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�omas Möllenho�





Technische Universität München

Fakultät für Informatik
Lehrstuhl für Bildverarbeitung und Künstliche Intelligenz

E�cient Li�ing Methods for
Variational Problems

�omas Möllenho�
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Abstract
Variational methods have a long and colorful history in image analysis and com-
puter vision. Unfortunately, most of the variational problems appearing in practical
applications are nonconvex. One idea to tackle such nonconvex problems is by
li�ing the energy functional to a higher dimensional space and then performing a
convex relaxation. �e increased dimensionality due to the li�ing procedure relies
on e�cient implementations, which are the primary concern of this thesis.
Inspired by similar constructions in the context of discrete-continuous Markov

random �elds, we propose a relaxation which assigns meaningful costs to fractional
labelings in a spatially continuous multilabeling setup. In experiments, we show
that this formulation leads to substantial savings inmemory and runtime and allows
one to interpolate between a naive convexi�cation and tighter relaxations more
gracefully. Additionally, we show that these sublabel-accurate labeling approaches
correspond to a dual �nite-element approximation of a relaxation for problems
with in�nite label-spaces. �is viewpoint allows one to extend the previous results
to more general regularizations. Also, it provides a new and principled way to
implement existing functional li�ing formulations and suggests the possibility of
even more accurate discretizations.
In this thesis, we also contribute to functional li�ing methods for vectorial varia-

tional problems. A di�culty for vectorial problems arises from the representation
of minimal surfaces with dimension and codimension larger than one. Previous
approaches resorted to discrete multilabeling approximations or representations,
where one instead considers multiple surfaces of codimension one. Using tools
from geometric measure theory, we present a li�ing which considers a single sur-
face in higher codimension. A convex formulation is obtained by relaxing the
search space from surfaces to currents. Unlike previous relaxations, it allows one
to tackle vectorial problems with general polyconvex regularizations. �e pro-
posed discretization of the resulting minimal surface problem with Whitney forms
includes previous sublabel-accurate formulations as special cases.
Finally, we demonstrate that the introduced formalisms from geometric mea-

sure theory have applications beyond the convexi�cation of variational problems.
Speci�cally, we propose to represent high-dimensional data with currents. �is
representation can be interpreted as a �rst-order approximation to the data man-
ifold. Based on the 
at norm, we propose FlatGAN, which is a formulation in
the spirit of generative adversarial networks (GANs), but generalized to currents.
In experiments, we show that the formulation with currents allows one to learn
interpretable and disentangled latent representations.
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Zusammenfassung
Variationsmethoden haben eine lange Geschichte in der mathematischen Bildverar-
beitung und demmaschinellen Sehen. Leider sind die meisten Variationsprobleme,
die in praktischen Anwendungen au�reten, nicht konvex. Eine Möglichkeit um
solche Probleme anzugehen, besteht darin, das Energiefunktional in einem all-
gemeinerem Raum einzubetten um dort dann eine gute konvexe Relaxierung zu
berechnen. Die erhöhte Dimensionalität erfordert ein besonderes Augenmerk auf
einer e�zienten Darstellung, welche das Hauptanliegen dieser Arbeit sein wird.
Inspiriert durch vergleichbare Ansätze im Kontext von diskret-kontinuierlichen

Markov random �elds, schlagen wir ein räumlich kontinuierliches Multilabeling-
Verfahren vor, welches auch nicht-ganzzahligen Labelzuständen sinnvolle Kosten
zuweist. In Experimenten zeigen wir, dass diese Formulierung zu erheblichen Ein-
sparungen bezüglich des Speicherverbrauchs und der Laufzeit gegenüber vorheri-
genMethoden führt. Zusätzlich zeigen wir, dass diese Formulierung auch alternativ
durch die Appoximation einer gewissen Dualformulierung mittels stückweise li-
nearen �niten Elementen hergeleitet werden kann. Diese Sichtweise ermöglicht
es, die vorherigen Ergebnisse auf allgemeinere Kostenfunktionale zu erweitern.
Außerdem bietet sie eine prinzipientreue Möglichkeit, bestehende Relaxierungen
für Variationsprobleme zu implementieren, und suggeriert die Möglichkeit noch
genauerer Diskretisierungen.
Weiterhin betrachten wir auch konvexe Relaxierungen für allgemeine Variations-

probleme mit vektoriellemWertebereich. Bestehende Ansätze basieren meistens
auf Darstellungen durch diskrete Zustände oder Formulierungen bei denen meh-
rere Flächen in Kodimension eins betrachtet werden. Mittels Einsichten aus der
geometrischen Maßtheorie schlagen wir eine neue Methode vor, bei der nur eine
einzige Fläche in höherer Kodimension verwendet wird. Ein konvexe Formulie-
rung erhalten wir, indem der Suchraum von Flächen auf Ströme (engl. currents)
erweitert wird. Im Gegensatz zu früheren Arbeiten, können wir nichtkonvexe Va-
riationsprobleme mit allgemeiner polykonvexer Regularisierung konvex darstellen.
Als Ausblick zeigen wir schließlich noch, dass die eingeführten Methoden der

geometrischen Maßtheorie auch Anwendungen im maschinellen Lernen haben.
Insbesondere schlagen wir die neue Sichtweise vor, hochdimensionale Datensätze
als Ströme zu verstehen. Basierend auf der 
at norm verallgemeinern wir die
kürzlich vorgestellten generative adversarial networks (GANs) von Wahrschein-
lichkeitsverteilungen auf Ströme. In Experimenten zeigen wir dass es durch diese
Verallgemeinerung möglich wird, mittels GANs eine interpretierbare und ent-

ochtene Repräsentationen der hochdimensionalen Datenverteilung zu lernen.
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Goldlücke for his interest in this work and for agreeing to be the second referee.
During my time at TUMunich, I had the privilege to meet many amazing people.

In particular, I would like to thank Eno Töppe, Claudia Nieuwenhuis, and Evgeny
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Chapter 1
Introduction

1.1 Motivation and Overview
Since their adoption by the computer vision community nearly forty years ago
[HS81; IH81], variational methods1 enjoyed a long and colorful history. Over the
years, many di�erent variational problems have been proposed to tackle a diverse
set of tasks and applications such as image restoration problems, reconstruction of
3D geometries from a set of images, or the estimation of motions, see for example
[Sch+09; CP16a] for an overview.
�e (o�en nonconvex) optimization of such variational problems has also re-

ceived an equally or perhaps even more diverse treatment, both within the discrete
[Kap+13] and the continuous [CP16a] optimization communities. �is thesis be-
longs to the �eld of continuous optimization as our optimization problems will
be integral functionals. �e key motivation is that such formulations in function
space are quite general and 
exible as they admit a variety of di�erent approxi-
mations and discretizations, some of which can be more faithful to underlying
continuous phenomena. �e resulting discrete formulations would o�en be di�-
cult to reach if one would perform �nite approximations at an too early stage. On
the optimization side, the major part of this thesis will be concerned with global
minimization approaches for variational problems based on a technique called
functional li�ing. �e driving motivation behind global optimization approaches
(both in the discrete and the continuous worlds) is to have a robust and transparent
way to solve problems, which is also explainable and reliable in the sense that one
is also clearly aware of the limitations. In contrast, for local or learning-based
approaches, it can o�en be tricky to disentangle whether speci�c e�ects are due to
the initialization, selection of tuning parameters, carefully curated training and

1Here and throughout this thesis, the term ”variational” strictly refers to its original meaning
from the calculus of variations, i.e., the minimization of integral functionals. Note that in the
optimization community, the word variational is now used in a broader context (”freed from its
limitations of the past” as remarked in [RWW98]). In machine learning, ”variational” usually
refers to optimization over families of probability distributions in the context of approximate
Bayesian inference, see for example, [WJ+08; BKM17].
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testing sets, the chosen optimization procedure or the mathematical modeling of
the problem.
Despite a considerable amount of previous research e�orts, global optimization

methods for variational problems have not entered the ”mainstream” yet. We
believe this is due to the following reasons.

1. Due to their global nature and a certain ”li�ing” procedure (which increases
the dimensionality) the methods traditionally come with excessive demands
in runtime and memory.

2. �ey have limited applicability and are restricted to certain classes of varia-
tional energies.

3. �e mathematical formalism of geometric measure theory lurking behind
the li�ing procedure is known to be technically involved and is usually not
treated in the standard computer science curriculum.

Instead, local or discrete optimization approaches are still the preferred choice for
most practitioners. �emajor part of this thesis presents a conscious e�ort to make
substantial progress in all of the three directions above. Speci�cally, we address the
points as follows:

1. E�ciency in runtime and memory. �is thesis present a framework for
sublabel-accurate multilabeling, which scales more gracefully in the dimen-
sion than previous functional li�ing methods. Speci�cally, it allows one to
control the amount of li�ing more gradually. �e limit case with minimal
li�ing is as e�cient as the local optimization. Further, we interpret these
sublabel-accurate multilabeling methods as dual �nite-element approxima-
tions of relaxations with in�nite label spaces. �is insight yields more e�cient
formulations for a large class of previously proposed relaxations.

2. Generality and applicability. Essentially, the li�ing procedure amounts to a
reformulation of the original task as a minimal surface problem in a higher-
dimensional space. Almost all previous li�ing methods either employ one
or more surfaces of codimension one. Instead, we consider minimal surface
problems with codimension higher than one, and show that this allows one
to introduce more general (polyconvex) regularizations.

3. Technicality and accessibility.We hope to convince the reader that most of
the ideas which are eventually relevant for implementation are of an intuitive
geometric nature and do not require the more technical subtleties of the
subject. While the primary aim of this thesis is to make progress in the two
points above, it also represents an e�ort to distill key ideas, concepts and
intuitions from geometric measure theory which are useful for applications.
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At the end of this thesis, we show that the notions from geometricmeasure theory
can also be useful beyond the relaxation of variational problems. Speci�cally,
we show that currents, which are a generalized and 
exible notion of surface,
can be used to represent high-dimensional data in machine learning. �is rests
upon a critical assumption, that is sometimes referred as themanifold hypothesis:
the distribution of real-world data o�en concentrates nearby a low-dimensional
manifold embedded in the high-dimensional data space [FMN16].
�is will put the previous theory into a broader context: optimization problems

over surfaces and currents in general codimension can have interesting applications,
without necessarily stemming from the relaxation of a variational problem.

1.2 Variational Methods

In this section, we will introduce the basic idea of variational methods and also
introduce some notations that we will keep throughout this thesis.
�e main idea for variational approaches is to model the problem at hand with

an energy functional. For each candidate solution, which in our setting is a map
f ∶ X → Y between spaces X and Y , an energy functional E outputs a real number
or perhaps plus in�nity2. �e structure of the sets X and Y and the energy E
depend on the application, but the main idea is to formulate E in such a way that
low energy values correspond to desirable solutions.
�e aim of an optimization procedure is to �nd a candidate f ∶ X → Y with

minimal energy. �e prototypical problem is given as follows:

E∗ = inf {E( f ) ∣ f ∶ X → Y}. (1.1)

A central distinction is typically made between convex and nonconvex energy
functionals E, as pointed out by R. T. Rockafellar in his 1993 SIAM review paper: “ ...
in fact, the great watershed in optimization isn’t between linearity and nonlinearity,
but convexity and nonconvexity. “.
As illustrated in Fig. 1.1, an advantage of convex energies is, that every point

which cannot be improved locally is also the best in a global sense. �erefore, one
can apply algorithms which operate locally such as the method of steepest descent,
and not worry too much about a suitable starting point.
Unfortunately, many interesting or relevant practical tasks are much more easily

formulated as a nonconvex optimization problem. In this thesis, we will develop
e�cient convex formulations for a certain class of nonconvex energy functionals.
We will introduce the speci�c energies we are concerned with in the following
section.

2In Chapter 3, Chapter 4 and Chapter 5 we use the notation u ∶ Ω → Γ instead of f ∶ X → Y .
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Figure 1.1: Example of a nonconvex energy function and a convex one.

1.2.1 A class of �rst-order energies

�e energies we consider in the following are o�en denoted as ”�rst-order energies”,
since they involve the �rst derivative of the function f . Speci�cally, for continu-
ously di�erentiable maps f ∶ X → Y , we consider the following class of integral
functionals:

E( f ) = ∫X c(x , f (x),∇ f (x))dx . (1.2)

For X ⊂ Rn, Y ⊂ RN , the cost integrand (sometimes referred to as a Lagrangian
density) c ∶ X × Y ×RN×n → R is assumed to be nonnegative.
In some applications, this density (or cost) is given as a separable sum of two

terms, o�en denoted as the data �delity term and regularizer:

c(x , y, ξ) = ρ(x , y)´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
data term

+ η(ξ).´¸¶
regularizer

(1.3)

�is splitting of the cost into a prior and a data model can also be motivated from
the perspective of maximum a-posteriori (MAP) inference in a Bayesian setting,
see for example [Mum94]. Given an observation z, the posterior probability of a
candidate f is proportional to the product of a likelihood and a prior:

p( f ∣ z) ∝ p(z ∣ f ) ⋅ p( f ). (1.4)

Instead of maximizing the probability, minimizing the negative logarithm of (1.4)
and restricting the prior to only depend on the gradient of f leads to the above
choice of Lagrangian density (1.3).
Functionals of the form (1.2), possibly subject to further side constraints, �nd a

large variety of applications. In the following, we will give an overview of some
common application examples.
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Figure 1.2: Discontinuity preserving denoising of a given signal z (shown in red)
by total variation minimization.

1.2.2 Example applications
Denoising. As a simple example, let us consider the denoising of an observed
signal z ∶ [0, 1] → R that has been corrupted by Gaussian noise. Assuming inde-
pendent identically distributed noise, the negative log-likelihood is given by

− log p(z ∣ f ) = 1
2σ ∫X ( f (x) − z(x))2dx + const. (1.5)

Note that in practical scenarios, this noise model can be unrealistic. O�en the
noise is known to instead follow a Cauchy distribution (see, e.g. [Mei+18]), which
leads to a nonconvex energy model. �e methods proposed in this thesis would
allow also for the (near global) optimization of such energies.
A popular prior due to its edge-preserving property is the total variation, which

for continuously di�erentiable f is given by

− log p( f ) = ∫X ∣∇ f (x)∣dx . (1.6)

It has been extensively studied and applied in the image analysis and computer
vision communities [Cha+10].
Putting everything together and minimizing the negative logarithm of (1.4)

corresponds to selecting the Lagrangian density in Eq. (1.2) to be:

c(x , y, ξ) = 1
2σ

(y − z(x))2 + ∣ξ∣. (1.7)

�is type of cost was originally proposed by [ROF92], and is also referred to as
the Rudin-Osher-Fatemi (ROF) model. In Fig. 1.2 we show in red a given signal
corrupted by Gaussian noise and the minimizer of the variational energy (1.2) in
blue.

Optical 
ow and correspondence estimation. Given two images I1, I2 ∶ X →
Rc of the same scene, but perhaps recorded from di�erent camera positions or
containing some kind of motion, a fundamental task in computer vision is to
estimate correspondences between the images.
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I1 ∶ X → R3 I2 ∶ X → R3 displacement f ∶ X → R2

Figure 1.3: Illustration of optical 
ow between to images. �e displacement �eld is
color-coded to indicate direction and magnitude of the motion.

One approach is to estimate a displacement �eld f ∶ X → R2 under a photocon-
sistency assumption, which in the simplest case leads to the following choice of
data term:

ρ(x , y) = ∣ I1(x) − I2(x + y) ∣. (1.8)

Due to the nonconvexity of the image functions I1 and I2, this data term is also
nonconvex. Further assuming that the displacement �eld exhibits spatial regularity,
e.g., η(ξ) = λ∣ξ∣ one arrives at classical variational models for the determination
of optical 
ow [HS81; Wed+09]. Despite the simplicity of such energies, global
optimization followed by post-processing steps recently has been shown to yield
competitive results [CK16].

Stereo matching. In case the motion between the two images is given by the
change of viewpoint within a static scene, the correspondence search can be reduced
to a search along a one-dimensional curve, which greatly simpli�es the problem. A
displacement along that curve can be associated with a depth value, which allows
one to reformulate the problem as an estimation of a depth map f ∶ X → R≥0. In
that case, the data term is given as follows:

ρ(x , y) = ∣I1(x) − I2(x +W(x , y))∣, (1.9)

where for a depth value y = f (x), the warping functionW computes the correct
o�set along the epipolar line [HZ03]. More sophisticated models estimate depth
and normal parameters at each point, i.e., f ∶ X → R≥0 × S2. �is allows one to
devise more precise patch-based data terms, see for example [Hei+13]. A �rst-
order regularization of the normal parameters can also induce desirable priors.
For example, a piecewise constant regularization on the normal �eld encourages
piecewise-a�ne depth values which can be a good prior for planar geometry, o�en
present in indoor scenes.
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1.2.3 Relaxation and regularization of the discontinuity set

Depending on the choice of the cost function c(x , y, ξ), a sequence of solution
candidates with decreasing energy in the sense of (1.2) might approach a function
which is not di�erentiable or even continuous anymore. �is is known to be the
case in the aforementioned example of total variation regularization. Another
situation where the solution is discontinuous by design aremultilabeling problems.
�ere, one has a �nite set of labels, for example Y = {sky,mountain, water, ...} and
due to the discrete nature of Y any function will have jumps, unless it is completely
constant. In such cases, the energy (1.2) only makes sense at points where f is
di�erentiable.
�erefore, it is natural to consider a relaxation, which also assigns a sensible cost

to jump discontinuities.
In case f is su�ciently regular (a special function of bounded variation, see

[AFP00, Sec. 4.1]), one can de�ne an energy on the (n− 1)-dimensional discontinu-
ity set in terms of the jump points ( f −, f +) ∈ Y ×Y and the normal of the interface
ν f ∈ Sn−1:

Ejump( f ) = ∫
J f
d(x , f −, f +, ν f )dHn−1(x). (1.10)

�ere are several technical assumptions to guarantee existence of minimizers for
the model E + Ejump, see [AFP00, �eorem 5.22, �eorem 5.24].
A special case of the energy (1.2) together with (1.10) was suggested by Mumford

and Shah [MS89] for the piecewise smooth approximation of functions, which
amounts to the following choice:

c(x , y, ξ) = ∣y − z(x)∣2 + α∣ξ∣2, d(x , f −, f +, ν f ) = λ. (1.11)

In Fig. 1.4, we show such an approximation of a natural image z ∶ X → [0, 1]3
obtained by minimization of the Mumford-Shah functional (1.11). We remark that
the piecewise smooth assumption in RGB color space is not a very good prior
for most natural images. For example, the prior does not account for textures in
images. Still, one obtains interesting cartooning e�ects, as remarked in [Xu+11;
SC14].
Nevertheless, discontinuities are ubiquitous in low-level vision due to object

edges, occlusion boundaries, changes in albedo or (self-)shadowing. �erefore,
for many other quantities such as (rigid) motion [CS05; Jai+15; GGK19; For+18],
surface normals [QDA18], albedo [Hae+18; LB14], texture [Nie+14] the piecewise
smoothness assumption can be reasonable. �e piecewise constant case, which
corresponds to passing α to in�nity in (1.11) is also referred to as the Potts model
or as ℓ0-smoothing and also received considerable attention in recent applications
[Xu+11; NB15; SW14].
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(a) input image z ∶ X → [0, 1]3 (b) piecewise smooth approximation

Figure 1.4: Minimization of the Mumford-Shah functional [MS89] leads to a piece-
wise smooth approximation of the given data. Assuming piecewise
smoothness of the solution is not a particularly good prior for most
natural images but produces an artistic cartooning e�ect.

1.3 �e Li�ing and Relaxation Principle
In the previous section, we have seen a class of nonconvex energies with applications
in imaging or vision. Eventually, the aim is to �nd a convex formulation. In this
section we give an introduction to the general li�ing and relaxation principle which
will be used to derive such convexi�cations.

1.3.1 Illustration of the li�ing idea
Let us illustrate the principle �rst on a simple multilabeling task. Consider some
�xed setY with ∣Y∣ = ℓ labels, i.e.,Y = {sky,mountain, water, ...} and an associated
cost vector c ∈ Rℓ. Determining the label with the minimal cost can be seen as a
discrete optimization problemmin1≤i≤ℓ ci . It is commonpractice to instead consider
“one-hot-encodings” [0, 1, 0,⋯] ∈ ∆ℓ−1 ⊂ Rℓ in the (ℓ − 1)-dimensional probability
simplex. �is leads to a convex relaxation as a continuous optimization problem
minµ∈∆ℓ−1∑i ci ⋅ µi which is amenable to gradient-based methods.
�e above idea of discrete probabilities can be neatly generalized also to sets

with in�nitely many ”labels”, i.e., compact sets Y ⊂ RN . �e associated ”cost vector”
is now a function ρ ∶ Y → R and �nding the label with minimal cost corresponds
to a continuous (and possibly nonconvex) optimization problem

min
y∈Y ρ(y). (1.12)

We can now state an equivalent reformulation of the problem by considering
Dirac measures, which generalize the idea of the above encodings:

ρ(y) = ∫ ρ(y′)dδy(y′) =∶ ρ(δy). (1.13)
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t = 0 t = 1 t = 2 t = 3

t = 0 t = 1 t = 2 t = 3
Figure 1.5: We compare local optimization (shown in the top row) against the

global li�ing approach (bottom row). Gradient descent optimization on
the original problem can be interpreted by a Dirac distribution, whose
center is adjusted locally to decrease the energy. Descent on the li�ed
and relaxed problem is a search in the convex set of all probability
distributions. Due to the convexity, one is able to overcome local optima.

Here, δy is the Dirac delta distribution centered at the point y ∈ Y . �e new energy
functional ρ is now de�ned on probability measures, and it is linear as it amounts
to an integration operation. We have therefore reformulated a possibly nonconvex
energy into a linear one, at the price of moving from �nite to in�nite dimensions.
�e li�ing y ↦ δy, from (1.12) to (1.13) still does not lead to a convex problem,

as the search space of Dirac distributions is nonconvex. A relaxation is obtained
by convexifying the search space. In this case, we relax to the convex hull of the
Dirac distributions, which is given by the probability distributions on Y denoted
throughout the thesis as P(Y). �is leads to the relaxed problem

min
µ∈P(Y) ρ(µ), where ρ(µ) ∶= ∫ ρ(y)dµ(y). (1.14)

Crucially, problem (1.14) is convex. A recurring question throughout the thesis
will be whether solutions to the relaxed, convexi�ed problem can be identi�ed
with solutions of the original problem. For the above problem (1.14) the answer is
a�rmative, as the support of the optimal probability distribution will be contained
within the set of global minimizers to (1.12). Formally, this can be justi�ed by apply-
ing Bauer’s maximum principle [AB94, �eorem 7.69] as the objective functional
is linear in µ and the feasible set P(Y) is compact in the weak∗-topology. �e
principle further asserts that minimizers are attained at the extreme points of the
set of probability measures. For P(Y) it can be shown that the extreme points
correspond to the Dirac delta measures, see [Cho69, p. 112, Example 26.1].
Another interpretation of the above procedure is that onemakes the optimization

problem “arti�cially” probabilistic. Instead of considering just a single state, the idea
is to allow a probabilistic superposition over all possible states. �is is illustrated in
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Fig. 1.5 on a simple one-dimensional energy. In that �gure, we illustrate a gradient

ow in distribution space, starting at the uniform density at t = 0. �e evolving
distribution is shown in red. While at intermediate points, the 
ow concentrates
near local minima and saddle-points in the original nonconvex energy (shown
in blue), it is eventually able to overcome them due to convexity of the li�ed
energy (1.14). �e �nal distribution (shown on the right) concentrates at the global
minimizers of the energy. Local optimization of a single ”Dirac” state starting from
a bad initialization will get stuck at a suboptimal point.
While this li�ing and relaxation idea seems perhaps intractable at �rst sight,

we �nd it to be rather profound and of fundamental importance. Indeed, it is
the starting point for many di�erent popular formulations and considerations in
literature which go far beyond the scope of variational problems. For example,
it is the starting point of the Lasserre hierarchy in the global optimization of
polynomials [Las00].
To obtain a �nite problem, many methods consider a parametrized subset of

measures {µθ ∶ θ ∈ Θ} ⊂ P(Y). �is yields a (typically nonconvex) upper bound to
(1.14). Interestingly, it is possible to compute the gradient of the li�ed energy with
respect to the parameters by just sampling the original energy, which is referred to
as the ”log-derivative” trick or REINFORCE estimator [Wil92]:

∇θρ(µθ) = Ey∼µθ [ρ(y)∇θ log µθ] . (1.15)

Since only an evaluation of the original energy ρ ∶ Y → R but no gradient informa-
tion is required, one is able to deal with very di�cult and irregular energies. �is
makes the relaxed formulation on probabilities popular in reinforcement learning
[Kak02; PS08], evolutionary search and black box optimization [Wie+08]. �e
reformulation (1.14) is sometimes referred to as a stochastic relaxation of the opti-
mization problem. Optimization over such parametrized families of probability
distributions is typically approached via natural gradient methods, see [Ama16,
Section 12.1.4] also for further references and applications.
For the variational problems considered in this thesis, we perform such a re-

laxation at every point x ∈ X in the domain. Similarly to the above situation,
we will be able to handle arbitrary cost functions without requiring to evaluate
their gradients. In that sense, the li�ing approaches bear some similarity to black
box or zeroth-order optimization strategies. However, instead of considering a
parametrized family of distributions in the primal, our approach will rather be
based on duality which leads to convex lower bounds on the objective.

1.3.2 Monge and Kantorovich problems in optimal transport
An early instance of the previous li�ing and relaxation principle can be found in
the Kantorovich formulation [Kan60] of Monge’s optimal transportation problem
[Mon81]. Since the underlying principle is quite similar to the relaxations we
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consider in this thesis, let us brie
y review them. We refer the interested reader to
[San15; PC18] for more details.
�eMonge problem in optimal transport is a variational problemwhich involves

a search over maps f ∶ X → Y that transport a probability measure µ ∈ P(X) to an-
other probability measure ν ∈ P(Y). �e cost function penalizes the transportation
of a point x ∈ X to another point f (x) ∈ Y by the cost c(x , f (x)).

inf
f ∶X→Y ∫X c(x , f (x))dµ(x), s.t. f♯µ = ν. (1.16)

Due to potential nonconvexities in the cost and the nonlinear constraint, this is a
nonconvex optimization problem. �e Kantorovich relaxation [Kan60] is a linear
programming formulation of (1.16).

min
γ∈P(X×Y)∫ c(x , y)dγ(x , y),
s.t. π1 ♯γ = µ,

π2 ♯γ = ν.
(1.17)

�is relaxation can be motivated in the following way. Every map f ∶ X → Y
induces a probability measure γ ∈ P(X ×Y) that is concentrated on the graph of f .
�e cost function in (1.17) is formulated in such a way that it coincides with (1.16)
in that situation. A convex formulation (here even a linear program) is obtained by
relaxing the search space from measures which concentrate on graphs to a more
general set of probability measures.

1.3.3 Weighted minimal surfaces
Asmentioned earlier, this thesis is concerned with variational problems for energies
(1.2), which have the form

E( f ) = ∫X c(x , f (x),∇ f (x))dx . (1.18)

Unlike in the Monge problem (1.16), the cost can additionally depend on the
derivative of the function. Generalizations of the Monge problem to costs such as
(1.18) have recently been studied in the context of optimal transport [Bre03; DLS14;
Lou14]. Corresponding convex relaxations, such as the one studied in [Gho+20],
are closely related to the ones we consider in this thesis.
In order to penalize the derivative in the ”li�ed” formulation, a relaxation to

vector-valued measures is considered in which the vector describes the tangent
information to the graph. In codimension one, it is possible to represent such
vector-valued measures as the derivative of an indicator function. �is geometric
view on �rst-order variational energies (in particular minimal surface problems)
has been studied in great detail by Federer [Fed69; Fed74].
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�e main idea is, that energies of the form (1.18) can be written as certain
anisotropic minimal surface energies with convex weighting Ψ:

E(S) = ∫
S
Ψ ∶= ∫

S
Ψ(x , y, τS(x , y))dHn(x , y). (1.19)

�e meaning of the above integral will be made precise later on, but the intuition
is that τS is an orientation of the surface S. For example, an energy penalizing the
surface area is simply given by Ψ = ∥ ⋅ ∥. �e general idea which connects minimal
surface problems to the class of variational problems (1.18) is to consider weights
Ψ such that

E( f ) = E(G f ), (1.20)

where G f is the oriented graph of the function f . While such reformulations are
well-known, we will give a self-contained proof of the equality (1.20) in the general
setting in Chapter 6. A convex formulation is obtained in analogy to the previous
section. Recall that in the simple setting we performed a relaxation from Dirac
measures to all probability measures. Here, a similar principle can be applied:
Instead of considering only graph surfaces, the idea is to relax to a larger convex
set of vector-valued measures or currents. �is principle will be revisited in more
detail in Chapter 5 and Chapter 6.

1.4 RelatedWork: Discrete and Continuous
In this thesis, the underlying idea is to prolong an approximation or discretiza-
tion of X and Y as long as possible. �e motivation for such a strategy is that
this eventually leads to discrete formulations which can be more faithful to the
underlying continuous model. Such formulations are hard to understand or derive
when discretizing at an too early stage. Due to the continuous optimization, such
models o�en yield fractional solutions, as is illustrated in Fig. 1.6. �ese solutions
can implicitly represent the true continuous object beyond the mesh size. In some
sense, such ”subpixel-accurate” representations as shown in Fig. 1.6 can appear
rather naturally, for example when one would record a picture of the continuous
black disk with a camera.
�is advantage of continuous variational approaches over their discrete counter-

parts has been noted since a while, see for example [Klo+08; Lel+13b]. In linear
programming relaxations of integer programs in discrete optimization, fractional
values appear due to exactness or tightness issues with the relaxation. As already
remarked in [Lel+13b], the main idea here is rather di�erent: Fractional values
rather appear as an e�ect of approximating the true continuous solution on a �nite
mesh. An issue is, that it can become di�cult to disentangle whether fractional
solutions are due to an approximation of the continuous model or due tightness
issues with the relaxation. A naive thresholding to a binary solution would destroy
the subpixel-accuracy and more elaborate strategies are necessary.
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(a) continuous (b) discrete (integer) (c) discrete (fractional)

Figure 1.6: On a �xed grid, it is possible to represent a continuous object (shown in
(a)) more faithfully by fractional (non-integer) values than with binary
values.

1.4.1 Discrete multilabeling

To arrive at a practical formulation that is implementable, one eventually has to
discretize or approximate the continuous formulation in some way. �erefore, one
could argue that one can directly start with a discrete formulation in which bothX and Y are represented by �nite sets. Sometimes, it is argued that in computer
vision or imaging applications, this is naturally the case. For example the set X can
represent pixels or superpixels in an image and Y is sometimes naturally a �nite
set, e.g., in segmentation tasks.
By doing so, one arrives at discrete multilabeling problems which we will brie
y

review in the following. �ey can be seen as a discrete analogue to the continuous
�rst-order functional (1.2) and are given by the following energy:

E( f ) = ∑
i∈X Ei( fi) + ∑(i , j)∈E Ei j( fi , f j). (1.21)

�e edge set E ⊂ X × X in the graph G = (X , E) is used to encode pairwise
dependence between the variables, in analogy to the derivative ∇ f in (1.2). �e
energy (1.21) also corresponds to a Markov random �eld (MRF) with underlying
probability distribution p( f ) ∝ exp(−E( f )), see [Ish03].
In case ∣Y∣ = 2, the energy (1.21) can be e�ciently minimized under mild as-

sumptions on the pairwise terms [BK04]. For ∣Y∣ > 2, this is also true in case Ei j
is submodular [Shl76; Wer07], for example given by Ei j( fi , f j) = g( fi − f j) for an
even convex function g ∶ R → R≥0 as in [Ish03]. In general, when ∣Y∣ > 2 and Y
is an unordered set, �nding the global optimum of (1.21) is known to be NP-hard
[LSH16]. Another special case arises when the graph G = (X , E) has the structure
of a one-dimensional chain or, more generally, of a tree. In that setting, the global
optimum of (1.21) can also be e�ciently determined [WF00; WJ+08; CK97; SC10].
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noisy data ∑(i , j)∈E ∣ fi − f j∣ ∫X ∥∇ f (x)∥dx
Figure 1.7: Spatially continuous formulations (in�nite X ) can rather naturally han-

dle more isotropic regularizers such as total variation based on the
ℓ2-norm. Graph-based approaches (here with a 4-connected neighbour-
hood) tend to exhibit a certain bias towards the underlying grid.

1.4.2 Discrete-continuous Markov random �elds

Closely related to the works presented in this thesis are continuousMRFs, in which
the label set Y ⊂ RN is a continuum but X is still �nite.
Based on an in�nite-dimensional local marginal polytope relaxation and its dual

program, the paper [Pen+11] proposes a local particle-based optimization scheme
for such MRFs. In a subsequent work [Yam+12], that method is applied to the task
of stereo matching. �e tightness of this in�nite-dimensional linear programming
relaxation has been studied in [WG14; Ruo15].
�e works [ZK12; Zac13] propose convex relaxations for continuous MRFs based

on perspective functions. �e paper [FA14] shows that these convex relaxation
can actually be derived as a (discontinuous) piecewise-linear approximation of
the in�nite-dimensional dual linear program. Furthermore, a general hierarchy of
piecewise-polynomial approximations to the dual is analyzed.
For continuous MRFs with polynomial potentials, specialized local optimization

solvers based on ADMM [Sal13] and di�erence-of-convex programming strategies
[WSU14] have been proposed. Since for Y = RN the energy (1.21) is a �nite-
dimensional continuous optimization problem, standard local solvers from contin-
uous (nonconvex) optimization (such as gradient descent or L-BFGS) can also be
applied.
For chain or tree-structured graphs, e�cient dynamic programming algorithms

for the global optimization have been proposed also in the continuous case. For
example, the case of piecewise-linear potential functions was considered in [KPR16]
and the Potts model on chains in [SW14].
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1.4.3 Spatially continuous multilabeling
A di�erent line of works considers multilabeling problems with �nite Y , but where
the problem domain X ⊂ Rn is modeled as a continuum. An advantage of such
continuous formulations is, that they can rather naturally handle isotropic smooth-
ness terms, which in turn allows for more isotropic discretizations. �e di�erence
between such anisotropic and isotropic regularization is illustrated on a simple
”denoising” example in Fig. 1.7.
Since the set Y is �nite, the map f ∶ X → Y will be piecewise constant, i.e.,

consist of constant regions. Since∇ f will be either zero (in the constant regions) or
not well-de�ned (at the jump-parts), one considers functional of a form as (1.10):

E( f ) = ∫X c(x , f (x))dx + ∫J f d(x , f −, f +, ν f )dHn−1(x). (1.22)

Roughly speaking, the cost d(x , f −, f +, ν f ) plays the role of the pairwise potential
in (1.21). Note that Ei j in (1.21) depends only on the two values of f at the jump
along the edge. Due to the continuous nature of X , in the above formulation an ad-
ditional dependance on the jump direction ν f ∈ Sn−1 is introduced which intuitively
accounts for the fact that each point x ∈ X has in�nitely many neighbours.
�e energy (1.22) is nonconvex and there are three popular convex relaxations

based on a li�ing f̂ ∶ X → P(Y). �e two formulations [Zac+08; Lel+09] are
simpler and therefore easier to optimize, while the relaxation [Poc+09b; CCP12] is
tighter and more accurate in some situations. A comparison3 between the relax-
ations on an ”inpainting” problem with three labels (red, green and blue) is shown
in Fig. 1.8. �e pairwise interaction term is chosen such that the perimeter of the
interface is minimized. �e relaxations [Zac+08; Lel+09] lead to a large amount
of fractional labelings, which is visualized as a ”mixing” of the three colors. In
contrast, the formulation from [Poc+09b; CCP12] yields an almost binary solution
and the fractional solutions at the interface are likely due to the discretization. For
more details, we refer to the paper [Lel+13b], which discusses the importance of
distinguishing between fractional solutions which are due to the discretization and
those which are caused by the relaxation.
Similarly to the discrete setting, in case ∣Y∣ = 2, the global optimum to (1.10) can

be found by a thresholding, see for example [BPV91; CEN06; Cha+10]. In further
analogy to discrete multilabeling methods, extensions of maximum 
ow based
approaches to the continuous setting have been proposed in [Yua+10; YBT10]. A
numerical comparison between discrete and continuous multilabeling approaches
was conducted in [NTC13]. �e work [ZHP13] connects �nite di�erence discretiza-
tions of continuous multilabeling relaxations to local marginal polytope relaxations
for MRFs. It is sometimes argued as an advantage of discrete multilabeling for-
mulations that they can also handle non-metric transition costs. As remarked

3Solutions computed using the optimization framework ”prost”, see Appendix C.
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input data [Lel+09] [Zac+08] [Poc+09b]

Figure 1.8: Comparison of relaxations for spatially continuous multilabeling on
an ”inpainting” problem. �e relaxation [Poc+09b; CCP12] leads to an
almost binary solution.

in [CCP12], the continuous model (1.10) would not admit a minimizer in such a
non-metric case due to (1.10) not being lower-semicontinuous.
�e study of continuous multilabeling problems in which the set Y contains

in�nitely many labels [Lel+13a] was the starting point for the considerations in
this thesis. Speci�cally, in [Lel+13a] the set Y is assumed to be a manifold, which
is eventually discretized into a discrete set of labels. Nevertheless, due to the
continuous formulation, one expects fractional solutions which can be interpreted
as a sublabel-accurate solution to the underlying continuous manifold. �is allows
one to arrive at smooth solutions despite a rather coarse approximation of the
manifold Y . �is is especially desirable in high-dimensional settings, as due to
the curse of dimensionality the number of labels grows exponentially with the
dimension of the manifold.
As we will later see, the linear label-cost used in traditional multilabeling ap-

proaches and in [Lel+13a] does not take this sublabel-accurate structure into ac-
count appropriately. �e main contribution of Chapter 3 and Chapter 4 will be a
more faithful data term which assigns meaningful costs also to fractional labelings.
An issue with this multilabeling perspective is, that one is essentially restricted to

regularizations on the jump part which has to be a metric. �erefore, it was initially
considered unclear how to extend the sublabel-accurate multilabeling methods to
more general convex regularizers such as Huber or Dirichlet-type energies. �is
issue is eventually resolved in Chapter 5, by interpreting the multilabeling methods
as a certain discretization of a label-continuous relaxation for variational problems
with general regularizations. As remarked before, these relaxations are essentially
weighted anisotropic minimal surface problems in higher dimension.

1.4.4 Continuous variational problems
Finally, let us consider the case of continuous variational problems (1.2) where the
sets X and Y both have in�nite cardinality. In the following, we give an overview
over existing methods to tackle such problems.
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1.4.4.1 Local optimization methods

One approach is to solve the variational problem via direct optimization, by run-
ning gradient descent or �xed-point methods to �nd a zero of the Euler-Lagrange
equations, see for example [ROF92]. In case the cost function is split into a non-
convex data term plus a convex regularizer, c(x , y, ξ) = ρ(x , y) + η(ξ), more
elaborate local optimization methods have been developed over the years. One
popular approach, o�en referred to as quadratic relaxation or quadratic decoupling,
introduces a splitting of the objective that is coupled with a quadratic penalty term:

min
f ,g ∫X ρ(x , f (x)) + η(∇g(x)) + 1

2θ
( f (x) − g(x))2 dx . (1.23)

�e subproblems appearing in alternating minimization on this split formulation
are both easy. �e f -subproblem is an independent point-wise search that can
be solved globally while the g subproblem is a convex optimisation problem. For
θ → 0+, it can be expected that one approaches a (local) solution to the original
problem. Such a splitting strategy has been successfully used for large-displacement
optical 
ow [SPC09] or real-time dense 3D mapping [NLD11]. Introducing a
Lagrange multiplier for the constraint, which corresponds to an inexact augmented
Lagrangian or ADMM type method, has been shown to be bene�cial [KC13].
Another popular line of works locally replaces the nonconvex data term with a

convex model ρt at the current solution f t for time step t ≥ 0. In the simplest case,
this model is based on a �rst or second order Taylor expansion. �en, one solves a
sequence of convex problems of the form

f t+1 = argmin
f ∫X ρt(x , f (x)) + η(∇ f (x)) + 1

2τ
( f (x) − f t(x))2 dx (1.24)

where the additional trust-region or proximal term keeps the solution in an area
in which this model is considered to be accurate. Since the model is o�en only
valid locally, this sequential convex programming strategy is usually embedded in
a coarse-to-�ne framework, see for example [ZPB07; Wed+09; SGC10]. In case the
model is a �rst-order expansion, this algorithm is also known as forward-backward
splitting or the proximal gradient method [CP11b].

1.4.4.2 Convex relaxation approaches

While the previous local optimization approaches are fast and can lead to good
solutions, they require additional hyperparameters such as step sizes τ > 0 or ho-
motopy continuation parameters θ → 0. Furthermore, they cannot be guaranteed
to always reach the global optimum and depend on the initialization. �e focus of
this thesis to advance global optimization approaches, where the aim is to �nd a
single convex optimization problem.
�e most direct way to obtain a convex relaxation is to replace the nonconvex

function with a global convex surrogate. �is has been considered by Bhusnur-
math et al. [Bhu08; BT08], on the example of stereo matching. Speci�cally, the
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Figure 1.9: Computing a lower convex envelope of the nonconvex cost to obtain a
convex formulation can lead to quite large ”gaps” between the envelope
and actual function. Li�ing strategies can overcome this problem by
embedding the cost in a higher-dimensional space prior to the convexi-
�cation.

nonconvex image matching cost is replaced by its convex hull. Due to convexity of
the regularizer, this leads to an overall convex linear programming formulation
which is solved using an interior point method. As illustrated in Fig. 1.9, an issue
with this approach is that there can be quite a large gap between the convex and
the nonconvex cost. Nevertheless, despite this seemingly poor approximation, the
results obtained in [Bhu08; BT08] are surprisingly good.
We show in Chapter 3 and Chapter 4 that the proposed sublabel-accurate li�ing

approach includes this idea of direct convexi�cation as a special case, when a
minimal number of labels is chosen. As we will illustrate later on, the multilabeling
approach embeds the nonconvex cost in a higher-dimensional space before taking
the convex envelope which leads to a better approximation.

Minimal surface problems in codimension one. As we have seen in the previ-
ous section, variational problems involving �rst-order energies can be rephrased
as certain weighted anisotropic minimal surface problems for which global opti-
mization methods exist.
In his Ph.D. thesis, John Sullivan [Sul90] proposes to determine discreteminimal

surfaces supported on a large set of polygonal surface elements usingmax-
owmin-
cut algorithms. Since one determines a certain polyhedral surface, this yields an
upper bound to the true continuous minimal surface energy. While the algorithm
is quite e�cient, and there are convergence guarantees under the re�nement of the
grid, there is a certain bias towards the chosen underlying surface elements. �e
work [KG04] extends that approach to also handle Neumann boundary conditions
and provides an actual numerical implementation. �e paper [BK03] also proposes
a discrete approach for computingminimal surfaces usingminimumcuts in a graph.
Using tools from integral geometry, the paper provides a formula for optimal edge
weights in the graph which minimize metrication artifacts.
�e paper [Par92] proposes to determine a minimal surface in codimension one

by minimizing the gradient norm of a zero-one-indicator function represented in a
piecewise linear basis. �e method also �nds an upper bound to the true minimal
surface energy, but by representing the surface as the level-set of a piecewise linear
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function, a smoother solution which can go beyond the chosen mesh accuracy is
obtained. �is is in similar spirit as the proposed sublabel-accurate li�ing methods,
but we will consider a discretization of the dual problem instead.
�e approach [AT05] is concerned with the determination of minimal surfaces

using the theory of continuous maximum 
ows [Str83; Str09]. Unlike the methods
proposed in this thesis, it still requires a �ne discretization of the range into labels,
as it is based on a simple �nite di�erencing approach.
In contrast to the above works, what we will propose in Chapter 5 and Chapter 6

is a lower bound to the true minimum, as we will discretize a dual representation of
the energy. Quite similarly, the work [Bra95] also considers a discretization of the
dual problem using piecewise linear �nite elements. However, we consider a more
general setting and solve the resulting optimization problem using a �rst-order
primal dual algorithm while [Bra95] considers an interior point method. It is
noted in [Bra95] that the interior point method �nds a superposition of all possible
solutions. �is can be attributed to the fact that the interior point method always
stays in the interior of the feasible set. Despite lack of theoretical guarantees, it is
mentioned in [Bra95] that this superposition of solutions always turns out to be
close to the true continuous solution in practice. We observe a similar e�ect in the
experiments in Chapter 6.
Another di�erence to all the above works is, that we eventually consider the

setting of general dimension and codimension, and use a specialized �rst-order
primal-dual algorithm on GPUs to solve very large scale problems. �e works
[Poc+08; Poc+10] also propose to solve the (anisotropic) minimal surface energy
with the same algorithm. �is thesis builds upon these works by using a more
precise (sublabel-accurate) discretization, that can still be e�ciently solved using
the same primal-dual methods.

Beyond codimension one. It is a major research challenge to tackle vectorial
variational problems or multilabeling problems where the labels do not form an
ordered set. Under the minimal surface viewpoint, such problems corresponds
to the task of �nding a surface with codimension larger than one, for example a
two-dimensional surface in four-dimensional space. It has already been noted in
[KG04] that it would be ”nice to solve variational problems of higher codimension”
but deemed ”unlikely that such a generalization exists”, by which they refer to
e�cient min-cut max-
ow techniques.
�e works [GSC13; SCC12; SCC14] are among the �rst to tackle the di�cult chal-

lenge of such vectorial variational problems. To that end, a collection of surfaces in
codimension one is considered. �is e�cient representation avoids a discretization
of X × Y , but assumes a factorization Y = Y1 × ⋯ × YN into one-dimensional
spaces. Approaches which consider the full product space have also been proposed
[GBO12; Lel+13a; WC16], but are restricted to certain types of surface energies.
In this thesis, we make two contributions to this line of works. In Chapter 5 we

show that more accurate results can be obtained by using a piecewise linear dis-
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cretization in the dual, which also applies to the above works. We illustrate the e�ect
on the example of the work [SCC12]. Furthermore, we extend li�ing approaches
which operate in the full space X × Y to general polyconvex regularizations in
Chapter 6.

1.5 Contributions
�is cumulative thesis consists of �ve publications [Möl+16; Lau+16; MC17; MC19a;
MC19b] which are the result of collaborations with Emanuel Laude, Prof. Michael
Möller, Prof. Jan Lellmann and Prof. Daniel Cremers. All of these works were
published in highly ranked and peer reviewed international conferences. �e
following table gives an overview of the publications included in this thesis.

[Möl+16] T. Möllenho�, E. Laude, M. Moeller, J. Lellmann and D. Cremers.
Sublabel-accurate relaxation of nonconvex energies. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2016.
Received the best paper honorable mention award at CVPR 2016. �e
�rst two authors contribued equally. (Cited on pages 22, 63, 77, 80, 82,
83, 85, 86, 88, 91, 95, 106, 156, 157, 170).

[Lau+16] E. Laude, T. Möllenho�, M. Moeller, J. Lellmann and D. Cremers.
Sublabel-accurate convex relaxation of vectorial multilabel ener-
gies. In: European Conference on Computer Vision (ECCV). 2016. �e
�rst two authors contribued equally. (Cited on pages 22, 77, 95, 180).

[MC17] T. Möllenho� and D. Cremers. Sublabel-accurate discretization of
nonconvex free-discontinuity problems. In: International Confer-
ence on Computer Vision (ICCV). 2017 (Cited on pages 22, 94, 95, 106,
197).

[MC19a] T. Möllenho� and D. Cremers. Li�ing vectorial variational prob-
lems: A natural formulation based on geometric measure theory
and discrete exterior calculus. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). 2019 (Cited on pages 22, 113,
207).

[MC19b] T. Möllenho� and D. Cremers. Flat metric minimization with ap-
plications in generative modeling. In: International Conference on
Machine Learning (ICML). 2019 (Cited on pages 22, 218).

During the course of the master and doctoral studies a couple of additional papers
not directly related to the topic of this thesis have been prepared. �ey are not
included in this thesis and simply listed here for completeness.
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[Hae+18] B.Haefner, T.Möllenho�, Y.Queau andD.Cremers.Fight ill-posedness
with ill-posedness: Single-shot variational depth super-resolution
from shading. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2018 (Cited on page 9).

[Möl+13] T. Möllenho�, C. Nieuwenhuis, E. Toeppe and D. Cremers. E�cient
convex optimization forminimal partition problemswith volume
constraints. In: Energy Minimization Methods in Computer Vision
and Pattern Recognition (EMMCVPR). 2013.

[Möl+15a] T. Möllenho�, E. Strekalovskiy, M. Moeller and D. Cremers. Low
rank priors for color image regularization. In: EnergyMinimization
Methods in Computer Vision and Pattern Recognition (EMMCVPR).
2015.

[Möl+15b] T. Möllenho�, E. Strekalovskiy, M. Moeller and D. Cremers.�e
primal-dual hybrid gradientmethod for semiconvex splittings. In:
SIAM J. Imaging Sci. 8.2 (2015), pp. 827–857.

[Fre+18] T. Frerix, T. Möllenho�, M. Moeller and D. Cremers. Proximal back-
propagation. In: International Conference on Learning Representa-
tions (ICLR). 2018. �e �rst three authors contribued equally.

[Möl+18] T. Möllenho�, Z. Ye, T. Wu and D. Cremers. Combinatorial pre-
conditioners for proximal algorithms on graphs. In: International
Conference on Arti�cial Intelligence and Statistics (AISTATS). 2018.

[MMC19] M. Moeller, T. Möllenho� and D. Cremers. Controlling neural net-
works via energy dissipation. In: International Conference on Com-
puter Vision (ICCV). 2019.

[Bré+19] P. Bréchet, T. Wu, T. Möllenho� and D. Cremers. Informative GANs
via structured regularizationof optimal transport. In:Optimal Trans-
port and Machine Learning (NeurIPS Workshop). 2019.

[Ye+20] Z. Ye, T. Möllenho�, T. Wu and D. Cremers.Optimization of Graph
Total Variation via Active-Set-based Combinatorial Recondition-
ing. In: International Conference on Arti�cial Intelligence and Statistics
(AISTATS). 2020.

�is thesismakes several contributions to advance the state-of-the-art in spatially
continuous multilabeling and convex relaxation methods, which are listed in the
following.

1.5.1 Sublabel-accurate multilabeling
�e �rst contribution this thesis makes is a novel formulation for spatially contin-
uous multilabeling problems, in which fractional labelings are assigned a more
meaningful cost. �is allows one to tackle labeling problems which originally have
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huge or even in�nite label spaces. �e method is �rst developed for scalar-valued
labels in Chapter 3 and then extended to the vectorial setting in Chapter 4. We
show that the resulting convex-concave saddle point problems can be implemented
with little overhead using standard primal dual algorithms and epigraphical projec-
tions. In contrast to discrete-continuous MRFs [ZK12], the formulation allows a
particularly e�cient implementation of isotropic regularizations.

1.5.2 Interpretation as a discretization

In Chapter 5 we show that the previous sublabel-accurate multilabeling approaches
can be derived as a particular discretization to a known convex relaxation for
continuous variational problems which are based on the theory of calibrations.
Speci�cally, we show that the sublabel-accurate representation corresponds to an
approximation of the calibration (dual variable) with continuous piecewise linear
functions. Using this insight, we can extend these methods from total variation
or convex one-homogeneous regularizers to more general convex regularizations.
Furthermore, we show that concave penalizations of the jump set can be imple-
mented with �nitely many constraints. However, we see the main contribution
of this chapter as a new principled way to obtain sublabel-accurate solutions to
continuous convex relaxations. Furthermore, it highlights the generality and use-
fulness of the in�nite-dimensional treatment and gives further justi�cation of the
function space formulations. We expect the insights developed in this chapter to
inspire and drive further developments and analyses of �nite element approaches
applied to dual formulations.

1.5.3 Li�ings in arbitrary dimension and codimension

In Chapter 5, we have seen that sublabel-accurate multilabeling approaches are
discretizations of continuous function space formulations. �erefore, in Chapter 6,
the aim is to extend the scope of such formulations. In particular, we focus on
vectorial variational problems. �e main contribution we make over previous
works is a novel formulation which can handle general polyconvex regularizations.
To achieve this, we view the li�ing as an anisotropic minimal surface problem in
general dimension and codimension. �is requires to introduce various notions
from geometric measure theory, which are not previously used in computer vision.
While previous li�ings for vectorial or even manifold-valued problems support
general convex regularizers [SCC14; Vog+19], in our framework they correspond to
a certain trivial polyconvex extension of the convex cost. �e presented framework
potentially allows for tighter relaxations by taking the geometric structure of the
underlying problem into account. Furthermore, it allows to introduce bijectivity
constraints, which we demonstrate on the example of image registration.
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1.5.4 Outlook: Geometric measure theory in machine learning
In Chapter 7, we show that the previously introduced notions from geometric
measure theory can be useful beyond the convex relaxation of variational problems.
�e main contribution is the novel perspective to view high-dimensional data
not as a probability distribution but rather as a current. �is is motivated by the
manifold hypothesis, which states that the true data distribution concentrates
near a low-dimensional manifold with high codimension. Our insight is that the
generalized surfaces developed in geometric measure theory to solve variational
problems in general dimension and codimension can be also useful to represent
high-dimensional data. �is viewpoint also allows one to equip the data with a local
orientation, which can be useful for the learning of equivariant representations. Our
second contribution in this chapter is a generalization of the recent Wasserstein
generative adversarial networks [ACB17] to this perspective. �e generalization
is based on the 
at norm, which serves as a distance between currents. In our
theoretical contribution, we show Lipschitz continuity of the 
at norm with respect
to the parameters which ensures well-posedness of the optimization problem.
Finally, we demonstrate that the formulation can actually be implemented, and
that it leads to disentangled and equivariant latent representations.

1.6 Outline of the�esis
Following this introduction in Part I is Chapter 2 which revisits some mathemat-
ical foundations. �e three theoretical cornerstones of this thesis are (1) convex
analysis, (2) (geometric) measure theory and functions of bounded variation and (3)
mathematical optimization. Correspondingly, this chapter consists of three sections
which review some of the required backgrounds from these disciplines. Each of
these are vast �elds and the purpose is not to repeat the standard textbooks on the
topic. �e aim is rather to focus on the concepts which are of speci�c importance
to this thesis. We will present the concepts in a rather non-technical fashion, with
focus on intuitions and examples rather than on proofs. Nevertheless, we will refer
to the points in the literature where more rigorous treatments can be found. As the
later chapters contain some background as well, we keep the presentation rather
brief.
In Part II, Chapters 3 – 7 correspond to one the aforementioned full-length

publications.
Finally, in Part III we conclude the thesis. Chapter 8 summarizes the results and

contributions made in this thesis. In Chapter 9, some recent related work that has
been carried out concurrently or builds upon the results of this thesis is discussed.
Finally, we point out some promising open directions for future research.





Chapter 2
�eoretical Foundations

In this chapter we provide a short introduction to the mathematical concepts used
in this thesis. �e �rst section is concerned with convex analysis, which lies at
the heart of the convexi�cation approaches presented in the remainder of this
thesis. We will put particular emphasis on the notions of convex envelope and
convex duality as they form the central tools in obtaining convex reformulations
of nonconvex problems.
�e second section reviews notions from (geometric) measure theory and func-

tions of bounded variation. �ese technicalities are required as the li�ing principle
is essentially based on a reformulation of the optimization problem to spaces of
certain (geometric) measures.
�e third section brie
y introduces proximal algorithms for convex optimization.

�ese are used to solve the nonsmooth convex optimization problems arising from
the discretization of the li�ed and convexi�ed formulations. �ere is a vast body
of literature on �rst-order methods and their relations [Ess10; PB13]. We will
discuss a popular and simple primal-dual algorithm [CP11a] that was used in most
experiments of this thesis. We further discuss some tweaks that can be used to speed
up the convergence such as (adaptive) step size selection and preconditioning.

2.1 Convex Analysis

We will present most of the results in the setting of �nite-dimensional real vector
spaces V equipped with a norm ∣ ⋅ ∣ and inner product ⟨⋅, ⋅⟩. �is chapter will state
many results without proof but we will refer to the according results in the literature.
As a general introduction to convex analysis we recommend the book by [HL12],
on which this section is mostly based on. �e comprehensive treatise of [Roc96] is
o�en considered the de�nite reference to the subject. Many of the concepts also
carry over to the more general setting of in�nite-dimensional topological vector
spaces; see for example [Roc74; AB94].

27
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2.1.1 Basic de�nitions and notation
�e extended reals are denoted by R = R ∪ {+∞}, with the laws of addition,
multiplication and comparison as customary in convex analysis, see [HL12, pp. 5–
6]. We consider functionsmapping into the extended reals, as it conveniently allows
us to formulate constrained optimization problems in an uni�ed “unconstrained”
notation. For f ∶ V→ R and C ⊂ V compare

min
x∈C f (x), (2.1)

with the problem over g ∶ V→ R:

min
x∈V g(x) ∶= f (x) + δC(x). (2.2)

�e function δC ∶ V→ R is the indicator function of the set C and de�ned by

δC(x) = ⎧⎪⎪⎨⎪⎪⎩
0, if x ∈ C ,+∞, otherwise.

(2.3)

When it is clear from the context it will be convenient to write δ{x1 ≥ x2 + 5}
instead of δC(x) as it avoids to explicitly de�ne a set C = {x ∈ R2 ∶ x1 ≥ x2 + 5}.
Recall that a set C ⊂ V is called convex if for any two points x , y ∈ C the line

segment αx + (1 − α)y, α ∈ [0, 1] is also contained in the set. O�en, one can apply
results for sets to functions by considering their epigraph

epi f = {(x , t) ∈ V ×R ∶ f (x) ≤ t} ⊂ V ×R. (2.4)

A function f ∶ V → R is convex if and only if its epigraph is a convex set. For a
lower-semicontinuous function f ∶ V→ R

f (x0) ≤ lim inf
x→x0 f (x), (2.5)

the epigraph is a closed set and we will also refer to the function as closed.
�e domain of a function f ∶ V→ R is given by

dom f = {x ∈ V ∶ f (x) ≠ ∞} . (2.6)

A function f ∶ V→ R is called proper if its domain is nonempty. �e set of proper,
convex and lower-semicontinuous functions mapping from V to R is denoted as
Γ0(V). �e subdi�erential of a function f ∈ Γ0(V) is de�ned by

∂ f (x) = {p ∈ V∗ ∶ f (y) ≥ f (x) + ⟨p, y − x⟩ for all y ∈ V} . (2.7)

It is empty if x ∉ dom f .



29 �eoretical Foundations

C C

Figure 2.1: Illustration of the geometric intuition behind convex duality. A closed,
convex set C ⊂ V can be viewed as a collection of points but at the same
time also as an intersection of half-spaces.

2.1.2 Convex duality
A fundamental observation (see e.g. [HL12, Chapter A, Corollary 4.2.4]) which
leads to the concept of convex duality is that a closed convex set C ⊂ V can either
be viewed as a collection of points but also as the intersection of closed half-spaces
which contain C, see Fig. 2.1. �e proof of this observation relies on a separation
theorem, which for a point x ∉ C ensures the existence of a hyperplane which
strictly separates x from C. �is is also referred to as the geometric version of the
Hahn-Banach theorem, see [HL12, Chapter A, Remark 4.1.2]

0

d
C

σC(d)

{x ∶ ⟨d , x⟩ = σC(d)}

Figure 2.2: Support function of a (nonconvex) set C for a direction d with ∥d∥ = 1.
For a nonempty set C ⊂ V, an important notion (dual to the previous indicator

functions δC) is that of a support function σC ∶ V∗ → R:

σC(d) = sup
x∈C ⟨d , x⟩. (2.8)

Support functions are sublinear, i.e., convex and positively one-homogeneous. A
function is positively one-homogeneous if σ(cx) = cσ(x) holds for all c ≥ 0. For
such functions, the norm of the argument is not too important. �erefore, the
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argument itself can be interpreted as an oriented direction. �is intuition will be
helpful to keep in mind. As illustrated in Fig. 2.2, for ∥d∥ = 1, the support function
(2.8) represents the distance of a supporting hyperplane with normal d from the
origin.
Another important notion is the convex conjugate (also called Legendre-Fenchel

conjugate) of a function f ∶ V→ R, de�ned as follows:

f ∗(p) = sup
x∈V ⟨p, x⟩ − f (x). (2.9)

By [HL12, Chapter E, Prop. 1.2.1], it can be written as the support function of the
epigraph and therefore seen as a dual representation of the function:

f ∗(p) = sup(x ,t)∈epi f ⟨p, x⟩ − t = σepi f (p,−1). (2.10)

With Fig. 2.2 in mind, this gives an interpretation of f ∗(p) as a (scaled) distance
from the origin to a supporting hyperplane of the epigraph.
Another useful interpretation is due to [HL12, Chapter E, Sec. 1.2]. Suppose we

are given a family of hyperplanes in the ”graph space” V ×R with normal vector(p,−1) and parametrized by ⟨p, x⟩ − r. Now, we wish to push the hyperplane as
close as possible to the function f from below by varying the parameter r:

⟨p, x⟩ − r ≤ f (x), for all x ∈ V. (2.11)

�e constraints in the above equation can be reduced to a single one by taking the
supremum:

sup
x∈V ⟨p, x⟩ − f (x) = f ∗(p) ≤ r. (2.12)

�e optimal parameter is given by r = f ∗(p) and the best a�ne lower bound with
slope p is l(x) = ⟨p, x⟩ − f ∗(p).
Applying the convex conjugate operation (2.9) twice, one obtains the biconjugate

f ∗∗ = ( f ∗)∗. Using the de�nition, it is given as
f ∗∗(x) = sup

p∈V∗ ⟨x , p⟩ − f ∗(p). (2.13)

With the previous geometrical interpretations, one can observe that the biconjugate
represents the function as a supremum over all supporting hyperplanes to the
epigraph, see Fig. 2.3 for an illustration.
Indeed, it can also be shown that the epigraph of the biconjugate f ∗∗ is the

closure of the convex hull of epi f , see [HL12, �eorem 1.3.5]. It follows that for
f ∈ Γ0(V) we have the desirable representation

f (x) = sup
p∈V∗ ⟨x , p⟩ − f ∗(p) = f ∗∗(x). (2.14)

In the following chapters, we will o�en use the de�nition of the convex biconju-
gate as a useful technical tool to compute the largest closed convex underapproxi-
mation to a nonconvex function.
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epi f epi f ∗∗

Figure 2.3: Visualization of the Legendre-Fenchel biconjugate f ∗∗ as the supremum
over a collection over supporting hyperplanes. �ebiconjugate f ∗∗ is the
largest convex function below f , the intuition being that the supporting
hyperplanes cannot reach into the nonconvex dents of f .

2.1.3 Perspective functions
Perspective functions are a central ingredient for the functional li�ing procedures
presented in this thesis. �ey o�er a general way of turning a convex function into
a sublinear function in one dimension higher. �e li�ing procedure is essentially
based on a reformulation using perspective functions. Furthermore, in another
context, perspective functions will appear in the discretization of the in�nite-
dimensional objective using piecewise-linear approximations.
Formally, the perspective of a function f ∈ Γ0(V) is given as:

f ⊘(x , t) = ⎧⎪⎪⎨⎪⎪⎩
t f (x/t), if t > 0,+∞, otherwise.

(2.15)

At t = 1 it coincides with the original function, i.e., f ⊘(x , 1) = f (x).
It turns out that the perspective of a function is convex if and only if the function

is convex. To gain an intuition, we show the perspective of a few selected functions
in Fig. 2.4. For f (x) = √

1 + x2 and t > 0 let us calculate
f ⊘(x , t) = t√1 + x2/t2 = √

t2 + x2 = ∥(x , t)∥2. (2.16)

Due to its construction the perspective is not closed at the point t = 0 where it is
perhaps a bit harshly set to +∞. For optimization purposes later on it is convenient
to rather work with the lower-semicontinuous envelope, which from now on we
will also refer to as f ⊘. It extends the function at t = 0 in a lower-semicontinuous
fashion and is given as follows [HL12]:

f ⊘(x , t) = σepi f ∗(x ,−t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t f ∗∗(x/t), if t > 0,
σdom f ∗(x), if t = 0,+∞, otherwise.

(2.17)
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f (x) = √
1 + x2 f (x) = ∣x∣ f (x) = 1 + x2 f (x) = hε(x)

Figure 2.4: �e perspective function is a canonical way to turn a convex function
f ∶ R→ R into a convex one-homogeneous function f ⊘ ∶ R ×R>0 → R.

�e quantity f∞(x) = σdom f ∗(x) is referred to as the recession function of f .
To get an intuition about (2.17) recall that by de�nition of the convex conjugate

(2.10) we have the representation

f ∗∗(x) = σepi f ∗(x ,−1) = f ⊘(x , 1). (2.18)

By relaxing the second argument in the support function from 1 to t we naturally
arrive at (2.17).
Perspective functions and convex (bi)conjugates are the main concepts from

convex analysis which are required to understandChapter 3 –Chapter 6. Additional
results will be introduced in the chapters themselves.

2.2 Notions from Geometric Measure�eory
In this section, we recall some basic notions from geometric measure theory. More
speci�c concepts such as exterior algebra, currents and di�erential forms will be
introduced in Chapter 6 and Chapter 7. For this section, we follow the presentation
in [AFP00] and [Mor16].

2.2.1 Basic measure theory
Let X ⊂ Rn be a compact set. We denote the space of �nite, Rm-valued Radon
measures byM(X ;Rm), and we abbreviateM(X ;R) = M(X). Positive Radon
measures are denoted byM+(X) and probability measures by P(X).
For a �nite Rm-valued Radon measure µ ∈ M(X ;Rm), its total variation is a

positive measure ∥µ∥ ∈ M+(X) given by [AFP00, Prop. 1.47]:
∥µ∥(A) = sup{ m∑

i=1 ∫ φi dµi ∶ φ ∈ Cc(A;Rm), ∥φ∥∞ ≤ 1} . (2.19)

For a discrete measure µ = ∑N
i=1 aiδx i with coe�cients a ∈ RN the total variation

reduces to the usual �nite-dimensional ℓ1-norm, i.e., ∥µ∥(X) = ∑i ∣ai ∣ = ∥a∥1. For
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a measure µ = f dx which is absolutely continuous with respect to the Lebesgue
measure dx, we have ∥µ∥(X) = ∫X ∣ f (x)∣dx.
Another measure that we will frequently use is the m-dimensional Hausdor�

measure, see [Mor16, Section 2.3]:

Hm(A) = lim
δ→0 inf

⎧⎪⎪⎨⎪⎪⎩∑j αm (diam(S j)
2

)m ∶ A ⊂ ⋃ S j, diam(S j) < δ⎫⎪⎪⎬⎪⎪⎭ . (2.20)

Here, αm is the volume of the unit ball in Rm and the in�mum is taken over all
countable covers {S j} ofAwith diameter less than δ. It measures the k-dimensional
volume of sets in Rn.
�e restriction of a measure µ ¬ S to some set S is another measure given by(µ ¬ S)(A) = µ(S ∩ A). �e Hausdor� measure (2.20) is very useful, as it allows

one to de�ne m-dimensional geometric structures in a purely intrinsic way, i.e.,
without specifying a certain parametrization or topology. For example, this can be
done by restricting them-dimensional Hausdor� measure to somem-dimensional
embedded manifold S ⊂ Rn, i.e., µ = Hm ¬ S ∈ M(X). Measures of this type
(and more general less regular ones) are called recti�able measures, see [AFP00,
De�nition 2.59]. In particular, if S ⊂ Rn is aHm-measurable set withHm(S) < ∞,
thenHm ¬ S ∈ M(X), see [Mat99, p. 57].
�e attractiveness of the measure theoretic viewpoint for practical and optimiza-

tion purposes comes from the fact that it allows one to treat geometric structures
(e.g. embedded manifolds) as elements of a linear (vector) space: M(X)! �is
linear structure is important, as it makes the geometric theory compatible with
vector space optimization, convex analysis and duality techniques. �is fundamen-
tal fact has been exploited already many times in the past to solve di�erent shape
optimization problems in computer vision with the help of convex optimization
techniques. Importantly, no restrictions on the topology of the shape or explicit
parametrizations are necessary!

2.2.2 Convex functionals on measures
In Chapter 3, Chapter 4 and Chapter 6 we will make use of the polar decomposition
of ameasure, [AFP00, Corollary 1.29]. For a vector-valuedmeasure µ ∈ M(X ;Rm),
the polar decomposition guarantees the existence of a unique Sm−1-valued function
µ⃗ ∈ L1(X , ∥µ∥,Sm−1) such that µ = µ⃗ ⋅ ∥µ∥.
Given a Borel function Ψ ∶ X × Rn → R which is convex and positively one-

homogeneous in the second argument, the above decomposition can be used to
de�ne a functional on measures µ ∈ M(X ;Rn) as follows:

I(µ) = ∫ Ψ(x , µ) ∶= ∫ Ψ(x , µ⃗(x))d∥µ∥(x). (2.21)

For example, if the vector-measure µ describes the normal �eld of an embedded
surface in codimension one, the above functional could for example penalize the
weighted area of that surface under the choice Ψ(x , n) = w(x)∥n∥.
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�e functional I ∶ M(X ;Rn) → R is again convex and positively 1-homogeneous
[AFP00, Prop. 2.37]. Lower-semicontinuity can be guaranteed, if Ψ is lower-
semicontinuous in its �rst argument [AFP00, �eorem 2.38].
Recall from the previous section, that for convex one-homogeneous functions Ψ,

the argument can be interpreted as a direction. �is �ts nicely together with the fact
that in the polar-decomposition we have µ⃗(x) ∈ Sn−1. For the li�ing procedures
presented in this thesis, this argument will carry the interpretation of a unit jump
normal along an interface between two regions or more generally in Chapter 6 a
multivector which describes an oriented tangent space of a manifold.

2.2.3 Functions of bounded variation
In the following chapters, we will o�en not directly work with vector-valued mea-
sures but rather with functions whose distributional derivative is a measure:

BV(X ;R) = { f ∈ L1(X ;R) ∶ D f ∈ M(X ;Rn)} . (2.22)

For such a function of bounded variation, its total variation is given by the total
variation of its distributional derivative in the sense of (2.19), i.e.,

TV( f ) = ∥D f ∥(X) = sup{∫ div φ ⋅ f dx ∶ φ ∈ C1c(X ;Rn), ∥φ∥∞ ≤ 1} . (2.23)

Functions f ∈ BV(X ;R) have �nite total variation, i.e., TV( f ) < ∞. For more
information, we refer the reader to [AFP00, Chapter 3].

2.2.4 Li�ing, area and coarea formulas
In this section, we give short review of theoretical results from [Poc+10], as we
build upon their formulation for the li�ings considered in Chapter 5 and Chapter 6.
For that, we introduce two more tools. �e �rst one is the area formula [KP08,
Corollary 5.1.13], which is essentially a change of variables.

�eorem 1 (Area formula). Let M ≤ N and ϕ ∶ RM → RN be a Lipschitz function.
For g ∶ A→ R and A ⊂ RM bothHM-measurable, we have:

∫
A
g(x)JMϕ(x)dx = ∫

RN
∑

x∈A∩ϕ−1(y) g(x)dHM(y). (2.24)

In the above theorem, JMϕ denotes the Jacobian of ϕ, see [KP08, De�nition 5.1.3].
For di�erentiable ϕ, it is given by JMϕ(x) = √

det(∇ϕ(x)⊺∇ϕ(x)).
Consider the perspective function (cf. [Poc+10, Eq. 3.4]):

Ψ(x , y, v) = c⊘(x , y, vx ,−vt) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−vtc(x , y, vx/ − vt), if vt < 0,
c∞(x , y, vx), if vt = 0,+∞, otherwise.

(2.25)



35 �eoretical Foundations

X

Y

X

Y
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Figure 2.5: In codimension one it is possible to represent the graph G f as the deriva-
tive of an indicator function of the subgraph. �e derivative D1 f is a
vector-valued measure concentrating on the graph. On the right we
show a 90 degree rotated version (D1 f )⊥ for better visualization. In
general, the relation between tangent and normal vectors is given by
the Hodge star operator.

Assuming that f is di�erentiable, by using the area formula we can reparametrize
our variational problem (1.18) to the graph of the function, see [Poc+10, pg. 6]:

E( f ) = ∫X c(x , f (x),∇ f (x))dx = ∫X c⊘(x , f (x),∇ f (x), 1)dx
= ∫X Ψ(x , f (x), (∇ f (x),−1)√

1 + ∥∇ f (x)∥2)
√
1 + ∥∇ f (x)∥2 dx

= ∫X Ψ(x , f (x), νG f (x , f (x))√1 + ∥∇ f (x)∥2 dx
= ∫X Ψ(x , f (x), νG f (x , f (x))Jn f (x)dx
= ∫G f Ψ(x , y, νG f (x , y))dHn(x , y)
=∶ E(νG f ⋅ Hn ¬ G f ).

(2.26)

To arrive at the �nal result, we applied Theorem 1 with ϕ ∶ Rn → Rn+1, ϕ(x) =(x , f (x)) and g(x) = Ψ (x , f (x), νG f (x , f (x))). �e li�ed energy E ∶ M(X ×Y ;Rn+1) → R is a convex functional on measures as de�ned in the previous section.
�e above calculation shows that if µ = νG f ⋅ Hn ¬ G f , we have E(µ) = E( f )! In
Chapter 6, this calculation will be carried out in general codimension, see also
[AG91; Mor02; GMS98].
�e set of measures of type νG f ⋅ Hn ¬ G f , which concentrate on the graph of a

function, is a nonconvex subset ofM(X ;Rn+1). By representing these measures as
the derivative of a subgraph function, we can de�ne a relaxation without requiring
the general notions of currents. �e idea is illustrated in Fig. 2.5. �e subgraph
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1 f ∶ X × Y → {0, 1} of the function f is given as follows:
1 f (x , y) = ⎧⎪⎪⎨⎪⎪⎩

0, if f (x) < y,
1, if f (x) ≥ y. (2.27)

It turns out that the (distributional) derivative of 1 f is exactly a vector-valued
measure that concentrates on the graph of f :

D1 f = νG f ⋅ Hn ¬ G f , (2.28)

see for example [ABD03, Eq. 2.3]. Additionally, νG f ∶ X × Y → Rn+1 is the inward
pointing normal on G f . In case f has discontinuities, the measure D1 f will have
support on the complete graph, where the jumps have been “stitched”. Note that
the vertical parts in the graph correspond to the ”limiting” case in the perspective
function (2.25).
To obtain a convex problem, the idea in [Poc+10] is to relax from subgraph

functions to the larger set of nonincreasing functions given by:

C = {v ∈ BV(X × Y ; [0, 1]) ∶ lim
y→y− v(x , y) = 1,
lim
y→y+ v(x , y) = 0,
v(x , ⋅) is nonincreasing.}.

(2.29)

�e relaxed optimization problem is then given by

min
v∈C E(Dv) = ∫ Ψ(Dv) ∶= ∫ Ψ(x , y, D⃗v(x , y))d∥Dv∥(x , y). (2.30)

�emain idea of the generalization we present in Chapter 6 is the following: instead
of optimizing over a function v ∈ C and then de�ning an energy on the measure
Dv we directly optimize over a vector-measure (equivalently a �nite mass current)
µ! Instead of a normal vector νG f the measure is multivector-valued, where the
multivectors span the (oriented) tangent plane of the graph.
Returning to the relaxed optimization problem (2.30), an important question

is whether this relaxation to a larger set of admissible candidates decreases the
minimum, i.e., if minv∈C E(Dv) < inf f E( f ). It turns out that this is not the case,
as was proven in [Poc+10, �eorem 3.1] using a (generalized) coarea formula for
BV functions [AFP00, �eorem 3.40].

�eorem2 (Coarea formula). For v ∈ BV(X×Y ;R) andΨ convex one-homogeneous
one has the following representation

∫ Ψ(Dv) = ∫ ∞
−∞ ∫ Ψ(D1v>s)ds, (2.31)

where 1v>s ∈ BV(X × Y ;{0, 1}) is a zero-one thresholding of the function v at s.
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For sake of completeness, we repeat the proof from [Poc+10, �eorem 3.1].
Assume that v∗ is a minimizer of (2.30). Due to the minimality we know that
E(Dv∗) ≤ E(D1v∗>s) for any s. �erefore, we have that

E(Dv∗) = ∫ 1

0
E(Dv∗)ds ≤ ∫ 1

0
E(D1v∗>s)ds. (2.32)

Due to the above coarea formula, equality holds and it follows that for almost every
s ∈ (0, 1) the thresholded solution D1v∗>s is also a minimizer since otherwise we
would have a contradiction to the minimality of v∗.
Essentially, the coarea formula can be interpreted in the following way: it is

possible to write any ”di�use” graph surface Dv as an integral over binary ones
D1v>s without changing the energy. In higher dimension and codimension it is
unclear under which conditions such a result holds. Such ”foliations” of normal
currents into an integral over integral currents has recently been studied in [AM17;
AMS19] for general dimension and codimension. However, counterexamples exist
and it seems that a nonconvex involutivity constraint is required for such a foliation
to exist.
Central to the numerical implementation in [Poc+10] is the following dual

representation of the convex one-homogeneous energy as a support functional of
a certain set K ⊂ C0(X × Y ;Rn+1):

E(Dv) = sup
φ∈K ∫ φ ⋅ Dv . (2.33)

In the seminal work [ABD03], additional nonlocal constraints are introduced on
the dual variable K. �ese constraints allow a more re�ned penalization of the
jump discontinuities and will be considered in Chapter 5.

2.3 Proximal Splitting Methods
�e convex relaxations considered in this thesis will eventually lead to large-scale
(nonsmooth) convex optimization problems. While in principle there are many
ways to solve such optimization problems, we will consider proximal splitting
methods. �is is mainly due to their low memory requirement (which scales
linearly in the problem dimension) and their ability to exploit the sparsity present
in the problem structure. Furthermore, the methods are attractive due to their

exibility, parallelizability and simplicity of implementation.
Perhaps because of the above reasons, proximal splitting methods have become

the standard way to solve large-scale nonsmooth convex problems in imaging
and vision [CP11a]. �e drawback is, that these methods typically have a sublinear
worst-case convergence rate, i.e., they requireO(1/ε) iterations to �nd an ε-accurate
solution. Even to reach a modest accuracy of ε = 10−6, millions of iterations can be
required in the worst case. In practice, a much faster convergence is observed, and
locally, a linear convergence behaviour is o�en observed. Nevertheless, an e�cient
implementation on GPUs is important.
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2.3.1 Projection and proximal mappings
�e proximal mapping forms the basic building block for the presented algorithms.
For f ∈ Γ0(V) it is given as follows:

proxτ, f (v) = (id+τ∂ f )−1(v) = argmin
x∈V f (x) + 1

2τ
∥x − v∥2. (2.34)

Due to the quadratic term, the minimization problem is strongly convex and
therefore has a unique minimizer. �e parameter τ > 0 can be interpreted as a
step-size. It determines the trade-o� between minimizing f and staying close to
the input argument v.
In case f (x) = δC(x) is the indicator function of a convex setC ⊂ V the proximal

mapping
proxτ, f (v) = argminx∈C ∥x − v∥2 = projC(v). (2.35)

reduces to the orthogonal projection onto the set C.
A useful tool is Moreau’s identity, which relates the proximal operator of f to

the one of f ∗:
proxτ, f (x) = x − τ proxτ−1 , f ∗(x/τ). (2.36)

We will also consider proximal operators for matrix-valued step-sizes. Given a
symmetric positive de�nite matrix T , we de�ne

proxT , f (v) = (id+T∂ f )−1(v) = argmin
x∈V f (x) + 1

2
∥x − v∥2T−1 , (2.37)

where the scaled norm is given by

∥x∥2T−1 = ∥T−1/2x∥2 = ⟨x , T−1x⟩. (2.38)

Usually, the matrix T is chosen to be diagonal in order for the proximal mapping
to still be computable in closed form.

2.3.2 A �rst-order primal-dual algorithm
We consider the primal-dual algorithm [Poc+09a; CP11a]. It is applicable to the
following class of structured convex optimization problems:

min
x∈Rn

G(x) + F(Kx), (2.39)

which can also be written in the form of a saddle-point problem:

min
x∈Rn

max
y∈Rm

G(x) − F∗(y) + ⟨Kx , y⟩. (2.40)

�e map K ∶ Rn → Rm is assumed to be linear and furthermore we assume that
G ∈ Γ0(Rn), F ∈ Γ0(Rm). �e iterative algorithm is given as follows:

xk+1 = (I + τ∂G)−1(xk − τKT yk),
yk+1 = (I + σ∂F∗)−1(yk + σK(xk+1 + θ(xk+1 − xk))). (2.41)
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One way to interpret this algorithm is as an alternating gradient descent / gradient
ascent scheme on the saddle point energy (2.40). For extrapolation parameter θ = 1,
the algorithm can also be understood as a proximal point method to �nd a zero of
the maximally monotone operator describing the optimality conditions of (2.40),
see [Roc76; HY12].
�e main convergence result in [CP11a] establishes aO(1/ε) (ergodic) conver-

gence rate for the partial primal-dual gap, in case τσ∥K∥2 < 1. A�er convergence,
we take the (non-ergodic) last iterate as it tends to perform better in practice
[CP16b].

2.3.3 Extensions and implementation
All optimization problems in this thesis were solved using the prost framework,
see Appendix C. It is based on a C++/CUDA implementation of the above primal-
dual algorithm (2.41). �e framework consists of a collection of commonly used
proximal operators and abstract linear maps implemented in a matrix-free fashion.
�e framework includes bindings to MATLAB exist to allow for rapid prototyping.
Due to the generic structure of the implementation there is a large loss in ef-

�ciency over a completely optimized and hand-tailored CUDA implementation,
o�en by a factor of more than 10-100 in runtime. Nevertheless, existing convex
optimization libraries such as CVX [DB16] did not scale to the required problem
size.
�e framework uses several well-known tricks and heuristics that sometimes

can improve the convergence speed of (2.41) in practice. What follows is mainly
an adaptation of the heuristics used for the graph-form ADMM solver in [FB18] to
the primal-dual algorithm (2.41).

2.3.3.1 Problem scaling and preconditioning

�e �rst such trick is to introduce two symmetric positive de�nite matrices Σ ∈
Rm×m, T ∈ Rn×n into the problem formulation.

min
x∈Rn ,z∈Rm

g(T 1
2 x) + f (Σ− 1

2 z), s.t. z = Σ 1
2KT 1

2 x . (2.42)

Under an invertible change of variables, problem (2.42) and (2.39) are equivalent.
Similarly, one can derive a rescaled dual problem:

max
y∈Rm ,w∈Rn

− g∗(T− 1
2w) − f ∗(Σ 1

2 y), s.t. w = −T 1
2KTΣ

1
2 y. (2.43)

Formally applying the algorithm (2.41) to the modi�ed problem (2.42) yields the
iterations of the preconditioned primal dual method [PC11]:

xk+1 = (I + τT∂g)−1(xk − τTKT yk),
yk+1 = (I + σΣ∂ f ∗)−1(yk + σΣK(xk+1 + θ(xk+1 − xk))). (2.44)
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�e choice of Σ and T can signi�cantly in
uence the convergence speed in practice.
Due to the nonlinear update dynamics of the algorithm, the e�ect of precondition-
ing on the theoretical convergence speed is however, far less understood as in the
case of linear systems. We adopt the diagonal preconditioners proposed in [PC11],
which typically yield a reliable performance boost in comparison to the method
without preconditioning (i.e. Σ = I, T = I).
2.3.3.2 Stopping criterion

As a stopping criterion, we consider the feasibility residuals of the linear constraint
in the scaled problem (2.42) and its dual problem (2.43).

rk+1p = ∥Kxk+1 − zk+1∥Σ ,
rk+1d = ∥KT yk+1 +wk+1∥T. (2.45)

Following [FB18], the auxiliary variables w and z can be recovered from the follow-
ing relations:

wk+1 = T−1(xk − xk+1)
τ

− KT yk ,

zk+1 = Σ−1(yk − yk+1)
σ

+ K(xk+1 + θ(xk+1 − xk)). (2.46)

If both residuals in (2.45) are zero, then we have found an optimal primal-dual
solution pair. In practice, the algorithm is stopped once the residuals rp < εa +
εr∥zk+1∥Σ and rd < εa + εr∥wk+1∥T are below some given absolute and relative
tolerances εa , εr > 0 as suggested in [FB18].
2.3.3.3 Residual balancing

A heuristic which can speed up the convergence in practice is to adjust τ and σ
during the iterations to balance the residuals (2.45). In [FB18] it is proposed to
use �xed step sizes, until one of the residuals hits the desired tolerance and then
adjust the step sizes in a way that the converged residual remains constant while
the other one decreases. Another heuristic suggested in [Gol+13] is to adapt τ and
σ such that during the process of optimization both residuals are in the same order
of magnitude. We found the �rst heuristic to yield faster convergence in all of our
experiments.
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Chapter 3
Sublabel-Accurate Relaxation of
Nonconvex Energies

[Poc+10], 48 labels, 1.49 GB, 52s. Proposed, 8 labels, 0.49 GB, 30s.

Figure 3.1: We propose a convex relaxation for the variational model (3.1), which
opposed to existing functional li�ing methods [Poc+10; Poc+08] allows
continuous label spaces even a�er discretization. Our method (here
applied to stereo matching) avoids label space discretization artifacts,
while saving on memory and runtime.

3.1 Introduction
Energy minimization methods have become the central paradigm for solving prac-
tical problems in computer vision. �e energy functional can o�en be written as
the sum of a data �delity and a regularization term. One of the most popular regu-
larizers is the total variation (TV) due to its many favorable properties [Cha+10].
Hence, an important class of optimization problems is given as

min
u∶Ω→Γ ∫Ω ρ(x , u(x)) dx + λTV(u), (3.1)

43



44

de�ned for functions u with �nite total variation, arbitrary, possibly nonconvex
dataterms ρ ∶ Ω×Γ → R, label spaces Γ which are closed intervals inR, Ω ⊂ Rd , and
λ ∈ R+. �e multilabel interpretation of the dataterm is that ρ(x , u(x)) represents
the costs of assigning label u(x) to point x. For (weakly) di�erentiable functions
TV(u) equals the integral over the norm of the derivative, and therefore favors a
spatially coherent label con�guration. �e di�cultly of minimizing the nonconvex
energy (3.1) has motivated researchers to develop convex reformulations.
Convex representations of (3.1) and more general related energies have been

studied in the context of the calibration method for the Mumford-Shah functional
[ABD03]. Based on these works, relaxations for the piecewise constant [Poc+09b]
and piecewise smooth Mumford-Shah functional [Poc+09a] have been proposed.
Inspired by Ishikawa’s graph-theoretic globally optimal solution to discrete variants
of (3.1), continuous analogues have been considered by Pock et al.in [Poc+10;
Poc+08]. Continuous relaxations for multilabeling problems with �nite label
spaces Γ have also been studied in [LS11].
Interestingly, the discretization of the aforementioned continuous relaxations is

very similar to the linear programming relaxations proposed for MAP inference
in the Markov Random Field (MRF) community [Ish03; Sch76; Wer07; ZHP13].
Both approaches ultimately discretize the range Γ into a �nite set of labels. A closer
analysis of these relaxations reveals, however, that they are not well-suited to repre-
sent the continuous valued range that we face in most computer vision problems
such as stereo matching or optical 
ow. More speci�cally, the above relaxations are
not designed to assign meaningful cost values to non-integral con�gurations. As
a result, a large number of labels is required to achieve a faithful approximation.
Solving real-world vision problems therefore entails large optimization problems
with high memory and runtime requirement. To address this problem, Zach and
Kohli [ZK12], Zach [Zac13] and Fix and Agarwal [FA14] introduced MRF-based
approaches which retain continuous label spaces a�er discretization. For manifold-
valued labels, this issue was addressed by Lellmann et al.[Lel+13a], however with
the sole focus on the regularizer.

3.1.1 Contributions
We propose the �rst sublabel–accurate convex relaxation of nonconvex problems
in a spatially continuous setting. It exhibits several favorable properties:

• In contrast to existing spatially continuous li�ing approaches [Poc+10; Poc+08],
the proposed method provides substantially better solutions with far fewer
labels – see Fig. 3.1. �is provides savings in runtime and memory.

• In Sec. 3.3 we show that the functional li�ing methods [Poc+10; Poc+08] are
a special case of the proposed framework.
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• In Sec. 3.3 we show that, in a local sense, our formulation is the tightest convex
relaxation which takes dataterm and regularizer into account separately. It is
unknown whether this “local convex envelope” property also holds for the
discrete approach [ZK12].

• Our formulation is compact and requires only half the amount of variables
for the dataterm than the formulation in [ZK12]. We prove that the sublabel–
accurate total variation can be represented in a very simple way, introducing
no overhead compared to [Poc+10; Poc+08]. In contrast, the regularizer in
[ZK12] is much more involved.

• Since our method is derived in a spatially continuous setting, the proposed
approach easily allows di�erent gradient discretizations. In contrast to [Zac13;
ZK12] the regularizer is isotropic leading to noticeably less grid bias.

3.2 Notation and Mathematical Preliminaries
Wemake heavy use of the convex conjugate, which is given as f ∗(y) = supx∈Rn ⟨y, x⟩−
f (x) for functions f ∶ Rn → R ∪ {∞}. �e biconjugate f ∗∗ denotes its convex
envelope, i.e. the largest lower-semicontinuous convex under-approximation of f .
For a set C we denote by δC the function which maps any element from C to 0 and
is∞ otherwise. For a comprehensive introduction to convex analysis, we refer the
reader to [Roc96]. Vector valued functions u ∶ Ω → Rk are written in bold symbols.
If it is clear from the context, we will drop the x ∈ Ω inside the functions, e.g., we
write ρ(u) for ρ(x , u(x)), or α for α(x).
3.3 Functional Li�ing
To derive a convex representation of (3.1), we rely on the framework of functional
li�ing. �e idea is to reformulate the optimization problem in a higher dimensional
space. We numerically show in Sec. 3.5 that considering the convex envelope of
the dataterm and regularizer in this higher dimensional space leads to a better
approximation of the original nonconvex energy.
We start by sampling the range Γ at L = k + 1 labels γ1 < ⋯ < γL ∈ Γ. �is partitions
the range into k intervals Γi = [γi , γi+1] so that Γ = Γ1 ∪⋯∪ Γk. For any value in the
range of u ∶ Ω → Γ there exist a label index 1 ≤ i ≤ k and α ∈ [0, 1] such that

u(x) = γαi ∶= γi + α(γi+1 − γi). (3.2)

We represent a value in the range Γ by a vector in Rk

u(x) = 1αi ∶= α1i + (1 − α)1i−1, (3.3)

where 1i denotes a vector starting with i ones followed by k − i zeros.
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Figure 3.2: Li�ed representation. Instead of optimizing over the function u ∶ Ω → Γ,
we optimize over all possible graph functions (here shaded in green)
on Ω × Γ. �e main idea behind our approach is the �nite dimensional
representation of the graph at every x ∈ Ω by means of u ∶ Ω → Rk

(here k = 4).
We call u ∶ Ω → Rk the li�ed representation of u, representing the graph of u.

�is notation is depicted in Fig. 3.2 for k = 4. Back-projecting the li�ed u(x) to
the range of u using the layer cake formula yields a one-to-one correspondence
between u(x) = γαi and u(x) = 1αi via

u(x) = γ1 + k∑
i=1 u i(x)(γi+1 − γi). (3.4)

We write problem (3.1) in terms of such graph functions, a technique that is used
in the theory of Cartesian currents [GMS98].

3.3.1 Convexi�cation of the dataterm
For now, we consider a �xed x ∈ Ω. �en the dataterm from (3.1) is a possibly
nonconvex real-valued function (cf. Fig. 3.3) that we seek to minimize over a
compact interval Γ:

min
u∈Γ ρ(u). (3.5)

Due to the one-to-one correspondence between γαi and 1αi it is clear that solving
problem (3.5) is equivalent to �nding a minimizer of the li�ed energy:

ρ(u) = min
1≤i≤k ρ i(u), (3.6)

ρ i(u) =
⎧⎪⎪⎨⎪⎪⎩
ρ(γαi ), if u = 1αi , α ∈ [0, 1],∞, else.

(3.7)

Note that the constraint in (3.7) is essentially the nonconvex special ordered set of
type 2 (SOS2) constraint [BT70]. More precisely, we demand that the “derivative”
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Figure 3.3: We show the nonconvex energy ρ(u) at a �xed point x ∈ Ω (red dashed
line in both plots) from the stereo matching experiment in Fig. 3.9 over
the full range of 270 disparities. �e black dots indicate the positions
of the labels and the black curves show the approximations used by the
respective methods. Fig. 3.3a: �e baseline li�ing method [Poc+10] uses
a piecewise linear approximation with labels as nodes. Fig. 3.3b: �e
proposed method uses an optimal piecewise convex approximation. As
we can see, the piecewise convex approximation is closer to the original
nonconvex energy and therefore more accurate.

in label direction (∂γu)i ∶= u i+1 − u i is zero, except for two neighboring elements,
which add up to one. In the following proposition, we derive the tightest convex
relaxation of ρ.

Proposition 1. �e convex envelope of (3.6) is given as:

ρ∗∗(u) = sup
v∈Rk

⟨u, v⟩ −max
1≤i≤k ρ∗i (v), (3.8)

where the conjugate of the individual ρ i is

ρ∗i (v) = ci(v) + ρ∗i ( v i
γi+1 − γi ) , (3.9)

with ci(v) = ⟨1i−1, v⟩ − γ i
γ i+1−γ i v i and ρi = ρ + δΓi .

Proof. See Appendix A.1.

�e above proposition reveals that the convex relaxation implicitly convexi�es
the dataterm ρ on each interval Γi . �e equality ρ∗i = ρ∗∗∗i implies that starting
with ρi yields exactly the same convex relaxation as starting with ρ∗∗i .
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Corollary 1. If ρ is linear on each Γi , then the convex envelopes of ρ(u) and σ(u)
coincide, where the latter is:

σ(u) = ⎧⎪⎪⎨⎪⎪⎩
ρ(γαi ), if ∃i ∶ u = 1αi , α ∈ {0, 1},∞, else.

(3.10)

Proof. Consider an additional constraint δ{γ i ,γ i+1} for each ρi , which corresponds to
selecting α ∈ {0, 1} in (3.7). �e fact that our relaxation is independent of whether
we choose ρi or ρ∗∗i , along with the fact that the convex hull of two points is a line,
yields the assertion.

For the piecewise linear case, it is possible to �nd an explicit form of the biconju-
gate.

Proposition 2. Let us denote by r ∈ Rk the vector with

ri = ρ(γi+1) − ρ(γi), 1 ≤ i ≤ k. (3.11)

Under the assumptions of Prop. 1, one obtains:

σ∗∗(u) = ⎧⎪⎪⎨⎪⎪⎩
ρ(γ1) + ⟨u, r⟩, if u i ≥ u i+1, u i ∈ [0, 1],∞, else.

(3.12)

Proof. See Appendix A.1.

Up to an o�set (which is irrelevant for the optimization), one can see that (3.12)
coincides with the dataterm of [Poc+09b], the discretizations of [Poc+10; Poc+08],
and – a�er a change of variable – with [LS11]. �is not only proves that the latter is
optimizing a convex envelope, but also shows that ourmethod naturally generalizes
the work from piecewise linear to arbitrary piecewise convex energies. Fig. 3.3a
and Fig. 3.3b illustrate the di�erence of σ∗∗ and ρ∗∗ on the example of a nonconvex
stereo matching cost.
Because our method allows arbitrary convex functions on each Γi , we can prove

that, for the two label case, our approach optimizes the convex envelope of the
dataterm.

Proposition 3. In the case of binary labeling, i.e., L = 2, the convex envelope of (3.6)
reduces to

ρ∗∗(u) = ρ∗∗ (γ1 + u(γ2 − γ1)) , with u ∈ [0, 1]. (3.13)

Proof. See Appendix A.1.



49 Sublabel-Accurate Relaxation of Nonconvex Energies

3.3.2 A li�ed representation of the total variation
We now want to �nd a li�ed convex formulation that emulates the total variation
regularization in (3.1). We follow [CCP12] and de�ne an appropriate integrand of
the functional

TV(u) = ∫
Ω
Φ(x ,Du), (3.14)

where the distributional derivative Du is a �nite Rk×d-valued Radon measure
[AFP00]. We de�ne

Φ(g) = min
1≤i≤ j≤k Φi , j(g). (3.15)

�e individual Φi , j ∶ Rk×d → R ∪ {∞} are given by:
Φi , j(g) = ⎧⎪⎪⎨⎪⎪⎩

∣γαi − γβj ∣ ⋅ ∣ν∣2, if g = (1αi − 1βj ) νT,∞, else,
(3.16)

for some α, β ∈ [0, 1] and ν ∈ Rd . �e intuition is that Φi , j penalizes a jump from γαi
to γβj in the direction of ν. Since Φ is nonconvex we compute the convex envelope.

Proposition 4. �e convex envelope of (3.15) is

Φ∗∗(g) = sup
p∈K ⟨p, g⟩, (3.17)

where K ⊂ Rk×d is given as:
K = {p ∈ Rk×d ∣ ∣pT(1αi − 1βj )∣2 ≤ ∣γαi − γβj ∣ ,

∀ 1 ≤ i ≤ j ≤ k, ∀α, β ∈ [0, 1]} . (3.18)

Proof. See Appendix A.1.

�e set K from Eq. (3.18) involves in�nitely many constraints which makes
numerical optimization di�cult. As the following proposition reveals, the in�nite
number of constraints can be reduced to only linearly many, allowing to enforce
the constraint p ∈ K exactly.
Proposition 5. If the labels are ordered (γ1 < γ2 < ⋯ < γL) then the constraint set K
from Eq. (3.18) is equal to

K = {p ∈Rk×d ∣ ∣pi ∣2 ≤ γi+1 − γi , ∀i}. (3.19)

Proof. See Appendix A.1.

�is shows that the proposed regularizer coincides with the total variation from
[CCP12], where it has been derived based on (3.16) for α and β restricted to {0, 1}.
Prop. 5 together with Prop. 3 show that for k = 1 our formulation amounts to
unli�ed TV optimization with a convexi�ed dataterm.
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Figure 3.4: In the le� sub�gure the projection onto the epigraph of the conjugate
of a convex quadratic ρi is shown. In the right sub�gure the piecewise
linear case is illustrated. In the both cases all points that lie in the gray
sets are orthogonally projected onto the respective linear parts whereas
the points that lie in the green sets are projected onto the parabolic part
(in the quadratic case) respectively the kinks (in the piecewise linear
case). In the piecewise linear case the green sets are normal cones. �e
red dashed lines correspond to the boundary cases. γi , γi+1, µ1, µ2 are
the slopes of the segments of ρ∗i respectively the (sub-)label positions
of ρi .

3.4 Numerical Optimization
Discretizing Ω ⊂ Rd as a d-dimensional Cartesian grid, the relaxed energy mini-
mization problem becomes

min
u∶Ω→Rk

∑
x∈Ω ρ

∗∗(x , u(x)) +Φ∗∗(x ,∇u(x)), (3.20)

where ∇ denotes a forward-di�erence operator with ∇u ∶ Ω → Rk×d . We rewrite
the dataterm given in equation (3.8) by replacing the pointwise maximum over the
conjugates ρ∗i with a maximum over a real number q ∈ R and obtain the following
saddle point formulation of problem (3.20):

min
u∶Ω→Rk

max(v ,q)∈C
p∶Ω→K

⟨u, v⟩ − ∑
x∈Ω q(x) + ⟨p,∇u⟩, (3.21)

C = {(v , q) ∶ Ω → Rk ×R ∣ q(x) ≥ ρ∗i (v(x)), ∀x ,∀i}. (3.22)

We numerically compute a minimizer of problem (3.21) using a �rst-order primal-
dual method [EZC10; Poc+09a] with diagonal preconditioning [PC11] and adaptive
steps [Gol+13]. It alternates between a gradient descent step in the primal variable
and a gradient ascent step in the dual variable. Subsequently the dual variables
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are orthogonally projected onto the sets C respectively K. In the following we
give some hints on the implementation of the individual steps. For a detailed
discussion we refer to [Gol+13]. �e projection onto the set K is a simple ℓ2-ball
projection. To simplify the projection onto C, we transform the k-dimensional
epigraph constraints in (3.22) into 1-dimensional scaled epigraph constraints by
introducing an additional variable z ∶ Ω → Rk with:

z i(x) = [q(x) − ci (v(x))] (γi+1 − γi) . (3.23)

Using equation (3.9) we can write the constraints in (3.22) as

z i(x)
γi+1 − γi ≥ ρ∗i ( v i(x)

γi+1 − γi ) . (3.24)

We implement the newly introduced equality constraints (3.23) introducing a
Lagrange multiplier s ∶ Ω → Rk. It remains to discuss the orthogonal projections
onto the epigraphs of the conjugates ρ∗i . Currently we support quadratic and
piecewise linear convex pieces ρi . For the piecewise linear case, the conjugate
ρ∗i is a piecewise linear function with domain R. �e slopes correspond to the
x-positions of the sublabels and the intercepts correspond to the function values at
the sublabel positions. �e conjugates as well as the epigraph projections of both, a
quadratic and a piecewise linear piece are depicted in Fig. 3.4. For the quadratic
case, the projection onto the epigraph of a parabola is computed using [SCC14,
App. B.2].

3.5 Experiments
We implemented the primal-dual algorithm in CUDA to run on GPUs. For d = 2,
our implementation of the functional li�ing framework [Poc+10], which will serve
as a baselinemethod, requires 4N(L−1) optimization variables, while the proposed
method requires 6N(L − 1) +N variables, where N is the number of points used to
discretize the domain Ω ⊂ Rd . As we will show, our method requires much fewer
labels to yield comparable results, thus, leading to an improvement in accuracy,
memory usage, and speed.

3.5.1 Rudin-Osher-Fatemi model
As a proof of concept, we �rst evaluate the novel relaxation on the well-known
Rudin-Osher-Fatemi (ROF) model [ROF92]. It corresponds to (3.1) with the fol-
lowing dataterm:

ρ(x , u(x)) = (u(x) − f (x))2 , (3.25)

where f ∶ Ω → R denotes the input data. While there is no practical use in applying
convex relaxation methods to an already convex problem such as the ROF model,
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Direct Opt.,
t = 0.6s, 11.78 MB Baseline (L = 8),

t = ∞, 113 MB Baseline (L = 16),
t = ∞, 226 MB

Baseline (L = 256),
t = ∞, 3619 MB Proposed (L = 2)

t = 1s, 27 MB Proposed (L = 10)
t = 15s, 211 MB

Figure 3.5: Denoising comparison. We compare the proposed method to the base-
line method [Poc+10] on the convex ROF problem. We show the time
in seconds required for each method to produce a solution within a
certain energy gap to the optimal solution. As the baseline method
optimizes a piecewise linear approximation of the quadratic dataterm, it
fails to reach that optimality gap even for L = 256 (indicated by t = ∞).
While the proposed li�ing method can solve a large class of non-convex
problems, it is almost as e�cient as direct methods on convex problems.

the purpose of this is two-fold. Firstly, it allows us to measure the overhead intro-
duced by our method by comparing it to standard convex optimization methods
which do not rely on functional li�ing. Secondly, we can experimentally verify that
the relaxation is tight for a convex dataterm.
In Fig. 3.5 we solve (3.25) directly using the primal-dual algorithm [Gol+13], using

the baseline functional li�ing method [Poc+10] and using our proposed algorithm.
First, the globally optimal energy was computed using the direct method with a
very high number of iterations. �en we measure how long each method took to
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Input image f Proposed (L = 5),
E = 20494, t = 14.6s Proposed (L = 10),

E = 18844, t = 30.5s Proposed (L = 20),
E = 18699, t = 123.9s

Baseline (L = 256),
E = 18660, t = 1001s Baseline (L = 5),

E = 23864, t = 4.7s Baseline (L = 10),
E = 19802, t = 6.3s Baseline (L = 20),

E = 18876, t = 12.8s
Figure 3.6: Denoising using a robust truncated quadratic dataterm. �e top row

shows the input image along with the result obtained by our approach
for a varying number of labels L. �e bottom row illustrates the results
obtained by the baseline method [Poc+10]. �e energy of the �nal
solution as well as the total runtime are given below each image.

reach this global optimum to a �xed tolerance.
�e baseline method fails to reach the global optimum even for 256 labels. While

the li�ing framework introduces a certain overhead, the proposed method �nds
the same globally optimal energy as the direct unli�ed optimization approach and
generalizes to nonconvex energies.

3.5.2 Robust truncated quadratic dataterm
�e quadratic dataterm in (3.25) is o�en not well suited for real-world data as it
comes from a pure Gaussian noise assumption and does not model outliers. We
now consider a robust truncated quadratic dataterm:

ρ(x , u(x)) = α
2
min{(u(x) − f (x))2, ν} . (3.26)

To implement (3.26), we use a piecewise polynomial approximation of the dataterm.
In Fig. 3.6 we degraded the input image with additive Gaussian and salt and pepper
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DC-Linear, E = 279394 DC-Linear, E = 208432 DC-Linear, E = 196803 DC-Linear, E = 194855

DC-MRF, E = 278108 DC-MRF, E = 208112 DC-MRF, E = 196810 DC-MRF, E = 194845

Proposed, E = 277970 Proposed, E = 208493 Proposed, E = 196979 Proposed, E = 194836

Figure 3.7: Comparison to the MRF approach presented in [ZK12]. �e �rst row
shows DC-Linear, second row DC-MRF and third row our results for
4, 8, 16 and 32 convex pieces on the truncated quadratic energy (3.26).
Below the �gures we show the �nal nonconvex energy. We achieve
competitive results while using a more compact representation and
generalizing to isotropic regularizers.
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(a) Anisotropic Regularization (b) Isotropic Regularization

Figure 3.8: We compare the proposed relaxation with anistropic regularizer to
isotropic regularization on the stereo matching example. Using an
anisotropic formulation as in [ZK12] leads to grid bias.

noise. �e parameters in (3.26) were chosen as α = 25, ν = 0.025 and λ = 1. It can
be seen that the proposed method requires fewer labels to �nd lower energies than
the baseline.

3.5.3 Comparison to the method of Zach and Kohli
We remark that Prop. 4 and Prop. 5 hold for arbitrary convex one-homogeneous
functionals ϕ(ν) instead of ∣ν∣2 in equation (3.16). In particular, they hold for the
anisotropic total variation ϕ(ν) = ∣ν∣1. �is generalization allows us to directly
compare our convex relaxation to the MRF approach of Zach and Kohli [ZK12].
In Fig. 3.7 we show the results of optimizing the twomodels entitled “DC-Linear”

and “DC-MRF” proposed in [ZK12], and of our proposed method with anisotropic
regularization on the robust truncated denoising energy (3.26). We picked the
parameters as α = 0.2, ν = 500, and λ = 1. �e label space is also chosen as
Γ = [0, 256] as described in [ZK12].
Note that overall, all the energies are better than the ones reported in [ZK12].

It can be seen from Fig. 3.7 that the proposed relaxation is competitive to the one
proposed by Zach and Kohli. In addition, the proposed relaxation uses a more
compact representation and extends to isotropic and convex one-homogeneous
regularizers. To illustrate the advantages of isotropic regularizations, Fig. 3.8a and
Fig. 3.8b show a comparison of our proposed method for isotropic and anisotropic
regularization for the example of stereo matching discussed in the next section.

3.5.4 Stereo matching
Given a pair of recti�ed images, the task of �nding a correspondence between
the two images can be formulated as an optimization problem over a scalar �eld
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One of the input images Proposed (L = 2) Proposed (L = 4)

Proposed (L = 8) Proposed (L = 16) Proposed (L = 32)

Baseline (L = 270) Baseline (L = 2) Baseline (L = 4)

Baseline (L = 8) Baseline (L = 16) Baseline (L = 32)
Figure 3.9: Stereo comparison. We compare the proposed method to the baseline

method on the example of stereo matching. �e �rst column shows one
of the two input images and below the baseline method with the full
number of labels. �e proposed relaxation requires much fewer labels to
reach a smooth depthmap. Even for L = 32, the label space discretization
of the baseline method is strongly visible, while the proposed method
yields a smooth result already for L = 8.

u ∶ Ω → Γ where each point u(x) ∈ Γ denotes the displacement along the epipolar
line associated with each x ∈ Ω. �e overall cost functional �ts Eq. (3.1). In our
experiments, we computed ρ(x , u(x)) for 270 disparities on theMiddlebury stereo
benchmark [Sch+14] in a 4 × 4 patch using a truncated sum of absolute gradient
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0 4π
Piecewise convex energy Input image Ground truth

Baseline (L = 8) Baseline (L = 16) Baseline (L = 32) Proposed (L = 8)
Figure 3.10: We show the piecewise convex approximation of the phase unwrapping

energy, followed by the cyclic input image and the unwrapped ground
truth. With only 8 labels, the proposedmethod already yields a smooth
reconstruction. �e baseline method fails to unwrap the heightmap
correctly using 8 labels, and for 16 and 32 labels, the discretization is
still noticable.

di�erences. We convexify the matching cost ρ in each range Γi by numerically
computing the convex envelope using the gi� wrapping algorithm.
�e �rst row in Fig. 3.9 shows the result of the proposed relaxation using the

convexi�ed energy between two labels. �e second row shows the baseline approach
using the same amount of labels. Even for L = 2, the proposed method produces a
reasonable depth map while the baseline approach basically corresponds to a two
region segmentation.

3.5.5 Phase unwrapping
Many sensors such as time-of-
ight cameras or interferometric synthetic aperture
radar (SAR) yield cyclic data lying on the circle S 1. Here we consider the task of
total variation regularized unwrapping. As is shown on the le� in Fig. 3.10, the
dataterm is a nonconvex function where each minimum corresponds to a phase
shi� by 2π:

ρ (x , u(x)) = dS 1 (u(x), f (x))2 . (3.27)

For the experiments, we approximated the nonconvex energy by quadratic pieces as
depicted in Fig. 3.10. �e label space is chosen as Γ = [0, 4π] and the regularization
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One of the input images Proposed (L = 2) Proposed (L = 4)

Proposed (L = 8) Proposed (L = 16) Proposed (L = 32)

Baseline (L = 374) Baseline (L = 2) Baseline (L = 4)

Baseline (L = 8) Baseline (L = 16) Baseline (L = 32)
Figure 3.11: Depth from focus comparison. We compare our method to the baseline

approach on the problem of depth from focus. First column: one of the
374 di�erently focused input images and the baseline method for full
number of labels. Following columns: proposed relaxation (top row)
vs. baseline (bottom row) for 2, 4, 8, 16 and 32 labels each.

parameter was set to λ = 0.005. Again, it is visible in Fig. 3.10 that the baseline
method shows label space discretization and fails to unwrap the depthmap correctly
if the number of labels is chosen too low. �e proposed method yields a smooth
unwrapped result using only 8 labels.

3.5.6 Depth from focus
In depth from focus the task is to recover the depth of a scene, given a stack of
images each taken from a constant position but in a di�erent focal setting, so that
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in each image only the objects of a certain depth are sharp. images. We compute
the dataterm cost ρ by using the modi�ed Laplacian function [NN94] as a contrast
measure.
Similar to the stereo experiments, we convexify the cost on each label range by

computing the convex hull. �e results are shown in Fig. 3.11. While the baseline
method clearly shows the label space discretization, the proposed approach yields
a smooth depth map. Since the proposed method uses a convex lower bound of the
li�ed energy, the regularizer has slightly more in
uence on the �nal result. �is
explains why the resulting depth maps in Fig. 3.11 and Fig. 3.9 look overall less
noisy.

3.6 Conclusion
In this work we proposed a tight convex relaxation that can be interpreted as a
sublabel–accurate formulation of classical multilabel problems. �e �nal formula-
tion is a simple saddle-point problem that admits fast primal-dual optimization.
Our method maintains sublabel accuracy even a�er discretization and for that
reason outperforms existing spatially continuous methods. Interesting directions
for future work include higher dimensional label spaces, manifold valued data and
more general regularizers.





Chapter 4
Sublabel-Accurate Convex
Relaxation of Vectorial Multilabel
Energies

4.1 Introduction
4.1.1 Nonconvex vectorial problems
In this paper, we derive a sublabel-accurate convex relaxation for vectorial opti-
mization problems of the form

min
u∶Ω→Γ ∫Ω ρ(x , u(x))dx + λ TV(u), (4.1)

where Ω ⊂ Rd , Γ ⊂ Rn and ρ ∶ Ω × Γ → R denotes a generally nonconvex pointwise
dataterm. As regularization we focus on the total variation de�ned as:

TV(u) = sup
q∈C∞c (Ω,Rn×d),∥q(x)∥S∞≤1 ∫Ω⟨u, div q⟩ dx , (4.2)

where ∥ ⋅ ∥S∞ is the Schatten-∞ norm on Rn×d , i.e., the largest singular value. For
di�erentiable functions u we can integrate (4.2) by parts to �nd

TV(u) = ∫
Ω
∥∇u(x)∥S1 dx , (4.3)

where the dual norm ∥ ⋅ ∥S1 essentially penalizes Jacobians ∇u which have high
rank, i.e., the individual components of u jump in a di�erent direction. �is type
of regularization is part of the framework of Sapiro and Ringach [SR96].

4.1.2 Related work
Due to its nonconvexity the optimization of (4.1) is challenging. For the scalar
case (n = 1), Ishikawa [Ish03] proposed a pioneering technique to obtain globally
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(a) Original dataterm (b)Without li�ing

(c) Classical li�ing (d) Proposed li�ing

Figure 4.1: In (a) we show a nonconvex dataterm. Convexi�cation without li�ing
would result in the energy (b). Classical li�ing methods [Lel+13a] (c),
approximate the energy piecewise linearly between the labels, whereas
the proposed method results in an approximation that is convex on
each triangle (d). �erefore, we are able to capture the structure of the
nonconvex energy much more accurately.

optimal solutions in a spatially discrete setting, given by the minimum s-t-cut of
a graph representing the space Ω × Γ. A continuous formulation was introduced
by Pock et al. [Poc+08] exhibiting several advantages such as less grid bias and
parallelizability.
In a series of papers [Poc+10; Poc+09a], connections of the above approaches

were made to the mathematical theory of cartesian currents [GMS98] and the cali-
bration method for the Mumford-Shah functional [ABD03], leading to a general-
ization of the convex relaxation framework [Poc+08] to more general (in particular
nonconvex) regularizers.
In the following, researchers have strived to generalize the concept of functional

li�ing and convex relaxation to the vectorial setting (n > 1). If the dataterm
and the regularizer are both separable in the label dimension, one can simply
apply the above convex relaxation approach in a channel-wise manner to each
component separately. But when either the dataterm or the regularizer couple the
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label components, the situation becomes more complex [GSC13; SCC14].
�e approach which is most closely related to our work, and which we consider

as a baseline method, is the one by Lellmann et al. [Lel+13a]. �ey consider coupled
dataterms with coupled total variation regularization of the form (4.2).
A drawback shared by all mentioned papers is that ultimately one has to dis-

cretize the label space. While Lellmann et al. [Lel+13a] propose a sublabel-accurate
regularizer, we show that their dataterm leads to solutions which still have a strong
bias towards the label grid. For the scalar-valued setting, continuous label spaces
have been considered in the MRF community by Zach et al. [ZK12] and Fix et
al. [FA14]. �e paper [Zac13] proposes a method for mixed continuous and discrete
vectorial label spaces, where everything is derived in the spatially discrete MRF
setting. Möllenho� et al. [Möl+16] recently proposed a novel formulation of the
scalar-valued case which retains fully continuous label spaces even a�er discretiza-
tion. �e contribution of this work is to extend [Möl+16] to vectorial label spaces,
thereby complementing [Lel+13a] with a sublabel-accurate dataterm.

4.1.3 Contribution
In this work we propose the �rst sublabel-accurate convex formulation of vecto-
rial labeling problems. It generalizes the formulation for scalar-valued labeling
problems [Möl+16] and thus includes important applications such as optical 
ow
estimation or color image denoising. We show that our method, derived in a spa-
tially continuous setting, has a variety of interesting theoretical properties as well
as practical advantages over the existing labeling approaches:

• We generalize existing functional li�ing approaches (see Sec. 4.2.2).

• We show that our method is the best convex under-approximation (in a local
sense), see Prop. 6 and Prop. 7.

• Due to its sublabel-accuracy our method requires only a small amount of
labels to produce good results which leads to a drastic reduction in memory.
We believe that this is a vital step towards the real-time capability of li�ing
and convex relaxation methods. Moreover, our method eliminates the label
bias, that previous li�ing methods su�er from, even for many labels.

• In Sec. 4.2.3 we propose a regularizer that couples the di�erent label compo-
nents by enforcing a joint jump normal. �is is in contrast to [GSC13], where
the components are regularized separately.

• For convex dataterms, our method is equivalent to the unli�ed problem – see
Prop. 9. �erefore, it allows a seamless transition between direct optimization
and convex relaxation approaches.
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4.1.4 Notation
We write ⟨x , y⟩ = ∑i xi yi for the standard inner product on Rn or the Frobenius
product if x , y are matrices. Similarly ∥ ⋅ ∥ without any subscript denotes the usual
Euclidean norm, respectively the Frobenius norm for matrices.
We denote the convex conjugate of a function f ∶ Rn → R ∪ {∞} by f ∗(y) =

supx∈Rn ⟨y, x⟩− f (x). It is an important tool for devising convex relaxations, as the
biconjugate f ∗∗ is the largest lower-semicontinuous (lsc.) convex function below
f . For the indicator function of a set C we write δC , i.e., δC(x) = 0 if x ∈ C and∞
otherwise. ∆Un ⊂ Rn stands for the unit n-simplex.

4.2 Convex Formulation

4.2.1 Li�ed representation
Motivated by Fig. 4.1, we construct an equivalent representation of (4.1) in a higher
dimensional space, before taking the convex envelope.
Let Γ ⊂ Rn be a compact and convex set. We partition Γ into a set T of n-

simplices ∆i so that Γ is a disjoint union of ∆i up to a set of measure zero. Let t i j
be the j-th vertex of ∆i and denote by V = {t1, . . . , t∣V∣} the union of all vertices,
referred to as labels, with 1 ≤ i ≤ ∣T ∣, 1 ≤ j ≤ n+ 1 and 1 ≤ i j ≤ ∣V∣. For u ∶ Ω → Γ, we
refer to u(x) as a sublabel. Any sublabel can be written as a convex combination of
the vertices of a simplex ∆i with 1 ≤ i ≤ ∣T ∣ for appropriate barycentric coordinates
α ∈ ∆Un :

u(x) = Tiα ∶= n+1∑
j=1 α jt

i j , Ti ∶= (t i1 , t i2 , . . . , t in+1) ∈ Rn×n+1. (4.4)

By encoding the vertices tk ∈ V using a one-of-∣V∣ representation ek we can identify
any u(x) ∈ Γ with a sparse vector u(x) containing at least ∣V∣ − n many zeros and
vice versa:

u(x) = Eiα ∶= n+1∑
j=1 α je

i j , Ei ∶= (e i1 , e i2 , . . . , e in+1) ∈ R∣V∣×n+1,

u(x) = ∣V∣∑
k=1 t

kuk(x), α ∈ ∆Un , 1 ≤ i ≤ ∣T ∣ .
(4.5)

�e entries of the vector e i j are zero except for the (i j)-th entry, which is equal
to one. We refer to u ∶ Ω → R∣V∣ as the li�ed representation of u. �is one-to-one-
correspondence between u(x) = Tiα and u(x) = Eiα is shown in Fig. 4.2. Note
that both, α and i depend on x. However, for notational convenience we drop the
dependence on x whenever we consider a �xed point x ∈ Ω.
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−1 0 1
0

1

u(x) = 0.7e
2

+ 0.1e
3

+ 0.2e
6

= (0, 0.7, 0.1, 0, 0, 0.2)
>

∆1

∆4

0.2

0.3

t6

t2 t3

Figure 4.2: �is �gure illustrates our notation and the one-to-one correspondence
between u(x) = (0.3, 0.2)⊺ and the li�ed u(x) containing the barycen-
tric coordinates α = (0.7, 0.1, 0.2)⊺ of the sublabel u(x) ∈ ∆4 =
conv{t2, t3, t6}. �e triangulation (V , T ) of Γ = [−1; 1] × [0; 1] is vi-
sualized via the gray lines, corresponding to the triangles and the gray
dots, corresponding to the vertices V = {(−1, 0)⊺, (0, 0)⊺, . . . , (1, 1)⊺},
that we refer to as the labels.

4.2.2 Convexifying the dataterm
Let for now the weight of the regularizer in (4.1) be zero. �en, at each point x ∈ Ω
we minimize a generally nonconvex energy over a compact set Γ ⊂ Rn:

min
u∈Γ ρ(u). (4.6)

We set up the li�ed energy so that it attains �nite values if and only if the argument
u is a sparse representation u = Eiα of a sublabel u ∈ Γ:

ρ(u) = min
1≤i≤∣T ∣ ρ i(u), ρ i(u) =

⎧⎪⎪⎨⎪⎪⎩
ρ(Tiα), if u = Eiα, α ∈ ∆Un ,∞, otherwise.

(4.7)

Problems (4.6) and (4.7) are equivalent due to the one-to-one correspondence of
u = Tiα and u = Eiα. However, energy (4.7) is �nite on a nonconvex set only. In
order to make optimization tractable, we minimize its convex envelope.

Proposition 6. �e convex envelope of (4.7) is given as:

ρ∗∗(u) = sup
v∈R∣V∣⟨u, v⟩ − max

1≤i≤∣T ∣ ρ∗i (v),
ρ∗i (v) = ⟨Eibi , v⟩ + ρ∗i (A⊺i E⊺i v), ρi ∶= ρ + δ∆ i .

(4.8)

bi and Ai are given as bi ∶= Mn+1
i , Ai ∶= (M1

i , M2
i , . . . , Mn

i ), where M j
i are the

columns of the matrix Mi ∶= (T⊺i , 1)−⊺ ∈ Rn+1×n+1.
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t1 t2 Tiα t3

ρ
(u
)

t1 t2 Tiα t3

ρ
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ρ∗∗(u)

e1

e2

e3
u

Eiα

Standard li�ing [Lel+13a]

ρ∗∗(u)

e1

e2

e3
u

Eiα

Proposed li�ing

Figure 4.3: Geometrical intuition for the proposed li�ing and standard li�-
ing [Lel+13a] for the special case of 1-dimensional range Γ = [a, b]
and 3 labels {t1, t2, t3}. �e standard li�ing correponds to a linear inter-
polation of the original cost in between the locations t1, t2, t3, which are
associated with the vertices e1, e2, e3 in the li�ed energy (lower le�). �e
proposed method extends the cost to the relaxed set in a more precise
way: �e original cost is preserved on the connecting lines between
adjacent e i (black lines on the bottom right) up to concave parts (red
graphs and lower surface on the right). �is information, which may
in
uence the exact location of the minimizer, is lost in the standard
formulation. If the solution of the li�ed formulation u is in the interior
(gray area) an approximate solution to the original problem can still be
obtained via Eq. (4.5).

Proof. Follows from a calculation starting at the de�nition of ρ∗∗. SeeAppendixA.2
for a detailed derivation.

�e geometric intuition of this construction is depicted in Fig. 4.3. Note that if
one prescribes the value of ρ i in (4.7) only on the vertices of the unit simplices ∆Un ,
i.e., ρ(u) = ρ(tk) if u = ek and +∞ otherwise, one obtains the linear biconjugate
ρ∗∗(u) = ⟨u, s⟩, s = (ρ(t i), . . . , ρ(tL)) on the feasible set. �is coincides with the
standard relaxation of the dataterm used in [Poc+10; LS11; CCP12; Lel+13a]. In that
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sense, our approach can be seen as a relaxing the dataterm in a more precise way,
by incorporating the true value of ρ not only on the �nite set of labels V , but also
everywhere in between, i.e., on every sublabel.

4.2.3 Li�ing the vectorial total variation
We de�ne the li�ed vectorial total variation as

TV(u) = ∫
Ω
Ψ(Du), (4.9)

whereDu denotes the distributional derivative ofu andΨ is positively one-homogeneous,
i.e., Ψ(cu) = cΨ(u), c ⩾ 0. For such functions, the meaning of (4.9) can be made
fully precise using the polar decomposition of the Radon measure Du [AFP00,
Cor. 1.29, �m. 2.38]. However, in the following we restrict ourselves to an intuitive
motivation for the derivation of Ψ for smooth functions.
Our goal is to �nd Ψ so that TV(u) = TV(u) whenever u ∶ Ω → R∣V∣ corre-

sponds to some u ∶ Ω → Γ, in the sense that u(x) = Eiα whenever u(x) = Tiα.
In order for the equality to hold, it must in particular hold for all u that are clas-
sically di�erentiable, i.e., Du = ∇u, and whose Jacobian ∇u(x) is of rank 1, i.e.,∇u(x) = (Tiα − Tjβ) ⊗ ν(x) for some ν(x) ∈ Rd . �is rank 1 constraint enforces
the di�erent components of u to have the same jump normal, which is desirable in
many applications. In that case, we observe

TV(u) = ∫
Ω
∥Tiα − Tjβ∥ ⋅ ∥ν(x)∥dx . (4.10)

For the corresponding li�ed representation u, we have∇u(x) = (Eiα−E jβ)⊗ν(x).
�erefore it is natural to require Ψ(∇u(x)) = Ψ ((Eiα − E jβ) ⊗ ν(x)) ∶= ∥Tiα −
Tjβ∥ ⋅ ∥ν(x)∥ in order to achieve the goal TV(u) = TV(u). Motivated by these
observations, we de�ne

Ψ(p) ∶= ⎧⎪⎪⎨⎪⎪⎩
∥Tiα − Tjβ∥ ⋅ ∥ν∥ if p = (Eiα − E jβ) ⊗ ν,∞ otherwise,

(4.11)

where α, β ∈ ∆Un+1, ν ∈ Rd and 1 ≤ i , j ≤ ∣T ∣. Since the convex envelope of (4.9) is
intractable, we derive a “locally” tight convex underapproximation:

R(u) = sup
q∶Ω→Rd×∣V∣

∫
Ω
⟨u, div q⟩ −Ψ∗(q) dx . (4.12)

Proposition 7. �e convex conjugate of Ψ is

Ψ∗(q) = δK(q) (4.13)

with convex set
K = ⋂

1≤i , j≤∣T ∣{q ∈ Rd×∣V∣ ∣ ∥Qiα − Q jβ∥ ≤ ∥Tiα − Tjβ∥, α, β ∈ ∆Un+1} , (4.14)

and Qi = (qi1 , qi2 , . . . , qin+1) ∈ Rd×n+1. q j ∈ Rd are the columns of q.
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Proof. Follows from a calculation starting at the de�nition of the convex conjugate
Ψ∗. See Appendix A.2.
Interestingly, although in its original formulation (4.14) the set K has in�nitely

many constraints, one can equivalently represent K by �nitely many.
Proposition 8. �e set K in equation (4.14) is the same as

K = {q ∈ Rd×∣V∣ ∣ ∥D i
q∥S∞ ≤ 1, 1 ≤ i ≤ ∣T ∣} , D i

q = QiD (TiD)−1, (4.15)

where the matrices QiD ∈ Rd×n and TiD ∈ Rn×n are given as
QiD ∶= (qi1 − qin+1 , . . . , qin − qin+1) , TiD ∶= (t i1 − t in+1 , . . . , t in − t in+1) .

Proof. Similar to the analysis in [Lel+13a], equation (4.14) basically states the Lips-
chitz continuity of a piecewise linear function de�ned by the matrices q ∈ Rd×∣V∣.
�erefore, one can expect that the Lipschitz constraint is equivalent to a bound on
the derivative. For the complete proof, see Appendix A.2.

4.2.4 Li�ing the overall optimization problem
Combining dataterm and regularizer, the overall optimization problem is given

min
u∶Ω→R∣V∣

sup
q∶Ω→K∫Ω ρ∗∗(u) + ⟨u, div q⟩ dx . (4.16)

A highly desirable property is that, opposed to any other vectorial li�ing approach
from the literature, our method with just one simplex applied to a convex problem
yields the same solution as the unli�ed problem.

Proposition 9. If the triangulation contains only 1 simplex, T = {∆}, i.e., ∣V∣ = n+ 1,
then the proposed optimization problem (4.16) is equivalent to

min
u∶Ω→∆ ∫Ω(ρ + δ∆)∗∗(x , u(x)) dx + λTV(u), (4.17)

which is (4.1) with a globally convexi�ed dataterm on ∆.

Proof. For u = tn+1+TDũ the substitution u = (ũ1,⋯, ũn , 1 −∑n
j=1 ũ j) into ρ∗∗ and

R yields the result. For a complete proof, see see Appendix A.2.

4.3 Numerical Optimization
4.3.1 Discretization
For now assume that Ω ⊂ Rd is a d-dimensional Cartesian grid and let div denote
a �nite-di�erence divergence operator with div q ∶ Ω → R∣V∣. �en the relaxed
energy minimization problem becomes

min
u∶Ω→R∣V∣

max
q∶Ω→K ∑x∈Ω ρ∗∗(x , u(x)) + ⟨div q, u⟩. (4.18)
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In order to get rid of the pointwise maximum over ρ∗i (v) in Eq. (4.8), we introduce
additional variables w(x) ∈ R and additional constraints (v(x),w(x)) ∈ C, x ∈ Ω
so that w(x) attains the value of the pointwise maximum:

min
u∶Ω→R∣V∣

max(v ,w)∶Ω→C
q∶Ω→K

∑
x∈Ω⟨u(x), v(x)⟩ −w(x) + ⟨div q, u⟩, (4.19)

where the set C is given as
C = ⋂

1≤i≤∣T ∣Ci , Ci ∶= {(x , y) ∈ R∣V∣+1 ∣ ρ∗i (x) ≤ y} . (4.20)

For numerical optimization we use a GPU-based implementation1 of a �rst-order
primal-dual method [Poc+09a]. �e algorithm requires the orthogonal projections
of the dual variables onto the sets C respectively K in every iteration. However, the
projection onto an epigraph of dimension ∣V∣+1 is di�cult for large values of ∣V∣. We
rewrite the constraints (v(x),w(x)) ∈ Ci , 1 ≤ i ≤ ∣T ∣, x ∈ Ω as (n + 1)-dimensional
epigraph constraints introducing variables r i(x) ∈ Rn, si(x) ∈ R:
ρ∗i (r i(x)) ≤ si(x), r i(x) = A⊺i E⊺i v(x), si(x) = w(x) − ⟨Eibi , v(x)⟩. (4.21)
�ese equality constraints can be implemented using Lagrange multipliers. For the
projection onto the set K we use an approach similar to [GSC12, Figure 7].
4.3.2 Epigraphical projections
Computing the Euclidean projection onto the epigraph of ρ∗i is a central part of
the numerical implementation of the presented method. However, for n > 1 this is
nontrivial. �erefore we provide a detailed explanation of the projection methods
used for di�erent classes of ρi . We will consider quadratic, truncated quadratic
and piecewise linear ρ.

Quadratic case. Let ρ be of the form ρ(u) = a
2 u⊺u+b⊺u+ c. A direct projection

onto the epigraph of ρ∗i = (ρ+δ∆ i)∗ for n > 1 is di�cult. However, the epigraph can
be decomposed into separate epigraphs for which it is easier to project onto: For
proper, convex, lsc. functions f , g the epigraph of ( f + g)∗ is the Minkowski sum
of the epigraphs of f ∗ and g∗ (cf. [RWW98, Exercise 1.28, �eorem 11.23a]). �is
means that it su�ces to compute the projections onto the epigraphs of a quadratic
function f ∗ = ρ∗ and a convex, piecewise linear function g∗(v) =max1≤ j≤n+1⟨t i j , v⟩
by rewriting constraint (4.21) as

ρ∗(r f ) ≤ s f , δ∆ i
∗(cg) ≤ dg s.t. (r, s) = (r f , s f ) + (cg , dg). (4.22)

For the projection onto the epigraph of a n-dimensional quadratic function we use
the method described in [SCC14, Appendix B.2]. �e projection onto a piecewise
linear function is described in the last paragraph of this section.

1https://github.com/tum-vision/sublabel_relax

https://github.com/tum-vision/sublabel_relax
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[Lel+13a], 81 labels.
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Figure 4.4: ROF denoising of a vector-valued signal f ∶ [0, 1] → [−1, 1]2, discretized
on 50 points (shown in red). We compare the proposed approach
(right) with two alternative techniques introduced in [Lel+13a] (le� and
middle). �e labels are visualized by the gray grid. While the naive
(standard) multilabel approach from [Lel+13a] (le�) provides solutions
that are constrained to the chosen set of labels, the sublabel accurate
regularizer from [Lel+13a] (middle) does allow sublabel solutions, yet
– due to the dataterm bias – these still exhibit a strong preference for
the grid points. In contrast, the proposed approach does not exhibit
any visible grid bias providing fully sublabel-accurate solutions: With
only 4 labels, the computed solutions (shown in blue) coincide with the
“unli�ed” problem (green).

Truncated quadratic case. Let ρ be of the form ρ(u) =min{ ν, a
2 u⊺u+b⊺u+c }

as it is the case for the nonconvex robust ROF with a truncated quadratic dataterm
in Sec. 4.4.2. Again, a direct projection onto the epigraph of ρ∗i is di�cult. However,
a decomposition of the epigraph into simpler epigraphs is possible as the epigraph
of min{ f , g}∗ is the intersection of the epigraphs of f ∗ and g∗. Hence, one can
separately project onto the epigraphs of (ν+δ∆ i)∗ and ( a2 u⊺u+b⊺u+c+δ∆ i)∗. Both
of these projections can be handled using the methods from the other paragraphs.

Piecewise linear case. In case ρ is piecewise linear on each ∆i , i.e., ρ attains
�nite values at a discrete set of sampled sublabels Vi ⊂ ∆i and interpolates linearly
between them, we have that

(ρ + δ∆ i)∗(v) =maxτ∈Vi ⟨τ, v⟩ − ρ(τ). (4.23)

Again this is a convex, piecewise linear function. For the projection onto the
epigraph of such a function, a quadratic program of the form

min(x ,y)∈Rn+1

1
2
∥x − c∥2 + 1

2
∥y − d∥2 s.t. ⟨τ, x⟩ − ρ(τ) ≤ y,∀τ ∈ Vi (4.24)

needs to be solved.
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Input image Unli�ed Problem,

E = 992.50
Ours, ∣T ∣ = 1,∣V∣ = 4,
E = 992.51

Ours, ∣T ∣ = 6∣V∣ = 2 × 2 × 2
E = 993.52

Baseline,∣V∣ = 4 × 4 × 4,
E = 2255.81

Figure 4.5: Convex ROF with vectorial TV. Direct optimization and pro-
posed method yield the same result. In contrast to the baseline
method [Lel+13a] the proposed approach has no discretization arte-
facts and yields a lower energy. �e regularization parameter is chosen
as λ = 0.3.

We implemented the primal active-set method described in [NW06, Algorithm
16.3], and found it solves the program in a few (usually 2 − 10) iterations for a
moderate number of constraints.

4.4 Experiments

4.4.1 Vectorial ROF denoising
In order to validate experimentally, that our model is exact for convex dataterms,
we evaluate it on the Rudin-Osher-Fatemi [ROF92] (ROF) model with vectorial
TV (4.2). In our model this corresponds to de�ning ρ(x , u(x)) = 1

2∥u(x)− I(x)∥2.
As expected based on Prop. 9 the energy of the solution of the unli�ed problem
is equal to the energy of the projected solution of our method for ∣V∣ = 4 up to
machine precision, as can be seen in Fig. 4.4 and Fig. 4.5. We point out, that the
sole purpose of this experiment is a proof of concept as our method introduces
an overhead and convex problems can be solved via direct optimization. It can be
seen in Fig. 4.4 and Fig. 4.5, that the baseline method [Lel+13a] has a strong label
bias.

4.4.2 Denoising with truncated quadratic dataterm
For images degraded with both, Gaussian and salt-and-pepper noise we de�ne the
dataterm as ρ(x , u(x)) =min { 1

2∥u(x) − I(x)∥2, ν}. We solve the problem using
the epigraph decomposition described in the second paragraph of Sec. 4.3.2. It
can be seen, that increasing the number of labels ∣V∣ leads to lower energies and at
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Noisy input Ours, ∣T ∣ = 1, ∣V∣ = 4,
E = 2849.52 Ours, ∣T ∣ = 6,∣V∣ = 2 × 2 × 2,

E = 2806.18
Ours, ∣T ∣ = 48,∣V∣ = 3 × 3 × 3,
E = 2633.83

Baseline,∣V∣ = 4 × 4 × 4,
E = 3151.80

Figure 4.6: ROF with a truncated quadratic dataterm (λ = 0.03 and ν = 0.025).
Compared to the baseline method [Lel+13a] the proposed approach
yields much better results, already with a very small number of 4 labels.

the same time to a reduced e�ect of the TV.�is occurs as we always compute a
piecewise convex underapproximation of the original nonconvex dataterm, that
gets tighter the larger the number of labels. �e baseline method [Lel+13a] again
produces strong discretization artefacts even for a large number of labels ∣V∣ =
4 × 4 × 4 = 64.
4.4.3 Optical 
ow
We compute the optical 
ow v ∶ Ω → R2 between two input images I1, I2. �e label
space Γ = [−d , d]2 is chosen according to the estimated maximum displacement
d ∈ R between the images. �e dataterm is ρ(x , v(x)) = ∥I2(x) − I1(x + v(x))∥,
and λ(x) is based on the norm of the image gradient ∇I1(x).
In Fig. 4.7 we compare the proposed method to the product space approach

[GSC13]. Note that we implemented the product space dataterm using Lagrange
multipliers, also referred to as the global approach in [GSC13]. While this increases
the memory consumption, it comes with lower computation time and guaran-
teed convergence. For our method, we sample the label space Γ = [−15, 15]2 on
150 × 150 sublabels and subsequently convexify the energy on each triangle using
the quickhull algorithm [BDH96]. For the product space approach we sample the
label space at equidistant labels, from 5 × 5 to 27 × 27. As the regularizer from the
product space approach is di�erent from the proposed one, we chose µ di�erently
for each method. For the proposed method, we set µ = 0.5 and for the product
space and baseline approach µ = 3. We can see in Fig. 4.7, our method outperforms
the product space approach w.r.t. the average end-point error. Our method out-
performs previous li�ing approaches: In Fig. 4.8 we compare our method on large
displacement optical 
ow to the baseline [Lel+13a]. To obtain competitive results
on the Middlebury benchmark, one would need to engineer a better dataterm.



73 Sublabel-Accurate Convex Relaxation of Vectorial Multilabel Energies

Image 1 [GSC13], ∣V∣ = 5 × 5,
0.67 GB, 4 min
aep = 2.78

[GSC13], ∣V∣ = 11 × 11,
2.1 GB, 12 min
aep = 1.97

[GSC13], ∣V∣ = 17 × 17,
4.1 GB, 25 min
aep = 1.63

[GSC13], ∣V∣ = 28 × 28,
9.3 GB, 60 min
aep = 1.39

Image 2 [Lel+13a], ∣V∣ = 3 × 3,
0.67 GB, 0.35 min
aep = 5.44

[Lel+13a], ∣V∣ = 5 × 5,
2.4 GB, 16 min
aep = 4.22

[Lel+13a], ∣V∣ = 7 × 7,
5.2 GB, 33 min
aep = 2.65

[Lel+13a], ∣V∣ = 9 × 9,
Out of memory.

Ground truth Ours, ∣V∣ = 2 × 2,
0.63 GB, 17 min
aep = 1.28

Ours, ∣V∣ = 3 × 3,
1.9 GB, 34 min
aep = 1.07

Ours, ∣V∣ = 4 × 4,
4.1 GB, 41 min
aep = 0.97

Ours, ∣V∣ = 6 × 6,
10.1 GB, 56 min
aep = 0.9

Figure 4.7: We compute the optical 
ow using our method, the product space ap-
proach [GSC13] and the baselinemethod [Lel+13a] for a varying amount
of labels and compare the average endpoint error (aep). �e product
space method clearly outperforms the baseline, but our approach �nds
the overall best result already with 2 × 2 labels. To achieve a similarly
precise result as the product space method, we require 150 times fewer
labels, 10 times less memory and 3 times less time. For the same number
of labels, the proposed approach requires more memory as it has to
store a convex approximation of the energy instead of a linear one.

(a) Image 1 and 2 (b) Proposed, ∣V∣ = 2 × 2 (c) Baseline, ∣V∣ = 7 × 7
Figure 4.8: Large displacement 
ow between two 640 × 480 images (a) using a

81 × 81 search window. �e result of our method with 4 labels is shown
in (b), the baseline [Lel+13a] in (c).
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4.5 Conclusions
We proposed the �rst sublabel-accurate convex relaxation of vectorial multilabel
problems. To this end, we approximate the generally nonconvex dataterm in a
piecewise convex manner as opposed to the piecewise linear approximation done
in the traditional functional li�ing approaches. �is assures a more faithful approx-
imation of the original cost function and provides a meaningful interpretation for
the non-integral solutions of the relaxed convex problem. In experimental valida-
tions on large-displacement optical 
ow estimation and color image denoising, we
show that the computed solutions have superior quality to the traditional convex
relaxation methods while requiring substantially less memory and runtime.



Chapter 5
Sublabel-Accurate Discretization of
Nonconvex Free-Discontinuity
Problems

(a) (b)

Figure 5.1: �e classical way to discretize continuous convex relaxations such as
the vectorial Mumford-Shah functional [SCC12] leads to solutions (b),
top-le�) with a strong bias towards the chosen labels (here an equidistant
5 × 5 × 5 sampling of the RGB space). �is can be seen in the bottom
le� part of the image, where the green color is truncated to the nearest
label which is gray. �e proposed sublabel-accurate approximation of
the continuous relaxation leads to bias-free solutions (b), bottom-right).

5.1 Introduction
5.1.1 A class of continuous optimization problems
Many tasks particularly in low-level computer vision can be formulated as opti-
mization problems over mappings u ∶ Ω → Γ between sets Ω and Γ. �e energy
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functional is usually designed in such a way that the minimizing argument cor-
responds to a mapping with the desired solution properties. In classical discrete
Markov random �eld (MRF) approaches, which we refer to as fully discrete opti-
mization, Ω is typically a set of nodes (e.g., pixels or superpixels) and Γ a set of
labels {1,⋯, ℓ}.
However, in many problems such as image denoising, stereo matching or optical


ow where Γ ⊂ Rd is naturally modeled as a continuum, this discretization into
labels can entail unreasonably high demands inmemorywhen using a �ne sampling,
or it leads to a strong label bias when using a coarser sampling, see Figure 5.1.
Furthermore, as jump discontinuities are ubiquitous in low-level vision (e.g., caused
by object edges, occlusion boundaries, changes in albedo, shadows, etc.), it is
important to model them in a meaningful manner. By restricting either Ω or Γ to a
discrete set, one loses the ability to mathematically distinguish between continuous
and discontinuous mappings.
Motivated by these two points we consider fully-continuous optimization ap-

proaches, where the idea is to postpone the discretization of Ω ⊂ Rn and Γ ⊂ R as
long as possible. �e prototypical class of continuous optimization problems which
we consider in this work are nonconvex free-discontinuity problems, inspired by
the celebrated Mumford-Shah functional [BZ87; MS89]:

E(u) =∫
Ω∖Ju f (x , u(x),∇u(x))dx+∫
Ju
d (x , u−(x), u+(x), νu(x))dHn−1(x). (5.1)

�e�rst integral is de�ned on the regionΩ∖Ju whereu is continuous. �e integrand
f ∶ Ω× Γ×Rn → [0,∞] can be thought of as a combined data term and regularizer,
where the regularizer can penalize variations in terms of the (weak) gradient ∇u.
�e second integral is de�ned on the (n − 1)-dimensional discontinuity set Ju ⊂ Ω
and d ∶ Ω × Γ × Γ × Sn−1 → [0,∞] penalizes jumps from u− to u+ in unit direction
νu. �e appropriate function space for (5.1) are the special functions of bounded
variation. �ese are functions of bounded variation (cf. Section 5.2 for a de�ntion)
whose distributional derivative Du can be decomposed into a continuous part and
a jump part in the spirit of (5.1):

Du = ∇u ⋅ Ln + (u+ − u−) νu ⋅ Hn−1 ¬ Ju , (5.2)

where Ln denotes the n-dimensional Lebesgue measure andHn−1 ¬ Ju the (n − 1)-
dimensional Hausdor� measure restricted to the jump set Ju. For an introduction
to functions of bounded variation and the study of existence of minimizers to (5.1)
we refer the interested reader to [AFP00].
Note that due to the possible nonconvexity of f in the �rst two variables a

surprisingly large class of low-level vision problems �ts the general framework of
(5.1). While (5.1) is a di�cult nonconvex optimization problem, the state-of-the-art
are convex relaxations [ABD03; Bou98; Cha01]. We give an overview of the idea
behind the convex reformulation in Section 5.3.
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Extensions to the vectorial setting, i.e., dim(Γ) > 1, have been studied by
Strekalovskiy et al.in various works [GSC13; SCC12; SCC14] and recently using
the theory of currents by Windheuser and Cremers [WC16]. �e case when Γ is a
manifold has been considered by Lellmann et al.[Lel+13a]. �ese advances have
allowed for a wide range of di�cult vectorial and joint optimization problems to
be solved within a convex framework.

5.1.2 Related work
�e �rst practical implementation of (5.1) was proposed by Pock et al.[Poc+09a],
using a simple �nite di�erencing scheme in both Ω and Γ which has remained the
standard way to discretize convex relaxations. �is leads to a strong label bias (see
Figure 5.1b), top-le�) despite the initially label-continuous formulation.
In the MRF community, a related approach to overcome this label-bias are

discrete-continuousmodels (discrete Ω and continuous Γ), pioneered byZach et al.[Zac13;
ZK12]. Most similar to the present work is the approach of Fix and Agarwal [FA14].
�ey derive the discrete-continuous approaches as a discretization of an in�nite di-
mensional dual linear program. �eir approach di�ers from ours, as we start from
a di�erent (nonlinear) in�nite-dimensional optimization problem and consider a
representation of the dual variables which enforces continuity. �e recent work of
Bach [Bac19] extends the concept of submodularity from discrete to continuous Γ
along with complexity estimates.
�ere are also continuous-discrete models, i.e. the range Γ is discretized into

labels but Ω is kept continuous [CCP12; LS11]. Recently, these spatially continuous
multilabeling models have been extended to allow for so-called sublabel accurate
solutions [Lau+16; Möl+16], i.e., solutions which lie between two labels. �ese are,
however, limited to total variation regularization, due to the separate convexi�ca-
tion of data term and regularizer. We show in this work that for general regularizers
a joint convex relaxation is crucial.
Finally, while not focus of this work, there are of course also fully-discrete ap-

proaches, among many [Ish03; Sch76; Wer07], which inspired some of the continu-
ous formulations.

5.1.3 Contribution
In this work, we propose an approximation strategy for fully-continuous relaxations
which retains continuous Γ even a�er discretization (see Figure 5.1b), bottom-right).
We summarize our contributions as:

• We generalize the work [Möl+16] from total variation to general convex and
nonconvex regularization.

• We prove (see Prop. 11 and Prop. 13) that di�erent approximations to a convex
relaxation of (5.1) give rise to existing relaxations [Poc+09a] and [Möl+16].
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We investigate the relationship to discrete-continuous MRFs in Prop. 14.

• On the example of the vectorial Mumford-Shah functional [SCC12] we show
that our framework yields also sublabel-accurate formulations of extensions
to (5.1).

5.2 Notation and Preliminaries
We denote the Iverson bracket as J⋅K. Indicator functions from convex analysis
which take on values 0 and∞ are denoted by δ{⋅}. We denote by f ∗ the convex
conjugate of f ∶ Rn → R. Let Ω ⊂ Rn be a bounded open set. For a function
u ∈ L1(Ω;R) its total variation is de�ned by

TV(u) = sup{∫
Ω
u div φ dx ∶ φ ∈ C1

c(Ω;Rn)} . (5.3)

�e space of functions of bounded variation, i.e., for which TV(u) < ∞ (or equiva-
lently for which the distributional derivative Du is a �nite Radon measure) is de-
noted by BV(Ω;R) [AFP00]. Wewrite u ∈ SBV(Ω;R) for functions u ∈ BV(Ω;R)
whose distributional derivative admits the decomposition (5.2). For the rest of this
work, we will make the following simplifying assumptions:

• �e Lagrangian f in (5.1) is separable, i.e.,

f (x , t, g) = ρ(x , t) + η(x , g), (5.4)

for possibly nonconvex ρ ∶ Ω× Γ → R and regularizers η ∶ Ω×Rn → R which
are convex in g.

• �e jump regularizer in (5.1) is isotropic and induced by a concave function
κ ∶ R≥0 → R:

d(x , u−, u+, νu) = κ(∣u− − u+∣)∥νu∥2, (5.5)

with κ(a) = 0⇔ a = 0.
• �e range Γ = [γ1, γℓ] ⊂ R is a compact interval.

5.3 �e Convex Relaxation
In [ABD03; Bou98; Cha01] the authors propose a convex relaxation for the problem
(5.1). �eir basic idea is to reformulate the energy (5.1) in terms of the complete graph
of u, i.e. li�ing the problem to one dimension higher as illustrated in Figure 5.2.
�e complete graph Gu ⊂ Ω × Γ is de�ned as the (measure-theoretic) boundary of
the characteristic function of the subgraph 1u ∶ Ω ×R→ {0, 1} given by:

1u(x , t) = Jt < u(x)K. (5.6)
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pJu Ju
γ1

γ2

γ3

γ4

γ5 ∑
ei

∫

Γ

Φ0
i (t)1u(p, t)dt =

h ·
[
1 1 0.4 0

]>

1u ≡ 0 1u ≡ 1

Γu

u−

u+

Ω

Γ

Figure 5.2: �e central idea behind the convex relaxation for problem (5.1) is to
reformulate the functional in terms of the complete graph Gu ⊂ Ω × Γ
of u ∶ Ω → Γ in the product space. �is procedure is o�en referred to as
“li�ing”, as one li�s the dimensionality of the problem.

Furthermorewe denote the inner unit normal to 1u with νGu . It is shown in [ABD03]
that for u ∈ SBV(Ω;R) one has

E(u) = F(1u) = sup
φ∈K ∫Gu

⟨φ, νGu⟩ dHn , (5.7)

with constraints on the dual variables φ ∈ K given by
K = {(φx , φt) ∈ C1

c(Ω ×R;Rn ×R) ∶
φt(x , t) + ρ(x , t) ≥ η∗(x , φx(x , t)), (5.8)

∥∫ t′

t
φx(x , t)dt∥2 ≤ κ(∣t − t′∣),∀t, t′,∀x}. (5.9)

�e functional (5.7) can be interpreted as the maximum 
ux of admissible vector
�elds φ ∈ K through the cut given by the complete graph Gu. �e setK can be seen
as capacity constraints on the 
ux �eld φ. �is is reminiscent to constructions from
the discrete optimization community [Ish03]. �e constraints (5.8) correspond to
the �rst integral in (5.1) and the non-local constraints (5.9) to the jump penalization.
Using the fact that the distributional derivative of the subgraph indicator function

1u can be written as
D1u = νGu ⋅ Hm ¬Gu , (5.10)

one can rewrite the energy (5.7) as

F(1u) = sup
φ∈K ∫Ω×Γ⟨φ,D1u⟩. (5.11)
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A convex formulation is then obtained by relaxing the set of admissible primal
variables to a convex set:

C = {v ∈ BVloc(Ω ×R; [0, 1]) ∶
v(x , t) = 1 ∀t ≤ γ1, v(x , t) = 0 ∀t > γℓ ,
v(x , ⋅) non-increasing}.

(5.12)

�is set can be thought of as the convex hull of the subgraph functions 1u. �e �nal
optimization problem is then a convex-concave saddle point problem given by:

inf
v∈C supφ∈K ∫Ω×R⟨φ,Dv⟩. (5.13)

In dimension one (n = 1), this convex relaxation is tight [Car16; Cha01]. For
n > 1 global optimality can be guaranteed by means of a thresholding theorem
in case κ ≡ ∞ [BF15; Poc+10]. If the primal solution v̂ ∈ C to (5.13) is binary, the
global optimum u∗ of (5.1) can be recovered simply by pointwise thresholding
û(x) = sup{t ∶ v̂(x , t) > 1

2}. If v̂ is not binary, in the general setting it is not clear
how to obtain the global optimal solution from the relaxed solution. An a posteriori
optimality bound to the global optimum E(u∗) of (5.1) for the thresholded solution
û can be computed by:

∣E(û) − E(u∗)∣ ≤ ∣F(1û) − F(v̂)∣. (5.14)

Using that bound, it has been observed that solutions are usually near globally
optimal [SCC12]. In the following section, we show how di�erent discretizations
of the continuous problem (5.13) lead to various existing li�ing approaches and to
generalizations of the recent sublabel-accurate continuous multilabeling approach
[Möl+16].

5.4 Sublabel-Accurate Discretization
5.4.1 Choice of primal and dual mesh
In order to discretize the relaxation (5.13), we partition the range Γ = [γ1, γℓ] into
k = ℓ − 1 intervals. �e individual intervals Γi = [γi , γi+1] form a one dimensional
simplicial complex (see e.g., [Hir03]), and we have Γ = Γ1 ∪⋯∪ Γk. �e points γi ∈ Γ
are also referred to as labels. We assume that the labels are equidistantly spaced
with label distance h = γi+1 − γi . �e theory generalizes also to non-uniformly
spaced labels, as long as the spacing is homogeneous in Ω. Furthermore, we de�ne
γ0 = γ1 − h and γℓ+1 = γℓ + h.
�e mesh for dual variables is given by dual complex, which is formed by the

intervals Γ∗i = [γ∗i−1, γ∗i ] with nodes γ∗i = γ i+γ i+1
2 . An overview of the notation and

the considered �nite dimensional approximations is given in Figure 5.3.
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Figure 5.3: Overview of the notation and proposed �nite dimensional approxima-
tion spaces.

5.4.2 Representation of the primal variable
As 1u is a discontinuous jump function, we consider a piecewise constant approxi-
mation for v ∈ C,

Φ0
i (t) = Jt ∈ ΓiK, 1 ≤ i ≤ k, (5.15)

see Figure 5.3a). Due to the boundary conditions in Eq. (5.12), we set v outside of Γ
to 1 on the le� and 0 on the right. Note that the non-decreasing constraint in C is
implicitly realized as φt ∈ K can be arbitrarily large.
For coe�cients v̂ ∶ Ω × {1,⋯, k} → R we have

v(x , t) = k∑
i=1 v̂(x , i)Φ0

i (t). (5.16)

As an example of this representation, consider the approximation of 1u at point p
shown in Figure 5.2:

v̂(p, ⋅) = k∑
i=1 ei ∫ΓΦ0

i (t)1u(p, t)dt
= h ⋅ [1 1 0.4 0]⊺ .

(5.17)
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γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12

Figure 5.4: Le�: piecewise constant dual variables φt lead to a linear approximation
(shown in black) to the original cost function (shown in red). �e
unaries are determined through min-pooling of the continuous cost in
the Voronoi cells around the labels. Right: continuous piecewise linear
dual variables φt convexify the costs on each interval.

�is leads to the sublabel-accurate representation also considered in [Möl+16].
In that work, the representation from the above example (5.17) encodes a convex
combination between the labels γ3 and γ4 with interpolation factor 0.4. Here it
is motivated from a di�erent perspective: we take a �nite dimensional subspace
approximation of the in�nite dimensional optimization problem (5.13).

5.4.3 Representation of the dual variables
5.4.3.1 Piecewise constant φt

�e simplest discretization of the dual variable φt is to pick a piecewise constant
approximation on the dual intervals Γ∗i as shown in Figure 5.3b): �e functions are
given by

Ψ0
i (t) = Jt ∈ Γ∗i K, 1 ≤ i ≤ ℓ, (5.18)

As φ is a vector �eld in C1
c, the functions Ψ vanish outside of Γ. For coe�cient

functions φ̂t ∶ Ω × {1,⋯, ℓ} → R and φ̂x ∶ Ω × {1,⋯, k} → Rn we have:

φt(t) = ℓ∑
i=1 φ̂t(i)Ψ0

i (t), φx(t) = k∑
i=1 φ̂x(i)Φ0

i (t). (5.19)

To avoid notational clutter, we dropped x ∈ Ω in (5.19) and will do so also in
the following derivations. Note that for φx we chose the same piecewise constant
approximation as for v, as we keep the model continuous in Ω, and ultimately
discretize it using �nite di�erences in x.
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Discretization of the constraints. In the following, we will plug in the �nite
dimensional approximations into the constraints from the set K. We start by
reformulating the constraints in (5.8). Taking the in�mum over t ∈ Γi they can be
equivalently written as:

inf
t∈Γi φt(t) + ρ(t) − η∗ (φx(t)) ≥ 0, 1 ≤ i ≤ ℓ. (5.20)

Plugging in the approximation (5.19) into the above leads to the following con-
straints for 1 ≤ i ≤ k:

φ̂t(i)+ inf
t∈[γ i ,γ∗i ] ρ(t) ≥ η∗(φ̂x(i)),

φ̂t(i + 1)+ inf
t∈[γ∗i ,γ i+1] ρ(t)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
min-pooling

≥ η∗(φ̂x(i)). (5.21)

�ese constraints can be seen as min-pooling of the continuous unary potentials
in a symmetric region centered on the label γi . To see that more easily, assume one-
homogeneous regularization so that η∗ ≡ 0 on its domain. �en two consecutive
constraints from (5.21) can be combined into one where the in�mum of ρ is taken
over Γ∗i = [γ∗i , γ∗i+1] centered the label γi . �is leads to capacity constraints for the

ow in vertical direction −φ̂t(i) of the form

− φ̂t(i) ≤ inf
t∈Γ∗i ρ(t), 2 ≤ i ≤ ℓ − 1, (5.22)

as well as similar constraints on φ̂t(1) and φ̂t(ℓ). �e e�ect of this on a nonconvex
energy is shown in Figure 5.4 on the le�. �e constraints (5.21) are convex inequality
constraints, which can be implemented using standard proximal optimization
methods and orthogonal projections onto the epigraph epi(η∗) as described in
[Poc+10, Section 5.3].
For the secondpart of the constraint set (5.9)we insert again the �nite-dimensional

representation (5.19) to arrive at:

∥(1 − α)φ̂x(i) + j−1∑
l=i+1 φ̂x(l) + βφ̂x( j)∥

≤ κ(γβj − γαi )
h

, ∀ 1 ≤ i ≤ j ≤ k, α, β ∈ [0, 1],
(5.23)

where γαi ∶= (1 − α)γi + αγi+1. �ese are in�nitely many constraints, but similar to
[Möl+16] these can be implemented with �nitely many constraints.

Proposition 10. For concave κ ∶ R+0 → R with κ(a) = 0⇔ a = 0, the constraints
(5.23) are equivalent to

∥ j∑
l=i φ̂x(l)∥ ≤

κ(γ j+1 − γi)
h

, ∀1 ≤ i ≤ j ≤ k. (5.24)
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Proof. Proofs are given in Appendix A.3.

�is proposition reveals that only information from the labels γi enters into the
jump regularizer κ. For ℓ = 2 we expect all regularizers to behave like the total
variation.

Discretization of the energy. For the discretization of the saddle point energy
(5.13) we apply the divergence theorem

∫
Ω×R⟨φ,Dv⟩ = ∫Ω×R −div φ ⋅ v dt dx , (5.25)

and then discretize the divergence by inserting the piecewise constant representa-
tions of φt and v:

∫
R
−∂tφt(t)v(t) dt = −φ̂t(1) − k∑

i=1 v̂(i) [φ̂t(i + 1) − φ̂t(i)] . (5.26)

�e discretization of the other parts of the divergence are given as the following:

∫
R
−∂x jφx(t)v(t) dt = −h k∑

i=1 ∂x j φ̂x(i)v̂(i), (5.27)

where the spatial derivatives ∂x j are ultimately discretized using standard �nite
di�erences. It turns out that the above discretization can be related to the one from
[Poc+09a]:

Proposition 11. For convex one-homogeneous η the discretization with piecewise
constant φt and φx leads to the traditional discretization as proposed in [Poc+09a],
except with min-pooled instead of sampled unaries.

5.4.3.2 Piecewise linear φt
As the dual variables in K are continuous vector �elds, a more faithful approxima-
tion is given by a continuous piecewise linear approximation, given for 1 ≤ i ≤ ℓ
as:

Ψ1
i (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t−γ i−1
h , if t ∈ [γi−1, γi],

γ i+1−t
h , if t ∈ [γi , γi+1],

0 otherwise.
(5.28)

�ey are shown in Figure 5.3c), and we set:

φt(t) = ℓ∑
i=1 φ̂t(i)Ψ1

i (t). (5.29)

Note that the piecewise linear dual representation considered by Fix et al.in [FA14]
di�ers in this point, as they do not ensure a continuous representation. Unlike
the proposed approach their approximation does not take a true subspace of the
original in�nite dimensional function space.
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Discretization of the constraints. We start from the reformulation (5.20) of the
original constraints (5.8). With (5.29) for φt and (5.19) for φx , we have for 1 ≤ i ≤ k:

inf
t∈Γi φ̂t(i)γi+1 − th

+ φ̂t(i + 1) t − γih
+ ρ(t) ≥ η∗(φ̂x(i)). (5.30)

While the constraints (5.30) seem di�cult to implement, they can be reformulated
in a simpler way involving ρ∗.
Proposition 12. �e constraints (5.30) can be equivalently reformulated by introduc-
ing additional variables a ∈ Rk, b ∈ Rk, where ∀i ∈ {1,⋯, k}:

r(i) = (φ̂t(i) − φ̂t(i + 1))/h,
a(i) + b(i) − (φ̂t(i)γi+1 − φ̂t(x , i + 1)γi)/h = 0,
r(i) ≥ ρ∗i (a(i)) , φ̂x(i) ≥ η∗ (b(i)) ,

(5.31)

with ρi(x , t) = ρ(x , t) + δ{t ∈ Γi}.
�e constraints (5.31) are implemented by projections onto the epigraphs of η∗

and ρ∗i , as they can be written as:
(r(i), a(i)) ∈ epi(ρ∗i ), (φ̂x(i), b(i)) ∈ epi(η∗). (5.32)

Epigraphical projections for quadratic and piecewise linear ρi are described in
[Möl+16]. In Section 5.5.1 we describe how to implement piecewise quadratic ρi .
As the convex conjugate of ρi enters into the constraints, it becomes clear that this
discretization only sees the convexi�ed unaries on each interval, see also the right
part of Figure 5.4.

Discretization of the energy. It turns out that the piecewise linear representation
of φt leads to the same discrete bilinear saddle point term as (5.26). �e other term
remains unchanged, as we pick the same representation of φx .

Relation to existing approaches. In the following we point out the relationship
of the approximationwith piecewise linear φt to the sublabel-accuratemultilabeling
approaches [Möl+16] and the discrete-continuous MRFs [ZK12].

Proposition 13. �e discretization with piecewise linear φt and piecewise constant
φx , together with the choice η(g) = ∥g∥ and κ(a) = a is equivalent to the relaxation
[Möl+16].

�us we extend the relaxation proposed in [Möl+16] to more general regulariza-
tions. �e relaxation [Möl+16] was derived starting from a discrete label space and
involved a separate relaxation of data term and regularizer. To see this, �rst note
that the convex conjugate of a convex one-homogeneous function is the indicator
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function of a convex set [Roc96, Corollary 13.2.1]. �en the constraints (5.8) can
be written as

−φt(x , t) ≤ ρ(x , t), (5.33)
φx(x , t) ∈ dom{η∗}, (5.34)

where (5.33) is the data term and (5.34) the regularizer. �is provides an intuition
why the separate convex relaxation of data term and regularizer in [Möl+16] worked
well. However, for general choices of η a joint relaxation of data term and regularizer
as in (5.30) is crucial. �e next proposition establishes the relationship between
the data term from [ZK12] and the one from [Möl+16].

Proposition 14. �e data term from [Möl+16] (which is in turn a special case of the
discretization with piecewise linear φt) can be (pointwise) brought into the primal
form

D(v̂) = inf
x i≥0,∑i x i=1
v̂=y/h+I⊺x

k∑
i=1 xiρ

∗∗
i ( yi

xi
) , (5.35)

where I ∈ Rk×k is a discretized integration operator.
�edata term of Zach andKohli [ZK12] is precisely given by (5.35) except that the

optimization is directly performed on x , y ∈ Rk. �e variable x can be interpreted
as 1-sparse indicator of the interval Γi and y ∈ Rk as a sublabel o�set. �e constraint
v̂ = y/h + I⊺x connects this representation to the subgraph representation v̂ via
the operator I ∈ Rk×k (see supplementary material for the de�nition). For general
regularizers η, the discretization with piecewise linear φt di�ers from [Möl+16] as
we perform a joint convexi�cation of data term and regularizer and from [ZK12] as
we consider the spatially continuous setting. Another important question to ask is
which primal formulation is actually optimized a�er discretization with piecewise
linear φt. In particular the distinction between jump and smooth regularization
only makes sense for continuous label spaces, so it is interesting to see what is
optimized a�er discretizing the label space.

Proposition 15. Let γ = κ(γ2 − γ1) and ℓ = 2. �e approximation with piecewise
linear φt and piecewise constant φx of the continuous optimization problem (5.13) is
equivalent to

inf
u∶Ω→Γ∫Ω ρ∗∗(x , u(x)) + (η∗∗ ◻ γ∥ ⋅ ∥)(∇u(x)) dx , (5.36)

where (η ◻ γ∥ ⋅ ∥)(x) = inf y η(x − y) + γ∥y∥ denotes the in�mal convolution (cf.
[Roc96, Section 5]).

From Proposition 15 we see that theminimal discretization with ℓ = 2 amounts to
approximating problem (5.1) by globally convexifying the data term. Furthermore,
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we can see that Mumford-Shah (truncated quadratic) regularization (η(g) = α∥g∥2,
κ(a) ≡ λJa > 0K) is approximated by a convex Huber regularizer in case ℓ = 2. �is
is because the in�mal convolution between x2 and ∣x∣ corresponds to the Huber
function. While even for ℓ = 2 this is a reasonable approximation to the original
model (5.1), we can gradually increase the number of labels to get an increasingly
faithful approximation of the original nonconvex problem.

5.4.3.3 Piecewise quadratic φt

For piecewise quadratic φt the main di�culty are the constraints in (5.20). For
piecewise linear φt the in�mum over a linear function plus ρi lead to (minus)
the convex conjugate of ρi . Quadratic dual variables lead to so called generalized
Φ-conjugates [RWW98, Chapter 11L*, Example 11.66]. Such conjugates were
also theoretically considered in the recent work [FA14] for discrete-continuous
MRFs, however an e�cient implementation seems challenging. �e advantage of
this representation would be that one can avoid convexi�cation of the unaries on
each interval Γi and thus obtain a tighter approximation. While in principle the
resulting constraints could be implemented using techniques from convex algebraic
geometry and semi-de�nite programming [BPT12] we leave this direction open to
future work.

5.5 Implementation and Extensions

5.5.1 Piecewise quadratic unaries ρi
In some applications such as robust fusion of depth maps, the data term ρ has a
piecewise quadratic form:

ρ(u) = M∑
m=1min{νm , αm (u − fm)2} . (5.37)

�e intervals on which the above function is a quadratic are formed by the break-
points fm ±√

νm/αm. In order to optimize this within our framework, we need to
compute the convex conjugate of ρ on the intervals Γi , see Eq. (5.31). We can write
the data term (5.37) on each Γi as

min
1≤ j≤n i ai , ju

2 + bi , ju + ci , j + δ{u ∈ Ii , j}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=∶ρ i , j(u)
, (5.38)

where ni denotes the number of pieces and the intervals Ii , j are given by the
breakpoints and Γi . �e convex conjugate is then given by ρ∗i (v) =max1≤ j≤n i ρ∗i , j(v).
As the epigraph of the maximum is the intersection of the epigraphs, epi(ρ∗i ) =
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Direct Optimization
EQ = 2002.9 [Poc+10], ℓ = 2

EQ = 15708.3 [Poc+10], ℓ = 3
EQ = 5103.8 [Poc+10], ℓ = 5

EQ = 2415.9

[Poc+10], ℓ = 16
EQ = 2016.5 Proposed, ℓ = 2

EQ = 2002.9 Proposed, ℓ = 3
EQ = 2002.9 Proposed, ℓ = 5

EQ = 2002.9
Figure 5.5: To verify the tightness of the approximation, we optimize a convex

problem (quadratic data term with quadratic regularization). �e dis-
cretization with piecewise linear φt recovers the exact solution with 2
labels and remains tight (numerically) for all ℓ > 2, while the traditional
discretization from [Poc+10] leads to a strong label bias.

⋂n j
j=1 epi (ρ∗i , j), the constraints for the data term (r i , a i) ∈ epi(ρ∗i ), can be broken

down: (r i , j, a i , j) ∈ epi (ρ∗i , j) , r i = r i , j, a i = a i , j,∀ j. (5.39)

�eprojection onto the epigraphs of the ρ∗i , j are carried out as described in [Möl+16].
Such a convexi�ed piecewise quadratic function is shown on the right in Figure 5.4.

5.5.2 �e vectorial Mumford-Shah functional
Recently, the free-discontinuity problem (5.1) has been generalized to vectorial
functions u ∶ Ω → Rnc by Strekalovskiy et al. [SCC12]. �e model they propose is

nc∑
c=1 ∫Ω∖Ju fc(x , uc(x),∇xuc(x))dx + λHn−1(Ju), (5.40)

which consists of a separable data term and separable regularization on the contin-
uous part. �e individual channels are coupled through the jump part regularizerHn−1(Ju) of the joint jump set across all channels. Using the same strategy as in
Section 5.4, applied to the relaxation described in [SCC12, Section 3], a sublabel-
accurate representation of the vectorial Mumford-Shah functional can be obtained.
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(a) Le� input image (b) Proposed, (Segmentation) (c) Proposed, (Depth map)

(d) [SCC12], (Segmentation) (e) [SCC12], (Depth map)

Figure 5.6: Joint segmentation and stereo matching. b), c) Using the proposed
discretization we can arrive at smooth solutions using a moderate (5 ×
5 × 5 × 5) discretization of the 4-dimensional RGB-D label space. d),
e)When using such a coarse sampling of the label space, the classical
discretization used in [SCC12] leads to a strong label bias. Note that
with the proposed approach, a piecewise constant segmentation as in
d) could also be obtained by increasing the smoothness parameter.

5.5.3 Numerical solution

We solve the �nal �nite dimensional optimization problem a�er �nite-di�erence
discretization in spatial direction using the primal-dual algorithm [Poc+09a].

5.6 Experiments

5.6.1 Exactness in the convex case

We validate our discretization in Figure 5.5 on the convex problem ρ(u) = (u− f )2,
η(∇u) = λ∣∇u∣2. �e global minimizer of the problem is obtained by solving(I − λ∆)u = f . For piecewise linear φt we recover the exact solution using only
2 labels, and remain (experimentally) exact as we increase the number of labels.
�e discretization from [Poc+10] shows a strong label bias due to the piecewise
constant dual variable φt. Even with 16 labels their solution is di�erent from the
ground truth energy.
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Noisy Input, (PSNR=10.4) [SCC12], ℓ = 2 × 2 × 2
(PSNR=14.7)

[SCC12], ℓ = 4 × 4 × 4
(PSNR=25.0)

[SCC12], ℓ = 6 × 6 × 6
(PSNR=29.3)

Ours, ℓ = 2 × 2 × 2,
(PSNR=24.8)

Ours, ℓ = 4 × 4 × 4,
(PSNR=28.0)

Ours, ℓ = 6 × 6 × 6,
(PSNR=30.0)

Figure 5.7: Denoising of a synthetic piecewise smooth image degraded with 30%
Gaussian noise. �e standard discretization of the vectorial Mumford-
Shah functional shows a strong bias towards the chosen labels (see also
Figure 5.8), while the proposed discretization has no bias and leads to
the highest overall peak signal to noise ratio (PSNR).

Figure 5.8: We show a 1D-slice through the resulting image in Figure 5.7 (with
ℓ = 4 × 4 × 4). �e discretization [SCC12] (le�) shows a strong bias
towards the labels, while the proposed discretization (right) yields a
sublabel-accurate solution.

5.6.2 �e vectorial Mumford-Shah functional

Joint depth fusion and segmentation. We consider the problem of joint image
segmentation and robust depth fusion from [PZB07] using the vectorial Mumford-
Shah functional from Section 5.5.2. �e data term for the depth channel is given
by (5.37), where fm are the input depth hypotheses, αm is a depth con�dence and
νm is a truncation parameter to be robust towards outliers. For the segmentation,
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we use a quadratic di�erence dataterm in RGB space. For Figure 5.6 we computed
multiple depth hypotheses fm on a stereo pair using di�erent matching costs (sum
of absolute (gradient) di�erences, and normalized cross correlation) with varying
patch radii (0 to 2). Even for a moderate label space of 5× 5× 5× 5 we have no label
discretization artifacts.
�e piecewise linear approximation of the unaries in [SCC12] leads to an almost

piecewise constant segmentation of the image. To highlight the sublabel-accuracy
of the proposed approach we chose a small smoothness parameter which leads to
a piecewise smooth segmentation, but with a higher smoothness term or di�erent
choice of unaries a piecewise constant segmentation could also be obtained.

Piecewise-smooth approximations. In Figure 5.7 we compare the discretiza-
tions for the vectorial Mumford-Shah functional. We see that the approach [SCC12]
shows strong label bias (see also Figure 5.8 and 5.1) while the discretiziation with
piecewise linear duals leads to a sublabel-accurate result.

5.7 Conclusion
We proposed a framework to numerically solve fully-continuous convex relaxations
in a sublabel-accurate fashion. �e key idea is to implement the dual variables
using a piecewise linear approximation. We prove that di�erent choices of ap-
proximations for the dual variables give rise to various existing relaxations: in
particular piecewise constant duals lead to the traditional li�ing [Poc+09a] (with
min-pooling of the unary costs), whereas piecewise linear duals lead to the sublabel
li�ing that was recently proposed for total variation regularized problems [Möl+16].
While the latter method is not easily generalized to other regularizers due to the
separate convexi�cation of data term and regularizer, the proposed representation
generalizes to arbitrary convex and non-convex regularizers such as the scalar and
the vectorial Mumford-Shah problem. �e proposed approach provides a system-
atic technique to derive sublabel-accurate discretizations for continuous convex
relaxation approaches, thereby boosting their memory and runtime e�ciency for
challenging large-scale applications.





Chapter 6
Li�ing Vectorial Variational
Problems: A Natural Formulation
based on Geometric Measure�eory
and Discrete Exterior Calculus

6.1 Introduction
We consider functionals of C1-mappings f ∶ X → Y

E( f ) = ∫X c (x , f (x),∇ f (x))dx , (6.1)

where X ⊂ Rn, Y ⊂ RN are bounded and open. �e cost function c ≡ c(x , y, ξ)
is assumed to be a nonnegative (possibly nonconvex) continuous function onX × Y ×RN×n that is polyconvex (see Def. 2) in the Jacobian matrix ξ.
�is work is concerned with relaxation and global optimization of (6.1) when,

both, dimension and codimension are possibly larger than one (n > 1, N > 1). �is
is expected to be di�cult: In the discrete setting problems with n = 1 or N = 1
typically correspond to polynomial-time solvable shortest path (n = 1) or graph
cut (N = 1) problems [CK97; Tsi95; Ish03; SC10], whereas for n,N > 1, the arising
multilabel problems with unordered label spaces are known to be NP-hard - see
[LSH16]. Nevertheless, heuristic strategies have been shown to yield excellent
results in tasks such as optical 
ow [CK16] or shape matching [SKH08; CK15]. In
contrast to such well-establishedMarkov random �eld (MRF) works [Kol06; KR07;
Koh+08; SKH08; MHG15; CK15; CK16; DSC18] we consider the way less explored
continuous (in�nite-dimensional) setting.
Ourmotivation partly stems from the fact that formulations in function space are

very general and admit a variety of discretizations. Finite di�erence discretizations
of continuous relaxations o�en lead tomodels that are reminiscent ofMRFs [ZHP13],
while piecewise-linear approximations are related to discrete-continuousMRFs [ZK12],
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see [FA14; MC17]. More recently, for the Kantorovich relaxation in optimal trans-
port, approximations with deep neural networks were considered and achieved
promising performance, for example in generative modeling [ACB17; Seg+18].
We further argue that fractional (non-integer) solutions to a careful discretiza-

tion of the continuous model can implicitly approximate an “integer” continuous
solution. �erefore one can achieve accuracies that go substantially beyond the
mesh size. �e resulting models would be di�cult to interpret and derive from a
�nite-dimensional viewpoint such that the continuous considerations are required
for the �nal implementation. Also, formulations arising from continuous relax-
ations allow one to introduce isotropic smoothness potentials without reverting
to higher-order terms in the cost, and, as we show in this work, one can impose
general polyconvex regularizations using only local constraints. An example of
a polyconvex function (which is in general nonconvex) is the surface area of the
graph, sometimes referred to as “Beltrami regularization” in the image processing
community, see e.g., [KMS00].
In contrast to the discrete multi-labeling setting, an important question is

whether variational problems involving the energy (6.1) admit a minimizer. A
fruitful approach to address this question is to suitably relax the notion of solution,
thereby enlarging the search space of admissible candidates (“li�ing the problem
to a larger space”). �e origins of this idea can be traced back1 to the turn of
the century, see Hilbert’s twentieth problem [Hil00]. An example of that princi-
ple is the celebrated Kantorovich relaxation [Kan60] of Monge’s transportation
problem [Mon81]. �ere, the search over maps f ∶ X → Y is relaxed to one over
probability measures on the product space X × Y . Each map can be identi�ed
in that extended space with a measure concentrated on its graph. Existence of
optimal transportation plans follows directly due to good compactness properties
of the larger space. Furthermore, the nonlinearly constrained and nonconvex opti-
mization problem is transformed into one of linear programming, leading to rich
duality theories and fast numerical algorithms [PC18].
One may ask whether the relaxed solution in the extended space has certain

regularity properties, for example whether it is the graph of a (su�ciently regular)
map and thus can be considered a solution to the original (“unli�ed”) problem. In
the case of optimal transport, such regularity theory can be guaranteed under some
assumptions [Vil08; San15]. Establishing existence and regularity for problems in
which the cost additionally depends on the Jacobian (for example minimal surface
problems) has been a driving factor in the development of geometric measure
theory, see [Mor16] for an introduction. In this work, we will use ideas from
geometric measure theory to pursue the above relaxation and li�ing principle for
the energy (6.1). �e main idea is to reformulate the original variational problem
as a shape optimization problem over oriented manifolds representing the graph of
the map f ∶ X → Y in the product space X × Y . To obtain a convex formulation

1We refer the interested reader to the historical remarks in L. C. Young’s book on the calculus of
variations [You80, pp. 122–123].
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we enlarge the search space from oriented manifolds to currents.

6.1.1 Related work

A common strategy to solve problems involving (6.1) is to revert to local gradient
descent minimization based on the Euler-Lagrange equations. But for nonconvex
problems solutions might depend on the initialization and the computed stationary
points may be quite suboptimal. �erefore, we pursue the aforementioned li�ing
of the energy (6.1) to currents. �is li�ing has been previously considered in
geometric measure theory to establish the aforementioned existence and regularity
theory for vectorial variational problems in a very broad setting, see e.g., [Fed69;
Fed74; AG91]. In contrast to such impressive theoretical achievements, this paper
is concerned with a discretization and implementation.
�ere is also a variety of related applied works. �e paper [Win+11] tackles

the problem of bijective and smooth shape matching using linear programming.
Similar to the present work, the authors also look for graph surfaces in X × Y but
they consider the discrete setting and use a di�erent notion of boundary operator.
We study the continuous setting, but also our discrete formulation is quite di�erent.
For N = 1, the proposed continuous formulation specializes to [ABD03; Poc+10].

To tackle the setting ofN > 1 in amemory e�cientmanner, Strekalovskiy et al. [SCC12;
GSC13; SCC14] keep a collection of N surfaces with codimension one under the
factorization assumption that Y = Y1 ×⋯ × YN . In contrast, we consider only one
surface of codimension N , we do not require an assumption on Y , our approach is
applicable to a larger class of functionals and we expect it to yield a tighter relax-
ation. �e li�ing approaches [Lel+13a; GBO12] also tackle vectorial problems by
considering the full product space, but are limited to total variation regularization
(with the former allowing Y to be a manifold). �e recent work [WC16] is most
related to the present one, however their relaxation considers a speci�c instance
of (6.1). Moreover, the above works are based on �nite di�erence discretizations
of the continuous model. In contrast, the proposed discretization using discrete
exterior calculus yields solutions beyond the mesh accuracy as in recent sublabel-
accurate approaches. �e latter are restricted to N = 1 [Möl+16; MC17] or total
variation regularization [Lau+16]. Recent works also include extensions to total
generalized variation or Laplacian regularization [SG18; VL19; LL18].
Recent approaches in shape analysis [Sol+16; Ves+17b; Ves+17a] also operate in

the product space X ×Y . However, these are based on local minimizations of the
Gromov-Wasserstein distance [Mém07] and spectral variants thereof [Mém09]
which leads to (nonconvex) quadratic assignment problems. While the goal to
�nd a smooth (possibly bijective) map is similar, the formulations appear to be
quite di�erent. To alleviate the increased cost of the product space formulation,
computationally e�cient representations of densities in X × Y have been studied
in the context of functional maps [Ovs+12; Rod+19].
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6.2 Notation and Preliminaries
�roughout this paper we will introduce notions from geometric measure theory,
as they are not commonly used in the vision community. While the subject is rather
technical, our aim is to keep the presentation light and to focus on the geometric
intuition and aspects which are important for a practical implementation. We invite
the reader to consult chapter 4 in the book [Mor16] and the chapter on exterior
calculus in [Cra19], which both contain many illuminating illustrations. For a more
technical treatment we refer to [Fed69; KP08].
In the following, we denote a basis inRd as {e1,⋯, ed}with dual basis {dx1,⋯, dxd}

where dxi ∶ Rd → R is the linear functional that maps every x = (x1,⋯, xd) to
the i-th component xi . Given an integer k ≤ d, I(d , k) are the multi-indices
i = (i1,⋯, ik) with 1 ≤ i1 < ⋯ < ik ≤ d.
As wewill consider n-surfaces inX ×Y ⊂ Rn+N , most of the timewe set d = n+N

and k = n. To further simplify notation, we denote the basis vectors {en+1,⋯, en+N}
by {ε1,⋯, εN} and similarly refer to the dual basis as {dx1,⋯dxn , dy1,⋯, dyN}.
When it is clear from the context, we treat vectors ei ∈ Rn and εi ∈ RN in the sense
that ei ≃ (ei , 0N) ∈ Rn+N , εi ≃ (0n , εi) ∈ Rn+N . As an example, for ∇ f (x) ∈ RN×n
we can de�ne the expression ei +∇ f (x)ei and read it as (ei ,∇ f (x)ei) ∈ Rn+N .

6.2.1 Convex analysis
�e extended reals are denoted by R = R ∪ {+∞}. For a �nite-dimensional real
vector space V and Ψ ∶ V → R we denote the convex conjugate as Ψ∗ ∶ V∗ → R
and the biconjugate as Ψ∗∗ ∶ V → R. Ψ∗∗ is the largest lower-semicontinuous
convex function below Ψ. In our notation, for functions with several arguments,
the conjugate is always taken only in the last argument. As a general reference to
convex analysis, we refer the reader to the books [HL12; Roc96].

6.2.2 Multilinear algebra
�e formalism of multi-vectors we introduce in this section is central to this work,
as the idea of the relaxation is to represent the oriented graph of f by a k-vector�eld
(more precisely: a k-current) in the product spaceX ×Y . Basically, one canmultiply
vi ∈ Rd to obtain an object

v = v1 ∧⋯ ∧ vk , (6.2)

called a simple k-vector in Rd . �e geometric intuition of simple k-vectors is,
that they describe the k-dimensional space spanned by the {vi}, together with
an orientation and the area of the parallelotope given by the {vi}. �us, simple
k-vectors can be thought of oriented parallelotopes as shown in orange in Fig. 6.1.
In general, k-vectors are de�ned to be formal sums

v = ∑
i∈I(d ,k) v

i ⋅ ei1 ∧⋯ ∧ eik = ∑
i∈I(d ,k) v

i ⋅ ei, (6.3)
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for coe�cients vi ∈ R. �ey form the vector space ΛkRd , which has dimension (dk).
�e dual space ΛkRd of k-covectors is de�ned analogously, with ⟨dxi, ej⟩ = δij.

We de�ne for two k-vectors (and also for k-covectors) v = ∑i viei, w = ∑iwiei an
inner product ⟨v ,w⟩ = ∑i viwi and norm ∣v∣ = √⟨v , v⟩.
k-vectors (elements of ΛkRd) are called simple, if they can be written as the

wedge product of 1-vectors as in (6.2). Unfortunately, for 1 < k < d − 1, not all
k-vectors are simple and the set of simple k-vectors is a nonconvex cone in ΛkRd ,
called the Grassmann cone [BES63]. �is is one aspect why the setting of n > 1 and
N > 1 is more challenging.
Later on, we will consider a relaxation from the nonconvex set of simple k-

vectors to general k-vectors. Naturally, for the relaxation to be good, we want the
convex energy to be as large as possible on non-simple k-vectors. For the Euclidean
norm, a good convex extension is themass norm

∥v∥ = inf {∑
i
∣ξi ∣ ∶ ξi are simple, v = ∑

i
ξi} . (6.4)

�e dual norm is the comass norm given by:

∥w∥∗ = sup{⟨w , v⟩ ∶ v is simple , ∣v∣ ≤ 1} . (6.5)

�emass normcan be understood as the largest norm that agreeswith the Euclidean
norm on simple k-vectors.

6.3 Li�ing to Graphs in the Product Space
With the necessary preliminaries in mind, our goal is now to reparametrize the
original energy (6.1) to the graph G f ⊂ X × Y . As shown in Fig. 6.1, the graph is an
oriented n-dimensional manifold in the product space with global parametrization
u(x) = (x , f (x)).
De�nition 1 (Orientation). IfM⊂ Rd is a k-dimensional smooth manifold in Rd

(possibly with boundary), an orientation ofM is a continuous map τM ∶ M →
ΛkRd such that τM(z) is a simple k-vector with unit norm that spans the tangent
space TzM at every point z ∈ M.
From di�erential geometry we know that the tangent space TzG f at z = (x , f (x))

is spanned by ∂iu(u−1(z)) = ei +∇ f (x)ei . �erefore, an orientation of G f is given
by

τG f (z) = M(∇ f (π1z))∣M(∇ f (π1z))∣ , (6.6)

where the mapM ∶ RN×n → ΛnRn+N is given by
M(ξ) = (e1 + ξe1) ∧⋯ ∧ (en + ξen), (6.7)
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X ⊂ R2

G f ⊂ X × Y
e1 e2
e1 ∧ e2 ∈ Λ2R3

TzG fz
e2 + ξe2(e1 + ξe1) ∧ (e2 + ξe2) ∈ Λ2R3

e1 + ξe1
Y ⊂ R

Figure 6.1: Illustration for the setting of n = 2, N = 1. �e graph G f of the C1-map
f ∶ X → Y is a smooth oriented manifold embedded in the product
spaceX ×Y . �e tangent space at z = (x , f (x)) is spanned by the simple
n-vector (e1+ ξe1)∧⋯∧(en+ ξen) ∈ ΛnRn+N , where ξ = ∇ f (x) ∈ RN×n
is the Jacobian.

and π1 ∶ X ×Y → X is the canonical projection onto the �rst argument. In order to
derive the reparametrization, we have to connect a simple n-vector (representing
an oriented tangent plane of the graph) with the Jacobian of the original energy.
For that, we need an inverse of the map given in (6.7).
To derive such an inverse, we �rst introduce further helpful notations. For

i ∈ I(m, l) we denote by ī ∈ I(m,m − l) the element which complements i in{1, 2,⋯,m} in increasing order, denote 0̄ = {1,⋯,m} and 0 as the empty multi-
index. Every v ∈ ΛnRn+N can be written as

v = ∑∣i∣+∣j∣=n v
i,jei ∧ εj, (6.8)

where i ∈ I(n, l), j ∈ I(N , l ′), l+ l ′ = n. To give an example, the (52) = 10 coe�cients
of a 2-vector v ∈ Λ2R5 according to the notation (6.8) are:

v0̄,0
v1,1 v2,1
v1,2 v2,2 v0,(1,2)
v1,3 v2,3 v0,(1,3) v0,(2,3),

(6.9)

where we highlighted the N × n coe�cients with ∣j∣ = 1. Now note that the vector
v = M(ξ) is by construction a simple n-vector with �rst component v0̄,0 = 1. To
any v ∈ ΛnRn+N with v0̄,0 = 1 we associate ξ(v) ∈ RN×n given by

[ξ(v)] j,i = (−1)n−iv ī , j. (6.10)
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If and only if v ∈ ΛnRn+N is simple with �rst component v0̄,0 = 1 then v = M(ξ(v)).
A proof is given in [GMS98, Vol. I, Ch. 2.1, Prop. 1]. �us, on the set of simple
n-vectors with �rst component v0̄,0 = 1,

Σ1 = {v ∈ ΛnRn+N ∶ v = M(ξ) for ξ ∈ RN×n}, (6.11)

the inverse of the map (6.7) is given by (6.10).
Using the above notations, we can de�ne a generalized notion of convexity,

which essentially states that there is a convex reformulation on k-vectors.

De�nition 2 (Polyconvexity). A map c ∶ RN×n → R is polyconvex if there is a
convex function c̄ ∶ ΛnRn+N → R such that we have

c(ξ) = c̄(M(ξ)) for all ξ ∈ RN×n . (6.12)

Equivalently one has that c(ξ(v)) = c̄(v) for all v ∈ Σ1. We also refer to the convex
function c̄ as a polyconvex extension.

In general, the polyconvex extension is not unique. Any convex function has an
obvious polyconvex extension by (6.10), but as discussed in the previous section
we would like the convex extension to be as large as possible for v ∉ Σ1. �e largest
polyconvex extension which agrees with the original function on Σ1 can be formally
de�ned using the convex biconjugate, but is o�en hard to explicitly compute. �e
mass norm (6.4) corresponds to such a construction.
Nevertheless, given any polyconvex extension, we can now reparametrize the

original energy (6.1) on the oriented graph G f , as we show in the following central
proposition.

Proposition 16. Let c̄ ∶ X × Y × ΛnRn+N → R be a polyconvex extension of the
original cost c in the last argument. De�ne the function Ψ ∶ X × Y × ΛnRn+N → R,

Ψ(z, v) = ⎧⎪⎪⎨⎪⎪⎩
v0̄,0 c̄(π1z, π2z, v/v0̄,0), if v0̄,0 > 0,+∞, otherwise,

(6.13)

where π1 ∶ X × Y → X and π2 ∶ X × Y → Y are the canonical projections onto the
�rst and second argument. �en we can reparametrize (6.1) as follows:

∫X c(x , f (x),∇ f (x))dLn(x)= ∫G f Ψ(z, τG f (z))dHn(z), (6.14)

where the second integral is the standard Lebesgue integral with respect to the n-
dimensional Hausdor� measure on Rn+N restricted to the graph G f .
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Proof. We directly calculate:

∫X c (x , f (x),∇ f (x))dLn(x) (6.15)

=∫X Ψ (x , f (x),M(∇ f (x)))dLn(x) (6.16)

=∫G f Ψ (z,M(∇ f (π1z))) 1∣M(∇ f (π1z))∣dHn(z) (6.17)

=∫G f Ψ (z, τG f (z))dHn(z). (6.18)

�e step from (6.15) to (6.16) uses that c̄ is a polyconvex extension (so that we can
apply (6.12)) and the fact that for v = M(∇ f (x)) we have v0̄,0 = 1. To arrive at
(6.17), an application of the area formula [KP08, Corollary 5.1.13] su�ces and for
(6.18) we used positive one-homogenity of Ψ and the de�nition of τG f in (6.6).
Interestingly, the function (6.13) is convex and one-homogeneous in the last

argument, as it is the perspective of a convex function. However, the search space
of oriented graphs of C1 mappings is nonconvex. �erefore we relax from oriented
graphs to the larger set of currents, which we will introduce in the following section.
Since currents form a vector space, we therefore obtain a convex functional over a
convex domain.

6.4 From Oriented Graphs to Currents
�roughout this section, let U ⊂ Rd be an open set, which will later be a neigh-
bourhood of X × Y ⊂ Rn+N , where X = cl(X), Y = cl(Y) are the closures of X ,Y .
�e main idea of our relaxation and the geometric intuitions of pushforward and
boundary operator we introduce in this section are summarized in the following
Fig. 6.2. Currents are de�ned in duality with di�erential forms, which we will
brie
y introduce in the following section.

6.4.1 Di�erential forms
A di�erential form of order k (short: k-form) is a map ω ∶ U → ΛkRd . �e
support of a di�erential form sptω is de�ned as the closure of {z ∈ U ∶ ω(z) ≠ 0}.
Integration of a k-form over an oriented k-dimensional manifold is de�ned by

∫M ω ∶= ∫M⟨ω(z), τM(z)⟩dHk(z). (6.19)

A notion of derivative for k-forms is the exterior derivative dω, which is a (k + 1)-
form given by:

⟨dω(z), v1 ∧⋯ ∧ vk+1⟩ = lim
h→0

1
hk+1 ∫∂P ω, (6.20)
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π2 ♯T = JYK

π1 ♯T = JXK

T = JG f K

(a) Graph of a di�eomorphism f

∂T

(b) Graph of a function with jumps

spt ∂T ⊂ (∂X) × Y

(c) ”Stiched” graph (zero boundary) (d) Current which is not a graph

Figure 6.2: �e idea of our relaxation is to move from oriented graphs in the prod-
uct space to the larger set of currents. �ese include oriented graphs
as special cases, as shown in Fig. 6.2a. For a di�eomorphism, the push-
forwards π1 ♯T , π2 ♯T yield currents induced by domain and codomain,
which will be a linear constraint in the relaxed problem. In Fig. 6.2b we
show the current given by the graph of a discontinuous function. Since
it has holes, the boundary operator ∂T has support inside the domain.
We will constrain the support of the boundary to exclude such cases.
Fig. 6.2c Stitching jumps yields a current with vertical parts at the jump
points, which corresponds to the limiting case in the perspective func-
tion (6.13). To obtain an overall convex formulation, we will also allow
currents Fig. 6.2d which don’t necessarily concentrate on the graph of a
function.

where ∂P is the boundary of the parallelotope spanned by the {hvi} at point z.
To get an intuition, note that for k = 0 this reduces to the familiar directional

derivative ⟨dω(x), v1⟩ = limh→0 1
h (ω(x + hv1) − ω(x)). With (6.19) and (6.20) in

mind, one sees why Stokes’ theorem

∫M dω = ∫
∂M ω. (6.21)

should hold intuitively. Given a map π ∶ Rd → Rq, the pullback π♯ω of the k-form
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ω is determined by

⟨π♯ω, v1 ∧ .. ∧ vk⟩ = ⟨ω ○ π,Dv1π ∧ .. ∧ Dvkπ⟩, (6.22)

where Dv iπ = ∇π ⋅ vi and ∇π ∈ Rq×d is the Jacobian.

6.4.2 Currents
Denote the space of smooth k-forms with compact support on U as Dk(U). Cur-
rents are elements of the dual spaceDk(U) = Dk(U)′, i.e., linear functionals acting
on di�erential forms. As shown in Fig. 6.2a, an oriented k-dimensional manifoldM⊂ U induces a current by

JMK(ω) = ∫M ω. (6.23)

However, since Dk(U) is a vector space, not all elements look like k-dimensional
manifolds, see Fig. 6.2d. �e boundary of the k-current T ∈ Dk(U) is the (k − 1)-
current ∂T ∈ Dk−1(U) de�ned via the exterior derivative:

∂T(ω) = T(dω), for all ω ∈ Dk−1(U). (6.24)

Stokes’ theorem (6.21) ensures that for currents which are given by k-dimensional
oriented manifolds, the boundary of the current agrees with the usual notion, see
Fig. 6.2b.
�e support of a current, denoted by sptT , is the complement of the biggest

open set V such that

T(ω) = 0 whenever spt(ω) ⊂ V . (6.25)

Given a map π ∶ Rd → Rq the pushforward π♯T of the k-current T ∈ Dk(U) is
given by

π♯T(ω) = T(π♯ω), for all ω ∈ Dk(Rq). (6.26)

Intuitively, it transforms the current using the map π, as illustrated in Fig. 6.2a. �e
mass of a current T ∈ Dk(U) is

M(T) = sup{T(ω) ∶ ω ∈ Dk(U), ∥ω(z)∥∗ ≤ 1} , (6.27)

and as expected M(JMK) = Hk(M). We denote the space of k-currents with
�nite mass and compact support byMk(U). �ese are representable by integration,
meaning there is a measure ∥T∥ onU and amap T⃗ ∶ U → ΛkRd such that ∥T⃗(z)∥ =
1 for ∥T∥-almost all z such that

T(ω) = ∫ ⟨ω(z), T⃗(z)⟩d∥T∥(z). (6.28)

�e decomposition (6.28) is crucial, and we will use it to de�ne the relaxation in
the next section.
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6.4.3 �e relaxed energy
We li� the original energy (6.1) to the space of �nite mass currents T ∈ Mn(U)
with sptT ⊂ X × Y as follows:

E(T) = ∫ Ψ∗∗ (π1z, π2z, T⃗(z)) d∥T∥(z). (6.29)

Since for T = JG f K we have T⃗ = τG f , ∥T∥ = Hn ¬ G f the desirable property
E(JG f K) = E( f ) holds due to Prop. 16.
Note that in (6.29) we use the lower-semicontinuous regularization Ψ∗∗ which

extends (6.13) at v0̄,0 = 0with the correct value. Interestingly, this point corresponds
to the situation when the graph has vertical parts, which cannot occur for C1

functions but can happen for general currents, see Fig. 6.2c. In [Mor02] it was
shown that one can penalize such jumps in a way depending on the jump distance
and direction. We will not consider such additional regularization due to space
limitations, but remark that they could be integrated by adding further constraints
to the following dual representation, which is a consequence of [GMS98, Vol. II,
Sec. 1.3.1, �m. 2].

Proposition 17. For T ∈Mn(U)with sptT ⊂ X×Y, we have the dual representation
E(T) = sup

ω∈K T(ω), (6.30)

where the constraint is the closed and convex set

K = {ω ∈ C0
c (U , ΛnRn+N) ∶ Ψ∗(π1z, π2z,ω(z)) ≤ 0,∀z ∈ X × Y}. (6.31)

�e �nal relaxed optimization problem for (6.1) reads

inf
T∈Mn(U) E(T), s.t. sptT ⊂ X × Y , T ∈ C . (6.32)

Depending on the kind of problem onewishes to solve, a di�erent convex constraint
set C should be considered. For example, in the case of variational problems with
Dirichlet boundary conditions, we set

C = {T ∶ π1 ♯T = JXK, ∂T = S}, (6.33)

where S ∈ Mn−1(U) is a given boundary datum. In case of Neumann boundary
conditions, one constrains the support of the boundary to be zero inside the domain

C = {T ∶ π1 ♯T = JXK, spt ∂T ⊂ (∂X) × Y}, (6.34)

to exclude surfaces with holes, but allow the boundary to be freely chosen on(∂X) × Y . In case n = N , one can also consider the constraint set
C = {T ∶ π1 ♯T = JXK, π2 ♯T = JYK, spt ∂T ⊂ ∂(X × Y)}, (6.35)
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where the additional pushforward constraint encourages bijectivity. Notice also the
similarity of (6.32) together with (6.35) to the Kantorovich relaxation in optimal
transport.
Existence of minimizing currents to a similar problem as (6.32) in a certain

space of currents (real 
at chains) is shown in [Fed74, §3.9]. For dimension n = 1
or codimension N = 1, the in�mum is actually realized by a surface (integral 
at
chain) [Fed74, §5.10, §5.12]. An adaptation of such theoretical considerations to
our setting and conditions under which the relaxation is tight in the scenario n > 1,
N > 1 is a major open challenge and le� for future work.
6.5 Discrete Formulation
In this section we present an implementation of the continuous model (6.32) us-
ing discrete exterior calculus [Hir03]. We will base our discretization on cubes
since they are easy to work with in high dimensions, but one could also use sim-
plices. To de�ne cubical meshes, we adopt some notations from computational
homology [KMM06].

De�nition 3 (Elementary interval and cube). An elementary interval is an interval
I ⊂ R of the form I = [l , l + 1] or I = {l} for l ∈ Z. Intervals that consist of a single
point are degenerate. An elementary cube is given by a product κ = I1 × ⋯ × Id ,
where each Ii is an elementary interval. �e set of elementary cubes in Rd is denoted
by Kd .

For κ ∈ Kd , denote by dim κ ∈ {1,⋯, d} the number of nondegenerate intervals.
We denote i(κ) ∈ I(d , dim κ) as the multi-index referencing the nondegenerate
intervals.

De�nition 4 (Cubical set). A set Q ⊂ Rd is a cubical set if it can be written as a
�nite union of elementary cubes.

Let Kd
k (Q) = {κ ∈ Kd ∶ κ ⊂ Q , dim κ = k} be the set of k-dimensional cubes

contained in Q ⊂ Rd . A map ϕ ∶ Q → X × Y will transform the cubical set to
our domain. As we work with images, it will just be a mesh spacing, i.e., we set
ϕ(z) = (h1z1,⋯, hdzd).
De�nition 5 (k-chains, k-cochains). We denote the space of �nite formal sums of
elements in Kd

k (Q) with real coe�cients as Ck(Q), called (real) k-chains. We denote
the dual as Ck(Q)∗ = Ck(Q) and call the elements k-cochains.
De�nition 6 (Boundary). For κ ∈ Kd

k (Q), denote the primary faces obtained by
collapsing the j-th non-degenerate interval to the lower respectively upper boundary as
κ−j , κ+j ∈ Kd

k−1. �e boundary of an elementary cube κ ∈ Kd
k (Q) is the (k − 1)-chain,

∂κ = k∑
j=1(−1) j−1(κ+j − κ−j ) ∈ Ck−1(Q). (6.36)
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�e boundary operator is given by the extension to a linear map ∂ ∶ Ck(Q) →Ck−1(Q).
A k-chain T = ∑κ Tκκ ∈ Ck(Q) can be identi�ed with a k-current T ′ ∈ Dk(U)

by T ′ = ∑κ Tκϕ♯JκK. �e above discrete notion of boundary is de�ned in analogy
to the continuous de�nition (6.24).
In our discretization, we will use the dual representation of the li�ed energy

from Prop. 17. To implement di�erential forms, we introduce an interpolation
operator.

De�nition 7 (Whitney map). �eWhitney map extends a k-cochain ω to a k-form(Wω) ∶ X × Y → ΛkRd ,

(Wω)(x) = ∑
κ∈Kd

k (Q)
ωκŴ(ϕ−1(x), κ), (6.37)

where ωκ ∈ R are the coe�cients of the k-cochain,
Ŵ(x , κ) = dxi(κ) ∏

i∈i(κ)
max{0, 1 − ∣xi − Ii(κ)∣}, (6.38)

and Ii(κ) ∈ Z is the element in the degenerate interval.
Interestingly, the Whitney map (for simplicial meshes) �rst appeared in [Whi57,

Eq. 27.12] but specializes to lowest-order Raviart-�omas [RT77] (k = 2,d = 3) and
Nédélec [Néd80] elements (for k = 1, d = 3), see [AA14; AFW06]. Di�erential
forms of type (6.37) are called Whitney forms.
We also de�ne a weighted inner product ⟨⋅, ⋅⟩ϕ between chains and cochains

by plugging the Whitney form associated to the k-cochain into the current corre-
sponding to the k-chain. As both are constant on each k-cube, a quick calculation
shows: ⟨T ,ω⟩ϕ = ∑κ TκωκHk(ϕ(κ)), whereHk(ϕ(κ)) is simply the volume of the
k-cube under the mesh spacing ϕ.
Using the dual representation (6.30), and approximating the current by a k-

chain and the di�erential forms with k-cochains we arrive at the following �nite-
dimensional convex-concave saddle-point problem on Q ⊂ Rn+N :

min
T∈Cn(Q) max

ω∈Cn(Q)
φ∈Cn−1(Q)

⟨T ,ω⟩ϕ + ⟨∂T − S , φ⟩ϕ ,
subject to π1 ♯T = 1,Wω ∈ K,
potentially π2 ♯T = 1 in case n = N .

(6.39)

S ∈ Cn−1(Q) is a given boundary datum, for free boundary conditions we replace
the inner product ⟨S , φ⟩ with an indicator function S ∶ Cn−1 → R forcing φ to be
zero on the boundary. �e pushforwards π1 ♯, π2 ♯ are linear constraints on the
coe�cients of the k-chain T .
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X

Figure 6.3: Minimization of the Brachistochrone energy on a 25 × 14 cubical set
(gray squares). �e proposed discretization yields a di�use current
(black vector �eld), whose center of mass (black, dashed) however is
faithful to the analytical cycloid solution (orange) far beyond the mesh
accuracy.

6.6 Numerical Implementation
In practice we solve (6.39) with the �rst order primal-dual algorithm [CP11a].
For the local constraints Wω ∈ K usually no closed form projection exists. In
some situations (N = 1) they can be implemented exactly, see [Möl+16; MC17].
In the general setting, we resort to implementing them at sampled points. To
enforce the constraintWω ∈ K at samples Z = {z1, z2,⋯} ⊂ X × Y we add another
primal variable λ ∶ Z → ΛnRn+N and the additional term ∑z∈Z Ψ∗∗(z, λ(z)) −⟨λ(z), (Wω)(z)⟩ to the saddle-point formulation (6.39).
Finally, one requires the proximal operator of the perspective function Ψ∗∗.

�ese can be implemented using epigraphical projections as in [Poc+10]. For an
overview over proximal operators of perspective functions we refer to [CM18].

6.6.1 Properties of the discretization
As a �rst example we solve the Brachistochrone [Ber96], arguably the �rst varia-
tional approach. �e cost is given by c(x , y, ξ) = √

1+ξ2
2g y where g > 0 is the gravita-

tional constant. Dirichlet boundary conditions are enforced using the boundary
operator. In Fig. 6.3 we show the resulting current, which concentrates on the
graph of the closed-form solution to the problem, which is a cycloid. �e unli�ed
result is obtained by taking the center of mass of the �rst component T 0̄,0 of the
current by summing over the horizontal edges in the 1-chain. �e obtained result



107 Li�ing Vectorial Variational Problems: A Natural Formulation based on
Geometric Measure �eory and Discrete Exterior Calculus

Input Finite di�erences Discrete exterior calculus

Finite di�erences Discrete exterior calculus

Figure 6.4: Total variation minimization. Top:�e proposed DEC discretization
yields solutions with better isotropy and sharper discontinuities. Bot-
tom: In that stereo matching example, we enforce the continuous con-
straintsWω ∈ K between the discretization points (here 8 labels), which
leads to more precise (sublabel-accurate) solutions compared to the
naive �nite-di�erence approach.

nearly coincides with the exact cycloid. Instead, solutions fromMRF approaches
would invariably be con�ned to the vertices or edges of the rather coarse grid.
In Fig. 6.4 we solve total variation regularized problems which corresponds to

setting c(x , y, ξ) = ρ(x , y) + ∣ξ∣ for some data ρ. �e data is either a quadratic or a
stereo matching cost in that example. �e proposed approach based on discrete
exterior calculus has better isotropy and leads to sharper discontinuities than the
common forward di�erence approach used in literature. Furthermore, by enforcing
the constraintsWω ∈ K also between the discretization points one can achieve
“sublabel-accurate” results as demonstrated in the stereo matching example.

6.6.2 Global registration
As an example of n > 1,N > 1 with polyconvex regularization, we tackle the problem
of orientation preserving di�eomorphic registration between two shapes X ,Y ⊂ R2

with boundary. We use the cost c(x , y, ξ) = (ρ(x , y) + ε)√det (I + ξ⊺ξ), which
penalizes the surface area in the product space and favors local isometry. �e
parameter ε > 0models the trade-o� between data and smoothness. In the example
considered in Fig. 6.5 the data is given by ρ(x , y) = ∥I1(x) − I2(y)∥, where I1, I2
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X Y id− f , Proposed id− f −1, Proposed

le�-to-right slice of ∥T∥ right-to-le� slice of ∥T∥
Figure 6.5: Global registration of X andY . Top: Ourmethod yields dense pointwise

correspondences that are smooth in both directions and correspond to
the correct transformation. Bottom: 2-D slices through the 4-D density∥T∥ at the single black pixel. We empirically verify (also at the other
points) that the current concentrated near a surface, therefore the re-
covered solution is near the global minimum of the original nonconvex
problem.

are the shown color images. A polyconvex extension of the above cost, which is
large for non-simple vectors is given by the (weighted) mass norm (6.4). �e 4-D
cubical set Q is the product space between the two shapes X and Y , which are
given as quads (pixels). We impose the constraintsWω ∈ K at the 16 vertices of
each four dimensional hypercube. �e proximal operator of the mass norm is
computed as in [WC16]. Note that the required 4 × 4 real Schur decomposition
can be reduced to a 2 × 2 SVD using a few Givens rotations, see [WG76]. We
further impose T 0̄,0 ≥ 0 and T 0,0̄ ≥ 0, and boundary conditions ensure that ∂X
is matched to ∂Y . Bijectivity of the matching is encouraged by the pushforward
constraints π1 ♯T = 1, π2 ♯T = 1. A�er solving (6.39) we obtain the �nal pointwise
correspondences f ∶ X → Y from the 2-chain T ∈ C2(Q) by taking its center of
mass.

In Fig. 6.5 we visualize f (x) = ∑y y ∣(WT)(x , y)∣, f −1(y) = ∑x x ∣(WT)(x , y)∣.
As one can see, the maps f and f −1 are smooth and inverse to each other. Despite
n > 1, N > 1, the current apparently concentrated near a surface (see bottom of
Fig. 6.5) and the computed solutions are therefore near the global optimum of the
original nonconvex problem.
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6.7 Discussion and Limitations
In this work, we introduced a novel approach to vectorial variational problems
based on geometric measure theory, along with a natural discretization using con-
cepts from discrete exterior calculus. �ough observed in practice, we do not have
theoretical guarantees that the minimizing current will concentrate on a surface. In
case of multiple global solutions, one might get a convex combination of minimiz-
ers. Some mechanism to select an extreme point of the convex solution set would
therefore be desirable. �e main drawback over MRFs, for which very e�cient
solvers exist [Kap+13], is that we had to resort to the generic algorithm [CP11a] withO(1/ε) convergence. Yet, solutions with high numerical accuracy are typically not
required in practice and the algorithm parallelizes well on GPUs. To conclude, we
believe that the present work is a step towards making continuous approaches an
attractive alternative to MRFs, especially in scenarios where faithfulness to certain
geometric properties of the underlying continuous model is desirable.





Chapter 7
Flat Metric Minimization with
Applications in Generative Modeling

from le� to right we vary the latent code z1 (time)

Figure 7.1: Discovering the arrow of time by training a generative model with the
proposed formalism on the tinyvideos dataset [VPT16]. �e approach
we introduce allows one to learn latent representations which behave
equivariantly to speci�ed tangent vectors (here: di�erence of two suc-
cessive video frames).
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7.1 Introduction
�is work is concerned with the problem of representation learning, which has
important consequences for many tasks in arti�cial intelligence, cf. the work
of [BCV13]. More speci�cally, our aim is to learn representations which behave
equivariantly with respect to selected transformations of the data. Such variations
are o�en known beforehand and could for example describe changes in stroke
width or rotation of a digit, changes in viewpoint or lighting in a three-dimensional
scene but also the arrow of time [Pic+14; Wei+18] in time-series, describing how a
video changes from one frame to the next, see Fig. 7.1.
We tackle this problem by introducing a novel formalism based on geometric

measure theory [Fed69], which we �nd to be interesting in itself. To motivate our
application in generative modeling, recall the manifold hypothesis which states that
the distribution of real-world data tends to concentrate nearby a low-dimensional
manifold, see [FMN16] and the references therein. Under that hypothesis, a pos-
sible unifying view on prominent methods in unsupervised and representation
learning such as generative adversarial networks (GANs) [Goo+14] and variational
auto-encoders (VAEs) [KW14; RMW14] is the following: both approaches aim
to approximate the true distribution concentrating near the manifold with a dis-
tribution on some low-dimensional latent space Z ⊂ Rl that is pushed through a
decoder or generator g ∶ Z → X mapping to the (high-dimensional) data spaceX ⊂ Rd [GPC17; Bot+17].
We argue that treating data as a distribution potentially ignores useful available

geometric information such as orientation and tangent vectors to the data manifold.
Such tangent vectors describe the aforementioned local variations or pertubations.
�erefore we postulate that data should not be viewed as a distribution but rather
as a k-current.
We postpone the de�nition of k-currents [Rha55] to Sec. 7.3, and informally

think of them as distributions over k-dimensional oriented planes. For the limiting
case k = 0, currents simply reduce to distributions in the sense of [Sch51] and
positive 0-currents with unit mass are probability measures. A seminal work in the
theory of currents was written by [FF60], which established compactness theorems
for subsets of currents (normal and integral currents). In this paper, we will work
in the space of normal k-currents with compact support in X ⊂ Rd , denoted by
N k,X (Rd).
Similarly as probabilistic models build upon f -divergences [CS+04], integral

probability metrics [Sri+12] or more general optimal transportation related diver-
gences [PC18; Fey+18], we require a sensible notion to measure “distance” between
k-currents.
In this work, we will focus on the 
at norm1 due to [Whi57]. To be precise, we

consider a scaled variant introduced and studied by [MV07; Vix+10]. �is choice
1�e terminology “
at” carries no geometrical signi�cance and refers to Whitney’s use of musical
notation 
at ∣ ⋅ ∣♭ and sharp ∣ ⋅ ∣♯.
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Fλ(g♯S , T)
g ∶ Z → X

Z

S ∈ N 1,Z(Rl)

X
g♯S ∈ N 1,X (Rd)

X
T ∈ N 1,X (Rd)

Figure 7.2: Illustration of the proposed idea.We suggest the novel perspective to
view observed data (here the MNIST dataset) as a k-current T , shown
as the dots with attached arrows on the le�. �e arrows indicate the
oriented tangent space, and we selected k = 1 to be rotational deforma-
tion. We propose to minimize the 
at distance of T to the pushforward
g♯S (shown in the middle) of a current S on a low-dimensional latent
space Z (right) with respect to a “generator” map g ∶ Z → X . For
0-currents (no selected tangent vectors) and su�ciently large λ, the
proposed “FlatGAN” formulation specializes to the Wasserstein GAN
[ACB17].

is motivated in Sec. 7.4, where we show that the 
at norm enjoys certain attractive
properties similar to the celebrated Wasserstein distances. For example, it metrizes
the weak∗-convergence for normal currents.
A potential alternative to the 
at norm are kernel metrics on spaces of currents

[VG05; Gla+08]. �ese have been proposed for di�eomorphic registration, but
kernel distances on distributions have also been sucessfully employed for generative
modeling, see [Li+17]. Constructions similar to the Kantorovich relaxation in
optimal transport but generalized to k-currents recently appeared in the context of
convexi�cations for certain variational problems [MC19a].

7.2 RelatedWork
Our main idea is illustrated in Fig. 7.2, which was inspired from the optimal trans-
portation point of view on GANs given by [GPC17].
Tangent vectors of the data manifold, either prespeci�ed [Sim+92; Sim+98;

Fra+03] or learned with a contractive autoencoder [Rif+11], have been used to
train classi�ers that aim to be invariant to changes relative to the data manifold.
In contrast to these works, we use tangent vectors to learn interpretable repre-
sentations and a generative model that aims to be equivariant. �e principled
introduction of tangent k-vectors into probabilistic generative models is one of our
main contributions.
Various approaches to learning informative or disentangled latent representa-

tions in a completely unsupervised fashion exist [Sch92; Hig+16; Che+16; KM18].
Our approach is orthogonal to these works, as specifying tangent vectors further
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encourages informative representations to be learned. For example, our GAN
formulation could be combined with a mutual information term as in InfoGAN
[Che+16].
Our work is more closely related to semi-supervised approaches on learning

disentangled latent representations, which similarly also require some form of
knowledge of the underlying factors [HKW11; Den+17; Mat+16; Nar+17] and also
to conditional GANs [MO14; OOS17]. However, the di�erence is the connection to
geometricmeasure theory which we believe to be completely novel, and our speci�c
FlatGAN formulation that seamlessly extends the Wasserstein GAN [ACB17], cf.
Fig. 7.2.
Since the concepts we need from geometric measure theory are not commonly

used in machine learning, we brie
y review them in the following section.

7.3 Geometric Measure�eory
�e book by [Fed69] is still the formidable, de�nitive reference on the subject. As
a more accessible introduction we recommend [KP08] or [Mor16]. While our aim
is to keep the manuscript self-contained, we invite the interested reader to consult
Chapter 4 in [Mor16], which in turn refers to the corresponding chapters in the
book of [Fed69] for more details.

7.3.1 Grassmann algebra
Notation. Denote {e1,⋯, ed} a basis of Rd with dual basis {dx1,⋯, dxd} such
that dxi ∶ Rd → R is the linear functional that maps every x = (x1,⋯, xd) to the i-th
component xi . For k ≤ d, denote I(d , k) as the ordered multi-indices i = (i1,⋯, ik)
with 1 ≤ i1 < ⋯ < ik ≤ d.
One can multiply vectors in Rd to obtain a new object:

ξ = v1 ∧⋯ ∧ vk , (7.1)

called a k-vector ξ in Rd . �e wedge (or exterior) product ∧ is characterized by
multilinearity

cv1 ∧ v2 = v1 ∧ cv2 = c(v1 ∧ v2), for c ∈ R,(u1 + v1) ∧ (u2 + v2) =
u1 ∧ u2 + u1 ∧ v2 + v1 ∧ u2 + v1 ∧ v2,

(7.2)

and it is alternating
u ∧ v = −v ∧ u, u ∧ u = 0. (7.3)

In general, any k-vector can be written as

ξ = ∑
i∈I(d ,k) ai ⋅ ei1 ∧⋯ ∧ eik = ∑

i∈I(d ,k) ai ⋅ ei, (7.4)
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for coe�cients ai ∈ R. �e vector space of k-vectors is denoted by ΛkRd and
has dimension (dk). We de�ne for two k-vectors v = ∑i aiei, w = ∑i biei an inner
product ⟨v ,w⟩ = ∑i aibi and the Euclidean norm ∣v∣ = √⟨v , v⟩.
A simple (or decomposable) k-vector is any ξ ∈ ΛkRd that can be written using

products of 1-vectors. Simple k-vectors such as (7.1) are uniquely determined by
the k-dimensional space spanned by the {vi}, their orientation and the norm∣v∣ corresponding to the area of the parallelotope spanned by the {vi}. Simple
k-vectors with unit norm can therefore be thought of as oriented k-dimensional
subspaces and the rules (7.2)-(7.3) can be thought of as equivalence relations.
It turns out that the inner product of two simple k-vectors can be computed by

the k × k-determinant
⟨w1 ∧⋯ ∧wk , v1 ∧⋯ ∧ vk⟩ = det (W⊺V) , (7.5)

where the columns ofW ∈ Rd×k, V ∈ Rd×k contain the individual 1-vectors. �is
will be useful later for our practical implementation.
Not all k-vectors are simple. An illustrative example is e1 ∧ e2 + e3 ∧ e4 ∈ Λ2R4,

which describes two 2-dimensional subspaces in R4 intersecting only at zero.
�e dual space of ΛkRd is denoted as ΛkRd , and its elements are called k-

covectors. �ey are similarly represented as (7.4) but with dual basis dxi. Analo-
gously to the previous page, we can de�ne an inner product between k-vectors and
k-covectors. Next to the Euclidean norm ∣ ⋅ ∣, we de�ne two additional norms due
to [Whi57].

De�nition8 (Mass and comass). �ecomass normde�ned for k-covectorsw ∈ ΛkRn

is given by
∥w∥∗ = sup{⟨w , v⟩ ∶ v is simple , ∣v∣ = 1} , (7.6)

and the mass norm for v ∈ ΛkRn is given by

∥v∥ = sup{⟨v ,w⟩ ∶ ∥w∥∗ ≤ 1}
= inf {∑

i
∣ξi ∣ ∶ ξi are simple, v = ∑

i
ξi} . (7.7)

�emass norm is by construction the largest norm that agrees with the Euclidean
norm on simple k-vectors. For the non-simple 2-vector from before, we compute

∥e1 ∧ e2 + e3 ∧ e4∥ = 2, ∣e1 ∧ e2 + e3 ∧ e4∣ = √
2. (7.8)

Interpreting the non-simple vector as two tangent planes, we see that the mass
norm gives the correct area, while the Euclidean norm underestimates it. �e
comass ∥ ⋅ ∥∗ will be used later to de�ne the mass of currents and the 
at norm.
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7.3.2 Di�erential forms
In order to de�ne currents, we �rst need to introduce di�erential forms. A di�er-
ential k-form is a k-covector�eld ω ∶ Rd → ΛkRd . �e support sptω is de�ned as
the closure of the set {x ∈ Rd ∶ ω(x) ≠ 0}.
Di�erential forms allow one to perform coordinate-free integration over oriented

manifolds. Given some manifoldM⊂ Rd , possibly with boundary, an orientation
is a continuous map τM ∶ M → ΛkRd which assigns to each point a simple k-
vector with unit norm that spans the tangent space at that point. Integration of a
di�erential form over an oriented manifoldM is then de�ned by:

∫M ω = ∫M⟨ω(x), τM(x)⟩dHk(x), (7.9)

where the second integral is the standard Lebesgue integral with respect to the k-
dimensional Hausdor� measureHk restricted toM, i.e., (Hk ¬M)(A) = Hk(A∩M). �e k-dimensionalHausdor�measure assigns to sets inRd their k-dimensional
volume, see Chapter 2 in [Mor16] for a nice illustration. For k = d the Hausdor�
measure coincides with the Lebesgue measure.
�e exterior derivative of a di�erential k-form is the (k + 1)-form dω ∶ Rd →

Λk+1Rd de�ned by

⟨dω(x), v1 ∧⋯ ∧ vk+1⟩ = lim
h→0

1
hk+1 ∫∂P ω, (7.10)

where ∂P is the oriented boundary of the parallelotope spanned by the {hvi} at
point x. �e above de�nition is for example used in the textbook of [HH15]. To get
an intuition, note that for k = 0 this reduces to the familiar directional derivative⟨dω(x), v1⟩ = limh→0 1

h (ω(x + hv1) − ω(x)). In case ω ∶ Rd → ΛkRd is su�ciently
smooth, the limit in (7.10) is given by

⟨dω(x), v1 ∧⋯ ∧ vk+1⟩ = (7.11)
k+1∑
i=1(−1)i−1∇x⟨ω(x), v1 ∧⋯ ∧ v̂i ∧⋯ ∧ vk⟩ ⋅ vi ,

where v̂i means that the vector vi is omitted. �e formulation (7.11) will be used in
the practical implementation. Interestingly, with (7.9) and (7.10) in mind, Stokes’
theorem ∫M dω = ∫

∂M ω, (7.12)

becomes almost obvious, as (informally speaking) integrating (7.10) one obtains
(7.12) since the oppositely oriented boundaries of neighbouring parallelotopes
cancel each other out in the interior ofM.
To de�ne the pushforward of currents which is central to our formulation, we

require the pullback of di�erential forms. �e pullback g♯ω ∶ Rl → ΛkRl by a map
g ∶ Rl → Rd of the k-form ω ∶ Rd → ΛkRd is given by

⟨g♯ω, v1 ∧ .. ∧ vk⟩ = ⟨ω ○ g ,Dv1 g ∧ .. ∧ Dvk g⟩, (7.13)
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(a)∑i δx i (b)∑i δx i ∧ Ti (c)H2 ¬ [0, 1]2 ∧ e12
Figure 7.3: Example of a 0-current (a), and 2-currents (b), (c).

where Dv i g ∶= ∇g ⋅ vi and ∇g ∈ Rd×l is the Jacobian. We will also require (7.13) for
the practical implementation.

7.3.3 Currents
We have now the necessary tools to de�ne currents and the required operations
on them, which will be de�ned through duality with di�erential forms. Consider
the space of compactly supported and smooth k-forms in Rd which we denote
by Dk(Rd). When furnished with an appropriate topology (cf. §4.1 in [Fed69]
for the details) this is a locally convex topological vector space. k-currents are
continuous linear functionals on smooth, compactly supported di�erential forms,
i.e., elements from the topological dual space Dk(Rd) = Dk(Rd)′. Some examples
for currents are given in Fig. 7.3. �e 0-current in (a) could be an empirical data
distribution, and the 2-current in (b) represents the data distribution with a two
dimensional oriented tangent space at each data point. �e 2-current in (c) simply
represents the set [0, 1]2 as an oriented manifold, its action on a di�erential form is
given as in (7.9).
A natural notion of convergence for currents is given by the weak∗ topology:

Ti
∗⇀ T i� Ti(ω) → T(ω), for all ω ∈ Dk(Rd). (7.14)

�e support of a current T ∈ Dk(Rd), sptT , is the complement of the largest
open set, so that when testing T with compactly supported forms on that open set
the answer is zero. Currents with compact support are denoted by Ek(Rd). �e
boundary operator ∂ ∶ Dk(Rd) → Dk−1(Rd) is de�ned using exterior derivative

∂T(ω) = T(dω), (7.15)

and Stokes’ theorem (7.12) ensures that this coincides with the intuitive notion of
boundary for currents which are represented by integration over manifolds in the
sense of (7.9).
�e pushforward of a current is de�ned using the pullback

g♯T(ω) = T(g♯ω), (7.16)
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Figure 7.4: Illustration of distances between 0-currents on the example of two
Dirac measures δx , δ0. �e 
at metric Fλ has the following advantages:
unlike the massM it is continuous, and unlike Wasserstein-1 it easily
generalizes to k-currents (see Fig. 7.5).

where the intuition is that the pushforward transforms the current with the map g,
see the illustration in Fig. 7.2.
�e mass of a current T ∈ Dk(Rd) is given by

M(T) = sup{T(ω) ∶ ∥ω(x)∥∗ ≤ 1} . (7.17)

If the current T is an oriented manifold then the massM(T) is the volume of that
manifold. One convenient way to construct k-currents, is by combining a smooth
k-vector�eld ξ ∶ Rd → ΛkRd with a Radon measure µ:

(µ ∧ ξ)(ψ) = ∫ ⟨ξ,ψ⟩dµ, for all ψ ∈ Dk(Rd). (7.18)

A concrete example is illustrated in Fig. 7.3 (b), where given samples {x1,⋯, xN} ⊂
Rd and tangent 2-vectors {T1,⋯, TN} ⊂ Λ2Rd a 2-current is constructed.
For currents with �nite mass there is a measure ∥T∥ and a map T⃗ ∶ Rd → ΛkRd

with ∥T⃗(⋅)∥ = 1 almost everywhere so that we can represent it by integration as
follows:

T(ω) = ∫ ⟨ω(x), T⃗(x)⟩d∥T∥(x) = ∥T∥ ∧ T⃗ (ω). (7.19)

Another perspective is that �nite mass currents are simply k-vector valued Radon
measures. Currents with �nite mass and �nite boundary mass are called normal
currents [FF60]. �e space of normal currents with support in a compact set X is
denoted by N k,X (Rd).
7.4 �e Flat Metric
As indicated in Fig. 7.2, we wish to �t a current g♯S that is the pushforward of
a low-dimensional latent current S to the current T given by the data. A more
meaningful norm on currents than the massM turns out to be the 
at norm.
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B

S

T

∂B
A = S − T

−∂B

Figure 7.5: �e 
at metric Fλ(S , T) is given an optimal decomposition S − T =
A+ ∂B into a k-current A and the boundary of a (k + 1)-current B with
minimal weighted mass λM(A) +M(B). An intuition is that λM(A) is
a penalty that controls how closely ∂B should approximate S − T , while
M(B) is the (k + 1)-dimensional volume of B.

De�nition 9 (Flat norm and 
at metric). �e 
at norm with scale2 λ > 0 is de�ned
for any k-current T ∈ Dk(Rd) as

Fλ(T) = sup{T(ω) ∣ ω ∈ Dk(Rd), with
∥ω(x)∥∗ ≤ λ, ∥dω(x)∥∗ ≤ 1, for all x}. (7.20)

For λ = 1 we simply write F(⋅) ≡ F1(⋅) and Fλ(S , T) = Fλ(S − T) will be denoted as
the 
at metric.

�e 
at norm also has a primal formulation

Fλ(T) = min
B∈Ek+1(Rd) λM(T − ∂B) +M(B) (7.21)

= min
T=A+∂B λM(A) +M(B), (7.22)

where the minimum in (7.21)–(7.22) can be shown to exist, see §4.1.12 in [Fed69].
�e 
at norm is �nite if T is a normal current and it can be veri�ed that it is indeed
a norm.
To get an intuition, we compare the 
at norm to themass (7.17) and theWasserstein-

1 distance in Fig. 7.4 on the example of Dirac measures δx , δ0. �e mass x ↦
M(δx − δ0) is discontinuous and has zero gradient and is therefore unsuitable
as a distance between currents. While the Wasserstein-1 metric x ↦ W(δx , δ0)
is continuous in x, it does not easily generalize from probability measures to k-
currents. In contrast, the 
at metric x ↦ Fλ(δx , δ0) has a meaningful geometric
interpretation also for arbitrary k-currents. In Fig. 7.5 we illustrate the 
at norm
for two 1-currents. In that �gure, if S and T are of length one and are ε apart, then
Fλ(S , T) ≤ (1 + 2λ)ε which converges to zero for ε → 0.
Note that for 0-currents, the 
at norm (7.20) is strongly related to theWasserstein-

1 distance except for the additional constraint on the dual variable ∥ω(x)∥∗ ≤ λ,
2We picked a di�erent convention for λ as in [MV07], where it bounds the other constraint, to
emphasize the connection to the Wasserstein-1 distance.
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which in the example of Fig. 7.4 controls the truncation cuto�. Notice also the
similarity of (7.21) to the Beckmann formulation of the Wasserstein-1 distance
[Bec52; San15], with the di�erence being the implementation of the “divergence
constraint” with a so� penalty λM(T − ∂B). Considering the case λ = ∞ as in the
Wasserstein distance is problematic in case we have k > 0, since not every current
T ∈ Dk(Rn) is the boundary of a (k + 1)-current, see the example above in Fig. 7.5.
�e following proposition studies the e�ect of the scale parameter λ > 0 on the


at norm.

Proposition 18. For any λ > 0, the following relation holds
min{1, λ} ⋅ F(T) ≤ Fλ(T) ≤max{1, λ} ⋅ F(T), (7.23)

meaning that F and Fλ are equivalent norms.

Proof. By a result of [MV07] we have the interesting relation

Fλ(T) = λk F(dλ−1 ♯T), (7.24)

where dλ is the λ-dilation. Using the boundF( f♯T) ≤ sup{Lip( f )k , Lip( f )k+1}F(T),
§4.1.14 in [Fed69], and the fact that Lip(dλ−1) = λ−1, one inequality directly follows.
For the other side, notice that

F(T) = F(dλ ♯dλ−1 ♯T) = Fλ−1(dλ−1 ♯T)λk
≤max{1, λ−1}F(dλ−1 ♯T)λk=max{1, λ−1}Fλ(T). (7.25)

and dividing by max{1, λ−1} yields the result.
�e importance of the 
at norm is due to the fact that it metrizes the weak∗-

convergence (7.14) on compactly supported normal currentswith uniformly bounded
mass and boundary mass.

Proposition 19. Let X ⊂ Rd be a compact set and c > 0 some �xed constant. For a
sequence {Tj} ⊂ N k,X (Rd) withM(Tj) +M(∂Tj) < c we have that:

Fλ(T , Tj) → 0 if and only if Tj
∗⇀ T . (7.26)

Proof. Due to Prop. 18 it is enough to consider the case λ = 1, which is given by
Corollary 7.3 in the paper of [FF60].

7.5 Flat Metric Minimization
Motivated by the theoretical properties of the 
at metric shown in the previous
section, we consider the following optimization problem:

min
θ∈Θ Fλ(gθ ♯S , T), (7.27)
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where S ∈ N k,Z(Rl) and T ∈ N k,X (Rd). We will assume that g ∶ Z × Θ → X is
parametrized with parameters in a compact set Θ ⊂ Rn and write gθ ∶ Z → X to
abbreviate g(⋅, θ) for some θ ∈ Θ. We need the following assumption to be able to
prove the existence of minimizers for the problem (7.27).

Assumption 1. �e map g ∶ Z × Θ → X is smooth in z with uniformly bounded
derivative. Furthermore, we assume that g(z, ⋅) is locally Lipschitz continuous and
that the parameter set Θ ⊂ Rn is compact.

Under this assumption, we will show that the objective in (7.27) is Lipschitz
continuous. �is will in turn guarantee existence of minimizers, as the domain is
assumed to be compact.

Proposition 20. Let S ∈ N k,Z(Rl), T ∈ N k,X (Rd) be normal currents with compact
support. If the pushforward map g ∶ Z × Θ → X ful�lls Assumption 1, then the
function θ ↦ Fλ(gθ ♯S , T) is Lipschitz continuous and hence di�erentiable almost
everywhere.

Proof. In Appendix A.4.

7.5.1 Application to generative modeling
We now turn towards our considered application illustrated in Fig. 7.2. �ere, we
denote by k ≥ 0 the number of tangent vectors we specify at each sample point. �e
latent current S ∈ N k,Z(Rl) is constructed by combining a probability distribution
µ ∈ N0,Z(Rl), which could for example be the uniform distribution, with the unit
k-vector�eld as follows:

S = µ ∧ (e1 ∧⋯ ∧ ek). (7.28)

For an illustration, see the right side of Fig. 7.2 and Fig. 7.3. �e data current
T ∈ N k,X (Rd) is constructed from the samples {xi}Ni=1 and tangent vector�elds
Ti ∶ X → ΛkRd .

T = 1
N

N∑
i=1 δx i ∧ Ti , (7.29)

�e tangent k-vector�elds Ti(x) = Ti ,1 ∧⋯ ∧ Ti ,k are given by individual tangent
vectors to the data manifold Ti , j ∈ Rd . For an illustration, see the le� side of Fig. 7.2
or Fig. 7.3. A�er solving (7.27), the map gθ ∶ Z → X will be our generative model,
where changes in the latent space Z along the unit directions e1,⋯, ek are expected
to behave equivariantly to the speci�ed tangent directions Ti ,1,⋯, Ti ,k near g(z).
7.6 Experiments
�e speci�c hyperparameters, architectures and tangent vector setups used in
practice are detailed in Appendix B.2.
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k
=0

k
=1

T ∈ N k,X (R2) Epoch 500 Epoch 1000 Epoch 2000

Figure 7.6: We illustrate the e�ect of moving from k = 0 to k = 1 and plot the
measure ∥g♯S∥ of the pushforward of a k-current S ∈ N k,Z(R5) (shown
in orange) for di�erent epochs. �e black curve illustrates a walk along
the �rst latent dimension z1. For k = 0, which is similar to WGAN-GP
[Gul+17], the latent walk is not meaningful. �e proposed approach
(k = 1) allows to specify tangent vectors at the samples to which the
�rst latent dimension behaves equivariantly, yielding an interpretable
representation.

7.6.1 Illustrative 2D example
As a �rst proof of concept, we illustrate the e�ect of moving from k = 0 to k = 1 on
a very simple dataset consisting of �ve points on a circle. As shown in Fig. 7.6, for
k = 0 (corresponding to a WGAN-GP formulation) varying the �rst latent variable
has no clear meaning. In contrast, with the proposed FlatGAN formulation, we
can specify vectors tangent to the circle from which the data is sampled. �is yields
an interpretable latent representation that corresponds to an angular movement
along the circle. As the number of epochs is increasing, both formulations tend to
concentrate most of the probability mass on the �ve data points. However, since
gθ ∶ Z → X is continuous by construction an interpretable path remains.
7.6.2 Equivariant representation learning
In Fig. 7.7 and Fig. 7.8 we show examples for k = 2 and k = 3 onMNIST respectively
the smallNORB dataset of [LHB04]. For MNIST, we compute the tangent vectors
manually by rotation and dilation of the digits, similar as done by [Sim+92; Sim+98].
For the smallNORB example, the tangent vectors are given as di�erences between
the corresponding images. As observed in the �gures, the proposed formulation
leads to interpretable latent codes which behave equivariantly with the generated
images. We remark that the goal was not to achieve state-of-the-art image quality
but rather to demonstrate that specifying tangent vectors yields disentangled rep-
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varying z1 (rotation) varying z2 (thickness)

Figure 7.7: We show the e�ect of varying the �rst two components in 128-
dimensional latent space, corresponding to the two selected tangent
vectors which are rotation and thickness. As seen in the �gure, varying
the corresponding latent representation yields an interpretable e�ect on
the output, corresponding to the speci�ed tangent direction.

varying z1 (lighting)

varying z2 (elevation)

varying z3 (azimuth)

Figure 7.8: From le� to right we vary the latent codes in [−1, 1] a�er training on the
smallNORB dataset [LHB04].
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Figure 7.9: Varying the learned latent representation of time. �e model captures
behaviours such as people walking on the beach, see also the results
shown in Fig. 7.1.

resentations. As remarked by [Jad+15], representing a 3D scene with a sequence
of 2D convolutions is challenging and a specialized architecture based on a voxel
representation would be more appropriate for the smallNORB example.

7.6.3 Discovering the arrow of time
In our last experiment, we set k = 1 and specify the tangent vector as the di�erence
of two neighbouring frames in video data. We train on the tinyvideo beach dataset
[VPT16], which consists of more than 36 million frames. A�er training for about
half an epoch, we can already observe a learned latent representation of time, see
Fig. 7.1 and Fig. 7.9. We generate individual frames by varying the latent coordinate
z1 from −12.5 to 12.5.
Even though the model is trained on individual frames in random order, a

somewhat coherent representation of time is discoveredwhich captures phenomena
such as ocean waves or people walking on the beach.

7.7 Discussion and Conclusion
In this work, we demonstrated that k-currents can be used introduce a notion
of orientation into probabilistic models. Furthermore, in experiments we have
shown that specifying partial tangent information to the data manifold leads to
interpretable and equivariant latent representations such as the camera position
and lighting in a 3D scene or the arrow of time in time series data.
�e di�erence to purely unsupervised approaches such as InfoGAN or β-VAE

is, that we can encourage potentially very complex latent representations to be
learned. Nevertheless, an additionalmutual information term as in [Che+16] can be
directly added to the formulation so that some representations could be encouraged
through tangent vectors and the remaining ones are hoped to be discovered in
an unsupervised fashion. Generally speaking, we believe that geometric measure
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theory is a rather underexploited �eld with many possible application areas in
probabilistic machine learning. We see this work as a step towards leveraging this
potential.





Part III
Conclusion
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Chapter 8
�esis Summary
In this thesis, we revisited convex relaxation approaches for continuous varia-
tional problems. �e proposed formulations lead to more accurate results under a
coarser discretization, boosting the practicality and applicability of previous relax-
ations. �e formulations were analyzed from the perspective of a sublabel-accurate
multilabeling method, as well as from the perspective of dual �nite element dis-
cretizations. We also presented a novel relaxation for vectorial variational problems
with polyconvex regularization, based on currents and di�erential forms. Finally,
we also demonstrated that the formalisms of geometric measure theory �nd further
applications beyond the relaxation of variational problems.
In the following, we brie
y summarize the contributions made in each chapter.

Chapter 3. Starting from a discrete multilabeling perspective, we introduced a
framework that assigns meaningful costs to fractional labelings. Such fractional
labelings are understood as a sublabel-accurate solution to the original multilabel-
ing problem. �e resulting convex optimization problem is implemented using a
�rst-order primal-dual method and epigraphical projections. We presented e�-
cient projections onto the epigraph for piecewise linear and quadratic functions.
When implemented on GPUs, the sublabel-accurate formulation entails only a little
overhead over standard multilabeling approaches while requiring far fewer labels.
We demonstrated the e�ectiveness of the approach in various experiments. To sum-
marize, this chapter proposes a modi�cation to existing continuous multilabeling
methods, which signi�cantly boosts their practicality and solution accuracy.

Chapter 4. In this chapter, we demonstrated that the previous sublabel-accurate
multilabeling approaches can be generalized from scalar to vectorial label spaces.
�e partitioning of the label space into a triangular mesh lead to a convex relaxation
of the label cost on each triangle. We showed that the aforementioned epigraphical
projections can still be carried out in this vectorial setting. In the case of piecewise
linear costs, an e�cient active set method is employed. In experiments on large-
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displacement optical 
ow, the method was shown to outperform baselines for
vectorial multilabeling.

Chapter 5. In this chapter, we demonstrated that the sublabel-accurate multi-
labeling methods can be understood as a �nite-element discretization of a dual
representation of certain label-continuous relaxations. Speci�cally, the previous
sublabel-accurate methods were obtained by choosing a piecewise linear repre-
sentation of the dual variable. �is crucial insight allowed us to extend previous
sublabel-accurate multilabeling approaches to more general regularizations. More-
over, it suggests a principled way to discretize continuous variational problems
by considering a subspace discretization in the dual. �e generality and e�ec-
tiveness of this principle was demonstrated by discretizing a recent relaxation
of the vectorial Mumford-Shah functional. �is viewpoint further suggests the
use of higher-order �nite elements to obtain even more accurate formulations.
Furthermore, the proposed discretization based on continuous piecewise-linear
dual variables is connected to recent methods for discrete-continuous MRFs. In
contrast, these have been shown to correspond to a discontinuous piecewise-linear
approximation of the dual problem, which requires more variables.

Chapter 6. Given that sublabel-accurate multilabeling methods are discretiza-
tions of speci�c continuous formulations, the aim of this chapter was to extend
the applicability of continuous convex relaxations. In particular, we proposed a
novel li�ing for vectorial variational problems with general polyconvex regulariza-
tions. �e li�ing is obtained by interpreting the original variational problem as an
anisotropic minimal surface problem in higher dimension. �is insight revealed
the deep geometric structure underlying variational problems. �e main challenge
is the fact that the codimension of the minimal surface is generally larger than one.
Hence it can not be represented as the boundary or derivative of an indicator func-
tion anymore. In order to deal with surfaces in codimension larger than one, the
necessary tools from geometric measure theory, such as currents and di�erential
forms were introduced. Finally, a convex formulation was obtained by performing
a relaxation from oriented surfaces to more general sets of currents.
A dual representation over a constrained set of di�erential forms allowed for a

principled sublabel-accurate discretization using the insights from the previous
chapter. In experiments, we demonstrated that the proposed formulation recovers
existing sublabel-accurate solutions in codimension one. As an example of a
problem in codimension larger than one, we tackled the problem of global nonrigid
registration of two-dimensional shapes. �e proposed formulation was used to
�nd bijective and smooth correspondences by solving a single convex optimization
problem.
�e proposed convexi�cation of minimal surface energies in general codimen-

sion also provides an answer to the open question posed in [GSC12; ZB14]. �ere
is indeed a convex (dual) formulation for the nonconvex Beltrami minimal surface
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regularizations [KMS00]. �e convexi�cation and its dual formulation correspond
to the mass and comass norm from geometric measure theory. Due to the sublabel-
accurate formulation, it can be e�ciently implemented, especially for convex data
terms, where a discretization with the minimal number of labels is su�cient.

Chapter 7. As an outlook and to put things into a broader perspective and con-
text, in this chapter, we demonstrated that concepts from geometric measure theory
are useful in applications beyond the convexi�cation and relaxation of variational
problems. A driving factor behind the development of geometric measure the-
ory has been the study of minimal surface problems in arbitrary dimension and
codimension. �e well-known manifold hypothesis in machine learning states
that the distribution of real-world data (such as natural images) concentrates near
a manifold of much lower dimension than the ambient vector space. �erefore,
from a geometric point of view, real-world data can be understood as a somewhat
irregular and di�use surface of high codimension and dimension. It seems natural
to represent it using the generalized notions of surfaces from geometric measure
theory, which ful�ll all the required criteria. Based on these ideas, we proposed to
represent data as a k-current. �is representation seamlessly generalizes the usual
way of representing data as probability distributions, which are special 0-currents.
More importantly, it allows one to introduce a partial orientation to the data by
attaching oriented k-dimensional tangent planes to each data point. �is data
current is best interpreted as a �rst-order approximation to the actual underlying
data manifold. Using the 
at norm, we extended the recently proposedWasserstein
generative adversarial networks to work with general currents rather than just
probability distributions. �is extension enabled us to learn a generative model
whose �rst k latent variables behave equivariantly to the speci�ed tangent vectors.
We see the results presented in this chapter as a �rst step towards leveraging the
potential of geometric measure theory in machine learning and high-dimensional
data analysis.





Chapter 9
Future Research
In this chapter, we will discuss several directions for future work. Some directions
are rather straightforward extensions of the presented material, while others are
open research challenges. We will also discuss recent work that has been carried
out in parallel or is based on the results presented in this thesis.
As a remark, an overview of new perspectives in the convexi�cation of variational

problems has also been given in [BP18, Section 5].

9.1 Extending the Applicability of Li�ing Methods
�e class of energies we considered in this thesis was restricted to local integral
functionals of the form

E( f ) = ∫X c(x , f (x),∇ f (x))dx , (9.1)

with convexity or polyconvexity assumptions in the last argument. For discontinu-
ous f , more general Mumford-Shah type energies which additionally penalize the
jump-set were also considered.
While many practical problems �t into this template, it is nevertheless desirable

to extend the scope of convex relaxations methods to a larger class of energies.
As li�ing strategies for more complicated functionals come with even higher

complexity, e�cient representations are crucial. In that sense, the sublabel-accurate
formulations presented in this thesis pave the way for the next generation of func-
tional li�ing methods.

More general regularizations, higher-order derivatives. One desirable gener-
alization includes a dependency of the cost also on higher-order derivatives of the
function:

E( f ) = ∫X c(x , f (x),∇ f (x),∇2 f (x), ...)dx . (9.2)

In imaging applications, the use of higher order or mixed derivatives has shown to
yield superior results, see [BKP10].
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One possibility is to reduce the higher-order variational problem to a sequence
of simpler problems by pursuing an alternating minimization strategy. �is idea
leads to a sequential approach, where each problem is either already convex or can
be solved with the standard functional li�ing approach [RPB13]. �is strategy has
been shown to work well, but due to the iterative approach, it is not easy to verify
whether the computed solution is globally optimal. It seems natural to have a li�ing
approach, which requires only the solution of a single problem. Recent advances
in this direction include direct li�ings for Laplacian regularization [LL18; VL19],
the total generalized variation [SG18] or even more general classes of regularizers
[Vog20].
Another apparent limitation is the convexity assumption of the cost in the gradi-

ent argument. While Mumford-Shah type energies allow for certain nonconvex
penalizations, the class of energies is still somewhat restricted.
Relaxations for variational problems that depend in a general nonconvex way on

the gradient or Jacobian have been studied in the context of Young measures, see
[Ped99; CR00]. In contrast, these works usually assume convexity of the cost in the
�rst two arguments. For curvature regularization, convex relaxations have been
studied in the discrete [SKC09] and continuous setting [BPW13; BPW15; CP19].
In the case of scalar-valued problems, a di�erent direction to introduce higher-

order regularizations and a nonconvex dependence on the gradient is to apply
the vectorial li�ing procedure from Chapter 6 to the gradient �eld of the scalar
function. An additional curl-free constraint could ensure that the vector-�eld is
a gradient of some function. Possibly, the current associated with the li�ing of
the gradient �eld might be connected to the curvature tensor of the graph of the
original scalar function.

Nonlocal data terms. In many applications such as inverse problems, a certain
nonlocality is present in the functional. In deblurring or deconvolution problems,
the observed data z is assumed to be given by a convolution with a kernel k, i.e.,
z ≈ k∗ f +η. It remains an open challenge to derive relaxations, which can naturally
handle such nonlocal forward models. One possibility would be again to resort to
heuristic strategies based on alternating minimization or variable splitting, where
the nonlocal operator is split out into a convex subproblem. A di�erent recent
approach is based on majorization-minimization, in which a nonconvex majorizer
is optimized using li�ing methods [GM18].

Generalization to Manifolds. �e relaxations presented in this thesis assume
that both the domain and codomain have Euclidean structure. Generalizations to
the case in which the codomain is a manifold have been proposed; see [Lel+13a].
Recently, based on the �nite-element discretization view of Chapter 5, an extension
of [Lel+13a] to the sublabel-accurate setting has been proposed in [Vog+19] using
�nite-element methods for manifolds [DE13].
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For surfaces in codimension one, global optimality results as the ones presented
in [Poc+10] could perhaps carry over to the setting where domain and codomain
are orientable manifolds. For example, it was shown in [DHK11] that the top-
dimensional boundary operator for a triangulation of an oriented compactmanifold
is totally unimodular, guaranteeing the exactness of linear programming relaxations.
A related optimality result for area minimizing currents in homology classes was
proven in a continuous setting in [Fed74, §5.10]. It would be interesting to see
whether such results can be used to obtain global optimality guarantees, for example,
in image processing problems involving functions with values in one-dimensional
manifolds as considered in [CS13].

9.2 Rounding and Optimality Guarantees
Even in scenarios in which the convex relaxation is tight, one might still get a
superposition of integral solutions. �is superposition appears since convex com-
binations of solutions are also feasible solutions. As remarked in [Lel+13b], a
simple binary thresholding strategy to obtain an integral solution would destroy
the sublabel-accurate representation: a superposition of discrete solutions to ap-
proximate continuous integral solutions beyond the mesh accuracy is still desirable.
Properly disentangling such desirable superpositions from non-desirable ones
remains an open challenge.
For li�ings in higher dimension or codimension or with more general regu-

larizations, there are so far no known guarantees or su�cient conditions under
which the relaxation is tight. �e current tightness results in literature so far are
based on decompositions or foliations of relaxed solutions into a superposition
of integral solutions. In codimension one, such a decomposition relies on the
celebrated coarea formula [Poc+10]. In dimension one, such a decomposition can
also be guaranteed [Smi93; PS13]. �e situation in dimension and codimension
larger than one is more complicated. Decompositions of normal currents into
a foliation of integral currents in this general setting have recently been studied
[AM17; AMS19]. Imposing the required involutivity condition would amount to a
nonconvex constraint. �erefore, it remains unclear under which conditions the
relaxation proposed in Chapter 6 is tight in general dimension and codimension.
�e e�cient global optimization of vectorial variational problems with provable
a priori optimality guarantees remains a major open challenge. It is expected
to be di�cult, as related discrete optimization problems are known to be quite
challenging as well.

9.3 Discretization Aspects
We have seen in Chapter 5 that the sublabel-accurate multilabeling methods pre-
sented in this thesis can be interpreted as a speci�c discretization to a continuous
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model. �is illustrates the strength and 
exibility of the function space approach: A
single formulation can lead to a variety of implementations. Under this viewpoint,
it might be interesting to explore di�erent discretization approaches further.
Concurrently to the work presented in Chapter 5, the paper [ZH17] also con-

siders ”sublabel-accurate” discretizations of relaxations for the piecewise smooth
Mumford-Shah functional. In particular, the paper provides an in-depth study of
the resulting �nite-dimensional optimization problem with the aim to understand
fractional labelings from a discrete viewpoint.

Product-spaces. From a practical viewpoint, the product space formulation
[GSC13; SCC14] enables the e�cient optimization of vectorial problems with mod-
est memory requirements. �e idea behind these methods is an e�cient representa-
tion of the vectorial function via a collection of graph surfaces in codimension one.
�is representation is in contrast to Chapter 6, where a single surface in higher
codimension is considered. It would be interesting to investigate the precise rela-
tionship of [GSC13; SCC14] to the formalism presented in Chapter 6. In particular,
it seems possible to recover the product space formulation by restricting the dual
variable in Chapter 6 to a certain simpler form. Since a restriction of the dual
variable leads to a lower bound, this would be a formal argument supporting the
intuition that the relaxation based on the full space X × Y is tighter than the ones
considered in [GSC13; SCC14]. While straightforward to derive, a sublabel-accurate
discretization of the works [GSC13; SCC14] would be desirable for practical applica-
tions. �e results in [Bac19] might provide insights into situations under which the
factored approximation is exact: Speci�cally, the paper analyzes a formulation that
is quite similar to the data term proposed in [GSC13; SCC14] from the perspective
of continuous submodularity.

Convergence guarantees. An aspect that has not been considered in this thesis
is an analysis of the convergence rate of the discrete approximation to the exact
continuous solution. Furthermore, it would be interesting to analyze the rate at
which the discrete approximation converges, which could give some theoretical
justi�cation for the considered approach. �e dual discretization approach might
be particularly well-suited to such considerations. By taking a subspace on the dual,
one gets a lower bound to the continuous energy, and subdividing the discretization
mesh will monotonically increase this lower bound. If the existence and speci�c
regularity properties (such as Lipschitz continuity) of the optimal dual variable in
the continuous setting are known, it might be possible to derive approximation
rates. �is strategy was applied to derive convergence rates for discrete-continuous
MRFs in [FA14]. Recently, dual discretizations of continuous variational problems
with Raviart-�omas �nite elements have been analyzed [CP20; Bar20a; Her+19;
Bar20b; CC20]. In codimension one, these discretizations are quite related to
the one pursued in Chapter 5 and Chapter 6. �e work [CC20] shows that the
total variation based on such Raviart-�omas elements achieves an improved
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Figure 9.1: �e approximation space for the dual variable dictates the shape of
the “tool” with which we try to caress the function from below. �e
gray point illustrates the primal variable, which here is a Dirac measure.
Considering linear instead of constant functions reduces the duality gap,
indicated by the blue arrow. For quadratic dual variables, the gap can
be further reduced.

Figure 9.2: Comparison of an approximation with continuous (le�) and discontin-
uous (right) piecewise linear dual variables on a �xed mesh. In case of a
non-integer solution (two gray dots), the discontinuous approximation
leads to a better lower bound for the function shown here.

convergence rate over the standard ”isotropic” total variation. Such a convergence
analysis could possibly be adapted to the li�ing methods. In codimension one, the
li�ed problem is essentially an anisotropic total variation problem in one dimension
higher, so it is expected that results can carry over.

Higher-order �nite elements and other discretizations. In this thesis, we have
considered only piecewise constant and piecewise linear discretizations of the
dual variable. Furthermore, the piecewise linear dual variable was chosen to be
continuous. Clearly, there are other possible choices, which are illustrated in Fig. 9.1
and Fig. 9.2.
In these �gures, we illustrate the e�ect of dual approximations on the following

energy:
ρ(µ) = sup

φ≤ρ ∫ φ(x)dµ(x). (9.3)

�is energy is a simpli�ed setting of the li�ing approach, where we consider only
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the ”data term” ρ at a single point. Clearly it holds that ρ(δx) = ρ(x). However,
by restricting the dual variable φ we get certain lower bounds. As seen in Fig. 9.1,
an a�ne dual variable cannot reach into the nonconvex dents of the function,
which leads to a convexi�cation of the cost ρ which we have seen in Chapter 3 and
Chapter 4.
By considering higher-order dual variables (such as polynomials), the cost can be

representedmore accurately. Indeed, as seen in Fig. 9.1, a quadratic dual variable can
reach into the nonconvexities of the function. �erefore, one can more accurately
approximate the data term. It remains an open challenge whether such higher-order
discretizations can be implemented e�ciently.
Instead of increasing the degree of the dual variable, we considered a piecewise

linear approximation. �ere, one has the choice of considering continuous or
discontinuous piecewise linear dual variables. As shown in Fig. 9.2, the discon-
tinuous dual variable can lead to a strictly better relaxation in case the measure
µ (shown as the two gray dots) is not a Dirac measure. It was shown in [FA14]
that the discrete-continuous MRF [ZK12] is based on such a discontinuous dual
approximation. While being tighter, this representation requires storing two vari-
ables per interval as opposed to the continuous representation, which requires only
one variable per node. �e empirical results in Chapter 3 demonstrated that the
representation with continuous dual variables lead to comparable results as the
discontinuous one proposed in [ZK12], while requiring only half the amount of
variables. A theoretical study on the di�erences could be an interesting avenue for
future work.
A discretization of the dual variable using continuous piecewise linear functions

can also be motivated from a functional-analytic viewpoint. For the full model,
the subgraph indicator function in the primal is a function of bounded variation.
�e predual space of BV consists of the square-integrable vector �elds whose
divergence is also a square-integrable function. A conforming discretization of
this H(div, Ω)-space is given by Raviart-�omas vector �elds. �e continuous
piecewise linear approximation (corresponding to the ”2-sparse” sublabel-accurate
representation) is obtained by lowest-order Raviart-�omas �elds. �ese con-
siderations also motivated the use of Whitney forms in Chapter 6, which are a
generalization of Raviart-�omas elements. In retrospect, it is a happy coincidence
that our representation, which was at �rst derived from a somewhat ”heuristic”
viewpoint in Chapter 3, turned out to correspond to a conforming �nite-element
discretization of the dual problem. A rigorous analysis from the perspective of
�nite-element methods is another direction for future work.
Another interesting direction is to consider adaptive discretizations, for example,

considered in [BER17]. Adaptive �nite element approaches for a similar model
in the context of branched transportation were recently considered in [DW20].
�e discretization is based on piecewise linear dual variables and hinges on similar
constraint set reductions, as presented in Chapter 5.
Given the 
exibility and representational capacity of deep neural networks
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as powerful function approximators, it could be promising to employ them to
discretize the continuous dual problem. �e strategy of approximating the dual
variable with a neural network was considered with some success in the context
of optimal transport, speci�cally for the Wasserstein−1 distance [Seg+18; ACB17]
and for the 
at norm in Chapter 7. It could be interesting to explore whether such
approximations can be bene�cial in the context of the presented li�ing methods.

Prolonging the discretization and Moreau-Yosida smoothing. Instead of dis-
cretizing the continuous energy with some approximating family of functions as
discussed in the previous paragraph, it might be bene�cial to stay in the in�nite-
dimensional setting and derive a system of optimality conditions. For example,
this system might come from the primal-dual optimality relations given by the
general Fenchel-Rockafellar duality theorems [Roc74].
�e possible advantage is that an accurate discretization of the continuous opti-

mality system could be designed to respect certain key quantities of the continuous
model at optimality. For such considerations, a discrete theory that mimics and
preserves geometric relations of the continuous setting, such as discrete exterior
calculus, seems vital. Note that there might be no corresponding “equivalent”
discretization on the energy level, i.e., solving the optimality system (variational
inequality) does not correspond to the minimization of any discrete energy. �ere-
fore, this approach could be more general than the one pursued in this thesis and
potentially allows for additional freedom regarding the discretization.
For the presented energies in this thesis, the continuous optimality system is

nonlinear and nonsmooth. A possible approach is to employ a continuation-based
Moreau-Yosida regularization together with semi-smoothNewtonmethods [Ulb02;
HIK02; IK03; Ulb11] to regularize and solve the system of equations. An advantage
over the �rst-order methods we considered in this thesis is that the convergence
of the numerical scheme is independent of the mesh spacing [Ulb11]. While each
iteration requires one to solve a linear system which still scales with the problem
dimension, a matrix-free implementation with a problem-speci�c preconditioner
could lead to excellent performance. While promising in theory, it has yet to
be con�rmed that such a strategy can handle the huge scale problems of this
thesis, which we were able to tackle rather directly with the �rst-order primal-dual
algorithm implemented on GPUs.
An encouraging example of the above approach for a slightly related optimization

problem posed in the space of measures is the recent work [SSC18].
Independent of the above considerations, smoothing and regularization strate-

gies could signi�cantly improve the performance of the li�ing methods. Due to
the dual discretization, the primal solution is not unique: Restricting the set of test
functions hinders the ability to distinguish two distributions. Formally, the dual
discretization introduces a quotient space into equivalence classes in the primal. A
strictly convex regularization term such as the entropy or a quadratic normwill pick
a certain candidate from the equivalence class, which might aid the convergence.
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In the setting of optimal transport, such regularization strategies have enabled
e�cient optimization using Sinkhorn algorithms [Cut13]. Furthermore, regulariza-
tions might also make the formulation more amenable to stochastic optimization
algorithms, as was recently demonstrated in the setting of optimal transport in
[Gen+16].
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Appendix A

Proofs

A.1 Chapter 3
Proof of Proposition 1. �e proof follows from a direct calculation. We start with
the de�nition of the biconjugate:

ρ∗∗(u) = sup
v∈Rk

⟨u, v⟩ − (min
1≤i≤k ρ i(u))

∗

= sup
v∈Rk

⟨u, v⟩ −max
1≤i≤k ρ∗i (u).

(A.1)

�is shows the �rst equation inside the proposition. For the individual ρ∗i we again
start with the de�nition of the convex conjugate:

ρ∗i (v) = sup
α∈[0,1] ⟨α1i + (1 − α)1i−1, v⟩ − ρ(αγi+1 + (1 − α)γi)

= sup
α∈[0,1] ⟨1i−1, v⟩ + αv i − ρ(γαi ).

(A.2)

Applying the substitution γαi = αγi+1 +(1− α)γi and consequently α = γαi −γ i
γ i+1−γ i yields:

ρ∗i (v) = sup
γαi ∈Γi

⟨1i−1, v⟩ + γαi − γi
γi+1 − γi v i − ρ(γαi )

= ⟨1i−1, v⟩ − γi
γi+1 − γi v i + supγαi ∈Γi

γαi
v i

γi+1 − γi − ρ(γαi )
= ⟨1i−1, v⟩ − γi

γi+1 − γi v i + (ρ + δΓi)∗ ( v i
γi+1 − γi )

=∶ ci(v) + ρ∗i ( v i
γi+1 − γi ) .

(A.3)
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Proof of Proposition 2. It is easy to see that

σ∗(v) = max
i∈{1,...,L}(

i−1∑
l=1 v l − ρ(γi)) .

To compute the biconjugate, we write any input argument u = ∑k
i=1 µi1i+1, and use

σ∗∗ = ρ∗∗ to obtain
ρ∗∗(u) = sup

v
⟨u, v⟩ − max

i∈{1,...,L}(
i−1∑
l=1 v l − ρ(γi))

= sup
v

k∑
i=1 µi

i∑
l=1 v l − max

i∈{1,...,L}(
i−1∑
l=1 v l − ρ(γi)) .

Instead of taking the supremum of all v, we might as well take the supremum over
all vectors p with pi = ∑i

l=1 v l . Care has to be taken of the �rst summand in the
second term of the above formulation. We obtain

sup
v

k∑
i=1 µi

i∑
l=1 v l − max

i∈{1,...,L}(
i−1∑
l=1 v l − ρ(γi)) ,

= sup
p

k∑
i=1 µipi − max

i∈{2,...,L}max(pi−1 − ρ(γi),−ρ(γ1)),
= sup
p

k∑
i=1 µipi − max

i∈{1,...,k}max(pi − ρ(γi+1),−ρ(γ1)),
= k∑
i=1 µi ρ(γi+1) + supp

k∑
i=1 µipi − max

i∈{1,...,k}max(pi ,−ρ(γ1)),
Note that for any µi being negative, the supremum immediately yields in�nity by
taking pi → −∞. Similarly, if∑k

i=1 µi > 1 yields in�nity by taking all pi →∞. For
µi ≥ 0 for all i, and∑k

i=1 µi ≤ 1, we know that∑k
i=1 µipi ≤ (maxi pi)∑k

i=1 µi . Since
equality can be obtained by choosing pl =maxi pi for all l , we can reduce the above
supremum to

sup
z

(z k∑
i=1 µi −max(z,−ρ(γ1))) = (1 − k∑

i=1 µi) ρ(γ1),
where we used that the supremum over z is attained at z = −ρ(γ1) (still assuming
that ∑k

i=1 µi ≤ 1). Let us now undo our change of variable. It is easy to see that
µk = uk, and µi = u i − u i+1 for i = 1, ..., k − 1. �e latter leads to

k∑
i=1 µi ρ(γi+1) + (1 − k∑

i=1 µi) ρ(γ1)
= ρ(γk+1)uk + k−1∑

i=1(u i − u i+1) ρ(γi+1) + (1 − u1)ρ(γ1)
= ρ(γ1) + ⟨u, r⟩,
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for ri = ρ(γi+1)− ρ(γi). Considering the aforementioned constraints of µi ≥ 0, and∑k
i=1 µi ≤ 1, we �nally �nd

ρ∗∗(u) = ⎧⎪⎪⎨⎪⎪⎩
ρ(γ1) + ⟨u, r⟩ if 1 ≥ u1 ≥ ... ≥ uk ≥ 0,∞, else.

Proof of Proposition 3. For the special case k = 1 the biconjugate from (A.1) is just:
ρ∗∗(u) = sup

v∈R uv − ρ∗1 (v) = ρ∗∗1 (u). (A.4)

Now using the �rst line in (A.3), ρ∗∗1 becomes:
ρ∗∗1 (u) = sup

v∈R uv − supγ∈Γ
γ − γ1
γ2 − γ1v − ρ(γ)

= sup
v∈R v (u + γ1

γ2 − γ1) − supγ∈Γ γ
v

γ2 − γ1 − ρ(γ)
= sup

v∈R v (u + γ1
γ2 − γ1) − ρ∗ ( v

γ2 − γ1)= sup
ṽ∈R ṽ(γ1 + u(γ2 − γ1)) − ρ∗(ṽ)= ρ∗∗(γ1 + u(γ2 − γ1)),

(A.5)

where we used dom(ρ) = Γ as well as the substitution v = (γ2 − γ1)ṽ.
Proof of Proposition 4. We compute the individual conjugate as:

Φ∗
i , j(q) = sup

g∈Rd×k
⟨g , q⟩ −Φi , j(q)

= sup
α,β∈[0,1] supν∈Rd

⟨q, (1αi − 1βj )νT⟩ − ∣γαi − γβj ∣ ∣ν∣2
= sup
α,β∈[0,1] supν∈Rd

⟨qT(1αi − 1βj ), ν⟩ − ∣γαi − γβj ∣ ∣ν∣2
= sup
α,β∈[0,1] supν∈Rd

⟨qT(1αi − 1βj ), ν⟩ − ∣γαi − γβj ∣ ∣ν∣2.
(A.6)

�e inner maximum over ν is the conjugate of the ℓ2-norm scaled by ∣γαi − γβj ∣
evaluated at qT (1αi − 1βj ). �is yields:

Φ∗
i , j(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if ∣qT (1αi − 1βj )∣2 ≤ ∣γαi − γβj ∣ ,∀α, β ∈ [0, 1],∞, else.

(A.7)
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For the overall biconjugate we have:

Φ∗∗(g) = sup
q∈Rk×d

⟨q, g⟩ − max
1≤i , j≤k Φ

∗
i , j(q)

= sup
q∈K ⟨q, g⟩. (A.8)

Since we have the max over all 1 ≤ i , j ≤ k conjugates, the set K is given as the
intersection of the sets described by the individual indicator functions Φi , j:

K = {q ∈ Rk×d ∶ ∣qT(1αi − 1βj )∣2 ≤ ∣γαi − γβj ∣ ,
∀ 1 ≤ i ≤ j ≤ k, ∀α, β ∈ [0, 1]} . (A.9)

Proof of Proposition 5. First we rewrite (A.9) by expanding the matrix-vector prod-
uct into sums:RRRRRRRRRRR

i−1∑
l= j ql + αqi − βq j

RRRRRRRRRRR2 ≤ ∣γαi − γβj ∣ ,∀ 1 ≤ j ≤ i ≤ k, ∀α, β ∈ [0, 1]. (A.10)

Since the other cases for 1 ≤ i ≤ j ≤ k in (A.9) are equivalent to (A.10), it is enough
to consider (A.10) instead of (A.9).
Let γ1 < γ2 < ⋯ < γL. In the following, we will show the equivalences:

(A.10)

⇔RRRRRRRRRRR
i∑
l= j ql

RRRRRRRRRRR2 ≤ γi+1 − γ j, ∀ 1 ≤ j ≤ i ≤ k. (A.11)

⇔
∣qi ∣2 ≤ γi+1 − γi , ∀ 1 ≤ i ≤ k. (A.12)

�e direction “(A.10)⇒ (A.11)” follows by setting α = 1 and β = 0 in (A.10), and
“(A.11)⇒ (A.12)” follows by setting i = j in (A.11).
�e direction “(A.12)⇒ (A.11)” can be proven by a quick calculation:RRRRRRRRRRR

i∑
l= j ql

RRRRRRRRRRR2 ≤
i∑
l= j ∣ql ∣2 ≤

i∑
l= j γl+1 − γl = γi+1 − γ j. (A.13)

It remains to show “(A.11)⇒ (A.10)”. We start with the case j = i:
∣αqi − βqi ∣2 = ∣α − β∣∣qi ∣2≤ ∣α − β∣(γi+1 − γi)= ∣(γi+1 − γi)α − (γi+1 − γi)β∣

= ∣(α − β)(γi+1 − γi)∣ = ∣γαi − γβi ∣.
(A.14)
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Now let j < i. Since γ j < γi it also holds that γβj ≤ γαi , thus it is equivalent to show
(A.10) without the absolute value on the right hand side.
First we show that “(A.11)⇒ (A.10)” for β ∈ {0, 1} and α ∈ [0, 1]:

RRRRRRRRRRR
i−1∑
l= j+1 ql + αqi + (1 − β)q jRRRRRRRRRRR2 ≤

RRRRRRRRRRR
i−1∑
l= j+1 ql + (1 − β)q jRRRRRRRRRRR2 + α∣qi ∣2

for β=0 or β=1≤ γi − γβj + α(γi+1 − γi)= γαi − γβj .
(A.15)

Using a similar argument we show that, using the above, “(A.11)⇒ (A.10)” for all
α, β ∈ [0, 1].

RRRRRRRRRRR
i−1∑
l= j+1 ql + αqi + (1 − β)q jRRRRRRRRRRR2 ≤

RRRRRRRRRRR
i−1∑
l= j+1 ql + αqi

RRRRRRRRRRR2 + (1 − β)∣q j∣2
using (A.15),β=1≤ γαi − γ j+1 + (1 − β)(γ j+1 − γ j)
= γαi − γβj .

(A.16)

A.2 Chapter 4
Proof of Proposition 6. By de�nition the biconjugate of ρ is given as

ρ∗∗(u) = sup
v∈R∣V∣⟨u, v⟩ − ( min

1≤i≤∣T ∣ ρ i(v))
∗

= sup
v∈R∣V∣⟨u, v⟩ − max

1≤i≤∣T ∣ ρ∗i (v).
(A.17)

We proceed computing the conjugate of ρ i :

ρ∗i (v) = sup
u∈R∣V∣⟨u, v⟩ − ρ i(u)= sup
α∈∆Un+1

⟨Eiα, v⟩ − ρ (Tiα) , (A.18)

We introduce the substitution r ∶= Tiα ∈ ∆i and obtain

α = K−1
i (r1) , Ki ∶= (Ti1⊺) ∈ Rn+1×n+1, (A.19)
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since Ki is invertible for (V , T ) being a non-degenerate triangulation and∑n+1
j=1 α j =

1. With this we can further rewrite the conjugate as

⋯ = sup
r∈∆ i

⟨Air + bi , E⊺i v⟩ − ρ(r)
= ⟨Eibi , v⟩ + sup

r∈Rn
⟨r,A⊺i E⊺i v⟩ − ρ(r) − δ∆ i(r)

= ⟨Eibi , v⟩ + ρ∗i (A⊺i E⊺i v).
(A.20)

Proof of Proposition 7. De�ne Ψi , j as

Ψi , j(p) ∶= ⎧⎪⎪⎨⎪⎪⎩
∥Tiα − Tjβ∥ ⋅ ∥ν∥ if p = (Eiα − E jβ)ν⊺, α, β ∈ ∆Un+1, ν ∈ Rd ,∞ otherwise.

(A.21)
�en, Ψ can be rewritten as a pointwise minimum over the individual Ψi , j

Ψ(p) = min
1≤i , j≤∣T ∣Ψi , j(p). (A.22)

We begin computing the conjugate of Ψi , j

Ψ∗
i , j(q) = sup

p∈Rd×∣V∣
⟨p, q⟩ −Ψi , j(p)

= sup
α,β∈∆Un+1

sup
ν∈Rd

⟨Qiα − Q jβ, ν⟩ − ∥Tiα − Tjβ∥ ⋅ ∥ν∥
= sup
α,β∈∆Un+1

(∥Tiα − Tjβ∥ ⋅ ∥ ⋅ ∥)∗ (Qiα − Q jβ)
= δKi , j(q),

(A.23)

with the set Ki , j being de�ned as

Ki , j ∶= {q ∈ Rd×∣V∣ ∣ ∥Qiα − Q jβ∥ ≤ ∥Tiα − Tjβ∥, α, β ∈ ∆Un+1} . (A.24)

Since the maximum over indicator functions of sets is equal to the indicator func-
tion of the intersection of the sets we obtain for Ψ∗

Ψ∗(q) = max
1≤i , j≤∣T ∣Ψ

∗
i , j(q) = δK(q). (A.25)

Proof of Proposition 8. Let q ∈ Rd×∣V∣ s.t. ∥Qiα − Q jβ∥ ≤ ∥Tiα − Tjβ∥ for all α, β ∈
∆Un+1 and 1 ≤ i , j ≤ ∣T ∣. For any 1 ≤ i ≤ ∣T ∣ de�ne

fi ∶ Rn → Rn ,

(α1, ..., αn) ↦ n∑
l=1 αl t

i l + (1 − n∑
l=1 αl)t in+1 = Tiα,

(A.26)
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−1 0 1
−1
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1

Tiα

Tjβ

Tk1
α1(a1)

Tk2α2(a2)

Tk5
α5(a5)

Figure A.1: Figure illustrating the second direction of the proof. �e gray dots and
lines visualize the triangulation (V , T ). �e line segment between Tiα
and Tjβ is composed of shorter line segments which are fully contained
in one of the triangles. On each of the triangles the inequality (A.31)
holds, which allows to conclude that it holds for the whole line segment.

and analogously

gi ∶ Rn → R∣V∣
(α1, ..., αn) ↦ n∑

l=1 αlq
i l + (1 − n∑

l=1 αl)qin+1 = Qiα.
(A.27)

Let us choose an α ∈ Rn such that αi > 0,∑l αl < 1. �en ∥Qiα−Q jβ∥ ≤ ∥Tiα−Tjβ∥
for all α, β ∈ ∆Un+1 and 1 ≤ i , j ≤ ∣T ∣ implies that

∥gi(α) − gi(α − h)∥ ≤ ∥ fi(α) − fi(α − h)∥, (A.28)

holds for all vectors h with su�ciently small entries. Inserting the de�nitions of gi
and fi we �nd that ∥QiDh∥ ≤ ∥TiDh∥ (A.29)

holds for all h with su�ciently small entries. For a non-degenerate triangle, TiD is
invertible and a simple substitution yields that

∥QiD(TiD)−1h̃∥2 ≤ ∥h̃∥, (A.30)
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holds for all h̃ with su�ciently small entries. �is means that the operator norm of
D i
q induced by the ℓ2 norm, i.e. the S∞ norm, is bounded by one.
Let us now show the other direction. For q ∈ Rd×∣V∣ s.t. ∥D i

q∥S∞ ≤ 1, 1 ≤ i ≤ ∣T ∣,
note that inverting the above computation immediately yields that

∥Qkα − Qkβ∥ ≤ ∥Tkα − Tkβ∥ (A.31)

holds for all 1 ≤ k ≤ ∣T ∣, α, β ∈ ∆Un+1. Our goal is to show that having this inequality
on each simplex is su�cient to extend it to arbitrary pairs of simplices. �e overall
idea of this part of the proof is illustrated in Fig. A.1.
Let 1 ≤ i , j ≤ ∣T ∣ and α, β ∈ Rn with αl , βl ≥ 0, ∑l αl ≤ ∑l βl ≤ 1 be given.

Consider the line segment

c(γ) ∶ [0, 1] → Rd

γ ↦ γ Tjβ + (1 − γ)Tiα. (A.32)

Since the triangulated domain is convex, there exist 0 = a0 < a1 < ⋯ < ar = 1
and functions αl(γ) such that for γ ∈ [al , al+1], 0 ≤ l ≤ r − 1 one can write
c(γ) = γ Tjβ + (1 − γ)Tiα = Tk lαl(γ) for some 1 ≤ kl ≤ T . �e continuity of
c(γ) implies that Tk lαl(al+1) = Tk l+1αl+1(al+1), i.e. these points correspond to both
simplices, kl and kl+1. Note that this also means that Qk lαl(al+1) = Qk l+1αl+1(al+1).
�e intuition of this construction is that the c(al+1) are located on the boundaries
of adjacent simplices on the line segment. We �nd

∥Tiα − Tjβ∥ = r−1∑
l=0(al+1 − al)∥Tiα − Tjβ∥

= r−1∑
l=0 ∥(al+1 − al)(Tiα − Tjβ)∥

= r−1∑
l=0 ∥al+1Tiα − alTiα − al+1Tjβ + alTjβ∥

= r−1∑
l=0 ∥alTjβ + (1 − al)Tiα − (al+1Tjβ + (1 − al+1)Tiα)∥

= r−1∑
l=0 ∥Tk lαl(al) − Tk lαl(al+1)∥

(A.31)≥ r−1∑
l=0 ∥Qk lαl(al) − Qk lαl(al+1)∥

≥ ∥r−1∑
l=0(Qk lαl(al) − Qk lαl(al+1))∥

= ∥r−1∑
l=0(Qk lαl(al) − Qk l+1αl+1(al+1))∥

= ∥Qk0α0(a0) − Qkrαr(ar)∥= ∥Qiα − Q jβ∥ ,

(A.33)
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which yields the assertion.

Proof of Proposition 9. Let ∆ = conv{t1,⋯, tn+1} be given by a�nely independent
vertices t i ∈ Rn. We show that our li�ing approach applied to the label space
∆ solves the convexi�ed unli�ed problem, where the dataterm was replaced by
its convex hull on ∆. Let the matrices T ∈ Rn×(n+1) and D ∈ R(n+1)×n be de�ned
through

T = (t1, ⋯, tn+1) , D = ⎛⎜⎜⎜⎝
1 ⋱

1−1 ⋯ −1
⎞⎟⎟⎟⎠ , TD = (t1 − tn+1, ⋯, tn − tn+1) ,

(A.34)
�e transformation x ↦ tn+1 + TDx maps ∆e = conv{0, e1,⋯, en} ⊂ Rn to ∆.
Now consider the following li�ed function u ∶ Ω → Rn+1 parametrized through
ũ ∶ Ω → ∆e :

u(x) = (ũ1(x), ⋯, ũn(x), 1 −∑n
j=1 ũ j(x)) . (A.35)

Consider a �xed x ∈ Ω. Plugging this li�ed representation into the biconjugate of
the li�ed dataterm ρ yields:

ρ∗∗(u) = sup
v∈Rn+1

⟨u, v⟩ − sup
α∈∆Un+1

⟨α, v⟩ − ρ(Tα)
= sup
v∈Rn+1

⟨⎛⎝ũ1(x), ⋯, ũn(x), 1 −
n∑
j=1 ũ j(x)

⎞⎠ , v⟩−
sup
α∈∆Un+1

⟨α, v⟩ − ρ(Tα)
= sup
v∈Rn+1

⟨ũ,D⊺v⟩ + vn+1−
sup
α∈∆Un+1

⟨⎛⎝α1, ⋯, αn , 1 −
n∑
j=1 α j

⎞⎠ , v⟩−
ρ
⎛⎝

n∑
j=1 α jt

j + ⎛⎝1 −
n∑
j=1 α j

⎞⎠ tn+1⎞⎠
= sup
v∈Rn+1

⟨ũ,D⊺v⟩ + vn+1 − sup
α∈∆Un+1

vn+1 + ⟨α,D⊺v⟩ − ρ(tn+1 + TDα)

(A.36)

Since D⊺ is surjective, we can apply the substitution ṽ = D⊺v:
⋯ = sup

ṽ∈Rn
⟨ũ, ṽ⟩ − sup

α∈∆Un+1
⟨α, ṽ⟩ − ρ(tn+1 + TDα)

= sup
ṽ∈Rn

⟨ũ, ṽ⟩ − sup
w∈∆ ⟨(TD)−1(w − tn+1), ṽ⟩ − ρ(w). (A.37)
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In the last step the substitution w = tn+1 + TDα ⇔ α = (TD)−1(w − tn+1) was
performed. �is can be further simpli�ed to

⋯ = sup
ṽ∈Rn

⟨ũ, ṽ⟩ + ⟨(TD)−1tn+1, ṽ⟩ − (ρ + δ∆)∗((TD)−T ṽ)
= sup
ṽ∈Rn

⟨ũ + (TD)−1tn+1, ṽ⟩ − (ρ + δ∆)∗((TD)−T ṽ)
= sup
ṽ∈Rn

⟨TDũ + tn+1, (TD)−T ṽ⟩ − (ρ + δ∆)∗((TD)−T ṽ).
(A.38)

Since TD is invertible we can perform another substitution v′ = (TD)−T ṽ.
⋯ = sup

v′∈Rn
⟨TDũ + tn+1, v′⟩ − (ρ + δ∆)∗(v′)

= (ρ + δ∆)∗∗(tn+1 + TDũ). (A.39)

�e li�ed regularizer is given as:

R(u) = sup
q∶Ω→Rd×n+1

∫
Ω
⟨u, div q⟩ −Ψ∗(q) dx (A.40)

Using the parametrization by ũ, this can be equivalently written as

sup
q(x)∈K∫Ω

n∑
j=1 ũ j div(q j − qn+1) + div qn+1 dx , (A.41)

where the set K ⊂ Rd×n+1 can be written as
K = {q ∈ Rd×n+1 ∣ ∥D⊺q⊺(TD)−1∥S∞ ≤ 1}. (A.42)

Note that since qn+1 ∈ C∞c (Ω,Rd), the last term div qn+1 in (A.41) vanishes by
partial integration. With the substituion q̃(x) = D⊺q(x)⊺ we have

sup
q̃∈K̃ ∫Ω⟨ũ, div q̃⟩ dx , (A.43)

with set K̃ ⊂ Rd×n:
K̃ = {q ∈ Rd×n ∣ ∥q(TD)−1∥S∞ ≤ 1}. (A.44)

Note that since qi ∈ C∞c (Ω,Rd), the same holds for the linearly transformed q̃.
With another substituion q′(x) = q̃(x)(TD)−1 we have

⋯ = sup
q′∈K′∫Ω⟨ũ, div q′TD⟩ dx

= sup
q′∈K′∫Ω⟨TDũ, div q′⟩ dx

(A.45)
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where the set K′ ⊂ Rd×n+1 is given as
K′ = {q ∈ Rd×n ∣ ∥q∥S∞ ≤ 1}, (A.46)

which is the usual unli�ed de�nition of the total variation TV(tn+1 + TDũ).
�is shows that the li�ing method solves

min
ũ∶Ω→∆e

∫
Ω
(ρ(x , ⋅) + δ∆)∗∗(tn+1 + TDũ(x))dx + λTV(tn+1 + TDũ), (A.47)

which is equivalent to the original problem but with a convexi�ed data term.

A.3 Chapter 5
Proposition 21. For concave κ ∶ R+0 → R with κ(a) = 0⇔ a = 0, the constraints

∥(1 − α)φ̂x(i) + j−1∑
l=i+1 φ̂x(l) + βφ̂x( j)∥

≤ κ(γβj − γαi )
h

, ∀1 ≤ i ≤ j ≤ k, α, β ∈ [0, 1],
(A.48)

are equivalent to

∥ j∑
l=i φ̂x(l)∥ ≤

κ(γ j+1 − γi)
h

,∀1 ≤ i ≤ j ≤ k. (A.49)

Proof. �e implication (A.48) ⇒ (A.49) clearly holds. Let us now assume the
constraints (A.49) are ful�lled. First we show that the constraints (A.48) also hold
for α ∈ [0, 1] and β ∈ {0, 1}. First, we start with β = 0:

∥(1 − α)φ̂x(i) + j−1∑
l=i+1 φ̂x(l)∥

= ∥(1 − α) j−1∑
l=i φ̂x(l) + α

j−1∑
l=i+1 φ̂x(l)∥

≤ (1 − α)∥ j−1∑
l=i φ̂x(l)∥ + α∥

j−1∑
l=i+1 φ̂x(l)∥

by (A.49)≤ (1 − α) 1
h
κ(γ j − γi) + α 1hκ(γ j − γi+1)

concavity≤ 1
h
(κ((1 − α)(γ j − γi) + α(γ j − γi+1)) = 1

h
κ(γ0j − γαi ).

(A.50)

In the same way, it can be shown that for β = 1 we have:
∥(1 − α)φ̂x(i) + j−1∑

l=i+1 φ̂x(l) + 1 ⋅ φ̂x( j)∥ ≤
1
h
κ(γ1j − γαi ). (A.51)
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We have shown the constraints to hold for α ∈ [0, 1] and β ∈ {0, 1}. Finally we
show they also hold for β ∈ [0, 1]:

∥(1 − α)φ̂x(i) + j−1∑
l=i+1 φ̂x(l) + βφ̂x( j)∥

= ∥(1 − α)φ̂x(i) + (1 − β) j−1∑
l=i+1 φ̂x(l) + β

j∑
l=i+1 φ̂x(l)∥

= ∥(1 − β)⎛⎝(1 − α)φ̂x(i) +
j−1∑
l=i+1 φ̂x(l)

⎞⎠ + β ⎛⎝(1 − α)φ̂x(i) +
j∑

l=i+1 φ̂x(l)
⎞⎠∥

≤ (1 − β)∥(1 − α)φ̂x(i) + j−1∑
l=i+1 φ̂x(l)∥ + β∥(1 − α)φ̂x(i) +

j∑
l=i+1 φ̂x(l)∥

(A.50),(A.51)≤ 1
h
(1 − β)κ(γ0j − γαi ) + βκ(γ1j − γαi )

concavity≤ 1
h
κ((1 − β)(γ0j − γαi ) + β(γ1j − γαi )) = 1

h
κ(γβj − γαi )

(A.52)
Noticing that (A.49) is precisely (A.48) for α, β ∈ {0, 1} (as κ(a) = 0⇔ a = 0)
completes the proof.

Proposition 22. For convex one-homogeneous η the discretization with piecewise
constant φt and φx leads to the traditional discretization as proposed in [Poc+09a],
except with min-pooled instead of sampled unaries.

Proof. �e constraints in [Poc+09a, Eq. 18] have the form

φ̂t(i) ≥ η∗(φ̂x(i)) − ρ(γi), (A.53)

∥ j∑
l=i φ̂x(l)∥ ≤ κ(γ j+1 − γi), (A.54)

with ρ(u) = λ(u − f )2, η(g) = ∥g∥2 and κ(a) = νJa > 0K. �e constraints (A.54)
are equivalent to (A.49) up to a rescaling of φ̂x with h. For the constraints (A.53)
(cf. [Poc+09a, Eq. 18]), the unaries are sampled at the labels γi . �e discretization
with piecewise constant duals leads to a similar form, except for a min-pooling on
dual intervals, ∀1 ≤ i ≤ k:

φ̂t(i) ≥ η∗(φ̂x(i)) − inf
t∈[γ i ,γ∗i ] ρ(t),

φ̂t(i + 1) ≥ η∗(φ̂x(i)) − inf
t∈[γ∗i ,γ i+1] ρ(t).

(A.55)

�e similarity between (A.55) and (A.53) becomesmore evident by assuming convex
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one-homogeneous η. �en (A.55) reduces to the following:

−φ̂t(1) ≤ inf
t∈[γ1 ,γ∗1 ] ρ(t),−φ̂t(i) ≤ inf
t∈Γ∗i ρ(t), ∀i ∈ {2,⋯, ℓ − 1},

−φ̂t(ℓ) ≤ inf
t∈[γ∗ℓ−1 ,γℓ] ρ(t),

(A.56)

as well as
φ̂x(i) ∈ dom(η∗),∀i ∈ {1,⋯, k}. (A.57)

Proposition 23. �e constraints

inf
t∈Γi φ̂t(i)γi+1 − th

+ φ̂t(i + 1) t − γih
+ ρ(t) ≥ η∗(φ̂x(i)). (A.58)

can be equivalently reformulated by introducing additional variables a ∈ Rk, b ∈ Rk,
where ∀i ∈ {1,⋯, k}:

r(i) = (φ̂t(i) − φ̂t(i + 1))/h,
a(i) + b(i) − (φ̂t(i)γi+1 − φ̂t(x , i + 1)γi)/h = 0,
r(i) ≥ ρ∗i (a(i)) , φ̂x(i) ≥ η∗ (b(i)) ,

(A.59)

with ρi(x , t) = ρ(x , t) + δ{t ∈ Γi}.
Proof. Rewriting the in�mum in (A.58) as minus the convex conjugate of ρi , and
multiplying the inequality with −1 the constraints become:

ρ∗i (r(i)) + η∗(φ̂x(i)) − φ̂t(i)γi+1 − φ̂t(i + 1)γi
h

≤ 0,
r(i) = (φ̂(i) − φ̂(i + 1))/h. (A.60)

To show that (A.60) and (A.59) are equivalent, we prove that they imply each other.
Assume (A.60) holds. �en without loss of generality set a(i) = ρ∗i (r(i)) + ξ1,
b(i) = η∗i (φx(i)) + ξ2 for some ξ1, ξ2 ≥ 0. Clearly, this choice ful�lls (A.60). Since
for ξ1 = ξ2 = 0 we have by assumption that

a(i) + b(i) − (φ̂t(i)γi+1 − φ̂t(x , i + 1)γi)/h ≤ 0, (A.61)

there exists some ξ1, ξ2 ≥ 0 such that (A.59) holds.
Now conversely assume (A.59) holds. Since a(i) ≥ ρ∗i (r(i)), b(i) ≥ η∗ (φ̂x(i)),

and
a(i) + b(i) − (φ̂t(i)γi+1 − φ̂t(x , i + 1)γi)/h = 0, (A.62)

this directly implies

ρ∗i (r(i)) + η∗(φ̂x(i)) − φ̂t(i)γi+1 − φ̂t(i + 1)γi
h

≤ 0, (A.63)

since the le�-hand side becomes smaller by plugging in the lower bound.
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Proposition 24. �e discretization with piecewise linear φt and piecewise constant
φx together with the choice η(g) = ∥g∥ and κ(a) = a is equivalent to the relaxation
[Möl+16].

Proof. Since η(g) = ∥g∥, the constraints (A.58) become
inf
t∈Γi φ̂t(i)γi+1 − th

+ φ̂t(i + 1) t − γih
+ ρ(t) ≥ 0.

φx ∈ dom(η∗). (A.64)

�is decouples the constraints into data term and regularizer. �e data term
constraints can be written using the convex conjugate of ρi = ρ + δ{⋅ ∈ Γi} as the
following:

φ̂t(i)γi+1 − φ̂t(i + 1)γi
h

− ρ∗i ( φ̂t(i) − φ̂t(i + 1)h
) ≥ 0. (A.65)

Let v i = φ̂t(i) − φ̂t(i + 1) and q = φ̂t(1). �en we can write (A.65) as a telescope
sum over the v i

q − i−1∑
j=1 v j +

γi
h
v i − ρ∗i (v ih ) ≥ 0, (A.66)

which is the same as the constraints in [Möl+16, Eq. 9, Eq. 22]. �e cost function is
given as

−φ̂t(1) − k∑
i=1 v̂(i) [φ̂t(i + 1) − φ̂t(i)] = ⟨v̂ , v⟩ − q, (A.67)

which is exactly the �rst part of [Möl+16, Eq. 21]. Finally, for the regularizer we get

∥ j∑
l=i φ̂x(l)∥ ≤

∣γ j+1 − γi ∣
h

, ∥φ̂x(i)∥ ≤ 1, (A.68)

which clearly reduces to the same set as in [Möl+16, Proposition 5], by applying
that proposition (and with the rescaling/substitution p = h ⋅ φx).
Proposition 25. �e data term from [Möl+16] (which is in turn a special case of the
discretization with piecewise linear φt) can be (pointwise) brought into the primal
form

D(v̂) = inf
x i≥0,∑i x i=1
v̂=y/h+I⊺x

k∑
i=1 xiρ

∗∗
i ( yi

xi
) , (A.69)

where I ∈ Rk×k is a discretized integration operator.
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Proof. �e equivalence of the sublabel accurate data term proposed in [Möl+16]
to the discretization with piecewise linear φt is established in Proposition 24 (cf.
(A.66) and (A.67)). It is given pointwise as

D(v̂) =max
v ,q

⟨v , v̂⟩ − q − k∑
i=1 δ {(

v i
h
, [q1k − Iv]i) ∈ epi(ρ∗i )} , (A.70)

where v̂ ∈ Rk , v ∈ Rk , q ∈ R, and k is the number of pieces and 1k ∈ Rk is the vector
consisting only of ones. Furthermore, ρi(t) = ρ(t) + δ{t ∈ Γi}, dom(ρi) = Γi =[γi , γi+1]. �e integration operator I ∈ Rk×k is de�ned as

I =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

−γ1
h
1 −γ2

h ⋱
1 ⋯ 1 −γk

h

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.71)

Using convex duality, and the substitution hṽ = v we can rewrite (A.70) as
min
x

max
ṽ ,q,z

⟨ṽ , h ⋅ v̂⟩ − q − ⟨x , z − (q1k − hIṽ)⟩ − k∑
i=1 δ {(ṽi , zi) ∈ epi(ρ∗i )} .

(A.72)
�e convex conjugate of Fi(z, v) = δ{(v ,−z) ∈ epi(ρ∗i )} is the lower-semicontinuous
envelope of the perspective [Roc96, Section 15], and since ρi ∶ Γi → R has bounded
domain, is given as the following (cf. also [ZK12, Appendix 3])

F∗i (x , y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xρ∗∗i (y/x), if x > 0,
0, if x = 0 ∧ y = 0,∞, if x < 0 ∨ (x = 0 ∧ y ≠ 0). (A.73)

�us with the convention that 0/0 = 0 equation (A.72) can be rewritten as convex
conjugates:

min
x

(max
q

q(1⊺kx) − q)+
(max

ṽ ,z
⟨ṽ , h ⋅ (v̂ − I⊺x)⟩ + ⟨−z, x⟩ − k∑

i=1 Fi(−zi , ṽi))
=min

x
δ {∑

i
xi = 1} +∑

i
F∗i (xi , [h(v̂ − I⊺x)]i) .

(A.74)

Hence we have that

D(v̂) = min
x ,y

y=h(v̂−I⊺x)
x i≥0∑i x i=1

y i/x i∈dom(ρ∗∗i )

∑
i
xiρ∗∗i ( yi

xi
) , (A.75)

which can be rewritten in the form (A.70).
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Proposition 26. Let γ = κ(γ2 − γ1) and ℓ = 2. �e approximation with piecewise
linear φt and piecewise constant φx of the continuous optimization problem

inf
v∈C supφ∈K ∫Ω×R⟨φ,Dv⟩. (A.76)

is equivalent to

inf
u∶Ω→Γ∫Ω ρ∗∗(x , u(x)) + (η∗∗ ◻ γ∥ ⋅ ∥)(∇u(x)) dx , (A.77)

where (η ◻ γ∥ ⋅ ∥)(x) = inf y η(x − y) + γ∥y∥ denotes the in�mal convolution (cf.
[Roc96, Section 5]).

Proof. Plugging in the representations for piecewise linear φt and piecewise con-
stant φx we have the coe�cient functions v̂ ∶ Ω → [0, 1], φ̂t ∶ Ω × {1, 2} → R,
φ̂x ∶ Ω → Rn and the following optimization problem:

inf
v̂
sup
φ̂x ,φ̂t

∫
Ω
−φ̂t(x , 1) − v̂(x) [φ̂t(x , 2) − φ̂t(x , 1)] − h ⋅ v̂(x) ⋅ divx φ̂x(x)dx

subject to inf
t∈Γ φ̂t(x , 1)γ2 − th

+ φ̂t(x , 2) t − γ1h
+ ρ(x , t) ≥ η∗(x , φ̂x(x))

∥φ̂x(x)∥ ≤ κ(γ2 − γ1) =∶ γ.
(A.78)

Using the convex conjugate of ρ ∶ Ω × Γ → R (in its second argument), we rewrite
the �rst constraint as

φ̂t(x , 1)γ2 − φ̂t(x , 2)γ1
h

≥ ρ∗ (x , φ̂t(x , 1) − φ̂t(x , 2)
h

) + η∗(x , φ̂x(x)). (A.79)

Using the substitution φ̃(x) = φ̂t(x ,1)−φ̂t(x ,2)
h we can reformulate the constraints as

φ̂t(x , 1) ≥ ρ∗(x , φ̃(x)) + η∗(x , φ̂x(x)) − γ1φ̃(x), (A.80)

and the cost function as

sup
φ̃,φ̂t ,φ̂x

∫
Ω
−φ̂t(x , 1) + hv̂(x)φ̃(x) − hv̂(x)divx φ̂x(x)dx . (A.81)

�e pointwise supremum over −φ̂t(x , 1) is attained where the constraint (A.80) is
sharp, which means we can pull it into the cost function to arrive at

sup
φ̃,φ̂x

∫
Ω
−ρ∗(x , φ̃(x)) − η∗(x , φ̂x(x)) − δ{∥φ̂x(x) ≤ γ∥}+

γ1φ̃(x) + hv̂(x)φ̃(x) − hv̂(x)divx φ̂x(x)dx , (A.82)
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where we wrote the second constraint in (A.78) as an indicator function. As the
supremum decouples in φ̃ and φ̂x , we can rewrite it using convex (bi-)conjugates,
by interchanging integration and supremum (cf. [RWW98, �eorem 14.60]):

sup
φ̃
∫
Ω
γ1φ̃(x) + hv̂(x)φ̃(x) − ρ∗(x , φ̃(x))dx
= ∫

Ω
sup
φ̃

γ1φ̃ + hv̂(x)φ̃ − ρ∗(x , φ̃)dx
= ∫

Ω
ρ∗∗(x , γ1 + hv̂(x)) dx .

(A.83)

For the part in φ̂x we assume that v̂ is su�ciently smooth and apply partial integra-
tion (φ̂x vanishes on the boundary), and then perform a similar calculation to the
previous one:

sup
φ̂x
∫
Ω
−(η∗ + δ{∥ ⋅ ∥ ≤ γ})(x , φ̂x(x)) − hv̂(x)divx φ̂x(x)dx

= sup
φ̂x
∫
Ω
−(η∗ + δ{∥ ⋅ ∥ ≤ γ})(x , φ̂x(x)) + h⟨∇x v̂(x), φ̂x(x)⟩dx

= ∫
Ω
sup
φ̂x

−(η∗ + δ{∥ ⋅ ∥ ≤ γ})(x , φ̂x) + h⟨∇x v̂(x), φ̂x⟩dx
= ∫

Ω
(η∗ + δ{∥ ⋅ ∥ ≤ γ})∗(x , h∇x v̂(x))dx

= ∫
Ω
(η∗∗ ◻ γ∥ ⋅ ∥)(x , h∇x v̂(x))dx

= ∫
Ω
(η ◻ γ∥ ⋅ ∥)(x , h∇x v̂(x))dx .

(A.84)

Here we used also the result that ( f ∗ + g)∗ = f ∗∗ ◻ g∗ [RWW98, �eorem 11.23].
Combining (A.83) and (A.84) and using the substitution u = γ1 + hv̂, we �nally
arrive at:

∫
Ω
ρ∗∗(x , u(x)) + (η∗∗ ◻ γ∥ ⋅ ∥)(x ,∇u(x))dx , (A.85)

which is the same as (A.77).

A.4 Chapter 7
Proof of Proposition 20. Since gθ ♯S and T are normal currents we know that
Fλ(gθ ♯S , T) < ∞ for all θ ∈ Θ. We now directly show Lipschitz continuity. First
notice that

Fλ(gθ ♯S − T) = Fλ(gθ ♯S + gθ′ ♯S − gθ′ ♯S − T) (A.86)≤ Fλ(gθ ♯S − gθ′ ♯S) + Fλ(gθ′ ♯S − T), (A.87)
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yields the following bound:

∣Fλ(gθ ♯S − T) − Fλ(gθ′ ♯S − T)∣ ≤ Fλ(gθ ♯S − gθ′ ♯S). (A.88)

Due to Prop. 18 we have that

Fλ(gθ ♯S − gθ′ ♯S) ≤max{1, λ} ⋅ F(gθ ♯S − gθ′ ♯S). (A.89)

Now de�ne the compact set C ⊂ Rd as

C = {(1 − t)gθ(z) + tgθ′(z) ∶ z ∈ spt S , 0 ≤ t ≤ 1}, (A.90)

and as in §4.1.12 in [Fed69] for compact K ⊂ Rd the “stronger” 
at norm

FK(T) = sup{T(ω) ∣ ω ∈ Dk(Rd), with
∥ω(x)∥∗ ≤ 1, ∥dω(x)∥∗ ≤ 1 for all x ∈ K}. (A.91)

Since the constraint in the supremum in (A.91) is less restrictive than in the
de�nition of the 
at norm (7.20), we have

F(gθ ♯S − gθ′ ♯S) ≤ FC(gθ ♯S − gθ′ ♯S). (A.92)

�en, the inequality a�er §4.1.13 in [Fed69] bounds the right side of (A.92) for
k > 0 by

FC(gθ ♯S − gθ′ ♯S) ≤∥S∥(∣gθ − gθ′ ∣ρk) + ∥∂S∥(∣gθ − gθ′ ∣ρk−1), (A.93)

where ρ(z) =max{∥∇zg(z, θ)∥, ∥∇zg(z, θ′)∥} < ∞ due to Assumption 1 and we
write ∥S∥( f ) = ∫ f (z)d∥S∥(z), where ∥S∥ is de�ned in the sense of (7.19). For
k = 0, a similar bound can be derived without the term ∥∂S∥.
For k > 0, by setting µS = ∥∂S∥+∥S∥ we can further bound the term in (A.93) by

∥S∥(∣gθ − gθ′ ∣ρk) + ∥∂S∥(∣gθ − gθ′ ∣ρk−1) ≤
c1 ⋅ ∫ ∥gθ(z) − gθ′(z)∥dµS(z), (A.94)

where c1 = supzmax{ρk(z), ρk−1(z)}. For k = 0, the bound is derived analogously.
Now since g(z, ⋅) is locally Lipschitz and Θ ⊂ Rn is compact, g(z, ⋅) is Lipschitz

and we denote the constant as Lip(g), leading to the bound
∫ ∥gθ(z) − gθ′(z)∥dµS(z) ≤ µS(Z)Lip(g) ⋅ ∥θ − θ′∥. (A.95)

Since S ∈ N k,Z(Rl) is a normal current, µS(Z) < ∞. �us by combining (A.88),
(A.89), (A.92), (A.93), (A.94) and (A.95) there is a �nite c2 =max{1, λ} ⋅ c1 ⋅ µS(Z) ⋅
Lip(g) < ∞ such that

∣Fλ(gθ ♯S − T) − Fλ(gθ′ ♯S − T)∣ ≤ c2∥θ − θ′∥. (A.96)

�erefore, the cost Fλ(gθ ♯S , T) in (7.27) is Lipschitz in θ and by Rademacher’s
theorem, §3.1.6 in [Fed69], also di�erentiable almost everywhere.
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Supplementary Materials

B.1 Chapter 4

In this experiment we jointly estimate the mean µ and variance σ of an image
I ∶ Ω → R according to a Gaussian model. �e label space is chosen as Γ =[0, 255] × [1, 10] and the dataterm as proposed in [GSC13]:

ρ(x , µ(x), σ(x)) = (µ(x) − I(x))2
2σ(x)2 + 1

2
log(2πσ(x)2). (B.1)

As the projection onto the epigraph of (ρ + δ∆)∗ seems di�cult to compute, we
approximate ρ by a piecewise linear function using 29 × 29 sublabels and convex-
ify it using the quickhull algorithm [BDH96]. In Fig. B.1 we show the result of
minimizing (B.1) with total variation regularization.

Input image Mean µ Variance σ

Figure B.1: Joint estimation of mean and variance. Our formulation can optimize
di�cult nonconvex joint optimization problems with continuous label
spaces.
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B.2 Chapter 6
In Fig. B.2 we show an additional experiment, in which we compute a minimal
current under the shortest path energy c(x , y, ξ) = √

1 + ∥ξ∥2. �e center of mass
coincides with the analytical (straight line) solution, despite the coarse mesh.
In Fig. B.3 we show that the bijective correspondences computed by solving a

linear assignment problem can be quite noisy. �e linear assignment problem (cor-
responding to the Kantorovich relaxation in optimal transport) globally optimizes
a cost c(x , y) = ∥I1(x) − I2(y)∥, which does not contain any spatial regularization.

X

Y

Figure B.2: Minimal current on a cubical complex of size 25 × 14, here under a mini-
mal surface (shortest path) energy with Dirichlet boundary conditions.

X Y

id− f , LAP id− f −1, LAP id− f , Proposed id− f −1, Proposed
Figure B.3: Solving a linear assignment problem (denoted by LAP) yields a quite

noisy solution when compared to the spatially regularized correspon-
dence �eld obtained by the proposed relaxation.
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B.3 Chapter 7
For all experiments we use Adam optimizer [KB14], with step size 10−4 and mo-
mentum parameters β1 = 0.5, β2 = 0.9. �e batch size is set to 50 in all experiments
except the �rst one (which runs full batch with batch size 5). We always set λ = 1.
Illustrative 2D Example. We pick the same parameters for k ∈ {0, 1}. We set
the penalty to ρ = 10 and use 5 discriminator updates per generator update as in
[Gul+17]. �e generator is a 5 – 6 – 250 – 250 – 250 – 2 fully connected network with
leaky ReLU activations. �e �rst layer ensures that the latent coordinate z1 has the
topology of a circle, i.e., it is implemented as (cos(z1), sin(z1), z2, z3, z4, z5). �e
discriminators ω0 and ω1,1 are 2 – 100 – 100 – 100 – 1 respectively 2 – 100 – 100 – 2
nets with leaky ReLUs. �e distribution on the latent is a uniform z1 ∼ U([−π, π])
and zi ∼ N(0, 1) for the remaining 4 latent codes.
MNIST. For the remaining experiments, we use only 1 discriminator update
per iteration. �e digits are resized to 32 × 32. For generator we use DCGAN
architecture [RMC15] without batch norm and with ELU activations, see Table B.1.
�e discriminators are given by the architectures in Table B.2, with leaky ReLUs

layer name output size �lters

Reshape 128 × 1 × 1 –
Conv2DTranspose 32F × 4 × 4 128→ 32F
Conv2DTranspose 16F × 8 × 8 32F → 16F
Conv2DTranspose 4F × 16 × 16 16F → 4F
Conv2DTranspose 1 × 32 × 32 4F → 1

Table B.1: Generator architecture for MNIST experiment, F = 32.
between the layers.
Before computing ⟨ω1,1(x) ∧ ω1,2(x), v1 ∧ v2⟩, the tangent images v1, v2 ∈ R32⋅32

are convolved with a Gaussian with a standard deviation of 2 and downsampled
to 8 × 8 using average pooling. �e distributions on the latent space are given by
z1 ∼ U([−7.5, 7.5]), z2 ∼ U([−0.5, 0.5]) and zi ∼ N(0, 1) for the remaining 126
latent variables. �e tangent vectors at each sample are computed by a 2 degree
rotation and a dilation with radius one.

SmallNORB. We downsample the smallNORB images to 48 × 48. �e archi-
tectures and parameters are chosen similar to the previous MNIST example, see
Table B.3 and Table B.4.
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layer name output size �lters

Reshape 1 × 32 × 32 –
Conv2D 2F × 16 × 16 1→ 2F
Conv2D 4F × 8 × 8 2F → 4F
Conv2D 32F × 4 × 4 4F → 32F
Conv2D 1 × 1 × 1 32F → 1

Conv2DTranspose 1 × 8 × 8 32F → 1

Table B.2: �e discriminator ω0 has F = 32 and red last layer. �e discriminators
ω1,1, ω1,2 have F = 8 and last layer in blue.

layer name output size �lters

Reshape 128 × 1 × 1 –
Conv2DTranspose 32F × 4 × 4 128→ 32F
Conv2DTranspose 16F × 8 × 8 32F → 16F
Conv2DTranspose 16F × 12 × 12 16F → 16F
Conv2DTranspose 4F × 24 × 24 16F → 4F
Conv2DTranspose 1 × 48 × 48 4F → 1

Table B.3: Generator for smallNORB experiment, F = 24.
layer name output size �lters

Reshape 1 × 48 × 48 –
Conv2D 2F × 24 × 24 1→ 2F
Conv2D 4F × 12 × 12 2F → 4F
Conv2D 32F × 6 × 6 4F → 32F
Conv2D 1 × 1 × 1 32F → 1

Conv2DTranspose 1 × 12 × 12 32F → 1

Table B.4: SmallNORB discriminator ω0, F = 32, last layer in shown in red, and
tangent discriminators ω1,1, ω1,2, ω1,3 where F = 8 and last layer is high-
lighted in blue.

Tinyvideos. �e architectures for the tinyvideo experiment are borrowed from
the recent work [MGN18], see Table B.5 and Table B.6.
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layer name output size �lters

Fully Connected 8192 –
Reshape 512 × 4 × 4 –

ResNet-Block 512 × 4 × 4 512→ 512→ 512
NN-Upsampling 512 × 8 × 8 –

ResNet-Block 256 × 8 × 8 512→ 256→ 256
NN-Upsampling 256 × 16 × 16 –

ResNet-Block 128 × 16 × 16 256→ 128→ 128
NN-Upsampling 128 × 32 × 32 –

ResNet-Block 64 × 32 × 32 128→ 64→ 64
NN-Upsampling 64 × 64 × 64 –

ResNet-Block 64 × 64 × 64 64→ 64→ 64
Conv2D 3 × 64 × 64 64→ 3

Table B.5: Generator architecture for tinyvideos experiment.

layer name output size �lters

Conv2D 64 × 64 × 64 3→ 64

ResNet-Block 64 × 64 × 64 64→ 64→ 64
AvgPool2D 64 × 32 × 32 –

ResNet-Block 128 × 32 × 32 64→ 64→ 128
AvgPool2D 128 × 16 × 16 –

ResNet-Block 256 × 16 × 16 128→ 128→ 256
AvgPool2D 256 × 8 × 8 –

ResNet-Block 512 × 8 × 8 256→ 256→ 512
AvgPool2D 512 × 4 × 4 –

ResNet-Block 1024 × 4 × 4 512→ 512→ 1024
Conv2D 1 × 1 × 1 1024→ 1

ResNet-Block 256 × 16 × 16 128→ 256→ 256
Conv2D 3 × 16 × 16 256→ 3

Table B.6: Discriminator architectures for tinyvideos experiment. Last layers of ω0

are highlighted in red, and the last layers of the temporal discriminator
ω1,1 are highlighted in blue.
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Open Source Codes

�e prost Framework
https://github.com/tum-vision/prost: A C++/CUDA implementation of
the �rst-order primal dual algorithm described in Chapter 2. Was used for all
experiments in Chapter 3 – Chapter 6.

Sublabel-Accurate Multilabeling
https://github.com/tum-vision/sublabel_relax: Codes to reproduce the
results from Chapter 3 and Chapter 4.

FlatGAN
https://github.com/moellenh/flatgan: Codes to reproduce the generative
modeling results from Chapter 7.
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Appendix D

Original Publications
In the following, we include reprints of the accepted versions of the original publi-
cations this cumulative thesis is based on. In particular, Chapters 3–7 are minor
layout and content adaptations of the publications included in this appendix.
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Abstract

We propose a novel spatially continuous framework for
convex relaxations based on functional lifting. Our method
can be interpreted as a sublabel–accurate solution to mul-
tilabel problems. We show that previously proposed func-
tional lifting methods optimize an energy which is linear be-
tween two labels and hence require (often infinitely) many
labels for a faithful approximation. In contrast, the pro-
posed formulation is based on a piecewise convex approxi-
mation and therefore needs far fewer labels – see Fig. 1. In
comparison to recent MRF-based approaches, our method
is formulated in a spatially continuous setting and shows
less grid bias. Moreover, in a local sense, our formulation
is the tightest possible convex relaxation. It is easy to im-
plement and allows an efficient primal-dual optimization on
GPUs. We show the effectiveness of our approach on sev-
eral computer vision problems.

1. Introduction

Energy minimization methods have become the central
paradigm for solving practical problems in computer vision.
The energy functional can often be written as the sum of
a data fidelity and a regularization term. One of the most
popular regularizers is the total variation (TV ) due to its
many favorable properties [4]. Hence, an important class of
optimization problems is given as

min
u:Ω→Γ

∫

Ω

ρ(x, u(x)) dx+ λ TV (u), (1)

∗Those authors contributed equally.

Pock et al. [17], 48 labels, 1.49 GB, 52s. Proposed, 8 labels, 0.49 GB, 30s.

Figure 1. We propose a convex relaxation for the variational model
(1), which opposed to existing functional lifting methods [17, 18]
allows continuous label spaces even after discretization. Our
method (here applied to stereo matching) avoids label space dis-
cretization artifacts, while saving on memory and runtime.

defined for functions u with finite total variation, arbitrary,
possibly nonconvex dataterms ρ : Ω × Γ → R, label
spaces Γ which are closed intervals in R, Ω ⊂ Rd, and
λ ∈ R+. The multilabel interpretation of the dataterm is
that ρ(x, u(x)) represents the costs of assigning label u(x)

to point x. For (weakly) differentiable functions TV (u)

equals the integral over the norm of the derivative, and
therefore favors a spatially coherent label configuration.
The difficultly of minimizing the nonconvex energy (1) has
motivated researchers to develop convex reformulations.

Convex representations of (1) and more general related
energies have been studied in the context of the calibration
method for the Mumford-Shah functional [1]. Based on
these works, relaxations for the piecewise constant [15] and
piecewise smooth Mumford-Shah functional [16] have been
proposed. Inspired by Ishikawa’s graph-theoretic globally

1



optimal solution to discrete variants of (1), continuous ana-
logues have been considered by Pock et al. in [17, 18]. Con-
tinuous relaxations for multilabeling problems with finite
label spaces Γ have also been studied in [11].

Interestingly, the discretization of the aforementioned
continuous relaxations is very similar to the linear pro-
gramming relaxations proposed for MAP inference in the
Markov Random Field (MRF) community [10, 22, 24, 26].
Both approaches ultimately discretize the range Γ into a fi-
nite set of labels. A closer analysis of these relaxations re-
veals, however, that they are not well-suited to represent
the continuous valued range that we face in most computer
vision problems such as stereo matching or optical flow.
More specifically, the above relaxations are not designed
to assign meaningful cost values to non-integral configu-
rations. As a result, a large number of labels is required
to achieve a faithful approximation. Solving real-world vi-
sion problems therefore entails large optimization problems
with high memory and runtime requirement. To address this
problem, Zach and Kohli [27], Zach [25] and Fix and Agar-
wal [7] introduced MRF-based approaches which retain
continuous label spaces after discretization. For manifold-
valued labels, this issue was addressed by Lellmann et al.
[12], however with the sole focus on the regularizer.

1.1. Contributions

We propose the first sublabel–accurate convex relaxation
of nonconvex problems in a spatially continuous setting. It
exhibits several favorable properties:

• In contrast to existing spatially continuous lifting ap-
proaches [17, 18], the proposed method provides sub-
stantially better solutions with far fewer labels – see
Fig. 1. This provides savings in runtime and memory.

• In Sec. 3 we show that the functional lifting methods
[17, 18] are a special case of the proposed framework.

• In Sec. 3 we show that, in a local sense, our formu-
lation is the tightest convex relaxation which takes
dataterm and regularizer into account separately. It is
unknown whether this “local convex envelope” prop-
erty also holds for the discrete approach [27].

• Our formulation is compact and requires only half the
amount of variables for the dataterm than the formula-
tion in [27]. We prove that the sublabel–accurate total

x

1

2
u(x) = 2.55

3

4 u(x) = 0.55 · 13 + 0.45 · 12

= [1 1 0.55 0]>

1

0

Ω

Γ

Figure 2. Lifted representation. Instead of optimizing over the
function u : Ω → Γ, we optimize over all possible graph func-
tions (here shaded in green) on Ω × Γ. The main idea behind our
approach is the finite dimensional representation of the graph at
every x ∈ Ω by means of u : Ω→ Rk (here k = 4).

variation can be represented in a very simple way, in-
troducing no overhead compared to [17, 18]. In con-
trast, the regularizer in [27] is much more involved.

• Since our method is derived in a spatially continuous
setting, the proposed approach easily allows different
gradient discretizations. In contrast to [25, 27] the reg-
ularizer is isotropic leading to noticeably less grid bias.

2. Notation and Mathematical Preliminaries

We make heavy use of the convex conjugate, which is
given as f∗(y) = supx∈Rn 〈y, x〉 − f(x) for functions
f : Rn → R ∪ {∞}. The biconjugate f∗∗ denotes its con-
vex envelope, i.e. the largest lower-semicontinuous convex
under-approximation of f . For a set C we denote by δC
the function which maps any element from C to 0 and is
∞ otherwise. For a comprehensive introduction to convex
analysis, we refer the reader to [19]. Vector valued func-
tions u : Ω → Rk are written in bold symbols. If it is
clear from the context, we will drop the x ∈ Ω inside the
functions, e.g., we write ρ(u) for ρ(x, u(x)), or α for α(x).

3. Functional Lifting

To derive a convex representation of (1), we rely on the
framework of functional lifting. The idea is to reformulate
the optimization problem in a higher dimensional space.
We numerically show in Sec. 5 that considering the con-
vex envelope of the dataterm and regularizer in this higher
dimensional space leads to a better approximation of the
original nonconvex energy. We start by sampling the range
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Figure 3. We show the nonconvex energy ρ(u) at a fixed point x ∈ Ω (red dashed line in both plots) from the stereo matching experiment in
Fig. 9 over the full range of 270 disparities. The black dots indicate the positions of the labels and the black curves show the approximations
used by the respective methods. Fig. 3a: The baseline lifting method [17] uses a piecewise linear approximation with labels as nodes.
Fig. 3b: The proposed method uses an optimal piecewise convex approximation. As we can see, the piecewise convex approximation is
closer to the original nonconvex energy and therefore more accurate.

Γ at L = k + 1 labels γ1 < . . . < γL ∈ Γ. This par-
titions the range into k intervals Γi = [γi, γi+1] so that
Γ = Γ1∪ . . .∪Γk. For any value in the range of u : Ω→ Γ

there exist a label index 1 ≤ i ≤ k and α ∈ [0, 1] such that

u(x) = γαi := γi + α(γi+1 − γi). (2)

We represent a value in the range Γ by a vector in Rk

u(x) = 1αi := α1i + (1− α)1i−1, (3)

where 1i denotes a vector starting with i ones followed by
k − i zeros. We call u : Ω → Rk the lifted representation
of u, representing the graph of u. This notation is depicted
in Fig. 2 for k = 4. Back-projecting the lifted u(x) to the
range of u using the layer cake formula yields a one-to-one
correspondence between u(x) = γαi and u(x) = 1αi via

u(x) = γ1 +
k∑

i=1

ui(x)(γi+1 − γi). (4)

We write problem (1) in terms of such graph functions, a
technique that is used in the theory of Cartesian currents [8].

3.1. Convexification of the Dataterm

For now, we consider a fixed x ∈ Ω. Then the dataterm
from (1) is a possibly nonconvex real-valued function (cf.
Fig. 3) that we seek to minimize over a compact interval Γ:

min
u∈Γ

ρ(u). (5)

Due to the one-to-one correspondence between γαi and 1αi
it is clear that solving problem (5) is equivalent to finding a
minimizer of the lifted energy:

ρ(u) = min
1≤i≤k

ρi(u), (6)

ρi(u) =




ρ(γαi ), if u = 1αi , α ∈ [0, 1],

∞, else.
(7)

Note that the constraint in (7) is essentially the nonconvex
special ordered set of type 2 (SOS2) constraint [3]. More
precisely, we demand that the “derivative” in label direction
(∂γu)i := ui+1 − ui is zero, except for two neighboring
elements, which add up to one. In the following proposition,
we derive the tightest convex relaxation of ρ.

Proposition 1. The convex envelope of (6) is given as:

ρ∗∗(u) = sup
v∈Rk

〈u,v〉 − max
1≤i≤k

ρ∗i (v), (8)

where the conjugate of the individual ρi is

ρ∗i (v) = ci(v) + ρ∗i

(
vi

γi+1 − γi

)
, (9)

with ci(v) = 〈1i−1,v〉 − γi
γi+1−γi vi and ρi = ρ+ δΓi

.

Proof. See supplementary material.

The above proposition reveals that the convex relaxation
implicitly convexifies the dataterm ρ on each interval Γi.
The equality ρ∗i = ρ∗∗∗i implies that starting with ρi yields
exactly the same convex relaxation as starting with ρ∗∗i .

Corollary 1. If ρ is linear on each Γi, then the convex en-
velopes of ρ(u) and σ(u) coincide, where the latter is:

σ(u) =




ρ(γαi ), if ∃i : u = 1αi , α ∈ {0, 1},
∞, else.

(10)

Proof. Consider an additional constraint δ{γi,γi+1} for each
ρi, which corresponds to selecting α ∈ {0, 1} in (7). The
fact that our relaxation is independent of whether we choose
ρi or ρ∗∗i , along with the fact that the convex hull of two
points is a line, yields the assertion.

For the piecewise linear case, it is possible to find an
explicit form of the biconjugate.



Proposition 2. Let us denote by r ∈ Rk the vector with

ri = ρ(γi+1)− ρ(γi), 1 ≤ i ≤ k. (11)

Under the assumptions of Prop. 1, one obtains:

σ∗∗(u) =




ρ(γ1) + 〈u, r〉, if ui ≥ ui+1,ui ∈ [0, 1],

∞, else.
(12)

Proof. See supplementary material.

Up to an offset (which is irrelevant for the optimization),
one can see that (12) coincides with the dataterm of [15], the
discretizations of [17, 18], and – after a change of variable
– with [11]. This not only proves that the latter is optimiz-
ing a convex envelope, but also shows that our method natu-
rally generalizes the work from piecewise linear to arbitrary
piecewise convex energies. Fig. 3a and Fig. 3b illustrate the
difference of σ∗∗ and ρ∗∗ on the example of a nonconvex
stereo matching cost.

Because our method allows arbitrary convex functions
on each Γi, we can prove that, for the two label case, our
approach optimizes the convex envelope of the dataterm.

Proposition 3. In the case of binary labeling, i.e., L = 2,
the convex envelope of (6) reduces to

ρ∗∗(u) = ρ∗∗ (γ1 + u(γ2 − γ1)) , with u ∈ [0, 1]. (13)

Proof. See supplementary material.

3.2. A Lifted Representation of the Total Variation

We now want to find a lifted convex formulation that em-
ulates the total variation regularization in (1). We follow [5]
and define an appropriate integrand of the functional

TV (u) =

∫

Ω

Φ(x,Du), (14)

where the distributional derivative Du is a finite Rk×d-
valued Radon measure [2]. We define

Φ(g) = min
1≤i≤j≤k

Φi,j(g). (15)

The individual Φi,j : Rk×d → R ∪ {∞} are given by:

Φi,j(g) =





∣∣∣γαi − γβj
∣∣∣ · |ν|2, if g = (1αi − 1βj ) νT,

∞, else,
(16)

ρ∗i
epi(ρ∗i )

γi

γi+1

vi(x)/(γi+1 − γi)

z
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(b)
Figure 4. Illustration of the epigraph projection. In the left sub-
figure the projection onto the epigraph of the conjugate of a con-
vex quadratic ρi is shown. In the right subfigure the piecewise
linear case is illustrated. In the both cases all points that lie in the
gray sets are orthogonally projected onto the respective linear parts
whereas the points that lie in the green sets are projected onto the
parabolic part (in the quadratic case) respectively the kinks (in the
piecewise linear case). In the piecewise linear case the green sets
are normal cones. The red dashed lines correspond to the bound-
ary cases. γi, γi+1, µ1, µ2 are the slopes of the segments of ρ∗i
respectively the (sub-)label positions of ρi.

for some α, β ∈ [0, 1] and ν ∈ Rd. The intuition is that Φi,j

penalizes a jump from γαi to γβj in the direction of ν. Since
Φ is nonconvex we compute the convex envelope.

Proposition 4. The convex envelope of (15) is

Φ∗∗(g) = sup
p∈K
〈p, g〉, (17)

where K ⊂ Rk×d is given as:

K =
{
p ∈ Rk×d

∣∣∣
∣∣∣pT(1αi − 1βj )

∣∣∣
2
≤
∣∣∣γαi − γβj

∣∣∣ ,

∀ 1 ≤ i ≤ j ≤ k, ∀α, β ∈ [0, 1]
}
.

(18)

Proof. See supplementary material.

The set K from Eq. (18) involves infinitely many con-
straints which makes numerical optimization difficult. As
the following proposition reveals, the infinite number of
constraints can be reduced to only linearly many, allowing
to enforce the constraint p ∈ K exactly.

Proposition 5. If the labels are ordered (γ1 < γ2 < . . . <

γL) then the constraint set K from Eq. (18) is equal to

K = {p ∈Rk×d | |pi|2 ≤ γi+1 − γi, ∀i}. (19)

Proof. See supplementary material.



Direct Optimization of
(25),

t = 0.6s, 11.78 MB

Baseline (L = 8),
t =∞, 113 MB

Baseline (L = 16),
t =∞, 226 MB

Baseline (L = 256),
t =∞, 3619 MB

Proposed (L = 2)
t = 1s, 27 MB

Proposed (L = 10)
t = 15s, 211 MB

Figure 5. Denoising comparison. We compare the proposed
method to the baseline method [17] on the convex ROF problem.
We show the time in seconds required for each method to produce
a solution within a certain energy gap to the optimal solution. As
the baseline method optimizes a piecewise linear approximation of
the quadratic dataterm, it fails to reach that optimality gap even for
L = 256 (indicated by t = ∞). In contrast, while the proposed
lifting method can solve a large class of non-convex problems, it
is almost as efficient as direct methods on convex problems.

This shows that the proposed regularizer coincides with
the total variation from [5], where it has been derived based
on (16) for α and β restricted to {0, 1}. Prop. 5 together
with Prop. 3 show that for k = 1 our formulation amounts
to unlifted TV optimization with a convexified dataterm.

4. Numerical Optimization

Discretizing Ω ⊂ Rd as a d-dimensional Cartesian grid,
the relaxed energy minimization problem becomes

min
u:Ω→Rk

∑

x∈Ω

ρ∗∗(x,u(x)) + Φ∗∗(x,∇u(x)), (20)

where ∇ denotes a forward-difference operator with ∇u :

Ω → Rk×d. We rewrite the dataterm given in equation (8)
by replacing the pointwise maximum over the conjugates
ρ∗i with a maximum over a real number q ∈ R and obtain

Input image f Proposed (L = 5),
E = 20494,
t = 14.6s

Proposed (L = 10),
E = 18844,
t = 30.5s

Proposed (L = 20),
E = 18699,
t = 123.9s

Baseline (L = 256),
E = 18660,
t = 1001s

Baseline (L = 5),
E = 23864,
t = 4.7s

Baseline (L = 10),
E = 19802,
t = 6.3s

Baseline (L = 20),
E = 18876,
t = 12.8s

Figure 6. Denoising using a robust truncated quadratic dataterm.
The top row shows the input image along with the result obtained
by our approach for a varying number of labels L. The bottom
row illustrates the results obtained by the baseline method [17].
The energy of the final solution as well as the total runtime are
given below each image.

the following saddle point formulation of problem (20):

min
u:Ω→Rk

max
(v,q)∈C
p:Ω→K

〈u,v〉 −
∑

x∈Ω

q(x) + 〈p,∇u〉, (21)

C = {(v, q) : Ω→ Rk × R | q(x) ≥ ρ∗i (v(x)), ∀x, ∀i}.
(22)

We numerically compute a minimizer of problem (21) us-
ing a first-order primal-dual method [6, 16] with diagonal
preconditioning [14] and adaptive steps [9]. It alternates
between a gradient descent step in the primal variable and
a gradient ascent step in the dual variable. Subsequently
the dual variables are orthogonally projected onto the sets
C respectively K. In the following we give some hints on
the implementation of the individual steps. For a detailed
discussion we refer to [9]. The projection onto the set K is
a simple `2-ball projection. To simplify the projection onto
C, we transform the k-dimensional epigraph constraints in
(22) into 1-dimensional scaled epigraph constraints by in-
troducing an additional variable z : Ω→ Rk with:

zi(x) = [q(x)− ci (v(x))] (γi+1 − γi) . (23)



E = 279394 E = 208432 E = 196803 E = 194855

E = 278108 E = 208112 E = 196810 E = 194845

E = 277970 E = 208493 E = 196979 E = 194836

Figure 7. Comparison to the MRF approach presented in [27].
The first row shows DC-Linear, second row DC-MRF and third
row our results for 4, 8, 16 and 32 convex pieces on the truncated
quadratic energy (26). Below the figures we show the final non-
convex energy. We achieve competitive results while using a more
compact representation and generalizing to isotropic regularizers.

Using equation (9) we can write the constraints in (22) as

zi(x)

γi+1 − γi
≥ ρ∗i

(
vi(x)

γi+1 − γi

)
. (24)

We implement the newly introduced equality con-
straints (23) introducing a Lagrange multiplier s : Ω →
Rk. It remains to discuss the orthogonal projections onto
the epigraphs of the conjugates ρ∗i . Currently we support
quadratic and piecewise linear convex pieces ρi. For the
piecewise linear case, the conjugate ρ∗i is a piecewise linear
function with domain R. The slopes correspond to the x-
positions of the sublabels and the intercepts correspond to
the function values at the sublabel positions.

The conjugates as well as the epigraph projections of
both, a quadratic and a piecewise linear piece are depicted
in Fig. 4. For the quadratic case, the projection onto the epi-
graph of a parabola is computed using [23, Appendix B.2].

5. Experiments

We implemented the primal-dual algorithm in CUDA to
run on GPUs. 1 For d = 2, our implementation of the func-

1https://github.com/tum-vision/sublabel_relax

(a) Anisotropic Regularization (b) Isotropic Regularization

Figure 8. We compare the proposed relaxation with anistropic reg-
ularizer to isotropic regularization on the stereo matching example.
Using an anisotropic formulation as in [27] leads to grid bias.

tional lifting framework [17], which will serve as a baseline
method, requires 4N(L − 1) optimization variables, while
the proposed method requires 6N(L − 1) + N variables,
where N is the number of points used to discretize the do-
main Ω ⊂ Rd. As we will show, our method requires much
fewer labels to yield comparable results, thus, leading to an
improvement in accuracy, memory usage, and speed.

5.1. Rudin-Osher-Fatemi Model

As a proof of concept, we first evaluate the novel relax-
ation on the well-known Rudin-Osher-Fatemi (ROF) model
[20]. It corresponds to (1) with the following dataterm:

ρ(x, u(x)) = (u(x)− f(x))
2
, (25)

where f : Ω → R denotes the input data. While there
is no practical use in applying convex relaxation methods
to an already convex problem such as the ROF model, the
purpose of this is two-fold. Firstly, it allows us to measure
the overhead introduced by our method by comparing it to
standard convex optimization methods which do not rely on
functional lifting. Secondly, we can experimentally verify
that the relaxation is tight for a convex dataterm.

In Fig. 5 we solve (25) directly using the primal-dual
algorithm [9], using the baseline functional lifting method
[17] and using our proposed algorithm. First, the globally
optimal energy was computed using the direct method with
a very high number of iterations. Then we measure how
long each method took to reach this global optimum to a
fixed tolerance.

The baseline method fails to reach the global optimum
even for 256 labels. While the lifting framework introduces
a certain overhead, the proposed method finds the same
globally optimal energy as the direct unlifted optimization
approach and generalizes to nonconvex energies.



One of the input images Proposed (L = 2) Proposed (L = 4) Proposed (L = 8) Proposed (L = 16) Proposed (L = 32)

Baseline (L = 270) Baseline (L = 2) Baseline (L = 4) Baseline (L = 8) Baseline (L = 16) Baseline (L = 32)

Figure 9. Stereo comparison. We compare the proposed method to the baseline method on the example of stereo matching. The first
column shows one of the two input images and below the baseline method with the full number of labels. The proposed relaxation requires
much fewer labels to reach a smooth depth map. Even for L = 32, the label space discretization of the baseline method is strongly visible,
while the proposed method yields a smooth result already for L = 8.

5.2. Robust Truncated Quadratic Dataterm
The quadratic dataterm in (25) is often not well suited

for real-world data as it comes from a pure Gaussian noise
assumption and does not model outliers. We now consider
a robust truncated quadratic dataterm:

ρ(x, u(x)) =
α

2
min

{
(u(x)− f(x))2, ν

}
. (26)

To implement (26), we use a piecewise polynomial approx-
imation of the dataterm. In Fig. 6 we degraded the input im-
age with additive Gaussian and salt and pepper noise. The
parameters in (26) were chosen as α = 25, ν = 0.025 and
λ = 1. It can be seen that the proposed method requires
fewer labels to find lower energies than the baseline.

5.3. Comparison to the Method of Zach and Kohli

We remark that Prop. 4 and Prop. 5 hold for arbitrary
convex one-homogeneous functionals φ(ν) instead of |ν|2
in equation (16). In particular, they hold for the anisotropic
total variation φ(ν) = |ν|1. This generalization allows us
to directly compare our convex relaxation to the MRF ap-
proach of Zach and Kohli [27].

In Fig. 7 we show the results of optimizing the two mod-
els entitled “DC-Linear” and “DC-MRF” proposed in [27],
and of our proposed method with anisotropic regularization
on the robust truncated denoising energy (26). We picked
the parameters as α = 0.2, ν = 500, and λ = 1. The
label space is also chosen as Γ = [0, 256] as described
in [27]. Note that overall, all the energies are better
than the ones reported in [27]. It can be seen from Fig. 7
that the proposed relaxation is competitive to the one pro-

posed by Zach and Kohli. In addition, the proposed relax-
ation uses a more compact representation and extends to
isotropic and convex one-homogeneous regularizers. To il-
lustrate the advantages of isotropic regularizations, Fig. 8a
and Fig. 8b show a comparison of our proposed method for
isotropic and anisotropic regularization for the example of
stereo matching discussed in the next section.

5.4. Stereo Matching

Given a pair of rectified images, the task of finding a
correspondence between the two images can be formulated
as an optimization problem over a scalar field u : Ω → Γ

where each point u(x) ∈ Γ denotes the displacement along
the epipolar line associated with each x ∈ Ω. The over-
all cost functional fits Eq. (1). In our experiments, we
computed ρ(x, u(x)) for 270 disparities on the Middlebury
stereo benchmark [21] in a 4×4 patch using a truncated sum
of absolute gradient differences. We convexify the match-
ing cost ρ in each range Γi by numerically computing the
convex envelope using the gift wrapping algorithm.

The first row in Fig. 9 shows the result of the proposed
relaxation using the convexified energy between two labels.
The second row shows the baseline approach using the same
amount of labels. Even for L = 2, the proposed method
produces a reasonable depth map while the baseline ap-
proach basically corresponds to a two region segmentation.

5.5. Phase Unwrapping

Many sensors such as time-of-flight cameras or interfer-
ometric synthetic aperture radar (SAR) yield cyclic data ly-



One of the input images Proposed (L = 2) Proposed (L = 4) Proposed (L = 8) Proposed (L = 16) Proposed (L = 32)

Baseline (L = 374) Baseline (L = 2) Baseline (L = 4) Baseline (L = 8) Baseline (L = 16) Baseline (L = 32)

Figure 10. Depth from focus comparison. We compare our method to the baseline approach on the problem of depth from focus. First
column: one of the 374 differently focused input images and the baseline method for full number of labels. Following columns: proposed
relaxation (top row) vs. baseline (bottom row) for 2, 4, 8, 16 and 32 labels each.

ing on the circle S1. Here we consider the task of total
variation regularized unwrapping. As is shown on the left
in Fig. 11, the dataterm is a nonconvex function where each
minimum corresponds to a phase shift by 2π:

ρ (x, u(x)) = dS1 (u(x), f(x))
2
. (27)

For the experiments, we approximated the nonconvex en-
ergy by quadratic pieces as depicted in Fig. 11. The label
space is chosen as Γ = [0, 4π] and the regularization pa-
rameter was set to λ = 0.005. Again, it is visible in Fig. 11
that the baseline method shows label space discretization
and fails to unwrap the depth map correctly if the number
of labels is chosen too low. The proposed method yields a
smooth unwrapped result using only 8 labels.

5.6. Depth From Focus

In depth from focus the task is to recover the depth of a
scene, given a stack of images each taken from a constant
position but in a different focal setting, so that in each image
only the objects of a certain depth are sharp. images. We
compute the dataterm cost ρ by using the modified Lapla-
cian function [13] as a contrast measure.

Similar to the stereo experiments, we convexify the cost
on each label range by computing the convex hull. The
results are shown in Fig. 10. While the baseline method
clearly shows the label space discretization, the proposed
approach yields a smooth depth map. Since the proposed
method uses a convex lower bound of the lifted energy, the
regularizer has slightly more influence on the final result.
This explains why the resulting depth maps in Fig. 10 and
Fig. 9 look overall less noisy.

0 4π

Piecewise convex energy Input image Ground truth

Baseline (L = 8) Baseline (L = 16) Baseline (L = 32) Proposed (L = 8)

Figure 11. We show the piecewise convex approximation of the
phase unwrapping energy, followed by the cyclic input image
and the unwrapped ground truth. With only 8 labels, the pro-
posed method already yields a smooth reconstruction. The base-
line method fails to unwrap the heightmap correctly using 8 labels,
and for 16 and 32 labels, the discretization is still noticable.

6. Conclusion

In this work we proposed a tight convex relaxation that
can be interpreted as a sublabel–accurate formulation of
classical multilabel problems. The final formulation is a
simple saddle-point problem that admits fast primal-dual
optimization. Our method maintains sublabel accuracy even
after discretization and for that reason outperforms existing
spatially continuous methods. Interesting directions for fu-
ture work include higher dimensional label spaces, mani-
fold valued data and more general regularizers.

Acknowledgement This work was supported by the ERC
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Sublabel-Accurate Convex Relaxation of

Vectorial Multilabel Energies

Emanuel Laude?1, Thomas Möllenhoff?1, Michael Moeller1,

Jan Lellmann2, and Daniel Cremers1

1Technical University of Munich?? 2University of Lübeck

Abstract. Convex relaxations of multilabel problems have been demon-

strated to produce provably optimal or near-optimal solutions to a va-

riety of computer vision problems. Yet, they are of limited practical use

as they require a fine discretization of the label space, entailing a huge

demand in memory and runtime. In this work, we propose the first sub-

label accurate convex relaxation for vectorial multilabel problems. Our

key idea is to approximate the dataterm in a piecewise convex (rather

than piecewise linear) manner. As a result we have a more faithful ap-

proximation of the original cost function that provides a meaningful in-

terpretation for fractional solutions of the relaxed convex problem.

Keywords: Convex Relaxation, Optimization, Variational Methods

(a) Original dataterm (b) Without lifting (c) Classical lifting (d) Proposed lifting

Fig. 1: In (a) we show a nonconvex dataterm. Convexification without lifting

would result in the energy (b). Classical lifting methods [11] (c), approximate

the energy piecewise linearly between the labels, whereas the proposed method

results in an approximation that is convex on each triangle (d). Therefore, we

are able to capture the structure of the nonconvex energy much more accurately.

? These authors contributed equally.
?? This work was supported by the ERC Starting Grant “Convex Vision”.
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1 Introduction

1.1 Nonconvex Vectorial Problems

In this paper, we derive a sublabel-accurate convex relaxation for vectorial op-

timization problems of the form

min
u:Ω→Γ

∫

Ω

ρ
(
x, u(x)

)
dx + λTV (u), (1)

where Ω ⊂ Rd, Γ ⊂ Rn and ρ : Ω × Γ → R denotes a generally nonconvex

pointwise dataterm. As regularization we focus on the total variation defined as:

TV (u) = sup
q∈C∞c (Ω,Rn×d),‖q(x)‖S∞≤1

∫

Ω

〈u,Div q〉 dx, (2)

where ‖ · ‖S∞ is the Schatten-∞ norm on Rn×d, i.e., the largest singular value.

For differentiable functions u we can integrate (2) by parts to find

TV (u) =

∫

Ω

‖∇u(x)‖S1 dx, (3)

where the dual norm ‖ · ‖S1 penalizes the sum of the singular values of the

Jacobian, which encourages the individual components of u to jump in the same

direction. This type of regularization is part of the framework of Sapiro and

Ringach [19].

1.2 Related Work

Due to its nonconvexity the optimization of (1) is challenging. For the scalar case

(n = 1), Ishikawa [9] proposed a pioneering technique to obtain globally optimal

solutions in a spatially discrete setting, given by the minimum s-t-cut of a graph

representing the space Ω×Γ . A continuous formulation was introduced by Pock

et al. [15] exhibiting several advantages such as less grid bias and parallelizability.

In a series of papers [16,14], connections of the above approaches were made

to the mathematical theory of cartesian currents [6] and the calibration method

for the Mumford-Shah functional [1], leading to a generalization of the convex

relaxation framework [15] to more general (in particular nonconvex) regularizers.

In the following, researchers have strived to generalize the concept of func-

tional lifting and convex relaxation to the vectorial setting (n > 1). If the

dataterm and the regularizer are both separable in the label dimension, one can

simply apply the above convex relaxation approach in a channel-wise manner
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to each component separately. But when either the dataterm or the regularizer

couple the label components, the situation becomes more complex [8,20].

The approach which is most closely related to our work, and which we con-

sider as a baseline method, is the one by Lellmann et al. [11]. They consider

coupled dataterms with coupled total variation regularization of the form (2).

A drawback shared by all mentioned papers is that ultimately one has to

discretize the label space. While Lellmann et al. [11] propose a sublabel-accurate

regularizer, we show that their dataterm leads to solutions which still have a

strong bias towards the label grid. For the scalar-valued setting, continuous label

spaces have been considered in the MRF community by Zach et al. [22] and Fix

et al. [5]. The paper [21] proposes a method for mixed continuous and discrete

vectorial label spaces, where everything is derived in the spatially discrete MRF

setting. Möllenhoff et al. [12] recently proposed a novel formulation of the scalar-

valued case which retains fully continuous label spaces even after discretization.

The contribution of this work is to extend [12] to vectorial label spaces, thereby

complementing [11] with a sublabel-accurate dataterm.

1.3 Contribution

In this work we propose the first sublabel-accurate convex formulation of vecto-

rial labeling problems. It generalizes the formulation for scalar-valued labeling

problems [12] and thus includes important applications such as optical flow esti-

mation or color image denoising. We show that our method, derived in a spatially

continuous setting, has a variety of interesting theoretical properties as well as

practical advantages over the existing labeling approaches:

– We generalize existing functional lifting approaches (see Sec. 2.2).

– We show that our method is the best convex under-approximation (in a local

sense), see Prop. 1 and Prop. 2.

– Due to its sublabel-accuracy our method requires only a small amount of

labels to produce good results which leads to a drastic reduction in memory.

We believe that this is a vital step towards the real-time capability of lifting

and convex relaxation methods. Moreover, our method eliminates the label

bias, that previous lifting methods suffer from, even for many labels.

– In Sec. 2.3 we propose a regularizer that couples the different label compo-

nents by enforcing a joint jump normal. This is in contrast to [8], where the

components are regularized separately.

– For convex dataterms, our method is equivalent to the unlifted problem –

see Prop. 4. Therefore, it allows a seamless transition between direct opti-

mization and convex relaxation approaches.
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1.4 Notation

We write 〈x, y〉 =
∑
i xiyi for the standard inner product on Rn or the Frobenius

product if x, y are matrices. Similarly ‖ · ‖ without any subscript denotes the

usual Euclidean norm, respectively the Frobenius norm for matrices.

We denote the convex conjugate of a function f : Rn → R∪{∞} by f∗(y) =

supx∈Rn 〈y, x〉 − f(x). It is an important tool for devising convex relaxations,

as the biconjugate f∗∗ is the largest lower-semicontinuous (lsc.) convex function

below f . For the indicator function of a set C we write δC , i.e., δC(x) = 0 if

x ∈ C and ∞ otherwise. ∆U
n ⊂ Rn stands for the unit n-simplex.

2 Convex Formulation

2.1 Lifted Representation

Motivated by Fig. 1, we construct an equivalent representation of (1) in a higher

dimensional space, before taking the convex envelope.

Let Γ ⊂ Rn be a compact and convex set. We partition Γ into a set T of

n-simplices ∆i so that Γ is a disjoint union of ∆i up to a set of measure zero.

Let tij be the j-th vertex of ∆i and denote by V = {t1, . . . , t|V|} the union of all

vertices, referred to as labels, with 1 ≤ i ≤ |T |, 1 ≤ j ≤ n+ 1 and 1 ≤ ij ≤ |V|.
For u : Ω → Γ , we refer to u(x) as a sublabel. Any sublabel can be written

as a convex combination of the vertices of a simplex ∆i with 1 ≤ i ≤ |T | for

appropriate barycentric coordinates α ∈ ∆U
n :

u(x) = Tiα :=
n+1∑

j=1

αjt
ij , Ti := (ti1 , ti2 , . . . , tin+1) ∈ Rn×n+1. (4)

By encoding the vertices tk ∈ V using a one-of-|V| representation ek we can

identify any u(x) ∈ Γ with a sparse vector u(x) containing at least |V|−n many

zeros and vice versa:

u(x) = Eiα :=
n+1∑

j=1

αje
ij , Ei := (ei1 , ei2 , . . . , ein+1) ∈ R|V|×n+1,

u(x) =

|V|∑

k=1

tkuk(x), α ∈ ∆U
n , 1 ≤ i ≤ |T | .

(5)

The entries of the vector eij are zero except for the (ij)-th entry, which is equal

to one. We refer to u : Ω → R|V| as the lifted representation of u. This one-

to-one-correspondence between u(x) = Tiα and u(x) = Eiα is shown in Fig. 2.

Note that both, α and i depend on x. However, for notational convenience we

drop the dependence on x whenever we consider a fixed point x ∈ Ω.
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−1 0 1
0

1

u(x) = 0.7e
2

+ 0.1e
3

+ 0.2e
6

= (0, 0.7, 0.1, 0, 0, 0.2)
>

∆1

∆4

0.2

0.3

t6

t2 t3

Fig. 2: This figure illustrates our notation and the one-to-one correspondence

between u(x) = (0.3, 0.2)> and the lifted u(x) containing the barycentric co-

ordinates α = (0.7, 0.1, 0.2)> of the sublabel u(x) ∈ ∆4 = conv{t2, t3, t6}. The

triangulation (V, T ) of Γ = [−1; 1] × [0; 1] is visualized via the gray lines, cor-

responding to the triangles and the gray dots, corresponding to the vertices

V = {(−1, 0)>, (0, 0)>, . . . , (1, 1)>}, that we refer to as the labels.

2.2 Convexifying the Dataterm

Let for now the weight of the regularizer in (1) be zero. Then, at each point

x ∈ Ω we minimize a generally nonconvex energy over a compact set Γ ⊂ Rn:

min
u∈Γ

ρ(u). (6)

We set up the lifted energy so that it attains finite values if and only if the

argument u is a sparse representation u = Eiα of a sublabel u ∈ Γ :

ρ(u) = min
1≤i≤|T |

ρi(u), ρi(u) =




ρ(Tiα), if u = Eiα, α ∈ ∆U

n ,

∞, otherwise.
(7)

Problems (6) and (7) are equivalent due to the one-to-one correspondence of

u = Tiα and u = Eiα. However, energy (7) is finite on a nonconvex set only. In

order to make optimization tractable, we minimize its convex envelope.

Proposition 1 The convex envelope of (7) is given as:

ρ∗∗(u) = sup
v∈R|V|

〈u,v〉 − max
1≤i≤|T |

ρ∗i (v),

ρ∗i (v) = 〈Eibi,v〉+ ρ∗i (A
>
i E
>
i v), ρi := ρ+ δ∆i

.

(8)

bi and Ai are given as bi := Mn+1
i , Ai :=

(
M1
i , M

2
i , . . . , M

n
i

)
, where M j

i are

the columns of the matrix Mi := (T>i ,1)−> ∈ Rn+1×n+1.

Proof. Follows from a calculation starting at the definition of ρ∗∗. See supple-

mentary material for a detailed derivation.
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t1 t2 Tiα t3

ρ
(u
)

t1 t2 Tiα t3

ρ
(u
)

ρ∗∗(u)

e1

e2

e3
u

Eiα

Standard lifting [11]

ρ∗∗(u)

e1

e2

e3
u

Eiα

Proposed lifting

Fig. 3: Geometrical intuition for the proposed lifting and standard lifting [11]

for the special case of 1-dimensional range Γ = [a, b] and 3 labels {t1, t2, t3}.
The standard lifting correponds to a linear interpolation of the original cost in

between the locations t1, t2, t3, which are associated with the vertices e1, e2, e3

in the lifted energy (lower left). The proposed method extends the cost to the

relaxed set in a more precise way: The original cost is preserved on the connect-

ing lines between adjacent ei (black lines on the bottom right) up to concave

parts (red graphs and lower surface on the right). This information, which may

influence the exact location of the minimizer, is lost in the standard formula-

tion. If the solution of the lifted formulation u is in the interior (gray area) an

approximate solution to the original problem can still be obtained via Eq. (5).

The geometric intuition of this construction is depicted in Fig. 3. Note that if

one prescribes the value of ρi in (7) only on the vertices of the unit simplices

∆U
n , i.e., ρ(u) = ρ(tk) if u = ek and +∞ otherwise, one obtains the linear

biconjugate ρ∗∗(u) = 〈u, s〉, s = (ρ(ti), . . . , ρ(tL)) on the feasible set. This

coincides with the standard relaxation of the dataterm used in [16,10,4,11]. In

that sense, our approach can be seen as a relaxing the dataterm in a more precise

way, by incorporating the true value of ρ not only on the finite set of labels V,

but also everywhere in between, i.e., on every sublabel.
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2.3 Lifting the Vectorial Total Variation

We define the lifted vectorial total variation as

TV (u) =

∫

Ω

Ψ(Du), (9)

where Du denotes the distributional derivative of u and Ψ is positively one-

homogeneous, i.e., Ψ(cu) = cΨ(u), c > 0. For such functions, the meaning of (9)

can be made fully precise using the polar decomposition of the Radon measure

Du [2, Cor. 1.29, Thm. 2.38]. However, in the following we restrict ourselves to

an intuitive motivation for the derivation of Ψ for smooth functions.

Our goal is to find Ψ so that TV (u) = TV (u) whenever u : Ω → R|V|

corresponds to some u : Ω → Γ , in the sense that u(x) = Eiα whenever u(x) =

Tiα. In order for the equality to hold, it must in particular hold for all u that are

classically differentiable, i.e., Du = ∇u, and whose Jacobian ∇u(x) is of rank

1, i.e., ∇u(x) = (Tiα − Tjβ)⊗ ν(x) for some ν(x) ∈ Rd. This rank 1 constraint

enforces the different components of u to have the same jump normal, which is

desirable in many applications. In that case, we observe

TV (u) =

∫

Ω

‖Tiα− Tjβ‖ · ‖ν(x)‖ dx. (10)

For the corresponding lifted representation u, we have ∇u(x) = (Eiα−Ejβ)⊗
ν(x). Therefore it is natural to require Ψ(∇u(x)) = Ψ ((Eiα− Ejβ)⊗ ν(x)) :=

‖Tiα − Tjβ‖ · ‖ν(x)‖ in order to achieve the goal TV (u) = TV (u). Motivated

by these observations, we define

Ψ(p) :=




‖Tiα− Tjβ‖ · ‖ν‖ if p = (Eiα− Ejβ)⊗ ν,
∞ otherwise,

(11)

where α, β ∈ ∆U
n+1, ν ∈ Rd and 1 ≤ i, j ≤ |T |. Since the convex envelope of (9)

is intractable, we derive a “locally” tight convex underapproximation:

R(u) = sup
q:Ω→Rd×|V|

∫

Ω

〈u,Div q〉 − Ψ∗(q) dx. (12)

Proposition 2 The convex conjugate of Ψ is

Ψ∗(q) = δK(q) (13)

with convex set

K =
⋂

1≤i,j≤|T |

{
q ∈ Rd×|V|

∣∣ ‖Qiα−Qjβ‖ ≤ ‖Tiα− Tjβ‖, α, β ∈ ∆U
n+1

}
, (14)

and Qi = (qi1 , qi2 , . . . , qin+1) ∈ Rd×n+1. qj ∈ Rd are the columns of q.
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Proof. Follows from a calculation starting at the definition of the convex conju-

gate Ψ∗. See supplementary material.

Interestingly, although in its original formulation (14) the set K has infinitely

many constraints, one can equivalently represent K by finitely many.

Proposition 3 The set K in equation (14) is the same as

K =
{
q ∈ Rd×|V| |

∥∥Di
q

∥∥
S∞
≤ 1, 1 ≤ i ≤ |T |

}
, Di

q = QiD (TiD)−1, (15)

where the matrices QiD ∈ Rd×n and TiD ∈ Rn×n are given as

QiD :=
(
qi1 − qin+1 , . . . , qin − qin+1

)
, TiD :=

(
ti1 − tin+1 , . . . , tin − tin+1

)
.

Proof. Similar to the analysis in [11], equation (14) basically states the Lipschitz

continuity of a piecewise linear function defined by the matrices q ∈ Rd×|V|.
Therefore, one can expect that the Lipschitz constraint is equivalent to a bound

on the derivative. For the complete proof, see supplementary material.

2.4 Lifting the Overall Optimization Problem

Combining dataterm and regularizer, the overall optimization problem is given

min
u:Ω→R|V|

sup
q:Ω→K

∫

Ω

ρ∗∗(u) + 〈u,Div q〉 dx. (16)

A highly desirable property is that, opposed to any other vectorial lifting ap-

proach from the literature, our method with just one simplex applied to a convex

problem yields the same solution as the unlifted problem.

Proposition 4 If the triangulation contains only 1 simplex, T = {∆}, i.e.,

|V| = n+ 1, then the proposed optimization problem (16) is equivalent to

min
u:Ω→∆

∫

Ω

(ρ+ δ∆)∗∗(x, u(x)) dx+ λTV (u), (17)

which is (1) with a globally convexified dataterm on ∆.

Proof. For u = tn+1 +TDũ the substitution u =
(
ũ1, . . . , ũn, 1−

∑n
j=1 ũj

)
into

ρ∗∗ and R yields the result. For a complete proof, see supplementary material.
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3 Numerical Optimization

3.1 Discretization

For now assume that Ω ⊂ Rd is a d-dimensional Cartesian grid and let Div

denote a finite-difference divergence operator with Div q : Ω → R|V|. Then the

relaxed energy minimization problem becomes

min
u:Ω→R|V|

max
q:Ω→K

∑

x∈Ω
ρ∗∗(x,u(x)) + 〈Div q,u〉. (18)

In order to get rid of the pointwise maximum over ρ∗i (v) in Eq. (8), we introduce

additional variables w(x) ∈ R and additional constraints (v(x), w(x)) ∈ C, x ∈ Ω
so that w(x) attains the value of the pointwise maximum:

min
u:Ω→R|V|

max
(v,w):Ω→C
q:Ω→K

∑

x∈Ω
〈u(x),v(x)〉 − w(x) + 〈Div q,u〉, (19)

where the set C is given as

C =
⋂

1≤i≤|T |
Ci, Ci :=

{
(x, y) ∈ R|V|+1 | ρ∗i (x) ≤ y

}
. (20)

For numerical optimization we use a GPU-based implementation1 of a first-order

primal-dual method [14]. The algorithm requires the orthogonal projections of

the dual variables onto the sets C respectively K in every iteration. However, the

projection onto an epigraph of dimension |V| + 1 is difficult for large values of

|V|. We rewrite the constraints (v(x), w(x)) ∈ Ci, 1 ≤ i ≤ |T |, x ∈ Ω as (n+ 1)-

dimensional epigraph constraints introducing variables ri(x) ∈ Rn, si(x) ∈ R:

ρ∗i
(
ri(x)

)
≤ si(x), ri(x) = A>i E

>
i v(x), si(x) = w(x)− 〈Eibi,v(x)〉. (21)

These equality constraints can be implemented using Lagrange multipliers. For

the projection onto the set K we use an approach similar to [7, Figure 7].

3.2 Epigraphical Projections

Computing the Euclidean projection onto the epigraph of ρ∗i is a central part

of the numerical implementation of the presented method. However, for n > 1

this is nontrivial. Therefore we provide a detailed explanation of the projection

methods used for different classes of ρi. We will consider quadratic, truncated

quadratic and piecewise linear ρ.

1 https://github.com/tum-vision/sublabel_relax
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Quadratic case: Let ρ be of the form ρ(u) = a
2 u
>u+b>u+c. A direct projection

onto the epigraph of ρ∗i = (ρ+δ∆i
)∗ for n > 1 is difficult. However, the epigraph

can be decomposed into separate epigraphs for which it is easier to project onto:

For proper, convex, lsc. functions f, g the epigraph of (f + g)∗ is the Minkowski

sum of the epigraphs of f∗ and g∗ (cf. [17, Exercise 1.28, Theorem 11.23a]).

This means that it suffices to compute the projections onto the epigraphs of

a quadratic function f∗ = ρ∗ and a convex, piecewise linear function g∗(v) =

max1≤j≤n+1〈tij , v〉 by rewriting constraint (21) as

ρ∗(rf ) ≤ sf , δ∆i

∗(cg) ≤ dg s.t. (r, s) = (rf , sf ) + (cg, dg). (22)

For the projection onto the epigraph of a n-dimensional quadratic function we

use the method described in [20, Appendix B.2]. The projection onto a piecewise

linear function is described in the last paragraph of this section.

Truncated quadratic case: Let ρ be of the form ρ(u) = min { ν, a
2 u
>u+b>u+c }

as it is the case for the nonconvex robust ROF with a truncated quadratic

dataterm in Sec. 4.2. Again, a direct projection onto the epigraph of ρ∗i is difficult.

However, a decomposition of the epigraph into simpler epigraphs is possible

as the epigraph of min{f, g}∗ is the intersection of the epigraphs of f∗ and

g∗. Hence, one can separately project onto the epigraphs of (ν + δ∆i)
∗ and

(a2 u
>u + b>u + c + δ∆i)

∗. Both of these projections can be handled using the

methods from the other paragraphs.

Piecewise linear case: In case ρ is piecewise linear on each ∆i, i.e., ρ attains

finite values at a discrete set of sampled sublabels Vi ⊂ ∆i and interpolates

linearly between them, we have that

(ρ+ δ∆i)
∗(v) = max

τ∈Vi
〈τ, v〉 − ρ(τ). (23)

Again this is a convex, piecewise linear function. For the projection onto the

epigraph of such a function, a quadratic program of the form

min
(x,y)∈Rn+1

1

2
‖x− c‖2 +

1

2
‖y − d‖2 s.t. 〈τ, x〉 − ρ(τ) ≤ y,∀τ ∈ Vi (24)

needs to be solved. We implemented the primal active-set method described

in [13, Algorithm 16.3], and found it solves the program in a few (usually 2−10)

iterations for a moderate number of constraints.
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-1 0 1
-1

0

1

Naive, 81 labels.

-1 0 1
-1

0

1

[11], 81 labels.

−1 1
−1

1

Ours, 4 labels.

Fig. 4: ROF denoising of a vector-valued signal f : [0, 1] → [−1, 1]2, discretized

on 50 points (shown in red). We compare the proposed approach (right) with

two alternative techniques introduced in [11] (left and middle). The labels are

visualized by the gray grid. While the naive (standard) multilabel approach from

[11] (left) provides solutions that are constrained to the chosen set of labels, the

sublabel accurate regularizer from [11] (middle) does allow sublabel solutions,

yet – due to the dataterm bias – these still exhibit a strong preference for the grid

points. In contrast, the proposed approach does not exhibit any visible grid bias

providing fully sublabel-accurate solutions: With only 4 labels, the computed

solutions (shown in blue) coincide with the “unlifted” problem (green).

4 Experiments

4.1 Vectorial ROF Denoising

In order to validate experimentally, that our model is exact for convex dataterms,

we evaluate it on the Rudin-Osher-Fatemi [18] (ROF) model with vectorial

TV (2). In our model this corresponds to defining ρ(x, u(x)) = 1
2‖u(x)− I(x)‖2.

As expected based on Prop. 4 the energy of the solution of the unlifted problem

is equal to the energy of the projected solution of our method for |V| = 4 up to

machine precision, as can be seen in Fig. 4 and Fig. 5. We point out, that the

sole purpose of this experiment is a proof of concept as our method introduces

an overhead and convex problems can be solved via direct optimization. It can

be seen in Fig. 4 and Fig. 5, that the baseline method [11] has a strong label

bias.

4.2 Denoising with Truncated Quadratic Dataterm

For images degraded with both, Gaussian and salt-and-pepper noise we define

the dataterm as ρ(x, u(x)) = min
{

1
2‖u(x)− I(x)‖2, ν

}
. We solve the problem
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Input image Unlifted Problem,

E = 992.50

Ours, |T | = 1,

|V| = 4,

E = 992.51

Ours, |T | = 6

|V| = 2× 2× 2

E = 993.52

Baseline,

|V| = 4× 4× 4,

E = 2255.81

Fig. 5: Convex ROF with vectorial TV. Direct optimization and proposed method

yield the same result. In contrast to the baseline method [11] the proposed ap-

proach has no discretization artefacts and yields a lower energy. The regulariza-

tion parameter is chosen as λ = 0.3.

Noisy input Ours, |T | = 1,

|V| = 4,

E = 2849.52

Ours, |T | = 6,

|V| = 2× 2× 2,

E = 2806.18

Ours, |T | = 48,

|V| = 3× 3× 3,

E = 2633.83

Baseline,

|V| = 4× 4× 4,

E = 3151.80

Fig. 6: ROF with a truncated quadratic dataterm (λ = 0.03 and ν = 0.025).

Compared to the baseline method [11] the proposed approach yields much better

results, already with a very small number of 4 labels.

using the epigraph decomposition described in the second paragraph of Sec. 3.2.

It can be seen, that increasing the number of labels |V| leads to lower energies and

at the same time to a reduced effect of the TV. This occurs as we always compute

a piecewise convex underapproximation of the original nonconvex dataterm, that

gets tighter with a growing number of labels. The baseline method [11] again

produces strong discretization artefacts even for a large number of labels |V| =
4× 4× 4 = 64.
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Image 1 [8], |V| = 5× 5,

0.67 GB, 4 min

aep = 2.78

[8], |V| = 11× 11,

2.1 GB, 12 min

aep = 1.97

[8], |V| = 17× 17,

4.1 GB, 25 min

aep = 1.63

[8], |V| = 28× 28,

9.3 GB, 60 min

aep = 1.39

Image 2 [11], |V| = 3× 3,

0.67 GB, 0.35 min

aep = 5.44

[11], |V| = 5× 5,

2.4 GB, 16 min

aep = 4.22

[11], |V| = 7× 7,

5.2 GB, 33 min

aep = 2.65

[11], |V| = 9× 9,

Out of memory.

Ground truth Ours, |V| = 2× 2,

0.63 GB, 17 min

aep = 1.28

Ours, |V| = 3× 3,

1.9 GB, 34 min

aep = 1.07

Ours, |V| = 4× 4,

4.1 GB, 41 min

aep = 0.97

Ours, |V| = 6× 6,

10.1 GB, 56 min

aep = 0.9

Fig. 7: We compute the optical flow using our method, the product space ap-

proach [8] and the baseline method [11] for a varying amount of labels and

compare the average endpoint error (aep). The product space method clearly

outperforms the baseline, but our approach finds the overall best result already

with 2 × 2 labels. To achieve a similarly precise result as the product space

method, we require 150 times fewer labels, 10 times less memory and 3 times

less time. For the same number of labels, the proposed approach requires more

memory as it has to store a convex approximation of the energy instead of a

linear one.

4.3 Optical Flow

We compute the optical flow v : Ω → R2 between two input images I1, I2.

The label space Γ = [−d, d]2 is chosen according to the estimated maximum

displacement d ∈ R between the images. The dataterm is ρ(x, v(x)) = ‖I2(x)−
I1(x+ v(x))‖, and λ(x) is based on the norm of the image gradient ∇I1(x).

In Fig. 7 we compare the proposed method to the product space approach

[8]. Note that we implemented the product space dataterm using Lagrange mul-



14 E. Laude, T. Möllenhoff, M. Moeller, J. Lellmann, D. Cremers

(a) Image 1 and 2 (b) Proposed, |V| = 2× 2 (c) Baseline, |V| = 7× 7

Fig. 8: Large displacement flow between two 640×480 images (a) using a 81×81

search window. The result of our method with 4 labels is shown in (b), the

baseline [11] in (c). Our method can correctly identify the large motion.

tipliers, also referred to as the global approach in [8]. While this increases the

memory consumption, it comes with lower computation time and guaranteed

convergence. For our method, we sample the label space Γ = [−15, 15]2 on

150× 150 sublabels and subsequently convexify the energy on each triangle us-

ing the quickhull algorithm [3]. For the product space approach we sample the

label space at equidistant labels, from 5×5 to 27×27. As the regularizer from the

product space approach is different from the proposed one, we chose µ differently

for each method. For the proposed method, we set µ = 0.5 and for the product

space and baseline approach µ = 3. We can see in Fig. 7, our method outperforms

the product space approach w.r.t. the average end-point error. Our method out-

performs previous lifting approaches: In Fig. 8 we compare our method on large

displacement optical flow to the baseline [11]. To obtain competitive results on

the Middlebury benchmark, one would need to engineer a better dataterm.

5 Conclusions

We proposed the first sublabel-accurate convex relaxation of vectorial multil-

abel problems. To this end, we approximate the generally nonconvex dataterm

in a piecewise convex manner as opposed to the piecewise linear approxima-

tion done in the traditional functional lifting approaches. This assures a more

faithful approximation of the original cost function and provides a meaningful

interpretation for the non-integral solutions of the relaxed convex problem. In

experimental validations on large-displacement optical flow estimation and color

image denoising, we show that the computed solutions have superior quality

to the traditional convex relaxation methods while requiring substantially less

memory and runtime.
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Abstract

In this work we show how sublabel-accurate multilabel-
ing approaches [15, 18] can be derived by approximating a
classical label-continuous convex relaxation of nonconvex
free-discontinuity problems. This insight allows to extend
these sublabel-accurate approaches from total variation to
general convex and nonconvex regularizations. Further-
more, it leads to a systematic approach to the discretization
of continuous convex relaxations. We study the relation-
ship to existing discretizations and to discrete-continuous
MRFs. Finally, we apply the proposed approach to obtain
a sublabel-accurate and convex solution to the vectorial
Mumford-Shah functional and show in several experiments
that it leads to more precise solutions using fewer labels.

1. Introduction

1.1. A class of continuous optimization problems

Many tasks particularly in low-level computer vision
can be formulated as optimization problems over mappings
u : Ω → Γ between sets Ω and Γ. The energy functional
is usually designed in such a way that the minimizing ar-
gument corresponds to a mapping with the desired solu-
tion properties. In classical discrete Markov random field
(MRF) approaches, which we refer to as fully discrete opti-
mization, Ω is typically a set of nodes (e.g., pixels or super-
pixels) and Γ a set of labels {1, . . . , `}.

However, in many problems such as image denoising,
stereo matching or optical flow where Γ ⊂ Rd is naturally
modeled as a continuum, this discretization into labels can
entail unreasonably high demands in memory when using a
fine sampling, or it leads to a strong label bias when using
a coarser sampling, see Figure 1. Furthermore, as jump dis-
continuities are ubiquitous in low-level vision (e.g., caused
by object edges, occlusion boundaries, changes in albedo,
shadows, etc.), it is important to model them in a meaning-
ful manner. By restricting either Ω or Γ to a discrete set,
one loses the ability to mathematically distinguish between
continuous and discontinuous mappings.

(a) (b)

Figure 1: The classical way to discretize continuous convex
relaxations such as the vectorial Mumford-Shah functional
[26] leads to solutions (b), top-left) with a strong bias to-
wards the chosen labels (here an equidistant 5× 5× 5 sam-
pling of the RGB space). This can be seen in the bottom
left part of the image, where the green color is truncated
to the nearest label which is gray. The proposed sublabel-
accurate approximation of the continuous relaxation leads
to bias-free solutions (b), bottom-right).

Motivated by these two points we consider fully-
continuous optimization approaches, where the idea is to
postpone the discretization of Ω ⊂ Rn and Γ ⊂ R as long
as possible. The prototypical class of continuous optimiza-
tion problems which we consider in this work are noncon-
vex free-discontinuity problems, inspired by the celebrated
Mumford-Shah functional [4, 19]:

E(u) =

∫

Ω\Ju
f (x, u(x),∇u(x)) dx

+

∫

Ju

d
(
x, u−(x), u+(x), νu(x)

)
dHn−1(x).

(1)

The first integral is defined on the region Ω \ Ju where u
is continuous. The integrand f : Ω × Γ × Rn → [0,∞]
can be thought of as a combined data term and regularizer,
where the regularizer can penalize variations in terms of the
(weak) gradient ∇u. The second integral is defined on the
(n− 1)-dimensional discontinuity set Ju ⊂ Ω and d : Ω×
Γ × Γ × Sn−1 → [0,∞] penalizes jumps from u− to u+

in unit direction νu. The appropriate function space for (1)
are the special functions of bounded variation. These are

1



functions of bounded variation (cf. Section 2 for a defintion)
whose distributional derivative Du can be decomposed into
a continuous part and a jump part in the spirit of (1):

Du = ∇u · Ln +
(
u+ − u−

)
νu · Hn−1 ¬ Ju, (2)

where Ln denotes the n-dimensional Lebesgue measure
and Hn−1 ¬ Ju the (n − 1)-dimensional Hausdorff mea-
sure restricted to the jump set Ju. For an introduction to
functions of bounded variation and the study of existence of
minimizers to (1) we refer the interested reader to [2].

Note that due to the possible nonconvexity of f in the
first two variables a surprisingly large class of low-level vi-
sion problems fits the general framework of (1). While (1)
is a difficult nonconvex optimization problem, the state-of-
the-art are convex relaxations [1, 6, 9]. We give an overview
of the idea behind the convex reformulation in Section 3.

Extensions to the vectorial setting, i.e., dim(Γ) > 1,
have been studied by Strekalovskiy et al. in various works
[12, 26, 27] and recently using the theory of currents by
Windheuser and Cremers [29]. The case when Γ is a man-
ifold has been considered by Lellmann et al. [17]. These
advances have allowed for a wide range of difficult vecto-
rial and joint optimization problems to be solved within a
convex framework.

1.2. Related work

The first practical implementation of (1) was proposed
by Pock et al. [20], using a simple finite differencing
scheme in both Ω and Γ which has remained the stan-
dard way to discretize convex relaxations. This leads to a
strong label bias (see Figure 1b), top-left) despite the ini-
tially label-continuous formulation.

In the MRF community, a related approach to overcome
this label-bias are discrete-continuous models (discrete Ω
and continuous Γ), pioneered by Zach et al. [30, 31]. Most
similar to the present work is the approach of Fix and Agar-
wal [11]. They derive the discrete-continuous approaches
as a discretization of an infinite dimensional dual linear
program. Their approach differs from ours, as we start
from a different (nonlinear) infinite-dimensional optimiza-
tion problem and consider a representation of the dual vari-
ables which enforces continuity. The recent work of Bach
[3] extends the concept of submodularity from discrete to
continuous Γ along with complexity estimates.

There are also continuous-discrete models, i.e. the range
Γ is discretized into labels but Ω is kept continuous [10, 16].
Recently, these spatially continuous multilabeling models
have been extended to allow for so-called sublabel accu-
rate solutions [15, 18], i.e., solutions which lie between two
labels. These are, however, limited to total variation regu-
larization, due to the separate convexification of data term
and regularizer. We show in this work that for general reg-
ularizers a joint convex relaxation is crucial.

Finally, while not focus of this work, there are of course
also fully-discrete approaches, among many [14, 25, 28],
which inspired some of the continuous formulations.

1.3. Contribution

In this work, we propose an approximation strategy
for fully-continuous relaxations which retains continuous Γ
even after discretization (see Figure 1b), bottom-right). We
summarize our contributions as:

• We generalize the work [18] from total variation to
general convex and nonconvex regularization.

• We prove (see Prop. 2 and Prop. 4) that different ap-
proximations to a convex relaxation of (1) give rise to
existing relaxations [20] and [18]. We investigate the
relationship to discrete-continuous MRFs in Prop. 5.

• On the example of the vectorial Mumford-Shah func-
tional [26] we show that our framework yields also
sublabel-accurate formulations of extensions to (1).

2. Notation and preliminaries
We denote the Iverson bracket as J·K. Indicator functions

from convex analysis which take on values 0 and ∞ are
denoted by δ{·}. We denote by f∗ the convex conjugate of
f : Rn → R ∪ {∞}. Let Ω ⊂ Rn be a bounded open set.
For a function u ∈ L1(Ω;R) its total variation is defined by

TV (u) = sup

{∫

Ω

uDivϕ dx : ϕ ∈ C1
c (Ω;Rn)

}
. (3)

The space of functions of bounded variation, i.e., for which
TV (u) < ∞ (or equivalently for which the distributional
derivative Du is a finite Radon measure) is denoted by
BV(Ω;R) [2]. We write u ∈ SBV(Ω;R) for functions
u ∈ BV(Ω;R) whose distributional derivative admits the
decomposition (2). For the rest of this work, we will make
the following simplifying assumptions:

• The Lagrangian f in (1) is separable, i.e.,

f(x, t, g) = ρ(x, t) + η(x, g), (4)

for possibly nonconvex ρ : Ω×Γ→ R and regularizers
η : Ω× Rn → R which are convex in g.

• The jump regularizer in (1) is isotropic and induced by
a concave function κ : R≥0 → R:

d(x, u−, u+, νu) = κ(|u− − u+|)‖νu‖2, (5)

with κ(a) = 0⇔ a = 0.

• The range Γ = [γ1, γ`] ⊂ R is a compact interval.
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Figure 2: The central idea behind the convex relaxation for
problem (1) is to reformulate the functional in terms of the
complete graph Gu ⊂ Ω × Γ of u : Ω → Γ in the product
space. This procedure is often referred to as “lifting”, as
one lifts the dimensionality of the problem.

3. The convex relaxation
In [1, 6, 9] the authors propose a convex relaxation for

the problem (1). Their basic idea is to reformulate the en-
ergy (1) in terms of the complete graph of u, i.e. lifting
the problem to one dimension higher as illustrated in Fig-
ure 2. The complete graph Gu ⊂ Ω × Γ is defined as the
(measure-theoretic) boundary of the characteristic function
of the subgraph 1u : Ω× R→ {0, 1} given by:

1u(x, t) = Jt < u(x)K. (6)

Furthermore we denote the inner unit normal to 1u with
νGu . It is shown in [1] that for u ∈ SBV(Ω;R) one has

E(u) = F (1u) = sup
ϕ∈K

∫

Gu

〈ϕ, νGu
〉 dHn, (7)

with constraints on the dual variables ϕ ∈ K given by

K =
{

(ϕx, ϕt) ∈ C1
c (Ω× R;Rn × R) :

ϕt(x, t) + ρ(x, t) ≥ η∗(x, ϕx(x, t)), (8)

∥∥
∫ t′

t

ϕx(x, t)dt
∥∥

2
≤ κ(|t− t′|),∀t, t′,∀x

}
. (9)

The functional (7) can be interpreted as the maximum flux
of admissible vector fields ϕ ∈ K through the cut given by
the complete graph Gu. The set K can be seen as capacity
constraints on the flux field ϕ. This is reminiscent to con-
structions from the discrete optimization community [14].
The constraints (8) correspond to the first integral in (1) and
the non-local constraints (9) to the jump penalization.

Using the fact that the distributional derivative of the
subgraph indicator function 1u can be written as

D1u = νGu
· Hm ¬Gu, (10)

one can rewrite the energy (7) as

F (1u) = sup
ϕ∈K

∫

Ω×Γ

〈ϕ,D1u〉. (11)

A convex formulation is then obtained by relaxing the set of
admissible primal variables to a convex set:

C =
{
v ∈ BVloc(Ω× R; [0, 1]) :

v(x, t) = 1 ∀t ≤ γ1, v(x, t) = 0 ∀t > γ`,

v(x, ·) non-increasing
}
.

(12)

This set can be thought of as the convex hull of the sub-
graph functions 1u. The final optimization problem is then
a convex-concave saddle point problem given by:

inf
v∈C

sup
ϕ∈K

∫

Ω×R
〈ϕ,Dv〉. (13)

In dimension one (n = 1), this convex relaxation is tight
[8, 9]. For n > 1 global optimality can be guaranteed by
means of a thresholding theorem in case κ ≡ ∞ [7, 21].
If the primal solution v̂ ∈ C to (13) is binary, the global
optimum u∗ of (1) can be recovered simply by pointwise
thresholding û(x) = sup{t : v̂(x, t) > 1

2}. If v̂ is not
binary, in the general setting it is not clear how to obtain
the global optimal solution from the relaxed solution. An
a posteriori optimality bound to the global optimum E(u∗)
of (1) for the thresholded solution û can be computed by:

|E(û)− E(u∗)| ≤ |F (1û)− F (v̂)|. (14)

Using that bound, it has been observed that solutions are
usually near globally optimal [26]. In the following sec-
tion, we show how different discretizations of the continu-
ous problem (13) lead to various existing lifting approaches
and to generalizations of the recent sublabel-accurate con-
tinuous multilabeling approach [18].

4. Sublabel-accurate discretization
4.1. Choice of primal and dual mesh

In order to discretize the relaxation (13), we partition the
range Γ = [γ1, γ`] into k = ` − 1 intervals. The individual
intervals Γi = [γi, γi+1] form a one dimensional simplicial
complex (see e.g., [13]), and we have Γ = Γ1∪. . .∪Γk. The
points γi ∈ Γ are also referred to as labels. We assume that
the labels are equidistantly spaced with label distance h =
γi+1 − γi. The theory generalizes also to non-uniformly
spaced labels, as long as the spacing is homogeneous in Ω.
Furthermore, we define γ0 = γ1 − h and γ`+1 = γ` + h.

The mesh for dual variables is given by dual complex,
which is formed by the intervals Γ∗i = [γ∗i−1, γ

∗
i ] with nodes

γ∗i = γi+γi+1

2 . An overview of the notation and the consid-
ered finite dimensional approximations is given in Figure 3.
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Figure 3: Overview of the notation and proposed finite di-
mensional approximation spaces.

4.2. Representation of the primal variable

As 1u is a discontinuous jump function, we consider a
piecewise constant approximation for v ∈ C,

Φ0
i (t) = Jt ∈ ΓiK, 1 ≤ i ≤ k, (15)

see Figure 3a). Due to the boundary conditions in Eq. (12),
we set v outside of Γ to 1 on the left and 0 on the right. Note
that the non-decreasing constraint in C is implicitly realized
as ϕt ∈ K can be arbitrarily large.

For coefficients v̂ : Ω× {1, . . . , k} → R we have

v(x, t) =
k∑

i=1

v̂(x, i)Φ0
i (t). (16)

As an example of this representation, consider the approxi-
mation of 1u at point p shown in Figure 2:

v̂(p, ·) =
k∑

i=1

ei

∫

Γ

Φ0
i (t)1u(p, t)dt

= h ·
[
1 1 0.4 0

]>
.

(17)

This leads to the sublabel-accurate representation also con-
sidered in [18]. In that work, the representation from the
above example (17) encodes a convex combination between
the labels γ3 and γ4 with interpolation factor 0.4. Here it
is motivated from a different perspective: we take a finite
dimensional subspace approximation of the infinite dimen-
sional optimization problem (13).

4.3. Representation of the dual variables

4.3.1 Piecewise constant ϕt

The simplest discretization of the dual variable ϕt is to pick
a piecewise constant approximation on the dual intervals Γ∗i
as shown in Figure 3b): The functions are given by

Ψ0
i (t) = Jt ∈ Γ∗i K, 1 ≤ i ≤ `, (18)

As ϕ is a vector field in C1
c , the functions Ψ vanish outside

of Γ. For coefficient functions ϕ̂t : Ω × {1, . . . , `} → R
and ϕ̂x : Ω× {1, . . . , k} → Rn we have:

ϕt(t) =
∑̀

i=1

ϕ̂t(i)Ψ
0
i (t), ϕx(t) =

k∑

i=1

ϕ̂x(i)Φ0
i (t). (19)

To avoid notational clutter, we dropped x ∈ Ω in (19) and
will do so also in the following derivations. Note that for
ϕx we chose the same piecewise constant approximation as
for v, as we keep the model continuous in Ω, and ultimately
discretize it using finite differences in x.

Discretization of the constraints In the following, we
will plug in the finite dimensional approximations into the
constraints from the set K. We start by reformulating the
constraints in (8). Taking the infimum over t ∈ Γi they can
be equivalently written as:

inf
t∈Γi

ϕt(t) + ρ(t)− η∗ (ϕx(t)) ≥ 0, 1 ≤ i ≤ `. (20)

Plugging in the approximation (19) into the above leads to
the following constraints for 1 ≤ i ≤ k:

ϕ̂t(i)+ inf
t∈[γi,γ∗i ]

ρ(t) ≥ η∗(ϕ̂x(i)),

ϕ̂t(i+ 1)+ inf
t∈[γ∗i ,γi+1]

ρ(t)

︸ ︷︷ ︸
min-pooling

≥ η∗(ϕ̂x(i)). (21)

These constraints can be seen as min-pooling of the contin-
uous unary potentials in a symmetric region centered on the
label γi. To see that more easily, assume one-homogeneous
regularization so that η∗ ≡ 0 on its domain. Then two
consecutive constraints from (21) can be combined into one
where the infimum of ρ is taken over Γ∗i = [γ∗i , γ

∗
i+1] cen-

tered the label γi. This leads to capacity constraints for the
flow in vertical direction −ϕ̂t(i) of the form

− ϕ̂t(i) ≤ inf
t∈Γ∗i

ρ(t), 2 ≤ i ≤ `− 1, (22)

as well as similar constraints on ϕ̂t(1) and ϕ̂t(`). The effect
of this on a nonconvex energy is shown in Figure 4 on the
left. The constraints (21) are convex inequality constraints,
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Figure 4: Left: piecewise constant dual variables ϕt lead to a linear approximation (shown in black) to the original cost
function (shown in red). The unaries are determined through min-pooling of the continuous cost in the Voronoi cells around
the labels. Right: continuous piecewise linear dual variables ϕt convexify the costs on each interval.

which can be implemented using standard proximal opti-
mization methods and orthogonal projections onto the epi-
graph epi(η∗) as described in [21, Section 5.3].

For the second part of the constraint set (9) we insert
again the finite-dimensional representation (19) to arrive at:

∥∥(1− α)ϕ̂x(i) +

j−1∑

l=i+1

ϕ̂x(l) + βϕ̂x(j)
∥∥

≤
κ(γβj − γαi )

h
, ∀ 1 ≤ i ≤ j ≤ k, α, β ∈ [0, 1],

(23)

where γαi := (1−α)γi +αγi+1. These are infinitely many
constraints, but similar to [18] these can be implemented
with finitely many constraints.

Proposition 1. For concave κ : R+
0 → R with κ(a) = 0⇔

a = 0, the constraints (23) are equivalent to

∥∥
j∑

l=i

ϕ̂x(l)
∥∥ ≤ κ(γj+1 − γi)

h
, ∀1 ≤ i ≤ j ≤ k. (24)

Proof. Proofs are given in the supplementary material.

This proposition reveals that only information from the
labels γi enters into the jump regularizer κ. For ` = 2 we
expect all regularizers to behave like the total variation.

Discretization of the energy For the discretization of the
saddle point energy (13) we apply the divergence theorem

∫

Ω×R
〈ϕ,Dv〉 =

∫

Ω×R
−Divϕ · v dt dx, (25)

and then discretize the divergence by inserting the piecewise
constant representations of ϕt and v:

∫

R
−∂tϕt(t)v(t) dt =

− ϕ̂t(1)−
k∑

i=1

v̂(i) [ϕ̂t(i+ 1)− ϕ̂t(i)] .
(26)

The discretization of the other parts of the divergence are
given as the following:

∫

R
−∂xj

ϕx(t)v(t) dt = −h
k∑

i=1

∂xj
ϕ̂x(i)v̂(i), (27)

where the spatial derivatives ∂xj are ultimately discretized
using standard finite differences. It turns out that the above
discretization can be related to the one from [20]:

Proposition 2. For convex one-homogeneous η the dis-
cretization with piecewise constant ϕt and ϕx leads to the
traditional discretization as proposed in [20], except with
min-pooled instead of sampled unaries.

4.3.2 Piecewise linear ϕt

As the dual variables in K are continuous vector fields, a
more faithful approximation is given by a continuous piece-
wise linear approximation, given for 1 ≤ i ≤ ` as:

Ψ1
i (t) =





t−γi−1

h , if t ∈ [γi−1, γi],
γi+1−t
h , if t ∈ [γi, γi+1],

0 otherwise.
(28)

They are shown in Figure 3c), and we set:

ϕt(t) =
∑̀

i=1

ϕ̂t(i)Ψ
1
i (t). (29)

Note that the piecewise linear dual representation consid-
ered by Fix et al. in [11] differs in this point, as they do not
ensure a continuous representation. Unlike the proposed ap-
proach their approximation does not take a true subspace of
the original infinite dimensional function space.

Discretization of the constraints We start from the refor-
mulation (20) of the original constraints (8). With (29) for
ϕt and (19) for ϕx, we have for 1 ≤ i ≤ k:

inf
t∈Γi

ϕ̂t(i)
γi+1 − t

h
+ ϕ̂t(i+ 1)

t− γi
h

+ ρ(t) ≥ η∗(ϕ̂x(i)).

(30)



While the constraints (30) seem difficult to implement, they
can be reformulated in a simpler way involving ρ∗.

Proposition 3. The constraints (30) can be equivalently
reformulated by introducing additional variables a ∈ Rk,
b ∈ Rk, where ∀i ∈ {1, . . . , k}:
r(i) = (ϕ̂t(i)− ϕ̂t(i+ 1))/h,

a(i) + b(i)− (ϕ̂t(i)γi+1 − ϕ̂t(x, i+ 1)γi)/h = 0,

r(i) ≥ ρ∗i (a(i)) , ϕ̂x(i) ≥ η∗ (b(i)) ,

(31)

with ρi(x, t) = ρ(x, t) + δ{t ∈ Γi}.
The constraints (31) are implemented by projections

onto the epigraphs of η∗ and ρ∗i , as they can be written as:

(r(i), a(i)) ∈ epi(ρ∗i ), (ϕ̂x(i), b(i)) ∈ epi(η∗). (32)

Epigraphical projections for quadratic and piecewise linear
ρi are described in [18]. In Section 5.1 we describe how
to implement piecewise quadratic ρi. As the convex conju-
gate of ρi enters into the constraints, it becomes clear that
this discretization only sees the convexified unaries on each
interval, see also the right part of Figure 4.

Discretization of the energy It turns out that the piece-
wise linear representation of ϕt leads to the same discrete
bilinear saddle point term as (26). The other term remains
unchanged, as we pick the same representation of ϕx.

Relation to existing approaches In the following we
point out the relationship of the approximation with piece-
wise linear ϕt to the sublabel-accurate multilabeling ap-
proaches [18] and the discrete-continuous MRFs [31].

Proposition 4. The discretization with piecewise linear ϕt
and piecewise constant ϕx, together with the choice η(g) =
‖g‖ and κ(a) = a is equivalent to the relaxation [18].

Thus we extend the relaxation proposed in [18] to more
general regularizations. The relaxation [18] was derived
starting from a discrete label space and involved a separate
relaxation of data term and regularizer. To see this, first note
that the convex conjugate of a convex one-homogeneous
function is the indicator function of a convex set [23, Corol-
lary 13.2.1]. Then the constraints (8) can be written as

−ϕt(x, t) ≤ ρ(x, t), (33)
ϕx(x, t) ∈ dom{η∗}, (34)

where (33) is the data term and (34) the regularizer. This
provides an intuition why the separate convex relaxation of
data term and regularizer in [18] worked well. However,
for general choices of η a joint relaxation of data term and
regularizer as in (30) is crucial. The next proposition estab-
lishes the relationship between the data term from [31] and
the one from [18].

Proposition 5. The data term from [18] (which is in turn a
special case of the discretization with piecewise linear ϕt)
can be (pointwise) brought into the primal form

D(v̂) = inf
xi≥0,

∑
i xi=1

v̂=y/h+I>x

k∑

i=1

xiρ
∗∗
i

(
yi
xi

)
, (35)

where I ∈ Rk×k is a discretized integration operator.

The data term of Zach and Kohli [31] is precisely given
by (35) except that the optimization is directly performed
on x, y ∈ Rk. The variable x can be interpreted as 1-sparse
indicator of the interval Γi and y ∈ Rk as a sublabel offset.
The constraint v̂ = y/h+ I>x connects this representation
to the subgraph representation v̂ via the operator I ∈ Rk×k
(see supplementary material for the definition). For general
regularizers η, the discretization with piecewise linear ϕt
differs from [18] as we perform a joint convexification of
data term and regularizer and from [31] as we consider the
spatially continuous setting. Another important question to
ask is which primal formulation is actually optimized af-
ter discretization with piecewise linear ϕt. In particular the
distinction between jump and smooth regularization only
makes sense for continuous label spaces, so it is interesting
to see what is optimized after discretizing the label space.

Proposition 6. Let γ = κ(γ2−γ1) and ` = 2. The approx-
imation with piecewise linear ϕt and piecewise constant ϕx
of the continuous optimization problem (13) is equivalent to

inf
u:Ω→Γ

∫

Ω

ρ∗∗(x, u(x))+(η∗∗ � γ‖ ·‖)(∇u(x)) dx, (36)

where (η � γ‖ · ‖)(x) = infy η(x− y) + γ‖y‖ denotes the
infimal convolution (cf. [23, Section 5]).

From Proposition 6 we see that the minimal discretiza-
tion with ` = 2 amounts to approximating problem (1) by
globally convexifying the data term. Furthermore, we can
see that Mumford-Shah (truncated quadratic) regularization
(η(g) = α‖g‖2, κ(a) ≡ λJa > 0K) is approximated by a
convex Huber regularizer in case ` = 2. This is because the
infimal convolution between x2 and |x| corresponds to the
Huber function. While even for ` = 2 this is a reasonable
approximation to the original model (1), we can gradually
increase the number of labels to get an increasingly faithful
approximation of the original nonconvex problem.

4.3.3 Piecewise quadratic ϕt

For piecewise quadratic ϕt the main difficulty are the con-
straints in (20). For piecewise linear ϕt the infimum over
a linear function plus ρi lead to (minus) the convex conju-
gate of ρi. Quadratic dual variables lead to so called gen-
eralized Φ-conjugates [24, Chapter 11L*, Example 11.66].
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Figure 5: To verify the tightness of the approximation,
we optimize a convex problem (quadratic data term with
quadratic regularization). The discretization with piecewise
linear ϕt recovers the exact solution with 2 labels and re-
mains tight (numerically) for all ` > 2, while the traditional
discretization from [21] leads to a strong label bias.

Such conjugates were also theoretically considered in the
recent work [11] for discrete-continuous MRFs, however an
efficient implementation seems challenging. The advantage
of this representation would be that one can avoid convexi-
fication of the unaries on each interval Γi and thus obtain a
tighter approximation. While in principle the resulting con-
straints could be implemented using techniques from con-
vex algebraic geometry and semi-definite programming [5]
we leave this direction open to future work.

5. Implementation and extensions
5.1. Piecewise quadratic unaries ρi

In some applications such as robust fusion of depth
maps, the data term ρ has a piecewise quadratic form:

ρ(u) =
M∑

m=1

min
{
νm, αm (u− fm)

2
}
. (37)

The intervals on which the above function is a quadratic
are formed by the breakpoints fm ±

√
νm/αm. In order

to optimize this within our framework, we need to compute
the convex conjugate of ρ on the intervals Γi, see Eq. (31).
We can write the data term (37) on each Γi as

min
1≤j≤ni

ai,ju
2 + bi,ju+ ci,j + δ{u ∈ Ii,j}︸ ︷︷ ︸

=:ρi,j(u)

, (38)

where ni denotes the number of pieces and the intervals Ii,j
are given by the breakpoints and Γi. The convex conjugate
is then given by ρ∗i (v) = max1≤j≤ni ρ

∗
i,j(v). As the epi-

graph of the maximum is the intersection of the epigraphs,

epi(ρ∗i ) =
⋂nj

j=1 epi
(
ρ∗i,j
)
, the constraints for the data term

(ri, ai) ∈ epi(ρ∗i ), can be broken down:

(ri,j , ai,j) ∈ epi
(
ρ∗i,j
)
, ri = ri,j , ai = ai,j ,∀j. (39)

The projection onto the epigraphs of the ρ∗i,j are carried out
as described in [18]. Such a convexified piecewise quadratic
function is shown on the right in Figure 4.

5.2. The vectorial Mumford-Shah functional

Recently, the free-discontinuity problem (1) has been
generalized to vectorial functions u : Ω → Rnc by
Strekalovskiy et al. [26]. The model they propose is

nc∑

c=1

∫

Ω\Ju
fc(x, uc(x),∇xuc(x)) dx+λHn−1(Ju), (40)

which consists of a separable data term and separable reg-
ularization on the continuous part. The individual channels
are coupled through the jump part regularizer Hn−1(Ju)
of the joint jump set across all channels. Using the same
strategy as in Section 4, applied to the relaxation described
in [26, Section 3], a sublabel-accurate representation of the
vectorial Mumford-Shah functional can be obtained.

5.3. Numerical solution

We solve the final finite dimensional optimization prob-
lem after finite-difference discretization in spatial direction
using the primal-dual algorithm [20] implemented in the
convex optimization framework prost 1.

6. Experiments
6.1. Exactness in the convex case

We validate our discretization in Figure 5 on the con-
vex problem ρ(u) = (u − f)2, η(∇u) = λ|∇u|2. The
global minimizer of the problem is obtained by solving
(I − λ∆)u = f . For piecewise linear ϕt we recover the
exact solution using only 2 labels, and remain (experimen-
tally) exact as we increase the number of labels. The dis-
cretization from [21] shows a strong label bias due to the
piecewise constant dual variable ϕt. Even with 16 labels
their solution is different from the ground truth energy.

6.2. The vectorial Mumford-Shah functional

Joint depth fusion and segmentation We consider the
problem of joint image segmentation and robust depth fu-
sion from [22] using the vectorial Mumford-Shah functional
from Section 5.2. The data term for the depth channel is
given by (37), where fm are the input depth hypotheses,
αm is a depth confidence and νm is a truncation parameter
to be robust towards outliers. For the segmentation, we use

1https://github.com/tum-vision/prost



(a) Left input image (b) Proposed, (Segmentation) (c) Proposed, (Depth map) (d) [26], (Segmentation) (e) [26], (Depth map)

Figure 6: Joint segmentation and stereo matching. b), c) Using the proposed discretization we can arrive at smooth solutions
using a moderate (5 × 5 × 5 × 5) discretization of the 4-dimensional RGB-D label space. d), e) When using such a coarse
sampling of the label space, the classical discretization used in [26] leads to a strong label bias. Note that with the proposed
approach, a piecewise constant segmentation as in d) could also be obtained by increasing the smoothness parameter.

Noisy Input,
(PSNR=10.4)

[26], ` = 2× 2× 2
(PSNR=14.7)
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Figure 7: Denoising of a synthetic piecewise smooth image degraded with 30% Gaussian noise. The standard discretization of
the vectorial Mumford-Shah functional shows a strong bias towards the chosen labels (see also Figure 8), while the proposed
discretization has no bias and leads to the highest overall peak signal to noise ratio (PSNR).

Figure 8: We show a 1D-slice through the resulting image in
Figure 7 (with ` = 4× 4× 4). The discretization [26] (left)
shows a strong bias towards the labels, while the proposed
discretization (right) yields a sublabel-accurate solution.

a quadratic difference dataterm in RGB space. For Figure 6
we computed multiple depth hypotheses fm on a stereo pair
using different matching costs (sum of absolute (gradient)
differences, and normalized cross correlation) with varying
patch radii (0 to 2). Even for a moderate label space of
5× 5× 5× 5 we have no label discretization artifacts.

The piecewise linear approximation of the unaries in [26]
leads to an almost piecewise constant segmentation of the
image. To highlight the sublabel-accuracy of the proposed
approach we chose a small smoothness parameter which
leads to a piecewise smooth segmentation, but with a higher
smoothness term or different choice of unaries a piecewise
constant segmentation could also be obtained.

Piecewise-smooth approximations In Figure 7 we com-
pare the discretizations for the vectorial Mumford-Shah
functional. We see that the approach [26] shows strong label
bias (see also Figure 8 and 1) while the discretiziation with
piecewise linear duals leads to a sublabel-accurate result.

7. Conclusion
We proposed a framework to numerically solve fully-

continuous convex relaxations in a sublabel-accurate fash-
ion. The key idea is to implement the dual variables us-
ing a piecewise linear approximation. We prove that dif-
ferent choices of approximations for the dual variables give
rise to various existing relaxations: in particular piecewise
constant duals lead to the traditional lifting [20] (with min-
pooling of the unary costs), whereas piecewise linear duals
lead to the sublabel lifting that was recently proposed for
total variation regularized problems [18]. While the lat-
ter method is not easily generalized to other regularizers
due to the separate convexification of data term and regu-
larizer, the proposed representation generalizes to arbitrary
convex and non-convex regularizers such as the scalar and
the vectorial Mumford-Shah problem. The proposed ap-
proach provides a systematic technique to derive sublabel-
accurate discretizations for continuous convex relaxation
approaches, thereby boosting their memory and runtime ef-
ficiency for challenging large-scale applications.
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Abstract

Numerous tasks in imaging and vision can be formu-
lated as variational problems over vector-valued maps. We
approach the relaxation and convexification of such vecto-
rial variational problems via a lifting to the space of cur-
rents. To that end, we recall that functionals with poly-
convex Lagrangians can be reparametrized as convex one-
homogeneous functionals on the graph of the function.
This leads to an equivalent shape optimization problem
over oriented surfaces in the product space of domain and
codomain. A convex formulation is then obtained by relax-
ing the search space from oriented surfaces to more gen-
eral currents. We propose a discretization of the resulting
infinite-dimensional optimization problem using Whitney
forms, which also generalizes recent “sublabel-accurate”
multilabeling approaches.

1. Introduction
We consider functionals of C1-mappings f : X → Y

E(f) =

∫

X
c (x, f(x),∇f(x)) dx, (1)

where X ⊂ Rn, Y ⊂ RN are bounded and open. The cost
function c ≡ c(x, y, ξ) is assumed to be a nonnegative (pos-
sibly nonconvex) continuous function on X × Y ×RN×n

that is polyconvex (see Def. 2) in the Jacobian matrix ξ.
This work is concerned with relaxation and global op-

timization of (1) when, both, dimension and codimension
are possibly larger than one (n > 1, N > 1). This is ex-
pected to be difficult: In the discrete setting problems with
n = 1 or N = 1 typically correspond to polynomial-time
solvable shortest path (n = 1) or graph cut (N = 1) prob-
lems [11, 60, 24, 53], whereas for n,N > 1, the arising
multilabel problems with unordered label spaces are known
to be NP-hard - see [35]. Nevertheless, heuristic strategies
have been shown to yield excellent results in tasks such
as optical flow [10] or shape matching [55, 9]. In con-
trast to such well-established Markov random field (MRF)

works [30, 31, 29, 55, 39, 9, 10, 14] we consider the way
less explored continuous (infinite-dimensional) setting.

Our motivation partly stems from the fact that formula-
tions in function space are very general and admit a variety
of discretizations. Finite difference discretizations of con-
tinuous relaxations often lead to models that are reminis-
cent of MRFs [70], while piecewise-linear approximations
are related to discrete-continuous MRFs [71], see [17, 40].
More recently, for the Kantorovich relaxation in optimal
transport, approximations with deep neural networks were
considered and achieved promising performance, for exam-
ple in generative modeling [2, 54].

We further argue that fractional (non-integer) solutions
to a careful discretization of the continuous model can
implicitly approximate an “integer” continuous solution.
Therefore one can achieve accuracies that go substantially
beyond the mesh size. The resulting models would be
difficult to interpret and derive from a finite-dimensional
viewpoint such that the continuous considerations are re-
quired for the final implementation. Also, formulations
arising from continuous relaxations allow one to introduce
isotropic smoothness potentials without reverting to higher-
order terms in the cost, and, as we show in this work, one
can impose general polyconvex regularizations using only
local constraints. An example of a polyconvex function
(which is in general nonconvex) is the surface area of the
graph, sometimes referred to as “Beltrami regularization”
in the image processing community, see e.g., [28].

In contrast to the discrete multi-labeling setting, an im-
portant question is whether variational problems involving
the energy (1) admit a minimizer. A fruitful approach to
address this question is to suitably relax the notion of solu-
tion, thereby enlarging the search space of admissible can-
didates (“lifting the problem to a larger space”). The ori-
gins of this idea can be traced back1 to the turn of the
century, see Hilbert’s twentieth problem [21]. An exam-
ple of that principle is the celebrated Kantorovich relax-
ation [26] of Monge’s transportation problem [42]. There,

1We refer the interested reader to the historical remarks in
L. C. Young’s book on the calculus of variations [69, pp. 122–123].
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the search over maps f : X → Y is relaxed to one over
probability measures on the product space X × Y . Each
map can be identified in that extended space with a mea-
sure concentrated on its graph. Existence of optimal trans-
portation plans follows directly due to good compactness
properties of the larger space. Furthermore, the nonlinearly
constrained and nonconvex optimization problem is trans-
formed into one of linear programming, leading to rich du-
ality theories and fast numerical algorithms [47].

One may ask whether the relaxed solution in the ex-
tended space has certain regularity properties, for example
whether it is the graph of a (sufficiently regular) map and
thus can be considered a solution to the original (“unlifted”)
problem. In the case of optimal transport, such regularity
theory can be guaranteed under some assumptions [63, 52].
Establishing existence and regularity for problems in which
the cost additionally depends on the Jacobian (for example
minimal surface problems) has been a driving factor in the
development of geometric measure theory, see [44] for an
introduction. In this work, we will use ideas from geomet-
ric measure theory to pursue the above relaxation and lifting
principle for the energy (1). The main idea is to reformu-
late the original variational problem as a shape optimization
problem over oriented manifolds representing the graph of
the map f : X → Y in the product space X × Y . To ob-
tain a convex formulation we enlarge the search space from
oriented manifolds to currents.

1.1. Related Work

A common strategy to solve problems involving (1) is to
revert to local gradient descent minimization based on the
Euler-Lagrange equations. But for nonconvex problems so-
lutions might depend on the initialization and the computed
stationary points may be quite suboptimal. Therefore, we
pursue the aforementioned lifting of the energy (1) to cur-
rents. This lifting has been previously considered in geo-
metric measure theory to establish the aforementioned ex-
istence and regularity theory for vectorial variational prob-
lems in a very broad setting, see e.g., [15, 16, 5]. In contrast
to such impressive theoretical achievements, this paper is
concerned with a discretization and implementation.

There is also a variety of related applied works. The pa-
per [68] tackles the problem of bijective and smooth shape
matching using linear programming. Similar to the present
work, the authors also look for graph surfaces in X ×Y but
they consider the discrete setting and use a different notion
of boundary operator. We study the continuous setting, but
also our discrete formulation is quite different.

For N = 1, the proposed continuous formulation spe-
cializes to [1, 48]. To tackle the setting of N > 1 in a
memory efficient manner, Strekalovskiy et al. [58, 19, 59]
keep a collection of N surfaces with codimension one un-
der the factorization assumption that Y = Y1 × . . . × YN .

In contrast, we consider only one surface of codimension
N , we do not require an assumption on Y , our approach is
applicable to a larger class of functionals and we expect it
to yield a tighter relaxation. The lifting approaches [34, 20]
also tackle vectorial problems by considering the full prod-
uct space, but are limited to total variation regularization
(with the former allowing Y to be a manifold). The recent
work [67] is most related to the present one, however their
relaxation considers a specific instance of (1). Moreover,
the above works are based on finite difference discretiza-
tions of the continuous model. In contrast, the proposed dis-
cretization using discrete exterior calculus yields solutions
beyond the mesh accuracy as in recent sublabel-accurate ap-
proaches. The latter are restricted to N = 1 [41, 40] or to-
tal variation regularization [33]. Recent works also include
extensions to total generalized variation or Laplacian regu-
larization [57, 64, 36].

Recent approaches in shape analysis [56, 62, 61] also
operate in the product space X × Y . However, these are
based on local minimizations of the Gromov-Wasserstein
distance [37] and spectral variants thereof [38] which leads
to (nonconvex) quadratic assignment problems. While the
goal to find a smooth (possibly bijective) map is similar, the
formulations appear to be quite different. To alleviate the
increased cost of the product space formulation, computa-
tionally efficient representations of densities in X ×Y have
been studied in the context of functional maps [46, 51].

2. Notation and Preliminaries

Throughout this paper we will introduce notions from
geometric measure theory, as they are not commonly used
in the vision community. While the subject is rather techni-
cal, our aim is to keep the presentation light and to focus on
the geometric intuition and aspects which are important for
a practical implementation. We invite the reader to consult
chapter 4 in the book [44] and the chapter on exterior calcu-
lus in [13], which both contain many illuminating illustra-
tions. For a more technical treatment we refer to [15, 32].

In the following, we denote a basis in Rd as {e1, . . . , ed}
with dual basis {dx1, . . . ,dxd}where dxi : Rd → R is the
linear functional that maps every x = (x1, . . . , xd) to the i-
th component xi. Given an integer k ≤ d, I(d, k) are the
multi-indices i = (i1, . . . , ik) with 1 ≤ i1 < . . . < ik ≤ d.

As we will consider n-surfaces inX ×Y ⊂ Rn+N , most
of the time we set d = n+N and k = n. To further simplify
notation, we denote the basis vectors {en+1, . . . , en+N}
by {ε1, . . . , εN} and similarly refer to the dual basis as
{dx1, . . .dxn,dy1, . . . ,dyN}. When it is clear from the
context, we treat vectors ei ∈ Rn and εi ∈ RN in the sense
that ei ' (ei,0N ) ∈ Rn+N , εi ' (0n, εi) ∈ Rn+N . As an
example, for∇f(x) ∈ RN×n we can define the expression
ei +∇f(x)ei and read it as (ei,∇f(x)ei) ∈ Rn+N .



2.1. Convex Analysis

The extended reals are denoted by R = R∪{+∞}. For
a finite-dimensional real vector space V and Ψ : V → R
we denote the convex conjugate as Ψ∗ : V ∗ → R and the
biconjugate as Ψ∗∗ : V → R. Ψ∗∗ is the largest lower-
semicontinuous convex function below Ψ. In our notation,
for functions with several arguments, the conjugate is al-
ways taken only in the last argument. As a general reference
to convex analysis, we refer the reader to the books [23, 50].

2.2. Multilinear Algebra

The formalism of multi-vectors we introduce in this sec-
tion is central to this work, as the idea of the relaxation is to
represent the oriented graph of f by a k-vectorfield (more
precisely: a k-current) in the product space X × Y . Basi-
cally, one can multiply vi ∈ Rd to obtain an object

v = v1 ∧ . . . ∧ vk, (2)

called a simple k-vector in Rd. The geometric intuition of
simple k-vectors is, that they describe the k-dimensional
space spanned by the {vi}, together with an orientation and
the area of the parallelotope given by the {vi}. Thus, sim-
ple k-vectors can be thought of oriented parallelotopes as
shown in orange in Fig. 1. In general, k-vectors are defined
to be formal sums

v =
∑

i∈I(d,k)

vi · ei1 ∧ . . . ∧ eik =
∑

i∈I(d,k)

vi · ei, (3)

for coefficients vi ∈ R. They form the vector space ΛkR
d,

which has dimension
(
d
k

)
.

The dual space ΛkRd of k-covectors is defined analo-
gously, with 〈dxi, ej〉 = δij. We define for two k-vectors
(and also for k-covectors) v =

∑
i viei, w =

∑
i wiei an

inner product 〈v, w〉 =
∑

i viwi and norm |v| =
√
〈v, v〉.

k-vectors (elements of ΛkR
d) are called simple, if they

can be written as the wedge product of 1-vectors as in (2).
Unfortunately, for 1 < k < d − 1, not all k-vectors are
simple and the set of simple k-vectors is a nonconvex cone
in ΛkR

d, called the Grassmann cone [7]. This is one aspect
why the setting of n > 1 and N > 1 is more challenging.

Later on, we will consider a relaxation from the noncon-
vex set of simple k-vectors to general k-vectors. Naturally,
for the relaxation to be good, we want the convex energy
to be as large as possible on non-simple k-vectors. For the
Euclidean norm, a good convex extension is the mass norm

‖v‖ = inf

{∑

i

|ξi| : ξi are simple, v =
∑

i

ξi

}
. (4)

The dual norm is the comass norm given by:

‖w‖∗ = sup {〈w, v〉 : v is simple , |v| ≤ 1} . (5)

The mass norm can be understood as the largest norm that
agrees with the Euclidean norm on simple k-vectors.

X ⊂ R2

Gf ⊂ X × Y

e1
e2

e1 ∧ e2 ∈ Λ2R
3

TzGfz
e2 + ξe2

(e1 + ξe1) ∧ (e2 + ξe2) ∈ Λ2R
3

e1 + ξe1

Y ⊂ R

Figure 1: Illustration for the setting of n = 2, N = 1.
The graph Gf of the C1-map f : X → Y is a smooth ori-
ented manifold embedded in the product space X ×Y . The
tangent space at z = (x, f(x)) is spanned by the simple n-
vector (e1 + ξe1) ∧ . . . ∧ (en + ξen) ∈ ΛnRn+N , where
ξ = ∇f(x) ∈ RN×n is the Jacobian.

3. Lifting to Graphs in the Product Space
With the necessary preliminaries in mind, our goal is

now to reparametrize the original energy (1) to the graph
Gf ⊂ X × Y . As shown in Fig. 1, the graph is an oriented
n-dimensional manifold in the product space with global
parametrization u(x) = (x, f(x)).

Definition 1 (Orientation). IfM⊂ Rd is a k-dimensional
smooth manifold in Rd (possibly with boundary), an orien-
tation ofM is a continuous map τM : M → ΛkR

d such
that τM(z) is a simple k-vector with unit norm that spans
the tangent space TzM at every point z ∈M.

From differential geometry we know that the tangent
space TzGf at z = (x, f(x)) is spanned by ∂iu(u−1(z)) =
ei +∇f(x)ei. Therefore, an orientation of Gf is given by

τGf (z) =
M(∇f(π1z))

|M(∇f(π1z))|
, (6)

where the map M : RN×n → ΛnRn+N is given by

M(ξ) = (e1 + ξe1) ∧ . . . ∧ (en + ξen), (7)

and π1 : X × Y → X is the canonical projection onto the
first argument. In order to derive the reparametrization, we
have to connect a simple n-vector (representing an oriented
tangent plane of the graph) with the Jacobian of the original
energy. For that, we need an inverse of the map given in (7).

To derive such an inverse, we first introduce further help-
ful notations. For i ∈ I(m, l) we denote by ī ∈ I(m,m− l)
the element which complements i in {1, 2, . . . ,m} in in-
creasing order, denote 0̄ = {1, . . . ,m} and 0 as the empty



multi-index. Every v ∈ ΛnRn+N can be written as

v =
∑

|i|+|j|=n
vi,jei ∧ εj, (8)

where i ∈ I(n, l), j ∈ I(N, l′), l + l′ = n. To give an
example, the

(
5
2

)
= 10 coefficients of a 2-vector v ∈ Λ2R

5

according to the notation (8) are:

v0̄,0

v1,1 v2,1

v1,2 v2,2 v0,(1,2)

v1,3 v2,3 v0,(1,3) v0,(2,3),

(9)

where we highlighted the N × n coefficients with |j| = 1.
Now note that the vector v = M(ξ) is by construction a
simple n-vector with first component v0̄,0 = 1. To any
v ∈ ΛnRn+N with v0̄,0 = 1 we associate ξ(v) ∈ RN×n

given by
[ξ(v)]j,i = (−1)n−ivī,j . (10)

If and only if v ∈ ΛnRn+N is simple with first component
v0̄,0 = 1 then v = M(ξ(v)). A proof is given in [18, Vol. I,
Ch. 2.1, Prop. 1]. Thus, on the set of simple n-vectors with
first component v0̄,0 = 1,

Σ1 = {v ∈ ΛnRn+N : v = M(ξ) for ξ ∈ RN×n}, (11)

the inverse of the map (7) is given by (10).
Using the above notations, we can define a generalized

notion of convexity, which essentially states that there is a
convex reformulation on k-vectors.

Definition 2 (Polyconvexity). A map c : RN×n → R is
polyconvex if there is a convex function c̄ : ΛnRn+N → R
such that we have

c(ξ) = c̄(M(ξ)) for all ξ ∈ RN×n. (12)

Equivalently one has that c(ξ(v)) = c̄(v) for all v ∈ Σ1.
We also refer to the convex function c̄ as a polyconvex ex-
tension.

In general, the polyconvex extension is not unique. Any
convex function has an obvious polyconvex extension by
(10), but as discussed in the previous section we would like
the convex extension to be as large as possible for v /∈ Σ1.
The largest polyconvex extension which agrees with the
original function on Σ1 can be formally defined using the
convex biconjugate, but is often hard to explicitly compute.
The mass norm (4) corresponds to such a construction.

Nevertheless, given any polyconvex extension, we can
now reparametrize the original energy (1) on the oriented
graph Gf , as we show in the following central proposition.

Proposition 1. Let c̄ : X ×Y ×ΛnRn+N → R be a poly-
convex extension of the original cost c in the last argument.
Define the function Ψ : X × Y ×ΛnRn+N → R,

Ψ(z, v) =

{
v0̄,0c̄(π1z, π2z, v/v

0̄,0), if v0̄,0 > 0,

+∞, otherwise,
(13)

where π1 : X × Y → X and π2 : X × Y → Y are the
canonical projections onto the first and second argument.
Then we can reparametrize (1) as follows:

∫

X
c(x, f(x),∇f(x)) dLn(x)

=

∫

Gf
Ψ(z, τGf (z)) dHn(z),

(14)

where the second integral is the standard Lebesgue inte-
gral with respect to the n-dimensional Hausdorff measure
on Rn+N restricted to the graph Gf .

Proof. We directly calculate:
∫

X
c (x, f(x),∇f(x)) dLn(x) (15)

=

∫

X
Ψ (x, f(x),M(∇f(x))) dLn(x) (16)

=

∫

Gf
Ψ (z,M(∇f(π1z)))

1

|M(∇f(π1z))|
dHn(z) (17)

=

∫

Gf
Ψ
(
z, τGf (z)

)
dHn(z). (18)

The step from (15) to (16) uses that c̄ is a polyconvex ex-
tension (so that we can apply (12)) and the fact that for
v = M(∇f(x)) we have v0̄,0 = 1. To arrive at (17), an
application of the area formula [32, Corollary 5.1.13] suf-
fices and for (18) we used positive one-homogenity of Ψ
and the definition of τGf in (6).

Interestingly, the function (13) is convex and one-
homogeneous in the last argument, as it is the perspective
of a convex function. However, the search space of oriented
graphs of C1 mappings is nonconvex. Therefore we relax
from oriented graphs to the larger set of currents, which we
will introduce in the following section. Since currents form
a vector space, we therefore obtain a convex functional over
a convex domain.

4. From Oriented Graphs to Currents
Throughout this section, let U ⊂ Rd be an open set,

which will later be a neighbourhood of X × Y ⊂ Rn+N ,
where X = cl(X ), Y = cl(Y) are the closures of X ,Y .
The main idea of our relaxation and the geometric intuitions
of pushforward and boundary operator we introduce in this
section are summarized in the following Fig. 2. Currents
are defined in duality with differential forms, which we will
briefly introduce in the following section.



π2]T = JY K

π1]T = JXK

T = JGf K

(a) Graph of diffeomorphism f

∂T

(b) Graph of function with jumps

spt ∂T ⊂ (∂X)× Y

(c) “Stitched” graph (d) Current which is not a graph

Figure 2: The idea of our relaxation is to move from oriented graphs in the product space to the larger set of currents. These
include oriented graphs as special cases, as shown in (a). For a diffeomorphism, the pushforwards π1]T , π2]T yield currents
induced by domain and codomain, which will be a linear constraint in the relaxed problem. In (b) we show the current given
by the graph of a discontinuous function. Since it has holes, the boundary operator ∂T has support inside the domain. We
will constrain the support of the boundary to exclude such cases. (c) Stitching jumps yields a current with vertical parts at the
jump points, which corresponds to the limiting case in the perspective function (13). To obtain an overall convex formulation,
we will also allow currents (d) which don’t necessarily concentrate on the graph of a function.

4.1. Differential Forms

A differential form of order k (short: k-form) is a map
ω : U → ΛkRd. The support of a differential form sptω
is defined as the closure of {z ∈ U : ω(z) 6= 0}. Integra-
tion of a k-form over an oriented k-dimensional manifold is
defined by

∫

M
ω :=

∫

M
〈ω(z), τM(z)〉dHk(z). (19)

A notion of derivative for k-forms is the exterior derivative
dω, which is a (k + 1)-form given by:

〈dω(z), v1 ∧ . . . ∧ vk+1〉 = lim
h→0

1

hk+1

∫

∂P

ω, (20)

where ∂P is the oriented boundary of the parallelotope
spanned by the {hvi} at point z. To get an intuition, note
that for k = 0 this reduces to the familiar directional deriva-
tive 〈dω(x), v1〉 = limh→0

1
h (ω(x+ hv1)− ω(x)). With

(19) and (20) in mind, one sees why Stokes’ theorem
∫

M
dω =

∫

∂M
ω. (21)

should hold intuitively. Given a map π : Rd → Rq , the
pullback π]ω of the k-form ω is determined by

〈π]ω, v1 ∧ .. ∧ vk〉 = 〈ω ◦ π,Dv1π ∧ .. ∧Dvkπ〉, (22)

where Dviπ = ∇π · vi and ∇π ∈ Rq×d is the Jacobian.

4.2. Currents

Denote the space of smooth k-forms with compact sup-
port on U as Dk(U). Currents are elements of the dual
space Dk(U) = Dk(U)′, i.e., linear functionals acting on

differential forms. As shown in Fig. 2a, an oriented k-
dimensional manifoldM⊂ U induces a current by

JMK(ω) =

∫

M
ω. (23)

However, since Dk(U) is a vector space, not all elements
look like k-dimensional manifolds, see Fig. 2d. The bound-
ary of the k-current T ∈ Dk(U) is the (k − 1)-current
∂T ∈ Dk−1(U) defined via the exterior derivative:

∂T (ω) = T (dω), for all ω ∈ Dk−1(U). (24)

Stokes’ theorem (21) ensures that for currents which are
given by k-dimensional oriented manifolds, the boundary
of the current agrees with the usual notion, see Fig. 2b.

The support of a current, denoted by sptT , is the com-
plement of the biggest open set V such that

T (ω) = 0 whenever spt(ω) ⊂ V. (25)

Given a map π : Rd → Rq the pushforward π]T of the
k-current T ∈ Dk(U) is given by

π]T (ω) = T (π]ω), for all ω ∈ Dk(Rq). (26)

Intuitively, it transforms the current using the map π, as il-
lustrated in Fig. 2a. The mass of a current T ∈ Dk(U) is

M(T ) = sup
{
T (ω) : ω ∈ Dk(U), ‖ω(z)‖∗ ≤ 1

}
, (27)

and as expected M(JMK) = Hk(M). We denote the
space of k-currents with finite mass and compact support
by Mk(U). These are representable by integration, mean-
ing there is a measure ‖T‖ on U and a map ~T : U → ΛkR

d

such that ‖~T (z)‖ = 1 for ‖T‖-almost all z such that

T (ω) =

∫
〈ω(z), ~T (z)〉d‖T‖(z). (28)

The decomposition (28) is crucial, and we will use it to de-
fine the relaxation in the next section.



4.3. The Relaxed Energy

We lift the original energy (1) to the space of finite mass
currents T ∈Mn(U) with sptT ⊂ X × Y as follows:

E(T ) =

∫
Ψ∗∗

(
π1z, π2z, ~T (z)

)
d‖T‖(z). (29)

Since for T = JGf K we have ~T = τGf , ‖T‖ = Hn ¬ Gf the
desirable property E(JGf K) = E(f) holds due to Prop. 1.

Note that in (29) we use the lower-semicontinuous reg-
ularization Ψ∗∗ which extends (13) at v0̄,0 = 0 with the
correct value. Interestingly, this point corresponds to the
situation when the graph has vertical parts, which cannot
occur for C1 functions but can happen for general currents,
see Fig. 2c. In [43] it was shown that one can penalize such
jumps in a way depending on the jump distance and direc-
tion. We will not consider such additional regularization
due to space limitations, but remark that they could be in-
tegrated by adding further constraints to the following dual
representation, which is a consequence of [18, Vol. II, Sec.
1.3.1, Thm. 2].

Proposition 2. For T ∈Mn(U) with sptT ⊂ X × Y , we
have the dual representation

E(T ) = sup
ω∈K

T (ω), (30)

where the constraint is the closed and convex set

K =
{
ω ∈ C0

c (U,ΛnRn+N ) :

Ψ∗(π1z, π2z, ω(z)) ≤ 0,∀z ∈ X × Y
}
.

(31)

The final relaxed optimization problem for (1) reads

inf
T∈Mn(U)

E(T ), s.t. sptT ⊂ X × Y, T ∈ C. (32)

Depending on the kind of problem one wishes to solve, a
different convex constraint set C should be considered. For
example, in the case of variational problems with Dirichlet
boundary conditions, we set

C =
{
T : π1]T = JXK, ∂T = S

}
, (33)

where S ∈Mn−1(U) is a given boundary datum. In case of
Neumann boundary conditions, one constrains the support
of the boundary to be zero inside the domain

C =
{
T : π1]T = JXK, spt ∂T ⊂ (∂X)× Y

}
, (34)

to exclude surfaces with holes, but allow the boundary to be
freely chosen on (∂X) × Y . In case n = N , one can also
consider the constraint set

C =
{
T : π1]T = JXK, π2]T = JY K,

spt ∂T ⊂ ∂(X × Y )
}
,

(35)

where the additional pushforward constraint encourages bi-
jectivity. Notice also the similarity of (32) together with
(35) to the Kantorovich relaxation in optimal transport.

Existence of minimizing currents to a similar problem as
(32) in a certain space of currents (real flat chains) is shown
in [16, §3.9]. For dimension n = 1 or codimension N = 1,
the infimum is actually realized by a surface (integral flat
chain) [16, §5.10, §5.12]. An adaptation of such theoretical
considerations to our setting and conditions under which the
relaxation is tight in the scenario n > 1, N > 1 is a major
open challenge and left for future work.

5. Discrete Formulation
In this section we present an implementation of the con-

tinuous model (32) using discrete exterior calculus [22]. We
will base our discretization on cubes since they are easy to
work with in high dimensions, but one could also use sim-
plices. To define cubical meshes, we adopt some notations
from computational homology [25].

Definition 3 (Elementary interval and cube). An elemen-
tary interval is an interval I ⊂ R of the form I = [l, l + 1]
or I = {l} for l ∈ Z. Intervals that consist of a single point
are degenerate. An elementary cube is given by a product
κ = I1 × . . .× Id, where each Ii is an elementary interval.
The set of elementary cubes in Rd is denoted by Kd.

For κ ∈ Kd, denote by dimκ ∈ {1, . . . , d} the number
of nondegenerate intervals. We denote i(κ) ∈ I(d,dimκ)
as the multi-index referencing the nondegenerate intervals.

Definition 4 (Cubical set). A set Q ⊂ Rd is a cubical set if
it can be written as a finite union of elementary cubes.

Let Kd
k(Q) = {κ ∈ Kd : κ ⊂ Q,dimκ = k} be

the set of k-dimensional cubes contained in Q ⊂ Rd. A
map φ : Q → X × Y will transform the cubical set to our
domain. As we work with images, it will just be a mesh
spacing, i.e., we set φ(z) = (h1z1, . . . , hdzd).

Definition 5 (k-chains, k-cochains). We denote the space
of finite formal sums of elements in Kd

k(Q) with real coeffi-
cients as Ck(Q), called (real) k-chains. We denote the dual
as Ck(Q)∗ = Ck(Q) and call the elements k-cochains.

Definition 6 (Boundary). For κ ∈ Kd
k(Q), denote the pri-

mary faces obtained by collapsing the j-th non-degenerate
interval to the lower respectively upper boundary as
κ−j , κ

+
j ∈ Kd

k−1. The boundary of an elementary cube
κ ∈ Kd

k(Q) is the (k − 1)-chain,

∂κ =
k∑

j=1

(−1)j−1(κ+
j − κ−j ) ∈ Ck−1(Q). (36)

The boundary operator is given by the extension to a linear
map ∂ : Ck(Q)→ Ck−1(Q).



X

Y

Figure 3: Minimization of the Brachistochrone energy on a
25×14 cubical set (gray squares). The proposed discretiza-
tion yields a diffuse current (black vector field), whose cen-
ter of mass (black, dashed) however is faithful to the analyt-
ical cycloid solution (orange) far beyond the mesh accuracy.

A k-chain T =
∑
κ Tκκ ∈ Ck(Q) can be identified with

a k-current T ′ ∈ Dk(U) by T ′ =
∑
κ Tκφ]JκK. The above

discrete notion of boundary is defined in analogy to the con-
tinuous definition (24).

In our discretization, we will use the dual representation
of the lifted energy from Prop. 2. To implement differential
forms, we introduce an interpolation operator.

Definition 7 (Whitney map). The Whitney map extends a
k-cochain ω to a k-form (Wω) : X × Y → ΛkRd,

(Wω)(x) =
∑

κ∈Kd
k(Q)

ωκŴ(φ−1(x), κ), (37)

where ωκ ∈ R are the coefficients of the k-cochain,

Ŵ(x, κ) = dxi(κ)

∏

i∈i(κ)

max{0, 1− |xi − Ii(κ)|}, (38)

and Ii(κ) ∈ Z is the element in the degenerate interval.

Interestingly, the Whitney map (for simplicial meshes)
first appeared in [66, Eq. 27.12] but specializes to lowest-
order Raviart-Thomas [49] (k = 2,d = 3) and Nédélec [45]
elements (for k = 1, d = 3), see [3, 4]. Differential forms
of type (37) are called Whitney forms.

We also define a weighted inner product 〈·, ·〉φ between
chains and cochains by plugging the Whitney form asso-
ciated to the k-cochain into the current corresponding to
the k-chain. As both are constant on each k-cube, a quick
calculation shows: 〈T, ω〉φ =

∑
κ TκωκHk(φ(κ)), where

Hk(φ(κ)) is simply the volume of the k-cube under the
mesh spacing φ.

Using the dual representation (30), and approximating
the current by a k-chain and the differential forms with

Input Finite differences Discrete exterior calculus

Finite differences Discrete exterior calculus

Figure 4: Total variation minimization. Top: The proposed
DEC discretization yields solutions with better isotropy and
sharper discontinuities. Bottom: In that stereo matching
example, we enforce the continuous constraints Wω ∈ K
between the discretization points (here 8 labels), which
leads to more precise (sublabel-accurate) solutions com-
pared to the naive finite-difference approach.

k-cochains we arrive at the following finite-dimensional
convex-concave saddle-point problem on Q ⊂ Rn+N :

min
T∈Cn(Q)

max
ω∈Cn(Q)

ϕ∈Cn−1(Q)

〈T, ω〉φ + 〈∂T − S, ϕ〉φ,

subject to π1]T = 1,Wω ∈ K,
potentially π2]T = 1 in case n = N.

(39)

S ∈ Cn−1(Q) is a given boundary datum, for free boundary
conditions we replace the inner product 〈S, ϕ〉 with an indi-
cator function S : Cn−1 → R forcing ϕ to be zero on the
boundary. The pushforwards π1], π2] are linear constraints
on the coefficients of the k-chain T .

6. Numerical Implementation

In practice we solve (39) with the first order primal-dual
algorithm [8]. For the local constraints Wω ∈ K usu-
ally no closed form projection exists. In some situations
(N = 1) they can be implemented exactly, see [41, 40].
In the general setting, we resort to implementing them at
sampled points. To enforce the constraint Wω ∈ K at
samples Z = {z1, z2, . . .} ⊂ X × Y we add another pri-
mal variable λ : Z → ΛnRn+N and the additional term∑
z∈Z Ψ∗∗(z, λ(z))− 〈λ(z), (Wω)(z)〉 to the saddle-point

formulation (39).
Finally, one requires the proximal operator of the per-

spective function Ψ∗∗. These can be implemented using
epigraphical projections as in [48]. For an overview over
proximal operators of perspective functions we refer to [12].



X Y id−f id−f−1

left-to-right slice of ‖T‖ right-to-left slice of ‖T‖

Figure 5: Global registration ofX and Y . Top: Our method
yields dense pointwise correspondences that are smooth in
both directions and correspond to the correct transforma-
tion. Bottom: 2-D slices through the 4-D density ‖T‖ at
the single black pixel. We empirically verify (also at the
other points) that the current concentrated near a surface,
therefore the recovered solution is near the global minimum
of the original nonconvex problem.

6.1. Properties of the Discretization

As a first example we solve the Brachistochrone [6], ar-
guably the first variational approach. The cost is given by

c(x, y, ξ) =
√

1+ξ2

2gy where g > 0 is the gravitational con-
stant. Dirichlet boundary conditions are enforced using the
boundary operator. In Fig. 3 we show the resulting current,
which concentrates on the graph of the closed-form solution
to the problem, which is a cycloid. The unlifted result is ob-
tained by taking the center of mass of the first component
T 0̄,0 of the current by summing over the horizontal edges
in the 1-chain. The obtained result nearly coincides with
the exact cycloid. Instead, solutions from MRF approaches
would invariably be confined to the vertices or edges of the
rather coarse grid.

In Fig. 4 we solve total variation regularized problems
which corresponds to setting c(x, y, ξ) = ρ(x, y) + |ξ| for
some data ρ. The data is either a quadratic or a stereo match-
ing cost in that example. The proposed approach based on
discrete exterior calculus has better isotropy and leads to
sharper discontinuities than the common forward difference
approach used in literature. Furthermore, by enforcing the
constraints Wω ∈ K also between the discretization points
one can achieve “sublabel-accurate” results as demonstrated
in the stereo matching example.

6.2. Global Registration

As an example of n > 1, N > 1 with polycon-
vex regularization, we tackle the problem of orientation
preserving diffeomorphic registration between two shapes

X,Y ⊂ R2 with boundary. We use the cost c(x, y, ξ) =
(ρ(x, y) + ε)

√
det (I + ξ>ξ), which penalizes the surface

area in the product space and favors local isometry. The
parameter ε > 0 models the trade-off between data and
smoothness. In the example considered in Fig. 5 the data
is given by ρ(x, y) = ‖I1(x)− I2(y)‖, where I1, I2 are the
shown color images. A polyconvex extension of the above
cost, which is large for non-simple vectors is given by the
(weighted) mass norm (4). The 4-D cubical set Q is the
product space between the two shapes X and Y , which are
given as quads (pixels). We impose the constraints Wω ∈ K
at the 16 vertices of each four dimensional hypercube. The
proximal operator of the mass norm is computed as in [67].
Note that the required 4 × 4 real Schur decomposition can
be reduced to a 2 × 2 SVD using a few Givens rotations,
see [65]. We further impose T 0̄,0 ≥ 0 and T 0,0̄ ≥ 0, and
boundary conditions ensure that ∂X is matched to ∂Y . Bi-
jectivity of the matching is encouraged by the pushforward
constraints π1]T = 1, π2]T = 1. After solving (39) we ob-
tain the final pointwise correspondences f : X → Y from
the 2-chain T ∈ C2(Q) by taking its center of mass.

In Fig. 5 we visualize f(x) =
∑
y y |(WT )(x, y)|,

f−1(y) =
∑
x x |(WT )(x, y)|. As one can see, the maps

f and f−1 are smooth and inverse to each other. Despite
n > 1, N > 1, the current apparently concentrated near
a surface and the computed solutions are therefore near the
global optimum of the original nonconvex problem.

7. Discussion and Limitations

In this work, we introduced a novel approach to vectorial
variational problems based on geometric measure theory,
along with a natural discretization using concepts from dis-
crete exterior calculus. Though observed in practice, we do
not have theoretical guarantees that the minimizing current
will concentrate on a surface. In case of multiple global so-
lutions, one might get a convex combination of minimizers.
Some mechanism to select an extreme point of the convex
solution set would therefore be desirable. The main draw-
back over MRFs, for which very efficient solvers exist [27],
is that we had to resort to the generic algorithm [8] with
O(1/ε) convergence. Yet, solutions with high numerical
accuracy are typically not required in practice and the algo-
rithm parallelizes well on GPUs. To conclude, we believe
that the present work is a step towards making continuous
approaches an attractive alternative to MRFs, especially in
scenarios where faithfulness to certain geometric properties
of the underlying continuous model is desirable.
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Authors �omas Möllenho� 1 thomas.moellenhoff@tum.de

Daniel Cremers 1 cremers@tum.de

1 Technische Universität München, Germany
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Abstract
We take the novel perspective to view data not
as a probability distribution but rather as a cur-
rent. Primarily studied in the field of geomet-
ric measure theory, k-currents are continuous lin-
ear functionals acting on compactly supported
smooth differential forms and can be understood
as a generalized notion of oriented k-dimensional
manifold. By moving from distributions (which
are 0-currents) to k-currents, we can explicitly
orient the data by attaching a k-dimensional tan-
gent plane to each sample point. Based on the flat
metric which is a fundamental distance between
currents, we derive FlatGAN, a formulation in
the spirit of generative adversarial networks but
generalized to k-currents. In our theoretical con-
tribution we prove that the flat metric between a
parametrized current and a reference current is
Lipschitz continuous in the parameters. In experi-
ments, we show that the proposed shift to k > 0
leads to interpretable and disentangled latent rep-
resentations which behave equivariantly to the
specified oriented tangent planes.

1. Introduction
This work is concerned with the problem of representation
learning, which has important consequences for many tasks
in artificial intelligence, cf. the work of Bengio et al. (2013).
More specifically, our aim is to learn representations which
behave equivariantly with respect to selected transforma-
tions of the data. Such variations are often known before-
hand and could for example describe changes in stroke width
or rotation of a digit, changes in viewpoint or lighting in a
three-dimensional scene but also the arrow of time (Pickup
et al., 2014; Wei et al., 2018) in time-series, describing how
a video changes from one frame to the next, see Fig. 1.

1Department of Informatics, Technical University of Munich,
Garching, Germany. Correspondence to: Thomas Möllenhoff
<thomas.moellenhoff@tum.de>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

from left to right we vary the latent code z1 (time)

Figure 1. Discovering the arrow of time by training a generative
model with the proposed formalism on the tinyvideos dataset (Von-
drick et al., 2016). The approach we introduce allows one to learn
latent representations which behave equivariantly to specified tan-
gent vectors (here: difference of two successive video frames).

We tackle this problem by introducing a novel formalism
based on geometric measure theory (Federer, 1969), which
we find to be interesting in itself. To motivate our applica-
tion in generative modeling, recall the manifold hypothesis
which states that the distribution of real-world data tends to
concentrate nearby a low-dimensional manifold, see Feffer-
man et al. (2016) and the references therein. Under that hy-
pothesis, a possible unifying view on prominent methods in
unsupervised and representation learning such as generative
adversarial networks (GANs) (Goodfellow et al., 2014) and
variational auto-encoders (VAEs) (Kingma & Welling, 2014;
Rezende et al., 2014) is the following: both approaches aim
to approximate the true distribution concentrating near the
manifold with a distribution on some low-dimensional latent
space Z ⇢ Rl that is pushed through a decoder or generator
g : Z ! X mapping to the (high-dimensional) data space
X ⇢ Rd (Genevay et al., 2017; Bottou et al., 2017).

We argue that treating data as a distribution potentially ig-
nores useful available geometric information such as ori-
entation and tangent vectors to the data manifold. Such
tangent vectors describe the aforementioned local variations
or pertubations. Therefore we postulate that data should not
be viewed as a distribution but rather as a k-current.
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F�(g]S, T )

g : Z ! X

Z

S 2 N1,Z(Rl)

X

g]S 2 N1,X (Rd)

X

T 2 N1,X (Rd)

Figure 2. Illustration of the proposed idea. We suggest the novel perspective to view observed data (here the MNIST dataset) as a
k-current T , shown as the dots with attached arrows on the left. The arrows indicate the oriented tangent space, and we selected k = 1 to
be rotational deformation. We propose to minimize the flat distance of T to the pushforward g]S (shown in the middle) of a current S on
a low-dimensional latent space Z (right) with respect to a “generator” map g : Z ! X . For 0-currents (no selected tangent vectors) and
sufficiently large �, the proposed “FlatGAN” formulation specializes to the Wasserstein GAN (Arjovsky et al., 2017).

We postpone the definition of k-currents (de Rham, 1955)
to Sec. 3, and informally think of them as distributions
over k-dimensional oriented planes. For the limiting case
k = 0, currents simply reduce to distributions in the sense
of Schwartz (1951, 1957) and positive 0-currents with unit
mass are probability measures. A seminal work in the theory
of currents was written by Federer & Fleming (1960), which
established compactness theorems for subsets of currents
(normal and integral currents). In this paper, we will work
in the space of normal k-currents with compact support in
X ⇢ Rd, denoted by Nk,X (Rd).

Similarly as probabilistic models build upon f -divergences
(Csiszár et al., 2004), integral probability metrics (Sriperum-
budur et al., 2012) or more general optimal transportation
related divergences (Peyré & Cuturi, 2018; Feydy et al.,
2018), we require a sensible notion to measure “distance”
between k-currents.

In this work, we will focus on the flat norm1 due to Whitney
(1957). To be precise, we consider a scaled variant intro-
duced and studied by Morgan & Vixie (2007); Vixie et al.
(2010). This choice is motivated in Sec. 4, where we show
that the flat norm enjoys certain attractive properties similar
to the celebrated Wasserstein distances. For example, it
metrizes the weak⇤-convergence for normal currents.

A potential alternative to the flat norm are kernel metrics on
spaces of currents (Vaillant & Glaunès, 2005; Glaunès et al.,
2008). These have been proposed for diffeomorphic regis-
tration, but kernel distances on distributions have also been
sucessfully employed for generative modeling, see Li et al.
(2017). Constructions similar to the Kantorovich relaxation
in optimal transport but generalized to k-currents recently
appeared in the context of convexifications for certain varia-
tional problems (Möllenhoff & Cremers, 2019).

1The terminology “flat” carries no geometrical significance and
refers to Whitney’s use of musical notation flat | · |[ and sharp | · |].

2. Related Work
Our main idea is illustrated in Fig. 2, which was inspired
from the optimal transportation point of view on GANs
given by Genevay et al. (2017).

Tangent vectors of the data manifold, either prespecified
(Simard et al., 1992; 1998; Fraser et al., 2003) or learned
with a contractive autoencoder (Rifai et al., 2011), have been
used to train classifiers that aim to be invariant to changes
relative to the data manifold. In contrast to these works, we
use tangent vectors to learn interpretable representations and
a generative model that aims to be equivariant. The prin-
cipled introduction of tangent k-vectors into probabilistic
generative models is one of our main contributions.

Various approaches to learning informative or disentangled
latent representations in a completely unsupervised fashion
exist (Schmidhuber, 1992; Higgins et al., 2016; Chen et al.,
2016; Kim & Mnih, 2018). Our approach is orthogonal to
these works, as specifying tangent vectors further encour-
ages informative representations to be learned. For example,
our GAN formulation could be combined with a mutual
information term as in InfoGAN (Chen et al., 2016).

Our work is more closely related to semi-supervised ap-
proaches on learning disentangled latent representations,
which similarly also require some form of knowledge of
the underlying factors (Hinton et al., 2011; Denton et al.,
2017; Mathieu et al., 2016; Narayanaswamy et al., 2017)
and also to conditional GANs (Mirza & Osindero, 2014;
Odena et al., 2017). However, the difference is the connec-
tion to geometric measure theory which we believe to be
completely novel, and our specific FlatGAN formulation
that seamlessly extends the Wasserstein GAN (Arjovsky
et al., 2017), cf. Fig. 2.

Since the concepts we need from geometric measure theory
are not commonly used in machine learning, we briefly
review them in the following section.
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3. Geometric Measure Theory
The book by Federer (1969) is still the formidable, definitive
reference on the subject. As a more accessible introduction
we recommend (Krantz & Parks, 2008) or (Morgan, 2016).
While our aim is to keep the manuscript self-contained, we
invite the interested reader to consult Chapter 4 in (Morgan,
2016), which in turn refers to the corresponding chapters in
the book of Federer (1969) for more details.

3.1. Grassmann Algebra

Notation. Denote {e1, . . . , ed} a basis of Rd with dual
basis {dx1, . . . , dxd} such that dxi : Rd ! R is the linear
functional that maps every x = (x1, . . . , xd) to the i-th
component xi. For k  d, denote I(d, k) as the ordered
multi-indices i = (i1, . . . , ik) with 1  i1 < . . . < ik  d.

One can multiply vectors in Rd to obtain a new object:

⇠ = v1 ^ . . . ^ vk, (1)

called a k-vector ⇠ in Rd. The wedge (or exterior) product
^ is characterized by multilinearity

cv1 ^ v2 = v1 ^ cv2 = c(v1 ^ v2), for c 2 R,

(u1 + v1) ^ (u2 + v2) =

u1 ^ u2 + u1 ^ v2 + v1 ^ u2 + v1 ^ v2,

(2)

and it is alternating

u ^ v = �v ^ u, u ^ u = 0. (3)

In general, any k-vector can be written as

⇠ =
X

i2I(d,k)

ai · ei1 ^ . . . ^ eik
=

X

i2I(d,k)

ai · ei, (4)

for coefficients ai 2 R. The vector space of k-vectors is
denoted by ⇤kR

d and has dimension
�

d
k

�
. We define for

two k-vectors v =
P

i aiei, w =
P

i biei an inner product
hv, wi =

P
i aibi and the Euclidean norm |v| =

p
hv, vi.

A simple (or decomposable) k-vector is any ⇠ 2 ⇤kR
d that

can be written using products of 1-vectors. Simple k-vectors
such as (1) are uniquely determined by the k-dimensional
space spanned by the {vi}, their orientation and the norm
|v| corresponding to the area of the parallelotope spanned
by the {vi}. Simple k-vectors with unit norm can therefore
be thought of as oriented k-dimensional subspaces and the
rules (2)-(3) can be thought of as equivalence relations.

It turns out that the inner product of two simple k-vectors
can be computed by the k ⇥ k-determinant

hw1 ^ . . . ^ wk, v1 ^ . . . ^ vki = det
�
W>V

�
, (5)

where the columns of W 2 Rd⇥k, V 2 Rd⇥k contain
the individual 1-vectors. This will be useful later for our
practical implementation.

Not all k-vectors are simple. An illustrative example is e1 ^
e2 + e3 ^ e4 2 ⇤2R

4, which describes two 2-dimensional
subspaces in R4 intersecting only at zero.

The dual space of ⇤kR
d is denoted as ⇤kRd, and its ele-

ments are called k-covectors. They are similarly represented
as (4) but with dual basis dxi. Analogously to the previous
page, we can define an inner product between k-vectors and
k-covectors. Next to the Euclidean norm | · |, we define two
additional norms due to Whitney (1957).

Definition 1 (Mass and comass). The comass norm defined
for k-covectors w 2 ⇤kRn is given by

kwk⇤ = sup {hw, vi : v is simple , |v| = 1} , (6)

and the mass norm for v 2 ⇤kR
n is given by

kvk = sup {hv, wi : kwk⇤  1}

= inf

(X

i

|⇠i| : ⇠i are simple, v =
X

i

⇠i

)
.

(7)

The mass norm is by construction the largest norm that
agrees with the Euclidean norm on simple k-vectors. For
the non-simple 2-vector from before, we compute

ke1 ^ e2 + e3 ^ e4k = 2, |e1 ^ e2 + e3 ^ e4| =
p

2. (8)

Interpreting the non-simple vector as two tangent planes,
we see that the mass norm gives the correct area, while the
Euclidean norm underestimates it. The comass k · k⇤ will be
used later to define the mass of currents and the flat norm.

3.2. Differential Forms

In order to define currents, we first need to introduce dif-
ferential forms. A differential k-form is a k-covectorfield
! : Rd ! ⇤kRd. The support spt! is defined as the
closure of the set {x 2 Rd : !(x) 6= 0}.

Differential forms allow one to perform coordinate-free in-
tegration over oriented manifolds. Given some manifold
M ⇢ Rd, possibly with boundary, an orientation is a con-
tinuous map ⌧M : M ! ⇤kR

d which assigns to each
point a simple k-vector with unit norm that spans the tan-
gent space at that point. Integration of a differential form
over an oriented manifold M is then defined by:

Z

M
! =

Z

M
h!(x), ⌧M(x)i dHk(x), (9)

where the second integral is the standard Lebesgue integral
with respect to the k-dimensional Hausdorff measure Hk

restricted to M, i.e., (Hk ¬ M)(A) = Hk(A \ M). The k-
dimensional Hausdorff measure assigns to sets in Rd their
k-dimensional volume, see Chapter 2 in Morgan (2016)
for a nice illustration. For k = d the Hausdorff measure
coincides with the Lebesgue measure.
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The exterior derivative of a differential k-form is the (k+1)-
form d! : Rd ! ⇤k+1Rd defined by

hd!(x), v1 ^ . . . ^ vk+1i = lim
h!0

1

hk+1

Z

@P

!, (10)

where @P is the oriented boundary of the parallelotope
spanned by the {hvi} at point x. The above definition is
for example used in the textbook of Hubbard & Hubbard
(2015). To get an intuition, note that for k = 0 this re-
duces to the familiar directional derivative hd!(x), v1i =
limh!0

1
h (!(x + hv1) � !(x)). In case ! : Rd ! ⇤kRd

is sufficiently smooth, the limit in (10) is given by

hd!(x), v1 ^ . . . ^ vk+1i = (11)
k+1X

i=1

(�1)i�1rxh!(x), v1 ^ . . . ^ v̂i ^ . . . ^ vki · vi,

where v̂i means that the vector vi is omitted. The formu-
lation (11) will be used in the practical implementation.
Interestingly, with (9) and (10) in mind, Stokes’ theorem

Z

M
d! =

Z

@M
!, (12)

becomes almost obvious, as (informally speaking) inte-
grating (10) one obtains (12) since the oppositely oriented
boundaries of neighbouring parallelotopes cancel each other
out in the interior of M.

To define the pushforward of currents which is central to our
formulation, we require the pullback of differential forms.
The pullback g]! : Rl ! ⇤kRl by a map g : Rl ! Rd of
the k-form ! : Rd ! ⇤kRd is given by

hg]!, v1 ^ .. ^ vki = h! � g, Dv1
g ^ .. ^ Dvk

gi, (13)

where Dvi
g := rg · vi and rg 2 Rd⇥l is the Jacobian. We

will also require (13) for the practical implementation.

3.3. Currents

We have now the necessary tools to define currents and
the required operations on them, which will be defined
through duality with differential forms. Consider the space
of compactly supported and smooth k-forms in Rd which
we denote by Dk(Rd). When furnished with an appropriate
topology (cf. §4.1 in Federer (1969) for the details) this is a
locally convex topological vector space. k-currents are con-
tinuous linear functionals on smooth, compactly supported
differential forms, i.e., elements from the topological dual
space Dk(Rd) = Dk(Rd)0. Some examples for currents
are given in Fig. 3. The 0-current in (a) could be an empiri-
cal data distribution, and the 2-current in (b) represents the
data distribution with a two dimensional oriented tangent
space at each data point. The 2-current in (c) simply repre-
sents the set [0, 1]2 as an oriented manifold, its action on a
differential form is given as in (9).

(a)
P

i �xi
(b)

P
i �xi

^ Ti (c) H2 ¬
[0, 1]2 ^ e12

Figure 3. Example of a 0-current (a), and 2-currents (b), (c).

A natural notion of convergence for currents is given by the
weak⇤ topology:

Ti
⇤
* T iff Ti(!) ! T (!), for all ! 2 Dk(Rd). (14)

The support of a current T 2 Dk(Rd), spt T , is the com-
plement of the largest open set, so that when testing T
with compactly supported forms on that open set the an-
swer is zero. Currents with compact support are denoted by
Ek(Rd). The boundary operator @ : Dk(Rd) ! Dk�1(R

d)
is defined using exterior derivative

@T (!) = T (d!), (15)

and Stokes’ theorem (12) ensures that this coincides with
the intuitive notion of boundary for currents which are rep-
resented by integration over manifolds in the sense of (9).

The pushforward of a current is defined using the pullback

g]T (!) = T (g]!), (16)

where the intuition is that the pushforward transforms the
current with the map g, see the illustration in Fig. 2.

The mass of a current T 2 Dk(Rd) is given by

M(T ) = sup {T (!) : k!(x)k⇤  1} . (17)

If the current T is an oriented manifold then the mass M(T )
is the volume of that manifold. One convenient way to
construct k-currents, is by combining a smooth k-vectorfield
⇠ : Rd ! ⇤kR

d with a Radon measure µ:

(µ ^ ⇠)( ) =

Z
h⇠,  i dµ, for all  2 Dk(Rd). (18)

A concrete example is illustrated in Fig. 3 (b), where
given samples {x1, . . . , xN} ⇢ Rd and tangent 2-vectors
{T1, . . . , TN} ⇢ ⇤2R

d a 2-current is constructed.

For currents with finite mass there is a measure kTk and a
map ~T : Rd ! ⇤kR

d with k~T (·)k = 1 almost everywhere
so that we can represent it by integration as follows:

T (!) =

Z
h!(x), ~T (x)i dkTk(x) = kTk ^ ~T (!). (19)

Another perspective is that finite mass currents are simply
k-vector valued Radon measures. Currents with finite mass
and finite boundary mass are called normal currents (Fed-
erer & Fleming, 1960). The space of normal currents with
support in a compact set X is denoted by Nk,X (Rd).
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x
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x

W1

x

F�

Figure 4. Illustration of distances between 0-currents on the ex-
ample of two Dirac measures �x, �0. The flat metric F� has the
following advantages: unlike the mass M it is continuous, and un-
like Wasserstein-1 it easily generalizes to k-currents (see Fig. 5).

4. The Flat Metric
As indicated in Fig. 2, we wish to fit a current g]S that is
the pushforward of a low-dimensional latent current S to
the current T given by the data. A more meaningful norm
on currents than the mass M turns out to be the flat norm.

Definition 2 (Flat norm and flat metric). The flat norm with
scale2 � > 0 is defined for any k-current T 2 Dk(Rd) as

F�(T ) = sup
�
T (!) | ! 2 Dk(Rd), with

k!(x)k⇤  �, kd!(x)k⇤  1, for all x
 
.

(20)

For � = 1 we simply write F(·) ⌘ F1(·) and F�(S, T ) =
F�(S � T ) will be denoted as the flat metric.

The flat norm also has a primal formulation

F�(T ) = min
B2Ek+1(Rd)

�M(T � @B) + M(B) (21)

= min
T=A+@B

�M(A) + M(B), (22)

where the minimum in (21)–(22) can be shown to exist, see
§4.1.12 in Federer (1969). The flat norm is finite if T is a
normal current and it can be verified that it is indeed a norm.

To get an intuition, we compare the flat norm to the mass
(17) and the Wasserstein-1 distance in Fig. 4 on the example
of Dirac measures �x, �0. The mass x 7! M(�x � �0) is dis-
continuous and has zero gradient and is therefore unsuitable
as a distance between currents. While the Wasserstein-1
metric x 7! W(�x, �0) is continuous in x, it does not eas-
ily generalize from probability measures to k-currents. In
contrast, the flat metric x 7! F�(�x, �0) has a meaningful
geometric interpretation also for arbitrary k-currents. In
Fig. 5 we illustrate the flat norm for two 1-currents. In that
figure, if S and T are of length one and are " apart, then
F�(S, T )  (1 + 2�)" which converges to zero for "! 0.

Note that for 0-currents, the flat norm (20) is strongly re-
lated to the Wasserstein-1 distance except for the additional
constraint on the dual variable k!(x)k⇤  �, which in the
example of Fig. 4 controls the truncation cutoff. Notice also

2We picked a different convention for � as in (Morgan & Vixie,
2007), where it bounds the other constraint, to emphasize the
connection to the Wasserstein-1 distance.

B

S

T
@B

A = S � T
�@B

Figure 5. The flat metric F�(S, T ) is given an optimal decomposi-
tion S � T = A + @B into a k-current A and the boundary of a
(k + 1)-current B with minimal weighted mass �M(A) + M(B).
An intuition is that �M(A) is a penalty that controls how closely
@B should approximate S � T , while M(B) is the (k + 1)-
dimensional volume of B.

the similarity of (21) to the Beckmann formulation of the
Wasserstein-1 distance (Beckmann, 1952; Santambrogio,
2015), with the difference being the implementation of the
“divergence constraint” with a soft penalty �M(T � @B).
Considering the case � = 1 as in the Wasserstein distance
is problematic in case we have k > 0, since not every cur-
rent T 2 Dk(Rn) is the boundary of a (k + 1)-current, see
the example above in Fig. 5.

The following proposition studies the effect of the scale
parameter � > 0 on the flat norm.
Proposition 1. For any � > 0, the following relation holds

min{1, �} · F(T )  F�(T )  max{1, �} · F(T ), (23)

meaning that F and F� are equivalent norms.

Proof. By a result of Morgan & Vixie (2007) we have the
interesting relation

F�(T ) = �k F(d��1]T ), (24)

where d� is the �-dilation. Using the bound F(f]T ) 
sup{Lip(f)k, Lip(f)k+1}F(T ), §4.1.14 in Federer (1969),
and the fact that Lip(d��1) = ��1, one inequality directly
follows. For the other side, notice that

F(T ) = F(d�]d��1]T ) = F��1(d��1]T )�k

 max{1, ��1}F(d��1]T )�k

= max{1, ��1}F�(T ).

(25)

and dividing by max{1, ��1} yields the result.

The importance of the flat norm is due to the fact that it
metrizes the weak⇤-convergence (14) on compactly sup-
ported normal currents with uniformly bounded mass and
boundary mass.
Proposition 2. Let X ⇢ Rd be a compact set and c > 0
some fixed constant. For a sequence {Tj} ⇢ Nk,X (Rd)
with M(Tj) + M(@Tj) < c we have that:

F�(T, Tj) ! 0 if and only if Tj
⇤
* T. (26)

Proof. Due to Prop. 1 it is enough to consider the case
� = 1, which is given by Corollary 7.3 in the paper of
Federer & Fleming (1960).
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5. Flat Metric Minimization
Motivated by the theoretical properties of the flat metric
shown in the previous section, we consider the following
optimization problem:

min
✓2⇥

F�(g✓]S, T ), (27)

where S 2 Nk,Z(Rl) and T 2 Nk,X (Rd). We will assume
that g : Z ⇥ ⇥ ! X is parametrized with parameters
in a compact set ⇥ ⇢ Rn and write g✓ : Z ! X to
abbreviate g(·, ✓) for some ✓ 2 ⇥. We need the following
assumption to be able to prove the existence of minimizers
for the problem (27).
Assumption 1. The map g : Z⇥⇥ ! X is smooth in z with
uniformly bounded derivative. Furthermore, we assume that
g(z, ·) is locally Lipschitz continuous and that the parameter
set ⇥ ⇢ Rn is compact.

Under this assumption, we will show that the objective in
(27) is Lipschitz continuous. This will in turn guarantee
existence of minimizers, as the domain is assumed to be
compact.
Proposition 3. Let S 2 Nk,Z(Rl), T 2 Nk,X (Rd) be
normal currents with compact support. If the pushforward
map g : Z ⇥ ⇥ ! X fulfills Assumption 1, then the func-
tion ✓ 7! F�(g✓]S, T ) is Lipschitz continuous and hence
differentiable almost everywhere.

Proof. In Appendix A.

5.1. Application to Generative Modeling

We now turn towards our considered application illustrated
in Fig. 2. There, we denote by k � 0 the number of tangent
vectors we specify at each sample point. The latent current
S 2 Nk,Z(Rl) is constructed by combining a probability
distribution µ 2 N0,Z(Rl), which could for example be the
uniform distribution, with the unit k-vectorfield as follows:

S = µ ^ (e1 ^ . . . ^ ek). (28)

For an illustration, see the right side of Fig. 2 and Fig. 3.
The data current T 2 Nk,X (Rd) is constructed from the
samples {xi}N

i=1 and tangent vectorfields Ti : X ! ⇤kR
d.

T =
1

N

NX

i=1

�xi ^ Ti, (29)

The tangent k-vectorfields Ti(x) = Ti,1^. . .^Ti,k are given
by individual tangent vectors to the data manifold Ti,j 2 Rd.
For an illustration, see the left side of Fig. 2 or Fig. 3. After
solving (27), the map g✓ : Z ! X will be our generative
model, where changes in the latent space Z along the unit
directions e1, . . . , ek are expected to behave equivariantly
to the specified tangent directions Ti,1, . . . , Ti,k near g(z).

5.2. FlatGAN Formulation

To get a primal-dual formulation (or two player zero-sum
game) in the spirit of GANs, we insert the definition of the
flat norm (20) into the primal problem (27):

min
✓2⇥

sup
!2Dk(Rd)

k!k⇤�,kd!k⇤1

S(g✓
]!) � T (!), (30)

where ✓ 2 ⇥ are for example the parameters of a neural
network. In the above equation, we also used the definition
of pushforward (16). Notice that for k = 0 the exterior
derivative in (30) specializes to the gradient. This yields a
Lipschitz constraint, and as for sufficiently large � the other
constraint becomes irrelevant, the problem (30) is closely
related to the Wasserstein GAN (Bottou et al., 2017). The
novelty in this work is the generalization to k > 0.

Combining (28) and (29) into (30) we arrive at the objective

E(✓, !) = � 1

N

NX

i=1

h!(xi), Tii

+

Z
h! � g✓, (rzg✓ · e1) ^ . . . ^ (rzg✓ · ek)i dµ.

(31)

Interestingly, due to the pullback, the discriminator ! in-
spects not only the output of the generator, but also parts
of its Jacobian matrix. As a remark, relations between the
generator Jacobian and GAN performance have recently
been studied by Odena et al. (2018).

The constraints in (30) are implemented using penalty terms.
First notice that due to the definition of the comass norm (6),
the first constraint is equivalent to imposing |h!(x), vi|  �
for all simple k-covectors with |v| = 1. We implement this
with the a penalty term with parameter ⇢ > 0 as follows:

⇢ ·
Z

X

Z
max{0, |h!(x), vi| � �}2 d�k,d(v) dx, (32)

where �k,d denotes the Haar measure on the Grassmannian
manifold Gr(d, k) ⇢ ⇤kR

d of k-dimensional subspaces
in Rd, see Chapter 3.2 in Krantz & Parks (2008). Similarly,
the constraint on the exterior derivative is implemented by
another penalty term as follows:

⇢ ·
Z

X

Z
max{0, |hd!(x), vi| � 1}2 d�k+1,d(v) dx. (33)

5.3. Implementation with Deep Neural Networks

For high dimensional practical problems it is completely
infeasible to directly work with ⇤kR

d due to the curse of
dimensionality. For example, already for the MNIST dataset
augmented with two tangent vectors (k = 2, d = 282), we
have that dim(⇤kR

d) ⇡ 3 · 105.
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k
=

0
k

=
1

T 2 Nk,X (R2) Epoch 250 Epoch 500 Epoch 1000 Epoch 2000

Figure 6. We illustrate the effect of moving from k = 0 to k = 1 and plot the measure kg]Sk of the pushforward of a k-current
S 2 Nk,Z(R5) (shown in orange) for different epochs. The black curve illustrates a walk along the first latent dimension z1. For k = 0,
which is similar to WGAN-GP (Gulrajani et al., 2017), the latent walk is not meaningful. The proposed approach (k = 1) allows to
specify tangent vectors at the samples to which the first latent dimension behaves equivariantly, yielding an interpretable representation.

varying z1 (rotation) varying z2 (thickness)

Figure 7. We show the effect of varying the first two components
in 128-dimensional latent space, corresponding to the two selected
tangent vectors which are rotation and thickness. As seen in the
figure, varying the corresponding latent representation yields an
interpretable effect on the output, corresponding to the specified
tangent direction.

To overcome this issue, we unfortunately have to resort to a
few heuristic approximations. To that end, we first notice
that in the formulations the dual variable ! : Rd ! ⇤kRd

only appears as an inner product with simple k-vectors, so
we can implement it by implicitly describing its action, i.e.,
interpret it as a map ! : Rd ⇥⇤kR

d ! R:

!(x, v1 ^ . . . ^ vk) (34)

= !0(x) + ↵h!1,1(x) ^ . . . ^ !1,k(x), v1 ^ . . . ^ vki,

Theoretically, the “affine term” !0(x) is not fully justified
as the map does not describe an inner product on ⇤kR

d

anymore, but we found it to improve the quality of the
generative model. An attempt to justify this in the context
of GANs is that the function !0 : Rd ! R is the usual
“discriminator” while the !1,i : Rd ! Rd are combined to
discriminate oriented tangent planes.

In practice, we parametrize !0, !1,i using deep neural net-
works. For efficiency reasons, the networks share their
parameters up until the last few layers.

The inner product in (34) between the simple vectors is im-
plemented by a k ⇥ k-determinant, see (5). The reason we
do this is to satisfy the properties of the Grassmann algebra
(2) – (3). This is important, since otherwise the “discrimina-
tor” ! could distinguish between different representations
of the same oriented tangent plane.

For the implementation of the penalty term (33), we use the
definition of the exterior derivative (11) together with the
“approximate form” (34). To be compatible with the affine
term we use a seperate penalty on !0, which we also found
to give better results:

|d!(x, v1 ^ . . . ^ vk+1)| ⇡ (k + 1)krx!
0(x)k

+ ↵

�����
k+1X

i=1

(�1)i�1rx det(W (x)>Vi) · vi

����� .
(35)

In the above equation, Vi 2 Rd⇥k is the matrix with
columns given by the vectors v1, . . . , vk+1 but with vi omit-
ted and W (x) 2 Rd⇥k is the matrix with columns given by
the !1,i(x). Another motivation for this implementation is,
that in the case k = 0 the second term in (35) disappears and
one recovers the well-known “gradient penalty” regularizer
proposed by Gulrajani et al. (2017).

For the stochastic approximation of the penalty terms (32) –
(33) we sample from the Haar measure on the Grassmannian
(i.e., taking random k-dimensional and (k +1)-dimensional
subspaces in Rd) by computing singular value decomposi-
tion of random k ⇥ d Gaussian matrices. Furthermore, we
found it beneficial in practice to enforce the penalty terms
only at the data points as for example advocated in the re-
cent work (Mescheder et al., 2018). The right multiplied
Jacobian vector products (also referred to as “rop” in some
frameworks) in (35) as well as in the loss function (31) are
implemented using two additional backpropagations.
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varying z1 (lighting) varying z2 (elevation) varying z3 (azimuth)

Figure 8. From left to right we vary the latent codes in [�1, 1] after training on the smallNORB dataset (LeCun et al., 2004).

varying z1 (time)

Figure 9. Varying the learned latent representation of time. The
model captures behaviours such as people walking on the beach,
see also the results shown in Fig. 1.

6. Experiments
The specific hyperparameters, architectures and tangent vec-
tor setups used in practice3 are detailed in Appendix B.

6.1. Illustrative 2D Example

As a first proof of concept, we illustrate the effect of moving
from k = 0 to k = 1 on a very simple dataset consisting
of five points on a circle. As shown in Fig. 6, for k = 0
(corresponding to a WGAN-GP formulation) varying the
first latent variable has no clear meaning. In contrast, with
the proposed FlatGAN formulation, we can specify vectors
tangent to the circle from which the data is sampled. This
yields an interpretable latent representation that corresponds
to an angular movement along the circle. As the number of
epochs is increasing, both formulations tend to concentrate
most of the probability mass on the five data points. How-
ever, since g✓ : Z ! X is continuous by construction an
interpretable path remains.

6.2. Equivariant Representation Learning

In Fig. 7 and Fig. 8 we show examples for k = 2 and k = 3
on MNIST respectively the smallNORB dataset of LeCun
et al. (2004). For MNIST, we compute the tangent vectors
manually by rotation and dilation of the digits, similar as
done by Simard et al. (1992; 1998). For the smallNORB
example, the tangent vectors are given as differences be-
tween the corresponding images. As observed in the figures,
the proposed formulation leads to interpretable latent codes

3See https://github.com/moellenh/flatgan for
a PyTorch implementation to reproduce Fig. 6 and Fig. 7.

which behave equivariantly with the generated images. We
remark that the goal was not to achieve state-of-the-art im-
age quality but rather to demonstrate that specifying tangent
vectors yields disentangled representations. As remarked by
Jaderberg et al. (2015), representing a 3D scene with a se-
quence of 2D convolutions is challenging and a specialized
architecture based on a voxel representation would be more
appropriate for the smallNORB example.

6.3. Discovering the Arrow of Time

In our last experiment, we set k = 1 and specify the tangent
vector as the difference of two neighbouring frames in video
data. We train on the tinyvideo beach dataset (Vondrick
et al., 2016), which consists of more than 36 million frames.
After training for about half an epoch, we can already ob-
serve a learned latent representation of time, see Fig. 1 and
Fig. 9. We generate individual frames by varying the latent
coordinate z1 from �12.5 to 12.5.

Even though the model is trained on individual frames in
random order, a somewhat coherent representation of time is
discovered which captures phenomena such as ocean waves
or people walking on the beach.

7. Discussion and Conclusion
In this work, we demonstrated that k-currents can be used
introduce a notion of orientation into probabilistic models.
Furthermore, in experiments we have shown that specifying
partial tangent information to the data manifold leads to
interpretable and equivariant latent representations such as
the camera position and lighting in a 3D scene or the arrow
of time in time series data.

The difference to purely unsupervised approaches such as
InfoGAN or �-VAE is, that we can encourage potentially
very complex latent representations to be learned. Never-
theless, an additional mutual information term as in (Chen
et al., 2016) can be directly added to the formulation so that
some representations could be encouraged through tangent
vectors and the remaining ones are hoped to be discovered
in an unsupervised fashion.

Generally speaking, we believe that geometric measure the-
ory is a rather underexploited field with many possible ap-
plication areas in probabilistic machine learning. We see
this work as a step towards leveraging this potential.
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MMD GAN: Towards deeper understanding of moment
matching network. In Advances in Neural Information
Processing Systems, 2017.

Mathieu, M. F., Zhao, J. J., Zhao, J., Ramesh, A., Sprech-
mann, P., and LeCun, Y. Disentangling factors of vari-
ation in deep representation using adversarial training.
In Advances in Neural Information Processing Systems,
2016.

Mescheder, L., Geiger, A., and Nowozin, S. Which training
methods for GANs do actually Converge? In Interna-
tional Conference on Machine Learning, 2018.

Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets. arXiv:1411.1784, 2014.
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[ABD03] G. Alberti, G. Bouchitté and G. Dal Maso.�e calibration method

for theMumford-Shah functional and free-discontinuityproblems.
In:Calculus of Variations and Partial Di�erential Equations 16.3 (2003),
pp. 299–333 (Cited on pages 36, 37, 44, 62, 76, 78, 79, 95).

[AM17] G. Alberti and A. Massaccesi.On some geometric properties of cur-
rents and Frobenius theorem. In: arXiv:1705.09938 (2017) (Cited on
pages 37, 135).

[AMS19] G. Alberti, A. Massaccesi and E. Stepanov.On the geometric struc-
ture of currents tangent to smoothdistributions. In: arXiv:1907.07456
(2019) (Cited on pages 37, 135).

[AB94] C. D. Aliprantis and K. C. Border. In�nite Dimensional Analysis: A
Hitchhiker’s Guide. Springer, 1994 (Cited on pages 11, 27).

[Ama16] S.-I. Amari. Information geometry and its applications. Vol. 194.
Springer, 2016 (Cited on page 12).

[AFP00] L. Ambrosio, N. Fusco and D. Pallara. Functions of bounded varia-
tion and free discontinuity problems. �e Clarendon Press Oxford
University Press, 2000 (Cited on pages 9, 32–34, 36, 49, 67, 76, 78).

[AT05] B. Appleton and H. Talbot. Globally minimal surfaces by continu-
ousmaximal 
ows. In: IEEETrans. PatternAnal.Mach. Intell. (PAMI)
28.1 (2005), pp. 106–118 (Cited on page 21).

[ACB17] M. Arjovsky, S. Chintala and L. Bottou.Wasserstein Generative Ad-
versarialNetworks. In: International Conference onMachine Learning
(ICML). 2017 (Cited on pages 25, 94, 113, 114, 139).

[AA14] D. N. Arnold and G. Awanou. Finite element di�erential forms
on cubical meshes. In: Mathematics of Computation 83.288 (2014),
pp. 1551–1570 (Cited on page 105).

[AFW06] D. N. Arnold, R. S. Falk and R. Winther. Finite element exterior cal-
culus, homological techniques, and applications. In:Acta numerica
15 (2006), pp. 1–155 (Cited on page 105).

[AG91] P. Aviles andY. Giga.Variational integrals onmappings of bounded
variation and their lower semicontinuity. In: Arch. Ration. Mech.
Anal. 115.3 (1991), pp. 201–255 (Cited on pages 35, 95).

235



236

[Bac19] F. Bach. Submodular functions: fromdiscrete to continousdomains.
In: Mathematical Programming (175 2019), pp. 419–459 (Cited on
pages 77, 136).

[BDH96] C. B. Barber, D. P. Dobkin and H. Huhdanpaa. �e quickhull al-
gorithm for convex hulls. In: ACM Transactions on Mathematical
So�ware (TOMS) 22.4 (1996), pp. 469–483 (Cited on pages 72, 161).

[Bar20a] S. Bartels. Error estimates for a class of discontinuous Galerkin
methods for nonsmooth problems via convex duality relations. In:
arXiv:2004.09196 (2020) (Cited on page 136).

[Bar20b] S. Bartels.Nonconforming discretizations of convexminimization
problemsandprecise relations tomixedmethods. In: arXiv:2002.02359
(2020) (Cited on page 136).

[BT70] E. Beale and J. Tomlin. Special facilities in a general mathematical
programming system for nonconvex problems using ordered sets
of variables. In: 1970 (Cited on page 46).

[Bec52] M. Beckmann. A continuous model of transportation. In: Econo-
metrica: Journal of the Econometric Society (1952), pp. 643–660 (Cited
on page 120).

[BPV91] G. Bellettini, M. Paolini and C. Verdi. Convex approximations of
functionals with curvature. In: Atti Accad. Naz. Lincei Cl. Sci. Fis.
Mat. Natur. Rend. Lincei (9) Mat. Appl. 2.4 (1991), pp. 297–306 (Cited
on page 17).

[BCV13] Y. Bengio, A. Courville and P. Vincent. Representation learning: A
review and new perspectives. In: IEEE Trans. Pattern Anal. Mach.
Intell. (PAMI) 35.8 (2013), pp. 1798–1828 (Cited on page 112).

[BER17] B. Berkels, A. E�and and M. Rumpf. A posteriori error control for
the binary Mumford-Shah model. In:Mathematics of computation
86.306 (2017), pp. 1769–1791 (Cited on page 138).

[Ber96] J. Bernoulli. Problema novum ad cujus solutionem mathematici
invitantur. In: Acta Eruditorum 18.269 (1696) (Cited on page 106).

[Bhu08] A. Bhusnurmath. Applying convex optimization techniques to en-
ergy minimization problems in computer vision. PhD thesis. Uni-
versity of Pennsylvania, 2008 (Cited on pages 19, 20).

[BT08] A. Bhusnurmath and C. J. Taylor. Solving stereo matching prob-
lems using interior point methods. In: International Symposium on
3D Data Processing, Visualization and Transmission. 2008 (Cited on
pages 19, 20).

[BZ87] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987
(Cited on page 76).



237 Bibliography

[BKM17] D. M. Blei, A. Kucukelbir and J. D. McAuli�e. Variational inference:
A review for statisticians. In: Journal of the American Statistical As-
sociation 112.518 (2017), pp. 859–877 (Cited on page 3).

[BPT12] G. Blekherman, P. A. Parrilo and R. R. �omas. Semide�nite Opti-
mization and Convex Algebraic Geometry. SIAM, 2012 (Cited on
page 87).

[Bot+17] L. Bottou, M. Arjovsky, D. Lopez-Paz andM. Oquab.Geometrical in-
sights for implicit generative modeling. In: arXiv:1712.07822 (2017)
(Cited on page 112).
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221 (Cited on page 133).

[BK03] Y. Boykov and V. Kolmogorov. Computing geodesics and minimal
surfaces via graph cuts. In: International Conference on Computer
Vision (ICCV). 2003 (Cited on page 20).

[BK04] Y. Boykov and V. Kolmogorov.An experimental comparison ofmin-
cut/max-
ow algorithms for energy minimization in vision. In:
IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 26.9 (2004), pp. 1124–
1137 (Cited on page 15).

[Bra95] K. A. Brakke. Numerical solution of soap �lm dual problems. In:
Experimental Mathematics 4.4 (1995), pp. 269–287 (Cited on page 21).

[BKP10] K. Bredies, K. Kunisch and T. Pock. Total generalized variation. In:
SIAM J. Imaging Sci. 3.3 (2010), pp. 492–526 (Cited on page 133).

[BPW13] K. Bredies, T. Pock and B. Wirth. Convex relaxation of a class of
vertex penalizing functionals. In: J. Math. Imaging Vis. 47.3 (2013),
pp. 278–302 (Cited on page 134).

[BPW15] K. Bredies, T. Pock and B. Wirth. A convex, lower semicontinuous
approximation of Euler’s elastica energy. In: SIAM J. Math. Anal.
47.1 (2015), pp. 566–613 (Cited on page 134).

[Bre03] Y. Brenier. ExtendedMonge-Kantorovich theory. In: Optimal trans-
portation and applications. Springer, 2003, pp. 91–121 (Cited onpage 13).

[BES63] H. Busemann, G. Ewald and G. C. Shephard. Convex bodies and
convexity on Grassmann cones. In:Math. Ann. 151.1 (1963), pp. 1–41
(Cited on page 97).



238

[CC20] C. Caillaud and A. Chambolle. Error estimates for �nite di�erences
approximations of the total variation. In: (2020) (Cited on page 136).

[Car16] M. Carioni. A Discrete Coarea-type Formula for the Mumford-
ShahFunctional inDimensionOne. In: arXiv:1610.01846 (2016) (Cited
on page 80).

[CR00] C. Carstensen and T. Roubicek.Numerical approximation of young
measuresinnon-convex variational problems. In:NumerischeMath-
ematik 84.3 (2000), pp. 395–415 (Cited on page 134).

[CP11a] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm
for Convex Problems with Applications to Imaging. In: J. Math.
Imaging Vis. 40 (2011), pp. 120–145 (Cited on pages 27, 37–39, 106,
109).

[Cha01] A. Chambolle. Convex representation for lower semicontinuous
envelopes of functionals in L1. In: J. Convex Anal. 8.1 (2001), pp. 149–
170. issn: 0944-6532 (Cited on pages 76, 78, 80).

[Cha+10] A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock.An in-
troduction to total variation for image analysis. In:�eoretical foun-
dations and numerical methods for sparse recovery 9.263-340 (2010),
p. 227 (Cited on pages 7, 17, 43).

[CCP12] A. Chambolle, D. Cremers and T. Pock. A convex approach to mini-
mal partitions. In: SIAM J. Imaging Sci. 5.4 (2012), pp. 1113–1158 (Cited
on pages 17, 18, 49, 66, 77).

[CP16a] A. Chambolle andT. Pock.An introduction to continuous optimiza-
tion for imaging. In: Acta Numerica 25 (2016), pp. 161–319 (Cited on
page 3).

[CP16b] A. Chambolle and T. Pock. On the ergodic convergence rates of a
�rst-order primal–dual algorithm. In:Mathematical Programming
159.1-2 (2016), pp. 253–287 (Cited on page 39).

[CP19] A. Chambolle and T. Pock. Total roto-translational variation. In:
Numerische Mathematik 142.3 (2019), pp. 611–666 (Cited on page 134).

[CP20] A. Chambolle and T. Pock. Crouzeix–Raviart approximation of the
total variation on simplicialmeshes. In: J. Math. Imaging Vis. (2020),
pp. 1–28 (Cited on page 136).

[CEN06] T. F. Chan, S. Esedoglu and M. Nikolova. Algorithms for �nding
global minimizers of image segmentation and denoising models.
In: SIAM J. Appl. Math. 66.5 (2006), pp. 1632–1648 (Cited on page 17).

[CK15] Q. Chen and V. Koltun. Robust nonrigid registration by convex op-
timization. In: International Conference on Computer Vision (ICCV).
2015 (Cited on page 93).



239 Bibliography

[CK16] Q. Chen and V. Koltun. Full Flow: Optical Flow Estimation By
Global Optimization Over Regular Grids. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2016 (Cited on
pages 8, 93).

[Che+16] X. Chen, Y. Duan, R. Houthoo�, J. Schulman, I. Sutskever and P.
Abbeel. InfoGAN: Interpretable representation learning by infor-
mation maximizing generative adversarial nets. In: Advances in
Neural Information Processing Systems (NeurIPS). 2016 (Cited on
pages 113, 114, 124).

[Cho69] G. Choquet. Lectures on Analysis, Vol. 2: Representation �eory.
1969 (Cited on page 11).

[CK97] L. D. Cohen and R. Kimmel. Global minimum for active contour
models: A minimal path approach. In: Int. J. Comput. Vis. (IJCV)
24.1 (1997), pp. 57–78 (Cited on pages 15, 93).

[CM18] P. L. Combettes and C. L. Müller. Perspective functions: Proximal
calculus andapplications inhigh-dimensional statistics. In: J.Math.
Anal. Appl. 457.2 (2018), pp. 1283–1306 (Cited on page 106).

[CP11b] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in
signal processing. In: Fixed-point algorithms for inverse problems in
science and engineering. Springer, 2011, pp. 185–212 (Cited on page 19).

[Cra19] K. Crane.Discrete di�erential geometry: An applied introduction.
2019 (Cited on page 96).

[CS05] D. Cremers and S. Soatto. Motion competition: A variational ap-
proach to piecewise parametric motion segmentation. In: Int. J.
Comput. Vis. (IJCV) 62.3 (2005), pp. 249–265 (Cited on page 9).

[CS13] D. Cremers and E. Strekalovskiy. Total cyclic variation and general-
izations. In: J. Math. Imaging Vis. 47.3 (2013), pp. 258–277 (Cited on
page 135).

[CS+04] I. Csiszár, P. C. Shields et al. Information theory and statistics: A
tutorial. In: Foundations and Trends® in Communications and Infor-
mation �eory 1.4 (2004), pp. 417–528 (Cited on page 112).

[Cut13] M. Cuturi. Sinkhorn distances: Lightspeed computation of opti-
mal transport. In: Advances in Neural Information Processing Systems
(NeurIPS). 2013 (Cited on page 140).

[DLS14] L. De Pascale, J. Louet and F. Santambrogio. A �rst analysis of the
Mongeproblemwith vanishinggradient penalization. In: arXiv:1407.7022
(2014) (Cited on page 13).

[Den+17] E. L. Denton et al.Unsupervised learning of disentangled represen-
tations from video. In: Advances in Neural Information Processing
Systems (NeurIPS). 2017 (Cited on page 114).



240

[DHK11] T. K. Dey, A. N. Hirani and B. Krishnamoorthy. Optimal homol-
ogous cycles, total unimodularity, and linear programming. In:
SIAM J. Comp. 40.4 (2011), pp. 1026–1044 (Cited on page 135).

[DB16] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling
language for convex optimization. In:�e Journal of Machine Learn-
ing Research 17.1 (2016), pp. 2909–2913 (Cited on page 39).

[DW20] C. Dirks and B. Wirth. An adaptive �nite element approach for
li�edbranched transport problems. In: arXiv:2003.13797 (2020) (Cited
on page 138).

[DSC18] C. Domokos, F. R. Schmidt andD. Cremers.MRFOptimizationwith
Separable Convex Prior on Partially Ordered Labels. In: European
Conference on Computer Vision (ECCV). 2018 (Cited on page 93).

[DE13] G. Dziuk and C. M. Elliott. Finite element methods for surface
PDEs. In: Acta Numerica 22 (2013), pp. 289–396 (Cited on page 134).

[EZC10] E. Esser, X. Zhang and T. F. Chan.AGeneral Framework for a Class
of First Order Primal-Dual Algorithms for Convex Optimization
in Imaging Science. In: SIAM J. Imaging Sci. 3 (2010), pp. 1015–1046
(Cited on page 50).

[Ess10] J. E. Esser. Primal dual algorithms for convex models and applica-
tions to image restoration, registration and nonlocal inpainting.
2010 (Cited on page 27).

[Fed69] H. Federer. Geometric measure theory. Springer, 1969 (Cited on
pages 13, 95, 96, 112, 114, 117, 119, 120, 160).

[Fed74] H. Federer. Real 
at chains, cochains and variational problems. In:
Indiana Univ. Math. J. 24.4 (1974), pp. 351–407 (Cited on pages 13, 95,
104, 135).

[FF60] H. Federer and W. H. Fleming. Normal and integral currents. In:
Annals of Mathematics (1960), pp. 458–520 (Cited on pages 112, 118,
120).

[FMN16] C. Fe�erman, S. Mitter and H. Narayanan. Testing the manifold
hypothesis. In: Journal of the American Mathematical Society 29.4
(2016), pp. 983–1049 (Cited on pages 5, 112).
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