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Background: Invasive ductal carcinoma (IDC) is a clinically and molecularly distinct

disease. Tumor microenvironment (TME) immune phenotypes play crucial roles in

predicting clinical outcomes and therapeutic efficacy.

Method: In this study, we depict the immune landscape of IDC by using transcriptome

profiling and clinical characteristics retrieved from The Cancer Genome Atlas (TCGA)

data portal. Immune cell infiltration was evaluated via single-sample gene set enrichment

(ssGSEA) analysis and systematically correlated with genomic characteristics and

clinicopathological features of IDC patients. Furthermore, an immune signature was

constructed using the least absolute shrinkage and selection operator (LASSO) Cox

regression algorithm. A random forest algorithm was applied to identify the most

important somatic gene mutations associated with the constructed immune signature.

A nomogram that integrated clinicopathological features with the immune signature to

predict survival probability was constructed by multivariate Cox regression.

Results: The IDC were clustered into low immune infiltration, intermediate immune

infiltration, and high immune infiltration by the immune landscape. The high infiltration

group had a favorable survival probability compared with that of the low infiltration group.

The low-risk score subtype identified by the immune signature was characterized by T

cell-mediated immune activation. Additionally, activation of the interferon-α response,

interferon-γ response, and TNF-α signaling via the NFκB pathway was observed in the

low-risk score subtype, which indicated T cell activation and may be responsible for

significantly favorable outcomes in IDC patients. A random forest algorithm identified

the most important somatic gene mutations associated with the constructed immune

signature. Furthermore, a nomogram that integrated clinicopathological features with

the immune signature to predict survival probability was constructed, revealing that
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the immune signature was an independent prognostic biomarker. Finally, the relationship

of VEGFA, PD1, PDL-1, and CTLA-4 expression with the immune infiltration landscape

and the immune signature was analyzed to interpret the responses of IDC patients

to immunotherapy.

Conclusion: Taken together, we performed a comprehensive evaluation of the immune

landscape of IDC and constructed an immune signature related to the immune

landscape. This analysis of TME immune infiltration landscape has shed light on

how IDC respond to immunotherapy and may guide the development of novel drug

combination strategies.

Keywords: immune landscape, immune signature, survival, invasive ductal carcinoma, immune checkpoint

inhibitor

INTRODUCTION

Invasive ductal carcinoma (IDC) is a clinically and molecularly
distinct disease. IDCs are typically of high histologic grade and
high mitotic index. HER2 overexpression or amplification is
detected in 20% of these tumors (1). IDC tends to metastasize
to bone, liver, and lung, whereas invasive lobular carcinoma
(ILC) has a higher tendency to metastasize in gastrointestinal
and genital tracts, serosal cavities, and meninges (2). IDCs
usually form glandular structures in contrast to the small
clusters formed by ILCs. The loss of CDH1 leads to the
discohesive morphology in ILCs, whereas IDCs maintain intact
cell adhesion (3). Furthermore, the frequency of recurrently
mutated genes and recurrent copy-number alterations often
differs significantly between IDCs and ILCs (3). These features
are generally associated with a poor prognosis. Taken together,
these differences suggest that ILCs and IDCs are distinct cancer
types and progress along different pathways.

Genetic and epigenetic changes contribute to the progression
of tumor progression and recurrence in different cancer
types. However, accumulated evidence indicates that the tumor
microenvironment (TME) has clinicopathological significance in
predicting survival outcomes and assessing therapeutic efficacy
factors (4, 5). TME cells constitute a vital element of cellular
and non-cellular components in the tumoural niche, including
extracellular matrix and cellular components, such as fibroblasts,
adipose cells, immune-inflammatory cells, and neuroendocrine
cells. Previous studies have revealed that immune cells in the
TME modulate cancer progression and are attractive therapeutic
targets (6, 7). To date, the comprehensive landscape of immune
cells infiltrating the TME of IDCs has not yet been elucidated.
We propose that IDCs have a distinct immune landscape and
that the immune landscape might lead to different prognoses
and treatment responses. In this study, by applying several
computational algorithms, we estimated the abundance of
immune cells in the TME of IDCs and analyzed the correlation

Abbreviations: TME, tumor microenvironment; IDC, invasive ductal carcinoma;

TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ssGSEA,

single-sample gene set enrichment; LASSO, least absolute shrinkage and selection

operator; ILC, invasive lobular carcinoma; DEG, differentially expressed gene;

WGCNA, weighted correlation network analysis; IRF4, interferon-regulatory

factor 4; AICE, AP-1-IRF consensus element.

of the immune landscape with genomic characteristics and
pathological features of IDCs. Furthermore, we built an immune
signature, which is a robust prognostic biomarker and predictive
factor for the response to immunotherapy.

METHODS

Data Download
TCGA RNA-seq datasets and clinical data for IDCs were
downloaded by UCSC Xena browser (https://xenabrowser.net/).
GSE20685 and GSE86948 were downloaded from the Gene
Expression Omnibus (GEO) database.

Implementation of Single-Sample Gene Set
Enrichment Analysis (ssGSEA)
We obtained the marker gene set for immune cell types from
Bindea et al. (8). MDSC gene set was imported from MSIGDB
gmt file from Broad institute. We used the ssGSEA program to
derive the enrichment scores of each immune-related term. In
brief, the infiltration levels of immune cell types were quantified
by ssGSEA in the R package gsva (9). The ssGSEA applies gene
signatures expressed by immune cell populations to individual
cancer samples. The computational approach used in our study
included immune cells types that are involved in innate immunity
and adaptive immunity. Tumors with qualitatively different
immune cell infiltration patterns were grouped using hierarchical
agglomerative clustering (based on Euclidean distance and
Ward’s linkage).

The T cell infiltration score (TIS) was defined as the average
of the standardized values for CD8+ T, central memory CD4+

T, effector memory CD4+ T, central memory CD8+ T, effector
memory CD8+ T, Th1, Th2, Th17, and Treg cells. The obtained
cytotoxic activity scores (CYT) score was calculated by the
geometrical mean of PRF1 and GZMA (10). The CD8+ T/Treg
ratio was the digital ratio of the ssGSEA scores for these two
cell types. The correlation between risk score and immune cell
ssGSEA score was calculated by Pearson correlation.

LASSO Regularization
LASSO (least absolute shrinkage and selection operator) is an
important regularization in many regression analysis methods
(e.g., COX regression and logistic regression) (10–12). The idea
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behind LASSO is that a L1-norm is used to penalize the weight of
the model parameters. Assuming a model has a set of parameters,
the LASSO regularization can be defined as:

λ ·

n
∑

i=0

‖wi‖1

It can also be expressed as a constraint to the targeted
objective function:

∑

∥

∥

∥
Y − Y

∗
∥

∥

∥

2
, s.t. ‖wi‖1 < t

An important property of the LASSO regularization term is that
it can force the parameter values to be 0, thus generating a
sparse parameter space, which is a desirable characteristic for
feature selection. In our analysis, 19 genes which were highly
associated with OS were used as the input. QRSL1, TIMM8A,
IGHA1, BATF, KLRB1, SPIB, and FLT3LG were picked after the
penalizing process. A risk score (RS) formula was established by
including individual normalized gene expression values weighted
by their LASSO Cox coefficients:

∑

i

Coefficient(mRNAi)× Expression(mRNAi)

Risk score = (0.210 ∗ expression level of QRSL1) + (0.092 ∗

expression level of TIMM8A) + (−0.046 ∗ expression level of
IGHA1) + (−0.066 ∗ expression level of BATF) + (−0.110 ∗

expression level of KLRB1)+ (−0.139 ∗ expression level of SPIB)
+ (−0.262 ∗ expression level of FLT3LG).

Differentially Expressed Gene (DEG)
Analysis
DEG analysis was performed by the Limma package (13). The
samples were separated into a high-risk score group and a low-
risk score group. An empirical Bayesian approach was applied
to estimate the gene expression changes using moderated t-
tests. The Q-value (adjusted p-value) for multiple testing was
calculated using the Benjamini-Hochberg correction. The DEGs
were defined as genes with aQ-value< 0.05. The clusterProfiler R
package was applied for the GO analysis (14). GSEA was applied
with the GSEA software.

Co-expression Gene Network Based on
RNA-seq Data
The Weighted correlation network analysis (WGCNA) was used
to construct the gene co-expression network (15, 16). The co-
expression similarity si, j was defined as the absolute value of the
correlation coefficient between the profiles of nodes i and j:

si, j = |cor
(

xi, xj
)

|

where, xi and xj are expression values of for genes i and j, and
si, j represent Pearson’s correlation coefficients of genes i and
j, respectively.

A weighed network adjacency was defined by raising the
co-expression similarity to a power β :

ai,j = s
β
i,j

with β ≥ 1. We selected the power of β = 5 and scale-
free R2 = 0.95 as the soft-thresholding parameters to ensure a
signed scale-free co-expression gene network. Briefly, network
construction, module detection, feature selection, calculations of
topological properties, data simulation, and visualization were
performed. Modules were identified via hierarchical clustering
of the weighting coefficient matrix. The module membership of
node i in module q was defined as:

K
(q)
cor,i : = cor(xi,E

(q))

where, xi is the profile of node i, and E(q) is the module eigengene
(the first principal component of a given module) of module

q. The module membership measure K
(q)
cor,i, lies in [−1, 1] and

specifies how close node i is to module q, q = 1, · · ·,Q.
By evaluating the correlations between the immune

infiltration status, immune signature of IDCs and the module
membership of each module, a brown module was selected for
further analysis.

Data Processing and Integration
The mutation datasets were download by R package
TCGAbiolinks. The expression profiles of the most powerful
prognostic features (QRSL1, TIMM8A, IGHA1, BATF, KLRB1,
SPIB, and FLT3LG) were extracted from the whole transcriptome
datasets. The immune infiltration status was calculated by the
deconvolution algorithm and grouped using hierarchical
agglomerative clustering. We summarized the clinic datasets,
mutation datasets, expression profiles and immune infiltration
status into an integrated dataset (Supplementary File 1).

Statistical Analysis
A random forest algorithm was applied to find the most
important somatic mutation associated with the immune
signature. Survival outcome analysis modeled the results in
reference to the patient OS and RFS. P-values and Hazard
ratios were obtained from univariate Cox proportional-hazards
regression models using the R package survival. Multivariate
Cox regression was used to calculate the coefficients in
the nomogram. The nomogram was plotted by the rms
package. The time-dependent AUC value was calculated by the
survivalROC package.

RESULTS

Immune Phenotype Landscape in the TME
of IDC
Immune cell populations modulate diverse immune responses
and lead to anti-tumour effects by infiltrating the IDC TME.
The immune cell infiltration status was assessed by applying
the ssGSEA approach to the transcriptomes of IDCs. Twenty-
four immune-related terms were incorporated to deconvolve
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the abundance of diverse immune cell types in IDCs. The
IDCs were clustered into 3 clusters (low infiltration: 208;
intermediate infiltration: 430; and high infiltration: 130) in
terms of immune infiltration by applying an unsupervised
hierarchical clustering algorithm (Figure 1A). By applying
hierarchical cluster analysis and K-means clustering analysis,
we constructed a TME cell network, depicting a comprehensive
landscape of tumor-immune cell interactions and their effects

on the OS of patients with IDC (Figure 1B and Figures S1,

S2). The TME immune cells were clustered into 4 clusters, and
the correlation among different immune cell types is shown
in Figure 1B. The association of OS and RFS with different
clusters of IDCs was analyzed by a pairwise log-rank test. The
results indicated that the high infiltration group had a favorable
survival probability compared with that of the low infiltration
group (Figures 1C,D).

FIGURE 1 | Immune landscape of IDCs and the TME characteristics. (A) Unsupervised clustering of IDC patients from the TCGA cohort using ssGSEA scores from

immune cell types. Mutation status of TP53, MYC, GATA3, MAP2K4, and CDH1, status of the estrogen receptor, status of the progesterone receptor, status of Her2,

survival, and stage are shown as patient annotations in the lower panel. Hierarchical clustering was performed with Euclidean distance and Ward linkage. Three

distinct immune infiltration clusters, here termed high infiltration, median infiltration, and low infiltration, were defined. (B) Interaction of the TME immune cell types. The

size of each term represents the survival impact of each TME cell type, calculated by log10 (log-rank test P-value). The connection of TME immune cells represents

interactions between both. The thickness of the line indicates the strength of the correlation calculated by Spearman correlation analysis. Positive correlations are

represented in red, and negative correlations are represented in blue. The immune cell cluster was clustered by the hclust method. Immune cell cluster-A, yellow; cell

cluster-B, blue; cell cluster-C, red; and cell cluster-D, brown. (C) Kaplan-Meier curves for OS of IDC patients showing that the high immune infiltration group had a

favorable outcome compared with the other groups. (D) Kaplan-Meier curves for RFS of IDC patients showing that the high immune infiltration group had a favorable

outcome compared with other groups. IDC, invasive ductal carcinoma; TME, tumor microenvironment; TCGA, The Cancer Genome Atlas; OS, overall survival; RFS,

recurrence-free survival.
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Construction of the Immune Signature
A total of 413 genes were involved in the 24 immune-related
terms. We applied the univariate COX regression based on
the survival datasets of patients with IDC and the expression
profiles of the 413 genes. The 19 most significant genes were
selected with the criteria of a p-value < 0.0005 (Figure 2A).
The expression profiles of the 19 genes are shown in Figure 2B.
LASSO Cox regression was performed on the 19 genes to identify
the most important features in terms of predicting the survival
of IDC patients (Figures 2C–E). By forcing the sum of the
absolute value of the regression coefficients to be less than a
fixed value, certain coefficients were reduced to exactly zero,
and the most powerful prognostic features (QRSL1, TIMM8A,
IGHA1, BATF, KLRB1, SPIB, and FLT3LG) were identified with
relative regression coefficients. Cross-validation was applied to
prevent over-fitting. A 7-gene immune signature was constructed
according to the individual coefficients of the genes. Then, we
calculated the risk score for each IDC patient and ranked them
(Figure 2F). Figure 2G shows the survival overview in the IDC
patients. A heatmap showed that patients in the high-risk group
tended to have increased QRSL1 and TIMM8A expression levels,
as well as decreased expression levels of IGHA1, BATF, KLRB1,
SPIB, and FLT3LG (Figure 2H). The Kaplan-Meier curve and
Cox regression suggested that patients with high risk scores
had significantly worse OS and RFS than those with low risk
scores (HR = 2.94, p < 0.0001 and HR = 2.28, p = 0.001,
respectively) (Figures 2I,J). The effect of the seven genes on
the OS and RFS of IDC patients is shown in Figures S3, S4,
respectively. To confirm our findings in the IDC cohort, we
validated the prognostic function of the immune signature in
two independent GEO cohorts (GSE20685 and GSE86948). The
risk score was calculated for each patient by using the same
formula as in the IDC cohort. The GSE20685 and GSE86948
cohorts were used to predict the OS of BRCA patients based
on our immune signature model. Consistent with our previous
findings, the Kaplan-Meier curve suggested a significantly better
overall survival in the low-risk group than in the high-risk
group (Figures S5A,B).

The Low Risk Score Was Associated With
Active Infiltration Status and High
Cytotoxic Potential
High infiltration status showed a lower risk score than the
intermediate infiltration status and low infiltration status showed
(Figure 3A). Similarly, patients with a low risk score had a
higher proportion of high immune infiltration than patients with
a high risk score (Figure 3B). The presence of high immune
infiltration in patients was linked to a low risk score and was
associated with a favorable outcome (Figure 3C). To compare
cytotoxic function with the immune landscape and immune
signature that we constructed, the associated signatures were
identified for each patient. IDCs with high infiltration status and
low risk score were associated with increased levels of immune
activation. The TIS (p < 0.0001 and p < 0.0001, respectively)
(Figures 3D,G), interferon-γ signature (p < 0.0001 and p <

0.0001, respectively) (Figures 3E,H), and CYT (p < 0.0001 and

p < 0.0001, respectively) (Figures 3F,I) were increased in the
low-risk score group and high infiltration group. The ssGSEA
score of DCs was higher in the low-risk score group than in
the high-risk score group. The Kaplan-Meier curve showed that
in the low-risk score group, the ssGSEA score of DC cells
affected survival but did not affect the high-risk score group
(Figures S6A–C). Furthermore, the correlation between MDSCs
and risk score was analyzed (Figure S7A). The ssGSEA score for
MDSCs was positively associated with the OS of IDC patients
in whole cohorts (p = 0.017) (Figure S7B). When we stratified
the patients into low-risk score and high-risk score groups, the
ssGSEA score of MDSCs showed opposite association with the
survival of IDC patients (HR = 2.42 and 0.63, respectively)
(Figures S7C,D). These data indicate that compared with high-
risk score tumors, low-risk score tumors have a distinct immune
phenotype, characterized by increased immune infiltration and
increased levels of immune activation.

The Low-Risk Score Was Associated With
Increased T Cell Infiltration
The association of risk score and immune-related cells was
analyzed by Pearson correlation. Cytotoxic cells, CD8+ T cells,
T cells and the 6 other most significant immune-related cell
types are shown in Figure 4. A high level of correlation was
found between the risk score and the T cell-mediated immune
response. The ssGSEA scores of 24 immune-related terms in the
low, intermediate, and high immune status and low- and high-
risk score groups are shown in Figures S8A,C. The p-value and
difference in the mean ssGSEA score from the high- and low-
infiltration status and low- and high-risk score groups are shown
in Figures S8B,D. The proportions of low, intermediate, and
high immune infiltration status in different pathological subtypes
and different AJCC stages of IDC are shown in Figures S8E,F.
The triple-negative subtype of IDCs had a higher proportion of
high infiltration status IDCs than other pathological subtypes,
indicating an active immune response in triple-negative IDCs.
The risk score distribution in different pathological subtypes
and different AJCC stages of IDC are shown in Figures S8G,H.
The luminal A subtype had a lower risk score than the other
pathological subtypes.

Functional Annotation and WGNCA of the
Transcriptomes of IDC Patients
To identify the underlying biological characteristics of the
constructed immune signature, DEG analysis was performed
based on the high-risk score group and low-risk score group.
The heatmap depicts the significant DEGs between the two
groups (Figure 5A). The GO analysis indicated that T cell
activation, positive regulation of leukocyte cell-cell adhesion, and
regulation of lymphocyte activation were the most significantly
enriched biological processes between the high-risk score group
and the low-risk score group (Figure 5B). The GSEA results
showed that allograft rejection, IL-6/JAK/STAT3 signaling,
the inflammatory response, interferon-α response, interferon-γ
response, and TNF-α signaling via the NFκB pathway were the
most predominantly upregulated pathways in the low-risk score
group. In contrast, the E2F targets, G2M checkpoints, MTORC1
signaling, and protein secretion pathways were significantly
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FIGURE 2 | Signature-based risk score is a promising marker of survival in IDC patients. (A) The HR and P-value from the univariable Cox HR regression of selected

genes in the immune terms (Criteria: P-value < 0.001). (B) The expression of the selected genes shown by heatmap. Mutation status of TP53, MYC, GATA3,

(Continued)
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FIGURE 2 | MAP2K4, and CDH1, status of the estrogen receptor, status of the progesterone receptor, status of Her2, survival, and stage are shown as patient

annotations in the lower panel. Hierarchical clustering was performed with Euclidean distance and Ward linkage. (C,D) LASSO Cox analysis identified seven genes

most correlated with overall survival, and 10-round cross validation was performed to prevent overfitting. (E) Coefficient distribution of the gene signature. (F) Risk

score distribution. (G) Survival overview. (H) Heatmap showing the expression profiles of the signature in the low- and high-risk groups. (I) Patients in the high-risk

group exhibited worse OS than those in the low-risk group. (J) Patients in the high-risk group exhibited worse RFS than those in the low-risk group. IDC, invasive

ductal carcinoma; OS, overall survival; RFS, recurrence-free survival.

FIGURE 3 | Heterogeneous immune cell infiltration in the low- and high-risk score groups. (A) The distribution of risk scores in low, mediate, and high immune

infiltration patterns. (B) The distribution of immune infiltration patterns in the low- and high-risk score groups. (C) Alluvial diagram of immune infiltration patterns in

groups with different risk scores and survival outcomes. (D) TIS in low, mediate, and high immune infiltration patterns. (E) Relative interferon-γ signature in low,

mediate, and high immune infiltration patterns. (F) Comparison of relative CYT in low, mediate, and high immune infiltration patterns. (G) Relative TIS in the low- and

high-risk score groups. (H) Relative interferon-γ signature in the low- and high-risk score groups. (I) Comparison of relative CYT in the low- and high-risk score

groups. TIS, T cell infiltration score; CYT, cytotoxic activity scores.
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FIGURE 4 | The nine most significant correlations of risk score with immune cell infiltration ssGSEA score. (A) Cytotoxic cells, (B) CD8+ T cells, (C) T cells, (D) B

cells, (E) pDC cells, (F) TFH cells, (G) DC cells, (H) iDC cells, (I) Treg cells.

downregulated in the low-risk score group (Figures 5C,D).
To further identify the underlying biological characteristics
in the immune signature, WGCNA was performed, and the

correlation of risk score and immune infiltration status with
module membership were analyzed. The soft threshold selection
is shown in Figure S9. The module-trait heatmap illustrates
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FIGURE 5 | Functional annotation of the immune signature and WGCNA of the IDC transcriptome. (A) Heatmap showing the transcriptome expression profiles of the

low- and high-risk groups. (B) GO analysis based on the significant genes in the comparison between low- and high-risk groups. (C,D) GSEA revealed that most

significant hallmarks correlated with the immune signature. (E) Correlation between modules and traits. (F) The correlation between module membership and gene

significance in the brown module. (G) GO analysis based on the hub genes in the brown module. GO, gene ontology; GSEA, gene set enrichment analysis.

that the brown module had a significant p-value with both
immune signature and immune infiltration status (Figure 5E);
the coefficients were −0.64 and 0.8, respectively. The association
betweenmodule membership and gene significance for each gene
in the brown module is shown in Figure 5F. The genes from
the brown module with a coefficient >0.5 were selected as hub
genes, and GO enrichment analysis revealed that T cell activation
and lymphocyte activation were the most significantly enriched
biological processes, which further confirmed the results from the
DEG analysis (Figure 5G).

Mutation Load and Immune Signature
The spectrum of somatic mutations in patients with IDCs is
known to be varied. We next investigated the distributions
of somatic mutations and observed different patterns among
IDCs in terms of total mutations. The risk score from the
immune signature had a positive correlation with total mutations
in IDC patients (Figure 6A). By applying a random forest
algorithm, we identified 35 highly variable mutated genes that
were associated with the immune signature (Figure 6B). TP53
was the predominant gene of the 35 identified genes.
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FIGURE 6 | The association of the immune signature with cancer somatic mutations. (A) The correlation between the immune signature and IDC somatic mutations.

(B) Distribution of somatic mutations correlated with the immune signature. The upper bar plot indicates OS and RFS per patient, whereas the left bar plot shows the

importance of the somatic mutations correlated with the immune signature. IDC, invasive ductal carcinoma; OS, overall survival; RFS, recurrence-free survival.

FIGURE 7 | Construction of a nomogram for survival prediction. (A) Nomogram combining the immune signature with clinicopathological features. (B) The AUC(t) of

the multivariable models indicated that the nomogram had the highest predictive power for overall survival.

Construction of a Nomogram to Predict
Overall Survival in IDC Patients
We constructed a nomogram that integrated clinicopathological

features with the immune signature to predict the survival

probability of IDC patients (Figure 7A). The AUC(t)

functions of the multivariable models were developed

to indicate how well these features serve as prognostic

markers. Compared to other features, such as signature-
based risk score, AJCC-TNM stage, and total mutation
burden, the nomogram consistently showed the highest
predictive power for overall survival in the follow-up
period (Figure 7B).

The Immune Signature Predicted the
Immunotherapeutic Benefits in IDC
Patients
VEGF-A, the main mediator in tumor angiogenesis, hinders
T cell infiltration in the tumor microenvironment. Hence, we
explored the correlation between VEGF-A expression and the T
cell immune response in IDC tumors. Interestingly, the increased
VEGFA expression significantly correlated with both decreased
levels of activated CD8+ T cells and Th1 cell infiltration in
the high immune infiltration tumor microenvironment but
not in the low immune infiltration tumor microenvironment
(Figures 8A,B). Furthermore, perforin, the molecular effector
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FIGURE 8 | Immune signature predicts immunotherapeutic benefits. (A–C) The correlation of VEGFA expression with T cell infiltration, Th1 cells, and PRF1 expression

in high and low immune infiltration conditions. (D) The correlation of VEGFA expression with the immune signature. (E–G) The correlation of PD-1 expression with T

cell infiltration, Th1 cells, and PRF1 expression in high and low immune infiltration conditions. (H) The correlation of PD-1 expression with the immune signature. (I–K)

The correlation of PDL-1 expression with T cell infiltration, Th1 cells, and PRF1 expression in high and low immune infiltration conditions. (L) The correlation of PDL-1

expression with the immune signature. (M–O) The correlation of CTLA-4 expression with T cell infiltration, Th1 cells, and PRF1 expression in high and low immune

infiltration conditions. (P) The correlation of CTLA-4 expression with the immune signature.

found in the granules of cytotoxic T lymphocytes and natural
killer cells, also showed a negative correlation with VEGF-A
expression (Figure 8C). Finally, the positive correlation of
VEGF-A and the risk score was identified (Figure 8D). PD-
1, PDL-1, and cytotoxic T lymphocyte antigen-4 (CTLA-4) are

promising targets for the treatment of patients with breast and
non-small cell lung cancer. PD-1, PDL-1, and CTLA-4 antibodies
are undergoing studies for the treatment of breast cancer. We
analyzed the correlation of PD-1, PDL-1, and CTLA-4 expression
in the high- and low-infiltration groups (Figures 8E–P). The
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expression of PD-1, PDL-1, and CTLA-4 was more significantly
correlated with CD8+ T cells, Th1 cell ssGSEA score, and
perforin expression in the high-infiltration group than in the
low-infiltration group. Furthermore, the mean expression of PD-
1, PDL-1, and CTLA-4 was significantly increased in the high-
infiltration group, indicating a potentially enhanced response
to the corresponding anticancer antibody for IDCs with high
immune infiltration status. In our constructed immune signature,
the risk score showed a negative correlation with PD-1, PDL-1,
and CTLA-4 expression, which implies a potentially enhanced
effect of PD-1, PDL-1, and CTLA-4 antibodies in patients
with low risk score. Lastly, we checked the correlation of the
expression profiles of several immune checkpoint proteins, e.g.,
CD160, CD274, CD276, CTLA-4, LAG3, and PDCD1, risk score,
and VEGF-A in the TCGA and GSE20685 cohorts (Figure S10).

DISCUSSION

In this study, we depicted the immune landscape of IDC
using a large cohort. The immune landscape might explain the
differences in prognoses of patients with IDC and responses to
PD1, PDL-1, and CTLA-4 antibodies. Based on the immune
landscape, we constructed an immune signature that calculated
the risk score per patient. The correlation of signature and
immune landscape revealed that the T cell-mediated immune
response played a crucial role in the signature. Patients with low
risk scores had increased T cell infiltration scores, interferon-γ
signatures, and cytotoxic activity scores, indicating active T cell
immune responses and favorable survival probability. A random
forest algorithm was applied to find the most important somatic
mutation correlated with the immune signature. A nomogram
was constructed based on the immune signature and other
clinicopathological properties of IDCs. A time-dependent ROC
analysis showed high accuracy of the immune signature and
nomogram in terms of predicting the survival of IDC patients.
Lastly, PD-1, PDL-1, and CTLA-4 expression was found to be
highly associated with the risk score. The patients with low
risk scores had increased expression levels of PD-1, PDL-1, and
CTLA-4, indicating a potentially high response rate to PD-1,
PDL-1, and CTLA-4 antibodies.

In our analysis, the IDCs were clustered into three
main clusters (low immune infiltration, intermediate immune
infiltration, and high immune infiltration). The patients in
the high-infiltration cluster had the best survival probability
compared with patients in the low- and intermediate-infiltration
clusters. The T cell immune response is the central event in
antitumour immunity (17). T cells are divided into CD4+

(helper T cells, Th) and CD8+ (cytotoxic T cells, Tc) T cells.
Their secretomes include IFN-γ, TNF-α, and IL17, which have
antitumour effects. Hence, the increased T cell infiltration score,
interferon-γ signature, and cytotoxic activity score may lead to
an anti-tumor effect in the high-infiltration group. This finding
could explain the different OS and RFS in the high- and low-
infiltration groups.

From the immune landscape in IDCs, we built an immune
signature that included seven features (QRSL1, TIMM8A,

IGHA1, BATF, KLRB1, SPIB, and FLT3LG). FLT3LG is a
crucial cytokine that controls the development of DCs and is
particularly important for CD8-positive classical DCs and their
CD103-positive tissue counterparts. A clinical trial is currently
underway to treat melanoma patients with a combination
of immunostimulatory FLT3LG and a peptide-based vaccine
targeting DCs (18). KLRB1, which encodes CD161, a surface
marker on several T cell subsets and NK cells, has been found
to be most frequently associated with favorable outcomes in
many cancer types by enhancing innate immune characteristics
(19). SPIB is a member of the ETS family and profoundly
affects B cell functions. B cells that lack SPIB fail to proliferate
in response to IgM cross-linking, exhibit limited capacity to
respond to T-dependent antigens, and produce low levels of
IgG1, IgG2a, and IgG2b (20). In addition, SPIB can activate
enhancer elements in both Ig-λ and Ig-κ genes, increasing the
expression of these two genes. BATF is an inhibitor of AP-1-
driven transcription. Recent studies have revealed that BATF
can regulate positive transcriptional activity in dendritic cells,
B cells and T cells (21). BATF leucine zipper motifs interact
with interferon-regulatory factor 4 (IRF4) and IRF8 at AP-1–
IRF consensus elements (AICEs), adding additional flexibility to
the actions of IRF4 and IRF8, which were previously considered
to interact with SPIB and PU.1 (22). The interaction of IRF4
and BATF in T helper 17 cells increases the production of IL-
17, IL-21, IL-22, and IL-23 receptor. TIMM8A is involved in
the import and insertion of hydrophobic membrane proteins
from the cytoplasm to the mitochondrial inner membrane.
The Bax/Bak complex mediates the release of DDP/TIMM8a
and activates Drp1-mediated fission to promote mitochondrial
fragmentation and subsequent elimination during programmed
cell death (23). From the expression profiles of the seven genes
above, we calculated the risk score for each patient and predicted
the survival of IDC patients.

The risk score from the immune signature was most
significantly correlated with the ssGSEA score of cytotoxic
cells, CD8T cells and T cells, indicating the important roles
of the T cell immune response in the immune signature.
Interestingly, DCs in the low-risk group played a more
important role than DCs in the high-risk group. The increased
proportion of DCs significantly correlated with favorable
survival in the low-risk group but did not correlate with
favorable survival of patients in the high-risk group. Th
innate inflammatory cytokines, such as IL-1, IL-12, and IL-
23 expressed by DCs, promote IFN-γ-secreting CD4+ T
cell and cytotoxic T lymphocyte responses (24). The high
proportion of DCs and T cells cooperate to achieve the
antitumour effect in IDC patients with low risk scores. MDSCs
were immunosuppressive population. Patients in the high-risk
score group had lower infiltration status and poor survival
compared with that of patients in the low-risk score group.
This might explain why the patients in the high-risk score
group with high MDSC score had a poor survival compared
with that of patients with low MDSC score. Furthermore,
the GSEA results revealed high levels of IFN-γ, TNF-α, and
TNF-α secretion in the low-risk group, which contribute to
the antitumour activity in IDC patients with low risk scores.
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WGCNA revealed opposing directions of the risk score (cor =
−0.64) and immune infiltration (cor = 0.8) with the brown
module, indicating the high level of correlation of risk score
(calculated by immune signature) and immune infiltration. The
hub gene in the brown module plays an essential role in
regulating immune infiltration. The GO analysis revealed that
T cell activation was the most significantly enriched biological
process, indicating that the T cell-mediated immune response
is the central event in both immune infiltration and the
immune signature.

The spectrum of somatic mutations varied in IDC patients.
The different mutation burdens in IDCs led us to analyse
whether the landscape of immune cells and the immune signature
were associated with somatic mutations. The total mutations
showed a positive correlation with the risk score in IDC patients.
Furthermore, a random forest algorithm was performed to
identify themost important variables correlated with the immune
signature. TP53, SCN10A, PIK3CA, and 32 other genes were
the most significant variables in the analysis. TP53 and PIK3CA
mutations are the most common gene mutations in IDCs (44
and 33%, respectively). In the 35 gene variables, GATA3, a key
regulator of ER activity, is a newly identified gene that is mutated
in IDCs (5% in ILC vs. 13% in IDC, q = 0.03) (3). Mutations in
GATA3 are more frequent in luminal A IDC and are mutually
exclusive with FOXA1 events. The differential expression level
and enrichment for mutations of GATA3 in IDCs and of FOXA1
in ILC indicates a preferential requirement for the distinct
regulation of ER activity in ILC and IDC (3). Previous studies
revealed that the GATA3 mutation correlates with increased
expression, which is associated with the immune response (25,
26). Our analysis further confirms the correlation of the GATA3
mutation with immune infiltration. In addition, we constructed
a nomogram that integrated clinicopathological features with
the immune signature to predict the survival probability of IDC
patients. Compared with other clinicopathological features, the
immune signature showed the best accuracy in predicting the
survival of IDC patients at any time point and would therefore be
helpful for the diagnosis and precise treatment of IDC patients.

There have been several studies for the treatment of breast
cancer with immunotherapeutic antibodies. PD-1 is expressed by
exhausted T cells. PD-1 and PD-L1 exhibit inhibitory receptor–
ligand interactions, which are involved in the negative regulation
of T cell activation and peripheral tolerance during immune
responses by cancer cells. Despite demonstrated successes, only
a proportion of patients benefit from PD-1 and PDL-1 antibody
treatment. Hence, it is important to determine the mechanism
that leads to the varied therapeutic effect of PD-1 and PDL-1
antibody treatment and thus improve individual diagnosis and
precision medicine. PD-L1 expression, microsatellite instability
and deficient mismatch repair are important biomarkers that
predict the response to anti-PD-1/PD-L1 therapies (27–29).
Among the three biomarkers, PD-L1 expression has been
validated in nearly all tumor types for all approved anti-PD-
1/PD-L1 therapies. In our analysis, the expression of PD1, PDL-1,
and CTLA-4 was significantly increased in the high-infiltration
group. Furthermore, the expression of PD1, PDL-1, and CTLA-
4 had a significant correlation with CD8+ T cells, Th1 cell

ssGSEA score, and perforin expression in the high-infiltration
group, which provides a basis for PD-1/PD-L1 and CTLA-4
treatment. Similarly, the immune signature we constructed also
indicated that high expression levels of PD1, PDL-1, and CTLA-
4 correlated with low risk score. Therefore, patients with a low
risk score could derive more benefit from immunotherapy than
patients with a high risk score.

Some limitations should be acknowledged. First, this is a
retrospective study, so the robustness of predictive value of the
gene signature should be further validated in large prospective
clinical trials. Second, experimental studies are required to
further elucidate the biological functions underlying the gene
signature in IDC.

In the current study, we performed a comprehensive
evaluation of the immune landscape of IDC and constructed an
immune signature related to the immune landscape. This analysis
of TME immune infiltration patterns has shed light on how IDC
respond to immunotherapy and may guide the development of
novel drug combination strategies.
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Frontiers in Oncology | www.frontiersin.org 13 September 2019 | Volume 9 | Article 903

https://xenabrowser.net/
https://www.frontiersin.org/articles/10.3389/fonc.2019.00903/full#supplementary-material
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bao et al. A Immunotherapeutic Signature in IDC

Figure S4 | The correlation between the expression of seven genes in the immune

signature and the RFS probability of IDC patients. (A) BATF, (B) KLRB1, (C)

TIMM8A, (D) FLT3LG, (E) QRSL1, (F) IGHA1, (G) SPIB.

Figure S5 | Validation of the immune signature in two external cohorts,

GSE20685 (A) and GSE86948 (B).

Figure S6 | The correlation between the ssGSEA scores of DCs and the OS

probability of IDC patients in the high- and low-risk score groups. (A) The ssGSEA

scores were higher in the high- and low-risk score groups. (B) The correlation

between the ssGSEA scores of DCs and the OS probability of IDC patients in the

low-risk score group. (C) The correlation between the ssGSEA scores of DCs and

the OS probability of IDC patients in the high-risk score group.

Figure S7 | The correlation between the ssGSEA scores of MDSCs and the OS

probability of IDC patients in the high- and low-risk score groups. (A) The

correlation between MDSC ssGSEA scores and risk scores. (B) The correlation

between the ssGSEA scores of DCs and the OS probability of IDC patients in the

whole cohort. (C) The correlation between the ssGSEA scores of DCs and the OS

probability of IDC patients in the low-risk score group. (D) The correlation between

the ssGSEA scores of DCs and the OS probability of IDC patients in the high-risk

score group.

Figure S8 | The ssGSEA score distribution in the low, intermediate, and high

immune infiltration patterns and in the low- and high-risk score groups. (A) The

ssGSEA score distribution in low, intermediate and high immune infiltration

patterns. (B) The difference and P-value from the comparison between the

ssGSEA score from low and high immune infiltration patterns. (C) The ssGSEA

score distribution in the low- and high-risk score groups. (D) The difference and

P-value from the comparison between the ssGSEA score from the low- and

high-risk score group. (E) The distribution of immune infiltration patterns in

different pathological subtypes. (F) The distribution of risk scores in different

pathological subtypes. (G) The distribution of immune infiltration patterns at

different pathological stages. (H) The distribution of risk scores at different

pathological stages.

Figure S9 | The selection of the soft threshold in the WGCNA. (A) Scale free

topology model fit, (B) mean connectivity.

Figure S10 | The correlation of the expression profiles of several immune

checkpoint proteins, risk score, and VEGF-A in the TCGA (A) cohort and

GSE20685 cohort (B).
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