X ≥ 42.
In other words, it shows the probability of finding a new inequivalent model. This quantity is
related to the gradient of the curve. Hence, the sharp profile of the inverse search allows for a
saturation check in order to quantify if a certain subregion should be explored further or not.
One realization of this check is to investigate the inverse cumulative plot fig. 6.8. The estimate
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on the probability for new inequivalent MSSM-like models can be computed by2,

Pr (inequiv. MSSM-like for cdyn.(X) | DY ) ≈
FDY (Dcdyn.(X))− FDY (ξDcdyn.(X))

(1− ξ)|Dcdyn.(X)|
(6.34)

where DY = {Dcdyn.(Y ) with Y > X} is the combined dataset of all previously constructed
datasets with stronger constraints cdyn.(Y ). The shorthand notation cdyn.(Y ) refers to eq. (6.31).
The cumulative function FDY computes the number of inequivalent novel MSSM-like models of
Dcdyn.(X) with respect to DY , i.e. only MSSM-like models that are not contained in DY can be
counted as novel MSSM-like models. The approximation parameter ξ defines the proportion of
the cumulative plot that is taken into account to approximate the gradient at the tail of the
saturation sub-curve. A common value used in this thesis is to consider the last quarter, i.e.
ξ = 3

4 . If the probability for novel MSSM-like models in eq. (6.34) vanishes, the search is assumed
to be exhaustive for constraint cdyn.(X) and the value X can be lowered to explore the next
region. This condition implies, that the last quarter of the cumulative graph is flat. Note that
it is important for the analysis to consider all searches performed with higher values Y > X, i.e.
the cumulative result. This indicates if the X-constrained search still produces novel MSSM-like
spectra, or occasionally reaches the models from the already performed stronger constraints.

Note that the parameter ξ determines the strength of the estimator for the probability
eq. (6.34). It can be taken to smaller values for a more exhaustive search or to larger values
in order to get a more efficient, less exhaustive result. Nonetheless, since the construction of
any orbifold model is independent, the search can be performed in parallel. We recommend to
perform the search in parallel batches over multiple values X and check the saturation before
new submissions to the batch-queuing system. As soon as a particular value of X can not fulfill
the condition, this constraint is taken out of the submitted batch series, and a lower one is
appended.

In fig. 6.8, not all subspaces are entirely flat in the last quarter. One should keep in mind that
this plot does not indicate the overall probability to generate a MSSM-like model. Thus, even
if there is a small remaining probability that novel MSSM-like models are in the subspaces, the
search effort to find them, can be massive. The estimate of the computational effort is given by
multiplying the probability eq. (6.34) with the overall probability of finding MSSM-like models
in this subspace. The probability to find a MSSM-like model in the sub-spaces of ZN orbifolds
can be inferred from the sample proportions. A qualitative overview is given in fig. D.2. Indeed,
this value provides an alternative, more efficiency-oriented indicator for exploring the landscape.

6.2.5 The U-sector contrast pattern

After an intense search with the static and dynamic hidden E8 contrast pattern eqs. (6.24)
and (6.31), we are equipped with a new and more informative dataset, that has 415 inequivalent
MSSM-like models in DNur = Dhidden E8 ∪Ddynamic hidden E8 , where DNur is obtained by combin-
ing the datasets hidden E8 and dynamic hidden E8 from table 6.2. Based on this new dataset, a
search for further contrast patterns is reasonable. The same logic as in section 6.2.1 is applied,
i.e. a decision tree is used to mine contrast patterns on the basis of the new combined dataset

DNur . It turns out that the remaining features N
(α)
Ua

(M) contain the next strongest contrast
patterns for the data.

2Note, in practice, a large enough background set is necessary to estimate the probability. Likewise, for a
very small number of MSSM-like values, we recommend to skip the probability computation and search for more
models.
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For computational reasons, it is necessary to downsample the background of ����MSSM-like
models. This implies choosing only a random fraction of ≈ 50% of the total dataset. Due to
the enormous amount of data, this can be considered to be a valid approach. The decision
tree has approximately the same statistics for the analysis in comparison to the whole dataset.
Furthermore, for the limited and important MSSM-like models, all instances of these models
are taken into account. As described in section 6.2.1, they are reduced to their inequivalent
models to get a generalization measure based on this quantity. The Dtrain and Dval split is
then performed with 33% of models in the validation set.

The decision tree hyperparameters are adjusted with respect to the same metric as before,
i.e. Recall(MSSM-like) = 1. The goal is to classify all MSSM-like models correctly. However,
it turns out that this is rather challenging due to two MSSM-like models. One of these models is
misclassified during training, the other one during validation. These two MSSM-like models are
the special ∆(54) models, where W3 = W4 = (016) from section 6.2.3. Because these models lie
in a very specific subspace within the Z6-II (1,1) orbifold landscape and hence are tractable, it
seems to be appropriate to sacrifice these types of models in the new contrast pattern, in order
to get a sufficient reduction of the landscape. Furthermore, there are no new models expected
so far in the subspace W3 = W4 = (016), at least for a reasonable amount of search effort. Note,
that it is possible to tune the hyperparameters, i.e. the l12 from eq. (6.23), such that these
models get also correctly classified as MSSM-like. However, then nearly all models are classified
as MSSM-like and the expected growth rate eq. (6.18) of this pattern tends towards one, i.e. no
gain at all.

Accepting the trade-off that two MSSM-like models are misclassified, a new contrast pattern
can be identified from fig. 6.9, i.e.

cU-sector =
{
N

(1)
U2

(M) ≥ 2 , N
(2)
U3

(M) ≤ 5
}
, (6.35)

for a model M to have an enhanced likelihood of being MSSM-like. This contrast pattern
is called U-sector constraint as it provides bounds on the bulk matter fields (section 2.4.1),
depending on α = 1, 2, respectively. Employing this new constraint on top of the former ones,
the estimated growth rate reads,

gr
(
cU-sector, D

Nur
MSSM-like, D

Nur

���MSSM-like

)
≈ 0.999

1 209 687
2 215 901

≈ 1.8 . (6.36)

Let us discuss some distinctions of the U-sector constraint. To begin with, the computation
of gr(c) given in eq. (6.36): Contrary to the hidden E8 contrast pattern, it is not ensured that
the U-sector contrast pattern covers models which fulfill the constraint of G′SM, section 6.1.2,

in both E8 factors. For N
(2)
ur (M) ≥ 6 models with G′SM in both E8 factors fulfill the more

restrictive condition N
(α)
ur (M) ≥ 8 for α = 1, 2. This is not the case for the U-sector constraint.

See fig. 6.9 and follow the right branch. This branch, according to the first node, only contains

models with G′SM ⊆ G
(1)
4D and hence the contrast patterns might only hold for this preceding

condition. Therefore, the growth rate in eq. (6.36) is estimated using only those models where
G′SM is solely in the first E8 factor. However, remember that models with G′SM in both E8

factors are always contained in the dynamic hidden E8 search.3 Secondly, the arrangement
of the U-sector constraints hides that ∆(54) MSSM-like models excluded by the constraint

N
(2)
U3

(M) ≤ 5 do obey the subsequent constraint N
(1)
U2

(M) ≥ 2. The decision tree selects the
order by taking the statistics into account. It is necessary to misclassify these two MSSM-like

3In chapter 8, we will argue that even the models with G′SM in both E8 factors are contained in the U-sector
search.
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6.2. Contrast patterns for Z6-II (1,1) orbifolds

Figure 6.9: Visualization of the decision tree trained on the hidden E8 and dynamic hidden
E8 datasets from table 6.2. The numbers are evaluated on the training set Dtrain. The hyper-

parameter l12 from eq. (6.23) is changed to l12 = 105. We obtain the contrast pattern (N
(1)
U2
≥ 2

and N
(2)
U3
≤ 5) for MSSM-like models from the right branch of the tree. Notice that this tree

misclassifies one MSSM-like model after the N
(2)
U3

-split in order to get better performance. See
also figure 6.4 for further details. Figure adapted from [21].

models for optimization reasons. However, it is still appealing that all MSSM-like models (with

G′SM ∈ E
(1)
8 ) obey this constraint. This observation deserves further investigations towards

analytic conditions for MSSM-like models.

Realizing the U-sector contrast pattern in the search algorithm represented by figure 6.3 and
executing a search, the final dataset, called U-sector is collected, see table 6.2. Once again, the
contrast data mining procedure shows its strength, and the probability of finding MSSM-like
models increased further, as shown in figure 6.10. The U-sector contrast pattern generalizes
to the Z6-II (1,1) landscape and uncovers several novel MSSM-like models. To analyze the
benefit of the new constraint, the appropriate dataset for comparison is the dynamic hidden E8

dataset. The dynamic search is the background, and the cU-sector constraint is used on top of it.
This results in a growth of 395 inequivalent MSSM-like models to 459 models. Finally, merging
all datasets yields in total 468 inequivalent MSSM-like Z6-II (1,1) models. In conclusion, all
former searches for MSSM-like Z6-II (1,1) models [75, 79, 126, 127] were significantly exceeded
by rejecting those regions in the Z6-II (1,1) orbifold landscape where most likely no MSSM-like
model exists and additionally balancing the search which is uniform in the Z128 space but not
in the physical space of MSSM-like models.

Furthermore, some of our contrast patterns might even be necessary conditions for all MSSM-
like models. In the following section 6.3, it is demonstrated how efficiently the derived constraint,
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Chapter 6. The phenomenologically viable part of the landscape

Figure 6.10: Estimated probability p̂c(MSSM-like) to find MSSM-like models for the threshold

value X of two different dynamic hidden E8 searches. The contrast pattern c refers to N
(2)
ur ≥ X

or N
(2)
ur ≥ X in combination with the U-sector constraint. Figure adapted from [21].

i.e. hidden E8 contrast pattern, can be transferred to the other orbifold geometries and actually
can find novel models. The lower bound of this constraint will be orbifold geometry specific.
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6.3. Generalized contrast patterns

6.3 Generalized contrast patterns

The contrast patterns were acquired solely on the Z6-II (1, 1) orbifold geometry. Nevertheless,
the fundamental insights from this analysis can be applied to other geometries as well. The
contrast patterns are based on the particle spectrum and not on properties of the geometry
itself. The idea of the hidden E8 contrast pattern can be used rather directly in the context of
other orbifold geometries. Unfortunately, this is not the case for the U-sector contrast pattern.

The number of bulk matter fields N
(α)
Ua

for a = 1, 2, 3 depends on the individual entries in the
twist vectors of a given orbifold geometry, see eq. (6.21). These entries are not sorted according
to some physical quantity, rather the sorting of the entries in the twist vectors is given in
ascending order of rotation angles. Hence, it is not clear why a particular U-sector might be
special among the different sectors, i.e. if a special status of a U-sector is related to the rotation
angle or some nontrivial relation between all sectors. Permutation invariant constructions, i.e.

the elementary symmetric polynomials in N
(α)
Ua

,

N
(α)
U1

+N
(α)
U2

+N
(α)
U3

(6.37)

N
(α)
U1
N

(α)
U2

+N
(α)
U1
N

(α)
U3

+N
(α)
U2
N

(α)
U3

(6.38)

N
(α)
U1
N

(α)
U2
N

(α)
U3

(6.39)

have been tried, but could not be used as a replacement of the contrast patterns which act
directly on the individual U-sectors, neither did they contribute as distinct patterns.

Therefore, the dynamic hidden E8 search is directly utilized and the U-sector thresholds are
analyzed for the individual orbifold geometries O. The result is summarized in table 6.7. In
order to apply the dynamic hidden E8 contrast pattern to all ZN orbifold geometries the lower

bound Xmin(O) of N
(2)
ur (M) ≥ Xmin(O) for each ZN orbifold geometry has to be identified by,

Xmin(O) = min
({
N (2)

ur (M)
∣∣∣ M ∈ D(O from [126, 127])

})
. (6.40)

Remember that N
(2)
ur (M) ≥ Xmin (Z6-II (1,1)) = 6. To get an estimate for these bounds,

the datasets collected using the basic search technique fig. 4.1 of [126, 127] can be used as
background searches. Therefore, we extract the dataset of the relevant orbifold geometryO from
the combined dataset D(O from [126, 127]) that correspond to the different ZN orbifold geometries.
Then, the conventional search in [126, 127] compares to the phenomenology search from our
investigations in the previous chapters. Concretely, for this scan there is no lower bound on

the hidden sector gauge group, i.e. N
(2)
ur ≥ 0. Thus, it is possible to analyze the results of the

traditional search [126, 127] to derive the lower bounds Xmin(O) for all ZN orbifold geometries.
As it is already known which constraints are searched for, the construction of a decision tree
is not necessary. Note that at this point, it is assumed that similar patterns can be found in
the other orbifold geometries. The actual training of the tree can interchange the patterns on
the features. However, this straightforward approach will turn out to be useful. The results are
stated in table 6.5. Moreover, the background datasets D(O from [126, 127]) allow us to focus the

dynamic hidden E8 contrast pattern on thresholds greater than Xmin(O), i.e. N
(2)
ur > Xmin(O),

to save computational resources.

The final results of the search are given in table 6.6. Here for each ZN orbifold geometry, the
numbers of inequivalent MSSM-like orbifold models that were found using the dynamic hidden E8

contrast pattern is compared to those numbers in the literature [126, 127]. The dynamic hidden
E8 search is capable of finding several new inequivalent MSSM-like orbifold models in nearly
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orbifold Z4 Z6-I Z6-II Z7 Z8-I Z8-II Z12-I Z12-II

geometry O ∀ ∀ ∀ (1,1) (1,1) (2,1) (3,1) (1,1) (2,1) ∀ (1,1)

Xmin(O) 4 12 6 56 6 6 4 0 4 4 6

Table 6.5: Lower bounds Xmin(O) on the number of unbroken roots N
(2)
ur from the hidden E8

factor for MSSM-like orbifold models. Obtained from [126, 127] for the ZN orbifold geometries
O listed in the first column of table 6.6. In case of “ ∀” all lattices for a given ZN orbifold
geometry have the same lower bound.

all orbifold geometries. In particular, the numbers for the different Z6-II orbifold geometries,
as well as the Z12-I case, have increased using the contrast patterns. Additionally, focusing on
the effect of the models from the novel search on the combined dataset from the literature, it
is noticeable that nearly all orbifold geometries get a boost of new models even in cases where
the total number was lower than the one from the literature, i.e. Z8-II (1, 1), Z8-II (2, 1),
Z12-II (1, 1). Moreover, we observe 13 additional MSSM-like models from [126, 127] for the
orbifold geometry Z6-II (1, 1), which we used to develop all the constraints of this chapter. This
geometry was of particular interest, and the intense searches performed could not find all MSSM-
like models. However, these models satisfy all the constraints derived in section 6.2. Hence, an
extended scan with contrast patterns can find these models. Furthermore, the appearance of
the Z7 MSSM-like model is also a great achievement of our contrast patterns. So far, this
model was only observed in orbifold-specific scans [31, 127]. Besides, the Z6-I orbifold geometry
is unusual in terms of the Xmin value. This is the only ZN geometry (except of Z7) with a
lower bound higher than needed for the SM gauge group. The lower bound Xmin(Z6-I) = 12
(see table 6.5), is computed for those models where G′SM appears in one E8 factor only. Thus,
our search algorithm could miss MSSM-like Z6-I models where each E8 factor contains G′SM.
Analyzing these models individually, a lower bound Xmin(Z6-I) = 10 for these cases is found.
Furthermore, it seems that for some orbifold geometries like Z8-II (1, 1) the standard approach is
advantageous. However, a comparison is difficult since it is not known how much computational
effort was needed to produce the results from the literature. Moreover, for Z8-II (1, 1) our

contrast patterns seem to be not as useful, since the lower bound for N
(2)
ur = 0 (see table 6.5) is

practically not present and thus does not reduce this sub-landscape. Hence, it seems that our
search algorithm is too involved for such geometries and the extra work in computing constraints
is not rewarded. However, the merged datasets in table 6.6 shows that the contrast patterns
could still significantly enhance the numbers of inequivalent MSSM-like orbifold models in these
geometries. Thus, the search algorithm is able to find new MSSM-like orbifold models in corners
of the landscape that are missed by the conventional approaches.

On the basis of the ‘merged’ datasets the decision tree approach to derive the U-sector con-
straints, as in the case of the Z6-II (1,1) orbifold geometry section 6.2.5, can be used. The results
are given in table 6.7. In nearly all orbifold geometries it is possible to get a Recall

(
Dval

)
= 1.00

and no MSSM-like model is missed in the training set.

Only Z6-II orbifold geometries (1, 1), (3, 1) had a Recall
(
Dval

)
= 0.99, i.e. produced a

false negative. For the Z6-II orbifold geometries (1, 1) and (3, 1) the decision tree sacrificed one
MSSM-like model during training, while Z6-II (2, 1) misclassified two models during training.
Overall, this similarity in the behavior of the different Z6-II geometries shows how strongly the
MSSM-like patterns are connected to the point group of the orbifold geometries. Only, the Z6-II
(4, 1) orbifold geometry can avoid these misclassifications.

98



6.3. Generalized contrast patterns

number of inequivalent MSSM-like orbifold models

orbifold from
[126]

from
[127] [126, 127]

dynamic
hidden E8

‘merged’
geometry

Z4 (2,1) 128 138 161 125 179

(3,1) 25 26 29 33 33

Z6-I (1,1) 31 30 31 31 31

(2,1) 31 30 31 31 31

Z6-II (1,1) 348 363 390 468 481

(2,1) 338 349 372 395 443

(3,1) 350 351 390 415 482

(4,1) 334 354 404 407 464

Z7 (1,1) 0 1 1 1 1

Z8-I (1,1) 263 256 271 248 271

(2,1) 164 155 164 144 164

(3,1) 387 377 418 408 430

Z8-II (1,1) 638 1 833 1 903 1 259 2 289

(2,1) 260 489 508 349 555

Z12-I (1,1) 365 556 568 610 625

(2,1) 385 554 572 607 625

Z12-II (1,1) 211 352 371 365 435

Table 6.6: Inequivalent MSSM-like orbifold models for all ZN orbifold geometries, see also [21].
The second and third column show the number of inequivalent models known in the literature. The
fourth column states the number of inequivalent models combining the datasets of the literature.
The number of inequivalent models constructed by the search fig. 6.3 using the dynamic hidden
E8 contrast pattern eq. (6.31) are listed in the fifth column. The last column, gives the final
results, i.e. the numbers of inequivalent MSSM-like orbifold models obtained by merging the
three datasets.

Another special case is the Z8-II (2, 1) orbifold geometry. In order to get a growth rate
larger than one the decision tree has to split the set of MSSM-like models into two sets at the

first node with a constraint on N
(1)
U3

. Then, for both sets a second split takes N
(2)
U3

into account,
resulting in a growth rate gr(c) = 1.78 for the first set containing only 3% of the inequivalent
MSSM-like Z8-II (2, 1) models from Dtrain and a growth rate of gr(c,D) = 1.01 for the second
set containing 97% of the models, respectively.

In this context, it is interesting that for the Z8-I (1, 1) geometry, one can increase the
growth rate by tuning the hyperparameters and train another decision tree. In detail, this

results in a constraint c′U−sector =
{
N

(1)
U3
≥ 8, N

(2)
U3
≤ 25

}
that has Recall

(
Dval

)
= 1.00 and

gr(c′U−sector) = 2.18. The only disadvantage is that for this tree one MSSM-like model from the
training data is misclassified.

Moreover, let us mention that the expected growth rate for the Z4 orbifold geometry is
significantly higher than it was for the Z6-II. For this geometry the U-sector constraint could
be even more important than the hidden E8 constraint. A detailed analysis like in the case of
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orbifold
N

(1)
U1

N
(1)
U2

N
(1)
U3

N
(2)
U1

N
(2)
U2

N
(2)
U3

gr(c)

geometry

Z4 (2,1) ≥ 4 ≤ 1 5.32

(3,1) ≥ 4 ≤ 1 6.92

Z6-I (1,1) ≥ 13 ≥ 14 2.79

(2,1) ≥ 13 ≥ 14 2.78

Z6-II (1,1) ≥ 2 ≤ 5 1.81

(2,1) ≥ 2 ≤ 5 1.60

(3,1) ≥ 2 ≤ 5 1.70

(4,1) ≥ 2 ≤ 5 1.86

Z8-I (1,1) ≥ 4 ≤ 25 1.22

(2,1) ≥ 4 ≤ 25 1.23

(3,1) ≥ 8 2.21

Z8-II (1,1) ≥ 4 ≤ 41 1.61

(2,1) ≤ 3 ≤ 1 1.78

≥ 4 ≤ 41 1.01

Z12-I (1,1) ≤ 10 ≥ 2 1.24

(2,1) ≤ 10 ≥ 2 1.24

Z12-II (1,1) ≥ 2 ≤ 5 1.71

Table 6.7: Decision tree derived U-sector constraints for ZN orbifold geometries, obtained
from the merged datasets of table 6.6. The Z7 orbifold geometry is neglected, because only one
MSSM-like model is available.

Z6-II seems necessary.

Contrary to the expectation, that the configuration of the U-sector constraints is highly
sensitive to the specific orbifold, table 6.7 shows global patterns. These patterns generalize
over the orbifold geometries. Foremost, it is remarkable that for the hidden sector, nearly all
constraints are ‘≤’ and in the U3-sectors. For the visible sector, a clear preference to ‘≥’ is given.
On a refined level, the twist vector does not have any significant effect, and the specific threshold
value is correlated to the order of the point group. One should use this global pattern and take

the weakest constraint among a family of orbifolds, e.g. N
(3)
U1
≥ 4 for Z8 orbifolds. Overall, this

indicates more structure in the heterotic orbifold landscape and that necessary conditions for
MSSM-like models can follow from further considerations in this direction.

6.4 Chapter summary

In this chapter, we reduce the heterotic orbifold landscape massively. Analytical constraints
based on the SM gauge group and the Weyl symmetry of the landscape exclude vast areas of
the compactification parameter space. By a statistical analysis with decision trees, we uncover
contrast patterns that distinguish between areas of the landscape with a tiny probability to
hold a MSSM-like model and others. Based on these constraints, we develop a search algorithm
fig. 6.3 that focuses on the phenomenologically viable part of the heterotic orbifold landscape.
The apparent result is that it was possible to substantially improve the search strategy for
MSSM-like models in the heterotic orbifold landscape table 6.2. Thus, it was possible to identify
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models with very special and far from generic properties in heterotic orbifolds, i.e. models with
W3 = (016) and hence ∆(54) flavor symmetry.

For the technique itself, it is to mention that it is challenging to uncover suitable features
table 6.3 that have a monotonic behavior concerning the successive search. Moreover, for very
restrictive contrast patterns, the random sampling of the dkI -coefficients takes rather long.
This is because the constraints have to modify the probability mass function of the coefficients
heavily. Learning a better probability mass function for drawing the coefficients might be useful,
see chapter 9 for potential methods. Finally, the contrast pattern technique seems to be far more
valuable than expected on the task to find the characteristic features of MSSM-like models with
a stringy origin. Further statistical evidence will be analyzed in chapter 8. They might help to
find the necessary conditions for beyond the SM physics to connect to a UV-complete framework.
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Chapter 7

Bottom-up guide for the heterotic
orbifold landscape

In the previous machine learning approaches, we studied the patterns of the heterotic orbifold
landscape in order to find explicit constructions of MSSM-like models, as were defined in sec-
tion 2.6. However, an obvious question is if the heterotic orbifold landscape includes the exact
MSSM of particle physics. The concrete orbifold parameters of a string compactification that
lead to a model that is in agreement with all experimental facts from particle physics would be
a definite answer. Due to the enormous number of 4D string models, the question arises, if it
is possible to predict the orbifold geometry with the highest likelihood to generate a particular
MSSM-like model, i.e. the exact MSSM. Indeed, the contrast mining approach from section 6.3,
showed orbifold specific threshold values for the generic contrast patterns. Inspired by this obser-
vation, we will show in this chapter that the particular phenomenology of the MSSM-like models
is strongly correlated to the point group P . Hence, in terms of phenomenological properties,
the landscape is divided into subregions.

For this task, the dataset consists of the known MSSM-like orbifold models constructed in
the literature, as well as novel MSSM-like models from the advanced search strategy fig. 6.3.
The feature space is formed of phenomenological properties, like the number of various types
of vector-like exotics, and the value of the gaugino beta function coefficients. The intention is
to develop a classifier that predicts the orbifold origin of MSSM-like bottom-up models. Thus,
we train the machine learning model to predict the orbifold point group P that has the highest
probability of reproducing a given MSSM-like model, see fig. 7.1.

7.1 A feature space of vector-like exotics

The dataset D of MSSM-like orbifold models consist of 126 783 inequivalent MSSM-like string
models1 from the E8 × E8 heterotic string, compactified on 52 Abelian orbifolds O.2 In or-
der to obtain such a huge dataset, constructed models from several landscape investigations
were merged. In detail, the largest dataset available for the ZN1 orbifolds was constructed in
section 6.3 were the datasets [126, 127] were extended by novel MSSM-like models created by
the dynamic hidden E8 contrast pattern search. This procedure is extended to the ZN1 × ZN2

1The MSSM-like orbifold models are available as arXiv ancillary files of [20, 21].
2From the 138 Abelian orbifolds with N = 1, 23 Z2 × Z2 orbifolds forbid chiral matter spectra [118, 147].

Furthermore, the orbifolds are reduced to those that can generate non-Abelian flavour symmetries (Z6 × Z6 is
the only exception) as investigated in [127].
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ML model

phenomenology
of MSSM-like model

F1

F2

F3
...

orbifold point group P

Z4

Z6-I
Z6-II
Z8-I
...

Figure 7.1: Overview of the machine learning (ML) method. A predictive model (boosted
decision tree) is trained to infer the probability p(Pi) of the orbifold point groups Pi to reproduce
a given MSSM-like bottom-up model. Note that

∑
i p(Pi) = 1. As input, we specify certain

phenomenological features Fk. Figure adapted from [20].

MSSM-like models using the same contrast pattern for the enhanced search algorithm and merge
them with the models from [126, 127] to obtain the dataset D.

A review of the exotics in the inequivalent MSSM-like dataset can be found in table D.1 and
table D.2. In the first row of the tables the different orbifold point groups Pi that produce the
MSSM-like string model are given. There are 14 different point groups and hence i = 1, . . . , 14.
The second row states the number of inequivalent models per Pi. An important observation for
the procedure is given by the fact that the dataset is highly imbalanced. In detail, the number of
inequivalent MSSM-like models for the different point groups are spread over a wide range. As
an example, Z4 contains only a few hundred MSSM-like models, while Z2×Z4 holds several ten-
thousand MSSM-like models. Besides, since only one MSSM-like orbifold model, based on the
Z7 point group, is part of the dataset, this point group is excluded from further considerations.

To predict the orbifold origin based on phenomenological features Fk as depicted in fig. 7.1
we compute the following phenomenological features of MSSM-like models:3

• F1: # SM singlets: The average MSSM-like model contains O(100) SM singlets. These
can be understood as right-handed neutrinos, that are charged under hidden gauge group
factors, i.e U(1)’s and the non-Abelian Ghidden. Recall from section 2.6 that SM singlets
are relevant for the decoupling of vector-like exotics.

• F2 − F36 : # vector-like exotics for each type: Recall from section 2.6 that MSSM-
like models are defined to allow for vector-like exotics. The total number of different
vector-like exotics that appear in the landscape is of small cardinality, i.e. 43 distinct
exotic particles (table D.1 ,table D.2 ). Thus, it is feasible to use the number of vector-
like exotics of each type as features. Note, 8 types of vector-like exotics solely appear
in the unique MSSM-like Z7 model and are neglected. Phenomenologically, vector-like
exotics can be appealing for model building as new elementary particles. For instance,

3For convenience we use # as abbreviation for ’number of’.
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so-called leptoquarks were proposed, to address flavor anomalies [148–151]. However, they
can compromise gauge coupling unification and can lead to cosmological problems. Thus,
we choose to search for “(almost) perfect MSSM models” that have (almost) no vector-like
exotics.

• F37 : Heavy top quark from bulk: This scenario describes a stringy mechanism that can
explain the large mass hierarchy between the top quark and the lighter quarks. Therefore,
we require an O(1) renormalizable Yukawa coupling for a left-chiral top quark doublet q3,
its right-chiral top quark partner ū3 and the up-type Higgs hu. If these fields originate
from the twisted sectors their coupling can be suppressed if they are not located at the
same fixed point. This is not the case for bulk matter. Actually, if the left-chiral top
quark doublet q3, its right-chiral top quark partner ū3 and the up-type Higgs hu distribute
among the three untwisted sectors Ua, for a = 1, 2, 3 (see eq. (2.51)), respectively, the
string selection rules [156, 157] and in especially the conservation of R-charges [31, 32,
158] allow for this unsuppressed coupling, which is related to the ten-dimensional gauge
coupling constant [152–155]. Thus we incorporate this feature as binary-value, i.e. true or
false, for a given model.

• F38 : # vanishing Wilson lines: Non-Abelian flavor symmetries of the 4D effective
theory can emerge in heterotic orbifolds from the twisted strings, that are localized on
the fixed points of the extra-dimensions (section 2.4.2). If Wilson lines vanish, an addi-
tional permutation symmetry of some of the twisted strings can emerge such that the full
flavor symmetry becomes non-Abelian. Because non-Abelian flavor symmetries are phe-
nomenologically interesting [159], this feature is included indirectly in the feature space
by the number of vanishing Wilson lines, see also [64, 67, 126, 127, 143]. A non-zero value
indicates the presence of non-Abelian flavor symmetry.

• F39 : Anomalous U(1): In general 4D models from the heterotic orbifold landscape
are equipped with an anomalous gauge factor U(1)anom. However, it turns out that the
anomaly of this pseudo-anomalous U(1) can be canceled by a universal Green–Schwarz
anomaly cancellation mechanism [160]. Furthermore, this procedure is phenomenologi-
cally appealing, as it sets the scale for a Froggatt–Nielsen-like mechanism [161], where
some SM singlets develop non-vanishing VEVs. Thus, these VEVs spontaneously break
the additional U(1) factors and some of these VEVs decouple parts of the vector-like ex-
otics from the spectrum. Moreover, they are responsible to give the lighter quarks and
leptons masses. Even though 99% of the MSSM-like orbifold models possess an additional
U(1)anom, this interesting feature is included as a binary value.

• F40 : hidden sector beta-function coefficient: The last feature is connected to spon-
tanous supersymmetry breaking through hidden sector gaugino condensation [47, 50, 76,
126, 162–165]. Therefore, it is assumed that the vector-like exotics decouple without break-
ing the non-Abelian hidden sector gauge groups Ghidden. For a strongly coupled hidden
sector the gauginos build a condensate and spontaneously break supersymmetry. To de-
termine the energy scale Λhidden where this happens, we have to analyze the running of
the coupling and the corresponding Landau pole where the coupling becomes infinite, for
each Ghidden. It turns out that,

Λhidden = MGUT exp

(
− 16π2

2 b g2(MGUT)

)
, (7.1)
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Figure 7.2: Number of MSSM-like orbifold models from dataset D for the hidden sector gaugino
condensation scale Λhidden. Excluded are a few models with smaller Λhidden as well as ≈ 24 000
models with b = 0, i.e. Λhidden = 0. Note, for the peak at Λhidden = 105 GeV the scale of
supersymmetry breaking is far too low. It consists mainly of MSSM-like orbifold models from
the point groups Z2×Z4 and Z4×Z4 (each contributing ≈ 19 000 models). Figure adapted from
[20]

with MGUT ≈ 3 · 1016GeV and g2(MGUT) ≈ 1/2. We assume in eq. (7.1) that the gauge
coupling constants of the MSSM coincide at the GUT scale approximately with the one
of the hidden sector gauge group. Thus, to determine the gaugino condensation scale,
we can compute the known beta-function coefficient b = 3C2 −

∑
r `(r) of Ghidden with

C2 = N and `(N) = 1/2 for SU(N), and C2 = 2(N − 1) and `(2N) = 1 for SO(2N).
The summation over r runs over the chiral matter in the spectrum, where r is given by
the representation of the matter under Ghidden. The phenomenological preferred energy
scale is Λhidden ≈ 1013GeV for supersymmetry breaking at least around TeV scale, as the
gravitino mass can be approximated by

m3/2 ≈
Λ3

hidden

M2
Planck

, (7.2)

and supersymmetry breaking is communicated to the observable sector by gravity. Note,
that for this estimate string threshold corrections [166–168] are neglected. Those can
increase the value for Λhidden, such that a reasonable range to consider are three orders of
magnitued [74]. This corresponds to the lower bound Λhidden & 1010GeV, i.e. b & 10 [76].
In our MSSM-like models, the distribution of Λhidden is given in fig. 7.2 for all point groups
and in fig. 7.3 for Z6-II (1,1) only.

These features define the basis that spans the whole feature space. The original dataset,
consisting of the physical spectra, had 126 783 inequivalent MSSM-like string models. The
attribute inequivalent is linked to the full orbifold geometry, i.e. inequivalence is defined here
within each different orbifold geometry separately. The dataset transformed into the feature
space corresponds to a set of 112 670 inequivalent data points (F,O). However, neglecting
the orbifold origin and comparing the feature vectors F results in 106 009 inequivalent vectors.
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Figure 7.3: Number of Z6-II (1, 1) MSSM-like orbifold models for hidden sector gaugino con-
densation scale Λhidden (models with b = 0, i.e. Λhidden = 0, are excluded). Figure adapted from
[20].

Hence, this introduces a substantial internal, unavoidable, misclassification error. In detail, this
would not train a well-defined function but rather have identical input values (feature vectors
F ) that lead to different target values O. As we will train a deterministic algorithm, in terms
of its prediction, the final model will decide to map all instances of a certain F to the dominant
O. The reason for this ambiguity is the hidden sector that is not taken into account in detail, in
our feature space, as the feature vector characterizes the properties concerning the MSSM only.
Thus, models with different hidden sectors can yield the same feature vector [80].

However, combining the feature vectors with the point group, i.e. (F, Pi) results in 106 027
inequivalent data points. Contrary to the above situation, there is nearly no overlap if the
point group Pi is taken as label. Hence, this label is a natural choice for the prediction task.
This result connects strongly to the contrast patterns behavior concerning the point group (see
section 6.3). The contrast patterns showed a strong correlation with the point groups and not
with the specific lattice. Thus, the tuples (F, Pi) build the machine learning dataset D.

Closing this discussion, we point out that the reduction to the inequivalent subset of the data
is necessary to avoid data leakage (appendix C.1). Concretely, the duplicates can get separated
in test and training set, and hence the performance on the test set is no longer the performance
to unseen data but to the duplicates of the training set (compare to section 6.2.1). As we want to
predict the origin of the MSSM that is certainly not contained in the dataset, this generalization
property is of utmost importance.

7.2 Point group classifier from 4D physics

To tackle this classification task, several methods from machine learning may be valuable. The
two most widely applied and successful methods are neural networks and boosted decision trees.
As our dataset is highly imbalanced, the neural network approach becomes disfavored. To handle
imbalanced data in neural networks is still tricky [195], even though research in this direction
leads to improvements, e.g. specialised loss functions [196].

For the non-neural network tools of machine learning, several hyperparameters exist to con-
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Chapter 7. Bottom-up guide for the heterotic orbifold landscape

sider unbalanced data. In case of decision trees we already used in section 6.2.1 the class weight

argument to adjust the importance of the minority class. This is one reason why a boosted de-
cision tree will be used in this imbalanced classification task. A boosted decision tree consists
of an ensemble of simple classification trees (appendix C.6). A single predictive model from the
ensemble is called a weak learner since they do not have the capacity to reach sophisticated
results on the classification task. In the classification task here, a single decision tree was only
able to reach a performance of f1-macro = 0.66, after hyperparameter optimization. Combining
weak learners, it is possible to create a single strong learner. The resulting prediction is then
a weighted majority vote of the collection of weak learners. However, in order to contribute
different information to the voting, the weak learners have to be trained with different goals.
In the boosting approach, this is achieved by a successive training of the weak learners, where
the misclassified training data of the previous trees are weighted with a higher value in order to
enforce the next weak learner to classify these models correctly. The weights of the previously
correctly classified data are decreased accordingly, see also [197].4

Training of the classifier

The first task is to split our dataset D of inequivalent tuples (F, Pi) into 80% training Dtrain

and 20% test data Dtest. The test set Dtest is kept aside for the evaluation of the trained
classifier. Dtrain is used to perform a grid search for the optimal hyperparameters, i.e. each
possible combination of hyperparameter values, from a predefined parameter set, is used to
train the classifier in a 5-fold cross validation (CV) (for an explanation of CV see appendix C.4).
The metric to evaluate the trained classifiers is f1-macro, which is suitable for imbalanced
data. We use for hyperparameter tuning the scikit-learn [189] module GridSearchCV and for
the boosted decision tree the LightGBM implementation [200]. The large-scale hyperparameter
search results in:

• class weight=‘balanced’ (default=None): The argument ‘balanced’ automatically ad-
just the class weights wi inversely proportional to the class frequency of occurrence in the
input data, i.e.

wi =

∣∣Dtrain
∣∣

|P | · |Dtrain(Pi)|
. (7.3)

where for this dataset, we have the number of classes |P | = 14 and
∣∣Dtrain(Pi)

∣∣ = {F ∈
Dtrain | Ycorrect(F ) = Pi} for each class.

∣∣Dtrain
∣∣ is the total number of data points.

• learning rate=0.2 (default=0.1): The learning rate for boosting. Hence, this value
determines how strong the weights of the misclassified models get adjusted for the next
weak learner.

• min child samples=8 (default=20): In order to get good predictions on the minority
classes it was beneficial to allow the individual trees to split to lower number of minimum
samples per child node.

• min child weight=0.01 (default=10−3): Regularization method. Minimum sum of in-
stance weight (hessian, i.e. second derivative of objective function) needed in a child node.
Roughly speaking, a measure for the impurity of the data in the child node. Stops if the
impurity is very low and hence regularizes the trees.

4In gradient boosted decision trees, the correction of the weights is generalized to the optimization of an
arbitrary differentiable loss function [198, 199]. In our multiclass prediction this is the softmax objective function.
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• n estimators=1500 (default=100): Number of weak learners to train.

• num leaves=50 (default=31): Maximum number of leaves a single decision tree learner
can have.

Note, multiple classification algorithms were examined as alternatives: k-nearest-neighbors
(kNN), linear discriminant analysis (LDA), random forest, support vector machines (SVM) and
fully connected neural networks with softmax classification.5 These other techniques are not
able to outperform the f1-macro score of LightGBM. Only another boosted decision tree algo-
rithm, XGBoost [202], yields comparable results. Besides, we constructed an ensemble of these
different estimators, where the prediction of the ensemble is a weighted linear combination of the
predictions of each individual estimator [203]. None of these approaches led to an improvement
of more than ∼ 1% for the f1-macro score. Hence, the positive effects of these ensembles do
not justify the additional obscurification of the classification algorithm. In particular, the usage
of LightGBM as a single estimator allows us to read out and interpret the inner structure of the
boosted decision tree by visualizing the feature importance, see fig. 7.4. One obtains that, the
SM singlets and the hidden sector beta function are frequently used to separate the different
point groups.
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Figure 7.4: The importance of the features for the boosted decision tree, based on the num-
bers of times the feature is used for a threshold condition in the model. Obtained from the
feature importances method of LightGBM. We give the numbers as percentage and rank the
features accordingly. As a result, the feature “# SM singlets” turns out to be used in 30% of the
nodes and is the most important feature for our boosted decision tree. Figure adapted from [20].

Evaluation of the predictions

The performance of the boosted decision tree on the test set Dtest is estimated in a classification
report, see table 7.1. The overall high values for the f1-score, even for the minority classes,

5The implementations from scikit-learn [189] are utilized for the non-neural network algorithms. The Keras
API [201] is used for the neural networks.
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indicates that our classifier is well balanced and did not get heavily biased by the majority
classes. For the upcoming predictions the Precision value is also of special interest. This value
indicates how reliable a certain prediction is, i.e. for the lowest value of 0.75 in case of Z8-I, we
have a 0.25 percent chance that this area belongs to a different point group Pi that is misclassified
as false positive to the class Z8-I. However, the capability of the classifier to correctly identify
the point group origin of the individual feature vectors is astonishing. It was unknown that
the spectrum of vector-like exotics, in combination with some additional phenomenologically
interesting features, allows for such a clear-cut inference of the point group.

point group Pi Precision Recall f1-score support

Z4 0.85 0.85 0.85 33
Z6-I 0.88 0.88 0.88 8
Z6-II 0.82 0.75 0.79 305
Z8-I 0.75 0.78 0.76 125
Z8-II 0.86 0.84 0.85 444
Z12-I 0.95 0.90 0.92 232
Z12-II 0.69 0.68 0.69 82
Z2 × Z2 0.88 0.83 0.85 255
Z2 × Z4 0.97 0.98 0.98 8 155
Z2 × Z6-I 0.84 0.59 0.69 211
Z3 × Z3 0.99 1.00 0.99 483
Z3 × Z6 0.87 0.88 0.87 1 019
Z4 × Z4 0.98 0.98 0.98 9 113
Z6 × Z6 0.93 0.96 0.94 741

macro avg 0.88 0.85 0.86 21 206

Table 7.1: Classification report of the boosted decision tree classifier. Evaluated on Dtest of
21 206 feature vectors. The support gives the number of feature vectors with point group Pi in
Dtest. In gray we highlight the three highest values for the f1-score. For the full classification
matrix see [20].

7.3 Predicting the stringy origin of the MSSM

After we have reviewed the predictions of our classifier, the next step is to slightly predict
beyond the dataset space, towards the exact MSSM. Concretely, a feature vector without any
vector-like exotics is given to the classifier to infer its orbifold origin. However, extrapolations
with machine learning models are, in general, rather difficult as no confidence intervals are given
for the predictions. In this particular case, the feature vector lies outside the border of the
dataset D. However, we use additional features besides the numbers of vector-like exotics, e.g.
the number of SM singlets and the hidden sector beta-function coefficient. These features are
not a priori fixed for the exact MSSM spectrum. Hence, we can scan over a parameter space
to predict the origin of exact MSSM spectra with a varying number of SM singlets and values
for the hidden sector gaugino beta function. Thus, the inference for the MSSM also involves
non-trivial features that are embedded in the orbifold dataset, i.e. orbifold models from the
training set have values for these features above and below the values used in the feature vectors
of this prediction task.

Moreover, the experience gained with regularized decision trees in the context of contrast
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mining (see chapter 6) indicates that these models can be utilized for predictions slightly beyond
the dataset. The general procedure of a decision tree is to divide up the feature space into smaller
subspaces. Each of those subspaces gets assigned to a class of the prediction task. Concretely,
the class is identified based on the dominant class of the models from Dtrain that lie in this
subspace. However, a decision tree necessarily leaves open subspaces at the boundary of the
training set. Since the feature vector of the MSSM is outside the region of feature vectors of
MSSM-like orbifold models, the MSSM will lie in one of these open subspaces. Still it will get
a meaningful prediction assigned, due to the models from the training set, that reside in the
same open subspace. Then, an ensemble of decision trees gives an additional regularization that
improves the generalization to a broader range in feature space. In this way, regularized boosted
decision trees can be used to get meaningful predictions.

Parameter scan for the exact MSSM

For the parameter scan we generate a new dataset DMSSM of feature vectors F MSSM that have a
zero entry for all types of vector-like exotics, i.e. F MSSM

k = 0 for k = 2, . . . , 36. Furthermore, for
each of the 4 combinations of the binary valued features “# vanishing Wilson lines” and “heavy
top from bulk”6, we generate the following sub-set of feature vectors:

• For each N ∈ {20, . . . , 350} and b ∈ {0, . . . , 36} we create one feature vector with
F MSSM

1 = N and F MSSM
40 = b,

where the sets for N and b represent the values for the # SM singlets and the hidden sector beta
function that appeared in D, respectively. Hence, in total we generate 37 · 330 feature vectors
for each combination of the binary valued features. For each F MSSM of the dataset DMSSM we
predict the corresponding point group Pi with the boosted decision tree, according to fig. 7.1.
The outcomes of this prediction are illustrated in fig. 7.5. In order to emphasize how confident
the boosted decision tree is, we introduced a transparency parameter α that indicates if one
point group dominated the prediction, or other point groups reached comparable likelihoods.
It turns out that overall, the parameter space is dominated by the two classes, Z2 × Z4 and
Z4 × Z4. These classes build up the majority of MSSM-like orbifold models in the dataset D
with 55 429, and 48 812 MSSM-like models, respectively. Moreover, they achieve the second and
third highest f1-scores and thus are reliable, see table 7.1. Beyond that, for MSSMs without a
heavy top from bulk, the Z2×Z2 orbifold point group (with 1 711 MSSM-like models) occupies
a large fraction of the prediction area, especially in cases with SM singlets < 100 , see fig. 7.5c
and fig. 7.5d. Furthermore, for MSSMs without a heavy top from bulk and without a vanishing
Wilson line, several orbifold point groups become relevant in distinct areas of fig. 7.5d.

Finally, there is a further exceptional ingredient that strengthens the prediction for the
Z2×Z4 orbifold point group. Namely, we observe the first “almost perfect” MSSM-like orbifold
models (marked as yellow points in fig. 7.5b) in the orbifold geometry Z2 ×Z4 (2, 4) and (1,6).
Their particle spectrum is very close to the exact MSSM and only contains additional Higgs-pairs.
Thus, the boosted decision tree has clear evidence to estimate this point group as the origin of
an exact MSSM spectrum. In the upcoming section, we will present one representative of the
“almost perfect” MSSM-like orbifold models, as those models were unknown in the literature to
exist.

6For the “anomalous U(1)” feature the predictions turned out to be identical. Hence, this feature is set to true
for the prediction task.

111



Chapter 7. Bottom-up guide for the heterotic orbifold landscape

20 50 80 110 140 170 200 230 260 290 320
0

10

20

30

(a) With heavy top from bulk and vanishing Wilson lines.
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(b) With heavy top from bulk but without vanishing Wilson lines. The small black region corresponds to
Z8-I. In yellow, we highlight 20 almost perfect MSSM-like orbifold models, see section 7.4.
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(c) Without heavy top from bulk but with vanishing Wilson lines. The small black regions correspond to
either Z6-II or Z8-I.
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(d) Without heavy top from bulk and without vanishing Wilson lines. The black regions:
(i) 90 - 115 SM singlets Z8-I (ii) b > 20 and ≈ 90 SM singlets Z12-I (iii) b > 30 and 140 SM singlets
Z6-I (iv) SM singlets > 290 and b . 5 Z3 × Z6 and for 5 . b . 10 Z6 × Z6.

1.0 0.91 0.82 0.73 0.64 0.55 0.45 0.36 0.27 0.18 0.09 0.0

Figure 7.5: Predicted orbifold point groups for the MSSM for four different cases (a) - (d)
depending on the features “heavy top from bulk” and “vanishing Wilson lines”: in each case, the
horizontal axis corresponds to the number of SM singlets (i.e. right-handed neutrinos), while the
vertical axis gives the beta-function coefficient b that sets the scale of supersymmetry breaking
via hidden sector gaugino condensation. The colors are associated to point groups as follows:
(i) blue: Z2 × Z4, (ii) orange: Z4 × Z4, (iii) turquoise: Z2 × Z2. Black indicates a different
point group than the three dominant ones. The transparency α := p(1st)− 3

4p(2
nd) of each pixel

indicates the difference between the highest and the second highest probabilities of the predictions,
p(1st) and p(2nd), respectively. Note that

∑
i p(Pi) = 1. Hence, the color gets very transparent

if p(1st) ≈ p(2nd). Figures adapted from [20].
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7.4 An almost perfect MSSM-like orbifold model

For the particular case of “almost perfect” MSSM-like orbifold models, we present here an
explicit construction from the orbifold geometry Z2 × Z4 (2, 4).7 The entries of the gauge
embedding matrix turn out to be

M =


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(7.4)

with the orbifold specific geometric conditions (eq. (2.25))W3 = W4 = W6 andW1 = W2 = (016).
Furthermore, the 4D gauge group reads

G4D = SU(3)flavor × SU(3)C × SU(2)L × SU(5)hidden ×U(1)Y ×U(1)6 , (7.5)

with a gauged SU(3) flavor symmetry SU(3)flavor. Concretely, the reason for this gauged flavor
symmetry is that from the massless matter spectrum given in table 7.2 we observe that the quark
doublets (q), up-type quarks (ū), electrons (ē) and up-type Higgses (hu) transform as triplets
under the SU(3)flavor. These fields live all in the bulk of the orbifold. Moreover, one down-type
quark (d̄) is a singlet of SU(3)flavor and lives in the U3-sector. Finally, the T(1,3) twisted sector
provides two down-type quarks (d̄) and lepton doublets (`).

Moreover, with respect to the MSSM this model contains exactly three additional Higgs-pairs
(hu, hd) and ten flavons f0 that transform as triplets of SU(3)flavor. These flavons contribute
10 × 3 = 30 SM singlets to the in total 75 SM singlets (s0). Their VEVs are important in this
model to explain quark and lepton masses using the SU(3)flavor as family symmetry [169, 170].

To estimate the hidden sector gaugino condensation scale, we have to analyze the chiral
spectrum with respect to the hidden sector gauge group factor SU(5)hidden. It turns out that
the massless spectrum contains two 5-plets and two 5̄-plets, that are SM singlets s0. Thus,
these SM singlets can decouple without breaking the SM gauge group or SU(5)hidden. Hence,
there is no remaining matter charged under SU(5)hidden that can contribute to the beta-function
coefficient. Thus, with C2 = 5 we obtain b = 3 · 5 = 15, which relates to the phenomenologically
interesting condensation scale Λhidden ≈ 1012 GeV eq. (7.1).

The entire set of 20 almost perfect MSSM-like orbifold models is available as arXiv ancillary
files [20]. They originate all from the Z2×Z4 point group. In detail, one model was found in the
(1, 6) orbifold geometry and 19 in the (2, 4) orbifold geometry. These 20 almost perfect MSSM-
like orbifold models are very similar in their massless matter spectrum. To get an overview
concerning their hidden sector gaugino condensation scale, we marked these 20 almost perfect

7Note, for this geometry, the two rotational generators are roto-translations.
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sector # irrep labels

U1 1 (3; 3,2; 1)1
6

qi

1 (1; 1,2; 1)
−1

2
`i or hd

2 (1; 1,1; 1)0 s0
i

U2 1 (3̄; 1,2; 1)
−1

2
`i or hd

1 (3; 1,2; 1)1
2

hu

U3 1 (3; 3̄,1; 1)
−2

3
ūi

1 (1; 3̄,1; 1)1
3

d̄i

1 (3; 1,1; 1)1 ēi
2 (1; 1,1; 5̄)0 s0

i

1 (1; 1,1; 1)0 s0
i

T(1,3) 22 (1; 1,1; 1)0 s0
i

2 (1; 3̄,1; 1)1
3

d̄i

2 (1; 1,2; 1)
−1

2
`i or hd

10 (3̄; 1,1; 1)0 f0
i

2 (1; 1,1; 5)0 s0
i

Table 7.2: Massless matter spectrum of an “almost perfect” MSSM-like orbifold model origi-
nating from the Z2 × Z4 (2, 4) orbifold geometry. The third column gives the irreducible repre-
sentations with respect to the gauge group factors in the order G4D = SU(3)flavor × SU(3)C ×
SU(2)L × SU(5)hidden ×U(1)Y ×U(1)6.

MSSM-like orbifold models as yellow points in fig. 7.5b. For further details on these models see
[20].

However, a detailed phenomenological investigation of these models is not possible. Unfor-
tunately, those orbifold geometries correspond to the two exceptions for the Z2×Z4 point group
for which R-symmetries are not understood [158, 171–173]. Hence, to analyze the almost perfect
MSSM-like orbifold models, the R-symmetries have to be re-analyzed for these orbifolds.

Finally note that, even though the Z2 × Z4 point group is one of the majority classes, i.e.
48 812 MSSM-like orbifold models, the specific geometries Z2 × Z4(1, 6) and Z2 × Z4(2, 4) of
this point group lead to only 82 and 320 MSSM-like orbifold models, respectively. Thus, further
investigation on the impact of the specific lattice for the same point group might reveal why
these minority classes achieve almost perfect MSSM-like models.

7.5 Chapter summary

In conclusion, the trained predictive model shows that the heterotic orbifold landscape gets
partitioned into several sub-landscapes that strongly correlate to phenomenological properties.
Concretely, the point group P that underlies an orbifold geometry leaves a particular imprint
on the particle spectrum of vector-like exotics and some additional phenomenological features.
This imprint can be exploited to assign likelihoods to the point group’s capability of creating a
certain MSSM-like particle spectrum. Furthermore, we present the first “almost perfect” MSSM-
like orbifold models, see table 7.2. They originate from the Z2 × Z4 (1, 6) and (2, 4) orbifold
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geometries. These findings may encourage further research to complete the understanding of
R-symmetries for these two Z2 × Z4 orbifold geometries [158, 171–173].

Moreover, fig. 7.3 implies, that it is possible to utilize the hidden sector gaugino condensa-
tion scale to formulate a refined definition of MSSM-like models. In detail, the dataset D of
inequivalent MSSM-like spectra can be reduced by ≈ 50% if models with Λhidden . 105 GeV are
excluded. In the upcoming chapter 8, we show how this refined definition of MSSM-like models
can be used for contrast mining patterns, from section 6.2, to further reduce the landscape.
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Chapter 8

Interplay of machine learning results

In this section, we are revealing the interplay among the machine learning approaches and
illustrate how synergy effects can be used for further improvements. Concretely, the effects of
the different machine learning approaches are studied among each other, e.g.: Where lie the new
contrast mining MSSM-like models from table 6.6 in the 2-dimensional autoencoder clustering
of chapter 5 ? How does the phenomenological property of hidden sector gaugino condensation
from chapter 7 correlate with the contrast mining pattern on the hidden E8 eq. (6.24)? Each
of the machine learning approaches individually is able to produce insights into the heterotic
orbifold landscape. However, it is important to examine how these concepts interact with each
other. Note, for clarity, we will refer to the large-scale random scan of type fig. 4.1, observed
in chapter 5, as C2PAP random search, since it was generated by runs on the Computational

Center for Particle and Astrophysics compute cluster.

Therefore, let us start by examining the behavior of the special MSSM-like models generated
in the contrast mining procedure. First, regarding the prediction of the decision tree DTCluster
trained to decide on which island the MSSM-like models are located, see eq. (5.14). The pre-
dictions are summarized in table 8.1. Although the models of the contrast mining techniques
originate from areas in the landscape that are very different from the C2PAP random search (see
fig. 6.6), nevertheless, 2/3 of the contrast mining MSSM-like models are assigned to the fertile
islands. This is the same ratio as obtained for the C2PAP and Mini-Landscape datasets from
chapter 5. Hence, this confirms the reliable predictive power of the autoencoder clustering that
extends beyond the C2PAP random search.

Consequently, the question arises: Are those patterns different from the contrast mining
patterns (particularly the phenomenological patterns eq. (6.13)), or do the patterns of the two
methods correlate? Hence, it is crucial how the complete contrast mining dataset of Z6-II (1,1)
interacts with the clustering, i.e., how the ����MSSM-like models distribute in the latent space. The
position of the contrast mining models from table 6.2, projected by AEencoder eq. (5.11) into the
2-dimensional chart1 of the heterotic orbifold landscape, is shown in fig. 8.1. Although these
models already obey the SM gauge group in the first E8 and have a hidden gauge group bigger

than N
(2)
ur ≥ 6, they still populate all the clusters from the autoencoder approach. This implies

that the autoencoder was not able to recognize these underlying conditions in its clustering. The
result indicates that the two methods are orthogonal to each other, and therefore one method
can improve on the other since they found different patterns that do not correlate. Moreover, the
MSSM-like models from contrast mining populate the fertile islands of the landscape in similar
proportion to other datasets, e.g. compare with table 8.1. Note the autoencoder latent space

1The ability to project new instances into the same 2-dimensional space is not given for another powerful
2-dimensional projection technique named t-SNE [190].
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region Contrast Mining C2PAP

R0 156 65

fe
rt
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e
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n
d

s

R1 63 48
R2 63 21
R3 47 11
R4 35 18
R5 19 6
R6 20 3
R7 2 2
R8 2 2
R9 4 1
R10 36 12
R11 34 6

total 481 195

Table 8.1: Classification of 481 contrast mining MSSM-like Z6-II (1,1) models within the
various regions Ri of the landscape, as predicted by the decision tree DTCluster eq. (5.14). For
comparison the 195 MSSM-like models from the C2PAP random search of chapter 5 are given.

can be used as a filter in the contrast mining approach. This filtering is more effective than
in the C2PAP random search, as the contrast mining approach forces the algorithm to produce
models with involved particle content. The computational time on the physically more intricate
models is significantly increased for the orbifolder, compared to the models excluded from the
contrast mining patterns. Hence, the fast decision if the model lies in the fertile island can save
computational time if applied after the sophisticated search algorithm fig. 6.3.

Furthermore, merging the 195 MSSM-like models from the C2PAP random search in chap-
ter 5 with the 481 MSSM-like models of the contrast mining search, chapter 6, results in 517
inequivalent models. This is an unexpected increase in inequivalent MSSM-like models given
table 6.6, from which it appeared that new models are complicated to find. Moreover, other
MSSM-like models from the Mini-Landscape do not contribute further models. In this context,
it is crucial that the 195 MSSM-like models likewise extend the old scans in the literature [126,
127] by 89 models. Hence, this demonstrates that the guided searches with W5 = (016) and
the Mini-Landscape are different from the C2PAP random search and make up the majority of
MSSM-like models known in the literature. Even though the C2PAP random search was intense,
it only led to 195 inequivalent MSSM-like models. This scan corresponds to the phenomenolog-
ically unconstrained search, i.e. 1 out of 107 modular invariant gauge embedding matrices M
results in an equivalent MSSM-like model (see the last paragraph in section 6.1.2). This implies,
that in order to find 195 inequivalent MSSM-like models it is reasonable to assume that O(103)
equivalent MSSM-like models were produced (compare to table 6.2), thus we can estimate that
O(1010) modular invariant Z128 points where tested in the C2PAP random search.

Astonishingly, all new models from the C2PAP random search of the Z6-II (1,1) landscape

obey the contrast mining conditions, in particular, they have the properties N
(2)
ur ≥ 18 and

fulfill the U -sector condition. This observation is a great success for the generalization of the
contrast mining patterns. No MSSM-like model of Z6-II (1,1) scans in the literature, and even
the large-scale C2PAP random search was able to violate the contrast patterns.2 Note that the

2Only the special ∆(54) models with W3 = (016) do not obey all U -sector conditions, however, they were found
by the contrast mining search itself, see section 6.2.5.
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Figure 8.1: Projection AEencoder eq. (5.11) of the models constructed by the contrast mining
successive search (fig. 6.3) with the hidden E8 eq. (6.24) and SM gauge group eq. (6.13) con-
straint. It is fascinating that still all areas, in particular all blue areas, are populated by this
very specific dataset. The red triangles visualize the combined set of the 481 MSSM-like models
from contrast mining and the 195 MSSM-like models from the C2PAP random search. In total,
there are 517 inequivalent MSSM-like models.

C2PAP random search, as discussed in chapter 6, scans especially in the area excluded by the

hidden E8 constraint, i.e. N
(2)
ur < 6 . Nonetheless, it was impossible to find a model that violates

this condition. Identical arguments hold for the U -sector constraints.

Let us stress the importance of the contrast mining constraints with additional observations
on the models that can host G

′
SM in both E8 factors. So far, those models were excluded from

the analysis as it can not be decided during the construction process, which E8 becomes the
hidden E8 sector. However, they do not violate the constraints either. It is always possible to
choose one of both E8 factors (there exists the Z2 of both E8 factors section 4.2) as the hidden
sector such that all the contrast mining patterns are satisfied. In other words, not a single model
of this type violates the conditions for the U -sector.3 For some models, both variants satisfy
the contrast conditions, i.e. it is irrelevant which E8 factor is assigned to be the hidden sector.
These are significant indications that the contrast mining patterns are fundamentally connected

3Recall from section 6.2.5 that the hidden E8 lower bound is trivially fulfilled.

119



Chapter 8. Interplay of machine learning results

6 8 10 12 14
log10( hidden / GeV)

0

20

40

60

80
N

(2
)

ur

Figure 8.2: Contrast mining pattern dynamic hidden E8 eq. (6.31) correlates strongly with
the gaugino condensation scale. The vertical dashed line is at ln(Λhidden/GeV) = 11 and the

horizontal line at N
(2)
ur = 20. We see with this new phenomenological ingredient the observed

contrast patterns gain importance, and the lower bound on the hidden E8 could be raised.

to the property of a model to be MSSM-like.
Finally, it is interesting that the efforts from predicting the orbifold origin of the exact

MSSM (chapter 7) link to the contrast mining constraints. In particular, we want to analyze the
connection of the hidden sector gaugino condensation scale to the contrast patterns. A direct
investigation of the hidden sector gaugino condensation is not possible during the successive
creation of the gauge embedding. The resulting hidden gauge group and the matter content
depend non-linearly on the subsequent Wilson lines. Furthermore, the condensation scale is
connected to the decoupling assumption of the vector-like exotics, see section 7.1. Interestingly,
the observed pattern for the hidden E8 unbroken roots correlates phenomenologically benefi-
cial with the hidden sector gaugino condensation scale, see fig. 8.2. Concretely, higher values
X for the hidden E8 constraints generically increase the gaugino condensation scale and hence
make the models phenomenologically more viable for supersymmetry breaking at the TeV scale.
Moreover, it appears from fig. 8.2 that the contrast pattern, here in the case of Z6-II (1,1),
can improve to reduce the landscape further by taking this supplementary phenomenological

property into account. Recall the estimated growth rate gr
(
N

(2)
ur ≥ 20

)
= 12 from table 6.4,

which indicates that for the threshold in fig. 8.2 the reduction of the landscape would be sig-
nificant. Furthermore, remember from fig. 7.2 that this effect is even stronger for the whole
MSSM-like orbifold landscape as other geometries produce even more models in the region of
small supersymmetry breaking scales. This connection can lead to an immediate impact of the
gaugino hidden sector condensate on the scans, even though it can not be tested directly.

To summarize, the above results suggest that we uncovered some building blocks that can
be iteratively applied to reinforce each other and lead to a virtuous circle of further insights into
the heterotic orbifold landscape.
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Chapter 9

Conclusion and outlook

In this thesis, we have studied several phenomenological aspects of orbifold compactifications in
heterotic string theory. After a concise introduction to the string theory framework in chapter 2,
the starting point in chapter 3 is an analysis of a perturbatively vanishing cosmological constant
Λ at the one-loop level, in the context of non-supersymmetric heterotic orbifolds. The one-
loop vacuum amplitude that computes Λ can be factorized according to the (twisted) sectors
of the orbifold geometry. We show that for a model-independent vanishing, it is sufficient that
each of these sectors preserves a local Killing spinor. Investigating this option, this results in a
non-existence proof that for non-supersymmetric heterotic orbifolds, there exists always at least
one twisted sector without a local Killing spinor. Moreover, we connect this to a more general
group theoretical no-go conjecture that we verify for O(100 000) finite groups. This observation
emphasizes how important further considerations of a general formalism for non-Abelian orbifold
point groups are. Furthermore, the study of the model details, in non-supersymmetric theories,
seems to be unavoidable in tackling the issue of the cosmological constant in this setting. For
both concerns, our analysis provides the basis for such investigations.

In light of the obstacles associated with the cosmological constant for non-supersymmetric
theories, we study the structure of the supersymmetric heterotic orbifold landscape with Abelian
point groups. The ultimate goal is to confirm the importance of string theory by explicitly
constructing a string model that reproduces the spectrum of the MSSM in the low energy
limit. Hence, the searches focus on MSSM-like models that allow for vector-like exotics beside
the exact MSSM spectrum. In chapter 4, we introduce a statistical procedure to solve the
intricate modular invariance conditions for the gauge embedding compactification parameters.
Here we also explore the parameter space neighborhood of an MSSM-like model in the Z6-II (1,1)
landscape. This makes clear how disordered the landscape appears as the local neighborhood
consists of entirely different physical models as well as numerous string-inconsistent models. We
develop a statistical method to explicitly compute the extraordinary low probability to find a
set of modular invariant compactification parameters and thus verify the necessity for a guiding
principle when exploring the landscape.

Therefore, we pioneer in this thesis in applying the new and powerful techniques of machine
learning to the string landscape. In chapter 5, we construct a representation of the Z6-II (1, 1)
orbifold compactification parameters, that is invariant under the symmetries of the landscape.
This enables us to train an autoencoder neural network to project the O(100) compactification
parameters highly non-linearly to a 2-dimensional representation. The resulting chart reveals
the clustering of MSSM-like models, even though the neural network had no access to the related
physics of the parameters. In this representation, the physically realistic models are traceable for
the first time. Concretely, the MSSM-like models accumulate and populate specific regions, so-
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called fertile islands. In those islands, the proportion of MSSM-like models is approximately 20
times higher than in the rest of the projected landscape. The significant dimensional reduction
of the parameter space in combination with a physically meaningful clustering illustrates the
high informational content of the 2-dimensional chart. Hence, the search technique based on
the uncovered fertile islands provides a prime example for a systematic search in the landscape.

Inspired by the vast area in the autoencoder clustering that does not contain realistic 4D
models, we work out in chapter 6 an advanced search strategy that directs the construction
process towards areas that can produce phenomenologically viable models. Therefore, we an-
alytically reduce the search space by developing a method to divide out the Weyl group (with
O(1017) elements) of the landscape. Furthermore, the search is informed about the necessity to
reproduce the SM gauge group, which excludes 90% of the Z6-II (1,1) orbifold parameter space.
Proceeding to these substantial reductions of the landscape, a data-driven approach, so-called
contrast mining, is utilized. This statistical analysis yields constraints with clear physical in-
terpretation. Namely, lower bounds on the number of unbroken roots in the hidden E8 and the
number of bulk matter fields emerge. Imposing these bounds raises the probability of obtaining
MSSM-like models tremendously. Moreover, we develop a systematic search that reaches corners
of the parameter space that hold many inequivalent MSSM-like models but are hardly accessi-
ble by the normal random search. Finally, since the improved search for MSSM-like models is
not only superior by orders of magnitude but also easily generalizable to all Abelian orbifold
geometries, a considerably more comprehensive dataset of MSSM-like models is obtained. This
leads to the first practical results of machine learning in string theory. Concretely, the search
solves long-standing issues and can find special models, such as those with ∆(54) flavor sym-
metry (W3 = W4 = (016)) in the Z6-II (1,1) orbifold geometry or MSSM-like models in Z7 (1,
1) geometry, that previous random searches could not discover. This substantially improved
datasets of MSSM-like models are published as ancillary files of [20, 21].

The generalization of the contrast patterns showed that the specific numerical threshold
values on the number of unbroken roots in the hidden E8 and the bulk matter fields correlate
with the point group P that underlies an orbifold geometry. Hence, in chapter 7, we investigate
the phenomenology of MSSM-like models and discover that a boosted decision tree is suitable
to infer the point group P the MSSM-like model originates from. In detail, phenomenological
properties like the various types of vector-like exotics (see table D.1 and table D.2), the number
of SM singlets, the existence of non-Abelian flavor symmetries, and the hidden sector beta
function relevant for supersymmetry breaking via gaugino condensation are considered. This
observation is an important step that indicates that the specific orbifold compactification leaves
an imprint on the particle spectrum and divides the orbifold landscape into phenomenological
sub-regions. Consequently, it is also possible to predict the most likely origin of perfect MSSM
models, i.e. models with additional SM singlets but no vector-like particles in the spectrum.
This prediction is performed over various values for the number of SM singlets and the hidden
sector beta function. Almost the whole parameter space is occupied by Z2 × Z4, Z4 × Z4 and
Z2×Z2 and some rare exceptions of other point groups. In this regard, we find the first almost
perfect models from heterotic orbifolds, that solely have Higgs-like fields as additional vector-like
particles from orbifolds with Z2 × Z4 point group. Hence, these astonishing results provide a
natural indicator to focus future searches on the orbifold geometries related to the predicted
point groups.

The individual machine learning results mean enormous progress in understanding the land-
scape. However, there is even more in the interesting interplay between the different approaches.
In chapter 8, we point out that the new type of MSSM-like models from the advanced contrast
mining search still accumulate in the fertile islands of the autoencoder clustering. This strength-
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ens the generalization property of the islands that operate on entirely new models. Furthermore,
the contrast mining patterns of chapter 6 are orthogonal to the patterns that lead to the cluster-
ing of the MSSM-like models in chapter 5. Concretely, the autoencoder projects a huge amount
of not MSSM-like models, from the advanced search to the region outside of the fertile islands.
Thus, these methods can improve on each other as their provided information is not correlated,
and both identify complementary regions of the landscape that do not lead to MSSM-like mod-
els. Moreover, we increase in chapter 8 the statistical evidence for contrast mining patterns to
have an analytical connection to the MSSM-like models. The large-scale search of the Z6-II (1,1)
landscape from chapter 5 scans mainly in the region of possible counterexamples. Even though
this large-scale scan finds several novel MSSM-like models, they all confirm the contrast mining
conditions. Further developments of contrast patterns in combination with investigations to find
their analytical source is a fascinating research direction.

In addition, we show in chapter 8 that the hidden sector gaugino condensation scale of
MSSM-like models correlates with the number of unbroken roots of the hidden E8, such that the
constraint from chapter 6 can be improved. This may spark a renewed interest in the detailed
computation of the hidden sector gaugino condensation scale, i.e. the threshold corrections, as
this feature is crucial to predict the orbifold origin of the perfect MSSM in chapter 7. The precise
supersymmetry breaking scale can now directly be translated to contrast mining constraints on
the hidden sector. Thus, this phenomenological property gets incorporated in further reduction
of the landscape and a refined search for MSSM-like models.

Besides, the methods presented in this thesis are not limited to the heterotic orbifold land-
scape. This work already inspired the first attempts in this direction. In particular, the autoen-
coder clustering of chapter 5 is applied to other compactification schemes based on Calabi-Yau
threefolds with line bundles [174, 175]. Similar to our findings, there exist clusters of phenomeno-
logically realistic models in this schemes. Thus, the developed techniques are far more general
and can be used in different compactification attempts. To generalize the prediction of the per-
fect MSSM origin, from chapter 7, across compactification techniques, seems an important step
to classify compactification methods and to focus the search effort in the future.

Constraints to reduce the landscape and the construction mechanism fig. 6.3 reshape the
probability mass function of the compactification parameters to approximate the distribution
for MSSM-like models. A straightforward implication would be to use the large set of MSSM-
like models, gathered in chapter 6, to learn the probability distribution of the compactification
parameters for MSSM-like models. In the context of neural networks, several approaches to
estimate joint probabilities of utmost complexity exist. Those models correspond to the type
of generative models, e.g. variational autoencoders (VAE) [204], generative adversarial neural
networks (GANs) [205, 206] and autoregressive models, like PixelCNN [185, 207]. Primarily
GANs have been used in string theory related investigations [176, 177]. Initial tests suggest that
an autoregressive approach is conceivable for the heterotic orbifold landscape. These models
would extend the procedure fig. 6.3 and predict a distribution for every single compactification
parameter based on all previously drawn parameters. Thus, further exploration to find the
distribution of compactification parameters that relate to MSSM-like models seems promising.

During the investigations of this thesis it was observed that neural networks have difficulties
to approximate the function of the orbifolder. Indeed, the modulo operations of orbifold
projections are challenging to model for neural networks and need very high capacity, i.e. many
adjustable parameters. Hence, it seems beneficial in physical applications to implement the
system knowledge in the neural network architecture. Learnable activation functions [208] based
on periodic functions, e.g. Fourier expansions, could be useful to allow the network to learn
the modulo operation. A first attempt to improve the extrapolation behavior on Calabi-Yau
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threefold hypersurfaces in toric varieties [178] used equation learners [209], which utilize a set
of base functions, inspired from natural science, as activation functions. This could be a joint
improvement for machine learning and physics to include more concrete functional dependencies
into the neural network to make it more efficient and precise.

An essential parallel aspect of the results of this thesis is that the search for MSSM-like
models is vastly improved for inequivalent and most importantly, equivalent MSSM-like particle
spectra in chapter 6. As we reduce the amount of symmetry that can lead to exactly equivalent
physical models, these models may still vary in additional model parameters. Hence, there is a
necessary demand to compute more details of the models, e.g. the Yukawa couplings and the
decoupling scenarios of the vector-like exotics towards the MSSM [77]. The intriguing results
for almost perfect MSSM models and the new insight on the phenomenological imprint of an
orbifold geometry, seem to be an exciting exploration task to close the gap and find the perfect
MSSM in string theory.
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Appendix A

Representation theory of SO(6),
Spin(6) and SU(4)

A.1 SO(6)

For the so(6) Lie algebra the generators Jij in the vector representation can be given by,

(Jij)kl = δikδjl − δjkδil , (A.1)

for i, j = 1, . . . , 6. Jij = −Jji for i < j and i, j = 1, . . . , 6 and form a basis of anti-symmetric
6×6 matrices. Jij generates a rotation in the (Xi, Xj)-plane. The exponential map from the Lie
algebra so(6) to the Lie group SO(6) for a specific element θ is specified by the anti-symmetric
parameters ωij as

θ = exp
(

1
2 ωij Jij

)
. (A.2)

A.2 Spin(6)

The Euclidean Clifford algebra in six-dimensions is generated by 8×8 Hermitian gamma matrices
Γi, i = 1, . . . , 6 [179],

{
Γi,Γj

}
= 2 δij 18 , Γ̃2 = 18 ,

{
Γi, Γ̃

}
= 0 . (A.3)

where the chirality operator Γ̃ = i Γ1 Γ2 . . .Γ6. With the chirality operator we can define the
Weyl-spinors using the projectors,

P (±) =
18 ± Γ̃

2
with

(
P (±)

)2
= P (±) and P (+) P (−) = 0 . (A.4)

The charge conjugation matrix C has the properties

C ΓiC
−1 = ΓTi , C Γ̃C−1 = − Γ̃T , C† = − CT = C . (A.5)

It follows that, C P (±)C−1 = (P (∓))T and (CΓi)
T = −CΓi are anti-symmetric matrices. With

the anti-Hermitian spin generators Σij ,

Σij = − Σji = 1
4

[
Γi,Γj

]
, C Σij C

−1 = − ΣT
ij , and Tr(Σij) = 0 , (A.6)
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we can define the spin representation as

Ds(θ) = exp
(

1
2 ωij Σij

)
with C Ds(θ)C

−1 = Ds(θ
−1)T = Ds(θ)

∗ , (A.7)

The generators Σij fulfill the so(6) Lie algebra that can be defined from the generators Jij of
the vector representation of so(6) given in eq. (A.1). Furthermore, Ds(θ) is a unitary matrix,
since Ds(θ)

† = Ds(θ
−1) = Ds(θ)

−1.
Thus, the vector and spinor representation are related by

Ds(θ)
T CΓiDs(θ) = θij CΓj . (A.8)

The quadratic form of the left hand side shows that Spin(6) is the double cover of SO(6), as
−Ds(θ) and Ds(θ) result in the same SO(6) group element θ. This means that the generators
θα of the geometrical point group P ⊂ SO(6), can be connected in two different ways to the
corresponding Spin(6) generators: Ds(θα) or −Ds(θα). Contrary, Ds(θ) determines θ uniquely,
i.e.

θij = 1
8 Tr

[
Ds(θ

−1) ΓiDs(θ) Γj
]
, (A.9)

using eq. (A.8) and eq. (A.7).

A.3 SU(4)

For a convenient chiral basis we give the six-dimensional Clifford algebra in terms of the five-
dimensional Clifford algebra. Concretely, we observe for the gamma matrices Γi, chirality oper-
ator Γ̃ and charge conjugation C that,

Γi =

(
0 γ̄i
γi 0

)
, Σij =

(
σij 0
0 σ̄ij

)
, Γ̃ =

(
14 0
0 −14

)
, C =

(
0 c
c 0

)
, (A.10)

where γ̄κ = γκ, κ = 1, . . . , 5, and charge conjugate matrix c, satisfying c γκ c
−1 = γTκ and

c† = c−1 = −cT in five dimensions and −γ̄6 = γ6 = i14. Similarly, we express the spin
generators Σij eq. (A.6) in terms of anti-Hermitian su(4) generators,

σij = 1
4(γ̄iγj − γ̄jγi) and σ̄ij = 1

4(γiγ̄j − γj γ̄i) , (A.11)

that are all traceless. The two sets of 15 generators related to each other by σ̄ij = −c−1 σTij c.
This allows us to use the the projectors eq. (A.4) to define the two irreducible chiral repre-

sentations D
(±)
s (θ) = P (±)Ds(θ), from the reducible spin representation eq. (A.7). Those can

be identified with the SU(4)-matrices

D4(θ) = exp
(

1
2 ωij σij

)
D4̄(θ) = exp

(
1
2 ωij σ̄ij

)
, (A.12)

generated by the matrices σij and σ̄ij , as

D
(+)
s (θ) =

(
D4(θ) 0

0 0

)
, D

(−)
s (θ) =

(
0 0
0 D4̄(θ)

)
, (A.13)

respectively. Note, that the four-dimensional representations 4 and 4̄, are connected by charge
conjugation (A.7) as D4̄(θ) = c−1D4(θ−1)T c.
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A.4 An explicit Spin(6) basis

A convenient choice for the Γ-matrices in six dimensions is given by

Γ1 = σ1 ⊗ 12 ⊗ 12 ,
Γ2 = σ2 ⊗ 12 ⊗ 12 ,

Γ3 = σ3 ⊗ σ1 ⊗ 12 ,
Γ4 = σ3 ⊗ σ2 ⊗ 12 ,

Γ5 = σ3 ⊗ σ3 ⊗ σ1 ,
Γ6 = σ3 ⊗ σ3 ⊗ σ2 ,

(A.14)

where the chirality operator reads

Γ̃ = σ3 ⊗ σ3 ⊗ σ3 . (A.15)

Furthermore, the corresponding Cartan algebra of Spin(6) can be represented by commuting
spin generators Σ1 = Σ12, Σ2 = Σ34 and Σ3 = Σ56 given by

Σ1 = i
2 σ3 ⊗ 12 ⊗ 12 , Σ2 = i

2 12 ⊗ σ3 ⊗ 12 , Σ3 = i
2 12 ⊗ 12 ⊗ σ3 . (A.16)
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Appendix B

Statistical methods

B.1 Probabilities

In a frequentist [210] perspective the probability Pr(X) of an event X is given by the proportion

of occurrence P̂r(X) for observed events,

P̂r(X) =
|X|
N

N→ ∞−−−−−→ Pr(X) , (B.1)

which converges to the true probability for an infinite number of trials N .

The basic computation rules for probabilities Pr(X) of an event X, can be summarized by
the sum and product rule [194],

Pr(X) =
∑

Y

Pr(X,Y ) , (B.2)

Pr(X,Y ) = Pr(X|Y ) Pr(X) , (B.3)

where Pr(X|Y ) is the conditional probability for X, given that event Y appeared and Pr(X,Y )
is the joint probability of X and Y . Even though these building blocks are simple, they are
frequently used and can lead to superior solutions, see fig. 4.1. Moreover, they are a crucial
concept in generative deep learning models, i.e. so-called autoregressive models.

B.2 Distributions

In the context of this thesis, some distributions are frequently used and are summarized here.

Let us start with the discrete uniform distribution,

d ∼ U{a, b} . (B.4)

Using this distribution one draws d from the integer set X = {a, a + 1, . . . , b }, i.e. a, b ∈ Z,
with equal probability for each element of the set Pr (x ∈ X) = 1

b−a+1 to occur as result. As the
distribution is discrete it corresponds to a probability mass function for d.

The most famous probability distribution used in this thesis is the normal distribution (or
Gaussian),

N (µ, σ2) =
1

σ
√

2π
e−

1
2(x−µσ )

2

. (B.5)
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Specified by the parameters mean µ and standard variance σ, it gives the probability density
function for the random variable x ∼ N (µ, σ2). The normal distribution is used for statistical
approximations that are based on the central limit theorem. This theorem ensures that the
distribution of the means µ, of any distribution, are converging towards a normal distribution.
In this context, also the confidence intervals are easy to compute, and several well-defined
approximations exist.

Finally, there is the binomial distribution. This distribution is used in scenarios like the
results of a coin flip. In this thesis, something similar happens when drawing dkI from the discrete
Uniform distribution and observe if the resulting vector Mk fulfills the corresponding modular
invariance conditions or not. Moreover, for some statistical experiments, the distribution of the
samples can not be approximated by the normal distribution, e.g. because the event of interest
does not occur at all in the sampling due to a very tiny probability of appearance. The binomial
distribution reads,

B(t, p) =

(
t

n

)
(1− p)(t−n) pn , (B.6)

which is parameterized by t ∈ N the number of trials and p ∈ [0, 1] the probability of the
desired event to occur. This probability mass function then assigns different probabilities to the
resulting n, i.e. the likelihood of a certain number of occurrences, such that n ∼ B(t, p). This
interpretation will later be inverted as the number of occurrences n is set such that one obtains
the probability for the number of trials to reach n.

Data points that are drawn independently from the same distribution are said to be inde-
pendent and identically distributed, which is often abbreviated by i.i.d. .

B.3 Estimating probabilities

The purpose of this section is to provide the statistical details for the statistics of the het-
erotic orbifold landscape (chapter 4) and the confidence intervals on the contrast patterns from
section 6.2.2.

B.4 Binomial distribution and the probability of succeeding

In section 4.1 one draws the coefficients dkI from a discrete uniform probability mass function
eq. (B.4) in order to statistically solve the modular invariance conditions (MI) eq. (2.46). The
building block is the probability,

Pr
(
Mk = MI

∣∣∣ {Mi}k−1
i=1 = MI

)
with {Mi}k−1

i=1 = {M1, . . . ,Mk−1} , (B.7)

to draw a set of dkI such that the corresponding 16-vectorMk satisfies the corresponding modular
invariance conditions, i.e. all modular invariance conditions that only contain the already drawn
Mi from i = 1, . . . , k − 1 and the new Mk. This can be modeled by a binomial probability
distribution. Therefore, let us denote the probability of success by p. Hence, the probability
distribution to find n modular invariant 16-vectors within t trials is given by eq. (B.6). During
the process of constructing modular invariant gauge embedding matrices, we can count the
number of failures until we find Mk such that modular invariance is fulfilled. This means we can
keep track of the case n = 1 counting the number t of trials. Note that the binomial factor equals
one as we only consider the single combination for the successful drawing to appear, i.e. at the
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B.4. Binomial distribution and the probability of succeeding

Event E(t) Pr
(
Mk

∣∣∣ {M}k−1
i=1 = MI

)
σ

V1 = MI 6.04 1.66 · 10−1 2.31 · 10−4

V2 = MI | V1 = MI 1.00 1.00 0.00

W1 = MI | {V1, V2} = MI 1.00 1.00 0.00

W2 = MI | {V1, V2,W1} = MI 1.00 1.00 0.00

W3 = MI | {V1, ...,W2} = MI 36.04 2.775 · 10−2 1.019 · 10−4

W4 = MI | {V1, ...,W3} = MI 1.00 1.00 0.00

W5 = MI | {V1, ...,W4} = MI 282.57 3.5389 · 10−3 3.6841 · 10−5

W6 = MI | {V1, ...,W5} = MI 1131.99 8.83400 · 10−4 1.84311 · 10−5

Table B.1: Results from a dataset D in Z6-II (1,1) with 106 constructed modular invariant
gauge embedding matrices with β = 2. The first column describes the event to occur in the
successive construction of gauge embedding matrices. The second column shows the mean number
of trials in D, necessary to find a 16-vector that fulfills the corresponding modular invariance
conditions. The third column is the resulting estimate for the probability of finding a 16-vector
eq. (B.11). The last column gives the standard deviation eq. (B.12) for the probability of the
third column.

last step. This means we stop the trials t as soon as a valid vector is drawn. This constraint
appears to form the specifics of our counting technique. Hence,

Pr(t) = (1− p)(t−1)p . (B.8)

Then we can compute the expectation value of t, i.e. the mean of t:

E[t] =
∑

t

t Pr(t) =
∞∑

t=1

t (1− p)(t−1) p = p
∞∑

t=1

t (1− p)(t−1) = p
1

p2
=

1

p
, (B.9)

where we used the geometric series,

f =
∞∑

t=0

a0 q
t =

a0

1− q ⇒ df

dq
=

∞∑

t=1

a0 t q
(t−1) =

a0

(1− q)2
. (B.10)

Therefore, the probability to find a valid 16-vector can be estimated by the mean of all the trials
constructing this 16-vector,

Pr
(
Mk = MI

∣∣∣ {Mi}k−1
i=1 = MI

)
=

1

E(t)
, (B.11)

with t the number of trials until a consistent 16-vector was drawn. To be precise the probability

of success p is given by Pr
(
Mk = MI

∣∣∣ {Mi}k−1
i=1 = MI

)
. The label k is inherently in t as only

the trials for the specific 16-vector Mk are used in the computation. The results on a dataset
generated according to the successive search in fig. 4.1 with β = 2 are given in table B.1
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B.5 Confidence interval and margin of error

A standard procedure to estimate the margin of error of a variable for a certain confidence inter-
val is given by approximating the sampling distribution by the normal distribution N

(
µ|σ2

)
.1

Especially in our case, this is a valid approach since the central limit theorem guarantees that
the distribution of the mean of any distribution converges to the normal distribution. Remember
that we will primarily be interested in the mean as in eq. (B.11). Our goal is to find the range
within the unknown actual probability Pr(A) lies with a certain confidence level. As we have no
direct access to the probability Pr(A), we will take finite samples from the distribution behind

Pr(A) and compute the sample proportion P̂r(A). This sample proportions distribute as the

normal distribution with Pr(A) as the mean µ. Hence, with 95% the P̂r(A) are in the range of
2σPr(A) of the true probability Pr(A). This statement can be reformulated in a more practical

one, as it is equivalent to a 95% probability that Pr(A) is within 2σ
P̂r(A)

of P̂r(A). Hence, we

can estimate the true probability Pr(A) on the statistics of our samples to which we have full
access. The standard error σ

P̂r(A)
is an unbiased estimator for σPr(A) such that we find,

σ
P̂r(A)

=

√√√√ P̂r(A)
(

1− P̂r(A)
)

n
. (B.12)

Error propagation

With eq. (B.12) we can estimate the margin of error for the probability of finding an individual
Mk vector in the successive construction of the gauge embedding matrix M . To estimate the
error for the full gauge embedding matrix M we can use table B.1 and the error propagation
formula [211],

σf =

√√√√∑

x

(
∂f

∂x

)2

σ2
x , (B.13)

where in our case f corresponds to Pr(M = MI) and the sum over x goes over the probabilities

for finding the Mk vectors, i.e. Pr
(
Mk = MI

∣∣∣ {Mi}k−1
i=1 = MI

)
for k = 1, . . . , 8. Assuming a

vanishing covariance between the different probabilities.

B.6 Probability of absent events: The Rule of Three

In case a specific event X did not appear in the sampling procedure, the typical method of
using the normal distribution to compute the margin of errors is not a valid approximation.
Then the so-called ‘Rule of Three’ method can be applied [212, 213]. In detail, the method
is based on the binomial distribution, i.e. on the binomial one-sided confidence interval for
the binomial distribution eq. (B.6) with t number of trials and n number of times event X
appears. For example X can be MSSM-like models that do not fulfill the contrast pattern
constraint eq. (6.24). Then, p is the probability of such an absent event to occur in a broader
scan, e.g. to find an MSSM-like model that does not fulfill the constraint. Hence, since the
absent event X does not occur at all (n = 0), we find,

Pr(X is absent) = (1− p)t . (B.14)

1This approximation is only valid for certain constraints on the total number of samples n and the probability
p of a binary event [180], e.g. a popular qualification is that the approximation holds if np ≥ 5 and n(1− p) ≥ 5.
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B.6. Probability of absent events: The Rule of Three

The aim is to estimate the probability p, which can be done in a certain confidence interval
(CI). The probability of observing only negative results can have any value provided that it is
more significant than (1−CI). Otherwise, it is assumed to be unlikely for p to show no positive
results. This leads to the inequality,

(1− p)t ≥ (1− CI) . (B.15)

This can be reformulated into an upper bound for the probability p of the event X to appear,

p ≤ 1− t
√

(1− CI) . (B.16)

The ‘Rule of Three’ then uses for CI=0.95 and p close to zero, the approximations ln(1− p) =
−p+O(p2) and ln(0.05) ≈ −3 to find,

p ≥ 3

t
(B.17)

hence the name ‘Rule of Three’.
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Appendix C

Machine learning

This section is dedicated to providing detailed explanations on the general concept of machine
learning (illustrated in fig. C.1), as well as on some exemplary techniques, which were used in
this thesis (see also [181] for an overview of these techniques applied to string theory). Machine
learning is a set of routines to turn information in the form of data into knowledge. In detail,
the goal is to learn a function

Ypredicted : X → Y , (C.1)

that maps the data of the input space X to the space of the output or target space Y. The
spaces X and Y are often identified with Rn and Rm, respectively.

The input space X is usually called feature space, and the dimension n corresponds to the
number of different features, i.e. they label the coordinates of the space X . These so-called
features can be raw numerical values from the input data, e.g. the individual pixel values of an
image. However, they can also be sophisticated properties computed from the raw data. In our
case, physical quantities. For example, the number of surviving roots on fixed points, computed
from the gauge embedding matrix M (section 2.2.2). In this thesis, M represents the raw data
from heterotic orbifold compactifications. This kind of creating powerful features is called feature
engineering (see appendix C.2 for details). The elements x ∈ X are then the corresponding
feature vectors. The dataset D is in general a sequence of tuples (xk, yk), enumerated by k.
The machine learning algorithm is trained to learn the mapping Ypredicted(xk) = yk for any
possible pair (xk, yk) even if they are not covered in the dataset D. This property is called the
generalization ability of the machine learning model.

In the context of this thesis, two different kinds of learning scenarios appear. In chapter 5
a neural network, i.e. autoencoder, is trained in a so-called unsupervised process. In contrast,
chapter 6 and chapter 7, make use of supervised training of decision tree algorithms. These two
branches of machine learning refer to the conditions if the dataset D contains so-called labels
y ∈ Y for the target space or not. In particular, in supervised learning, the model learns from
the space X × Y and masters to approximately reproduce the same labels for the training data
that were given. In the unsupervised learning scheme, the algorithm has no examples of Y but
rather determines a meaningful mapping based on patterns of the data in X . In most cases,
the dimension of Y or other general concepts of the target space are given instead of specific
examples.
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C.1 Splitting the dataset and data leakage

In order to verify if the general idea of learning the function Ypredict was successful, the gen-
eralization ability of the model has to be estimated after the training process. Therefore, the
procedure in machine learning is as follows: The complete dataset D is split in order to have a
held-out dataset with data that was not used during training. The performance on this dataset
estimates how well the machine learning model generalizes to new unseen data. In detail, the
dataset D is often split into three datasets:

• Dtrain: Dataset used to train the inner parameters of the machine learning model explic-
itly.

• Dval: Dataset used to adjust the hyperparameters of the machine learning model and
to estimate the generalization ability. Hyperparameters are arguments on the machine
learning algorithm that define properties of the training in general. Most importantly,
they are used for regularization in order to maximize the generalization to new data by
avoiding overfitting to the training data.

• Dtest: Dataset for the final evaluation. This data is not used to adjust any (hyper)
parameters of the machine learning model and solely determines the final generalization
ability. If there is no flaw in the splitting of the dataset, this estimate coincides with the
real-world application of the machine learning model. More precisely, the application of
the machine learning model to the feature space X such that any point of the system can
appear without limitation to those data points contained in D.

A common way to perform this splitting is given by a random division of the dataset D. In
this case an element (xk, yk) ∈ D has the probability ptest to be send to Dtest, the probability
pval to be send to Dval and the probability ptrain to be send to Dtrain, where ptest + pval +
ptrain = 1. This can for example be done in a successive approach by train test split from
the sklearn package [189], which divides the data in two sets. A different arrangement for
small datasets is called cross-validation. Detailed explanations are given in appendix C.4. This
technique was utilized in chapter 7, even though it is a computationally more intensive method.

While the above set up gives a general procedure that should ensure the learning of a function
Ypredicted that generalizes well on new data, it is in practice important to know the specific goal
of the prediction as well as the structure of the dataset. This system knowledge allows avoiding
overfitting that was not prevented by the dataset split.1 This difficulty refers to the term data
leakage. The naming is based on the issue that the data separation was not done carefully
enough. Concretely, information of the Dtest (Dval) set ‘leaked’ into the training process, such
that the algorithm could overfit on these data. Then applying the algorithm in a real-world
application, the generalization to completely new data is much worse than expected from the
evaluation on Dtest (Dval). The algorithm underperforms in real-world applications and does
not match the estimated performance of the development environment. A dataset with several
duplicates gives a simple case of this situation. The random split then might move one instance of
the duplicate pair towards Dtest while the other instance remains in Dtrain. Hence the machine
learning algorithm sees the duplicate of the instance during training and can fit directly towards
the specific data. If then, truly new real-world data does not have the property to be a duplicate
of the data already acquired for the machine learning approach, the trained model will have poor
performance at least compared to the estimate from the performance on Dtest.

1For this situation in the context of physics see section 6.2.1 for the MSSM-like classification task or at the
end of section 7.1 in context of the prediction of the orbifold origin of the MSSM.
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ML model

Train ML model
Control trained

 model
Final test:

Performance on unseen data

Hyperparameter search

Figure C.1: Illustration of machine learning (ML) workflow.

C.2 Feature engineering

In general terms, feature engineering denotes the process of computing useful quantities from
the raw data, in order to improve the learning task. This process is complicated and demands
a lot of domain knowledge to develop these features.

The machine learning methods that are especially successful without these higher-level fea-
tures are neural networks (see appendix C.7.2). Neural networks generate features on their own
during training. Concretely, each hidden layer constructs a higher level of abstraction from the
first layers towards the later. This is used in so-called transfer learning where the first layers
are reused in another prediction task by only changing the last layer, assuming that the first
layers learned basic principles. For example, in image analysis, the early layers learn basics like
edge detection. However, this is one of the biggest open problems of neural networks. It is,
in general, unfeasible to extract the meaning of the features that a neural network has learned
on its own [214–216]. Hence, these features hardly yield any knowledge gain. Simultaneously,
this is one of the reasons why the transfer of neural network concepts towards the application
in string theory is so difficult. The architectures and the successful pre-trained models do not
trivially generalize to the string theory data.

The alternative approach, used in this thesis, is based on physical intuition and knowledge
of the system in order to create features. The machine learning techniques are used to quantify
if our educated guess for a particular feature, or combinations of multiple features, leads to
a correlation between these features and the property of the task at hand. The advantage of
this approach is that by construction, we have a straightforward physical interpretation of our
features.

C.3 Regularization

Regularization in the context of machine learning refers to the concept of additionally constrain-
ing the freedom of the model parameters to avoid overfitting. Overfitting is the phenomenon
that the machine learning model parameters are fine-tuned to the training data Dtrain. Con-
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sequently, the trained model has a poor performance on unseen data, even if it comes from the
same origin (distribution) as the training data.

In the context of this thesis, this was used in several approaches. In detail, the information
bottleneck layer of the autoencoder in chapter 5 was a strong regularization of the neural network.
Decision trees, especially in chapter 6, were regularized by limiting the depth of the tree, i.e.
the number of splits that can be performed. Finally, in the case of the boosted decision tree,
the ensemble technique itself is a form of regularizing the algorithm. Moreover, the individual
trained trees were regularized by limiting the number of leaf nodes num leaves and the minimum
number of datapoints to allow for further splitting min child samples.

C.4 Cross-validation

Partitioning the available data D into three sets Dtrain, Dval, Dtest, drastically reduces the
number of samples which can be used for the statistical learning algorithm. One possible solution
to this problem is a procedure called cross-validation (CV). The validation set Dval is in this
approach a dynamic subsequence of the training data Dtrain and not a separate dataset. In
detail, the classical approach is k-fold CV. Here Dtrain is split into k equal subsets Dtrain

k .
One of these k sets is then defined to be the validation set Dtrain

y = Dval. Then the following
procedure is applied for each of the k folds: First, a model is trained using k − 1 of the folds
as training data

⋃
k 6=yD

train
k . Secondly, the resulting model is validated on the remaining part

of the data, i.e. Dval = Dtrain
y . Let us stress that this is done k times each time with the

next chunk as the validation set, i.e. y = 1, . . . , k. The performance measure reported by k-fold
cross-validation is then the average of the values computed in the loop over y. This approach can
be computationally expensive but does not waste data, which is a major advantage in problems
where the number of samples is small. Often this technique is combined with a grid search
for the optimal hyperparameters, as e.g. scikit-learn [189] provides with GridSearchCV. Then
the CV is done for every point in the grid of hyperparameters, i.e. all combinations of the
values for the hyperparameters are explicitly tested. The trained model with the best-averaged
performance measure after CV is then selected as the best hyperparameter set. Note, there are
also random approaches RandomizedSearchCV and Bayesian hyperparameter optimization [217]
based on Gaussian processes fitted to the already used hyperparameters and their performance
results.

C.5 Classification

In general machine learning tasks are divided into regression and classification tasks. Regression
tasks refer to predict continuous target values. In a classification tasks the machine learning
approach is asked to predict abstract classes as target value y, i.e. the labels do not have a
inherent order like values on R. As example one can define the two classes MSSM-like and

����MSSM-like which are the labels of interest when searching the landscape for physical models.
This kind of binary classification task has different outcomes as shown in table C.1, i.e. there
exist misclassification errors.

Before we discuss the measurement of the performance of such a classification, let us gen-
eralize to n-classes. While in binary classification tasks like above the classes can simply the
represented by the binary values 0 and 1, e.g. by a sigmoid function, this is not possible for
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C.5. Classification

predicted class

Positive Negative

true class
Positive true positives false negative

Negative false positive true negatives

Table C.1: Special case with two different classes. One is called positive, while the complemen-
tary is named negative. In our case positive can be set to MSSM-like and negative to ����MSSM-like.

multiclass classification. A common method for this situation is one-hot encoding,

OHEnc : {c1, c2, . . . cn} → {0, 1}n (C.2)

cx 7→ (δ1x, δ2x, · · · , δnx) .

This function maps categorical variables cx to vectors of length n such that only one entry is 1
and all others are zero, see eq. (C.2). The generalization of the binary classification case shown
in table C.1 is the so-called confusion matrix C, where Cij contains the number of observation
with true class ci and predicted class cj . Hence, we can generalize the classification types for a
class ci in the multiclass setting as,

# of true positives for ci : Cii , (C.3)

# of false positives for ci :
∑

j 6=i
Cij , (C.4)

# of false negatives for ci :
∑

j 6=i
Cji . (C.5)

The performance of a predictive machine learning model can be measured by the accuracy that
is defined by the number of correct predictions divided by the total number of all predictions.
Or in terms of the confusion matrix C,

Accuracy =

∑
iCii∑
ij Cij

. (C.6)

However, for an imbalanced dataset this normal accuracy measurement can be misled in the
following way: Assume a classification task with two classes A and B, where the class A builds
the majority of the dataset with 99% of all instances. Any prediction method can now achieve
an accuracy of 99% simply by predicting always class A, but never class B.

In order to avoid such a behavior, there exist several metrics for imbalanced classification
tasks. The one we are using are based on the types of predictions from eqs. (C.3) to (C.5). This
allows us to define three different metrics for an imbalanced classification task,

Precision(ci) =
Cii∑
j Cij

(C.7)

Recall(ci) =
Cii∑
j Cji

(C.8)

f1-score(ci) = 2
Precision(ci) · Recall(ci)

Precision(ci) + Recall(ci)
= 2

Cii∑
j Cji +

∑
j Cij

(C.9)
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Finally, one can define the “f1-macro” as the average of the f1-scores

f1-macro =
n∑

i=1

f1-score(ci) (C.10)

for all classes. Then, to deal with imbalanced data, the f1-macro can be used to measure the
performance of the model.

Let us briefly illustrate the benefit of using the f1-macro on the example from the beginning
of this section. In this case, we have f1-score(A) ≈ 1 and f1-score(B) = 0. Consequently,
the f1-macro=1/2

(
f1-score(A) + f1-score(B)

)
≈ 0.5, which rates the naive classification of

a binary classification task as insufficient.

C.6 Decision tree

A decision tree2 (fig. 6.4) is a supervised learning algorithm and therefore makes use of the labels
y of Dtrain in order to find correlations in the data, based on the features f (remember that
features are called the dimensions of the space X ) to predict the label y,

DT : X → Y (C.11)

x 7→ y .

It recursively partitions the feature space such that the samples with the same labels are grouped
together. Doing so he uses only so called thresholds on certain features f and hence splits the
space orthogonal to the feature axes. Let the data at node m be represented by Dtrain(m). For
each possible split s = (fj , tm) consisting of a feature fj and threshold tm, the tree partitions
the data into complementary subsets Dtrain

L (m, s) and Dtrain
R (m, s),

Dtrain
L (m, s) =

{
(x, y) ∈ Dtrain(m)

∣∣ fj ≤ tm
}

(C.12)

and consequently Dtrain
R (m, s) = Dtrain(m)/Dtrain

L (m, s). The impurity G at node m is com-
puted using an impurity function H,

G(Dtrain(m), s) =
nL
Nm

H(Dtrain
L (m, s)) +

nR
Nm

H(Dtrain
R (m, s)) (C.13)

where Nm = nL +nR with nL/R = |Dtrain
L/R (m, s)|. The algorithm selects the parameters s∗ that

minimizes the impurity G,

s∗ = argminsG(Dtrain(m), s) (C.14)

This is done recursively for subsets Dtrain
L (m, s∗) and Dtrain

R (m, s∗) until the regularization
parameters prevent further training, e.g. maximum number of splits or minimal number of
samples per node Nm ≤ min samples are violated. If no regularization constrain is exceeded
the decision tree can train until the final nodes (leaf nodes) consists of only one element, i.e.
Nm = 1.

If a target y is a classification outcome taking on values ck for k = 1, . . . ,K for node m with
Nm observations, let

pm(k) =
1

Nm

∑

(xi,yi)∈Dtrain(m)

δ(yi, ck) (C.15)

2For an introduction to tree based methods see [197, 218] and the documentation of [189].
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be the proportion of class k observations in node m. A common measures of impurity is the
Gini index,

H(Dtrain(m)) =
K∑

k=1

pm(k) (1− pm(k)) . (C.16)

A huge benefit when we have to deal with imbalanced data is that the classification decision
tree, DecisionTreeClassifier, of sklearn [189] allows for balancing the importance of the data
with class weights (class weight = ‘balanced’), i.e. those weights raise the importance of a
class with small frequency of occurrence and decreases the weights of classes that dominate the
dataset.

C.7 Neural networks

Neural networks are a specific technique from machine learning. They are special since neural
networks are universal function approximators [219, 220] for continuous functions. This means
they can approximate the effective mapping of a wide variety of interesting functions. A neural
network is a computational graph [221] where the building blocks of a neural network are so-
called neurons (see fig. C.2). These neurons ni are computational functions,

ni(x) = f


∑

j

Wijxj + bi


 , (C.17)

where the scalar valued Wij are the so-called weights of neuron ni. The parameter bi is the bias
value and f is the activation function. The weight vector and bias are adjustable parameters

zk=
∑

jWkjxj+bk f(zk)

Wk1x1

Wk2x2

Wk3x3

...

Wknxn

Figure C.2: Illustration of a neuron.

of the function to fit the data during training. The activation function adds non-linearity to
this object. The universal function approximation theorem holds only for such induced non-
linearities. Putting many of these neurons together results in a neural network (see fig. C.3).
The basic approach is to align them in so-called layers. The number of neurons in one layer
define the corresponding width. Stacking several of those layers on top of each other results in a
deep neural network where the depth is defined by the number of layers stacked on each other.
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Figure C.3: Illustration of a feedforward neural network (FNN). The green neurons xi build

the input layer for the data, The blue neurons h
(1)
i and h

(2)
i represent the two hidden layers.

Finally, the red neurons yi form the output layer.

There are special layers like the input, output and hidden layer. Input layer simply feed the
data into the network. Hidden layers are all the layers in between the input and output layer.
They are called hidden since their output is not accessed but seen as the internal operations of
the function. At the end we have the the output layer. This layer gives the prediction (or image
of the function) of the neural network for the input.

We can then formalize the function of the neural network as,

nout
o = f (n)


∑

m

W (n)
om ... f

(2)


∑

i

W
(2)
ki f (1)


∑

j

W
(1)
ij xj + b

(1)
i


+ b

(2)
k


 ... + b(n)

o


 (C.18)

where the superscript (n) enumerates the layer and nout
o is the final output for each dimension o of

the target space Y. One can obtain that without the non-linearity of the activation function f the
network would be a simple linear mapping, i.e. matrix multiplication. Hence, adding additional
layer could be collapsed to a single matrix multiplication. In this sense, the non-linearities are
the reason why multiple layers stacked on each other can lead to a more sophisticated function
approximator.

C.7.1 Training neural networks

The concept of adjusting the parameters in a neural network is very general among this class of
techniques. First we define a quantity that we want to optimize, i.e. the objective function [221,
p.78] (also called cost function or loss function). It is defined as,

L(nout, y) (C.19)

where y is the ground truth, i.e. the supervised target labels in Dtrain. The other part nout

is the prediction of the neural network and is the neural network realization of Ypredicted for
a generic machine learning function. In order to train a neural network one uses a stochastic
gradient descent approach. First the parameters of the neural network are randomly initialized.
Then the input xk of Dtrain are processed by the neural network and give a first prediction.
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Figure C.4: Conceptual architecture of an autoencoder neural network with latent layer of
dimension two in orange. To emphasize the autoencoding concept, i.e. output equals input, the
input and output layer are both in green.

This first prediction is used to compute the value of the loss function L with the ground truth
values y from Dtrain. As the goal of this approach is to minimize L the gradient of L with
respect to all adjustable parameters w is computed,

∇wL(w) , (C.20)

in terms of a computational graph, i.e. recursively applying the chain rule of calculus. Then
each parameter is updated according to the negative gradient correspondent to its contribution
to L. The algorithm to compute the negative gradient with respect to the adjustable parameters
is called back propagation. As this is done in a iterative way τ labels the number of iterations.
Then the updates of the parameters read,

w(τ + 1) = w(τ)− α∇wL(w(τ)) . (C.21)

As the stochastic gradient approach is taken because an exact Newtonian optimization is com-
putationally not feasible for large datasets, the step length is still needed. This is introduced
as a hyperparameter α the so-called learning rate [194]. A more advanced version of stochastic
gradient descent is given by the widely used Adam optimizer [222]. As the gradient also back-
propagates through the activation functions, one should be aware that an activation function
with zero gradients can bring the training to a standstill, e.g. dying ReLU and vanishing gra-
dient with sigmoid activation function are two specific issues that interfere with the learning
algorithm.

C.7.2 Autoencoder

Neural networks allow for various architectures, i.e. complicated arrangements of the individual
neurons that lead to different computational graphs and allow to solve different problems. In
some architectures the goal is to encode some known structure of the input into the neural
network. One example are convolutional neural networks that detect translations in images of
our 3D world.
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Appendix C. Machine learning

Other architectures force the neural network to perform a task in a specific way. This is the
case for autoencoder neural networks [186] (see fig. C.4 for the network architecture) that were
used in chapter 5 and are explained in detail here. A remarkable property of autoencoders is
that they are unsupervised. This is achieved by a simple trick, i.e. the neural network is trained
to reproduce the input at the output layer and hence the labels are given by the input itself.

L(nout, xtruth) (C.22)

The specialty in the architecture of autoencoders is that the neural network has a so-called
information bottleneck. There exists a so-called latent layer that has a small dimension compared
to the input dimension; hence the neural network has to encode the information from the input
through the hidden layers into the latent layer and then decode this information back towards
the output layer, in such a way, that it can reproduce the input as good as possible. This forces
the neural network to find redundancies in the feature space (such as irrelevant features) in order
to find a non-linear map to a lower dimensional parameter space. Thus, an autoencoder yields
a lower-dimensional, “compressed”, representation of the feature space in the latent space.

144



Appendix D

Aspects of orbifolds

D.1 Simple roots of E8 × E8

The simple roots αI of E8 × E8 are given by the simple roots of E8 as,

αI =
(
αE8
I , αE8

0

)
for I = 1, . . . , 8 (D.1)

αI =
(
αE8

0 , αE8

(I−8)

)
for I = 9, . . . , 16 (D.2)

where we introduced αE8
0 = (0, 0, 0, 0, 0, 0, 0, 0) and the simple roots basis for E8 ,

αE8
1 = ( 0, 1, −1 0, 0, 0, 0, 0 ) ,

αE8
2 = ( 0, 0, 1 −1, 0, 0, 0, 0 ) ,

αE8
3 = ( 0, 0, 0, 1, −1, 0, 0, 0 ) ,

αE8
4 = ( 0, 0, 0, 0, 1, −1, 0, 0 ) ,

αE8
5 = ( 0, 0, 0, 0, 0, 1 −1, 0 ) ,

αE8
6 = ( 0, 0, 0, 0, 0, 0 1, −1 ) ,

αE8
7 = ( 1

2 , −1
2 , −1

2 , −1
2 , −1

2 , −1
2 , −1

2 ,
1
2 ) ,

αE8
8 = ( 0, 0, 0, 0, 0, 0, 1, 1 ) .

(D.3)

Analogously, this is defined for the dual basis

α∗I =
(
α∗E8
I , α∗E8

0

)
for I = 1, . . . , 8 (D.4)

α∗I =
(
α∗E8

0 , α∗E8

(I−8)

)
for I = 9, . . . , 16 (D.5)

such that α∗I · αJ = δIJ , with αE8
0 = α∗E8

0 . The dual root system basis is then given by,

α∗E8
1 = ( 1, 1, 0, 0, 0, 0, 0, 0 ) ,

α∗E8
2 = ( 2, 1, 1, 0, 0, 0, 0, 0 ) ,

α∗E8
3 = ( 3, 1, 1, 1, 0, 0, 0, 0 ) ,

α∗E8
4 = ( 4, 1, 1, 1, 1, 0, 0, 0 ) ,

α∗E8
5 = ( 5, 1, 1, 1, 1, 1, 0, 0 ) ,

α∗E8
6 = ( 7

2 ,
1
2 ,

1
2 ,

1
2

1
2

1
2

1
2 , −1

2 ) ,

α∗E8
7 = ( 2, 0, 0, 0, 0, 0, 0, 0 ) ,

α∗E8
8 = ( 5

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) .

(D.6)
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D.2 Twisted sectors of Z6-II (1,1)

For completeness we illustrate here the higher order twisted sectors of Z6-II (1,1). Note that for
T(2) and T(3) fixed tori appear.

T(1), vθ = ( 16 ,
1
3 ,− 1

2 )

e1

e2

×

e3

e4

×

e5

e6

T(2), vθ2 = ( 13 ,
2
3 ,−1)

e1

e2

×

e3

e4

×

T(3), vθ3 = ( 12 , 1,− 3
2 )

e1

e2

× ×

e5

e6

Figure D.1: Illustration of the fixed points in Z6 -II (1,1) on Γ = SU(3) × SU(3) × (SU(2))2.
The twisted sectors T(4) and T(5) have the same fixed point structure as T(2) and T(1), respectively.

D.3 Probability for MSSM-like models in ZN orbifolds

As in the main text for Z6-II (1,1) (fig. 6.10) we give here the estimated probabilities to find an

MSSM-like model in the subspaces for higher N
(2)
ur (X) computed from the dataset observed by

the scan that led to table 6.5.
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Figure D.2: For the dynamic hidden E8 search, we display the probability p̂c(MSSM-like)
(estimated on the samples) to find MSSM-like models under the constraint of the respective

contrast pattern c as a function of the threshold value X, where c is N
(2)
ur ≥ X.
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D.4 Vector-like exotics in the heterotic orbifold landscape
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Table D.1: Percentage of MSSM-like orbifold models with certain types of vector-like exotics.
Hypercharge is normalized such that (3,2)1/6 is a left-chiral quark-doublet. The row “# MSSM”
lists the number of inequivalent MSSM-like orbifold models in our dataset. A complex represen-
tation has to be amended by its complex conjugate, e.g. (3,2)1/6 stands for (3,2)1/6 ⊕ (3̄,2)−1/6.
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Table D.2: Average numbers of vector-like exotics for MSSM-like orbifold models. Hypercharge
is normalized such that (3,2)1/6 is a left-chiral quark-doublet. The row “# MSSM” lists the
number of inequivalent MSSM-like orbifold models in our dataset. A complex representation has
to be amended by its complex conjugate, e.g. (3,2)1/6 stands for (3,2)1/6 ⊕ (3̄,2)−1/6.
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[63] L. E. Ibáñez, H. P. Nilles, and F. Quevedo, “Orbifolds and wilson lines,” Phys. Lett.,
vol. B187, pp. 25–32, 1987.

154

https://doi.org/10.1088/1126-6708/2006/01/004
https://doi.org/10.1088/1126-6708/2006/01/004
http://arxiv.org/abs/hep-th/0510170
https://doi.org/10.1103/PhysRevD.73.106010
http://arxiv.org/abs/hep-th/0602286
https://doi.org/10.1016/j.physrep.2007.04.003
http://arxiv.org/abs/hep-th/0610327
https://doi.org/10.1103/PhysRevD.84.106005
http://arxiv.org/abs/1106.4804
https://doi.org/10.1007/JHEP06(2012)113
http://arxiv.org/abs/1202.1757
http://arxiv.org/abs/1202.1757
https://doi.org/10.1007/JHEP08(2015)087
http://arxiv.org/abs/1503.02068
https://doi.org/10.1007/JHEP09(2018)089
http://arxiv.org/abs/1807.01320
https://doi.org/10.1103/PhysRevLett.123.101601
http://arxiv.org/abs/1903.00009
https://doi.org/10.1007/JHEP01(2013)084
http://arxiv.org/abs/1209.3906
https://doi.org/10.1107/S010876739701547X
https://doi.org/10.1107/S010876739701547X
https://doi.org/10.1080/10586458.2000.10504417
https://doi.org/10.1080/10586458.2000.10504417
http://dx.doi.org/10.1080/10586458.2000.10504417
https://doi.org/10.1016/0550-3213(88)90304-5


Physics bibliography

[64] S. Ramos-Sánchez and P. K. S. Vaudrevange, “Note on the space group selection rule for
closed strings on orbifolds,” JHEP, vol. 01, p. 055, 2019. doi: 10.1007/JHEP01(2019)055.
arXiv: 1811.00580 [hep-th].

[65] T. Kobayashi and N. Ohtsubo, “Geometrical aspects of ZN orbifold phenomenology,”
Int. J. Mod. Phys., vol. A9, pp. 87–126, 1994.
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[215] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in
Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.,
Cham: Springer International Publishing, 2014, pp. 818–833, isbn: 978-3-319-10590-1.
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