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Abstract

Numerical simulation is essential for the analysis, design and control of dynamical systems.
Due to the ever increasing complexity and required accuracy, models described by a high num-
ber of differential equations often result during the modeling process. In many applications
nonlinearities also arise, complicating the subsequent numerical analysis even further. In order
to reduce the computational effort and make the simulation more efficient, model reduction
can be applied to obtain a considerably smaller model approximating the original one.

Widely employed techniques in nonlinear model reduction rely on expensive training
simulations of the original model to construct the reduced model. By contrast, the present
work discusses simulation-free reduction procedures based on system-theoretic concepts rather
than on simulated data. In this sense, the thesis covers the reduction of polynomial, nonlinear
state-space and nonlinear second-order systems from a system-theoretic perspective.

The Volterra series representation allows to derive multivariable kernels and transfer func-
tions for polynomial systems (e.g. bilinear, quadratic-bilinear). Based thereof, well-known
system-theoretic measures and model reduction approaches can be generalized from linear to
polynomial systems. In this thesis, we particularly focus on the interpolation-based reduc-
tion of bilinear systems using the transfer functions and the concept of moment matching via
Krylov subspaces. We generalize both existing interpolation frameworks to the multiple-input
multiple-output case and extend H2-pseudo-optimal reduction to the bilinear setting.

In the context of nonlinear state-space systems model reduction can be accomplished
using a linear or nonlinear projection. We discuss the corresponding framework, reduction
techniques and properties of both strategies. Then, the focus is laid on the existing general-
ization of moment matching to nonlinear systems based on signal generators and steady-state
considerations. Since the method involves the solution of a Sylvester partial differential equa-
tion, we propose certain simplifications to achieve a feasible simulation-free algorithm relying
on nonlinear systems of equations. The resulting scheme is extensively discussed and demon-
strated via numerical examples. After that, connections between polynomial and nonlinear
model reduction by moment matching are established to offer a unifying view.

In the field of nonlinear mechanical systems modal derivatives are very popular for basis
augmentation and quadratic manifold reduction. We first revisit the original derivation of
modal derivatives based on the perturbation of the linearized quadratic eigenvalue problem.
Since this derivation is not system-theoretically substantiated, we present a novel derivation
based on the Volterra series representation. The properties of the gained derivatives are
discussed, as well as their applications for nonlinear system analysis and model reduction.
Finally, we transfer the concept of moment matching to nonlinear second-order systems and
provide the corresponding Sylvester partial differential equation. After similar simplifica-
tions, the performance of the resulting second-order nonlinear moment matching algorithm is
demonstrated on geometrically nonlinear structural models.
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Chapter 1

Introduction

Mathematical models are indispensable for the analysis, design, optimization and control of
complex dynamical systems arising in science and engineering. Many real-life applications (e.g.
in automotive, aeronautics, biomechanics, circuits, mechatronics, electromagnetism and neu-
roscience) can be modeled as systems of ordinary differential equations (ODEs), differential-
algebraic equations (DAEs) and/or partial differential equations (PDEs). Hereby, the model
complexity generally increases with higher demands on the accuracy.

Certain applications (e.g. in control engineering) may lead to rather small models com-
ing from (simplified) lumped-parameter and/or data-driven modeling. Larger models usually
originate from technical systems consisting of a high number of individual components/sub-
systems (e.g. grid/gas networks, integrated circuits) or from the spatial discretization of PDEs
describing the underlying physics. Specially in computational mechanics and fluid dynamics a
fine discretization over the 2D/3D geometric domain of interest – via e.g. the finite difference
(FDM), finite element (FEM) or finite volume (FVM) method – often yields models of thou-
sands or millions of degrees of freedom. The large state dimension (n≈103 · · · 106) – and the
associated high storage effort – makes the numerical simulation and computer-aided design
computationally demanding. Moreover, it complicates the use of the models for uncertainty
quantification, parameter estimation, real-time control or digital twin purposes.

In order to reduce the computational effort and make the numerical analysis more efficient,
a reduced-order model (ROM) of lower dimension (r � n) that accurately approximates
the original system with substantially less degrees of freedom is aimed. There are different
strategies for reduced-order modeling. The first approach is to construct a lumped-parameter
model by simplifying the geometry, neglecting some effects or making certain assumptions.
While this technique might be effective in some cases, it usually leads to inaccurate ROMs. A
different technique is to employ a coarse mesh, use more sophisticated discretization techniques
or exploit certain topological and geometrical properties of the system to reduce the number of
discretization points – and consequently of equations. The convergence rate and the achieved
model accuracy should be monitored in detail when using this approach. A third option is
to employ a fine computational mesh capable of capturing all physical effects of the original
system, and then apply model order reduction (MOR) to the full-order model (FOM) to
reduce the dimension. In this thesis we focus on this third reduced-order modeling strategy.

The advantages of ROMs (and thus of model order reduction) are obvious. In design
optimization for example, where an analysis for different parameters and “what if” scenarios
is required, it is essential to speed-up the simulation of the full-order model beforehand.
Moreover, the benefit of having multiple cheap online evaluations typically outweighs the
upfront offline cost needed for the computation of the reduced model. This is especially the
case in real-time applications such as optimization, control and predictive maintenance.
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4 Chapter 1. Introduction

The goals of MOR are threefold. First of all, the aim is to obtain a good approximation
by accurately capturing the most important dynamics of the full-order model. The approx-
imation quality can be quantified by appropriate error measures. Secondly, important sys-
tem properties of the original model (e.g. stability, passivity, second-order/Port-Hamiltonian
structure, etc.) should be preserved in the reduced model. This requirement is achieved by
applying special or adapted reduction techniques tailored to address these demands. Thirdly,
the reduction method should be as numerically efficient as possible. Expensive offline, and
especially online computations should be avoided. In addition, reduction algorithms should
preferably be applicable to large-scale models (i.e. scalable), require less user intervention
(i.e. automatable) and provide an upper bound for the error.

Although it is difficult to fulfill all these requirements at once, it is certainly possible to
achieve at least some of the goals. For example, for linear time-invariant (LTI) systems a
wide variety of model reduction techniques exists (e.g. modal, balanced truncation, moment
matching via Krylov subspaces, H2-optimal reduction), all having their purpose, properties,
advantages and disadvantages. For nonlinear dynamical systems, however, fewer options are
available due to the nonlinear nature of the equations and the associated challenges.

1.1 Challenges and overview of nonlinear model reduction

Nonlinear effects arise in many technically relevant systems. In circuit and electronic applica-
tions, nonlinearities usually originate from nonlinear resistors [64], diodes, transistors, vacuum
tubes and magnetic inductors. In fluid dynamics and heat transfer, nonlinear phenomena typ-
ically results from convective acceleration (e.g. Navier-Stokes equation), turbulence, nonlinear
heat conduction [170] and radiation. In mechanical applications (e.g. in automotive, aeronau-
tics and biomechanics), structures undergoing large deformations show geometric nonlinear
behavior [224]. Moreover, nonlinear dynamics may also originate from material nonlinearities
(e.g. plasticity, hyper-elasticity) or nonlinear boundary conditions (e.g. contact interactions).
Finally, electrostatically actuated microelectromechanical systems (MEMS) can exhibit spring
softening and hardening phenomena due to nonlinearities in the restoring force.

Nonlinear dynamical systems pose several challenges for simulation and model reduction.
First of all, they can exhibit complex behaviors, such as multiple equilibrium points, several
attractors (e.g. stable/unstable/semi-stable limit cycles), bifurcation (e.g. jump phenomenon
in nonlinear vibrations [190, 142]), internal resonances and chaotic behavior. Furthermore,
general nonlinear systems usually lack of a closed-form solution. Consequently, the input-
output behavior cannot be described analytically with transfer functions, the state-transition
matrix or convolution integrals. This is only possible for polynomial system classes. Fi-
nally, nonlinear MOR comprises not only the reduction of degrees of freedom but also the
simplification of the nonlinear terms to gain significant speed-ups (aka. hyper-reduction).

There have been some efforts to extend well-known system-theoretic (reduction) concepts
to the nonlinear case. Rosenberg [218] generalized the concept of modes to the nonlinear set-
ting, leading to the so-called nonlinear normal modes (NNMs). Based on the center manifold
theory [51], Shaw and Pierre [252] later defined them as an invariant manifold in phase-space.
Despite their theoretical value, note that NNMs are rather expensive to compute via e.g.
shooting techniques and continuation [140]. Next, Scherpen [239] extended the reduction con-
cept of balanced truncation to the nonlinear case exploiting reachability, observability and
nonlinear optimal control theory. The approach is (similarly to NNMs) system-theoretically
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attractive, but requires the solution of two Hamilton-Jacobi-Bellman PDEs representing the
nonlinear counterpart of the linear Lyapunov equations. Finally, Astolfi [13, 14] has trans-
ferred the reduction concept of moment matching to the nonlinear setting based on the steady-
state response and center manifold theory. The approach requires the solution of a Sylvester-
like PDE and is thus not well applicable to large-scale problems.

Due to the lack of analytical solutions and practical system-theoretic measures, non-
linear systems are usually reduced via simulation-based approaches. These techniques, e.g.
Proper Orthogonal Decomposition (POD) [37, 154], empirical Gramians [165, 164], Trajec-
tory Piecewise Linear (TPWL) [225] and Reduced Basis methods [211, 117], rely on expensive
simulations of the FOM for several training input scenarios to construct the reduction basis.

Approaches based on (a single) linearization can only guarantee a good approximation
in a small neighborhood around the linearization point. Hence, the idea of enriching a pure
linear basis with nonlinear information emerged. A popular way consists in augmenting the
basis with so-called modal derivatives [130, 240]. These perturbation derivatives describe the
change of the modes w.r.t. the linearization point, hereby capturing some nonlinear behavior.
From a computational perspective, this strategy constitutes a simulation-free approach since
it relies on linearized system matrices rather than on simulated data.

Simulation-free reduction procedures can also be obtained for polynomial nonlinear sys-
tems. The Volterra series and variational equation approach [221] allow to represent the
solution of a polynomial system as an infinite sum of subresponses described by multivari-
able convolution integrals and kernels. Moreover, the growing exponential approach enables
the derivation of the solution in terms of generalized transfer functions. Based on the ker-
nels and transfer functions, well-known system-theoretic measures (e.g. Gramians, H2-norm)
and model reduction approaches (e.g. balanced truncation, moment matching) can then be
generalized to this special nonlinear system class [1, 206, 47, 25, 26, 92].

1.2 Scope and objectives of the thesis

This thesis focuses on simulation-free (or system-theoretic) model order reduction for poly-
nomial, nonlinear state-space and nonlinear second-order systems.

The first main topic of this thesis involves the system-theoretic model reduction of poly-
nomial systems. Hereby, we will particularly focus on the transfer functions and Krylov-based
reduction of (quadratic-)bilinear systems. One of the goals is to extend the subsystem and
Volterra series interpolation framework to the multiple-input multiple-output (MIMO) case.
Moreover, we aim to develop toolboxes (named (q)bsssMOR after the sssMOR toolbox [52])
bundling (existing) benchmarks, analysis functions and model reduction algorithms together.

Another central subject concerns the reduction of general nonlinear state-space systems.
We will focus on both linear and nonlinear projection-based model reduction and discuss
the corresponding existing techniques. Then, we turn our attention to the nonlinear mo-
ment matching concept from Astolfi [14] towards the aim of developing a new simulation-free
algorithm. Another goal is to establish connections between polynomial and nonlinear MOR.

This thesis also deals with the reduction of nonlinear second-order systems. In this context
we focus on modal derivatives as reduction concept. One goal is to apply the Volterra series
representation to derive the modal derivatives in a system-theoretical manner. Another aim is
to transfer the nonlinear moment matching ideas from the first-order to the second-order case.
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1.3 Scientific contributions

In the following, the main contributions of this thesis are highlighted:

1. The well-known rational Krylov subspace method (RKSM) [245, 84] is implemented and
integrated in the sssMOR toolbox [52]. The function allows both the cumulative reduction
of LTI systems and the approximate solution of Lyapunov equations. It further selects the
reduction parameters automatically. This is discussed in Section 3.8.

2. In the context of bilinear systems several extensions to the MIMO case are accomplished.
Moreover, the Volterra series interpolation is generalized to the multimoment setting and
presented from an efficient Arnoldi-like viewpoint. The concept of H2-pseudo-optimality
[273] is also extended to the bilinear case. In addition to the theoretical contributions, the
bsssMOR toolbox has been developed in parallel. For more details see Chapter 5.

3. For nonlinear state-space systems, a feasible simulation-free model reduction algorithm
based on nonlinear moment matching [14] is developed by proposing certain simplifications
of the Sylvester-like PDE. Besides computational aspects, practical guidelines are presented
to ease the application of the algorithm. Numerical examples demonstrate the efficacy of
the method in comparison to POD. This is explained in [72, 71] and Chapter 7.

4. The eigenfunctions of bilinear and quadratic-bilinear systems are derived. Then, we de-
scribe how these eigenfunctions could be exploited within the nonlinear moment matching
approach from Astolfi. In addition, we try to embed the Volterra series interpolation of
bilinear systems in the more general Sylvester-like PDE framework. These connections
between polynomial and nonlinear model reduction are elucidated in Chapter 8.

5. A novel derivation of modal derivatives based on the Volterra series representation for
nonlinear second-order systems is presented. The gained derivatives are symmetric and al-
low for a system-theoretic explanation of internal resonances. Moreover, their applications
to nonlinear analysis and model reduction are discussed. Preliminary numerical results
underline the potential of the new derivatives. This is presented in [73] and Chapter 10.

6. The concept of nonlinear moment matching [14] is transferred to nonlinear second-order
systems. After providing the corresponding Sylvester-like PDE, similar simplifications as
for state-space systems are proposed to achieve a simulation-free second-order nonlinear
moment matching algorithm. The algorithm is implemented and validated within the finite
element package AMfe [224] using Python. This is discussed in [75] and Chapter 11.

In addition to these quantitative contributions, Chapters 3, 4, 6 and 9 contain important
fundamentals of linear, polynomial, nonlinear state-space and nonlinear second-order systems.
These chapters complement the existing literature with valuable explanations and discussions,
present partly novel insights (e.g. into nonlinear manifold reduction), and offer a unifying view
supported by the consistent notation. Thus, these chapters do not only lay the foundations
for the main contributions, but also generate an added value. The goal of the author during
her doctoral studies was not only the mere extension of existing MOR methods to other
system classes or the development of new simulation-free approaches. The aim was also to
understand the conceptual similarities and differences between the various methods, establish
connections between them and uncover new perspectives for future research. Focusing on
polynomial, state-space and second-order systems helped the author to get inspired by the
different communities and acquire a broad MOR knowledge that is presented in this thesis.
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Other contributions that are only briefly mentioned in this thesis are:
• The derivation of an expression for the impulse response of bilinear systems [60]. Different

from the kernels derived from the Volterra series representation, the impulse response is
dependent on the amplitude of the input. Krylov subspaces and an alternative expression
for the H2-norm based on the derived impulse response are also given in [Geb17].

• The extension of subsystem interpolation for quadratic-bilinear systems [22] to the MIMO
case. Based on the corresponding transfer matrices, we propose different (tangential)
Krylov subspaces to achieve both multimoment and Hermite interpolation of the first two
subsystems. The algorithms are implemented in our qbsssMOR toolbox. For details, see
the talks [Cru16b, CFL17, Cru17b] and the master thesis [Fio16].

• The theoretical development of basis vector (eigenvector, Krylov) derivatives represent-
ing the state-space counterpart of the perturbation (modal, Krylov) derivatives usually
employed in structural dynamics. For details and numerical examples, see [Him18].

• The procedural implementation of the benchmark models “nonlinear heat transfer” [170]
and “electrostatic beam” [166]. In contrast to the original versions developed by Liene-
mann1, our implementation2 allows to customize the order and the parameters of the
model. For more details the reader is referred to the semester thesis [Lep17].

The author has also collaborated with different colleagues and researchers concerning linear
and parametric (nonlinear) model order reduction:
• In [203], we apply POD and subspace interpolation (cf. [36]) to reduce a large human heart

model. The ROM is then exploited to speed-up the gradient-based inverse analysis.
• In [174], we apply modal- and Krylov-based MOR to a linear thermoacoustic problem. The

ROM is evaluated via the approximation quality of intrinsic eigenmodes.
• In [68], we develop an adaptive sampling algorithm based on the concept of subspace angles.

This and further parametric MOR methods are integrated in our psssmor toolbox3.

1.4 Outline of the thesis

This thesis is composed of five parts.
Part I deals with the preliminaries and covers Chapters 1, 2 and 3. After the introduc-

tion, Chapter 2 gives an overview of mathematical fundamentals required for the upcoming
chapters of this thesis. It includes a review of basic concepts of matrix and tensor algebra, the
principles of projection and an introduction to different types of Krylov subspaces. Moreover,
the numerical solution of linear matrix equations and linear systems of equations is discussed.
Finally, the focus is laid on error measures to quantify the reduction error in time-domain.
Chapter 3 is devoted to model order reduction of LTI systems. After the presentation of
essential system-theoretic concepts and an overview of linear reduction approaches, we con-
centrate on the method of moment matching by rational Krylov subspaces. We first review
the classical frequency-domain interpretation of this technique and discuss the equivalence
between Krylov subspaces and Sylvester equations. Then, we revisit (and partly enrich) the
time-domain interpretation of moments as the steady-state response of the system intercon-

1Available e.g. at the MOR Wiki under https://morwiki.mpi-magdeburg.mpg.de.
2Available at https://doi.org/10.5281/zenodo.3542641.
3Available at https://www.mw.tum.de/rt/forschung/modellordnungsreduktion/software/psssmor/.

https://morwiki.mpi-magdeburg.mpg.de
https://doi.org/10.5281/zenodo.3542641
https://www.mw.tum.de/rt/forschung/modellordnungsreduktion/software/psssmor/
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nected with a signal generator. Lastly, the H2-(pseudo-)optimal reduction problem is briefly
explained, and our implementation of CRKSM for the cumulative reduction of LTI systems
and the approximate solution of linear Lyapunov equations is described.

Part II deals with polynomial nonlinear state-space systems and covers Chapters 4 and 5.
In Chapter 4 we first revisit different ways of obtaining a polynomial system and the trans-
formation to bilinear and quadratic-bilinear form. Afterwards, the variational equation and
growing exponential approach are presented to derive the different Volterra kernels and gener-
alized transfer functions of the above mentioned system classes. Chapter 5 then concentrates
on the systems theory and MOR of bilinear dynamical systems. Based on the regular ker-
nels and transfer functions, system-theoretic concepts such as the pole-residue formulation,
Gramians and H2-norm are discussed. After that, we turn our attention to Krylov-based
model reduction. We propose a different strategy for MIMO subsystem interpolation, gen-
eralize the Volterra series interpolation to the MIMO and multimoment matching case, and
present a new algorithm to obtain bilinear H2-pseudo-optimal ROMs.

Part III deals with nonlinear state-space systems and covers Chapters 6, 7 and 8. Since
nonlinear systems can be reduced using either a linear or nonlinear projection, Chapter 6 de-
scribes the corresponding framework, time integration of the ROM and reduction techniques
of both strategies. It also gives an overview of different hyper-reduction procedures, and dis-
cusses the advantages and disadvantages of linear subspaces versus nonlinear manifolds.
Chapter 7 first reviews Astolfi’s extension of moment matching to nonlinear systems based
on the steady-state interpretation of moments. Then, we propose some simplifications to ap-
proximate the arising PDE, hereby achieving a feasible algorithm that relies on the solution
of nonlinear systems of equations. An extensive discussion, practical guidelines and numer-
ical results of the proposed algorithm are also presented. Chapter 8 establishes connections
between polynomial and nonlinear model reduction. We derive the eigenfunctions of bilinear
and quadratic-bilinear systems, explain their construction via a signal generator and their use
in the nonlinear moment matching framework from Astolfi. Moreover, we provide the signal
generator interpretation of the Volterra series interpolation of bilinear systems.

Part IV deals with nonlinear mechanical systems and covers Chapters 9, 10 and 11.
Chapter 9 lays the fundamentals of model reduction for nonlinear second-order systems and
focuses again on both linear and nonlinear projection. We also revisit the original derivation
of modal derivatives and explain their use for basis augmentation and quadratic manifold
reduction. In Chapter 10 a novel derivation of modal derivatives using the Volterra series
representation is presented. In addition to their properties, we discuss the gained analytical
solution, novel quadratic manifold approaches for model reduction, and the connection to
the Harmonic Balance method using the new derivatives. Preliminary numerical results are
also reported. Chapter 11 transfers the concept of nonlinear moment matching to second-
order systems. We first present the time-domain interpretation of moments and provide the
corresponding second-order signal generator and Sylvester-like PDE. Then, a similar algorithm
as for state-space systems is obtained by applying our proposed simplifications.

Part V completes the thesis with conclusions of the results and an outlook for future
research in Chapter 12.



Chapter 2

Mathematical Fundamentals

In this chapter we collect important mathematical foundations that are essential for the rest
of this thesis. Section 2.1 presents well-known concepts of matrix and tensor theory. In
Section 2.2 the fundamentals and properties of projections are revised. These are crucial to
later understand the projective framework of model order reduction. Then, in Section 2.3 we
deal with different types of Krylov subspaces that were introduced in the literature over the
years. Krylov subspaces were originally developed to approximately solve linear matrix and
systems of equations. Both direct and iterative methods to solve such kind of equations will
be discussed in Sections 2.4 and 2.5. Finally, in Section 2.6 we focus on error measures which
will help us to quantify the reduction error in time-domain.

2.1 Tensor algebra

In this section we revisit some basic concepts from linear and tensor algebra, which can be
found e.g. in [114, 122, 139]. These concepts will play an important role when handling with
matrix equations and the Taylor series expansion of nonlinear systems.

Kronecker product

We begin by defining the Kronecker product of two matrices.

Definition 2.1 (Kronecker product). Let A ∈ Rm×n and B ∈ Rp×q be arbitrary matrices.
Then, the Kronecker product A⊗B is determined by

A⊗B =

a11B . . . a1nB
... . . . ...

am1B . . . amnB

 ∈ Rmp×nq . (2.1)

The Kronecker product results in a matrix of dimension mp× nq. N

Throughout the rest of this thesis we will use the following notation for the k-fold Kronecker
product:

x(k) = x⊗ . . .⊗ x︸ ︷︷ ︸
k−times

∈ Rnk and Imk = Im ⊗ . . .⊗ Im︸ ︷︷ ︸
k−times

∈ Rmk×mk
. (2.2)

Next, we state some important properties and calculation rules of the Kronecker product.

9
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Lemma 2.1. Let A, B, C, D be matrices of appropriate dimensions. Let u, v be arbitrary
vectors. Let Im, In be identity matrices, O a zero matrix, 1m a vector of ones and α a
scalar. Then the following properties of the Kronecker product hold, assuming conformable
dimensions with respect to matrix addition and multiplication.

1. Non-commutative:

A⊗B 6= B ⊗A, u⊗ v 6= v ⊗ u, (2.3)
Im ⊗A 6= A⊗ Im, 1m ⊗A 6= A⊗ 1m, (2.4)
Im ⊗ In = In ⊗ Im = Imn, A⊗O = O ⊗A = O. (2.5)

2. Associative:

A⊗ (B +C) = A⊗B +A⊗C, (2.6)
(B +C)⊗A = B ⊗A+C ⊗A, (2.7)

α (A⊗B) = (αA)⊗B = A⊗ (αB) , (2.8)
(A⊗B)⊗C = A⊗ (B ⊗C), (2.9)

where the matrix sum B +C can be formed.
3. Mixed-product property:

(A⊗B) (C ⊗D) = (AC)⊗ (BD), (2.10)

where the matrix products AC and BD can be formed.

Vectorization

Another important operation is the vectorization of a matrix, which is defined as follows.

Definition 2.2 (Vectorization). Let A ∈ Rm×n be an arbitrary matrix. Then, the vectoriza-
tion vec(A) is obtained by stacking the columns of A underneath each other, i.e.

vec(A) = vec


a11 · · · a1n

... . . . ...
am1 · · · amn


 = vec

([
a1, · · · , an

])
=

a1
...
an

 ∈ Rmn×1. (2.11)

The vectorization of the matrix results in a mn× 1 column vector. N

The vectorization is frequently used together with the Kronecker product. Some useful prop-
erties of the vectorization operator are stated in the following.

Lemma 2.2. Let A ∈ Rm×n, X ∈ Rn×r and E ∈ Rr×s be arbitrary matrices. Then it holds:

tr(AX) = vec(AT)T vec(X), (2.12)

vec(AXE) =
(
ET ⊗A

)
vec(X). (2.13)

The second relationship (2.13) is particularly useful to express some matrix equations (e.g.
Lyapunov and Sylvester equations) as linear system of equations (cf. Eq. (2.43)).
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Tensors

Tensors, which may be conceived as multidimensional arrays, represent the natural extension
of the concept of a matrix. For example, vectors and matrices can be interpreted as first- and
second-order tensors, respectively. In the following we define a tensor of general order d.

Definition 2.3 (Tensor). A d-th order tensor X ∈ Rn1×···×nd is a d-dimensional array of
entries Xi1,...,id

∈ R, where iµ ∈ {1, . . . , nµ} for µ = 1, . . . , d. N

In what follows, third-order tensors (d = 3) will play a particular role in this thesis. We define
fibers and slices of a tensor in the following (cf. [139]).

The µ-mode fibers of a tensor are defined by fixing all indices expect of one. For example,
the columns X (:, j, k) represent the 1-mode fibers, the rows X (i, :, k) represent the 2-mode
fibers, and the tubes X (i, j, :) represent the 3-mode fibers of a third-order tensor.

Slices represent two-dimensional sections of a tensor, defined by fixing all indices except
of two. For instance, a third-order tensor possesses horizontal X (i, :, :), lateral X (:, j, :) and
frontal X (:, :, k) slices, respectively. The latter are usually denoted as Xk.

Next, we focus on the unfolding of a tensor into a matrix. This process is also known as
matricization and depends on the chosen µ-mode fibers used for the unfolding.

Definition 2.4 (µ-matricization of a tensor). Let X ∈ Rn1×n2×n3 be a third-order tensor.
Its µ-matricization X (µ) ∈ Rnµ× (n1n2n3)

nµ is defined as the arrangement of the tensor’s µ-mode
fibers next to each other as columns of the resulting matrix. For the case of a cubical third-
order tensor X ∈ Rn×n×n with frontal slices Xn ∈ Rn×n, the µ-matricizations are

X (1) = [X1, . . . ,Xn], X (2) = [XT
1 , . . . ,XT

n ], X (3) = [vec(X1), . . . , vec(Xn)]T,

with respective dimensions X (µ) ∈ Rn×n2 , µ ∈ {1, 2, 3}. N

To make this definition more clear, we provide an illustrative example in the following.

Example 2.1 (Matricizations of a third-order tensor). Let X ∈ R3×3×2 be given with the
two frontal slices:

X (:, :, 1) =

1 2 3
4 5 6
7 8 9

 , X (:, :, 2) =

10 11 12
13 14 15
16 17 18

 .

• 1-matricization:

X (1) =

1 2 3 10 11 12
4 5 6 13 14 15
7 8 9 16 17 18


• 2-matricization:

X (2) =

1 4 7 10 13 16
2 5 8 11 14 17
3 6 9 12 15 18


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• 3-matricization:

X (3) =
[

1 4 7 2 5 8 3 6 9
10 13 16 11 14 17 12 15 18

]

The respective dimensions are X (1) ∈ R3×3·2, X (2) ∈ R3×3·2 and X (3) ∈ R2×3·3. M

Similar to matrix-matrix multiplications, one can also perform tensor-tensor and tensor-
matrix multiplications. Particularly important for this thesis are tensor-matrix multiplica-
tions, which can be easily performed by means of matricizations. [139]

Definition 2.5 (µ-mode matrix product). Let X ∈ Rn1×n2×n3 be a third-order tensor and
A ∈ Rr×nµ a matrix. The µ-mode matrix product of the tensor X with A is defined as

Y = X ×µ A ⇐⇒ Y(µ) = AX (µ). (2.14)

I.e., after the calculation of Y(µ) =AX (µ), the corresponding tensor Y can be computed. N

Corollary 2.1 (Matricizations of a tensor defined by matrix products). Let X ∈ Rn1×n2×n3

be a third-order tensor and A ∈ Rr1×n1, B ∈ Rr2×n2 and C ∈ Rr3×n3 be matrices. If a
tensor is given by the matrix product Y = X ×1 A ×2 B ×3 C ∈ Rr1×r2×r3, then its µ-mode
matricizations are given by

Y(1) = AX (1)(CT⊗BT), Y(2) = B X (2)(CT⊗AT), Y(3) = C X (3)(BT⊗AT). (2.15)

I.e., the tensor Y can be computed over matrix-matrix products.

In this thesis, tensors arise in the context of Taylor series expansion of a nonlinear system (cf.
Section 4.1.1 and Appendix A) or in quadratic-bilinear systems. For example, the Hessian
matrix A2 =̂H ∈ Rn×n2 can be interpreted as the 1-mode matricization H(1) of the cubical
third-order tensor H ∈ Rn×n×n. The just reported tensor properties are then exploited to
efficiently compute the productH(V ⊗V ) or the reduced matrixHr = W TH(V ⊗V ) without
explicitly forming the n2 × r2 matrix V ⊗ V . The process is described in the following [22].

Algorithm 2.1 Construction of the reduced Hessian matrix Hr

Input: Full-order Hessian matrix H =̂H(1) ∈ Rn×n2 , reduction matrices V , W ∈ Rn×r

Output: Reduced Hessian matrix Hr ∈ Rr×r2

1: Compute Y ∈ Rr×n×n via Y(1) = W TH(1)

2: Compute Z ∈ Rr×r×n via Z(2) = V TY(2)

3: Compute Hr ∈ Rr×r×r via H(3)
r = V TZ(3)

4: The reduced Hessian is given by Hr = H(1)
r

The calculation of the reduced Hessian becomes computationally feasible by means of this
algorithm, since the formation of the large dense matrix V ⊗V is completely avoided. More-
over, the matrix Y(1) = W TH(1) ∈ Rr×n2 is generally sparse, making its storage possible
even for large system dimensions n. Algorithm 2.1 is implemented in our qbsssMOR toolbox
(computeHr). Note, however, that another efficient way of computing Hr is proposed in [35]
and [103, Alg. 4.4] by exploiting the Kronecker product structure of the Hessian H.
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Next, we turn our attention to symmetry properties of tensors. In general, a tensor is (par-
tially) symmetric in two or more modes, if its elements remain invariant under permutation
of the corresponding indices. [139]

Definition 2.6 (Symmetric tensors). Let H ∈ Rn×n×n be a cubical third-order tensor. Then,
the tensor is symmetric in

a) modes one and two, if Hijk =Hjik. This means: H(1) =H(2) or Hk =HT
k , k = 1, . . . , n.

b) modes two and three, if Hijk =Hikj . This means: H(2) =H(3).
c) modes one and three, if Hijk =Hkji. This means: H(1) =H(3).
d) all modes (aka. supersymmetric), if Hijk = Hikj = Hjik = Hjki = Hkij = Hkji.

N

In case b) or d), a special commutativity holds for arbitrary vectors u,v ∈ Rn:

H(1)(u⊗ v) = H(1)(v ⊗ u). (2.16)

This property is important, since it will allow us to simplify expressions arising in quadratic-
bilinear transfer functions (see Section 4.4.2), as well as in the derivation of novel modal
derivatives for nonlinear mechanical systems (cf. Eq. (10.15)).

In this thesis we will assume that the tensor H corresponding to the Hessian H arising
e.g. in quadratic-bilinear systems fulfills the property (2.16), i.e. H(2) =H(3). However, the
Hessian obtained from semidiscretization, Taylor series expansion or quadratic-bilinearization
of the underlying system might not always be symmetric. In such case, we can symmetrize
the tensor H w.r.t. modes 2 and 3 by forming the symmetric part as follows:

H(2)
sym := 1

2(H(2) +H(3)) =: H(3)
sym . (2.17)

Then, it is possible to substitute the original (non-symmetric) Hessian by the 1-mode ma-
tricization of the symmetrized tensor, i.e. H =̂H(1) → Hsym =̂H(1)

sym. This symmetrization
process does not change the dynamics of the original quadratic(-bilinear) model. This is
illustrated in the following example (leaned on [22], [Fio16]):

Example 2.2 (Symmetrization of a quadratic system). Let us consider the system

[
ẋ1
ẋ2

]
︸ ︷︷ ︸
ẋ

=
[
a b c d
e f g h

]
︸ ︷︷ ︸

H(1):=H


x2

1
x1x2
x1x2
x2

2


︸ ︷︷ ︸
x⊗x

, H(:, :, 1) =
[
a b
e f

]
, H(:, :, 2) =

[
c d
g h

]
. (2.18)

Since the second and third entries of the vector x ⊗ x are equal, the dynamics of the
system are not changed as long as the sums h12 + h13 = b + c and h22 + h23 = f + g hold.
The 2- and 3-mode matricizations of H can be written as

H(2) =
[
a e c g
b f d h

]
, H(3) =

[
a e b f
c g d h

]
. (2.19)
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The symmetrized tensor Hsym can then be computed via (2.17):

H(2)
sym = H(3)

sym =
[

a e b+c
2

f+g
2

b+c
2

f+g
2 d h

]
. (2.20)

The 1-mode matricization of the symmetrized tensor finally yields:

Hsym = H(1)
sym =

[
a b+c

2
b+c

2 d

e f+g
2

f+g
2 h

]
. (2.21)

It can be observed that the sum of the elements in the second and third columns of the
symmetrized Hessian are equal to the original, which means that the dynamics of both
systems are equivalent. M

2.2 Projection

Model reduction for dynamical systems is generally performed via projection. In other words,
the reduced-order model is obtained by projecting the full-order model onto a lower dimen-
sional subspace. Thus, in this section we revisit the most important fundamentals and prop-
erties of projections, see e.g. [176, 232, 122].

Definition 2.7 (Projector). A matrix Π ∈ Rn×n is called a projector, if Π2 = Π. N

Lemma 2.3. Let Π ∈ Rn×n be a projector. Then the following assertions hold:

a) If ran(Π)=U , then Π is said to be the projector onto the subspace ran(U)=U .
b) If Π is a projector onto U , then Π is the identity operator on U , i.e.: Πξ = ξ, ∀ξ ∈ U .
c) The matrix Π⊥ =I−Π is also a projection. Π⊥ is called complementary projector.
d) ker(Π)=ran(I−Π) =W⊥ is called the orthogonal complement of ran(W ) =W.

Next, we briefly derive the projector Π that is required to achieve the following projection.
The vector ξ ∈ Rn shall be projected onto the r-dimensional subspace U spanned by the
columns of the matrix U ∈ Rn×r. The projection shall be performed along the vector ε,
which is orthogonal to the subspace W spanned by the matrix W ∈ Rn×r (cf. Fig. 2.1).

U
ξproj

W

ξ ε

Figure 2.1: Projection of ξ onto ξproj ∈ U along ε ∈ W⊥.
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The projected vector ξproj ∈ U ⊂ Rn can be given by a linear combination of the basis
vectors u1, . . . ,ur ∈ Rn and the coefficients c1, . . . , cr as follows:

ξproj =
r∑

i=1
ui ci =

[
u1 · · · ur

]
︸ ︷︷ ︸

U

 c1
...

cr


︸ ︷︷ ︸

c

= Uc. (2.22)

Here, the coefficient vector c ∈ Rr is still unknown. Furthermore, the following vector chain
is closed (cf. Fig. 2.1):

ξ = ξproj + ε ⇔ ε = ξ − ξproj . (2.23)

The columns of W are orthogonal to the projection direction ε ∈ Rn, meaning that

W Tε
!= 0. (2.24)

Inserting Eqs. (2.23) and (2.22) in (2.24) yields

W Tε = W Tξ −W Tξproj = W Tξ −W TUc
!= 0, (2.25)

which can be solved for the coefficient vector c, provided that det(W TU) 6= 0:

c = (W TU)−1W Tξ. (2.26)

By substituting (2.26) in (2.22), we finally obtain the relation

ξproj = Uc = U(W TU)−1W T︸ ︷︷ ︸
Π

ξ = Πξ. (2.27)

The derived expression for Π fulfills Definition 2.7, confirming that Π =U(W TU)−1W T is
indeed a projector. Furthermore, ran(Π)=ran(U) denotes the subspace onto it is projected,
whereas ker(Π) = ran(W )⊥ defines the direction of the projection.

Definition 2.8 (Orthogonal and oblique projection). A projection Π is called orthogonal, if
Π=ΠT. Otherwise, it is called an oblique projection. N

Clearly, the projector Π = U(W TU)−1W T is oblique, since Π 6= ΠT. The special choice
W = U = V yields the orthogonal projector Π = V (V TV )−1V T = ΠT.

2.3 Krylov subspaces

In this thesis, we will mainly employ projections onto so-called Krylov subspaces. The concept
is named after the Russian mathematician A. N. Krylov, who introduced it in 1931 for the
computation of the characteristic polynomial of a matrix, i.e. for eigenvalue problems. In the
following, we revisit different types of Krylov subspaces.
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Classical Krylov subspace

Definition 2.9 (Krylov subspace). Let the matrix A ∈ Rn×n and the vector b ∈ Rn be given.
The q-order Krylov subspace Kq (A, b) is defined by the following sequence of vectors:

Kq (A, b) = span
{
b, Ab, A2b, . . . , Aq−1b

}
. (2.28)

Are the q vectors linearly independent, then they form a basis V = ran(V ) of the Krylov
subspace, i.e. ran(V ) ⊆ Kq(A, b). The basis matrix is then V ∈ Rn×q. N

Due to the powers of A, the vectors are usually computed iteratively from the previous ones
by v0 = b, v` = Av`−1, ` = 1, 2, . . . , q − 1, with a subsequent orthonormalization at every
iteration via the modified Gram-Schmidt process. Such a numerically stable implementation
is known under the name of Lanczos [155] or Arnoldi iteration [8], where the former is a
special (and cheaper) case of the Arnoldi iteration for Hermitian matrices. Both algorithms
(and numerically improved variants thereof) were applied thereafter to iteratively solve large
eigenvalue problems [196, 234, 233] and linear systems of equations [123, 208, 209, 255].

Rational Krylov subspace

Inspired by the inverse iteration, Ruhe [222] then proposed to apply the Lanczos and Arnoldi
iteration to the shifted and inverted matrix (σE − A)−1. This yields the so-called rational
Krylov subspace, which is defined here for the case of a matrix B ∈ Rn×m.

Definition 2.10 (Block rational Krylov subspace). Let E,A ∈ Rn×n, B ∈ Rn×m and σ ∈ C
be given. The q-order block rational Krylov subspace Kq(A−1

σ E, A−1
σ B) is defined as

Kq(A−1
σ E, A−1

σ B) = span
{
A−1

σ B, A−1
σ EA−1

σ B, . . . , (A−1
σ E)q−1A−1

σ B
}

, (2.29)

where Aσ := (σE −A) and σ /∈ λ(E−1A). N

In this case, the basis takes the form V = [V 0, . . . ,V q−1] ∈ Cn×mq, where each block V ` is
computed via the recurrence AσV 0 =B, AσV ` = EV `−1, `=1, 2, . . . , q−1. This means that
multiple linear systems of equations (LSEs) with varying right-hand sides have to be solved,
wherefore an LU decomposition of Aσ is recommended. The numerical solution of LSEs will
be discussed in more detail in Section 2.5.

Union of subspaces It is possible to construct an orthonormal basis V spanning the union
of several Krylov subspaces. For instance, the union Kq

(
E−1A,E−1B

)
∪ Kq

(
A−1E,A−1B

)
combines two rational Krylov subspaces (2.29) for σ → ∞ and σ = 0. This extended Krylov
subspace is also referred to as Krylov-Plus-Inverted-Krylov (KPIK) and yields

span
{
E−1B, . . . ,

(
E−1A

)q−1
E−1B, A−1B, . . . ,

(
A−1E

)q−1
A−1B

}
⊇ ran(V ). (2.30)

Alternatively, different shifts σi, i = 1, . . . , r with respective multiplicities qi can be employed.
The union Kq1(A−1

σ1 E, A−1
σ1 B) ∪ · · · ∪ Kqr (A−1

σr
E, A−1

σr
B) leads to the block multipoint ra-

tional Krylov subspace

span
{
A−1

σ1 B, . . . ,
(
A−1

σ1 E
)q1−1

A−1
σ1 B, · · · , A−1

σr
B, . . . ,

(
A−1

σr
E
)qr−1

A−1
σr
B
}
⊇ ran(V ), (2.31)



2.3. Krylov subspaces 17

where Aσi := (σiE − A) and σi ∈ C \ λ(E−1A). Note that, for each new shift, an LU
decomposition of Aσi is required.

Nestedness property An important feature of Krylov subspaces is that they can be nested.
This means that a cascaded basis for the same subspace can be constructed by adding new
basis vectors that depend on previously computed directions. To illustrate this more, we
explain two different ways to construct the subspace (2.30) in the following. One can first
compute the Krylov subspaces Kq

(
E−1A,E−1B

)
and Kq

(
A−1E,A−1B

)
individually, and

then form an orthonormal basis V by the union of both spaces. Alternatively, the same
subspace can be calculated in a cascaded manner via the following iteration

V 1 = Ṽ 1 =
[
V ∞

1 , V 0
1
]

, V k =
[
E−1AV ∞

k−1, A−1EV 0
k−1

]
, Ṽ k =

[
Ṽ k−1,V k

]
, k ≤ q, (2.32)

where V ∞
1 = E−1B and V 0

1 = A−1B. In the former approach, the orthogonalization can
only be performed a-posteriori, i.e. after the union of the subspaces. In the latter approach,
however, a modified Gram-Schmidt procedure yielding orthonormal bases in each iteration
can be used, which is numerically much more stable.

The nestedness or cascaded property also holds for the multipoint Krylov subspace (2.31).
Exemplarily for multiplicities q1 = . . . = qr = 1, this means that the following standard and
cascaded subspaces

span
{
A−1

σ1 B, A−1
σ2 B, . . . , A−1

σr
B
}

, (2.33)

span
{
A−1

σ1 B, A−1
σ2 EA

−1
σ1 B, . . . , A−1

σr
E . . .A−1

σ2 EA
−1
σ1 B

}
, (2.34)

are equal, whereby the nested basis Ṽ is computed iteratively as follows

V 1 = Ṽ 1 = A−1
σ1 B, V k = A−1

σk
EV k−1, Ṽ k =

[
Ṽ k−1, V k

]
, k ≤ r. (2.35)

Note that the nested construction of the subspace is especially exploited in iterative algo-
rithms, such as e.g. the extended Krylov subspace method (EKSM) [245], the rational Krylov
subspace method (RKSM) [82, 83] or the alternating direction implicit (ADI) iteration [267,
202, 169]. These techniques are often employed for the iterative solution of linear matrix
equations, which is discussed in Section 2.4.

Tangential Krylov subspace

In case of block Krylov subspaces with B ∈ Rn×m, the basis grows by m columns at every
new step. To overcome this fast growth of the dimension, one can choose a single tangential
direction r ∈ Cm and apply the vector B r ∈ Cn to the subspaces given before. This reduces
the number of new columns per iteration to one. Naturally, it is also possible to choose one
tangential direction {ri}ri=1 for each shift {σi}ri=1, leading to the tangential multipoint Krylov
subspace

span
{
A−1

σ1 B r1, A−1
σ2 B r2, . . . , A−1

σr
B rr

}
⊇ ran(V ). (2.36)

Unfortunately, the nestedness property does generally not hold for (2.36) due to the employ-
ment of different tangential directions [84, Hei18]. Hence, in such case the basis cannot be
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computed in a nested manner like (2.34) anymore. Further note that tangential Krylov sub-
spaces constitute a very general formulation, since the choice ri → Im leads to a block Krylov
subspace, while for m=1 it simplifies according to B → b and ri → 1.

Remark 2.1 (Output Krylov subspaces). For all stated input Krylov subspaces, dual counter-
parts can be considered by replacing A→ AT, E → ET and B → CT. For example, the dual
counterpart of (2.29) is given by Kq(A−T

µ ET, A−T
µ CT), where C ∈ Rp×n, Aµ := (µE −A)

and the output shift µ ∈ C \ λ(E−1A) is not necessarily different from the input shift σ.
Moreover, in the tangential case (2.36), the right directions ri∈Cm should be substituted by
left tangential directions li∈Cp. This yields the tangential output Krylov subspace

span
{
A−T

µ1 C
T l1, A−T

µ2 C
T l2, . . . , A−T

µr
CT lr

}
⊇ ran(W ), (2.37)

where the basis W ∈ Cn×r. The choice li → Ip leads to a block output Krylov subspace,
while for p=1 it simplifies according to CT → c and li → 1. M

2.4 Numerical solution of linear matrix equations

Throughout this thesis, we will see that Sylvester and Lyapunov equations play an important
role in systems theory and model reduction. For instance, there is a tight connection between
rational Krylov subspaces and Sylvester equations [116]. Furthermore, Lyapunov equations
arise in the context of controllability and observability Gramians, and are thus relevant for
system norms and balancing-based model reduction.

In this section, we discuss the numerical solution of linear Sylvester and Lyapunov equa-
tions. The aim is to understand the different existing solution methods for the linear setting,
as the concepts can be extended to more general cases like e.g. bilinear and quadratic-bilinear
matrix equations. Let us consider linear Sylvester equations of the form

AXF 1 +EXF 2 +BF 3 = 0, (2.38a)
ATY H1 +ETY H2 +CTH3 = 0, (2.38b)

where E,A∈Rn×n, B∈Rn×m, C∈Rp×n; F 1,F 2,H1,H2∈Rr×r and F 3∈Rm×r, H3∈Rp×r.
We are interested in the solutions X ∈ Rn×r and Y ∈ Rn×r. Furthermore, let us consider
linear Lyapunov equations of the form

APET +EPAT +BBT = 0, (2.39a)
ATQE +ETQA+CTC = 0, (2.39b)

which are a special case of the above Sylvester equations with P ∈ Rn×n and Q ∈ Rn×n.
In what follows, we will discuss direct and iterative methods for solving large linear

Lyapunov equations only. Note, however, that the presented techniques can be generalized to
solve Sylvester equations as well.

Direct solution

Medium-sized Lyapunov equations can be solved with direct methods, such as the Bartels-
Stewart algorithm [49] and Hammarling’s method [118]. In the Bartels-Stewart algorithm
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(MATLAB: lyap), the solutions P ,Q of the Lyapunov equations are explicitly computed.
On the contrary, Hammarling’s method (MATLAB: lyapchol) directly solves for the lower
triangular Cholesky factors S,R ∈ Rn×n of the positive definite solutions P = SST and
Q = RRT, without computing the latter explicitly. Note that Hammarling’s method requires
the condition λ(A,E) ⊂ C− for positive definiteness of P ,Q. Further note that this approach
is mostly used for square-root balanced truncation (cf. Section 3.3.2), as computations with
the explicitly formed solutions are completely avoided.

Both direct methods pose a high computational effort O(n3) and storage complexity
O(n2), since a Hessenberg-Schur decomposition of the pencil (A,E) to upper triangular form
is employed. Moreover, dense forward substitutions are involved.

Iterative solution

In the large-scale setting, Lyapunov equations are solved with iterative methods [235, 246].
The main idea is to approximate the solutions by P ≈ P̂ = ZcZ

T
c and Q ≈ Q̂ = ZoZ

T
o ,

using low-rank Cholesky factors Zc ∈ Rn×qc , Zo ∈ Rn×qo of dimension qc, qo � n. There
exist several approaches to compute low-rank Cholesky factors. In the following, we revisit
three different techniques that have proven successful over the last years. The discussion is
restricted to the controllability Lyapunov equation (2.39a), but similar considerations hold
also for the observability Lyapunov equation (2.39b).

The first type of methods employ a projection onto Krylov subspaces, and then solve the
reduced Lyapunov equation by direct solution techniques. This idea was first proposed in [235]
and further studied in [133, 135], where classical Krylov subspaces are used for projection.
Later, in [245], an extended subspace given by the union of two Krylov subspaces is employed,
which is referred to as extended Krylov subspace method (EKSM). Only since recently [82,
83, 84], rational Krylov subspaces are also being exploited in order to obtain a low-rank
approximation with a smaller subspace. The approach is known as rational Krylov subspace
method (RKSM), and is usually equipped with an adaptive shift selection strategy. The
main steps of these projection-based techniques are the following. At first, orthonormal bases
V ,W for an input and output Krylov subspace are computed to obtain reduced matrices
Er =W TEV , Ar =W TAV and Br =W TB. Then, the reduced Lyapunov equation

ArP rE
T
r +ErP rA

T
r +BrB

T
r = 0 (2.40)

is solved for the Cholesky factor Sr of the solution P r = Sr S
T
r by Hammarling’s method.

The low-rank approximation is finally given by P̂RKSM = V P rV
T = ZRKSMZ

T
RKSM, where

the low-rank Cholesky factor is ZRKSM = V Sr. In general, the orthonormal bases are not
computed at once, but are augmented gradually until the desired accuracy for P̂RKSM is
achieved. Hereby, the residual for the k-th iteration

Resk = AV kP r,kV
T
k E

T +EV kP r,kV
T
k A

T +BBT (2.41)

is usually employed as stopping criterion. A low-rank formulation of the residual that allows
for an efficient computation is given e.g. in [278, 273].

Another existing approach is given by the alternating direction implicit (ADI) iteration,
which was first employed for the approximate solution of Lyapunov equations in [267]. The
low-rank formulation is due to [202, 169], where the method is also denoted as low-rank Smith
(LR-Smith) or Cholesky factor ADI (CF-ADI) iteration. The idea is to cumulatively construct
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the low-rank Cholesky factor ZADI = [Z1, . . . ,Zq] of the approximation P̂ADI =ZADIZ
T
ADI

using the following iteration

Z1 = −
√

2Re(σ1) (σ1E −A)−1B,

Zk =
√

Re(σk)
Re(σk−1)

(
I− (σk + σk−1)(σkE −A)−1E

)
Zk−1, k = 2, . . . , q.

(2.42)

Over the years, several works have been published concerning the efficient implementation
and extension of the ADI to Sylvester and Riccati equations, see e.g. [41, 42]. Moreover, the
relation of the ADI to rational Krylov subspace methods has been elucidated in [82, 90, 275].
Indeed, the ADI iteration is equivalent to the RKSM for the special case of H2-pseudo-optimal
shifts. In general, the adaptive selection of shift parameters has been topic of extensive
research over the last years [39, 84, 151, 279]. Amongst all shift selection procedures, the
Wachspress approach [267], the heuristic Penzl strategy [202] and the mirrored Ritz values of
the reduced pencil (Ar,Er), i.e. σi ← −λr,i, are probably the best known techniques.

A third option is to consider the matrix equation as a linear system of equations, and then
compute the low-rank approximation by means of an iterative Krylov-based solver. Using the
vectorization property (2.13), the Lyapunov equation (2.39a) can be reformulated as a linear
system of n2 equations of the form(

E ⊗A+A⊗E
)

vec(P ) = −vec(BBT). (2.43)

Due to the exploding dimension, the solution of (2.43) by direct solvers is only feasible for
small-scale Lyapunov equations. Instead, low-rank variants of iterative solvers like e.g. the
conjugate gradient (CG) or the generalized minimal residual method (GMRES) should be
employed [150, 28, 21]. The low-rank formulation of the iterative algorithms is basically
achieved by applying a low-rank truncation operator T , i.e. a column compression, to each
intermediate solution and residual. Furthermore, a suitable preconditioner with low-rank
structure is essential for a fast convergence of the methods. The low-rank ADI iteration, for
instance, can serve as preconditioner.

Finally, note that there exist further low-rank solution techniques for matrix equations,
such as e.g. the sign function iteration [44], the data-sparse method [99] and the Riemannian
optimization approach [266].

2.5 Numerical solution of linear systems of equations

The solution of large sparse linear systems of equations (LSEs) of the form AX = B is
fundamental for different applications within this thesis. For instance, the construction of the
rational Krylov subspace (2.29) involves the numerical solution of the following LSEs

AσV 0 = B, AσV ` = EV `−1, `=1, 2, . . . , q − 1. (2.44)

Moreover, implicit time integration schemes (cf. Section 6.2) or numerical algorithms based
on the Newton-Raphson method (cf. Algorithm 7.1) also rely on the solution of LSEs.

In the following, we briefly explain direct and iterative methods for solving LSEs. The
presentation is especially focused on the solution of sparse LSEs, i.e. the matrices A ∈ Rn×n

and B ∈ Rn×m are sparse.
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Direct solution

Direct solvers are based on a factorization of the matrix A, followed by forward/backward
substitutions to calculate the solution X. Depending on the properties of A (e.g. general
matrix, symmetric positive definite, etc.), a specific factorization (e.g. LU, Cholesky, LDL)
might be particularly suitable. Most commonly, an LU decomposition A=LU into a lower
and upper triangular matrix is employed. The factorization is often performed with pivoting,
i.e. row/column permutations, to improve the numerical stability, guarantee its completion
and reduce the fill-in of the sparse LU factors. Once the matrices L and U are available,
the solution of the LSE is obtained by simple forward and backward substitutions. Thus, the
numerically most expensive part of solving LSEs is the LU decomposition. Note, however,
that the LU factors can be reused to solve multiple LSEs with varying right-hand sides. If
the left-hand side matrix A changes – e.g. due to a new shift or time-step – then a new LU
factorization is required. Further note that, depending on the sparsity of A and the pivoting,
the LU factors may become more or less dense, making their storage possibly difficult.

Direct dense/sparse solvers are provided in libraries like BLAS, LAPACK, UMFPACK,
Intel MKL PARDISO, MUMPS, etc. They are also available in MATLAB (mldivide, \)
and SciPy (scipy.linalg.solve), whose commands basically rely on the routines from the
aforementioned libraries.

Iterative solution

In the large-scale setting, the storage of the LU factors of A becomes infeasible due to limited
RAM. In such case, iterative methods [232] can be employed to approximately solve LSEs.

The main idea of Krylov-based iterative solvers is to find an approximate solution X∗
for the LSE by generating a sequence of solutions Xk that iteratively tries to minimize the
residual Resk =B−AXk. Different iterative solvers exist, such as e.g. the conjugate gradient
(CG) [123], the nonsymmetric biconjugate gradient stabilized (BiCGstab) [262], the minimum
residual (MinRes) [208] and the nonsymmetric generalized minimal residual (GMRES) [255].
These algorithms (and variants thereof) are also available in MATLAB and SciPy. Generally,
the convergence of the methods can be significantly accelerated by a suitable preconditioner
M . A possible choice is to use the factors of an incomplete LU decomposition, i.e. M=LU .
But other preconditioning techniques exist. Moreover, the schemes are sometimes restarted
after a certain number of iterations to limit the storage and computational effort.

Besides the aforementioned Krylov-based approaches, there exist other iterative methods
for solving LSEs. Examples are the Jacobi and Gauss-Seidel iteration – which are based on
matrix splitting – or multigrid techniques (e.g. algebraic multigrid (AMG)).

2.6 Error measures

The performance of MOR approaches is usually analyzed qualitatively via bode plots, output
curves or color maps, and quantitatively via error measures. In the following we focus on the
quantitative analysis of ROMs in time-domain, which is mainly employed in the context of
nonlinear dynamical systems.

In the linear setting, the error is usually quantified in frequency-domain using the transfer
function of full- and reduced-order model (cf. Eqs. (3.31) and (3.32)). Transfer functions and
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system norms can also be employed in polynomial MOR to asses the approximation quality
of e.g. bilinear and quadratic-bilinear reduced models (cf. Eq. (5.24)). Unfortunately, the
input-output behavior of general nonlinear systems cannot be characterized by such system-
theoretic concepts. Therefore, in the nonlinear case the evaluation is mostly conducted in
time-domain by analyzing the ROM via simulation runs for different test signals.

Depending on the goal or application, the accuracy can be measured in terms of the
whole state vector x(t) or certain quantities of interest encoded in y(t). In what follows, we
distinguish between point-wise and norm-wise error measures.

Point-wise error measures

The relative approximation error for different reduction methods “m” can be given point-wise
in time by

em
x,rel,(·)(tk) =

‖x(tk)− V xm
r (tk)‖(·)

‖x(tk)‖(·)
, em

y,rel,(·)(tk) =
‖y(tk)− ym

r (tk)‖(·)
‖y(tk)‖(·)

, (2.45)

using a desired vector norm (·) ∈ {1, 2,∞, . . .}. Note that the state x(tk) ∈ Rn, xm
r (tk) ∈ Rr

and output vectors y(tk), ym
r (tk) ∈ Rp are evaluated at every simulated time-step tk, meaning

that one obtains a time-series of error points em
x,rel,(·)(tk) or em

y,rel,(·)(tk).

Norm-wise error measures

The error can also be measured norm-wise in time. Depending on the type of norm that is
employed to compute the error, one can differentiate two cases.

Matrix norms The error can be measured norm-wise in time using a desired matrix norm
(?) ∈ {1, 2,∞, F} as follows:

em
x,rel,(?) =

‖x− V xm
r ‖(?)

‖x‖(?)
, em

y,rel,(?) =
‖y − ym

r ‖(?)
‖y‖(?)

. (2.46)

In contrast to the point-wise case, the simulated data is now collected and evaluated as
matrices, i.e. x ∈ Rn×ns , xm

r ∈ Rr×ns and y, ym
r ∈ Rp×ns . Consequently, the resulting error

measures em
x,rel,(?) and em

y,rel,(?) are not time-series anymore.

Signal norms The error can be measured norm-wise in time using a desired signal norm
Lp ∈ {L1,L2,L∞, . . .} as follows:

em
x,rel,Lp

=
‖x− V xm

r ‖Lp

‖x‖Lp

, em
y,rel,Lp

=
‖y − ym

r ‖Lp

‖y‖Lp

. (2.47)
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In order to understand how the simulated data is evaluated in this case, we explicitly provide
the output error measures for the L1-, L2- and L∞-norm:

em
y,rel,L1 = ‖y − y

m
r ‖L1

‖y‖L1
:=
∑ns

k=1 ‖y(tk)− ym
r (tk)‖2∑ns

k=1 ‖y(tk)‖2
, (2.48a)

em
y,rel,L2 = ‖y − y

m
r ‖L2

‖y‖L2
:=

√∑ns
k=1 ‖y(tk)− ym

r (tk)‖22√∑ns
k=1 ‖y(tk)‖22

, (2.48b)

em
y,rel,L∞ = ‖y − y

m
r ‖L∞

‖y‖L∞
:= maxk ‖y(tk)− ym

r (tk)‖2
maxk ‖y(tk)‖2

. (2.48c)

Note that, by definition, the L2 signal error norm em
y,rel,L2

from Eq. (2.48b) is equivalent to
the Frobenius matrix error norm em

y,rel,F given by

em
y,rel,F = ‖y − y

m
r ‖F

‖y‖F
:=

√∑p
i=1

∑ns
k=1 |yik − ym

r,ik|2√∑p
i=1

∑ns
k=1 |yik|2

. (2.49)

This means that em
y,rel,L2

= em
y,rel,F.

To conclude this section, we want to remark that the analysis of ROMs could also be
attempted in frequency-domain using the concepts of nonlinear frequency response function
(NLFRF) or nonlinear normal modes (NNMs) best known from structural dynamics [140].
These concepts represent the nonlinear counterpart of the bode plot and eigenmodes of a
linear dynamical system. NLFRFs and NNMs can be computed using either the Harmonic
Balance (HB) method (cf. Section 10.4.3) or shooting techniques, both usually combined
with numerical path continuation [200, 142]. Since these procedures are fairly expensive,
MOR has been lately applied to accelerate their computation (see e.g. [281, 250, 251]).
One could evaluate the performance of a reduction approach not only in time-domain via
simulation runs, but also in frequency-domain by comparing the NLFRF of FOM and ROM.
This would correspond to the classical evaluation with bode plots used in the linear setting.
Furthermore, this approach allows to analyze the behavior of a nonlinear system for several
excitation frequencies and amplitudes, instead of evaluating it for a single test signal.





Chapter 3

Linear Model Order Reduction

In this chapter we deal with linear systems theory and model order reduction. After the
repetition of crucial system-theoretic concepts and an overview of linear reduction methods,
we review the classical frequency-domain interpretation of moment matching. We also discuss
the equivalence between Krylov subspaces and Sylvester equations. After that, we focus on
the time-domain interpretation of moment matching based on signal generators and steady-
state considerations. The chapter also treats H2-optimal MOR, and discusses the automatic
selection of both shifts and reduced order in our implemented CRKSM algorithm.

3.1 Linear time-invariant systems

A generalized state-space representation of a linear time-invariant (LTI) system is given by

Σ :
{
E ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = C x(t),
(3.1a)
(3.1b)

where E,A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. x(t) ∈ Rn denotes the state vector and x0
the initial condition of the system. The vectors u(t) ∈ Rm and y(t) ∈ Rp (m, p� n) contain
the inputs and outputs of the system, respectively. In case of m, p > 1, one speaks of a MIMO
system. The special case m = p = 1, where B → b ∈ Rn, C → cT ∈ R1×n, u(t) → u(t) ∈ R
and y(t)→ y(t) ∈ R, represents a SISO system. For brevity, at times we will use the notation
Σ=(A,B,C,E) to denote the state-space realization (3.1). We do not consider feedthrough
terms in this thesis. Thus, the feedthrough matrix D ∈ Rp×m is assumed to be zero.

Assumptions Throughout this thesis the matrix E is assumed to be regular, i.e. det(E) 6=0.
Hence, the model is only described by differential equations and does not contain algebraic
constraints. Systems with singular descriptor matrix are referred to as differential-algebraic
equations and have been considered e.g. in [144, 48]. The regularity of E theoretically allows
us to replace A→ E−1A and B → E−1B in order to obtain an explicit representation with
E=I. Nevertheless, the inverse is usually avoided in practice due to numerical reasons. Thus,
the abbreviations Ã :=E−1A and B̃ :=E−1B will only be used in theoretical statements.

Furthermore, the system Σ is assumed to be minimal, i.e. the pair (E−1A,E−1B) is
controllable (cf. Def. 3.2) and the pair (C,E−1A) is observable (cf. Def. 3.3). This way, the
state-space model (3.1) represents a minimal realization with the smallest possible dimension.

Finally, we focus on asymptotically stable LTI systems, meaning that all eigenvalues are
in the open left-half of the complex plane, i.e. λ(E−1A) ⊂ C−. This restriction is required to
ensure that the Gramians and system norms introduced later are defined.

25
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Time-domain input-output characterization

It is well known that the analytical solution of the state differential equation (3.1a) is composed
of two parts: a homogeneous solution describing the response to an initial condition x(0), and a
particular solution for given (causal) inputs u(t) (cf. Eq. (3.81)). Inserting the overall solution
x(t) into the output equation (3.1b) yields the input-output characterization in time-domain

y(t) =
∫ t

τ=0
C eÃ(t−τ) B̃︸ ︷︷ ︸

g(t−τ)

u(τ) dτ + C eÃt x0, (3.2)

with the (causal, i.e. g(t)=0 for t < 0) impulse response matrix

g(t) = C eÃt B̃ σ(t) ∈ Rp×m. (3.3)

Each output response yi(t) for i = 1, . . . , p is given by

yi(t) =
m∑

j=1

∫ t

τ=0
gij(t− τ) uj(τ) dτ + cT

i eÃt x0, (3.4)

where gij(t)=cT
i eÃt b̃j σ(t) denotes the (i, j)-th entry of the impulse response matrix g(t).

Frequency-domain input-output characterization

The input-output behavior of LTI systems can also be characterized in frequency-domain.

Definition 3.1 (Laplace transform). The Laplace transform of a function f(t) : R≥0 → R is

F (s) := L{f(t)}(s) :=
∫ ∞

t=0
f(t) e−st dt. (3.5)

The integral converges, if the complex variable s ∈ Hγ = {s ∈ C|Re(s) > γ, γ ∈ R}. N

Applying the Laplace transform either to the state-space representation (3.1) or to the time-
domain input-output equation (3.2) yields

Y (s) = C
(
sE −A

)−1
B︸ ︷︷ ︸

G(s)

U(s) +C
(
sE −A

)−1
x0,

(3.6)

with the rational transfer function matrix

G(s) = C(sE −A)−1B ∈ Cp×m. (3.7)

Note that G(s) also results from the Laplace transform of the impulse response (3.3), i.e.
G(s)=L{g(t)}(s). Each output response Yi(s) for i = 1, . . . , p is given by

Yi(s) =
m∑

j=1
Gij(s) Uj(s) + cT

i (sE −A)−1 x0, (3.8)

where Gij(s) = cT
i (sE − A)−1 bj = L{gij(t)}(s) denotes the (i, j)-th entry of the tranfer

function matrix G(s).
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Diagonal form and pole-residue formulation

By applying a so-called state-space transformation of the form

x(t) = T−1z(t) ⇔ z(t) = Tx(t) (3.9)

with the new state vector z(t) and the regular matrix T , we gain the transformed system1

Σ̂ :
{
OET−1 ż(t) = OAT−1 z(t) +OBu(t), z(0) = T x0,

y(t) = CT−1 z(t).
(3.10a)
(3.10b)

The realization of (3.1) changes from Σ=(A,B,C,E)→ Σ̂=(OAT−1,OB,CT−1,OET−1),
but other system properties like stability, controllability, observability and input-output be-
havior remain invariant under such transformations. Note that the transformed system (3.10)
may also be brought into an explicit representation Σ̂=(TÃT−1,TB̃,CT−1, I) by choosing
the left transformation matrix as O=TE−1.

Particularly important is the transformation of the system to diagonal form. For this, we
assume distinct eigenvalues λl of E−1A, meaning that the matrix is diagonalizable. First, the
generalized eigenvalue problem AX=EXΛ is solved, where Λ=diag(λ1, . . . , λn) is diagonal
and the columns of X represent the right eigenvectors of E−1A. Then, we choose T =X−1

and O=TE−1 =X−1E−1. This yields the diagonalized realization Σ̂=(Λ, B̂, Ĉ, I) with

Λ = X−1E−1AX ⇔ E−1A = XΛX−1, Λ = D, [X, D] = eig(A,E), (3.11a)
B̂ = X−1E−1B, Bhat = X\(E\B), (3.11b)
Ĉ = CX, Chat = C*X . (3.11c)

A short MATLAB implementation is given on the right to illustrate the diagonalization step.
The pole-residue formulation of the transfer function G(s) can be easily obtained by

exploiting the diagonal form. Remember that a state transformation does not affect the
input-output behavior of a dynamical system. Thus, in the following we make use of the
transfer function Ĝ(s) = Ĉ(sI−Λ)−1B̂ of the diagonalized system Σ̂=(Λ, B̂, Ĉ, I). Writing
the inverse matrix (sI−Λ)−1 explicitly we obtain the partial-fraction decomposition [6]

Ĝ(s) =
n∑

l=1

Φ
l

s− λl
(3.12)

with matrix-residues given by

Φ
l

= ĉl · b̂
T
l ∈ Cp×m, l = 1, . . . , n, (3.13)

where ĉl ∈ Cp, Ĉ = [ĉ1, · · · , ĉn] ∈ Cp×n and b̂T
l ∈ C1×m, B̂ =


b̂

T
1
...
b̂

T
n

 ∈ Cn×m.

1Note that some textbooks use the transformation x(t) = Tz(t) ⇔ z(t) = T−1x(t), yielding the transformed
system Σ̂=(OAT ,OB,CT ,OET ).
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Gramians and Lyapunov equations

The properties of controllability and observability can be analyzed – among others – by the
system Gramians. These can, in turn, be characterized by means of Lyapunov equations. [6]

Definition 3.2 (Controllability). The pair (A,B) with A ∈ Rn×n and B ∈ Rn×m is called
controllable, if the controllability matrix

R =
[
B, AB, . . . , An−1B

]
∈ Rn×n·m (3.14)

has full row rank, i.e. rank(R)=n. Note the relationship with (2.28): ran(R)=Kn(A,B). N

The linear state-space model (3.1) is controllable, if the pair (E−1A,E−1B) is controllable.
The controllability Gramian P ∈ Rn×n is defined as

P =
∫ ∞

τ=0
eÃτ B̃ B̃

T eÃ
T

τ dτ =
∫ ∞

τ=0
p(τ)p(τ)T dτ , (3.15)

where p(t)=eÃtB̃ ∈ Rn×m represents the input-to-state part gi/s(t) of the impulse response.
The system (3.1) is controllable, if and only if P is positive definite.

Definition 3.3 (Observability). The pair (C,A) with C ∈ Rp×n and A ∈ Rn×n is called
observable, if the observability matrix

O =
[
CT, ATCT, . . . , (AT)n−1CT

]T
∈ Rp·n×n (3.16)

has full column rank, i.e. rank(O)=n. Note the relationship: ran(OT) = Kn(AT,CT). N

The linear state-space model (3.1) is observable, if the pair (C,E−1A) is observable.
The observability Gramian Q̃ ∈ Rn×n is defined as

Q̃ =
∫ ∞

τ=0
eÃ

T
τ CTC eÃτ dτ =

∫ ∞

τ=0
q(τ)q(τ)T dτ , (3.17)

where q(t)=eÃ
T
tCT∈Rn×p represents the state-to-output part gs/o(t) of the impulse response.

The system (3.1) is observable, if and only if Q̃ is positive definite.
By definition, the controllability and observability Gramians are symmetric and positive

semi-definite. If the system is asymptotically stable, i.e. λ(E−1A) ⊂ C−, then the Gramians
are positive definite P =P T � 0, Q̃= Q̃T � 0 and are related to the unique solutions of the
following generalized Lyapunov equations

APET +EPAT +BBT = 0, (3.18a)
ATQE +ETQA+CTC = 0. (3.18b)

Note that Q is the solution of (3.18b), whereas Q̃ is given by (3.17) and Q̃ = ETQE.

System norms

System norms like the H2- and H∞-norm are important measures to analyze dynamical sys-
tems. They will later help us to quantify the difference between two systems.
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L2-norm (time-domain)

The time-domain L2-norm of a MIMO linear system Σ is defined on the L2[0,∞) space by

‖Σ‖2
L2[0,∞)

=
∫ ∞

τ=0

∥∥g(τ)
∥∥2

F dτ =
∫ ∞

τ=0

p∑
i=1

m∑
j=1

g2
ij(τ) dτ, (3.19)

where
∥∥g(τ)

∥∥
F denotes the Frobenius norm of the impulse response (3.3). Using the relation∥∥K∥∥2

F =tr(KKT)=tr(KTK), we can express the L2-norm in terms of the controllability and
observability Gramians P and Q̃:

‖Σ‖2L2
=
∫ ∞

τ=0
tr
(
g(τ)g(τ)T

)
dτ = tr

(
C

∫ ∞

τ=0
eÃτ B̃B̃

TeÃ
T

τ dτ CT
)

= tr
(
CPCT

)
, (3.20a)

‖Σ‖2L2
=
∫ ∞

τ=0
tr
(
g(τ)Tg(τ)

)
dτ = tr

(
B̃

T
∫ ∞

τ=0
eÃ

T
τCTCeÃτ dτB̃

)
= tr

(
B̃

T
Q̃B̃

)
. (3.20b)

Note that tr
(
B̃

T
Q̃B̃

)
= tr

(
BTE−TQ̃E−1B

)
= tr

(
BTQB

)
, where Q = E−TQ̃E−1. The

time-domain L2-norm can thus be computed by solving one of the Lyapunov equations (3.18).

H2-norm (frequency-domain)

The H2-norm of a linear system is most generally defined on the so-called Hardy space H2,
using the strictly proper, complex-valued transfer function G(x + iy) that is analytic in the
open right-half plane C+:

‖Σ‖2H2
= sup

x>0

∞∫
y=−∞

∥∥G(x + iy)
∥∥2

F dy. (3.21)

For a stable system with λl ∈ C−, l = 1, . . . , n, the H2-norm ‖Σ‖2H2
is equivalent to the

frequency-domain L2-norm ‖Σ‖2
L2(iR)

on the imaginary axis (cf. Phragmén-Lindelöf principle
[269]). Thus, in such case the H2-norm is defined on the Hilbert space L2(iR) and reduces to

‖Σ‖2
L2(iR)

= 1
2π

∫ ∞

ω=−∞

∥∥G(iω)
∥∥2

F dω, (3.22)

where
∥∥G(iω)

∥∥2
F = tr

(
G(iω)G(−iω)T

)
= tr

(
G(−iω)TG(iω)

)
. Due to Parseval-Plancherel’s

theorem, the frequency-domain and time-domain L2-norms are equivalent. To sum up:

‖Σ‖2H2
= ‖Σ‖2

L2(iR)
= ‖Σ‖2

L2[0,∞)
. (3.23)

The H2-norm of a linear system can also be expressed in pole-residue formulation [97]

‖Σ‖2H2
=

n∑
l=1
ĉT

l G(−λl) b̂l, (3.24)

where ĉl ∈ Cp, b̂l ∈ Cm and G(−λl) ∈ Cp×m. This represents an alternative way to compute
the H2-norm besides the approach (3.20).
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H∞-norm

The H∞-norm of a MIMO linear system Σ is defined as [6]

‖Σ‖H∞ = sup
ω∈R

ςmax
(
G(iω)

)
= sup

ω∈R
max

i=1,...,n
ςi
(
G(iω)

)
, (3.25)

where ςmax
(
G(iω)

)
=
√
λmax

(
G(iω)G(−iω)T)=

√
λmax

(
G(−iω)TG(iω)

)
denotes the largest

singular value of the transfer matrix. The H∞-norm corresponds to the peak gain across all
SISO input-output channels.

3.2 Projective model order reduction

The reduction of dynamical systems is usually performed within a projective framework, i.e.
it is based on projection (cf. Section 2.2). In the following, we explain the projection-based
reduction framework for LTI systems.

The main foundation for model order reduction is to assume that the state trajectory
x(t) mainly evolves in a r-dimensional subspace V of the state-space Rn. Let the full column
rank matrix V ∈ Rn×r be a basis of V. Then, the state vector x(t) ∈ Rn can be expressed in
terms of the reduced state vector xr(t) ∈ Rr as

x(t) = V xr(t) + e(t), (3.26)

where e(t) ∈ Rn denotes the approximation error. Inserting the ansatz (3.26) into the state
equation (3.1a) yields an overdetermined system (n equations for r unknowns in xr(t))

EV ẋr(t) = AV xr(t) +Bu(t) + ε(t), (3.27)

with the residual ε(t) =Ae(t) − Eė(t) ∈ Rn. In order to obtain a well-determined (square)
reduced-order model, the system (3.27) is projected onto the subspace U = ran(EV ). The
projection is performed orthogonally to another subspace W = ran(W ), where the matrix
W ∈ Rn×r has full column rank and is chosen such that W TEV is non-singular. Multiplying
(3.27) from the left with the projector Π = EV (W TEV )−1W T yields

Π
(
EV ẋr(t)−AV xr(t)−Bu(t)︸ ︷︷ ︸

=ξ
(
V xr(t),u(t)

) −ε(t)
)

= 0 ⇔ Π
(
ξ
(
V x(t), u(t)

)
− ε(t)

)
= 0.

(3.28)

Since all resulting vectors lie now in ran(EV ), the preceding term EV (W TEV )−1 can be
omitted in all summands of the equation. By enforcing the so-called Petrov-Galerkin con-
dition W Tε(t) = 0, which implies Πε(t) = 0, the residual then vanishes and only the term
Πξ
(
V xr(t), u(t)

)
=0 remains. This finally leads to the reduced-order model

Σr :
{
Er ẋr(t) = Ar xr(t) +Br u(t), xr(0) = xr,0,

yr(t) = Cr xr(t),
(3.29a)
(3.29b)

with reduced matrices Er = W TEV , Ar = W TAV , Br = W TB, Cr = CV and the ini-
tial condition xr(0) = (W TEV )−1W TE x(0). Similar as for the full-order model (3.1), the
abbreviation Σr =(Ar,Br,Cr,Er) will denote the reduced linear system (3.29).
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In this projective setting, the main task consists in finding suitable reduction bases (also
referred to as projection matrices) V ,W ∈ Rn×r spanning appropriate subspaces, to ensure
a good approximation y(t) ≈ yr(t) and/or preserve structural properties of the FOM.

Invariance property

Note that only the subspaces V = ran(V ) and W = ran(W ) are important for model re-
duction, whereas the specific choice of the bases V ,W plays a minor role. In fact, when
replacing the projection matrices V ,W by Ṽ = V T v and W̃ =WTw for any regular ma-
trices T v, Tw ∈ Rr×r, the realization of the ROM changes, whereas the reduced transfer
function remains invariant: G̃r(s) =Gr(s). Nevertheless, specific choices of bases, e.g. real-
valued (i.e. V ,W ∈ Rn×r), orthonormal (i.e. V TV = Ir, W TW = Ir) or biorthonormal (i.e.
W TV =Ir or W TEV =Ir), are often used due to numerical reasons.

Galerkin/Petrov-Galerkin projection

Further note that the reduction can be performed by an orthogonal Galerkin projection with
W = V (or rather ran(W ) = ran(V )), or by an oblique Petrov-Galerkin projection with
W 6= V (or rather ran(W ) 6=ran(V )). The choice of a Galerkin or Petrov-Galerkin projection
often depends on the goals and priorities of the reduction. For instance, one can use the
degrees of freedom in W (or in V ) to guarantee stability of the ROM or to preserve other
system properties. On the other hand, one can use these degrees of freedom to obtain a better
approximation.

Error system and error system norms

For analysis purposes, it is extremely important to asses the approximation quality of ROMs.
One possibility is to measure the accuracy in time-domain by means of the output error
ey(t) := y(t) − yr(t) or the state error ex(t) := x(t) − V xr(t) (cf. Section 2.6). Another
possibility is to quantify the error in frequency-domain via Ge(iω) :=G(iω) −Gr(iω). This
latter approach is specially interesting for LTI systems and is, thus, deepened in the following.

Let us begin with the error system Σe := Σ−Σr = (Ae,Be,Ce,Ee), where

Ee =
[
E 0
0 Er

]
, Ae =

[
A 0
0 Ar

]
, Be =

[
B
Br

]
, Ce =

[
C −Cr

]
. (3.30)

The output of the error system is the difference between the output of the FOM and ROM,
i.e. ye(t) = y(t) − yr(t). Moreover, the transfer function of the error system is given by
Ge(s)=G(s)−Gr(s). Obviously, it is possible to compute the error system for models with
a different state dimension, but only feasible for an equal number of inputs m and outputs p.

The error between FOM and ROM can be measured point-wise in frequency by

eabs,(∗)(iω) := ‖Ge(iω)‖(∗) = ‖G(iω)−Gr(iω)‖(∗) (3.31)

with a desired matrix norm (∗) ∈ {1, 2,∞, F, . . .}. In addition, the error can be measured
norm-wise in frequency-domain by

eabs,Hp := ‖Ge‖Hp = ‖G−Gr‖Hp (3.32)
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with a suitable norm Hp ∈ {H2,H∞, Hankel, . . .}. The H2- and H∞-error norms can be
calculated by applying the expressions (3.20), (3.24) and (3.25) to the error system Σe. For
instance, the H2-error norm is given by∥∥Σe

∥∥2
H2

= tr
(
CeP eC

T
e
)

= tr
(
BT

e QeBe
)
, (3.33)

where P e and Qe are obtained by solving the Lyapunov equations for the error system

AeP eE
T
e +EeP eA

T
e +BeB

T
e = 0, (3.34a)

AT
e QeEe +ET

e QeAe +CT
e Ce = 0. (3.34b)

It can be shown that the H2- and H∞-error norms in frequency-domain represent an upper
bound for the output error in time-domain, according to [97]

‖y − yr‖L∞ ≤ ‖G−Gr‖H2 ‖u‖L2 , (3.35)

‖y − yr‖L2 ≤ ‖G−Gr‖H∞ ‖u‖L2 . (3.36)

3.3 Overview of linear reduction methods

In this section an overview of established linear reduction approaches is given. The focus lies
on the three best known techniques of modal truncation, balanced truncation and moment
matching, although further methods are also mentioned at the end of the section. In general,
special emphasis is put in the computational aspects, properties, advantages/disadvantages
and conceptual similarities/differences of the various reduction techniques.

3.3.1 Modal truncation

Modal truncation is one of the oldest techniques for model order reduction. The method was
originally developed for second-order systems arising in the context of structural dynamics
[212, 125, 113, 53], and then extended to state-space representations [78, 172, 65].

The main idea is to preserve some eigenvalues of the original model in the reduced one.
To this end, the projection matrices V ,W are chosen to span the right and left eigenspaces
corresponding to the r most dominant eigenvalues. This means that V = [v1, . . . ,vr] and
W =[w1, . . . ,wr], where the right eigenvectors vi and left eigenvectors wi, i = 1, . . . , r fulfill
the generalized eigenvalue problems

(λiE −A)vi = 0 ⇐⇒ AV = EV Λ , (3.37a)

wT
i (λiE −A) = 0T ⇐⇒ W TA = ΛW TE . (3.37b)

Note that, in general, the eigenvalues λi and the eigenvectors vi and wi are complex-valued,
leading to complex projection matrices V ,W ∈ Cn×r. Nevertheless, if the eigenvalues come
in complex conjugate pairs (as it is mostly the case), then a splitting of the eigenvectors in
real and imaginary part is possible, in order to obtain real projection matrices Ṽ , W̃ ∈ Rn×r

spanning the same subspaces as their complex counterparts. Further note that a QR- or a
Gram-Schmidt-type (bi)orthogonalization can be employed to obtain (bi)orthonormal bases.
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For large-scale models, the computation of the entire eigendecomposition is unfeasible.
Hence, only a few eigenvalues and eigenvectors are computed iteratively using power methods
(e.g. inverse iteration [79, 233]) or Krylov subspaces (e.g. implicitly restarted Arnoldi [168]).
These algorithms (e.g. MATLAB or SciPy function eigs) usually employ different selection
criteria to find the eigenvalues. For instance, they can return the eigenvalues with the largest
or smallest magnitude ('lm', 'sm'), largest real part ('lr') or closest to a given complex
shift sigma. This allows to retain the desired eigenvalues in the reduced-order model.

Especially in the context of approximating the input-output behavior (3.7), the modal
approach can be combined with an eigenvalue dominance analysis. The basic idea is to take
the aspects of controllability and observability into account, wherefore several dominance
measures have been proposed [162, 180, 263, 215]. In this way, the information contained in
the input and output matrices B̂, Ĉ is also exploited to select the eigenvalues. Note again
that modal truncation exactly preserves some eigenvalues of the FOM. This is particularly
advantageous in structural mechanics and acoustics, where the eigendynamics (A,E) and
the physical interpretation of the reduced state vector play a crucial role. Nevertheless, the
restriction to the set of modal coordinates can sometimes be a limitation, especially if other
reduced coordinates are better suited to approximate the transfer behavior.

3.3.2 Balanced truncation

One of the most prominent system-theoretic methods for model order reduction is given by
the so-called balanced truncation or truncated balanced realization. The idea first originated
in the context of digital filter design [183], and was later formalized by Moore in [181].

The method is based on retaining the state variables with highest energy transfer, while
truncating those that are less important for the input-output behavior. Hereby, the concepts
of controllability and observability are exploited to rank the state variables in terms of their
energy contribution. In fact, a final state xe is called weak controllable if it requires a lot
of input energy u(t) to be reached. This energy is measured in terms of the controllability
Gramian via Jc(xe)=xT

e P
−1 xe. Similarly, an initial state x0 is weak observable if it provides

little energy at the output y(t) for u(t)=0. This energy is measured in terms of the observ-
ability Gramian by Jo(x0)=xT

0 Q̃ x0. Thus, such weak controllable and observable states do
not contribute much to the transfer behavior and can therefore be neglected.

Balanced truncation is composed of two steps. First, the system is transformed into a bal-
anced realization Σbal = (TAT−1,TB,CT−1,TET−1), where each state variable is equally
controllable and observable. Mathematically, this means that the controllability Gramian P
and the observability Gramian Q̃=ETQE are equal and diagonal

P = Q̃ = Σ = diag(ς1, . . . , ςn), ς1 ≥ ς2 ≥ . . . ≥ ςn ≥ 0, (3.38)

where ςi :=
√

λi(PETQE) are the so-called Hankel singular values. Then, the reduction is
performed by truncating the state variables associated to the smallest singular values ςj � ςi,
i = 1, . . . , r, j = r + 1, . . . , n.

The projection matrices needed for reduction can be computed via, e.g., the Square-Root
Balanced Truncation (SR-BT) algorithm [101, 157]. The main steps of this procedure are
summarized in Algorithm 3.1. From a numerical point of view, the solution of both Lyapunov
equations (3.18) is the most expensive, but also the most crucial step of balanced truncation.
The numerical solution of large sparse Lyapunov equations is discussed in detail in Section 2.4.
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Algorithm 3.1 Square-Root Balanced Truncation (SR-BT)

1. Solution of Lyapunov equations and Cholesky decomposition

P = SST and Q = RRT, (3.39)

where P ,Q are symmetric positive definite, and S,R are lower triangular.

2. Singular value decomposition (SVD) of RTES = MΣNT and partition

RTES =
[
M1 M2

] [Σ1

Σ2

] [
NT

1

NT
2

]
, (3.40)

where M1 ∈ Rn×r, N1 ∈ Rn×r are orthogonal, and Σ1 = diag(ς1, . . . , ςr) ∈ Rr×r.

3. Computation of the transformation/projection matrices T 1 :=W T and T−1
1 :=V

W T = Σ−1/2
1 MT

1R
T ∈ Rr×n and V = SN1Σ−1/2

1 ∈ Rn×r, (3.41)

which are inherently biorthogonal w.r.t. E, i.e. Er = W TEV = Ir and Π = EVW T.

In the large-scale setting, the direct Hammarling’s method cannot be used anymore due to its
high storage requirement. Instead, iterative techniques like RKSM and LR-ADI are employed
to find low-rank approximations of the solutions P ≈ P̂ =ZcZ

T
c and Q≈ZoZ

T
o . By simply

replacing the Cholesky factors S and R in Algorithm 3.1 by the low-rank factors Zc and Zo,
the so-called Low-Rank Square-Root Balanced Truncation (LR-SRBT) algorithm is obtained.

Balanced truncation has numerous advantages. It preserves asymptotic stability in the
reduced-order model, which is also balanced and a minimal realization. Furthermore, a rig-
orous, a-priori error bound is available [101]:

‖G−Gr‖H∞ ≤ 2
n∑

i=r+1
ςi . (3.42)

This allows to estimate the error and to select the reduced order r according to the de-
sired approximation quality. In addition, balanced truncation is suitable for automated or
black-box model reduction, since the reduced order r is the only parameter that has to be
chosen. Unfortunately, some of these advantages get lost when the Lyapunov equations are
solved approximately. For instance, the H∞-error bound (3.42) does not necessarily hold any-
more. Additionally, the iterative Krylov-based techniques RKSM and LR-ADI also require
the selection of appropriate shift parameters to compute the low-rank factors. Despite these
inconveniences for the application of the method to large-scale models, balanced truncation
is still one of the most popular model reduction techniques.

Finally, note that there exist several generalizations and modifications of the method.
Examples include balancing for differential-algebraic equations [259, 184, 48], nonlinear [239,
26, 34], time-varying [258, 253, 167], parametric [254] and second-order systems [185, 62, 220,
38], as well as time- and frequency-limited balanced truncation [40, 152].
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3.3.3 Moment matching

Another approach for model reduction is given by moment matching or rational interpolation.
The main idea is to construct a reduced-order model that interpolates the original transfer
function and its derivatives at selected complex shifts σi ∈ C:

G(`)(σi) = G(`)
r (σi), i = 1, 2, . . . , ` = 0, 1, . . . , (3.43)

where G(`)(s) = d`G(s)
ds` denotes the `-th derivative of G(s) with respect to s. Note that the

derivatives G(`)(σi) are equal (except for the factor 1
`!) to the so-called moments m`(σi), i.e.

the coefficients of the Taylor series expansion of G(s) around σi (cf. Eq. (3.46)).
The idea of reducing an LTI system by approximating its rational transfer function has

been published in the literature under several names: continued fraction expansion, method
of moments [100, 284], (multipoint) Padé approximation [242] and asymptotic waveform eval-
uation (AWE) [207], just to mention a few. These methods, however, construct the reduced
transfer function Gr(s) based on the explicit computation of moments, which is numerically
unstable and ill-conditioned. Fortunately, moment matching can also be enforced implicitly
using projection onto (classical) Krylov subspaces [265]. Later, Lanczos- [89, 98] and Arnoldi-
type [106] algorithms were applied to compute bases V ,W of rational Krylov subspaces in
a numerically stable way. The general framework for projective model reduction by Krylov
subspaces is described thoroughly in Grimme’s PhD thesis [106] as well as in the surveys
[18, 94]. These projection-based reduction methods are referred in the literature as Padé via
Lanczos (PVL), rational Krylov (RK), implicit moment matching and rational interpolation.

For MIMO systems, the moment matching condition (3.43) means that the whole block,
p × m transfer function matrix (and its derivatives) is interpolated at selected shifts. In
many applications, however, it might be desirable to favor relevant input-output channels or
customize the reduction according to the frequency ranges of certain SISO paths. To this end,
[115] proposed model reduction via tangential interpolation

G(`)(σi) ri = G(`)
r (σi) ri, i = 1, 2, . . . , ` = 0, 1, . . . , (3.44a)

lTi G
(`)(σi) = lTi G

(`)
r (σi), i = 1, 2, . . . , ` = 0, 1, . . . , (3.44b)

along selected left and right tangential directions li ∈ Cp, ri ∈ Cm. This kind of interpola-
tion is achieved by constructing the projection matrices V ,W as bases of tangential Krylov
subspaces (cf. Section 2.3). Remember that the use of tangential directions also avoids the
increased dimension of the reduction bases from the block case.

Model reduction via Krylov subspaces has both advantages and disadvantages. In the
following, we briefly discuss and analyze them.

Computational effort The main advantage of Krylov subspace methods is their low numeri-
cal effort, since the computation of the reduction bases mainly relies on the solution of sparse
linear systems of equations (LSE), which can be solved efficiently using either direct or iter-
ative methods (see Section 2.5). Therefore, Krylov-based reduction is indeed applicable to
very large-scale models (n ≥ 106).

Selection of reduction parameters As pointed out by Antoulas [6], the choice of the reduc-
tion parameters is an advantage, but at the same time a fundamental issue of Krylov methods.
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If some knowledge about the system at hand is available, then practitioners can exploit it to
customize the reduction by choosing appropriate shifts and tangential directions. On the
contrary, if system understanding is missing or the frequency range of interest is not known
a-priori, then the selection of reduction parameters for a satisfactory approximation is not a
trivial task. Nevertheless, some simple strategies [265, 89, 106] as well as more sophisticated,
adaptive techniques [97, 39, 84] exist to select good or even optimal interpolation data.

Stability preservation Unfortunately, in contrast to balanced truncation, Krylov subspace
methods are not necessarily stability preserving. This means that the ROM may not be
asymptotically stable, even if the FOM is stable. Implicitly restarted Lanczos/Arnoldi meth-
ods [108, 134], as well as heuristic trials (e.g. changing the interpolation data or the reduced
order), are possible remedies to eliminate this unwanted behavior. However, there also exist
some systematic techniques and algorithms that deliberately select the reduction degrees of
freedom to guarantee stability.

1. The reduction of a strictly dissipative system (i.e. E = ET � 0, A + AT ≺ 0) via
orthogonal projection (i.e. ran(W ) = ran(V )) leads to a strictly dissipative, and con-
sequently asymptotically stable, ROM [244]. The concept of dissipativity (aka. con-
tractivity) plays also a key role for the passivity and structure-preserving reduction of
port-Hamiltonian [93, 194] and second-order systems [236].

2. If the FOM is stable, but not necessarily strictly dissipative, then it can be trans-
formed into a strictly dissipative realization by solving a large-scale Lyapunov equation
(using e.g. RKSM and LR-ADI). For instance, if Q is the solution of the observabil-
ity Lyapunov equation (3.18b) and V spans an input Krylov subspace, then the choice
W = QV (V TQV )−1 — or less general W = QV — yields a stable ROM (see [95], [283,
Ch. 5], [249]). Note that this orthogonal projection-like choice of W is also employed
in the passivity and structure-preserving model reduction of linear port-Hamiltonian
systems [272, 111].

3. Related to the approach before, the Iterative SVD-Rational Krylov (ISRK) algorithm
[112] also combines the solution of one large-scale Lyapunov equation with iterative
rational Krylov steps using σi ← −λr,i for the shifts. Upon convergence, ISRK leads to
an asymptotically stable H2-pseudo-optimal ROM, whose eigenvalues are the mirrored
images of the converged shifts. Note that the ISRK procedure is strongly related to the
Iterative Rational Krylov Algorithm for port-Hamiltonian systems (IRKA-PH) [111].

4. AnH2-pseudo-optimal ROM that has eigenvalues as mirror images of user-selected shifts
can be obtained by the iteration-free Pseudo-Optimal Rational Krylov (PORK) algo-
rithm [277, 273]. This approach is exploited within the Stability Preserving Adaptive
Rational Krylov (SPARK) scheme [197, 198] to guarantee stability.

Error bounds Another drawback of Krylov-based model reduction is that – in contrast to
balanced truncation – there are no general, rigorous, a-priori, efficiently computable, global
error bounds for the approximation quality of the ROM. Nevertheless, there exist error es-
timates in the literature that at least meet some of the just mentioned requirements. For
instance, Bai et al. [17] and Feng, Antoulas and Benner [86] have proposed local (i.e. point-
wise in frequency) a-posteriori error bounds, which estimate the accuracy of the ROM within
a certain frequency range. These approaches, however, usually require a large and dense set
of samples to guarantee rigorousness and sharpness of the error bound. On the other hand,
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global (i.e. norm-wise) error bounds are also available in the literature, but mostly only for
special LTI systems. For example, H2 and H∞ upper bounds on the error (3.32) are given in
[276] for general systems, and made computationally more efficient in [198, Ch. 5] for strictly
dissipative systems. Moreover, there exist error bounds for lossless and passive systems.

3.3.4 Further approaches

In addition to the three best known linear techniques explained above, many other reduction
methods exist (see e.g. [10, 6, 24]). Some of them will be briefly mentioned in the following.

The method of Proper Orthogonal Decomposition (POD) [181, 37] is based on the SVD of
a so-called snapshot matrix, which is composed of samples of the FOM state trajectory. This
data-driven technique is mostly employed in the context of nonlinear model order reduction,
since the simulation-based collection of snapshots is a straightforward remedy to the (general)
absence of analytical solutions or system-theoretic concepts for nonlinear dynamical systems.

The optimal Hankel norm approximation [101] aims at the construction of a reduced-order
model which is optimal in terms of the Hankel norm (i.e. the 2-induced norm of the Hankel
operator). Similar to balanced truncation, this approach is stability preserving, provides an
a-priori H∞-error bound and is computationally expensive for large-scale systems.

The Loewner framework [171] is a data-driven approach, which constructs a ROM that
achieves moment matching using frequency-domain measurements. In that sense, the method
aims at the low-order identification of an unknown system from input-output data rather
than at the reduction of a known system. The Loewner matrices satisfy certain Sylvester
equations, which emphasizes the connection of this technique to Krylov subspaces and rational
interpolation (cf. Section 3.5). Another related data-driven approach is given by vector
fitting [107], which permits to calculate a rational approximation from measured or computed
frequency response functions. The recent AAA algorithm [192] also falls into this category.

SVD-Krylov approaches [10, 95, 112] aim at combining the stability and global error
bound features of SVD-based methods, with the numerical efficiency and applicability of
Krylov-based techniques. The ISRK algorithm is one popular representative of this type of
techniques.

Finally, H2- and H∞-optimal model reduction techniques aim at finding a ROM that min-
imizes the approximation error in terms of the H2- or H∞-norm. The problem of H2-optimal
model reduction will be addressed in Section 3.7.

3.4 Frequency-domain interpretation of linear moment matching

Throughout this thesis, we focus on the concept of implicit moment matching by rational
Krylov subspaces as model reduction technique. In this section we will first review the clas-
sical, frequency-domain notion of moments and then recall the Krylov subspaces to achieve
implicit moment matching. After that, we will also discuss different important aspects and
possibilities that Krylov subspace-based model reduction opens.
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3.4.1 Frequency-domain notion of linear moments

Definition 3.4 (Frequency-domain linear moments). The Taylor series expansion of the
transfer function G(s) at a complex number σ ∈ C \ λ(E−1A), also called shift or expan-
sion/interpolation point, is given by

G(s) =
∞∑

`=0
m`(σ)(s− σ)` , (3.45)

where m`(σ) is called the `-th moment of G(s) at σ. The moments represent the Taylor series
coefficients and satisfy:

m`(σ) = 1
`!

d`G(s)
ds`

∣∣∣∣∣
s=σ

= 1
`!

[
d`

ds`
C(sE −A)−1B

]∣∣∣∣∣
s=σ

= (−1)`C
(
(σE −A)−1E

)`
(σE −A)−1B ∈ Cp×m.

(3.46)

If the transfer function G(s) is expanded at σ →∞, then the Taylor series is given by

G(s) =
∞∑

`=0
m`,∞

1
s`+1

s c g(t) =
∞∑

`=0
m`,∞

t`

`! , (3.47)

where m`,∞ is called the `-th Markov parameter of G(s). The Markov parameters represent
the Taylor series coefficients of the impulse response g(t) at t=0 and satisfy:

m`,∞ = d`g(t)
dt`

∣∣∣∣∣
t=0

=
[

d`

dt`
CeE−1A tE−1B

]∣∣∣∣∣
t=0

= C
(
E−1A

)`
E−1B ∈ Rp×m. (3.48)

N

3.4.2 Moment matching by Krylov subspaces

In order to achieve implicit moment matching, the projection matrices V and W should
be chosen as bases of rational Krylov subspaces (cf. Section 2.3). The main theorems of
Krylov-based model reduction are stated in the following based on [265, 106, 115, 33].

Theorem 3.1 (Block multimoment matching). Let the expansion points σ, µ ∈ C \ λ(E−1A)
be given. Consider a ROM as in (3.29) obtained through projection with V ,W . If V and W
are chosen as bases of respective q-order block input and output Krylov subspaces

Kq

(
(σE −A)−1E, (σE −A)−1B

)
⊇ ran(V ), (3.49a)

Kq

(
(µE −A)−TET, (µE −A)−TCT

)
⊇ ran(W ), (3.49b)

then the ROM fulfills the following block multimoment matching conditions:

G(`)(σ) = G(`)
r (σ) ⇔ m`(σ) = mr,`(σ), ` = 0, . . . , q − 1, (3.50a)

G(`)(µ) = G(`)
r (µ) ⇔ m`(µ) = mr,`(µ), ` = 0, . . . , q − 1. (3.50b)
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Thus, the ROM interpolates the original transfer function matrix and its derivatives up to
order q−1 at the shifts σ and µ, respectively. If both (3.49a) and (3.49b) are chosen with σ = µ,
then the following interpolation conditions are achieved: G(`)(σ)=G(`)

r (σ), `=0, . . . , 2q − 1.

Remark 3.1 (Matching Markov parameters). If V or W is chosen as basis of

Kq

(
E−1A, E−1B

)
⊇ ran(V ), (3.51a)

Kq

(
E−TAT, E−TCT

)
⊇ ran(W ), (3.51b)

then the ROM fulfills m`,∞ = mr,`,∞, ` = 0, . . . , q−1. If both (3.51a) and (3.51b) are chosen,
then m`,∞ = mr,`,∞, ` = 0, . . . , 2q − 1. M

Note that, in addition to the afore explained multimoment matching strategy, it is also possible
to match (high-order) moments at a set of different shifts {σi}ri=1 and {µi}ri=1 with associated
multiplicities {qi}ri=1:

G(`i)(σi) = G(`i)
r (σi) ⇔ m`i

(σi) = mr,`i
(σi), `i = 0, . . . , qi − 1, i = 1, . . . , r, (3.52a)

G(`i)(µi) = G(`i)
r (µi) ⇔ m`i

(µi) = mr,`i
(µi), `i = 0, . . . , qi − 1, i = 1, . . . , r. (3.52b)

In this setting, known as multipoint moment matching, each subspace ran(V ) and ran(W ) is
given by the union of all respective rational Krylov subspaces Kqi (cf. Eq. (2.31)). Also note
that, besides block Krylov subspaces, in the MIMO case we alternatively may use tangential
Krylov subspaces. In the following, we exemplarily show the tangential multipoint case for
single multiplicities of the shifts, i.e. q1 = . . . = qr = 1.

Theorem 3.2 (Tangential multipoint moment matching). Let {σi}ri=1 and {µi}ri=1 with
σi, µi ∈ C \ λ(E−1A) be different sets of shifts. Let {ri}ri=1 ∈ Cm and {li}ri=1 ∈ Cp be right
and left tangential directions, respectively. Consider a ROM as in (3.29) obtained through
projection with V ,W . If V and W are chosen as bases of respective 1-order tangential input
and output Krylov subspaces

span
{

(σ1E −A)−1B r1, . . . , (σrE −A)−1B rr

}
⊇ ran(V ), (3.53a)

span
{

(µ1E −A)−TCTl1, . . . , (µrE −A)−TCTlr
}
⊇ ran(W ), (3.53b)

then the ROM fulfills the following tangential multipoint moment matching conditions:

G(σi) ri = Gr(σi) ri ⇔ m0(σi) ri = mr,0(σi) ri, i = 1, . . . , r, (3.54a)
lTi G(µi) = lTi Gr(µi) ⇔ lTi m0(µi) = lTi mr,0(µi), i = 1, . . . , r. (3.54b)

Thus, the ROM tangentially interpolates the original transfer function matrix at σi and µi,
respectively. If both (3.53a) and (3.53b) are chosen with σi = µi, then right, left and bitan-
gential Hermite interpolation are achieved:

G(σi) ri = Gr(σi) ri ⇔ m0(σi) ri = mr,0(σi) ri, i = 1, . . . , r, (3.55a)
lTi G(σi) = lTi Gr(σi) ⇔ lTi m0(σi) = lTi mr,0(σi), i = 1, . . . , r, (3.55b)

lTi G
′(σi) ri = lTi G

′
r(σi) ri ⇔ lTi m1(σi) ri = lTi mr,1(σi) ri, i = 1, . . . , r. (3.55c)
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3.4.3 Discussion of different aspects

In this section, different important aspects of Krylov-based model reduction are analyzed.
The aim is to discuss the various possibilities and trade-offs that Krylov subspace methods
offer, as well as to give some valuable remarks concerning the judicious implementation.

Multimoment vs. Multipoint As already stated in Theorems 3.1 and 3.2, in Krylov-based
reduction one distinguishes between matching high-order moments at a single shift (aka.
multimoment), and matching (rather low-order) moments at several shifts (aka. multipoint).
While the multimoment strategy allows to achieve a better local approximation at a specific
shift, the multipoint strategy rather permits to gain a global approximation over a broad
frequency range. In terms of computational effort, the multipoint strategy is generally more
expensive, since for every new expansion point an LU-decomposition of σiE −A is required.
Note again that the two concepts can be combined (multimoment + multipoint), in order
to customize the reduction according to the desired accuracy (cf. Eq (3.52)). In fact, the
combination of both strategies – together with an application-oriented selection of interpola-
tion data and multiplicities – can be the best choice in terms of approximation quality and
numerical efficiency.

MIMO case For MIMO systems one can decide to employ either block or tangential Krylov
subspaces. While the block interpolation conditions guarantee a full matrix matching, the
tangential approach delivers a linearly combined interpolation along selected input and output
directions. Thus, tangential directions allow to weight certain SISO paths, while preventing
the reduction bases from growing by m or p columns per iteration. Another way to overcome
this growth is to deflate the block reduction bases, in order to eliminate linearly dependent
columns. This procedure, however, might slightly “corrupt” the moment matching conditions,
specially if the deflated subspace changes significantly w.r.t. the original one.

One-sided vs. Two-sided reduction Krylov-based reduction can be performed by means of a
one-sided or two-sided method. A one-sided reduction is carried out by a Galerkin projection
using only one (input or output) Krylov subspace. On the contrary, a two-sided reduction is
accomplished by a Petrov-Galerkin projection using both input and output Krylov subspaces.
While a two-sided approach is computationally more expensive, it delivers a better approxi-
mation due to the double number of matching moments. In a one-sided approach, however,
this better accuracy is often sacrificed in favor of preserving stability or other system prop-
erties in the ROM. According to the author’s experience, the selection of an input (V -sided)
or an output (W -sided) Krylov subspace for a Galerkin projection usually depends on the
system at hand. If the input matrix B is more likely to contain useful information about
the system, then a V -sided Galerkin reduction is recommended. If, on the other hand, the
sensors placement information seems to be crucial, then a one-sided reduction with an output
Krylov subspace is preferable [Hei18].

Complex shifts and real bases Complex expansion points are fundamental for certain appli-
cations, e.g. for vibratory systems. However, using such type of shifts leads to complex-valued
reduction bases V ,W ∈ Cn×r, which result in complex reduced-order matrices. To overcome
this drawback, complex conjugate pairs of shifts (and tangential directions) should be em-
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ployed, as this allows to split the basis vectors in real and imaginary part to obtain real-valued
counterparts Ṽ , W̃ ∈ Rn×r. For clarification purposes we consider an illustrative example.

Example 3.1 (Making the basis real). Assume that an arbitrary complex conjugate pair
of shifts σ1,2 = δ ∓ i ω ∈ C with σ1 = σ2, and a complex conjugate pair of tangential
directions r1,2 = rreal ∓ i rimag ∈ Cm with r1 = r2 are given. Then, the corresponding
Krylov directions are also complex conjugated to each other (provided that A,B,C,E
are real matrices):

v1,2 = (σ1,2E −A)−1B r1,2 = vreal ∓ ivimag ∈ Cn, with v1 = v2. (3.56)

This property allows to construct real-valued directions ṽ1 and ṽ2 as linear combinations
of the complex-valued directions, such that:

ṽ1 = v1 + v2
2 = vreal − ivimag + vreal + ivimag

2 = vreal, (3.57)

ṽ2 = i v1 − v2
2 = i vreal − ivimag − vreal − ivimag

2 = vimag. (3.58)

Due to the linear combinations, the complex-valued basis V =[v1,v2] and the real-valued
basis Ṽ = [vreal,vimag] span the same subspace, i.e. ran(V ) = ran(Ṽ ). According to this
invariance property, the real basis can be equivalently obtained by Ṽ = V T v using the
regular transformation matrix

T v =
[1

2
1
2 i

1
2 −1

2 i

]
, with T−1

v =
[

1 1
−i i

]
. (3.59)

Note that the complex-valued shift and right tangential directions matrices

Sv =
[
σ1 0
0 σ2

]
, R = [r1, r2] . (3.60)

also transform to real-valued matrices

S̃v = T−1
v Sv T v =

[
δ ω
−ω δ

]
, R̃ = RT v = [rreal, rimag] . (3.61)

Analogously, for the output Krylov case it holds W̃ =WTw for the basis, S̃w =T T
wSwT

−T
w

for the shift matrix and L̃=LTw for the left tangential direction matrix. M

Deflation and orthogonalization For a well-conditioned projection, it is essential that the
reduction bases V ,W have full column rank, and that the matrix W TEV is invertible (cf.
Section 3.2). Moreover, for better numerical robustness, it is highly recommended (but not
mandatory) that the projection matrices are orthogonal. Hence, deflation or orthogonalization
techniques are often employed. If, on the one hand, the projection matrices contain linearly
dependent columns, then a rank-revealing QR decomposition (RRQR) or a singular value de-
composition (SVD) can be performed to deflate the matrices and obtain full rank, orthogonal
bases. On the other hand, full rank bases can be orthogonalized via a QR factorization or
Gram-Schmidt process. In the aforementioned approaches, the deflation/orthogonalization is
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accomplished a-posteriori, i.e. when all basis vectors have been computed. Nevertheless, a
modified Gram-Schmidt procedure can also be employed within the Arnoldi iteration, in order
to obtain orthonormal bases in each step and improve the numerical stability. Note, however,
that modified Gram-Schmidt might not yield a (fully) orthonormal basis, specially if many
columns are computed. In such case, a reorthogonalization via the mentioned a-posteriori
approaches might be needed. Further note that an orthogonalization only changes the basis
from V → Ṽ , without modifying the subspace (this is not the case for deflation). Therefore,
it can be understood as a similarity transformation with corresponding T v, yielding Ṽ =V T v,
S̃v = T−1

v Sv T v and R̃ = RT v. The same holds for W̃ , S̃w and L̃.

3.5 Equivalence of Krylov subspaces and Sylvester equations

There exists a strong connection between Krylov subspaces and Sylvester equations. In fact,
any basis of an input and output Krylov subspace can be equivalently interpreted as the
solution V and W of the following Sylvester equations [116]:

EV Sv −AV = BR , (3.62a)
ETW ST

w −ATW = CTL. (3.62b)

Hereby, the input interpolation data {σi, ri} is encoded in the matrices Sv ∈ Cr×r and
R ∈ Cm×r, where the pair (R,Sv) is observable. Similarly, the output interpolation data
{µi, li} is specified by the matrices Sw ∈ Cr×r and L ∈ Cp×r, where the pair (Sw,LT) is
controllable. Note that in the multimoment case, Sv,Sw are Jordan matrices, and that in the
SISO case, R,L become row vectors with corresponding ones and zeros.

In order to make this equivalence more clear, in the following we explicitly give the
Sylvester matrices and the Arnoldi recurrence for four different moment matching cases, and
also characterize the respective moments in terms of the corresponding projection matrices V
and W . The goal is to understand the conceptual similarities between Sylvester equations,
the Arnoldi process and the matched moments through different examples.

Block multimoment case

In the block case, one receives m or p columns per shift. Hence, for a single shift σ, µ with
multiplicity q (cf. Theorem 3.1), the Sylvester matrices have the dimensions Sv ∈ Cmq×mq,
R ∈ Cm×mq, Sw ∈ Cpq×pq, L ∈ Cp×pq. The multiplicity of the shift is represented by Jordan
matrices Sv, Sw with negative off-diagonal square blocks:

Sv =


σIm −Im

. . . . . .
. . . −Im

σIm

 , R =
[
Im 0m · · · 0m

]
, (3.63a)

Sw =


µIp

−Ip
. . .
. . . . . .

−Ip µIp

 , L =
[
Ip 0p · · · 0p

]
. (3.63b)
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The matrices V ∈ Cn×mq, W ∈ Cn×pq either represent the unique solution of the Sylvester
equations (3.62a),(3.62b) with the respective Sylvester matrices given above, or can be alter-
natively computed via the Arnoldi process

(σE −A)V 0 = B, (σE −A)V ` = EV `−1, ` = 1, . . . , q − 1, (3.64a)

(µET −AT)W 0 = CT, (µET −AT)W ` = ETW `−1, ` = 1, . . . , q − 1, (3.64b)

where V = [V 0, . . . ,V q−1] and W = [W 0, . . . ,W q−1]. The moments m`(σ),m`(µ) ∈ Cp×m

at σ, µ are given by

m`(σ) = (−1)`C V ` , (3.65a)

m`(µ) = (−1)`W T
` B , (3.65b)

where V ` and W ` are calculated according to above.

Block multipoint case

For different shifts σi, µi, i = 1, . . . , r with multiplicity qi = 1, the Sylvester matrices have the
dimensions Sv ∈ Cmr×mr, R ∈ Cm×mr, Sw ∈ Cpr×pr, L ∈ Cp×pr:

Sv =

σ1Im

. . .
σrIm

 , R =
[
Im Im · · · Im

]
, (3.66a)

Sw =

µ1Ip

. . .
µrIp

 , L =
[
Ip Ip · · · Ip

]
. (3.66b)

The matrices V ∈ Cn×mr, W ∈ Cn×pr either represent the unique solution of the Sylvester
equations (3.62a),(3.62b) with the respective Sylvester matrices given above, or can be alter-
natively computed via the Arnoldi process

(σiE −A)V i = B, i = 1, . . . , r, (3.67a)

(µiE
T −AT)W i = CT, i = 1, . . . , r, (3.67b)

where V = [V 1, . . . ,V r] andW = [W 1, . . . ,W r]. The 0-th momentsm0(σi),m0(µi) ∈ Cp×m

at σi, µi are given by

m0(σi) = C V i , (3.68a)

m0(µi) = W T
i B , (3.68b)

where V i and W i are calculated according to above.
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Tangential multimoment case

In order to avoid the increased number of columns from the block case, one could choose a
single tangential direction r, l to tangentially match high-order moments at a single shift σ, µ.
In this case, the Sylvester matrices become Sv ∈ Cq×q, R ∈ Cm×q, Sw ∈ Cq×q, L ∈ Cp×q:

Sv =


σ −1

. . . . . .
. . . −1

σ

 , R =
[
r 0 · · · 0

]
, (3.69a)

Sw =


µ

−1 . . .
. . . . . .

−1 µ

 , L =
[
l 0 · · · 0

]
. (3.69b)

The matrices V ∈ Cn×q, W ∈ Cn×q either represent the unique solution of the Sylvester
equations (3.62a),(3.62b) with the respective Sylvester matrices given above, or can be alter-
natively computed via the Arnoldi process

(σE −A)v0 = B r, (σE −A)v` = E v`−1, ` = 1, . . . , q − 1, (3.70a)

(µET −AT)w0 = CT l, (µET −AT)w` = ETw`−1, ` = 1, . . . , q − 1, (3.70b)

where V = [v0, . . . ,vq−1] and W = [w0, . . . ,wq−1]. The tangential moments m`(σ, r) ∈ Cp

at {σ, r} and m`(µ, l) ∈ Cm at {µ, l} are given by

m`(σ, r) := m`(σ) r = (−1)`C v` , (3.71a)

mT
` (µ, l) := lTm`(µ) = (−1)`wT

` B , (3.71b)

where v` and w` are calculated according to above.

Tangential multipoint case

For different shifts σi, µi with respective tangential directions ri, li (cf. Theorem 3.2), the
Sylvester matrices become Sv ∈ Cr×r, R ∈ Cm×r, Sw ∈ Cr×r, L ∈ Cp×r:

Sv = diag(σ1, . . . , σr), R =
[
r1 r2 · · · rr

]
, (3.72a)

Sw = diag(µ1, . . . , µr), L =
[
l1 l2 · · · lr

]
. (3.72b)

The matrices V ∈ Cn×r, W ∈ Cn×r either represent the unique solution of the Sylvester
equations (3.62a),(3.62b) with the respective Sylvester matrices given above, or can be alter-
natively computed via the Arnoldi process

(σiE −A)vi = B ri, i = 1, . . . , r, (3.73a)

(µiE
T −AT)wi = CT li, i = 1, . . . , r, (3.73b)
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where V = [v1, . . . ,vr] and W = [w1, . . . ,wr]. The 0-th tangential moments m0(σi, ri) ∈ Cp

at {σi, ri} and m0(µi, li) ∈ Cm at {µi, li} are given by

m0(σi, ri) := m0(σi) ri = C vi , (3.74a)

mT
0 (µi, li) := lTi m0(µi) = wT

i B , (3.74b)

where vi and wi are calculated according to above.

Note that the Sylvester matrices for the most general (block or tangential) multimo-
ment+multipoint case (cf. Eq. (3.52)) can be easily given based on the examples above.

To conclude this section, we briefly focus on the numerical solution of the linear Sylvester
equations (3.62). Although we will mostly use the equivalence between Krylov subspaces and
Sylvester equations for theoretical considerations rather than for computational purposes, it
is important to understand how such matrix equations are efficiently solved.

Remark 3.2 (Solution of linear Sylvester equations). As already mentioned, there are two
possible ways to compute the reduction bases V and W spanning respective input and output
Krylov subspaces. On the one hand, it is possible to solve the above shifted linear systems
of equations (LSE) arising during the Arnoldi process (cf. Section 2.5). On the other hand,
one could also solve the above generalized Sylvester equations, since this is equivalent to the
explicit computation of the shifted LSEs. This becomes clear, when the Sylvester equations
are reformulated as LSEs using the Kronecker product and the vectorization operator:

EV Sv −AV = BR ⇐⇒
(
ST

v ⊗E − Ir ⊗A
)

vec(V ) = vec(BR), (3.75a)

ETWST
w −ATW = CTL ⇐⇒

(
Sw ⊗ET − Ir ⊗AT

)
vec(W ) = vec(CTL). (3.75b)

The direct solution of Sylvester equations via the Bartels-Stewart algorithm (lyap) or by
solving the big LSEs (3.75) explicitly (sylvester, \) is only feasible for medium-sized models.
Generally, large sparse-dense Sylvester equations are solved iteratively using RKSM, LR-ADI
or low-rank variants of Krylov LSE solvers (cf. Section 2.4). M

3.6 Time-domain interpretation of linear moment matching

In addition to the classical frequency-domain perception of moment matching as the inter-
polation of the transfer function at certain shifts, one can also interpret this concept in the
time-domain (cf. [12, 14]). Based on the ideas from Astolfi linear moments will be first in-
terpreted as the steady-state response of the linear system excited with a signal generator.
Then, we can construe moment matching as the interpolation of the steady-state response of
this interconnected system.

For the sake of brevity, from now on we only consider the input tangential multipoint
moment matching case. The W -sided and multimoment setting will be only mentioned in
remarks.
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3.6.1 Time-domain notion of linear moments

Definition 3.5 (Time-domain linear moments). The moments m̄`(σ) of the impulse response
g(t) at σ are given by weighted integrals over the time function (3.3) and satisfy (after repeated
partial integration)

m̄`(σ) =
∫ ∞

τ=0
τ ` e−στ g(τ) dτ =

∫ ∞

τ=0
τ `C e(E−1A−σI)τE−1B dτ

= `! C
(
(σE −A)−1E

)`
(σE −A)−1B.

(3.76)

Hence, the time-domain moments m̄`(σ) and the frequency-domain moments m`(σ) from
Eq. (3.46) only differ by a factor:

m`(σ) = (−1)`

`! m̄`(σ). (3.77)

The time-domain moments can also be derived using the frequency shifting and frequency
derivative properties of the Laplace transform, i.e. (−1)`G(`)(s + σ) s c t` g(t) e−σt. N

This new definition will help us to understand the interpretation of moments as the steady-
state response of the system (3.1) interconnected with a linear signal generator.

Notion of linear signal generator

Consider a linear signal generator (cf. [12, 14])

ẋv
r (t) = Sv x

v
r (t), xv

r (0) = xv
r,0 6= 0, (3.78a)

u(t) = Rxv
r (t), (3.78b)

with the following assumptions:
1. The triple (Sv, R, xv

r,0) is minimal, i.e.
• (R,Sv) is observable (cf. Definition 3.3). This implies that the shift matrix Sv is

non-derogatory [229, Sec. 2.2.1], meaning that the geometric multiplicity of each
eigenvalue σi is smaller or equal to the number of inputs m [273, Sec. 2.3]. This
assumption is essential to obtain a full rank basis V .

• (Sv,xv
r,0) is controllable (cf. Definition 3.2). The controllability of this pair, aka.

excitability, implies that the generated input signals u(t) are persistently exciting
[16, Ch. 2], [163, Ch. 13], [231, 230, 229].

2. λ(Sv) ⊂ C0. This means that only pure imaginary shifts are allowed, meaning that the
generated inputs u(t) represent permanent oscillations.

As we will see later, these assumptions — in particular the second one — guarantee the
existence of a well-defined steady-state response of the interconnected system. Nevertheless,
less restrictive assumptions can also be imposed on the signal generator:

1. The pair (R,Sv) is observable, and
2. λ(Sv) ∩ λ(E−1A) = ∅. This means that the generated inputs can be decaying (C−),

permanent oscillation (C0) or growing (C+) signals.
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As already insinuated, interconnecting a system with the linear signal generator (3.78)
corresponds to exciting the system with exponential input signals u(t)=Rxv

r (t)=R eSvt xv
r,0

that are parametrized by the shift Sv and tangential matrix R. In the following, we give two
examples to illustrate how the generated inputs look like depending on the interpolation data.

Multimoment case If Sv =[σ -1 0;0 σ -1;0 0 σ] with multiplicity q =3 andR=[r, 0, 0]
are employed, then the system is excited by

u(t) =
q−1∑
`=0
u`(t) =

q−1∑
`=0

(−1)`

`! r t` eσt xv
r,0,`. (3.79)

Multipoint case Alternatively, if Sv = diag(σ1, . . . , σr) and R= [r1, . . . , rr] are used, then
the system is excited by a sum of exponentials

u(t)=
r∑

i=1
ui(t)=

r∑
i=1
ri xv

r,i(t)=
r∑

i=1
ri eσit xv

r,0,i. (3.80)

In what follows, we will restrict the analysis to this tangential multipoint case.

Steady-state response of interconnected system

Consider now the interconnection of system (3.1), where λ(E−1A)⊂C− and x(0) =x0, with
the linear signal generator (3.78), cf. Fig. 3.1. The response of such interconnected system is
given by

x(t) =
∫ t

0
eE−1A(t−τ)E−1Bu(τ) dτ︸ ︷︷ ︸

xp(t)

+ eE−1Atx0︸ ︷︷ ︸
xh(t)

, (3.81)

where xh(t) is the homogeneous solution and xp(t) is the particular solution. Inserting the
input u(t)=R eSvt xv

r,0 =∑r
i=1 ri eσit xv

r,0,i yields

x(t) = eE−1At
r∑

i=1

∫ t

0
e(σiI−E−1A)τ dτ E−1B ri xv

r,0,i + eE−1Atx0

= eE−1At
r∑

i=1

(
e(σiI−E−1A)t − I

)
(σiI−E−1A)−1E−1B ri xv

r,0,i + eE−1Atx0

= eE−1At

(
x0 −

r∑
i=1

(σiE −A)−1B ri xv
r,0,i

)
+

r∑
i=1

(σiE −A)−1B rieσit xv
r,0,i ,

= eE−1At(x0 − V xv
r,0
)︸ ︷︷ ︸

xt(t)

+ V xv
r (t)︸ ︷︷ ︸

xss(t)

. (3.82)
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ẋv
r (t) = Sv x

v
r (t)

u(t) = Rxv
r (t)

E ẋ(t) = Ax(t) +Bu(t)
y(t) = C x(t)

W TEV ẋr(t) = W TAV xr(t) +W TBu(t)
yr(t) = CV xr(t)

u(t) = R eSvt xv
r,0 y(t)

yr(t)

e(t)=0

xv
r,0 6= 0 x0 = V xv

r,0

xr,0 = (W TEV )−1W TE x0

linear signal generator FOM

ROM

−

Figure 3.1: Interconnection between the linear FOM/ROM and the linear signal generator to
illustrate the time-domain interpretation of moment matching for linear systems.

The steady-state solution xss(t) is given by

xss(t) =
r∑

i=1
(σiE −A)−1B ri︸ ︷︷ ︸

vi

eσit xv
r,0,i︸ ︷︷ ︸

xv
r,i(t)

=
r∑

i=1
vi xv

r,i(t) = V xv
r (t). (3.83)

Hence, yss(t) =C xss(t) =CV xv
r (t) represents the steady-state response of the linear system

(3.1) to an input generated by (3.78). By imposing the following condition on the initial state

x0
!=

r∑
i=1

(σiE −A)−1B ri xv
r,0,i

!= V xv
r,0 (3.84)

for xv
r,0 6= 0 arbitrary, the transient solution xt(t) vanishes for all t. This yields x(t)=xss(t) ∀t.

Based on this result, we are ready to present the steady-state interpretation of linear input
moments in the next lemma.

Lemma 3.1 (Steady-state notion of linear input moments). The 0-th tangential moments
m0(σi, ri) at {σi, ri} from (3.74a) are related to the (well-defined) steady-state response

yss(t) =
r∑

i=1
yss,i(t) =

r∑
i=1
C(σiE −A)−1Bri eσitxv

r,0,i

=
r∑

i=1
m0(σi, ri) eσitxv

r,0,i = CV xv
r (t),

(3.85)

of the interconnected system from Fig. 3.1, where V is the unique solution of the Sylvester
equation (3.62a) with the corresponding Sylvester matrices (3.72a), or vi = (σiE −A)−1Bri

coming from the Arnoldi process (3.73a).

Remark 3.3 (Global invariant manifold [14]). The interconnected system has a globally
well-defined invariant manifold given by M =

{
(x,xv

r ) ∈ Rn+r : x = V xv
r
}
, where V satis-

fies (3.62a). Moreover, the dynamics of the interconnected system restricted to the manifold
x=V xv

r are described by ẋv
r =Sv x

v
r , since EV ẋv

r = (AV +BR)xv
r . M



3.6. Time-domain interpretation of linear moment matching 49

Remark 3.4 (Steady-state perception for other cases). Note that the steady-state interpre-
tation of moments stated above can be generalized for other moment matching cases based
on the Sylvester matrices given in Section 3.5. M

Remark 3.5 (Steady-state perception of output moments). For brevity, the steady-state
interpretation of output moments mT

0 (µi, li) is not considered in this thesis. For details
concerning output Krylov moment matching the reader is referred to [15, 126, 127, 70]. M

3.6.2 Moment matching by interconnection

Based on Lemma 3.1, the perception of linear moment matching in terms of the interpolation
of the steady-state response of an interconnected system follows.

Theorem 3.3 (Steady-state-based linear moment matching). Consider the interconnection of
system (3.1) with the linear signal generator (3.78), where the triple (Sv, R, xv

r,0) is minimal
and λ(Sv) ∩ λ(E−1A)=∅. Let V be the unique solution of the Sylvester equation (3.62a) and
W arbitrary such that det(W TEV ) 6=0. Furthermore, let x0 =V xv

r,0 with xv
r,0 6=0 arbitrary.

Then, the (asymptotically stable) ROM (3.29) exactly matches the (well-defined) steady-state
response of the output of the FOM (cf. Fig. 3.1), i.e.

e(t) = y(t)− yr(t) = Cx(t)−CV xr(t) = 0 ∀ t. (3.86)

Corollary 3.1 (Exact moment matching vs. interpolation). Consequently, moment matching
for linear systems can be interpreted as the exact matching of the steady-state response of the
FOM and ROM

yss(t) =
r∑

i=1
C(σiE−A)−1Bri︸ ︷︷ ︸

m0(σi,ri)

xv
r,i(t) ≡

r∑
i=1
Cr(σiEr−Ar)−1Brri︸ ︷︷ ︸

mr,0(σi,ri)

xv
r,i(t)=yr,ss(t), (3.87)

when both are excited by exponential input signals u(t) = Rxv
r (t)=R eSvt xv

r,0 (see Fig. 3.1)
with same Sv, R as the ones used during the reduction. For other arbitrary input signals
(applied e.g. in the online phase), the steady-state response is interpolated. Note that the
transient response of the FOM is also “matched” or rather vanishes, if the initial condition is
chosen like in (3.84).

Proof. The output of the FOM for u(t)=Rxv
r (t) has been derived in (3.82) and Lemma 3.1.

Exciting the asymptotically stable ROM, i.e. λ(E−1
r Ar) ⊂ C−, with the very same signal

u(t)=Rxv
r (t)=∑r

i=1 ri eσit xv
r,0,i yields

xr(t) = eE−1
r Art

(
xr,0 −

r∑
i=1

(σiEr −Ar)−1Br ri xv
r,0,i

)
+

r∑
i=1

(σiEr −Ar)−1Br rieσit xv
r,0,i︸ ︷︷ ︸

xr,ss(t)

,

and thus yr,ss(t) =Cr xr,ss(t) = CV xr,ss(t). Alternatively, inserting the input u(t) =Rxv
r (t)

into the ROM state equation (3.29a) with imposed xr(t)
!= xv

r (t) leads to

W TEV ẋr(t) = W T (AV +BR)︸ ︷︷ ︸
EV Sv

xr(t),
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and, consequently,

ẋr(t) = Sv xr(t), xr(0) = (W TEV )−1W TE x0,

whose solution is xr(t) = eSvt xr,0. Hence, the output of the ROM for u(t) =R eSvt xv
r,0 is

given by yr(t)=CV xr(t)=CV eSvt xr,0. Therefore, we achieve exact moment matching for
all t, if xr(0) !=xv

r,0, i.e. if x0
!=V xv

r,0. �

3.6.3 Derivation of linear input Sylvester equation

Interestingly enough, the Sylvester equation (3.62a) can be derived using the notion of signal
generators. To this end, first insert the linear approximation ansatz x(t) = V xr(t) with
xr(t)

!=xv
r (t) in the state equation (3.1a):

EV ẋv
r (t) = AV xv

r (t) +Bu(t). (3.88)

Subsequently, the linear signal generator ẋv
r (t) = Sv x

v
r (t), u(t) = Rxv

r (t) is plugged into
(3.88), yielding

0 = (AV −EV Sv +BR) · xv
r (t). (3.89)

Since the above equation holds for xv
r (t)=eSvtxv

r,0 and the transition matrix eSvt is invertible,
the vector xv

r (t) can be factored out. Consequently, the constant (state-independent) linear
Sylvester equation (3.62a) of dimension n×r is obtained.

3.6.4 Families of reduced models achieving linear moment matching

The classical approach to construct a reduced model achieving (input) linear moment matching
is based on a two-sided projection, where the ROM is given by Eq. (3.29) with V as solution
of the Sylvester equation (3.62a) and W arbitrary but such that det(W TEV ) 6= 0. Herein,
the ROM is parametrized in the projection matrix W ∈ Rn×r. These remaining degrees
of freedom can be exploited to impose certain properties on the reduced model (such as
stability, passivity, etc.) or can be used to achieve a better approximation (e.g. by matching
more moments using an output Krylov subspace).

Another approach is to parametrize the family of ROMs achieving (input) linear moment
matching w.r.t. the reduced input matrix ∆ ∈ Rr×m, yielding

ẋr(t) =
(
Sv −∆R

)
xr(t) + ∆u(t), (3.90a)

yr(t) = C V xr(t), (3.90b)

where Er =Ir, Ar =Sv−∆R, Br =∆ and Cr =CV , with the input interpolation data given
by the observable pair (R,Sv), and V as solution of the Sylvester equation (3.62a). The free
parameter ∆ can then be selected to construct a ROM with desired properties (e.g. minimal
reduced order, prescribed eigenvalues/zeros, relative degree, passivity), but should satisfy the
constraint λ(Sv) ∩ λ(Sv −∆R)=∅. Procedures to select ∆ such that the above mentioned
properties are imposed on the ROM are described in detail in [14, 128], [229, Sec. 2.3.1].
At this point we only want to remark that the assignment of reduced eigenvalues is closely
related to pole placement [7] as well as to H2-pseudo-optimal reduction (cf. PORK in [273]).
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Note that the output yr(t) of both families of ROMs is independent of W and ∆. Thus,
both families achieve (input) linear moment matching with appropriate V , where the former
family is based on projection, whereas the latter is obtained in a non-projective manner.

3.7 H2-optimal reduction of linear systems

Moment matching via rational Krylov subspaces allows to reduce an LTI system using desired
shifts, multiplicities and tangential directions. However, the quality of the approximation
heavily depends on the choice of the reduction parameters. In certain cases, the selection of
the interpolation data can be a difficult task. Moreover, the question raises how to find the
best possible approximation over the entire frequency range. This problem is addressed by
H2-optimal model reduction, where the goal is to find a stable reduced model of desired fixed
order r minimizing the H2-error:

Gr(s) = arg min
deg(G̃r)=r

‖G− G̃r‖H2 . (3.91)

Necessary optimality conditions

Since this optimization problem is non-convex, the aim is usually to find at least a locally
optimal reduced model. Considering the cost functional J :=‖Σ−Σr‖2H2

different first-order
necessary optimality conditions have been derived over the years. Meier and Luenberger
derived in [179] interpolation-based optimality conditions for SISO models by formulating
the cost functional in terms of poles/residues as J = f(φi, λi, φr,i, λr,i) and by setting the
gradients ∂J

∂φr,i

!= 0 and ∂J
∂λr,i

!= 0. Later, Wilson [271] derived Gramian-based optimality con-
ditions by parametrizing the cost functional in terms of the Lyapunov equations (3.34) as
J = f(Ae,Be,Ce,Ee) and by differentiating w.r.t. the reduced matrices Ar, Br, Cr, Er.
Similar Lyapunov-based conditions were derived a few years later by Hyland and Bernstein
[119]. It has been shown in [97] that all three formulations of necessary conditions are equiva-
lent to each other. Here we focus on the interpolatory Meier-Luenberger conditions, which can
be derived for the MIMO case by differentiating J =f(A, Λr,B, B̂r,C, Ĉr) w.r.t. Ĉr∈Cp×r,
B̂r∈Cr×m and Λr∈Cr×r. This yields the following (p + m + 1) · r conditions:

G(−λr,i) b̂r,i = Gr(−λr,i) b̂r,i, i = 1, . . . , r, (3.92a)
ĉT

r,iG(−λr,i) = ĉT
r,iGr(−λr,i), i = 1, . . . , r, (3.92b)

ĉT
r,iG

′(−λr,i) b̂r,i = ĉT
r,iG

′
r(−λr,i) b̂r,i, i = 1, . . . , r, (3.92c)

where E−1
r Ar =Xr ΛrX

−1
r , B̂r =X−1

r E−1
r Br and Ĉr =CrXr represent the eigendecomposi-

tion of the reduced-order model, i.e. [Xr, Λr] = eig(Ar,Er) with Λr =diag(λr,1, . . . , λr,r).
Comparing the optimality conditions (3.92) with the moment matching conditions (3.55)

one can notice that a locally H2-optimal ROM interpolates the FOM at the mirrored reduced
eigenvalues σi ← −λr,i along the residue directions ri ← b̂r,i and lTi ← ĉT

r,i. If one knew
the reduced poles and residues in advance, then one could choose the shifts and tangential
directions accordingly and perform a standard Krylov reduction. Since this is not the case,
an Iterative Rational Krylov Algorithm (IRKA) is proposed in [97] to iteratively adapt the
interpolation data.
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Iterative Rational Krylov Algorithm (IRKA)

The MIMO version of IRKA is given in Algorithm 3.2. First, an initial set of interpolation
data is chosen. Then, Krylov subspaces are computed using iteratively updated shifts and
tangential directions until convergence is achieved. One way to measure convergence is to
compute the difference between the shifts of the current and preceding iteration. Further
note that — due to the duality between Krylov subspaces and Sylvester equations — steps 3
and 4 can be replaced by (3.62a) and (3.62b) with Sv = Sw ← −Λr, R← B̂

T
r and L← Ĉr.

Algorithm 3.2 Iterative rational Krylov algorithm (IRKA)
Input: Linear model Σ=(A,B,C,E), reduced order r, convergence tolerance ε

Output: locally H2-optimal ROM Σopt
r , optimal interpolation data

1: Choose initial interpolation points {σi}ri=1 ∈ C\λ(E−1A) and initial tangential directions
{ri}ri=1 ∈ Cm and {li}ri=1 ∈ Cp I initializeShifts

2: while relative change in {σi} > ε do
3: ran(V ) ⊆ span

{
(σ1E −A)−1B r1, . . . , (σrE −A)−1B rr

}
4: ran(W ) ⊆ span

{
(µ1E −A)−TCTl1, . . . , (µrE −A)−TCTlr

}
5: Ar =W TAV , Br =W TB, Cr =CV , Er =W TEV

6: E−1
r Ar =Xr ΛrX

−1
r with Λr =diag(λr,1, . . . , λr,r) I [Xr, Λr] = eig(Ar,Er)

7: σi ← −λr,i, B̂
T
r =̂ [r1, . . . , rr]← (X−1

r E−1
r Br)T, Ĉr =̂ [l1, . . . , lr]← CrXr

8: Σopt
r ← (Ar,Br,Cr,Er), σopt

i ← σi, ropt
i ← b̂r,i, lopt

i ← ĉr,i

IRKA has multiple advantages. It is a simple and effective algorithm that iteratively adapts
the interpolation data. Hence, the user only has to define the reduced order r, some initial
data and a tolerance. Furthermore, if the algorithm converges, it yields a locally H2-optimal
ROM. However, IRKA has also disadvantages. New Krylov subspaces have to be calculated
in each iteration, leading to an increased numerical effort compared to a standard Krylov
reduction. To alleviate this drawback, a derivate called confined IRKA (CIRKA) has been
proposed in [69]. Further disadvantages are that the algorithm is not guaranteed to converge
and that – like Krylov methods in general – it cannot ensure a stable reduced model.

Besides the fixed-point iteration mentioned here, note that (trust-region) descent algo-
rithms for H2-optimal reduction have been proposed e.g. in [31, 197].

Initialization The selection of suitable (initial) shifts and tangential directions is not only
crucial for standard Krylov reduction but also for the convergence behavior of IRKA. In
general, users should exploit possibly existing system knowledge to select the interpolation
data. Otherwise, a few guidelines for the initialization can be given. The most trivial choice is
s0=zeros(1,r), ri =1m and li =1p. If the interesting frequency range [ωmin, ωmax] is known a-
priori, then one could spread the shifts e.g. as s0=logspace(log10(wmin),log10(wmax),r).
Another approach is to use the mirror images of some eigenvalues of the FOM, i.e. compute
[X, Λ] = eigs(A,E) and then select Sv = Sw ← −Λ, R ← (X−1E−1B)T and L ← CX.
All these procedures are implemented in the sssMOR function initializeShifts. The
strategies included in the M.-M.E.S.S.2 function mess_para (i.e. the Wachspress approach, the
heuristic Penzl method or the mirrored Ritz values) are also integrated in initializeShifts.

2M-M.E.S.S. [248] is a third-party matrix equations sparse solver integrated in the sss toolbox.
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H2-pseudo-optimal reduction of linear systems

The main idea of H2-pseudo-optimality is to find a reduced model that minimizes the H2-error
within a certain subset G of ROMs of order r: [32], [273, Sec. 4.3]

Gr(s) = arg min
G̃r∈G

‖G− G̃r‖2H2 . (3.93)

For instance, the subset can be chosen to have ROMs with fixed reduced poles and input
residues (λr,i, b̂r,i), or fixed reduced poles and output residues (λr,i, ĉr,i). Although only the
Lagrangian interpolation condition (3.92a) or (3.92b) is being satisfied in this framework (and
not the Hermite one (3.92c)), H2-pseudo-optimality yields a global minimizer in the respective
subspace. Further advantages are the structured orthogonality condition 〈G − Gr,Gr〉= 0
simplifying the cost functional J , as well as the deliberate construction of stable ROMs by
placing the reduced poles at the mirror images of the chosen shifts, i.e. λ(−E−1

r Ar)← λ(Sv).
New conditions for H2-pseudo-optimality are presented in [273, Sec. 4.3]. Moreover,

an iteration-free algorithm called PORK is proposed for the explicit construction of pseudo-
optimal ROMs. H2-pseudo-optimality can also be applied to improve the convergence of
IRKA via residue correction in an inner loop, used within the Cumulative Reduction (CuRe)
framework and SPARK algorithm [198], or exploited to show the equivalence between the
ADI and the RKSM with pseudo-optimal shifts.

In Section 5.5.2 we will briefly mention our extension of the concept of H2-pseudo-
optimality to the bilinear setting.

3.8 Adaptive and cumulative rational Krylov subspace method

As discussed in the previous section, IRKA is a Krylov-based method that (upon convergence)
yields a locally H2-optimal ROM by iteratively adapting the interpolation data. However,
the reduced order r is not adapted during the procedure. This means that the algorithm
might need to be restarted for a different fixed order if the approximation quality was not
good enough. Thus, it would be also desirable to automatically select the reduced order by
gradually augmenting the subspace until the desired accuracy is achieved.

There exist different procedures for an adaptive shift selection, most of them coming
from the context of the iterative solution of Lyapunov equations (see e.g. [267, 202, 245,
39, 151, 279]). On the other hand, there exist several methods to cumulatively reduce an
LTI system, e.g. the RKSM [83, 84], the Cumulative Reduction (CuRe) framework [198] or
the iterative procedure [3]. During this doctoral endeavor we focused on the rational Krylov
subspace method with the goal of implementing and integrating it in the sssMOR toolbox.
We decided to exploit the algorithm for its two purposes, namely the approximate solution
of Lyapunov equations and the iterative reduction of large-scale linear systems. Due to both
purposes and the inherent cumulative construction of the Krylov subspaces, we called the
algorithm cumulative rational Krylov subspace method (CRKSM)3 in order to distinguish it
from the standard RKSM for Lyapunov equations only.

3Note that our algorithm differs from the approach proposed in [273, Sec. 5.3], which combines RKSM with
the cumulative framework CuRe for the approximate solution of Lyapunov equations.
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Cumulative Rational Krylov Subspace Method (CRKSM)

Our interest in RKSM originally arised from the approximate solution of bilinear Lyapunov
equations (cf. Eq. (5.15), [257]) during the semester thesis [Hei17]. We then decided to
refactor the code, include the MOR purpose and improve the algorithm during the master
thesis [Hei18]. In the following we only sketch the most important ingredients of CRKSM.
For a detailed discussion and numerical results the reader is referred to the mentioned theses.

Our CRKSM algorithm4 containing both the Lyapunov and MOR purposes is mainly
composed of the following steps:

1. Get new interpolation data (getShifts) or recycle initial shifts and tangential directions
2. Compute new directions for an input and/or output Krylov subspace: Ṽ k ←

[
Ṽ k−1,V k

]
3. Calculate the enlarged reduced matrices Ar, Br, Cr, Er efficiently by only computing

the entries associated to the new Krylov columns
4. Lyap-purpose: Solve the reduced Lyapunov equation (2.40) for P r =Sr S

T
r using lyapchol

(Hammarling). Then calculate the low-rank Cholesky factor ZRKSM =V Sr

5. Evaluate an appropriate stopping criterion
• Lyap-purpose: Calculate the norm of the residual (2.41) using the low-rank formu-

lation given in [278]. A dual version is also implemented for the W -sided case
• MOR-purpose: Computing the true error ‖Σ − Σr,k‖2H2

via (3.33) is not feasi-
ble. Therefore, we employ the difference between the ROMs from the current and
previous iteration, i.e. ‖Σr,k −Σr,k−1‖2H2

6. If the chosen tolerance is achieved, stop the algorithm. Otherwise go to step 1.
The strength of CRKSM is that it supports many different cases: one can choose between
Lyap- or MOR-purpose, a one-sided (more likely stable) or two-sided reduction, and the
block or tangential case. It can be called within the sss function lyapchol (including also
mess_lradi) or run standalone. The adaptive selection of shifts is discussed next.

Adaptive selection of shifts

For the selection of initial interpolation data we employ the function initializeShifts.
Then, the user can decide to recycle these shifts or generate new “online” data using getShifts.
In the latter function there are two strategies implemented:

1. Mirrored Ritz values: Similar to the IRKA update in Line 7, we employ the eigenvalues
(and the eigenvectors) of the current ROM to obtain new interpolation data.

2. Adaptive scheme [245, 84]: The idea is to complement the above strategy with an
additional evaluation criterion to select the most important expansion points. First,
the previous shifts and the new mirrored Ritz values are used to build a spectral set as
convex hull. Then, the shifts maximizing a residual based on the Skeleton approximation
are selected. Tangential directions can be computed via a SVD of the residual.

sss function(s): lyapchol (mess_lradi, crksm)
sssMOR function(s): crksm, initializeShifts, getShifts

4crksm is included in the sssMOR toolbox available under https://github.com/MORLab. Try both out!

https://github.com/MORLab
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Chapter 4

Fundamentals of Polynomial Systems

In this chapter, we deal with the mathematical modeling and system-theoretic fundamentals
of polynomial systems of the form

ΣP :



E ẋ(t) = A1 x(t) +A2
(
x(t)⊗ x(t)

)
+A3

(
x(t)⊗ x(t)⊗ x(t)

)
+ · · ·

+Bu(t) +
m∑

j=1
B1,j x(t) uj(t) +

m∑
j=1
B2,j

(
x(t)⊗ x(t)

)
uj(t) + · · · ,

y(t) = C1 x(t) +C2
(
x(t)⊗ x(t)

)
+ · · · ,

(4.1a)

(4.1b)

where E ∈ Rn×n, Ak, Bk,j ∈ Rn×nk , B ∈ Rn×m and Ck ∈ Rp×nk . We will first concentrate
on different ways of obtaining such a polynomial system (Sec. 4.1), and then on the trans-
formation to bilinear and quadratic-bilinear form (Sec. 4.2). After that, we will discuss two
different approaches to gain a Volterra series representation in time-domain, namely the Pi-
card iteration and the variational equation approach (Sec. 4.3). Finally, the different kernels
and generalized transfer functions of (quadratic-)bilinear systems are presented (Sec. 4.4).

Sections 4.1, 4.2 and 4.3 represent a summary of the material discussed in [221, 109, 92],
which is complemented here with our own viewpoint. Section 4.4 partly relies on our paper
[60] and further explains the growing exponential approach for the MIMO case.

4.1 Obtaining a polynomial system

A polynomial system may originate in different ways. The most straightforward manner
to obtain a polynomial representation (4.1) is by modeling a technical system that exhibits
only polynomial nonlinearities in x (e.g. quadratic, cubic, bilinear, quadratic-bilinear, etc.).
Examples for inherent polynomial systems are ẋ = x3 + x2u, ẋ = −5x + x2 + 3xu, the Fokker-
Planck equation (bilinear), the Burgers equation (quadratic-bilinear), the Chafee-Infante and
FitzHugh-Nagumo equations (cubic). However, in many applications other type of nonlinear-
ities (e.g. exponential, rational, logarithmic, trigonometric, root functions, sensor/actuator
characteristics, etc.) arise as well (e.g. ẋ = sin(x) + e−x + u). In such case, a polynomial
representation is foremost obtained from the following input-affine nonlinear system

ΣNL,affine :


E ẋ(t) = a

(
x(t)

)
+

m∑
j=1
bj
(
x(t)

)
uj(t), x(0) = x0,

y(t) = c
(
x(t)

)
,

(4.2a)

(4.2b)
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where a(x) : Rn → Rn, bj(x) : Rn → Rn and c(x) : Rn → Rp are analytic functions in x.
At this point there are basically two options. One can employ a Taylor series expansion of
the nonlinearities to approximate (4.2) by a polynomial system (cf. Section 4.1.1). Another
way is to represent (4.2) exactly as a polynomial system using the McCormick relaxation (cf.
Section 4.1.2).

4.1.1 Taylor series expansion

In this section, we aim to approximate the analytic functions in (4.2) by a Taylor series
expansion. For better readability we will drop the time argument in the following. We start
by expanding the nonlinear function a(x) at the equilibrium point xeq:

a(x) = a(xeq)+ ∂a(xeq)
∂x︸ ︷︷ ︸
A1

(x−xeq)+ 1
2!

∂2a(xeq)
∂x2︸ ︷︷ ︸
A2

(x−xeq)(2) + 1
3!

∂3a(xeq)
∂x3︸ ︷︷ ︸
A3

(x−xeq)(3) +. . . .

Setting xeq = 0 and assuming a(xeq) = 01, we can write

a(x) = A1 x+A2

x(2)︷ ︸︸ ︷
(x⊗ x) +A3

x(3)︷ ︸︸ ︷
(x⊗ x⊗ x) + . . . =

∞∑
k=1

Ak x
(k) ≈

N∑
k=1

Ak x
(k), (4.3)

where Ak = 1
k!

∂k a(xeq)
∂ xk ∈ Rn×nk and A1 ≡ A ∈ Rn×n represents the well-known Jacobian.

Similarly, we expand each function bj(x) in a Taylor series, now assuming that bj(xeq) 6= 0:

bj(x) = B0,j +B1,j x+B2,j(x⊗ x) + . . . =
∞∑

k=0
Bk,j x

(k) ≈
N−1∑
k=0

Bk,j x
(k), (4.4)

where Bk,j = 1
k!

∂k bj(xeq)
∂ xk ∈ Rn×nk . Note that B0,j ∈ Rn corresponds to the vector bj(xeq).

Last but not least, the function c(x) can be expanded as follows:

c(x) = C0 +C1 x+C2(x⊗ x) + . . . =
∞∑

k=0
Ck x

(k) ≈
N−1∑
k=0

Ck x
(k), (4.5)

where Ck = 1
k!

∂k c(xeq)
∂ xk ∈ Rp×nk and C0 ≡ c(xeq) ∈ Rp. Taking (4.3), (4.4) and (4.5) into

account we can approximate (4.2) as a polynomial system

E ẋ =
N∑

k=1
Ak x

(k) +
m∑

j=1

N−1∑
k=0

Bk,j x
(k) uj , x(0) = x0,

y =
N−1∑
k=0

Ck x
(k).

(4.6a)

(4.6b)

1The assumption that (4.2a) has a zero equilibrium xeq =0, i.e. 0=a(xeq) holds for zero input u(t)=0, does
not entail loss of generality. In fact, if these conditions are not met, then we can set x̄(t) = x(t) − x0(t)
and rewrite (4.2) such that xeq =0 and a(0)=0 hold. For further details, see [221, Sec. 3.3], [92, Sec. 2.5].
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Note that in case of a more general, not input-affine nonlinear system Eẋ = f(x,u) (cf.
Eq. (6.1)), the Taylor series expansion looks a little different (see Appendix A).

Next, we report different important aspects and properties of the Taylor series expansion.
The goal is to discuss the applicability of this method in the large-scale setting [109, 224].

Truncation of the series Depending on the dynamics and the desired accuracy, the series
should be truncated after one or another term. For instance, the Navier-Stokes equation could
reasonably be truncated after the quadratic/cubic term. In other cases, it might be necessary
to consider even higher-order terms (e.g. quartic, quintic) to obtain a good approximation.
However, the storage limitation usually restricts the choice of a large truncation index N .

Computation of the tensors The polynomial tensorsAk, Bk,j , Ck can be obtained from dif-
ferent strategies. The first approach (i) is to compute them analytically within the FD/FE/FV
discretization procedure. This involves the analytical formulation and implementation of the
partial derivatives of a(x), b(x) and c(x) at the discretization level. While this procedure
can be well applied to rather simple (1D, 2D) problems with local/jointed nonlinearities using
e.g. FD (c.f. Burgers equation in [25, 22]) or MNA (c.f. RC-Ladder in [47]), it becomes
laborious and lengthy for global/coupled nonlinearities, especially if the implementation has
to be accomplished for many different element types. Thus, the higher-order derivatives are
mostly not implemented in (commercial) FE codes, where a nonlinear kinematic and/or ma-
terial formulation usually leads to global nonlinearities. Moreover, the latter are not always
accessible, thus restricting the applicability of this intrusive method.

The second approach (ii) consists in computing the tensors numerically via finite differ-
ences. Since the Jacobian matrix A1≡A is usually available analytically, the idea is to obtain
the higher-order derivatives by numerical differentiation, e.g. A2 = 1

2!
∂A1
∂x , A3 = 1

3!
∂2A1
∂x2 , etc..

While this approach does not require access to the nonlinearities, it is computationally more
expensive and less accurate than the analytical procedure described above. An appropriate
step width h is necessary for the selected finite difference scheme.

The third approach (iii) consists in determining the polynomial tensors via identification
(cf. [178, 210]). The main idea is to make an ansatz for the Taylor series expansion, evaluate
the nonlinearities at different given test vectors x and then calculate the coefficients by solving
a linear system of equations. This method is fully non-intrusive, since it only requires to
evaluate the nonlinear functions which are not needed analytically. However, the evaluation
and identification process yields higher offline costs in comparison with the first approach.

Efficient storage of the tensors Depending on the type of nonlinearity (local vs. global),
the tensors Ak, Bk,j ∈ Rn×nk , Ck ∈ Rp×nk can be more or less sparse. For example, if many
cross terms xi · xj or xi · xj · xk vanish, then A2 and A3 are sparse matrices. However, the
tensors scale with the full-order dimension n. Thus, it is not only essential to exploit sparsity,
but also to store them efficiently. For instance, if the tensors are symmetric in modes one
and two (i.e. A2ijk

= A2jik
), two and three (i.e. A2ijk

= A2ikj
) or even in all modes (i.e.

supersymmetric), then redundant entries do not have to be stored. Despite these precautions,
note that the storage of the tensors may rapidly exceed the available RAM in the large-scale
setting (n ≈ 103, . . . , 106) and/or for a high truncation index N . Hence, depending on the
case, it might be more reasonable to consider the Taylor series expansion of the nonlinearities
at the reduced-order level (see Section 6.5.1).
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Local validity The Taylor series expansion merely provides a local approximation of the
nonlinearities around the chosen equilibrium point xeq. Only if the series converges after the
truncated term, e.g. a(x) = O(x3) and N = 3, then the polynomial representation (4.6) is
exact and not an approximation anymore (cf. Chafee-Infante and FitzHugh-Nagumo).

4.1.2 Polynomialization procedure

Another way of obtaining a polynomial system (4.1) from (4.2) is presented in [110]. The
procedure is closely related to the transformation via the McCormick relaxation [173].

Let us assume that a(x) and b(x) in (4.2) contain (compositions of) uni-variable functions
such as exponential ex, logarithmic ln(x), rational 1

x+k , trigonometric arctan(x), root
√

x, etc..
The idea is then to transform the initial system into a polynomial form by introducing new
state variables for the arising nonlinearities. There are two strategies for this purpose [110]:

1. polynomialization by adding polynomial algebraic equations [109, Sec. 6.3.2]
2. polynomialization by taking Lie derivatives [109, Sec. 6.3.3]

The first approach is only applicable to certain nonlinear functions (such as 1
x+k ), while the

latter can deal with a broader set of systems. Since both procedures are well explained in
[Fio16], we refrain from giving the mathematical details and instead provide an example with
the more general approach 2.

Example 4.1 (Polynomialization procedure). Similar to the RC-Ladder model from [64],
let us consider the parallel connection of a resistor R, capacitor C and Shockley diode
with the current-voltage (I-V) characteristic iD =eαv− 1. Applying Kirchhoff’s point rule
leads to the scalar nonlinear differential equation

v̇ = 1
C

(
− v

R
− eαv + 1 + i

)
, (4.7)

where i denotes the input current signal. Introducing the new variable w = eαv − 1
together with its Lie derivative yields (with eαv =w + 1):

v̇ = 1
C

(
− v

R
− w + i

)
, ẇ = α eαv v̇ = α

C

(
−vw

R
− w2 + wi− v

R
− w + i

)
. (4.8)

This represents a polynomial (quadratic-bilinear) system consisting of 2 ODEs. M

Some important properties of the polynomialization procedure are reported in the following.

Equivalent representation The biggest advantage of the polynomialization procedure in
comparison to the Taylor series expansion is that the former constitutes an exact transforma-
tion. This means that the dynamics of the nonlinear input-affine and polynomialized system
are equivalent (as long as the initial conditions are also adjusted [109]). No approximation is
performed during the whole process.

Increase of dimension Unfortunately, the original system dimension n is increased during
the polynomialization procedure due to the introduction of new state variables. Luckily, the
growth scales linearly with the number NF of elementary functions contained in a(x) and
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b(x). This means that the size of the equivalent polynomial system is nP = NF ·n, where NF
depends on the application at hand. For strongly compound functions and/or many different
nonlinearities NF might become large, but generally NF ≈ 2, . . . , 6. Note that ex and 1

x+k
require only the introduction of one new variable, while some other elementary functions (e.g.
ln(x), sin(x), cos(x), arctan(x),

√
x) require the introduction of two new variables. Thus, the

growth in dimension nP not only depends on NF but also on the type of nonlinearities.

Non-unique transformation The polynomialization procedure is not unique in the sense
that different substitutions may lead to diverse polynomial systems with differently increased
dimension. Although it is not trivial, there should exist an optimal transformation leading to
the minimum-order (i.e. with least increased dimension) polynomialized system.

Applicability The assumption that the nonlinearities a(x) and b(x) are given by a compo-
sition of uni-variable functions is not a limiting factor. Indeed, this form of ODEs arise in
many engineering applications, such as circuit simulation or from the discretization of PDEs.
Due to the function composition, the method also allows to polynomialize many complicated
nonlinear functions, thus covering a wide range of problems. Nevertheless, the procedure
can only be applied to analytic nonlinearities. This means that explicit knowledge about the
arising elementary functions is required, in order to introduce new state variables. Moreover,
symbolic computation tools and/or automatic differentiation might be necessary to calculate
the Lie derivatives. To sum up: the polynomialization step can be easily accomplished in
certain (rather simple and white-box) examples, while it might be more difficult to apply and
automate for models stemming from (commercial) FE codes.

4.2 Transformation to special polynomial system classes

In Section 4.1 we have discussed how to obtain a general polynomial system (4.1) from the
input-affine representation (4.2). Depending on the dynamics, one might directly end up with
a special polynomial class, e.g. a bilinear system with f(x,u)=A1 x+Bu+∑m

j=1B1,j xuj

or a quadratic-bilinear system with f(x,u) =A1 x +A2(x ⊗ x) +Bu +∑m
j=1B1,j xuj . If,

however, a higher-order polynomial system is obtained, then two ways to proceed are possible.
On the one hand, one could continue with steps 4.3 and 4.4 to analyze the general polynomial
system in time- and frequency-domain. On the other hand, we can transform the system
to an easier bilinear or quadratic-bilinear form. The former approach does not require a
(further) transformation, but generally involves more complex system-theoretic analysis due
to the more general polynomial structure. In contrast, the transformation to a special system
class leads to an increased dimension, but simplifies the subsequent analysis.

In the following, we briefly revisit the Carleman bilinearization (cf. Section 4.2.1) and
quadratic-bilinearization (cf. Section 4.2.2) processes to obtain a bilinear and quadratic-
bilinear system, respectively.

4.2.1 Carleman bilinearization

Some physical phenomena (e.g. biological, chemical and stochastic problems) can be directly
described by a bilinear system. In other cases, higher-order terms of the Taylor series ex-
pansion (4.6) need to be considered for a good representation. The idea of the Carleman
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bilinearization is to transform the polynomial system (4.6) into a bilinear form by defining a
new state vector

x⊗ =


x

x⊗ x
...

x(N)

 ∈ Rn+n2+···+nN
, (4.9)

whose dimension depends on the truncation index N . Developing a differential equation for
each x(i) and putting them together yields the bilinearized system [145, 221]

E⊗ẋ⊗ = A⊗x⊗ +
m∑

j=1
N⊗

j x
⊗ uj +B⊗u, x⊗(0) = x⊗

0 ,

y = C⊗x⊗,

(4.10a)

(4.10b)

where

E⊗ =


E 0 . . . 0
0 E(2) . . . 0
...

... . . . ...
0 0 . . . E(N)

 , A⊗ =


A1,1 A1,2 . . . A1,N

0 A2,1 . . . A2,N−1
...

... . . . ...
0 0 . . . AN,1

 ,

N⊗
j =


B1,1,j B1,2,j . . . B1,N−1,j 0
B2,0,j B2,1,j . . . B2,N−2,j 0

0 B3,0,j . . . B3,N−3,j 0
...

... . . . ... 0
0 0 . . . BN,0,j 0

 , B⊗ =


B1,0,1 . . . B1,0,m

0 . . . 0
... . . . ...
0 . . . 0

 , x⊗
0 =


x0
0
...
0

 ,

C⊗ =
[
C1 C2 . . . CN

]
.

Herein, E(i) =E ⊗ · · · ⊗E ∈ Rni×ni denotes the i-fold Kronecker product. For i=1, it holds
A1,k = Ak and B1,k,j = Bk,j , while for i ≥ 2 it holds

Ai,k = Ak ⊗E ⊗ · · · ⊗E +E ⊗Ak ⊗E ⊗ · · · ⊗E + . . . +E ⊗ · · · ⊗E ⊗Ak,

Bi,k,j = Bk,j ⊗E ⊗ · · · ⊗E +E ⊗Bk,j ⊗E ⊗ · · · ⊗E + · · ·+E ⊗ · · · ⊗E ⊗Bk,j .

Note that the term B⊗u in (4.10a) can also be written as B⊗u = ∑m
j=1 b

⊗
j uj , where the

column vector b⊗
j corresponds to the j-th column of the matrix B⊗, i.e. b⊗

j = B⊗(:, j).
Some examples for the Carleman bilinearization include: the RC-Ladder (n → n + n2)

in [47], the Burgers equation (n → n + n2) in [25], as well as the FitzHugh-Nagumo (2n →
2n + (2n)2 + (2n)3) and nonlinear heat transfer model (n→ n + n2) in [92, Sec. 2.5].

Discussion With the Carleman bilinearization one can consider higher-order terms of the
Taylor series expansion, while obtaining a bilinear system with Kronecker structure. This
has the advantage that a better approximation of the nonlinear input-affine system (4.2) can
be achieved, while at the same time the subsequent system-theoretic analysis becomes easier.
However, the system dimension is tremendously increased from n to n + n2 + · · ·+ nN . If the
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original order n is already large and/or the truncation index N needs to be big (e.g. N > 2),
then the resulting dimension might cause problems with the memory limitation. Thus, the
applicability of this method highly depends on the system at hand.

4.2.2 Quadratic-bilinearization

Some nonlinear systems are inherent quadratic-bilinear (e.g. Burgers equation) or can be
directly transformed into this special system class after the polynomialization procedure de-
scribed in Section 4.1.2. In general, however, the polynomialization step yields a polynomial
system that needs to be further transformed into a quadratic-bilinear form.

The main idea of the quadratic-bilinearization step is again to introduce new state vari-
ables to replace the monomials xM (e.g. x3, x4) with quadratic expressions. According to
[110], this can be done in two ways:

1. quadratic-bilinearization by adding quadratic algebraic equations [109, Sec. 6.3.5]
2. quadratic-bilinearization by taking Lie derivatives [109, Sec. 6.3.6]

In certain situations, it might be more advantageous to add quadratic algebraic equations
than taking Lie derivatives, since the latter approach yields a higher number of ODEs. In
most cases, both approaches have to be combined to iteratively simplify a polynomial system
to a quadratic-bilinear DAE (QBDAE) with least increased dimension and differential index.

We refrain again from the theoretical details and instead provide an example.

Example 4.2 (Quadratic-bilinearization procedure). Let us consider a similar circuit as
in Example 4.1, which is now composed of an additional nonlinear resistor with cubic
voltage-current (V-I) characteristic (cf. Chua’s circuit), leading to:

v̇ = 1
C

(
− v

R
− eαv + 1 + v3 + i

)
. (4.11)

As before, the new variable w = eαv− 1 is introduced to handle the exponential function.
Unfortunately, the introduction of z = v2 (with v3 → vz) cannot lead to a quadratic-
bilinear system due to ẇ =α(w + 1)v̇, which still depends on the cubic term wvz. Thus,
we instead introduce the new variable z = v3, yielding:

v̇ = 1
C

(
− v

R
− w + z + i

)
, ẇ = α

C

(
−vw

R
− w2 + wz + wi− v

R
− w + z + i

)
, (4.12)

with ż = 3 v2 v̇. We have to introduce another variable y = v2, leading to

ż = 3 y v̇ = 3
C

(
−vy

R
− wy + zy + yi

)
. (4.13)

The equation y = v2 can be handled as algebraic constraint, i.e. 0=y − v2, or by taking
its Lie derivative, i.e. ẏ = 2 v v̇. Using the state vector x = [v, w, z, y]T and the input
signal u = i, the scalar differential equation (4.11) can be rewritten as a quadratic-bilinear
system of the form E ẋ = Ax+H(x⊗ x) +N xu + bu, with corresponding matrices.
In case of 0 = y− v2, one obtains a QBDAE with 3 differential and 1 algebraic equation,
i.e. det(E)=0. In case of ẏ = 2 v v̇, one obtains a QB system consisting of 4 ODEs. M
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Other examples for quadratic-bilinearization are given in the literature: the RC-Ladder model
(n → 2n) in [110], as well as the Chafee-Infante (n → 2n) and FitzHugh-Nagumo equation
(2n→ 3n) in [22]. A detailed explanation can also be found in the master thesis [Fio16].

Discussion As discussed before, the polynomialization+quadratic-bilinearization procedures
allow to transform a nonlinear system into an equivalent quadratic-bilinear form, without
performing any kind of approximation. Although the dimension is increased during the whole
process, the growth is modest in comparison to the Carleman bilinearization (cf. n→ 2n vs.
n→ n+n2 for the RC-Ladder). This is a remarkable advantage. Nevertheless, the requirement
of the analytical expressions for the nonlinearities — and possibly of symbolic/automatic
differentiation tools — makes the method intrusive and less likely applicable to complex FE
models. However, the applicability and suitability of all mentioned methods (Taylor series
expansion, polynomialization, Carleman bilinearization, quadratic-bilinearization) has to be
investigated for each particular case and system at hand.

4.3 Volterra series representation

In this section, we analyze polynomial systems in time-domain using the Volterra series repre-
sentation. The Volterra series represents the solution of a nonlinear dynamical system as an
infinite sum x(t)=∑∞

k=1 xk(t) of subresponses xk(t). The latter are described by multivariable
convolution integrals, but can also be interpreted as the response xk(t) of a k-th homogeneous
subsystem. Consequently, there are two ways of gaining a Volterra series representation:

1. by applying the Picard iteration
2. by applying the variational equation approach

We will revisit both approaches in the following, and primarily apply them to bilinear

E ẋ(t) = Ax(t) +
m∑

j=1
Nj x(t) uj(t) +Bu(t), x(0) = x0, (4.14)

and quadratic-bilinear systems

E ẋ(t) = Ax(t) +H
(
x(t)⊗ x(t)

)
+

m∑
j=1
Nj x(t) uj(t) +Bu(t), x(0) = x0, (4.15)

with y(t)=Cx(t). Similar considerations hold also for more general polynomial systems. Note
that the MIMO terms can be written in a different way: ∑m

j=1Nj x(t) uj(t) = N̄
(
u(t)⊗x(t)

)
with N̄ = [N1 · · · Nm] ∈ Rn×n·m and Bu(t) = ∑m

j=1 bj uj(t).

4.3.1 Picard iteration

The Picard fixed-point iteration allows to approximate the solution of an initial value problem
via successive approximations. According to the Picard-Lindelöf theorem [269], the initial
value problems (4.14) and (4.15) have a unique solution x(t) on the time interval [0, T ] for
inputs uj(t) that are bounded, i.e. |uj(t)| < U with U > 0, and continuous on [0, T ]. Assuming
bounded inputs, we apply the Picard iteration to the bilinear system (4.14) in the following.
For more details, the reader is referred to [27], [92, Sec. 2.1] and [Röt18].
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Bilinear systems

We assume that E is non-singular and define Ã := E−1A, Ñj := E−1Nj and B̃ := E−1B.
Moreover, we consider the MIMO case and employ the sum notation (cf. [27]) rather than
the cumbersome and less insightful Kronecker notation (cf. [92]).

To apply the Picard iteration, a change of variable is first employed:

x(t) = eÃtz(t) ⇔ z(t) = e−Ãtx(t) with ẋ(t) = eÃtż(t) + ÃeÃtz(t). (4.16)

Inserting (4.16) into ẋ(t)=Ãx(t) +∑m
j=1 Ñj x(t) uj(t) + B̃u(t) and dissolving for ż(t) yields

ż(t) =
m∑

j=1
N̂j(t)z(t)uj(t) + B̂(t)u(t) , z(0) = x0, (4.17)

where N̂j(t) = e−Ãt Ñj eÃt, B̂(t) = e−ÃtB̃. Integrating this time-varying bilinear system and
assuming that x0 = 0, we can write z(t) as follows

z(t) =
m∑

j=1

∫ t

τ1=0
N̂j(τ1)z(τ1)uj(τ1)dτ1 +

m∑
j=1

∫ t

τ1=0
b̂j(τ1)uj(τ1)dτ1. (4.18)

Since we need z(τ1), let us rewrite the above equation with t→ τk, τ1 → τk+1, j → jk+1 as:

z(τk) =
m∑

j=1

∫ τk

τk+1=0
N̂j(τk+1)z(τk+1)uj(τk+1) dτk+1 +

m∑
j=1

∫ τk

τk+1=0
b̂j(τk+1)uj(τk+1) dτk+1.

Now, substituting z(τ1) in (4.18) leads to (with j1, j2):

z(t) =
m∑

j1=1

m∑
j2=1

∫ t

τ1=0

∫ τ1

τ2=0
N̂j1(τ1)N̂j2(τ2)z(τ2)uj2(τ2)uj1(τ1) dτ2 dτ1

+
m∑

j1=1

m∑
j2=1

∫ t

τ1=0

∫ τ1

τ2=0
N̂j1(τ1)b̂j2(τ2)uj2(τ2)uj1(τ1) dτ2 dτ1 +

m∑
j1=1

∫ t

τ1=0
b̂j1(τ1)uj1(τ1) dτ1.

The same procedure is repeated with z(τ2) (with j1, j2, j3). After N steps, we receive

z(t)=
m∑

j1=1
· · ·

m∑
jN =1

∫ t

τ1=0
· · ·
∫ τN−1

τN =0
N̂j1(τ1) · · · N̂jN (τN )z(τN )ujN (τN ) · · ·uj1(τ1) dτN · · · dτ1

+
N∑

k=1

m∑
j1=1
· · ·

m∑
jk=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
N̂j1(τ1) · · · N̂jk−1(τk−1) (4.19)

× b̂jk
(τk)ujk

(τk)ujk−1(τk−1) · · ·uj1(τ1) dτk · · · dτ1.

The first term in (4.19) still depends on z(τN ). Nevertheless, assuming that N̂j(t), z(t) and
uj(t) are bounded on t ∈ [0, T ], i.e.

max
1≤j≤m

sup
0≤t≤T

‖N̂j(t)‖ < L, sup
0≤t≤T

‖z(t)‖ < Z, max
1≤j≤m

sup
0≤t≤T

‖uj(t)‖ < U, (4.20)

the term can be bounded by (LUT )N

N ! Z and thus vanishes as N →∞. Changing back to the
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original variables finally yields the uniformly convergent2 Volterra series representation

x(t) =
∞∑

k=1

m∑
j1=1
· · ·

m∑
jk=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
eÃ(t−τ1)Ñj1eÃ(τ1−τ2)Ñj2 · · · eÃ(τk−2−τk−1)Ñjk−1

× eÃ(τk−1−τk)b̃jk
ujk

(τk)ujk−1(τk−1) · · ·uj1(τ1) dτk · · · dτ1,

(4.21)

where x(t) = ∑∞
k=1 xk(t) with corresponding xk(t).

4.3.2 Variational equation approach

The Picard iteration allows to find a Volterra series representation in terms of convolutional
integrals and provides insight into the convergence of the series. Another way of gaining
a Volterra series representation is given by the variational equation approach, where the
nonlinear system is interpreted as an infinite sequence of homogeneous, cascaded subsystems.
The solution x(t) is then given by the sum over all sub-solutions xk(t) of each subsystem. In
order to obtain a state equation for each k-th degree subsystem, we proceed as follows [221].

First, it is assumed that the response of the system to an input of the form αu(t) is given
by the power series expansion (aka. asymptotic/Poincaré/naïve expansion [187, 264, 136]):

x(t) =
∞∑

k=1
αkxk(t) = αx1(t) + α2x2(t) + α3x3(t) + . . . . (4.22)

Then, this ansatz is inserted into the system at hand, and coefficients of like powers of α
are equated to obtain the subsystem state equations (aka. variational equations). This is
demonstrated in the following for bilinear and quadratic-bilinear systems.

Bilinear systems

Inserting the assumed input αu(t) and ansatz (4.22) in the state equation (4.14) results in

E
(
αẋ1(t) + α2ẋ2(t) + . . .

)
= A

(
αx1(t) + α2x2(t) + . . .

)
+

m∑
j=1
Nj
(
αx1(t) + α2x2(t) + . . .

)
αuj(t) +Bαu(t). (4.23)

Since this differential equation must hold for all α, terms of like powers of α can be equated,
yielding a state equation for each subsystem:

α : E ẋ1(t) = Ax1(t) +Bu(t), x1(0) = x0,

α2 : E ẋ2(t) = Ax2(t) +
m∑

j=1
Nj x1(t) uj(t), x2(0) = 0,

α3 : E ẋ3(t) = Ax3(t) +
m∑

j=1
Nj x2(t) uj(t), x3(0) = 0,

...

2The bound (LUT )N

N ! Z or rather the inequality N > LUT provides a relation between the input, time interval
and amount of considered subsystems to ensure convergence of the series. In other words: if the applied
input or time interval gets bigger, then we have to consider more subsystems, i.e. increase N .
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or in generalized form:

E ẋ1(t) = Ax1(t) +Bu(t), x1(0) = x0,

E ẋk(t) = Axk(t) +
m∑

j=1
Nj xk−1(t) uj(t), xk(0) = 0, k ≥ 2.

(4.25a)

(4.25b)

Note that each k-th subsystem state equation is linear in xk(t), but (4.25b) depends bilinearly
on the solution xk−1(t) of the preceding subsystem (cf. Fig. 4.1).

+

ζ

C
u(t) x(t) y(t)

Σ1

Σ2

Σ3

...

x1(t)

x2(t)

x3(t)

Figure 4.1: Volterra series representation of a bilinear system ζ.

The solutions to these differential equations are given (for x0 = 0) by:

x1(t) =
∫ t

τ=0
eÃ(t−τ) B̃ u(τ) dτ,

xk(t) =
m∑

j=1

∫ t

τ=0
eÃ(t−τ) Ñj xk−1(τ) uj(τ) dτ, k ≥ 2.

(4.26a)

(4.26b)

Any xk(t) can then be obtained by iteratively substituting all previous solutions xk−1(t) into
(4.26b). For instance, substituting x1(τ1)

x1(τ1) =
m∑

j=1

∫ τ1

τ2=0
eÃ(τ1−τ2) b̃j uj(τ2) dτ2 (4.27)

into x2(t) yields3

x2(t) =
m∑

j1=1

∫ t

τ1=0
eÃ(t−τ1) Ñj1 x1(τ1) uj1(τ1) dτ1

=
m∑

j1=1

m∑
j2=1

∫ t

τ1=0

∫ τ1

τ2=0
eÃ(t−τ1) Ñj1 eÃ(τ1−τ2) b̃j2 uj2(τ2) uj1(τ1) dτ2 dτ1. (4.28)

3(4.26a) can also be written as x1(t)=
∫ t

τ=0 eÃτB̃u(t−τ)dτ with x1(t−τ2)=
∑m

j=1

∫ t−τ2
τ1=0 eÃτ1 b̃juj(t−τ2−τ1)dτ1.

Then, x1(t−τ2) can be substituted in x2(t)=
∑m

j2=1

∫ t

τ2=0 eÃτ2 Ñj2 x1(t−τ2) uj2 (t−τ2) dτ2 (cf. Eq. (4.38)).
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The same can be repeated with x3(t) by substituting x2(τ1) and x1(τ2). After k substitutions,
we end up with the solution xk(t) of the k-th subsystem that corresponds to the Volterra series
representation obtained in (4.21). Note that in case of an arbitrary initial state x0, the solution
x1(t) also contains the term eÃtx0 (cf. (3.2)), and thus the Volterra series representation (4.21)
is also composed of an initial condition term. [60]

Quadratic-bilinear systems

Inserting the assumed input αu(t) and ansatz (4.22) in the state equation (4.15) results in

E(αẋ1 + α2ẋ2 + α3ẋ3 . . .) = A(αx1 + α2x2 + α3x3 + . . .)

+H
(
αx1 + α2x2 + α3x3 + . . .

)
⊗ (αx1 + α2x2 + α3x3 + . . .)

+
m∑

j=1
Nj

(
αx1 + α2x2 + α3x3 + . . .

)
αuj +Bαu.

(4.29)

Comparing terms with equal powers of α yields a state equation for each subsystem:

α : E ẋ1(t) = Ax1(t) +Bu(t), x1(0) = x0,

α2 : E ẋ2(t) = Ax2(t) +H
(
x1(t)⊗ x1(t)

)
+

m∑
j=1
Nj x1(t) uj(t), x2(0) = 0,

α3 : E ẋ3(t) = Ax3(t) +H
(
x1(t)⊗ x2(t) + x2(t)⊗ x1(t)

)
+

m∑
j=1
Nj x2(t) uj(t), x3(0) = 0,

...

or in generalized form:

E ẋ1(t) = Ax1(t) +Bu(t), x1(0) = x0,

E ẋk(t) = Axk(t) +
k−1∑
i=1
H
(
xi(t)⊗ xk−i(t)

)
+

m∑
j=1
Nj xk−1(t) uj(t), xk(0) = 0.

(4.30a)

(4.30b)

Note that each k-th subsystem state equation is linear in xk(t), but (4.30b) depends nonlin-
early on the solution of the preceding subsystems.

The solution to the first subsystem differential equation is given (for x0 = 0) by (4.26a).
However, it is difficult and lengthy to write the solution xk(t) of (4.30b) in general form. Thus,
we restrict the analysis to the second subsystem. Defining H̃ := E−1H and substituting
x1(τ1) (cf. Eq. (4.27)) in x2(t) yields (cf. [Fio16])

x2(t) =
∫ t

τ1=0
eÃ(t−τ1)

(
H̃
(
x1(τ1)⊗ x1(τ1)

)
+

m∑
j=1
Ñj x1(τ1)uj(τ1)

)
dτ1

=
m∑

j1=1

m∑
j2=1

∫ t

τ1=0

∫ τ1

τ2=0

∫ τ1

τ3=0
eÃ(t−τ1)H̃

(
eÃ(τ1−τ2)b̃j1⊗eÃ(τ1−τ3)b̃j2

)
uj1(τ2)uj2(τ3)dτ1dτ2dτ3

+
m∑

j1=1

m∑
j2=1

∫ t

τ1=0

∫ τ1

τ2=0
eÃ(t−τ1)Ñj1eÃ(τ1−τ2)b̃j2 uj2(τ2)uj1(τ1) dτ1 dτ2. (4.31)
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4.4 Generalized transfer functions

In the previous section we have discussed how to obtain a Volterra series representation for
bilinear and quadratic-bilinear systems. In this section we want to report different types of
Volterra kernels in time-domain and derive generalized transfer functions in frequency-domain.
There are two approaches to obtain generalized transfer functions:

1. by multidimensional Laplace transform of the kernels
2. by the growing exponential approach

4.4.1 Multidimensional Laplace transform of the kernels and output equations

The first approach to obtain generalized transfer functions consists in transforming the Volterra
kernels into frequency-domain. Thus, similar to the single-variable Laplace transform (3.5)
required in the linear setting, we revisit the multivariable Laplace transform in the following
definition [221].
Definition 4.1 (Multidimensional Laplace transform). The k-dimensional Laplace transform
of a one-sided, real-valued function f(t1, . . . , tk) : Rk

≥0 → R is given by

F (s1, . . . , sk) := Lk{f(t1, . . . , tk)}(s1, . . . , sk)

:=
∫ ∞

t1=0
. . .

∫ ∞

tk=0
f(t1, . . . , tk)e−s1t1 · · · e−sktk dtk · · · dt1.

(4.32)

The integral converges, if the complex variables s1, . . . , sk are such that

s = (s1 . . . sk)T ∈ Hγ1,...,γk
:= Hγ =

{
s ∈ Ck

∣∣∣ Re(si) > γi, i = 1, . . . , k
}

,

i.e. for values s ∈ Ck on the k-dimensional complex half-space Hγ of Ck. N

In what follows, we will first discuss different types of Volterra kernels arising from the input-
output representation in time-domain obtained in Section 4.3. Then, we will transform the
kernels and output equations in frequency-domain to obtain generalized transfer functions.

Bilinear systems

The Volterra series representation gained in (4.21) from the Picard iteration (or alternatively
(4.28) from the variational analysis) is the starting point for the subsequent analysis.

Triangular kernels Unlike [221, 92], we are not defining the triangular kernels directly from
(4.21) or the corresponding output

yk(t)=
m∑

j1=1
· · ·

m∑
jk=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
CeÃ(t−τ1)Ñj1eÃ(τ1−τ2)Ñj2 · · · eÃ(τk−2−τk−1)Ñjk−1eÃ(τk−1−τk)b̃jk

× ujk
(τk)ujk−1(τk−1) · · ·uj1(τ1) dτk · · · dτ1.

Instead, we perform a change of variables to gain an input-output representation without
reflected arguments −τ1, . . . ,−τk in the exponential functions. To simplify the change of vari-
ables, we assume one-sided input signals uj(t) :=uj(t)σ(t) and one-sided matrix exponentials
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eÃt :=eÃtσ(t), and use infinite integration limits. Making the change of variables τ̃k = t− τ1,
τ̃k−1 = t− τ2, · · · , τ̃1 = t− τk with τ1− τ2 = τ̃k−1− τ̃k, · · · , τk−1− τk = τ̃1− τ̃2 and letting again
τ̃k → τk, . . . , τ̃1 → τ1 yields the input-output representation (with interchanged j indices):

yk(t) =
m∑

j1=1
· · ·

m∑
jk=1

∫ ∞

τ1=−∞
· · ·
∫ ∞

τk=−∞
CeÃτkÑjk

eÃ(τk−1−τk)Ñjk−1 · · · Ñj2eÃ(τ1−τ2)b̃j1

× ujk
(t− τk)ujk−1(t− τk−1) · · ·uj2(t− τ2)uj1(t− τ1) dτk · · · dτ1,

(4.33)

where the outputs are

y(t) =
∞∑

k=1
yk(t), yk(t) =

m∑
j1=1
· · ·

m∑
jk=1

y
(j1,...,jk)
k (t) , (4.34)

and the triangular MIMO kernels are given by (for 0 < tk < . . . < t1):

g
(j1,...,jk)
k,4 (t1, . . . , tk) = C eÃtk Ñjk

eÃ(tk−1−tk) Ñjk−1 · · · Ñj2 eÃ(t1−t2) b̃j1 . (4.35)

Applying the k-dimensional Laplace transform to the triangular kernels g(j1,...,jk)
k,4 (t1, . . . , tk)

yields the (j1, . . . , jk)-th transfer function G(j1,...,jk)
k,4 (s1, . . . , sk) ∈ Cp (cf. derivation in [60]):

G
(j1,...,jk)
k,4 (s1, . . . , sk)

= C
(
(s1 + . . . + sk)E −A

)−1
Njk
· · ·Nj3

(
(s1 + s2)E −A

)−1
Nj2

(
s1E −A

)−1
bj1 .

(4.36)

Note that the triangular transfer functions yield factors
(
(s1 + . . . + sk)E −A

)−1, where the
frequency variables s1, . . . , sk are summed up. In other words, each singularity term is not
expressed by means of a single variable sk, but rather by several variables.

Instead of merely transforming the kernels, the output equation (4.33) should be rather
transformed in order to obtain an input-output representation in frequency-domain similar to
the one from the linear case (3.6). To this end, a triangular auxiliary output y4

k (t1, . . . , tk) de-
pending on the time variables t1, . . . , tk is first introduced and then transformed into frequency-
domain using the convolution property of the multidimensional Laplace transform [60]:

Y 4
k (s1, . . . , sk) =

m∑
j1=1
· · ·

m∑
jk=1

Y
(j1,...,jk)
k,4 (s1, . . . , sk) (4.37)

=
m∑

j1=1
· · ·

m∑
jk=1

C
(
(s1 + . . . + sk)E −A

)−1
Njk
· · ·Nj2

(
s1E −A

)−1
bj1︸ ︷︷ ︸

G
(j1,...,jk)
k,4 (s1,...,sk)

Ujk
(sk) · · ·Uj1(s1).

This triangular frequency-domain representation is important for the following reason. If the
transfer functions G(j1,...,jk)

k,4 (s1, . . . , sk) and the Laplace transform of the inputs are known,
then Y 4

k (s1, . . . , sk) can be calculated algebraically. After that, y4
k (t1, . . . , tk) can be com-

puted via the multivariable inverse Laplace transform of Y 4
k (s1, . . . , sk). The actual (single-

variable) output of the bilinear system is finally calculated from yk(t) = y4
k (t1 = t, . . . , tk = t).
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Regular kernels To simplify the terms eÃ(τk−1−τk) arising in the triangular representation (4.33),
we now give the input-output behavior of the bilinear system in terms of the regular kernels.
For this purpose, we perform the change of variables τ̃k =τk, τ̃k−1 =τk−1− τk, · · · , τ̃1 =τ1− τ2
with τk−1 = τ̃k + τ̃k−1, · · · , τ1 = τ̃k + . . . + τ̃1 and let again τ̃k → τk, . . . , τ̃1 → τ1. Then, the
regular input-output representation is given by [60]:

yk(t) =
m∑

j1=1
· · ·

m∑
jk=1

∫ ∞

τ1=−∞
· · ·
∫ ∞

τk=−∞
CeÃτkÑjk

eÃτk−1Ñjk−1 · · · Ñj2eÃτ1 b̃j1

× ujk
(t− τk)ujk−1(t− τk − τk−1) · · ·uj1(t− τk − . . .− τ1) dτk · · · dτ1,

(4.38)

with the output components (4.34) and the regular MIMO kernels (for t1, . . . , tk > 0):

g
(j1,...,jk)
k,� (t1, . . . , tk) = C eÃtk Ñjk

eÃtk−1 Ñjk−1 · · · Ñj2 eÃt1 b̃j1 . (4.39)

Applying the k-dimensional Laplace transform to the regular kernels g(j1,...,jk)
k,� (t1, . . . , tk) yields

the (j1, . . . , jk)-th transfer function G(j1,...,jk)
k,� (s1, . . . , sk) ∈ Cp (cf. derivation in [60]):

G
(j1,...,jk)
k,� (s1, . . . , sk) = C(skE −A)−1Njk

· · ·Nj3(s2E −A)−1Nj2(s1E −A)−1bj1 . (4.40)

Note that the regular transfer functions are expressed – in contrast to the triangular ones – by
a product of single-variable factors (skE−A)−1. This permits the straightforward application
of the residue calculus and the inverse Laplace transform in each variable independently [221,
pp. 59-60, 73]. For this reason, the triangular transfer functions (4.36) are rarely used as a
starting point for model order reduction, but the regular transfer functions have established
instead (cf. Chapter 5).

Similar as before, we want to obtain an input-output representation in frequency-domain
in terms of the regular transfer functions. To this end, the regular auxiliary output y�k (t1, . . . , tk)
is introduced and then transformed into frequency-domain, yielding [60]:

Y �
k (s1, . . . , sk) =

m∑
j1=1
· · ·

m∑
jk=1

Y
(j1,...,jk)
k,� (s1, . . . , sk) (4.41)

=
m∑

j1=1
· · ·

m∑
jk=1

C(skE −A)−1Njk
· · ·Nj2(s1E −A)−1bj1︸ ︷︷ ︸

G
(j1,...,jk)
k,� (s1,...,sk)

Ujk
(sk−sk−1) · · ·Uj2(s2−s1)Uj1(s1).

Again, this representation is essential to embed the transfer functions in an input-output
equation. While (4.40) yields simple, single-variable factors (skE − A)−1, please note the
more complicated, shifted input terms Ujk

(sk−sk−1) · · ·Uj2(s2−s1)Uj1(s1) (see also (4.38)).
This confirms the fact that the triangular and regular representations can be transformed into
each other by the change of variables s̃1 =s1, s̃2 =s1 + s2, · · · , s̃k =s1 + . . . + sk: [221, p. 72]

Y �
k (s1, . . . , sk) = Y 4

k (s1, s2 − s1, s3 − s2, . . . , sk − sk−1). (4.42)

The response yk(t) of the bilinear system to arbitrary inputs can be computed over the
frequency-domain as follows. First, y�k (t1, . . . , tk) is calculated via the k-dimensional inverse
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Laplace transform of Y �
k (s1, . . . , sk). Then, the actual output is obtained from the auxiliary

output via yk(t) = y�k (t1 = 0, . . . , tk−1 = 0, tk = t).
Finally, note that the kernels and transfer functions are usually given in the literature by

means of the Kronecker notation, instead of the sum notation employed here. Exemplarily,
we report the regular transfer functions in Kronecker notation in the following:

G�
k (s1, . . . , sk) = C(skE −A)−1N̄(Im ⊗ (sk−1E −A)−1N̄) · · · (Imk−2 ⊗ (s2E −A)−1N̄)

× (Imk−1 ⊗ (s1E −A)−1B) ∈ Cp×mk
, (4.43)

where N̄ = [N1, . . . ,Nm] ∈ Rn×nm. Hereby, G�
k (s1, . . . , sk) ∈ Cp×mk contains all mk com-

binations G(j1,...,jk)
k,� (s1, . . . , sk) ∈ Rp for (j1, . . . , jk) (see (4.40)) or all mk−1 combinations

G
(j2,...,jk)
k,� (s1, . . . , sk) ∈ Rp×m. To make this more clear, we provide an insightful example.

Example 4.3 (Kronecker notation for regular transfer functions). Consider a MIMO bi-
linear system with m = 3 inputs. The input matrix B is then composed of 3 vec-
tors B =

[
b1 b2 b3

]
∈ Rn×3 and the bilinear matrix N̄ is composed of 3 matrices

N̄=
[
N1 N2 N3

]
∈ Rn×3 n. The transfer matrix of the second subsystem becomes

G�
2 (s1, s2) = C(s2E −A)−1N̄(Im ⊗ (s1E −A)−1B)

= C(s2E −A)−1 [N1 N2 N3
] (s1E−A)−1B 0 0

0 (s1E−A)−1B 0
0 0 (s1E−A)−1B


=
[
G

(1)
2,�(s1, s2) G

(2)
2,�(s1, s2) G

(3)
2,�(s1, s2)

]
=
[{
G

(j2)
2,� (s1, s2)

}m

j2=1

]
,

where G(j2)
2,� (s1, s2) = C(s2E −A)−1Nj2(s1E −A)−1B ∈ Cp×m. Similarly, the transfer

matrix of the third subsystem is

G�
3 (s1, s2, s3) = C(s3E −A)−1N̄(Im ⊗ (s2E −A)−1N̄)(Im ⊗ Im ⊗ (s1E −A)−1B)

=
[{
G

(j2,j3)
3 (s1, s2, s3)

}m

j2,j3=1

]
,

where G(j2,j3)
3 (s1, s2, s3) = C(s3E − A)−1Nj3(s2E − A)−1Nj2(s1E − A)−1B ∈ Cp×m.

M

Quadratic-bilinear systems

The derivation of multivariable kernels in time-domain becomes quite cumbersome for quadra-
tic-bilinear systems. Moreover, transfer functions cannot be derived via Laplace transform of
the kernels due to the quadratic term. For this reason, we will only state the output response
in time-domain in the following. The derivation of transfer functions in frequency-domain will
be accomplished by means of the growing exponential approach in Section 4.4.2.

The Volterra series representation for the second subsystem gained in (4.31) is the starting
point for the brief subsequent analysis.
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Triangular kernels Performing change of variables, we can rewrite (4.31) in triangular form
as follows (with interchanged j indices):

y2(t)=
m∑

j1=1

m∑
j2=1

∫ t

τ1=τ3

∫ t

τ2=τ3

∫ t

τ3=0
CeÃτ3H̃

(
eÃ(τ2−τ3)b̃j2⊗eÃ(τ1−τ3)b̃j1

)
uj2(t−τ2)uj1(t−τ1)dτ1 dτ2 dτ3

+
m∑

j1=1

m∑
j2=1

∫ t

τ1=τ2

∫ t

τ2=0
CeÃτ2Ñj2eÃ(τ1−τ2)b̃j1 uj2(t− τ2)uj1(t− τ1) dτ1 dτ2. (4.44)

With the representation above, the second triangular kernel reads

g
(j1,j2)
2,4 (t1, t2)=CeÃt2Ñj2eÃ(t1−t2)b̃j1 +

∫ t

τ3=0
CeÃτ3H̃

(
eÃ(t2−τ3)b̃j2⊗eÃ(t1−τ3)b̃j1

)
dτ3.

The first term of the kernel corresponds to the bilinear part. Unfortunately, the second term
still contains an integral because the quadratic part of (4.44) is composed of three integrals.
Note, however, that the quadratic part contains only two input terms. Thus, we believe that
this part also belongs to the second kernel and not to the third one.

Regular kernels Performing change of variables, or proceeding in a similar manner as de-
scribed in Footnote 3 with

x2(t)=
∫ t

τ3=0
eÃτ3H̃

(
x1(t−τ3)⊗ x1(t−τ3)

)
dτ3 +

m∑
j=1

∫ t

τ2=0
eÃτ2 Ñj2 x1(t− τ2)uj2(t− τ2) dτ2,

yields the regular representation

y2(t)=
m∑

j1=1

m∑
j2=1

∫ t−τ3

τ1=0

∫ t−τ3

τ2=0

∫ t

τ3=0
CeÃτ3H̃

(
eÃτ2 b̃j2⊗eÃτ1 b̃j1

)
uj2(t−τ3−τ2)uj1(t−τ3−τ1)dτ1 dτ2 dτ3

+
m∑

j1=1

m∑
j2=1

∫ t−τ2

τ1=0

∫ t

τ2=0
CeÃτ2 Ñj2 eÃτ1 b̃j1uj2(t− τ2) uj1(t− τ2 − τ1) dτ1 dτ2. (4.45)

From the above equation, regular kernels have been proposed in [34, 35] and [103, Sec. 4.3.1,
5.2.1] to define Gramians and the H2-norm for quadratic-bilinear systems. The main idea is
to decouple the quadratic and bilinear terms in order to obtain a second-order kernel which is
still purely bilinear, whereas the quadratic term arises only as of the third kernel. We do not
report the proposed regular kernels here, but refer the reader to the mentioned publications.

4.4.2 Growing exponential approach

The growing exponential approach constitutes another way of finding transfer function de-
scriptions for polynomial systems. The approach is based upon the eigenfunction property4 of
linear systems: the response y(t) to a growing exponential input u(t)=1m eσt with 1m ∈ Rm

is given by y(t)=G(σ)1m eσt, where the transfer function G(σ)=C(σE −A)−1B represents
the scaling factor. This concept can also be applied to polynomial systems described by means
of homogeneous subsystems (cf. variational equation approach in Section 4.3.2).

4The concept of eigenfunctions will be further discussed in Chapter 8.
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The idea is to apply a sum of growing exponentials as input signal (cf. Eq. (3.80))

u(t) =
r∑

l1=1
1m ul1 esl1 t, or equivalently uj(t) =

r∑
l1=1

ul1 esl1 t, j = 1, . . . , m. (4.46)

For simplicity, we employ the vector of ones 1m as tangential direction for all exponentials.
Note, however, that we could also use different directions rl1 . The input, together with an
expected solution ansatz for xk(t), is then substituted in the corresponding k-th variational
equation in order to gain an input-output characterization in terms of transfer functions. The
procedure will be illustrated for bilinear and quadratic-bilinear systems in the following.

Bilinear systems

The variational equations (4.25) are the starting point for the application of the growing
exponential approach. We will use the sum notation for the MIMO case.

1-st subsystem For the first (well-known) subsystem Eẋ1(t) =Ax1(t) +Bu(t), we expect
a solution of the form x1(t) = ∑r

l1=1 λ1(sl1)1m ul1esl1 t. Inserting the input (4.46) and the
assumed solution into the first variational equation yields

E
r∑

l1=1
sl1λ1(sl1)1m ul1 esl1 t = A

r∑
l1=1

λ1(sl1)1m ul1 esl1 t +B
r∑

l1=1
1m ul1 esl1 t

⇐⇒ λ1(sl1) = (sl1E −A)−1B , l1 = 1, . . . , r.

(4.47)

2-nd subsystem The second subsystem is given by Eẋ2(t)=Ax2(t) +∑m
j=1Nj x1(t) uj(t).

The “pseudo-input” then reads (for r = 2):

x1(t)uj(t) =
(
λ1(s1)1m u1es1t + λ1(s2)1m u2es2t)(u1es1t + u2es2t)

= λ1(s1)1m u2
1e2s1t + λ1(s2)1m u2

2e2s2t +
(
λ1(s1) + λ1(s2)

)
1mu1u2e(s1+s2)t,

(4.48)

and is composed of three exponential terms e2s1t, e2s2t and e(s1+s2)t. Therefore, the solution
x2(t) is assumed to be of the form

x2(t) =
m∑

j2=1
λ

(j2)
2,a 1m u2

1e2s1t + λ(j2)
2,b 1m u2

2e2s2t + λ(j2)
2,c 1m u1u2e(s1+s2)t. (4.49)

Substituting the pseudo-input and assumed solution into the second subsystem yields

E
m∑

j2=1

(
2s1λ

(j2)
2,a 1m u2

1e2s1t + 2s2λ
(j2)
2,b 1m u2

2e2s2t + (s1 + s2)λ(j2)
2,c 1m u1u2e(s1+s2)t

)

= A
m∑

j2=1

(
λ

(j2)
2,a 1m u2

1e2s1t + λ(j2)
2,b 1m u2

2e2s2t + λ(j2)
2,c 1m u1u2e(s1+s2)t

)
(4.50)

+
m∑

j2=1
Nj2

(
λ1(s1)1m u2

1e2s1t + λ1(s2)1m u2
2e2s2t +

(
λ1(s1) + λ1(s2)

)
1m u1u2e(s1+s2)t

)
.
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Comparing the coefficients for terms e2s1t, e2s2t, e(s1+s2)t yields the scalings λ2,a, λ2,b and λ2,c:

λ
(j2)
2,a = λ

(j2)
2,sym(s1, s1) = λ

(j2)
2,4(s1, s1) = (2s1E −A)−1Nj2 λ1(s1),

λ
(j2)
2,b = λ

(j2)
2,sym(s2, s2) = λ

(j2)
2,4(s2, s2) = (2s2E −A)−1Nj2 λ1(s2),

λ
(j2)
2,c = 2λ(j2)

2,sym(s1, s2)=λ(j2)
2,4(s1, s2) + λ(j2)

2,4(s2, s1)=
(
(s1+s2)E−A

)−1
Nj2

(
λ1(s1)+λ1(s2)

)
,

with (in triangular form)

λ
(j2)
2,4(s1, s2) = ((s1 + s2)E −A)−1Nj2 λ1(s1),

λ
(j2)
2,4(s2, s1) = ((s2 + s1)E −A)−1Nj2 λ1(s2),

(4.51)

and (in symmetric form)

λ
(j2)
2,sym(s1, s2) = 1

2((s1 + s2)E −A)−1Nj2(λ1(s1) + λ1(s2)). (4.52)

Note that λ(j2)
2,sym(s1, s2) = 1

2(λ(j2)
2,4(s1, s2) + λ

(j2)
2,4(s2, s1)) and λ

(j2)
2,sym(s1, s2) = λ

(j2)
2,sym(s2, s1).

The symmetric form can thus be obtained by summing over all permutations π(·) of the
frequency arguments (s1, s2) of the triangular form. Moreover, λ(j2)

2,sym(s1, s2) is symmetric in
each frequency argument.

k-th subsystem Based on (4.49) and the obtained results for the second subsystem, the
formulas can be generalized for higher-order subsystems as follows:

xk(t) =
m∑

j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk=1

λ
(j2,...,jk)
k,4 (sl1 , . . . , slk)1m ul1 · · ·ulkesl1 t · · · eslk

t

=
m∑

j2=1
· · ·

m∑
jk=1

∑
π(·)
λ

(j2,...,jk)
k,sym (sπ(1), . . . , sπ(k))1m uπ(1) · · ·uπ(k)esπ(1)t · · · esπ(k)t

(4.53)

with the recursion (in triangular form)

λ
(j2,...,jk)
k,4 (sl1 , . . . , slk) =

(
(sl1 + · · ·+ slk)E −A

)−1
Njk

λ
(·)
k−1,4(sl1 , · · · , slk−1), k ≥ 2

λ1(sl1) = (sl1E −A)−1B,
(4.54)

and (in symmetric form)

λ
(j2,...,jk)
k,sym (sl1 , . . . , slk) = 1

k!
∑
π(·)
λ

(j2,...,jk)
k,4 (sπ(1), . . . , sπ(k)). (4.55)

For example, in case k =3, the symmetric form λ
(j2,j3)
3,sym (sl1 , sl2 , sl3) is obtained by summing over

all 3! permutations (π(1), π(2), π(3)) ∈ {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} of
the triangular form.

Note that the dimension of the scalings is λ(j2,...,jk)
k,4 (sl1 , . . . , slk) ∈ Rn×m. An input-

output representation can be easily obtained from (4.53) via yk(t)=C xk(t) with the transfer
functions G(j2,...,jk)

k,? (sl1 , . . . , slk) = C λ
(j2,...,jk)
k,? (sl1 , . . . , slk) ∈ Cp×m (cf. Example 4.3).
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Quadratic-bilinear systems

The variational equations (4.30) are the starting point for the application of the growing
exponential approach. We again use the sum notation in the MIMO case. The reader is
referred to [Fio16, Sec. 4.1.2] for a similar derivation using the Kronecker notation.

2-nd subsystem The 2-nd subsystem isEẋ2(t)=Ax2(t)+Hx1(t)⊗x1(t)+∑m
j=1Njx1(t)uj(t).

With the assumed solution for x1(t), the term x1(t)⊗ x1(t) reads:

x1(t)⊗ x1(t)=
(
λ1(s1)1mu1es1t + λ1(s2)1mu2es2t)⊗ (λ1(s1)1mu1es1t + λ1(s2)1mu2es2t).

The “pseudo-input” x1(t)uj(t) for r=2 is given by Eq. (4.48) and is again composed of three
exponential terms. Thus, we make a similar ansatz (4.49) for the assumed solution x2(t).
Inserting x1 ⊗ x1, the pseudo-input and assumed solution into the 2-nd subsystem yields

E
m∑

j2=1

(
2s1λ

(j2)
2,a u2

1e2s1t + 2s2λ
(j2)
2,b u2

2e2s2t + (s1 + s2)λ(j2)
2,c u1u2e(s1+s2)t

)

= A
m∑

j2=1

(
λ

(j2)
2,a u2

1e2s1t + λ(j2)
2,b u2

2e2s2t + λ(j2)
2,c u1u2e(s1+s2)t

)
+H

(
λ1(s1)1m ⊗ λ1(s1)1mu2

1e2s1t + λ1(s2)1m ⊗ λ1(s2)1mu2
2e2s2t (4.56)

+ (λ1(s1)1m ⊗ λ1(s2)1m + λ1(s2)1m ⊗ λ1(s1)1m) u1u2e(s1+s2)t
)

+
m∑

j2=1
Nj2

(
λ1(s1)1m u2

1e2s1t + λ1(s2)1m u2
2e2s2t +

(
λ1(s1) + λ1(s2)

)
1m u1u2e(s1+s2)t

)
.

Comparing the coefficients for terms e2s1t, e2s2t, e(s1+s2)t yields the scalings λ2,a, λ2,b and λ2,c:

λ
(j2)
2,a =λ(j2)

2,sym(s1, s1)=λ(j2)
2,4(s1, s1)=(2s1E−A)−1

(
H
(
λ1(s1)1m ⊗ λ1(s1)1m

)
+Nj2 λ1(s1)1m

)
λ

(j2)
2,b =λ(j2)

2,sym(s2, s2)=λ(j2)
2,4(s2, s2)=(2s2E−A)−1

(
H
(
λ1(s2)1m ⊗ λ1(s2)1m

)
+Nj2 λ1(s2)1m

)
λ

(j2)
2,c =2λ(j2)

2,sym(s1, s2)=
(
(s1+s2)E −A

)−1(
H
(
λ1(s1)⊗ λ1(s2) + λ1(s2)⊗ λ1(s1)

)
1m2

+Nj2

(
λ1(s1)+λ1(s2)

)
1m

)
,

with (in triangular form)

λ
(j2)
2,4(s1, s2) = ((s1 + s2)E −A)−1

(
H
(
λ1(s1)1m ⊗ λ1(s2)1m

)
+Nj2 λ1(s1)1m

)
,

λ
(j2)
2,4(s2, s1) = ((s2 + s1)E −A)−1

(
H
(
λ1(s2)1m ⊗ λ1(s1)1m

)
+Nj2 λ1(s2)1m

)
,

(4.57)

and (in symmetric form)

λ
(j2)
2,sym(s1, s2) = 1

2
(
(s1+s2)E−A

)−1(
H
(
λ1(s1)⊗ λ1(s2) + λ1(s2)⊗ λ1(s1)

)
1m2

+Nj2

(
λ1(s1)+λ1(s2)

)
1m

)
.

Again it holds: λ(j2)
2,sym(s1, s2)= 1

2(λ(j2)
2,4(s1, s2)+λ(j2)

2,4(s2, s1)) and λ(j2)
2,sym(s1, s2)=λ(j2)

2,sym(s2, s1).
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k-th subsystem Based on the obtained results for the second subsystem, the formulas can
be generalized for higher-order subsystems as follows:

xk(t) =
m∑

j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk=1

λ
(j2,...,jk)
k,4 (sl1 , . . . , slk)ul1 · · ·ulkesl1 t · · · eslk

t (4.58)

with the recursion (in triangular form)

λ
(j2,...,jk)
k,4 (sl1 , . . . , slk) =

(
(sl1 + · · ·+ slk)E −A

)−1
(
H

k−1∑
i=1

(
λ

(·)
i,4 ⊗ λ

(·)
k−i,4

)
+Njk

λ
(·)
k−1,4

)
,

λ1(sl1) = (sl1E −A)−1B 1m.

Note that the dimension of the scalings is now λ
(j2,...,jk)
k,4 (sl1 , . . . , slk) ∈ Rn×1, since they still

contain the vectors 1m (or the tangential directions) due to the quadratic term. These vectors
are omitted in the following to state the transfer functions of the second subsystem.

Using the abbreviation As =(sE −A), the transfer functions G(j1,j2)
2,? (s1, s2) ∈ Cp of the

second subsystem are given in sum notation by

G
(j1,j2)
2,4 (s1, s2)=CA−1

s1+s2

(
H
(
A−1

s1 bj2 ⊗A−1
s2 bj1

)
+Nj2A

−1
s1 bj1

)
,

G
(j1,j2)
2,� (s1, s2)=CA−1

s2

(
H
(
A−1

s1 bj2 ⊗A−1
s2−s1bj1

)
+Nj2A

−1
s1 bj1

)
, (4.59)

G
(j1,j2)
2,sym (s1, s2)= 1

2CA
−1
s1+s2

(
H
(
A−1

s1 bj2⊗A−1
s2 bj1 +A−1

s2 bj1⊗A−1
s1 bj2

)
+Nj2

(
A−1

s1 bj1 +A−1
s2 bj1

))
= CA−1

s1+s2H
(
A−1

s1 bj2⊗A−1
s2 bj1

)
+ 1

2CA
−1
s1+s2Nj2

(
A−1

s1 bj1 +A−1
s2 bj1

))
.

The quadratic term in G(j1,j2)
2,sym (s1, s2) can be simplified if H is symmetric, since the relation

H(u ⊗ v) = H(v ⊗ u) holds for vectors (cf. Eq. (2.16)). The regular transfer function
G

(j1,j2)
2,� (s1, s2) is obtained from the triangular one by applying the relationship (4.42), i.e.

s̃1 =s1 and s̃2 =s1 + s2 ↔ s2 = s̃2 − s1.
The transfer functionsG?

2(s1, s2) ∈ Cp×m2 of the second subsystem are given in Kronecker
notation by

G4
2 (s1, s2)=CA−1

s1+s2

(
H
(
A−1

s1 B ⊗A
−1
s2 B

)
+ N̄(Im ⊗A−1

s1 B)
)
,

G�
2 (s1, s2)=CA−1

s2

(
H
(
A−1

s1 B ⊗A
−1
s2−s1B

)
+ N̄(Im ⊗A−1

s1 B)
)
, (4.60)

Gsym
2 (s1, s2)= 1

2CA
−1
s1+s2

(
H
(
A−1

s1 B ⊗A
−1
s2 B+A−1

s2 B⊗A
−1
s1 B

)
+N̄

(
Im ⊗ (A−1

s1 B+A−1
s2 B)

))
.

The quadratic term in Gsym
2 (s1, s2) cannot be simplified, since H(U ⊗ V ) 6= H(V ⊗U)

for matrices, even if H is symmetric.





Chapter 5

Bilinear Systems

In this chapter we focus on the systems theory and model order reduction of bilinear dynamical
systems of the form

ζ :


E ẋ(t) = Ax(t) +

m∑
j=1
Nj x(t) uj(t) +Bu(t), x(0) = x0,

y(t) = C x(t),

(5.1a)

(5.1b)

where E,A ∈ Rn×n with E regular, Nj ∈ Rn×n for j = 1, . . . m, B ∈ Rn×m and C ∈ Rp×n.
For brevity of presentation, at times we will use the notation ζ=(A,Nj ,B,C,E) to denote
the bilinear system. All m bilinear matrices can be concatenated next to each other as
N̄ :=N (1) = [N1 N2 · · · Nm] ∈ Rn×n·m and N̄ (2) :=N (2) = [NT

1 N
T
2 · · · NT

m] ∈ Rn×n·m.
For theoretical purposes, we will sometimes use Ã :=E−1A, Ñj :=E−1Nj and B̃ :=E−1B.

The Volterra series representation — more specifically the regular kernels and transfer
functions — has enabled the generalization of well-known system-theoretic concepts (e.g.
Gramians, H2-norm, etc.) to the bilinear setting. In Section 5.1 we will revisit these concepts,
hereby focusing on the MIMO case and stating new results for the pole-residue formulation.
Then, we will particularly concentrate on Krylov-based model reduction of bilinear systems,
more specifically on subsystem (Section 5.3) and Volterra series (Section 5.4) interpolation.
We will turn our attention to the MIMO case and provide useful insights into the multimoment
setting, the choice of the interpolation data and the Arnoldi-like implementation.

Parallel to the theoretical investigation, we have developed the bsss and bsssMOR tool-
boxes including some important analysis and model reduction algorithms. We will highlight
these functions at the corresponding place using boxes.

5.1 Bilinear systems theory

In this section we revisit important system-theoretic concepts for bilinear systems such as
the pole-residue formulation, BIBO stability, Gramians, bilinear Lyapunov equations and the
H2-norm. The generalization is based on the regular kernels and transfer functions.

Diagonal form and pole-residue formulation

Similar to the linear setting, we are able to transform a bilinear system into another state-space
realization via the transformation (3.9). This changes the realization from ζ=(A,Nj ,B,C,E)
to ζ̂= (OAT−1,ONjT

−1,TB,CT−1,OET−1) or to ζ̂= (TÃT−1,TÑjT
−1,TB̃,CT−1, I)

79
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in the explicit case. Again, important system-theoretic properties (like e.g. stability or input-
output behavior) remain invariant under such transformations.

To bring the system into diagonal form, we assume that the matrix Ã is diagonaliz-
able with distinct eigenvalues {λl}nl=1. We then employ the right eigenvectors in X for the
transformation via T = X−1. This yields the diagonalized system ζ̂=(Λ, N̂j , B̂, Ĉ, I)

ζ̂ :


ż(t) = Λz(t) +

m∑
j=1
N̂jz(t)uj(t) + B̂u(t), z(0) = X−1x0,

y(t) = Ĉz(t),

(5.2a)

(5.2b)

with the matrices
Λ = X−1E−1AX ⇔ E−1A = XΛX−1, Λ = D, [X, D] = eig(A,E), (5.3a)
N̂j = X−1E−1NjX, Njhat = X\(E\(Nj*X)), (5.3b)
B̂ = X−1E−1B, Bhat = X\(E\B), (5.3c)
Ĉ = CX, Chat = C*X . (5.3d)

The regular transfer function of the diagonalized system is given by

Ĝ
(j2,...,jk)
k,� (s1, . . . , sk) = Ĉ(skI−Λ)−1N̂jk

· · · N̂j3(s2I−Λ)−1N̂j2(s1I−Λ)−1B̂.

The pole-residue formulation can be easily obtained by exploiting the diagonal form. Writing
every term (skI−Λ)−1 explicitly using the inverse property yields [92, Röt18]:

Ĝ
(j2,...,jk)
k,� (s1, . . . , sk) =

n∑
l1=1
· · ·

n∑
lk=1

Φ(j2,...,jk)
l1,...,lk

k∏
`=1

(s` − λl`)
, j2, . . . , jk = 1, . . . , m. (5.4)

The matrix-residues are given by

Φ(j2,...,jk)
l1,...,lk

= ĉlk · n̂jklk,lk−1
· . . . · n̂j2l2,l1

· b̂T
l1 ∈ Cp×m, l1, . . . , lk = 1, . . . , n, (5.5)

where

Ĉ = [ĉ1, · · · , ĉn] ∈ Cp×n, B̂ =


b̂

T
1
...
b̂

T
n

 ∈ Cn×m and N̂j =

n̂j1,1 . . . n̂j1,n

... . . . ...
n̂jn,1 . . . n̂jn,n

 ∈ Cn×n.

To make the above statements more comprehensible, we want to provide some examples.

Example 5.1 (Pole-residue formulation for bilinear systems). Since the first transfer func-
tion is only dependent on one variable s1 and does not contain the bilinear term, we can
write the pole-residue formulation in the SISO case as follows

G1(s1) = ĉT(s1I−Λ)−1 b̂ =
n∑

l1=1

ĉl1 · b̂l1

s1 − λl1

, n1 residues φl1 = ĉl1 · b̂l1 .
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Each subsequent transfer function yields an additional factor n̂lk,lk−1 in the numerator.
Thus, we obtain nk residues and nk pole combinations due to each additional variable sk.

G�
2 (s1, s2) = · · · =

n∑
l1=1

n∑
l2=1

ĉl2 · n̂l2,l1 · b̂l1

(s1 − λl1) (s2 − λl2) , n2 residues φl1,l2 = ĉl2 · n̂l2,l1 · b̂l1

G�
3 (s1, s2, s3) = · · · =

n∑
l1=1

n∑
l2=1

n∑
l3=1

ĉl3 · n̂l3,l2 · n̂l2,l1 · b̂l1

(s1 − λl1) (s2 − λl2) (s3 − λl3) , n3 residues φl1,l2,l3

...

In the MIMO case, the partial-fraction decomposition looks as follows:

Ĝ
(j2,...,jk)
k,� (s1, . . . , sk) =

Φ(j2,...,jk)
1,...,1

(s1 − λ1) · · · (sk − λ1) + · · ·+
Φ(j2,...,jk)

n,...,n

(s1 − λn) · · · (sk − λn) . (5.6)

Note that the denominator of each summand is factored into the product of single-variable
polynomials. Despite the nk pole combinations, it is important to note that the bilinear
system possesses only n eigenvalues λ1, . . . , λn. M

Bounded-input bounded-output (BIBO) stability

In linear systems theory, we can evaluate the asymptotic/BIBO stability by simply investigat-
ing whether all eigenvalues/poles of the system lie in the open left-half plane, i.e. λ(E−1A) ⊂
C−. This criterion follows from the fact that the response (3.2) for zero/bounded input u(t)
decays for t→∞/is bounded, if the transition matrix eÃt contains only decaying exponentials.

Asymptotic stability for general nonlinear systems is usually analyzed in terms of an
equilibrium point xeq using a Lyapunov function V (xeq). Bounded-input bounded-output
(aka. input-to-state (ISS)) stability requires to quantify the effect of the input u(t) on the
stability. For special nonlinear system classes, such as polynomial systems, statements for
BIBO stability can be developed by exploiting e.g. the Volterra series representation.

As we have seen in (4.20) and Footnote 2, the Volterra series for bilinear systems (4.21)
converges for “small” bounded inputs. Similarly, sufficient conditions for BIBO stability can
be derived using the Volterra series representation (see [256], [Röt18]):

Theorem 5.1 (BIBO stability for bilinear systems). Let us consider a bilinear system ζ =
(A,Nj ,B,C,E) with the following assumptions:

1a. (A,E) is Hurwitz, i.e. λ(E−1A) ⊂ C−. The spectral abscissa λmax := maxi Re(λi) is
thus strictly negative.

1b. There exist β >0 and numerical abscissa λmax≤ α <0 satisfying: ‖eÃt‖≤β eαt, ∀t ≥ 0.
2. The inputs are bounded on [0,∞) such that ‖u(t)‖ =

√∑m
j=1 |uj(t)|2 ≤M with M > 0.

3. We set Γ := ∑m
j=1 ‖Nj‖.

Then, the solution x(t) or output y(t) of the bilinear system is bounded on [0,∞), if MβΓ
α < 1.

We can exploit the above theorem in two manners. On the one hand, we can determine
whether a bilinear system is BIBO stable for given inputs with bound M by checking the
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inequality Γ < α
Mβ . On the other hand, we can compute an upper bound ‖u‖∞ < α

Γβ for
inputs that would guarantee boundedness of the system’s outputs.

The conditions for BIBO stability of bilinear systems are implemented in the bsss function
isbstable. It first computes the spectral (isstable) and numerical abscissa (issd), as well
as the scalar Γ. Then, the algorithm either checks the stability condition Γ < α

Mβ for given
M , or returns an upper bound for the input.

sss function(s): isstable, issd, eigs
bsss function(s): isbstable

Gramians and bilinear Lyapunov equations

Similar to the linear case, the concepts of reachability and observability can be generalized
to bilinear systems. In the following, we revisit these properties and introduce the bilinear
Gramians and Lyapunov equations. [81, 221, 1, 26, 92]

A linear system is called controllable, if the controllability matrix (3.14) has full row
rank n. Similarly, we can define the (somewhat stronger) reachability of a bilinear system as
follows. Let R1 = B̃ and Rk =

[
ÃRk−1, Ñ1Rk−1, · · · , ÑmRk−1

]
for k = 2, . . . , n. Then,

the bilinear system ζ is reachable, if and only if Rn has full row rank, i.e. rank(Rn)=n.
According to [81, 1], the input-to-state part of the regular kernels is defined as

p1(t1) = eÃt1B̃, P 1(t1) = eÃt1B̃,

p
(j2,...,jk)
k (t1, . . . , tk) = eÃtkÑjk

· · · eÃt2Ñj2eÃt1B̃, P k(t1, . . . , tk) = eÃtk ¯̃N(Im ⊗ Pk−1).

Please note that ¯̃N = [Ñ1, · · · , Ñm] ∈ Rn×n·m and P k(t1, . . . , tk) ∈ Rn×mk . With this, we
can define the reachability Gramian P ∈ Rn×n as

P =
∞∑

k=1
P k, with (5.7)

P k =
∫ ∞

τ1=0
· · ·
∫ ∞

τk=0
P k(τ1, . . . , τk)P k(τ1, . . . , τk)T dτk · · · dτ1 (5.8)

=
∫ ∞

τ1=0
· · ·
∫ ∞

τk=0

m∑
j2=1
· · ·

m∑
jk=1

p
(j2,...,jk)
k (τ1, . . . , τk)p(j2,...,jk)

k (τ1, . . . , τk)T dτk · · · dτ1.

The bilinear system is reachable, if and only if the reachability Gramian is positive definite.
A linear system is called observable, if the observability matrix (3.14) has full column

rank n. Similarly, we can also define observability for bilinear system as follows. Let O1 =C
and Ok =

[
Ã

TOT
k−1, Ñ

T
1 OT

k−1, · · · , Ñ
T
m OT

k−1
]T

for k = 2, . . . , n. The bilinear system ζ is
observable, if and only if On has full column rank, i.e. rank(On) = n. According to [81, 1],
the state-to-output part of the regular kernels is defined in sum and Kronecker notation as

q1(t1) = eÃ
T
t1CT, Q1(t1) = eÃ

T
t1CT,

q
(j2,...,jk)
k (t1, . . . , tk) = eÃ

T
tkÑ

T
jk
· · · eÃ

T
t2Ñ

T
j2eÃ

T
t1CT, Qk(t1, . . . , tk) = eÃ

T
tk ¯̃N (2)(Im ⊗Qk−1).
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Please note that ¯̃N (2) = [ÑT
1 , · · · , Ñ

T
m] ∈ Rn×n·m and Qk(t1, . . . , tk) ∈ Rn×mk−1·p. Finally,

we define the observability Gramian Q̃ ∈ Rn×n as

Q̃ =
∞∑

k=1
Q̃k, with (5.9)

Q̃k =
∫ ∞

τ1=0
· · ·
∫ ∞

τk=0
Qk(τ1, . . . , τk)Qk(τ1, . . . , τk)T dτk · · · dτ1 (5.10)

=
∫ ∞

τ1=0
· · ·
∫ ∞

τk=0

m∑
j2=1
· · ·

m∑
jk=1

q
(j2,...,jk)
k (τ1, . . . , τk) q(j2,...,jk)

k (τ1, . . . , τk)T dτk · · · dτ1.

The bilinear system is observable, if and only if the observability Gramian is positive definite.
By definition, the sub-Gramians P k, Q̃k from (5.8) and (5.10) are symmetric and positive

semi-definite. However, the expressions (5.7) and (5.9) involve infinite sums. Thus, the series
may diverge, and consequently P and Q̃ may not exist. Fortunately, the following theorem
(due to Zhang and Lam [285]) provides sufficient conditions for the convergence of the infinite
series, and hence for the existence of the bilinear Gramians.

Theorem 5.2 (Convergence of bilinear Gramians). The reachability and observability Grami-
ans P and Q̃ given by the series (5.7) and (5.9) exist, if

1. (A,E) is Hurwitz. There exist β >0 and maxi Re(λi)≤α<0 with ‖eÃt‖≤β eαt, ∀t ≥ 0.

2. β2Γ2
N

2α < 1 or ΓN <
√

2α
β , where ΓN =

√
‖
∑m

j=1NjN
T
j ‖.

Now let us suppose that the above conditions hold and the bilinear Gramians (5.7) and
(5.9) exist. Then, it has been proved by [1] that P and Q (with Q̃ = ETQE) satisfy the
following bilinear Lyapunov equations

APET +EPAT +
m∑

j=1
NjPN

T
j = −BBT,

ATQE +ETQA+
m∑

j=1
NT

j QNj = −CTC.

(5.11a)

(5.11b)

In addition, every P k and Qk solves the corresponding linear Lyapunov equations

AP 1E
T +EP 1A

T = −BBT, AP kE
T +EP kA

T = −
m∑

j=1
NjP k−1N

T
j , k ≥ 2,

ATQ1E +ETQ1A = −CTC, ATQkE +ETQkA = −
m∑

j=1
NT

j Qk−1Nj , k ≥ 2.

(5.12a)

(5.12b)

Remark 5.1 (Solution of bilinear Lyapunov equations vs. existence of Gramians). As pointed
out in [285], it might happen that the Lyapunov equations (5.11) have a unique solution, al-
though the bilinear Gramians (5.7) and (5.9) do not exist/converge. In this case, the solutions
P and Q are not positive semi-definite and do not correspond to the reachability and observ-
ability Gramians. In other words: only if the bilinear Lyapunov equations (5.11) have unique,
positive (semi)-definite solutions P =P T � 0, Q=QT � 0, then (5.7) and (5.9) converge to
the reachability and observability Gramians. M
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Solving large-scale bilinear Lyapunov equations

In the context of Lyapunov equations for bilinear systems one has to distinguish between two
different strategies. On the one hand, we can solve the bilinear Lyapunov equations (5.11) to
compute the infinite Gramians P and Q̃. On the other hand, one can also solve the cascaded
sequence of linear Lyapunov equations (5.12) to calculate the so-called truncated Gramians
P 1:N = ∑N

k=1P k and Q̃1:N = ∑N
k=1 Q̃k. Depending on the convergence of the Volterra series

for the bilinear system at hand, it might be necessary to consider the whole series or it can
be sufficient to take only the leading N subsystems into account.

There exist several approaches to solve the bilinear Lyapunov equations (5.11). The most
straightforward method consists in reformulating them as linear systems of n2 equations using
the vectorization property (2.13). This yields:E ⊗A+A⊗E +

m∑
j=1
Nj ⊗Nj

 vec (P ) = −vec
(
BBT

)
, (5.13a)

ET ⊗AT +AT ⊗ET +
m∑

j=1
NT

j ⊗NT
j

 vec (Q) = −vec
(
CTC

)
. (5.13b)

These LSEs can then be solved by direct methods (e.g. \), followed by reshaping vec(P )
and vec(Q) into respective n × n matrices. This simple procedure is implemented in the
bsss function blyap. However, this approach is only suitable for small-scale systems due to
the heavily increasing dimension of the vectorized matrices (n2 × n2) and its associated huge
storage effort. Hence, tensorized low-rank versions of well-known iterative LSE solvers (e.g.
CG, GMRES) should be applied in the large-scale setting (see [150, 21] for more details).

Another approach consists in generalizing low-rank matrix equation solvers like the LR-
ADI and the EKSM/RKSM (cf. Section 2.4) to the bilinear case [77, 21], [45, Sec. 4.4]. These
methods have not been implemented in the bsss toolbox so far. Nevertheless, we believe that
the Krylov methods implemented for reduction purposes in Sections 5.3 and 5.4 can facilitate
the implementation of EKSM/RKSM for Lyapunov equation purposes. Crucial is also the
low-rank implementation of the bilinear residual Resk (cf. Eq. (2.41)) as stopping criterion

Resk = AV kP r,kV
T
k E

T +EV kP r,kV
T
k A

T +
m∑

j=1
NjV kP r,kV

T
k N

T
j +BBT, (5.14)

with the approximate solution P̂ k =V kP r,kV
T
k and the solution P r,k of the reduced bilinear

Lyapunov equation at step k.
A further scheme for solving bilinear Lyapunov equations is presented in [257]. The

main idea of the proposed method is to calculate an approximate solution by generating a
(stationary) sequence of solutions P k via the fixed-point iteration

LA(P 1) = −BBT ⇐⇒ AP 1E
T +EP 1A

T = −BBT,

LA(P k) = −Π(P k−1)−BBT ⇐⇒ AP kE
T +EP kA

T = −BkB
T
k , k = 2, . . .

(5.15)

with LA(P ) :=APET +EPAT and ΠN (P ) :=∑m
j=1NjPN

T
j . The iteration is expected to

converge to the positive semi-definite solution P of (5.11a), if λ(LA) ⊂ C− and the spectral
radius ρ(L−1

A ΠN ) < 1. The linear Lyapunov equations (5.15) are then solved for the low-
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rank factor P k ≈ ZkZ
T
k , where the right-hand side reads Bk = [N1Zk−1, · · · ,NmZk−1, B].

Consequently, the procedure is composed of two stages. In an inner loop, the linear Lyapunov
equations are solved iteratively via conventional LR-ADI or RKSM to obtain the current low-
rank factor Zk. In an outer loop, the previous factor Zk−1 is employed to update the right-
hand side −BkB

T
k for the next Lyapunov equation, as well as to evaluate the norm ‖BkB

T
k ‖

and/or ‖P k − P k−1‖ for the stopping criterion. The whole scheme has been implemented in
the bsss function blyapchol during the semester thesis [Hei17]. The main framework – with
inner/outer loop, matrix truncation T

(
ΠN (Zk−1)−BBT) and adaptive residual tolerance – is

contained in blyapchol. The algorithm then calls the sss function lyapchol (i.e. mess_lradi
or crksm) to solve the linear Lyapunov equations within the inner loop. In this regard, our
algorithm is more general, modular and flexible than the proposed one [257], since it can
exploit all features implemented in mess_lradi or crksm (e.g. shifts adaption). The reader
is referred to [Hei17] for more implementation details and for numerical examples.

Instead of solving the bilinear Lyapunov equations (5.11), one can alternatively solve
the cascaded series of linear Lyapunov equations (5.12) until the truncation index N . The
functions mess_lradi or crksm integrated in lyapchol can again be exploited to solve these
linear Lyapunov equations. Although this procedure is generally more efficient than solving
the bilinear equations, note that it only yields truncated Gramians. Both the computational
effort and the obtained accuracy basically depend on the number N of considered subsystems.
One way to determine an appropriate truncation index N consists in substituting the trun-
cated Gramian P 1:N =∑N

k=1P k into the bilinear Lyapunov equation to compute the norm of
Res1:N =AP 1:NE

T + EP 1:NA
T +∑m

j=1NjP 1:NN
T
j +BBT. If ‖Res1:N‖ < tol for small

tolerance, then we can stop considering more subsystems. Since the computation of the true
norm ‖Res1:N‖ is expensive, one can also try the heuristic measure ‖PN − PN−1‖ or the
difference between the cumulative sums ‖P 1:N − P 1:N−1‖.

sss function(s): lyapchol (mess_lradi, crksm)
bsss function(s): blyap, blyapchol

System norms

We now discuss system norms for bilinear systems, which will later allow us to measure the
difference between full- and reduced-order model. Since we are particularly interested in
H2-optimal model reduction approaches, in the following we only focus on the H2-norm.

L2-norm (time-domain)

Similar to the linear case (cf. Eq. (3.19)), the time-domain L2-norm of a MIMO bilinear
system ζ is defined as [285, 92]

‖ζ‖2L2
=

∞∑
k=1

∫ ∞

τ1=0
· · ·
∫ ∞

τk=0

m∑
j2=1
· · ·

m∑
jk=1

∥∥g(j2,...,jk)
k,� (τ1, . . . , τk)

∥∥2
F dτ1 · · · dτk. (5.16)

Hereby, ‖g(j2,...,jk)
k,� (τ1, . . . , τk)‖F denotes the Frobenius norm of the k-th regular kernel (4.39).

Obviously, the L2-norm exists only if the Volterra series converges, i.e. if the bilinear system
ζ is BIBO stable and consequently the Gramians exist. In such case, we can use the link
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between the Frobenius norm and the trace of a matrix
∥∥K∥∥2

F = tr(KKT) = tr(KTK) to
express the L2-norm in terms of the reachability and observability Gramians. This yields:

‖ζ‖2L2
=

∞∑
k=1

tr
( m∑

j2=1
· · ·

m∑
jk=1

∫ ∞

τ1=0
· · ·
∫ ∞

τk=0
g

(j2,...,jk)
k,� (τ1, . . . , τk) g(j2,...,jk)

k,� (τ1, . . . , τk)T dτ1 · · · dτk

)

= tr
(
C

∫ ∞

τ1=0
eÃτ1B̃B̃

TeÃ
T

τ1 dτ1︸ ︷︷ ︸
P 1

CT
)

+ tr
(
C

∫ ∞

τ1=0

∫ ∞

τ2=0

m∑
j2=1

eÃτ2Ñj2eÃτ1B̃B̃
TeÃ

T
τ1Ñ

T
j2eÃ

T
τ2 dτ1 dτ2︸ ︷︷ ︸

P 2

CT
)

+ . . .

= tr
(
CPCT

)
. (5.17)

Thus, we can compute the L2-norm with the reachability Gramian (5.7). Similarly, it holds

‖ζ‖2L2
=

∞∑
k=1

tr
( m∑

j2=1
· · ·

m∑
jk=1

∫ ∞

τ1=0
· · ·
∫ ∞

τk=0
g

(j2,...,jk)
k,� (τ1, . . . , τk)Tg

(j2,...,jk)
k,� (τ1, . . . , τk) dτ1 · · · dτk

)

= tr
(
B̃

T
Q̃B̃

)
= tr

(
BTQB

)
, (5.18)

where Q=E−TQ̃E−1 represents the observability Gramian (5.9). In other words: provided
that the Gramians exist, the time-domain L2-norm of a bilinear system ζ can be computed
by solving one of the bilinear Lyapunov equations (5.11).

H2-norm (frequency-domain)

According to [92], the Hardy space H2 can also be generalized to bilinear systems. This yields
the H2-norm

‖ζ‖2H2
=

∞∑
k=1

sup
x1>0,...,xk>0

∞∫
y1=−∞

· · ·
∞∫

yk=−∞

∥∥G�
k (x1 + iy1, . . . , xk + iyk)

∥∥2
F dy1 · · · dyk, (5.19)

where G�
k (s1, . . . , sk) denotes the k-th regular transfer function (4.43) that is analytic in Ck

+.
If (A,E) is Hurwitz, i.e. λ(E−1A) ⊂ C−, then the Phragmen-Lindelöf principle states that
the H2-norm ‖ζ‖2H2

is equivalent to the frequency-domain L2-norm ‖ζ‖2
L2(iR)

on the imaginary
axis. Applying again the relation

∥∥G�
k (s1, . . . , sk)

∥∥2
F = tr

(
G�

k (s1, . . . , sk)G�
k (s1, . . . , sk)T

)
=

tr
(
G�

k (s1, . . . , sk)TG�
k (s1, . . . , sk)

)
, we can rewrite (5.19) in sum notation as

‖ζ‖2H2
=

∞∑
k=1

1
(2π)k

tr
( m∑

j2=1
· · ·

m∑
jk=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
G

(j2,...,jk)
k,� (iω1, . . . , iωk) (5.20)

×G(j2,...,jk)
k,� (−iω1, . . . ,−iωk)T dω1 · · · dωk

)
.
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Due to Parseval-Plancherel’s theorem, the frequency-domain and time-domain L2-norms are
also equivalent. In short: [92]

‖ζ‖2H2
= ‖ζ‖2

L2(iR)
= ‖ζ‖2

L2[0,∞)
.

The H2-norm of a bilinear system can also be expressed in pole-residue formulation. While
this has been stated for the SISO case in several publications (e.g. [92], [45]), the MIMO case
has not been considered so far. Following the SISO derivation in [92] and making use of the
matrix-residues (5.5), we can state our new result:

‖ζ‖2H2
=

∞∑
k=1

n∑
l1=1
· · ·

n∑
lk=1

m∑
j2=1
· · ·

m∑
jk=1

n̂jklk,lk−1
· . . . · n̂j2l2,l1

ĉT
lk
G

(j2,...,jk)
k,� (−λl1 , . . . ,−λlk)b̂l1 . (5.21)

Truncated H2-norm

There are again two different ways to proceed in order to compute the H2-norm of a bi-
linear system. On the one hand, we can solve one of the bilinear Lyapunov equations
(5.11) to calculate the infinite H2-norm (bnorm, blyap, blyapchol). On the other hand,
we can consider only the first N terms of the Volterra series and define a truncated H2-norm
‖ζ‖2H2,1:N = tr(CP 1:N C

T) = tr(BTQ1:NB) using the truncated Gramians P 1:N orQ1:N from
(5.12). The series in (5.21) can also be truncated to calculate the H2-norm. This involves
the computation of (a few) eigenvalues λlk with their corresponding ĉT

lk
, b̂lk and n̂jklk,lk−1

(eigs), together with the evaluation of the transfer functions G(j2,...,jk)
k,� (s1, . . . , sk) at several

combinations of the mirrored eigenvalues (\).

sss function(s): norm (lyapchol)
bsss function(s): bnorm (blyap, blyapchol)

5.2 Bilinear model order reduction

Bilinear systems have been mainly reduced so far using the same projection-based framework
as for LTI systems (cf. Section 3.2). In this section, we first describe this projective reduction
approach for bilinear systems, introduce the error system and then focus on two different
strategies to compute the reduction bases needed for projection.

Let us assume that the state vector x(t) ∈ Rn of the bilinear system (5.1) mainly evolves
in a linear r-dimensional subspace V = ran(V ) spanned by the full column rank matrix
V ∈ Rn×r. Inserting the ansatz (3.26) with x(t) = V xr(t) + e(t) into (5.1a) yields an
overdetermined system

EV ẋr(t) = AV xr(t) +
m∑

j=1
NjV xr(t)uj(t) +Bu(t) + ε(t), (5.22)

with the residual ε(t)=Ae(t)−Eė(t)+∑m
j=1Nje(t)uj(t) ∈ Rn. To obtain a well-determined

ROM, we project the resulting system onto the subspace U = ran(EV ) orthogonally to an-
other subspace W = ran(W ) spanned by the full rank matrix W ∈ Rn×r. This is done by
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premultiplying the overdetermined system (5.22) with the projector Π=EV (W TEV )−1W T,
where W TEV is assumed non-singular:

Π
(
EV ẋr(t)−AV xr(t)−

m∑
j=1
NjV xr(t)uj(t)−Bu(t)

︸ ︷︷ ︸
=ξ
(
V xr(t),u(t)

)
−ε(t)

)
= 0 ⇔ Π

(
ξ
(
·, ·
)
− ε(t)

)
= 0.

Enforcing the Petrov-Galerkin condition W Tε(t)=0, which implies Πε(t)=0, only the term
Π ξ

(
·, ·
)
=0 remains. Omitting the preceding factor EV (W TEV )−1 finally yields the ROM

ζr :


Er ẋr(t) = Ar xr(t) +

m∑
j=1
Nj,r xr(t) uj(t) +Br u(t), xr(0) = xr,0,

yr(t) = Cr xr(t),

(5.23a)

(5.23b)

with reduced matrices Er = W TEV , Ar = W TAV , Nj,r = W TN jV for j = 1, . . . m,
Br =W TB and Cr =CV , as well as the initial condition xr(0) = (W TEV )−1W TEx(0).
Similar to the full-order model (5.1), the abbreviation ζr = (Ar,Nj,r,Br,Cr,Er) will denote
the reduced bilinear system (5.23) in the following.

The main task in this setting consists in computing suitable reduction bases V ,W ∈ Rn×r

to construct the reduced model in a projective manner. As in the linear case, the specific choice
of the bases (e.g. real-valued, orthonormal, biorthonormal) can be exploited for numerical
reasons, but does not affect the spanned subspaces V,W. Furthermore, we may perform
either an orthogonal Galerkin projection with ran(W )=ran(V ) or an oblique Petrov-Galerkin
projection with ran(W ) 6=ran(V ) depending on the desired accuracy or system properties of
the ROM. Since the assessment of the approximation quality of bilinear ROMs is a little
different than in the linear case, we will focus on this in the following.

Error system and error system norms

The most straightforward way to measure the accuracy of a bilinear ROM is by means of
the output error ey(t) := y(t) − yr(t) or state error ex(t) := x(t) − V xr(t) in time-domain
(cf. Section 2.6). This, however, involves the simulation of both systems for a test input
signal utest(t) and only delivers an error measure for that specific input. Another conceivable
approach could be to calculate the error between the k-th full- and reduced transfer func-
tions using the point-wise in frequency measure ‖G�

k (iω1, . . . , iωk)−G�
k,r(iω1, . . . , iωk)‖(∗) (cf.

Eq. (3.31)). Nevertheless, the number of frequency point combinations rapidly grows by the
power k and only a finite number N of subsystems can be considered.

Similar to the linear case, it would be desirable to define a bilinear error system with its
system norm such that the overall approximation error can be quantified without performing
simulation runs for certain inputs. Fortunately, this is possible thanks to the Volterra series
representation and the generalized system-theoretic concepts presented in the previous section.

The bilinear error system is defined as ζe := ζ − ζr = (Ae,Nj,e,Be,Ce,Ee), where

Ee =
[
E 0
0 Er

]
, Ae =

[
A 0
0 Ar

]
, Nj,e =

[
Nj 0
0 Nj,r

]
, Be =

[
B
Br

]
, Ce =

[
C −Cr

]
.
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The error between FOM and ROM can then be measured norm-wise in frequency-domain by
‖ζe‖2Hp

= ‖ζ − ζr‖2Hp
, where we consider here only the H2-norm. By applying the definition

together with the expressions (5.17) and (5.18), we can write the H2-error as [285]

‖ζe‖2H2
= tr

(
CeP eC

T
e
)

= tr
(
BT

e QeBe
)

, (5.24)

where P e and Qe are obtained by solving the bilinear Lyapunov equations

AeP eE
T
e +EeP eA

T
e +

m∑
j=1
Nj,eP eN

T
j,e = −BeB

T
e , (5.25a)

AT
e QeEe +ET

e QeAe +
m∑

j=1
NT

j,eQeNj,e = −CT
e Ce. (5.25b)

Again, one can solve either the bilinear Lyapunov equations (5.25) to compute the infinite
H2-error ‖ζe‖2H2

or consider only the first N subsystems to calculate the truncated H2-error
‖ζe‖2H2 ,1:N = tr(CeP e,1:NC

T
e ) = tr(BT

eQe,1:NBe). Note that this latter approach is equivalent
to the computation and summation over the norm-wise errors ‖G1−G1,r‖H2 = tr(CeP e,1C

T
e ),

‖G�
2 −G�

2,r‖H2 = tr(CeP e,2C
T
e ), . . . , ‖G�

N −G�
N,r‖H2 = tr(CeP e,NC

T
e ).

To the best of the author’s knowledge, a relation between the H2-error norm in frequency-
domain and the output error in time-domain similar to (3.35) has not been derived for bilinear
systems yet. However, precisely such an inequality would be helpful in order to interpret the
measure ‖ζe‖H2

as an upper bound for the output error.

5.2.1 Bilinear balanced truncation

One possible way to compute the reduction bases V ,W needed for projection is given by
the method of balanced truncation (cf. Section 3.3.2). This approach was first generalized to
bilinear systems in [1] based on the algebraic Gramians defined in [81] (cf. Eqs. (5.7), (5.9)).

Luckily, the idea of bringing the bilinear system into a balanced realization ζbal =
(TAT−1,TNjT

−1,TB,CT−1,TET−1), where the Gramians P = Q̃ = Σ = diag(ς1, . . . , ςn)
are equal and diagonal with ςi :=

√
λi(PETQE), remains the same as in the linear case.

Unfortunately, the assessment of controllability and observability via energy measures is much
more complicated in the nonlinear case [239]. In fact, the energy functions Jc(x) and Jo(x)
for bilinear systems should satisfy certain nonlinear partial differential equations, with gradi-
ents ∂Jc(x)

∂x =P (x)−1x and ∂Jo(x)
∂x =Q(x)x given in terms of state-dependent Gramians1 [102].

The algebraic bilinear Gramians P , Q̃ from (5.7), (5.9) cannot exactly determine the energy
functions Jc(x) and Jo(x). Nonetheless, they can at least provide bounds on the energy func-
tions for sufficiently small inputs (cf. [102, 26]). However, as observed in [66], these Gramians
are not invariant under time-scaling (t→ ατ) and input-scaling (u→ γuγ) transformations.
Therefore, [66] proposed an alternative formulation for algebraic Gramians by introducing a
parameter ξ in the bilinear Lyapunov equations (5.11). Despite this reasonable approach to
account for important invariant properties and the nonlinear behavior, it should be noted that
balanced truncation based on the algebraic Gramians (5.7) and (5.9) has established instead.
Only in case of convergence issues, a rescaling of the system is performed (cf. Remark 5.2).

1The reader is referred to [Hei17, Sec. 2.2.3] and [Hei18, Ch. 4] for further details on these and related topics.
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Bilinear balanced truncation (btbr) consists of the same three steps described in Algo-
rithm 3.1, where in step 1 the bilinear Lyapunov equations (5.11) should be solved instead.
For this, the implemented bsss functions blyap or blyapchol can be used, whereas the latter
provides low-rank factors for the bilinear Gramians. Similar as with the H2-norm, it is also
conceivable to perform truncated bilinear balanced truncation (tb_tbr) by considering only
the truncated Gramians P 1:N andQ1:N from the Lyapunov equations (5.12). These equations
can be easily solved with the sss function lyapchol.

In the author’s opinion, btbr constitutes a more sound extension of balanced truncation
to the bilinear setting, and should therefore generally yield better and more global results than
tb_tbr. Although tb_tbr is computationally cheaper and has sometimes even outperformed
the accuracy of btbr in numerical examples [103, Sec. 3.4, 3.5], its performance crucially
depends on the exciting input amplitude and the number N of considered subsystems. This
should be investigated in detail with more realistic FE examples in the future, in order to
assess the applicability of tb_tbr. The author of this thesis also pleads for a fair comparison
between both approaches by using the same low-rank matrix equation solver within blyapchol
for (5.11) and lyapchol for (5.12). This can be easily accomplished with our flexible and
modular implementations, which exploit either mess_lradi or crksm.

Finally, note that bilinear balanced truncation does not necessarily yield a balanced ROM.
Moreover, unlike the linear case, it is not possible to quantify the error in terms of the singular
values ςi with a similar bound as in (3.42). After all, in the nonlinear case it seems difficult to
get a computationally feasible method, which also provides all theoretically useful properties.
Remark 5.2 (Rescaling of bilinear system). We have discussed sufficient conditions for BIBO
stability and convergence of the bilinear Gramians in Theorems 5.1 and 5.2, respectively. In
general terms, the convergence depends on the input’s amplitude and the norms ‖Nj‖. If
the bilinear system ζ at hand does not fulfill these conditions, then the Gramians do not
exist and the solutions P , Q of the bilinear Lyapunov equations are indefinite. However, we
may scale the system as ζ → ζγ = (A, γNj , γB,C,E) via the input u(t) → γuγ(t), where
γ > 0 is chosen sufficiently small to guarantee the existence of the Gramians [26]. Then,
the computation of the reduction matrices V ,W can be carried out based on ζγ , while the
original behavior can be recovered by applying the input 1

γu(t) to the FOM ζ and ROM ζr.
This technique has been applied in the context of bilinear balanced truncation, and also in
the field of H2-optimal reduction, to enable the analysis of a broader set of bilinear systems.
Note, however, that the analysis is then confined to a small signal behavior. M

5.2.2 Bilinear Krylov-based reduction

Another way of reducing bilinear systems consists in applying Krylov- or interpolation-based
techniques. In this context, three different approaches known from the linear case have been
successfully extended to the bilinear setting.

1. Rational Krylov: Extension of moment matching and Krylov subspaces based on regular
transfer functions. Two different concepts can be distinguished:

• Subsystem interpolation: Interpolation of some transfer functions [205, 47, 25]
• Volterra series interpolation: Interpolation of the whole Volterra series [91, 2]

2. H2-optimal reduction: Extension of optimality conditions and algorithms [285, 20, 91]
3. Loewner framework: Extension of low-order identification approach using frequency- or

time-domain data [92, Ch. 6], [4, 143]
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Since system identification is not topic of this thesis, we will focus only on the methods 1 and
2 in the sequel. In general, all mentioned Krylov approaches rely (in one way or another)
on the concepts of transfer functions, moments, H2-norm and Sylvester equations. Especially
the idea of subsystem interpolation is heavily based on the moments of the regular transfer
functions (4.40). Thus, similar to Definition 3.4, we first revisit the concept of multimoments
and Markov parameters of bilinear systems [205, 25].

Definition 5.1 (Multimoments of bilinear systems). Let G(j2,...,jk)
k,� (s1, . . . , sk) be the k-th

regular transfer function of a bilinear system ζ. Performing a multi-variate series expansion
for every variable (s1, . . . , sk) around the expansion points (σ1, . . . , σk) yields [25]

G
(j2,...,jk)
k,� (s1, . . . , sk) =

∞∑
`1=0
· · ·

∞∑
`k=0

m
(j2,...,jk)
(`1,...,`k)(σ1, . . . , σk) (s1 − σ1)`1 · · · (sk − σk)`k ,

where the multimoments m(j2,...,jk)
(`1,...,`k)(σ1, . . . , σk) are given (with ` = `1 + · · ·+ `k) by

m
(j2,...,jk)
(`1,...,`k)(σ1, . . . , σk) = 1

`!
∂`1+···+`k

∂s`1
1 . . . ∂s`k

k

G
(j2,...,jk)
k,� (s1, . . . , sk)

∣∣∣∣∣
s1=σ1,...,sk=σk

(5.26)

= (−1)`C
(
(σkE −A)−1E

)`k

(σkE −A)−1Njk
· · ·Nj2

(
(σ1E −A)−1E

)`1
(σ1E −A)−1B.

Alternatively, we may expand the transfer function at σk → ∞ (which is equivalent to ex-
panding the kernels g(j2,...,jk)

k,� (t1, . . . , tk) at tk =0) to gain

G
(j2,...,jk)
k,� (s1, . . . , sk) =

∞∑
`1=0
· · ·

∞∑
`k=0

m
(j2,...,jk)
(`1,...,`k),∞

1
s`1+1

1
. . .

1
s`k+1

k

,

where the Markov parameters (aka. high-frequency moments) satisfy

m
(j2,...,jk)
(`1,...,`k),∞ = C

(
E−1A

)`k

E−1Njk
· · ·E−1Nj2

(
E−1A

)`1
E−1B. (5.27)

N

Note that this definition corresponds to the frequency-domain interpretation of moments.
The corresponding time-domain perception of moment matching for bilinear systems will be
discussed in Section 8.4.

In the following, we will concentrate on the methods of subsystem interpolation (cf. Sec-
tion 5.3) and Volterra series interpolation (cf. Section 5.4). In the literature, these two ap-
proaches have been primarily discussed for the SISO and multipoint case. Thus, our focus lies
on the MIMO setting as well as on generalizing the ideas to the multimoment case. The main
motivation for this endeavor is the goal of obtaining the same flexibility and customizability
known from linear moment matching. Moreover, we want to provide more insight into the
meaning and importance of the interpolation data to raise the awareness and empowerment
of practitioners.
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5.3 Subsystem interpolation

The idea of subsystem interpolation consists in matching the (multi)moments of the leading
k-th subsystem transfer functions at specific expansion points. This problem was first investi-
gated in [205] for SISO bilinear systems, where the multimoments at infinity σk →∞ (i.e. the
Markov parameters) were considered. Then, the methodology was extended to multimoments
at zero σk = 0 (aka. low-frequency moments) in [47]. Finally, the concept was generalized
to any given interpolation point σk ∈ C \ λ(E−1A) in [25]. Based on these publications, the
main theorems for multimoment subsystem interpolation of SISO bilinear systems are stated
in the following.

Theorem 5.3 (Multimoment subsystem interpolation (SISO)). Let ζ =(A,N , b, cT,E) be a
SISO bilinear system. Let the expansion points {σk, µk}Nk=1 ∈ C \ λ(E−1A) be given. Let the
matrices V and W be constructed as follows:

ran(V (1)) ⊆ Kq

(
(σ1E −A)−1E, (σ1E −A)−1b

)
, V (1) ∈ Rn×q,

ran(V (k)) ⊆ Kq

(
(σkE −A)−1E, (σkE −A)−1NV (k−1)

)
, V (k) ∈ Rn×qk

, k ≥ 2
(5.28)

and

ran(W (1)) ⊆ Kq

(
(µ1E −A)−TET, (µ1E −A)−Tc

)
, W (1) ∈ Rn×q, (5.29)

ran(W (k)) ⊆ Kq

(
(µkE −A)−TET, (µkE −A)−TNTW (k−1)

)
, W (k) ∈ Rn×qk

, k ≥ 2

with

ran(V ) ⊆
N⋃

k=1
colspan{V (k)}, ran(W ) ⊆

N⋃
k=1

colspan{W (k)}, V ,W ∈ Rn×rtot , (5.30)

where the total number of columns is, in case of no deflation, equal to rtot =∑N
k=1 qk. Then,

the reduced bilinear model ζr =(W TAV ,W TNV ,W Tb, cTV ,W TEV ) satisfies the following
multimoment subsystem interpolation conditions (SISO):

m(`1,...,`k)(σ1, . . . , σk) = mr,(`1,...,`k)(σ1, . . . , σk), (5.31a)
m(`1,...,`k)(µk, . . . , µ1) = mr,(`1,...,`k)(µk, . . . , µ1), (5.31b)

for `1, . . . , `k = 0, . . . , q − 1 and k = 1, . . . , N . In other words, the ROM interpolates the
first N transfer functions and its high-order derivatives at the selected shifts, respectively. If
both (5.28) and (5.29) are employed with σ1 = µk, σ2 = µk−1, . . . , σk = µ1, then the number of
matched multimoments doubles: m(`1,...,`k)(σ1, . . . , σk)=mr,(`1,...,`k)(σ1, . . . , σk) for `1, . . . , `k =
0, . . . , 2q − 1 and k =1, . . . , N .

Remark 5.3 (Markov parameters in subsystem interpolation). In order to match the Markov
parameters (5.27) of the k-th transfer functions, the projection matrices should be chosen as

ran(V (1)) ⊆ Kq

(
E−1A, E−1b

)
, V (1) ∈ Rn×q,

ran(V (k)) ⊆ Kq

(
E−1A, E−1NV (k−1)

)
, V (k) ∈ Rn×qk

, k ≥ 2
(5.32)
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and

ran(W (1)) ⊆ Kq

(
E−TAT, E−Tc

)
, W (1) ∈ Rn×q,

ran(W (k)) ⊆ Kq

(
E−TAT, E−TNTW (k−1)

)
, W (k) ∈ Rn×qk

, k ≥ 2,
(5.33)

If case of a one-sided reduction with V =[V (1), · · · ,V (k)] or W =[W (1), · · · ,W (k)], the ROM
ζr fulfills m(`1,...,`k),∞ = mr,(`1,...,`k),∞ for `1, . . . , `k =0, . . . , q− 1. If both (5.32) and (5.33) are
chosen, then m(`1,...,`k),∞ = mr,(`1,...,`k),∞ for `1, . . . , `k =0, . . . , 2q − 1. M

As in the linear case, the projection matrix W can be used for stability purposes (see [25] for
an approach based on 2), or to increase the number of matched multimoments via a two-sided
reduction (cf. proof in [25]). We will follow the latter approach to gain a better accuracy.

In addition to the afore explained multimoment matching strategy, it is again possible to
match (high-order) moments at a set of different shifts {σlk}

r
lk=1 and {µlk}

r
lk=1 with associated

multiplicities {qlk}
r
lk=1. In the case of the second subsystem, this leads to:

∂`1+`2

∂s`1
1 s`2

2
G2,�(σl1 , σl2) = ∂`1+`2

∂s`1
1 s`2

2
G2,r,�(σl1 , σl2) ⇔ m(`1,`2)(σl1 , σl2) = mr,(`1,`2)(σl1 , σl2),

∂`1+`2

∂s`1
1 s`2

2
G2,�(µl2 , µl1) = ∂`1+`2

∂s`1
1 s`2

2
G2,r,�(µl2 , µl1) ⇔ m(`1,`2)(µl2 , µl1) = mr,(`1,`2)(µl2 , µl1),

with `k = 0, . . . , qlk − 1, lk = 1, . . . , r and k = 1, . . . , N . Note that the indices `k represent
the multiplicity of the high-order moments, whereas lk stand for the shifts selection. The
combination of both concepts (multimoment + multipoint) within the subsystem interpolation
framework allows to customize the reduction such that the desired interpolation conditions
and total reduced order are achieved. This is illustrated in the following example.

Example 5.2 (Multimoment+multipoint subsystem interpolation (SISO)). Let us con-
sider an example, where we want to match the (multi)moments of the first and second
subsystem (N =2) at two expansion points σ1 and σ2.

1st subsystem We want to match the following moments of the first transfer function:

m(0)(σ1) = mr,(0)(σ1), m(1)(σ1) = mr,(1)(σ1), m(0)(σ2) = mr,(0)(σ2).

These conditions are fulfilled, if we construct the projection matrix V (1) as follows:

V (1) =
[
A−1

σ1 b, A
−1
σ1 EA

−1
σ1 b, A

−1
σ2 b

]
.

2nd subsystem Now let us assume that we want to match the following multimoments
of the second transfer function at certain desired shift combinations:

m(0,0)(σ1, σ1)=mr,(0,0)(σ1, σ1), m(1,0)(σ1, σ1)=mr,(1,0)(σ1, σ1), m(0,0)(σ2, σ1)=mr,(0,0)(σ2, σ1),
m(0,0)(σ1, σ2)=mr,(0,0)(σ1, σ2), m(1,0)(σ1, σ2)=mr,(1,0)(σ1, σ2), m(0,0)(σ2, σ2)=mr,(0,0)(σ2, σ2),
m(0,1)(σ1, σ2)=mr,(0,1)(σ1, σ2), m(1,1)(σ1, σ2)=mr,(1,1)(σ1, σ2), m(0,1)(σ2, σ2)=mr,(0,1)(σ2, σ2).
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These conditions are fulfilled by constructing V (2) as

V (2) =
[
A−1

σ1 NA
−1
σ1 b, A

−1
σ1 NA

−1
σ1 EA

−1
σ1 b, A

−1
σ1 NA

−1
σ2 b,

A−1
σ2 NA

−1
σ1 b, A

−1
σ2 NA

−1
σ1 EA

−1
σ1 b, A

−1
σ2 NA

−1
σ2 b

A−1
σ2 EA

−1
σ2 NA

−1
σ1 b, A

−1
σ2 EA

−1
σ2 NA

−1
σ1 EA

−1
σ1 b, A

−1
σ2 EA

−1
σ2 NA

−1
σ2 b

]
.

Concatenating V (1) and V (2) finally yields the projection matrix

V =
[
V (1), V (2)

]
∈ Rn×12,

which ensures the desired moment matching conditions with rtot =12. M

5.3.1 MIMO subsystem interpolation

The concept of subsystem interpolation can be extended to MIMO bilinear systems. The
key step towards the generalization consists in understanding that the k-th transfer matrix
G�

k (s1, . . . , sk) ∈ Rp×mk from (4.43) contains all mk−1 combinations G(j2,...,jk)
k,� (s1, . . . , sk) ∈

Rp×m for the indices (j2, . . . , jk) (cf. Example 4.3). Once this has been assimilated, the idea
is to match the (multi)moments of these p-by-m transfer functions.

Subsystem interpolation for MIMO bilinear systems has been investigated in some pub-
lications. In [158], block Krylov subspaces are employed to match the low-frequency mul-
timoments (σk = 0) of every (j2, . . . , jk) combination G(j2,...,jk)

k,� (s1, . . . , sk). This has been
generalized to the case of tangential interpolation at arbitrary shifts in [23] and [92, Sec. 3.3].

In this thesis, we distinguish between two different strategies for MIMO subsystem inter-
polation. The first strategy (MIMO-1) corresponds to the publications just mentioned, where
momentsm(j2,...,jk)

(`1,...,`k)(σ1, . . . , σk) for every (j2, . . . , jk) transfer functionG(j2,...,jk)
k,� (s1, . . . , sk) are

matched individually. Motivated by the bilinear Sylvester equations (5.51) and Section 5.4.1
we propose a second strategy (MIMO-2), where moments∑m

j2=1· · ·
∑m

jk=1m
(j2,...,jk)
(`1,...,`k)(σ1, . . . , σk)

over summed combinations (j2, . . . , jk) are matched instead. In the following, we will further
explain both strategies for the tangential multipoint case with ql1 = . . . = qlk = 1. Similar
considerations hold also for the block and multimoment cases.

MIMO-1 subsystem interpolation

The idea is to match the momentsm(j2,...,jk)
(`1,...,`k)(σ1, . . . , σk) for every (j2, . . . , jk) transfer function

G
(j2,...,jk)
k,� (s1, . . . , sk) individually. This is achieved as follows. [158, 23, 92]

Theorem 5.4 (Tangential multipoint subsystem interpolation (MIMO-1)). Let ζ be a MIMO
bilinear system with N̄ = [N1, · · · ,Nm] ∈ Rn×n·m and N̄ (2) = [NT

1 , · · · ,NT
m] ∈ Rn×n·m.

Let the shifts {σlk , µlk}rlk=1 ∈ C \ λ(E−1A) be given. Moreover, let {rl1}rl1=1 ∈ Cm and
{ll1}rl1=1 ∈ Cp be right and left tangential directions, respectively. Let the matrices V and W
be constructed as follows:

ran(V (1)) ⊆ K1
(
(σl1E −A)−1E, (σl1E −A)−1B rl1

)
, V (1) ∈ Rn×r, (5.35)

ran(V (k)) ⊆ K1
(
(σlkE −A)−1E, (σlkE −A)−1N̄(Im ⊗ V (k−1))

)
, V (k) ∈ Rn×rk·mk−1

,
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and

ran(W (1)) ⊆ K1
(
(µl1E −A)−TET, (µl1E −A)−TCTll1

)
, W (1)∈Rn×r, (5.36)

ran(W (k)) ⊆ K1
(
(µlkE −A)−TET, (µlkE −A)−TN̄

(2)(Im ⊗W (k−1))
)

,W (k)∈Rn×rk·mk−1
,

with

ran(V ) ⊆
N⋃

k=1
colspan{V (k)}, ran(W ) ⊆

N⋃
k=1

colspan{W (k)}, V ,W ∈ Rn×rtot ,

where the total number of columns is, in case of no deflation, equal to rtot = ∑N
k=1 rk ·mk−1.

Then, the reduced bilinear model ζr = (W TAV ,W TNjV ,W TB,CV ,W TEV ) satisfies the
following tangential multipoint subsystem interpolation conditions (MIMO-1):

G�
k (σl1 , . . . , σlk) (Imk−1 ⊗ rl1) = G�

k,r(σl1 , . . . , σlk) (Imk−1 ⊗ rl1), (5.37a)

lTl1 G
�
k (µlk , . . . , µl1) = lTl1 G

�
k,r(µlk , . . . , µl1), (5.37b)

for l1, . . . , lk =1, . . . , r and k =1, . . . , N . In (j2, . . . , jk) notation, the above conditions read:

G
(j2,...,jk)
k,� (σl1 , . . . , σlk)rl1 = G

(j2,...,jk)
k,r,� (σl1 , . . . , σlk)rl1 , (5.38a)

lTl1 G
(j2,...,jk)
k,� (µlk , . . . , µl1) = lTl1 G

(j2,...,jk)
k,r,� (µlk , . . . , µl1), (5.38b)

for j2, . . . , jk =1, . . . , m, l1, . . . , lk =1, . . . , r and k =1, . . . , N .

Example 5.3 (Projection matrix for MIMO-1 subsystem interpolation). Let us consider
the first two leading subsystems (N =2), three inputs (m=3) and the interpolation data
σ1, σ2, r1, r2 with r =2. In order to fulfill the following tangential multipoint subsystem
interpolation conditions (l1 = l2 = 1, 2 and k = 1, 2)

G1(σ1) r1 = G1,r(σ1) r1, G1(σ2) r2 = G1,r(σ2) r2,

G
(j2)
2,� (σ1, σ1) r1 = G

(j2)
2,r,�(σ1, σ1) r1, G

(j2)
2,� (σ2, σ1) r2 = G

(j2)
2,r,�(σ2, σ1) r2,

G
(j2)
2,� (σ1, σ2) r1 = G

(j2)
2,r,�(σ1, σ2) r1, G

(j2)
2,� (σ2, σ2) r2 = G

(j2)
2,r,�(σ2, σ2) r2,

for j2 ∈ {1, 2, 3}, each V (k) should be constructed as

V (1) =
[
(σ1E −A)−1B r1, (σ2E −A)−1B r2

]
,

V (2) =
[
A−1

σ1 N1A
−1
σ1 B r1, A−1

σ1 N2A
−1
σ1 B r1, A−1

σ1 N3A
−1
σ1 B r1,

A−1
σ1 N1A

−1
σ2 B r2, A−1

σ1 N2A
−1
σ2 B r2, A−1

σ1 N3A
−1
σ2 B r2,

A−1
σ2 N1A

−1
σ1 B r1, A−1

σ2 N2A
−1
σ1 B r1, A−1

σ2 N3A
−1
σ1 B r1,

A−1
σ2 N1A

−1
σ2 B r2, A−1

σ2 N2A
−1
σ2 B r2, A−1

σ2 N3A
−1
σ2 B r2

]
.

The reduction matrix is given by V =
[
V (1), V (2)

]
∈ Rn×14. We tangentially match r=2

moments of the first and r2 ·m=4 · 3=12 moments of the second transfer function. M
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MIMO-2 subsystem interpolation

Instead of matching the moments for every transfer functionG(j2,...,jk)
k,� (s1, . . . , sk) individually,

we propose to sum the moments over all (j2, . . . , jk) combinations of the matricesNjk
, . . . ,Nj2 .

This is achieved as follows.
Theorem 5.5 (Tangential multipoint subsystem interpolation (MIMO-2)). Let ζ be a MIMO
bilinear system with N̄ = [N1, · · · ,Nm] ∈ Rn×n·m and N̄ (2) = [NT

1 , · · · ,NT
m] ∈ Rn×n·m. Let

the shifts {σlk , µlk}rlk=1 ∈ C \ λ(E−1A) be given, together with right {rl1}rl1=1 ∈ Cm and left
{ll1}rl1=1 ∈ Cp tangential directions, respectively. Let 1m ∈ Rm be a column vector of m ones.
Let the matrices V and W be constructed as follows:

ran(V (1)) ⊆ K1
(
(σl1E −A)−1E, (σl1E −A)−1B rl1

)
, V (1) ∈ Rn×r,

ran(V (k)) ⊆ K1
(
(σlkE −A)−1E, (σlkE −A)−1N̄(1m ⊗ V (k−1))

)
, V (k) ∈ Rn×rk

,
(5.39)

and

ran(W (1)) ⊆ K1
(
(µl1E −A)−TET, (µl1E −A)−TCTll1

)
, W (1)∈Rn×r,

ran(W (k)) ⊆ K1
(
(µlkE −A)−TET, (µlkE −A)−TN̄

(2)(1m ⊗W (k−1))
)

,W (k)∈Rn×rk
,

(5.40)

with

ran(V ) ⊆
N⋃

k=1
colspan{V (k)}, ran(W ) ⊆

N⋃
k=1

colspan{W (k)}, V ,W ∈ Rn×rtot ,

where the total number of columns is, in case of no deflation, equal to rtot = ∑N
k=1 rk. Then,

the reduced bilinear model ζr =(W TAV ,W TNjV ,W TB,CV ,W TEV ) satisfies the follow-
ing tangential multipoint subsystem interpolation conditions (MIMO-2):

G�
k (σl1 , . . . , σlk) (1mk−1 ⊗ rl1) = G�

k,r(σl1 , . . . , σlk) (1mk−1 ⊗ rl1), (5.41a)

lTl1 G
�
k (µlk , . . . , µl1) (1mk−1 ⊗ Im) = lTl1 G

�
k,r(µlk , . . . , µl1) (1mk−1 ⊗ Im), (5.41b)

for l1, . . . , lk =1, . . . , r and k =1, . . . , N . In (j2, . . . , jk) notation, the above conditions read:

m∑
j2=1
· · ·

m∑
jk=1

G
(j2,...,jk)
k,� (σl1 , . . . , σlk)rl1 =

m∑
j2=1
· · ·

m∑
jk=1

G
(j2,...,jk)
k,r,� (σl1 , . . . , σlk)rl1 , (5.42a)

m∑
j2=1
· · ·

m∑
jk=1

lTl1 G
(j2,...,jk)
k,� (µlk , . . . , µl1) =

m∑
j2=1
· · ·

m∑
jk=1

lTl1 G
(j2,...,jk)
k,r,� (µlk , . . . , µl1), (5.42b)

for l1, . . . , lk =1, . . . , r and k =1, . . . , N .

The summation over all mk−1 combinations G(j2,...,jk)
k,� (s1, . . . , sk) significantly reduces the

number of Krylov vectors contained in V andW from rtot = ∑N
k=1 rk ·mk−1 to rtot = ∑N

k=1 rk.
Nevertheless, it is important to note that the interpolation conditions (5.42) are weaker than
the ones in (5.38), since the latter consider every combination (j2, . . . , jk) independently.
However, as we will see later, the strategy MIMO-2 is being implicitly exploited during the
Volterra series interpolation and H2-optimal reduction of MIMO bilinear systems.
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Example 5.4 (Projection matrix for MIMO-2 subsystem interpolation). Let us consider
the first two leading subsystems (N =2), three inputs (m=3) and the interpolation data
σ1, σ2, r1, r2 with r=2. In this case, the interpolation conditions are given by

G1(σ1)r1 = G1,r(σ1)r1, G1(σ2)r2 = G1,r(σ2)r2,

3∑
j2=1

G
(j2)
2,� (σ1, σ1)r1 =

3∑
j2=1

G
(j2)
2,r,�(σ1, σ1)r1,

3∑
j2=1

G
(j2)
2,� (σ2, σ1)r2 =

3∑
j2=1

G
(j2)
2,r,�(σ2, σ1)r2,

3∑
j2=1

G
(j2)
2,� (σ1, σ2)r1 =

3∑
j2=1

G
(j2)
2,r,�(σ1, σ2)r1,

3∑
j2=1

G
(j2)
2,� (σ2, σ2)r2 =

3∑
j2=1

G
(j2)
2,r,�(σ2, σ2)r2.

We can fulfill these conditions by constructing each V (k) as follows

V (1) =
[
(σ1E −A)−1B r1, (σ2E −A)−1B r2

]
,

V (2) =
[
A−1

σ1 N1A
−1
σ1 B r1 +A−1

σ1 N2A
−1
σ1 B r1 +A−1

σ1 N3A
−1
σ1 B r1,

A−1
σ1 N1A

−1
σ2 B r2 +A−1

σ1 N2A
−1
σ2 B r2 +A−1

σ1 N3A
−1
σ2 B r2,

A−1
σ2 N1A

−1
σ1 B r1 +A−1

σ2 N2A
−1
σ1 B r1 +A−1

σ2 N3A
−1
σ1 B r1,

A−1
σ2 N1A

−1
σ2 B r2 +A−1

σ2 N2A
−1
σ2 B r2 +A−1

σ2 N3A
−1
σ2 B r2

]
.

The reduction matrix is given by V =
[
V (1), V (2)

]
∈ Rn×6. Hereby, we tangentially

match r=2 moments of the first and r2 =4 moments of the second transfer function. M

Finally, note that the Krylov subspaces (5.35), (5.36) for the MIMO-1 case – and (5.39), (5.40)
for the MIMO-2 case – are deliberately given in the Kronecker notation for comparison reasons
with [158], [23] and [92, Sec. 3.3]. Through the examples the reader should understand how
the subspaces are built and note the differences between both MIMO strategies.

5.3.2 Flexibility and combinatorial problem

As already mentioned, the subsystem interpolation framework can be customized by deliber-
ately choosing the number of high-order moments (multimoment) and the shift combinations
(multipoint). In the next paragraphs, we note two further flexibility aspects of the subsystem
interpolation that we have not considered until now for clarity and simplicity purposes.

Sets of interpolation data Instead of using the same sets of expansion points Sσ ={σlk}rlk=1
and Sµ = {µlk}rlk=1 for all subsystems, one could also employ individual sets for each k-th
subsystem, i.e. S

(k)
σ ={σ(k)

lk
}rlk=1 and S

(k)
µ ={µ(k)

lk
}rlk=1. In the former approach the shifts need

to cover the frequency range of all subsystems since they are recycled for k ≥ 2. In the latter
case one could consider different frequency ranges for each Laplace variable sk independently.

Different Krylov subspace dimensions Note that we have assumed equal dimensions of the
Krylov subspaces for all subsystems (e.g. q in Theorem 5.3 or ql1 = . . .=qlk =1 in Theorems 5.4
and 5.5). However, the dimensions do not necessarily have to be the same for all k. In fact, a
conceivable approach is to employ different orders ql1 , . . . , qlk for each k-th Krylov subspace
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depending on the desired accuracy. Since the Volterra subsystems become less important with
increasing k, it seems reasonable to match less moments for higher subsystems.

The main drawback of the subsystem interpolation approach is that the dimension of the
ROM can grow very rapidly due to the rising number of shifts combinations. For instance, in
the SISO multipoint case with r shifts, we have rk combinations for each k-th subsystem and a
total reduced order of rtot =∑N

k=1 rk. The order grows even more rapidly in the MIMO-1 case
(cf. Example 5.3) or for block Krylov subspaces. This makes difficult to increase the number
N of considered subsystems. However, there are a few workarounds for this combinatorial
problem that are listed below:

1. One may consider only p2 columns of V (1) to calculate V (2). This in proposed in [47],
where ran(V (2))⊆Kq

(
(σ2E−A)−1E, (σ2E−A)−1NV

(1)
[p2]

)
. This reduces the number

of columns from q + q2 to q + p2 · q, where p2 < q.
2. In order to reduce the number of possible shifts combinations, one could interpolate the

transfer functions only at points that lie along the line s1 = · · · = sk = σi. Doing so,
one would match G(j2,...,jk)

k,� (σi, . . . , σi)ri =G(j2,...,jk)
k,r,� (σi, . . . , σi)ri for i = 1, . . . , r. In this

MIMO-1 case the total reduced order becomes rtot = ∑N
k=1 r ·mk−1.

3. Another possibility is to allow different orders r1, r2, . . . , rN , instead of reducing each
subsystem to the same order r. One reasonable approach could be to reduce the leading
subsystems more accurately, i.e. r1 ≥ r2 ≥ r3 ≥ · · · ≥ rN . In the SISO multipoint case,
this leads to rtot = r1 + r1 · r2 + r1 · r2 · r3 + · · · , when taking all shifts combinations into
account. Neglecting some combinations one could even obtain rtot = r1 + r2 + · · ·+ rN .

In many publications, it has been observed that subsystem interpolation of the first two
transfer functions only can yield ROMs that approximate the bilinear dynamics very well.
In case that a higher number of subsystems is necessary for the bilinear system at hand, the
above workarounds can help to apply the framework in an efficient manner.

Our implementation of subsystem interpolation is contained in the bsssMOR functions
bilinearRk and bilinearArnoldi, where the workaround 1 is implemented. The functions
support only the SISO case so far, but allow to match both Markov parameters and (multi)mo-
ments at arbitrary shifts. For more details, the reader is referred to [Olc16].

bsssMOR function(s): bilinearRk, bilinearArnoldi, bilinearMultiMoments

5.4 Volterra series interpolation

The Volterra series interpolation framework was initially proposed in [92, Sec. 3.4] and [91],
where its connection to the H2-optimal reduction algorithm B-IRKA [20] was also elucidated.
Meanwhile, the framework has established as a powerful alternative to subsystem interpolation
for model reduction of bilinear and also quadratic-bilinear systems [103].

The main idea is to find a ROM that interpolates the whole Volterra series, instead of
interpolating the leading subsystems only. This idea is motivated by the fact that the solution
x(t)=∑∞

k=1 xk(t) (cf. (4.53)) and the H2-norm (cf. (5.21)) of a bilinear system are given by
an infinite series of sums over all possible combinations of point evaluations of the transfer
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functions. With these summation features, the combinatorial problem and the increasing
reduced order of the subsystem interpolation framework get solved.

In the following, we will first explain the concept of Volterra series interpolation in its
original form, i.e. for the SISO multipoint case. Then, we will present our results concerning
the MIMO case, the multimoment setting and other important aspects like the selection of
the interpolation data in Sections 5.4.1, 5.4.2 and 5.4.3, respectively.

SISO Volterra series interpolation

As already mentioned, the goal is to match the Volterra series along weighted sums of the
transfer functions evaluated at all possible shifts combinations. The following theorem sum-
marizes the concept of Volterra series interpolation for the multipoint SISO case. [92, 91].

Theorem 5.6 (Multipoint Volterra series interpolation (SISO)). Let ζ =(A,N , b, cT,E) be a
BIBO stable bilinear system. Suppose that interpolation points {σi}ri=1 ∈ C and {µi}ri=1 ∈ C
along with weighting matrices Uv,Uw ∈ Cr×r are given. Let the projection matrices V and
W be constructed as

vi =
∞∑

k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1,...,lk−1,i (σiE −A)−1N(σlk−1E −A)−1N · · ·N(σl1E −A)−1b,

wi =
∞∑

k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑl1,...,lk−1,i (µiE −A)−TNT(µlk−1E −A)−TNT · · ·NT(µl1E −A)−Tc,

where V = [v1, . . . ,vr] ∈ Rn×r and W = [w1, . . . ,wr] ∈ Rn×r. Then, the bilinear reduced-
order model ζr = (Ar,Nr, br, cT

r ,Er) computed with the projection matrices V and W fulfills
the following multipoint Volterra series interpolation conditions (SISO):

∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1,...,lk−1,i G�
k (σl1 , . . . , σlk−1 , σi) =

∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1,...,lk−1,i G�
k,r(σl1 , . . . , σlk−1 , σi)

∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑl1,...,lk−1,i G�
k (µi, µlk−1 , . . . , µl1) =

∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑl1,...,lk−1,i G�
k,r(µi, µlk−1 , . . . , µl1)

for each i = 1, . . . , r. The weights ηl1,...,lk−1,i and ϑl1,...,lk−1,i are associated to each shift
combination in the transfer functions and are given in terms of the entries of the matrices
Uv =

{
uv

a,b

}
and Uw =

{
uw

a,b

}
as follows:

ηl1,...,lk−1,i = uv
i,lk−1uv

lk−1,lk−2 . . . uv
l2,l1 = Uv(i, lk−1) · . . . ·Uv(l2, l1), k ≥ 2, ηl1 = 1,

ϑl1,...,lk−1,i = uw
i,lk−1uw

lk−1,lk−2 . . . uw
l2,l1 = Uw(i, lk−1) · . . . ·Uw(l2, l1), k ≥ 2, ϑl1 = 1.

Note that we fix sk = σi for the input interpolation conditions, whereas we fix s1 = µi for
the output ones. Further note that we sum over weighted shifts combinations of the transfer
functions determined by the indices l1, . . . , lk−1. Moreover, we sum over infinite subsystems,
whereby it is assumed that the Volterra series vi =∑∞

k=1 v
(k)
i and wi =∑∞

k=1w
(k)
i converge.

From a computational perspective, it is clearly not possible to explicitly compute the
above infinite series of shifted systems for each vi and wi. This is only possible, if the sum
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over k is truncated and a large but finite number N of Volterra kernels is taken into account.
However, it has been shown in [92, 91] that the infinite projection matrices V and W are
solutions of the following generalized Sylvester equations

EV Sv −AV −NV UT
v = b1T

r , (5.43a)

ETWST
w −ATW −NTWUT

w = c1T
r , (5.43b)

where Sv = diag(σ1, . . . , σr) ∈ Cr×r, Sw = diag(µ1, . . . , µr) ∈ Cr×r, Uv,Uw ∈ Cr×r and
1r ∈ Rr is a vector of ones. This means that infinite Volterra series interpolation can be
achieved, if one of the bilinear Sylvester equations (5.43) is solved.

In order to understand the Volterra series interpolation and become confident with the
indices, we provide next an insightful example for the truncated case.

Example 5.5 (Truncated Volterra series interpolation (SISO)). We want to illustrate how
the input Krylov directions are explicitly formed to achieve Volterra series interpolation.
Let us consider the truncated series with N = 2 and a reduced order of r = 2 with
interpolation points {σi}2i=1. The Krylov directions corresponding to the first transfer
function are

v
(1)
1 = (σ1E −A)−1b, v

(1)
2 = (σ2E −A)−1b,

with V (1) =
[
v

(1)
1 , v

(1)
2

]
∈ Rn×2. The Krylov vectors for the second transfer function are

v
(2)
1 = (σ1E −A)−1

r∑
l1=1

ηl1,1N(σl1E −A)−1b

= η1,1(σ1E −A)−1N(σ1E −A)−1b+ η2,1(σ1E −A)−1N(σ2E −A)−1b,

and

v
(2)
2 = (σ2E −A)−1

r∑
l1=1

ηl1,2N(σl1E −A)−1b

= η1,2(σ2E −A)−1N(σ1E −A)−1b+ η2,2(σ2E −A)−1N(σ2E −A)−1b,

with V (2) =
[
v

(2)
1 , v

(2)
2

]
∈ Rn×2. Finally, the reduction matrix is obtained via summation,

i.e. V (1:2) =V (1) + V (2) ∈ Rn×2. With this matrix, we achieve the following truncated
input Volterra series interpolation conditions:

cT(σiE−A)−1b+ η1,ic
T(σiE−A)−1N(σ1E−A)−1b+ η2,ic

T(σiE−A)−1N(σ2E−A)−1b

=
cT

r (σiEr−Ar)−1br+η1,ic
T
r (σiEr−Ar)−1Nr(σ1Er−Ar)−1br+η2,ic

T
r (σiEr−Ar)−1Nr(σ2Er−Ar)−1br

for i = 1, 2. This effectively means that we match the weighted series of transfer functions

G1(σi) + uv
i,1 G�

2 (σ1, σi) + uv
i,2 G�

2 (σ2, σi) = G1,r(σi) + uv
i,1 G�

2,r(σ1, σi) + uv
i,2 G�

2,r(σ2, σi)

for i = 1, 2 and with ηl1,i = uv
i,l1

. M



5.4. Volterra series interpolation 101

As it can be observed from the example, the directions for the second transfer function v(2)
i

depend on the vectors for the first transfer function v(1)
i . Similarly, the directions v(3)

i depend
on the vectors v(2)

i , etc. This is highlighted next:

v
(2)
i = (σiE −A)−1

r∑
l1=1

uv
i,l1 N v

(1)
l1

= (σiE −A)−1
r∑

l1=1
uv

i,l1N(σl1E −A)−1b,

v
(3)
i = (σiE −A)−1

r∑
l2=1

uv
i,l2 N v

(2)
l2

= (σiE −A)−1
r∑

l1=1

r∑
l2=1

uv
i,l2uv

l2,l1N(σl2E −A)−1N(σl1E −A)−1b.

(5.44)

For general k = 2, . . . , N the input and output Krylov directions are given by [91]

v
(1)
i =(σiE −A)−1b, v

(k)
i =(σiE −A)−1

r∑
lk−1

uv
i,lk−1 N v

(k−1)
lk−1

,

w
(1)
i =(µiE −A)−Tc, w

(k)
i =(µiE −A)−T

r∑
lk−1

uw
i,lk−1 N

Tw
(k−1)
lk−1

.

(5.45a)

(5.45b)

We will further compare and discuss the differences between infinite and truncated Volterra
series interpolation with their underlying Sylvester equations in Section 5.4.1. Before that,
we briefly mention the special case of implicit Volterra series interpolation.

Implicit Volterra series interpolation

The so-called implicit Volterra series interpolation proposed in [2] represents a special case of
the general Volterra series interpolation framework for diagonal weighting matrices Uv,Uw.
Assume that the weights ηl1,...,lk−1,i satisfy

ηl1,...,lk−1,i =
{

(ηi,i)k−1 if i = lk−1 = · · · = l1,

0 otherwise,
(5.46)

which corresponds to a diagonal weighting matrixUv =diag(η1,1, . . . , ηr,r)=diag(uv
1,1, . . . , uv

r,r).
Then, the Volterra series interpolation conditions from Theorem 5.6 become

∞∑
k=1

(ηi,i)k−1 G�
k (σi, . . . , σi) =

∞∑
k=1

(ηi,i)k−1 G�
k,r(σi, . . . , σi) (5.47)

for i = 1, . . . , r. Using the Neumann series and assuming that ‖ηi,i(σiE − A)−1N‖ < 1
and ‖ηi,i(σiEr − Ar)−1Nr‖ < 1, it has been proved in [92, 2] that the implicit Volterra
series interpolation conditions (5.47) are equivalent to interpolating the transfer function
G(s)=cT(sE − (A+ ηi,iN))−1b of the linear system Σ=(A+ ηi,iN , b, cT,E), i.e.

cT(σiE −A− ηi,iN)−1b := G(σi) = Gr(σi) := cT
r (σiEr −Ar − ηi,iN r)−1br (5.48)

for i = 1, . . . , r. The time-domain interpretation will be given in Section 8.4.
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5.4.1 MIMO Volterra series interpolation

In this section, we generalize the Volterra series interpolation conditions from Theorem 5.6
to the MIMO case. Interestingly, the bilinear Sylvester equations (5.43) have been already
given for the most general MIMO setting in [91]. However, the authors only stated the
interpolation conditions for the SISO case. Thus, we fill this gap in the following by providing
the corresponding interpolation conditions for the MIMO case as well. Our result was obtained
by analyzing the generalized Sylvester equations (5.51) in detail and by observing how the
Krylov vectors vi and wi are formed explicitly. In general, the key point is again to be aware
that we have mk−1 combinations G(j2,...,jk)

k,� (s1, . . . , sk) ∈ Cp×m for the indices (j2, . . . , jk).
We first state our result in the next theorem and then make it plausible using the MIMO

bilinear Sylvester equations.
Theorem 5.7 (Tangential multipoint Volterra series interpolation (MIMO)). Let ζ be a BIBO
stable bilinear system. Suppose that interpolation points {σi}ri=1 ∈ C and {µi}ri=1 ∈ C along
with weighting matrices Uv,j, Uw,j ∈ Cr×r for j =1, . . . , m are given. Moreover, let {ri}ri=1 ∈
Cm and {li}ri=1 ∈ Cp be right and left tangential directions, respectively. Let the projection
matrices V and W be constructed as

vi =
∞∑

k=1

m∑
j2

· · ·
m∑
jk

r∑
l1

· · ·
r∑

lk−1

η(j2,...,jk)
l1,...,lk−1,i

(σiE−A)−1Njk
(σlk−1E−A)−1Njk−1 · · ·Nj2(σl1E−A)−1B rl1

wi =
∞∑

k=1

m∑
j2

· · ·
m∑
jk

r∑
l1

· · ·
r∑

lk−1

ϑ(j2,...,jk)
l1,...,lk−1,i

(µiE−A)−TNT
jk

(µlk−1E−A)−TNT
jk−1
· · ·NT

j2
(µl1E−A)−TCT li

where V = [v1, . . . ,vr] ∈ Rn×r and W = [w1, . . . ,wr] ∈ Rn×r. Then, the bilinear reduced-
order model ζr = (Ar,Nj,r,Br,Cr,Er) computed using the projection matrices V and W
fulfills the following tangential multipoint Volterra series interpolation conditions (MIMO):

∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

η(j2,...,jk)
l1,...,lk−1,i

G
(j2,...,jk)
k,� (σl1 , . . . , σlk−1 , σi) rl1

=
∞∑

k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

η(j2,...,jk)
l1,...,lk−1,i

G
(j2,...,jk)
k,r,� (σl1 , . . . , σlk−1 , σi) rl1

(5.49)

and
∞∑

k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑ(j2,...,jk)
l1,...,lk−1,i

lTi G
(j2,...,jk)
k,� (µi, µlk−1 , . . . , µl1)

=
∞∑

k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑ(j2,...,jk)
l1,...,lk−1,i

lTi G
(j2,...,jk)
k,r,� (µi, µlk−1 , . . . , µl1)

(5.50)

for each i = 1, . . . , r. The weights η
(j2,...,jk)
l1,...,lk−1,i and ϑ

(j2,...,jk)
l1,...,lk−1,i are associated to each shift and

(j2, . . . , jk) combination of the transfer functions and are defined in terms of the entries of
the matrices Uv,j =

{
uv

ja,b

}
and Uw,j =

{
uw

ja,b

}
as follows:

η(j2,...,jk)
l1,...,lk−1,i

= uv
jki,lk−1

uv
jk−1

lk−1,lk−2
. . . uv

j2
l2,l1

= Uv,jk
(i, lk−1) · . . . ·Uv,j2(l2, l1), k ≥ 2, ηl1 = 1,

ϑ(j2,...,jk)
l1,...,lk−1,i

= uw
jki,lk−1

uw
jk−1

lk−1,lk−2
. . . uw

j2
l2,l1

= Uw,jk
(i, lk−1) · . . . ·Uw,j2(l2, l1), k ≥ 2, ϑl1 = 1.
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Similar as before, we sum over weighted shifts combinations of the transfer functions de-
termined by the indices l1, . . . , lk−1. Now, we also sum over all (j2, . . . , jk) combinations
G

(j2,...,jk)
k,� (s1, . . . , sk) arising due to the multiple matrices N1, . . . ,Nm. Finally, we sum over

infinite subsystems, whereby it is assumed again that the Volterra series vi =∑∞
k=1 v

(k)
i and

wi =∑∞
k=1w

(k)
i converge.

For the development and proof of the above theorem we exploited certain matrix equa-
tions. In fact, based on the bilinear Sylvester equations given for the MIMO H2-optimal case
in [92], we state the bilinear Sylvester equations for MIMO Volterra series interpolation as

EV Sv −AV −
m∑

j=1
Nj V U

T
v,j = BR,

ETW ST
w −ATW −

m∑
j=1
NT

j W UT
w,j = CTL,

(5.51a)

(5.51b)

where Sv =diag(σ1, . . . , σr) ∈ Cr×r, Sw =diag(µ1, . . . , µr) ∈ Cr×r, Uv,j ∈ Cr×r, Uw,j ∈ Cr×r

for j = 1, . . . , m and R= [r1, . . . , rr] ∈ Cm×r, L= [l1, . . . , lr] ∈ Cp×r. These Sylvester equa-
tions were the starting point for Theorem 5.7 and the development of the explicit expressions
for vi and wi. Indeed, it can be shown that the infinite projection matrices V =∑∞

k=1 V
(k)

and W =∑∞
k=1 V

(k) are solutions of the bilinear Sylvester equations (5.51). In addition, we
can show that every V (k) and W (k) satisfies the corresponding linear Sylvester equations

EV (1)Sv −AV (1) = BR, EV (k)Sv −AV (k) =
m∑

j=1
Nj V

(k−1)UT
v,j ,

ETW (1)ST
w −ATW (1) = CTL, ETW (k)ST

w −ATW (k) =
m∑

j=1
NT

j W
(k−1)UT

w,j .

(5.52a)

(5.52b)

We want to sketch the proof and make the given explicit formulas for vi and wi plausible.
The proof is conducted by vectorizing the above linear Sylvester equations.

Vectorizing EV (2)Sv −AV (2) =∑m
j=1Nj V

(1)UT
v,j for the second subsystem yields


v

(2)
1
...
v

(2)
r

 =

σ1E −A
. . .

σrE −A


−1

m∑
j=1


uv

j1,1
Nj · · · uv

j1,r
Nj

... . . . ...
uv

jr,1
Nj · · · uv

jr,r
Nj



v

(1)
1
...
v

(1)
r

 .

Replacing the index j → j2, considering the matrix-vector-product as sum and finally substi-
tuting the preceding Krylov directions v(1)

i , the above equation can be rewritten as

v
(2)
i = (σiE −A)−1

m∑
j2=1

r∑
l1=1

uv
j2

i,l1
Nj2 v

(1)
l1

= (σiE −A)−1
m∑

j2=1

r∑
l1=1

uv
j2

i,l1
Nj2(σl1E −A)−1B rl1

for i = 1, . . . , r. Note that uv
j2

i,l1
=̂ η(j2)

l1,i
.
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Vectorizing EV (3)Sv −AV (3) =∑m
j=1Nj V

(2)UT
v,j for the third subsystem yields


v

(3)
1
...
v

(3)
r

 =

σ1E −A
. . .

σrE −A


−1

m∑
j=1


uv

j1,1
Nj · · · uv

j1,r
Nj

... . . . ...
uv

jr,1
Nj · · · uv

jr,r
Nj



v

(2)
1
...
v

(2)
r

 .

Replacing the index j → j3, considering the matrix-vector-product as sum and finally substi-
tuting the preceding Krylov directions v(2)

i , the above equation can be rewritten as

v
(3)
i = (σiE −A)−1

m∑
j3=1

r∑
l2=1

uv
j3

i,l2
Nj3 v

(2)
l2

= (σiE −A)−1
m∑

j2=1

m∑
j3=1

r∑
l1=1

r∑
l2=1

uv
j3

i,l2
uv

j2
l2,l1

Nj3(σl2E −A)−1Nj2(σl1E −A)−1B rl1

for i = 1, . . . , r. Note that uv
j3

i,l2
uv

j2
l2,l1

=̂ η(j2,j3)
l1,l2,i

.

If we continue this process until the k-th subsystem to obtain v(k)
i , then it becomes clear

that the explicit formula for vi =∑∞
k=1 v

(k)
i from Theorem 5.7 is correct. The proof for the

output directions wi =∑∞
k=1w

(k)
i can be conducted in an analogous way. To sum up, the

Krylov directions can be computed recursively as follows:

v
(1)
i =(σiE −A)−1B ri, v

(k)
i =(σiE −A)−1

m∑
jk

r∑
lk−1

uv
jki,lk−1

Njk
v

(k−1)
lk−1

,

w
(1)
i =(µiE −A)−TCTli, w

(k)
i =(µiE −A)−T

m∑
jk

r∑
lk−1

uw
jki,lk−1

NT
jk
w

(k−1)
lk−1

.

(5.53a)

(5.53b)

Example 5.6. Let us consider the truncated series (N =2), three inputs (m=3) and a re-
duced order of r=2 with {σi}ri=1. Then, the truncated input Volterra series interpolation
conditions are

CA−1
σi
B ri +

3∑
j2=1

uv
j2i,1

CA−1
σi
Nj2A

−1
σ1 B r1 + uv

j2i,2
CA−1

σi
Nj2A

−1
σ2 B r2

=
CrA

−1
r,σi
Br ri +

3∑
j2=1

uv
j2i,1

CrA
−1
r,σi
Nj2,rA

−1
r,σ1Br r1 + uv

j2i,2
CrA

−1
r,σi
Nj2,rA

−1
r,σ2Br r2

Thus, we approximate a weighted sum of tangentially interpolated transfer matrices. M

Remark 5.4 (Solution of bilinear Sylvester equations vs. convergence of series). Similar to
the bilinear Lyapunov equations (cf. Remark 5.1), note that the bilinear Sylvester equations
(5.51) might yield solutions although the Volterra series does not converge. In this case, the
solutions V and W do not correspond to the sum over the solutions of the linear Sylvester
equations (5.52), i.e. V 6=∑∞

k=1 V
(k). Actually, the convergence of the series basically depends

on λ(E−1A) ⊂ C− and sufficient small norms ‖Nj‖. Hence, the existence of unique solutions
is linked to the BIBO stability conditions discussed in Theorem 5.1. M
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Solving large-scale bilinear Sylvester equations

Similar to bilinear Lyapunov equations and balanced truncation, we also have two options
when it comes to Sylvester equations and Volterra series interpolation. On the one hand, we
can solve the bilinear Sylvester equations (5.51) to compute the infinite reduction matrices
V ,W and enforce interpolation on the whole Volterra series. On the other hand, we can solve
the cascaded sequence of linear Sylvester equations (5.52) or LSEs (5.53) to compute the trun-
cated reduction matrices V (1:N) =∑N

k=1 V
(k), W (1:N) =∑N

k=1W
(k) and enforce interpolation

on partial sums. The way to proceed basically depends on the computational resources and
the convergence/decay of the Volterra series for ζ.

The bilinear Sylvester equations (5.51) can be solved using similar strategies as for the
bilinear Lyapunov equations. The most straightforward method consists in vectorizing the
former, yielding the linear systems of equationST

v ⊗E − Ir ⊗A−
m∑

j=1
Uv,j ⊗Nj

 vec (V ) = vec (BR) , (5.54a)

Sw ⊗ET − Ir ⊗AT −
m∑

j=1
Uw,j ⊗NT

j

 vec (W ) = vec
(
CTL

)
. (5.54b)

Solving these LSEs via direct methods (\) and reshaping vec (V )∈Rnr×1, vec (W )∈Rnr×1

leads to the projection matrices V ∈ Rn×r, W ∈ Rn×r. This approach is implemented in the
bsssMOR function volterraBrk. However, it is only applicable to medium-sized models due
to the dimension nr × nr. As in the Lyapunov case, tensorized low-rank variants of iterative
Krylov-based solvers (cf. [150, 21]) are also conceivable to solve the above Sylvester-like linear
systems of equations in the large-scale setting.

Another option could be to apply the bilinear extensions of LR-ADI and EKSM/RKSM
developed in [21], [45, Sec. 4.4] to the bilinear Sylvester equations (5.51).

Finally, under similar convergence assumptions as for (5.15), one could also apply the
procedure [257] and employ the fixed-point iteration

EV (1)Sv −AV (1) = BR,

EV (k)Sv −AV (k) =
m∑

j=1
NjV

(k−1)UT
v,j +BR, k = 2, . . .

(5.55)

to compute the stationary solution V = lim
k→∞

V (k) of the bilinear Sylvester equation (5.51a).
The linear Sylvester equations (5.55) can then be solved using the usual methods described
in Remark 3.2, i.e. lyap, \, low-rank variants of CG/GMRES or LR-ADI/EKSM/RKSM.

Instead of solving the bilinear Sylvester equations (5.51), one can alternatively solve the
cascaded series of linear Sylvester equations (5.52) until the truncation index N . Again, the
latter can be solved using the methods described in Remark 3.2. In this thesis, however, we
prefer to consider the LSEs (5.53) in an Arnoldi-like manner rather than solving the linear
Sylvester equations (5.52). Although both strategies are theoretically equivalent, we favor the
Arnoldi viewpoint for numerical implementation in volterraBarnoldi (cf. Algorithm 5.1).
This decision is motivated by the following reason: we prefer to solve the involved LSEs
explicitly and one-by-one using the common Krylov subspace workflow (i.e. LU + \ or
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iterSolve) instead of implementing the usual matrix equation solvers for the Sylvester case
(mess_lyap only supports Lyapunov equations so far [248]). Note, however, that especially in
the multimoment case it may be numerically more robust to consider the Sylvester equations
than the Arnoldi-like implementation [273].

5.4.2 Multimoment Volterra series interpolation

In this section, we briefly discuss our extension of the Volterra series interpolation framework
to the multimoment case. Our motivation to look deeper into this case is the fact that
matching high-order moments is computationally cheaper than the multipoint strategy. Recall
from the discussion in Section 3.4.3 that we need to perform less LU decompositions in the
multimoment case due to the multiplicity of shifts. Another reason is the aim of obtaining
a bilinear interpolation framework which is flexible, customizable and supports all different
cases known from the linear case. Remember that combining multipoint + multimoment
represents the best trade-off between approximation quality and computational cost. Thus,
we extended the Volterra series interpolation to match both 0-th and high-order moments.
Since the extension requires more complicated indices and even longer expressions, we present
here only the most important highlights and an insightful example. The reader is referred to
the bachelor thesis [Röt18, Sec. 4.3.2] for further details.

The multimoments m(j2,...,jk)
(`1,...,`k)(σ1, . . . , σk) of the transfer functions G(j2,...,jk)

k,� (s1, . . . , sk)
have been introduced in Eq. (5.26). Without giving the formulas explicitly, the multimoment
Volterra series interpolation conditions are basically obtained by replacing the transfer func-
tions G(j2,...,jk)

k,� (s1, . . . , sk) in (5.49) and (5.50) by the multimoments m(j2,...,jk)
(`1,...,`k)(σ1, . . . , σk).

Due to the indices `1, . . . , `k representing the multiplicity of the moments, we have to use
more complex notation for the weights and also add sums of the form ∑qσ̃l1

−1
`1=0 · · ·

∑qσ̃i
−1

`k=0 .
Hereby, a tilde shift σ̃i denotes the i-th unique shift, qσ̃i represents the multiplicity of a cer-
tain shift σ̃i and r̃ denotes the number of unique shifts. This notation will become clear in
the upcoming example.

The Krylov vectors vi =∑∞
k=1 v

(k)
i and wi =∑∞

k=1w
(k)
i required to enforce multimoment

Volterra series interpolation can again be derived by looking at the explicit structure of the
formulas for v(1)

i , v(2)
i , etc. Formulating the columns v(k)

i using the previous ones v(k−1)
i yields

the recurrence [Röt18]

v
(1)
i =

(
(σiE −A)−1E

)`1 (σiE −A)−1B rĩ ,

v
(k)
i =

(
(σiE −A)−1E

)`k
m∑
jk

r∑
lk−1

uv
jkĩ,lk−1

(σiE −A)−1Njk
v

(k−1)
lk−1

.
(5.56)

Dual expressions hold for the output case as well. The definition for ĩ is given in [Röt18].
Similar to the linear case, we want to discuss how the shift matrices Sv,Sw ∈ Cr×r, the

tangential directions matrices R ∈ Cm×r, L ∈ Cp×r and especially the weighting matrices
Uv,j ,Uw,j ∈ Rr×r have to look like in order to interpret the multimoment projection matrices
V and W equivalently as solutions of the Sylvester equations (5.51). This is possible with
the following Sylvester matrices:

• Sv and ST
w have Jordan blocks for equal shifts,
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• R and L have zero-columns for directions corresponding to high-order moments,
• Uv,j and Uw,j have zero-rows for directions corresponding to high-order moments.

In order to make the above statement plausible, we provide an example for the SISO case.

Example 5.7 (Multimoment+multipoint Volterra series interpolation). Let us assume that
we want to reduce a bilinear system ζ with r = 3 shifts σ1 = σ2 6= σ3. Since σ1 = σ2, we
have r̃ = 2 unique shifts σ̃1 =̂ σ1 and σ̃2 =̂ σ3. Hence, the multiplicity of the first shift is
qσ̃1 = 2, whereas qσ̃2 = 1. Consequently, we have to match the 0-th and 1-st moment for
σ̃1, and the 0-th moment for σ̃2. The Sylvester matrices are accordingly given by

Sv =

σ1 −1 0
0 σ2 0
0 0 σ3

 , Uv =

uv
1,1 uv

1,2 uv
1,3

0 0 0
uv

3,1 uv
3,2 uv

3,3

 ,
[
r1 r2 r3

]
=
[
1 0 1

]
.

The projection matrix V (1) can be obtained by solving

E
[
v

(1)
1 v

(1)
2 v

(1)
3

] σ1 −1 0
0 σ2 0
0 0 σ3

−A [v(1)
1 v

(1)
2 v

(1)
3

]
= b

[
1 0 1

]
.

Considering the equation column-wise leads to the Krylov directions

v
(1)
1 =(σ1E −A)−1b, v

(1)
2 =(σ2E −A)−1E v

(1)
1 =(σ2E −A)−1EA−1

σ1
b, v

(1)
3 =(σ3E −A)−1b.

The projection matrix V (2) can be obtained by solving EV (2)Sv −AV (2) =NV (1)UT
v :

E
[
v

(2)
1 v

(2)
2 v

(2)
3

] σ1 −1 0
0 σ2 0
0 0 σ3

−A [v(1)
1 v

(1)
2 v

(1)
3

]
= NV (1)

uv
1,1 0 uv

3,1

uv
1,2 0 uv

3,2

uv
1,3 0 uv

3,3

 .

Considering the equation column-wise together with the previous Krylov vectors yields

v
(2)
1 =(σ1E −A)−1

(
uv

1,1NA
−1
σ1 b+ uv

1,2NA
−1
σ2 EA

−1
σ1 b+ uv

1,3NA
−1
σ3 b

)
,

v
(2)
2 =(σ2E −A)−1E v

(2)
1

=(σ2E −A)−1E(σ1E −A)−1
(
uv

1,1NA
−1
σ1 b+ uv

1,2NA
−1
σ2 EA

−1
σ1 b+ uv

1,3NA
−1
σ3 b

)
,

v
(2)
3 =(σ3E −A)−1

(
uv

3,1NA
−1
σ1 b+ uv

3,2NA
−1
σ2 EA

−1
σ1 b+ uv

3,3NA
−1
σ3 b

)
.

The truncated reduction matrix is obtained via summation, i.e. V (1:2) = V (1) + V (2).
Hereby, we achieve the following multimoment + multipoint matching conditions:

m(0)(σ1) + uv
1,1m(0,0)(σ1, σ1) + uv

1,2 m(1,0)(σ1, σ1) + uv
1,3 m(0,0)(σ3, σ1) = mr,(0)(σ1) + · · ·

m(1)(σ1) + uv
1,1m(0,1)(σ1, σ1) + uv

1,2 m(1,1)(σ1, σ1) + uv
1,3 m(0,1)(σ3, σ1) = mr,(1)(σ1) + · · ·

m(0)(σ3) + uv
3,1m(0,0)(σ1, σ3) + uv

3,2 m(1,0)(σ1, σ3) + uv
3,3 m(0,0)(σ3, σ3) = mr,(0)(σ3) + · · ·

We refer the reader to [Röt18, Sec. 4.3.2] for the general expressions of the multimoment
Volterra series interpolation conditions. M
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Despite the difficult notation, note that it is rather easy to embed the multimoment case in
Algorithm 5.1. First, the LU factors for unique shifts σ̃i are computed once at the beginning
of the algorithm. Then, we distinguish between matching the 0-th moment at a new shift, or
matching a high-order moment using the previous shift and direction. Note that the subscript
σi means that we pick the LU factors corresponding to the current shift σi (cf. e.g. line 12).
The algorithm can also handle other cases that are discussed in the next section.

5.4.3 Other cases and complete Arnoldi algorithm

In this section, we focus on other important aspects that are considered in our Arnoldi-like
Volterra series interpolation algorithm.

Output case and Two-sided reduction Although we have presented the theory based rather
on input Krylov subspaces, note that the output case is also implemented in volterraBarnoldi.
The reduction matrix W (1:N) is computed in a dual manner by setting A→AT, E→ET,
Nj→NT

j , B→CT in Algorithm 5.1 using user-defined interpolation data (Sw, L, Uw,j). In
volterraBrk practitioners can decide to perform a one-sided reduction via input or output
Krylov subspace, or apply a two-sided reduction with both projection matrices. The latter
approach increases the number of matched moments, and hence the approximation quality.
However, it is also conceivable to exploit the degrees of freedom in W for stability purposes
within the Volterra series interpolation framework (using e.g. an approach similar to 2).

Block case For MIMO bilinear systems our algorithm volterraBarnoldi can support both
the tangential and block Krylov case. The latter is basically achieved by replacing the tan-
gential directions by identity matrices, i.e. ri → Im and li → Ip. Note that the user-given
Sylvester matrices (Sv,R,Uv,j) and (Sw,L,Uw,j) are enlarged internally by m- and p-times
per shift, respectively (cf. Eqs. (3.63) and (3.66)). The reader is referred to [Röt18, Sec.
4.3.3] for more details on the block case.

Markov parameters To the best of the author’s knowledge, Markov parameters have not
been considered within the Volterra series interpolation framework so far. However, once the
multimoment case has been developed, it is rather easy to extend it to the case of Markov
parameters:

v
(1)
i =

(
E−1A

)`1
E−1B ri, v

(k)
i =

(
E−1A

)`k
m∑
jk

r∑
lk−1

uv
jki,lk−1

E−1Njk
v

(k−1)
lk−1

. (5.57)

This is implemented in Algorithm 5.1, see e.g. lines 10, 25. Similar expressions hold for the
output case as well.

Hermite case From the linear setting we know that applying a two-sided reduction with
equal shifts σi = µi for V and W is referred to as Hermite interpolation. In this case,
we match not only the 0-th but also the first moment at the selected shifts (cf. Eq. (3.55)).
Furthermore, if σi =µi then it is not necessary to perform the LU decompositions of (σiE−A)
and (σiE

T −AT). Instead, one performs the LU decompositions of (σiE −A) only and uses
the transposed LU factors to compute the output Krylov directions.
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In the bilinear setting both the shifts and the weights have to be equal for Hermite
Volterra series interpolation, i.e. Sv = Sw and Uv,j = Uw,j . Then, right (5.49), left (5.50)
and bitangential Hermite interpolation can be achieved similarly to the H2-optimal case [91].
One again might want to increase the efficiency of the algorithm by reusing and transposing
the LU factors for the computation of the output projection matrix. However, practitioners
are reminded that we experienced some numerical round-off errors when approaching this
strategy. Since the linear systems of equations are computed recursively using the preceding
columns, the numerical error might grow significantly.

Complex shifts Depending on the bilinear dynamics it might be appropriate to employ
complex shifts for the reduction. As in the linear case, we want again to obtain real-valued
projection matrices Ṽ , W̃ ∈ Rn×r to avoid getting a complex-valued reduced model ζr. The
reduction matrices V ,W ∈ Cn×r are made real by splitting the basis vectors in real and
imaginary part, or in other words, via transformation Ṽ = V T v, W̃ = WTw with regu-
lar transformation matrices (cf. Eq. (3.59)). Due to the invariance property, the complex
interpolation data also transforms to real-valued matrices via

S̃v = T−1
v SvT v, Ũv,j = T T

v Uv,jT
−T
v , R̃ = RT v, (5.58a)

S̃w = T T
wSwT

−T
w , Ũw,j = T T

wUw,jT
−T
w , L̃ = LTw. (5.58b)

However, the mentioned transformation is only applicable if the computed Krylov directions
are complex conjugated to each other, i.e. v1 = v2. As shown in Example 3.1, this requires
that (i) the shifts and (ii) the tangential directions come in complex conjugate pairs, i.e.
σ1 = σ2 and r1 = r2. In the bilinear setting, we further need conditions on (iii) the weights
to be able to obtain real-valued projection matrices spanning the same subspaces as their
complex counterparts. Through analytical and numerical analysis we observed that a real-
valued matrix Ũv can be obtained via transformation if the weighting matrix U v ∈ C2×2

fulfills one of the following constraints:
• all entries are equal and real: uv

1,1 = uv
1,2 = uv

2,1 = uv
2,2 ∈ R

• opposing entries are equal and real: uv
1,1 = uv

2,2 and uv
1,2 = uv

2,1 ∈ R
• opposing entries are complex conjugated: uv

1,1 = uv
2,2 and uv

1,2 = uv
2,1

The conditions on Uv become much more complicated if both real and complex conjugated
shifts are combined. Anyhow: if the interpolation data is chosen such that v1 = v2 can be
expected, then we can make the projection and Sylvester matrices real. In such case we only
have to solve one complex-valued LSE corresponding to σ1, whereas the other column v2
is simply obtained by conjugating v1, i.e. v2 = conj(v1). Further note that the Sylvester
matrices are made real after all Krylov vectors have been computed. This is crucial to keep
the diagonal structure of Sv during the Arnoldi algorithm to be able to compute the columns
individually.

Orthogonalization Due to the just mentioned reason with the diagonal structure, the orthog-
onalization of the projection matrices is also accomplished a-posteriori and not in a modified
Gram-Schmidt procedure. The lack of orthogonalization can make the Arnoldi iteration nu-
merically unstable, especially in the multimoment and block case. Nevertheless, we observed
that the choice of interpolation data — and more specifically of the weights — rather influences
the numerical stability and robustness of the algorithm.
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Selection of interpolation data The choice of appropriate shifts, tangential directions and
weights is crucial to obtain a good approximation. In general, the author of this thesis pleads
for a goal-oriented and physically motivated selection of interpolation data using some system
knowledge or intuition. For instance, one could spread the shifts over the interesting frequency
range [ωmin, ωmax], and select the tangential directions to favor certain input-output paths.
Moreover, one could exploit some knowledge about the amplitude range of relevant input
signals u(t) to select the weighting matrices. If no system understanding is available a-priori,
then one could use e.g. s0=zeros(1,r), ri = 1m and Uv = α · Ir with α ≈ 10−3, . . . , 102.
A more reasonable strategy is to calculate some eigenvalues of the system using [X, Λ] =
eigs(A,E) and then select the interpolation data as follows: Sv ← −Λ, R← (X−1E−1B)T,
Uv,j ← X−1E−1NjX and Sw ← −Λ, L ← CX, Uw,j ← X−1E−1NjX (cf. Eq. (5.3)).
This choice is motivated by the H2-optimal procedure BIRKA, which will be discussed in the
next section. According to our experience with the typical bilinear benchmarks used in the
community (see [45, 92]), the weighting matrices usually contain rather small numbers. With
the eigs-strategy we analyzed how the weighting matrices look like for complex conjugated
and large/small eigenvalues ('lm', 'sm'). We observed the tendency that fast decaying/left
most eigenvalues (leading to large positive shifts σi ∈ C+) yield very small weights, whereas
eigenvalues closer to the origin (leading to smaller positive shifts σi ∈ C+) yield bigger weights.

Numerical aspects It is very important to perform the LU decompositions only once at the
beginning of the algorithm, instead of embedding the computation within the for-loops in
lines 7 or 21. This way we have to store all LU factors (requiring thus more memory), but we
do not have to calculate them several times unnecessarily. Crucial for performance is also the
evaluation of the sums in 31 before solving the systems of equations in lines 33 and 35. This
way we solve the systems of equations i-times instead of ijl-times.

The projection matrices V (k),W (k) for the k-th subsystem are computed using the matri-
ces from the previous subsystems. This recurrent dependency can make the algorithm numer-
ically unstable due to the propagation and amplification of round-off errors. This potentially
leads to very big projection matrices, especially if the weights are not chosen appropriately
or the Volterra series diverges.

The truncated reduction matrices V (1:N),W (1:N) are obtained by summing over N sub-
systems (cf. line 37). Hereby, the user needs to specify the truncation index N at the beginning
of the algorithm. However, an appropriate N can also be determined on the fly. Similar to
the Lyapunov case, one could substitute the current matrix V (1:N) =∑N

k=1 V
(k) in the bilinear

Sylvester equation to compute the norm of the residual

Res(1:N) =EV (1:N)Sv −AV (1:N) −
m∑

j=1
NjV

(1:N)UT
v,j −BR.

Other heuristic — but less expensive — measures are ‖V (N)−V (N−1)‖ or ‖V (1:N)−V (1:N−1)‖.

bsssMOR function(s): volterraBrk, volterraBarnoldi
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Algorithm 5.1 Arnoldi-like algorithm for truncated Volterra series interpolation
Input: Bilinear system ζ=(A,Nj ,B,C,E), r sorted shifts {σi}ri=1, r̃ unique shifts {σ̃i}r̃i=1,

weights Uv, tangential directions R, truncation index N

Output: (orthonormal) truncated projection matrix V (1:N)

1: for i = 1 : r̃ do
2: if any(σ̃i ==∞) then
3: [L∞,U∞] = lu(E) I Compute LU factors for Markov parameters
4: else
5: [Lσ̃i ,U σ̃i ] = lu(σ̃iE −A) I Compute LU factors for unique shifts
6: V old =0
7: for i = 1 : r do I Compute V (1)

8: if i > 1 && σi ==σi−1 then
9: if σi ==∞ then

10: V old(:, i) = U∞\ (L∞\ (AV old(:, i− 1))) I High-order Markov
11: else
12: V old(:, i) = Uσi\ (Lσi\ (EV old(:, i− 1))) I High-order moment
13: else
14: if σi ==∞ then
15: V old(:, i) = U∞\ (L∞\ (BR(:, i))) I Markov parameter
16: else
17: V old(:, i) = Uσi\ (Lσi\ (BR(:, i))) I Moment
18: V end = V old I V (1:N) ← V (1)

19: for k = 2 : N do I Loop over N subsystems
20: Vnew = 0
21: for i = 1 : r do I Compute V (≥2)

22: vtemp = 0
23: if i > 1 && σi ==σi−1 then
24: if σi ==∞ then
25: Vnew(:, i) = U∞\ (L∞\ (AVnew(:, i−1))) I High-order Markov
26: else
27: Vnew(:, i) = Uσi\ (Lσi\ (EVnew(:, i− 1))) I High-order moment
28: else
29: for l = 1 : r do
30: for j = 1 : m do
31: vtemp = vtemp +Uv,j(i, l)Nj V old(:, l) I vtemp =∑m

j=1 uv
ji,l
Nj v

(k−1)
l

32: if σi ==∞ then
33: Vnew(:, i) = U∞\ (L∞\vtemp) I Markov parameter
34: else
35: Vnew(:, i) = Uσi\ (Lσi\vtemp) I Moment
36: V old = Vnew I Overwrite: V (k−1) ← V (k)

37: V end = V end + Vnew I Sum: V (1:N) = ∑N
k=1 V

(k)

38: V (1:N) = orth(V end) I Optional: a-posteriori orthogonalization
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5.5 H2-optimal reduction of bilinear systems

Similarly to the linear setting discussed in Section 3.7, the concept of H2-optimal model
reduction can be extended to bilinear systems. In this section we give the H2-optimality
conditions for the MIMO case in terms of bitangential Hermite Volterra series interpolation.
Then, we discuss our implementation of bilinear IRKA, and finally extend the concept of
H2-pseudo-optimality to the bilinear setting.

5.5.1 Optimality conditions and bilinear iterative algorithms

For the derivation of first-order optimality conditions the H2-norm of the error system is
considered, i.e. J :=‖ζ− ζr‖2H2

. Zhang and Lam [285] extended the Wilson conditions to the
bilinear case by considering the cost functional in terms of the Lyapunov equations (5.25) as
J =f(Ae,Nj,e,Be,Ce,Ee) and by differentiating w.r.t. Ar,Nj,r, Br, Cr, Er. However, their
proposed algorithm relies on gradient flow optimization and is thus not well applicable to
large-scale models. Therefore, Benner and Breiten [20] derived interpolation-based conditions
with the aim of obtaining an IRKA-like algorithm. They derived the MIMO optimality
conditions by differentiating the cost functional J = f(A, Λr,Nj , N̂j,r,B, B̂r,C, Ĉr) w.r.t.
Ĉr ∈ Cp×r, B̂r ∈ Cr×m, N̂j,r ∈ Cr×r and Λr ∈ Cr×r, leading to (p + m + m · r + 1) · r
conditions. Hereby, the eigendecomposition of the ROM [Xr, Λr] = eig(Ar,Er) is exploited
to obtain E−1

r Ar =Xr ΛrX
−1
r , N̂j,r =X−1

r E−1
r Nj,rXr, B̂r =X−1

r E−1
r Br and Ĉr =CrXr.

Later, Flagg and Gugercin [92, 91] showed the connection between the H2-optimality and
multipoint Volterra series interpolation conditions for the SISO case. Namely, an H2-optimal
ROM satisfies multipoint Hermite Volterra series interpolation, with shifts given by the mirror
images of the reduced poles σi ← −λr,i and weights given by the reduced-order residues
ηl1,...,lk−1,i ← φr,l1,...,lk−1,i

with φr,l1,...,lk−1,i
= ĉr,i · n̂ri,lk−1

· . . . · n̂rl2,l1
· b̂r,l1 (cf. Theorem 5.6).

With our results on the MIMO pole-residue (Eq. (5.5)) and Volterra series interpolation
(Theorem 5.7), we can give the H2-optimality conditions in terms of bitangential Hermite
interpolation with rl1 ← b̂r,l1 , lTi ← ĉT

r,i and η(j2,...,jk)
l1,...,lk−1,i

, ϑ(j2,...,jk)
l1,...,lk−1,i

← n̂jk,ri,lk−1
· . . . · n̂j2,rl2,l1

:

∞∑
k=1

m∑
j2

· · ·
m∑
jk

r∑
l1

· · ·
r∑

lk−1

η(j2,...,jk)
l1,...,lk−1,i

G
(j2,...,jk)
k,� (−λr,l1 , . . . ,−λr,lk−1 ,−λr,i) b̂r,l1

=
∞∑

k=1

m∑
j2

· · ·
m∑
jk

r∑
l1

· · ·
r∑

lk−1

η(j2,...,jk)
l1,...,lk−1,i

G
(j2,...,jk)
k,r,� (−λr,l1 , . . . ,−λr,lk−1 ,−λr,i) b̂r,l1 , (5.59a)

∞∑
k=1

m∑
j2

· · ·
m∑
jk

r∑
l1

· · ·
r∑

lk−1

ϑ(j2,...,jk)
l1,...,lk−1,i

ĉT
r,iG

(j2,...,jk)
k,� (−λr,i,−λr,lk−1 , . . . ,−λr,l1)

=
∞∑

k=1

m∑
j2

· · ·
m∑
jk

r∑
l1

· · ·
r∑

lk−1

ϑ(j2,...,jk)
l1,...,lk−1,i

ĉT
r,iG

(j2,...,jk)
k,r,� (−λr,i,−λr,lk−1 , . . . ,−λr,l1), (5.59b)

∞∑
k=1

m∑
j2

· · ·
m∑
jk

r∑
l1

· · ·
r∑

lk−1

η(j2,...,jk)
l1,...,lk−1,i

ĉT
r,i

(
k∑

h=1

∂

∂sh
G

(j2,...,jk)
k,� (−λr,l1 , . . . ,−λr,i)

)
b̂r,l1

=
∞∑

k=1

m∑
j2

· · ·
m∑
jk

r∑
l1

· · ·
r∑

lk−1

η(j2,...,jk)
l1,...,lk−1,i

ĉT
r,i

(
k∑

h=1

∂

∂sh
G

(j2,...,jk)
k,r,� (−λr,l1 , . . . ,−λr,i)

)
b̂r,l1 , (5.59c)
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for i = 1, . . . , r. This result can be obtained by rearranging the optimality conditions in
Kronecker notation using the Neumann series and the vectorization operator backwards. The
interested reader is referred to [Röt18, Sec. 4.4] for more details.

(Truncated) Bilinear Iterative Rational Krylov Algorithm (BIRKA)

Using an IRKA-like fixed-point iteration, Benner and Breiten [20] proposed the bilinear it-
erative rational Krylov algorithm (BIRKA) based on the solution of the bilinear Sylvester
equations (5.51). Besides showing the connection of BIRKA to infinite Volterra series inter-
polation, Flagg also proposed a more efficient, truncated version of the algorithm (TB-IRKA)
based on the solution of the linear Sylvester equations (5.52).

During this doctoral project we have implemented both strategies in the bsssMOR func-
tion b_irka (see Algorithm 5.2). If the user wants to perform infinite interpolation (and
the FOM is not too big), then the bilinear Sylvester equations are solved for the updated
interpolation data via (5.54). Otherwise we perform TB-IRKA, whereby we solve the sparse
LSEs (5.53) in an Arnoldi-like manner rather than solving (5.52) (using MATLAB’s lyap or
by implementing the LR-ADI for the Sylvester case).

Algorithm 5.2 (Truncated) Bilinear iterative rational Krylov algorithm (BIRKA)
Input: Bilinear model ζ=(A,Nj ,B,C,E), reduced order r, convergence tolerance ε

Output: locally H2-optimal ROM ζopt
r , optimal interpolation data

1: Choose initial shifts Sv = Sw ← {σi}ri=1 ∈ C \ λ(E−1A), initial tangential directions
R← {ri}ri=1 ∈ Cm, L← {li}ri=1 ∈ Cp, and initial weights {Uv,j = Uw,j}mj=1 ∈ Cr×r

2: while relative change in {σi} > ε do
3: Solve bilinear Sylvester equations I compute projection matrices

EV Sv −AV −
∑m

j=1Nj V U
T
v,j = BR

ETW ST
w −ATW −

∑m
j=1N

T
j W UT

w,j = CTL

Alternative: solve linear equations (5.52) or call volterraBrk (Alg. 5.1, Eq. (5.53))
4: Ar =W TAV , Nj,r =W TNjV , Br =W TB, Cr =CV , Er =W TEV

5: E−1
r Ar =Xr ΛrX

−1
r with Λr =diag(λr,1, . . . , λr,r) I [Xr, Λr] = eig(Ar,Er)

6: Sv = Sw ← −Λr, Uv,j = Uw,j =̂ N̂j,r ←X−1
r E−1

r Nj,rXr

7: R =̂ B̂
T
r ← (X−1

r E−1
r Br)T, L =̂ Ĉr ← CrXr

8: Σopt
r ← (Ar,Nj,r,Br,Cr,Er), σopt

i ← σi, ropt
i ← b̂r,i, lopt

i ← ĉr,i, Uopt
v,j =Uopt

w,j ← N̂j,r

bsssMOR function(s): b_irka (volterraBrk, volterraBarnoldi)

Initialization In the literature [20, 92, 91], BIRKA is usually initialized with random interpo-
lation data or random reduced-order matrices. We advise against this procedure, since it is not
physically motivated and might significantly slow down the convergence. Instead, we recom-
mend to use some system knowledge or apply similar guidelines as discussed in Section 5.4.3.
For instance, one can use s0=zeros(1,r), ri =1m and Uv =α · Ir with α ≈ 10−3, . . . , 102, or
exploit some eigenvalues (and eigenvectors) of the FOM calculated via [X, Λ] = eigs(A,E).
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5.5.2 H2-pseudo-optimality for bilinear systems

The interest of the author on bilinear systems originally arised with the aim of extending the
concept of H2-pseudo-optimality to the bilinear case. The goal is again to find a reduced
model that minimizes the H2-error within a certain subset G of ROMs of order r:

ζr = arg min
ζ̃r∈G
‖ζ − ζ̃r‖2H2 . (5.60)

The subset can be chosen to have ROMs with fixed reduced poles, weights and input residues
(λr,i, N̂j,r, b̂r,i), or fixed reduced poles, weights and output residues (λr,i, N̂j,r, ĉr,i). The idea
is thus to fix three of the four degrees of freedom, in order to simplify the optimization and
easily obtain the remaining parameter. Our motivation for the extension was to gain similar
advantages and application fields as in the linear case, namely the convexity of the H2-pseudo-
optimal problem, the construction of stable bilinear ROMs, a residue correction for a better
convergence of BIRKA, the link between the bilinear ADI and RKSM [92, Sec. 5.4], etc.

Following similar steps as in [273, Appendix A], we have derived new conditions for (input
and output) pseudo-optimality for bilinear systems. For the sake of brevity the conditions
are not explicitly presented here, since this would require introducing a few more concepts
and equations. The interested reader is referred to the online available talks [Cru16a, COL16,
Cru17a] for more details, as well as to the master thesis [Olc16] where the complete derivation
and proof is shown. We only state the resulting iteration-free bporkV algorithm for the explicit
construction of bilinear (input) H2-pseudo-optimal ROMs (using the notation of this thesis).

Algorithm 5.3 Bilinear (input) pseudo-optimal rational Krylov (BPORK-V)
Input: V , Sv, Uv,j , R such that EV Sv −AV −

∑m
j=1NjV U

T
v,j =BR, output matrix C

Output: H2-pseudo-optimal ROM ζpopt
r

1: P−1
r I solution of condition iii): P−1

r Sv + ST
vP

−1
r −

∑m
j=1Uv,jP

−1
r UT

v,j −RTR = 0

2: Nj,r = (P−1
r )−1Uv,j P

−1
r I condition ii-2): P−1

r UT
v,j −NT

j,rE
−T
r P−1

r = 0

3: Br = (P−1
r )−1RT I condition ii-1): E−1

r Br − P rR
T = 0

4: Ar = Sv −BrR−
∑m

j=1Nj,rU
T
v,j , Er = Ir, Cr = CV

5: ζpopt
r = (Ar, Nj,r, Br, Cr, Ir)

bsssMOR function(s): bporkV, bporkW

Similar to the linear case, the algorithm needs a projection matrix V spanning an input
Krylov subspace for the selected interpolation data (Sv,Uv,j ,R), i.e. which satisfies the
Sylvester equation (5.51a). Then, BPORK constructs an H2-pseudo-optimal ROM with low
computational effort. The procedure relies on the solution of a bilinear Lyapunov equation
(Line 1) and two LSEs (Lines 2, 3), both of reduced order r. Please note that the ROM
constructed via BPORK-V/W satisfies only the Lagrangrian condition (5.59a)/(5.59b) and
has its poles at the mirror images of the selected shifts. Moreover, the weights are also being
chosen by the user, so that – according to Theorem 5.1 – the stability of the ROM can be
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enforced by construction. Finally, note that (similarly to PORK) BPORK is actually not
a projection-based reduction method, but rather constructs the ROM using the concept of
parametrized families of reduced-order models (see [126, 128] and 3.6.4, 7.1.4). This can be
seen from the fact that W (V in BPORK-W) is not explicitly needed to obtain the ROM.

In the talk [Cru17a], we can observe via a simple example that the H2-optimal problem
becomes indeed convex if three of the four optimization parameters are fixed. Furthermore,
we discuss the already mentioned possible applications of H2-pseudo-optimality of bilinear
systems. Due to the sake of time (and other research interests) these topics could not be
deepened during this PhD project. The residue correction within BIRKA, the extension of
CuRed SPARK to bilinear systems and the application of RKSM+BPORK-Lyap are thus
topics of future research.

5.6 Conclusions and other contributions

At the end of this chapter we want to recap our main contributions regarding bilinear model
order reduction:

1. We have generalized the pole-residue formulation of bilinear systems to the MIMO case.
This result helps to understand the H2-optimality conditions better.

2. We have presented a different strategy for MIMO subsystem interpolation (MIMO-2).
The approach is motivated by the term ∑m

j=1NjV U
T
v,j in the Sylvester equations.

3. We have generalized the Volterra series interpolation to the MIMO case, extended the
framework to the multimoment setting and focused on the Arnoldi-like implementation.
This yields the volterraBarnoldi algorithm, supporting many different cases.

4. We have extended the concept of H2-pseudo-optimality to bilinear systems, hereby pro-
viding new necessary conditions and an iteration-free algorithm called BPORK.

5. We have initiated the development of the bsssMOR toolbox, following similar philos-
ophy and implementation patterns as the sssMOR toolbox. bsssMOR can serve as a
starting point for new research endeavors.

In the following we also want to mention other contributions that have not been explicitly
addressed within this dissertation:

1. In [60] an expression for the impulse response of bilinear systems has been derived.
The derivation is based on applying an input of the form u(t) =µδ(t) (with the Dirac
function δ(t) and the scaling µ) to the whole bilinear system, i.e. without employing the
Volterra model. As one would expect from nonlinear systems (where the superposition
principle does not hold), the impulse response g(t;µ) is dependent on the amplitude of
the input µ. In the thesis [Geb17] the corresponding transfer function G(s;µ) is also
given, together with Krylov subspaces for model reduction based on this novel function.
Expressions for the H2-norm based on the derived impulse response are also stated.

2. In the master thesis [Fio16] and talks [Cru16b, CFL17, Cru17b] we focus on the deriva-
tion of transfer matrices and Krylov-based reduction of MIMO quadratic-bilinear sys-
tems. Due to the more complex structure of the transfer matrices, the generalization of
the subsystem interpolation framework [22] to the MIMO case is not trivial. We pro-
pose different (tangential) Krylov subspaces to achieve both multimoment and Hermite
interpolation of the first two subsystems. We also deal with one-/two-sided reduction as
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well as with stability preservation. The algorithms are implemented in the qbsssMOR
toolbox. Although the development of qbsssMOR is rather at an early stage, this
toolbox can also help to conduct future research.



Part III

Nonlinear State-Space Systems
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Chapter 6

Fundamentals of Nonlinear Model Reduction

In this part of the thesis we focus on the reduction of general nonlinear state-space systems.
First, the considered system representation and the numerical time integration of the FOM is
discussed. Afterwards, we will concentrate on model reduction based on linear and nonlinear
projection. The corresponding framework, time integration and reduction techniques will be
presented in order to understand the advantages and disadvantages of both strategies.

Sections 6.1, 6.2, 6.3.1 and 6.4.1 rely on the corresponding parts of [72] and [71], whereby
they have been extended here. The chapter is also equipped with a section on hyper-reduction.

6.1 Nonlinear time-invariant systems

Consider a large-scale, nonlinear time-invariant, exponentially stable, MIMO state-space
model of the form

ΣNL :
{
E ẋ(t) = f

(
x(t),u(t)

)
, x(0) = x0,

y(t) = h
(
x(t)

)
,

(6.1a)
(6.1b)

with non-singular descriptor matrix E ∈ Rn×n, the vectors x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp

and the smooth mappings f(x,u) : Rn×Rm → Rn and h(x) : Rn → Rp, such that f(0, 0)=0
and h(0)=0. The zero equilibrium xeq =0, calculated from 0=f(xeq, 0), is assumed locally
exponentially stable.

Note that the above considered equations constitute a very general representation1 for
a nonlinear time-invariant system. For instance, in case of an input-affine nonlinear system
(4.2), we obtain the mapping f

(
x,u

)
= a(x) +B(x)u= a(x) + ∑m

j=1 bj(x) uj , with a(x) :
Rn → Rn and B(x) :Rn → Rn×m or bj(x) :Rn → Rn. Moreover, for a linear output mapping
one obtains the function h(x)=Cx with C ∈ Rp×n.

Unfortunately, unlike the linear case, the input-output behavior of general nonlinear sys-
tems such as (6.1) cannot be described analytically with the help of transfer functions, the
state-transition matrix or convolution integrals. Such a characterization via the mentioned
system-theoretic concepts is only possible for polynomial nonlinear systems (like e.g. bilinear
or quadratic-bilinear systems) by exploiting the Volterra series representation [221, 45, 63].

1A more general representation for a dynamical system would read

0 = f (ẋ(t),x(t),u(t),µ(t), t) , x(0) = x0, (6.2a)
0 = h (y(t),x(t),u(t),µ(t), t) , (6.2b)

describing a nonlinear, first-order, time-variant, parameter-varying DAE system.
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6.2 Time integration

Numerical time integration is a fundamental tool in order to solve systems of ordinary (ODEs)
or differential-algebraic (DAEs) equations. Especially for nonlinear systems, where the solu-
tion x(t) can generally not be given analytically, numerical simulation is indispensable. There
exist several time integration schemes. Depending on their properties, one can generally dis-
tinguish between one/multistep, explicit/implicit and variable/fixed step solvers. [243, 237]

One-step solvers (such as Euler’s method) employ only one step in time to determine
the next solution. Multi-stage solvers – such as the Crank-Nicolson (second-order approach
based on trapezoidal rule) or Runge-Kutta methods – take some intermediate steps, but then
discard this information before taking a second step. Multistep solvers take and exploit the
information from several time-steps to obtain the next solution.

Explicit solvers (e.g. one-step forward Euler, explicit multi-stage Runge-Kutta methods)
calculate the state xk+1 at the next time-step using explicitly the state xk at the current
time-step. For example, the forward Euler method yields the explicit equation

E xk+1 = E xk + h · f(xk,uk) with tk+1 = tk + h. (6.3)

Implicit solvers (e.g. one-step backward Euler, implicit multi-stage Runge-Kutta methods)
compute the next state xk+1 by solving a nonlinear system of equations (NLSE) involving
both the current and the next state. For instance, the backward Euler method yields the
implicit equation

E xk+1 = E xk + h · f(xk+1,uk+1) with tk+1 = tk + h. (6.4)

This type of solvers are particularly applied to stiff problems, for which explicit methods
require an impractically small step-size h to be numerically stable. Thus, for such problems,
an implicit solver with larger step-size usually needs less computational time (despite the
NLSEs) than an explicit solver with smaller step-size. Note that in some applications a so-
called implicit-explicit (IMEX) scheme is rather applied, where the stiff (linear) part of the
problem is treated implicitly and the non-stiff (nonlinear) one explicitly [9]. Due to this
splitting, the solution of NLSEs required in a purely implicit scheme is avoided. Further
note that so-called predictor-corrector schemes typically employ an explicit method for the
predictor step and an implicit formula for the corrector step. A well-known member of this
family of methods is the generalized-α scheme, which will be treated in Algorithm 9.1.

Fixed step solvers use the same step-size h during the whole simulation, whereas variable
step solvers (e.g. Matlab’s explicit ode23, ode45 and implicit ode15s, ode23s) adapt it
depending on the dynamics. They reduce the step-size at highly dynamic events, and increase
it at slowly changing regions to avoid taking unnecessary steps. Thus, variable step solvers
might need less computational time (despite the step-size adaption) than fixed step ones.

Implicit Euler and Newton-Raphson method

In this thesis, a self-programmed fixed step implicit Euler scheme (cf. Algorithm 6.1) is
employed for the numerical simulation of FOM and ROMs. Using the backward Euler formula
(6.4) leads to the residual (cf. line 3)

res(xk+1) = E xk −E xk+1 + h · f(xk+1, uk+1) != 0. (6.5)
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A root-finding algorithm such as the Newton-Raphson method (see e.g. [193]) is then employed
to solve the NLSE (6.5) in each time-step (cf. line 5).

The Newton-Raphson method (cf. Algorithm 6.2) iteratively searches for the solution
xk+1 of a nonlinear system of equations res(xk+1) = 0 by successive approximations. The
linearization of the residual equation around the solution xiter

k+1 at the current iteration iter
yields the following linear system of equations (LSE)

∂ res(xk+1)
∂ xk+1

∣∣∣∣
xk+1=xiter

k+1︸ ︷︷ ︸
=:J iter

res(xiter
k+1)

∆xiter
k+1 = res(xiter

k+1),
(6.6)

which can be solved for the correction ∆xiter
k+1 using a direct or iterative solver (cf. Section 2.5).

The update then reads xiter+1
k+1 = xiter

k+1 −∆xiter
k+1 (cf. line 10).

In case of the implicit Euler scheme, the analytical Jacobian of the residual (6.5) reads

J iter
res(xiter

k+1) = −E + h ·A(xiter
k+1, uk+1), (6.7)

where A(xeq, ueq)= ∂ f(x,u)
∂ x

∣∣∣
(xeq,ueq)

represents the Jacobian of f(x,u) at (xeq,ueq).

Algorithm 6.1 Implicit Euler scheme
Input: E, f(x,u), A(x,u), tsim = [t0, . . . , tend], x0
Output: solution x(t)

1: h = t1 − t0
2: for k = 0:length(tsim)− 2 do
3: fun(xk+1) = E xk −E xk+1 + h · f(xk+1,uk+1) I residual (6.5)
4: Jfun(xk+1) = −E+h ·A(xk+1,uk+1) I Jacobian of residual (6.7)
5: xk+1 = NewtonRaphson(fun,xk, Jfun) I call Alg. 6.2
6: xk ← xk+1

Algorithm 6.2 Newton-Raphson method
Input: fun(x), initial guess x0, Jfun, Opts I analytical or numerical Jacobian Jfun
Output: root x

1: tol = Opts.AbsTol
2: xcurr = x0, fcurr = fun(xcurr)
3: iter = 0
4: while norm(fcurr) > tol do I norm of residual as stopping criterion
5: iter = iter + 1
6: if iter > Opts.MaxIter then I Opts.MaxIter as further stopping criterion
7: break
8: fcurr = fun(xcurr)
9: dxcurr = Jfun(xcurr) \ fcurr I solve LSE (6.6)

10: xcurr = xcurr - dxcurr
11: tol = Opts.RelTol*norm(fcurr) + Opts.AbsTol I tolerance update
12: x = xcurr
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6.3 Nonlinear reduction based on linear projection

The goal of nonlinear model order reduction is to approximate the FOM (6.1) by a ROM
of smaller dimension r � n. Similar to the linear case, the reduction of nonlinear systems
is also usually performed within a projection framework. In the nonlinear case, however, we
distinguish between linear and nonlinear Petrov-Galerkin projection.

In this section, the reduction of nonlinear systems based on linear projection is discussed.
The reduction based on nonlinear projection will be treated in Section 6.4.

6.3.1 Linear Petrov-Galerkin projection framework

An established and successful way to reduce nonlinear systems is to apply the classical Petrov-
Galerkin projection framework, where linear mappings given by the matrices V , W are used.
In the following, we briefly derive the ROM in a similar fashion as described in Section 3.2.

Inserting the linear approximation ansatz (3.26) into the FOM (6.1a) and premultiplying
the overdetermined system with the projector Π leads to

Π
(
EV ẋr(t)− f

(
V xr(t), u(t)

)︸ ︷︷ ︸
=ξ
(
V xr(t),u(t)

) −ε(t)
)

= 0 ⇔ Π
(
ξ
(
V xr(t), u(t)

)
− ε(t)

)
= 0.

(6.8)

Enforcing the Petrov-Galerkin condition W T ε(t) = 0, which implies Π ε(t) = 0, the residual
then vanishes and only the term Π ξ

(
V xr(t), u(t)

)
=0 remains. This finally yields the ROM

Er ẋr(t) = W Tf
(
V xr(t), u(t)

)
, xr(0) = xr,0,

yr(t) = h
(
V xr(t)

)
,

(6.9a)
(6.9b)

with Er =W TEV and xr(0) = (W TEV )−1W TE x(0) given as in the linear case, and the
reduced nonlinear function f r

(
xr(t),u(t)

)
=W Tf

(
V xr(t),u(t)

)
with f r(xr,u) :Rr×Rm→Rr.

Please note that the use of a linear projection x≈V xr constitutes a special case of the
power series ansatz (6.28), and hence of the most general nonlinear projection x≈ν(xr) de-
scribed in Section 6.4. Further note that the main tasks of model reduction in this setting
are twofold: (i) the efficient computation of reduction bases V ,W for the dimensional re-
duction (cf. Section 6.3.3), and (ii) the application of so-called hyper-reduction methods for
the effective evaluation of the nonlinear terms (cf. Section 6.5). Finally, note that nonlinear
systems are usually reduced by an orthogonal (Galerkin) projection (e.g. with W =V ) rather
than by an oblique (Petrov-Galerkin) projection. An alternative least-squares Petrov-Galerkin
(LSPG) projection framework has also been proposed in [55, 54] for reduction.

6.3.2 Time integration

We now briefly discuss the time integration of the ROM (6.9). For the case of an implicit
Euler scheme (cf. Eq. (6.4)), the residual reads

res(xr,k+1) = Er xr,k −Er xr,k+1 + h · f r(xr,k+1,uk+1)

= W T
(
EV xr,k −EV xr,k+1 + h · f

(
V xr,k+1,uk+1

))
,

(6.10)
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with the constant reduced matrix Er and reduced nonlinear function f r(V xr,k+1,uk+1) with
xk+1≈V xr,k+1. The analytical Jacobian of the residual is given by

J iter
res(xiter

r,k+1) = ∂ res(xr,k+1)
∂ xr,k+1

∣∣∣∣∣
xr,k+1=xiter

r,k+1

= −Er + h ·W TA(V xiter
r,k+1,uk+1)V , (6.11)

and depends on the Jacobian A(x,u) of the nonlinear function f(x,u). Replacing lines 3
and 4 of Algorithm 6.1 by Equations (6.10) and (6.11) leads to the implicit Euler scheme for
the ROM (6.9).

6.3.3 Linear projection-based reduction approaches

In this section, we give an overview of existing approaches to calculate the bases V ,W
needed for the linear projection-based reduction of nonlinear systems. The bases should
generally comprise enough information about the nonlinear dynamics, in order to yield a good
approximation despite the use of a linear projection.

Pure linear bases applied to nonlinear system

A very simple approach consists in calculating pure linear bases V ,W based on a linearization,
and then apply them to the nonlinear system. If this “naive” approach returns accurate
results for the application at hand, then the employment of more sophisticated nonlinear
MOR techniques might not be necessary at all.

The first step to construct pure linear bases is to linearize the nonlinear system (6.1)
around a linearization (x̄, ū) or equilibrium point (xeq,ueq).

Linearization point The choice of a good linearization/equilibrium tuple is highly problem-
dependent, since nonlinear systems are usually linearized around a physically meaningful
(stationary) point of operation. Very often, the steady-state solution xeq is computed for
an appropriately selected stationary input ueq by solving the NLSE 0=f

(
xeq,ueq

)
(via e.g.

MATLAB’s fsolve or NewtonRaphson from 6.2). Nevertheless, one could also give a station-
ary state xeq using some system knowledge and then compute the stationary input ueq, or
even give both if enough system understanding is available. Another popular approach is to
select (xeq,ueq) = (0, 0), which usually implies f(xeq,ueq) = 0. The choice of a linearization
point (x̄, ū) that does not represent an equilibrium point is also possible.

Once the equilibrium point is chosen, the linearized matrices

Aeq = ∂f(x,u)
∂x

∣∣∣∣
(xeq,ueq)

, Beq = ∂f(x,u)
∂u

∣∣∣∣
(xeq,ueq)

, Ceq = ∂h(x)
∂x

∣∣∣∣
xeq

(6.12)

can be obtained. These matrices are then employed to run any linear MOR technique, like
modal truncation, balanced truncation, standard rational Krylov or the H2-optimal algorithm
IRKA. The computed reduction bases (e.g. V RK, WRK) are finally applied to the nonlinear
system using a linear projection (cf. Eq. (6.9)).
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The accuracy of this approach is expected to be bad for large deviations from the lin-
earization point, since the nonlinear dynamics might then not be captured by the pure linear
basis. Nevertheless, this simple procedure might be worth a try and can serve as a reference.

Augmented basis

Another popular, and more sophisticated, approach consists in enriching a pure linear reduc-
tion basis with nonlinear information, e.g. as follows:

x(t) ≈ V aug xr,aug(t) , V aug =
[
V (1), V (2)

]
, (6.13)

with the reduced coordinates xr,aug(t)=[xr,1(t), · · · , xr,r(t) |xr,11(t), · · · , xr,1r(t), · · · , xr,rr(t)]T.
Herein, V (1) ∈ Rn×r contains information about the linearized system, whereas V (2) ∈ Rn×r2

comprises some nonlinear behavior. Some possible enrichment methods are:

Subsystem interpolation This approach is known in the context of polynomial model re-
duction using the Volterra series representation [206, 92, 22]. The matrices V (1) and V (2)

are constructed as bases of input Krylov subspaces for the first and second subsystem and
then concatenated to obtain V aug (cf. Section 5.3). A similar approach can be employed with
output Krylov subspaces to calculate Waug =

[
W (1), W (2)

]
.

Eigenvector/Modal derivatives The idea is to use the right eigenvectors {vi,eq}ri=1 of the
linearized system (Aeq,E) for V (1), and the so-called eigenvector derivatives {θij}ri,j=1 for
V (2). The latter are defined as θij = ∂vi,eq/∂xr,j and describe the change of the eigenvector
vi,eq with respect to the amplitude xr,j of vj,eq. Similarly, the left eigenvectors {wi,eq}ri=1 of
the dual linearized system (AT

eq,ET) can be augmented with the left eigenvector derivatives
∂wi,eq/∂xd

r,j . Note that the eigenvector derivatives2 represent the state-space counterpart of
the so-called modal derivatives employed in nonlinear structural dynamics [129, 240, 224].
Modal derivatives will be further treated in Chapters 9 and 10.

IRKA + POD The idea is to combine the linear reduction approach IRKA with the non-
linear technique of Proper Orthogonal Decomposition (POD). First, IRKA is applied to the
linearized system (Aeq,Beq,Ceq,E), in order to obtain the bases V (1) and W (1). Secondly,
bases V POD and W POD are obtained from snapshots. Finally, the respective matrices are
concatenated yielding augmented bases. [56, 156]

In general, the augmentation approach has the disadvantage that the bases can rapidly
grow, thus increasing the reduced order and consequently inhibiting the speed-up gained
through model reduction. Nevertheless, the growth of the bases can be alleviated with a
deflation technique to capture the most relevant subspaces and reduce the dimension to rdefl.

2For more details on eigenvector (and Krylov) derivatives for state-space systems the reader is referred to the
master thesis [Him18], where numerical results are also presented. A recent related paper is [177].
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Trajectory piecewise linear approximation (TPWL)

The conceptual idea of Trajectory Piecewise Linear (TPWL) [214, 225] is to first linearize the
nonlinear system at different operating points, where linear reduction bases are computed.
After that, the nonlinear reduced model is obtained by a weighted sum of linearized ROMs.

The linearization points {(x̄s, ūs)}Ss=1 are selected — according to the distance to each
other ‖x − x̄s‖ ≥ δ — along one or several FOM state trajectories simulated for certain
training input signals utrain(t). Then, reduction bases {V s, W s}Ss=1 are computed for every
linearization point using the linearized matrices {As, Bs, Cs}Ss=1 and any desired linear MOR
technique. Generally, these local bases are then concatenated to obtain respective global bases
V ,W for projection. Note, however, that the local bases could also be applied individually,
for which state transformations to a common subspace would be required prior to the weighted
interpolation (see e.g. [160], [Gri16]). For the global case, the reduced-order model reads

W TEV ẋr(t) =
S∑

s=1
ωs
(
xr(t)

)
W T

(
f(x̄s, ūs)+As

(
V xr(t)− x̄s

)
+Bs

(
u(t)− ūs

))
, (6.14)

where the weights are updated in the online phase depending on the current state xr(t) and
fulfill ∑S

s=1 ωs(xr(t))=1 with ωs(xr(t)) ≥ 0.
The method of TPWL can handle strong nonlinearities and requires only linear MOR

techniques. Moreover, the process of hyper-reduction is already accomplished due to the
approximation of the nonlinear function by a weighted combination of linearized ROMs. On
the other hand, the quality of TPWL depends on the choice of many degrees of freedom (e.g.
number S, tolerance δ of linearization points, weights), which are often selected heuristically.
Furthermore, the FOM has to be simulated for one or several training input signals, making
the quality of the ROM also dependent on the selected training conditions.

Proper orthogonal decomposition (POD)

The Proper Orthogonal Decomposition (POD) [181, 37], aka. Karhunen-Loève transform
(KLT) or Principal Component Analysis (PCA), aims at finding a basis that optimally ap-
proximates the space spanned by an arbitrary set of data points. In POD, the data points
are called snapshots and represent discrete samples {x(tk)}ns

k=1 of the FOM state trajectory.
The goal is then to find an orthonormal basis V = [v1, . . . ,vr] ∈ Rn×r such that [153, 74]:

min
V

ns∑
k=1

∥∥x(tk)− V xr(tk)
∥∥2

2 = min
vi

ns∑
k=1

∥∥x(tk)−
r∑

i=1
vi v

T
i x(tk)︸ ︷︷ ︸
xr,i(tk)

∥∥2
2 , s.t. vT

i vj = δij . (6.15)

Herein, the coefficient vector xr(tk) ∈ Rr is also adapted to minimize the above expression.
The solution to this least-squares minimization problem can be obtained by the singular value
decomposition (SVD) of the snapshot matrix X=[x(t1), . . . ,x(tns)] ∈ Rn×ns , in which all ns
sampled observations x(tk) are gathered, yielding:

X = U ΣT T . (6.16)

The orthogonal matrices U ∈ Rn×n and T ∈ Rns×ns contain the left and right singular vectors,
respectively. The diagonal matrix Σ = diag(ς1, . . . , ςns) ∈ Rn×ns , where ς1 ≥ · · · ≥ ςns ≥ 0,
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features all singular values sorted in descending order. The reduction basis V ∈ Rn×r is
finally constructed by taking the first r left singular vectors {ui}ri=1 corresponding to the
largest singular values ςi.

Note that the dimensions for the SVD matrices are given for the most general case with an
n-by-ns snapshot matrix. If one employs the economy version of the SVD (e.g. svd(X,'econ')
in MATLAB), then the dimensions differ depending on the case. If n > ns, where the
number of snapshots ns is smaller than the number of degrees of freedom n, then U ∈ Rn×ns ,
Σ ∈ Rns×ns , T ∈ Rns×ns . This is the case for most MOR settings, where models with very
large dimension are considered and the snapshot matrix X is consequently tall-and-skinny. If
n < ns, the dimensions of the matrices are U ∈ Rn×n, Σ ∈ Rn×n, T ∈ Rns×n. Further note
that in case n � ns, it is more efficient to perform the eigenvalue decomposition (EVD) of
the correlation matrix C=XTX ∈ Rns×ns than the SVD of X ∈ Rn×ns [191, Suk16].

POD is a straightforward data-driven approach that can be applied for the reduction
of any nonlinear system. For this reason it is the most employed and well-known nonlinear
reduction technique. Furthermore, an appropriate reduced order r can be chosen according
to the decay of the singular values, e.g. such that [154, 191, Suk16]

I(r) =
∑r

i=1 ς2
i∑ns

i=1 ς2
i

≥ 1− ε2
POD (6.17)

for a given tolerance εPOD. Once r is fixed, the minimum 2-norm error is given by [161]
ns∑

k=1

∥∥x(tk)−
r∑

i=1
vi v

T
i x(tk)︸ ︷︷ ︸
xr,i(tk)

∥∥2
2 =

ns∑
i=r+1

ς2
i . (6.18)

Finally, note that the method provides an optimal low-rank approximation Xr = ∑r
i=1 ςi ui t

T
i

with rank r of the snapshot matrix X.
In addition to all mentioned advantages, POD also has some drawbacks that are discussed

in the following. First of all, the method relies on expensive simulations of the full-order model
for several training input signals utrain(t), in order to gather representative snapshots. This
leads to immense offline costs, that are even higher, if the model also has to be simulated
for different parameter sets and/or boundary conditions. The SVD of the gathered snapshot
matrix/matrices also contributes to the offline costs, but to a lesser extent than the FOM sim-
ulations. Another drawback of POD is that the approximation quality of the ROM crucially
depends on the selected snapshots and training scenarios (aka. training input dependency).
If the latter do not capture the dynamics for all relevant operating conditions of the system,
then the performance might deteriorate for scenarios that were not trained.

To conclude this section, please note that there exist other simulation-based nonlinear
reduction techniques that are similar or related to POD. Examples are balanced-POD [274],
empirical Gramians [164] and Reduced Basis methods [211, 117]. For transport phenomena,
e.g. advection-dominated systems, a very slow decay of the singular values is usually observed
with the classical POD. Thus, the shifted POD (sPOD) has been proposed [213] to handle
such kind of problems. Besides the common (Petrov-)Galerkin projection, POD has widely
been employed within the (spatial) least-squares Petrov-Galerkin (LSPG) framework [55, 50,
54], and recently also within the space–time LSPG method [57] using higher-order singular
value decomposition (HOSVD). Finally, reduction techniques based on neural networks or
deep/manifold learning [199, 260, 159] are also data-driven, and thus related to POD.
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6.4 Nonlinear reduction based on nonlinear projection

After having focused on the linear projection-based reduction of nonlinear systems in Sec-
tion 6.3, we now direct our attention to model reduction based on nonlinear projection. Sim-
ilarly as before, we present the corresponding projection framework, time integration and
reduction techniques.

6.4.1 Nonlinear Petrov-Galerkin projection framework

One promising, and not yet perfectly well developed, way of reducing nonlinear systems is to
apply a nonlinear Petrov-Galerkin projection, where the approximation ansatz is given by

x(t) = ν
(
xr(t)

)
+ e(t), (6.19)

with the smooth nonlinear mapping ν(xr) : Rr → Rn and the approximation error e(t) ∈ Rn.
In contrast to the linear ansatz (3.26), the state vector x(t) ∈ Rn is now expressed as a
nonlinear function of the reduced state vector xr(t) ∈ Rr. The derivative of (6.19) reads

ẋ(t) = ∂ν(xr(t))
∂xr(t)

ẋr(t) + ė(t), (6.20)

with the Jacobian matrix

Ṽ (xr) = ∂ν(xr)
∂xr

∈ Rn×r. (6.21)

The tangential Jacobian Ṽxr spans the r-dimensional tangent space Ṽ =TxrM= ran(Ṽxr) of
the manifold M={xr ∈ Rr : x = ν(xr)}.

Inserting the ansatz and its derivative in (6.1a) yields an overdetermined system of equa-
tions with the residual ε(t) ∈ Rn. To obtain a square ROM, the resulting system is projected
onto the subspace Ũ=ran(E Ṽxr). The projection is performed orthogonally to another sub-
space W̃ = ran(Wxr), or in other words, along the orthogonal complement W̃⊥ = ran(Wxr)⊥

with the Jacobian matrix [109]

W̃ (xr)T = ∂ω(ξ(x,u))
∂x

∣∣∣∣
x=ν(xr)

∈ Rr×n. (6.22)

The tangential Jacobian W̃xr ∈ Rn×r spans the r-dimensional subspace W̃ = ran(Wxr). Its
orthogonal complement is spanned by the tangent space W̃⊥ = TxrN = ran(W̃xr)⊥ of the
manifold N =

{
ξ(xr,u) ∈ Rn : ω(ξ(x,u))|x=ν(xr) =0

}
with the mapping ω(ξ(xr,u)) :Rn→Rr

and the residual function ξ(x,u) = Eẋ − f(x,u) = 0. Multiplying the overdetermined
system from the left with the projector Π̃ = E Ṽxr(W̃

T
xrE Ṽxr)−1W̃

T
xr , where W̃ T

xrE Ṽxr is
non-singular, leads to

Π̃
(
E Ṽxr ẋr(t)− f

(
ν(xr(t)), u(t)

)︸ ︷︷ ︸
=ξ
(
ν(xr(t)),u(t)

) −ε(t)
)

= 0 ⇔ Π̃
(
ξ
(
ν(xr(t)),u(t)

)
− ε(t)

)
= 0.

(6.23)
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Enforcing the Petrov-Galerkin condition W̃ T
xr ε(t) = 0, which implies Π̃ ε(t) = 0, the residual

then vanishes and only the term Π̃ ξ
(
ν(xr(t)),u(t)

)
=0 remains. This yields the ROM

Ẽr ẋr(t) = ∂ω(ξ(x(t),u(t)))
∂x(t)

∣∣∣∣
x(t)=ν

(
xr(t)

) f(ν(xr(t)), u(t)
)
, xr(0) = xr,0,

yr(t) = h
(
ν(xr(t))

)
,

(6.24a)

(6.24b)

with Ẽr = W̃ T
xrE Ṽxr , the initial condition xr(0) = arg min

xr,0
‖ν(xr,0) − x0‖22 and the reduced

nonlinear mapping f̃ r
(
xr(t),u(t)

)
=W̃ (xr(t))Tf

(
ν(xr(t)),u(t)

)
with f̃ r(xr,u) :Rr×Rm→Rr.

Please note that for the computation of the initial condition xr(0) a nonlinear least-squares
problem should be solved [138] using, for instance, the gradient descent method, the trust
region method, Gauss-Newton or the LevenbergMarquardt algorithm (cf. e.g. lsqnonlin
command in Matlab) [193]. Further note that the reduced nonlinear mapping f̃ r(xr,u) has
to be simplified, in order to gain further speed-ups. This procedure is known under the name
of hyper-reduction, which will be treated in Section 6.5.
Remark 6.1 (Link between nonlinear and linear projection). The afore explained nonlinear
projection framework is a generalization from the linear case. Thus, the nonlinear reduction
mappings ν(xr) : Rr → Rn and ω(ξ(xr,u)) : Rn → Rr are linked to the linear case:

x = ν(xr) =̂ Ṽxr xr , Ṽxr =̂ ∂ν(xr)
∂xr

, (6.25a)

ω
(
ξ(ν(xr),u)

)
=̂ W̃

T
xr ξ(ν(xr),u) = 0 , W̃

T
xr =̂ ∂ω(ξ(x,u))

∂x

∣∣∣∣
x=ν(xr)

. (6.25b)

Moreover, the projection mappings xproj(t) = u
(
c(t)

)
with u(c) : Rr → Rn, c(t) =w

(
x(t)

)
with w(x) : Rn → Rr and xproj(t)=%

(
x(t)

)
=u

(
w(x(t))

)
with %(x) : Rn → Rn are strongly

related to their linear counterparts:

xproj = u(c) =̂ Ũ c , Ũ =̂ ∂u(c)
∂c

, (6.26a)

c = w(x) =̂ (W̃ T
xr Ũ)−1 W̃

T
xr︸ ︷︷ ︸

∗

x , ∗ =̂ ∂w(x)
∂x

, (6.26b)

%(x) = u
(
w(x)

)
=̂ Π̃x , Π̃ =̂ ∂u(c)

∂c

∂w(x)
∂x

, (6.26c)

where Ũ=E Ṽxr and the projector is given by

Π̃ = E
∂ν(xr)

∂xr

(
∂ω(·)

∂x

∣∣∣∣
ν(xr)

E
∂ν(xr)

∂xr

)−1
∂ω(·)

∂x

∣∣∣∣
ν(xr)

= E Ṽxr(W̃
T
xr E Ṽxr)−1 W̃

T
xr . (6.27)

For nonlinear systems, a Galerkin projection (W̃xr = Ṽxr) is commonly used. For the special
case E = I this choice yields ∗= (Ṽ T

xrṼxr)−1Ṽ
T
xr and Π̃ = Ṽxr(Ṽ

T
xrṼxr)−1Ṽ

T
xr , or ∗ = Ṽ

T
xr and

Π̃ = ṼxrṼ
T
xr if Ṽxr is orthogonal (Ṽ T

xrṼxr = Ir). Note that the condition w(Eν(xr)) = xr

corresponds to (W̃ T
xrE Ṽxr)−1W̃

T
xrE Ṽxr xr = xr. M



6.4. Nonlinear reduction based on nonlinear projection 129

Remark 6.2 (Power series ansatz [146, 124]). The power series approximation ansatz

x =
N∑

k=1
V (k) x(k)

r = V (1)x(1)
r + V (2)x(2)

r + · · · (6.28)

with V (k) ∈ Rn×rk and x(k)
r =

k times︷ ︸︸ ︷
xr ⊗ · · · ⊗ xr ∈ Rrk constitutes a special case of the most general

nonlinear projection x≈ν(xr). Depending on the underlying nonlinearities, the power series
ansatz could be customized for the system at hand. For instance, the following quadratic
manifold projection ansatz

x = V (1)xr + V (2)(xr ⊗ xr) =̂ ν(xr) (6.29a)
ẋ = V (1)ẋr + V (2)(ẋr ⊗ xr + xr ⊗ ẋr

)
(6.29b)

could be used for the reduction of a polynomial (e.g. quadratic) system

E ẋ(t) = A1 x(t) +A2
(
x(t)⊗ x(t)

)
+Bu(t),

y(t) = C x(t),
(6.30)

yielding the ROM (6.24) with the corresponding f
(
x,u

)
and h(x) from above, together with

Ṽ (xr)=∂ν(xr)/∂xr =V (1) +V (2)(1r⊗xr +xr⊗1r), where 1T
r = [1, . . . , 1] ∈ R1×r. A similar

example is considered in Eq. (6.39) and [109, Sec. 4.7.1], where W̃ (xr)T =W T is used. M

6.4.2 Time integration

Before we explain some approaches to construct the reduction manifolds ν(xr) and ω(ξ(xr,u))
in Section 6.4.3, we first want to address the time integration of the ROM (6.24).

The application of a nonlinear projection yields a rather complicated reduced model with
state-dependent bases Ṽxr and W̃xr . Thus, for certain states xr(t) and x(t)≈ ν(xr(t)) the
bases might get rank deficient or the matrix W̃ T

xr E Ṽxr become badly conditioned. Further-
more, the time integration scheme becomes more involved due to the changing bases. This is
illustrated in the following for the case of an implicit Euler method.

Applying the backward Euler formula (6.4) to the ROM state equation (6.24a) yields

Ẽr,k+1 xr,k+1 = Ẽr,k+1 xr,k + h · f̃ r,k+1(xr,k+1,uk+1), with tk+1 = tk + h. (6.31)

The reduced descriptor matrix at the time-step k + 1 is given by Ẽr,k+1 =W̃ T
xr,k+1 E Ṽxr,k+1 .

The reduced nonlinear mapping reads f̃ r,k+1(xr,k+1,uk+1)=W̃ T
xr,k+1 f

(
ν(xr,k+1),uk+1

)
with

xk+1≈ν(xr,k+1). This finally leads to the residual

res(xr,k+1) = Ẽr,k+1 xr,k − Ẽr,k+1 xr,k+1 + h · f̃ r,k+1(xr,k+1,uk+1)

= W̃
T
xr,k+1

(
E Ṽxr,k+1 xr,k −E Ṽxr,k+1 xr,k+1 + h · f

(
ν(xr,k+1),uk+1

))
= W̃

T
xr,k+1 · resfull(xr,k+1).

(6.32)
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The Jacobian of the residual

J iter
res(xiter

r,k+1) = ∂ res(xr,k+1)
∂ xr,k+1

∣∣∣∣∣
xr,k+1=xiter

r,k+1

(6.33)

is required for the Newton-Raphson loop. An analytical expression for J iter
res(xiter

r,k+1) can be
obtained by applying the product rule to (6.32). This leads to several terms due to the
dependence of W̃ T

xr,k+1 and resfull on the reduced state xr,k+1. One of the terms reads

h · W̃
T
xr,k+1 A

(
ν(xr,k+1),uk+1

)
Ṽxr,k+1 (6.34)

and depends on the Jacobian A(x,u) of the nonlinear function f(x,u). The analytical
Jacobian (6.33) is composed of many other terms, which are not given explicitly here.

Note that the exact analytical Jacobian may be approximated by neglecting some of the
difficult terms arising. Although the quadratic convergence of the Newton-Raphson method
cannot be ensured anymore, such an approximate Jacobian can result in a more stable and
efficient time integration scheme (cf. [132], 22). Another possibility consists in calculating
the Jacobian numerically via finite differences, which is however much more time-consuming.

6.4.3 Nonlinear projection-based reduction approaches

In this section, a brief overview of several approaches to construct nonlinear reduction map-
pings ν(xr) and ω(ξ(xr,u)) is given. The focus is laid in explaining the main idea of the
different methods rather than in giving all mathematical details.

Quadratic manifold

As mentioned in Remark 6.2, a power series expansion of the nonlinear projection ansatz
x(t) ≈ ν

(
xr(t)

)
may be a simpler approach than employing the most general mapping ν(xr).

For instance, truncating the series after the second-order term yields the quadratic manifold

x(t) ≈ V (1)xr(t) + V (2)(xr(t)⊗ xr(t)
)
, (6.35)

with the reduced coordinates xr(t)= [xr,1(t), · · · , xr,r(t)]T. The question is now how to com-
pute the reduction matrices V (1)∈Rn×r and V (2)∈Rn×r2 that parametrize this manifold.

One possibility consists in using the right eigenvectors {vi,eq}ri=1 of the linearized system
(Aeq,E) for V (1), and the eigenvector derivatives {θij}ri,j=1 with θij = ∂vi,eq/∂xr,j for V (2).
These perturbation derivatives capture the quadratic behavior of the series and are therefore
conceivable not only for basis augmentation (cf. Eq. (6.13)), but also for the ansatz (6.35).
Note that quadratic manifold reduction based on modes and modal derivatives has been
successfully applied in the context of nonlinear structural dynamics [132, 223, 224]. To the
best of the author’s knowledge such an approach has not been applied for state-space systems
so far. Thus, our idea of using eigenvector (or Krylov) derivatives for manifold reduction of
nonlinear first-order systems seems to be novel and has potential for application.

Another approach is to construct the matrices V (1) and V (2) as bases of input Krylov
subspaces for the first and second subsystem of the Volterra series representation (cf. Sec-
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tion 5.3). Our idea is to use theses matrices in a quadratic manifold setting (cf. (6.35)), rather
than concatenating them to an augmented basis as it has been done so far in polynomial MOR.
Note that this approach is only proposed here as a conceptual idea. Its implementation and
validation is subject to future research.

Regarding the mapping ω(·), a quadratic manifold ansatz with matrices W (1) ∈ Rn×r

and W (2) ∈ Rn×r2 — or rather W (1)T ∈ Rr×n and W (2)T ∈ Rr2×n — could be applied as
well. These matrices can be computed by employing the aforementioned approaches in a dual
manner. This means: the left eigenvectors {wi,eq}ri=1 of the dual linearized system (AT

eq,ET)
are used for W (1), and the left eigenvector derivatives ∂wi,eq/∂xd

r,j are utilized for W (2).
Moreover, the bases of output Krylov subspaces for the first and second subsystem of the
Volterra series can be employed in a quadratic manifold setting.

ManiMOR approach

One of the methods proposed in [109, Sec. 4.3, 4.6] consists first in computing local Krylov
subspaces around one or several equilibrium points {(xeq,s,ueq,s)}Ss=1, and then in integrating
along the Krylov vectors to obtain the manifold ν(xr). In the following, we explain (and
partly generalize) this method using our own notation.

First, an equilibrium point-dependent basis V (xeq) is computed using the Krylov sub-
space Kq(A−1

eq,σE, A−1
eq,σBeq), where Aeq,σ := (σE − Aeq). Naturally, the basis could also

be constructed by the union of several Krylov subspaces computed for different equilibrium
points (and also shifts and tangential directions), e.g. as

V (xeq,s) =
[
A−1

eq,1,σ1 Beq,1r1, A−1
eq,1,σ1EA

−1
eq,1,σ1Beq,1 r1, · · · , A−1

eq,S,σS
Beq,S rS , · · ·

]
. (6.36)

Then, the manifold ν(xr) is computed by integrating

∂ xeq,s

∂ xr
= V (xeq,s), or rather ∂ xeq,s

∂ xr,i
= vi(xeq,s), i = 1, 2, . . . , (6.37)

for each Krylov vector. This yields the exponential manifold x = ν(xr) = exp
(
V (xeq,s)xr

)
.

The integral manifold methods from Gu can be combined with a hyper-reduction technique
(cf. Section 6.5). In fact, the so-called ManiMOR approach [109, Sec. 5] combines an integral
manifold with a PWL approximation of the nonlinear function (cf. Eq. (6.40)).

Note that the Krylov vector v(xeq)=−A−1
eq Beq for shift σ =0 spans the tangent space of a

so-called DC manifold, which is named after the close connection of v(xeq) to the computation
of steady-state equilibria for nonlinear systems (cf. Section 7.2.1.3). Further note that the
integral manifold method involves the solution of a series of differential equations (6.37), which
can be expensive.

Nonlinear balancing

The method of balanced truncation has been carried over to nonlinear systems in [239] based
on reachability and observability considerations, as well as on nonlinear optimal control theory.
The generalization leads to two Hamilton-Jacobi-Bellman (HJB) partial differential equations,
which represent the nonlinear counterpart of the linear Lyapunov equations (3.18). These
partial differential equations (PDEs) are difficult and expensive to solve due to the curse of
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dimensionality, especially if large models are involved. Therefore, techniques that avoid the
HJB-PDEs and instead yield state-dependent Lyapunov equations have been developed. These
are (i) dynamical balancing based on dynamic controllability and observability extension [226,
227], and (ii) differential balancing based on contraction theory and variational systems [147,
149]. Both streams are reviewed and well explained in the master thesis [Hei18], where a nu-
merical approach to solve the state-dependent Lyapunov equations is also discussed. Bringing
the system into a nonlinear balanced realization involves (in both dynamical and differential
balancing) a state-dependent transformation matrix, leading to singular value functions ςi(x).
At this point it is not clear to the author how the methods can be efficiently implemented for
large-scale systems without making use of symbolic computations. In fact, the development of
a numerically feasible — and at the same time system-theoretic/simulation-free — nonlinear
balancing method is still topic of ongoing research in the MOR community.

Nonlinear moment matching

The method of moment matching has also been transferred to the nonlinear case in [13, 14,
127] based on the steady-state interpretation of input and output moments (cf. Section 3.6).
The generalization leads to two Sylvester-like partial differential equations, which represent
the nonlinear counterpart of the linear Sylvester equations (3.62). These PDEs must be solved,
in order to obtain the reduction mappings ν(xr) and ω(ξ(xr,u)) needed for projection. More
details concerning input nonlinear moment matching are given in Chapter 7, where some
simplifications to approximate the underlying PDE are also proposed.

6.5 Hyper-reduction

Nonlinear dimensional reduction techniques reduce the number of equations from n to the
much smaller dimension r, yielding the ROM (6.9) or (6.24). Due to this drastical reduction
of degrees of freedom, the computational cost associated with the solution of linear systems
of equations in implicit time integration schemes (cf. line 9) is reduced. However, the cal-
culation of the nonlinear term f r(xr,u) in (6.9) — and similarly of f̃ r(xr,u) in (6.24) —
still involves expensive computations. More specifically, it requires (1) the transformation
of the reduced coordinates xr to the full ones via x ≈ V xr, (2) the evaluation of the full
nonlinear function f(V xr,u) and (3) the projection with the reduction basis W to obtain
f r(xr,u) =W Tf(V xr,u). In case of an implicit scheme, the Jacobian A(x,u) of the non-
linear function is also required for the Newton-Raphson loop (cf. Eqs. (6.11) and (6.34)).
Similar as before, the Jacobian A(V xr,u) is also first evaluated in high dimension and then
projected to obtain the reduced Jacobian Ar(xr,u) =W TA(V xr,u)V . All these additional
computations inhibit the speed-up gained through dimensional reduction, and can make, in
small-sized cases, the simulation of the ROM even more expensive than the FOM one.

As a consequence thereof, so-called hyper-reduction techniques have been developed. The
main idea is to approximate the nonlinear function and Jacobian, in order to reduce the
computational cost associated with the evaluation of these terms and further increase the
speed-up. Hyper-reduction methods are usually employed “on top” of dimensional reduction
approaches. In this regard, different strategies exist to accomplish the hyper-reduction step.
The polynomial representation and the PWL approximation are fundamentally different from
the “classical” hyper-reduction methods DEIM and ECSW. In the following, we give a brief
overview of hyper-reduction and focus on the conceptual differences between the methods.
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6.5.1 Polynomial system representation

One possibility consists in representing the nonlinear function f
(
x,u

)
as a polynomial system

(4.1) using a Taylor series expansion, a polynomialization procedure or a bilinear/quadratic-
bilinear representation (cf. Sections 4.1, 4.2). This approach has the advantage that the
nonlinearity needs not to be evaluated on the element level within the FE code anymore,
since it is expressed analytically by means of polynomial tensors. Although the full-order
tensors are generally sparse, their storage becomes prohibitive for large n, especially if high-
order polynomials (e.g. cubic, quartic) are considered. Hence, depending on the application
and degree of nonlinearity, this approach might be more or less suitable.

Once a polynomial system representation is obtained, the dimensional reduction can be
accomplished using either a linear or nonlinear projection. This is illustrated in the following.

Reduction with linear bases Let us consider a cubic system representation with f(x,u) =
A1x +A2(x ⊗ x) +A3(x ⊗ x ⊗ x) +Bu. Using linear bases V ,W ∈ Rn×r for projection
yields a reduced nonlinear function

f r(xr,u) = A1r xr +A2r (xr ⊗ xr) +A3r (xr ⊗ xr ⊗ xr) +Br u (6.38)

with (dense!) reduced matrices

A1r = W TA1 V , A2r = W TA2 (V ⊗V ), A3r = W TA3 (V ⊗V ⊗V ), Br = W TB

of dimension A1r ∈ Rr×r, A2r ∈ Rr×r2 , A3r ∈ Rr×r3 and Br ∈ Rr×m.

Reduction with nonlinear manifold Let us now consider the quadratic system (6.30) with
f(x,u) =A1x + A2(x ⊗ x) + Bu. Using a quadratic manifold ansatz with V (1) ∈ Rn×r,
V (2) ∈ Rn×r2 and e.g. W̃ (xr)T =W T ∈ Rr×n yields the reduced nonlinear function

f r(xr,u) = W TA1 V
(1)xr +

(
W TA1 V

(2) +W TA2 (V (1) ⊗ V (1))
)
(xr ⊗ xr)

+W TA2
(
V (1) ⊗ V (2) + V (2) ⊗ V (1)

)
(xr ⊗ xr ⊗ xr)

+W TA2
(
V (2) ⊗ V (2)

)
(xr ⊗ xr ⊗ xr ⊗ xr) +W TBu

(6.39)

with (dense!) reduced matrices of corresponding dimension (cf. [109, Sec. 4.7.1]).

The computational speed-up of this approach becomes evident through the smaller costs
of evaluating the reduced polynomial function f r(xr,u) in comparison to the evaluation of
f r(xr,u) =W Tf(V xr,u). However, special care has still to be taken with the computation
of the reduced tensors A2r, A3r, etc., in order to efficiently handle the Kronecker products
(V ⊗ V ), etc. (cf. Alg. 2.1 from [22, Sec. 3.2.] or [103, Alg. 4.4]). Furthermore, it is
important to note that the reduced tensors are dense, meaning that their storage can become
unattractive, especially if a large reduced order r or high-order polynomials are considered.

Finally, note that an alternative approach is to reduce the nonlinear system (6.1) first, and
then calculate the reduced polynomial tensors A2r, A3r, . . . based on f r(xr,u) and Ar(xr,u).
This can be accomplished by considering the same procedures (i), (ii) or (iii) mentioned in
Section 4.1.1, but now applied at the reduced-order level. This involves: (i) an efficient
formulation of the products W TA2 (V ⊗ V ), etc., (ii) numerical differentiation of A1r, or
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(iii) an identification of reduced coefficients using e.g. [182, 120, 210]. These approaches have
been applied in the context of nonlinear structural dynamics [178, 224], and could, in the
author’s opinion, also prove successful in the field of state-space systems and fluid dynamics.

6.5.2 Piecewise linear approximation

Another way of accomplishing hyper-reduction is to represent the nonlinear function using a
piecewise linear (PWL) approximation, e.g. like in (6.14), or more generally as:

f r(xr,u) ≈ W̃
T
xr

S∑
s=1

ωs(xr)
(
f(x̄s, ūs) +As

(
ν(xr)− x̄s

)
+Bs

(
u− ūs

))
. (6.40)

The nonlinearity is thus constructed by a weighted interpolation of reduced linearized matri-
ces, obtained via linearization at different given points {xs}Ss=1. For more details concerning
this approach, the reader is referred to [109, Sec. 4.7.2].

6.5.3 Classical hyper-reduction

In contrast to the afore explained approaches, “classical” hyper-reduction techniques like the
Discrete Empirical Interpolation Method (DEIM) [74] or the Energy-Conserving Sampling
and Weighting (ECSW) [87] achieve the computational speed-up by evaluating the nonlinear
function at fewer elements of the full mesh. Both methods subtly differ in the way they choose
the reduced set of elements for the approximation, wherefore they are reviewed next.

Discrete Empirical Interpolation Method The theoretical foundation for DEIM was ini-
tially laid by the gappy POD [85, 270], the missing point estimation [11] and the empirical
interpolation method (EIM) [19]. The key idea is to approximate the nonlinear function as

f(V xr) ≈ fDEIM(V xr) = Uf c(V xr), (6.41)

with the basis Uf ∈ Rn×m and the coefficient vector c(V xr) ∈ Rm. The approximation
is then carried out such that the vector fDEIM(V xr) is equal to f(V xr) at certain dofs,
and interpolated elsewhere. This collocation is achieved by the Boolean matrix P ∈ Rn×m,
enforcing P TUf c(V xr)

!= P Tf(V xr). This latter equation can be solved for the coefficient
vector c and then inserted in the approximation ansatz (6.41), leading to

fDEIM(V xr,u) = Uf (P TUf )−1P Tf(V xr,u). (6.42)

The whole procedure represents a projection of the nonlinear function by the oblique projector
ΠDEIM =Uf (P TUf )−1P T, where det(P TUf ) 6= 0 is assumed. In FE-notation, the approxima-
tion of the reduced nonlinear function f r(xr,u) =W Tf(V xr,u) by the hyper-reduced one
f r,DEIM(xr,u)=W TfDEIM(V xr,u) reads as follows:

f r(xr,u) =
ne∑

e=1
W TLT

e f e(LeV xr,u)

≈
∑
e∈Ẽ

W TUf (P TUf )−1P TLT
e f e(LeV xr,u) = f r,DEIM(xr,u).

(6.43)
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Herein, Le represents the Boolean assembly matrix corresponding to the element e and ne

denotes the number of elements of the full mesh [224, Ch. 2, 12]. Concerning the imple-
mentation, the matrix M := W TUf (P TUf )−1 ∈ Rr×m is precomputed, whereas the term
P Tf(V xr,u) only needs to be evaluated at m entries of f ∈ Rn. Hereby, the operator P TLT

e

is efficiently realized by index operations, in order to evaluate the nonlinearity only at the
dofs corresponding to non-zero rows in P . Thus, huge computational savings can be obtained
by hyper-reduction due to m � n and the looping over a reduced set of elements Ẽ. Please
note that the reduced Jacobian Ar(xr,u) =W TA(V xr,u)V can also be approximated via
DEIM using the hyper-reduced matrix Ar,DEIM(xr,u)=W TUf (P TUf )−1P TA(V xr,u)V .

For DEIM, both the basis Uf and the collocation matrix P have to be calculated.
For the computation of Uf some representative information about the nonlinear function
f is required, which is however difficult to obtain in a system-theoretic manner. There-
fore, similarly to X = [x(t1), . . . ,x(tns)] ∈ Rn×ns and POD, nonlinear function snapshots
F = [f(x(t1)), . . . ,f(x(tns))] ∈ Rn×ns gathered from a FOM simulation for certain training
input signals utrain(t) are usually employed to obtain the basis Uf ∈ Rn×m via SVD. After
that, the greedy DEIM algorithm [74] is used to select the collocation indices p1, . . . , pm, i.e.
the Boolean matrix P . Note that a different algorithm named QDEIM [80] selects the indices
based on the permutation/pivoting information of the QR decomposition of UT

f .
Different variants and extensions of the discrete empirical interpolation method are avail-

able in the literature. For instance, the unassembled DEIM (UDEIM) [261] operates in the
unassembled finite element mesh, making the method more efficient for FE applications. More-
over, the hyper-reduction of nonlinear matrix-valued functions or the Jacobian Ar(xr,u) can
be accomplished by the matrix version of DEIM (MDEIM), using either vectorization [280,
191] or a different approach presented in [148]. Finally, due to the oblique projection and
consequent loss of symmetry and stability, a symmetrized version of DEIM has been proposed
for nonlinear port-Hamiltonian systems in [56].

Another DEIM-related hyper-reduction technique is given by the Gauss-Newton with Ap-
proximated Tensors (GNAT) [50]. Recently, a structure-preserving variant of this method has
been proposed for structural dynamics [76] and finite-volume models [58]. In the following, a
conceptually different structure- and energy-preserving hyper-reduction approach is described.

Energy-Conserving Sampling and Weighting The ECSW hyper-reduction method has been
proposed by Farhat et al. [87, 88] in the context of structural dynamics, and is based on
the principle of virtual work. The main idea is to find a reduced set of elements Ẽ with
|Ẽ| � ne and positive weights ξ∗

e ≥ 0, such that the virtual work of the reduced nonlinear
term is preserved. Using a Galerkin projection (W = V ), the reduced nonlinear function
f r(xr,u)=V Tf(V xr,u) is approximated by the hyper-reduced one f r,ECSW(xr,u) as:

f r(xr,u) =
ne∑

e=1
V TLT

e f e(LeV xr,u) ≈
∑
e∈Ẽ

ξ∗
e V

TLT
e f e(LeV xr,u) = f r,ECSW(xr,u). (6.44)

Similarly, the reduced Jacobian Ar(xr,u) = V TA(V xr,u)V can also be approximated by
Ar,ECSW(xr,u). Again, the computational cost associated with the evaluation of the nonlin-
earity and Jacobian is drastically reduced due to |Ẽ| � ne. In addition, ECSW can preserve
intrinsic properties of the model like e.g. symmetry, energy and stability, making the method
particularly suitable for mechanical/conservative systems.
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For the computation of the weights ξ∗
e , some information about the reduced nonlinear func-

tion f r is required. Usually, state snapshots {x(tk)}ns
k=1 ∈ Rn obtained from a FOM simulation

for certain training inputs utrain(t) are used to get reduced state snapshots {xr(tk)}ns
k=1 ∈ Rr

via projection

xr,k = (V TEV )−1V TE xk . (6.45)

After that, the reduced function contributions gke ∈ Rr and bk ∈ Rr

gke =V TLT
e f e(LeV xr,k,utrain,k), bk =

ne∑
e=1

gke, (6.46)

of all ne elements and for all ns training snapshots are arranged in the matrix G ∈ Rr ns×ne

and the vector b ∈ Rr ns . The weights are then computed by solving the following inexact
sparse non-negative least-squares (S-NNLS) problem:

ξ∗ ≈ arg min
ξ
‖Gξ − b‖22 s.t. ξ ∈ Rne , ξ ≥ 0 , (6.47)

using an active-set greedy algorithm. The non-zero entries of ξ∗ form the reduced mesh Ẽ.

Simulation-free generation of snapshots For both DEIM and ECSW representative infor-
mation about the (reduced) nonlinear function is necessary to compute the matrix Uf or the
weights ξ∗

e . If the reduction basis V is constructed using a simulation-based approach like
POD, then state snapshots {xk}ns

k=1 are already available from training simulations. In such
case, it is straightforward to use them to obtain either the nonlinear function or the reduced
state snapshots (6.45) required for the hyper-reduction methods. This combination is called
POD-DEIM or POD-ECSW, and has been widely used in numerous applications. If, on the
contrary, the basis V is calculated in a simulation-free manner (using e.g. basis augmentation
or the approximated NLMM Algorithm 7.1), then it is not appealing to run expensive FOM
training simulations to gather snapshots for hyper-reduction. In such case, it is more rea-
sonable to employ a simulation-free hyper-reduction technique, where the offline costs for the
generation of training sets are lower. Two approaches developed in the context of structural
dynamics are mentioned in the following.

The quadratic manifold lifting approach [137] uses an augmented basis V aug =[V (1),V (2)]
for dimensional reduction, and quadratically lifted linear reduced coordinates as training
snapshots for hyper-reduction (using ECSW):

xk,lifted = V (1)xlin
r,k + V (2)(xlin

r,k ⊗ xlin
r,k). (6.48)

To obtain the linear reduced snapshots xlin
r,k, the linear(ized) system (cf. Eq. (6.12)) is reduced

using only V (1), and then the linear ROM is simulated very cheaply. The solution xlin
r (t) is

then lifted on a quadratic manifold, in order to generate snapshots that capture the nonlinear
behavior. Note, however, that this approach may perform badly, especially if the system
dynamics do not evolve over the selected manifold [223, 219, 224]. In such case, a different
manifold ansatz or the following linear subspace-based approach could be attempted.

The lean snapshot generation technique [219] is based on the solution of nonlinear static
problems of the form f(x`) = f rand,` for randomly generated vectors f rand,`. The latter are
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calculated by amplifying the basis vectors of the Krylov subspace Kq(−A−1
eq E,−A−1

eq Beq r)
with Gaussian random values. After that, nonlinear systems of equations (NLSEs) must be
solved to calculate the snapshots x` needed for hyper-reduction. Although the offline costs of
this method are higher than for the quadratic manifold lifting approach, its applicability is
wider since the snapshots are not restricted to a specific manifold. [224, Sec. 13.3]

6.5.4 Nonlinear manifold-based hyper-reduction

Linear projection-based dimensional reduction approaches — such as POD, augmented basis
or approximated NLMM (cf. Algorithm 7.1) — can be combined with (1) a polynomial sys-
tem representation, (2) a PWL approximation or (3) (simulation-free) hyper-reduction based
on DEIM/ECSW. If, on the contrary, a nonlinear projection-based dimensional reduction ap-
proach (e.g. a quadratic manifold) is used to obtain the ROM (6.24), then (1) a polynomial
expansion or (2) PWL approximation can be employed, whereas “classical” DEIM/ECSW are
not possible. To overcome this, the method of ECSW has recently been extended to allow
for hyper-reduction using nonlinear (quadratic) manifolds [138]. In the author’s opinion, a
similar extension could also be attempted with DEIM or GNAT, in order to enable nonlinear
manifold-based hyper-reduction for first-order systems as well.

6.6 Discussion

Before concluding this chapter, we want to discuss the properties, advantages and disadvan-
tages of the linear and nonlinear Petrov-Galerkin projection framework.

Nonlinear dynamical systems are usually reduced via projection onto linear subspaces.
This is due to the fact that classical Petrov-Galerkin projections are simple and well-understood.
Moreover, the time integration of a linear subspace ROM (6.9) barely changes w.r.t. the nu-
merical simulation of the nonlinear FOM. This allows the employment of (almost) the same
standardized toolchain, without having to intervent or adapt well-established numerical soft-
ware. In addition, several nonlinear reduction approaches exist to construct the linear bases
(e.g. POD, TPWL, basis augmentation), which have proven successful in many applications.
However, the linear subspaces employed for projection should comprise enough nonlinear in-
formation in order to yield a good approximation. This means that many basis vectors may
need to be considered (e.g. in basis augmentation approaches or in case of slowly decaying
singular values), thus leading to a high reduced order. Finally, linear projections may impose
a limitation in terms of accuracy and the restriction to linear subspaces, especially if the
underlying dynamics are expected to evolve in more sophisticated manifolds.

The nonlinear Petrov-Galerkin projection framework represents a very promising way of
reducing dynamical systems. For instance, applying a nonlinear manifold or a series expansion
ansatz with user-defined basis functions may outperform the classical linear projection, or
even be indispensable in certain cases to obtain decent results. Furthermore, this approach
allows to reduce a system to a smaller set of coordinates (cf. (6.13) with (6.35)) because
the reduction mapping ν(xr) depends nonlinearly on the reduced state vector. Nevertheless,
nonlinear projections are more difficult and less developed than linear ones. The projection
onto the tangent space of the manifold results in a more complicated ROM (6.24), whose time
integration is also more involved due to the state-dependent bases Ṽxr and W̃xr . Moreover, it
might be challenging to select a particular ansatz (6.28) or appropriate basis functions fitting
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to the problem under study. To be more precise: since the solution of the ROM is constrained
to evolve on the selected manifold, its suitable selection is crucial for a good performance of
the method. Some system-theoretic approaches to calculate quadratic and general nonlinear
manifolds have been explained in Section 6.4.3. Recent data-driven trends in the field of
MOR employ deep neural networks to learn these nonlinear manifolds from data [199, 159].
Herein, an appropriate network architecture tailored to the system at hand together with
representative snapshot data are essential for the approximation quality.

The suitability of a linear or nonlinear projection for model order reduction is strongly
problem- and physics-dependent. Thus, a general recommendation cannot be given. Neverthe-
less, this chapter discusses dimensional and hyper-reduction approaches for both categories,
offers a unifying view via conceptual comparisons between the approaches, and uncovers new
perspectives for future research. Furthermore, we have implemented (from scratch) our own
simulation framework with functions such as implicitEuler and NewtonRaphson, as well as
developed fundamental model reduction routines like basisRed, DEIM, etc.3 These algorithms
lay the foundation for the time integration, simulation-based reduction and hyper-reduction
of nonlinear state-space systems. The NewtonRaphson scheme can also be employed within
the approximated nonlinear moment matching algorithm presented in the next chapter.

Matlab function(s): ode45, ode23, ode15s, ode23s, ...
POD-DEIM function(s): implicitEuler, NewtonRaphson, NumJacobian, ...

POD, basisRed, DEIM, QDEIM, funcSnapBasisDEIM, ...

3Most functions of our simulation framework are available under https://doi.org/10.5281/zenodo.3542641.

https://doi.org/10.5281/zenodo.3542641


Chapter 7

Model Reduction by Approximated
Nonlinear Moment Matching

In the previous chapter, we have revisited many approaches to reduce large-scale nonlinear
dynamical systems and have categorized them in linear (Section 6.3.3) or nonlinear projection-
based techniques (Section 6.4.3). The methods can also be classified in two main branches
depending on their fundamental concept. Simulation-based dimensional reduction techniques
such as Proper Orthogonal Decomposition (POD), balanced-POD, empirical Gramians, Tra-
jectory Piecewise Linear (TPWL) and Reduced Basis methods rely on expensive full training
simulations for several input excitations to construct the reduction basis. On the other hand,
simulation-free reduction procedures try to extract the most dominant nonlinear dynamics by
exploiting some system-theoretic concept rather than from simulated data. Examples include
basis augmentation or quadratic manifold with eigenvector/modal derivatives, Krylov sub-
space methods for polynomial systems (subsystem/Volterra series interpolation), nonlinear
balanced truncation as well as nonlinear moment matching. From a system-theoretic perspec-
tive, this latter method represents a promising approach towards a reduction procedure for
general nonlinear systems, which does not rely on the numerical simulation of the full model
to construct the reduced model. Thus, we will focus on this method in the following.

The transfer of the moment matching concept from linear to nonlinear systems has been
initiated by Astolfi [12, 13, 14] based on the center manifold theory [51], the steady-state
response of nonlinear systems [131, Ch. 8] and the techniques of nonlinear output regula-
tion [146, 124]. Since then, moment matching for linear and, specially, nonlinear systems
has been further developed in several publications. For instance, the equivalence between
projection-based and non-projective families of reduced models achieving moment matching
is presented in [15]. Therein, the time-domain interpretation of output Krylov subspace-based
moment matching is also established for linear systems using the dual Sylvester equation.
These findings are transferred to the nonlinear case in [126] and further developed in [127] to
provide a two-sided, nonlinear moment matching theory. Moreover, the steady-state interpre-
tation of moments is extended to linear and nonlinear time-delay systems in [228]. Although
the previously mentioned papers [14, 126, 127, 228] are very appealing from a theoretical
point of view, practically they all face the same difficulty, namely the solution of a nonlinear
Sylvester-like partial differential equation to compute the reduction mapping ν(xr). More
recently, the data-driven low-order identification of an unknown nonlinear system by moment
matching has been presented in [231]. The proposed algorithm does not involve the solution
of a partial differential equation, as it rather aims at estimating the moments of a nonlinear
system from time-domain input-output data. In this sense, the approach is related to the
Loewner framework [171], which is a frequency-domain data-driven approach achieving mo-
ment matching, as well as to other time-domain low-order system identification techniques

139
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(e.g. the time-domain Loewner framework [204], the dynamic mode decomposition [238] and
machine/deep/manifold learning [43, 199, 260, 159]).

In this chapter we develop the concept of nonlinear moment matching presented in [14]
towards practical application. Inspired by the POD community, which usually employs a linear
projection and time-snapshots to reduce nonlinear systems, we propose some simplifications
to approximate the Sylvester-like PDE and achieve a feasible, numerical algorithm for model
reduction. The proposed employment of a linear projection renders the PDE into a system
of nonlinear algebraic equations, which is much easier to solve. Note that this simplification
resembles a special case of the power series approximation method (6.28) from [146], [124,
Ch. 4], which in turn is related to the asymptotic expansion (aka. Poincaré/naïve expansion
[187, 264, 136] or variational equation approach [221]) usually employed for approximating the
solution of nonlinear differential equations. Further note that other approximation techniques
for invariant manifolds exist, such as e.g. the symbolic iteration scheme [217, 216] as well
as numerical path continuation (cf. [140, 142]). Comparisons between invariant manifold
approaches and perturbation techniques can be found e.g. in [186, 201].

Our proposed approach is linked to the technique presented in [231] in the sense that both
methods approximately match nonlinear moments. However, the goals of both techniques
are different, since [231] focuses on the data-driven, low-order identification of an unknown
nonlinear system, whereas we deal with the reduction of a known nonlinear system. For
this reason, the proposed algorithms are also different. Algorithm 2 in [231] requires the
solution of a moving window, recursive least-square estimation problem using input-output
measurements and user-defined basis functions for the reduced output mapping, whereas the
practical algorithm presented here relies on the solution of nonlinear systems of equations
using the explicitly known governing system.

Based on the steady-state interpretation of moment matching for linear systems revisited
in Section 3.6, in the following we first explain its extension to nonlinear systems due to [14].
Then, in Section 7.2 our simplifications towards a feasible, simulation-free algorithm for ap-
proximated nonlinear moment matching are proposed and extensively discussed in Section 7.3.
This is followed by practical guidelines in Section 7.4, which instruct practitioners with the
degrees of freedom and ease the application of the proposed algorithm. In Section 7.5, two
benchmark examples are employed to illustrate the efficacy of the presented reduction ap-
proach both in terms of approximation quality and computational effort. Finally, Section 7.6
contains further remarks concerning the applicability of the algorithm to finite element models
and its combination with simulation-free hyper-reduction.

Many parts of this chapter represent an edited and extended version of the corresponding
sections of [72] and [71]. The theses [Suk17] and [Sch18] have also contributed to this chapter.

7.1 Steady-state-based nonlinear moment matching

In this section, the extension of moment matching to nonlinear systems presented in [13, 14]
is explained in detail.

7.1.1 Time-domain notion of nonlinear moments

First, the steady-state-based interpretation of nonlinear moments is described in a similar
fashion as in Section 3.6.1.
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Notion of nonlinear signal generator

Consider the following nonlinear signal generator (cf. [14])

ẋv
r (t) = sv

(
xv

r (t)
)
, xv

r (0) = xv
r,0 6= 0, (7.1a)

u(t) = r
(
xv

r (t)
)
, (7.1b)

where sv(xv
r ) : Rr → Rr, r(xv

r ) : Rr → Rm are smooth mappings such that sv(0) = 0 and
r(0)=0. Hereby it is assumed that:

1. The signal generator (sv, r, xv
r,0) is observable, i.e. for any pair of initial conditions

xv
r,a(0) 6=xv

r,b(0), the corresponding trajectories r(xv
r,a(t)) and r(xv

r,b(t)) do not coincide:
r(xv

r,a(t)) 6= r(xv
r,b(t)).

2. The signal generator is neutrally stable1, i.e. Poisson stable in a neighborhood of its
stable equilibrium xv

r,eq =0.
Although neutral stability is crucial for establishing a meaningful relation between moments
and well-defined steady-state responses, note that this assumption can be relaxed. The neutral
stability of the signal generator will be further discussed in Section 7.3.

Interconnecting a system with the nonlinear signal generator (7.1) corresponds to exciting
the system with an input signal u(t)=r

(
xv

r (t)
)
, where xv

r (t) is the given or computed solution
of the nonlinear ordinary differential equation (7.1a). Therefore, the signal generator should
be chosen such that it characterizes and excites the important dynamics of the underlying
nonlinear system. This will also be discussed later.

Steady-state response of interconnected system

Consider the interconnection of system (6.1), where xeq = 0 is locally exponentially stable,
with the nonlinear signal generator (7.1), cf. Fig. 7.1. The response of such interconnected
system is (similar to the linear case) given by

x(t) = τ
(
t,x0 − ν(xv

r,0)
)

︸ ︷︷ ︸
xt(t)

+ ν
(
xv

r (t)
)︸ ︷︷ ︸

xss(t)

, (7.2)

where xt(t) is the transient solution with the nonlinear transition mapping τ (t,x0), and
xss(t) defines the steady-state solution. Hence, yss(t)=h

(
xss(t)

)
=h

(
ν(xv

r (t))
)

— or yss(t)=
C xss(t)=C ν (xv

r (t)) for a linear output mapping — is the steady-state response of the non-
linear system (6.1) to an input generated by (7.1). By imposing the condition x0

!= ν(xv
r,0),

for xv
r,0 6= 0 arbitrary, such that τ (t, 0)=0 ∀t holds, then the transient solution xt(t) vanishes

for all t. This yields x(t)=xss(t) ∀t.

Based on this result, we are ready to present the steady-state interpretation of nonlinear input
moments in the next lemma.

1Corresponds to λ(Sv) ⊂ C0 in the linear setting, i.e. exciting the system with a permanent oscillation (cf.
[131, Ch. 8] and Sec. 3.6.1).
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ẋv
r (t) = sv

(
xv

r (t)
)

u(t) = r
(
xv

r (t)
) E ẋ(t) = f

(
x(t),u(t)

)
y(t) = h

(
x(t)

)

Ẽr ẋr(t) = ∂ω(·)
∂x

∣∣∣∣
x=ν(xr)

f
(
ν(xr(t)),u(t)

)
yr(t) = h

(
ν(xr(t))

)

u(t) y(t)

yr(t)

e(t)=0

xv
r,0 6= 0 x0 = ν(xv

r,0)

xr(0)=arg min
xr,0
‖ν(xr,0)− x0‖22

nonlinear signal generator FOM

ROM

−

Figure 7.1: Interconnection between the nonlinear FOM/ROM and the nonlinear signal gener-
ator to illustrate the time-domain interpretation of moment matching for nonlinear
systems.

Lemma 7.1 (Steady-state notion of nonlinear input moments). The 0-th nonlinear moments
m0

(
sv(xv

r (t)), r(xv
r (t)),xv

r,0
)

at
{
sv(xv

r (t)), r(xv
r (t)),xv

r,0
}

are related to the (locally well-
defined) steady-state response

yss(t) = h
(
ν(xv

r (t))
)

:= m0
(
sv(xv

r (t)), r(xv
r (t)),xv

r,0
)

(7.3)

of the interconnected system from Fig. 7.1, where the mapping ν(xv
r ), defined in a neigh-

borhood of xv
r,eq = 0, is the unique solution of the following Sylvester-like partial differential

equation (PDE)

E
∂ν(xv

r )
∂xv

r
sv(xv

r ) = f
(
ν(xv

r ), r(xv
r )
)
. (7.4)

Remark 7.1 (Local invariant manifold [14]). By the center manifold theory, the intercon-
nected system possesses a locally well-defined invariant manifold at (xeq,xv

r,eq)=(0, 0) given
byM=

{
(x,xv

r ) ∈ Rn+r : x = ν(xv
r )
}
, where ν(xv

r ) satisfies (7.4). Moreover, the dynamics of
the interconnected system restricted to the manifold x=ν(xv

r ) are described by ẋv
r =sv(xv

r ),
since E ∂ν(xv

r )
∂xv

r
ẋv

r = f
(
ν(xv

r ), r(xv
r )
)
. M

7.1.2 Nonlinear moment matching by interconnection

Based on Lemma 7.1, the perception of nonlinear moment matching in terms of the interpo-
lation of the steady-state response of an interconnected system follows.

Theorem 7.1 (Steady-state-based nonlinear moment matching). Consider the interconnec-
tion of system (6.1) with the nonlinear signal generator (7.1), where the triple (sv, r, xv

r,0) is
assumed observable and neutrally stable. Let ν(xv

r ) be the unique solution of the Sylvester-like
PDE (7.4) and ω(·) arbitrary such that det(W̃ T

xrEṼxr) 6=0. Furthermore, let x0 =ν(xv
r,0) with
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xv
r,0 6= 0 arbitrary. Then, the (exponentially stable) ROM (6.24) exactly matches the (locally

well-defined) steady-state response of the output of the FOM (cf. Fig. 7.1), i.e.

e(t) = y(t)− yr(t) = h
(
x(t)

)
− h

(
ν(xr(t))

)
= 0 ∀ t. (7.5)

Corollary 7.1 (Exact moment matching vs. interpolation). Thus, moment matching for
nonlinear systems can be interpreted as the exact matching of the steady-state response of the
FOM and ROM

yss(t) = h
(
ν(xv

r (t))
)

= m0
(
sv(xv

r (t)), r(xv
r (t)),xv

r,0
)

≡ h
(
ν(xr,ss(t))

)
= mr,0

(
sv(xv

r (t)), r(xv
r (t)),xv

r,0
)

= yr,ss(t),
(7.6)

when both are excited with the signal generator (7.1) (see Fig. 7.1) with same sv, r as the
ones used during the reduction. For other arbitrary input signals the steady-state response is
interpolated. Note here again that the transient response of the FOM vanishes, if the initial
condition is chosen like x0 = ν(xv

r,0). In such case, the matching conditions hold for all t
(transient+steady-state).

Proof. The output of the FOM for u(t)=r
(
xv

r (t)
)

has been derived in (7.2) and Lemma 7.1.
Exciting the exponentially stable ROM, i.e. xr,eq = 0 is stable, with the very same signal
u(t)=r

(
xv

r (t)
)

with xr(t)
!= xv

r (t) yields

Ẽr ẋr(t) = ∂ω(ξ(x(t),u(t)))
∂x(t)

∣∣∣∣
x=ν(xr)

f
(
ν(xr(t)), r(xr(t))

)︸ ︷︷ ︸
E

∂ν(xr(t))
∂xr(t) sv(xr(t))

and, consequently,

ẋr(t) = sv
(
xr(t)

)
, xr(0)=arg min

xr,0
‖ν(xr,0)− x0‖22, (7.7)

whose solution is xr(t). Thus, the output of the ROM for u(t)=r
(
xv

r (t)
)

is given by yr(t)=
h
(
ν(xr(t))

)
with xr(t) satisfying (7.7). Therefore, we achieve exact moment matching for all

t, if xr(0) !=xv
r,0, i.e. if x0

!=ν(xv
r,0). �

7.1.3 Derivation of nonlinear Sylvester-like partial differential equation

The Sylvester-like PDE (7.4) represents the nonlinear counterpart of the linear equation (3.89)
with xv

r (t)=eSvtxv
r,0:

EV Sv eSvt xv
r,0 = AV eSvt xv

r,0 +BR eSvt xv
r,0. (7.8)

Thus, the PDE can be similarly derived as follows. First, the nonlinear approximation ansatz
x(t)=ν(xr(t)) with xr(t)

!= xv
r (t) is inserted in the state equation (6.1a):

E
∂ν(xv

r (t))
∂xv

r (t) ẋv
r (t) = f

(
ν(xv

r (t)),u(t)
)
. (7.9)
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Afterwards, the nonlinear signal generator ẋv
r (t) = sv

(
xv

r (t)
)
, u(t) = r

(
xv

r (t)
)

is plugged into
(7.9), yielding

E
∂ν(xv

r (t))
∂xv

r (t) sv
(
xv

r (t)
)

= f
(
ν(xv

r (t)), r(xv
r (t))

)
. (7.10)

In contrast to the linear, state-independent Sylvester equation (3.62a) of dimension n × r,
note that the PDE (7.10) is a nonlinear, state-dependent equation of dimension n × 1. This
follows from the fact that the state vector xv

r (t) cannot be factored out so easily anymore.
This shortcoming will be further discussed in Section 7.2.

7.1.4 Families of reduced models achieving nonlinear moment matching

The projection-based approach to construct a reduced model achieving (input) nonlinear mo-
ment matching is given by Eq. (6.24), with ν(xv

r (t)) as solution of the Sylvester-like PDE
(7.10) and W̃ (xr)T = ∂ω(·)/∂x|x=ν(xr) arbitrary but such that det(W̃ T

xrEṼxr) 6= 0. Herein,
the ROM is parametrized in W̃xr ∈ Rn×r, which can be chosen to impose certain properties
on the reduced model (e.g. by a Galerkin projection with W̃xr = Ṽxr) or to achieve a better
approximation using the concept of output nonlinear moment matching [15, 126, 127].

The non-projective approach consists in parametrizing the family of ROMs w.r.t. the
reduced input matrix function ∆

(
xr) : Rr → Rr×m, yielding

ẋr(t) = sv
(
xr(t)

)
−∆

(
xr(t)

)
r
(
xr(t)

)
+ ∆

(
xr(t)

)
u(t), (7.11a)

yr(t) = h
(
ν(xr(t))

)
, (7.11b)

where Ẽr = Ir, ar(xr(t)) = sv
(
xr(t)

)
− ∆

(
xr(t)

)
r
(
xr(t)

)
and Br(xr(t)) = ∆

(
xr(t)

)
. Note

that this represents an input-affine nonlinear ROM that has a similar structure as the one
in (3.90). The free mapping ∆

(
xr) can then be selected to enforce e.g. asymptotic stability,

a prescribed relative degree and zero dynamics, or a passivity constraint, but should satisfy
a certain partial differential equation [14], [229, Sec. 2.3]. Particularly interesting is the
family of ROMs that is obtained, when a linear signal generator with sv(xr(t))=Sv xr(t) and
r(xr(t))=Rxr(t) is employed:

ẋr(t) =
(
Sv −∆(xr(t))R

)
xr(t) + ∆

(
xr(t)

)
u(t), (7.12a)

yr(t) = h
(
ν(xr(t))

)
. (7.12b)

If the free mapping is also chosen constant/state-independent, i.e. ∆(xr)=∆, then the family
of ROMs achieving nonlinear moment matching is described by a linear differential equation
with a nonlinear output map. [229, Sec. 2.4.3]

7.2 Approximated nonlinear moment matching

The approach for nonlinear moment matching described in Section 7.1 requires the solution
ν(xv

r (t)) of the nonlinear, state-dependent PDE (7.10) for a given signal generator, in order
to reduce the FOM (6.1). This e.g. involves either symbolic computations, or the numerical
solution of a resulting system of ordinary differential equations (ODEs) after reduced state-
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space discretization of the PDE (7.10). Since we aim to reduce large-scale nonlinear systems,
almost only numerical methods come into consideration, which preferably should also avoid an
expensive simulation. Hence, some step-by-step simplifications are performed in the following
towards a practical, simulation-free method for nonlinear moment matching, which relies on
solving algebraic nonlinear systems of equations rather than a PDE. Note that the proposed
simplifications constitute an approximation technique for the solution of the PDE (7.10).
Therefore, our practical simplifications yield an approximated nonlinear moment matching
approach that matches approximated nonlinear moments. The simplifications are also given
in the papers [72] and [71].

7.2.1 Simplifications

The proposed simplifications are threefold: (i) the use of a linear projection, (ii) the column-
wise consideration of the equation and (iii) a time discretization with time-snapshots. All
simplifications are practically motivated, try to avoid a nonlinear projection and to approxi-
mate the PDE (7.10). In the following we explain the simplifications for three different signal
generator cases.

7.2.1.1 Nonlinear signal generator

(i) Linear projection Motivated by the fact that nonlinear projections are complicated and
more involved, whereas linear ones are often successfully employed even in nonlinear MOR,
we propose to apply a linear projection x(t) = ν(xv

r (t)) = V xv
r (t) instead of the nonlinear

projection mapping ν(xv
r (t)).

By doing so, the PDE (7.10) becomes the following algebraic nonlinear system of equations
(NLSE)

0 = f
(
V xv

r (t), r(xv
r (t))

)
−EV sv

(
xv

r (t)
)
, (7.13)

where the triple (sv(xv
r (t)), r(xv

r (t)),xv
r,0) is user-defined and the projection matrix V ∈ Rn×r

is the sought solution.

(ii) Column-wise consideration System (7.13) consists of n equations for n · r unknowns in
V ∈ Rn×r, i.e. it is underdetermined. This shortcoming is a consequence of the usage of a
linear projection instead of a nonlinear mapping on a manifold. To overcome this problem,
we propose to consider the equation column-wise for each vi ∈ Rn, i = 1, . . . , r

0 = f
(
vi xv

r,i(t), ri(xv
r,i(t))

)
−E vi svi

(
xv

r,i(t)
)
, (7.14)

with xv
r,i(t) ∈ R, ri(xv

r,i(t)) :R→ Rm, svi(xv
r,i(t)) :R→ R and V =[v1, . . . ,vr]. Please bear in

mind that, in the linear setting, a column-wise construction of the orthogonal basis V using
the Arnoldi process still fulfills the Sylvester matrix equation (3.62a). In the nonlinear setting,
however, this does not hold true anymore, since equation (7.13) is generally not satisfied, even
if each column vi fulfills (7.14). This limitation will be further discussed in Section 7.3.

(iii) Time discretization In the linear case (cf. (3.89)), the state vector xv
r (t) could be

factored out, yielding a constant linear matrix equation. Unfortunately, in the nonlinear
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setting (cf. (7.10)), xv
r (t) can generally not be factored out anymore. Consequently, the

nonlinear equation (7.14) is still state-dependent. For this reason, we propose to discretize
the state-dependent equation with time-snapshots {t∗

k}, k = 1, . . . , K, similar as in POD.
For a time-discretized nonlinear signal generator svi(xv

r,i(t∗
k)), ri(xv

r,i(t∗
k)) and xv

r,0,i, the
following state-independent equation results

0=f
(
vik xv

r,i(t∗
k), ri(xv

r,i(t∗
k))
)
−E viksvi

(
xv

r,i(t∗
k)
)
, (7.15)

which can be solved for each vik ∈ Rn, with i = 1, . . . , r and k = 1, . . . , K, if desired. Note
that the discrete solution xv

r,i(t∗
k) of the nonlinear signal generator ODE (7.1a) must be given

or computed via simulation before solving equation (7.15).

7.2.1.2 Linear signal generator

Motivated from the linear case, one may also come to the idea of interconnecting the nonlinear
system (6.1) with the linear signal generator (3.78), where sv(xv

r (t)) = Sv x
v
r (t) and r(xv

r (t)) =
Rxv

r (t) with Sv ∈ Cr×r, R ∈ Rm×r.

(i) Linear projection By doing so, equation (7.13) becomes

0 = f
(
V xv

r (t), Rxv
r (t)

)
−EV Sv x

v
r (t), (7.16)

where the triple (Sv, R, xv
r,0) is user-defined. Remember that the usage of a linear signal

generator corresponds to exciting the nonlinear system with exponential input signals u(t)=
Rxv

r (t)=R eSvt xv
r,0. This choice naturally raises the question whether (growing) exponential

inputs are sufficiently valid for characterizing nonlinear systems. Note that the dynamics of
the selected signal generator represent the dynamics of the nonlinear system for which the
steady-state responses are matched. Therefore, the signal generator should ideally be chosen
such that it excites and characterizes the important dynamics of the nonlinear system. It is
well known that exponential functions are the characterizing eigenfunctions for linear systems.
By exciting the nonlinear system with exponential input signals, we therefore hope to describe
the nonlinear dynamics adequately as well (cf. Section 8.2).

(ii) Column-wise consideration Considering the underdetermined equation again column-
wise delivers

0 = f
(
vi xv

r,i(t), ri xv
r,i(t)︸ ︷︷ ︸

ri

(
xv

r,i(t)
)
)
−E vi σi xv

r,i(t)︸ ︷︷ ︸
svi

(
xv

r,i(t)
), (7.17)

where the signal generator (3.78) becomes ẋv
r,i(t)=σi xv

r,i(t) and ui(t)=ri xv
r,i(t) with xv

r,i(t)=
eσitxv

r,0,i for i = 1, . . . , r.

(iii) Time discretization Using the time-discretized signal generator ẋv
r,i(t∗

k) = σi xv
r,i(t∗

k),
ui(t∗

k)=ri xv
r,i(t∗

k) and xv
r,0,i, equation (7.17) becomes state-independent

0 = f
(
vik xv

r,i(t∗
k), ri xv

r,i(t∗
k)
)
−E vik σi xv

r,i(t∗
k), (7.18)
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with xv
r,i(t∗

k) = eσit
∗
k xv

r,0,i for i = 1, . . . , r. Note that in this case, the discrete solution xv
r,i(t∗

k)
of the linear signal generator ODE (3.78a) is analytically given by exponential functions with
exponents σi, so that no simulation of the signal generator is required.

7.2.1.3 Zero signal generator

This special (linear) signal generator is defined as ẋv
r (t) = sv(xv

r (t)) = 0, which means that
xv

r (t) = xv
r,0 = const and u(t) =Rxv

r (t) =Rxv
r,0 = const. Hence, the usage of a zero signal

generator is equivalent to exciting the nonlinear system with a constant input signal.

(i) Linear projection In this particular case, equation (7.13) becomes

0 = f
(
V xv

r,0, Rxv
r,0
)
, (7.19)

which is a nonlinear, state-independent system of equations.

(ii) Column-wise consideration A column-wise consideration of the underdetermined equa-
tion yields

0 = f
(
vi xv

r,0,i,

ri (xv
r,0,i)︷ ︸︸ ︷

ri xv
r,0,i

)
, (7.20)

where ẋv
r,i(t) = 0 with σi = 0, ui(t) = ri xv

r,0,i = const and xv
r,i(t) = xv

r,0,i = const hold for
i = 1, . . . , r. In other words, the employment of a zero signal generator corresponds to
moment matching at shifts σi =0.

(iii) Time discretization For this special case, no time discretization is needed, since (7.20)
already represents a state-independent equation. Note that solving the nonlinear system of
equations (7.20) is strong related to computing the steady-state x∞, also called equilibrium
point xeq, of the nonlinear system (6.1) by means of 0=f

(
x∞, uconst

)
.

7.2.2 Simulation-free nonlinear moment matching algorithm

7.2.2.1 Proposed algorithm

After the step-by-step simplifications discussed in the previous section, we are now ready to
state our proposed simulation-free nonlinear moment matching (NLMM) algorithm 7.1.

Note that the algorithm is given for the most general case of a nonlinear signal generator
(cf. Eq. (7.15)), and where two nested for-loops are used to compute all possible vik ∈ Rn.
Nevertheless, other (simpler) strategies are also conceivable. These and further aspects are
discussed in the following.

7.2.2.2 Computational aspects

a) Different strategies, degrees of freedom and special cases In addition to a nonlinear
signal generator, one could also apply a linear or a zero signal generator. To this end, line
3 (and correspondingly line 4 also) in Algorithm 7.1 should be replaced by the equations
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Algorithm 7.1 Nonlinear Moment Matching (NLMM)
Input: E, f(x,u), A(x,u), xv

r,i(t∗
k), ẋv

r,i(t∗
k) = svi(xv

r,i(t∗
k)), ri(xv

r,i(t∗
k)), initial guesses v0,ik,

deflated order rdefl

Output: orthogonal basis V
1: for i = 1 : r do I e.g. r different shifts σi

2: for k = 1 : K do I e.g. K samples in each shift
3: fun=@(v) f

(
v xv

r,ik, ri(xv
r,ik)

)
−E v svi(xv

r,ik) I residual (7.15)

4: Jfun=@(v) A
(
v xv

r,ik, ri(xv
r,ik)

)
xv

r,ik −E svi(xv
r,ik) I Jacobian of residual

5: vik = NewtonRaphson(fun,v0,ik, Jfun) I call Alg. 6.2

6: V(:,(i-1)*K+k) ← vik

7: V = gramSchmidt(vik, V) I optional
8: [U, Sigma, ~] = svd(V,'econ'); V = U(:,1:rdefl) I deflation is optional

(7.18) and (7.20). Note again that the latter cases do not require the simulation of the signal
generator ODE to compute xv

r,i(t∗
k). Moreover, remember the importance of the choice of

an adequate signal generator for a suitable characterization and reduction of the nonlinear
system at hand.

Besides the depicted most general approach, where basis vectors are computed for different
signal generators at several time points (i=1, . . . , r, k =1, . . . , K), one could also pursue other
strategies. For instance, a single signal generator at several time points (i = 1, k = 1, . . . , K)
is a possible simpler approach. Herein, the choice of appropriate time-snapshots t∗

k of the
selected signal generator is of crucial importance. Another procedure consists in matching
moments for different signal generators at only one time-snapshot (i = 1, . . . , r, K = 1). This
multipoint moment matching strategy implies, exemplarily for a linear signal generator, the
choice of different shifts, tangential directions and initial conditions

{
σi, ri, xv

r,0,i

}
, which

may be selected e.g. logarithmically between [ωmin, ωmax] or via IRKA [97] applied to the
linearized system. For a zero signal generator this strategy implies the choice of different initial
conditions and tangential directions

{
xv

r,0,i, ri

}
. The selection of these degrees of freedom will

be further discussed in Section 7.4.3.
If the NLMM algorithm is applied to a linear first-order system (3.1) with f(x,u) =

Ax +Bu using a linear signal generator, the algorithm boils down to the classical rational
Krylov subspace method, since line 3 becomes

0 = Avik�����eσit
∗
kxv

r,0,i +B ri�����eσit
∗
kxv

r,0,i −E vik σi�����eσit
∗
kxv

r,0,i

⇔ (σiE −A)vi = B ri.
(7.21)

In this special case, the reduction parameters condensate to
{

svi , ri ,����xv
r,0,i, t∗

k

}
, where the

initial conditions and time-snapshots no longer play a role, but only the shifts and tangential
directions matter. The above fact underlines the generalizability of the proposed algorithm:
the linear Krylov case can be retrieved from the NLMM algorithm for a special system class
and a specific choice of the reduction parameters.



7.2. Approximated nonlinear moment matching 149

b) Computational effort The presented reduction technique is simulation-free, since it does
not require the numerical integration of the large-scale nonlinear system (6.1). However, the
algorithm should rather be considered simulation-lean, since it still involves the solution of (at
most r ·K) nonlinear systems of equations (NLSE) of full order dimension n. These NLSEs
can be solved using either a self-programmed Newton-Raphson scheme (cf. line 5) or the
MATLAB’s built-in function fsolve. For a faster computation of the Newton method, it is
highly recommended to supply the analytical Jacobian of the right-hand side Jfun, for which
the Jacobian A(x,u) of the nonlinearity f(x,u) is needed. If Jfun is not provided, then the
Jacobian is approximated using finite differences, which can be very time-consuming. One
could even think of applying hyper-reduction to the nonlinear function or the Jacobian to
further speed-up the Newton-Raphson scheme during NLMM.

Reduction techniques like POD require a forward numerical simulation (one/multistep,
explicit/implicit, adaptive/fixed step-size) of the FOM to gather the snapshots. In case of
an implicit scheme, the computational effort of POD compared to NLMM is supposed to be
higher, since – within an implicit simulation – a NLSE must be solved in each time-step with
the Newton-Raphson method (cf. Section 6.2). This will be further discussed in Section 7.4.4.

c) Initial guesses and deflation A good initial guess for the solution of a NLSE can consider-
ably speed-up the convergence of the Newton method. Towards this aim, initial guesses can be
taken (depending on the case) from the solution for a zero signal generator v0,i←(7.20), from
linearized Krylov vectors v0,i =(σiE−Aeq)−1Beq ri computed with linearized matrices (6.12)
or from the solutions at neighbouring shifts v0,i+1←viK or time-snapshots v0,i,k+1←vik.

Another important aspect is that the matrix V that is used for projection must have
full rank, and should preferably be orthogonal for better numerical robustness. Thus, if
too many or redundant basis vectors vik are available, a deflation via a rank-revealing QR
factorization (RRQR) or a singular value decomposition (SVD) should be performed (cf.
line 8) to truncate linearly dependent columns and obtain a full rank, orthogonal matrix.
Alternatively, a modified Gram-Schmidt orthogonalization process or QR decomposition can
optionally be employed to orthogonalize a full rank basis V (cf. line 7).

7.2.2.3 Approximated nonlinear moments

After the simplifications, the important question arises what moments are actually being
matched when applying Algorithm 7.1. In fact, since the Sylvester-like PDE is not being
solved, the “true” nonlinear momentsm0

(
sv(xv

r (t)), r(xv
r (t)),xv

r,0
)

at
{
sv(xv

r (t)), r(xv
r (t)),xv

r,0
}

from Lemma 7.1 are not being exactly matched. Instead, we are approximately matching these
nonlinear moments at the chosen interpolation data

{
svi(xv

r,i(t∗
k)), ri(xv

r,i(t∗
k)), xv

r,0,i, t∗
k

}
. To

enlighten this more, we discuss the approximated nonlinear moments in the following.

Lemma 7.2 (Approximated nonlinear moments). The 0-th approximated nonlinear moments
m0

(
svi(xv

r,i(t∗
k)), ri(xv

r,i(t∗
k)), xv

r,0,i, t∗
k

)
at
{

svi(xv
r,i(t∗

k)), ri(xv
r,i(t∗

k)), xv
r,0,i, t∗

k

}
are related to the

(locally well-defined) steady-state response

yss,i(t∗
k) = h

(
vik xv

r,i(t∗
k)
)

:= m0
(
svi(xv

r,i(t∗
k)), ri(xv

r,i(t∗
k)), xv

r,0,i, t∗
k

)
(7.22)



150 Chapter 7. Model Reduction by Approximated Nonlinear Moment Matching

or rather

yss(t∗
k) = h

( r∑
i=1
vik xv

r,i(t∗
k)
)
, or yss(t) = h

(
V xv

r (t)
)

= h
( r∑

i=1

K∑
k=1

vik xv
r,i(t∗

k)
)

(7.23)

of the interconnection of (6.1) with the signal generator
{

svi(xv
r,i(t∗

k)), ri(xv
r,i(t∗

k)), xv
r,0,i, t∗

k

}
.

The projection matrix V = [v11, . . . ,v1K , · · · ,vr1, . . . ,vrK ] is composed of the vectors vik,
i.e. the solutions of (7.15) for i=1, . . . , r, k =1, . . . , K. The reduced coordinates are given by
xv

r (t)=
[
xv

r,1(t∗
1), . . . , xv

r,1(t∗
K), · · ·, xv

r,r(t∗
1), . . . , xv

r,r(t∗
K)
]T

.

Please note again that the ansatz for xv
r,i(t∗

k) is explicitly given by xv
r,i(t∗

k) = eσit
∗
k xv

r,0,i

(cf. (3.83)) when matching moments m0
(
σi xv

r,i(t∗
k), ri xv

r,i(t∗
k), xv

r,0,i, t∗
k

)
with a linear signal

generator, and by xv
r,i(t)=xv

r,0,i =const when matching moments m0
(
0, ri xv

r,0,i, xv
r,0,i

)
with a

zero signal generator.

7.2.3 Families of reduced models achieving approximated moment matching

The approach that we will mainly employ to construct a family of ROMs achieving ap-
proximated (input) nonlinear moment matching is based on the two-sided linear projection
given in (6.9), with V stemming from the NLMM algorithm and W arbitrary but such that
det(W TEV ) 6= 0. Herein, the ROM is parametrized in W ∈ Rn×r. This matrix can be
selected to impose stability, passivity, etc. on the reduced model (e.g. by an orthogonal
projection with W =V ) or can be used to achieve a better approximation (e.g. by matching
more moments using the output NLMM algorithm [70]).

The non-projective approach described in Section 7.1.4 is also conceivable to construct
ROMs achieving approximated nonlinear moment matching in a projection-free manner. The
families of ROMs are given by (7.11) and (7.12), with the output yr(t) = h

(
V xr(t)

)
and

V stemming from the NLMM algorithm. Although these families are appealing in terms
of their simple structure (especially (7.12) for ∆(xr) = ∆) and consequent avoidance of
hyper-reduction, we will not employ them in this thesis. The concrete exploitation of the free
parameters W or ∆(xr), as well as the investigation of the suitability of the projection-free
families in comparison to the projection-based family (6.9) is topic of future research.

7.3 Analysis, discussion and limitations

In this section, a discussion about the proposed simplifications and the presented simulation-
lean algorithm is given. Different important aspects are broken down in respective subsections,
which are analyzed in the following.

Adequate selection of the projection ansatz

As mentioned in Section 6.3.1, a linear projection resembles a special case of the most gen-
eral nonlinear projection or the polynomial expansion-based ansatz (6.28) proposed in [124,
Ch. 4]. In fact, applying a more sophisticated projection like e.g. a quadratic manifold (6.29)
(see e.g. [132, 224, 73]) or a series expansion ansatz with basis functions customized for the
nonlinear system at hand (cf. [146, 124, 231]) could be superior and even indispensable in
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certain cases. This approach should also allow to reduce a nonlinear system to a minimum
reduced order due to the state-dependent, adaptive nature of the projection. However, from
a numerical perspective, nonlinear projections are much more difficult to handle than linear
ones (cf. Section 6.6). For instance, they yield a rather complicated ROM (6.24), with the
state-dependent tangent basis Ṽ (xr), and also an emerging convective term in the second-
order case [132, 224, 75] (see Ch. 9). Consequently, the (implicit) time integration scheme
becomes more involved due to the changing Ṽ (xr), which might possibly get rank deficient
(see Sec. 6.4.2). On the contrary, linear projections are simple and frequently employed even
in nonlinear MOR. They have proven to be successful for several applications and acceptable
for many types of nonlinearities, as long as the reduction basis V contains sufficient nonlinear
information (using e.g. an augmented basis). Precisely for that reason this approach normally
leads to a higher reduced order in comparison to a nonlinear projection [132, 224].

Appropriate choice of the signal generator

The choice of the signal generator determines (1) the ansatz for the dynamics xv
r (t), ẋv

r (t) and
(2) the exciting input of the system. Thus, the signal generator should be chosen such that
(1) xv

r (t) constitutes representative eigen-/ansatz functions of the underlying nonlinear system
and (2) u(t) represents a typical operating input which excites the important dynamics.

Although the validity of a linear signal generator for characterizing general nonlinear
systems is questionable, note that this type of signal generator (where complex exponentials
serve as ansatz functions) is being implicitly used for the reduction of bilinear and quadratic-
bilinear systems (see [221, 59]). Complex exponentials are also being employed in the Fourier
approximation ansatz of the Harmonic Balance Method [190, 201, 142]. We therefore believe
that linear signal generators might be adequate to reduce nonlinear systems in a proper way.

Note that the linear signal generator (3.78) constitutes a special case of the expansion-
based ansatz

ẋv
r =

N∑
k=1

S(k)
v xv

r
(k) = S(1)

v xv
r + S(2)

v (xv
r ⊗ xv

r ) + · · · , (7.24a)

u =
N∑

k=1
R(v)xv

r
(k) = R(1)xv

r +R(2)(xv
r ⊗ xv

r ) + · · · , (7.24b)

with S(k)
v ∈ Cr×rk , R(k) ∈ Cm×rk and xv

r
(k) ∈ Rrk . Indeed, such a signal generator ansatz

could be customized for the nonlinear system at hand and, naturally, be combined with the
power series ansatz (6.28), in order to approximately solve the PDE (7.10). [124, Ch. 4]

Obtaining a state-independent matrix equation

In the Sylvester-like PDE (7.10) the state vector xv
r (t) cannot be factored out so easily than

in (3.89). In fact, the key to obtain a constant/state-independent matrix equation of dimen-
sion n×r from (7.10) lies on both the choice of an adequate projection ansatz (e.g. (6.28))
and an appropriate signal generator (e.g. (7.24)), tailored for the nonlinear system at hand.
Interestingly, the state-independent matrix Sylvester equations used in bilinear/quadratic-
bilinear MOR (see [92, 45, 103]) can indeed be derived from (7.10) by using the Volterra
series representation with a linear projection and a linear signal generator. This interesting
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aspect is further discussed in Section 8.4. First results concerning the connection between
Krylov/Sylvester-based moment matching for bilinear systems and the general nonlinear mo-
ment matching framework from Astolfi are published in [59].

Note that if the factorization of xv
r (t) works out and a state-independent matrix equation

is obtained, then the other two simplifications steps – namely (ii) and (iii) – are no longer
needed. Therefore, the choice of an adequate projection and signal generator that allow to
factor out xv

r (t) is highly recommended, but is obviously a “true art” in itself and strongly
problem-dependent.

Limitations of the column-wise consideration

If a linear projection is applied and the factorization of xv
r (t) does not succeed, then, lamentably,

the underdetermined system (7.13) is obtained. The proposed column-wise consideration
(7.14) with xv

r,i(t) ∈ R, svi(xv
r,i(t)) : R → R, ri(xv

r,i(t)) : R → Rm instead of xv
r (t) ∈ Rr,

sv
(
xv

r (t)
)

: Rr → Rr, r
(
xv

r (t)
)

: Rr → Rm has the limitation that (7.13) is generally not ful-
filled, since the couplings in V xv

r (t), V sv(xv
r (t)) and r(xv

r (t)) are not being considered. Hence,
the column-wise consideration constitutes a further simplification/approximation step, which
is naturally restricting the universality of the original nonlinear moment matching framework
from Astolfi.

We are currently working on possible ways to numerically solve the underdetermined
systems (7.13), (7.16) and (7.19). One possibility could be to consider

0 =
[
rhs(V ,xv

r (t∗
1)), · · · , rhs(V ,xv

r (t∗
K))

]
︸ ︷︷ ︸

Rhs(V )

, (7.25)

with the discretized equation (7.13)

0 = f
(
V xv

r (t∗
k), r(xv

r (t∗
k))
)
−EV sv

(
xv

r (t∗
k)
)︸ ︷︷ ︸

rhs(V,xv
r (t∗

k
))

, (7.26)

where Rhs(V ) : Rn×r → Rn×K and rhs(V , xv
r (t∗

k)) : Rn×r × Rr → Rn. The solution of the
nonlinear matrix equation (7.25) could e.g. be computed via Newton’s method or a similar
fixed-point iteration

V n+1 = V n −
(

∂Rhs(V )
∂V

∣∣∣∣
V n

)+

Rhs(V n), (7.27)

for which the non-trivial derivative ∂Rhs(V )/∂V is required. The arising linear systems of
equations (LSEs) can then be solved using pseudoinverse, least-squares or direct approaches.

Neutral stability of the signal generator

In [14], the signal generator is assumed to be neutrally stable (see fn. 1), so that the steady-
state of the nonlinear system is well-defined. In other words: the input signal should – on the
one hand – be persistently exciting (i.e. cannot decay to zero), but should – on the other hand
– be bounded, so that the system does not show a diverging steady-state. In linear MOR,
however, Assumption 2 can be relaxed meaning that shifts σi ∈ C\λ(E−1A) lying to the left,
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on or to the right of the imaginary axis can be used. Indeed, due to the Meier-Luenberger
conditions known from H2-optimal reduction [179, 97], the shifts are often chosen on the right
half-plane (σi ∈ C+) in order to hopefully obtain a stable ROM. This choice effectively means
that the system is excited by growing exponentials, and that we are using basis vectors vi

which point into the direction of this growing steady-state solution (cf. (3.83)).
We believe that, within the NLMM algorithm, the nonlinear system can also be excited

by a stable, neutrally stable or even an unstable generator, as long as the considered time
interval for the signal generator t∗

k ∈
[
tSG
0 , tSG

end

]
is (naturally) well chosen, but limited. In this

way, the assumed reduced coordinates xv
r,i(t∗

k) in (7.22) may become large but not unfeasible,
the exciting input is bounded and the steady-state response is also limited. Further note
that a well-defined solution ν(xv

r ) to the PDE (7.10) may exist even for signal generators
not satisfying the neutral stability assumption. Thus, moments can also be determined for
generators producing diverging or decaying trajectories, although the relation with the steady-
state response cannot be established anymore [229, Sec. 2.2].

Conceptual comparison to POD

Looking closer at the Sylvester-like PDE (7.10) with
{
sv(xv

r (t)), r(xv
r (t)),xv

r,0
}

or at the sim-
plified equation (7.15) with

{
svi(xv

r,i(t∗
k)), ri(xv

r,i(t∗
k)), xv

r,0,i, t∗
k

}
, one can detect the conceptual

similarities and differences between POD and the nonlinear moment matching approach.
Similar to POD, in the nonlinear moment matching framework training input signals are

also being chosen. In fact, the training inputs for NLMM are determined by the choice of
the signal generator: uNLMM

train (t)=r
(
xv

r (t)
)

or rather uNLMM
train,i (t∗

k)=ri(xv
r,i(t∗

k)). However, while
in NLMM the discrete solutions xv

r,i(t∗
k) are guessed or intuited by the user, in POD they

depend on the simulated snapshots according to xv
r,i(tk)=vT

i x(tk) (cf. Eq. (6.18)). In other
words: POD extracts the main characteristics of the simulated solution manifold in form of
empirical eigenfunctions, whereas NLMM employs the ansatz functions xv

r,i(t∗
k) that result

from the selected signal generators.
This fundamental difference serves to characterize both methods in the following way:

POD is based on discrete samples of the solution of the FOM for typical operating input
signals (aka. training data) and does not necessarily require a-priori theoretic knowledge
about the system. Thus, it falls under the category of “simulation-based”, “data-driven” or
“black-box” methods. As opposed to that, NLMM relies on assumed or guessed eigenfunc-
tions xv

r,i(t∗
k) determined by the chosen signal generator. Therefore, it requires more expert

knowledge/intuition about the system. Consequently, the algorithm could be categorized in
the class of “simulation-lean” (since it relies on the solution of less NLSEs), “system-theoretic”
(since it is based on the concepts of steady-state response and center manifold theory) and
“grey/white-box” methods (since it requires a-priori knowledge to perform well). Finally note
that – as a member of the Krylov family – NLMM does not provide an error bound, and does
not guarantee stability. The latter issue, however, can be tackled using a Galerkin projection
or the projection-free families of ROMs discussed in Section 7.2.3.

7.4 Guidelines for practitioners
In this section, we give some practical guidelines on how to use the NLMM algorithm. The
aim is to help practitioners with this new MOR technique and its degrees of freedom, so that
they can apply it to their own application.
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7.4.1 Training vs. test phase

Similar as POD, NLMM can be decomposed in a training and test phase.
During the training or offline phase, the reduction bases V POD and V NLMM are computed

using one or several training input signals. In case of NLMM, the training signals uNLMM
train,i (t∗

k)
are determined by the chosen signal generators. The training signals for POD uPOD

train,i(tk)
could be chosen the same as for NLMM (for comparison reasons), or differently.

During the test or online phase, the FOM and the ROMs are evaluated with a test signal
utest(t). This could be chosen the same as for the training phase. However, it is absolutely
mandatory to select utrain(t) 6= utest(t) as well, in order to assess the approximation quality
of the ROMs for signals that were not trained. If the same input signal is applied for both
training and test phase, then the error is expected to be smaller than using different signals.

7.4.2 Examples for signal generators

In the following, some examples for useful signal generators are given. The list is by no means
complete, but should rather serve as a guide and inspiration for interested readers who want
to apply NLMM to their own model.

Cosinusoids/Sinusoids

To generate a cosine function xv
r (t) = A · cos(ωt) with desired amplitude A and angular

frequency ω, use

ẋv
r (t) = −A · sin(ωt) · ω, xv

r (0) = A. (7.28)

For a sine function xv
r (t) = A · sin(ωt), use

ẋv
r (t) = A · cos(ωt) · ω, xv

r (0) = 0. (7.29)

Note that the initial condition xv
r (0) influences the signal generator. For instance, the choice

ẋv
r (t) = −A · sin(ωt) · ω, xv

r (0) = xv
r,0 (7.30)

yields the modified signal xv
r (t) = A · cos(ωt)−A + xv

r,0. Similarly, the choice

ẋv
r (t) = A · cos(ωt) · ω, xv

r (0) = xv
r,0 (7.31)

leads to the sine xv
r (t) = A · sin(ωt) + xv

r,0, which is shifted along the y-axis.

Squared cosinusoids/sinusoids

To generate a squared cosine signal xv
r (t)=A · cos2(ωt)=A1+cos(2ωt)

2 , use the following signal
generator

ẋv
r (t) = −2 A · cos(ωt) · sin(ωt) · ω, xv

r (0) = A. (7.32)
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Similarly, for a squared sine signal xv
r (t) = A · sin2(ωt) = A1−cos(2ωt)

2 , Eq. (7.29) should be
adapted accordingly. Note again that the initial condition xv

r (0) can be used to shift the
signals along the y-axis.

Exponential function

An exponential signal of the form xv
r (t) = eσt xv

r,0 can be generated by the signal generator

ẋv
r (t) = σ · eσt xv

r,0, xv
r (0) = xv

r,0. (7.33)

The initial condition xv
r,0 ∈ R specifies the amplitude scaling, whereas the shift σ =δ∓ iω ∈ C

determines the characteristic behavior of the exponential function.

Zero shift (σ = 0, δ = 0, ω = 0) As mentioned in Section 7.2.1.3, the choice of σ = 0 yields
a constant signal xv

r (t) = xv
r,0 = const with amplitude xv

r,0.

Pure real shift (σ = δ, δ 6= 0, ω = 0) If δ < 0, then xv
r (t) = eδt xv

r,0 describes a decaying
exponential, whereas for δ > 0 (e.g. σ =10) xv

r (t) represents a growing exponential.

Pure imaginary shifts (σ1/2 =∓iω, δ = 0, ω 6= 0) The signal xv
r,1(t)=e−iωtxv

r,0,1 =
(

cos(ωt)−
i sin(ωt)

)
xv

r,0,1 describes a permanent oscillation. It is highly recommended to also use the
complex conjugated pair, i.e. the signal xv

r,2(t) = e+iωtxv
r,0,2 with xv

r,0,1 = xv
r,0,2. This allows

to split the computed basis vectors v1 = v2 ∈ Cn in real and imaginary part, in order to
obtain a real projection matrix spanning the same subspace as its complex counterpart (cf.
Example 7.1). Note that a real-valued projection matrix V can also be obtained by using the
cosinusoids/sinusoids generators (7.28) and (7.29), where complex arithmetic is avoided.

Complex shifts (σ1/2 = δ ∓ iω, δ 6= 0, ω 6= 0) If δ < 0, then xv
r,1/2(t) = eδt

(
cos(ωt) ∓

i sin(ωt)
)

xv
r,0,1/2 describes a decaying oscillation, whereas for δ > 0 (e.g. σ1/2 =10∓ 3i) xv

r (t)
represents a growing oscillation. The use of the complex conjugated pair is again essential to
obtain a real-valued projection matrix. This is illustrated in the following.

Example 7.1 (Complex shifts in NLMM). Assume that NLMM is applied using a complex
conjugate pair of shifts σ1,2 ∈ C with σ1 = σ2, a complex conjugate pair of tangential
directions r1,2 ∈ Cm with r1 = r2 and equal initial conditions xv

r,0,1 = xv
r,0,2 ∈ R. Then,

the corresponding directions computed from

f(v1k eσ1t∗
kxv

r,0,1, r1 eσ1t∗
kxv

r,0,1)−E v1k σ1 eσ1t∗
kxv

r,0,1 = 0 (7.34a)
f(v2k eσ2t∗

kxv
r,0,2, r2 eσ2t∗

kxv
r,0,2)−E v2k σ2 eσ2t∗

kxv
r,0,2 = 0 (7.34b)

are also complex conjugated to each other v1k =v2k ∈ Cn, provided that f(x,u) and E
are real-valued and the initial guesses are complex conjugated v0,1k =v0,2k ∈ Cn. Thus,
if the interpolation data is chosen such that v1k = v2k can be expected, then only one
complex NLSE (7.34) needs to be solved, since v2k can be determined by conjugating v1k.
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What is more, this property allows to construct real-valued directions ṽ1k =Re(v1k) and
ṽ2k =Im(v1k) in order to obtain a real basis Ṽ (cf. linear case in Example 3.1). M

Shifted exponential function

The following signal generator ODE

ẋv
r (t) = σ ·

(
xv

r (t) + α
)
, xv

r (0) = xv
r,0 (7.35)

can be analytically solved by the method of variation of parameters, leading to the solution

xv
r (t) = eσtxv

r,0 + α(eσt − 1) = eσt (xv
r,0 + α)︸ ︷︷ ︸

β

−α.
(7.36)

This represents an exponential function with amplitude scaling β, which is shifted along the
y-axis by α. These two parameters can be exploited to generate a signal xv

r (t) that covers the
known or supposed value range of interest.

Ramp/Linear function

To generate a linear function xv
r (t) = α · t + xv

r,0 of desired slope α and y-intercept xv
r,0,

the constant signal generator ODE ẋv
r (t) = α with xv

r (0) = xv
r,0 should be used. Similar

considerations apply for polynomial functions.

7.4.3 Selection of shifts and time-snapshots

Shifts, tangential directions and xv
r,0,i

As a first attempt, we recommend practitioners to apply exponential functions as exciting
training signals for NLMM (cf. Section 7.4.2). The question is, however, how to appropriately
choose the shifts, tangential directions and initial conditions

{
σi, ri, xv

r,0,i

}
that parametrize

those signals.
The most straightforward approach is to select the shifts at zero. Then, the user has to

choose different initial conditions and tangential directions
{

xv
r,0,i, ri

}
. The initial conditions

xv
r,0,i should represent physically meaningful amplitudes for (1) the resulting ansatz xv

r,i(t) =
xv

r,0,i and (2) the systems’ inputs ui(t) = ri xv
r,0,i, covering e.g. the admissible control input

range. The tangential directions can be chosen to amplify the initial conditions, to favor
certain input-output paths, or simply as ri = 1m ∈ Rm if no prior system understanding is
available.

If zero signal generators are not sufficient, then shifts σi 6= 0 may be taken into account.
Preferably, one should exploit some system knowledge, and pre-analyze the value range that
the signals xv

r,i(t) = eσit xv
r,0,i and ui(t) = ri xv

r,i(t) would cover, when choosing
{

σi, ri, xv
r,0,i

}
.

Apart from that, one could choose the mirror images of some eigenvalues of the linearized FOM
as expansion points, i.e. s0=-eigs(sys, r).' or logarithmically spread the shifts over the in-
teresting frequency range [ωmin, ωmax], e.g. s0Real=logspace(log10(wmin),log10(wmax),r)
or s0=cplxpair([1i*s0Real, -1i*s0Real]). Furthermore, one could also apply IRKA to
the linearized FOM and then take the optimal shifts and tangential directions (together with
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some xv
r,0,i) for the NLMM algorithm. Other shift selection procedures known from linear

MOR [39, 151], such as the heuristic Penzl method, the Wachspress approach or exploiting
the Ritz values, are also conceivable within NLMM.

Depending on the model, it might be reasonable to combine zero signal generators with
pure real and/or complex shifts. In this way, different characteristic behaviors (constant
signal, real exponential, periodic oscillation) can be easily assumed and captured.

Time-snapshots

Except for zero signal generators, time-snapshots {t∗
k} , k =1, . . . , K are needed to obtain and

solve the state-independent equations (7.15) and (7.18).
In general, the user should first select an appropriate time interval [tSG

0 , tSG
end] for the signal

generator (SG). Then, the choice of time-snapshots basically depends on how rapidly the expo-
nential function (or the chosen training signal) changes. One possibility is to exploit the form
of the chosen training signal by selectively placing the time points t∗

k at crucial time instants
or deliberately choosing more snapshots at dynamic regions. A second simpler technique is to
select an appropriate number of samples Ki for each signal generator and then equidistantly
place the snapshots in the selected time interval, e.g. ti=linspace(t0,tEnd,Ki). Another,
rather black-box, approach is to simulate the signal generators with an adaptive step-size
solver (e.g. MATLAB’s built-in ode45), which autonomously selects more points at dynamic
regions and less snapshots when the dynamics do not change significantly.

Note that the NLMM algorithm would return (almost) the same basis vectors vik, if
several time-snapshots are placed at static or similar regions of the training signals. Even
though a deflation would help to truncate linearly dependent columns a-posteriori, it is highly
recommended – if possible – to a-priori avoid the solution of redundant NLSEs in order to
keep the basis computation process as efficient as possible.

7.4.4 Time integration scheme

The comparison of NLMM and POD in terms of computational effort highly depends on the
time integration scheme selected to train and gather the FOM snapshots. As already discussed
in Section 6.2, there exist many time integration schemes (one/multistep, explicit/implicit and
variable/fixed step solvers) that are more or less suitable depending on the application.

In this thesis, we employ the fixed step implicit Euler scheme 6.1 for the FOM training
simulation within POD and also for the test phase of FOM and ROMs. The implicitEuler
scheme requires to solve a NLSE in each time-step with the Newton-Raphson method (cf. line
5). Hence, the computational effort of POD is expected to be higher than of NLMM, where
less NLSEs have to be solved.

In our opinion, the choice of a fixed step backward Euler as time integration scheme
is reasonable. Firstly, it is an implicit solver, which is essential to simulate stiff nonlinear
ODEs usually arising from the discretization of partial differential equations. Secondly, it
is a basic one-step method, which is simple, but still reliable and often already integrated
in many simulation tools. Nevertheless, practitioners are reminded that the comparisons
between NLMM and POD could also be attempted with an explicit solver (like ode45) or a
more sophisticated implicit scheme (like ode15s). Depending on the model and the chosen
parameters, it then could happen that POD requires less computational time than NLMM.
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7.5 Numerical examples

In this section, the efficiency of the proposed simulation-lean NLMM algorithm is illustrated
by means of two numerical examples: the Chafee-Infante equation and the FitzHugh-Nagumo
system. Both models result from the semidiscretization of nonlinear PDEs and have often been
considered as benchmarks for model reduction. We compare NLMM with two other reduction
techniques, namely a pure linear basis computed with rational Krylov (RK) from the sssMOR
toolbox2, and POD (cf. Section 6.3.3). Some more details concerning the numerical examples
are given in the following:

1. All simulations were done on a board with an Intel® Core™ i7-8700 CPU @ 3.20 GHz
clock speed, 6 cores, 12 threads and 31.8 GB RAM using MATLAB™ Version 9.5.0.10-
49112 (R2018b) Update 3 on a Microsoft® Windows® 10 Pro x64-bit operating system.

2. The FOM and ROMs are integrated by the routine implicitEuler, using a Newton-
Raphson scheme with a relative error tolerance of 10−3 and an absolute error tolerance
of 10−6. Although we only report here the simulation times obtained with backward
Euler, note that simulations were also run with MATLAB’s ode45 and ode15s solvers
with the same tolerances.

3. For a fair comparison, the above tolerances were also employed within the NewtonRaphson
scheme required for NLMM. Note that, for other models or depending on the initial
guesses v0,ik, it sometimes might be necessary to increase these tolerances to achieve
convergence within a reasonable number of iterations.

4. All ROMs are obtained via orthogonal (Galerkin) projection, i.e. by (6.9) with W =V .
Further note that all reduction bases V RK, V POD and V NLMM are made orthogonal,
i.e. V TV =Ir holds.

5. From a control engineering perspective, the input-output behavior of the FOM is par-
ticularly important. Thus, the approximation error is quantified w.r.t. the outputs y(t)
of interest in time-domain. We employ a point-wise in time relative error measure

em
y,rel,(·)(t) =

‖y(t)− ym
r (t)‖(·)

‖y(t)‖(·)
,

calculated for different reduction methods m∈{RK, POD, NLMM, . . .} using a desired
vector norm (·) ∈ {1, 2,∞, . . .}. Furthermore, we use a norm-wise relative error measure

em
y,rel,Lp

=
‖y − ym

r ‖Lp

‖y‖Lp

,

applying a desired signal norm Lp∈{L1,L2,L∞, . . .} (cf. Section 2.6).
The numerical results reported in the following only represent an extract of the wide variety
of scenarios that can be studied. To ensure reproducibility, the parameters and results of the
selected scenarios are listed in tables. Furthermore, the implemented source code is provided
as supplemental material3 to promote transparency and reusability. We encourage users to
study their own scenarios, run simulations for other test signals and reduced orders, and
compare the results to ode15s and further error measures. The material also includes scripts

2The sss and sssMOR toolboxes can be downloaded under https://github.com/MORLab.
3The MATLAB implementation of NLMM, together with the whole software framework (implicitEuler,

NewtonRaphson, templates, etc.), is available under https://doi.org/10.5281/zenodo.3542641.

https://github.com/MORLab
https://doi.org/10.5281/zenodo.3542641
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for other benchmarks, such as the nonlinear RC-Ladder and the viscous Burgers’ equation,
as well as some signal generator templates that can serve as an inspiration.

7.5.1 Chafee-Infante equation

First, we consider the one-dimensional Chafee-Infante (aka. Allen-Cahn) equation [67]. This
nonlinear reaction-diffusion equation describes the process of phase separation, thus appearing
in multiphase fluid dynamics, chemical processes and biological applications. The governing
parabolic PDE has a cubic nonlinearity

∂v

∂t
(x, t)− ∂2v

∂x2 (x, t) = λ v(x, t)− λ v3(x, t),

and is subject to the initial and boundary conditions

v(x, 0) = 0, x ∈ (0, L),

v(0, t) = u(t), ∂v

∂x
(L, t) = 0, t ∈ (0, T ).

The bifurcation parameter is fixed to λ = 1. For our evaluations, we set the length of the
spatial domain to L = 1. The spatial discretization via finite differences with ` grid points
yields n = `. The model equation is given by (6.1), with E= I, f

(
x,u

)
=Ax − f̃

(
x
)

+ bu,
h(x)=cT x and x=v. The control input u(t) is applied to the left boundary (x=0), whereas
the output is measured at the right boundary (x=L), i.e. cT = [0, . . . , 0, 1].

The parameters of the selected scenarios are summarized in Tab. 7.1. First, the lineariza-
tion point (ueq,xeq)=(1, 1n) and a vector of shifts are chosen for the application of rational
Krylov. For POD, we collect 501 snapshots of the simulated solution for the training input
uPOD

train (t) = 5 cos(t). In the first NLMM scenario, zero signal generators with amplitudes be-
tween [−2, 2] are employed. These constant signals are amplified by the factor 25, in order
to generate input signals covering the range [−50, 50]. In NLMM2, a combination of a zero
signal generator with the two exponential functions xr,2(t)=−2 e−t and xr,3(t)=2 e−t is used.
These real exponentials share some shape similarities with the eigenfunctions of the linearized
Chafee-Infante equation [268, Fig. 1] and are therefore selected. For the test phase, two differ-
ent sine signals covering the ranges [−25, 25] and [0, 50] are chosen to assess the performance
of the ROMs for different input amplitudes.

The numerical results for both test signals are illustrated in Fig. 7.2 and Fig. 7.3. More-
over, the approximation errors are listed in Tab. 7.2. We can observe that NLMM2 performs
the best in both cases. This can be explained by (1) the deliberate choice of the initial condi-
tions xv

r,0,i and ri to cover the interested input value range and (2) by the curve shape of the
selected exponential functions. Remarkably, POD still yields satisfactory results for utest,1(t),
although it was only trained with input amplitudes in the interval [−5, 5]. However, for the
higher amplitudes of utest,2(t), it has problems in approximating the maximum value. RK
shares this same difficulty, which is a consequence of the large deviation from the stationary
input ueq =1. If a good approximation is desired for a wider range of input amplitudes, then
several linearization points and RK-reductions would be needed (cf. TPWL). Finally, it can
be observed that NLMM1 performs well in the steady-state regions, whereas is less accurate
in the transition phases.
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Table 7.1: Chafee-Infante: Parameters of selected scenarios

method parameters
L=1, `=1000, n=1000, t ∈ [0, 10s], h=0.02 s, rdefl =10

RK ueq =1, xeq guess: x[1:n] =1, s0=logspace(-2,2,rdefl)

POD uPOD
train (t) = 5 cos(t), t ∈ [0 : 0.02 : 10s] ↔ ns =501

NLMM1 xv
r,i(t)=xv

r,0,i, ui(t)=ri xv
r,0,i, σi = zeros(1,rdefl),

ri = 25*ones(1,rdefl), xv
r,0,i = linspace(-2,2,rdefl)

NLMM2 xv
r,i(t)=eσitxv

r,0,i, ui(t)=ri xv
r,i(t), σi =[0,−1,−1],

ri =[1, 25, 25], xv
r,0,i =[1,−2, 2], {-, linspace(0,6,10),"}

Test utest,1(t)=25 sin(t), utest,2(t)=25 (sin(t) + 1)

FOM RK POD NLMM1 NLMM2
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Figure 7.2: Chafee-Infante: Outputs and point-wise relative error em
y,rel,2(t) for test signal

utest,1(t)=25 sin(t).
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Figure 7.3: Chafee-Infante: Outputs and point-wise relative error em
y,rel,2(t) for test signal

utest,2(t)=25 (sin(t) + 1).
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Table 7.2: Chafee-Infante: Approximation errors em
y,rel,Lp

input norm RK POD NLMM1 NLMM2

utest,1(t)
L1 2.09 e−2 2.70 e−3 3.45 e−2 1.61 e−5

L2 2.86 e−2 3.90 e−3 8.14 e−2 2.02 e−5

L∞ 4.96 e−2 7.20 e−3 2.80 e−1 3.39 e−5

utest,2(t)
L1 1.89 e−1 4.31 e−2 1.07 e−2 1.62 e−4

L2 2.57 e−1 6.09 e−2 3.02 e−2 2.37 e−4

L∞ 4.51 e−1 1.11 e−1 1.39 e−1 4.45 e−4

The computation times for the offline and online phase are summarized in Tab. 7.3. The
comparison shows that NLMM requires less time than POD to compute the corresponding
reduction basis. Nevertheless, we can observe that the simulation of the ROMs in the online
phase takes slightly longer than the simulation of the FOM. This indicates that dimensional
reduction alone is not sufficient here, since the repetitive evaluation of the nonlinear terms
within implicitEuler is still the major bottleneck. This could be alleviated by applying
hyper-reduction. For comparison, ode15s needs around 0.15 s for the simulation of the FOM
and approximately 0.08 s for the simulation of the ROMs. Hence, a slight speed-up is achieved
when using this solver.

Table 7.3: Chafee-Infante: Computation times

method reduction time sim. time sim. time
(training/offline) (test 1) (test 2)

FOM - 0.3626 s 0.3501 s
RK 0.0352 s 0.4793 s 0.4849 s

POD 0.3721 s (501 NLSEs) 0.4980 s 0.5280 s
NLMM1 0.0347 s (10 NLSEs) 0.5132 s 0.4562 s
NLMM2 0.0466 s (21 NLSEs) 0.5005 s 0.4673 s

7.5.2 FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) model is a simplified version of the Hodgkin-Huxley model,
which describes the activation and deactivation dynamics of a spiking neuron. It has been
previously considered for POD-based [74] and quadratic-bilinear [45, 103] model reduction.
The dynamics are governed by the following one-dimensional coupled PDE-ODE system

ε
∂v

∂t
(x, t) = ε2 ∂2v

∂x2 (x, t) + f(v(x, t))− w(x, t) + g,

∂w

∂t
(x, t) = R v(x, t)− γw(x, t) + g,
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with the cubic nonlinearity f(v) = v(v− 0.1)(1− v). The initial and boundary conditions are
given by

v(x, 0) = 0, w(x, 0) = 0, x ∈ [0, L],
∂v

∂x
(0, t) = −i0(t), ∂v

∂x
(L, t) = 0, t ≥ 0.

The parameters of the model are set to ε = 0.015, R = 0.5, γ = 2, g = 0.05, L = 1. A
spatial discretization using a finite difference scheme with ` nodes yields n = 2` degrees of
freedom. The model equation is given by (6.1), with f

(
x,u

)
=Ax+ f̃

(
x
)

+Bu, h(x)=C x
and x=

[
vT,wT

]T
. The state variables v` and w` represent the voltage and recovery voltage

at each node. The model is input-affine with u(t) = [i0(t), 1]T, where u1(t) = i0(t) denotes
the electric current excitation at the left boundary (x = 0) and the second input u2(t) = 1
comes from the constant value g. The outputs are chosen at the left boundary via the output
matrix C, i.e. y(t) = [v1(t), w1(t)]T. In this example E 6= I, but the matrix is still diagonal.
Thus, it can be efficiently carried to the right-hand side by its inverse E−1 to obtain an
explicit representation with E = I. Note that, for systems with more general, regular E, it is
advisable to apply the reduction directly to the implicit state-space representation instead of
using the inverse.

From basic neuroscience knowledge and reading, we expect the membrane voltage and
recovery voltage to lie in the ranges v ∈ [−2, 2 V] and w ∈ [−1, 1 V]. Furthermore, depending
on the amplitude of the external stimulus i0(t), different neuronal behaviors can occur: a
resting behavior for negative to low amplitudes, spiking activity (i.e. limit cycle oscillations)
when the stimulus i0(t) exceeds a certain threshold, and blocking/saturated behavior for
higher currents. Based on this, the reduction parameters for RK, POD and NLMM were
chosen (cf. Tab. 7.4).

Table 7.4: FHN model: Parameters of selected scenarios

method parameters
L=1, `=1000, n=2000, t ∈ [0, 8s], h=0.02 s, rdefl =20

RK i0,eq =ueq =0.3, xeq guess: x[1:`] =0.1, x[`+1:2`] =0.04,
s0=cplxpair([1i*s0Real,-1i*s0Real]) with [0.01, 100 rad

s ]

POD iPOD
0,train(t) = 5 · 104 t3 e−15t, t ∈ [0 : 0.02 : 8s] ↔ ns =401

NLMM1 xv
r,i(t)=eσitxv

r,0,i, i0,i(t)=1 xv
r,i(t), σi =[0, 0,−i2π

T , i2π
T ],

T =10 s, xv
r,0,i =[−2, 2,−2,−2], {-, -, linspace(0,T,10),"}

NLMM2 xv
r (t)=104t3e−15t+xv

r,0, i0(t)=5(xv
r (t)−xv

r,0), xv
r,0=−2,

K =51 time-snapshots in t∗
k ∈ [0, 1s], i.e. linspace(0,1,51)

Test i0,test,1(t)=5 · 104 t3 e−15t, i0,test,2(t)=−300

For the computation of the linearization point needed for RK, a stationary input current
and an initial guess for xeq are selected, before the NLSE 0 = f

(
xeq, ueq

)
is solved. The

computed linearization point corresponds in this case to an unstable equilibrium, where the
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model exhibits periodic spiking oscillation. Since the frequency of oscillation is not known
a-priori, the shifts are spread over the wide range [0.01, 100 rad

s ]. In NLMM1, a combination
of two constant signals and a y-shifted sine/cosine oscillation is employed as signal generators.
Hereby, the time period T and the initial conditions xv

r,0,i are selected by pre-analyzing the
value range that the signals xv

r,i(t) and ẋv
r,i(t) cover. This combination of zero signal generators

with imaginary shifts is expected to capture both the resting/blocking behavior of the neuron,
as well as the spiking activity. In NLMM2, the signal generator is chosen such that xv

r (t)
covers the value range [−2, 2 V] of the state variables and the generated input i0(t) equals
the training input for POD. The time interval is limited to t∗

k ∈ [0, 1s], since the signals do
not significantly change as time increases, and more snapshots would only yield redundant
basis vectors. For the test phase of FOM and ROMs, two different input signals are chosen:
the first one corresponds to the training signal of POD, whereas the second one represents a
constant negative current.

The numerical results for both test signals are illustrated in Fig. 7.4 and Fig. 7.5. More-
over, the approximation errors are listed in Tab. 7.5. As expected, we can observe that POD
yields the best approximation for the test signal i0,test,1(t), followed by NLMM2. NLMM1 and
RK can reproduce the basic spiking behavior, but are not as accurate as the previous ones.
For i0,test,2(t) the neuron shows no oscillations, but rather a steady-state (resting) behavior.
In this scenario, NLMM1 performs the best, followed by NLMM2. POD is less accurate, since
this constant resting information is not contained in the trained snapshot matrix. RK yields
moderate results due to the chosen linearization point corresponding to the spiking behavior.

FOM RK POD NLMM1 NLMM2
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Figure 7.4: FHN model, spiking: Phase portrait, outputs and point-wise relative error
em

y,rel,2(t) for test signal i0,test,1(t)=5 · 104 t3 e−15t.
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Figure 7.5: FHN model, resting: Outputs and point-wise relative error em
y,rel,2(t) for test signal

i0,test,2(t)=−300.

Table 7.5: FHN model: Approximation errors em
y,rel,Lp

input norm RK POD NLMM1 NLMM2

i0,test,1(t)
L1 2.03 e−1 6.67 e−6 1.34 e−2 1.50 e−3

L2 3.01 e−1 7.10 e−6 2.22 e−2 2.40 e−3

L∞ 5.88 e−1 1.38 e−5 5.39 e−2 8.80 e−3

i0,test,2(t)
L1 9.26 e−2 1.78 e−2 6.20 e−3 1.33 e−2

L2 1.09 e−1 1.91 e−2 7.90 e−3 1.37 e−2

L∞ 2.10 e−1 3.27 e−2 1.77 e−2 1.84 e−2

The comparison of the reduction methods in terms of computational effort is given in
Tab. 7.6. NLMM requires less time than POD to compute the corresponding reduction basis
due to the lower number of NLSEs that have to be solved. Note, however, that the simulation
of the FOM with ode15s only needs around 12 s for test 1 and 17 s for test 2. Using this
sophisticated solver, POD needs less computational time than NLMM. Remember, though,
that several full training simulations would be required during POD to capture the resting,
spiking and blocking behavior of the neuron. In NLMM, different dynamic behaviors can
be deliberately captured without having to perform (long) transient simulations. Regarding
the online phase, the speed-up gained through dimensional reduction becomes evident and
underlines the advantage of MOR.

Table 7.6: FHN model: Computation times

method reduction time sim. time sim. time
(training/offline) (test 1) (test 2)

FOM - 127.41 s 140.22 s
RK 0.90 s 10.09 s 10.06 s

POD 127.50 s (401 NLSEs) 9.82 s 11.10 s
NLMM1 13.14 s (12 NLSEs) 9.74 s 10.43 s
NLMM2 32.19 s (51 NLSEs) 9.75 s 10.52 s
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7.6 Further remarks

In this section some remarks concerning the applicability of NLMM to finite element models
and its combination with simulation-free hyper-reduction are given.

7.6.1 Applicability to large finite element models

The performance of NLMM has been demonstrated in Section 7.5 by rather “toy”/academic
examples. However, the theory discussed here has been recently transferred to nonlinear
second-order systems in [75]. Therein, the algorithm has been applied to two geometrically
nonlinear structural models, using AMfe [224] as well as Gmsh [104] and ParaView [5]. Al-
though the studied models have still an academic nature, they constitute two-dimensional,
finite element models with more realistic geometry as the benchmarks employed here. Thus,
they allowed for a first demonstration of the feasibility and potential of NLMM with the
reduction of finite element models. This will be shown in Chapter 11.

The proposed NLMM algorithm can be considered a semi non-intrusive MOR approach.
On the one hand, it only requires to evaluate the nonlinear function f(x,u) and Jacobian
A(x,u) within the Newton-Raphson scheme (cf. lines 3-5) to calculate the basis vectors. This
means that the governing equations (6.1) are not required analytically, but merely need to be
evaluated within the (commercial) FE software package to compute V NLMM. However, once
the reduction basis is calculated, the governing equations are required to obtain the ROM by
projection. Hence, classical projection-based MOR cannot be considered fully non-intrusive.
Nevertheless, this latter shortcoming can be circumvented by combining NLMM with the
non-intrusive identification of reduced polynomial tensors A2r, A3r, etc. using e.g. [178, 210].
In this way, the reduction can be performed without requiring access to the model equations,
but by directly inferring the reduced-order operators in a non-intrusive manner.

Based on the proofs of concept, together with the semi non-intrusive nature of NLMM,
we believe that it can be successfully applied in the future to more complex FE applications
(e.g. automotive, aeronautics, biomechanics, electromechanics, etc.). Herein, the presented
guidelines as well as some system knowledge are crucial for the performance of the method.

7.6.2 Simulation-free hyper-reduction

As discussed in Chapter 6, one usually needs to combine dimensional reduction with hyper-
reduction to gain higher computational savings during the online testing phase of the ROM.
Since NLMM is a simulation-free (linear projection-based) dimensional reduction approach,
it makes sense to combine it with a simulation-free hyper-reduction technique in order to
completely avoid expensive training simulations.

First of all, NLMM can be combined with a polynomial representation of f(x,u), or rather
of f r(xr,u), using (i) an analytical formulation of the tensors, (ii) finite differences or (iii)
an identification of coefficients. The intrusive approach (i) is numerically very efficient, but
requires access to the element formulation in the FE code for implementation. In contrast, the
non-intrusive approaches (ii) and (iii) are computationally more expensive (i.e. yield higher
offline costs), but do not require the full-order operators.

NLMM can also be combined with classical hyper-reduction methods like DEIM or ECSW.
In Section 6.5, the common simulation-based and some simulation-free techniques to generate
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snapshots for hyper-reduction are explained. In this sense, NLMM could be combined with
(1) the standard simulation-based generation of snapshots or (2) the lean procedure based on
nonlinear static problems [219]. A third option could be to construct the full-order snapshots
x(t∗

k) by using the assumed ansatz functions xv
r,i(t∗

k) from the signal generator as follows:

x(t∗
k) ≈

r∑
i=1
vik xv

r,i(t∗
k), t∗

k ∈ [tSG
0 , tSG

end]. (7.37)

Herein, the basis vectors vik are calculated with the NLMM algorithm, while the assumed
functions xv

r,i(t∗
k) play the role of the unknown reduced coordinates xr,i(t). After generating

x(t∗
k) := xk, the function snapshot matrix F = [{f(xk)}Kk=1] or the reduced state snapshots

xr,k←(6.45) can be calculated for DEIM or ECSW.
With this proposed approach, the choice of the characterizing functions xv

r,i(t∗
k) becomes

even more important, as it influences both the dimensional and hyper-reduction process. This
simulation-free snapshot generation ansatz is only mentioned here as a conceptual idea. Its
implementation and numerical efficiency is subject to future research.

7.7 Conclusions

In this chapter, the concept of moment matching known from the linear setting is first com-
prehensively explained for nonlinear systems based on [14]. Then, some simplifications are
proposed to approximate the arising PDE, yielding a ready-to-implement, simulation-lean
nonlinear moment matching algorithm which relies on the solution of NLSEs. An exten-
sive discussion about the proposed simplifications, the numerical aspects and the degrees of
freedom of the algorithm is presented, together with valuable guidelines for practitioners.

All in all, it can be concluded that the proposed algorithm for approximated nonlinear
moment matching represents a particular instance of the most general framework from As-
tolfi, in the sense that a linear projection is employed. The resulting scheme requires the
solution of some NLSEs, thus allowing for a numerically more efficient computation of the
reduction basis (i.e. lower offline costs) in comparison with simulation-based approaches like
POD. In addition, it can be concluded that the selection of the signal generator using prior
system knowledge plays a crucial role for the performance of the algorithm. Nevertheless,
the presented simplifications and guidelines provide a powerful tool (instead of a “finished
product”), which can be customized for the nonlinear system at hand.

Recommendations for future research directions concern the matching of high-order non-
linear moments/Markov parameters based on [14], the development of an H2-optimal moment
matching algorithm for general nonlinear systems (see e.g. [247]), as well as the comparison
of our proposed NLMM algorithm with other invariant manifold approximation techniques,
system-theoretic and/or data-driven methods. Moreover, the conceptual differences/connec-
tion between POD and NLMM should be studied in more detail. It might be possible that
POD and our suggested approach in fact coincide for a certain choice of the time integration
scheme. This should be investigated further using e.g. the links given in [195] and [29].



Chapter 8

Bridging the Gap between Polynomial and
Nonlinear Model Reduction

In this chapter we want to establish connections between polynomial and nonlinear model
reduction by moment matching. The aim is to offer a unifying view of both worlds.

We have seen that the growing exponential approach is a fundamental tool for analyzing
polynomial systems. It is based on the eigenfunction property of linear (sub)systems. Mo-
tivated by this, we will derive the eigenfunctions of bilinear and quadratic-bilinear systems.
Then, we will discuss how these eigenfunctions could be generated via a signal generator to
use them within the nonlinear moment matching framework from Astolfi. Finally, we provide
the time-domain/signal generator interpretation of Volterra series interpolation.

For simplicity, the presentation is restricted to SISO systems. A similar analysis is possible
for the MIMO case as well.

8.1 Eigenfunctions of dynamical systems

The concept of eigenfunctions is well-known in mathematics.
Let us consider a linear operator A : f 7→ y, i.e. Af =y. An eigenfunction of the operator

A is any function f such that – when applied to A – is only scaled by some factor λ called
eigenvalue. In other words: Af = λf . For example, let us assume that A=A ∈ Rn×n with
Ax = b. The vector v satisfying Av = λv is called eigenvector of the matrix A.

The concept of eigenfunctions is also well-known in signals and systems theory.
Let us consider a dynamical system operator Si/o : u(t) 7→ y(t) or Si/s : u(t) 7→ x(t).

In the context of LTI systems Si/o represents the convolution operator (cf. Eq. (3.2)). An
eigenfunction of a dynamical system is a signal u(t) that – when input to the system – produces
a response y(t)=λ u(t) with the eigenvalue λ, or x(t)=λu(t) with the scaling λ ∈ Cn×1.

Eigenfunctions of linear time-invariant systems

It is well known that (complex) exponentials u(t)=est are the eigenfunctions of LTI systems,
whereas the transfer function G(s)=cT(sE −A)−1b represents the scaling factor λ:

y(t) = G(s) est, x(t) = λ(s) est with G(s)=cTλ(s), λ(s)=(sE −A)−1b. (8.1)

This means that the response of an LTI system to a complex exponential input eσt is again a
complex exponential of the same frequency σ ∈ C which is only scaled by G(σ).

167



168 Chapter 8. Bridging the Gap between Polynomial and Nonlinear Model Reduction

We now want to show how to derive the eigenfunctions u(t) and the scaling λ of linear
time-invariant systems. Inserting the assumption x(t) = λu(t) with ẋ(t) = λu̇(t) into the
system Eẋ(t)=Ax(t) + bu(t), y(t)=cTx(t) yields n linear ODEs for u(t):

Eλ u̇(t) = (Aλ+ b) u(t) ⇐⇒ E

λ1
...

λn

 u̇(t) =

(Aλ+ b)1
...

(Aλ+ b)n

u(t). (8.2)

For

(Aλ+ b)1
(Eλ)1

= · · · = (Aλ+ b)n

(Eλ)n
= s (8.3)

all n linear ODEs become

u̇(t) = s u(t), (8.4)

with the solution u(t)=u0 est. For the scaling λ it follows:

sE

λ1
...

λn

 =

(Aλ+ b)1
...

(Aλ+ b)n

 ⇐⇒ sEλ = Aλ+ b ⇐⇒ λ = (sE −A)−1b . (8.5)

With this simple derivation we can show that complex exponentials u(t) = u0 est are indeed
the eigenfunctions of LTI systems.

Application of the eigenfunctions

Complex exponentials are widely used in the context of linear systems theory due to the
eigenfunction property. For example: with the Fourier series or Fourier/Laplace transform one
can decompose an arbitrary signal into a sum of complex exponentials, i.e. u(t)=∑k∈Z uk eskt

with sk = i2πk
T =ikω. Then, the response of the LTI system to this arbitrary input is given by a

sum of complex exponentials scaled with λ(sk)=(skE−A)−1b, i.e. x(t)=∑k∈Z λ(sk) uk eskt.
Thus, the well-known procedure to calculate the solution of an LTI system via the Laplace
transform is as follows:

• Decomposition of the input signal u(t) into eigenfunctions est (Laplace transform)
• Scaling of the eigenfunctions with λ(s) (transfer function)
• Composition of the output signal x(t) using the scaled eigenfunctions λ(s)est (inverse

Laplace transform)

8.2 Eigenfunction of bilinear and quadratic-bilinear systems

After having revisited the concept of eigenfunctions for linear dynamical systems we now want
to derive the eigenfunctions of bilinear and quadratic-bilinear systems. We will see that the
latter can be derived from Bernoulli differential equations and that they can be represented
as a sum of exponential functions after some rearranging via the geometric series.
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Bilinear systems

We first consider bilinear systems. Inserting the assumption x(t) =λu(t) with ẋ(t) =λu̇(t)
into Eẋ(t)=Ax(t) +Nx(t) u(t) + bu(t), y(t)=cTx(t) yields n Bernoulli ODEs for u(t):

Eλu̇(t) = (Aλ+ b) u(t) +Nλu2(t)

⇐⇒ E

λ1
...

λn

 u̇(t) =

(Aλ+ b)1
...

(Aλ+ b)n

u(t) +

(Nλ)1
...

(Nλ)n

u2(t)
(8.6)

For

(Aλ+ b)1
(Eλ)1

= · · · = (Aλ+ b)n

(Eλ)n
= s and (Nλ)1

(Eλ)1
= · · · = (Nλ)n

(Eλ)n
= ñ (8.7)

all n Bernoulli differential equations become

u̇(t) = s u(t) + ñ u2(t), (8.8)

with the solution

u(t) =
(

ñ
s (e−st − 1) + 1

u0
e−st

)−1
, where ñ

s (e−st − 1) + 1
u0

e−st 6= 0, ∀t ≥ 0. (8.9)

For the scaling λ it follows:

(Aλ+ b)1
(Eλ)1

= · · · = (Aλ+ b)n

(Eλ)n
= s ⇐⇒ λ = (sE −A)−1b (8.10)

and (Nλ)1
...

(Nλ)n

 = ñE

λ1
...

λn

 ⇐⇒ N λ = ñEλ . (8.11)

This means: the eigenfunctions u(t) of bilinear systems are given by (8.9). The scaling is
λ=(sE −A)−1b with the further condition N λ = ñEλ, i.e. the scaling is also eigenvector
of the matrix N with the eigenvalue ñ. It should be checked for which value s ∈ C the scaling
λ truly is an eigenvector of the matrix N .

The eigenfunctions u(t) of bilinear systems can be represented as sum of exponential
functions using the geometric series ∑∞

k=0 qk = 1
1−q , |q| < 1. This yields:

u(t) =
(

ñ
s (e−st − 1) + 1

u0
e−st

)−1
= s

ñ
est
(

1 + s

ñ u0

)−1 ∞∑
k=0

(
est
(

1 + s

ñ u0

)−1
)k

= s

ñ

∞∑
k=1

ekst
(

1 + s

ñ u0

)−k

=
∞∑

k=1

s

ñ

(
1 + s

ñ u0

)−k

ekst

=
∞∑

k=1
uk(s) ekst.

(8.12)
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This fact could be related to the growing exponential approach. Namely: in Section 4.4.2 we
have employed the Volterra series x(t) =∑∞

k=1 xk(t) and the mentioned approach to derive
the scalings λ(j2,...,jk)

k,4 (sl1 , . . . , slk) for a sum of growing exponentials u(t) =∑r
l1=1 1m ul1 esl1 t

(cf. Eqs. (4.53), (4.54)). For the SISO and single-tone case with u(t) = est the solution is
given by x(t)=∑∞

k=1 λk(s)ekst with xk(t)=λk(s)uk(t) and the scalings λ1(s) = (sE−A)−1b,
λk(s) = (ksE − A)−1Nλk−1(s). Hence, the question arises whether for an eigenfunction,
i.e. an input of the form u(t) = ∑∞

k=1 uk(s) ekst, the bilinear system would respond with∑∞
k=1 λk(s) uk(s) ekst. This could not be clarified by the author and is thus subject to research.

Quadratic-bilinear systems

We consider now quadratic-bilinear systems. Inserting the assumption x(t) = λu(t) with
ẋ(t) = λu̇(t) into Eẋ(t) = Ax(t) + H(x(t) ⊗ x(t)) + Nx(t) u(t) + bu(t), y(t) = cTx(t)
yields n Bernoulli ODEs for u(t):

Eλu̇(t) = (Aλ+ b) u(t) + (Nλ+H(λ⊗ λ)) u2(t)

⇐⇒ E

λ1
...

λn

 u̇(t) =

(Aλ+ b)1
...

(Aλ+ b)n

u(t) +

(Nλ+H(λ⊗ λ))1
...

(Nλ+H(λ⊗ λ))n

u2(t).
(8.13)

For

(Aλ+ b)1

(Eλ)1
= · · ·= (Aλ+ b)n

(Eλ)n
= s,

(Nλ+H(λ⊗ λ))1

(Eλ)1
= · · ·= (Nλ+H(λ⊗ λ))n

(Eλ)n
= h (8.14)

all n Bernoulli differential equations become

u̇(t) = s u(t) + h u2(t), (8.15)

with the solution

u(t) =
(

h
s (e−st − 1) + 1

u0
e−st

)−1
, where h

s (e−st − 1) + 1
u0

e−st 6= 0, ∀t ≥ 0 . (8.16)

For the scaling λ it follows:

(Aλ+ b)1
(Eλ)1

= · · · = (Aλ+ b)n

(Eλ)n
= s ⇐⇒ λ = (sE −A)−1b (8.17)

and (Nλ+H(λ⊗ λ))1
...

(Nλ+H(λ⊗ λ))n

 = hE

λ1
...

λn

 ⇐⇒ Nλ+H(λ⊗ λ) = hEλ . (8.18)

This means: the eigenfunctions u(t) of quadratic-bilinear systems are given by (8.16). The
scaling is λ = (sE − A)−1b with the further condition Nλ + H(λ ⊗ λ) = hEλ, i.e. the
scaling is also solution of this quadratic equation. It should be checked for which value s ∈ C
the scaling λ truly satisfies this quadratic equation.
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Following the same steps as in (8.12) the eigenfunctions of quadratic-bilinear systems can
also be represented as sum of exponential functions, i.e.

u(t) =
∞∑

k=1
uk(s) ekst with uk(s) = s

h

(
1 + s

h u0

)−k

. (8.19)

In Section 4.4.2 we have employed the Volterra series x(t) = ∑∞
k=1 xk(t) and derived the

scalings λ(j2,...,jk)
k,4 (sl1 , . . . , slk) for a sum of growing exponentials u(t) =∑r

l1=1 1m ul1 esl1 t (cf.
Eq. (4.58)). For the SISO and single-tone case with u(t)=est the solution is given by x(t)=∑∞

k=1 λk(s)ekst with xk(t) = λk(s)uk(t) and the scalings λ1(s) = (sE − A)−1b, λk(s) =

(ksE −A)−1
(
H
∑k−1

i=1
(
λi ⊗ λk−i

)
+N λk−1

)
.

Discussion The Volterra theory and the growing exponential approach consider exponential
input signals u(t) = est, i.e., eigenfunctions of the linear system. The question arises: why
are exponential functions also being considered for (quadratic-)bilinear systems instead of the
corresponding eigenfunctions? The reason is simple. The Volterra model allows to decompose
a polynomial nonlinear system in linear subsystems, such that complex exponentials can be
exploited as eigenfunctions. On the contrary, a decomposition of general input signals into
eigenfunctions of (quadratic-)bilinear systems is questionable and not fully clear yet. Thus, the
growing exponential approach has established for analyzing (polynomial) nonlinear systems.

8.3 Eigenfunctions for nonlinear moment matching

Despite the success of the growing exponential approach we now want to outline how the
eigenfunctions of nonlinear systems could be applied. First, the input signal should be repre-
sented using the eigenfunctions of the nonlinear system. Then, the eigenfunctions are scaled
with the scaling/system function λ. Finally, the output signal is composed of the scaled
eigenfunctions. However, differences and questions remain:

• Exponential functions are generally not the eigenfunctions of nonlinear systems. There-
fore, a new decomposition of the input signal is necessary. The question remains: which
class of input signals can be represented by eigenfunctions of a nonlinear system?

• If the decomposition of the input into eigenfunctions succeeds, then a scaling with λ is
possible. However the question remains: how can the output signal be composed of the
scaled eigenfunctions? The superposition principle does not apply to nonlinear systems,
i.e. a sum of eigenfunctions is generally not an eigenfunction. Moreover, the scaling of
the eigenfunctions does not form a vector space but a manifold.

All these questions make the application of “nonlinear” eigenfunctions difficult – or at least
not as straightforward as complex exponentials.

In the context of nonlinear moment matching we have mentioned that the FOM should
ideally be excited by the eigenfunctions of the nonlinear system. This means that the sig-
nal generator ODE (7.1a), together with the mapping (7.1b), should generate characterizing
eigenfunctions of the system, before an invariant manifold x = ν(xv

r ) (a linear basis V ) is
constructed by solving the Sylvester-like PDE (7.10) (approximately).
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Based on this thought, we will next construct the eigenfunctions of bilinear systems via
a signal generator. Let us assume that

xv
r,i(t) =

(
ñi
σi

(e−σit − 1) + 1
xv

r,0,i
e−σit

)−1
, i = 1, . . . , r, (8.20)

with user-defined {σi, ñi, xv
r,0,i}. These eigenfunctions can be generated via the following signal

generator ODE (cf. Eq. (8.8)):

ẋv
r (t) =

σ1
. . .

σr

xv
r (t) +

ñ1
. . .

ñr




xv
r,1(t)2

...
xv

r,r(t)2

 = Sv x
v
r (t) + Λñ


xv

r,1(t)2

...
xv

r,r(t)2

 . (8.21)

We further use u(t) = 1T
r x

v
r (t) =∑r

i=1 xv
r,i(t), i.e. the input is a sum of eigenfunctions of the

bilinear system. Now let us assume that we employ a linear projection x(t)=V xv
r (t), where

the columns v1, . . . ,vr of the matrix V represent the scalings λi of the eigenfunctions (cf.
Eqs. (8.10), (8.11)). In other words: vi = (σiE −A)−1b ⇐⇒ EV Sv −AV − b1T

r = 0 and
Nvi = ñiE vi ⇐⇒ NV = EV Λñ. Inserting the linear projection ansatz and the signal
generator into the bilinear system yields:

EV Sv x
v
r (t) +EV Λñ


xv

r,1(t)2

...
xv

r,r(t)2

 = AV xv
r (t) +NV xv

r (t)1T
r x

v
r (t) + b1T

r x
v
r (t)

⇐⇒
(
EV Sv −AV − b1T

r

)
︸ ︷︷ ︸

=0

xv
r (t) + EV Λñ

(
xv

r,1(t)2

...
xv

r,r(t)2

− xv
r (t)1Txv

r (t)
)

︸ ︷︷ ︸
!=0

= 0.

(8.22)

The second term next to the well-known Sylvester equation disappears only for reduced or-
der r = 1 (because then xv

r (t)2 =xv
r (t)1Txv

r (t) holds), or alternatively for eigenvalues ñi = 0
of N or linearly dependent eigenvectors in V .

Why is this not working? We have assumed that the input signal u(t)=∑r
i=1 xv

r,i(t) is a
sum of eigenfunctions of the original model generated by the signal generator and the state

x(t) = V xv
r (t) =

r∑
i=1
vi xv

r,i(t), vi = (σiE −A)−1b, Nvi = ñiE vi (8.23)

is also a sum of the scaled eigenfunctions. However, in the nonlinear case the sum of eigen-
functions is generally not an eigenfunction. Therefore a linear projection x(t)=V xv

r (t) leads
to a contradiction.

A nonlinear projection x(t)=ν
(
xv

r (t)
)

with ν(xv
r ) : Rr → Rn could take into account how

linear combinations of eigenfunctions u(t) =∑r
i=1 xv

r,i(t) affect the original nonlinear model.
The projection does not define a vector space but a manifold. The remaining problem is
that the PDE (7.10) needs to be solved for ν(xv

r ). The procedure is thus promising, but still
subject to further research.
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8.4 Signal generator interpretation of Volterra series interpolation

In Section 5.4 we have discussed the Volterra series interpolation framework for the reduction
of bilinear systems. We have seen that the Krylov vectors can be computed in an Arnoldi-like
manner (cf. (5.45a)) or via the solution of the state-independent Sylvester equations (5.43a) or
(5.52a). On the other hand, in Section 7.1 we have discussed the nonlinear moment matching
framework from Astolfi for the reduction of general nonlinear state-space systems. We have
seen that the approach exploits the concept of signal generators and requires the solution of
a nonlinear, state-dependent Sylvester-like PDE (7.10) to compute ν(xv

r ).
At this point we asked ourselves how the Volterra series interpolation could be embedded

in the more general framework from Astolfi. In others words, the question raised how the signal
generator and the input are implicitly being chosen to obtain the state-independent Sylvester
equation (5.43a). This will be discussed in the following. It will turn out that by applying
a linear projection and a linear signal generator to the bilinear system/subsystems (4.25) we
gain the structure of the Sylvester equations. Moreover, we will discuss the required input
u(t) to be able to factor out xv

r (t).
First of all we want to motivate the use of a linear projection for each subsystem. The

Volterra series interpolation framework uses the following linear ansatz (with xr(t)
!= xv

r (t)):

x(t) ≈ V xv
r (t) =

r∑
i=1
vi xv

r,i(t) =
r∑

i=1

∞∑
k=1

v
(k)
i xv

r,i(t), vi =
∞∑

k=1
v

(k)
i ⇔ V =

∞∑
k=1

V (k). (8.24)

On the other hand, we know from the Volterra series that x(t) = ∑∞
k=1 xk(t). Thus, it seems

reasonable to assign the matrices V (k) to each k-th subsystem:

x(t) =
∞∑

k=1
xk(t) !=

∞∑
k=1

V (k)xv
r (t) =⇒ xk(t) = V (k)xv

r (t) =
r∑

i=1
v

(k)
i xv

r,i(t). (8.25)

Motivated by the structure of the Sylvester equations (5.43a) or (5.52a) having a shift matrix
Sv, it seems reasonable to use a linear signal generator:

ẋv
r (t) = Sv x

v
r (t), xv

r (0) = xv
r,0 ⇔ xv

r (t) = eSvtxv
r,0, xv

r,i(t) = eσit xv
r,0,i. (8.26)

Inserting the linear projection and the linear signal generator into the bilinear system or into
the subsystems (4.25) yields:

EV Sv x
v
r (t) = AV xv

r (t) +N V xv
r (t)u(t) + bu(t) (8.27)

and

EV (1)Sv x
v
r (t) = AV (1) xv

r (t) + bu(t),

EV (k)Sv x
v
r (t) = AV (k) xv

r (t) +NV (k−1)xv
r (t) u(t).

(8.28)

The question is now how the input u(t) should be chosen to factor out xv
r (t) and gain the

well-known Sylvester equations. For this purpose the input should fulfill two conditions:

u(t) = 1T
r x

v
r (t) !=

r∑
i=1

eσit xv
r,0,i and xv

r (t)u(t) != UT
v x

v
r (t). (8.29)
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The first equation is well-known from the linear case, i.e. bu(t) = b1T
r x

v
r (t). The second

equation requires more analysis. The i-th entry of the right-hand side is given by
(
UT

v x
v
r (t)

)
i
=∑r

iu=1 uv
iu,i xv

r,iu
(t)=∑r

iu=1 uv
iu,i eσiu t xv

r,0,iu
. By looking closely at the left- and right-hand side

of the second condition we can get the expression for the input:

xv
r,i(t)u(t) = eσit xv

r,0,i

r∑
iu=1

r∑
l=1

uv
iu,l e(σiu −σl)t xv

r,0,iu

xv
r,0,l

i=l:=
r∑

iu=1
eσit xv

r,0,i uv
iu,i e(σiu −σi)t xv

r,0,iu

xv
r,0,i

=
r∑

iu=1
uv

iu,i eσiu t xv
r,0,iu

=
(
UT

v x
v
r (t)

)
i
.

(8.30)

This means that the first subsystem is excited by u(t) =∑r
i=1 eσit xv

r,0,i, whereas the higher
subsystems are excited by u(t)=∑r

iu=1
∑r

l=1 uv
iu,l e(σiu −σl)t xv

r,0,iu
xv

r,0,l
. Physically it does not make

sense that higher subsystems are excited with a different input than the first subsystem. We
only proceed in this way to arrive at the desired Sylvester equations. Moreover, we will see
next that some terms need to neglected in order to be compliant with the projection ansatz
and get the Volterra series interpolation.1

According to the applied projection ansatz (8.25) and the Volterra series interpolation,
the response of the first subsystem should read

x1(t) =
r∑

i=1
(σiE −A)−1b eσit xv

r,0,i =
r∑

i=1
v

(1)
i xv

r,i(t). (8.31)

The first subsystem is linear with respect to the input term bu(t). Therefore exponential
functions eσit are scaled with the matrix (σiE −A)−1:

bu(t) :=
r∑

i=1
b eσit xv

r,0,i =⇒ x1(t) =
r∑

i=1
(σiE −A)−1b eσit xv

r,0,i. (8.32)

The response of the second subsystem should read

x2(t) =
r∑

i=1

r∑
l1=1

uv
i,l1(σiE −A)−1N(σl1E −A)−1 b eσit xv

r,0,i =
r∑

i=1
v

(2)
i xv

r,i(t). (8.33)

The second subsystem is linear w.r.t. the input term Nx1(t)u(t). Therefore exponential
functions eσit are scaled (similarly to the first subsystem) with the matrix (σiE −A)−1:

Nx1(t)u(t) :=
r∑

i=1
ai eσit xv

r,0,i =⇒ x2(t) =
r∑

i=1
(σiE −A)−1 ai eσit xv

r,0,i. (8.34)

1It would be more meaningful to use the input u(t)=
∑r

i=1 eσit xv
r,0,i +

∑r

iu=1

∑r

l=1 uv
iu,l e(σiu −σl)t xv

r,0,iu
xv

r,0,l
for

all subsystems. Nevertheless, with this ansatz more terms need to be neglected to be compliant with a
linear projection. For the sake of brevity we will not present this explicitly. The procedure is similar to the
one described here for the mentioned ansatz.
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The multiplication x1(t)u(t) between two terms of the state and four terms of the input
would result in a total of eight terms (for r=2). To get the desired result four terms must be
neglected. This is illustrated in the following:

x1(t)u(t) =
(
v

(1)
1 eσ1txv

r,0,1 + v(1)
2 eσ2txv

r,0,2
)(

uv
1,1 + uv

2,2 + uv
1,2e(σ1−σ2)t xv

r,0,1
xv

r,0,2
+ uv

2,1e(σ2−σ1)t xv
r,0,2

xv
r,0,1

)
=

r∑
ix=1

v
(1)
ix

eσix txv
r,0,ix

r∑
iu=1

r∑
l1=1

uv
iu,l1 e(σiu −σl1 )t xv

r,0,iu
xv

r,0,l1
(8.35)

ix=l1:=
r∑

i=1

r∑
l1=1

v
(1)
l1

eσl1 t xv
r,0,l1 uv

i,l1 e(σi−σl1 )t xv
r,0,i

xv
r,0,l1

=
r∑

i=1

r∑
l1=1

uv
i,l1 v

(1)
l1

eσit xv
r,0,i .

This means that only the terms ix = l1 are considered and r2 terms are neglected. The
procedure is the same for higher subsystems. The input for the k-th subsystem reads:

xk−1(t)u(t) =
r∑

ix=1
v

(k−1)
ix

eσix txv
r,0,ix

r∑
iu=1

r∑
lk−1=1

uv
iu,lk−1 e(σiu −σlk−1 )t xv

r,0,iu
xv

r,0,lk−1

:=
r∑

i=1

r∑
lk−1=1

v
(k−1)
lk−1

eσlk−1 t
xv

r,0,lk−1 uv
i,lk−1e(σi−σlk−1 )t xv

r,0,i

xv
r,0,lk−1

=
r∑

i=1

r∑
lk−1=1

uv
i,lk−1v

(k−1)
lk−1

eσit xv
r,0,i ⇐⇒ V (k−1)UT

v x
v
r (t).

(8.36)

The solution of the k-th subsystem is then given by

xk(t) =
r∑

i=1

r∑
lk−1=1

uv
i,lk−1 (σiE −A)−1N v

(k−1)
lk−1

eσit xv
r,0,i =

r∑
i=1
v

(k)
i xv

r,i(t). (8.37)

To sum up: we can obtain the bilinear Sylvester equations by applying a linear projection and
a linear signal generator, whereby the input u(t) needs to fulfill two conditions. Moreover,
certain terms need to be neglected to be conform with the linear projection ansatz and the
Volterra series interpolation conditions.

Implicit Volterra series interpolation

We have discussed in Section 5.4 that the implicit Volterra series interpolation represents a
special case of the most general framework for diagonal weighting matrices U v,Uw. More
importantly, we have seen that the implicit Volterra interpolation conditions (5.47) are equiv-
alent to interpolating the special linear system Σ = (A + ηi,iN , b, cT,E). We now provide
a time-domain/signal generator interpretation for implicit Volterra series interpolation. A
similar result is discussed in [92, Sec. 3.4].

For implicit Volterra the input of the k-th subsystem is given by

u(t) = ηi,i, (8.38)

i.e. a constant input, where the amplitude represents the diagonal weights ηi,i =uv
i,i.
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Then, the subsystems read

E ẋ1(t) = Ax1(t) + bu(t),
E ẋk(t) = Axk(t) + ηi,iNxk−1(t), k ≥ 2 ,

(8.39)

or the bilinear system becomes

E ẋ(t) = (A+ ηi,iN)x(t) + bu(t). (8.40)

Since the above system is linear, we know that for an exponential input u(t)=∑r
i=1 eσit xv

r,0,i

(i.e. a linear signal generator) the solution is

x(t) =
r∑

i=1
(σiE − (A+ ηi,iN))−1b eσitxv

r,0,i. (8.41)

Using the Neumann series (I−T )−1 = ∑∞
k=0 T

k for ‖T ‖ < 1 we receive the implicit Volterra
series interpolation:

x(t) =
r∑

i=1

(
(σiE −A)

(
I− (σiE −A)−1ηi,iN

))−1
b eσitxv

r,0,i

=
r∑

i=1

∞∑
k=0

(
(σiE −A)−1ηi,iN

)k
(σiE −A)−1b eσit xv

r,0,i

=
r∑

i=1

∞∑
k=1

(ηi,i)k−1λ�
k (σi, . . . , σi) eσit xv

r,0,i

=
r∑

i=1
vi eσit xv

r,0,i.

(8.42)
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Chapter 9

Fundamentals of Model Reduction for
Nonlinear Mechanical Systems

In this part of the thesis we focus on the reduction of nonlinear second-order systems. They
arise in many engineering applications, e.g. in structural dynamics, MEMS, vibroacoustics,
biomechanics, etc. Nonlinear terms typically originate from (i) nonlinear geometric behavior
(i.e. large deformations), (ii) material nonlinearities (e.g. viscoelasticity), or (iii) nonlinear
boundary conditions (e.g. contact interactions).

This chapter deals with the mathematical and model reduction fundamentals for nonlin-
ear mechanical systems. First, the considered equations of motion and the assumed system
properties are introduced. Then, the numerical time integration of the FOM is discussed. Af-
ter that, the focus is laid on model reduction based on both linear and nonlinear projection.
In the linear projection framework we will turn our attention to the concept of basis augmen-
tation with modal derivatives (MDs). We will revisit their original derivation [130] based on
the perturbation of the linearized eigenvalue problem and also discuss the static derivatives.
In the nonlinear projection framework we will concentrate on the emerging convective term
and the time integration of manifold-ROMs. Then, the special case of a quadratic manifold
(QM) is treated, which can be parametrized with modes and modal derivatives.

This chapter lays the foundation for the upcoming Chapters 10 and 11. Certain parts are
based on the corresponding sections of [75] and [73].

9.1 System representation

We consider a large-scale, nonlinear time-invariant, exponentially stable, MIMO second-order
model of the form

M q̈(t) +D q̇(t) + f(q(t)) = BF (t), q(0) = q0, q̇(0) = q̇0,

y(t) = C q(t),
(9.1a)
(9.1b)

with non-singular mass matrix M ∈ Rn×n, displacements q(t) ∈ Rn, input forces F (t) ∈ Rm,
outputs y(t) ∈ Rp and the smooth mapping f(q) : Rn → Rn. Note that the considered
equations of motion represent a special case of the more general system representation

Mq̈(t) + f int
(
q̇(t), q(t)

)
= f ext

(
q̇(t), q(t), t

)
, q(0) = q0, q̇(0) = q̇0, (9.2a)

y(t) = h
(
q̇(t), q(t)

)
, (9.2b)
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with f int
(
q̇(t), q(t)

)
=Dq̇(t) +f(q(t)) denoting the internal forces, f ext

(
q̇(t), q(t), t

)
=BF (t)

representing the time- and sometimes even displacement-dependent external forces, and the
function h

(
q̇(t), q(t)

)
=Cq as output mapping.

We assume that the mass matrix is symmetric positive definite and non-singular, i.e.
M =MT�0, det(M) 6= 0. Moreover, we assume that the tangential stiffness matrix at the
equilibrium point qeq = 0, i.e. K(qeq) = ∂f(q)

∂q

∣∣∣
qeq

, is also symmetric positive definite. The
modeling of damping in nonlinear dynamic analysis is not a trivial task. Thus, zero damping
(D=0) or a linear Rayleigh damping D=αM + βK(qeq) with α, β ≥ 0 are often assumed.
The latter case leads to a symmetric positive definite damping matrix. All these mentioned
assumptions imply that the equilibrium point qeq is exponentially stable. For D = 0 the
equilibrium point is said to be marginally/neutrally stable.

The second-order nonlinear system (9.1) can be reformulated in (an implicit) state-space
representation as:[

I 0
0 M

] [
q̇(t)
q̈(t)

]
=
[

I q̇(t)
−f(q(t))−D q̇(t)

]
+
[

0
B

]
F (t), (9.3a)

y(t) =
[
C 0

] [q(t)
q̇(t)

]
. (9.3b)

9.2 Time integration

The numerical simulation of nonlinear second-order systems is usually performed via the
generalized-α scheme [61]. It constitutes a generalization of the previously proposed Newmark
[189] and HHT-α schemes [121]. The algorithmic procedure is summarized in Algorithm 9.1,
which is schematically leaned on [105] (see also [Bil19]).

The generalized-α method is an implicit solver composed of two steps. First, the dis-
placements qk+1 and velocities q̇k+1 at the next time-step are obtained from the solutions
at the previous time-step k using the step-size h and the parameters β ∈ [0, 1

2 ], γ ∈ [0, 1]
(cf. lines 7-10). Secondly, two additional parameters αf and αm are employed to interpolate
the displacements, velocities, accelerations and external forces between the k-th and k + 1-th
time-step (cf. lines 11-15). For the special choice αm = αf = 0 one gets Newmark’s scheme,
whereas for αm = 0, αf = α one obtains the HHT-α scheme. These two α-parameters are
crucial to adjust the degree of numerical damping for high frequencies. [105]

Inserting the time-discretized equations in the system representation yields the residual

res(qk+1) = Mq̈k+1−αm
+Dq̇k+1−αf

+ f(qk+1−αf
)− f ext,k+1−αf

!= 0. (9.4)

The Newton-Raphson method searches then for the solution qk+1. The analytical Jacobian
of the residual K iter

dyn,k+1(qiter
k+1)=∂res(qk+1)/∂qk+1 for every iteration step “iter” reads

K iter
dyn,k+1(qiter

k+1) = 1− αm

βh2 M + (1− αf )γ
βh

D + (1− αf )K(qiter
k+1−αf

). (9.5)

The correction ∆qi
k+1 is computed by solving a LSE (cf. line 21). The next solution is then

calculated by the update qiter+1
k+1 = qiter

k+1 +∆qiter
k+1 (cf. lines 22-25). The Newton-Raphson loop

is repeated until the norm of the residual undershoots a specified tolerance.
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Algorithm 9.1 Generalized-α time integration scheme
Input: Initial conditions q0, q̇0 ∈ Rn, parameters γ, β, αf and αm, time range t = [t0, ..., tend],

step-size h, residual error tolerance tol, start residual ||res0|| = 1
Output: Set of displacements qk at discrete time steps tk for k = 0, ..., N

1: H Initialization
2: q̈0 = M−1 (f ext(t0)− f(q0)−D q̇0) I solve LSE
3: k ← 0
4: while t < tend do I time-marching loop
5: k ← k + 1
6: tk+1 = tk + h I time increment
7: H prediction
8: qi

k+1 = qi
k + hq̇i

k + (1
2 − β)h2q̈i

k

9: q̇i
k+1 = q̇i

k + (1− γ)hq̈i
k

10: q̈i
k+1 = 0

11: H mid-point in generalized-alpha scheme
12: qi

k+1−αf
= (1− αf )qi

k+1 + αfq
i
k

13: q̇i
k+1−αf

= (1− αf )q̇i
k+1 + αf q̇

i
k

14: q̈i
k+1−αm

= (1− αm)q̈i
k+1 + αmq̈

i
k

15: f i
ext,k+1−αf

= (1− αf )f i
ext,k+1 + αff

i
ext,k

16: H initial residual evaluation
17: i← 0
18: resi

k+1 = Mq̈i
k+1−αm

+Dq̇i
k+1−αf

+ f(qi
k+1−αf

)− f i
ext,k+1−αf

19: while ||resi
k+1|| > tol do I Newton-Raphson loop

20: Ki
dyn,k+1(qi

k+1) = 1−αm
βh2 M + (1−αf )γ

βh D + (1− αf )K(qi
k+1−αf

)

21: ∆qi
k+1 = −

(
Ki

dyn,k+1(qi
k+1)

)−1
resi

k+1 I solve LSE
22: H correction
23: qi+1

k+1 = qi
k+1 + ∆qi

k+1
24: q̇i+1

k+1 = q̇i
k+1 + γ

βh∆qi
k+1

25: q̈i+1
k+1 = q̈i

k+1 + 1
βh2 ∆qi

k+1
26: H mid-point in generalized-alpha scheme
27: qi+1

k+1−αf
= (1− αf )qi+1

k+1 + αfq
i+1
k

28: q̇i+1
k+1−αf

= (1− αf )q̇i+1
k+1 + αf q̇

i+1
k

29: q̈i+1
k+1−αm

= (1− αm)q̈i+1
k+1 + αmq̈

i+1
k

30: f i+1
ext,k+1−αf

= (1− αf )f i+1
ext,k+1 + αff

i+1
ext,k

31: H iterative residual evaluation
32: resi+1

k+1 = Mq̈i+1
k+1−αm

+Dq̇i+1
k+1−αf

+ f(qi+1
k+1−αf

)− f i+1
ext,k+1−αf

33: i← i + 1 I iter← iter + 1

9.3 Nonlinear reduction based on linear projection

The goal of nonlinear model reduction is to find a ROM of smaller dimension r � n using
again a projection framework. The reduction of second-order systems is usually performed by
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an orthogonal Galerkin projection rather than by an oblique Petrov-Galerkin projection. The
former fulfills the principle of virtual work and, thus, preserves the symmetry and definiteness
of the original matrices as well as the stability of the FOM.

Similar to state-space systems, we will distinguish between linear and nonlinear projection.
In this section, the reduction of (9.1) based on linear projection is discussed.

Linear Galerkin projection

A common way to reduce nonlinear second-order systems is to apply the well-known linear
Galerkin projection ansatz q(t) ≈ V qr(t). Hereby, the displacements q(t) ∈ Rn are approxi-
mated by a linear combination of the basis vectors in V ∈ Rn×r and the reduced displacements
qr(t) ∈ Rr. Inserting the ansatz q(t)=V qr(t) + e(t) in (9.1a) and premultiplying the overde-
termined system with the orthogonal projector Π=V (V TV )−1V T leads to

Π
(
MV q̈r(t) +DV q̇r(t) + f

(
V qr(t)

)
−BF (t)︸ ︷︷ ︸

=ξ
(
V qr(t),F (t)

) −ε(t)
)

= 0 ⇔ Π
(
ξ(·, ·)− ε(t)

)
= 0.

(9.6)

Enforcing the Galerkin condition V T ε(t) = 0, which implies Π ε(t) = 0, the residual then
vanishes and only the term Π ξ(·, ·)=0 remains. This finally yields the (square) ROM

M r q̈r(t) +Dr q̇r(t) + V Tf
(
V qr(t)

)
= Br F (t), qr(0) = qr,0, q̇r(0) = q̇r,0,

yr(t) = Cr qr(t),
(9.7a)
(9.7b)

with reduced matrices {M r,Dr}=V T {M ,D}V , Br =V TB, Cr =C V , initial conditions
{qr(0), q̇r(0)}=(V TV )−1V T {q0, q̇0} and the reduced nonlinear function f r(qr)=V Tf(V qr)
with f r(qr) : Rr → Rr.

In this linear projective framework, the main task is to efficiently compute a dimensional
reduction basis V that comprises the most dominant nonlinear dynamics to ensure a good
approximation, measured e.g. point-wise by ‖q(t) − V qr(t)‖(.) or ‖y(t) − yr(t)‖(.) with a
suitable vector norm (.) = {1, 2,∞, . . .} (see Section 2.6). For the effective evaluation of the
nonlinear term f r(qr) the hyper-reduction methods from Section 6.5 can be applied.

Time integration

Similar to the FOM, the time integration of the ROM (9.7) is also accomplished using the
generalized-α scheme. To this end, Algorithm 9.1 needs only small modifications.

First, the initial reduced acceleration q̈r,0 is computed using the reduced quantities M r,
Dr, V Tf(V qr), V Tf ext(t) and the initial conditions qr,0, q̇r,0. Moreover, the residual equa-
tion in lines 18 and 32 should be replaced by

res(qr,k+1) = M r q̈r,k+1−αm
+Dr q̇r,k+1−αf

+ V Tf(V qr,k+1−αf
)− V Tf ext,k+1−αf

. (9.8)

Differentiating with respect to qr,k+1 the Jacobian of the residual now reads

K iter
dyn,k+1(qiter

r,k+1) = 1− αm

βh2 M r + (1− αf )γ
βh

Dr + (1− αf )V TK(V qiter
r,k+1−αf

)V . (9.9)
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Reduction approaches

The question is now how to efficiently compute the reduction matrix V needed for projection.
In general, the same methods described for nonlinear state-space systems in Section 6.3.3 can
be applied for nonlinear second-order systems as well, i.e. POD, TPWL, pure linear basis and
basis augmentation. What is more, some reduction methods have been initially developed
for second-order systems and then transferred to state-space models (and vice versa). This
is the case with the basis augmentation approach using modes and modal derivatives, which
have their origin in the context of nonlinear structural dynamics [129, 130, 240]. We will
concentrate on this simulation-free reduction concept in the following.

The key idea is to first compute some dominant modes of the linearized, second-order
system, and then to augment the reduction basis with perturbation derivatives capturing the
nonlinear behavior (cf. ansatz (6.13)).

Vibration modes of the linearized model

The nonlinear structural system (9.1) is first linearized around a linearization (q̄, F̄ ) or equi-
librium point (qeq,F eq). Possible ways to compute the linearization/equilibrium point are
discussed in [73]. Very often one selects qeq = 0 and F eq = 0, which leads to f(qeq) = 0 and
q̈eq =0, q̇eq =0. The Taylor series expansion of f(q(t)) around (qeq,F eq) yields

M∆q̈(t) +D∆q̇(t) + f(qeq) +Keq∆q(t) = B∆F (t), ∆q(0)=∆q0, ∆q̇(0)=∆q̇0,

∆y(t) = C∆q(t),
(9.10)

where ∆q(t)=q(t)− qeq, ∆F (t)=F (t)−F eq and ∆y(t)=y(t)− yeq represent the deviation
from the linearization point. The tangential stiffness matrix is given by

Keq = K(qeq) = ∂f(q(t))
∂q(t)

∣∣∣∣
qeq

. (9.11)

The quadratic eigenvalue problem is then derived by setting the damping to zero (D=0) and
considering the homogeneous system (∆F (t) = 0). In this undamped free motion case (i.e.
λ1/2 =±iω, δ =0, ω 6=0), the ansatz for the displacements and accelerations is (cf. Fn. 1)

∆q(t) =
2n∑
i=1

Ciφi,eq e±iωi,eqt, ∆q̈(t) =
2n∑
i=1
−ω2

i,eq Ciφi,eq e±iωi,eqt, (9.12)

where the scalings Ci are determined through the initial conditions. Inserting the above ansatz
into (9.10) with D= 0, ∆F (t) = 0 and f(qeq) = 0, and canceling the time-dependent term
eiωi,eqt finally delivers the quadratic eigenvalue problem

(Keq − ω2
i,eqM)φi,eq = 0 ⇐⇒ KeqΦeq −MΦeqΩ2

eq = 0. (9.13)

Hereby, the undamped eigenfrequencies {ωi,eq}ni=1 and the eigenmodes {φi,eq}ni=1 are encoded
in the matrices Ωeq = diag(ω1,eq, . . . , ωn,eq) ∈ Rn×n and Φeq =

[
φ1,eq, . . . ,φn,eq

]
∈ Rn×n.

Typically, the eigenmodes are normalized using the M -weighted inner product. Moreover,
they are orthogonalized to each other in both the M - and K-norm: φT

i,eqM φj,eq = δij ,
φT

i,eqKeqφj,eq =ω2
i,eqδij . The reduction basis is then given by Vφ=

[
φ1,eq, . . . ,φr,eq

]
∈ Rn×r.
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Perturbation of eigenmodes

The vibration modes of the linearized system φi(qeq) depend on the chosen linearization
point qeq. Hence, the change of the modes with respect to the linearization point is of interest
now. To this end, the perturbation of the modes φi(qeq), i = 1, . . . , r with respect to the
amplitude ηj(t) of the modes φj(qeq), j = 1, . . . , r is considered in the following. Note that the
modal amplitudes ηj(t) correspond to the reduced coordinates qr(t) = [qr,1(t), · · · , qr,r(t)]T =
[η1(t), · · · , ηr(t)]T in the projection ansatz q(t) ≈ Vφ qr(t) = ∑r

i=1φi,eq ηi(t).
The perturbation of the linearized eigenvalue problem (9.13) with respect to the amplitude

ηj(t) of mode φj,eq yields (after applying the product rule): [130, 240]

∂

∂ηj(t)

(
K(qeq)− ω2

i (qeq)M
)
φi(qeq) = 0

=⇒
(

∂Keq
∂ηj(t) −

∂ω2
i,eq

∂ηj(t)M
)
φi,eq +

(
Keq − ω2

i,eqM

)
∂φi,eq
∂ηj(t) = 0. (9.14)

Rearranging (9.14) yields the following linear system of equations

(
Keq − ω2

i,eqM

)
∂φi,eq
∂ηj(t) =

(
∂ω2

i,eq
∂ηj(t)M − ∂Keq

∂ηj(t)

)
φi,eq. (9.15)

The so-called modal derivative θij = ∂φi,eq/∂ηj(t) represents the derivative of mode φi,eq
with respect to the amplitude ηj(t) of mode φj,eq. Note, however, that the obtained system
constitutes a singular linear system of equations (LSE), since the matrix (Keq − ω2

i,eqM)
is singular. Therefore, special care has to be taken to be able to solve the singular system
(9.15). Different methods to tackle the singularity are mentioned in the upcoming paragraph,
in order to compute the modal derivatives under mass consideration.

The right-hand side of the above calculation formula is composed of two parts: the deriva-
tive of the eigenfrequencies and the derivative of the tangential stiffness matrix. The derivative
of the squared i-th eigenfrequency ∂ω2

i,eq/∂ηj(t) can be obtained, if we premultiply the equa-
tion (9.14) by φT

i,eq and exploit the eigenvalue problem (9.13) together with the normalization
condition φT

i,eqM φi,eq =1. This yields (cf. [105, Sec. 6.11], [73])

∂ω2
i,eq

∂ηj(t) = φT
i,eq

∂Keq
∂ηj(t) φi,eq. (9.16)

The derivative of the tangential stiffness matrix ∂Keq/∂ηj(t) can be calculated either ana-
lytically within the finite element assembly procedure, or numerically via a finite difference
scheme using the step width h:

• Forward difference: ∂K(q)
∂ηj(t)

∣∣∣
qeq
≈ K(qeq+φj,eq·h)−K(qeq)

h ,

• Backward difference: ∂K(q)
∂ηj(t)

∣∣∣
qeq
≈ K(qeq)−K(qeq−φj,eq·h)

h ,

• Central difference: ∂K(q)
∂ηj(t)

∣∣∣
qeq
≈ K(qeq+φj,eq·h)−K(qeq−φj,eq·h)

2h .

We preferably employed the central difference scheme in AMfe, as it is more accurate and
likely to yield a symmetric array. The choice of a suitable step width is discussed in [224].
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Modal derivatives handling the singular left-hand side In order to compute the modal
derivatives under mass consideration, the singular system (9.15) has to be solved. One way to
achieve this consists in imposing an additional constraint to the modal derivative θij to obtain
a regular LSE with a unique solution. The additional condition for the modal derivatives
requires that the norm of the vibration mode φT

i,eqM φi,eq =1 remains unchanged w.r.t. the
amplitude ηj(t). With symmetric M , this imposition leads to the following constraint for the
modal derivatives (see e.g. [73] for the derivation):

∂

∂ηj(t)

(
φT

i,eqM φi,eq

)
= 0 =⇒ φT

i,eqM
T ∂φi,eq

∂ηj(t) = 0. (9.17)

This means that the derivative θij should be orthogonal to the vibration mode φi,eq w.r.t. the
M -weighted inner product. Using this imposition the modal derivatives can be calculated by
one of the following approaches:

• Nelson’s method: Proposed in [188] and further described in [129, 130, 240, 224].
• Direct method: Introduced in [105, Sec. 6.11.3] and applied in [132, 251]. The idea

is to augment the singular system (9.15) with the condition (9.17).[
(Keq − ω2

i,eqM) −Mφi,eq

−(Mφi,eq)T 0

] θij

∂ω2
i,eq

∂ηj(t)

 =
[
− ∂Keq

∂ηj(t)φi,eq

0

]
. (9.18)

• Pseudoinverse and least-squares approaches: The underdetermined LSE (9.15)
can be solved using e.g. pinv and lsqminnorm in MATLAB.

All three strategies are well explained in [73]. Nelson’s method is already integrated in AMfe.
We also implemented the direct method for comparison reasons.

Static modal derivatives excluding mass consideration In many applications, the mass
terms included in (9.15) are neglected, leading to the simplified LSE

Keq
∂φi,eq
∂ηj(t)

∣∣∣∣∣
s

= − ∂Keq
∂ηj(t)φi,eq, (9.19)

where θs,ij = ∂φi,eq/∂ηj(t)|s denotes the so-called static modal derivative (SMD). The omis-
sion of the shift-term −ω2

i,eqM leads to a regular linear system of equations, since the left-
hand side of (9.19) is only composed of Keq. This matrix is constant and independent of
ωi,eq, meaning that only one factorization of Keq is needed to compute all SMDs.

The right-hand side of (9.19) becomes simpler than in (9.15) due to the omission of the
eigenfrequencies derivative ∂ω2

i,eq/ηj(t). What is more, it can be rewritten as

∂Keq
∂ηj(t) φi,eq = ∂K(q)

∂ηj(t)

∣∣∣∣∣
qeq

φi,eq := ∂2f(q)
∂ηj(t)∂q

∣∣∣∣∣
qeq

∂q

∂ηi(t)

∣∣∣∣
qeq

= ∂2f(q)
∂ηj(t)∂ηi(t)

∣∣∣∣∣
qeq

(9.20)

using the relation (9.11) for the tangential stiffness matrix and expressing the displacement
field at qeq as q(t)|qeq =φi,eqηi(t) + φj,eqηj(t). Since ∂2f/∂ηiηj =∂2f/∂ηjηi holds, the right-
hand side, and consequently the SMDs, are symmetric with respect to i and j:

∂Keq
∂ηj(t) φi,eq = ∂Keq

∂ηi(t)
φj,eq =⇒ θs,ij =

∂φi,eq
∂ηj(t)

∣∣∣∣∣
s

=
∂φj,eq
∂ηi(t)

∣∣∣∣
s

= θs,ji. (9.21)
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Augmentation of the reduction basis

In many publications, e.g. [282, 224, 251, 75], it has been shown that the reduction of a
nonlinear structural system with a pure linear reduction basis Vφ =

[
φ1,eq, . . . ,φr,eq

]
con-

taining only vibration modes usually yields unsatisfactory results. In order to construct
a reduction basis that also captures the nonlinear behavior of the FOM, the linear basis
Φr =

[
φ1,eq, . . . ,φr,eq

]
∈ Rn×r is augmented with (S)MDs.1

The calculated MDs result in a third-order tensor Θ ∈ Rn×r×r, which is unfolded into a
matrix using the 1-mode matricization

Θr2 =
[
θ11 θ12 · · · θ1r · · · θr1 θr2 · · · θrr

]
∈ Rn×r2

. (9.22)

In the non-symmetric case of the MDs θij = ∂φi,eq/∂ηj(t), the reduction basis is composed
of r vibration modes Φr ∈ Rn×r and r2 modal derivatives Θr2 = [θ11, . . . ,θrr] ∈ Rn×r2 ,
yielding an augmented basis V aug = [Φr, Θr2 ] ∈ Rn×r+r2 . In the symmetric case of the
SMDs, where θs,ij = θs,ji, only o = r(r + 1)/2 distinct derivatives are included in the basis,
yielding Θs,o ∈ Rn×o and V aug = [Φr, Θs,o] ∈ Rn×r+o.

The raw reduction basis composed of both vibration modes and (S)MDs is generally not
full rank, since the column vectors are usually redundant or linear dependent to each other.
Thus, a deflation via SVD is often employed. The deflated basis is constructed with rdefl left
singular vectors corresponding to the leading singular values: V defl

aug = [u1, · · · , udefl]. The
deflated reduced order may be chosen at wish, or selected according to a given tolerance ε.

9.4 Nonlinear reduction based on nonlinear projection

In this section, we discuss the reduction of nonlinear second-order systems using a nonlinear
projection framework (cf. Section 6.4 for nonlinear state-space systems).

Nonlinear Galerkin projection

Another way of reducing (9.1) consists in applying a nonlinear Galerkin projection, where the
approximation ansatz reads

q(t) = ν
(
qr(t)

)
+ e(t), (9.23)

with the smooth nonlinear mapping ν(qr) : Rr → Rn. The first and second time-derivative of
the ansatz are then given by

q̇ = ∂ν(qr)
∂qr

q̇r = Ṽqr q̇r, (9.24)

q̈ = ∂ν(qr)
∂qr

q̈r + ∂2ν(qr)
∂q2

r
(q̇r ⊗ q̇r) = Ṽqr q̈r + dṼqr (q̇r ⊗ q̇r) , (9.25)

1A similar approach is to employ Krylov vectors (cf. Eq. (11.8)) and their corresponding Krylov derivatives
(see e.g. [175], [Him18]) for the basis augmentation approach.
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with the Jacobian and the Hessian:

Ṽ (qr)= ∂ν(qr)
∂qr

∈ Rn×r, dṼ (qr) = ∂2ν(qr)
∂q2

r
= ∂Ṽ (qr)

∂qr
∈ Rn×r2

. (9.26)

The tangential Jacobian Ṽqr spans the r-dimensional tangent space Ṽ = TqrM= ran(Ṽqr) of
the manifold M={qr ∈ Rr : q = ν(qr)}.

Inserting the ansatz and its derivatives in (9.1a) yields an overdetermined system of
equations with the residual ε(t). To obtain a square ROM, we project the resulting system
onto the tangent space Ṽ=ran(Ṽqr) orthogonally to this same space. This is accomplished by
premultiplying the overdetermined system with the projector Π̃ = Ṽqr(Ṽ

T
qr
Ṽqr)−1Ṽ

T
qr

, where
Ṽ

T
qr
Ṽqr is assumed non-singular, leading to

Π̃
(
MṼqr q̈r +MdṼqr (q̇r ⊗ q̇r) +D Ṽqr q̇r + f

(
ν(qr)

)
−BF︸ ︷︷ ︸

=ξ
(
ν(qr(t)),F (t)

) −ε(t)
)

= 0.
(9.27)

Enforcing the Galerkin condition Ṽ T
qr
ε(t) = 0, which implies Π̃ ε(t) = 0, the residual then

vanishes and only the term Π̃ ξ(·, ·)=0 remains. This yields the nonlinearly projected ROM

M̃ r q̈r(t) + p̃r(t) + D̃r q̇r(t) + Ṽ (qr(t))Tf
(
ν(qr(t))

)
= B̃r F (t),

yr(t) = C ν
(
qr(t)

)
,

(9.28a)
(9.28b)

with reduced matrices
{
M̃ r, D̃r

}
= Ṽ

T
qr
{M ,D} Ṽqr and B̃r = Ṽ

T
qr
B, the convective term

p̃r = Ṽ T
qr
M dṼqr (q̇r ⊗ q̇r) and qr(0)=arg min

qr,0
‖ν(qr,0)− q0‖22, q̇r(0)=(Ṽ T

qr,0
Ṽqr,0)−1Ṽ

T
qr,0
q̇0.

Note again that the computation of the initial condition qr(0) requires the solution of a
nonlinear least-squares problem via e.g. lsqnonlin [138]. Further note that the reduced non-
linear mapping f̃ r

(
qr(t)

)
= Ṽ (qr(t))Tf

(
ν(qr(t))

)
can be simplified using the hyper-reduction

techniques from Section 6.5.
Due to the second derivative (9.25) with the Hessian dṼqr , an additional convective term

p̃r(t) pops up in the ROM (9.28). Special care must be taken with this part as it tends to
destabilize the simulation of the ROM and often leads to convergence problems. This will be
discussed in the next subsection.

Remark 9.1. Note that the use of a linear projection q≈V qr constitutes a special case of
the most general nonlinear projection q≈ν(qr) or the power series ansatz

q =
N∑

k=1
V (k) q(k)

r = V (1)q(1)
r + V (2)q(2)

r + · · · (9.29)

with V (k) ∈ Rn×rk and q(k)
r =

k times︷ ︸︸ ︷
qr ⊗ · · · ⊗ qr ∈ Rrk . The special case of a quadratic manifold

will be discussed later. M
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Time integration

The numerical simulation of the manifold-ROM (9.28) is more complicated than the one for
(9.7) due to the projection onto a displacement-dependent subspace. To keep it simple, a
Newmark scheme (i.e. αm = αf = 0) has been applied in [132] and [224, Ch. 7] to simulate
quadratic manifold-ROMs. Based on these works, we present the slightly more general New-
mark scheme for manifold-ROMs in Algorithm 9.2. This procedure has been (re)implemented
and enhanced in AMfe during the semester thesis [Bil19].

Like in the state-space case (cf. Section 6.4.2), the reduced matrices M̃ r and D̃r also
change over time due to the state-dependent basis Ṽqr . Thus, special care must be taken with
the rank deficiency/regularity of the matrix Ṽ T

qr
Ṽqr . Moreover, the arising convective term

must be taken into account during the time integration. The residual then reads [224, Ch. 7]

res(qr,k+1) = M̃ r,k+1q̈r,k+1 + p̃r,k+1 + D̃r,k+1q̇r,k+1 + f̃ r,k+1(qr,k+1)− f̃ ext,r,k+1

= Ṽ
T

qr,k+1

(
MṼqr,k+1q̈r,k+1+MdṼqrq̇r,k+1⊗q̇r,k+1+DṼqr,k+1q̇r,k+1+f(ν(qr,k+1))−fext,k+1

)

= Ṽ
T
qr,k+1

· resfull(qr,k+1). (9.30)

The Jacobian of the residual Kdyn,k+1(qr,k+1) = ∂res(qr,k+1)/∂qr,k+1 is obtained by the
product rule and is exactly given by

Kdyn,k+1(qr,k+1) = 1
βh2 Ṽ

T
qr,k+1

MṼqr,k+1 + γ

βh

(
2Ṽ T

qr,k+1
MdṼqr,k+1 q̇r,k+1 + Ṽ T

qr,k+1
DṼqr,k+1

)
+ Ṽ T

qr,k+1
K(ν(qr,k+1))Ṽqr,k+1 (9.31)

+ Ṽ T
qr,k+1

(
MdṼqr,k+1 q̈r,k+1 +DdṼqr,k+1 q̇r,k+1

)
+ dṼ T

qr,k+1
resfull(qr,k+1).

The exact analytical Jacobian involves several terms. However, in our simulation runs we
experienced sometimes convergence problems with this Jacobian, especially for the (one-sided
clamped) cantilever beam. An action that helped was the introduction of an approximated
Jacobian Kdyn,approx,k+1(qr,k+1) leaving out the convective related parts [132]. The regularity
of this Jacobian is essential for the computation of ∆qi

r,k+1 (cf. lines 22-23).

Reduction approaches

After having presented the nonlinear Galerkin projection ansatz and the time integration of
the manifold-ROM, the question is now how to compute the reduction mapping ν(qr).

One possibility could be to solve the second-order partial differential equation (11.18)
arising in the generalization of nonlinear moment matching to second-order systems (cf. Chap-
ter 11). This is system-theoretically attractive, but practically difficult. Another approach
could be to employ neural networks and convolutional autoencoders to learn this manifold from
data. This has been done so far for nonlinear first-order systems (cf. [199, 159]), but could
also be attempted for second-order models. Lastly, one can select a particular ansatz (9.29)
for the projection and then determine the reduction matrices V (k). This strategy has been
followed in [132, 223] using a quadratic manifold approach with modes and modal derivatives.



9.4. Nonlinear reduction based on nonlinear projection 189

Algorithm 9.2 Newmark time integration scheme for manifold-ROM
Input: Initial conditions qr,0, q̇r,0 ∈ Rr, parameters γ, β, time range t = [t0, ..., tend], step-size

h, residual error tolerance tol, start residual ||res0|| = 1
Output: Set of displacements qr,k at discrete time steps tk for k = 0, ..., N

1: H Initialization
2:
[
q0, Ṽqr , dṼqr

]
← Manifold(qr,0) I Full-order solution using manifold

3: M̃ r = Ṽ
T
qr,0
MṼqr,0 , D̃r = Ṽ

T
qr,0
DṼqr,0 , f̃ r = Ṽ

T
qr,0
f(q0), f̃ ext,r = Ṽ

T
qr,0
f ext(t0)

4: p̃r = Ṽ
T
qr,0
M dṼqr,0 (q̇r,0 ⊗ q̇r,0)

5: q̈r,0 = M̃
−1
r
(
f̃ ext,r − f̃ r − D̃r q̇r,0 − p̃r

)
I solve LSE

6: k ← 0
7: while t < tend do I time-marching loop
8: k ← k + 1
9: tk+1 = tk + h I time increment

10: H prediction
11: qi

r,k+1 = qi
r,k + h q̇i

r,k + (1
2 − β)h2q̈i

r,k
12: q̇i

r,k+1 = q̇i
r,k + (1− γ)hq̈i

r,k
13: q̈i

r,k+1 = 0
14: H initial residual evaluation
15: i← 0
16:

[
qi

k+1, Ṽqi
r,k+1

, dṼqi
r,k+1

]
← Manifold(qi

r,k+1) I Full-order solution using manifold

17: M̃
i

r,k+1 = Ṽ
T
qi

r,k+1
MṼqi

r,k+1
, D̃

i

r,k+1 = Ṽ
T
qi

r,k+1
DṼqi

r,k+1

18: f̃
i

r,k+1 = Ṽ
T
qi

r,k+1
f(qi

k+1), f̃
i

ext,r,k+1 = Ṽ
T
qi

r,k+1
f ext(tk+1)

19: p̃i
r,k+1 = Ṽ

T
qi

r,k+1
M dṼqi

r,k+1
(q̇i

r,k+1 ⊗ q̇i
r,k+1)

20: resi
k+1 = M̃

i

r,k+1 q̈
i
r,k+1 + p̃i

r,k+1 + D̃i

r,k+1 q̇
i
r,k+1 + f̃ i

r,k+1 − f̃
i

ext,r,k+1

21: while ||resi
k+1|| > tol do I Newton-Raphson loop

22: Ki
dyn,approx,k+1(qi

r,k+1) = 1
βh2M̃

i

r,k+1 + γ
βhD̃

i

r,k+1 + Ṽ T
qi

r,k+1
K(qi

k+1)Ṽqi
r,k+1

23: ∆qi
r,k+1 = −

(
Ki

dyn,approx,k+1(qi
r,k+1)

)−1
resi

k+1 I solve LSE
24: H correction
25: qi+1

r,k+1 = qi
r,k+1 + ∆qi

r,k+1

26: q̇i+1
r,k+1 = q̇i

r,k+1 + γ
βh∆qi

r,k+1

27: q̈i+1
r,k+1 = q̈i

r,k+1 + 1
βh2 ∆qi

r,k+1
28: H iterative residual evaluation
29:

[
qi+1

k+1, Ṽqi+1
r,k+1

, dṼqi+1
r,k+1

]
← Manifold(qi+1

r,k+1) I Full-order solution using manifold

30: M̃
i+1
r,k+1 = Ṽ

T
qi+1

r,k+1
MṼqi+1

r,k+1
, D̃

i+1
r,k+1 = Ṽ

T
qi+1

r,k+1
DṼqi+1

r,k+1

31: f̃
i+1
r,k+1 = Ṽ

T
qi+1

r,k+1
f(qi+1

k+1), f̃
i+1
ext,r,k+1 = Ṽ

T
qi+1

r,k+1
f ext(tk+1)

32: p̃i+1
r,k+1 = Ṽ

T
qi+1

r,k+1
M dṼqi+1

r,k+1
(q̇i+1

r,k+1 ⊗ q̇
i+1
r,k+1)

33: resi+1
k+1 = M̃

i+1
r,k+1 q̈

i+1
r,k+1 + p̃i+1

r,k+1 + D̃i+1
r,k+1 q̇

i+1
r,k+1 + f̃ i+1

r,k+1 − f̃
i+1
ext,r,k+1

34: i← i + 1 I iter← iter + 1
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The quadratic manifold ansatz that has been commonly used in the just mentioned pub-
lications is given by

q(t) ≈
r∑

i=1
φi,eq qr,i(t) +

r∑
i=1

r∑
j=1
θsym

ij qr,i(t)qr,j(t) = Φr qr(t) + Θsym
r2 (qr(t)⊗ qr(t)), (9.32)

where θsym
ij are the symmetrized version of the MDs from (9.15), i.e. θsym

ij = 1
2(θij +θji). After

the symmetrization, it holds Θsym
ijk = Θsym

ikj , or in other words, Θ(2)
sym = Θ(3)

sym. In numerical
examples the authors rather employ the ansatz

q(t) ≈
r∑

i=1
φi,eq qr,i(t) +

r∑
i=1

r∑
j=1
θs,ij qr,i(t)qr,j(t) = Φr qr(t) + Θs,r2 (qr(t)⊗ qr(t)), (9.33)

using the popular, inherently symmetric SMDs θs,ij from (9.19). Exemplarily, the Jacobian
Ṽqr and Hessian dṼqr of the quadratic manifold ansatz (9.32) are consequently given by

Ṽqr = Φr + Θsym
r2 (1r ⊗ qr + qr ⊗ 1r), dṼqr = 2 Θsym

r2 , (9.34)

with the vector of ones 1r = [1, . . . , 1]T ∈ Rr.
Finally, we remind again about the differences between the basis augmentation and the

quadratic manifold procedure. While the basis augmentation approach employs a linear basis
Vaug ∈ Rn×r+r2 and an ansatz

q(t) ≈ Vaug qr,aug(t) = [Φr, Θr2 ] qr,aug(t) (9.35)

with the corresponding reduced coordinates qr,aug(t) ∈ Rr+r2

qr,aug(t) =
[
qr,1(t) · · · qr,r(t) | qr,11(t) · · · qr,1r(t) · · · qr,rr(t)

]T
, (9.36)

the quadratic manifold approach exploits the ansatz

q(t) ≈ V (1)qr(t) + V (2) (qr(t)⊗ qr(t)) = Φr qr(t) + Θsym
r2 (qr(t)⊗ qr(t)) (9.37)

with the reduced coordinates qr(t) = [qr,1(t), · · · , qr,r(t)]T ∈ Rr. This means: the augmen-
tation of the reduction basis leads to an augmented reduced vector qr,aug(t) with additional
reduced coordinates, whereas in the quadratic manifold ansatz these additional degrees of free-
dom are constrained to behave quadratically, i.e. qr,ij(t) != qr,i(t)qr,j(t). Hence, this quadratic
enslavement allows for a smaller reduced order, but may be the wrong ansatz for systems that
do not behave quadratically (e.g. cantilever beam [223]).



Chapter 10

Novel Modal Derivatives for
Nonlinear Analysis and Model Reduction

In the previous chapter we have reviewed the original derivation of modal derivatives based
on perturbing the linearized eigenvalue problem w.r.t. the linearization point. This derivation
yields a singular linear system of equations under mass consideration, and also involves the
derivatives of eigenfrequencies (cf. (9.15)). In practical applications the mass terms are usually
neglected, leading to a regular LSE to compute the static modal derivatives (cf. (9.19)).

This chapter presents a novel derivation for modal derivatives based on the Volterra se-
ries representation for nonlinear structural systems. Motivated from polynomial state-space
systems (Part II), we had the idea to employ the variational equation approach to the poly-
nomial(ized) version of the nonlinear second-order system (9.1). This yields cascaded, nonlin-
early coupled subsystem state equations that can be used to derive the modes and the novel
modal derivatives. It turns out that our derivation using the Volterra series representation
yields a calculation formula which is almost identical to the conventional definition, except
for the fact that a sum/subtraction of eigenfrequencies results. Thus, the resulting LSE is
only singular, if the sum/subtraction of eigenfrequencies is again an eigenfrequency. More-
over, if the eigenfrequencies cancel out the definition for the SMDs results, without having to
explicitly neglect the mass terms.

In addition to the novel derivation, we discuss some possible implications and applications
of the gained new derivatives for nonlinear structural dynamics: the explanation of nonlinear
effects like internal resonances, the gained analytical solution via truncated Volterra series, the
formulation of novel quadratic manifold approaches for model reduction, and the connection
of the Volterra series approach to the Harmonic Balance method. Finally, we present some
numerical results for our preliminary examination comparing the novel derivatives with the
conventional ones and using all them for reduction purposes (basis augmentation and QM).

This chapter supplements our paper [73] with the content from Sections 10.4.3, 10.5 and
Appendix B.

10.1 Polynomial system representation

First, we approximate the nonlinear function f(q) in (9.1) by a Taylor series at the equilibrium
point qeq:

f(q) = f(qeq) +
∂f(qeq)

∂q
(q−qeq) + 1

2!
∂2f(qeq)

∂q2 (q−qeq)(2) + 1
3!

∂3f(qeq)
∂q3 (q−qeq)(3) + · · ·

191
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Setting qeq = 0 and assuming f(qeq) = 0, we can write

f(q) = K1 q +K2 (q ⊗ q) +K3 (q ⊗ q ⊗ q) + · · · , (10.1)

where the polynomial matrices are defined here as Kk = 1
k!

∂kf(qeq)
∂qk ∈ Rn×nk , i.e. including the

coefficients 1/k!. Truncating the series after the cubic term yields the polynomial system

M q̈(t) +D q̇(t) +K1 q(t) +K2
(
q(t)⊗ q(t)

)
+K3

(
q(t)⊗ q(t)⊗ q(t)

)
=BF (t) . (10.2)

Note that the nonlinear forces of any geometric nonlinear system exhibiting a linear St.
Venant-Kirchhoff material are a cubic function of the displacements, i.e. f(q) = O(q(3)).
Thus, in such case the Taylor series converges after the third term, so that the representation
(10.2) is exact and not an approximation. Further note that the matrices K1, K2 and K3
represent the 1-mode matricizations of the corresponding second-order K1∈Rn×n, third-order
K2∈Rn×n×n and fourth-order K3∈Rn×n×n×n tensors.

As already discussed in Section 4.1.1, the polynomial matrices K1, K2 and K3 can be
obtained from different strategies [178, 224]: (i) they can be calculated analytically within
the finite element assembly procedure, (ii) numerically via finite differences, or (iii) identified
via e.g. the Implicit Condensation and Expansion (ICE) method [120] or the Enforced Dis-
placement (ED) method [182, 210]. The tensors are symmetric, since they originate from the
elastic potential V=O(q(4)) as follows:

f(q)= ∂V
∂q , K1 = ∂f

∂q = ∂2V
∂q2 , K2 = 1

2
∂2f
∂q2 = 1

2
∂3V
∂q3 , K3 = 1

6
∂3f
∂q3 = 1

6
∂4V
∂q4 ,

fa = ∂V
∂qa

, K1ab
= ∂fa

∂qb
= ∂2V

∂qa∂qb
, K2abc

= 1
2

∂2fa

∂qb∂qc
= 1

2
∂3V

∂qa∂qb∂qc
, K3abcd

= 1
6

∂3fa

∂qb∂qc∂qd
= · · ·

for a, b, c, d = 1, . . . , n.

10.2 Variational equations

The Volterra series representation [221] allows to describe a nonlinear system by an infinite
series of cascaded, linear subsystems. The solution of the nonlinear system is then given by
the sum over all sub-solutions: q(t) = ∑∞

k=1 qk(t). To obtain the subsystem state equations,
the so-called variational equation approach [221] is employed (cf. Section 4.3.2). To this end,
it is assumed that the response of the system to an input of the form αF (t) can be written
as a sum of sub-responses:

q(t) = αq1(t) + α2q2(t) + . . . ,

q̈(t) = αq̈1(t) + α2q̈2(t) + . . . .
(10.3)

Inserting the assumed input and the assumed response into (10.2) yields (for D = 0)

M(αq̈1(t) + α2q̈2(t) + . . .) +K1(αq1(t) + α2q2(t) + . . .)

+K2
(
q(t)⊗ q(t)

)
+K3

(
q(t)⊗ q(t)⊗ q(t)

)
= B αF (t).

(10.4)
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Note that, with the calculation rules for Kronecker products, it holds:

q(t)⊗ q(t) =
(
αq1(t) + α2q2(t) + . . .)⊗ (αq1(t) + α2q2(t) + . . .

)
= α2q1(t)⊗ q1(t) + α3(q1(t)⊗ q2(t) + q2(t)⊗ q1(t)

)
+ . . . ,

q(t)⊗ q(t)⊗ q(t) = α3q1(t)⊗ q1(t)⊗ q1(t) + . . . .

(10.5)

Since the above differential equation must hold for all α, coefficients of like powers of α can
be equated. This yields the variational equations (subsystem state equations):

α : M q̈1(t) +K1 q1(t) = BF (t) , q1(0) = q0,

α2 : M q̈2(t) +K1 q2(t) = −K2
(
q1(t)⊗ q1(t)

)
, q2(0) = 0,

α3 : M q̈3(t) +K1 q3(t) q3(0) = 0,

= −K2
(
q1(t)⊗ q2(t) + q2(t)⊗ q1(t)

)
−K3

(
q1(t)⊗ q1(t)⊗ q1(t)

)
,

...

(10.6a)
(10.6b)
(10.6c)

Each k-th subsystem state equation is linear in qk(t), but depends nonlinearly on the solution
of the previous subsystems qk−1(t), etc. (cf. (10.6b) and (10.6c)).

10.3 Derivation of modes and modal derivatives

The variational equations are exploited in the following to derive the modes and the new
modal derivatives.

10.3.1 Modes (First subsystem)

The undamped (D= 0), homogeneous (F (t) = 0) subsystem (10.6a) is considered first. The
ansatz for the solution (with q̇1(0)=01) is given by a free oscillation with the scalings ci, the
eigenmodes φi and the eigenfrequencies ωi:

q1(t) =
n∑

i=1
ciφi cos(ωit). (10.7)

Inserting this ansatz (together with q̈1(t)) into (10.6a) and canceling the time-dependent term
ci cos(ωit), yields the quadratic eigenvalue problem(

K1 − ω2
iM

)
φi = 0, ∀i = 1, . . . , n. (10.8)

The scalings ci are determined by the initial condition of the first subsystem (q̇1(0)=0)

q1(0) =
n∑

i=1
ciφi ⇐⇒ Φ c = q1(0) ⇐⇒ c = Φ−1q1(0) (10.9)

using the fact that ΦTM=Φ−1 (due to ΦTMΦ=I) to solve the equation for c=[c1, · · · , cn]T.
1 Note that for general initial conditions q1(0), q̇1(0) the ansatz is given by q1(t)=

∑n

i=1 ci φi cos(ωit + αi),
or equivalently by q1(t)=

∑n

i=1 φi (Ai cos(ωit) + Bi sin(ωit)), where ci =
√

A2
i + B2

i , αi = arctan(− Bi
Ai

).
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10.3.2 Modal derivatives (Second subsystem)

The second subsystem (10.6b) is considered now. Note that the right-hand side is composed
of the quadratic coupling q1(t)⊗ q1(t). Employing the ansatz for the first subsystem (10.7),
we obtain (for n = 2 and the trigonometric product-to-sum identities2):

q1(t)⊗ q1(t) = (c1φ1 cos (ω1t) + c2φ2 cos (ω2t))⊗ (c1φ1 cos (ω1t) + c2φ2 cos (ω2t))
= c2

1(φ1 ⊗ φ1) cos2(ω1t) + c2
2(φ2 ⊗ φ2) cos2(ω2t)

+ c1c2 (φ1 ⊗ φ2 + φ2 ⊗ φ1) cos(ω1t) cos(ω2t)
= 1

2c2
1(φ1 ⊗ φ1) (cos(2ω1t) + 1) + 1

2c2
2(φ2 ⊗ φ2) (cos(2ω2t) + 1)

+ 1
2c1c2 (φ1 ⊗ φ2 + φ2 ⊗ φ1) (cos ((ω1 + ω2)t) + cos ((ω1 − ω2)t)) .

(10.10)

Looking at the form of the obtained right-hand side and using the method of undetermined co-
efficients, we choose the following ansatz for the (particular) solution of the second subsystem
(for n = 2):

q2(t) =
2∑

i=1

2∑
j=1

1
2cicj

(
θ̃ij cos ((ωi + ωj)t) + ˜̃θij cos ((ωi − ωj)t)

)
= 1

2c2
1
(
θ̃11 cos (2ω1t) + ˜̃θ11

)
+ 1

2c2
2
(
θ̃22 cos (2ω2t) + ˜̃θ22

)
+ 1

2c1c2
(
(θ̃12 + θ̃21) cos ((ω1 + ω2) t) +

(˜̃θ12 + ˜̃θ21
)

cos ((ω1 − ω2) t)
)

.

(10.11)

Inserting this ansatz (together with q̈2(t)) into (10.6b) and ordering the terms, leads to3:

0 = 1
2c2

1 cos (2ω1t)
((
−(2ω1)2M +K1

)
θ̃11 +K2 (φ1 ⊗ φ1)

)
︸ ︷︷ ︸

=0

(10.12a)

+ 1
2c2

1
(
K1
˜̃θ11 +K2 (φ1 ⊗ φ1)

)
︸ ︷︷ ︸

=0

(10.12b)

+ 1
2c2

2 cos (2ω2t)
((
−(2ω2)2M +K1

)
θ̃22 +K2 (φ2 ⊗ φ2)

)
︸ ︷︷ ︸

=0

(10.12c)

+ 1
2c2

2
(
K1

˜̃θ22 +K2 (φ2 ⊗ φ2)
)

︸ ︷︷ ︸
=0

(10.12d)

+ 1
2c1c2 cos ((ω1 + ω2) t)

((
−(ω1 + ω2)2M +K1

) (
θ̃12 + θ̃21

)
︸ (10.12e)

+K2 (φ1 ⊗ φ2 + φ2 ⊗ φ1)
)
︸

=0

+ 1
2c1c2 cos ((ω1 − ω2) t)

((
−(ω1 − ω2)2M +K1

) (˜̃θ12 + ˜̃θ21
)

︸ (10.12f)

+K2 (φ1 ⊗ φ2 + φ2 ⊗ φ1)
)
︸

=0

.

2cos x cos y = 1/2 (cos (x + y) + cos (x − y)) and therefore cos2 x = cos x cos x = 1/2 (cos(2x) + 1).
3Actually, there should be eight brackets for eight unknows, instead of six brackets for eight unknows. However,

multiplying (10.12e) and (10.12f) out, leads to the same LSE and thus yields θ̃12 = θ̃21 and ˜̃θ12 = ˜̃θ21.
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Since the previous equation must hold for all t, only the six brackets should be equal to zero.
As θ̃ij = θ̃ji and ˜̃θij = ˜̃θji holds (cf. Appendix B), it follows from all brackets:(

K1 − (ωi + ωj)2M
)
θ̃ij = −K2

(
φi ⊗ φj

)
, ∀i, j = 1, . . . , n , (10.13a)(

K1 − (ωi − ωj)2M
) ˜̃θij = −K2

(
φi ⊗ φj

)
, ∀i, j = 1, . . . , n . (10.13b)

Equivalent description for the right-hand side The right-hand side of equation (10.13) can
be equivalently represented by the right-hand side of (9.19). First, we rewrite the right-
hand side of (9.19) using the Einstein notation and the definitions K2abc

= 1
2 ∂2fa/∂qb ∂qc =

1
2 ∂K1ab

/∂qc and (φj)c = ∂qc/∂ηj(t):

∂K1ab

∂ηj(t) (φi)b = ∂K1ab

∂qc

∂qc

∂ηj(t) (φi)b := ∂2fa

∂qb ∂qc
(φj)c (φi)b = 2K2abc

(φj)c (φi)b. (10.14)

For symmetric K2, the identity K2 (φi ⊗ φj) = K2 (φj ⊗ φi) holds (cf. Eq. (2.16)). Thus:

∂K1(q)
∂ηj(t)

∣∣∣∣∣
qeq

φi := 2K2
(
φi ⊗ φj

)
= K2

(
φi ⊗ φj + φj ⊗ φi

)
. (10.15)

Using this relationship, (10.13) can be rewritten as:

(
K1 − (ωi + ωj)2M

)
θ̃ij = −1

2
∂K1(q)
∂ηj(t)

∣∣∣∣∣
qeq

φi, ∀i, j = 1, . . . , n,

(
K1 − (ωi − ωj)2M

) ˜̃θij = −1
2

∂K1(q)
∂ηj(t)

∣∣∣∣∣
qeq

φi, ∀i, j = 1, . . . , n.

(10.16a)

(10.16b)

The new modal derivatives θ̃ij and ˜̃θij describe the vibration shapes of the second subsystem
associated to the oscillations cos((ωi + ωj)t) and cos((ωi − ωj)t) (cf. q2(t) in (10.11)).

Comments on the gained new derivatives Interestingly, our novel derivation yields a calcu-
lation formula (10.16) which is almost identical to the conventional equation (9.15) or rather
(9.19), except for the fact that a sum/subtraction of eigenfrequencies results (the factor 1/2
on the right-hand side is only a definition issue).

The modal derivatives θ̃ij and ˜̃θij are equal, if the mass term is neglected, yielding
θ̃ij = ˜̃θij =θs,ij . More importantly: the derivatives ˜̃θii (where the eigenfrequencies cancel out)
correspond also to the SMDs θs,ij , without having to explicitly neglect the mass term.

The new modal derivatives θ̃ij and ˜̃θij are symmetric (θ̃ij = θ̃ji, ˜̃θij = ˜̃θji), even if the
mass term is not neglected. This seems more plausible than the non-symmetric MDs (9.15).

In the conventional definition (9.15) the matrix (K1 − ω2
iM) is always singular. By

contrast, the LSE (10.16) is regular as long as the sum ωi + ωj or subtraction |ωi − ωj | of
eigenfrequencies is not an eigenfrequency of the linearized system, yielding regular matri-
ces (K1 − (ωi + ωj)2M) or (K1 − (ωi − ωj)2M). In other words, the LSE (10.16) is only
singular, if the sum/subtraction of eigenfrequencies is again an eigenfrequency. This fact can
be related to the occurrence of internal resonances in nonlinear structural dynamics.
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10.4 Impact of the new modal derivatives

In this section we discuss three possible applications of the gained new derivatives for nonlinear
structural dynamics. Firstly, we give an analytical solution for the nonlinear system (9.1) via
the truncated Volterra series. This analytical (simulation-free) solution can be compared to
the solution obtained via simulation to assess the validity of the Volterra series representation.
Secondly, the new derivatives serve to define novel quadratic manifold approaches for model
order reduction. Thirdly, we show the connection and differences between the Volterra series
approach and the Harmonic Balance method using the novel derivatives.

10.4.1 Analytical solution via truncated Volterra series

Using the ansatz for the first (10.7) and second subsystem (10.11), we can give an analytical
solution in terms of the modes and new modal derivatives via the truncated Volterra series:

q1:2(t)=
n∑

i=1
ciφi cos(ωit)︸ ︷︷ ︸

q1(t)

+
n∑

i=1

n∑
j=1

1
2cicj

(
θ̃ij cos ((ωi + ωj)t) + ˜̃θij cos ((ωi − ωj)t)

)
︸ ︷︷ ︸

q2(t)

. (10.17)

This analytical approximated solution can be compared with the solution of the whole non-
linear system. The latter could be computed e.g. (i) using the Volterra model by taking a
higher (but finite) number of subsystems into account

n∑
i=1

ciφi cos(ωit) +
n∑

i=1

n∑
j=1

1
2cicj

(
θ̃ij cos ((ωi + ωj)t) + ˜̃θij cos ((ωi − ωj)t)

)
+ . . .

=
∞∑

k=1
qk(t) ≈

N∑
k=1

qk(t) =: q1:N (t), (10.18)

(ii) by superposing the nonlinear normal modes (NNMs) computed via Harmonic Balance/shoo-
ting and path continuation methods yielding qNNM(t), or (iii) via an expensive simulation of
the nonlinear system to obtain the true (numerical) solution qsim(t). Moreover, each nonlinear
mode (e.g. the first one, i.e. i, j = 1) of the first and second subsystem

q1
1:2(t) = c1φ1 cos(ω1t) + 1

2c2
1(θ̃11 cos(2ω1t) + ˜̃θ11) (10.19)

could be compared with the corresponding nonlinear normal mode (e.g. the first one NNM1)
of the whole nonlinear system.

Reformulated analytical solution

We now define some new modal derivatives

θij = 1
2(θ̃ij + ˜̃θij) and θ̂ij = 1

2(θ̃ij − ˜̃θij), (10.20)

to reformulate the solution q2(t) in (10.11) and (10.17) a little differently. The idea is to use
trigonometric identities to rewrite the terms cos ((ωi ± ωj)t) as products of cosines and sines.



10.4. Impact of the new modal derivatives 197

Using the trigonometric product-to-sum identities4, the solution of the second subsystem
can be rewritten as:

q2(t) =
n∑

i=1

n∑
j=1

1
2cicj

(
θ̃ij cos((ωi + ωj)t) + ˜̃θij cos((ωi − ωj)t)

)

=
n∑

i=1

n∑
j=1

1
4cicj

(
(θ̃ij + ˜̃θij)︸ ︷︷ ︸

2θij

(
cos((ωi + ωj)t) + cos((ωi − ωj)t)

)

− (θ̃ij − ˜̃θij)︸ ︷︷ ︸
2θ̂ij

(
− cos((ωi + ωj)t) + cos((ωi − ωj)t)

))

=
n∑

i=1

n∑
j=1

cicj

(
θij cos(ωit) cos(ωjt)− θ̂ij sin(ωit) sin(ωjt)

)
.

(10.21)

This yields the analytical truncated Volterra series solution

q1:2(t)=
n∑

i=1
ciφi cos(ωit)︸ ︷︷ ︸

q1(t)

+
n∑

i=1

n∑
j=1

cicj

(
θij cos(ωit) cos(ωjt)− θ̂ij sin(ωit) sin(ωjt)

)
︸ ︷︷ ︸

q2(t)

. (10.22)

This reformulated analytical solution, including products rather than sums of eigenfrequencies,
will show its applications in the following subsection 10.4.2.

Note that in our paper [73, Sec. 5.2] we have discussed the equivalence of the modal
derivatives θ̃ij and ˜̃θij . They are equal, if and only if the eigenfrequency ωi = 0 or ωj = 0,
meaning that the system has rigid-body motions. In such case, θij = θ̃ij = ˜̃θij and θ̂ij = 0
holds, and consequently the solution of the second subsystem q2(t) in (10.22) simplifies.

10.4.2 Novel quadratic manifold approaches for model reduction

Another possible application of the new modal derivatives could be to formulate novel quadratic
manifold projection approaches for model order reduction.

Novel quadratic manifold approach (1)

We propose a first novel quadratic manifold approach based on equation (10.22) for the case
that θij = θ̃ij = ˜̃θij , i.e. θ̂ij = 0. Using the ansatz qr,i(t) = ci cos(ωit), i = 1, . . . , r for the
reduced coordinates and employing the derivatives θij = 1

2(θ̃ij + ˜̃θij), it follows

q(t) ≈
r∑

i=1
φiqr,i(t) +

r∑
i=1

r∑
j=1
θij qr,i(t)qr,j(t) = Φr qr(t) + Θr2 (qr(t)⊗ qr(t)). (10.23)

Note that this approach looks similar to the previous ones (9.32) and (9.33). However, they
are not the same, since θsym

ij 6= θij = 1/2(θ̃ij + ˜̃θij) and θs,ij 6= θij = 1/2(θ̃ij + ˜̃θij).
4cos x cos y = 1/2(cos(x + y) + cos(x − y)) and sin x sin y = 1/2(− cos(x + y) + cos(x − y)).
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Novel quadratic manifold approach (2)

We propose a second novel quadratic manifold approach based on equation (10.22). We again
use the ansatz qr,i(t)=ci cos(ωit), i = 1, . . . , r for the reduced displacements, but now together
with the corresponding reduced velocities q̇r,i(t)=−ci ωi sin(ωit). This leads to

q(t) ≈
r∑

i=1
φi qr,i(t) +

r∑
i=1

r∑
j=1
θij qr,i(t)qr,j(t)− 1

ωiωj
θ̂ij q̇r,i(t)q̇r,j(t)

= Φr qr(t) + Θr2 (qr(t)⊗ qr(t))− Θ̂r2 (q̇r(t)⊗ q̇r(t)),
(10.24)

where the factor 1/ωiωj is included to exactly obtain the same solution as in (10.22). Inter-
estingly, this factor is often used for weighting and ranking the conventional MDs (cf. [224],
[73, Sec. 3.4.2]). The (until now) rather heuristic employment of this factor could be per-
haps explained more system-theoretically by the analytical solution (10.22) and the quadratic
manifold approach (10.24).

In contrast to the other approaches, note that the above ansatz also considers the quadratic
coupling of the velocities q̇r ⊗ q̇r. Thus, the ansatz is both displacement- and velocity-
dependent, i.e. q(t) ≈ ν

(
qr(t), q̇r(t)

)
. To the best of the author’s knowledge such a nonlinear

manifold has not been proposed in the model reduction community before. We believe that
this ansatz could be advantageous for advection-dominated phenomena possessing a quadratic
term in the velocities. Thus, it has potential for further research and application in the field.
However, the projection framework (and the time integration scheme) for such an ansatz
becomes even more difficult than for q(t) ≈ ν(qr(t)). This is illustrated in Appendix B.

10.4.3 Connection to the Harmonic Balance method

In the following, we will show the connection of the novel derivatives (derived from the vari-
ational equations and Volterra series ansatz) to the well-known Harmonic Balance method.

Harmonic Balance method

The Harmonic Balance (HB) is an approximation method to compute periodic steady-state
solutions of a nonlinear ODE system. It is usually employed to compute the NNMs ap-
proximately or to calculate the nonlinear frequency response function (NLFRF) for several
excitation frequencies and amplitudes. Recently, the conventional MDs have been applied to
compute the NNMs and the NLFRF efficiently, i.e. in a reduced subspace [281, 250, 251].

The key idea of the HB method is to use a truncated Fourier series ansatz and then
determine the Fourier coefficients by solving a nonlinear system of algebraic equations. In
this regard the HB method is conceptually different from numerical time integration, since it
avoids the expensive transient simulation but rather allows to compute steady-state responses.

The (infinite) Fourier series ansatz for the displacement, velocity and acceleration is [142]

q(t) = Re
{ ∞∑

k=0
Qkeikωt

}
, q̇(t) = Re

{ ∞∑
k=0

ikωQk eikωt

}
, q̈(t) = Re

{ ∞∑
k=0
−(kω)2Qk eikωt

}
,
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where Qk are the sought Fourier coefficients. Inserting the (truncated) ansatz into the equa-
tions of motion (9.1a) and canceling the time-dependent part yields the residual [142]

Rk =
(
−(kω)2M + ikωD

)
Qk + F k − F ext,k, k = 0, . . . , H (10.25)

where F k and F ext,k represent the Fourier coefficients of the series expansion for f(q) and
f ext, respectively. Due to the nonlinear coupling of the Fourier coefficients Qk in the internal
force vector F k(Q0,Q1, . . . ,QH), the residual equationsRk cannot be treated individually for
each k. Instead, they have to be solved simultaneously, yielding a n(H + 1) set of equations:

R0(Q0,Q1, . . . ,QH) = 0
R1(Q0,Q1, . . . ,QH) = 0

...
RH(Q0,Q1, . . . ,QH) = 0.

(10.26)

The dimensions of the residuals and Fourier coefficients is R0, Q0 ∈ Rn and Rk, Qk ∈ Cn

with k = 1, . . . , H. Next, we briefly discuss how the coefficients F ext,k and F k are calculated
to set up the residual (10.25). Then, we mention how the set of equations (10.26) are solved
via continuation. Note that a preliminary implementation of the HB method has been carried
out within AMfe in Python during the semester thesis [Bil19].

External forces For the external forces f ext a Fourier series expansion is also assumed:

f ext = Re
{ ∞∑

k=0
F ext,k eikωt

}
. (10.27)

The Fourier coefficients are calculated in the following way. First, a fast Fourier transform
(fft in Python) is applied to the discrete time-series {f ext(tn)}N−1

n=0 , yielding

F ext,k = FFT
[
{f ext(tn)}

]
=

N−1∑
n=0

f ext,n e−i2π kn
N , k = 0, . . . , N − 1. (10.28)

Afterwards, the first H +1 vectors {F ext,k}Hk=0 are selected and normalized with the number
of samples N

F ext,k = 1
N
{F ext,k}Hk=0 , k = 0, . . . , H (10.29)

to obtain the truncated Fourier series coefficients F ext,k required for (10.25).

Internal forces and AFT scheme The computation of the Fourier coefficients of the internal
forces F k is not trivial. In [142] several methods are discussed, whereby the Alternating
Frequency-Time (AFT) scheme is the most general one. The idea is to alternate between the
frequency- and time-domain to calculate the coefficients as: [141]

F k = FFT
[
f

(
iFFT[{Qk}], iFFT[{ikωQk}]

)]
, (10.30)
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where FFT and iFFT represent the forward and inverse fast Fourier transform, respectively.
The procedure is as follows. First, the Fourier coefficients Qk are transformed in the time-
domain to get the displacement vector

qn = q(tn) = iFFT
[
{Qk}

]
= 1

N

N−1∑
k=0

Qkei2π kn
N , n = 0, . . . , N − 1. (10.31)

The same can be done for the velocity, if the internal force vector is also dependent on it:
q̇n = iFFT[{ikωQk}]. Then, the displacement (and velocity) time-series is inserted into the
nonlinear function, in order to obtain the time samples fn = f(qn, q̇n, tn). Finally, this
time-series is transformed in the frequency-domain with the FFT:

F k = FFT
[
{f(qn, q̇n, tn)}

]
=

N−1∑
n=0

fn e−i2π kn
N , k = 0, . . . , N − 1. (10.32)

Afterwards, the first H + 1 vectors {F k}Hk=0 are selected and normalized

F k = 1
N
{F k}Hk=0, k = 0, . . . , H (10.33)

to obtain the truncated Fourier series coefficients F k required for (10.25).

Continuation Once the residual equations (10.26) have been set up, the remaining question
is how to solve them. Usually, the HB method is used to compute e.g. the nonlinear frequency
response function (NLFRF). Thus, the free parameter ω is not sampled equidistantly a-priori,
but included in the vector of unknowns X =

[
QT, ω

]T
. The residual is also augmented with

an additional equation p(X)=0 (e.g. the arc-length parametrization [241]), yielding [142]

Raug(X) = 0, with Raug(X) =
[
RT(X), p(X)

]T
, X =

[
QT

0 , · · · ,QT
H , ω

]T
, (10.34)

where Raug(X) ∈ Cn(H+1)+1, X ∈ Cn(H+1)+1. To generate a sequence of solution points
X` in the parameter range ωs ≤ ω` ≤ ωe the above problem is solved via path continuation
using a predictor-corrector method. In the correction step, the nonlinear system of algebraic
equations (10.34) is solved by the Newton-Raphson method, wherefore the analytical Jacobian
J= ∂Raug

∂X is required. The reader is referred to [Bil19] for valuable details on the computation
of the Jacobian.

Difference between the Volterra and the Harmonic Balance approach

In the Harmonic Balance method, the Fourier ansatz is substituted directly in the nonlinear
system (9.1) to gain nonlinear algebraic equations that are solved simultaneously. In the
Volterra approach, however, we employ the subsystem state equations (10.6) from the varia-
tional approach to derive linear algebraic equations that are solved sequentially. The Volterra
approach shares several similarities with the multiple-scale analysis and perturbation methods
described in [187]. On the other hand, the Harmonic Balance is a technique for approximating
e.g. the NNMs (which span an invariant manifold). Comparisons between the Volterra and
the Harmonic Balance approach can be found in [201, 63].
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Motivated from the Harmonic Balance method, in the following we will insert the analyt-
ical ansatz (10.17) that we obtained from the Volterra approach (recall Eq. (10.10)) into the
polynomial nonlinear system (10.2). For simplicity we consider only one mode (i, j =1), but
we also include the cosine term cos(3ωt) from the third subsystem solution q3(t):

q(t) = cφ cos(ωt)︸ ︷︷ ︸
α

+ c2θ̃ cos(2ωt)︸ ︷︷ ︸
β

+ c2 ˜̃θ cos(0ωt)︸ ︷︷ ︸
γ

+ c3φ(3) cos(3ωt)︸ ︷︷ ︸
δ

,

q̈(t) = −cω2φ cos(ωt)− 4c2ω2θ̃ cos(2ωt)− 9c3ω2φ(3) cos(3ωt) .

(10.35)

The above Volterra ansatz shares similarities with a truncated (H =3) Fourier series ansatz,
where ˜̃θ =̂Q0, φ =̂Q1, θ̃ =̂Q2 and φ(3) =̂Q3. Note, however, that the equation (10.35) is
parametrized in the amplitude/scaling c of the linear mode φ.

In order to insert the ansatz (10.35) into the polynomial system (10.2) we need to deter-
mine multiple components. For instance:

K2
(
q ⊗ q

)
= K2

(
α(2) + β(2) + γ(2) + δ(2) + 2α⊗ β + 2α⊗ γ + . . . + 2γ ⊗ δ

)
, (10.36a)

K3
(
q ⊗ q ⊗ q

)
= K3

(
α(3) + . . . + 3α(2) ⊗ β + 3β(2) ⊗ α + . . . + 4α⊗ β ⊗ γ + . . .

)
, (10.36b)

where the individual terms are given in Appendix B. Collecting the terms for the first four
cosine factors that are included in the ansatz yields:

• c cos(ωt) :
(
K1 − ω2M

)
φ+K2

(
c2φ⊗ θ̃ + c2φ⊗ ˜̃θ + c4θ̃ ⊗ φ(3)

)
+

K3

(
3
4 c2φ⊗ φ⊗ φ+ 3

4 c4φ⊗ φ⊗ φ(3) + 3
4 c6θ̃ ⊗ θ̃ ⊗ φ(3) + 3

2 c4φ⊗ θ̃ ⊗ θ̃

+ 3c4φ⊗ ˜̃θ ⊗ ˜̃θ + 3
2 c6φ⊗ φ(3) ⊗ φ(3) + 2c4φ⊗ θ̃ ⊗ ˜̃θ + 2c6θ̃ ⊗ ˜̃θ ⊗ φ(3)

)
• c2 cos(0ωt) : K1

˜̃θ +K2

(
1
2φ⊗ φ+ 1

2 c2θ̃ ⊗ θ̃ + c2˜̃θ ⊗ ˜̃θ + 1
2 c4φ(3) ⊗ φ(3)

)
+

K3

(
c4˜̃θ ⊗ ˜̃θ ⊗ ˜̃θ + 3

4 c2φ⊗ φ⊗ θ̃ + 3
2 c2φ⊗ φ⊗ ˜̃θ + 3

2 c4θ̃ ⊗ θ̃ ⊗ ˜̃θ
+ 3

2 c3φ⊗ ˜̃θ ⊗ ˜̃θ + 3
2 c4θ̃ ⊗ ˜̃θ ⊗ ˜̃θ + 3

2 c5˜̃θ ⊗ ˜̃θ ⊗ φ(3) + 3
2 c6˜̃θ ⊗ φ(3) ⊗ φ(3) + c4φ⊗ θ̃ ⊗ φ(3)

)
• c2 cos(2ωt) :

(
K1 − 4ω2M

)
θ̃ +K2

(
1
2φ⊗ φ+ c2φ⊗ φ(3) + 2c2θ̃ ⊗ ˜̃θ)

K3

(
3
4 c4θ̃ ⊗ θ̃ ⊗ θ̃ + 3

2 c2φ⊗ φ⊗ θ̃ + 3
2 c2φ⊗ φ⊗ ˜̃θ + 3

2 c4θ̃ ⊗ ˜̃θ ⊗ ˜̃θ
+ 3

2 c6θ̃ ⊗ φ(3) ⊗ φ(3) + c4φ⊗ θ̃ ⊗ φ(3) + 2c4φ⊗ ˜̃θ ⊗ φ(3)
)

• c3 cos(3ωt) :
(
K1 − 9ω2M

)
φ(3) +K2

(
φ⊗ θ̃ + 2φ⊗ ˜̃θ)

+K3

(
1
4φ⊗ φ⊗ φ+ 3

4 c6φ(3) ⊗ φ(3) ⊗ φ(3) + 3
2 c2φ⊗ φ⊗ φ(3) + 3

4 c2φ⊗ θ̃ ⊗ θ̃

+ 3
2 c4θ̃ ⊗ θ̃ ⊗ φ(3) + 3

2 c4˜̃θ ⊗ ˜̃θ ⊗ φ(3) + 2c2φ⊗ θ̃ ⊗ ˜̃θ). (10.37)

These are 4n nonlinear equations for the unknown vectors φ, θ̃, ˜̃θ,φ(3) ∈ Rn and the fre-
quency ω. The equations are dependent on the scaling c of mode φ. In order to obtain a well-
determined nonlinear system of equations, we may use e.g. the constraint equation φᵀMφ = 1
or another parametrization to obtain 4n + 1 equations. The influence of high powers of the
scaling c decreases for small amplitudes c→ 0.
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Considering only the terms until the power c1 yields the well-known equation for the
linear mode φ:(

K1 − ω2M
)
φ = 0 . (10.38)

Considering the terms until the power c2 yields the linear mode φ and the novel modal
derivatives θ̃ and ˜̃θ (the factor 1/2 is only a definition issue due to the ansatz (10.35)):(

K1 − ω2M
)
φ = 0

K1
˜̃θ = −1

2K2 (φ⊗ φ)(
K1 − 4ω2M

)
θ̃ = −1

2K2 (φ⊗ φ) .

(10.39)

Considering the terms until the power c3 we see that the frequency ω and the “linear” mode φ
become dependent on the scaling c:(

K1 − ω2M
)
φ = −c2

(
K2
(
φ⊗ θ̃ + φ⊗ ˜̃θ)+ 1

4K3 (φ⊗ φ⊗ φ)
)

K1
˜̃θ = −1

2K2 (φ⊗ φ)(
K1 − 4ω2M

)
θ̃ = −1

2K2 (φ⊗ φ)(
K1 − 9ω2M

)
φ(3) = −K2

(
φ⊗ θ̃ + 2φ⊗ ˜̃θ)− 1

4K3 (φ⊗ φ⊗ φ) .

(10.40)

This means: linear modes after Eq. (10.38) are sufficient to describe the behavior for small
amplitudes (until c1). Modal derivatives after Eq. (10.39) are important to capture the dy-
namic behavior for bigger amplitudes (until c2). If powers c3 are also considered, then the
equations (10.40) become nonlinear and the frequency ω is no longer independent from the
amplitude. Thus, this system needs to be solved simultaneously in contrast to the equa-
tions (10.39) that can be solved one after the other.

To summarize: the obtained equations (10.40) represent a closed-form approximate solu-
tion to the HB equations (10.26) for the case when the Volterra/Fourier series is truncated
(H =3) and the nonlinearities have a polynomial form. This analytical analysis yields insight-
ful results on the qualitative dependency of the scaling c and on the connection of the novel
modal derivatives to the HB method. In practice one could gradually increase the complexity
and e.g. proceed as follows:

1. Compute the (first) eigenfrequency ω, the mode φ and the modal derivatives θ̃, ˜̃θ as
solution to the linear systems of equations (10.39).

2. Compute ω, φ, θ̃, ˜̃θ and φ(3) for different amplitudes c > 0 as solution to the nonlinear
system of equations (10.40). As initial guess for small amplitudes c � 1 one could
employ the solution from (10.39). The tensors K2 and K3 can be computed via finite
differences of the tangential stiffness matrix K1 or the internal forces f(q).

3. Solve the HB equations (10.34) for a truncation index H =3 or higher.
4. Compute the NNMs via shooting (i.e. forward time integration). The NNMs are the

(numerically) exact homogeneous solutions of the nonlinear system (9.1).
5. Compare 1 ⇔ 2 ⇔ 3 ⇔ 4 to obtain evidence about the validity region of the different

approximations 1, 2, 3 to the NNMs.
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10.5 Numerical examination

The numerical examination of the novel modal derivatives was accomplished during the thesis
[Bil19]. In this section we will only show an excerpt of the obtained results. The examination
was mainly conducted on a cantilever and clamped-clamped beam model. Both beams have
length L = 2 m, height h = 5 cm and are modeled using a St. Venant-Kirchhoff material with
Youngs modulus E = 70 GPa, Poissons ratio ν = 0.3 and density ρ = 2700 kg

m3 . The cantilever
beam has n = 1624 dofs, whereas the clamped-clamped beam has n = 1614. The interested
reader is referred to [Bil19] for more details and further numerical results.

First of all, the computation of the symmetric tensor K2 ∈ Rn×n2 was implemented in
AMfe. Since an analytical formulation of K2 = 1

2
∂2f(q)

∂q2 within the assembly procedure is
lengthy, we decided to accomplish the calculation via central finite differences. We applied
the latter scheme to both the internal forces f(q) and the tangential stiffness matrix K1 to
compare the efficiency and the results of both strategies. Due to symmetry we do not require
n2 or n loop evaluations, but instead calculated only the non-redundant entries. Once the
obtained K2 was validated w.r.t. symmetry for an appropriate step width h, we verified
numerically via the mentioned examples that the equivalent description (10.15) holds.

For the computation of the conventional modal derivatives (9.15), the Nelson’s method
together with the derivative of the tangential stiffness matrix ∂Keq/∂ηj(t) were already avail-
able in AMfe. We further implemented the calculation via finite difference schemes applied
to the modes, i.e. θij = ∂φi(qeq)

∂ηj(t) , and the direct method (9.18). After several comparisons, we
decided to proceed with the direct method due to its numerical robustness.

The computation of the novel modal derivatives (10.13) was implemented similarly to the
already available static MDs (9.19). Only the coefficient matrix had to be adapted to account
for the sum/subtraction of eigenfrequencies. Despite the symmetry, we computed θ̃ij , ˜̃θij for
all i, j = 1, . . . , r to verify the expected results. The computation of θij and θ̂ij was easily
accomplished according to (10.20).

Before using the different modal derivatives for reduction purposes, we first examined their
(dis)similarity using the concept of subspace angles and modal assurance criterion (MAC).
The MAC is a measure for the similarity (or linear dependence) between the vectors of two
subspaces χ=[χ1, . . . ,χk] ∈ Rn×k and Ψ=[ψ1, . . . ,ψm] ∈ Rn×m:

MAC(χa,ψb) = (χT
aψb)2

χT
aχa ψ

T
b ψb

∈ [0, 1], ∀a = 1, . . . , k, ∀b = 1, . . . , m. (10.41)

In our case we computed e.g. MAC(θij , θ̃ij) for i, j = 1, . . . , r, so that the MAC matrix is
of dimension Rr2×r2 . We calculated both the Auto-MAC and the Cross-MAC for all possible
combinations of the modal derivatives to gain insight about their correlation. In Figures 10.1
and 10.2 the results for the cantilever beam model with r = 6 are depicted. Please note the
ordering according to (9.22). In general it can be observed that the derivatives corresponding
to the block 30 − 35, i.e. θ56, . . . ,θ65, are less correlated to the others. Remarkable is also
that every sixth row and column has values close to zero. However, in the Auto-MAC for the
static MDs one can notice the linear dependency of θs,56, . . . ,θs,65 to θs,16, θs,26, θs,36, etc.
through the blue stripes. This is due to the fact that φ6 is a transverse mode, so that the
corresponding SMDs represent in-plane motions sharing similarity to other in-plane modes.
Finally, the symmetry of the novel derivatives can be recognized via the off-diagonal entries.
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Figure 10.1: Auto-MAC of the original/static/tilde/double tilde MDs for a cantilever beam
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Figure 10.2: Cross-MAC of the original/static/tilde/double tilde MDs for a cantilever beam
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In order to qualitatively visualize the shape of the novel modal derivatives, we computed
them also for a 3D plate (leaned on [224]). Figures 10.4, 10.5, 10.6 and 10.7 show an excerpt
of the calculated original, static, tilde and double tilde MDs respectively. The complete
examination (for r = 6) can be found in [Bil19]. We can see that the first three vibration
modes are transverse: φ1 is the first bending mode, φ2 is the first torsion mode and φ3 is
the second bending mode. Thus, the corresponding (S)MDs represent longitudinal/in-plane
motions. On the contrary, the fourth mode φ4 is in-plane leading to transverse (S)MDs.

In addition to the MAC plots and the qualitative visualization, we also evaluated the
derivatives with respect to their information content. To this end, we performed a singular
value decomposition of the bases Θr2 , Θs,r2 , Θ̃r2 and ˜̃Θr2 . The idea is to observe how the
symmetry of the static and novel modal derivatives affects the choice of the deflated reduced
order. The results for the cantilever example with r=6 are given in Figure 10.3. In case of the
original MDs almost all r2 vectors are required to undershoot the selected tolerance. This is
a consequence of the dissimilarity between the MDs, especially θij 6=θji. On the other hand,
we can see that in cases 10.3b, 10.3c and 10.3d only 21 derivatives are required to undershoot
the tolerance. This is in accordance with the number o=r(r + 1)/2 of distinct derivatives due
to the symmetry property. Thus, we conclude that the static and new derivatives demand
a smaller reduced order to achieve a certain quality threshold. In other words, in a fair
comparison using the same reduced order for all subspaces the static and novel MDs are
expected to (slightly) beat the original (symmetrized) MDs.
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(a) Singular values of the original MDs
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(b) Singular values of the static MDs
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(c) Singular values of the tilde MDs
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(d) Singular values of the double tilde MDs

Figure 10.3: Singular values of the original/static/tilde/double tilde MDs for a cantilever beam
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Original MDs

φ1 φ2 φ3 φ4 · · ·

φ1 θ11 θ12 θ13 θ14

φ2 θ21 θ22 θ23 θ24

φ3 θ31 θ32 θ33 θ34

Figure 10.4: Original MDs for a plate (scalefactor VM=20, original MDs=20)

Static MDs

φ1 φ2 φ3 φ4 · · ·

φ1 θs,11 θs,12 θs,13 θs,14

φ2 θs,22 θs,23 θs,24

φ3 θs,33 θs,34

symm.

Figure 10.5: Static MDs for a plate (scalefactor VM=20, static MDs=100)
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Tilde MDs
φ1 φ2 φ3 φ4 · · ·

φ1 θ̃11 θ̃12 θ̃13 θ̃14

φ2 θ̃22 θ̃23 θ̃24

φ3 θ̃33 θ̃34

symm.

Figure 10.6: Tilde MDs for a plate (scalefactor VM=20, tilde MDs=100)

Double tilde MDs
φ1 φ2 φ3 φ4 · · ·

φ1
˜̃θ11

˜̃θ12
˜̃θ13

˜̃θ14

φ2
˜̃θ22

˜̃θ23
˜̃θ24

φ3
˜̃θ33

˜̃θ34

symm.

Figure 10.7: Double tilde MDs for a plate (scalefactor VM=20, double tilde MDs=100)
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After the bases comparisons, we employed the MDs for reduction in both a basis augmen-
tation (9.35) and quadratic manifold (9.37) setting. The results for the basis augmentation
approach applied to the cantilever and clamped-clamped beam can be found in [Bil19]. In
general it can be concluded that all derivatives perform similarly, whereby the static and novel
MDs beat the original ones for equal reduced order. In the QM setting we experienced con-
vergence problems during the ROM-simulations for the cantilever beam, as already observed
by [223]. This is due to the fact that the behavior of the cantilever beam (showing large
rotations) does not fit into a quadratic manifold. Thus, we only present here the results for
the clamped-clamped beam. As Figures 10.8 and 10.9 show, the quadratic enslavement of
the QM ansatz is perfectly suited to capture the dynamic behavior of the middle node of the
beam (force F (t)=5 · 105( sin(72 · 2πt) + sin(100 · 2πt)

)
applied at the whole top boundary).

All MDs show similar performance (r = 6). Note however that the original MDs need to be
symmetrized, whereas the static and novel ones are inherently symmetric.
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0 0.05 0.1 0.15 0.2

−8
−7
−6
−5
−4
−3
−2
−1

0
·10−4

time (s)

x
-d

isp
la

ce
m

en
t

(m
)

0 0.05 0.1 0.15 0.2

−0.1

−0.05

0

0.05

0.1

time (s)

y
-d

isp
la

ce
m

en
t

(m
)

Figure 10.8: Displacements at the middle node of clamped-clamped beam in QM simulation

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
10−8

10−7

10−6

10−5

10−4

10−3

10−2

time (s)

po
in

t-
w

ise
re

l.
er

ro
r

[-]

QM-Symm-MD QM-Static QM-Tilde QM-DoubleTilde

Figure 10.9: Relative error ‖y(t)−ym
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‖y(t)‖2
of the clamped-clamped beam in QM simulation
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10.6 Conclusions

This chapter presents a novel derivation for modal derivatives using the Volterra series rep-
resentation of the polynomialized second-order system. In comparison to the original deriva-
tion, we believe that our approach is system-theoretically more meaningful and insightful.
For instance, our novel derivation yields two regular LSEs that become singular only if the
sum/subtraction of eigenfrequencies is again an eigenfrequency. This allows to retrieve the
SMDs when eigenfrequencies cancel out and to explain the occurrence of internal resonances.
Moreover, the novel MDs are inherently symmetric in contrast to the original ones.

The novel derivatives show promising applications for both nonlinear system analysis and
model reduction. For the former purpose, the gained analytical solution (10.17) can be com-
pared with the NNMs – approximated via the Harmonic Balance method or calculated via
shooting. This way one can assess the quality and validity region of the different approxi-
mations. Moreover, the solution to the linear algebraic equations (10.39) can be compared
with the solution to the nonlinear system of equations (10.40) (obtained by substituting the
Volterra ansatz into the polynomial system) or to the HB residual equations (10.34).

In the context of model reduction, the new derivatives serve to formulate two novel
quadratic manifold approaches. In the first one (10.23) the derivatives Θr2 should be em-
ployed, whereas the second one (10.24) depends quadratically on the reduced displacements
and velocities. Both QM approaches need to be further examined in the future. Especially
the second one could prove useful for advection-dominated phenomena.

The preliminary reduction results have shown that the novel derivatives perform slightly
better than the original ones, and comparably well in comparison to the SMDs. The evaluation
of the ROMs was accomplished in time-domain via simulation runs for certain inputs. Due
to the sake of time we could not validate the ROMs in frequency-domain via the NLFRF or
the NNMs. However, we could almost finish the implementation of the HB method in AMfe.
In the future, the conceptual ideas and comparisons proposed here could be pursued to gain
further insight about nonlinear system dynamics.





Chapter 11

Second-Order Nonlinear Moment Matching

In the previous chapters we have focused on the concept of modes and modal derivatives for
the reduction of nonlinear mechanical systems. It was also mentioned that Krylov vectors
and their corresponding perturbation derivatives can be applied as well.

In this chapter we follow a different path. We exploit the concept of moment matching
for linear second-order systems and then transfer it to the nonlinear case using the center
manifold theory and the ideas from Astolfi [14].

After a brief review about the frequency-domain, we will present the steady-state/time-
domain interpretation of moment matching for linear second-order systems. We then transfer
this reduction method to the nonlinear second-order case, hereby providing the correspond-
ing signal generator and the second-order nonlinear Sylvester-like PDE. Afterwards, similar
simplifications as for state-space systems (cf. Section 7.2) are proposed to achieve a simulation-
free second-order nonlinear moment matching algorithm.

This chapter represents an edited version of the publication [75]. Certain sections are
only explained briefly, since a similar discussion has already been presented for state-space
systems in Section 7.3. In turn, we put more emphasis on the steady-state notion of moments
and explain the numerical examples in more detail.

11.1 Moment matching for linear mechanical systems

We first consider a linear second-order system of the form (see (9.10) with qeq =0, F eq =0)

M q̈(t) +D q̇(t) +K q(t) = BF (t), q(0) = q0, q̇(0) = q̇0, (11.1a)
y(t) = C q(t), (11.1b)

with the non-singular symmetric positive definite mass matrix M ∈ Rn×n, symmetric positive
definite stiffness matrix K ∈ Rn×n and similar system properties discussed in Section 9.1.

With the state vector x(t)=
[
q(t)T, q̇(t)T

]T
the corresponding implicit first-order (state-

space) realization is given by

E ẋ(t) = Ax(t) + Bu(t), y(t) = C x(t), (11.2)

where

E =
[

I 0
0 M

]
, A =

[
0 I
−K −D

]
, B =

[
0
B

]
, C = [C 0] . (11.3)
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This equivalent state-space representation helps us to analyze the dynamic behavior of the
second-order system via the input-output equations (3.2) and (3.6), as well as to define similar
system-theoretic concepts. For example, the transfer function can be derived by applying the
Laplace transform to (11.1) or by using the state-space representation (11.2):

G(s) = C(sE −A)−1B = C(s2M + sD +K)−1B. (11.4)

Note, however, that the state-space representation is only employed for theoretical consider-
ations. The reduction is accomplished directly on the second-order level.

11.1.1 Notion of moments and Krylov subspaces

Besides modal truncation, the concept of moment matching by rational Krylov subspaces is
also very common to reduce linear second-order systems (cf. [46, 30, 236]).

Definition 11.1. The moments m`(σ) of G(s) at the complex expansion point σ ∈ C are
equivalent to the moments of G(s + σ)=C(s2M + sDσ +Kσ)−1B at σ =0. Thus, it follows

m`(σ) = (−1)` C
(
(σE −A)−1E

)`
(σE −A)−1B

∣∣∣∣
σ=0

= (−1)` [C 0]
[
K−1

σ Dσ K−1
σ M

−I 0

]` [
K−1

σ B
0

]
,

(11.5)

where Kσ = K + σD + σ2M and Dσ = D + 2σM . For example, m0(σ) = CK−1
σ B ,

m1(σ) = −CK−1
σ DσK

−1
σ B, m2(σ) = CK−1

σ DσK
−1
σ DσK

−1
σ B −CK−1

σ MK−1
σ B. N

Depending on the considered damping, two different Krylov subspaces for second-order sys-
tems can be distinguished to achieve implicit moment matching:
• For general damping (D 6= 0) second-order Krylov subspaces

K2nd
q

(
K−1

σ Dσ,K−1
σ M ,K−1

σ B
)
⊇ ran(V ), (11.6a)

K2nd
q

(
K−T

µ DT
µ ,K−T

µ MT,K−T
µ CT

)
⊇ ran(W ), (11.6b)

are employed. These Krylov subspaces yield a two-stage Arnoldi-like recurrence, aka.
second-order Arnoldi (SOAR). Further details on this case are available in [46, 236].

• For proportional (D=αM+βK) or zero (D=0) damping, the classical first-order Krylov
subspaces

K1st
q

(
K−1

σ M ,K−1
σ B

)
⊇ ran(V ), (11.7a)

K1st
q

(
K−T

µ MT,K−T
µ CT

)
⊇ ran(W ), (11.7b)

can be employed instead, yielding – exemplarily for V = [V 0, . . . ,V q−1] – the one-stage
Arnoldi-like recurrence

(K + σD + σ2M)V 0 =B, (K + σD + σ2M)V ` =M V `−1, `=1, . . . , q − 1. (11.8)

More details are available in [30, 236]. We will focus on this case in the following.
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Besides the multimoment case and block Krylov subspaces, we may also consider the multi-
point setting and tangential Krylov subspaces. In case of different shifts {σi}ri=1 and {µi}ri=1
with single multiplicities q1 = . . . = qr = 1, the subspaces (11.7) become

span
{
K−1

σ1 B r1, . . . ,K−1
σr
B rr

}
⊇ ran(V ), (11.9a)

span
{
K−T

µ1 C
Tl1, . . . ,K−T

µr
CTlr

}
⊇ ran(W ), (11.9b)

yielding the following tangential multipoint moment matching conditions:

G(σi) ri = Gr(σi) ri, ⇔ CK−1
σi
B ri = CrK

−1
r,σi
Br ri, i = 1, . . . , r, (11.10a)

lTi G(µi) = lTi Gr(µi), ⇔ lTi CK
−1
µi
B = lTi CrK

−1
r,µi
Br, i = 1, . . . , r. (11.10b)

Note that (in a two-sided reduction) the reduced matrices are {M r,Dr,Kr}=W T {M ,D,K}V ,
Br =W TB, Cr =C V . Convenient right and left tangential directions ri ∈Cm and li ∈ Cp

should be chosen in the tangential case. Besides, the shifts σi, µi ∈ C cannot be quadratic
eigenvalues of the triple (M ,D,K), i.e. σi, µi /∈ λ2(M ,D,K).

11.1.2 Equivalence of Krylov subspaces and Sylvester equations

Similar to the state-space case, the bases of the input and output Krylov subspaces (11.9) can
be interpreted as the solution V and W of the following second-order Sylvester equations:

M V S2
v +DV Sv +KV = BR , (11.11a)

MTW S2 T
w +DTW ST

w +KTW = CTL. (11.11b)

The input interpolation data {σi, ri} is specified by the matrices Sv =diag(σ1, . . . , σr) ∈ Cr×r

and R = [r1, . . . , rr] ∈ Cm×r, where the pair (R,Sv) is observable. Similarly, the out-
put interpolation data {µi, li} is encoded in the matrices Sw = diag(µ1, . . . , µr) ∈ Cr×r and
L = [l1, . . . , lr] ∈ Cp×r, where the pair (Sw,LT) is controllable.

11.1.3 Time-domain interpretation of linear moment matching

In addition to the frequency-domain perception of moment matching (cf. (11.10)), one can
also interpret this concept in the time-domain. Similar to state-space systems (cf. Section 3.6),
we will first introduce a signal generator and then interpret the moments as the steady-state
response of the system (11.1) interconnected with this signal generator.

Notion of second-order linear signal generator

Consider the linear signal generator

q̇v
r (t) = Sv q

v
r (t), qv

r (0) = qv
r,0 6= 0, (11.12a)

q̈v
r (t) = Sv q̇

v
r (t), q̇v

r (0) = q̇v
r,0 6= 0, (11.12b)

F (t) = Rqv
r (t), (11.12c)

where it is assumed that the pair (R,Sv) is observable, (Sv, qv
r,0) is excitable and λ(Sv) ∩

λ2(M ,D,K)=∅.
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Steady-state response of interconnected system

The response of the interconnected system (11.1)+(11.12) can be given over the state-space
representation (11.2) similarly to (3.82), i.e. q(t)=qt(t) +qss(t). This yields the next lemma.

Lemma 11.1 (Steady-state notion of linear input moments). The 0-th tangential moments
m0(σi, ri) at {σi, ri} are related to the (well-defined) steady-state response

yss(t) =
r∑

i=1
C (σ2

iM + σiD +K)−1B ri︸ ︷︷ ︸
vi

eσitqv
r,0,i︸ ︷︷ ︸

qv
r,i(t)

=
r∑

i=1
m0(σi, ri) eσitqv

r,0,i = CV qv
r (t), m0(σi, ri)=C vi,

(11.13)

of the interconnected system (11.1)+(11.12), where V is the unique solution of the Sylvester
equation (11.11a) or vi = (σ2

iM + σiD +K)−1B ri is coming from an Arnoldi process.

Moment matching by interconnection

Theorem 11.1 (Steady-state-based linear moment matching). Consider the interconnection
of system (11.1) with the linear signal generator (11.12), where the triple (Sv, R, qv

r,0) is such
that (R,Sv) is observable, (Sv, qv

r,0) is excitable and λ(Sv) ∩ λ2(M ,D,K) = ∅. Let V be
the solution of (11.11a) and W such that det(W TV ) 6= 0 (e.g. W = V ). Furthermore,
let q0 = V qv

r,0, q̇0 = V q̇v
r,0 with qv

r,0 6= 0, q̇v
r,0 6= 0 arbitrary. Then, the (asymptotically

stable) second-order ROM (M r,Dr,Kr,Br,Cr) exactly matches the (well-defined) steady-
state response of the output of the FOM, i.e. e(t)=y(t)− yr(t)=Cq(t)−CV qr(t)=0 ∀ t.

Corollary 11.1. Consequently, moment matching for linear second-order systems can be
interpreted as the exact matching of the steady-state response of the FOM and ROM

yss(t) =
r∑

i=1
C(σ2

iM + σiD +K)−1Bri qv
r,i(t)

≡
r∑

i=1
Cr(σ2

iM r + σiDr +Kr)−1Brri qv
r,i(t) = yr,ss(t)

(11.14)

when both are excited with exponential input signals F (t) =Rqv
r (t) =R eSvt qv

r,0. For other
input signals the steady-state response is interpolated. Note that the transient response of the
FOM is also matched or rather vanishes, if the initial conditions are chosen like above.

Derivation of second-order linear Sylvester equation

The Sylvester equation (11.11a) can be derived using the notion of signal generators. To this
end, first insert the linear approximation ansatz q(t)=V qr(t) with qr(t)

!=qv
r (t) in the state

equation (11.1a). Then, the linear signal generator (11.12) is plugged in, yielding(
M V S2

v +DV Sv +KV −BR
)
· qv

r (t) = 0. (11.15)
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Since (11.15) holds for qv
r (t)= eSvtqv

r,0, the state vector qv
r (t) can be factored out and the

constant (state-independent) linear Sylvester equation (11.11a) of dimension n×r is obtained.

11.2 Steady-state-based second-order nonlinear moment matching

The steady-state-based interpretation of moment matching can be carried over to nonlinear
second-order systems. For the generalization we follow the same steps proposed by Astolfi
for nonlinear first-order systems. We first introduce a second-order nonlinear signal generator
and then interpret the moments as the steady-state of an interconnected system.

Notion of second-order nonlinear signal generator

Consider the nonlinear signal generator

q̇v
r (t) = sv

(
qv

r (t)
)
, qv

r (0) = qv
r,0 6= 0, (11.16a)

q̈v
r (t) =

∂sv
(
qv

r (t)
)

∂qv
r (t) · sv

(
qv

r (t)
)
, q̇v

r (0) = q̇v
r,0 6= 0, (11.16b)

F (t) = r
(
qv

r (t)
)
, (11.16c)

where sv(qv
r ) :Rr → Rr, r(qv

r ) :Rr → Rm are smooth mappings. It is assumed that the signal
generator is observable and neutrally stable.

Steady-state response of interconnected system

The response of the interconnected system (9.1)+(11.16) can be given using the corresponding
nonlinear state-space representation (9.3) similarly to (7.2), i.e. q(t)=qt(t) + ν(qv

r (t)). This
leads to the following lemma.

Lemma 11.2 (Steady-state notion of nonlinear input moments). The 0-th nonlinear moments
m0

(
sv(qv

r (t)), r(qv
r (t)), qv

r,0
)

at
{
sv(qv

r ), r(qv
r ), qv

r,0
}

are related to the (locally well-defined)
steady-state response

yss(t) = h
(
ν(qv

r (t))
)

= Cν(qv
r (t)) := m0

(
sv(qv

r (t)), r(qv
r (t)), qv

r,0
)

(11.17)

of the interconnected system (9.1)+(11.16), where the mapping ν(qv
r ), defined in a neighbor-

hood of qv
r,eq=0, is the unique solution of the second-order Sylvester-like PDE

M
∂ν(qv

r )
∂qv

r

∂sv
(
qv

r
)

∂qv
r

sv(qv
r ) +M ∂2ν(qv

r )
∂qv2

r
sv(qv

r )⊗ sv(qv
r )

+D∂ν(qv
r )

∂qv
r
sv(qv

r ) + f
(
ν(qv

r )
)

= B r
(
qv

r
)
.

(11.18)

Nonlinear moment matching by interconnection

Theorem 11.2 (Steady-state-based nonlinear moment matching). Consider the interconnec-
tion of system (9.1) with the nonlinear signal generator (11.16), where the triple (sv, r, qv

r,0)
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is assumed observable and neutrally stable. Let ν(qv
r ) be the unique solution of the Sylvester-

like PDE (11.18) and ω(·) such that det(W̃ T
qr
Ṽ qr) 6= 0. Furthermore, let q0 = ν(qv

r,0),
q̇0 = Ṽqv

r,0
q̇v

r,0 with qv
r,0 6= 0, q̇v

r,0 6= 0 arbitrary. Then, the (exponentially stable) ROM (9.28)
exactly matches the (locally well-defined) steady-state response of the output of the FOM, i.e.
e(t)=y(t)−yr(t)=Cq(t)−Cν

(
qr(t)

)
=0 ∀ t.

Corollary 11.2. Thus, nonlinear moment matching can be interpreted as the exact matching
of the steady-state response of the FOM and ROM

yss(t) = C ν
(
qv

r (t)
)

= m0
(
sv(qv

r (t)), r(qv
r (t)), qv

r,0
)
,

≡ C ν
(
qr,ss(t)

)
= mr,0

(
sv(qv

r (t)), r(qv
r (t)), qv

r,0
)

= yr,ss(t),
(11.19)

when both are excited with the signal generator (11.16). For other input signals the steady-
state response is interpolated.

Derivation of second-order nonlinear Sylvester-like partial differential equation

The Sylvester-like PDE (11.18) represents the nonlinear counterpart of the linear equation
(11.15). Thus, the PDE has been derived similarly as follows. First, the nonlinear approx-
imation ansatz q(t) = ν(qr(t)) with qr(t)

!= qv
r (t) is inserted in the state equation (9.1a).

Afterwards, the nonlinear signal generator (11.16) is plugged in, yielding (11.18). Note that,
as opposed to the linear Sylvester equation (11.11a) of dimension n×r, the PDE (11.18) is a
nonlinear, state-dependent equation of dimension n×1. Further note that the PDE contains
not only first, but also second-order partial derivatives w.r.t. the unknown ν

(
qv

r (t)
)
.

Families of reduced-order models achieving second-order nonlinear moment matching

Similar to state-space systems (cf. Sections 3.6.4 and 7.1.4), one could also consider defining
non-projective families of ROMs achieving second-order nonlinear moment matching. We will
not deepen this further, since we mainly use the projection-based approaches (9.7) and (9.28).
As already mentioned, we employ a one-sided reduction to preserve the stability of the FOM.

11.3 Approximated second-order nonlinear moment matching

The second-order nonlinear PDE (11.18) is difficult to solve for ν
(
qv

r (t)
)
. Thus, in [75] we have

proposed similar step-by-step simplifications as in [72] to achieve a feasible, simulation-free
reduction method for nonlinear mechanical systems. Here we will not repeat the simplifications
for all three signal generator cases again, as it is similar to what discussed in Section 7.2.
Instead, we focus only on the most general nonlinear signal generator case.

(i) Linear projection

Applying a linear projection q(t)=ν
(
qv

r (t)
)
=V qv

r (t), the PDE (11.18) becomes the following
algebraic nonlinear system of equations

MV
∂sv

(
qv

r (t)
)

∂qv
r (t) sv

(
qv

r (t)
)

+DV sv
(
qv

r (t)
)

+ f
(
V qv

r (t)
)
−B r

(
qv

r (t)
)

= 0, (11.20)
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where the triple
(
sv(qv

r (t)), r(qv
r (t)), qv

r (t)
)

is user-defined. Note that the term corresponding
to the second-order partial derivative of ν

(
qv

r (t)
)

vanishes when a linear projection is applied.

(ii) Column-wise consideration

System (11.20) consists of n equations for n · r unknowns in V ∈ Rn×r, i.e. it is underdeter-
mined. To overcome this problem, we propose to consider the equation column-wise for each
vi ∈ Rn, i = 1, . . . , r

M vi

∂svi

(
qv

r,i(t)
)

∂qv
r,i(t)

svi

(
qv

r,i(t)
)

+Dvi svi

(
qv

r,i(t)
)

+ f
(
vi qv

r,i(t)
)
−B ri

(
qv

r,i(t)
)

= 0, (11.21)

with qv
r,i(t) ∈ R and V = [v1, . . . ,vr]. Please be aware that, in contrast to the linear setting,

a column-wise construction of V using columns vi satisfying (11.21) does generally not fulfill
the “true” equation (11.20).

(iii) Time discretization

The nonlinear equation (11.21) is still state-dependent. Thus, we propose to discretize the
equation with time-snapshots {t∗

k}, k = 1, . . . , K. With user-defined svi(qv
r,i(t∗

k)), ri(qv
r,i(t∗

k))
and qv

r,0,i, the following time-independent equation results

M vik
∂svi

(
qv

r,i(t∗
k)
)

∂qv
r,i(t∗

k
) svi

(
qv

r,i(t∗
k)
)

+Dvik svi

(
qv

r,i(t∗
k)
)

+ f
(
vik qv

r,i(t∗
k)
)
−B ri

(
qv

r,i(t∗
k)
)

= 0, (11.22)

which can be solved for each vik ∈ Rn, with i = 1, . . . , r and k = 1, . . . , K. The discrete
solution qv

r,i(t∗
k) of the nonlinear signal generator equation (11.16) must be given or computed

via simulation before solving equation (11.22).

These simplifications yield the second-order nonlinear moment matching algorithm 11.1:

Algorithm 11.1 Second-order NLMM (SO-NLMM)
Input: M , D, f(q), B, K(q), qv

r,i(t∗
k), q̇v

r,i(t∗
k), q̈v

r,i(t∗
k), ri(qv

r,i(t∗
k)), initial guesses v0,ik,

deflated order rdefl
Output: orthogonal basis V

1: for i = 1 : r do I e.g. r different shifts σi

2: for k = 1 : K do I e.g. K samples in each shift
3: fun=@(v) M v q̈v

r,i(t∗
k) +D v q̇v

r,i(t∗
k) + f(v qv

r,ik)−B ri(qv
r,ik) I residual (11.22)

4: Jfun=@(v) M q̈v
r,i(t∗

k) +D q̇v
r,i(t∗

k) +K(v qv
r,ik) qv

r,ik I Jacobian of residual
5: vik = NewtonRaphson(fun,v0,ik, Jfun) I call Alg. 6.2
6: V(:,(i-1)*K+k) ← vik

7: V = gramSchmidt(vik, V) I optional
8: [U, Sigma, ~] = svd(V,'econ'); V = U(:,1:rdefl) I deflation is optional

Since the discussion regarding the computational aspects, the approximated moments and the
limitations also applies here, we refrain from further details and instead refer the reader to
[75] and Sections 7.2 and 7.3.
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11.4 Numerical examples

The SO-NLMM algorithm is illustrated by means of two numerical examples: a cantilever
beam and a S-shaped structure. A third example using a similar clamped-clamped beam as
in Section 10.5 is not shown for the sake of brevity.

We use the open-source research code AMfe (cf. [224]) for the setup and numerical
simulation of the finite element models. Gmsh [104] and ParaView [5] serve hereby as mesh
generation and post-processing tools, respectively. For the numerical time integration of FOMs
and ROMs (9.7) we employ the implicit generalized-α scheme 9.1 with default parameters.

The SO-NLMM algorithm 11.1 has been implemented in Python using a self-programmed
Newton-Raphson scheme.1 We compare SO-NLMM with POD and the basis augmentation
approach with vibration modes (VMs) and modal derivatives (MDs).

11.4.1 Cantilever beam

The cantilever beam has a length of L = 3 m and a height of h = 10 cm. It is made of
steel, which is modeled as linear Kirchhoff material with E = 210 GPa, ν = 0.3 and ρ =
1 · 104 kg

m3 . The 2D model is discretized using 246 triangular Tri6 elements with quadratic
shape functions, yielding (after Dirichlet boundary conditions) n=1224 degrees of freedom in
x- and y-direction. The model exhibits geometric nonlinear behavior due to the used quadratic
Green-Lagrange strain tensor, resulting in a cubic function f(q) of the nodal displacements.
The model equation is given by (9.1), where D=0 is assumed. The input force F (t) is applied
at the tip in negative y-direction. The output y(t) is the y-displacement of the tip.

We apply Algorithm 11.1 using a single signal generator with K =10 or K =20 equidistant
time-snapshots in the interval t ∈ [0, 1 s]. For the training phase of SO-NLMM and POD, we
use the signal generator qv

r (t)=sin(10t) – i.e. ωtrain =10 rad
s – with corresponding q̇v

r (t), q̈v
r (t)

and the training input Ftrain(t)=r(qv
r (t))=108 · qv

r (t). For the test phase of FOM and ROMs
we apply the different input Ftest(t) = 108 · sin(31t) – i.e. ωtest = 31 rad

s . We compare both
approaches with ROMs obtained via Vφ containing only linear vibration modes φi, and an
augmented basis V aug containing VMs and SMDs – for qeq = 0 – to capture the nonlinear
behavior. The numerical integration of FOM and ROMs is accomplished by the generalized-α
scheme with fixed step-size h=0.001 s in the interval [t0, tend]=[0, 1 s].

In Figures 11.1, 11.2 and 11.3 the results for K = 10 are depicted. Note that Vφ is
composed of rφ = 3 VMs, whereas V aug contains rφ = 3 VMs and rφ · (rφ + 1)/2 = 6 SMDs,
i.e. raug =9. The POD and SO-NLMM bases contain r =10 vectors, respectively. In Figures
11.4, 11.5 and 11.6 the results for rφ=5, raug =20 and r=20 are shown.

In terms of approximation quality we can see that the pure linear basis Vφ cannot capture
the nonlinear behavior at all. Both SO-NLMM and POD yield satisfactory results, being
POD superior in both cases. SO-NLMM yields slightly better results than the augmentation
approach for r=10 and performs equally good for r=20. For this latter reduced order one can
practically not see the dismatch between FOM and ROMs. In terms of computational effort
POD required ≈37 s (simulation + SVD), whereas SO-NLMM needed only ≈2.6 s (K =10) or
≈6 s (K =20) to compute the reduction basis during the offline phase. The basis augmentation
approach is also very efficient, requiring less than 1 s in both cases.

1The Python implementation of SO-NLMM, the employed test scripts as well as some videos are available at
https://zenodo.org/record/2611120.

https://zenodo.org/record/2611120
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Figure 11.1: Snapshot of the cantilever beam simulation (rφ=3, raug =9, r=10)
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Figure 11.2: y-displacement of beam’s tip for FOM and ROMs (rφ=3, raug =9, r=10)
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Figure 11.4: Snapshot of the cantilever beam simulation (rφ=5, raug =20, r=20)
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Figure 11.5: y-displacement of beam’s tip for FOM and ROMs (rφ=5, raug =20, r=20)
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11.4.2 S-shaped structure

The geometry of the considered S-shaped structure can be seen in Figure 11.7. The structure is
32 m long, 11 m high and clamped on both sides. The origin of the coordinate system is located
at the middle of the structure, meaning that it is symmetric w.r.t. the y-axis (16 m right/left,
5.5 m up/down). The employed St. Venant-Kirchhoff material has the properties E =2.1 GPa,
ν = 0.3 and ρ = 7867 kg

m3 . The model is discretized using 136 triangular Tri6 elements with
quadratic shape functions, yielding (after Dirichlet boundary conditions) n = 742 degrees of
freedom in x- and y-direction. Zero physical damping D = 0 is again assumed, whereby
numerical damping is introduced through the generalized-α scheme. The loading force F (t)
is applied at the coordinate (0, 5.5) in negative y-direction. The observed node is indicated
by a magenta point in Figure 11.7 and is approximately located at (−5.1,−1.0).

We apply Algorithm 11.1 using a single signal generator with K = 20 equidistant time-
snapshots in the interval t ∈ [0, 5 s]. For the training phase of SO-NLMM and POD, we use
the signal generator qv

r (t) = sin(4t) – i.e. ωtrain = 4 rad
s – with corresponding q̇v

r (t), q̈v
r (t) and

the training input Ftrain(t)=r(qv
r (t))=4 ·106 · qv

r (t). For the test phase of FOM and ROMs we
apply the different input Ftest(t)=4 · 106 · sin(6t) – i.e. ωtest =6 rad

s . We again compare POD
and SO-NLMM with ROMs obtained via a pure linear basis Vφ and an augmented basis V aug
containing VMs and SMDs (for qeq =0). The numerical time integration is conducted with a
fixed step-size h=0.01 s in the interval [t0, tend]=[0, 5 s].

The numerical results for rφ=5, raug =20, r=20 are illustrated in Figures 11.8 and 11.9.
The pure linear basis performs badly, whereas SO-NLMM and the augmented basis yield
a comparably good approximation. POD leads again to the smallest error. Note that the
training and test signals employed here do not differ too much from each other. However,
considering a completely different test scenario would reveal the training dependency of POD
(and maybe also of SO-NLMM). The advantage of NLMM is that a complete transient sim-
ulation of the FOM is not required to apply different training signal generators.

For the computation of the bases during the offline phase POD required ≈ 16.7 s (simu-
lation + SVD), while SO-NLMM needed only ≈ 1.8 s (K = 20) and the basis augmentation
approach less than 1 s. Thus, the simulation-free approaches are more efficient than the
simulation-based method. The simulation of the FOM and ROMs during the online phase
takes ≈17 s and ≈14 s, respectively. This small speed-up is a consequence of the application
of dimensional reduction only. We have not applied hyper-reduction yet, since our primary
goal was to evaluate the performance of SO-NLMM in terms of approximation quality and
offline costs. For further speed-up one could consider applying ECSW with the simulation-free
generation of snapshots proposed in Section 7.6.2.
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Figure 11.7: Snapshot of the simulation for the S-shaped structure (rφ=5, raug =20, r=20)
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Figure 11.8: y-displacement of observed node for FOM and ROMs (rφ=5, raug =20, r=20)
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11.5 Conclusions

Based on the ideas from Astolfi [14] we have extended the concept of moment matching to
nonlinear second-order systems. We have derived the corresponding Sylvester-like PDE and
employed our simplifications to achieve a feasible algorithm relying on the solution of nonlinear
systems of equations. As in the state-space case, the selection of appropriate signal generators
is essential for the performance of the algorithm.

It can be concluded that SO-NLMM is slightly different from the concept of modal deriva-
tives. The former method emerges from the approximation of the nonlinear manifold ν(qv

r ),
whereas the modal derivatives result from the perturbation of the eigenvalue problem or from
the Volterra series representation of the solution q(t). Both approaches are simulation-free,
since they do not rely on the simulation of the FOM to construct the basis. However, SO-
NLMM depends on the choice of signal generators while the modal derivatives rely on the
selection of a linearization point qeq.

We have provided a first comparison study between SO-NLMM and (static) modal deriva-
tives. In the future, a more exhaustive examination between both techniques is required to
gain further insight about the conceptual similarities and differences. Moreover, a comparison
between the QM ansatz with VMs+MDs and a nonlinear projection based on the (approxi-
mate) solution ν(qv

r ) of the PDE (11.18) could be carried out.
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Chapter 12

Concluding Remarks

This thesis studies system-theoretic model order reduction of nonlinear dynamical systems.
In this chapter we summarize the main contributions of the thesis and draw conclusions from
the most important results. We also provide some ideas for future research endeavors in the
context of nonlinear model reduction.

Summary and conclusions

Most of the existing methods for linear model order reduction rely (in one way or another)
on system-theoretic concepts. For instance, modal truncation is grounded on the eigenmodes,
balanced truncation relies on the Gramians, moment matching interpolates the transfer func-
tion and H2-optimal approaches require the H2-norm. On the contrary, many nonlinear
model reduction techniques rely on expensive simulations of the original model to construct
the ROM. Hence, in this thesis we have focused on simulation-free methods to avoid training
simulations and lower the offline computational costs of the reduction process. In this regard,
we have investigated system-theoretic concepts and reduction approaches for polynomial, non-
linear state-space and nonlinear second-order systems. In the context of polynomial systems
the Volterra series representation has played a crucial role to obtain e.g. multivariable transfer
functions required for Krylov-based reduction. In the field of nonlinear state-space systems
we have turned our attention to the center manifold theory, the steady-state interpretation
of moments and the concept of eigenfunctions. Finally, in the realm of nonlinear mechanical
systems we have focused on modal derivatives and the Harmonic Balance method.

The most important statements and conclusions learned from each chapter are presented
in the following:

Chapter 3
• Interconnecting a system with a linear signal generator (Sv, R, xv

r,0) corresponds to excit-
ing the system with exponential input signals of the form u(t)=R eSvtxv

r,0.
• In addition to the classical interpretation of moment matching as the interpolation of the

transfer function at certain shifts, one can also interpret this concept as the interpolation
of the steady-state response of the system interconnected with a linear signal generator.

• The rational Krylov subspace method from [84] allows not only the approximate solution of
linear Lyapunov equations, but also the cumulative reduction of LTI systems. Therefore,
the method has been implemented in the sssMOR toolbox. CRKSM constitutes a good
alternative to IRKA, not only because of the adaptive choice of interpolation data, but
also due to the automatic selection of the reduced order.

227
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Chapter 4
• Starting from a nonlinear input-affine system, there are different methods to obtain a poly-

nomial system (Taylor series, polynomialization) and/or to transform the latter to a special
class (Carleman bilinearization, quadratic-bilinearization). Their respective properties, ad-
vantages and disadvantages have been discussed, enriching the existing literature.

• In addition to the Picard iteration, the variational equation approach [221] also allows
to obtain the Volterra series representation and the multivariable convolution kernels via
homogeneous subsystem state equations. Both methods have been applied and discussed.

• The growing exponential approach represents an easier way to obtain transfer functions
for polynomial systems than the multidimensional Laplace transform of the kernels and
output equations. Based upon the eigenfunction property, the solution to a sum of growing
exponentials is directly expressed in time-domain via the generalized transfer functions,
without requiring an inverse Laplace transform like for (4.37) and (4.41). We have applied
the approach to bilinear and quadratic-bilinear systems.

• Instead of the Kronecker notation often used in the literature, we employed the more in-
sightful sum notation for the MIMO transfer functions. This increases the awareness about
the (j2, . . . , jk) combinations resulting from the multiple bilinear matrices N1, . . . ,Nm.

Chapter 5
• The regular kernels and transfer functions allow the generalization of many system-theoretic

concepts to the bilinear setting. We have extended the pole-residue formulation to the
MIMO case and employed the result to express the H2-norm. We also have discussed our
bsssMOR implementation of blyapchol to solve large bilinear Lyapunov equations.

• In the context of Krylov-based reduction of polynomial systems one can distinguish between
subsystem and Volterra series interpolation. For MIMO subsystem interpolation we have
proposed to sum the moments over all (j2, . . . , jk) combinations of the transfer functions
to reduce the dimension of the Krylov subspace.

• Exploiting the bilinear Sylvester equations, we have provided the until now missing Volterra
series interpolation conditions for the MIMO case. The framework has been further ex-
tended to the multimoment setting and implemented in an efficient Arnoldi-like manner
in the bsssMOR toolbox (volterraBrk). Only if infinite Volterra series interpolation is
desired, the corresponding bilinear Sylvester equations should be solved.

• We have extended the concept of H2-pseudo-optimality to the bilinear case and presented
the iteration-free algorithm BPORK. Its properties and usage have also been mentioned.

Chapter 6
• The reduction of nonlinear state-space systems using a linear projection is well understood.

Moreover, several established techniques (e.g. POD, TPWL, basis augmentation) exist to
construct the linear subspaces. The latter have proven successful in lots of applications,
but may require many basis vectors to capture the nonlinear dynamics satisfactorily.

• The use of a nonlinear projection constitutes a very promising way to reduce dynamical
systems, allowing for a smaller reduced order than with linear subspaces. However, non-
linear projection-based reduction is still in its infancy. Moreover, the projection onto the
tangent space of a manifold results in a more complicated ROM.

• There exist different strategies to accomplish hyper-reduction (e.g. polynomial represen-
tation, PWL, DEIM, manifold-based), all having their advantages and applicability.
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Chapter 7
• Astolfi’s extension of moment matching to the nonlinear case requires the solution of a

Sylvester-like PDE to calculate the nonlinear reduction mapping. We have proposed cer-
tain simplifications (linear projection, column-wise consideration, time discretization) to
approximate the PDE and achieve a feasible algorithm that relies on the solution of NLSEs.

• An extensive discussion about the simplifications has been presented, together with guide-
lines for the selection of the reduction parameters and the use of the algorithm. The numer-
ical examples show the efficiency of our simulation-free approach in comparison to POD.

• We have discussed the semi non-intrusive nature of NLMM, as well as its combination with
simulation-free hyper-reduction. These remarks, the practical guidelines and some prior
system knowledge make NLMM well applicable to large finite element models.

Chapter 8
• The eigenfunctions of bilinear and quadratic-bilinear systems have been derived from

Bernoulli differential equations. Moreover, we have explained how they can be constructed
via a signal generator and exploited in the nonlinear moment matching framework from
Astolfi. However, a nonlinear manifold is indispensable in this setting to take the super-
position of eigenfunctions properly into account (superposition principle does not hold).

• We have discussed how the signal generator and the input need to be chosen to obtain the
state-independent bilinear Sylvester equations employed in the Volterra series interpolation.

Chapter 9
• For the linear projection-based reduction of nonlinear second-order systems we have con-

centrated on the concept of basis augmentation with modal derivatives. The original
derivation of modal derivatives is based on the perturbation of the linearized eigenvalue
problem and yields a singular LSE under mass consideration. Hence, the mass terms are
often neglected to obtain the static modal derivatives, which are symmetric.

• In the context of nonlinear projection we have focused on the emerging convective term
and the time integration of manifold-ROMs. Moreover, we have treated the special case of
a quadratic manifold, which can be parametrized with modes and modal derivatives.

Chapter 10
• We have presented a novel derivation for modal derivatives based on the application of the

variational equation approach to the polynomial(ized) second-order system. The gained
derivatives are inherently symmetric and allow the explanation of internal resonances due
to the sum/substraction of eigenfrequencies in the coefficient matrix.

• The new derivatives can be employed to give an analytical solution via the truncated
Volterra series, to formulate novel quadratic manifold approaches for model reduction and
to show the differences between the Volterra series and Harmonic Balance method.

Chapter 11
• We have extended the method of moment matching from linear to nonlinear mechanical

systems. The generalization yields a second-order PDE that has been gradually simplified
to achieve a simulation-free second-order nonlinear moment matching algorithm.

• SO-NLMM has been implemented in the research code AMfe. Numerical results for geo-
metrically nonlinear structural models demonstrate the performance of the algorithm.
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Future research topics

Some perspectives for future research have already been mentioned throughout the thesis. In
the following we present some more open questions for possible research:
• We have initiated the implementation of the bsssMOR and qbsssMOR toolboxes for

bilinear and quadratic-bilinear model reduction. However, due to the lack of time they
could not be developed to their full extent. Thus, it would be interesting to further imple-
ment procedural benchmarks, analysis functions and reduction algorithms to increase the
functionality. Eventually, the toolboxes could be made open-source to foster collaborations.

• We have compared our NLMM algorithm to POD and to a pure linear basis computed with
rational Krylov. However, a comparison with other nonlinear Krylov-based reduction meth-
ods is still missing. For instance, a numerical comparison between NLMM and Volterra
series interpolation for (quadratic-)bilinear systems (e.g. using volterraBrk) should def-
initely be carried out in the future. Comparisons between NLMM and H2-optimal ap-
proaches – such as (T)BIRKA and TQB-IRKA [35] – are naturally possible, but not
fair/reasonable. The same applies to a comparison between NLMM and the quadratic-
bilinear Loewner framework [96], since the former is a reduction and the latter an identifi-
cation approach. In our opinion it would be more appropriate to compare the data-driven
approach [231] with the recent time-domain Loewner framework [143].

• The parametrized families of reduced models achieving moment matching have been the-
oretically discussed in this thesis, but not practically employed. Thus, the exploitation of
the free parameters ∆(xr) and W to enforce certain properties (e.g. stability), as well
as the numerical comparison between the projection-free and projection-based families of
ROMs is topic of future research. In this context, it would be also interesting to compare
the ROM obtained via our bilinear H2-pseudo-optimal algorithm BPORK with the ROM
obtained by nonlinear moment matching in a non-projective manner.

• The ideas for an output NLMM algorithm presented in [70] could be further pursued. The
ultimate goal would be to combine both algorithms to obtain a two-sided reduction method
for approximated nonlinear moment matching. Hereby, the approximation quality as well
as the preservation of important properties (such as stability) should be examined both
from a theoretical and numerical perspective.

• The existing approaches for simulation-free hyper-reduction, as well as our proposed method
based on assumed ansatz functions, could be applied to further speed the online evaluation
of the ROM. Moreover, it would be very interesting to combine NLMM with a polynomial
system representation gained either from an intrusive or non-intrusive approach. The latter
method would make NLMM applicable in an industrial context.

• A further topic of research concerns nonlinear projection-based model reduction. Through-
out the thesis we have proposed several conceptual ideas for (quadratic) manifold reduction,
such as the exploitation of the bases V (1) and V (2) from subsystem interpolation, or the
use of eigen- (Krylov-)vectors and their corresponding derivatives. Moreover, we have pre-
sented novel quadratic manifold approaches based on the newly derived modal derivatives.
All these methods could be implemented and tested via numerical examples. Further-
more, a comparison between system-theoretic manifold reduction and recent data-driven
approaches based on manifold/deep learning would be interesting.

• The novel modal derivatives and their promising applications should be examined in more
detail. Moreover, the initiated implementation of the HB method could be followed up.



Appendix A

Taylor series expansion of non-input-affine
nonlinear systems

In Section 4.1.1 we have discussed the Taylor series expansion of a nonlinear input-affine
system (4.2). Although this representation arise in many engineering applications, it is not
as general as the one given in (6.1). In fact, this latter representation allows to describe
systems that are also nonlinear w.r.t. the inputs, whereas the representation (4.2) does not
cover such type of nonlinearities. For instance, the systems ẋ = −x + u2, ẋ = cos(x) + xu2 or
ẋ = x3 + tanh(u) are not input-affine and can therefore only be described by (6.1).

The Taylor series expansion of f(x,u) at the equilibrium point (xeq,ueq) yields

f(x,u) = f(xeq,ueq) + ∂f(x,u)
∂x

∣∣∣∣
eq

(x− xeq) + 1
2!

∂2f(x,u)
∂x2

∣∣∣∣∣
eq

(x− xeq)(2) + . . . (A.1)

+ ∂f(x,u)
∂u

∣∣∣∣
eq

(u− ueq) + 1
2!

∂2f(x,u)
∂u2

∣∣∣∣∣
eq

(u− ueq)(2) + . . . (A.2)

+ 1
2!

∂2f(x,u)
∂x ∂u

∣∣∣∣∣
eq

(x− xeq)(u− ueq) + 1
3!

∂3f(x,u)
∂x2 ∂u

∣∣∣∣∣
eq

(x− xeq)(2)(u− ueq) + . . . (A.3)

Setting (xeq,ueq) = (0, 0) and assuming f(xeq,ueq) = 0, we can write [221, p. 114]

f(x,u) = F 10 x+ F 20(x⊗ x) + . . . + F 01 u+ F 02(u⊗ u) + . . . (A.4)

+ F 11 xu+ F 21(x⊗ x)u+ . . . ≈
N∑

k=0

N∑
l=0
F kl x

(k) u(l), (A.5)

where F 00 ≡ f(xeq,ueq)=0. The partial derivatives of f(x,u) w.r.t. x in (A.1), w.r.t. u in
(A.2) and the mixed derivatives in (A.3) are given by

F k0 = 1
k!

∂kf(x,u)
∂xk

∣∣∣∣∣
eq
∈ Rn×nk

, F 0l = 1
l!

∂lf(x,u)
∂ul

∣∣∣∣∣
eq
∈ Rn×ml

,

F kl = 1
(k + l)!

∂k+lf(x,u)
∂xk ∂ul

∣∣∣∣∣
eq
∈ Rn×nk×ml

.

(A.6)

Please note that F kl represents a 3-dimensional array, while the matrices F k0 and F 0l corre-
spond to the 1-mode matricization of the corresponding tensors. In order to explain this in
more detail, we provide an example in the following.
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Example A.1 (Quadratic-quadratic system). Truncating the Taylor series expansion after
the second-order term yields

f(x,u) ≈ F 10 x+ F 20(x⊗ x) + F 01 u+ F 02(u⊗ u) + F 11 xu, (A.7)

where F 10 ≡ A ∈ Rn×n, F 20 ≡ H ∈ Rn×n2 , F 01 ≡ B ∈ Rn×m, F 02 ∈ Rn×m2 and
F 11 ≡ N ∈ Rn×n×m. The matrix F 20 =̂ H(1) represents the 1-mode matricization of the
third-order tensor H ∈ Rn×n×n. Similarly, the matrix F 02 =̂ B(1) represents the 1-mode
matricization of the third-order tensor B ∈ Rn×m×m. The layers N (:, :, j) =̂Nj ∈ Rn×n of
the third-order tensor N can also be arranged in a matrix N̄ = [N1 · · · Nm] ∈ Rn×n·m,
which corresponds to the 1-mode matricization N (1). This allows to rewrite (A.7) as

f(x,u) = Ax+H(x⊗ x) +Bu+ F 02(u⊗ u) + N̄ (u⊗ x),

= Ax+H(x⊗ x) +Bu+ F 02(u⊗ u) +
m∑

j=1
Nj xuj ,

(A.8)

which describes a dynamical system that is quadratic in state, quadratic in input and
bilinear in state and input. M
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Additional material for novel modal derivatives

Symmetry property of novel modal derivatives

In the following we show that the novel modal derivatives are indeed symmetric w.r.t. the
indices i and j, i.e. θ̃ij = θ̃ji and ˜̃θij = ˜̃θji. The “proof” is exemplary shown for θ̃ij in (10.13a),
but applies similarly for ˜̃θij in (10.13b) too. The matrix K2 ∈ Rn×n2 is assumed symmetric.

From the bracket in (10.12e) it follows:(
K1 − (ωi + ωj)2M

) (
θ̃ij + θ̃ji

)
= −K2

(
φi ⊗ φj + φj ⊗ φi

)
= −K2

(
φi ⊗ φj

)
−K2

(
φj ⊗ φi

)
.

(B.1)

Multiplying the left-hand side out and comparing the terms yields(
K1 − (ωi + ωj)2M

)
θ̃ij = −K2

(
φi ⊗ φj

)
, (B.2a)(

K1 − (ωj + ωi)2M
)
θ̃ji = −K2

(
φj ⊗ φi

)
. (B.2b)

Since K2 (φi ⊗ φj) = K2 (φj ⊗ φi) holds and the left-hand side is also equal, it follows that
θ̃ij = θ̃ji, i.e. the modal derivatives are symmetric. Thus, we can also rewrite (B.1) as(

K1 − (ωi + ωj)2M
) (

2θ̃ij

)
= −2K2

(
φi ⊗ φj

)
, (B.3)

from which Eq. (10.13a) results.

Quadratic manifold ansatz with velocities

The novel quadratic manifold ansatz (10.24) depends nonlinearly on the reduced displacements
qr and the reduced velocities q̇r:

q ≈ ν(qr, q̇r) := Φr qr + Θ̄r2(qr ⊗ qr)− Θ̂r2(q̇r ⊗ q̇r). (B.4)

Differentiating this twice with respect to time yields

q̇ = Φr q̇r + Θ̄r2(q̇r ⊗ qr + qr ⊗ q̇r)− Θ̂r2(q̈r ⊗ q̇r + q̇r ⊗ q̈r), (B.5)

q̈ = Φr q̈r + Θ̄r2(q̈r ⊗ qr + qr ⊗ q̈r) + 2 Θ̄r2(q̇r ⊗ q̇r) (B.6)
− Θ̂r2(...q r ⊗ q̇r + q̇r ⊗

...
q r)− 2 Θ̂r2(q̈r ⊗ q̈r).
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From these equations the following Jacobians and Hessians can be derived:

Ṽqr = ∂ν(qr, q̇r)
∂qr

= Φr + Θ̄r2(1r ⊗ qr + qr ⊗ 1r) , (B.7)

dṼqr = ∂2ν(qr, q̇r)
∂q2

r
= 2 Θ̄r2 , (B.8)

Ṽq̇r = ∂ν(qr, q̇r)
∂q̇r

= −Θ̂r2(1r ⊗ q̇r + q̇r ⊗ 1r) , (B.9)

dṼq̇r = ∂2ν(qr, q̇r)
∂q̇2

r
= −2 Θ̂r2 , (B.10)

with the vector of ones 1r = [1, . . . , 1]T ∈ Rr. Inserting these Jacobians and Hessians into
(B.5) and (B.6) yields

q̇ = Ṽqr q̇r + Ṽq̇r q̈r , (B.11)

q̈ = Ṽqr q̈r + dṼqr(q̇r ⊗ q̇r) + Ṽq̇r
...
q r + dṼq̇r(q̈r ⊗ q̈r). (B.12)

The first derivative is composed of two terms (cf. with Eq. (9.24)), whereas the second
derivative contains four terms (cf. with Eq. (9.25)). What is more, one of the terms depends
on the third time-derivative ...

q r, also known as jerk.
The ansatz (B.4) together with its derivatives (B.11) and (B.12) can then be inserted into

the equations of motion

Mq̈ +Dq̇ + f(q) = f ext. (B.13)

This leads to the overdetermined system

MṼqr q̈r +MdṼqr(q̇r ⊗ q̇r) +MṼq̇r
...
q r +MdṼq̇r(q̈r ⊗ q̈r)

+DṼqr q̇r +DṼq̇r q̈r + f
(
ν(qr, q̇r)

)
= f ext + ε.

(B.14)

The projection is performed onto the tangent space of the displacement and velocity-dependent
manifold ν(qr, q̇r), i.e. onto ran(Ṽqr + Ṽq̇r). The projection is conducted orthogonally to
this same space. Therefore, we multiply the above overdetermined system from the left with
(Ṽqr +Ṽq̇r)T and enforce the Galerkin condition (Ṽqr +Ṽq̇r)Tε = 0. Neglecting the jerk-related
term leads to

(Ṽqr +Ṽq̇r)
TMṼqr q̈r + (Ṽqr +Ṽq̇r)

TMdṼqr(q̇r ⊗ q̇r) + (Ṽqr +Ṽq̇r)
TMdṼq̇r(q̈r ⊗ q̈r)

+ (Ṽqr +Ṽq̇r)
TDṼqr q̇r+(Ṽqr +Ṽq̇r)

TDṼq̇r q̈r + (Ṽqr +Ṽq̇r)
Tf
(
ν(qr, q̇r)

)
= (Ṽqr +Ṽq̇r)

Tf ext.
(B.15)

Due to the additional terms, the time integration of the above manifold-ROM is much more
involved than the one for (9.28).

Note that the projection framework for the novel ansatz q ≈ ν(qr, q̇r) is only mentioned
here for the sake of completeness. We did not implement it due to the lack of time and the
right application (AMfe includes geometric nonlinearities, but is not advection-dominant).
Nevertheless, as already mentioned, this manifold ansatz seems promising for the reduction
of nonlinear problems with quadratic velocity terms, e.g. in the Navier-Stokes equation.
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Volterra ansatz inserted in polynomial system

The individual terms of Eq. (10.36a) are (K2 is symmetric, trigonometric identities1):

α(2) : c2φ⊗ φ
(

1
2 cos(2ωt) + 1

2

)
,

β(2) : c4θ̃ ⊗ θ̃
(

1
2 cos(4ωt) + 1

2

)
,

γ(2) : c4 ˜̃θ ⊗ ˜̃θ ,

δ(2) : c6φ(3) ⊗ φ(3)
(

1
2 cos(6ωt) + 1

2

)
,

2α⊗ β : c3φ⊗ θ̃
(

cos(3ωt) + cos(ωt)
)

,

2α⊗ γ : 2c3φ⊗ ˜̃θ cos(ωt) ,

2α⊗ δ : c4φ⊗ φ(3)( cos(4ωt) + cos(2ωt)
)

,

2β ⊗ γ : 2c4θ̃ ⊗ ˜̃θ cos(2ωt) ,

2β ⊗ δ : c5θ̃ ⊗ φ(3)( cos(5ωt) + cos(ωt)
)

,

2γ ⊗ δ : 2c5 ˜̃θ ⊗ φ(3) cos(3ωt) .

(B.16)

The individual terms of Eq. (10.36b) are (K3 is symmetric, trigonometric identities2):

α(3) : 1
4c3φ⊗ φ⊗ φ

(
cos(3ωt) + 3 cos(ωt)

)
,

β(3) : 1
4c6θ̃ ⊗ θ̃ ⊗ θ̃

(
cos(6ωt) + 3 cos(2ωt)

)
,

γ(3) : c6 ˜̃θ ⊗ ˜̃θ ⊗ ˜̃θ ,

δ(3) : 1
4c9φ(3) ⊗ φ(3) ⊗ φ(3)( cos(9ωt) + 3 cos(3ωt)

)
,

3α(2) ⊗ β : 3
4c4φ⊗ φ⊗ θ̃

(
cos(4ωt) + 2 cos(2ωt) + 1

)
,

3α(2) ⊗ γ : 3
4c4φ⊗ φ⊗ ˜̃θ(2 cos(2ωt) + 2

)
,

3α(2) ⊗ δ : 3
4c5φ⊗ φ⊗ φ(3)( cos(5ωt) + 2 cos(3ωt) + cos(ωt)

)
,

3β(2) ⊗ α : 3
4c5φ⊗ θ̃ ⊗ θ̃

(
cos(5ωt) + 2 cos(ωt) + cos(3ωt)

)
,

3β(2) ⊗ γ : 3
4c6θ̃ ⊗ θ̃ ⊗ ˜̃θ(2 cos(4ωt) + 2

)
,

3β(2) ⊗ δ : 3
4c7θ̃ ⊗ θ̃ ⊗ φ(3)( cos(7ωt) + 2 cos(3ωt) + cos(ωt)

)
,

4α⊗ β ⊗ γ : c5φ⊗ θ̃ ⊗ ˜̃θ(2 cos(3ωt) + 2 cos(ωt)
)

,

4α⊗ β ⊗ δ : c6φ⊗ θ̃ ⊗ φ(3)( cos(6ωt) + cos(4ωt) + cos(2ωt) + 1
)

,

4α⊗ γ ⊗ δ : c6φ⊗ ˜̃θ ⊗ φ(3)(2 cos(4ωt) + 2 cos(2ωt)
)

,

4β ⊗ γ ⊗ δ : c7θ̃ ⊗ ˜̃θ ⊗ φ(3)(2 cos(5ωt) + 2 cos(ωt)
)

,

(B.17)

1cos x cos y = 1/2 cos(x + y) + 1/2 cos(x − y), especially cos2(x) = 1/2 cos(2x) + 1/2 and cos(x) = cos(−x).
2cos x cos y cos z = 1/4

(
cos(x + y + z) + cos(x + y − z) + cos(x − y + z) + cos(−x + y + z)

)
, especially cos3(x) =

1/4 cos(3x) + 3/4 cos x.
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and

3γ(2) ⊗ α : 3
4c5φ⊗ ˜̃θ ⊗ ˜̃θ(2 cos(ωt) + 2

)
,

3γ(2) ⊗ β : 3
4c6θ̃ ⊗ ˜̃θ ⊗ ˜̃θ(2 cos(2ωt) + 2

)
,

3γ(2) ⊗ δ : 3
4c7 ˜̃θ ⊗ ˜̃θ ⊗ φ(3)(2 cos(3ωt) + 2

)
,

3δ(2) ⊗ α : 3
4c7φ⊗ φ(3) ⊗ φ(3)( cos(7ωt) + 2 cos(ωt) + cos(5ωt)

)
,

3δ(2) ⊗ β : 3
4c8θ̃ ⊗ φ(3) ⊗ φ(3)( cos(8ωt) + 2 cos(2ωt) + cos(4ωt)

)
,

3δ(2) ⊗ γ : 3
4c8 ˜̃θ ⊗ φ(3) ⊗ φ(3)(2 cos(6ωt) + 2

)
.

(B.18)
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