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Abstract—Age-of-information (AoI) is a metric quantifying
information freshness at the receiver. It captures the delay
together with packet loss and packet generation rate. However,
the existing literature focuses on average or peak AoI and neglects
the complete distribution. In this work, we consider a N -hop
network with time-invariant packet loss probabilities on each
link. We derive closed form equations for the probability mass
function of AoI. We verify our findings with simulations. Our
results show that the performance indicators considered in the
literature such as average or peak AoI may give misleading
insights into the real AoI performance.

Index Terms—Age of information, multi-hop, probability mass
function, probability distribution

I. INTRODUCTION

Age of information (AoI) is a metric that measures the
information freshness from the perspective of the receiver
monitoring a remote process. It is defined as the elapsed time
since the generation of the freshest packet at the receiver [1].
AoI increases until the arrival of a fresher status update at the
receiver and drops upon its successful reception. Therefore,
receiving status updates regularly plays a key role in sustaining
information freshness. In addition, the staleness of a newly
received update is characterized by the time it has spent in
the network to reach the destination. As a result, a good AoI
performance is achieved when status updates are delivered not
only regularly but also timely.

While AoI is applicable to almost any cyber-physical sys-
tem scenario, some of the most prominent applications are
vehicular networks [2], unmanned aerial vehicles [3], [4]
and networked control systems [5], [6] where periodic status
updates are being sent over a wireless network. In such a
setting, packets may need to traverse multiple hops towards the
destination where each link is prone to delay and packet loss.
Consequently, selecting a different path may result in higher
or lower AoI at the receiver, where monitoring and decision
making mechanism resides. Hence, utilization of outdated
information for decision making may lead to performance
degradation of the application and even damage the physical
environment. Therefore, obtaining detailed analytical models
of the AoI becomes crucial to gain insights into the expected
performance of underlying applications.

Vast majority of previous work proposes optimal schedul-
ing [7]–[11] or queuing policies [12]–[14] to minimize the
expected AoI in single-hop wireless networks. On the other
hand, [4], [15] focus on peak age metric which considers the

AoI only at instances of a new update. Hence, the peak AoI is a
measure for the “worst case scenario” but it does not provide
information about the real AoI performance. To the best of
our knowledge, [16], which considers a single-hop scenario,
is the only work addressing the probability distribution of
AoI. In particular, the authors derive a general formula for
the stationary distribution of AoI for single-server queuing
systems which is applicable to different service disciplines.

Moreover, in [12], authors show that, AoI can be decreased
if a more recent information always replaces an older one in
the transmission queue. This insight is extended to a multi-
hop scenario in [17]. In [17], authors assume exponentially
distributed transmission times over the links and show that the
preemptive Last Generated First Served (PLGFS) queuing pol-
icy is age-optimal. Furthermore, the average AoI for PLGFS
queues is addressed in [18] which considers a multi-hop line
network and characterizes the average AoI.

One of the most related work is [19] which considers a
multi-source, multi-monitor scenario in a multi-hop setting.
The authors derive lower bounds on the instantaneous peak
and average AoI by employing fundamental graph-theoretical
measures such as connected domination number and average
shortest path length.

The work closest to ours is [20] which proposes an optimal
stationary scheduling policy to minimize AoI in a lossy multi-
hop line network. They show that the optimal policy for the
multi-hop problem can be obtained by solving an equivalent
problem separately on each link over the path. They derive a
closed form expression for the expected AoI at the receiver
given the activation frequency of each link.

Concluding on the previous work, we observe that the
existing literature on multi-hop networks is limited to assess-
ment of the performance metrics such as peak and expected
AoI. However, the peak AoI might be inconclusive and the
expected AoI is not sufficient when it comes to performance
guarantees for real-time, physical systems. Moreover, the same
expected AoI can stem from two distinctive distributions which
may result in different system performances. Contrarily, the
probability distribution of AoI can provide the exact insights
into AoI and thus age dependent performance.

To the best of our knowledge, the probability distribution of
AoI in a multi-hop network is not yet covered in the existing
literature. We close this gap and provide the probability mass
function (PMF) of any AoI ∆ as a function of stationary
loss probabilities on each link between source and destination
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Fig. 1. Example 3-hop scenario, i.e., N = 3 with a sampling period of 7
slots, i.e., m = 7. Together with dashed lines, the orange circle illustrates the
path of the k-th update. The next status update, k + 1, is available m = 7
slots after the previous sampling event.

that are N -hop away from each other. We model the AoI
as joint probabilities of the links over the path and show
that occurrence probability of any AoI can be calculated in
a scalable manner recursively from the (n-1)-th hop.

A. Notations

Throughout this paper E[X] stands for the expected value
of a random variable X . Pr[A | B] denotes the conditional
probability, i.e., the probability of A given B. The set of
positive integers is denoted by Z+.

II. SYSTEM MODEL

We consider a physical process located at the source node
generating status updates periodically and a monitor located
at the receiver node. The source and receiver nodes are N -
hops away from each other. We assume a one-dimensional
multi-hop topology, which is also called a line network in the
literature. Note that, once the routing takes place, one can treat
the established path between any source-destination pair as a
line network.

Each transmitter over the path, i.e., the source and the
intermediate relay nodes, discards any older packet in the
transmission queue upon the arrival of a new update1. As a
result, there is no queuing effect in our model as there is
always a single packet to be forwarded. A new update at any
node is re-transmitted until it is successfully received by its
next hop or replaced with a more recent information.

As in a typical multi-hop scenario, we assume the nodes
to be spatially distributed. Therefore, each link n is prone to
packet loss with time-invariant failure probability, i.e., pn(t) =
pn, ∀t. We assume Rayleigh block fading model to represent
the wireless medium behavior such that the average failure
probability of each packet is independent. As a result, the
outcome of a transmission on the n-th link can be abstracted
as a Bernoulli trial with a constant failure probability pn.

Time is divided into slots of length ts which is also the
smallest time unit in our model. Each packet transmission

1Under the assumption that status is Markovian, having received an update,
the receiver does not benefit from the reception of older status updates. Thus,
older packets are considered to be obsolete and “non-informative”.
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Fig. 2. An example evolution of the AoI at the receiver. A new status update
is received in sampling period k. During the following 3 sampling periods,
the monitor fails to update its most recent information.

starts at the beginning of a slot and completes within the
same slot. The generation of status updates is periodic with
tp slots between two consecutive updates, i.e., m · ts = tp,
with m ∈ Z+. We call the generation of an update packet
a sampling event and the time between two consecutive
sampling events a sampling period2.

We assume that transmission schedule of intermediate nodes
within a sampling period is designed in such a way that each
link is activated in the same order as they appear over the path.
Fig. 1 depicts an example of such a schedule where the Source-
to-Relay 1 link is activated in the first slot. The intermediate
nodes are scheduled 2 and 3 slots after the sampling event.
Similar transmission schedules for multi-hop networks have
been suggested in [21] and enable the reception of a newly
generated update within the same sampling period after N -
hops. Note that, this implies m ≥ N . In the following analysis,
we assume that this inequality holds.

Motivated by the discrete-time control systems [22], in
which the model evolves in discrete steps in time and the
system status is considered unchanged until the next sampling
event, we assume the dynamics of the AoI to be discrete as
well. Therefore, we evaluate the AoI at the receiver only once
in each sampling period and right before the next sampling
event. Fig. 2 depicts an example time evolution of the AoI at
the receiver when a new status update is received in sampling
period k. Note that, while the AoI follows a “staircase” model
in continuous time, from the discrete-time system’s perspective
it is a linear increase as we evaluate the AoI only once and
at the end of each sampling period. This is similar to the
approach in [8] which only allows the AoI to decrease at the
end of each sampling period.

Let γn[k] ∈ {0, 1}, n ∈ {1, 2, . . . , N}, indicate the
outcome of the transmission on the n-th link in sampling
period k with Pr[γn[k] = 1] = 1 − pn, ∀k. Furthermore, let
∆n[k], n ∈ {0, 1, 2, . . . , N}, be the AoI at hop n after the
transmission slot that is allocated to the the previous link. As
a result, the discrete time model of the AoI follows as:

2Periodic sampling is a well-established way of generating status updates
in sensor and actuator networks. In most of the cases, sampling periods are
much longer than network time slots, i.e., m � 1.
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Fig. 3. Packet is sent from source to the relay and forwarded to the destination
when there is no direct link.

∆n[k] =

{
∆n−1[k] , γn[k] = 1

∆n[k − 1] + 1 , γn[k] = 0
(1)

with ∆0[k] = 0, ∀k. Note that ∆0[k] denotes the AoI at
the source node and it always equals to zero due to packet
discarding policy. ∆N [k] denotes the AoI at the monitor at
the end of the k-th sampling period.

Our model considers that each hop has a single slot between
two sampling events represented by a single loss probability.
Allocation of multiple slots in a consecutive fashion can
be incorporated into the model through merging the loss
probabilities. Let p∗l denote the loss probability of a single
transmission on link l and L the number of consecutive slots
allocated to l. In such a setting, we can group them together
and determine the loss probability as pl = (p∗l )

L. The model
remains unchanged as long as the slots are allocated in a
consecutive fashion and the total number of used slots does
not exceed the sampling period.

III. ANALYSIS

We begin with the simple single-hop scenario as illustrated
from Source to Relay in Fig. 3. As the packet is always fresh
at the source, in case of a success the age at the relay is reset
to zero. The failure probability on the first link is denoted with
p1 ∈ [0, 1]. Thus, the probability of the AoI at the relay being
δ1 ∈ Z≥0 can be written as:

Pr [∆1[k] = δ1] = (1− p1) · pδ11 , ∀k. (2)

Eq. (2) can be interpreted as the probability of δ1 unsuccessful
transmission attempts following a successful transmission.
Thus, the expected AoI at hop 1 follows as:

E[∆1] =

∞∑
δ1=0

Pr [∆1[k] = δ1] · δ1 =
p1

1− p1
. (3)

Consider a 2-hop scenario as in Fig. 3 with constant loss
probabilities p1 and p2 on the source-to-relay and the relay-
to-destination links, respectively. Given the loss probabilities
on two links are independent, we can treat each link indepen-
dently.

The contribution of the source-to-relay link to ∆1, is analo-
gous to the single-hop case. However, in contrast to the source
node, the information at the relay is now δ1 periods old. Let us
denote the sampling period, in which the freshest information
is received by the n-th hop as kn. Since the AoI at the previous
hop and at the n-th hop are equal at that instance, we can write
∆n−1[kn] = δn−1. Consequently, using this equality we can
treat the age at the second hop as a further aging process, i.e.,
given ∆1[k2] = δ1, the probability to have ∆2[k] = δ2 after
the second link can be calculated as:

Pr[∆2[k] = δ2 | ∆1[k2] = δ1]

=

{
0 if δ2 < δ1

(1− p2)p2
δ2−δ1 if δ2 ≥ δ1

. (4)

Here, we exploit the line-network topology and the strictly
increasing property of AoI. That is, the age at the destination
cannot be lower than the age at the first hop since there is
no other path between source-destination pair. This results in
zero probability for all ages below δ1.
δ1 represents the first link’s contribution to the total age

∆2[k] = δ2. Furthermore, δ2 − δ1 is the elapsed time since
the most recent information was received by the destination
and can also be interpreted as the second link’s contribution
to the total age δ2. As a result, we can use the law of total
probability to formulate the probability of ∆2 being δ2 as:

Pr [∆2[k] = δ2] =

δ2∑
δ1=0

Pr [∆2[k] = δ2 | ∆1[k2] = δ1]

·Pr [∆1[k2] = δ1] , ∀k. (5)

Note that we were able to merge the two cases from Eq. (4)
as we are concerned only with the nonzero summands. By
plugging Eq. (2) and Eq. (4) in we get:

Pr [∆2[k] = δ2] = (1− p1)(1− p2) · p2
δ2+1 − p1

δ2+1

p2 − p1
. (6)

The proof of Eq. (6) and the following equations are given in
appendix A. For p1 = p2, one can use the first line of Eq. (11).

Analogous to Eq. (3), it can be shown, that the expected
AoI at hop 2 is:

E[∆2] =
p1

1− p1
+

p2

1− p2
. (7)

In fact, the expected AoI at any hop n can be obtained from:

E [∆n] =

n∑
i=1

pi
1− pi

. (8)

Next, we extend our results to n-hop,

Pr [∆n[k] = δn] =

δn∑
δn−1=0

Pr [∆n[k] = δn | ∆n−1[kn] = δn−1]

·Pr [∆n−1[kn] = δn−1] . (9)

Closed form for higher number of hops can also be obtained
using a similar analysis. For instance for 3-hops we obtain:

Pr [∆3[k] = δ3]

=

∏3
i=1(1− pi)
p2 − p1

·
2∑
j=1

(−1)j · pj ·
p3
δ3+1 − pjδ3+1

p3 − pj
. (10)

In Alg. 1 a pseudo-code for a recursive calculation of
probabilities for any n hop is given. The algorithm has a time
complexity of O((δn + 1) · n).
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Algorithm 1 Recursive age function: f(δn, n,p
n) = o

Input: δn age, n number of hops, pn vector of loss proba-
bilities for n hops

Output: o the probability of age δn with n hops
Initialize: o← 0
if n = 1 then

return (1− pn) · pnδn
else

for δn−1, ∈ [0 δn] do
o← o+

(
(1− pn) · pnδn−δn−1

)
·f(δn−1, n− 1,pn−1)

end for
return o

end if

Fig. 4. AoI probability mass function of two combinations of three hop loss
probabilities pl with expected age E[∆3] = 10.33. Higher loss probability
p1 = 0.9 in the first hop increases the distribution tail compared to moderate
loss probabilities on all three links.

IV. EVALUATION

We present a simulation study for the 3-hop case with
selected loss probabilities (p1, p2, p3) on each link. Each
scenario is simulated for Tsim = 100 000 sampling periods
and repeated 100 times. The AoI is evaluated at the end of
each sampling period, as described in Sec. II. We measure the
expected AoI as:

E[∆3] ,
1

Tsim

Tsim∑
k=1

∆3[k].

Note that, one can also use Eq. (8) in order to obtain the
expected AoI after 3 hops. In addition, the peak age is defined
as the maximum value of AoI at the destination, achieved
immediately before receiving a new packet [13]. We denote
the average peak age as E[φ].

In order to show the importance of working with a prob-
ability distribution instead of expected AoI, we select the
following scenarios: S1 = (p1 = 0.9, p2 = 0.4, p3 = 0.4) and
S2 = (p1 = 0.8, p2 = 0.7, p3 = 0.8) which lead to equal
expected AoI of E [∆3] = 10.33. S1 depicts a scenario with
two low-loss links and an extremely lossy link, while S2

represents a scenario where all the links are moderately bad.
Fig. 4 plots the PMF over AoI up to 50 periods both for the
closed form (CF) equation from Eq. (10) and for the simulation
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Fig. 5. Inverse cumulative distribution function for two combinations of
three hop loss probabilities pl with expected age E[∆3] = 10.33. Higher
hop probabilities increase the AoI for higher reliability targets. Moreover, for
higher reliability targets, the average peak AoI varies drastically compared to
the actual AoI.

(Sim). We observe that the tail of the PMF is higher for S1

in comparison to S2.
To gain insights into reliability guarantees, we present the

inverse cumulative distribution functions (ICDF) in Fig 5.
Despite their equal expected AoI, one can observe that both
scenarios pose significant difference beyond 10−1. In fact, if
we are dealing with applications that require high reliability,
e.g., five nines, or equivalently 99.999 %, Fig. 5 shows that
both scenarios differ around 20 AoI levels in maximum age.
Thus, we conclude that a high loss probability pi at one of the
hops can be fatal for high reliability guarantees. Moreover, it
is important to mention that although the S1 leads to worst
performance in reliability, it achieves lower average peak age
than S2 as shown with arrows in the figure. This leads us to
the conclusion that neither the average nor the peak AoI is
a sufficient indicator if we want to support applications with
reliability guarantees. We need to take the whole probability
distribution into account instead.

V. CONCLUSION AND FUTURE WORK

In this work, we analyze the age of information in a lossy
multi-hop network. Lossy multi-hop networks are typical for
vehicle-to-vehicle or other machine-to-machine communica-
tions. The age of information affects the performance of a
set of applications in such scenarios. In the context of AoI,
previous work has focused on the expected AoI, the average
peak AoI or the maximum AoI. In this work we show that
these parameters maybe misleading in a multi-hop network
with heterogeneous link loss probabilities. To overcome this
problem we provide closed-form expression of the PMF of
AoI.

We believe the closed-form expression of the PMF provides
a deeper insight for the age and is useful when it comes
to system design choices for high reliability, e.g., five nines,
safety-critical communication scenarios such as autonomous
cars and automated UAVs. Future work can extend this work
to support multiple applications over the same network by
adding the queuing perspective at each relay.
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APPENDIX

A. Proof of probability mass functions for different number of
hops

In this appendix we share the derivation of probability
functions and the expectations. For instance for the probability
of occurrence of any age with 2 hops is

Pr[∆2[k] = δ2] =

δ2∑
δ1=0

(1− p1) · p1
δ1 · (1− p2) · p2

δ2−δ1

=(1− p1)(1− p2)p2
δ2 ·

1−
(
p1
p2

)δ2+1

1− p1
p2

=(1− p1)(1− p2) · p2
δ2+1 − p1

δ2+1

p2 − p1
. (11)

For the 3-hop scenario, probability of an age δ3 can be
obtained from Eq. (9) by plugging in our results for ∆2:

Pr[∆3[k] = δ3] =

δ3∑
δ2=0

(1− p3)p3
δ3−δ2

· (1− p1)(1− p2) · p2
δ2+1 − p1

δ2+1

p2 − p1

=
p3
δ3+1

∏3
i=1(1− pi)

p2 − p1

·

(p2

p3

) 1−
(
p2
p3

)δ3+1

1− p2
p3

−
(
p1

p3

) 1−
(
p1
p3

)δ3+1

1− p1
p3


=

∏3
i=1(1− pi)
p2 − p1

·
2∑
j=1

(−1)j · pj ·
p3
δ3+1 − pjδ3+1

p3 − pj

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in IEEE INFOCOM, 2012.

[2] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proceedings of the 8th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks, 2011.

[8] I. Kadota, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Minimizing
the age of information in broadcast wireless networks,” in 54th An-
nual Allerton Conference on Communication, Control, and Computing
(Allerton), 2016.

[3] J. Liu, X. Wang, B. Bai, and H. Dai, “Age-optimal trajectory planning
for uav-assisted data collection,” in IEEE INFOCOM Workshops: AoI
Workshop, 2018.

[4] M. A. Abd-Elmagid and H. S. Dhillon, “Average peak age-of-
information minimization in uav-assisted iot networks,” IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 2, 2019.
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