
Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Computergestützte Modellierung und Simulation
Prof. Dr.-Ing. André Borrmann

A Mechanism For Capturing Implicit Design
Knowledge In Building Information Models
Using Graph Transformations

Gunther Bidlingmaier

Interdisziplinäres Projekt
für den Master of Science Studiengang Informatik

Autor: Gunther Bidlingmaier

Matrikelnummer:

Betreuer: Prof. Dr.-Ing. André Borrmann

Jimmy Abualdenien, M.Sc.

Abgabedatum: 27. März 2020

Abstract

With the increasing adoption of Building Information Modeling (BIM), Computer Assisted
Design has become a vital tool in every lifecycle phase of a building. Creating a Building
Information Model however is also time consuming and costly.
Computational Design Synthesis (CDS) is a research field which tries to automate the Com-
puter Aided Design process by formalizing implicit design knowledge, making it explicit. A
possible barrier for its adoption however is the additional skill required for formalizing the
design knowledge, which is not a typical part of e.g. architecture education.
This work is concerned with seamlessly integrating the formalization of implicit design knowl-
edge using graph transformations into the design process. We first show how buildings can
be represented as graphs and how the formal concept of graph transformations can be used
define modifications on these building graphs. The software tool GrGen (Geiß et al., 2006)
is used to demonstrate how to implement and apply graph transformation rules.
We proceed to present a conceptual mechanism allowing the automatic generation of graph
transformation rules from a user-selected part of an existing Building Information Model.
These graph transformation rules capture the implicit design knowledge which went into the
creation the of existing model. The rules can then be applied in a different context (in the
same or a different building model) to automate the design process. The main advantage of
our generation mechanism is that it allows the usage of the graph transformation formalism
without requiring knowledge or skill in it.
Our presentation of the generation mechanism has two parts:

1. A formal definition of the generation mechanism based on graph theory.

2. A discussion on how this generation mechanism can be integrated into a BIM design
workflow.

We complement our conceptual framework with a software prototype implementing the rule
generation from a given building graph using the GrGen API.

1

Contents

1 Introduction 2

2 Graph Transformations 4
2.1 Basic Graph Theory . 4
2.2 Representing Buildings As Graphs . 6
2.3 Graph Transformation Formalism . 6

2.3.1 An Example Graph Transformation . 7
2.4 GrGen . 9

2.4.1 The GrGen Graph Model Language 9
2.4.2 The GrGen Rule Language . 10

3 Generation Of Graph Transformation Rules 14
3.1 Generation Mechanism . 14

3.1.1 Formal Definition . 14
3.1.2 Use Cases . 15
3.1.3 Design Workflow . 21

3.2 Technical Implementation . 22
3.2.1 Overview . 23
3.2.2 Search For Selection . 24
3.2.3 Rule Generation . 24
3.2.4 Rule Compilation And Application . 24
3.2.5 Generic Building Graph Model . 27
3.2.6 Use Cases . 29

4 Conclusion 33

2

Chapter 1

Introduction

With the increasing adoption of Building Information Modeling (BIM), Computer Assisted
Design has become a vital tool in every lifecycle phase of a building. From the initial de-
sign, the actual construction to the maintenance and renovation of buildings, a shared Build-
ing Information Model enables better coordination and communication between stakeholders
(Abualdenien & Borrmann, 2019; Borrmann et al., 2018).
Besides the obvious benefit of having a shared 3D geometric model of the building, BIM has
a second, more intricate benefit over 2D drawings: It can not only model the geometry of
building elements but also their semantics. This is what has enabled a whole class of new
downstream applications, aiding in the design and construction phase. These range from plan-
ning tools for construction scheduling and quantity take-off to domain specific applications
for the structural analysis of models, energy simulations and daylighting analysis. Creating
a Building Information Model however also needs a lot of work of valuable architects and
engineers (Borrmann et al., 2018).
Computational Design Synthesis (CDS) is a research field which tries to automate the com-
puter aided design process by formalizing implicit design knowledge, making it explicit. Graph
grammars or graph rewriting systems are one such formalization method which has been ma-
turing over the last decades to the point where it can capture real and complex engineering
design rules (Chakrabarti et al., 2011). A possible barrier for its adoption however might be
the additional skill and knowledge required for using graph rewriting systems.
This work is concerned with seamlessly integrating the formalization of implicit design knowl-
edge into the design process using graph transformations. We first give a rough intuition about
how buildings can be represented as graphs and show how the concept of graph transforma-
tions can be used define modifications on these building graphs. The software tool GrGen

(Geiß et al., 2006) is used to demonstrate how to create and apply graph transformation rules.
We proceed to present a concept where elements of a building graph are selected as a pattern
by the designer and then automatically extracted into a graph transformation rule. This
graph transformation rule captures implicit design knowledge and can be created without

3

knowledge about the actual formalization language. The rule can be applied to the same or
different building graphs in order to automatically apply the now formalized knowledge in
a different context. We also discuss how this formal mechanism could be integrated into a
BIM design workflow. The conceptual presentation of the mechanism is complemented with
a software prototype implementing the rule generation from a given building graph using the
GrGen API.

4

Chapter 2

Graph Transformations

This chapter explains all concepts needed for understanding the generation mechanism de-
scribed in chapter 3. We start with the basic notion of a graph, show how a graph can model
a building and how a graph transformation can be formalized and then implemented with the
GrGen tool.

2.1 Basic Graph Theory

A graph is a discrete mathematical structure used to model relationships (edges) between
objects (vertices). Formally, a graph is an ordered pair G = (V,E) where V describes the
set of vertices and E the set of edges. An edge e ∈ E consists of two vertices u, v ∈ V . In
mathematics one usually discerns directed and undirected graphs. For the former, edges have
a direction and are hence defined as ordered tuples (u, v) ∈ E. For the latter the direction
of edges is unspecified and edges are hence defined as unordered sets {u, v} ∈ E. Note that
directed graphs are more general, since an undirected graph can be represented by replacing
every edge {u, v} with two directed edges (u, v) and (v, e).
Graphs have an intuitive visual representation. For every vertex v ∈ V we draw a circle and
label it with the name of v. For every (u, v) ∈ E we draw an arrow from u to v. In the
following we will assume all graphs to be directed with undirected edges between vertices u

and v denoting the presence of both a directed edge from u to v and from v to u.
The top of figure 2.1 shows how a graph can model relationships in buildings. Our vertices V
represent rooms of the building floor plan shown at the top left of the figure. 1 An edge (u, v)
between vertices u and v denotes that room u is next to room v. This example illustrates
how a graph can be used to model relationships in a domain, but also shows the need for a
more nuanced graph model, if we want to model all information present in the floor plan.

1Note that for the sake of simplicity we will restrict ourselves to individual floor plans of buildings in this
paper. The concepts however seamlessly carry over to the examination of multiple levels at the same time.

2.1. BASIC GRAPH THEORY 5

Figure 2.1: Two graph representations of the floor plan F with different levels of detail. Note that
we have left out most of the edge annotations for the sake of simplicity.

2.2. REPRESENTING BUILDINGS AS GRAPHS 6

2.2 Representing Buildings As Graphs

This section introduces the intuitive notion of a typed attributed graph. We restrict ourselves
to the intuition motivated by the previous example in figure 2.1, since this is sufficient for
the purpose of this paper. For a more formal definition of typed attributed graphs in the
framework of category theory, refer to (Ehrig et al., 2004).
If we really want to capture a whole building and its semantic we need to add two additional
kinds of information:

1. We need to capture all elements of the building and their relationships. This means
we need different types of nodes for representing not only rooms, but also walls, doors,
windows and other building elements. Since these elements have different kinds of
relationships with each other (e.g. spatial containment of a door in a wall), we also need
different types of edges to represent this.

2. Objects in buildings posses important semantic properties such as their material. To
model these, we have to incorporate attributes into our definition of nodes.

If we incorporate this information for our example building, we get the much more sophisti-
cated graph at the bottom of figure 2.1. While we have chosen this particular graph repre-
sentation, there are many possible ways to encode the geometric and semantic relationships
between building elements into edges. One could e.g. add edges to connect windows and
doors to the rooms they belong to, and not only the walls they are contained in.
Note that which particular graph representation models a building correctly may depend on
the particular use case. The reason for this is that by representing the building as a graph,
we have abstracted the precise geometry from the model. This abstraction is useful since it
enables us to formulate abstract graph transformation rules on buildings, but it’s also a loss
of information. We will later see that this abstraction in some cases makes it hard to specify
the exact geometry of building elements after their creation or transformation in the building
graph.

2.3 Graph Transformation Formalism

While there are multiple algebraic methods of formalising graph transformations (also called
graph rewrites), for the purpose of this paper we restrict ourselves to the Single Pushout
approach. For a more thorough examination, refer to (Ehrig et al., 1997), (Rozenberg, 1997).
Intuitively, the Single Pushout method defines a generic pattern which is searched for in the
application graph and replaced as specified.
More formally we define: A graph transformation rule t is a triple (L,R, r), where L is a graph

2.3. GRAPH TRANSFORMATION FORMALISM 7

called the Pattern Graph and R is called the Rewrite Graph. r : L→ R is a (possibly) partial
injective morphism called the preservation morphism. In an application of t to an Application
Graph A, the Pattern Graph L is searched for as subgraph of A. Formally, an isomorphism
m from L to a subgraph of A is searched. m(L) is then the matched subgraph of A to be
replaced by R. This is where r is needed. Since m is an isomorphism it has a unique inverse
m−1.
We can now replace every node or edge o in m(L):

1. If r(m−1(o)) is defined, we replace o in A with r(m−1(o)).

2. If r(m−1(o)) is not defined, we discard o from A.

3. We add to A every node and edge of R not mapped to by r.

The result is the modified Application Graph A′.

2.3.1 An Example Graph Transformation

In the following we explain this formalism exemplary for the building graph at the bottom of
figure 2.1.
Suppose we want to add automatic doors between office spaces and stairways, in our case
between r1 and r3. More specifically, we want to insert an automatic door into every inner
wall which encloses both an office and a stairway. This could be sensible to make sure doors
are not open for long, ensuring the HVAC system in the office spaces can work properly.
The Pattern Graph L has to consist of three nodes. A central node of type Innerwall and
two room nodes connected to the wall via Enclose edges going from the wall node to the
respective room. One of the rooms has to be of type Office the other of type Stairway.
The Rewrite Graph R should also have these nodes and the connecting edges, since we only
want to add to the Application Graph. For the addition of the door, we need to add a node
of type AutomaticDoor and a connecting edge of type Contains to the wall node in R.
Figure 2.2 shows L and R. Additionally, the preservation morphism r is shown with the dashed
lines. In the bottom of the figure, the only possible match of L in our building graph is shown
in blue. The resulting addition of the door node is marked in green. The isomorphism m

corresponding to this match is the following: m(iL) = i1,m(swL) = r1,m(oL) = r3,m(eL) =

e1,m(fL) = e2. Note that there could be multiple possible matches of L in a different building
graph, e.g. if r2 also was an office room.

2.3. GRAPH TRANSFORMATION FORMALISM 8

Figure 2.2: The graph transformation rule described in section 2.3.1 is shown. The match of L in
A is marked in blue. The addition to A by the rule application is marked in green.

2.4. GRGEN 9

2.4 GrGen

GrGen (Graph Rewrite Generator) is a software development tool that offers programming
languages optimised for graph structured data, with declarative pattern matching and rewrit-
ing at their core, with support for imperative and object-oriented programming (Jakumeit
et al., 2010). In other words, it offers languages specific for implementing graph transformation
rules. At the core of GrGen are two languages:

1. The Graph Model Language, which is used to define the elements of a valid typed and
attributed graph. It defines all node and edge types and their respective attributes.

2. The Rule Language, which is used to define graph transformation rules on a given graph
model. These transformation rules can then be applied to a graph using the GrGen

API.

While GrGen has a lot of advanced features, we restrict ourselves to the functionality needed
for our prototype. A complete reference can be found in the GrGen manual (Jakumeit et al.,
2010).

2.4.1 The GrGen Graph Model Language

The Graph Model Language is used to define the elements of a valid graph. In the following
[name] marks that [name] can be replaced with a chosen name for the rule, attribute or
class. The brackets are therefore not part of the GrGen syntax. New node types and their
attributes can be defined with the following syntax.

1 node c l a s s [c l a s s name] {
2 [a t t r i bu t e 1 name] : [a t t r i bu t e 1 type] ;
3 . . .
4 }

Note that attributes are also typed. They are however subject to a type system separate from
the one for nodes and edges. Edge types can be defined similarly:

1 edge c l a s s [c l a s s name] {
2 [a t t r i bu t e 1 name] : [a t t r i bu t e 1 type] ;
3 . . .
4 }

TheGraph Model Language implements an object oriented type/class system in essence similar
to the ones used by many contemporary general purpose programming languages. This means
one can model class hierarchies often found in the real world. A class inheritance is indicated
after the class name of a node or edge class using the extends keyword.

2.4. GRGEN 10

1 node c l a s s Wall ;
2 node c l a s s Outerwal l extends Wall ;
3 node c l a s s Inne rwa l l extends Wall ;
4 node c l a s s Room;
5 node c l a s s Stairway extends Room;
6 node c l a s s Restroom extends Room;
7 node c l a s s O f f i c e extends Room;
8 node c l a s s Door ;
9 node c l a s s Window ;
10 edge c l a s s Contains extends Edge ;
11 edge c l a s s Enc loses extends Edge ;
12 edge c l a s s ConnectedTo extends UEdge ;

Figure 2.3: A sample GrGen Graph Model. All node and edge types of the building graph in 2.1
are defined.

1 node c l a s s [c l a s s name 1] extends [c l a s s name 2] { . . . }

The typical polymorphic behaviour of object oriented hierarchies applies: An object of class
A which extends class B can be used in a context requiring an object of class B but not the
other way round.
The Graph Model Language is best understood when applying it to an actual example. For
our previous building graph in figure 2.1, the corresponding Graph Model definitions are as
shown in figure 2.3. We left out all attributes to keep the example clear. The model definition
is nonetheless sufficient for our example building graph in figure 2.1. Note the predefined edge
classes Edge and UEdge, provided by GrGen to distinguish between directed and undirected
edges.

2.4.2 The GrGen Rule Language

The Rule Language is used to define transformation rules on graphs. Rules can be defined
with the syntax:

1 ru l e [r u l e name] {
2 [pattern1] ;
3 . . .
4 r ep l a c e {
5 [g raph l e t1] ;
6 . . .
7 }
8 }

The patterns define how the Application Graph has to look like for the rule to be applicable.
The replace part defines how the Application Graph is modified upon application of the rule.
Rewrite rules are best understood by example, which is why we will explain their parts while

2.4. GRGEN 11

1 ru l e insertAutomaticDoor {
2 i : Inne rwa l l ;
3 i −e1 : Encloses−> o f f i c e : O f f i c e ;
4 i −e2 : Encloses−> sw : Stairway ;
5 negat ive {
6 i −e4 : Contains−> ac1 : AutomaticDoor ;
7 }
8 i f {
9 o f f i c e . v en t i l a t e d ;
10 }
11 r ep l a c e {
12 o f f i c e <−e2− i −e1−> sw ;
13 i −e4 : Contains−> ac2 : AutomaticDoor ;
14 }
15 }

Figure 2.4: A GrGen rule implementing the graph transformation described in section 2.3.1

implementing the exemplary graph transformation described in 2.3.1. The complete GrGen

rule implementing this transformation is shown in figure 2.4.

Rule Patterns

The patterns describe what we defined in section 2.3 as the Pattern Graph. The simplest
form of a pattern is a graphlet, which consists of typed nodes and typed edges between those
nodes.
Lines 2-4 in our rule are graphlet patterns. Line 2 describes a single node. This has two
effects: First, it requires an Application Graph to have a node of type Innerwall for the rule
to be applicable. Second, it binds this Innerwall node to the name i. This makes it possible
to refer to the specific Innerwall node i and not some other Innerwall in the following lines.
Line 3 and 4 further define connections which are required of i. Line 3 requires the Application
Graph to have an Office node which is connected to i with an Enclose edge going from i to
the Office node. Line 4 requires the Application Graph to have a Stairway node which is
connected to i with an Enclose edge going from i to the Stairway node. Taking lines 2-4
together results exactly in our example Pattern Graph of figure 2.2.
GrGen allows slightly more than our previous graph formalism. negative patterns specify
graphlets which are not allowed be present in the Application Graph. Lines 5-7 specify a
negative pattern, not allowing node i to already contain an AutomaticDoor node.
if patterns specify boolean conditions on the properties of nodes and edges. These conditions
have to hold for the rule to be applicable. Lines 8-10 specify an if pattern, which requires
the office node to have the property ventilated set to True.
As mentioned, lines 5-10 go beyond the graph rewrite specification of our previous example.
Since they are additional requirements for the rule to match, they make the rule more specific.

2.4. GRGEN 12

1 ru l e insertAutomaticDoor {
2 i : Inne rwa l l ;
3 i −e1 : Encloses−> o f f i c e : O f f i c e ;
4 i −e2 : Encloses−> sw : Stairway ;
5 negat ive {
6 i −e4 : Contains−> ac1 : AutomaticDoor
7 }
8 i f {
9 o f f i c e . v en t i l a t e d
10 }
11 modify {
12 i −e4 : Contains−> ac2 : AutomaticDoor
13 }
14 }

Figure 2.5: A GrGen rule equivalent to the one shown in figure 2.4 using the modify keyword

Replace Part

The replacement part of a GrGen rule describes what we defined in section 2.3 as the Rewrite
Graph.
Hence it is only natural that the replace part starting in line 11 of figure 2.4 also uses graphlets.
Line 12 specifies the part which we want to keep: The inner wall i and its edges to the office
room and the stairway. This also shows that multiple connections can be specified in one
line or graphlet. Line 13 specifies the part which we want to add: A node ac2 of type
AutomaticDoor which is connected with node i via a directed edge of type Contains going
from i to ac2. Again, this describes the same graph as shown in figure 2.2, but this time the
Rewrite Graph.

There is an alternative in GrGen for the replace part, using the modify keyword. An equiva-
lent definition of the insertAutomaticDoor rule using the modify keyword is shown in figure
2.5. The difference between the two keywords is that modify keeps all graph elements of the
Pattern Graph by default. Hence we do not have to explicitly specify that we want to keep
the office and the stairway. Going forward we will only use the modify keyword.

A Note On The Preservation Morphism

One might wonder whether the definition of the preservation morphism r in section 2.3 was
unnecessary since we didn’t mention it in our rule. But in fact, we specified this mor-
phism implicitly through the name bindings. For the rule 2.4 using the rewrite keyword,
we reused the identifiers office, e2, i, e1, sw in the rewrite part. This corresponds to the map-
ping r(office) = office and r(e2) = e2, and so on. Since we mentioned all identifiers in the
replace part, r is defined for all elements in the Pattern Graph. Therefore no nodes are re-
moved upon application of the rule. The edge e4 and the node ac2 are not mapped to by r

2.4. GRGEN 13

(formally there does not exist an object o in the Pattern Graph, s.t. r(o) = e4 or r(o) = ac2).
Therefore e4 and ac2 are added to the Application Graph upon application of the rule.

14

Chapter 3

Generation Of Graph Transformation
Rules

In chapter 2 we have presented a powerful formalism and its implementation which can be
used to transform building models represented as graphs. The formalism is however hardly
intuitive and its implementation with GrGen as presented above has little chance of being
useful to an actual user of BIM software.
We therefore present a conceptual mechanism for generating graph transformation rules from
patterns in existing building graphs. Integrating this mechanism within BIM software could
allow the usage of graph transformations for buildings without knowledge in the graph trans-
formation formalism or the GrGen language.

In section 3.1 we present the conceptual mechanism and possible use cases. We also sketch
how this mechanism can be integrated into a BIM design workflow, regarding both usability
and software integration. In section 3.2 we furthermore explain a prototypical implementation
of the core mechanism using the GrGen API.

3.1 Generation Mechanism

3.1.1 Formal Definition

The core mechanism for the generation of graph transformation rules works as follows: Given
a building graph E, we select a subgraph Epattern of E for extraction. We call E the Extraction
Graph. The subgraph Epattern should be an instance of a design pattern in the domain. 1

1As an example refer to the graph transformation described in section 2.3.1: Doors between office spaces
and stairways should be automatically opening and closing. This can be sensible to ensure that the doors to the
office spaces are not open for long, enabling the HVAC system to properly regulate air flow and temperature
in the offices.

3.1. GENERATION MECHANISM 15

Figure 3.1: A high level view of the core generation mechanism.

Epattern is the basis for the generation of our graph transformation rule. Formally, it functions
as the Pattern Graph of the transformation rule. We also select a subgraph from E - Emodify

- specifying which elements should be added to a building graph upon application of the
transformation rule. Epattern and Emodify should not overlap, formally Epattern∩Emodify = ∅.
Taken together - formally Epattern ∪ Emodify - the two subgraphs specify the Rewrite Graph
of our transformation rule. The preservation morphism r therefore preserves all elements of
Epattern for the Rewrite Graph. This graph transformation rule now captures design knowledge
which went into the creation of the building represented by E.
The rule can be applied to a different building graph, which we will call the Application Graph
A. This automates the design steps necessary to implement the design knowledge captured
with Epattern and Emodify in the building represented by A. Note that E and A can also be
the same building graph. The mechanism is graphically depicted in figure 3.1.

3.1.2 Use Cases

The generation mechanism is best understood by example. Note that while we use the wording
use case we are by no means experts in the architecture or construction domains. Therefore
the use cases presented here may seem artificial. In fact they mainly serve the purpose of
making the functionality of the presented mechanism clearer. Proper real world use cases will
need to be found by domain experts during the use of the mechanism and its implementation.
In the following each use case will be explained by 4 figures:

1. A floor plan F1 representing a level of a multi level building, from which the graph trans-
formation rule is supposed to be extracted. Note that the mechanism can seamlessly be
extended for examination of multiple levels at the same time.

2. A graph representation of F1. For the purpose of simplicity we restrict ourselves to
only the relevant part of this graph. In terms of the presented formalism, this is the

3.1. GENERATION MECHANISM 16

Extraction Graph E. In E we have marked the pattern selection Epattern and the
modification selection Emodify.

3. A floor plan F2 representing a single level of a multi level building to which the generated
graph transformation rule is supposed to be applied. The modification by the graph
transformation rule are marked.

4. A graph representation of F2. In terms of the presented formalism, this is the Application
Graph A. Again we restrict ourselves to the relevant parts for the application of our
rule. In A we have marked the parts corresponding to a match and the modification of
the graph by the transformation rule.

Use Case I

The first use case shown in figure 3.2 is very simple and mainly illustrates the distinction
between Extraction and Application Graph. Note that we defined south to be the “bottom”
of the floor plan.
The very simple design knowledge we want to extract is the following: Given an outer wall
facing south, this wall should have a window. This knowledge is implemented in our extraction
building F1 given the outer wall o3, its southwards orientation and the window w1 that
is contained in o3. Looking at the Extraction Graph E, it is apparent that the Pattern
Graph Epattern consists of the context c3, modelling the southwards direction, o3 and the edge
connecting them. The modification part Emodify consists of only the Window node w1 and
its connection to o3.
Applying this graph transformation to the Application Graph A of the floor plan F2, we see
that there is only one match: The only outer wall facing southwards is o4. More specifically,
o4 in A takes the place of o3 in Epattern, while the context c4 in A takes the place of c3 in
Epattern. Formally, we have found an isomorphism m between Epattern and a subgraph of A:
m(o3) = o4 and m(c3) = c4. As a result of the match, the node w1 is added to o4 in the
Application Graph A.
Note that we have not yet defined the way going back from the modified Application Graph
A′ to the modified floor plan F ′2, since we have not specified the exact geometry of the added
window w1. There is no “correct” way to do this, since the whole purpose of the graph
representation is to abstract away the specific building geometry. In use case III we propose
a possible approach for this problem based on relative position.

Use Case II

Use case II shows how a generated rule can be applied multiple times to the same Application
Graph. A rewrite rule similar to the one described in section 2.3.1 is generated. Use case II

3.1. GENERATION MECHANISM 17

Figure 3.2: Use case I. Epattern and its match in A are marked in blue. Emodify and the correspond-
ing modification to A are marked in green.

3.1. GENERATION MECHANISM 18

Figure 3.3: Use case II

3.1. GENERATION MECHANISM 19

is shown in figure 3.3.
Floor plan F1 in use case I and II is very similar. The only difference is the slightly more
nuanced semantic of the rooms: The types of the rooms - Stairway, Office, Restroom - are more
specific than the previous generic Room type. This added semantic allows us to formulate
the design knowledge captured with the graph transformation rule 2.4. Repeating its idea
in terms of the domain: Doors between office spaces and stairways should be automatically
opening and closing.
In the Extraction Graph E this pattern is implemented by r1, r3, i1 and the automatic door d1
contained in i1. Epattern therefore consists of r1, r3, i1 and the edges connecting those nodes.
Emodify is the automatic door d1 and its connecting edge coming from i1.
The application of this transformation rule to A is interesting, since we can find 4 matches
m1,m2,m3,m4 of Epattern in A. The subgraph r1, i1, r4 and the connecting edges is the first
match, r3, i1, r4 the second, r1, i2, r2 the third and r3, i2, r2 the fourth match. As a result of
the applications, 2 automatic doors d1, d2 are added to i1, d3 is added to i2 and d4 is added
to i3.
Again note that we have not yet specified a way for going back from the modified Application
Graph A′ to the modifications in the floor plan F2, making the position of the added doors
in F2 somewhat arbitrary.

Use Case III

Use case III shows a rule generation involving semantic properties of building elements going
beyond mere type information of nodes. While we didn’t formally define the mechanism for
including properties, the extension follows naturally:
For every node (or edge) in the Pattern Graph Epattern, we also specify which properties should
be part of the pattern. We call these properties in the following pattern properties. When
applying the generated rule to an Application Graph A, we require not only the structure of
a subgraph of A to match Epattern, but also the specified pattern properties to be equal.
Similarly, we specify for every node in Emodify, which properties should be part of the mod-
ification. We call these properties rewrite properties. Upon modification of A, added nodes
will only have the rewrite properties. The values of the rewrite properties will be the same
as in Emodify. One possibly could also want to modify or add properties to nodes in the
subgraph of A matching Epattern. To make this possible, we also allow the specification of
rewrite properties in Epattern. For this to make sense, the rewrite properties and the pattern
properties may of course not overlap.
The following use case shown in figure 3.4 will make this informal description clearer. F1 is
very similar to the floor plan in use case II, except for the door. Door d1 is now contained in
the inner wall i2 and is a fire door. The domain knowledge which is supposed to be captured
is the following: If there is an inner wall i enclosing a stairway s and the stairway is part

3.1. GENERATION MECHANISM 20

Figure 3.4: Use case III. Note that we have left out the properties of all nodes not relevant for the
use case. We have also left out the edge annotations.

3.1. GENERATION MECHANISM 21

of the emergency exit path, insert a fire door into wall i. Furthermore, change the material
of i to concrete. Since changing the material of a load-bearing wall can be problematic, we
restrict i to be not load-bearing.
This design knowledge is implemented in the subgraph Epattern, comprising nodes r1 and i2,
and Emodify comprising d1. The new part is now that we also specified pattern properties
and rewrite properties for our nodes. This encodes all domain knowledge just described: The
stairway has to be part of the emergency path and the inner wall may not be load-bearing.
In case of an application, the material of the inner wall should be changed to concrete. In
the rewrite properties of the fire door we encode geometric information: The width of the fire
door (length) and its distance from the containing wall endpoint (distFromWallEndpoint) for
the first time allow us to properly define how an Application Graph is to be translated back
into specific geometry after the rule application.
Applying the generated rule to A yields the following result: Despite the symmetry of A,
only one match is possible, namely the subgraph i1, s and the connecting edge. The subgraph
consisting of i2 and s does not match the pattern, since i2 is load-bearing. Therefore a fire
door d1 is only added to i1 and the material of i1 is changed from wood to concrete.
The rewrite properties for d1 are interesting, because they allow us to specify the specific
geometry of d1 when going back from the modified Application Graph A′ to resulting modi-
fications in floor plan F2. The distFromWallEndpoint property specifies the distance from d1

to a wall endpoint of the wall it is contained in, in our case i1. This makes it possible to ac-
curately locate d1 in the floor plan at distance 2 from the right endpoint of i1. While this is a
possible solution to the problem of specifying specific geometry after a graph transformation,
it is by no means perfect:

1. There are multiple endpoints of i1. This can be at least partly solved e.g. by ordering
wall endpoints in some total order based on their coordinates.

2. There is no guarantee that the inserted door fits into the wall it is contained in. E.g. if
i1 had a length of less than 1, the rule would introduce a geometric inconsistency.

An alternative approach would be to make the values for length and the distance to an
endpoint also relative to the containing wall. In our Pattern Graph for example, we could
have extracted the absolute distance 2 of the fire door to the end point of the inner wall as
a relative distance 1

2 referring to the length of the containing inner wall. In the application
floor plan F2 this would result in the fire door being inserted in the middle of i1.
While this approach based on relative size and position is no silver bullet for obtaining useful
specific geometry, we still think it is a promising approach to this hard problem.

3.1.3 Design Workflow

Integrating the generation mechanism into a generic BIM workflow poses two main challenges:

3.2. TECHNICAL IMPLEMENTATION 22

Figure 3.5: A high level view on how the generation mechanism could be integrated into a BIM work-
flow. Note that the selection now takes place in the BIM model and not the Extraction
Graph.

1. Hiding the necessary graph representation of the BIM model from the user.

2. Transforming a modified building graph back into specific geometry of a BIM model.

Both challenges are not the main focus of this paper and need more conceptual thought as
well as investigation in the real world. For the second challenge we have already sketched a
possible approach in use case III (3.1.2). This section will further describe the first challenge
to make clear what it needs in order to integrate our mechanism into BIM software.

In our very first example of representing a building as a graph in 2.2, it is quite apparent
that the graph representation does not make the structure of the building more apparent for
a human. The graph representation in our case is an abstraction mainly done for our formal
definition of our rule generation mechanism, or in the end for the software implementing this
mechanism. The goal should therefore be to hide the internal graph representation from the
BIM user.
This implies that the selection process - what we referred to in 3.1.1 as Epattern and Emodify -
should not be done in the Extraction Graph E, but in the BIM model which E is representing.
Figure 3.5 shows the data flow for this case. As a result we have a constraint for the graph
representation: Every element selectable in the BIM model must be present in the building
graph. For further information about the conversion from a BIM model to a building graph,
see (Ismail et al., 2018), (Ismail et al., 2017).
There is also the problem of the implicit nature of relationships between building elements
which are represented as edges in the graph representation. A pragmatic approach to solve this
problem might be to only let a user select objects (nodes) in the BIM model and implicitly
add all relationships (edges) between those objects to the selection. In fact the prototype
explained in section 3.2 assumes this behaviour.

3.2 Technical Implementation

In this section we explain a software prototype implementing the mechanism described in
3.1.1. This prototype generates a GrGen rule from an existing Extraction Graph E with

3.2. TECHNICAL IMPLEMENTATION 23

Figure 3.6: The high level data flow of the software prototype.

predefined selection of Epattern, Emodify which can then be applied to a different (or the
same) Application Graph to automatically perform graph transformations.
The inclusion of semantic properties as described in use case III (3.1.2) is also implemented.
The prototype does however neither include the conversion from a BIM model to its graph
representation nor the other way round. Only the core generation mechanism is implemented.
The implementation and the generated GrGen rules for all three use cases described in 3.1.2
are explained.

3.2.1 Overview

From a high level view, the prototype works in 4 steps, shown in figure 3.6.

1. Given the Extraction Graph E, search for the selection of Epattern, Emodify, pattern
properties and rewrite properties.

2. Given the selection, generate a corresponding textual representation of a GrGen rule
in the Generated.grg rule file.

3. Compile this GrGen rule on the fly with the GrGen API using a generic model file
Building.gm.

4. The compilation yields an LGSP Actions object which can be used with the GrGen

API to apply the rule to an Application Graph A.

3.2. TECHNICAL IMPLEMENTATION 24

3.2.2 Search For Selection

In the context of this paper, the search for selection part is not very interesting. In fact,
we have made the following simplification for the selection of Epattern, Emodify: There is
a central node selected. Epattern and Emodify are limited to direct neighbours of selected.
More formally, Epattern ∪ Emodify is restricted to a connected graph of diameter 3. This
simplification is sufficient to e.g. implement all use cases presented in section 3.1.2. A general
search algorithm can easily be implemented, e.g. using a breadth first search.

3.2.3 Rule Generation

This part of the code is the most interesting, since this is where the actual work of generating
the rule is implemented. The code is shown in figure 3.7. Line 3 searches for the central
selected node. Line 4-8 are merely initializations of data structures used later. The rest of
the function has 2 parts:
In the first part beginning in line 12, the foreach loop iterates through all neighbours of the
central selected node. The line variable in line 22 defines the graphlet comprising the selected
node, the neighbour node we are currently iterating over and the edge between them. Based
on whether the neighbour node is selectedForPattern or selectedForRewrite, the graphlet line
is added either to Epattern (patternLines), or Emodify (rewriteLines).
In order to handle the semantics of the pattern properties, we add two if constraints to the
pattern part: The pattern property must be present and have the same value as in the Extrac-
tion Graph. This is done in lines 28-34. Symmetrically, in the modify part, we need a clause
to make sure the properties of the added nodes are set according to the rewrite properties
specified in the Extraction Graph. This is done in lines 46-48. We also add a negative pattern
clause, assuring Emodify is only added if it not yet present, see line 51. In order to assure
unambiguous names, we use the nodeCount and edgeCount variables to create increasing iden-
tifiers for the graphlets, see lines 37-38, 52-53.
The second part, starting in line 56, implements how the individual graphlet lines and con-
straint lines are combined to form a valid GrGen rule. In lines 56-63 the joinLines function
is used to ensure proper indentation, making the rule file human readable. The rule variable
in line 73 combines all the parts into one String which can then be written to a .grg rule file
for compilation by the GrGen API.

3.2.4 Rule Compilation And Application

This part of the code uses the textual representation of the generated rule with the GrGen

API on an Application Graph. The code is shown in figure 3.8.
First, the function generates the rule string and writes it to a .grg file, see lines 3-5. Afterwards,

3.2. TECHNICAL IMPLEMENTATION 25

1 pub l i c s t a t i c S t r ing generateRule (LGSPGraphProcessingEnvironment procEnv ,
BuildingNamedGraph graph , BaseRulesActions a c t i on s) {

2 // f i nd " c en t r a l " s e l e c t e d node
3 I S e l e c t a b l e s e l e c t e d = f i ndS e l e c t e d (graph) ;
4 // counter s to generate unique i d e n t i f i e r s f o r nodes , edges
5 i n t edgeCount = 0 ;
6 i n t nodeCount = 0 ;
7 // i n i t i a l i z e l i s t s s t o r i n g l i n e s o f s p e c i f i c par t s o f the generated ru l e
8 . . .
9 // check a l l nodes around s e l e c t e d one
10 // add correspond ing l i n e to pattern match / r ewr i t e part
11 IEnumerable<IEdge> edges = s e l e c t e d . Inc iden t ;
12 fo r each (IEdge e in edges) {
13 I S e l e c t a b l e ne ighbor = (I S e l e c t a b l e) (e . Source != s e l e c t e d ?
14 e . Source : e . Target) ;
15 // f i nd d i r e c t i o n o f edge
16 EdgeDirect ion d i r = e . Type . IsA (graph . GetEdgeType ("UEdge")) ?
17 EdgeDirect ion . Undirected :
18 (e . Source != s e l e c t e d ?
19 EdgeDirect ion . Incoming : EdgeDirect ion . Outgoing) ;
20 St r ing nodeIdent = $"n{nodeCount }" ;
21 // l i n e d e f i n i n g graph l e t compris ing s e l e c t ed , ne ighbor node
22 St r ing l i n e = $" s e l e c t e d { edgePattern (edgeCount , e . Type , d i r) }
23 {nodeIdent } :{ ne ighbor . Type } ; " ;
24 // i f ne ighbor part o f E_pattern
25 i f (ne ighbor . s e l e c t edForPat t e rn) {
26 pat te rnL ine s .Add(l i n e) ;
27 // make pa t t e rnPrope r t i e s part o f pattern us ing i f−c l au s e
28 fo r each (s t r i n g prop in neighbor . pa t t e rnPrope r t i e s) {
29 s t r i n g va l ;
30 i f (ne ighbor . p r op e r t i e s . TryGetValue (prop , out va l)) {
31 s t r i n g i s I n = $"\"{ prop }\" in {nodeIdent } . p r op e r t i e s && " ;
32 s t r i n g sameVal = $"{ nodeIdent } .
33 p r op e r t i e s [\"{ prop}\"]==\"{ va l } \ " ; " ;
34 i f L i n e s .Add(i s I n + sameVal) ;
35 }
36 }
37 nodeCount++;
38 edgeCount++;
39 }
40 // neighbor part o f E_modify
41 e l s e i f (ne ighbor . s e l e c t edForRewr i t e) {
42 r ewr i t eL in e s .Add(l i n e) ;
43 // handle add i t i on o f p r op e r t i e s to nodes
44 fo r each (s t r i n g prop in neighbor . r ew r i t eP r op e r t i e s) {
45 s t r i n g va l ;
46 i f (ne ighbor . p r op e r t i e s . TryGetValue (prop , out va l)) {
47 s t r i n g setProp = $"{ nodeIdent } . p r op e r t i e s . add (\"{ prop

}\" ,\"{ va l }\") ; " ;
48 eva lL ine s .Add(setProp) ;
49 }
50 }
51 pat te rnL inesNegat ive .Add($" negat ive {{ { l i n e } }}") ;
52 nodeCount++;
53 edgeCount++;
54 }
55 }

Figure 3.7: The generateRule function

3.2. TECHNICAL IMPLEMENTATION 26

56 // add par t s toge the r to form a va l i d ru l e
57 St r ing header = "#us ing \" Bui ld ing .gm\"" ;
58 St r ing pattern = j o i nL i n e s (patternLines , "\ t ") ;
59 St r ing patte rnNegat ives = j o i nL i n e s (patternLinesNegat ive , "\ t ") ;
60 St r ing i fStmt = jo i nL i n e s (i f L i n e s , "\ t \ t ") ;
61 St r ing r ewr i t e = j o i nL i n e s (r ewr i t eL ine s , "\ t \ t ") ;
62 St r ing eva l = j o i nL i n e s (eva lL ines , "\ t \ t \ t ") ;
63 St r ing negat iveRewriteProps = j o i nL i n e s (negat iveRewritePropsLines , "\ t \ t \ t

") ;
64 St r ing negat iveRewritePropsClause =
65 negat iveRewr i tePropsLines . Count > 0 ?
66 "\ tnega t i v e {\n" +
67 "\ t \ t i f {\n" +
68 negat iveRewriteProps +
69 "\ t \ t }\n" +
70 "\ t }\n" :
71 "" ;
72
73 St r ing ru l e =
74 header + "\n" +
75 " ru l e generated {\n" +
76 pattern +
77 patte rnNegat ives +
78 "\ t i f {\n" +
79 i fStmt +
80 "\ t }\n" +
81 negat iveRewritePropsClause +
82 "\ tmodify {\n" +
83 r ewr i t e +
84 "\ t \ t eva l {\n" +
85 eva l +
86 "\ t \ t }\n" +
87 "\ t }\n" +
88 "}" ;
89 re turn ru l e ;
90 }

Figure 3.7: The generateRule function (cont.)

3.2. TECHNICAL IMPLEMENTATION 27

1 pub l i c s t a t i c void compileAndApply () {
2 . . .
3 // generate r u l e
4 St r ing ru l e = generateRule (extract ionProcEnv , extract ionGraph ,

ex t r a c t i onAct i on s)
5 System . IO . F i l e . WriteAllText (" Generated . grg " , r u l e) ;
6
7 // c r e a t e dummy app l i c a t i o n graph
8 LGSPNamedGraph appl icat ionGraph ;
9 LGSPActions app l i c a t i onAc t i on s ;
10
11 // compi le generated ru l e f i l e
12 new LGSPBackend () . CreateNamedFromSpec ($"Generated . grg " , nu l l , 0 ,
13 out appl icat ionGraph , out app l i c a t i onAc t i on s) ;
14 // load ac tua l app l i c a t i o n graph
15 . . .
16 // apply generated ru l e to app l i c a t i o n graph
17 LGSPGraphProcessingEnvironment appl icat ionProcEnv =
18 new LGSPGraphProcessingEnvironment (appl icat ionGraph , app l i c a t i onAc t i on s) ;
19 appl icat ionProcEnv . ApplyGraphRewriteSequence (" generated ∗") ;
20 }

Figure 3.8: The function compiling and applying the generated rule

the CreateNamedFromSpec function of the GrGen API is used in lines 8-13 to compile the
rule file. The inclusion of the graph model file Building.gm is done using the first line in the
rule file and hence does not have to be explicitly mentioned in the code. This compilation
types our applicationGraph variable in which we can then load the actual Application Graph
in lines 14-15.
The resulting applicationActions variable can then be used in the processing environment
applicationProcEnv to apply the generated rule to the Application Graph in lines 16-19. Note
that GrGen uses a simple rule application language. The ∗ operator tries to apply the rule as
often as it matches. In order to assure a match is only rewritten once, it is therefore important
to have the negative clauses mentioned in section 3.2.3. This will become clearer looking at
the generated rules in the following use cases.

3.2.5 Generic Building Graph Model

Since GrGen needs a graph model file for the compilation, there are two options:

1. Generate a graph model file on the fly for each Extraction Graph and each Application
Graph.

2. Define a generic graph model.

3.2. TECHNICAL IMPLEMENTATION 28

1 # Bui ld ing .gm
2 node c l a s s S e l e c t ab l e {
3 s e l e c t e d : boolean ;
4 s e l e c t edForPat t e rn : boolean ;
5 se l e c t edForRewr i t e : boolean ;
6 p r op e r t i e s : map<st r i ng , s t r i ng >;
7 pa t t e rnPrope r t i e s : array<s t r i ng >;
8 r ew r i t eP r op e r t i e s : array<s t r i ng >;
9 }
10
11 node c l a s s Spa t i a l extends S e l e c t a b l e {
12 ps : array<int >;
13 }
14 node c l a s s Line extends S e l e c t a b l e {
15 a_x : i n t ;
16 a_y : i n t ;
17 b_x : i n t ;
18 b_y : i n t ;
19 }
20
21 und i rec ted edge c l a s s ConnectedTo extends UEdge {
22 x : i n t ;
23 y : i n t ;
24 }
25 edge c l a s s Contains extends Edge ;
26 edge c l a s s Enc loses extends Edge ;

Figure 3.9: The generic GrGen graph model file used for the rule compilation

Generating the model on the fly has the problem of compatibility of Extraction and Application
Graph. We therefore decided to define a generic building graph model for our prototype, which
is shown in figure 3.9. The only GrGen node types in this generic model are the following:

1. Selectable for selectable elements of the building model.

2. Line for elements such as windows and doors, which are (for the sake of simplicity) in
this paper modelled as a line between 2 points.

3. Spatial for spatial elements which are (for the sake of simplicity) in this paper modelled
as polygons.

Note that the Line and Spatial types both inherit from the Selectable type and therefore share
its properties. Node properties are saved in the properties map attribute. This attribute
maps property names to their values (in String representation) ensuring generic handling of
properties at the cost of the missing type information of the corresponding property. The
specific type of a node is tracked as part of this property map. All other attributes of the
Selectable class are used to specify the selected parts of a graph for the rule generation
(Epattern, Emodify, pattern properties, rewrite properties).

3.2. TECHNICAL IMPLEMENTATION 29

1 ru l e generated {
2 s e l e c t e d : Line −e1 : Contains−> n1 : S e l e c t ab l e ;
3 negat ive { s e l e c t e d −e0 : Contains−> n0 : Line ; }
4 i f {
5 " type" in s e l e c t e d . p r op e r t i e s
6 && s e l e c t e d . p r op e r t i e s [" type"]=="OuterWall " ;
7 " type" in n1 . p r op e r t i e s && n1 . p r op e r t i e s [" type"]=="Context " ;
8 " o r i e n t a t i o n " in n1 . p r op e r t i e s && n1 . p r op e r t i e s [" o r i e n t a t i o n "]=="south " ;
9 }
10 modify {
11 s e l e c t e d −e0 : Contains−> n0 : Line ;
12 eva l {
13 n0 . p r op e r t i e s . add (" type " ,"Window") ;
14 n0 . p r op e r t i e s . add (" distFromWallEndpoint " ,"3") ;
15 n0 . p r op e r t i e s . add (" l ength " ,"2") ;
16 }
17 }
18 }

Figure 3.10: The generated rule for use case I

3.2.6 Use Cases

This section explains the GrGen rules generated by our prototype for the use cases in section
3.1.2. Since we already thoroughly explained the uses cases in this previous section, we only
explain the generated GrGen rules in the following. The code for compilation and application
are simple enough to not needing further mentioning here.

Use Case I

The first use case handled the addition of a window to outer walls with southwards orientation.
Line 2 of the generated rule shown in figure 3.10 defines the basic graphlet pattern. Note that
since we have provided GrGen with the generic Building Model file, there are no specific
GrGen types present. We can find the specific type information for the graphlet in the if
clause: The node selected must be of type Outerwall while the node n1 needs to be of type
Context. n1 also needs to have the property orientation with value south.
Note that the negative clause in line 2 ensures that the rule can only be applied once to the
same outer wall. The modify clause adds a new node n0 to the selectable node and sets its type
to Window. Note that we have also included the properties length and distFromWallEndpoint
to specify the specific geometry of n0.

Use Case II

Use case II extracted the pattern of adding automatic doors between office rooms and stairways
into a rule. The rule generated by our prototype can be seen in figure 3.11.

3.2. TECHNICAL IMPLEMENTATION 30

1 ru l e generated {
2 s e l e c t e d : Line −e0 : Encloses−> n0 : Spa t i a l ;
3 s e l e c t e d −e1 : Encloses−> n1 : Spa t i a l ;
4 negat ive { s e l e c t e d −e2 : Contains−> n2 : Line ; }
5 i f {
6 " type" in n0 . p r op e r t i e s && n0 . p r op e r t i e s [" type"]=="Stairway " ;
7 " type" in n1 . p r op e r t i e s && n1 . p r op e r t i e s [" type"]=="O f f i c e " ;
8 " type" in s e l e c t e d . p r op e r t i e s
9 && s e l e c t e d . p r op e r t i e s [" type"]==" Innerwa l l " ;
10 }
11 modify {
12 s e l e c t e d −e2 : Contains−> n2 : Line ;
13 eva l {
14 n2 . p r op e r t i e s . add (" type " ,"AutomaticDoor ") ;
15 n2 . p r op e r t i e s . add (" distFromWallEndpoint " ,"1") ;
16 n2 . p r op e r t i e s . add (" l ength " ,"1") ;
17 }
18 }
19 }

Figure 3.11: The generated rule for use case II

Note that the if clause in lines 5-9 merely specifies type information. The pattern graphlet
in the first two lines therefore has the following semantics: Match a node selected of type
Innerwall which is connected to both, a node n0 of type Stairway and a node n1 of type
Office.
The negative pattern in line 4 again assures that there is no door already present in the
matched inner wall, in turn making sure the rule is only applicable once to the same wall.
The modification clause adds a node n0 with type AutomaticDoor to the matched wall. Again
we have also added rewrite properties for the specification of the added doors geometry.

Use Case III

The design pattern used in use case III had two parts:

1. Adding fire doors to walls enclosing a stairway being part of the emergency path.

2. Changing the matched walls material to concrete. Since this step is problematic for load
bearing walls, we restricted the rules applicability to walls not being load-bearing.

The GrGen rule generated by our prototype can be seen in 3.12.
The graphlet in line 2 - taken together with the type information of lines 5-7 - encodes the
following pattern: Match a node selected of type Innerwall which encloses a Stairway node
n0. The additional constraints in the if clause (lines 8-11) require the inner wall not to be
load bearing and the stairway to be part of the emergency path.
The two negative clauses again make sure the modifications which would be done by the

3.2. TECHNICAL IMPLEMENTATION 31

1 ru l e generated {
2 s e l e c t e d : Line −e0 : Encloses−> n0 : Spa t i a l ;
3 negat ive { s e l e c t e d −e1 : Contains−> n1 : Line ; }
4 i f {
5 " type" in s e l e c t e d . p r op e r t i e s
6 && s e l e c t e d . p r op e r t i e s [" type"]==" Innerwa l l " ;
7 " type" in n0 . p r op e r t i e s && n0 . p r op e r t i e s [" type"]=="Stairway " ;
8 " loadBear ing " in s e l e c t e d . p r op e r t i e s
9 && s e l e c t e d . p r op e r t i e s [" loadBear ing"]==" f a l s e " ;
10 "emergencyPath" in n0 . p r op e r t i e s
11 && n0 . p r op e r t i e s [" emergencyPath"]==" true " ;
12 }
13 negat ive {
14 i f {
15 "mate r i a l " in s e l e c t e d . p r op e r t i e s
16 && s e l e c t e d . p r op e r t i e s [" mate r i a l "] == " concre t e " ;
17 }
18 }
19 modify {
20 s e l e c t e d −e1 : Contains−> n1 : Line ;
21 eva l {
22 n1 . p r op e r t i e s . add (" type " ," FireDoor ") ;
23 s e l e c t e d . p r op e r t i e s . add (" mate r i a l " ," conc r e t e ") ;
24 n1 . p r op e r t i e s . add (" distFromWallEndpoint " ,"2") ;
25 n1 . p r op e r t i e s . add (" l ength " ,"1") ;
26 }
27 }
28 }

Figure 3.12: The generated rule for use case III

3.2. TECHNICAL IMPLEMENTATION 32

rule application are not already present in the application graph. Note that the second
negative clause in line 13-18 requires the material of the inner wall not to already be concrete,
since changing its material to concrete would be part of the modification done by the rule
application. This behaviour is pessimistic in regard to the rule application. In fact the first
negative clause is sufficient to ensure the rule is only applicable once to the same wall. To
evaluate which behaviour is more suited to a real world use of the mechanism, a user test
would need to be conducted.
The modify clause in line 19-25 implements the addition of a fire door n1 with geometric
properties to the inner wall selected and changes the walls material to concrete as intended
(line 23).

33

Chapter 4

Conclusion

We have shown how graph transformation rules can formalise implicit design knowledge and
how to implement and apply those rules using the GrGen software. Representing buildings
as graphs is however still an ongoing research topic which has to be settled before graph
transformations can be fully utilised in the context of buildings.
This holds especially true for our generation mechanism and its integration into actual BIM
software. Nonetheless we think that our rule generation mechanism and its prototypical soft-
ware implementation provide a valuable insight into how the graph transformation formalism
might be integrated into a BIM workflow. Especially, since our mechanism does not require
the user to be proficient in any formalism. The real world usefulness of our mechanism how-
ever will of course have to be evaluated by domain experts once it is integrated into BIM
software.

BIBLIOGRAPHY 34

Bibliography

Abualdenien, J. & Borrmann, A. (2019). A meta-model approach for formal specification and
consistent management of multi-LOD building models. Advanced Engineering Informat-
ics 40(1474-0346), S. 135–153.

Borrmann, A., König, M., Koch, C. & Beetz, J. (2018). Building Information Modeling Tech-
nology Foundations and Industry Practice: Technology Foundations and Industry Practice.
Springer.

Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M., Hernandez, N. V. & Wood,
K. L. (2011, 06). Computer-Based Design Synthesis Research: An Overview. Journal of
Computing and Information Science in Engineering 11(2). 021003.

Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A. & Corradini, A. (1997,
02). Algebraic Approaches to Graph Transformation - Part II: Single Pushout Approach
and Comparison with Double Pushout Approach. Volume 247-312, S. 247–312.

Ehrig, H., Prange, U. & Taentzer, G. (2004). Fundamental Theory for Typed Attributed
Graph Transformation. In: H. Ehrig, G. Engels, F. Parisi-Presicce, & G. Rozenberg (Hrsg.),
Graph Transformations, Berlin, Heidelberg, S. 161–177. Springer Berlin Heidelberg.

Geiß, R., Batz, G. V., Grund, D., Hack, S. & Szalkowski, A. (2006). GrGen: A Fast SPO-
Based Graph Rewriting Tool. In: A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, &
G. Rozenberg (Hrsg.), Graph Transformations, Berlin, Heidelberg, S. 383–397. Springer
Berlin Heidelberg.

Ismail, A., Nahar, A. & Scherer, R. (2017, 07). Application of graph databases and graph
theory concepts for advanced analysing of BIM models based on IFC standard.

Ismail, A., Strug, B. & Ślusarczyk, G. (2018). Building Knowledge Extraction from BIM/IFC
Data for Analysis in Graph Databases. In: L. Rutkowski, R. Scherer, M. Korytkowski,
W. Pedrycz, R. Tadeusiewicz, & J. M. Zurada (Hrsg.), Artificial Intelligence and Soft
Computing, Cham, S. 652–664. Springer International Publishing.

Jakumeit, E., Buchwald, S. & Kroll, M. (2010, 01). GrGen.NET - The expressive, convenient
and fast graph rewrite system. STTT 12, S. 263–271.

BIBLIOGRAPHY 35

Rozenberg, G. (Hrsg.) (1997). Handbook of Graph Grammars and Computing by Graph Trans-
formation: Volume I. Foundations. USA: World Scientific Publishing Co., Inc.

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich den vorliegenden IDP-Report selbstständig angefertigt habe.
Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt.
Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches kenntlich gemacht.

Ich versichere außerdem, dass die vorliegende Arbeit noch nicht einem anderen Prüfungs-
verfahren zugrunde gelegen hat.

München, 27. März 2020

Gunther Bidlingmaier

Gunther Bidlingmaier

	Introduction
	Graph Transformations
	Basic Graph Theory
	Representing Buildings As Graphs
	Graph Transformation Formalism
	An Example Graph Transformation

	GrGen
	The GrGen Graph Model Language
	The GrGen Rule Language

	Generation Of Graph Transformation Rules
	Generation Mechanism
	Formal Definition
	Use Cases
	Design Workflow

	Technical Implementation
	Overview
	Search For Selection
	Rule Generation
	Rule Compilation And Application
	Generic Building Graph Model
	Use Cases

	Conclusion

